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Abstract

The analysis of functional neuroimaging data often involves the simultaneous testing

for activation at thousands of voxels, leading to a massive multiple testing problem.

This is true whether the data analyzed are time courses observed at each voxel or

a collection of summary statistics such as statistical parametric maps (SPMs). It

is known that classical multiplicity corrections become strongly conservative in the

presence of a massive number of tests. Some more popular approaches for thresholding

imaging data, such as the Benjamini-Hochberg procedure for false discovery rate

control, tend to lose precision or power when the assumption of independence of the

data does not hold. Bayesian approaches to large scale simultaneous inference also

often rely on the assumption of independence. This dissertation introduces a spatial

dependence structure into a Bayesian testing model for the analysis of SPMs. By

using SPMs rather than the voxel time courses, much of the computational burden

of Bayesian analysis is mitigated. Increased power is demonstrated by using the

dependence model to draw inference on a real dataset collected in a fMRI study of

cognitive control. The model also is shown to lead to improved identification of neural

activation patterns known to be associated with eye movement tasks.
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Chapter 1

Introduction

The analysis of high throughput data presents many challenges to researchers across

a variety disciplines. Many of the problems that must be dealt with are ubiquitous in

the field of statistics but are magnified or exacerbated when the data sets are on an

extremely large scale. Often, the goal is to perform hypothesis tests or otherwise infer

the presence or absence of a signal at an extremely large number of points. Observing

thousands (or millions, in some cases) of points at the same time greatly increases

the chances of some data spuriously exhibiting a signal just by random variation.

The situation is further complicated when the data are dependent so that there is

redundant information between observations being tested. Failure to account for this

dependence structure can have an adverse effect on the ability to detect interesting

signals. The need to balance a high risk for false positives with sensitivity for detection

then becomes a foremost concern, as does the development of appropriate techniques

for dealing with dependence.

The multiple testing problem has a rich enough history that there is a consensus

that it has been satisfactorily addressed in small- to moderate-sized settings. The

fact that performing multiple hypothesis tests increases the probability of declaring

a false positive was first addressed by Fisher (1935). More ideas followed, including

methods for following up an analysis of variance with multiple contrasts (Scheffé,

1953) and pairwise comparisons (e.g. Tukey, 1952; Duncan, 1955). Around that same

time a procedure was introduced for comparing multiple treatments to a control by

Dunnett (1955). The commonly used Bonferroni procedure for constructing simulta-

neous confidence intervals may be attributed to Dunn (1961). Such procedures have

1



long been known to have desirable theoretical properties such as control of the strong

family-wise error rate (SFWER), the probability of falsely rejecting one or more null

hypotheses. Methods that control the SFWER but do not facilitate constructing si-

multaneous confidence intervals include the so-called REGWR procedure (Ryan, 1960;

Einot and Gabriel, 1975; Welsch, 1977) and Holm’s method (Holm, 1979), a modifica-

tion to the Bonferroni correction based on ordering the p-values. Other improvements

to the Bonferroni procedure were introduced in Simes (1986) and Hochberg (1988),

among others. See Oehlert (2000, Chapter 5) for a broad survey of multiple testing

procedures.

Prior to the last decade, most multiple testing procedures were constructed with

the intent of controlling the overall error rate for a relatively small number of si-

multaneous tests. The advent of high throughput technology revealed, however, that

classical procedures can be inappropriate in the presence of thousands of simultaneous

tests. As an example, consider the Bonferroni correction. This procedure takes the

nominal significance level α and divides it by the number of tests being performed,

say K. The threshold for p-values at which significance is declared then becomes

α/K. The correction is a simple and effective method of controlling the SFWER.

If one is performing, say, 60, 000 one-sided tests at the α = .05 significance level,

though, the correction only identifies as signals those points with p-values less than

.05/60, 000 ≈ .00000083, or equivalently a Gaussian test statistic of at least z ≈ 4.79.

This extremely conservative threshold would result in only the most extreme points

in the data being selected, or none at all. There is no reason to think, though, that

many points in the data are not true signals just because there are thousands of others

being tested at the same time.

Any procedure controlling the overall family-wise error rate must necessarily make

the individual rejection criterion more stringent as the number of tests increases. This

approach has proven to be overly conservative in many cases, leading to much new
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research on multiple testing. Using the analysis of gene microarrays as a motivating

example, Dudoit et al. (2003) discussed several procedures for testing in the high

throughput setting. A more recent overview of techniques for large-scale testing is

Efron (2010), including effect size estimation and combining results to draw inference

on sets of observations with enrichment analysis.

A particularly important breakthrough in the statistical analysis of massive data

sets came when Benjamini and Hochberg (1995) introduced the false discovery rate

(FDR) along with a simple procedure for its control. The Benjamini-Hochberg “step-

up” procedure was ahead of its time when it was first introduced and hence not widely

accepted by the statistical community (Benjamini, 2010). Its value was more fully

appreciated with its application to high throughput data such as gene microarrays

and neuroimaging. The procedure controls the expected proportion of discoveries

(hypothesis rejections) that are false, as opposed to controlling the overall probability

of committing any Type I error via the SFWER. This makes it much easier to scale

up to larger data sets without becoming overly conservative. A conditional version

of FDR, the positive false discovery rate, has been explored by Storey (2002, 2003).

Regardless of the thresholding rule chosen, the null distribution used to calculate p-

values can itself be problematic. Efron (2004) showed that in the large scale scenario,

the distribution of test statistics under the null hypothesis can be different from what

theory predicts because of unobserved covariates or some other kind of dependence in

the data. The difference in distributions may seem slight. For instance, when using

standard Gaussian test statistics, the appropriate null mean may be -.36 rather than a

theoretical standard Gaussian with a mean of zero. Using the theoretical distribution,

a test statistic of z = 1.4 has a one-sided p-value of .08, failing to be significant at the

α = .05 level. Under the correct null distribution, this same statistic has a p-value

of .04 and hence would be declared significant. All locations with such marginally

significant test statistics would fail to be detected under the theoretical distribution,
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despite a small (one-third of a standard deviation) difference between its mean and the

truth. Even small differences, then, can change the long-run operating characteristics

of any significance testing procedure, leading to considerable inconsistencies in results

when the procedure is applied thousands of times. Even the Benjamini-Hochberg

procedure will fail if the wrong null distribution is used to calculate p-values. This

can mean the difference between identifying hundreds of interesting cases and none

at all (Efron, 2007). Empirical estimation of the null distribution of transformed

p-values was discussed in Efron (2004).

In addition to the frequentist methods described above, Bayesian statistics also

provides means of dealing with high throughput data. In the case of complete in-

dependence (e.g. a non-hierarchical structure), Berry and Hochberg (1999) showed

that the resulting probabilities evaluated at each point depend only on the data and

parameters at that point; they are unaffected by any other data that may have been

simultaneously observed so that no adjustment is made. Berry and Hochberg argued,

however, that such independence is rarely the case. In variable selection problems

where a subset of points are to be selected as interesting cases among many possible

candidates, there is a need for multiplicity correction in the sense that the estimated

probability of any particular point (variable) being non-null should adjust accordingly

as the total number of points being observed increases. While most Bayesian analyses

contain intrinsic penalties for model complexity (Jefferys and Berger, 1992), the mul-

tiplicity adjustment is only induced through the modeling of the prior probability of a

case being non-null (Scott and Berger, 2010), in which case the model automatically

accounts for the number of tests in a posteriori probability statements (see Section

2.2). This inherent self-calibration is appealing since it relieves researchers of explic-

itly correcting the threshold for discoveries. For discussions of Bayesian approaches

to the multiple comparisons problem, see Waller and Duncan (1969), Westfall et al.

(1997), Berry and Hochberg (1999), and Scott and Berger (2006, 2010), among others.
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Close parallels between Bayesian posterior calculations and estimated false dis-

covery rates have been demonstrated in the literature. Under independent mixture

distributions of the test statistics, Storey (2003) showed how the positive false discov-

ery rate may be expressed as the Bayesian posterior probability of the null hypothesis

being true, given that a test statistic lies in a specified rejection region. Efron (2010)

defined a local false discovery rate for some test quantity, z, as fdr(z) = π0f0(z)/f(z),

where f(z) = π0f0(z) + π1f1(z) is the mixture density of the test statistics and

π0 = 1− π1 is the probability that a test statistic arises from its null density, f0.

Much of the work thus far developed in the literature is based on the assumption

of independence of the data. This assumption, which does not hold in many applica-

tions, can yield drastically different results from what would otherwise be obtained

by accounting for the true dependence in the data. Consider a simple t-test. A one-

or two-sample t-test is based on an effect size, or the scaled distance between two

values. Inappropriately assuming independence causes the scale (standard deviation)

to be poorly estimated so that the true difference between observed and null values is

obscured. Even when the “within-group” correlation is accounted for so that each in-

dividual statistic is calculated appropriately, there can still be considerable “between-

group” association so that the test statistics themselves are correlated. This can result

in the null distribution of the observed test statistics being over- or under-dispersed

relative to the theoretical null, even though the null distribution of each individual

test statistic is correct (Efron, 2007). Consequently, either too few or too many test

statistics may be declared significant. The original Benjamini-Hochberg procedure

controls the FDR in the case of a dependence structure known as positive regres-

sion dependence (PRD), although Efron (2010, page 51) commented, “even PRD is

unlikely to hold in practice.” Benjamini and Yekutieli (2001) introduced a modified

procedure for controlling the FDR under arbitrary dependence structures. In spite

of this, FDR control still tends to lose precision under dependence (Efron, 2007).
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The deleterious impact correlation can have on empirical Bayes methods and FDR

control was investigated in Qiu et al. (2005). Genovese et al. (2006) gave a method

for weighting p-values whereby known spatial structure can be effectively exploited.

Efron (2007) expanded upon previous work to focus on the effects dependence can

have on the distribution of test statistics. Further work on large-scale testing under

dependence within the frequentist paradigm may be found in Sun and Cai (2009),

who used a dependence structure induced by a hidden Markov model to construct a

“local index of significance” in place of a p-value.

In this work, we consider the analysis of functional magnetic resonance imaging

(fMRI) data. Functional neuroimaging provides a set of tools that record state-related

brain signals that are subsequently used to generate maps of the neural circuitry

activation associated with that state. An imaging study may require a researcher to

perform hypothesis tests on a large number of parameters simultaneously to infer the

presence or absence of signal changes throughout the brain. See Chapter 3 for more

details about fMRI data.

Much research has been done on effectively identifying regions of activation in

brain images from fMRI studies. A widely-used approach based on thresholding con-

tiguous clusters of voxels was introduced in Forman et al. (1995). The use of random

fields toward this end was pioneered in Worsley et al. (1992) and Worsley (1994). See

Worsley (2003) for further development of this work. FDR control was introduced to

the neuroimaging community by Genovese et al. (2002). More recently, Benjamini and

Heller (2007) used fMRI to demonstrate clustering of points together in spatial data

sets, then controlling the FDR on the clusters. Chumbley and Friston (2009) com-

pared the FDR procedure to random field analysis, demonstrating some dramatic

differences in results that the two methods can produce. Computationally-intense

permutation tests were proposed to remedy the null distribution problem in Holmes

et al. (1996) and Nichols and Holmes (2001). Nichols and Hayasaka (2003) compared
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permutation tests, Bonferroni, and random field theory methods for controlling the

family-wise error rate. That Bayesian and FDR procedures share the common char-

acteristic of adapting to features of the data was remarked upon in Marchini and

Presanis (2004) in the context of statistical parametric maps (SPMs; Friston et al.,

1995). They concluded that, in general, the use of Bayesian modeling is the most

powerful approach to identifying regions of activation when compared to thresholding

via FDR control or random field theory.

In neuroimaging, many collected data lend themselves to hierarchical modeling,

which fits naturally into the Bayesian framework. Images are constructed by parti-

tioning the brain into voxels. Since multiple brains may be analyzed simultaneously,

voxels are nested in participants who may in turn be nested in group-level structures

(Lazar, 2008, page 173). Early work in the Bayesian analysis of brain images ap-

peared in Genovese (2000), Gössl et al. (2001), and Friston and Penny (2003). More

recent work includes Smith and Fahrmeir (2007), who used a binary Markov random

field to model spatial correlation among the voxel-specific indicators of activation,

and Bowman et al. (2008), who took advantage of hierarchical structures to separate

local dependence and inter-regional correlation of predetermined regions of interest.

SPMs were treated as arising from cluster point processes with both population-level

and individual-level centers in Xu et al. (2009), allowing for the estimation of the

proportion of individuals exhibiting activation at certain locations. Point processes

were also used in Kang et al. (2011) for Bayesian meta-analysis about reported foci

from imaging studies and the variability among participants. A review of Bayesian

procedures in fMRI may be found in Woolrich (2012).

One of the biggest obstacles to Bayesian inference being more widely accepted

in the neuroimaging community is the prohibitive computational burden it often

imposes. This computing problem has become one of the primary concerns for re-

searchers who work with massive data sets but still need reasonable computation time
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to get results. Early attempts to deal with this in fMRI analysis were Penny et al.

(2003) and Penny et al. (2005), who used variational Bayes to obtain approximations

to posterior distributions. Friston and Penny (2003) suggested using empirical Bayes

methods as opposed to fully hierarchical Bayes to reduce computational loads. Some

empirical Bayes approaches to the more general multiple testing problem may be

found in, e.g., Bogdan et al. (2008), Muralidharan (2010), and Martin and Tokdar

(2012). See Scott and Berger (2010) for a discussion of conditions under which a

multiplicity adjustment can be induced with both empirical Bayes and hierarchical

Bayes.

Many of the Bayesian models currently found in the imaging literature rely on

modeling the entire time series collected at each voxel (e.g. Genovese, 2000; Gössl

et al., 2001; Fahrmeir and Gössl, 2002; Penny et al., 2003, 2005; Smith and Fahrmeir,

2007; Harrison et al., 2008). We present in this dissertation a Bayesian model that

works directly with reduced imaging data. In particular, each observation is a test

statistic quantifying the change in blood-oxygenation-level-dependent (BOLD) signal

over the course of an fMRI experiment, averaging over the temporal dimension and

thus vastly reducing the size of the data sets to be analyzed. By applying Bayesian

thresholding to SPMs, it will be easier for researchers to enjoy the added flexibility

of modeling complex spatial and hierarchical structures while maintaining reasonable

computation times to get results.

FMRI analysis is complicated by the fact that imaging data tend to be spatially

correlated. There is some literature on modeling the spatial structure of fMRI data

(e.g. Hartvig and Jensen, 2000; Gössl et al., 2001; Smith and Fahrmeir, 2007; Bowman

et al., 2008). Much of the work thus far developed is based on the assumption of inde-

pendence of the data, though. In this work we extend the Bayesian multiple testing

model considered in Scott and Berger (2006) to account for the correlation present in

imaging data. Spatial dependence is introduced through a Gaussian autoregressive
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model on the underlying continuous signals. This facilitates a sharing of informa-

tion between voxels, allowing test statistics to not simply be evaluated on their own,

but to be viewed in the context of the behavior around them. We demonstrate our

model’s ability to improve upon detection of task-related activation. In particular,

we show how the spatial correlation induces the identification of larger clusters of

activated regions, which carries more physiological meaning to neuroscientists than

individually-selected voxels.

The remainder of this dissertation is organized as follows: In Chapter 2, we review

the relevant background and introduce the necessary methods for constructing our

spatial Bayesian testing model. This includes a brief overview of Bayesian statistics,

multiple testing, and spatial dependence. We present an fMRI data set in Chapter

3 to motivate our problem and propose our testing model that incorporates spatial

dependence for analyzing the data. The results of simulation studies are in Chapter

4, where we analyze the performance of both the Scott-Berger model and our own on

simulated spatial data. In Chapter 5, we show results from applying the model to a

real fMRI data set. We compare these to the Bayesian model under an independence

assumption as well as results obtained from false discovery rate control under arbitrary

dependence structure. We conclude in Chapter 6 with a discussion of these results

and commentary regarding future research directions.
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Chapter 2

Foundations

The work in this dissertation approaches the large-scale multiple testing problem

from a Bayesian perspective. Bayesian statistics is generally less well-known among

researchers (or less understood) than its classical counterpart. Indeed, computational

limitations significantly hindered the Bayesian approach until the advent of reliable

computing technology within the last thirty years. We briefly discuss in this chap-

ter the rationale of Bayesian analysis and specifically its role in high throughput

significance testing.

