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ABSTRACT 

 Whereas previous transportation network growth research has focused on long-term 

historical changes across selected metropolitan areas, short-term comparative explorations—

especially those considering all levels of the nationwide road hierarchy—have been neglected. 

Therefore, a comprehensive road change database of the United States was developed through 

compilation of U.S. Census Bureau TIGER/Line datasets from 2008 to 2012, while annual and 

five-year extents of road change were derived using Python geoprocessing scripts. Aggregate 

percentage road change statistics were presented for each metropolitan statistical area, county, 

and census tract nationwide, and the data were found to exhibit moderate spatial autocorrelation. 

Exploratory multiple linear and geographically weighted regression models indicated that the 

primary mechanisms of change were income and regional differences, while the importance of 

population change and race increased with finer spatial resolution. Counties surrounding Atlanta, 

Georgia produced highly statistically significant outliers, suggesting that anomalous expansion 

processes have uniquely shaped this metropolitan area. 
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CHAPTER 1 

INTRODUCTION 

Overview 

 The growth of metropolitan road networks in the United States, although often indirectly 

referenced in academic literature, has been largely neglected as a primary object of scholarship; 

according to a recent review of transportation growth modeling (Xie and Levinson 2009), only a 

handful of empirical studies have investigated temporal change in transportation supply. The 

authors attribute the current lack of statistical analysis and spatiotemporal modeling to a dearth 

of computer processing power and historical data; however, while these considerations may 

apply to complex modeling prescriptions and temporal ranges exceeding the maturity of 

geographic information systems (GIS) technology, they need not preclude future research. As 

microprocessor densities have increased exponentially according to Moore's law for the past four 

decades (Moore 1998) and recent historical road network data have been continually archived by 

both the United States Bureau of the Census and several metropolitan areas, the impediments to 

scholarship on comparative metropolitan road network growth are steadily being deconstructed.

 Enabled particularly by the public-sector advancement of longitudinal GIS data 

provisioning, this investigation presents a novel analysis of comparative transportation network 

growth across the Census Bureau metropolitan statistical areas (MSAs) between the years 2008 

and 2012. A comprehensive discussion of analytical feasibility addresses several attendant 

considerations for future transportation growth research, including positional/temporal accuracy, 

database creation, change detection procedures, and logical consistency. However, the ultimate 
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objectives are to produce descriptive statistics of road change, identify anomalous data regions, 

and determine the correlative role of socioeconomic conditions with areas of network expansion. 

 The construction of a nationwide spatiotemporal road network database opens several 

new avenues of scientific inquiry on the nature and impacts of short-term road network change. 

As the seminal "ideal-typical sequence" of network expansion theorizes, transportation network 

growth is powered by discrete external socioeconomic and political factors, which are in turn the 

key drivers of spatial road diffusion (Taaffe, Morrill, and Gould 1963). In the economic context 

of the United States, transportation network expansion may be understood as a top-down "spatial 

fix" for historic overaccumulation crises in the northeastern manufacturing belt, given that the 

majority of new roads are being constructed in more economically viable "sun belt" regions 

(Harvey 1985; Harvey 2001). A comparative study of temporal road change across metropolitan 

areas, enabled by the new road network database, could provide empirical justification for a 

causal link between metropolitan economic development and new transportation infrastructure; if 

a temporally lagged structure could be established, it would be possible to "predict" new roads. 

 Furthermore, given the annual temporal resolution of the database and the data window 

from 2008 to 2012, the comparative spatial effects of the subprime mortgage crisis could be 

analyzed over time; because the vast majority of new road mileage in the United States is not 

composed of major arterials, but local residential subdivision roads on privately-owned land, one 

could determine whether new roads (as a proxy for economic growth) would strongly correlate 

with the ability of a metropolis to recover from its stunted spatial growth patterns. As pictured in 

Figure 1.1, the Atlanta MSA, generally regarded in the urban planning community as a prime 

example of low-density residential sprawl, has experienced a significant downturn in new road 

mileage as stakeholders have divested themselves from proposed residential developments. The 



3 
 

spatial recovery process could easily be different for each metropolitan area, and socioeconomic 

trends might also be extracted: for example, would heavily Hispanic counties recover faster? 

 Therefore, in addition to lending hard evidence for broad-scale, geographically-inclined 

theories, a scholar could easily utilize descriptive road change statistics to support hypotheses: in 

order to determine the most relevant predictors for metropolitan road network change, one might 

perform a regression analysis with areal transportation growth as a dependent variable. The 

spatiotemporal road network database, then, could be used to develop a new explanatory model 

with the potential for multi-scalar hierarchical modeling, including variables such as population 

growth, population density, per capita gross domestic product, income, race, and topographic 

range, while also ideally incorporating measures of spatial autocorrelation and temporal lag. 

Although there could be several more applications for the spatiotemporal database, most notably 

for supporting initiatives against habitat fragmentation and water pollution due to runoff, the key 

contributions of this thesis are primarily methodological and expository in nature. By expanding 

an extant hole in the literature and drawing attention to the breadth of possibilities engendered by  
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a comprehensive nationwide spatiotemporal GIS road database, interest should be instigated in  

the academic community for further scholarship on the causative processes and environmental 

effects of new road construction in the United States. 
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Research Objectives 

The first two objectives of the research are to assess the spatiotemporal accuracy of the 

database and to develop a programming framework for detecting changes in the road network. 

As the ultimate value of any created database is dependent upon the characteristics of the input 

data sources, one must first verify data integrity: therefore, several different geospatial data 

programs are subjected to a suitability analysis for inclusion in the database. Additionally, the 

spatial and temporal accuracy of the selected data sources is elucidated, and the entire temporal 

window is examined for logical consistency and sources of error propagation. Furthermore, the 

preprocessing steps required to acquire and vet the raw data are furnished, along with a logical 

presentation of the robust Python geoprocessing framework for identifying new road segments. 

 The final objective will be to perform exploratory data analyses, including descriptive 

statistics of road change, spatial autocorrelation statistics, and socioeconomic data associations. 

The distillation of the voluminous raw GIS data into statistics such as road mileage change or 

road density change enables outlier detection and investigation, while more functionally complex 

descriptive statistics, such as the range of percent change across each of the four time intervals, 

may yield more pertinent information (by proxy) on the comparative spatial curtailing effects of 

the subprime mortgage crisis across all MSAs. Likewise, autocorrelation statistics such as local 

Moran's I are utilized to identify spatial clustering of road network changes. Finally, preliminary 

associative regression analyses seek to determine the suitability of various socioeconomic 

characteristics and geographical considerations for inclusion in future road change modeling. 
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CHAPTER 2 

LITERATURE 

 The following conceptualization of comparative transportation network growth differs 

from previous analyses due to its nationwide scope, metropolitan area scale, and temporal 

resolution, requiring data assimilation across the entire United States and over a time period of 

five years—a volume of raw, intermediate, and processed results exceeding one terabyte of data. 

Although the theoretical construction of a comprehensive spatiotemporal road database may be 

largely self-evident, the nontrivial effort required for data acquisition and change detection, 

combined with limited information on accurate, complete, and regularly updated GIS data 

sources, has appeared to construct a strong barrier of entry to the daunting task. Furthermore, 

after amassing the data, one must determine how to extract new linear road features given 

positional or temporal uncertainty; this methodological consideration has likely discouraged 

many scholars from undertaking the effort to compile, organize, and extract spatiotemporal GIS 

road data for further examination. However, several types of transportation literature closely 

approximate different components of the national transportation network growth process, yet the 

applicability of these analyses are universally limited by scale, scope, or temporal situation. The 

ideal database, therefore, addresses these structural shortcomings with three characteristics: 

complete road hierarchy, nationwide coverage area, and temporal network archival (Table 2.1). 

 The first three rows of the table are unsatisfactory for comprehensive network growth  

analysis because they only fill one of the three requirements; although many other avenues of  

research may be substituted for these categories, the listed examples are sufficient to express 
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Table 2.1: Example Taxonomy of Road Databases in Transportation Literature 

 

 Complete Nationwide Temporal 

Space Syntax X   

Economic Transport  X  

Historic Transport   X 

 Road Ecology X X  

National Planning  X X 

Regional Planning X  X 

Comprehensive 

Database 
X X X 

 

their respective deficiencies. Space syntax, an outgrowth of computational architecture that  

considers the spatial trajectories of network segments and their connectivity, places particular 

emphasis on accurate fine-scale network representation: however, the drive for accuracy 

generally comes at the expense of spatial and temporal scope (Kim 2007; Dalton, Peponis, and 

Conroy-Dalton 2003). Although one comparative study of urban morphology was discovered, 

articles of this breadth are uncommon (Peponis et al. 2007). The second type of study focuses on 

comparative nationwide transportation, yet often utilizes national GIS data sources such as the 

National Transportation Atlas Database, which excludes data on local roads; these papers may 

incorporate economic statistics to support hypotheses on interstate commerce (Ham, Kim, and 

Boyce 2005). Some articles may have a temporal component as well, approaching the level of 

national freight transportation planning, but these usually limit the analysis to a regional scope 

due to the large volume of data required (Healey and Stamp 2000). The third type of study may 

describe the evolution of historical transportation networks, but tends to either focus on one 

metropolitan area or present a general survey of the nation. As much of the data acquired on 

historic road networks is derived from temporally inconsistent sources such as aerial/satellite 

imagery or digitized historical maps, historical transportation research has more difficulty in 

drawing analytical conclusions based on time series, instead preferring a more theoretical or 
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descriptive approach. Furthermore, a considerable portion of historical articles are not explicitly 

concerned with changes over time; instead, historical road data are often used to observe a 

particular time period, rather than engage in temporal comparison (Gregory and Healey 2007). 

 The bottom three rows in Table 1 fulfill two of the three requirements, and thus these 

categories of transportation research more closely approximate questions of greater scope. The 

most logical extensions of the first three types are regional and national transportation planning, 

which simply aggrandize the heretofore opposing concepts of complete, individual metropolitan 

network coverage and broad, hierarchically-restricted national coverage with temporal density. 

Although many urban growth models, which are verified according to their ability to reproduce 

historical conditions at a given time, only consider major roads in a single metropolitan area 

(Clarke and Gaydos 1998; Levinson and Karamalaputi 2003; Hu and Lo 2007), several cities 

now provide complete GIS road archives. Therefore, regional planning literature now has the 

ability to incorporate temporal change, yet the different database schemata, record attributes, and 

data assimilation methods complicate comparative metropolitan analyses.  

 These advancements in metropolitan data provisioning should augment research on the 

effects of urban sprawl (Kenworthy and Laube 1999; Ciscel 2001), as well as inform concerns of 

systemic racism (Jaret, Adelman, and Reid 2006), inequity of transportation systems and services 

(Levinson 2002; Bullard 2003; Sanchez, Stolz, and Ma 2003) and job accessibility (Henderson 

2004; Weber and Sultana 2007); introducing temporal dimension to these generally static areas 

of study could produce results detailing if inequitable spatial conditions are being ameliorated. 

Likewise, national transportation planning has benefited, and will continue to reap insight, from 

the inclusion of temporal data in economic freight analyses, although unlike air and sea routes, 

the locations of domestic ground transportation routes remain relatively constant (Feyrer 2009). 



9 
 

 The final, likely most specialized field of study, road ecology, assesses the ecological 

effects of the road network on various species, and may also use landscape ecology metrics to 

analyze habitat patches outlined by roads and their buffer zones (Forman and Alexander 1998). 

Although road ecology research has not yet embraced temporal road data, it has presented one 

static study that includes all roads in the United States (Riitters and Wickham 2003). Unlike any 

of the aforementioned scholarship, the article compiles all of the county-based road networks in 

the commercial Tele Atlas/GDT Dynamap/2000 GIS dataset, making this road ecology analysis 

one of the first to utilize and process such a large linear road representation. Although the 

information contained in the database was eventually converted into a raster, or cell-based, 

storage method, the utilization of all available roads in the country, including trails for off-road 

vehicles, was a novel idea from inception, and could only be achieved through GIS technology. 