Of particular interest to us are the types of correlation induced by the spatial

proximity of observations. Our focus in this dissertation is on a particular type of

spatial correlation based on conditional specification of the joint distribution of the

data, introduced in this chapter. For an in-depth treatment of spatial statistics, we

refer interested readers to Cressie (1993). A more recent text on spatial data analysis

is Schabenberger and Gotway (2005).

2.1 The Bayesian Paradigm

In general, the field of statistics may be described as a union of three ways of thinking,

or what Efron (1998) termed “the statistical triangle”. The Bayesian and frequentist

philosophies are the two usually at loggerheads. The third approach, the likelihood

or Fisherian philosophy, serves as a compromise between the two. An underlying

assumption in frequentist statistics is that of a fixed, but unknown, parameter value.

Knowledge of the parameter values allows probability distributions to be exactly

specified or approximated so that the long-run relative frequency of events may be
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calculated. It is these long-run frequencies that determine critical values or thresh-

olds quantifying the limits of plausibility. The Bayesian paradigm is fundamentally

different from the frequentist way of thinking in that it usually does not assume any

single value as being the true parameter generating the observed data. Rather, a

distribution of plausible parameter values is specified before any data are observed.

In this context, probability distributions are treated as tools with which a researcher’s

uncertainty about the values that a parameter may take can be quanitfied (Berger,

1985, Chapter 3). Broad overviews of Bayesian data analysis in practice may be found

in Gelman et al. (2004) and Carlin and Louis (2009). For theoretical justifications

and deeper philosophical foundations, see Berger (1985), Bernardo and Smith (1994),

or Robert (2007).

The aim of any Bayesian analysis is to obtain the posterior distribution of a

(possibly vector-valued) parameter. The posterior is simply the prior distribution

of a parameter, π(θ), after it is updated using the likelihood of the observed data,

f(y | θ). This update is done using Bayes’ Rule,

π(θ | y) = f(y | θ)π(θ)
g(y)

,

where g(y) =
∫
f(y, θ)dθ =

∫
f(y | θ)π(θ)dθ. The posterior is used to draw inference

about θ. For certain classes of models, the posterior distribution can be worked out

exactly so that moments, quantiles, etc. are precisely known.

A simple example is illustrated in Figure 2.1, in which both the prior and poste-

rior densities are Gaussian. In this illustration, a researcher may feel a priori that

the parameter θ is unlikely to be larger than five in magnitude, based on previous

information. This is reflected in a prior density that places most of its probability

mass between −5 and 5. After observing the data, the distribution of plausible values

is updated so that θ is determined to be between 0 and 5 with high probability. The

11



Bayesian approach thus provides a formal way of justifying actual probability state-

ments, as opposed to more awkward confidence levels that must be adopted under

classical statistics.

−10 −5 0 5 10

prior

posterior

Figure 2.1: An example of prior and posterior distributions when both the likelihood
and prior are Gaussian.

The previous example is an illustration of a simple case. In practice, many

Bayesian models result in posterior distributions that are not known or obtainable

in closed form. In such instances, indirect approaches are necessary to approximate

the posterior distribution. Thus it was not until the growth of computing power and

its use in Monte Carlo simulations that Bayesian analysis really burgeoned. Popular

non-iterative Monte Carlo techniques include importance sampling (Hammersley and

Handscomb, 1964; Berger, 1985; Geweke, 1989) and rejection sampling (Ripley, 1987).

Markov chain Monte Carlo (MCMC) is a very general class of methods that, as its

name implies, uses the theory of Markov chains to approximate probability distribu-

tions. Rather than determining a limiting distribution from a known set of transition

probabilities, MCMC turns the problem around and specifies a desired stationary

distribution (e.g. the posterior) from which a set of transition probabilities are de-
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rived. Tools for doing this may be found as early as Metropolis et al. (1953) and

Hastings (1970). The literature on Markov chains is too vast to provide extensive ref-

erences, but introductions may be found in, e.g., Hoel et al. (1972), Resnick (1992), or

Ross (2007). The seminal work by Geman and Geman (1984) laid the foundation for

MCMC methods by introducing the Gibbs sampling algorithm. Gelfand and Smith

(1990) engendered interest within the Bayesian community by demonstrating how the

Gibbs sampler can be used for simulating draws from complicated distributions. A

gentle overview of the Metropolis-Hastings algorithm was given in Chib and Green-

berg (1995). A general reference for MCMC, with numerous illustrations and case

studies, is Gilks et al. (1996).

2.2 Bayesian Multiple Testing

Consider the problem of analyzing a large array of test statistics. At each point, the

calculated test statistic contains information about the change in a signal observed

in response to some treatment. The statistics may be values quantifying changes in

light emission from astronomical observations of a cluster of stars, the amount of

differential gene expression in a microarray, or the change in BOLD signal at each

voxel in a brain over the course of an fMRI experiment. For J observations, we assume

that each data point, yj, j = 1, . . . , J, is a realization from a Gaussian distribution

with mean θj and common variance σ2. That is, we suppose each statistic has its

own location-specific mean. The problem is to determine whether or not the mean

generating the statistic is non-zero, indicating a shift from baseline conditions.

In the context of gene microarray analysis, Scott and Berger (2006) supposed that,

a priori, the probability of yj being uninteresting noise is given by some unknown

value, p, so that the underlying parameter is a non-null case with probability 1 − p.

The uninteresting cases are modeled by placing a prior degenerate at zero on the

signal means. For the interesting, nonzero mean cases, a Gaussian distribution is
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used to model plausible values. Hence the means generating the data points may be

modeled using a “spike and slab” mixture prior,

π(θj | p, τ 2) = pδ0(θj) + (1− p)φ0,τ2(θj), (2.1)

where δ0(·) is the Dirac delta spike taking θj to be zero with probability one, and

φ0,τ2(·) is the Gaussian density with mean zero and variance τ 2.

Priors of this form are standard in the Bayesian variable selection framework.

They were introduced by Mitchell and Beauchamp (1988) for variable selection in

linear regression, who coined the phrase “spike and slab mixture”. The mixture

model was used in Geweke (1996), who provided a procedure for selecting models

subject to order constraints among the variables included in each model. A similar

approach was taken in George and McCulloch (1993), who treated each regression

coefficient as arising from a mixture of two normal distributions with different vari-

ances for stochastic search variable selection. The model of George and McCulloch

was modified in Chipman (1996) to facilitate restricted variable selection in which,

for instance, interaction variables cannot be included without the lower-order main

effects terms. Smith and Kohn (1996) used the spike and slab prior to select appro-

priate knots for nonparametric regression. This class of priors has further been used

to induce adaptive regularization in genomics and proteomics by modeling sparsity

of significant features (West, 2003; Lucas et al., 2006; Carvalho et al., 2008; Morris

et al., 2011). Literature on Bayesian variable selection was reviewed in Clyde and

George (2004). Scott and Berger (2010) studied Bayesian variable selection priors

and discussed the conditions under which multiplicity correction can be induced.

For the prior specified in (2.1), it is convenient to introduce a binary indicator

of activity, γj, so that we can use the expanded parameterization θj = γjµj , where

µj ∼ N(0, τ 2) and P (γj = 0) = p = 1 − P (γj = 1) is the probability of any yj being
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a null case. Here, N(0, τ 2) represents the Gaussian distribution with mean 0 and

variance τ 2. Equation (2.1) is then a consequence of writing π(θj) = π(θj | γj =

0)P (γj = 0) + π(θj | γj = 1)P (γj = 1). Suitable priors may be specified for both the

noise variance σ2 and the hypervariance in the prior, τ 2.

The critical element in the Bayesian multiplicity adjustment is in the prior spec-

ified for p, the common probability of any observation being a null case (Scott and

Berger, 2010). For modeling the probability of an observation being a non-null case

(the inclusion probability ; Barbieri and Berger, 2004), Scott and Berger (2006) used

πp(p) = αpα−1, a Beta density with the second shape parameter set to one. This

density is determined by specifying the parameter α, which in turn fixes the mean,

mode, and variance. In Figure 2.2, we see that the density shifts closer to one as α

increases. The density has mean α/(α + 1), indicating that the a priori probability

of being an interesting case decreases with increasing α. Taking this view, α can be

used as a tuning parameter to model a researcher’s initial beliefs about the likely

prevalence of non-null cases in a data set.

0.0 0.2 0.4 0.6 0.8 1.0

p

π(
p)

α = 1, β = 1
α = 5, β = 1
α = 15, β = 1
α = 25, β = 1

Figure 2.2: Beta densities of the form πp(p) = αpα−1, for selected values of α
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The a posteriori effect of α is seen by noting the updated shape parameter in the

posterior distribution. Conditional on the indicators of activity, γ = (γ1, . . . , γJ)
T ,

the α parameter is updated to α′ := J −∑ γi + α, where J is the number of tests

being simultaneously performed, i.e. the number of locations at which data have

been observed. The second shape parameter changes from 1 to β ′ :=
∑
γi + 1 in the

posterior, so that the posterior mean becomes α′/(α′+β ′) = (J−∑ γi+α)/(J+α+1).

The consequence is that α and γ have opposite effects on the posterior probability of

being non-null. Greater values of α are required as
∑
γi increases to offset an effect

that would otherwise select a larger number of data points. A larger value of α is, in

effect, a stronger statement about the likelihood of observing a non-null signal.

In general, strongly informative priors have a greater influence on the posterior

so that more information is required to reduce their effect. Such priors are often

necessary in the presence of a large number of data points. An informative prior on

p can be a way of modeling the expected sparsity of interesting cases to be observed

(West, 2003; Lucas et al., 2006; Carvalho et al., 2008). It can be used to reflect

a researcher’s belief that interesting cases are few relative to the total number of

observations by specifying an a priori lower probability that any particular point is

non-null.

Defining pj := P (γj = 0 | y) to be the marginal posterior probability of a null

case at location j, Scott and Berger (2006, Lemma 3) showed that

pj =

∫

[0,∞)×[0,∞)×[0,1]

[

1 +
1− p

p

√

σ2

σ2 + τ 2
exp

(
y2j τ

2

2σ2(σ2 + τ 2)

)]−1

dΠ(τ 2, σ2, p | y),

where Π(τ 2, σ2, p | y) is the joint posterior distribution of the variance parameters and

p. With increasing J and the other parameters held fixed, p converges in probability

to one in the posterior so that (1 − p)/p ≈ 0 with high probability under a large

number of tests. When this term is zero in the integral, the rest of the integrand is
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that of a probability density and thus integrates to one over its support. In other

words, pj approaches one as J increases, forcing the probability of yj being null to

increase. This provides an intrinsic adjustment for the number of tests.

The inherent calibration of the Bayesian procedure is certainly appealing, as is its

simple interpretation. This model is limited, however, in that it assumes no depen-

dence structure between the data points. The signal means that we are ultimately

interested in are modeled to be independent of one another, as are the observations

themselves.

2.3 Conditional Autoregressive Models

Suppose {Xi = X(si) : si ∈ D ⊂ R
p
, i = 1, . . . , J} is a set of random variables

constituting a spatial process. Each Xi is a realized value from some distribution at

location si. A conditional autoregressive, or CAR, model (Besag, 1974) gives the joint

distribution of X = (X1, . . . , XJ)
T by specifying the conditional distribution at each

Xi, given all the other values in the field. It is assumed that each random variable

depends on the others only through its immediate neighbors. Spatial processes such

as these are known as Markov random fields. They can be viewed as spatial analogs

to the more commonly known Markov chains. It should be noted that specifying

an arbitrary set of conditional distributions does not guarantee the existence of a

valid joint distribution. Besag (1974), using Brook’s Lemma (Brook, 1964) and the

Hammersley-Clifford Theorem (Hammersley and Clifford, 1971), provided conditions

under which the joint distribution is guaranteed to exist. The Gaussian CAR model

is one such example (Besag and Kooperberg, 1995). This model assumes that

Xi | x(−i)
∼ N

(

ηi +

J∑

j=1

cij(xj − ηj), σ2
i

)

, (2.2)

17



where cii = 0, cij = 0 except when si and sj are neighbors, and cij = cji. Here,

x
(−i)

= (x1, . . . , xi−1, xi+1, . . . , xJ)
T is the vector of all observations except xi. This

conditional distribution is determined in part by the set {Xj : cij 6= 0} and η =

(η1, . . . , ηJ)
T , a vector of location parameters providing a center or baseline for each

of the conditional distributions of Xi. It is seen, then, that Xi − ηi is a random

variable centered around some linear combination of its neighbors. This model also

has location-specific variances, σ2
i , thus allowing for the neighbors to influence the

variability of Xi as well. The resulting joint density, when it exists, is given by

f(x) ∝ exp

(

−1

2
(x− η)TD−1(I−C)(x− η)

)

,

where C = {cij}Ji,j=1 and D = diag{σ2
i , i = 1, . . . , J}. The precision matrix D−1(I −

C) is a measure of the reliability of information contained in a sample from the

distribution of X. Since the variability of Xi with respect to Xj is the same as the

variability of Xj with respect to Xi, this matrix must be symmetric. The condition

that cij/σ
2
i = cji/σ

2
j is thus required for all pairs of locations i and j.

There are any number of ways that a neighbor may be defined in a CAR model.

For example, we could take a “rook” structure, where si and sj are neighbors if and

only if they share a side, or we could borrow more neighboring information by using

a “queen” structure, taking those locations with shared sides or shared corners as a

neighborhood (Figure 2.3). The cij parameters can also be used to assign neighbors

differing weights in a neighborhood. For example, inverse distance weighting can be

used to downweight the information contained in points further away from the center

without ignoring them altogether.

A special case of the Gaussian CAR model can be developed by defining adjacency

indicators wij := I(i ∼ j), where I(·) is the indicator function and i ∼ j if and only

if sites si and sj are neighbors. Let wi. =
∑J

j=1wij be the number of neighbors for
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(a) Rook (b) Queen

Figure 2.3: Two examples of neighborhood structures for a CAR model

location i and define the the adjacency matrix to be W = {wij}Ji,j=1. By taking

σ2
i = σ2/wi. and cij = wij/wi. in (2.2), the CAR model becomes

Xi | x(−i)
∼ N

(

ηi +
1

wi.

J∑

j=1

wij(xj − ηj),
σ2

wi.

)

, (2.3)

with precision matrix

D−1(I−C) ≡ σ−2(Dw −W), (2.4)

where Dw = diag{wi., i = 1, . . . , J}. This is known as an intrinsic autoregressive

(IAR) model (Besag et al., 1991).

The IAR is appealing because of its intuitive interpretation. At each location i, the

average of the neighbors is used as the center for the distribution of Xi−ηi. The IAR

is particularly attractive from a Bayesian point of view because of the ease with which

it can be incorporated into Gibbs sampling for simulating posterior distributions. See

Banerjee et al. (2004) for a discussion of CAR models in Bayesian inference.

The interpretability of IAR models makes them desirable as priors on the parame-

ters governing the distributions of observed values. The potential difficulty in working

with IAR models, though, is seen by noting that (Dw −W)(1, . . . , 1)T = (0, . . . , 0)T ,
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implying that the precision matrix is singular. The inverse of this matrix is needed

in the normalizing constant of the joint density. The absence of a normalizing con-

stant implies that
∫
f(x)dx = ∞ so that the distribution is improper. When using

improper priors, care needs to be taken to ensure that the posterior distribution is

proper (integrates to one). Otherwise, inference would attempt to find moments,

percentiles, etc. that do not exist. In many applications the impropriety of a prior

distribution is of no consequence because the posterior will still be proper. Neverthe-

less, our proposed model requires the IAR model to be proper. We discuss why this

is true in Chapter 3.

We now introduce a parameter ρ so that the precision matrix is redefined to be

Σ−1 := σ−2(Dw − ρW). By placing appropriate bounds on ρ, we can guarantee that

Σ−1 is positive definite and thus a valid precision matrix. This result was given in

Banerjee et al. (2004). We state it as a Lemma, though, and provide a proof since

the notation and ideas contained therein will be used in Section 3.2. The proof uses

a simple but useful result that we state as a preliminary Lemma. We borrow the

terminology of Banerjee et al. and call ρ a “propriety parameter”.

Lemma 1. For any n × n matrix A with eigenvalues δi, i = 1, . . . , n, and for any

constants a and b 6= 0, the eigenvalues of aI + bA, ψi, can be put in one-to-one

correspondence with the eigenvalues of A as ψi = a+ bδi, i = 1, . . . , n.

Proof. Let δ be an eigenvalue of A with eigenvector e. Then

(aI+ bA)e = ae + bAe

= ae + bδe

= (a+ bδ)e,

so a + bδ ≡ ψ is an eigenvalue of aI + bA with eigenvector e. Since b 6= 0, this

transformation is bijective, establishing the result.
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Lemma 2. A sufficient condition for the matrix (Dw − ρW) to be positive definite

is λ−1
1 < ρ < λ−1

J , where λ1 < 0 and λJ > 0 are the smallest and largest eigenvalues

of D
−1/2
w WD

−1/2
w , respectively.

Proof. We must choose ρ such that Dw − ρW > 0, where the notation A > 0 means

the matrix A is positive definite. Since

Dw − ρW = D1/2
w (I− ρW∗)D1/2

w ,

W∗ = D
−1/2
w WD

−1/2
w , and Dw > 0, it suffices to restrict ρ such that I− ρW∗ > 0.

Let λ1 ≤ λ2 ≤ · · · ≤ λJ be the ordered eigenvalues of W∗. Then we have

by Lemma 1 that the eigenvalues of I − ρW∗ are 1 − ρλj , j = 1, . . . , J . Since

Dw is diagonal and the diagonal elements of W are zero, the diagonal elements of

W∗ = D
−1/2
w WD

−1/2
w are also zero and thus tr(W∗) = 0 =

∑J
j=1 λJ . It must then

be true that there are r1 > 0 negative eigenvalues and r2 > 0 positive eigenvalues of

W∗, since r := r1 + r2 = rank(W∗) > 0.

Finally, I − ρW∗ > 0 if and only if 1 − ρλj > 0 ⇒ 1 > ρλj, for all j. It follows

that λ−1
j < ρ, j = 1, . . . , r1 and λ−1

j > ρ, j = r − r2 + 1, . . . , J . In other words, it

must be the case that λ−1
1 < ρ < λ−1

J . This completes the proof.

For massive spatial arrays such as those encountered in fMRI, D
−1/2
w WD

−1/2
w will

be of large dimension, making eigenvalue computation difficult. The adjacency matrix

depends only on the spatial structure of the data and no unknown parameters, though,

so the eigenvalues only need to be calculated once and not updated in an MCMC

routine. In cases where eigenvalue calculation is prohibitive, Carlin and Banerjee

(2003) showed that it is unnecessary, using the scaled adjacency matrix to rewrite the

precision matrix with a parameter that only has the restriction |ρ| < 1. The intrinsic

autoregression can thus be viewed as a limiting case of the conditional autoregression

where the propriety parameter approaches one (Besag and Kooperberg, 1995).
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Another problem with either the IAR or its proper counterpart is that the location-

specific variances are scaled by the number of neighbors adjacent to the location in

question. Since the locations along the edges of a spatial array have differing numbers

of neighbors, the random variables at these locations will have different marginal and

conditional variances, and hence different correlation structure, than the rest of the

data. Besag and Kooperberg (1995) addressed this problem by providing an algo-

rithm attributed to Dempster (1972) which constructs a covariance structure with

uniform conditional variances among all data points. They also discussed another

approach of simply replacing the missing neighbors on the edges with a typical value

of the data such as the median. Such remediation is more of a concern when dealing

with smaller data sets so that a greater proportion of the observations lie on the

edge. For fMRI, the large number of observations in the interior of the array tends to

mitigate the impact of the heterogenous correlation structures on the edge. For this

reason, we ignore edge effects here.
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Chapter 3

Motivation and Methods

With the background established and the necessary tools in place, we are ready to

narrow our focus to the specific application underlying this dissertation. This chapter

introduces an experimental data set collected in an imaging study. In presenting it,

we describe a common technique for the analysis of such data, the voxelwise general

linear model, and how it leads to the construction of statistical parametric maps.

The features of this data set and statistical issues associated with them serve as our

motivation for proposing a Bayesian method for its analysis. We propose two models.

The first is tailored for implementation in WinBUGS (Lunn et al., 2000), a free program

for modeling and drawing posterior inference via MCMC for a wide range of hierar-

chical models. Such software is useful in the embryonic stages of model development

when sensitivity and operating characteristics are the dominating interests over com-

putational issues. A second model also is proposed as a more objective alternative to

the first, but its implementation requires a researcher to write customized sampling

algorithms.

3.1 Motivation

The Analysis of fMRI Data with the General Linear Model

The study of functional magnetic resonance imaging has seen a remarkable growth in

the last decade. It is the study of brain activation associated with various stimuli that

are presented under experimental conditions. Neuronal activity is observed indirectly

by changes in a magnetic field that result from greater oxygenation in the blood,

of which an increase in the blood-oxygenation-level-dependent (BOLD) signal is a
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direct consequence. Magnetic resonance (MR) imaging provides data that are images

of the brain, each consisting of multiple slices partitioned into three-dimensional pixels

called voxels. Voxels are collected in a series of matrices, each representing one slice

of many that make up the full three-dimensional brain volume. The resolution of the

matrices is set by the experimenter and varies across studies depending on the type

of data collected and experimental protocol invoked. Regardless of whether higher

or lower resolution is acquired, the data to be analyzed contain a large number of

voxels, on the order of thousands per slice. For functional MR images, each of these

voxels contains information about the signal at a particular location over time. This is

what makes it functional imaging as opposed to MRI, which only maps the structural

anatomy without observing time-dependent signals.

It is common practice to analyze BOLD fMRI data using a voxelwise general linear

model (GLM; Friston et al., 1995). This approach models the MR signal at voxel j

using a relationship of the form

yj = Xβj + ej ,

where yj = (yj,1, . . . , yj,T )
T is the time course of MR signals at voxel j, X is the T ×p

design matrix, βj is the p × 1 vector of regression coefficients, and ej is the (often

serially correlated) error in the measurements. This equation is sometimes written as

yj = Zηj +Hδj + ej

to separate the effects of interest, ηj, from nuisance covariates such as motion cor-

rection and low-frequency trends represented by δj. Inference then focuses on the

coefficients in ηj such as the stimulus time course to determine which voxels are sig-

nificantly associated with the experimental stimulus. Analyzing the full time course

at each voxel in a three-dimensional image can involve processing tens of millions of
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observations, creating huge computational demands (Friston and Penny, 2003; Smith

and Fahrmeir, 2007).

Alternatively, researchers may choose to analyze fMRI data through the use of

statistical parametric maps (SPMs). With this approach, each voxel is assigned a

summary statistic quantifying the effect of the factor of interest. Inference then fo-

cuses on the observed statistic at each voxel, which has a known distribution under

a null hypothesis. One of the advantages of the SPM approach is that the data to be

processed are collapsed over the temporal dimension. The most computationally in-

tensive step of the analysis (e.g. Bayesian MCMC) can thus be simplified by working

with the reduced data.

Experimental Data

The data we consider in this work are from a study by Camchong et al. (2008) inves-

tigating the differences in neural activation patterns associated with cognitive control

tasks that require generation of volitional saccades. The task involved alternating

between blocks of fixation (baseline) and the volitional saccade task known as an an-

tisaccade. Antisaccades require that participants inhibit a glance towards a prepotent

cue and generate one to the mirror image location (opposite side of the screen, same

distance from center). During fixation blocks, participants fixed the gaze on a point

for a duration of 22.5 seconds. For the antisaccade blocks, a single central point was

presented for 1.7 seconds followed by a dot presented 8 degrees to the left or right for

1.25 seconds. The participants were asked to move their eyes to the mirror image of

the target as quickly and as accurately as possible. Each run consisted of nine fixation

periods alternated with eight antisaccade trials. One blocked run was recorded for

each participant.

Data were obtained using a GE Signa Horizon LX 1.5T MRI scanner. Each func-

tional run collected T ∗
2 -weighted images with in-plane resolution 3.75×3.75 millime-
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ters, TE = 40 milliseconds, TR = 1912 milliseconds, 3800 milliseconds acquisition

time, flip angle 77 degrees. The images were processed with AFNI software (Cox,

1996). Volumes were registered to a middle volume to correct for minor head mo-

tion. A Gaussian filter with full width, half-maximum of 4 millimeters was applied

to smooth the data. The data were transformed to Talaraich space (Talaraich and

Tournoux, 1988), resulting in 4×4×4 millimeter resolution. Each run was modeled

with a linear regression including covariates for linear drift and head motion as well

as the stimulus time course. For details about the data collection and preprocessing,

see Dyckman et al. (2007) and Camchong et al. (2008).

The data analyzed in this work are the resulting SPMs from fourteen healthy

participants in the study, with slices of dimension 40×48. Voxels are masked so that

only those inside the brain are used in the analysis, about 700-900 voxels per subject.

The statistics in each slice are treated as the observed data, yj, j = 1, . . . , Jm, where

Jm is the total number of non-masked voxels specific to participant m, m = 1, . . . , 14.

For each of the participants, we analyze the slice located at Z = +40 in Talaraich

coordinates.

For each voxel j, j = 1, . . . , Jm, the test statistic is calculated as

yj =
Z̄task

j − Z̄baseline
j

se
,

where Z̄task
j is the average BOLD signal observed at voxel j during all task periods,

Z̄baseline
j is the average signal observed during all baseline periods, and se is the stan-

dard error of Z̄task
j − Z̄baseline

j . These statistics have a large number of degrees of

freedom so that we may assume each data point, yj, is a realization from a Gaussian

distribution with mean θj and common variance σ2. The objective is to determine

whether or not the mean generating each statistic is non-zero, indicating a shift from

baseline conditions.
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In a single slice from one individual, there are approximately 800 tests conducted

simultaneously; more than 11,000 if single slices from each subject are considered

together in a groupwise analysis. This creates a multiple testing problem exacerbated

by dependence in the data. On a large scale, the correlation among voxels is not

necessarily a function of Euclidean distance since distinct regions of the brain may

support the same behaviors. Locally, though, it is sensible to allow information to

be shared across small neighborhoods of voxels. This is reasonable since the voxels

are artificial partitions of the brain. Neither the BOLD signal changes nor the neural

correlates underlying that signal are constrained by voxel boundaries. It is likely

that activation is spread across regions when it occurs (Forman et al., 1995). By

allowing the inferences made at one voxel to be influenced by adjacent voxels, there

is potential for more power to detect task-related activation. Conversely, the absence

of anything interesting in the neighborhood of what would otherwise be viewed as an

activated voxel would make it more likely for this point to be dismissed as spurious.

Our model is proposed to incorporate this intuition by allowing voxels that are close

to each other to share information.

3.2 Proposed Model

Choice of Prior Distributions

The statistic calculated at each voxel in an SPM is an areal summary of a small

part of the brain, usually on the order of two to five cubic millimeters. The result-

ing lattice structure lends itself to CAR models. We can account for local spatial

dependence in the data by using a modified IAR model for the joint distribution of

µ = (µ1, . . . , µJm)
T , defining a neighborhood of a voxel to be the set of all voxels

that share a side or a corner with it so that a voxel’s neighbors are the eight voxels

surrounding it in a two-dimensional slice (as in Figure 2.3b). The IAR model must

be adjusted to ensure that it is proper.
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To see why propriety is required in the prior for µ, consider the case when there

is no activation anywhere. Then γj = 0 for all j and each test statistic comes from

a Gaussian distribution with mean 0. The vector µ does not appear in the resulting

likelihood, so its marginal distribution is not updated in the posterior. The posterior

of µ is exactly equal to the prior. For this reason, the priors on parameters that

only appear in certain components of mixture distributions must be proper. The

argument is the same for using a proper prior on the hypervariance in the prior for

µ. See McLachlan and Peel (2000, Chapter 4) or Gelman et al. (2004, Chapter 18)

for discussions of Bayesian mixture modeling.

To force the joint prior on the signal means to be proper, we introduce a propriety

parameter ρ into the precision matrix so that it becomes σ−2(Dw−ρW). By Lemma

2, a sufficient condition to ensure that the prior is proper is for ρ to be between

λ−1
1 and λ−1

Jm
, where λ1 < 0 and λJm > 0 are the smallest and largest eigenvalues,

respectively, of D
−1/2
w WD

−1/2
w . We thus specify the conditional distributions as

µj | µ(−j)
, τ 2 ∼ N

(

ρ

wj.

∑

j∼i

µi,
τ 2

wj.

)

, j = 1, . . . , Jm, (3.1)

where wj. and j ∼ i are as defined in Section 2.3.

There is no obvious value to use for ρ. It can be estimated or, alternatively,

assigned a prior distribution. We only assume that there is a positive association

between a voxel and its neighbors. We thus assign a uniform prior on the interval

(0, λ−1
Jm

). An advantage of modeling ρ in this manner is that only the largest eigenvalue

associated with the adjacency matrix needs to be calculated. Posterior simulation

results usually yield estimates of ρ in the range (.995, .999) for the slices we consider

in this work. This parameter then is only a minor adjustment to the otherwise more

desirable IAR, which is not unusual. Appreciable interaction in this type of model

seems to require the propriety parameter to be close to one (Banerjee et al., 2004).
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We also wish to avoid strong information about either the noise variance, σ2,

or the hypervariance, τ 2. We specify the prior distribution of the data standard

deviation σ to be uniform on the interval (0, 1000). This vague prior avoids strong a

priori influence on the possible variation, allowing the data themselves more flexibility

in determining reasonable values. The proper uniform is used to approximate an

improper prior in WinBUGS, an approach suggested by Gelman (2006) and Carlin

and Louis (2009) when using the software. Gelman (2006) notes that supposedly

noninformative hypervariance priors may have disproportionate effects on inference.

In Section 5.3 below, we perform a sensitivity analysis comparing the results with

different variance priors, including inverse Gamma, uniform, and folded-t, following

those considered in Gelman (2006). The results are found to be quite insensitive to

the prior chosen. We decide to use a Gamma distribution on the precision parameter,

1/τ 2 ∼ Ga(.001, .001). The distribution of 1/τ 2 then has a mean of .001/.001 = 1

with standard deviation
√

.001(1/.001)2 ≈ 32, allowing a wide range of plausible

values. We discuss later in this chapter an alternative model that uses the variance

priors suggested by Scott and Berger (2006).

Lastly, we note that the alternative hypothesis reflected in the continuous compo-

nent of the mixture prior allows for θj < 0 so that the prior is actually performing a

two-sided test. In fMRI, some neural circuits actually decrease their activity as tasks

are performed (Murphy et al., 2009; Cole et al., 2010; Margulies et al., 2010; Power

et al., 2012; Saad et al., 2012). Task-related activation, though, is characterized by

an increase in the BOLD signal during stimulus. Thus, while the mixture prior is

modeling non-null voxels that either increase or decrease in BOLD signal, we restrict

our attention to those exhibiting positive change in order to identify task-related

activation. We are, of course, implicitly assuming positive and negative changes are

symmetric in distribution. This is a shortcoming that will be addressed in future work.
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Implementation

Our proposed models are modifications of the Scott-Berger model presented in Section

2.2. That is, we treat the observed test statistics as arising from a two-component

mixture, yj | µj , σ, p ∼ pN(0, σ2) + (1 − p)N(µj, σ
2), j = 1, . . . , Jm. Equivalently, we

may write this as yj | γj, µj, σ ∼ N(γjµj, σ
2) with γj ∼ Bernoulli(1 − p). We follow

Scott and Berger and assign p a prior of the form πp(p) = αpα−1. Our main modifi-

cation to the Scott-Berger model is in the joint prior distribution of the continuous,

underlying signals, µ. We summarize Model 1 as follows:

Model 1:

• yj | γj, µj, σ
ind∼ N(γjµj, σ

2), j = 1, . . . , Jm

• γj | p ind∼ Bernoulli(1− p), j = 1, . . . , Jm

• µj | µ(−j)
, τ, ρ ∼ N

(
ρ

wj .

∑

j∼i µi,
τ2

wj .

)

, j = 1, . . . , Jm

• σ ∼ U(0, 1000)

• p ∼ Beta(α, 1), α ≥ 1

• ρ ∼ U(0, λ−1
Jm

)

• τ−2 ∼ Ga(.001, .001)

We write the distributions of µj , j = 1, . . . , Jm, conditionally to underscore the

fact that working with the conditional distributions is easier than the full joint dis-

tribution. The mixture distribution of the data makes the full posterior distribution

difficult to specify analytically. Using MCMC, it can be approximated through iter-

ative sampling. This is fairly straightforward, but with a couple of difficulties. We

discuss these in the following remarks.

Remark 1. In each iteration of an MCMC algorithm, the conditional distribution

of µj is only updated when γj = 1. In exploring the posterior parameter space, an
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algorithm risks reaching areas where γj = 0 for all j, or nearly so. In this case, the

mean parameters µj are not updated, potentially causing the procedure to take a long

time to escape this part of the space, leading to very slow convergence. If this event

has sufficiently low probability, the issue can be ignored (Gelman et al., 2004, Chapter

18). Otherwise, a delicate MCMC procedure may be necessary for this step.