 In the spirit of analyzing all available road data, the following research aims to retain the 

original linear nature of the road centerlines, while including five years of annual revisions for 

the nationwide network; additionally, unlike the Riitters and Wickham (2003) paper, the raw 

data were subjected to spatiotemporal accuracy assessment. Furthermore, the procedures for 

creating a functional GIS database out of these different temporal layers, and the Python 

programming routines utilized to extract information about road network change over time, may 

inform future temporal studies with nationwide scope and/or complete road networks. In order to 

demonstrate the feasible applications of extending this line of short-term temporal transportation 

research, three analytical examples will be discussed: descriptive statistics, spatial pattern 

analysis, and exploratory correlation/regression analyses for future modeling. Both 

methodological improvements and expository statistics will be necessary to track the human 

drivers of transportation network expansion; in an era where new roads are being funded before 
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old ones can be maintained, the role of socioeconomic conditions that spur unchecked road 

network growth deserves further examination in the literature.  
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CHAPTER 3 

METHODOLOGY 

Data 

Before the advent of GIS technology, individual metropolitan areas did not have a 

common spatial framework for storing and accessing geographic coordinates of road network 

representations. Although public-sector GIS data acquisition has matured over the past three 

decades, differences in accuracy, completeness, boundary definitions, attribute categories, and 

implementation have discouraged nationwide, comparative studies of metropolitan transportation 

network expansion; therefore, the minimal interoperability between different data sources has 

largely resulted in either provincial studies addressing a particular region or nationwide studies 

of minimal detail. Whereas ideally, a compilation of all the most accurate metropolitan data 

sources, supplemented by the best available data in rural areas, would produce the most spatially 

accurate database, data assimilation and integration would prove to be a daunting task across the 

entire United States, especially considering the increasing number of rural GIS departments. 

Therefore, when considering a comparative metropolitan area study, the selection of an adequate 

spatiotemporal GIS data source should be limited to national, standardized databases exhibiting 

four attributes: logical consistency, positional accuracy, temporal accuracy, and completeness.  

Four freely available national data projects were evaluated, including efforts from the 

United States Geological Survey (USGS), the United States Department of Transportation 

(USDOT), the United States Bureau of the Census, and the crowdsourced OpenStreetMap 

project. The USGS Digital Line Graph was the least suitable for the proposed database: temporal 

updates were completed after a period of around twenty years, and furthermore, revision years 
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were not standardized across the country, obfuscating any possible comparative conclusions. 

Additionally, the boundaries of the datasets do not coincide with any political boundaries, and 

the vast majority of the included road features are digitized at a scale of 1:100,000, which would 

prove to be quite spatially inaccurate for analyzing individual urban or suburban road change. 

Likewise, the USDOT National Transportation Atlas Database (NTAD) also had scale issues; 

rather than having problems arise from the data acquisition scale, though, the NTAD dataset 

purposefully excludes many local roads, choosing to emphasize national, state, and arterial roads 

instead. Despite its flaws in hierarchical completeness, the USDOT dataset features annual road 

updates, making it highly suitable for national-scale temporal analyses; however, the vast 

majority of data in the NTAD is derived from a third-party source: the national census bureau. 

Although it would appear that the national and state departments of transportation should 

have the most complete data at the metropolitan scale, the United States Census Bureau dataset 

retains the same annual temporal resolution as NTAD, yet is complete and logically consistent. 

The MAF/TIGER (Master Address File / Topologically Integrated Geographic Encoding and 

Referencing) road datasets were originally developed to support internal geocoding operations 

for the decennial census; therefore, all roads are included with standardized attribute information. 

Another preferred data provider could be OpenStreetMap, a free and open source worldwide 

road database originating from the United Kingdom; however, while excellent for countries 

where GIS data are restricted or commercialized, OpenStreetMap data in the United States, like 

the NTAD datasets, are largely derived from the United States Census Bureau MAF/TIGER 

roads. Moreover, the datasets do not follow the de facto shapefile standard for vector GIS data, 

and temporal extraction cannot be readily performed on the raw data, particularly due to the 

difficulty of creating and then processing a historical "snapshot" of the database features. Finally, 
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the crowdsourced nature of the database, much like Wikipedia, allows anyone to add or edit road 

features; consequently, this characteristic potentially allows spatiotemporal accuracies to vary 

widely across the nation. Therefore, due to geographically uncertain accuracy and possible 

implementation issues, the OpenStreetMap database was rejected in favor of the Census Bureau 

MAF/TIGER datasets for inclusion in the nationwide spatiotemporal road network database.  
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Spatiotemporal Accuracy Assessment  

 The United States Census Bureau MAF/TIGER database has traditionally been eschewed 

for its low positional accuracy. Originally, for the year 1992, features were digitized from 

1:100,000 scale maps, and were assumed (with perfect digitizing) to meet established National 

Map Accuracy standards of 50 meters. However, in preparation for the decennial Census 2000, 

the database was updated by several disparate sources, each with inherently different error 

tolerances; many of these updates used the 1992 data as a reference, ultimately exacerbating the 

original error tolerances and compromising the 50-meter accuracy specification (see Figure 3.1). 

Upon realizing the severity of the error propagation in the 2000-vintage data, the U.S. Census 

began the MAF/TIGER Accuracy Improvement Project (MTAIP) in 2002, which sought to 

reduce the positional errors plaguing the dataset (Broome and Godwin 2003). By the 2008 

 

 
 

Figure 3.1: Median Variance by TIGER Update Source for 2000 Census (Liadis 2000) 
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edition of the MAF/TIGER files, the database was declared to meet the National Standard for 

Spatial Data Accuracy (NSSDA) Circular Error 95 standard of 7.6 meters, meaning that 95% of 

coordinates were located within a 7.6-meter radius circle around the actual location. However, 

the methodologies and results of this accuracy assessment were not independently verified.  

 Therefore, a positional accuracy assessment of the 2009 TIGER/Line roads data was 

performed by Zandbergen (2011); from a sample of three moderately urbanized counties, the 

study concluded that none met the specified NSSDA standard, citing that the long tails of the  

positional error distributions exerted great influence on the final 95th percentile values 

(Zandbergen 2008). However, as with the in-house accuracy assessment performed by Census 

Bureau contractors, the ground control coordinates were only located at road intersections, not 

randomly spread across the linear features of the network, implying different accuracies for 

locations between the intersection points; furthermore, the improved MAF/TIGER dataset was 

not tested for any other pertinent measures of accuracy. In order to improve upon the analysis of 

Zandbergen and to gain a better understanding of the error limitations of MAF/TIGER dataset—

specifically the TIGER/Line streets dataset—positional accuracy assessments were performed, 

including both absolute and relative accuracies, and the datasets were also subjected to testing 

for completeness and temporal accuracy, using both local GIS data and reference aerial imagery. 

Study Area 

 The Atlanta-Sandy Springs-Marietta Metropolitan Statistical Area (Atlanta MSA) was 

chosen for quantifying the spatiotemporal accuracies of the TIGER/Line street datasets. The 

majority of the MSA exhibits a highly curvilinear road network, making GIS road datasets 

particularly susceptible to linear representational error; therefore, the Atlanta MSA typifies a 

"worst-case" scenario for minimizing positional accuracies along its linear features (see Figure 
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3.2). Furthermore, the area has experienced explosive growth throughout the past two decades, 

with much of its growth attributable to subdivisions of single-family homes; the rapid 

construction of roads to support these residential developments underscores the importance of 

temporal accuracy assessment. By providing a challenging study area for the spatiotemporal 

accuracies of GIS databases, conservative accuracy assessments can be achieved, maximizing 

the generalization of these findings to the broader MAF/TIGER dataset and not simply limiting 

the applicability of the quantitative assessments to the case of the Atlanta MSA. 

Overview 

 In order to perform the spatiotemporal accuracy assessment, TIGER/Line street data were 

downloaded from the U.S. Census Bureau (2012b) via file transfer protocol (FTP) for the 

counties of the Atlanta MSA from 2008 to 2012. These TIGER/Line files were overlaid on top of 

a USDA (2010) National Agriculture Imagery Program (NAIP) mosaic for the state of Georgia, 

 

 

Figure 3.2: Sample Road Network from the Atlanta MSA (USDA 2010) 



17 
 

enabling comparison of the GIS data with the 1-meter resolution aerial imagery. Because road 

centerlines could easily be resolved with the high-resolution mosaic, it served as the reference 

data source for accuracy assessment, and was assumed to reflect "ground truth" for the year 

2010; although small geo-referencing errors are possible when using ortho-rectified aerial 

imagery, this insubstantial source of non-systematic error would require extensive ground 

surveying to ameliorate—a process which must be conceded when working with larger 

geographic areas. This combination of GIS datasets and imagery enabled planar measurements 

of absolute positional accuracy, replicating the earlier work of Zandbergen.  

 To determine the relative positional accuracy of the TIGER/Line streets compared to 

local data, absolute positional accuracies were also computed from Georgia Department of 

Transportation (GDOT) GIS data for the Atlanta MSA, retrieved from the Georgia GIS 

Clearinghouse (2012). The GDOT GIS data were digitized from source USGS Digital 

Orthophoto Quarter Quadrangles (DOQQs) at a scale of 1:12000, but had no official statement of 

positional accuracy; furthermore, the data were not updated annually, like the TIGER/Line data, 

but sporadically for each county in the Atlanta MSA (see Figure 3.3). In keeping with the 

temporal extent of the study, GDOT road datasets that were last updated before 2008 were 

excluded from the analysis; although several counties with high growth rates have been 

excluded, the remaining counties provided a representative cross-section of urbanized areas and 

county growth rates.  

 For each temporal period, relative completeness was discovered using a process of buffer 

thresholding: the buffer around the control lines (the base GDOT network dataset, assumed to be 

more complete) was expanded until 95 percent of the length of the TIGER/Line dataset fell 

within the buffer zone. The buffer radius, therefore, represented the actual positional x-
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displacement error throughout the linear dataset, yielding a much more useful assessment that 

revealed not just the accuracy of sample points, but the relative accuracy of the entire dataset. 

Finally, in order to determine relative temporal accuracy, both TIGER and GDOT data sources 

from different years were compared to the 2010 NAIP imagery, enabling evaluation of temporal 

mismatch for both datasets.  

 This combination of data allowed for three questions to be answered: whether the 

TIGER/Line positional accuracy met the NSSDA standard, whether the local GDOT roads are 

more accurate or complete than the national TIGER/Line dataset, and finally, whether the 

temporal accuracy is greater for GDOT or TIGER/Line datasets. In the larger scheme of road 

change detection, the accuracy of any descriptive road change statistic is largely dependent 

 

 
 

Figure 3.3: GIS Data Availability for Georgia Department of Transportation 
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upon an accurate conceptualization of the input data accuracy; given that TIGER/Line data have 

not yet been explicitly used for change detection, it is important to understand its limitations. 

Positional Accuracy  

 In order to perform the absolute accuracy assessments, a set of sample points was 

randomly distributed along the length of the roads and stratified by GDOT county update year. 

Each of the five county groupings received thirty random point samples, resulting in one hundred 

fifty total point samples for determining positional accuracies (see Figure 3.4). Each of these 

sample points was then compared to the reference NAIP mosaic using the measurement tool in 

ArcGIS, resulting in an x-displacement value measured perpendicular to the tangent line of the 

nearest road. From this point of tangency, another measurement was recorded to the nearest 

 

 
 

Figure 3.4: Sample Locations for Positional Accuracy Assessment 



20 
 

GDOT road, producing paired x-displacement observations for both TIGER and GDOT streets. 

Because the sampling was stratified by GDOT update year—the limiting factor in comparative 

analysis—the TIGER/Line data could be compared directly to GDOT data of the same vintage. 