Remark 2. Related to Remark 1 is the fact that parameterizing the signal means as

θj = γjµj is an overparameterization. With only one observation at each point, the

data contain no information about µj when γj = 0. Our interest here, though, is only

in the θj and, in particular, which of them are positive. If one is interested in the am-

plitudes of the continuous signals throughout an image, rather than just thresholding

to locate potentially interesting voxels, additional constraints are necessary to ensure

identifiability, specifying µj = 0 when γj = 0, for instance.

Remark 3. In fitting our model to fMRI data, we find an extreme sensitivity to α

in the prior for p. While this parameter can be viewed as a tuning parameter to

reflect prior belief about the prevalence of activation (see Section 2.2), the best way

to determine it in practice is not clear.

In this work we only consider one slice from each participant to keep the computations

relatively simple while still elucidating the behavior of our model. This simplification

makes it feasible to implement our model using WinBUGS. Functions exist for both R

(R Development Core Team, 2012) and MATLAB (The MathWorks, Inc., Natick, MA)

with which users can call WinBUGS as part of a larger program. We use the arm library

(Gelman et al., 2012) in R and the matbugs function (Murphy and Mahdaviani, 2005)

in MATLAB.

Our experience has been that WinBUGS can work for relatively small-scale cases

such as single-slice analysis. In practice, a three-dimensional or whole-brain analysis

is usually desired, in which case more efficient Monte Carlo algorithms are required.
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We do not recommend using WinBUGS for multi-slice or whole brain analysis, as the

program becomes unstable with larger data sets. The computational burden increases

nonlinearly; required computing time can increase ten-fold for even a doubling of the

size of the data set. Scott and Berger (2006) describe an importance sampling algo-

rithm in implementing their independence model which may also be feasible in our

case. The conditional specification of the CAR structure, though, makes Gibbs sam-

pling better suited for our model, with Metropolis-Hastings steps incorporated for

the non-standard distributions.

Alternative Specification with an Improper Prior

In situations where WinBUGS is no longer desirable, we are free to use improper priors

(provided the posterior is proper). We no longer need to approximate an improper

prior on σ with a uniform prior over an interval of finite Lebesgue measure. This

leads us to propose an alternative model. We again follow Scott and Berger (2006)

and suggest specifying σ2 and τ 2 with a joint prior given by

π
(τ2,σ2)

(τ 2, σ2) = (τ 2 + σ2)−2; σ2, τ 2 > 0.

This prior can be written as {(1/σ2)(1 + τ 2/σ2)−2}(1/σ2) ≡ πτ2|σ2(τ 2 | σ2)πσ2(σ2),

preserving the required propriety on τ 2 while incorporating a noninformative prior

for σ2. To accommodate additional objectivity in the alternative specification, we

consider a prior for ρ in which the uniform interval is extended from (0, λ−1
Jm

) to

(λ−1
1 , λ−1

Jm
). We call this alternative Model 2, summarized as follows:

Model 2:

• yj | γj, µj, σ
ind∼ N(γjµj, σ

2), j = 1, . . . , Jm

• γj | p ind∼ Bernoulli(1− p), j = 1, . . . , Jm

• µj | µ(−j)
, τ, ρ ∼ N

(
ρ

wj .

∑

j∼i µi,
τ2

wj .

)

, j = 1, . . . , Jm
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• p ∼ Beta(α, 1), α ≥ 1

• ρ ∼ U(λ−1
1 , λ−1

Jm
)

• πτ2|σ2(τ 2 | σ2) =
(

1
σ2

) (

1 + τ2

σ2

)−2

, τ 2 > 0

• πσ2(σ2) = 1
σ2 , σ2 > 0

In this dissertation, we implement Model 1 to take advantage of the computa-

tional convenience offered by WinBUGS. This allows us to focus our attention on the

modeling aspects of the Bayesian analysis, investigating the effects of hyperparame-

ter choices and combined versus individual analyses. Model 2 is proposed as a more

flexible alternative to Model 1 that can be used when a more large-scale analysis is

desired. We establish the propriety of Model 2 in the next subsection to ensure that

any inferences based on the second model would be valid. Specialized algorithms

beyond the scope of WinBUGS are needed to sample from the posterior in Model 2,

although samples from the posterior of Model 1 via WinBUGS could possibly be used

as candidate draws in an importance sampling algorithm for Model 2. We keep dis-

cussion of computing time or efficiency to a minimum in this dissertation, though,

as they are not our intended foci. We wish only to raise awareness of computational

issues, not to be prescriptive.

Propriety of the Posterior Distributions

For Model 1, we have only proper priors, so the posterior distribution is necessar-

ily proper since, for any proper prior π(θ), f(y, θ) = f(y | θ)π(θ) is a valid joint

distribution on (y, θ) and thus the posterior normalizing constant is g(y) =
∫
f(y |

θ)π(θ)dθ <∞. When using improper priors, as we suggest in Model 2, it is important

to check that the posterior distribution is proper. We claim this as a Proposition and

provide a proof. In the proof, we make use of a simple inequality. We state it as a

preliminary Lemma before establishing the main result.
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Lemma 3. For any positive constants a, b, and c,

b

ba + c
<

max{b, 1}
a+ c

.

Proof. Let a, c ∈ R+. Then, for 0 < b < 1,

b

ba + c
− 1

a + c
=

b(a + c)− ba− c

(ba + c)(a+ c)

=
c(b− 1)

(ba + c)(a+ c)

< 0,

and for b > 1,

b

ba + c
− b

a + c
=

b(a+ c)− b(ba + c)

(ba + c)(a+ c)

=
ba(1 − b)

(ba+ c)(a + c)

< 0.

Proposition. The posterior distribution of Model 2 is proper.

Proof. First, note that for a general parameter θ and data y, the posterior is given

by

π(θ | y) = f(y | θ)π(θ)
g(y)

,

where g(y) =
∫
f(y | θ)π(θ)dθ =

∫
f(y, θ)dθ. Thus, to show that the posterior is

proper, it suffices to show that
∫
f(y, θ)dθ <∞, for all y (a.e.).

Let Θ = (µT , σ2, τ 2, ρ)T and define J := Jm to suppress the dependence of the

number of tests on m. Then for Model 2, we need to show that
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∫

(Θ,γ,p)

dF (y,Θ,γ, p) =
∑

γ∈{0,1}J

∫

p

∫

Θ

f(y,Θ,γ, p)dΘdp <∞. (3.2)

First, note that for any γ ∈ {0, 1}J ,

f(y,Θ,γ, p) = (2π)−J/2 exp

(

− 1

2σ2

J∑

j=1

(yj − γjµj)
2

)

×(2π)−J/2|τ 2(Dw − ρW)−1|−1/2 exp

(

− 1

2τ 2
µT (Dw − ρW)µ

)

×(σ2 + τ 2)−2πρ(ρ)αp
J−

∑
j γj+α−1(1− p)

∑
j γj

≡ f(y,Θ | γ)π(γ,p)(γ, p),

where π(γ,p)(γ, p) = αpJ−
∑

j γj+α−1(1−p)
∑

j γj . Hence, the integral inside the summa-

tion in (3.2) is

∫

p

∫

Θ

f(y,Θ,γ, p)dΘdp =

∫

p

∫

Θ

f(y,Θ | γ)π(γ,p)(γ, p)dΘdp

∝
(∫ 1

0

pJ−
∑

j γj+α−1(1− p)
∑

j γjdp

)∫

Θ

f(y,Θ | γ)dΘ.

But
∫ 1

0
pJ−

∑
j γj+α−1(1− p)

∑
j γjdp <∞ since it is the integral of the kernel of a Beta

density over its sample space. Also, the summation over γ has 2J < ∞ terms, so it

suffices to establish that

∫

ρ

∫

τ2

∫

σ2

∫

µ

f(y,µ, σ2, τ 2, ρ | γ)dµdσ2dτ 2dρ <∞, ∀γ ∈ {0, 1}J .

We begin with the case when γj = 1, for all j ∈ {1, . . . , J} and define f1(y | µ) :=

f(y | µ,γ = 1) to simplify notation. We have that
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f1(y | µ) =

J∏

j=1

f(yj | µj, γj = 1)

= (2π)−J/2(σ2)−J/2 exp

(

− 1

2σ2

J∑

j=1

(yj − µj)
2

)

.

The joint prior density for µ is

πµ(µ | τ 2, ρ) = (2π)−J/2|τ 2(Dw − ρW)−1|−1/2 exp

(

− 1

2τ 2
µT (Dw − ρW)µ

)

.

However, ρ ∈ (λ−1
1 , λ−1

J ) implies that (Dw − ρW) > 0 by Lemma 2, so the prior on

µ has the density of a NJ(0, τ
2(Dw − ρW)−1) distribution. We can thus integrate

f1(y | µ)πµ(µ | τ 2, ρ) with respect to µ as the convolution of two normal densities.

That is, if y | µ has a NJ(µ, σ
2I) density and µ has a NJ(0, τ

2(Dw−ρW)−1) density,

the marginal density of y is that of a NJ(0, σ
2I + τ 2(Dw − ρW)−1) distribution

(Lindley and Smith, 1972). We thus know that the integration yields

f1(y, σ
2, τ 2, ρ) = π

(τ2,σ2)
(τ 2, σ2)πρ(ρ)

∫

RJ

f1(y | µ, σ2)πµ(µ | τ 2, ρ)dµ

∝ |σ2I+ τ 2(Dw − ρW)−1|−1/2

× exp

(

−1

2
yT (σ2I+ τ 2(Dw − ρW)−1)−1y

)

×(σ2 + τ 2)−2πρ(ρ).

Now, reparameterize the variance components by defining η := τ 2/σ2 so that

f1(y, σ
2, η, ρ) ∝ (σ2)−J/2|I+ η(Dw − ρW)−1|−1/2

× exp

(

− 1

2σ2
yT (I+ η(Dw − ρW)−1)−1y

)

×(σ2)−1(1 + η)−2πρ(ρ).
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We then integrate over σ2 to obtain

f1(y, η, ρ) ∝ πρ(ρ)(1 + η)−2|I+ η(Dw − ρW)−1|−1/2

×
∫ ∞

0

(σ2)−(J/2)−1 exp

(

− 1

2σ2
yT (I+ η(Dw − ρW)−1)−1y

)

dσ2

= πρ(ρ)(1 + η)−2|I+ η(Dw − ρW)−1|−1/2Γ(J/2)

×
(
yT (I+ η(Dw − ρW)−1)−1y

2

)−J/2

×
∫ ∞

0

(
yT (I+ η(Dw − ρW)−1)−1y

2

)J/2

(Γ(J/2))−1(σ2)−
J
2
−1

× exp

(

− 1

2σ2
yT (I+ η(Dw − ρW)−1)−1y

)

dσ2

∝ πρ(ρ)(1 + η)−2 |I+ η(Dw − ρW)−1|−1/2

(yT (I+ η(Dw − ρW)−1)−1y)J/2
,

since the integral is that of an inverse gamma density over its sample space. We can

rewrite the quadratic form in the denominator of the last expression as

yT (I+ η(Dw − ρW)−1)−1y = yTD1/2
w (Dw + η(I− ρW∗)−1)−1D1/2

w y

= xT (Dw + η(I− ρW∗)−1)−1x,

where W∗ = D
−1/2
w WD

−1/2
w and x = D

1/2
w y. If we let w

(J)
= max

1≤j≤J
wj., then the matrix

w
(J)
I−Dw is diagonal with nonnegative entries and thus positive semidefinite, denoted

w
(J)
I − Dw ≥ 0. It is established in the proof of Lemma 2 that ρ ∈ (λ−1

1 , λ−1
J ) ⇒

(I − ρW∗) > 0 ⇒ η(I − ρW∗)−1 > 0. By adding and subtracting η(I− ρW∗)−1, we

obtain

w
(J)
I−Dw = w

(J)
I+ η(I− ρW∗)−1 − (Dw + η(I− ρW∗)−1) ≥ 0.

37



Making use of the fact that B > 0,A − B ≥ 0 ⇒ B−1 − A−1 ≥ 0 (Rao, 1973), it

follows that

(Dw + η(I− ρW∗)−1)−1 − (w
(J)
I+ η(I− ρW∗)−1)−1 ≥ 0

⇒ xT (Dw + η(I− ρW∗)−1)−1x ≥ xT (w
(J)
I+ η(I− ρW∗)−1)−1x

⇒ (xT (Dw + η(I− ρW∗)−1)−1x)−J/2 ≤ (xT (w
(J)
I+ η(I− ρW∗)−1)−1x)−J/2.

Now, W∗ is symmetric, so it has a spectral decomposition of the form W∗ =

PMPT , where P is the orthogonal matrix of eigenvectors ofW∗ andM is the diagonal

matrix of eigenvalues (see, e.g., Strang, 1988). Let u = PTx ⇒ x = Pu so that

xT (w
(J)
I+ η(I− ρW∗)−1)−1x = uTPT (w

(J)
I+ η(I− ρW∗)−1)−1Pu

= uT (w
(J)
PTP+ ηPT (I− ρW∗)−1P)−1u

= uT (w
(J)
I+ η(I− ρM)−1)−1u

=

J∑

j=1

(1− ρλj)u
2
j

w
(J)
(1− ρλj) + η

.

Again referring to the proof of Lemma 2, we see that W∗ has r1 negative eigenvalues,

r2 positive eigenvalues, and J−r1−r2 zero eigenvalues, where r1+r2 = r = rank(W∗).

The summation in the last line can then be separated according to the sign of the

eigenvalue in each term as

r1∑

j=1

(1− ρλj)u
2
j

w
(J)
(1− ρλj) + η

︸ ︷︷ ︸

λj<0

+
J∑

j=J−r2+1

(1− ρλj)u
2
j

w
(J)
(1− ρλj) + η

︸ ︷︷ ︸

λj>0

+

J−r2∑

j=r1+1

u2j
w

(J)
+ η

︸ ︷︷ ︸

λj=0

. (3.3)

If λ−1
1 < ρ < 0, then 0 < 1 − ρλj < 1 for j = 1, . . . , r1 and 1 − ρλj > 1 for

j = J − r2 + 1, . . . , J, so
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(3.3) ≥
J∑

j=J−r2+1

(1− ρλj)u
2
j

w
(J)
(1− ρλj) + η

+

J−r2∑

j=r1+1

u2j
w

(J)
+ η

≥
J∑

j=J−r1+1

u2j
w

(J)
+ η

+

J−r2∑

j=r1+1

u2j
w

(J)
+ η

= (w
(J)

+ η)−1
J∑

j=r1+1

u2j ,

where the second line follows from noticing that

1

w
(J)

+ η
− 1− ρλj
w

(J)
(1− ρλj) + η

=
w

(J)
(1− ρλj) + η − (w

(J)
+ η)(1− ρλj)

(w
(J)

+ η)(w
(J)
(1− ρλj) + η)

=
ρλjw(J)

(w
(J)

+ η)(w
(J)
(1− ρλj) + η)

< 0,

for λj > 0. Similarly, if 0 < ρ < λ−1
J , then

(3.3) ≥
r1∑

j=1

(1− ρλj)u
2
j

w
(J)
(1− ρλj) + η

+

J−r2∑

j=r1+1

u2j
w

(J)
+ η

≥
r1∑

j=1

u2j
w

(J)
+ η

+

J−r2∑

j=r1+1

u2j
w

(J)
+ η

= (w
(J)

+ η)−1
J−r2∑

j=1

u2j .

Thus, for all ρ ∈ (λ−1
1 , λ−1

J ),

xT (w
(J)
I+ η(I− ρW∗)−1)−1x ≥ k(w

(J)
+ η)−1

⇒ (xT (w
(J)
I+ η(I− ρW∗)−1)−1x)−J/2 ≤ k′(w

(J)
+ η)J/2

where 0 < k′ <∞ is constant.
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Next, we see that

|I+ η(Dw − ρW)−1| = |D−1/2
w ||Dw + η(I− ρW∗)−1||D−1/2

w |

= |Dw|−1|Dw + η(I− ρW∗)−1|

≡ K|Dw + η(I− ρW∗)−1|.

Letting w
(1)

= min
1≤j≤J

wj., and again adding and subtracting η(I− ρW∗)−1, we get

Dw − w
(1)
I ≥ 0 ⇒ Dw + η(I− ρW∗)−1 − (w

(1)
I+ η(I− ρW∗)−1) ≥ 0.