 However, due to the relatively low sample size per year, the displacement measurements 

were combined across the five-year period, resulting in one hundred fifty observations for both 

datasets. From this list of paired error values for each sample point, a histogram was constructed 

to demonstrate the relationships between the national TIGER/Line data and the local GDOT 

data. The graph in Figure 3.5 reflects the expectation of greater accuracy for the local data; while 

the TIGER/Line distribution is relatively flat, the GDOT distribution has a pronounced peak at a 

1m displacement, indicating that more of the locally digitized streets fell within a one meter 

tolerance of the NAIP road centerline—the same as the resolution of the imagery. Conversely, 

between four and ten meters, TIGER/Line data have a higher error frequency; additionally, as 

 

 
 

Figure 3.5: Comparative Displacement Error Distributions, Accuracies Truncated at 10m 

 

0

10

20

30

40

50

60

0 2 4 6 8 10 12

F
re

q
u
e
n
c
y

Displacement (in meters)

X-Displacements from Roads in 1m NAIP Imagery

TIGER

GDOT



21 
 

Zandbergen (2011) notes, the TIGER streets are especially prone to outliers due to their  

previously erratic and flagrant feature updates. When including the two outliers from the 150-

point error sample and assuming a normal error distribution, one can easily see that the positional 

reliability of the TIGER/Line dataset is highly dependent on which outliers are sampled, 

especially using metrics such as the NSSDA 95th percentile method (Figure 3.6). However, 

despite the long tail of the TIGER/Line error distribution, the overall 95th percentile statistic was 

found to just meet the NSSDA standard of 7.6 meters (Table 3.1). The findings contradict the 

independent Zandbergen (2011) assessment, yet support the U.S. Census Bureau evaluation of 

the TIGER/Line positional accuracy; furthermore, the distribution indicates that the Atlanta 

MSA is a good representative sample of the national dataset as a whole. Therefore, although the 

sample size may not reveal outlier specificity as well as expected, we may still conclude, at a 

cursory glance, that the TIGER/Line dataset may be deemed of sufficient positional accuracy for 

 

 
 

Figure 3.6: Mirrored Displacement Error Distributions 
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Table 3.1: Circular Accuracy Percentiles for Displacement Error Distributions 

 

Percentile GDOT TIGER 

99.9
th

 9.85 120.95 

99
th

 8.51 22.75 

95
th

 4.55 7.55 

 

road change detection. Furthermore, because a liberal sample retained the expected population 

accuracy, it is geographically stable enough to elicit comparisons in accuracies across the nation.  

Completeness Accuracy      

 The relative completeness accuracy assessment operated upon the assumption that the 

extent of the local GDOT streets was more accurate than the TIGER/Line streets, given that local 

knowledge should better inform accurate road locations (Chen, Knoblock, and Shahabi 2006). 

First, to make the datasets readily comparable, the TIGER streets were preprocessed to remove 

features that were not strictly roads; because the GDOT would only be concerned about 

including roads in their dataset, all inapplicable MAF/TIGER Feature Class Codes were 

automatically removed from the attribute tables (Table 3.2). Once both datasets represented the  

same informational classes, the TIGER/Line dataset was evaluated for both errors of omission 

(type II error) and commission (type I error).  

 To determine errors of omission, a relative completeness accuracy assessment was 

performed using the concept of epsilon bands (Perkal 1966), in which the TIGER/Line dataset 

was buffered with its inherent error; in this case, the positional error buffer was set to 25 meters, 

a value slightly above the 99th percentile of the TIGER/Line error distribution—this offset 

accounted for the aforementioned errors in rectification. The overall completeness was calculated 

as the GDOT length intersecting the TIGER/Line buffer divided by the total GDOT length, as 

shown in Table 3.3 (Goodchild and Hunter 1997). By providing a measure of completeness that  
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Table 3.2: MAF/TIGER Feature Class Codes Removed for Preprocessing 

 

MTFCC Code Description 

S1500 Vehicular Trail 

S1710 Walkway/Pedestrian Trail 

S1720 Stairway 

S1740 Private Road for Service Vehicles 

S1750 Internal U.S. Census Bureau Use 

S1780 Parking Lot Road 

S1820 Bike Path or Trail 

S1830 Bridle Path 

S2000 Road Median 

 

 

operates independently of positional error, the buffer intersection method yielded a much more 

useful completeness metric for comparing the two road datasets.  

 To determine errors of commission, the buffer intersection process was reversed; the 

GDOT dataset was buffered by 10 meters, representing the 100th percentile of the sample error 

distribution. Next, the total TIGER/Line length was divided by the TIGER/Line length 

intersecting the GDOT buffer, and 1 was subtracted from the quotient; this yielded a commission 

error in terms of percent increase in road length, with the GDOT data serving as the reference. 

However, the errors of commission appeared unacceptable, with more than 20% of the total 

TIGER/Line length perceived as erroneous, as shown in Table 3.4. Upon investigation of the 

areas of the TIGER/Line dataset deemed to be superfluous using the 2010 aerial imagery (for 

2008-2010) and Google Maps (for 2010-2012), a considerable percentage was incorrectly 

selected; in order to characterize this problem, it was helpful to distinguish between two different 

types of commission error: "true" commission error and "false" commission error, or "meta-

error." An example of a true commission error would be a road in the GIS dataset where none 

should exist; a few instances of true error were observed in the TIGER/Line dataset. The 

remaining false commission errors encompassed attribute, positional, and temporal errors, all 
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Table 3.3: Errors of Omission by Year, in Kilometers 

 

Year Intersection GDOT Omission Error TIGER Completeness 

2008 7254 7575 4.24% 95.76% 

2009 7226 7966 9.29% 90.71% 

2010 4575 4801 4.71% 95.29% 

2011 4680 4850 3.51% 96.49% 

2012 9943 10368 4.10% 95.90% 

Total 33678 35560 5.29% 94.71% 

 

 

Table 3.4: Errors of Commission by Year, in Kilometers 

 

Year Intersection TIGER Commission Error 

2008 7135 9591 34.42% 

2009 7104 8500 19.65% 

2010 4406 5397 22.49% 

2011 4568 6697 46.61% 

2012 9652 11048 14.46% 

Total 32865 41233 25.46% 

 

of which may easily masquerade as commission error in a buffer intersection-based GIS analysis. 

Attribute errors occurred in instances where driveways or service roads were incorrectly 

characterized as local roads in the original TIGER/Line files; therefore, the automated 

preprocessing method was not able to remove these roads from the analysis. Because these roads 

cannot be easily corrected across the entire dataset, they were considered as part of the "true" 

commission error; however, given that these attribute errors slightly decrease over time, the 

accuracies for annual percent change would be relatively unaffected. The latter two types of 

positional and temporal error unequivocally distorted the commission error, although, and were 

removed from the final commission error estimates by sampling the error distributions from 

2008 to 2010, given that temporal accuracies could not be verified for 2011 and 2012 using the 

2010 imagery. A stratified random sampling of these three years yielded 90 sample points of the  

commission errors; each of these samples was characterized by either true or false error, and the  
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percentage of false error was removed from the original commission error estimates (Table 3.5). 

The average false error was applied to the years 2011 and 2012 to facilitate interpretation of the 

dataset as a whole; the total commission error value significantly decreased to around 10 percent. 

Higher values still remain for some years; however, as previously stated, the majority of the 

modified errors were due to attribute classification errors, not strictly commission errors.  

Temporal Accuracy 

 Due to the significant influence of temporal lag on the errors of commission, the 

TIGER/Line and GDOT datasets were both tested for temporal accuracy; the inaccuracy of the 

initial commission estimates was sufficient cause to question the use of the GDOT dataset as an 

accurate temporal reference for assessing the quality of the TIGER/Line database. For both road 

representations, there is a distinct possibility that certain errors of omission may not be caught 

until the next release of the dataset, resulting in a dataset exhibiting temporal lag; it may be 

extremely difficult for data providers to ensure that their data are spatiotemporally accurate at the 

moment of distribution, especially for rapidly growing areas such as the Atlanta MSA (Epstein, 

Payne, and Kramer 2002). Additionally, the phenomenon of spatiotemporal mismatch in national 

census data has already been documented in the similar Canadian context (Schuurman, Grund, 

Hayes, and Dragicevic 2006). To address these concerns and determine whether temporal errors 

are more prevalent in GDOT data, the previous 90-point stratified error sample was re-examined, 

eliminating positional error from consideration and specifically examining temporal errors. Once 

the percentage of commission error due to temporal lag was verified, this mismatch value was 

multiplied by the total commissioned length for the TIGER/Line dataset (Table 3.6). Likewise, 

the procedure was reversed for the GDOT dataset, testing it against the TIGER/Line dataset with 

the assumption of greater temporal accuracy (Table 3.7). After multiplying by the total 

commissioned length, it was evident that the most meta-error in commission occurred for the 
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Table 3.5: Errors of Commission, Corrected for Positional Error and Temporal Lag 

 

Year Initial Error Meta-Error Modified Error 

2008 34.42% 60.00% 13.77% 

2009 19.65% 70.00% 5.90% 

2010 22.49% 46.67% 12.00% 

2011 46.61% 58.89% 19.16% 

2012 14.46% 58.89% 5.95% 

Total 25.46% 58.89% 10.47% 

 

Table 3.6: Temporal Error in TIGER Commissioned Length, in Kilometers 

Year Mismatch Commissioned Length Temporal Error 

2008 33.33% 2456 819 

2009 50.00% 1396 698 

2010 23.33% 991 231 

Total 4843 1748 

 

 

Table 3.7: Temporal Error in GDOT Commissioned Length, in Kilometers 

 

Year Mismatch Commissioned Length Temporal Error 

2008 23.33% 321 75 

2009 53.33% 740 395 

2010 26.67% 226 60 

Total 1287 530 

 

 

TIGER/Line dataset, implying that there were many more instances of temporal mismatch in the 

GDOT dataset. Therefore, although the percentages of mismatch were quite similar, the effects 

were multiplied by the sheer volume of GDOT data that had not been updated to the improved 

TIGER/Line temporal accuracy, an unexpected finding since the GDOT data exhibited 

significantly better measures of positional accuracy. 

Conclusion 

 Despite the lower positional accuracy and high errors of commission endemic to the 

TIGER/Line dataset, it is still highly suitable for usage in road network change detection. The 

95th percentile of positional error lies at a 7.6 meter radial tolerance (less than the width of two 
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interstate lanes) and the 99th percentile rests at a 22.75 meter tolerance (less than a city block). 

Although the attribute-based commission errors persist through time, later versions of the 

TIGER/Line dataset have progressively deleted some of the offending driveways and service 

roads from the dataset, such that inter-annual percentage changes would only slightly be affected 

by attribute errors. The measures of completeness for the TIGER/Line dataset remain relatively 

stable, and approach 95 percent when averaged across the five year temporal window, indicating 

that very little local dataset specificity would be lost when using the data at a national scope. 

Furthermore, the GDOT dataset appears to be no more temporally accurate than the TIGER/Line 

dataset, suggesting that no temporal lag would be forgone when using the local GDOT dataset. 

Therefore, the benefits of continuing with the analysis with a moderately flawed data source far 

outweigh the costs of not pursuing the idea of a national road network change database.  
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Database Creation and Change Detection 

 In order to construct the road change database, TIGER/Line data for the entire United 

States from 2008 to 2012 were downloaded via FTP from the U.S. Census Bureau, as described 

in the previous section on spatiotemporal accuracy. However, due to the vast volume of data and 

hierarchical nature of the FTP storage server, manual acquisition of the data could take several 

days. Complete road coverage was only available for download at the county level; therefore, 

one would have to manually right click and download each county individually for each of the 

five years, executing a total of 15,700 downloads. To assist in this process, an GNU-licensed 

open-source software called Wget was utilized to batch download all of the necessary files from 

the U.S. Census Bureau FTP site; the software functions as both a command line-based 

download manager and a web crawler that can navigate through various internet address 

hierarchies. Given that Wget allows recursive downloading and the usage of text wildcards for 

searching, it was ideal for drilling down through multiple folders to extract the TIGER/Line files. 

Once the files were downloaded in .zip format, 7-Zip software was used to batch process the 

extraction of the 15,700 zip files and place them in folders corresponding to their creation year. 

 After saving the county shapefiles (the de facto standard file type for vector GIS data) 

locally in separate temporal folders, a prototypical "snapshot" spatiotemporal database was 

produced, in which each geographic area has different data files corresponding to discrete time 

periods (Langran 1992). However, this form of spatiotemporal representation has two key 

disadvantages: it does not explicitly demonstrate dynamic changes over time and duplicates 

elements that have not changed over time, exacerbating data storage problems (Pelekis et al. 

2004). The conversion of this extensive static database into a dynamic database requires the 

accurate identification of changes between each of the annual time "snapshots," ultimately 
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creating a set of four change files (2008-2009, 2009-2010, 2010-2011, and 2011-2012) that 

capture new additions to the road network (Armenakis 1992). While this process appears to be 

quite straightforward and simple to implement, the inherent positional error of the TIGER/Line 

database, along with the fact that TIGER road attributes have become increasingly more 

accurate, has introduced significant difficulties for the static to dynamic conversion process.  

 In order to perform the conversion for all counties in the United States, an analytical 

geoprocessing framework was created with Python scripts to operate in the ESRI ArcMap 

environment, a common software package for the analysis of spatially embedded processes. 

Because the scripts interface seamlessly with the Windows operating system and the ArcMap 

graphical user interface (GUI), the scripts can interactively manage input and output files in the 

database, automating a tedious workflow that could otherwise take months for large study areas. 

The Python operating system (os) module was utilized to simplify data entry and automatically 

organize the outputs of various scripting and processing tasks, while keeping the source data in 

logical folders for easy retrieval. By default, relevant data are accessed using a predefined file 

storage hierarchy; the decision to use a static rather than dynamic filing system was made to 

optimize processing of the raw TIGER/Line data, and ensured that batched outputs of analyses 

had the same naming conventions and structural relationships as the original U.S. Census Bureau 

files. Nevertheless, both the scripts and the database are portable and operate on relative 

pathnames, so that the input paths for the scripts automatically default to the appropriate level of 

the database in the computer file system. Examples of the database hierarchy, both in its pristine 

state and after several processes have been executed, can be viewed in Figure 3.7.  

 The data itself, links to the raw Python scripts, and all the intermediate output files are 

stored in nested folders within the root folder. The raw TIGER/Line road data for each year may 
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Figure 3.7: Simplified Database Hierarchy Before and After Process Execution 
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be found in the folder for the respective year. The Tracts folder contains the TIGER/Line tract 

boundary file for the 2010 census and a raw data table with geographic identifiers (in dBASE 

format—writable by OpenOffice) for storing socioeconomic variables of interest; note that the 

Tracts folder is a placeholder that may be expanded to State, County, MSA, etc., as appropriate 

for the required analyses. An ArcMap "toolbox," which facilitates information exchange between 

the raw python scripts, the underlying database, and the software graphical user interface, is 

contained in the root directory of the database, as were all of the scripts used to process the data; 

the packaging of these three elements within a toolbox enables sharing of the final product with 

other researchers, and ensures the integrity of the file system for future distribution. 

 The heart of the programming framework is the toolbox itself (TIGER Roads 

Analysis.tbx—refer to Figure 3.8), which contains sixteen Python scripts to enable automated 

geoprocessing (using the arcpy module to interface with ArcGIS) and workspace management 

(using the os module to interface with the file system). The scripts were separated into toolsets at 

the levels of individual road segment, tract, and county; the first group handles data 

preprocessing and change detection, while the following two groupings assist with the 

aggregation of road network change to the county and tract level, respectively. The separation of 

tasks into multiple scripts enabled robust performance of the toolbox in the face of a large 

volume of data (all of the raw U.S. Census TIGER/Line roads from 2008 to 2012 and tract-level 

socioeconomic data from the American Community Survey, along with several intermediate road 

datasets). The script output can exhaust storage capacities of between five hundred gigabytes and 

one terabyte, depending on the complexity and scale of the nationwide road network analysis; 

therefore, optimization of toolbox performance was not only desirable, but a necessity. Because 

the bulk of analytical work for this research was performed using these sixteen Python scripts, 
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their structure and function will be reviewed in the following sections, and their contributions to 

the overall change detection and summarization process will be discussed in detail.  

Individual Road Analysis Tools  

 The first of the Python script "tools" in the All Individual Roads toolset (A1. Convert 

Edges to Roads) preprocesses legacy TIGER/Line edge files from 2008 and 2009 to remove 

railroads and other linear features, using a structured query language (SQL) select statement to 

extract roads (see Figure 3.9 for GUI, Figure A.1 for raw script, and Figure A.2 for outputs). The 

user inputs the temporary "_edges" workspace, and the script saves the processed data to the 

same folder naming scheme as the existing data from 2010 through 2012, unifying the raw data.  

 The second tool (A2. Preprocess Feature Class Codes) removes the MAF/TIGER Feature 

Class Codes previously mentioned in Table 3.2 to erase service roads, trails, and other pathways 

 

 
 

Figure 3.8: ArcGIS Toolbox for Change Detection and Summary Shapefile Creation 
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from all counties within each year, ensuring that the remaining attribute types are standardized 

and meaningful. Rather than using a script directly for user interfacing, this tool uses a model 

created through ArcGIS ModelBuilder, a visual programming language that produces scripts 

from a series of interconnected geoprocessing modules (see Figure 3.10). Generally speaking, 

scripts created through ModelBuilder excel at replacing the functions of the Python arcpy 

module (which accesses geoprocessing scripts bundled with ArcGIS software), yet have limited 

functionality for manipulating database file names (the role of the Python os module) or handling 

processing errors without failure of the script. Therefore, for this toolbox, the more robust scripts 

are used for routines that consistently access and rename files, and for those that process large 

quantities of data—without error handling, these scripts could silently fail even after several 

hours or days of runtime! 

 The third step in the All Individual Roads toolset, and the most important script of all, 

(A3. Find New Roads) generates shapefiles of new roads from "before" and "after" time periods. 

The graphical user interface may be found in Figure 3.11, where the user picks the starting and 

ending years of analysis (for example, to find new road additions between 2008 and 2012) and 

the geographic area of concern (either the entire U.S. or by an individual state). Effectively, for 

 

 
 

Figure 3.9: Graphical User Interface for Script A1 
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Figure 3.10: Graphical User Interface and Visual Programming for Model A2 

 

 

 
 

Figure 3.11: Graphical User Interface for Script A3 
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each county within the area of interest, the first year (2008) is buffered by a specified error 

tolerance. Here a value of 25 meters was used, in correspondence with the 99th percentile radial 

error of the TIGER dataset combined with potential errors in control imagery ortho-rectification. 

Next, the error buffer around these 2008 roads is erased from the last year's (2012) roads, 

yielding the parts of the road network unique to the 2012 roads dataset (see Figure 3.12). After 

completing the Find New Roads script, the joined output files are placed in the TIGERoutput 

folder, each uniquely identified by the state, from and to dates, and the buffer tolerance used.  

 The Find New Roads analysis would seem to be fairly straightforward, but the datasets 

are so large that they exceed the memory limitations presented by ArcMap and exacerbate the 

pre-existing memory leaks in many of the geoprocessing tools. Therefore, an entire state of 

 

  
 

Figure 3.12: Vector GIS Representation of Find New Roads Scripting Logic 
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roads cannot be batch processed at the same time, and the arcpy Python geoprocessing module 

generates an "Error 999999", or simply fails with a runtime error while executing. To partially 

overcome this memory management issue, the Find New Roads tool was split into three different 

hierarchical scripts, where the highest-level script (for the United States) imports the state-level 

script, and the state-level script, in turn, imports the county-level script. The hierarchical 

framework allows the lower-level scripts to terminate once their jobs are finished, thereby 

clearing up more system memory and enabling the script to run longer without hitting an 

exception or runtime error. For this implementation, the national-level script translates the state 

abbreviation into a two-digit FIPS code to dynamically search for the right TIGER/Line files in 

the right folders (see Figure A.3); the state-level script manages the output folders for all the 

buffer and erase (see Figure A.4) and merge operations (joining the counties together for a state-

level output file—see Figure A.5); and the county-level script performs the buffer and erase 

geoprocessing operations for each individual county road file, then terminates (see Figure A.6). 

Although this overall process is structurally complicated—which provides greater incentive for 

its automation using Python scripting—the line-by-line output of the script has been designed to 

be as user-friendly as possible, notifying the analyst of the active input and output workspaces 

for each operation, in real-time, and updating the view with the names of the finished output files 

as they are created. Because the merging process is much faster than the buffer and erase 

operations, and only produces one output, the file name was omitted for clarity (see Figure A.7). 

 The fourth and fifth tools in the All Individual Roads toolset consolidate the results of the 

county-level Find New Roads tool into a format where they can be more easily analyzed at the 

state level; although the new roads have been merged into a state-level shapefile, the raw 

TIGER/Line data and buffers have not yet been reconstituted from county shapefiles to state 
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shapefiles. The fourth tool (A4. Merge County Roads into States—see Figure 3.13) produces a 

state-level shapefile of the raw road data for the specified area of interest, while the fifth tool 

(A5. Merge County Buffers into States—see Figure 3.14) compiles the county-level buffers. The 

roads and buffers are extracted by the specified year and area of interest (and in the case of the 

buffers, error tolerance), by parsing the informational file names previously created by the Find 

New Roads script (Figures A.8 and A.9). Reproducing the original buffers at the state level 

simplifies the process for discovering new roads at the state level; in order to continue from this 

baseline, one would simply execute the erase command manually in ArcMap between the raw 

 

 
 

Figure 3.13: Graphical User Interface for Script A4 

 

 

 
 

Figure 3.14: Graphical User Interface for Script A5 
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new roads data and the buffered base year data, yielding new roads by state. Rather than having 

to identify TIGER/Line files manually by FIPS code, states are easily identified by abbreviation. 

 The final tool in the toolset for individual road analysis (A6. Clip Roads with State 

Buffers—see Figure 3.15) was developed to fix aforementioned TIGER/Line attribute errors in 

which driveways and service roads were misclassified as local roads. Due to these errors, a 

persistent decrease in small rural roads was observed through time as erroneous "public" roads 

were progressively being deleted from the annual datasets; although some of these problem road 

segments were expected to be removed through the Preprocess Feature Class Codes script, the 

code obviously could not differentiate between correct and incorrect attribute value assignments. 

This substantial source of error, then, was corrected a second time through this script, which 

clipped all of the earliest dataset year extents to the error buffer around the latest year's dataset. 

With the assumptions that human deletions of incorrectly attributed data would be more accurate 

than eschewing  the latest attribute revisions, and that the loss in total road length due to earlier 

positional errors outside the buffer zone was negligible, it was prudent to systematically obviate 

this chief source of length inflation via Python scripting (Figure A.10). 

 

 

Figure 3.15: Graphical User Interface for Script A6 
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Aggregate Road Analysis Tools 

 The remaining two toolsets for county and tract analyses are duplicated given that the 

same five generalized steps are required to spatially summarize the individual road length data. 

Due to these workflow similarities, the only differences between the county and tract scripts are 

the spatial boundary files; therefore, only the county-level scripts will be addressed. The first of 

these (C1. Intersect Roads with Counties—see Figure 3.16) takes the year as input, and spatially 

intersects each of the state new road shapefiles with the county boundary file, essentially adding 

attribute fields for the county name and state on each of the new road segments. The second 

script (C2. Add Road Length Field—see Figure 3.17) adds another attribute field to store the 

segment length, while the third script (C3. Calculate Road Length—see Figure 3.18) fills in the 

length in meters for each road segment, ultimately producing individual length data for every 

road in the entire nation from 2008 to 2012. The fourth script (C4. Aggregate Length by 

County—see Figure 3.19) creates a table containing total new road segment length for every 

county and equivalent jurisdiction in the United States. The final script (C5. Join Length to 

County Boundaries—see Figure 3.20 for GUI,  Figure A.11 for county-level script, and Figure 

A.12 for tract-level script) attaches this length summary table to the aggregation unit boundaries. 

The final results, after running all sixteen scripts in the TIGER Roads Analysis toolbox, were 

national shapefiles (of both counties and tracts) that were attributed with total new road lengths. 

In order to extract statistics for Metropolitan Statistical Areas, the MSA boundaries were 

manually intersected with the national new county road length shapefile, yielding urban counties.  

Then, just as previously indicated, summary statistics were created for total road length by MSA,  

and the statistics table was joined to the original MSA boundary file. In this manner, new road  
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Figure 3.16: Graphical User Interface and Visual Programming for Model C1 

 

 

 
 

Figure 3.17: Visual Programming for Model C2 
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length statistics were ultimately produced at the MSA, county, and tract levels of aggregation, 

which were then extensively analyzed through the following methodologies. 