But B > 0,A−B ≥ 0 implies |A| ≥ |B| (Rao, 1973), so we find that

|Dw + η(I− ρW∗)−1| ≥ |w
(1)
I+ η(I− ρW∗)−1|

⇒ K|Dw + η(I− ρW∗)−1| ≥ K|w
(1)
I+ η(I− ρW∗)−1|.

The proof of Lemma 2 implies that (1 − ρλj)
−1, j = 1, . . . , J , are the eigenvalues of

(I−ρW∗)−1, so it follows from Lemma 1 that the eigenvalues of w
(1)
I+η(I−ρW∗)−1

are w
(1)

+ η(1− ρλj)
−1, j = 1, . . . , J . Therefore,

K|w
(1)
I+ η(I− ρW∗)−1| = K

J∏

j=1

(w
(1)

+ η(1− ρλj)
−1)

=
K
∏J

j=1((1− ρλj)w(1)
+ η)

∏J
j=1(1− ρλj)

,

and hence

|I+ η(Dw − ρW)−1|−1/2 ≤ K ′

(∏J
j=1((1− ρλj)w(1)

+ η)
∏J

j=1(1− ρλj)

)−1/2

,
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where 0 < K ′ <∞ is constant. But 1− ρλj > 0, for all j, so by Lemma 3

1− ρλj
(1− ρλj)w(1)

+ η
≤ max{1− ρλj, 1}

w
(1)

+ η
, ∀j ∈ {1, . . . , J}

⇒
∏J

j=1(1− ρλj)
∏J

j=1((1− ρλj)w(1)
+ η)

≤
∏J

j=1max{1− ρλj , 1}
(w

(1)
+ η)J

⇒ |I+ η(Dw − ρW∗)−1|−1/2 ≤
K ′
∏J

j=1max{(1− ρλj)
1/2, 1}

(w
(1)

+ η)J/2
.

We have now established that the density function satisfies

f(y, η, ρ) ≤ C(w
(J)

+ η)J/2

(∏J
j=1max{(1− ρλj)

1/2, 1}
(w

(1)
+ η)J/2

)

(1 + η)−2πρ(ρ)

=







C

(
w

(J)
+η

w
(1)

+η

)J/2(∏J
j=r1+1(1−ρλj)1/2

(1+η)2

)

πρ(ρ), ρ < 0

C

(
w

(J)
+η

w
(1)

+η

)J/2(∏J−r2
j=1 (1−ρλj)

1/2

(1+η)2

)

πρ(ρ), ρ > 0

where C <∞ is constant.

Now, πρ(ρ) ∝ I(λ−1
1 < ρ < λ−1

J ),

∫ 0

λ−1
1

J∏

j=r1+1

(1− ρλj)
1/2dρ <

∫ 0

λ−1
1

(1− ρλJ)
J−r1

2 dρ <∞,

and
∫ λ−1

J

0

J−r2∏

j=1

(1− ρλj)
1/2dρ <

∫ λ−1
J

0

(1− ρλ1)
J−r2

2 dρ <∞.

Also, we see that
(

w
(J)

+ η

w
(1)

+ η

)J/2

(1 + η)−2 ∼ (1 + η)−2
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as η → ∞ and
∫∞

0
(1 + η)−2dη = 1 <∞, implying that (e.g. Bartle, 1976)

∫ ∞

0

(

w
(J)

+ η

w
(1)

+ η

)J/2

(1 + η)−2dη <∞.

From this it follows that

∫ λ−1
J

λ−1
1

∫ ∞

0

f1(y, η, ρ)dηdρ ≤ C

(
∫ λ−1

J

λ−1
1

πρ(ρ)

J∏

j=1

max{(1− ρλj)
1/2, 1}dρ

)

×





∫ ∞

0

(

w
(J)

+ η

w
(1)

+ η

)J/2

(1 + η)−2dη





< ∞,

showing that
∫

Θ
f(y,Θ | γ)dΘ <∞ when γ1 = γ2 = · · · = γJ = 1.

We now turn our attention to a non-degenerate case, |{γj : γj = 1}| = J1 < J ,

where |·| denotes the cardinality of a set. Let γ∗ denote such an arbitrary configuration

of γ. Further, let S1 = {j : γj = 1} ( {1, . . . , J}, y1 = {yj : j ∈ S1}, and

y0 = {yj : j ∈ Sc
1} so that we may partition y as y = (yT

0 ,y
T
1 )

T . Our strategy here

is to show h(y0,y1) ≡ h(y) :=
∫

Θ
f(y,Θ | γ∗)dΘ <∞ by showing that

∫

y1

h(y0,y1)dy1 <∞

for all S1 and y1. The key elements in the argument are that J1 < J ⇒ J − J1 > 0

and that we can factor a double integral over, e.g., y and µ as

∫

RJ

∫

RJ

f(y | µ)π(µ)dµdy =

(∫

RJ

f(y | µ)dy
)(∫

RJ

π(µ)dµ

)

,

since the integral of a (proper) probability density over its sample space is one, thus

free from other parameters.
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Now, we have

∫

y1

h(y0,y1)dy1 =

∫

σ2

∫

τ2

∫

ρ

∫

µ

∫

y1

f(y0,y1, τ
2, σ2, ρ,µ | γ∗)dy1dµdρdτ

2dσ2

∝
∫ ∞

0

(σ2)−
J−J1

2 exp



− 1

2σ2

∑

j∈Sc
1

y2j





×
∫

RJ1

(σ2)−
J1
2 exp

(

− 1

2σ2

∑

j∈S1

(yj − µj)
2

)

dy1

︸ ︷︷ ︸

=(2π)J1/2

×
∫

RJ

|τ 2(Dw − ρW)−1|−1/2 exp

(

− 1

2τ 2
µT (Dw − ρW)µ

)

dµ

︸ ︷︷ ︸

=(2π)J/2

×
∫ λ−1

J

λ−1
1

(λ−1
J − λ−1

1 )−1dρ

︸ ︷︷ ︸

=1

∫ ∞

0

(σ2 + τ 2)−2dτ 2dσ2

∝
∫ ∞

0

(σ2)−
J−J1

2 exp



− 1

2σ2

∑

j∈Sc
1

y2j





∫ ∞

0

(σ2 + τ 2)−2dτ 2dσ2

=

∫ ∞

0

(σ2)−
J−J1

2 exp



− 1

2σ2

∑

j∈Sc
1

y2j





[

− 1

σ2 + τ 2

]∞

τ2=0

dσ2

=

∫ ∞

0

(
1

σ2

)J−J1
2

+1

exp

[

−
(

1

σ2

)(∑

j∈Sc
1
y2j

2

)]

dσ2 <∞,

since the integral is that of the kernel of an inverse gamma density over its sample

space.

The proof is completed by considering the other degenerate case, γj = 0, for all j.

The preceding argument still applies to this case, though, with S1 = ∅ and J1 = 0.

The result is therefore established.
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Chapter 4

Simulation Study

This chapter investigates and compares the performance of our proposed Model 1 and

the Scott-Berger (SB) model. The intrinsic multiplicity adjustment is demonstrated

for both models with simulated signals among an increasing number of noise obser-

vations. Since our model relies on spatial structure in the data, we simulate spatial

arrays with non-null observations within them. We explore selected error rates of

both models, measured as the proportion of missed signals, proportion of false pos-

itives, and misclassification proportion. We do this while varying both the non-null

signal strength relative to the noise and the strength of spatial association among the

non-null locations.

4.1 The Multiplicity Adjustment

To demonstrate the multiplicity adjustment under the SB model, we simulate data

yi ∼ N(θi, 1), i = 1, . . . , J , for different values of J . For each J , five points are gen-

erated with θ1 = 10, θ2 = 4, θ3 = 1, θ4 = −.2, and θ5 = −15. These represent signals

hidden among uninteresting noise. The remaining noise observations are simulated

by drawing from a N(0, 1) distribution. The posterior distribution is simulated via

MCMC and 1− pi = P (γi = 1 | y) is estimated with (1/N)
∑N

k=1 I(γ
(k)
i = 1), where

γ
(k)
i is the kth draw from the marginal posterior of γi and N = 5, 000 is the number

of samples drawn from the posterior distribution. Table 4.1 shows the results when

the number of tests being performed is 50, 500, and 5,000. While the most extreme

values generated from θ1 = 10 and θ5 = −15 persist as extremely strong evidence

of interesting signals, the estimated probabilities that the other values come from

44



non-zero means decrease as J increases. This is the multiplicity adjustment. Points

with an appreciable probability of having a signal in a small number of simultaneous

tests become more likely to be just noise as the number of tests increases.

Table 4.1: Estimates of non-null probabilities under the Scott-Berger model for sim-
ulated signals among increasing noise. For each θ and for each J , a single value is
drawn from a N(θ, 1) distribution, with the remaining J−5 observations drawn from
N(0, 1).

θ
10 4 1 -.2 -15

J = 50 1.000 .958 .058 .019 1.000
J = 500 1.000 .933 .004 .001 1.000
J = 5, 000 1.000 .797 0.000 0.000 1.000

We also illustrate the posterior calibration by simulating a 20×20 spatial array of

data and fitting both the SB model and our CAR testing model. The binary non-null

patterns are simulated by drawing from an Ising model, p(x) ∝ exp{β∑i∼j I(xi =

xj)},x ∈ {0, 1}400. We refer interested readers to Higdon (1994) for discussion of this

model. Here it is only important to note that β is an interaction parameter reflecting

the strength of association between neighbors in the spatial array. We use β = .45, an

arbitrary value chosen to induce strong clustering of “activated” regions. Using the

generated activation pattern, the observed data are then simulated as yi ∼ N(θi, 1),

where θi = 0 at the null cases. For the non-null cases, we use the universal threshold

of Donoho and Johnstone (1994),
√

2 log(20× 20) ≈ 3.46. This threshold may be

regarded as a minimum detectable distance when the number of true signals is small

compared to the noise observations (Bogdan et al., 2008, Remark 1). The binary

activation map and the resulting simulated data are shown in Figure 4.1.

The posterior probabilities of activation for these data are estimated using both

the SB independence model and our CAR testing model. First, we fit the models

using only the 20×20 grid so that there are J = 400 tests being performed. We then

take the same data array and put it in the middle of a 20 × 100 array, with the rest
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Figure 4.1: Simulated binary map of the non-null pattern (left) and corresponding
simulated observations (right). Data are drawn from N(3.46, 1) in the non-null cases,
and from N(0, 1) in the null cases.

of the observations being random noise generated from a N(0, 1) distribution. In this

case, there are J = 2, 000 locations being tested, the original 20× 20 data array and

an additional 1,600. Figures 4.2 and 4.3 depict the log-scale posterior probabilities

for J = 400 and J = 2, 000, as well as the thresholded activation maps, using .95

as the threshold. In both the SB and CAR models, we take p to have a uniform

prior, α = 1. For the maps generated with J = 2, 000 observations, only the subset

corresponding to the original 20× 20 grid is displayed for easier comparison.

We can see that both models correct for multiplicity. All of the posterior prob-

abilities are being penalized to reflect the greater number of tests performed. The

SB model makes a relatively strong adjustment. The estimated posterior probabili-

ties are also lower in the CAR model. The CAR model imposes a less conservative

penalty on the estimated probabilities, preserving power in the presence of more tests.

The adjustment can also be seen in the threshold maps for both models, where fewer

points exceed the .95 threshold when J = 2, 000 tests are considered versus J = 400.

4.2 Error Rates

We compare the performance of the two models by examining three error measures.

Let δj = 1 if the testing procedure selects location j as a non-null case, 0 otherwise,
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Figure 4.2: Thresholded activation maps and log-scale posterior probabilities from
the Scott-Berger model with J = 400 (top row) and J = 2, 000 tests (bottom row).
In the thresholded maps, points with estimated non-null probability of at least .95
are selected.
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Figure 4.3: Thresholded activation maps and log-scale posterior probabilities from
the CAR testing model with J = 400 (top row) and J = 2, 000 tests (bottom row).
In the thresholded maps, points with estimated non-null probability of at least .95
are selected.
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and let γj indicate whether or not location j is truly “active”. For both J = 400 and

J = 2, 000, we calculate the false discovery proportion, FDP = I(
∑
δj > 0)

∑
δj(1−

γj)/
∑
δj , the false non-discovery proportion, FNP = I(

∑
(1 − δj) > 0)

∑
γj(1 −

δj)/
∑

(1 − δj), and the overall misclassification proportion, MP = (
∑
δj(1 − γj) +

∑
γj(1 − δj))/J . Table 4.2 summarizes these error measures for both the SB and

CAR models. The CAR model has a lower false non-discovery proportion in both

cases, and an overall lower misclassification proportion.

Table 4.2: False discovery proportion (FDP), false non-discovery proportion (FNP),
and overall misclassification proportion (MP) for both models with J = 400 and
J = 2, 000 tests. These are calculated using the results displayed in Figures 4.2 and
4.3.

SB CAR
FDP FNP MP FDP FNP MP

J = 400 .0693 .0435 .0500 .1043 .0140 .0400
J = 2, 000 0.0000 .1433 .1225 0.0000 .0728 .0575

We further compare the performance of the SB and CAR models using different

non-null signal strengths and different values of β in the Ising model. We take β = .2

and β = .45. The lower value of β induces weaker clustering of like values in the

map so that there is a less pronounced spatial association between the null and non-

null cases. For both weak (β = .2) and strong (β = .45) clustering, we simulate

the non-null cases from two different alternative distributions. First, we generate the

non-null cases from N(4, 1), representing a strong signal. For the weaker signal, we

use a N(2.1, 1) distribution. The second non-null mean follows Lange et al. (1999)

and Hartvig and Jensen (2000) by supposing that, in fMRI data, the distribution

of signals is approximated as Gaussian with mean θ = m
√
SSDx, where SSDx is

the corrected sum of squares of the binary experimental stimulus pattern and m is

the ratio of the activation magnitude to its standard deviation. Hartvig and Jensen

estimate m to be m̂ = .43 and take SSDx = 24 for a typical stimulus pattern. The

activation patterns and subsequent data arrays are displayed in Figure 4.4.
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Tables 4.3 and 4.4 report the FDP, FNP, and MP across non-null means for both

values of β. With θ = 4, it appears that the SB model performs slightly better

than our model. This could be because the CAR model is lowering the estimated

probability of activation at some locations by using the information in nearby weaker

observations, leading to a higher FNP. With the weak signal (θ = 2.1), there is a

strong contrast between the SB and CAR models. The SB model fails to detect any

non-null cases at all whereas the CAR model detects at least some of the true signals.

Both procedures have an undesirable FNP and MP, but this is unavoidable with weak

signal-to-noise ratios.
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Figure 4.4: Binary non-null patterns and data arrays for β = .2 (top row) and β = .45
(bottom row) in the Ising model. The non-null distribution is N(4, 1) in the middle
panels and N(2.1, 1) in the right panels.

Our simulation results demonstrate that both the SB model and our proposed

model incorporate the number of tests in evaluating posterior non-null probabilities.

The multiple testing penalty is stronger under the SB model, though, making it gen-

49



Table 4.3: False discovery proportion (FDP), false non-discovery proportion (FNP),
and overall misclassification proportion (MP) for both models with β = .2 in the Ising
model. The left column shows the mean of the non-null density.

SB CAR
Mean FDP FNP MP FDP FNP MP
θ = 4 .0412 .0049 .0225 0.0000 .1050 .0625
θ = 2.1 0.0000 .4675 .4675 0.0143 .3576 .2975

Table 4.4: False discovery proportion (FDP), false non-discovery proportion (FNP),
and overall misclassification proportion (MP) for both models with β = .45 in the
Ising model. The left column shows the mean of the non-null density.

SB CAR
Mean FDP FNP MP FDP FNP MP
θ = 4 .0631 0.0000 .0175 .0727 .0069 .0250
θ = 2.1 0.0000 .2600 .2600 .0196 .1547 .1375

erally less powerful with weak to moderate non-null signal strengths. The relative

performance of the two models appears to depend on the amplitude of the activa-

tions. With extremely strong signals, the SB model may be superior to our own. The

presence of such strong signals would make many multiple testing procedures accept-

able, though, obviating the need for sensitivity considerations. The typically weaker

signal-to-noise ratio in fMRI data make both sensitivity and specificity important

in evaluating testing procedures. Truly activated voxels can exhibit weak activation

compared to the noise. Indeed, our purpose for using the weaker non-null mean here

is to simulate more realistic functional neuroimaging data (Hartvig and Jensen, 2000).

The CAR model is clearly much more sensitive at detecting true activation with a

weaker signal, where the more conservative SB model can fail to select any locations

at all. The theoretical properties of our model merit deeper investigation in future

work, but it is apparent that incorporating spatial dependence into a Bayesian testing

procedure is appropriate for the analysis of fMRI data.
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Chapter 5

Data Analysis

Within fMRI studies as they are conducted on human brain activation, both single-

subject and groupwise analyses are important. Single-subject analyses are useful for

identifying regions of a specific brain that may be associated with certain behaviors or

conditions. This approach allows for measuring the consistency of physiological pro-

cesses or statistical procedures across multiple individuals. It also allows researchers

to identify individual differences, or variability across subjects. Groupwise analyses,

on the other hand, are appropriate when researchers want to draw conclusions con-

cerning an entire group of individuals or to generalize results to a broader population.

Combining information across brains also tends to make statistical procedures more

powerful. General research questions about individual variation versus groupwise

analyses may be found in, e.g., Huettel et al. (2009). Statistical issues associated

with combining information across brains are explored in Lazar et al. (2002) and

Lazar (2008).

To illustrate our procedure, we use the data described in Chapter 3. We ana-

lyze them two different ways. In Section 5.1 below, we evaluate each participant’s

slice individually, using only that brain’s observations to derive the posterior distri-

bution. We present results from analyzing all participants’ brains together in Section

5.2. In each analysis, we treat as interesting cases those voxels that show an in-

crease in the BOLD signal associated with the antisaccade task. This means that

we restrict our attention to only the positive alternative to θj = 0. At each lo-

cation, we estimate the probability of task-related activation, P (θj > 0 | y), with

p̂j = (1/N)
∑N

k=1 I(θ
(k)
j > 0), where θ

(k)
j is the product of the kth draws of γj and
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µj from the joint posterior distribution and N = 10, 000 is the posterior sample size.

When analyzing each brain separately, we use both the Scott-Berger (SB) model un-

der the independence assumption and our model incorporating the CAR dependence

structure. For the analysis using the information in all participants’ brains together,

we use only the CAR model. We do this to study the differences obtained by using one

posterior distribution with much more information as opposed to evaluating fourteen

separate posterior distributions, each with considerably less information. For both

the individual and group analyses, we apply an FDR thresholding procedure and

compare its performance to the Bayesian models. To accommodate dependence in

the data, we use the modified FDR algorithm of Benjamini and Yekutieli (2001),

which is appropriate regardless of the dependence structure in the p-values. In addi-

tion, we perform a sensitivity analysis to assess the impact of the prior on the model

hypervariance and the shape parameter in the prior for p.

5.1 Individual Analysis

We implement the SB model using a Gibbs sampler entirely in R. See Appendix A

for a derivation of the algorithm. After an initial 50,000 iterations to achieve ap-

proximate convergence, we perform another 100,000 iterations, retaining every tenth

draw to reduce autocorrelation. The CAR model is implemented with WinBUGS and

the included GeoBUGS package. WinBUGS uses Gibbs sampling with adaptive rejection

sampling (Gilks, 1992) and slice sampling (Neal, 1997) steps for the non-conjugate

distributions. We use the same number of iterations and samples as in the indepen-

dence case.

In the prior for p, we take α = 1 for the independence case, p ∼ Uniform(0, 1),

and α = 108 for the CAR model, p ∼ Beta(108, 1). The uniform prior for the

independence case is suggested in Scott and Berger (2006). The second value follows

from recognizing that P (γj = 1 | α) = α
∫ 1

0
(1 − p)pα−1dp = 1/(α + 1) and using
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an empirical Bayes estimate of α. The method of moments yields α̃ = (P̂ (γj = 1 |

α))−1−1, where an ad hoc estimator of the marginal probability of activation is P̂ (γj =

1 | α) = ∑14
m=1

∑Jm
j=1 I(ymj > 4)/

∑14
m=1 Jm. Here ymj denotes the observed value at

the jth voxel of subject m and 4 is a conservative threshold that gives considerable

evidence for activation in a single one-sided t-test with large degrees of freedom.

 

 

−6

−4

−2

0

2

4

6

(a) t -map

 

 

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(b) Independence model

 

 

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(c) CAR model

Figure 5.1: Comparative results for the individual slice from Subject 6. The upper
left panel is the t-map, the upper right panel shows estimated non-null probabilities
from the Scott-Berger independence model, and the bottom panel shows estimated
non-null probabilities from the CAR model. Probabilities are displayed on the log
scale for improved resolution.

Figure 5.1 shows the t-map and posterior probability maps from the independence

and CAR models for one subject. The probabilities are presented on the log scale

for enhanced resolution between areas of differing probability. Warmer colors of red

and orange indicate areas where the estimated probability of task-related activation

is higher. Cooler shades of green and blue represent low estimated probabilities of

activation. The maps are presented in the axial view. For reference, a structural slice

from a single brain is presented in Figure 5.2. Superimposed on this map is the neural
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circuitry expected to be associated with antisaccade tasks (Dyckman et al., 2007).

The frontal eye fields (FEF), supplementary eye field (SEF), and posterior parietal

cortex (PPC) are labeled in the Figure. The pattern serves as a benchmark against

which the results from each testing model can be judged. The depicted regions are

based on the average of activation patterns of participants in this study. We would

not expect any single brain to be this well-defined.

Figure 5.2: Activation patterns expected to be associated with the antisaccade task
(Dyckman et al., 2007). This image is generated using the same participants from
the study described in Section 3.1.

For the participant in Figure 5.1, assuming independence leads to a probability

map that does not very clearly delineate regions of the brain. While there is some clear

correspondence between the posterior probabilities and the t-map, it would be difficult

for a researcher to look at this image and distinguish supportive neural circuitry from

regions unrelated to the antisaccade task. By sharing information across voxels, our

model incorporating the CAR spatial dependence structure allows clearer discernment

of areas that are likely to be part of the associated neural circuitry. We can see that
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the relatively shallow ‘peaks’ and ‘valleys’ of probability in the independence map

are enhanced in the CAR map, leading to more pronounced shapes of the regions

we would expect, based on the t-map. This difference is the result of the CAR

structure allowing each t statistic to be analyzed in the context of its immediate

neighbors. While the independence assumption only judges each voxel on its own

merit, incorporating spatial dependence allows the voxels to borrow strength from one

another through the sharing of information. In other words, a particular t statistic in

and of itself may not give overwhelming evidence of activation, but the voxels around

it may also provide a fair amount of evidence in favor of (or against) activation.

Neighbors work together to boost the probability that the voxel in question is task-

related (or not). Figure 5.3 displays the t-maps of all fourteen participants along with

the corresponding probability maps using both the independence assumption and the

CAR dependence structure. It can be seen that, in general, stronger contrasts between

regions of interest occur as a result of the CAR assumption.

The difference between accounting for spatial dependence in the CAR model and

assuming independence of the data is again elucidated by looking at the thresholded

activation map for the previously discussed subject in Figure 5.4. We threshold at

an estimated probability of task-related activation of at least .95, marking voxels

that attain or exceed that level with the value one with the others set to zero. For

this participant, we can see that very few voxels are selected as likely to be task-

related under the independence model. By contrast, the activation map from the

CAR model is much more liberal in determining which voxels are likely activated

during the experiment. In particular, it becomes easier to identify the FEFs. This is

indicative of the loss of sensitivity of the SB model demonstrated in our simulation

study in Chapter 4. What may be relatively weak activations in this map would

be missed entirely without allowing neighboring voxels to borrow strength from each

other.
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Figure 5.3: t-maps and probability maps for fourteen healthy participants under both the
Scott-Berger and CAR models. The probabilities are shown on the log scale for enhanced
resolution.
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We further evaluate the performance of our Bayesian CAR testing model by com-

paring its results with those obtained by thresholding to control the false discovery

rate. Thresholding posterior probability maps at .95 means that the voxels identified

as being activated are such that P (θj = 0 | y) ≤ .05. This is analogous to control-

ling the proportion of discoveries that are uninteresting cases to be no more than .05

(Friston and Penny, 2003). Indeed, when assuming as we do here that the statistics

arise from a density of the form f(y) = pf0(y) + (1− p)f1(y), the q threshold used in

the FDR algorithm can be expressed as an estimate of the Bayes probability that a

rejected hypothesis is incorrectly selected (Efron, 2010, Chapter 4) . Thus, we take q

to be .05 for the results below to be a fair comparison.

Figure 5.4(c) displays results from thresholding with the FDR step-up procedure.

The independence Bayes, CAR-structured Bayes, and FDR approaches all seem to

agree on the selected voxels with the strongest changes in BOLD signal. The CAR

model, however, is still the most liberal of the three approaches, with the FDR proce-

dure exhibiting performance closer to that of the independence Bayes model. Again,

the CAR structure yields results that expand the selected regions of activation com-

pared to FDR control so that more voxels are included in contiguous clusters identified

as supportive of the antisaccade task.

(a) Independence (b) CAR model (c) FDR control

Figure 5.4: Thresholded activation maps for Subject 6. Voxels are selected with
estimated non-null probability of at least .95. The false discovery rate (FDR) results
are obtained using the Benjamini and Yekutieli (2001) algorithm, controlling at a rate
of .05.
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Figure 5.5 displays thresholded activation maps for all fourteen participants using

the independence model, our model, and FDR control. We can see that both the

independence model and FDR procedure are much more conservative than the CAR

model, in general. Table 5.1 reports the distances between the corresponding maps

as a measure of similarity. The distance between two images is found by expressing

them as vectors x, y and calculating the usual Euclidean norm of the difference,

((x−y)T (x−y))1/2. The Table shows that the independence model results and FDR

thresholding are more comparable to each other than either is to the CAR model.

Results obtained under our model are substantially different from either of the other

two approaches.

Table 5.1: Euclidean distances between corresponding vectorized threshold images
under independence, CAR, and FDR thresholding, for each subject.

Subject SB-FDR SB-CAR CAR-FDR

1 1.00 5.66 5.74
2 1.00 11.58 11.53
3 2.24 22.65 22.54
4 5.20 11.71 10.49
5 2.65 17.97 17.78
6 0.00 9.11 9.11
7 4.36 8.83 9.85
8 1.73 4.47 4.12
9 0.00 8.37 8.37
10 2.00 2.65 1.73
11 2.00 9.00 8.78
12 3.46 11.70 11.18
13 1.41 12.33 12.25
14 4.90 13.71 12.80

Average 2.28 10.70 10.45

We find that the increased sensitivity of the Bayesian CAR model compared to

the Bayesian model under independence seems to hold in general. Figure 5.6 displays

the thresholded activation maps averaged over all of the participants. Each voxel

in the image is the average of the zeros and ones appearing in the fourteen maps.

The maps only retain points for which the corresponding voxels are non-masked
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(a) Independence model

(b) CAR model

(c) FDR thresholding

Figure 5.5: Thresholded activation maps for all fourteen participants using the Scott-
Berger model, the CAR model, and Benjamini and Yekutieli (2001) FDR control.
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over all participants so that the summary thresholds are displayed on a common

intersection. For a clear picture of where the strongest BOLD signal changes are

observed in general, a map of the t statistics averaged at each voxel is also included.

This highlights where the common centers of activation tend to be for the participants

and is largely in agreement with Figure 5.2. The average t-map also displays only the

intersection of non-masked voxels over all subjects. Combining brains in this way is

problematic when doing formal inference (Lazar et al., 2002), but it is useful here for

illustrative purposes.

We see that the Bayesian independence model is extremely conservative, perhaps

over-correcting for multiplicity like the more traditional corrective procedures. In this

case, we come back to the same problem as with the classical approaches. By modeling

spatial dependence in the data, we have increased the power, making physiologically

meaningful regions associated with the task easier to identify. This brings us closer to

the desired delineation of task-related neural circuitry. By harnessing the dependence

to our advantage instead of treating it as a burden, we improve our ability to select

regions of interest that may be further investigated in subsequent analyses.

Figure 5.6 also displays the summary map of the thresholds calculated using the

general FDR procedure. The algorithm is applied to each participant separately

so that there are fourteen sets of p-values. Zero-one indicators are used as before

to depict selected voxels. The thresholded images for individual slices, displayed in

Figure 5.5, are averaged over the fourteen participants at each location. Only the

intersection of voxels that are non-masked in each brain is retained in the final image.

These results underscore the power that can be gained with modeling spatial de-

pendence in SPM analysis as opposed to Bayesian testing under independence or

FDR control with arbitrary dependence structure. The Bayesian testing model under

independence is indeed effective in adjusting for multiplicity. The adjustment may be

too strong for the purposes of fMRI, though. In allowing for an arbitrary distribution
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(d) Average t-map

Figure 5.6: Threshold maps averaged over participants for each model and the average
t-map. The value at each voxel is the proportion of times it is selected as active over
the fourteen subjects. Each image is the intersection of non-masked voxels over all
participants.

of the p-values, the FDR-controlling algorithm also sacrifices power. This algorithm

is closer to the overly conservative Bayesian independence results than those obtained

under the CAR structure.

5.2 Analysis With All Participants Simultaneously

In addition to treating each of the fourteen participants separately, we perform a

combined analysis. Here, all the observed test statistics are considered simultaneously

as one data set rather than as fourteen separate sets. As in the single participant case,

we view each test statistic yj as arising from the spike-CAR mixture with common

error and signal variances. That is, we suppose that yj ∼ N(θj , σ
2), j = 1, . . . , J ,

where J =
∑

m Jm = 11, 958 is the total number of observations included over all

participants, after masking. We assign the means of the datum-specific distributions
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the mixture with continuous component given by (3.1). This is the same model as

that which was used for each participant individually; there are just more observations

and thus more parameters included in the evaluation of the posterior distribution.

The information separating one brain from another for modeling CAR dependence is

totally contained in the neighborhood structure via the adjacency matrix.

While the spatial structure is preserved, this is different from treating each par-

ticipant separately in that much more information is being shared throughout the

model. The posterior distributions of σ and τ−2 are updated using the information

from the approximately 12, 000 test statistics simultaneously. When we treat each

participant separately, the posteriors only use data contained in the particular sub-

ject’s slice being analyzed. The intrinsic Bayesian multiplicity adjustment uses a

much greater number of tests in the correction for the combined set, affecting the

posterior distribution of p and thus the marginal probabilities of inactivation at each

observation, pj , j = 1, . . . , J . We discuss differences in the posteriors below.

Figure 5.7 shows the averaged threshold maps obtained from treating each partic-

ipant separately as well as simultaneously. In both analyses, we use a common shape

parameter of α = 108 in the prior for p. We see that using the same model for the

much larger combined data set results in probability estimates that are more sensitive

to small perturbations from zero. This is likely due to the fact that the greater num-

ber of observations considered has a stronger effect on the posterior distribution. A

more influential shape parameter in the prior for p is necessary in the presence of the

additional data points to enforce sparsity, as discussed in Section 2.2. We investigate

this sensitivity on these data in the next section.

Also included in Figure 5.7 are results from two other procedures for which re-

searchers may opt when attempting to combine information over all participants. The

first is using the general FDR procedure with J =
∑14

m=1 Jm in place of the subject-

specific Jm. We separate out by slice the indicators of selected voxels so that each
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Figure 5.7: Comparison of threshold maps combining information in all participants’
slices. For panels (a)-(c), the value at each voxel is the proportion of times it was
selected over the fourteen subjects. Panel (b) is the same as the CAR results presented
in Figure 5.6. Panel (d) is the result of applying FDR control to p-values obtained
from Fisher’s method.

point in the summary map is the average of indicators over the corresponding voxels in

each participant’s slice. The second procedure we consider is Fisher’s p-value method

(Fisher, 1950). This method creates a new map of p-values instead of defining a rule

for thresholding the original ones. The p-value at location j is found by calculating

Tj = −2
∑lj

m=1 log pmj , where pmj is the p-value observed at the jth voxel of subject

m and lj is the number of terms used in evaluating the sum at voxel j. Each location

in the new map may be considered a summary voxel with value Tj , which follows a

chi-squared distribution with 2lj degrees of freedom. We use the general FDR pro-

cedure on this new map of p-values and indicate selected summary voxels. Since this

results in only one map of p-values, there is no averaging. To maintain uniformity
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between the maps, we include in the final map only voxels that are non-masked over

all participants.

Using FDR control over all participants’ slices simultaneously yields similar re-

sults to those we find by treating each participant individually. The combined p-value

method is clearly much more liberal, even more so than the CAR analysis on each

participant individually. This gain in power is desirable, but there is the risk of it

being too liberal. It smooths regions together and selects areas that may not be of

interest. By adding the natural logarithms of the p-values across subjects, it only

takes one extreme observation to make the test statistic large. One unusual par-

ticipant could cause a voxel to be declared significant despite the majority of others

who exhibited no interesting BOLD signal changes at all (McNamee and Lazar, 2004).