 

 
 

Figure 3.18: Visual Programming for Model C3 

 

 

 
 

Figure 3.19: Visual Programming for Model C4 
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Figure 3.20: Graphical User Interface for Script C5   
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Exploratory Data Analysis   

 Once road network change shapefiles were produced for each temporal interval, 

descriptive statistics were compiled for each static annual dataset as well, enabling normalization 

of the new road lengths by the existing lengths at the beginning of each change detection period.  

Percentage increases in road network length were then calculated for the four annual intervals, as 

well as between 2008 and 2012, enabling identification of significant additions to the network on 

both annual and five-year bases. In order to determine whether certain MSAs had a wider range 

of road addition variability (for example, in response to fluctuating low-density housing supply 

or macroeconomic recession), the range of percentage change across the four annual temporal 

intervals was also computed. However, the spatial variability of temporal accuracy for the 

TIGER/Line dataset elicited concern, given that in some cases the Census Bureau relies on third-

party information from disparate sources to prevent workload duplication; therefore, annual 

change statistics were only reported at the MSA level, where differences in update completeness 

could be averaged out and minimized. These temporal concerns were indistinguishable when 

temporally aggregating to the entire five-year interval, though, enabling production of 

spatiotemporally aggregated road network growth totals for the MSA, county, and tract levels. 

Spatial Autocorrelation 

 According to the colloquial Tobler's First Law of Geography, which states that 

"everything is related to everything else, but near things are more related than distant things," we 

should expect spatial dependency, or clustering of values, to occur across the nationwide 

measurements of road network change (Tobler 1970). Therefore, spatial autocorrelation 

measures were implemented in ArcGIS to examine whether certain counties or tracts of high 

road network growth tend to be adjacent to other high percentage change values (and vice versa); 
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in theory, autocorrelation should be pervasive across the country, given that suburban areas in 

general, and agglomerations in the southern and southwestern United States in particular, would 

be expected to exhibit larger percentage increases in total road length. However, although the 

Moran's I statistic for spatial autocorrelation (which calculates spatial autocorrelation using a 

neighborhood of contiguous polygons) should likely be positive, indicating clustering of similar 

values (Moran 1950), this global measure of spatial autocorrelation assumes pattern 

homogeneity: a condition that would likely be unsatisfied due to the organic distribution of 

growth in a road network with human actors. Therefore, individual clusters were also examined 

using the local decomposition of the Moran's I statistic, also known as "local indicators of spatial 

association," or LISA (Anselin 1995); mapping the local Moran's I values by county enabled 

identification of road network growth clusters and visualizations of their size and magnitude. 

Correlation Matrices 

 The next data analysis initiative was to determine whether selected socioeconomic 

variables should be included in an areal regression model of road network change. Exploratory 

correlation analyses were restricted to metropolitan areas to target suburban road growth, and the 

overall five-year percent change data were used at all three aggregation scales to reduce the 

impact of temporal reporting inconsistencies on the variable association results. However, 

because the road change data still needed to be aggregated to a particular zone structure, the 

correlation coefficients were subject to the modifiable areal unit problem, which states that the 

level of aggregation, as well as the zonal boundary structure, will affect the results of spatial 

analyses (Openshaw 1984). To partially address this issue, the different aggregation schemes can 

each be utilized and compared wherever practical: for example, some variables were only 

available at the metropolitan area level, while others were available for the census tract level. 
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 The socioeconomic variables hypothesized to be associated with road network growth 

were mean household income, mean age, population density, percentage population change from 

2007 to 2011 (U.S. Census Bureau 2012c), racial/ethnic background, and census divisions 

(Figure 3.21). Mean household income data were derived from the U.S. Census Bureau (2012a) 

American Community Survey 2007-2011 five-year estimates, which can be found at MSA, 

county, and tract aggregation levels. Age and race/ethnicity data were retrieved from the 2010 

Census Bureau MSA and county levels. The correlation coefficients for population change and  

 

 

Figure 3.21: U.S. Census Regions and Divisions (United States Department of Energy 2000) 
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mean household income were expected to be positive, while negative coefficients were 

hypothesized for age, given that construction of new neighborhoods in economically advantaged 

neighborhoods tend to cater and market toward younger populations. Population density was not 

easily predictable due to its varying influence across aggregation levels; in general, larger zones 

such as MSAs might exhibit as a positive influence, since density could act as a proxy for land 

value and desirability, while for a small unit such as a census tract, high population density 

would likely mean that no developable land would be available in the tract. For the categories of 

race and ethnicity, positive coefficients were expected for Asian/Pacific Islander and White 

races, along with Hispanic backgrounds, and negative coefficients were predicted for American 

Indian and Black categories; the composition of the "Other" category was unknown. The 

influence of the regional divisions was simple to predict for certain regions, yet more difficult for 

others; in general, due to the protracted migration of economic activity away from the "rust belt" 

and toward the "sun belt," one might expect positive correlations for the divisions in the greater 

South region, as well as growth in the Mountain division from its more southerly states. 

Conversely, the economic stagnation of the state of California might cause the Pacific division to 

correlate negatively with road network expansion, while the Midwest and Northeast regions are 

not contemporarily known as being large centers of population growth. The correlation strengths 

and directions of these twenty potential independent variables, as a whole, should inform future 

road network models, enabling identification of pertinent explanatory factors for expansion. 

Multiple Linear Regression 

 After producing Pearson product-moment correlation matrices between the twenty 

potential independent variables and the dependent variable of percentage road network change, 

coefficient values higher than .8 between independent variables were flagged as potential sources 
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of regression-confounding multicollinearity (see Appendix B). For each of these highly 

correlated pairs, the independent variable exhibiting the strongest correlation with percentage 

length change was retained for model inclusion, while the weaker independent variable was 

dropped from the analysis. This method proved efficacious for eliminating multicollinearity, as 

each of the independent variables within each aggregation level exhibited variance inflation 

factors (VIFs) of less than five, a commonly selected threshold for problematic collinearity 

between predictors. For each of the model aggregation levels (MSA, county, and tract), the 

smaller Other racial category was dropped due to strong correlation with Hispanic background. 

Reference variables were also removed for both regional (West North Central) and racial (White) 

categories: because the racial population percentages added up to nearly one hundred percent, 

these variables operated much like a complementary set of dummy-coded variables. Model 

heteroskedasticity was evaluated using Koenker's studentized Breusch-Pagan statistic; significant 

heteroskedasticity was persistent across each aggregation level (Breusch-Pagan 1979; Koenker 

1981). In these situations, ordinary least squares (OLS) regression no longer holds the property 

of best linear unbiased estimator; therefore, robust standard errors, t-statistics, and probability 

values were reported for all models. Statistically insignificant variables were retained for the 

grouped racial/ethnic population percentages and regional dummy variables in order to facilitate 

comparisons with the reference categories, while other insignificant independent variables were 

simply dropped from the models. Final models for each level maximized adjusted R
2
 values. 

Geographically Weighted Regression 

 Although the expected presence of spatial autocorrelation, largely due to existing clusters 

of urbanization, was somewhat alleviated by restricting the multiple regression models to MSAs, 

spatial clustering was not explicitly considered for the previous three models. The technique of 

geographically weighted regression (GWR) performs an individual linear regression for each 
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data record, with the dependent variables restricted to a particular spatial neighborhood subset. 

Therefore, GWR accounts for autocorrelation-induced heteroskedasticity in a regression model, 

producing different regression coefficients, standard errors, and R
2
 values in each neighborhood; 

however, global goodness-of-fit measures are also presented in the form of both global adjusted 

R
2
 and the corrected Akaike Information Criterion (AICc), enabling comparison of GWR results 

with traditional linear regression models (Sugiura 1978).  

 In order to assess the efficacy of geographically weighted modeling on road network 

change, a base model was executed at the county aggregation level for the entire United States, 

not simply those counties included in an MSA; this distinction was necessary given that GWR 

cannot be performed adequately with non-contiguous polygons. Because spatial autocorrelation 

indices were expected to be greater with county-level than with tract-level data, only a county 

GWR model was utilized. The spatial neighborhood search kernel was defined by an AICc 

minimization function in ArcGIS that identified an optimal fixed number of neighboring 

counties, while model specification was more difficult due to the degrees of freedom lost to the 

GWR modeling process. The increased sensitivity of the model to the number of variables 

required paring the original model down to three explanatory fields: mean income, percent 

population change, percent Asian/Pacific Islander. Given that the models were substantively 

different, their comparative explanatory power was evaluated using measures of R
2
 and AICc. 
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CHAPTER 4 

RESULTS 

Descriptive Statistics 

 Although the accuracy assessment, database creation, and Python geoprocessing may be 

considered results of this investigation, these methodological steps were ultimately preconditions 

for the expository component of the research: presenting the database and some of its potential 

applications. While a database itself may be considered a contribution to knowledge, its true 

value may only be discovered by harnessing and synthesizing the data to create new 

perspectives; with this frame of reference, even descriptive statistics on temporal road change 

can be perceived as novel. For example, through summarizing the road change dataset, it was 

discovered that 289,021 kilometers of new roadway have been constructed in the United States 

between 2008 and 2012, with each state on average experiencing an increase of 2.7 percent. Four 

states (North Dakota: 0.43%; Iowa: 0.86%; Kansas: 0.90%; and Nebraska: 0.92%) and the 

District of Columbia (0.64%) experienced a growth rate of below one percent, while four states 

in the contiguous United States (Delaware: 5.49%; Connecticut: 6.01%; Maine: 6.18%; and 

Georgia: 6.70%) experienced a growth rate of above five percent (Figure 4.1). As a whole, road 

network increases were shown to be highest for Alaska and Hawaii; however, upon further 

inspection of the 2008 TIGER/Line road networks, positional accuracies were extremely low. 

Due to the methodologies used in producing the percent road change statistics, positionally 

inaccurate data (as determined by the most current 2012 vintage shapefiles) were removed from 

the base 2008 length calculations, thereby inflating the normalized change ratios. Therefore, only 

road change values from the contiguous United States will be presented in this chapter.  
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 At the MSA level, the Myrtle Beach-North Myrtle Beach-Conway, South Carolina MSA 

was the fastest-growing metropolitan area in the conterminous United States, followed by Lake 

Havasu City-Kingman, Arizona and Gainesville, Georgia (Table 4.1). The geographic 

distributions of metropolitan growth can be observed in Figure 4.2, where both percentage road 

change and new road density may be compared. Although both statistics serve to normalize the 

raw length of road change, they each have different strengths: percentage road change favors 

areas with less existing road mileage (where small additions to length may be drastic when 

compared to baseline data), while new road density emphasizes areas that may have a great deal 

of existing roads, yet have still experienced substantial growth in terms of added network length.    

 

 
 

Figure 4.1: Percent Increase in Road Network Length by State 
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Table 4.1: Top Twenty-Five MSAs for Road Network Growth in the United States 

Metropolitan Statistical Area Percentage Road Increase 

Myrtle Beach-North Myrtle Beach-Conway, SC 20.57 

Lake Havasu City-Kingman, AZ 16.17 

Gainesville, GA 14.34 

St. George, UT 13.86 

Atlanta-Sandy Springs-Marietta, GA 11.67 

Dover, DE 11.19 

Orlando-Kissimmee-Sanford, FL 10.65 

McAllen-Edinburg-Mission, TX 10.57 

Savannah, GA 10.08 

Bridgeport-Stamford-Norwalk, CT 9.33 

Jacksonville, NC 9.29 

Pensacola-Ferry Pass-Brent, FL 8.75 

Bangor, ME 8.74 

Olympia, WA 8.26 

Brunswick, GA 8.24 

Athens-Clarke County, GA 8.12 

Austin-Round Rock-San Marcos, TX 8.01 

Dalton, GA 7.65 

Warner Robins, GA 7.59 

Houston-Sugar Land-Baytown, TX 7.59 

Naples-Marco Island, FL 7.26 

San Jose-Sunnyvale-Santa Clara, CA 7.15 

Burlington, NC 7.13 

Las Vegas-Paradise, NV 7.01 

Hartford-West Hartford-East Hartford, CT 6.88 

 

 At the county level, three areas in the contiguous United States (Gilmer County, GA: 

28.68%; Barrow County, GA: 29.72%; and Forsyth County, GA: 38.65%) exhibited growth rates 

exceeding twenty-five percent; furthermore, eleven of the top fifteen growth counties by 

percentage were located in the state of Georgia (Table 4.2). Regardless of whichever method 

chosen to normalize the added network length, the most rapid road growth counties were located 

in Georgia (Figure 4.3; Figure 4.4), unequivocally indicating an agglomeration around the city of 

Atlanta; its strength will be explored in the following section. 
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Figure 4.2: Change in Road Network Length and New Road Density by MSA 
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Table 4.2: Top Twenty-Five Counties for New Roads by Percentage and Density 

 

Rank County or Equivalent Percentage County or Equivalent Density (m/km
2
) 

1 Forsyth County, GA 38.65 Forsyth County, GA 1181.99 

2 Barrow County, GA 29.72 Gwinnett County, GA 1012.61 

3 Gilmer County, GA 28.68 Broomfield County, CO 944.13 

4 Henry County, GA 24.08 Barrow County, GA 757.30 

5 Paulding County, GA 23.55 Henry County, GA 719.02 

6 Jackson County, GA 22.89 Manassas Park City, VA 709.86 

7 Polk County, NC 21.36 Clayton County, GA 662.29 

8 Jefferson County, WV 21.15 Tarrant County, TX 652.74 

9 Horry County, SC 20.57 Douglas County, GA 601.95 

10 Pickens County, GA 20.40 St. Louis City, MO 600.03 

11 Union County, GA 19.98 Harris County, TX 598.72 

12 Douglas County, GA 19.35 Rockwall County, TX 574.56 

13 Gwinnett County, GA 19.21 Cuyahoga County, OH 544.59 

14 Forest County, PA 18.29 Fulton County, GA 541.34 

15 Effingham County, GA 18.01 Fairfield County, CT 535.14 

16 Rockwall County, TX 17.56 Paulding County, GA 524.42 

17 Cherokee County, GA 17.54 Contra Costa County, CA 523.96 

18 Columbia County, GA 17.40 Fort Bend County, TX 521.25 

19 Walton County, GA 17.07 Gilmer County, GA 504.83 

20 Pasco County, FL 17.06 Pasco County, FL 502.59 

21 Oconee County, GA 16.74 Alexandria City, VA 501.74 

22 Osceola County, FL 16.72 Jefferson County, WV 500.04 

23 Lee County, GA 16.67 Clarke County, GA 482.42 

24 Mineral County, MT* 16.37 Prince William County, VA 476.06 

25 Fort Bend County, TX 16.30 Fairfax County, VA 475.21 

 

*A majority of new roads were within National Forest boundaries. 

 

 However, some abnormalities in data acquisition must be addressed before dismissing the 

descriptive road change statistics. Along with the previously mentioned positional errors in 

Alaska and Hawaii, road attribution errors occurred in a few counties where National Forest 

logging roads or other resource extraction roads were incorrectly labeled as local roads. It should 

also be noted that percentage change and new road density statistics are most accurate in areas 

with extensive and dynamic road networks, where static and change sample sizes are maximized.  
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Figure 4.3: Percent Increase in Road Network Length by County or Equivalent 
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Figure 4.4: Land-Area Density of New Road Network by County or Equivalent 
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Spatial Autocorrelation 

 As expected, spatial clustering of road network percent change values was discovered 

using the graphical output of Figure 4.3; the statistical magnitude and significance of these 

clusters were examined through global and local versions of the Moran's I statistic. Because the 

statistic cannot be reliably computed for non-contiguous polygons, MSAs were omitted. Figure 

4.5 indicates that the distribution of percent change at the county level across the United States is 

significantly clustered; therefore, we may reject the null hypothesis that no clustering exists, and 

state that the distribution deviates from what might be expected by a random number generator. 

The global Moran's I index values range from negative one to positive one, where a value of -1 

describes perfect dispersion and a value of +1 represents perfect clustering. In a nationwide study 

area with a large number of observations, however, the statistically significant county-level value 

of .43 describes a moderately strong level of clustering. The tract-level autocorrelation was 

found to be more statistically significant due to the larger sample size, yet the global Moran's I 

value turned out to be only half as strong (Figure 4.6). Although both values were positive, the 

drastic difference between the two index values was attributed to the modifiable areal unit 

problem; additionally, the construction of new roads, especially for low-density residential 

developments, tends to be more highly segregated across census tract boundaries. However, 

though the tract-level analysis may better represent a chief cause of road network expansion, the 

county-level data were still more reliable and are more easily visualized than the tract-level data.  

 Therefore, a local analysis of spatial autocorrelation was conducted at the county-level 

with local Moran's I statistics, which indicate the level of clustering among contiguous polygons. 

Although the statistic values are not directly comparable with the global version, mapping the 

local Moran's I results elucidates the clustering dynamics of the road network growth statistics. 
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Figure 4.7 presents a probability map for each county; those areas shown in orange and red may 

be considered statistically significant at α = .05 and α = .01, respectively. However, while this 

map indicates whether a county has a statistically significant index value, it fails to reveal 

whether these counties represent areas of clustering or dispersion; therefore, a z-score map has 

also been included to display the sign and magnitude of the local Moran's I index values (Figure 

4.8). Even though a particular county may be surrounded by statistically significant clustering, 

 

 

Figure 4.5: County-Level Global Moran's I Output 
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there is no guarantee that the clustering is of significant magnitude for global importance. The z-

score map classified the counties by standard deviation of the calculated index values, yielding a 

measure of clustering/dispersion magnitude: tier 3 clusters were yellow, tier 2 clusters were 

orange, and tier 1 clusters were red—further delineating the Atlanta, Georgia metropolitan area. 

 

 

Figure 4.6: Tract-Level Global Moran's I Output 
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Figure 4.7: County-Level Cluster Probabilities using Local Moran's I 
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Figure 4.8: County-Level Cluster Z-Scores using Local Moran's I  
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Multiple Linear Regression 

 After the descriptive statistics provided information on the central tendencies and upper 

outliers of the road change database and the Local Moran's I statistic identified spatial clusters of 

new road growth, multiple linear regressions were utilized in an attempt to discover some driving 

factors behind the spatial variation of road change across the nation. In order to target 

metropolitan network expansion rather than rural expansion, data from the county and tract 

levels of analysis were restricted to the spatial footprints of metropolitan areas. Again, due to the 

effects of the modifiable areal unit problem, the significance of different explanatory variables 

changed at different aggregation levels, indicating that road network change is influenced by 

multi-scalar processes—even the same variables changed in magnitude depending on the scale of 

analysis; therefore, each of the regression models explained different facets of the phenomenon. 

 The best-performing model, according to both the coefficient of determination (R
2
) and 

the corrected Akaike Information Criterion (AICc) value, was the MSA model (Table 4.3); this 

finding was expected due to the smaller sample size and the highly aggregated nature of the 

dependent variable. The independent variable of mean age was highly insignificant, and 

therefore dropped from this model, while population density was omitted due to problematic 

multicollinear interactions with the mean income variable (Table B.1). At this scale, the intercept 

was not found to be statistically different than zero, and none of the racial categories were 

deemed significant. Holding all other variables constant, a $10,000 increase in MSA mean 

income was expected to increase road change percentages by 0.36%, while a population increase 

of 10% was associated with a 1.39% increase in road change percentage. These regression 

coefficient results, along with the t-statistic values and probability values, indicate that although 

income is a relatively significant factor in explaining short-term road network expansion at the 
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MSA level, concomitant population influxes have more explanatory power for metropolitan 

areas nationwide. Furthermore, the inclusion of the U.S. Census division dummy variables in the 

model controlled for geographic differences in MSA racial composition, an important distinction 

when evaluating racial effects. The East North Central and Pacific divisions were not found to be 

statistically different from the West North Central reference category, while the South Atlantic, 

Mountain, and East South Central census divisions were found to be the most statistically 

influential; metropolitan areas located in the South Atlantic division, on average, experienced 

2.78% more road growth than the reference division, Mountain division MSAs gained 1.83% 

more roads, and East South Central MSAs were found to have 1.09% more growth.  

 Similar results and explanatory power were discovered at the county level of analysis, 

where the coefficient of determination was slightly less and the intercept was still not 

significantly different from zero (Table 4.4). A $10,000 increase in county mean income 

provided a smaller estimate of a 0.29% road change increase nationwide, while population 

increases of 10% indicated a strikingly close increase in network expansion of 1.40%, again 

holding all other variables constant. However, the racial category of percent American Indian 

became significant at the county level, with road growth slightly decreasing by 0.05% more than 

the general population for every percentage share in American Indian population; when 

considering counties within the Mountain and West North Central census divisions with above 

twenty percent American Indian populations, this effect could translate to a one or more 

percentage point loss in network growth. However, due to the wider spatial extent of other racial 

populations, no geographically independent effects were observed for different racial categories. 

The county census division responses did not vary much from the MSA model, although the 

Mid-Atlantic region was no longer found to be statistically different from the reference division; 
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Table 4.3: MSA-Level Linear Regression Output 

 

Regression Statistics 

    AICc 1611.4222 

    R
2 0.2348 

    Adjusted R
2 0.2038 

    Standard Error 2.2228 

    Observations 360 

    

      ANOVA 

       df SS MS F Significance F 

Regression 14 523 37 8 6.89 x 10
-14

 

Residual 345 1705 5 

  Total 359 2228       

        Coefficients Std. Error t Stat P-value 

 Intercept -0.791227820 0.9209 -0.8592 0.3908 

 MeanIncome* 3.5561 x 10
-5

 0.0000 2.5142 0.0124 

 PopulationChange* 0.138878375 0.0541 2.5677 0.0107 

 %White N/A N/A N/A N/A 

 %Black -0.007353472 0.0132 -0.5570 0.5779 

 %AmericanIndian -0.015487906 0.0342 -0.4531 0.6508 

 %Asian/PacificIslander 0.002284157 0.0135 0.1692 0.8657 

 %Hispanic 0.009490727 0.0102 0.9277 0.3542 

 WestNorthCentral N/A N/A N/A N/A 

 Pacific 0.097285731 0.4559 0.2134 0.8311 

 Mountain* 1.834724480 0.6733 2.7248 0.0068 

 WestSouthCentral* 0.972228055 0.3840 2.5319 0.0118 

 EastNorthCentral 0.422466401 0.3144 1.3437 0.1799 

 EastSouthCentral* 1.086333732 0.3868 2.8083 0.0053 

 SouthAtlantic* 2.780438324 0.5081 5.4727 0.0000 

 MidAtlantic* 0.757284865 0.3503 2.1619 0.0313 

 NewEngland 1.284915210 0.7609 1.6886 0.0922 

  

*Variable statistically significant at α=.05 

 

the influences of South Atlantic and Mountain slightly decreased, while those of East South 

Central and West South Central increased. Ultimately, the results from the county model did not 

largely alter the MSA-level perceptions of independent variable magnitude and significance. 
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Table 4.4: County-Level Linear Regression Output 

Regression Statistics 

    AICc 5647.0910 

    R
2 0.1951 

    Adjusted R
2 0.1848 

    Standard Error 3.1304 

    Observations 1100 

    

      ANOVA 

       df SS MS F Significance F 

Regression 14 2578 184 19 1.52 x 10
-42

 

Residual 1085 10632 10 

  Total 1099 13210       

        Coefficients Std. Error t Stat P-value 

 Intercept -0.289439050 0.5571 -0.5196 0.6035 

 MeanIncome* 3.0988 x 10
-5

 0.0000 3.8231 0.0002 

 PopulationChange* 0.139845858 0.0260 5.3743 0.0000 

 %White N/A N/A N/A N/A 

 %Black -0.008977959 0.0086 -1.0466 0.2955 

 %AmericanIndian* -0.051883675 0.0203 -2.5599 0.0106 

 %Asian/PacificIslander 0.022746263 0.0236 0.9655 0.3345 

 %Hispanic 0.014135549 0.0083 1.7105 0.0875 

 WestNorthCentral N/A N/A N/A N/A 

 Pacific -0.331405851 0.3746 -0.8848 0.3765 

 Mountain* 1.579685584 0.4412 3.5805 0.0004 

 WestSouthCentral* 0.993449838 0.2962 3.3534 0.0008 

 EastNorthCentral 0.007079975 0.2004 0.0353 0.9718 

 EastSouthCentral* 1.321117286 0.2895 4.5634 0.0000 

 SouthAtlantic* 2.695993690 0.3857 6.9890 0.0000 

 MidAtlantic -0.006204765 0.2732 -0.0227 0.9819 

 NewEngland 0.630012297 0.4606 1.3678 0.1717 

  

*Variable statistically significant at α=.05 

 

 However, the tract-level analysis was drastically different than the county and MSA 

models, exhibiting an extremely low value for the coefficient of determination and a six-digit 

value for the corrected Akaike Information Criterion, both of which indicated a poorly-fitting 
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and underperforming model (Table 4.5). In contrast to the two previous models, the intercept 

was statistically significant and quite high, likely due to the lack of availability for population 

change at this aggregation level and the newly significant independent variables of mean age and 

population density. Therefore, instead of the default case of zero values for income, population 

change, and non-White racial percentages within the West North Central census division, we 

now have assumptions of zero for population density and mean age. The influence of mean 

income stayed relatively constant at a 0.26% increase in road change for every additional 

$10,000 of tract-level average income, while an increase in population density by one thousand 

individuals per square kilometer would cause an estimated 0.17% decrease in network length, 

consistent with the expected sign of the population density coefficient. For every ten year 

increase in average age, estimated additional network lengths decreased by 1.30%, reflecting the 

mobility of younger households and their participation in new low-density residential areas. 