5.3 Sensitivity Analysis

Two aspects of our model that may seem arbitrary are the prior on the hypervariance,

τ 2, and the specification of the shape parameter in the prior for p. The influence of

prior specifications on any posterior calculations are usually of interest in practice

(Gelman et al., 2004). We thus perform a sensitivity analysis to determine the ro-

bustness of these modeling assumptions. We explore effects of both the prior on τ 2

(equivalently, τ =
√
τ 2) and the value of α below.

Robustness to the Prior on τ

It is suggested in Gelman (2006) that the priors specified for the variance parameters

in hierarchical models may have an undesirable effect on posterior inference. Priors

used for scale hyperparameters that are theoretically noninformative may, in fact,

have a considerable influence on the posterior distribution. To address this possibility,

we fit our model to the experimental fMRI data with different priors and visually

compare the results. Following Gelman (2006), the three priors we use are Gamma,
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τ−2 ∼ Ga(.001, .001), a vague but proper Uniform prior, τ ∼ U(0, 1000), and a

folded-t, or half-t, distribution. This distribution can be expressed simply as that of

|Z|W−1/2, where Z is a standard normal random variable andW follows a chi-squared

distribution with ν degrees of freedom. The density is given by

π|t|(τ) ∝
(

1 +
1

ν

( τ

C

)2
)−(ν+1)/2

, τ > 0, (5.1)

where C is a scale parameter. Interested readers are referred to Johnson and Kotz

(1972) or Gelman (2006) for more details. Here, we take C = 1 and ν = 2, which we

denote as τ ∼ |t2|. For the analysis of the priors on τ , we keep α fixed at 108 in the

prior for p.

Figure 5.8 displays the log-scale estimated posterior probability maps for Subject

6 using each prior on τ . The three maps are virtually indistinguishable from each

other. We also see this similarity when examining the thresholded activation maps

of the same brain, displayed in Figure 5.9. The only noticeable differences in selected

voxels are in the area of the SEF. Otherwise, the results from the three model variants

closely agree.

To better ascertain the effect of the prior, we display the averaged threshold

maps that result from using each prior in Figure 5.10. The results are largely in

agreement with each other, although it appears that the Uniform prior is slightly

more conservative compared to the other two. There are no major inconsistencies

across the three alternatives, indicating that our CAR testing model is robust to the

prior used on the scale hyperparamter.

Our exploration of the effects of different priors on the hypervariance demonstrates

that choosing one over another results in negligible differences. This is likely because

the effect of the variance prior is mainly a concern when the number of groups, and

hence the number of parameters being modeled in the prior, is small, as noted in
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Figure 5.8: Comparative posterior probability maps of activation for the individual
slice from Subject 6 with different hyperpriors for the scale hyperparameter, τ (τ−2

in Panel a). The three distributions compared are the same as those considered in
Gelman (2006). Probabilities are displayed on the log scale for improved resolution.

(a) Ga(.001, .001) (b) U(0, 1000) (c) |t2|

Figure 5.9: Comparative thresholded activation maps for the individual slice from
Subject 6 with different hyperpriors for the scale hyperparameter. The distributional
classes compared are the same as those considered in Gelman (2006).
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Figure 5.10: Threshold maps averaged over participants for each hyperprior on the
scale hyperparameter. The value at each voxel is the proportion of times it is selected
as active over the fourteen subjects. Each image is the intersection of non-masked
voxels over all participants.

Gelman (2006). In our case, each statistic is considered as arising from its own class,

meaning that the number of groups is the same as the number of tests being per-

formed. The sensitivity is thus drastically reduced for large Jm. It is worth noting

the similarity between πτ2|σ2(τ 2 | σ2) in Model 2 and the half-t density (5.1), which

is suggested by Gelman as a “weakly informatve” alternative to the usual Inverse

Gamma. We believe, though, that in the absence of any compelling reason to choose

a specific prior (e.g. strong prior knowledge about the data to be analyzed), a re-

searcher may choose the most computationally convenient prior and still maintain

the integrity of inferences.
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Sensitivity of the Shape Parameter in the Prior for p

We investigate the sensitivity of the shape parameter in πp(·) by repeatedly imple-

menting the model over a range of α values. We determine the values over which

to run the simulations by applying our empirical Bayes estimation method over a

range of suitable thresholds. Section 5.1 shows how this estimator relies on esti-

mating the probability of activation with the proportion of t statistics exceeding

a certain threshold. For example, a threshold of 4 results in α̃ = 108. For the

usual one-sided z test, a .01 significance level has a critical value of z′ ≈ 2.33,

whereas the corresponding one-sided t test with few degrees of freedom uses a critical

value of t′ ≈ 4. Therefore, to determine a grid of reasonable values, we calculate

P̂ (γj = 1 | α) = ∑14
m=1

∑Jm
j=1 I(ymj > t′)/

∑14
m=1 Jm for a sequence of t′ between 2.3

and 4.3, finding α̃ from each resulting estimate.
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Figure 5.11: Threshold maps averaged over participants for selected values of α in
the p prior, πp(p) = αpα−1. The value at each voxel is the proportion of times that
voxel was selected over the fourteen subjects using the CAR model. Each image is
on the intersection of non-masked voxels in the slices.
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Figure 5.11 displays the threshold maps averaged over subjects for α = 25, α = 94,

and α = 121, corresponding to critical values of 2.94, 3.91, and 4.11, respectively. We

observe the effect of increasing α in the decreasing number of voxels selected as task-

related and concomitant shrinking of the neuronal regions identified. This reflects

the fact that higher α values lower a researcher’s estimated probability of activation

at any particular voxel, strengthening the criterion which must be met for selection.

High α values should be specified when the activity is thought to be sparse, in which

case only the most extreme voxels will be identified as task-related. In this sense, the

parameter may be used to adjust the threshold for multiplicity. This could potentially

lead a researcher into a problem similar to choosing the threshold for p-values in the

classical hypothesis test setting. Hierarchical modeling, though, may make it possible

to avoid this issue by placing a prior on the α parameter to reflect more uncertainty.

The additional uncertainty in the prior has the effect of allowing more freedom in

the data to determine the plausible values. We elaborate on this point in the next

chapter.
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Chapter 6

Concluding Remarks

6.1 Discussion

The analysis of fMRI data requires performing inference on a massive scale. The

data with which we are concerned in this dissertation are types of SPMs arising

from fMRI studies. As such, we assume that there is no temporal component to

the data being analyzed; each voxel contains one value quantifying the observed

changes over time. Beginning with these types of maps has the advantage that they

are already popular in neuroimaging. A researcher can use preprocessing steps to

construct the maps with standard software such as AFNI (Cox, 1996), SPM (Wellcome

Department of Cognitive Neurology, London, UK), or FSL (Nuffield Department of

Clinical Neurosciences, Oxford, UK).

In correcting for the thousands of simultaneous tests that must be performed,

there is a risk of using an overly conservative procedure. Ad hoc threshold correc-

tions can reduce or eliminate selected areas of activation associated with task perfor-

mance in an fMRI study. We show that this risk is still present under the Bayesian

approach to large-scale testing. In particular, assuming independence among the

test statistics causes the Bayesian testing model to become extremely conservative.

The self-calibration that is inherent in the procedure tends to over-correct much like

other multiple testing procedures that have already proven to be problematic for high

throughput data.

We demonstrate that a gain in power can be achieved by introducing a conditional

autoregressive structure to account for local spatial dependence among the voxels.

This model appears also to be more powerful than the Benjamini-Yekutieli procedure
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under arbitrary p-value distributions. Rather than being treated as an inconvenience,

we harness the spatial dependence present in brain images to improve our ability to

detect task-related activation. By allowing voxels to borrow strength from those in

their immediate neighborhoods, our model can increase the sensitivity of the Bayesian

testing procedure. This draws attention to the inherent flexibility of Bayesian models

to capture nuances in particular data structures that are otherwise difficult to account

for. Any FDR procedure, on the other hand, is ultimately at the mercy of the null

distribution used to calculate p-values. The correct distribution to use is something

upon which theory and empirical evidence do not always agree. It is also worth noting

that while the expected false discovery rate is controlled, there is no guarantee that

the actual proportion of discoveries that are false for any particular data set is even

close to the nominal rate.

One of the advantages of groupwise analyses is that common activation across

subjects enables easier identification of true regions of activation. Intra-subject anal-

yses, on the other hand, may have interesting areas that are more difficult to identify

because of a lack of corroborating information. We explore our model’s behavior both

in the analysis of a single brain image and in combining slices across subjects. By

increasing sensitivity, our model improves an investigator’s ability to identify signifi-

cant activation at the level of a single person. When analyzing groupwise results, our

approach can avoid the disproportionate influence of one participant, unlike Fisher’s

p-value method.

We mention in Section 3.2 the simplifications made for the sake of computational

implementation. Extending the CAR dependence structure to account for three-

dimensional dependence in a whole-brain analysis is theoretically straightforward.

One only needs expand the definition of a neighborhood to include the 26 voxels

adjacent to and above and below each location. In practice, though, computational

efficiency and prior parameter specification are two issues requiring investigator input.
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For a fixed value of α in the prior for p, the results are seen to be less sensitive when

considering a single slice versus multiple slices simultaneously. It is likely that this

would also be the case when analyzing a three-dimensional volume from a single

person.

We expect that the methodology presented in this paper can be readily extended

to other imaging modalities besides fMRI. For example, our model could be applied

to data sets obtained from positron emission tomography (PET). Bowman (2007)

briefly commented on the similarity between fMRI and PET, noting that the design

matrix is the primary difference between the GLMs used for their analyses. It is

possible to construct an SPM corresponding to test statistics for summarizing the

voxel-specific stimulus effects on cerebral blood flow, the response variable in PET

data. The observations for the PET SPMs can then be treated in the same manner

as they are in the fMRI case presented here. Indeed, we believe that any procedure

that results in summary maps quantifying evidence of activation over voxels could

incorporate this procedure, with appropriate modifications in the null distribution

and other parameters.

6.2 Future Research

Extensions

The empirical results presented in this dissertation suggest an extreme sensitivity to

the choice of prior on p in our CAR model, making careful selection crucial. The

specification of appropriate priors is a question that merits further investigation.

Several approaches for prior specification were addressed at length by Berger (1985,

Chapter 3). The more fundamental question of whether to use an elicited prior or

perhaps some noninformative or otherwise computationally simpler prior could also

be addressed. Indeed, Carlin and Louis (2009, page 32) remarked that “the inherent

difficulty of the elicitation task makes us lean toward its use only in situations where
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anticipated data sample sizes are small, and the experts possess good reliable prior

information . . . on the subject at hand.” Given the wealth of knowledge that has

accumulated about certain simple cognitive tasks (such as eye movements), elicitation

might be feasible in this case.

One possible direction for future research is to more directly address the sensitivity

to the α shape parameter in the prior for the mixing parameter p. Rather than

modeling p with a Beta(α, 1) distribution, it may be better to model the voxel-specific

activation probabilities, qj ≡ 1 − pj , with a spike-Beta mixture, qj ∼ (1 − ξ)δ0 +

ξBeta(sr, s(1 − r)), and ξ ∼ Beta(aν, a(1 − ν)), with hyperparameters specified so

that ξ is likely to be small and the Beta part of the distribution of qj places most of its

probability mass near one. Lucas et al. (2006) and Carvalho et al. (2008) showed that

introducing a prior of this form induces greater shrinkage in the posterior distribution,

resulting in a stronger distinction between points declared null and non-null. In our

model, perhaps this would allow the shape parameters to automatically adapt to the

number of tests being performed, circumventing the problem of specifying α directly.

Alternatively, data-driven approaches to selecting α could be explored. It may be

possible to incorporate the number of tests Jm directly or otherwise use an empirical

procedure to optimally choose α for a given data set.

A current need in the neuroscience community is for viable methods by which

comparisons can be made between groups of people. For example, a difficult but

important problem in mental health research is summarizing the differences between

schizophrenia patients, their relatives, and a healthy population. After a suitable

model has been chosen for a single brain, or a single group of brains, it would be

useful to explore techniques with which the model can be extended to make groupwise

comparisons possible, i.e. through hierarchical modeling. Currently, one of the most

popular methods for comparing groups of subjects in neuroimaging studies is within

the linear mixed model framework. While this has certainly proven to be a useful
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tool, it is known to be quite conservative and sensitive to model misspecification

(McNamee and Lazar, 2004; Lindquist, 2008).

Another promising avenue is extending the Bayesian multiple testing framework

to distinguish between positive, task-related activation and task-induced deactivation

associated with the so-called “default network” (Buckner et al., 2008). This network,

which is the subject of increasing discussion among neuroscientists, exhibits a much

weaker signal than task-related activation. An extension allowing for the classification

of voxels into three or more cases could perhaps be accomplished with the Brown-Stein

model (Brown, 1971; Stein, 1981; Efron, 2009). This is a model of the form

δ ∼ g

y | δ ∼ fδ,

and is useful for modeling observations as arising from one of several classes, e.g.

y | δ ∼ N(δ, σ2) with g a finite mixture distribution. It was suggested by Muralid-

haran (2010) that taking g to have three components could allow the observations to

be partitioned into null, positive, and negative effect cases.

Addressing the Dependence Structure

It would also be desirable to explore other dependence structures for incorporation

into a Bayesian testing model. We use the CAR model here for both its simplicity in

MCMC sampling and its interpretability. Our model could be modified by adapting

the approach of Smith and Fahrmeir (2007). Letting the means µ be condition-

ally independent, it could be assumed that the indicators γ follow the distribution

determined by

π(γj | γ(−j)
) ∝ exp

(
∑

i

α(γi) +
∑

j∼i

ωjiθjiI(γj = γi)

)

,
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where α(·) is an “external field” and the second term is the interaction effect between

γj and its neighbors. Since the estimate of the probability of activation at location j

would then be influenced more by γj than µj , stronger clustering among the points

determined to be active may be induced. This could allow for more clearly-defined

regions of activation while avoiding oversmoothing.

Another possible alternative is modeling the dependence structure with a Gaussian

process in the likelihood of a hierarchical model. For instance, letting (c1j , c2j , c3j)

denote the coordinate of voxel j, one could model the data from the mth subject

as ym ∼ N(θm, σ
2
mκφ), m = 1, . . . ,M , where κφ is a Gaussian correlation matrix

{κφ(k, l)}Jmk,l=1 with κφ(k, l) = exp (−φ1(c1k − c1l)
2 − φ2(c2k − c2l)

2 − φ3(c3k − c3l)
2).

For an entire brain volume, the computational burden of a fully Bayesian analysis

would be unbearable for even modern computing technology. The range parameter

φ = (φ1, φ2, φ3) would be particularly troublesome to estimate. One approach to

this problem is empirical Bayes, i.e. to find an estimate of φ and treat it as known.

Qian and Wu (2008) assigned the components of φ independent Gamma distributions

and then treated the posterior mode of φ as fixed. Alternatively, the optimization

problem for estimating φ could be simplified by using composite likelihood methods

(Besag, 1977; Lindsay, 1988; Cox and Reid, 2004), approximating the full likelihood

with the marginal distributions of local neighborhoods in the images (e.g. Nott and

Ryden, 1999). See Santner et al. (2003) for an introduction to the Bayesian analysis

of Gaussian processes.

Neuroimaging data are known to exhibit complex correlation. Research and expe-

rience suggest that the dependence structure among voxels in fMRI data do not ex-

hibit a conventional spatial dependence structure determined by Euclidean distance.

A different measure of distance, such as one based on neuronal pathways connecting

regions of the brain, may be more appropriate for analyzing such data. Some sections

of the brain seem to be correlated according to a functional dependence structure,
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where they are associated according to a common functional behavior. Bowman

(2007) incorporated such a distance metric into a spatiotemporal mixed model for

analyzing PET scans and noted a straightforward extension to accommodate fMRI.

While other work has been done on modeling complex measures of distance and co-

variance structures (e.g. Dryden et al., 2009), it has been limited, particularly with

respect to fMRI. The nature of the true dependence structure is no doubt difficult to

model, but necessary to facilitate more reliable inference.

Model Assessment and Selection

Model checking is a vastly underexplored area of neuroimaging (Lindquist, 2008).

With competing models using different dependence structures, it would be natural to

ask which one is “best”. A standard Bayesian method for comparing models is the

Bayes factor (BF). For two competing models M1 andM2, the Bayes factor is simply

the posterior odds of M1 to M2 divided by the prior odds,

BF =
P (M1 | y)P (M2)

P (M2 | y)P (M1)
=
P (y | M1)

P (y | M2)
.