After controlling for all other variables, but specifically income and geography, all racial 

variables were found to be statistically significant, while the effects of Hispanic background 

failed to differ from White race. At the tract level, all racial categories experienced less growth 

than White and Hispanic except the Asian/Pacific Islander racial category, where for every 10% 

increase in the share of Asian/Pacific Islander population, 0.45% road growth was expected 

above and beyond White/Hispanic categories. Likewise, for a 10% increase in the population 

share of Black race, an 0.18% decrease in road growth was observed, while a 10% increase in the  

American Indian category was associated with road growth reductions of 0.83%. Compared to 

the MSA level, the Mid-Atlantic division switched to a negative sign, while the Pacific, East 

North Central, and New England divisions also switched to statistically negative signs, possibly 

due to the lack of mediating influence from the population change variable. However, all four of  
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Table 4.5: Tract-Level Linear Regression Output 

      Regression Statistics 

    AICc 455227.1668 

    R
2
 0.0351 

    Adjusted R
2 0.0349 

    Standard Error 11.0212 

    Observations 59602 

    

      ANOVA 

       df SS MS F Significance F 

Regression 15 263344 17556 145 0 

Residual 59586 7237699 121 

  Total 59601 7501043       

        Coefficients Std. Error t Stat P-value 

 Intercept* 6.113204406 0.3167 19.3000 0.0000 

 MeanIncome* 2.5902 x 10
-5

 0.0000 18.3076 0.0000 

 MeanAge* -0.130010573 0.0082 -15.9159 0.0000 

 PopDensity* -0.000168585 0.0000 -19.4798 0.0000 

 %White N/A N/A N/A N/A 

 %Black* -0.017784041 0.0014 -12.8157 0.0000 

 %AmericanIndian* -0.082960340 0.0094 -8.8155 0.0000 

 %Asian/PacificIslander* 0.045153432 0.0051 8.8281 0.0000 

 %Hispanic -0.000207763 0.0049 -0.0421 0.9664 

 WestNorthCentral N/A N/A N/A N/A 

 Pacific* -0.745333651 0.1981 -3.7631 0.0002 

 Mountain* 2.225035167 0.2793 7.9666 0.0000 

 WestSouthCentral* 2.359867506 0.2388 9.8836 0.0000 

 EastNorthCentral* -0.480000774 0.1281 -3.7466 0.0002 

 EastSouthCentral* 1.210660654 0.1580 7.6624 0.0000 

 SouthAtlantic* 2.655173520 0.1940 13.6886 0.0000 

 MidAtlantic* -0.488416921 0.1333 -3.6653 0.0003 

 NewEngland* -0.619652575 0.1435 -4.3169 0.0000 

  

*Variable statistically significant at α=.05 

 

the original positive and statistically significant divisions retained their signs; while the South 

Atlantic and East South Central regions retained similar coefficients, the values for Mountain 

and West South Central greatly increased in influence. After controlling for the other factors, the 
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South Atlantic division exhibited a 2.66% increase in road growth values, followed by West 

South Central (2.36%), Mountain (2.23%), and East South Central (1.21%).   

 Overall, the relative importance of regional geography decreased as the analysis 

approached finer aggregation scales; while it was still the most important factor in each of the 

models, with population change as a close second, other local factors increasingly had greater 

explanatory power within each progressive model (Table 4.6). Both the mean income and race 

variables accounted for larger proportions of model goodness-of-fit as the aggregation units 

decreased in area. While race was not as influential as geography across the regression models, 

all racial categories gained statistical significance at the tract level; this indicated either that the 

moderating influence of the absent population change variable caused race to become significant 

or that the variables only locally exert influence. In order to investigate further, population 

change was experimentally removed from the county-level model; the racial coefficients did not 

change much in magnitude or become significant, so it may be concluded that the racial variables 

made a valid contribution to the tract-level model. Further research on the tract-level drivers of 

development is desired, as local elements of real estate development are neglected in this model. 

 

Table 4.6: Comparison of Explanatory Power (Adjusted R
2
) across Aggregation Schemes  

  MSA County Tract 

Demographics 0.1026 0.0851 N/A 

Economics 0.0136 0.0294 0.0061 

Geography 0.1560 0.1006 0.0165 

Race/Ethnicity 0.0201 0.0214 0.0115 

Total Model 0.2038 0.1848 0.0349 
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Geographically Weighted Regression 

 Although around twenty percent of the variation in road network change could be 

explained by the county-level multiple regression model, spatial autocorrelation was only loosely 

addressed at the census division level. In actuality, autocorrelation is not simply a regional 

phenomenon but may be exhibited at multiple scales, magnitudes, and geographic extents, as 

evidenced by the Local Moran's I clustering maps. Therefore, geographically weighted 

regression was used in an attempt to improve the explicit modeling of spatial autocorrelation. 

The integrated AICc minimization function in ArcGIS indicated that the ideal number of 

neighbors for the GWR was 135, so independent regression models were created for each of the 

3143 observations, with each model considering only independent variable data from the closest 

135 counties. While the original county model had an R
2
 value of 0.1951 and a standard error of 

3.1304, the GWR models had an average local R
2
 value of 0.2382 and a significantly lower mean 

standard error of 2.1533. When treating the individual GWR models as a single aggregate model, 

the global R
2
 value jumped up to 0.5106, with an adjusted value of 0.4431 due to the increased 

degrees of freedom required with global GWR model interpretation.   

 Furthermore, when the variables of the original county model were reduced to the three 

variables used in the GWR model (mean income, population change, and Asian/Pacific Islander), 

the goodness-of-fit dropped to 0.1829, further indicating the superiority of the GWR model. 

Additionally, the GWR model reduced the AICc value from 15405 to 14400, where a lower 

value indicates that less information is left unexplained by the model (Table 4.7). The AICc 

value of a fully-specified OLS model was even higher, at 15423, suggesting that the gains in 

global and local R
2
 from the GWR model were an improvement over the original OLS model.  
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Table 4.7: County-Level Comparison of OLS and GWR Models  

 

 

Ordinary Least Squares Geographically Weighted Regression 

Observations 3143 3143 

Neighbors N/A 135 

AICc 15405 14400 

Global R
2 .1829 .5106 

Adjusted R
2
 .1790 .4431 

Average Local R
2
 .1829 .2382 

 

As the AICc and R
2
 values are preferred for comparing regression models of different methods 

and independent variables, the geographically weighted model should be treated as definitive.  

 Furthermore, the creation of individual models allows for exploration of the variations in 

model fit across the United States, and can serve as a helpful visualization tool. Figure 4.9 

demonstrates how the local decomposition of an OLS regression can provide information on 

where the model predicts the dependent variable well, and equally important, Figure 4.10 shows 

how a GWR model can identify counties where the model has difficulty. The clustering of local 

R
2
 values demonstrates that the states of Idaho, Montana, North Dakota, West Virginia, and New 

York have low explanatory power; however, this does not necessarily mean that the model had 

difficulty in predicting that area, just that the supplied independent variables were insufficient to 

capture the variation in road network change. Many of the areas with R
2
 values of less than 0.1 

are rural, and therefore may not be extremely relevant for metropolitan road expansion; however, 

the lack of predictive power around Los Angeles, CA; Albuquerque, NM; and southeast Florida 

perhaps pointed to the fact that Hispanic background was dropped from the GWR model. The 

pattern of residuals suggested that the most difficult areas to predict are located around Atlanta, 

Georgia, which is likely due to a large amount of variation within a small geographical area. The 

neighborhood of 135 counties may have been too large for this area; future research should aim 

to better explain the variation in this metropolitan area and isolate these unknown local effects. 
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Figure 4.9: Local R
2
 Map of County-Level Geographically Weighted Regression 



71 
 

 

Figure 4.10: Model Residual Map of County-Level Geographically Weighted Regression
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CHAPTER 5 

CONCLUSION 

Summary and Limitations 

 The construction of a comprehensive spatiotemporal road change database through 

Python programming enabled aggregate descriptive statistics to be derived for each state, MSA, 

county, and census tract nationwide; from these statistics, percentage road changes for MSAs, 

counties, and census tracts served as the dependent variables for three multiple linear regression 

models. These models indicated that the primary mechanisms of metropolitan growth were due 

to differences between U.S. Census divisions, while the relative importance of population change 

and race increased with finer spatial resolution, likely due to an exertion of bounded or targeted 

effects. Given that the data exhibited moderate spatial autocorrelation, a geographically weighted 

regression was also executed at the county level, but was found to be inferior to the original 

model; counties surrounding Atlanta, Georgia produced highly statistically significant outliers, 

suggesting that a region-specific model would be necessary to better understand local variability. 

 As each of these results were all from expository analyses, their main functions were to 

instigate debate and to underscore the importance of geographic variation and socioeconomics in 

road change scholarship. The presentation of descriptive statistics, spatial autocorrelation 

indices, linear regression models, and geographically weighted neighborhood regressions, 

however, would not have been possible without the aid of public data resulting from the 

TIGER/Line accuracy improvement project. As surface transportation database creators improve 

their data collection and quality control measures, spatial, temporal, and attribute errors should 



73 
 

decrease in magnitude; therefore, in the next decade, we should expect to find longer and more 

reliable road network time series data disseminated at higher temporal resolutions. In the 

meantime, though, it is hoped that the methodological framework advanced herein will provide 

direction on how to proceed with analysis on 2008-2012+ vintage data and deal with their 

endemic accuracy concerns. Ultimately, the accuracy of the nationwide road change database 

determined the error profile of the Python change detection scripts, which in turn provided the 

foundation for the descriptive statistics. Therefore, when considering the summary of results, we 

must remember that comprehensive quality control and assurance policies were not feasible for a 

database of this scope and magnitude; thus, spatiotemporally distinct errors may still be present. 

However, the results of the four types of analyses were dependent upon a set of methodological 

assumptions aimed at minimizing systematic errors at the aggregate scale; consequently, these 

considerations will be revisited and their implications will be discussed. 

 First, an accuracy buffer was identified according to the observed positional 

displacements of a 150 observation stratified sampling distribution within the Atlanta MSA. 

While the expected 95th percentile accuracy threshold for the nation was  +/- 7.6m, the sample 

exhibited a spatial accuracy of +/- 7.55m; however, the number of samples could have been 

increased to better capture the distribution of problematic outliers, and reference positions could 

have been verified by engineering-grade surveying measurements. In order to account for these 

potential errors in outlier characterization and reference imagery rectification, the positional 

accuracy threshold for the road change analyses was extended to the 99th percentile value of 

22.75m, and further padded with an extra 2.25 meters to achieve an even 25m error tolerance. 

The establishment of this error tolerance informed the key Python geoprocessing scripts for 

delineating new roads, so it indirectly provided the key foundation for all of the calculated 
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statistics. Roads from a later annual dataset that were located more than 25m from the earlier 

network were considered new roads; whereas a smaller confidence interval would have created a 

possibility for false positives, a larger buffer distance would have eliminated true road change.  