Pure Bayes factors are limited, though, in that they force a choice between only two

models, assuming one is correct, and rely on proper priors to be well-defined. This

has led to variants of the BF, such as intrinsic Bayes factors (Berger and Pericchi,

1996, 1998) and the fractional Bayes factor (O’Hagan, 1995). An overview of model

selection from both Bayesian and frequentist perspectives may be found in Kadane

and Lazar (2004).

A similar issue to model selection is that of model assessment. The appropriate

measure of fit for Bayesian models is still a much-debated topic in the literature.

Perhaps the most natural technique is to examine a set of residuals from a fitted

model. Carlin and Louis (2009) suggested a cross-validation approach that, for each
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observation, uses the posterior calculated from all the data less the observation in

question to predict the missing datum and find the residual. That is, one can examine

di =
yi − E(Yi | y(−i)

)
√

Var(Yi | y(−i)
)
,

where the mean and variance are calculated with respect to the conditional predictive

distribution, f(yi | y(−i)
) =

∫
f(yi | θ,y(−i)

)p(θ | y
(−i)

)dθ. Much closer to traditionally

frequentist ideas is the notion of a Bayesian p-value (Gelman et al., 2004). This is

defined as pB := P (T (yrep, θ) ≥ T (y, θ) | y), where T (·) is a suitable test quantity

and yrep is a vector of ‘future’ observations drawn from p(θ,yrep | y). In other words,

the Bayesian p-value is obtained by comparing a function of the predicted data to the

same statistic calculated from the observed data. Using the tail-area probability, the

Bayesian p-value functions like a classical p-value in that a small value is evidence

against the working model. Combining notions from both the Bayesian and frequen-

tist frameworks for calibrating the operating characteristics of Bayesian models was

advocated by Little (2006, 2011), who cited Box (1980) and Rubin (1984) as seminal

works in the area.

Additional Applications

Lastly, we note that the scope of possible applications of this work is not limited

to brain imaging. Other applications are possible. There is an interest in genomics

to identify gene pathways that are associated with certain diseases, including cancer

(West, 2003) and mental illness. Such analyses involve performing inference among

tens of thousands of genes simultaneously, often in the presence of considerable de-

pendence among the observations (Efron, 2007). The emerging field of syndromic

surveillance seeks to identify potential disease outbreaks through continuous moni-

toring of reported symptoms at hospitals in geographic regions (Rath et al., 2003;
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Banks et al., 2012). This field is pertinent to epidemiology as well as domestic policy

concerning bioterrorism. There are potential applications to imaging problems in as-

tronomy, as well. Observatories are constantly collecting images containing massive

amounts of information for learning about, e.g., the evolution of galaxies or planetary

systems. These collections of observations can dwarf even the largest neuroimaging

data sets (Liang et al., 2004; Efron, 2008).

It is our hope that our research will lead to models that are easily extendable

to other types of data. Some models, such as the CAR model presented here, are

contingent upon an areal structure, with clearly defined neighborhoods that are only

a function of adjacency and not Euclidean distance. A Gaussian process model, on

the other hand, explicitly incorporates the measurable distance between two points

into the correlation structure. Such a model could thus be used to analyze not only

areal data like fMRI, but more complex geostatistical data.

6.3 Conclusion

We live in The Information Age in which technology has evolved to the point where

data are being collected on a scale unimaginable even fifteen years ago. Researchers

in many fields now have access to massive amounts of information about a wide range

of interests, including the shopping behavior of millions of online customers, financial

trends in the stock market, disease patterns in geographic regions over time, real-time

internet traffic, and detailed biomedical images, to name a few. Our ability to collect

data has now far outpaced our knowledge of how to analyze them. Techniques for

analyzing large-scale data are in demand as never before.

This work introduces a specific method for incorporating spatial dependence into a

Bayesian thresholding framework for neuroimaging data. With hierarchical modeling,

adaptive parameter specification, and tenable choices of dependence structures, an

entire class of models may be developed for large-scale areal data. Such a class of
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models could provide a unifying framework for automatic multiple testing adjustments

in a variety of high throughput settings.

We are optimistic that Bayesian procedures will be made more accessible to a

broader community of researchers; the biggest hindrance now being computational

limitations. More research needs to be done toward finding ways to increase com-

putational efficiency in MCMC and other routines for the analysis of massive data

sets. Reducing the computational burden is critical for researchers to enjoy the full

flexibility that hierarchical modeling provides. The beneficiaries of such advance-

ments would not be limited to neuroimaging, but would include the entire scientific

community.
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Scheffé, H. (1953), “A method for judging all contrasts in the analysis of variance,”
Biometrika, 40, 87–104.

Scott, J. G. and Berger, J. O. (2006), “An exploration of aspects of Bayesian multiple
testing,” Journal of Statistical Planning and Inference, 136, 2144–2162.

— (2010), “Bayes and empirical-Bayes multiplicity adjustment in the variable-
selection problem,” Annals of Statistics, 38, 2587–2619.

Simes, R. J. (1986), “An improved Bonferroni procedure for multiple tests of signif-
icance,” Biometrika, 73, 751–754.

Smith, M. and Fahrmeir, L. (2007), “Spatial Bayesian variable selection with applica-
tion to functional magnetic resonance imaging,” Journal of the American Statistical
Association, 102, 417–431.

Smith, M. and Kohn, R. (1996), “Nonparametric regression using Bayesian variable
selection,” Journal of Econometrics, 75, 317–343.

Stein, C. M. (1981), “Estimation of the mean of a multivariate normal distribution,”
Annals of Statistics, 9, 1135–1151.

Storey, J. D. (2002), “A direct approach to false discovery rates,” Journal of the
Royal Statistical Society, Series B, 64, 479–498.

— (2003), “The positive false discovery rate: A Bayesian interpretation of the q-
value,” Annals of Statistics, 31, 2013–2035.

Strang, G. (1988), Linear Algebra and Its Applications, United States: Thomson
Learning, Inc., 3rd ed.

Sun, W. and Cai, T. T. (2009), “Large-scale multiple testing under dependence,”
Journal of the Royal Statistical Society, Series B, 71, 393–424.

Talaraich, J. and Tournoux, P. (1988), Co-Planar Stereotaxic Atlas of the Human
Brain, New York: Thieme.

Tukey, J. W. (1952), “Allowances for various types of error rates,” Unpublished IMS
address.

Waller, R. A. and Duncan, D. B. (1969), “A Bayes rule for the symmetric multiple
comparisons problem,” Journal of the American Statistical Association, 64, 1484–
1503.

Welsch, R. E. (1977), “Stepwise multiple comparison procedures,” Journal of the
American Statistical Association, 72, 566–575.

West, M. (2003), “Bayesian factor regression models in the ‘large p, small n’
paradigm,” in Bayesian Statistics 7, eds. Bernardo, J. M., Bayarri, M. J., Berger,
J. O., Dawid, A. P., Heckerman, D., Smith, A. F. M., and West, M., Oxford: Oxford
University Press, pp. 723–732.

89



Westfall, P. H., Johnson, W. O., and Utts, J. M. (1997), “A Bayesian perspective
on the Bonferroni adjustment,” Biometrika, 84, 419–427.

Woolrich, M. W. (2012), “Bayesian inference in fMRI,” NeuroImage, 62, 801–810.

Worsley, K. J. (1994), “Local maxima and the expected Euler characteristic of ex-
cursion sets of χ2, F and t fields,” Advances in Applied Probability, 26, 13–42.

— (2003), “Detecting activation in fMRI data,” Statistical Methods in Medical Re-
search, 12, 401–418.

Worsley, K. J., Evans, A. C., Marrett, S., and Neelin, P. (1992), “A three-dimensional
statistical analysis for CBF activation studies in human brain,” Journal of Cerebral
Blood Flow and Metabolism, 12, 900–918.

Xu, L., Johnson, T. D., Nichols, T. E., and Nee, D. E. (2009), “Modeling inter-
subject variability in fMRI activation location: A Bayesian hierarchical spatial
model,” Biometrics, 65, 1041–1051.

90



Appendix A

Derivation of a Gibbs Sampling Algorithm for the Scott-Berger

Model

A.1 The Model

The multiple testing model of Scott and Berger (2006) (see Section 2.2) supposes

that the test statistics are distributed as yj ∼ N(θj , σ
2), j = 1, . . . , J . The competing

hypotheses of θj = 0 versus θj 6= 0 at each location may be represented by parame-

terizing the means as θj = γjµj, where γj ∼ Bernoulli(1− p), j = 1, . . . , J , are latent

indicators of activation. In implementing their model, we follow their suggestion and

take p to be uniform on the unit interval. The model may be summarized as follows:

• yj
ind∼ N(γjµj, σ

2), j = 1, . . . , J

• γj
ind∼ Bernoulli(1− p), j = 1, . . . , J

• µj
ind∼ N(0, τ 2), j = 1, . . . , J

• π
(σ2,τ2)

(σ2, τ 2) = (τ 2 + σ2)−2, σ2, τ 2 > 0

• p ∼ U(0, 1)

Averaging over µj for γj = 0 and γj = 1, we find the marginal distributions of the

test statistics to be yj | γj = 1, σ2, τ 2 ∼ N(0, σ2 + τ 2) and yj | γj = 0, σ2 ∼ N(0, σ2)

(Berger, 1985). Since the yj are independent, the joint likelihood of y can be written
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f(y | γ, σ2, τ 2) =

J∏

j=1

f(yj | γj, σ2, τ 2)

∝




∏

j:γj=1

(σ2 + τ 2)−1/2 exp

(

− y2j
2(σ2 + τ 2)

)




×




∏

j:γj=0

(σ2)−1/2 exp

(

− y2j
2σ2

)




= (σ2 + τ 2)−
∑

j γj
2 exp

(

−
∑

j γjy
2
j

2(σ2 + τ 2)

)

×(σ2)−
(J−

∑
j γj )

2 exp

(

−
∑

j(1− γj)y
2
j

2σ2

)

The joint posterior distribution (up to a normalizing constant) can then be calculated

as

π(γ, σ2, τ 2, p | y) ∝ f(y | γ, σ2, τ 2)πγ|p(γ | p)πp(p)π(σ2,τ2)
(σ2, τ 2)

= (σ2 + τ 2)−
∑

j γj
2 exp

(

−
∑

j γjy
2
j

2(σ2 + τ 2)

)

×(σ2)−
(J−

∑
j γj )

2 exp

(

−
∑

j(1− γj)y
2
j

2σ2

)

×(1− p)
∑

j γjpJ−
∑

j γj (σ2 + τ 2)−2πp(p),

where πp(p) = I(0 < p < 1). Gibbs sampling requires specification of the distribu-

tion of each parameter conditioned on all of the others. With the target (posterior)

distribution specified, these can be derived.
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A.2 Full Conditional Distributions

Let x = σ2 and w = σ2+ τ 2 to simplify notation. For two-component mixtures of the

form f(yj) = pf(yj | γj = 0) + (1 − p)f(yj | γj = 1), the posterior for the indicators

follows from the definition of conditional probability:

P (γj = 1 | y) =
(1− p)f(yj | γj = 1)

pf(yj | γj = 0) + (1− p)f(yj | γj = 1)

= 1− P (γj = 0 | y).

Thus, for γ, the component-wise full conditional distributions are

P (γj = 1 | x, w, p,y) =
(1− p)w− 1

2 exp
(

− y2j
2w

)

(1− p)w− 1
2 exp

(

− y2j
2w

)

+ px−
1
2 exp

(

− y2j
2x

)

=: p∗j

= 1− P (γj = 0 | x, w, p,y),

for j = 1, . . . , J . The inclusion probability p depends on the data only through

γ, which is a vector of Bernoulli random variables. The Beta-Binomial model is a

conjugate pair, so the conditional posterior is

p | γ, σ2, τ 2,y ∼ Beta

(

J −
∑

j

γj + 1,
∑

j

γj + 1

)

.

For w, we note that

π(τ 2 | p,γ, x,y) ∝ π(γ, x, w, p | y)

∝ f(y | γ, σ2, τ 2)πγ|p(γ | p)πp(p)π(σ2,τ2)
(σ2, τ 2)
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= w−

∑
j γj
2 exp

(

−
∑

j γjy
2
j

2w

)

×(σ2)−
(J−

∑
j γj )

2 exp

(

−
∑

j(1− γj)y
2
j

2σ2

)

×(1 − p)
∑

j γjpJ−
∑

j γjw−2πp(p)

∝ (w2+ 1
2

∑
j γj )−1 exp

(

−
∑
γjy

2
j

2w

)

,

which is the density of an Inverse Gamma distribution. But w = σ2 + τ 2 ⇒ w >

σ2 = x, so it is actually a truncated distribution. That is,

w | p,γ, x,y ∼ IG

(

1

2

∑

j

γj + 1,
2

∑

j γjy
2
j

)

I(w > x).

For x, we have four cases to consider. In each case, the density can be obtained by

examining the joint posterior density as we did for w.

1.
∑

j γj = J :

π(x |∑ γj = J, w, p,y) ∝ I(0 < x < w)

2.
∑

j γj = J − 1 :

π(x |∑ γj = J − 1, w, p,y) ∝ x−
1
2 exp

(

−
∑

j(1−γj)y
2
j

2x

)

I(0 < x < w)

3.
∑

j γj = J − 2 :

π(x |∑ γj = J − 2, w, p,y) ∝ x−1 exp
(

−
∑

j(1−γj)y2j
2x

)

I(0 < x < w)

4.
∑

j γj ≤ J − 3 :

π(x | γ, w, p,y) ∝ x−
J−

∑
j γj

2 exp
(

−
∑

j(1−γj )y
2
j

2x

)

I(0 < x < w)

The Gibbs sampling algorithm iterates through each of these distributions, succes-

sively drawing from them until convergence. The algorithm is outlined below.
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A.3 The Gibbs Sampler Algorithm

The Gibbs sampling algorithm is as follows:

1. Calculate initial estimates of all the parameters except γ. The indicators are

drawn as the first step of the sampler.

2. For j = 1, . . . , J , draw γj from Bernoulli(p∗j), where p
∗
j is given above.

3. Draw p ∼ Beta(J −∑j γj + 1,
∑

j γj + 1)

4. For τ 2, there are two cases:

I:
∑

j γj = 0 :

(i) Draw U ∼ U(0, 1)

(ii) Set τ 2 = 1−U
U
σ2

II:
∑

j γj > 0 :

(i) Draw R ∼ Ga
(

1
2

∑

j γj + 1, 2∑
j γjy

2
j

)

(ii) If R < 1
σ2 , set τ

2 = 1
R
− σ2, else return to (i).

Then set W = τ 2 + σ2.

5. There are four cases to consider for x.

I:
∑

j γj = J :

Draw X ∼ U(0, w)

II:
∑

j γj = J − 1 :

Note that if U ∼ U(0, 1), then T = wU2 has density f
T
(t) = (2

√
tw)−1I(t <

w). So we can take f
T
(x) = (2

√
xw)−1I(x < w) as a generating density

for a rejection sampler. For x < w,
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f(x)/g(x) = 2
√
w × exp

(

−
∑

j(1− γj)y
2
j

2x

)

≤ 2
√
w × exp

(

−
∑

j(1− γj)y
2
j

2w

)

=: Υ

Therefore,

(i) Draw x0 = wU2, U ∼ U(0, 1)

(ii) Draw Q ∼ U(0, 1). If Q < f(x0)/(Υg(x0)), accept x0 , else return to

(i).

III:
∑

j γj = J − 2 :

Take g(x) = (2
√
xw)−1I(x < w). Then

f(x)/g(x) = 2

√
w

x
× exp

(

−
∑

j (1− γj)y
2
j

2x

)

I(x < w),

so that

sup
x f(x)/g(x) = 2e−1/2

√

2
∑

j (1− γj)y2j
=: f(x∗)/g(x∗).

Thus, with Υ = max{ f(x∗)
g(x∗)

, f(w)
g(w)

},

(i) Draw x0 = wU2, U ∼ U(0, 1).

(ii) Draw Q ∼ U(0, 1). If Q < f(x0)/(Υg(x0)), accept x0, else return to

(i).

IV:
∑

j γj ≤ J − 3 :

(i) Draw T ∼ Ga
(

J−
∑

j γj

2
− 1, 2∑

j (1−γj)y2j

)

.

(ii) If 1/T < w, set x = 1/T , else return to (i).
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6. Repeat steps (1) - (5) to convergence. Given samples of the other parameters,

draws for µj, j = 1, . . . , J , can be made from µj | γ, V, σ2, p,y, taking advantage

of normal-normal conjugacy.
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