 Statistics derived from these new road shapefiles presupposed that the earlier dataset was 

shown to have the same level of attribute accuracy as the newer dataset. Because the accuracy 

assessment did not specifically address the temporal differences in attribute accuracy across the 

entire nation (only for the Atlanta MSA), a substantial number of national forest logging roads, 

private resource extraction roads, service roads, and driveways in the 2008 and 2009 annual 

datasets were discovered upon close visual analysis of several states. These attribute errors 

improved over time, so they were corrected by clipping the older datasets to the positional buffer 

around the newest dataset (in this case, 2012); therefore, roads that were not located within the 

new dataset buffer were omitted from the analysis, preventing artificial inflation of length values 

for the earlier datasets (which in some cases exceeded thirty percent). 

 Finally, temporal update accuracies were a significant concern for reporting annual road 

change statistics; a small proportion of smaller counties appeared to update their road extent on 

an irregular basis, yielding one year with zero percent change and the next compensating for two 

years worth of road growth. These temporal errors were corrected by only reporting annual 

change statistics at the MSA level, where the inclusion of multiple counties would reduce the 

impact of any offending areas. Furthermore, only statistics for the entire five-year period were 

reported at the county level, in order to average out the potential effects of a single-year 

omission; therefore, the source of temporal error was mitigated through temporal aggregation. 

By systematically addressing these three sources of error, the reliability of the descriptive  

statistics and regression model coefficients for each level of aggregation was maximized.



75 
 

Future Research 

 Although the descriptive statistics are relatively immutable, the programming framework 

used to produce them could be improved for flexibility, efficiency, and ease of use; while 

researchers may currently utilize and alter the ArcGIS toolbox to develop their own output files, 

the database structure was hardcoded into the Python scripts, limiting potential applications. 

Additionally, scholars should further examine the accuracies and limitations of TIGER/Line data 

for road change analysis, as only a small subset of the data was examined for systematic errors; 

given that this data source for road change detection has not yet matured, more guidance on its 

appropriate usage would unequivocally benefit the community of transportation researchers.  

 Most importantly, continued research should be conducted on the causes and effects of 

road network expansion, as it is a phenomenon that is still debated in the transportation literature. 

The presented multiple regression models certainly do not account for all possible independent 

variables, and a better understanding of the fine-scale interactions between race and road 

development (especially for low-density, "sprawling" residential areas) would be beneficial for 

urban social geographers. Specifically, the separation of aggregate road change statistics into 

arterial and local roads could further elucidate the potential roles of race endemic to either public 

or private investment regimes. Spatial and temporal lag models, along with added information on 

human behavior in metropolitan real estate markets, may further increase explanatory power.  

 Finally, as nearly every expository analysis revealed, road network changes surrounding 

Atlanta are highly significant and of great magnitude; furthermore, the variations in this region 

are not sufficiently explained by the nationwide models. Therefore, the last recommendation 

would be for future scholarship to emphasize this anomalous area, devoting considerable 

attention to characterizing the undiscovered processes that fuel its rapid road network expansion.  
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APPENDIX A 

PYTHON GEOPROCESSING SCRIPTS AND OUTPUTS 

 

 

Figure A.1: Script for Selecting Roads from Edges and Exporting to a New Shapefile 
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Figure A.2: Output from Convert Edges to Roads Script Tool 
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Figure A.3: Script for Retrieving Parameters and Selecting State(s) to Process 
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Figure A.4: Script for Buffering Old Roads and Erasing Buffers from New Roads 
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Figure A.5: Script for Merging New Roads by State 

 

 

Figure A.6: Script for Buffering and Erasing Roads at the County Level 
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Figure A.7: Output from Find New Roads Script Tool  
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Figure A.8: Script for Merging County Road Shapefiles into State Road Shapefiles 
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Figure A.8 — Continued 
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Figure A.9: Script for Merging County Buffer Shapefiles into State Buffer Shapefiles 
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Figure A.9 — Continued 
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Figure A.10: Script for Clipping State Road Shapefiles with State Buffer Shapefiles 
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Figure A.10 — Continued 
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Figure A.11: Script for Joining County Length Statistics Table to County Boundaries 
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Figure A.11 — Continued 
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Figure A.12: Script for Joining Tract Length Statistics Table to Tract Boundaries 
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Figure A.12 — Continued 
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APPENDIX B 

CORRELATION MATRICES 

Table B.1: Correlation Matrix for Linear Regression Variables within MSAs 

 

  PerRoadChg MeanIncome MeanAge PopDensKm2 PopChg0711 

PerRoadChg 1 

   

 

MeanIncome 0.127718 1 

  

 

MeanAge -0.03101 0.00045 1 

 

 

PopDensKm2 0.105163 0.546452 0.110408 1  

PopChg0711 0.301969 0.037074 -0.47568 -0.15428 1 

PerWhite -0.12596 -0.17808 0.30283 -0.26943 -0.20569 

PerBlack 0.104215 -0.10576 -0.07911 0.112044 0.066334 

PerAmInd -0.01684 0.004464 -0.1355 -0.1583 0.061222 

PerAsian 0.034107 0.520428 -0.15965 0.459936 0.069264 

PerPacIsla 0.022636 0.169224 -0.05072 0.210554 0.087248 

PerOther 0.044375 0.218959 -0.31803 0.094505 0.227397 

PerHispani 0.103369 0.105763 -0.32509 0.097811 0.297783 

Pacific -0.07744 0.265858 -0.12346 0.059354 0.056597 

Mountain 0.126498 0.023738 -0.09486 -0.18151 0.109417 

WestNorthC -0.14266 0.01027 -0.12103 -0.13131 -0.0157 

WestSouthC 0.014633 -0.12995 -0.22376 -0.09301 0.265061 

EastNorthC -0.22904 -0.10384 0.082684 0.071293 -0.38397 

EastSouthC -0.03621 -0.1731 5.94E-05 -0.08941 0.084481 

SAtlantic 0.328882 -0.11481 0.13708 0.017589 0.185271 

MdAtlantic -0.07238 0.086643 0.188608 0.181192 -0.19698 

NewEngland 0.023664 0.265004 0.17691 0.203663 -0.1633 
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Table B.1 — Continued 

 

  PerWhite PerBlack PerAmInd PerAsian PerPacIsla PerOther 

PerWhite 1 

    

 

PerBlack -0.73799 1 

   

 

PerAmInd -0.10583 -0.19222 1 

  

 

PerAsian -0.38351 -0.0817 0.015328 1 

 

 

PerPacIsla -0.22515 -0.07629 0.054707 0.752839 1  

PerOther -0.37158 -0.22558 0.13477 0.252669 0.054474 1 

PerHispani -0.2462 -0.24452 0.088956 0.158489 0.037396 0.84946 

Pacific -0.19941 -0.26064 0.16404 0.470792 0.272848 0.556691 

Mountain 0.129558 -0.27959 0.315316 -0.0576 0.038148 0.15576 

WestNorthC 0.224382 -0.15892 0.029457 -0.04098 -0.03518 -0.15367 

WestSouthC -0.14647 0.121146 0.039857 -0.08943 -0.0329 0.118165 

EastNorthC 0.214884 -0.05932 -0.12571 -0.08032 -0.07705 -0.22445 

EastSouthC -0.08065 0.222846 -0.08564 -0.11095 -0.03875 -0.16256 

SAtlantic -0.26465 0.433747 -0.14654 -0.0922 -0.05537 -0.15226 

MdAtlantic 0.130807 -0.0726 -0.10255 -0.0034 -0.0492 -0.09355 

NewEngland 0.132712 -0.10664 -0.05205 0.000117 -0.03005 -0.05206 

 

  PerHispani Pacific Mountain WestNorthC WestSouthC 

PerHispani 1 

    Pacific 0.366999 1 

   Mountain 0.154146 -0.12403 1 

  WestNorthC -0.14433 -0.11188 -0.09714 1 

 WestSouthC 0.293929 -0.13736 -0.11926 -0.10757 1 

EastNorthC -0.21697 -0.16903 -0.14676 -0.13237 -0.16253 

EastSouthC -0.16617 -0.11396 -0.09895 -0.08925 -0.10958 

SAtlantic -0.13845 -0.19226 -0.16693 -0.15056 -0.18486 

MdAtlantic -0.09507 -0.11396 -0.09895 -0.08925 -0.10958 

NewEngland -0.06558 -0.07881 -0.06843 -0.06172 -0.07578 

 

  EastNorthC EastSouthC SAtlantic MdAtlantic NewEngland 

EastNorthC 1 

    EastSouthC -0.13484 1 

   SAtlantic -0.22748 -0.15337 1 

  MdAtlantic -0.13484 -0.09091 -0.15337 1 

 NewEngland -0.09325 -0.06287 -0.10606 -0.06287 1 
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Table B.2: Correlation Matrix for Linear Regression Variables within MSA Counties 

                       PerRoadChg MeanIncome PerWhite PerBlack PerAmIndia PerAsian 

PerRoadChg 1 

     MeanIncome 0.174124 1 

    PerWhite -0.09449 -0.00874 1 

   PerBlack 0.061943 -0.15258 -0.8856 1 

  PerAmIndia -0.03922 -0.0667 -0.06548 -0.10945 1 

 PerAsian 0.101456 0.515732 -0.3445 0.015677 0.002964 1 

PerPacIsla 0.01819 0.087369 -0.14845 -0.0264 0.065575 0.569104 

PerOther 0.069676 0.139974 -0.36244 -0.03423 0.116568 0.34576 

PerHispani 0.098548 0.116154 -0.26685 -0.07787 0.091083 0.271724 

MeanAge -0.11502 -0.02254 0.361128 -0.20065 -0.09403 -0.26492 

PopChg0711 0.294553 0.180099 -0.06294 -0.04636 0.080018 0.139031 

PopDensKm2 -0.05079 0.198848 -0.25237 0.141588 -0.03025 0.309099 

Pacific -0.04132 0.142934 -0.11744 -0.14333 0.140059 0.428894 

Mountain 0.060673 0.017219 0.072614 -0.17021 0.21176 -0.02192 

WestNorthC -0.11753 -0.02268 0.225145 -0.18434 0.016656 -0.07036 

WestSouthC 0.011995 -0.08547 -0.1057 0.057475 0.196934 -0.07842 

EastNorthC -0.17529 -0.02443 0.22709 -0.15498 -0.11633 -0.08389 

EastSouthC -0.01299 -0.18672 0.001358 0.090099 -0.08689 -0.13957 

SAtlantic 0.27785 -0.02906 -0.28808 0.380524 -0.12613 -0.03052 

MdAtlantic -0.08452 0.180331 0.024599 -0.04567 -0.0875 0.114545 

NewEngland -0.0181 0.158723 0.082589 -0.08371 -0.03314 0.030948 

 

  PerPacIsla PerOther PerHispani MeanAge PopChg0711 PopDensKm2 

PerPacIsla 1 

     PerOther 0.111513 1 

    PerHispani 0.090881 0.881103 1 

   MeanAge -0.10732 -0.37635 -0.3414 1 

  PopChg0711 0.068505 0.221807 0.231102 -0.38118 1 

 PopDensKm2 0.028289 0.196019 0.148407 -0.10864 -0.04571 1 

Pacific 0.298145 0.460707 0.333903 -0.1223 0.066217 0.002866 

Mountain 0.059119 0.183827 0.180163 -0.08188 0.074667 -0.03516 

WestNorthC -0.02455 -0.14755 -0.13983 -0.0673 -0.01638 -0.04656 

WestSouthC -0.02226 0.149775 0.264733 -0.1172 0.154502 -0.05335 

EastNorthC -0.07159 -0.17435 -0.16809 0.067399 -0.18051 -0.03565 

EastSouthC -0.04047 -0.15346 -0.16328 0.003016 0.00662 -0.05404 

SAtlantic -0.04323 -0.10438 -0.11404 0.074094 0.081464 0.004023 

MdAtlantic -0.03701 0.007506 0.002267 0.123872 -0.1266 0.233701 

NewEngland -0.01795 -0.02228 -0.0397 0.098271 -0.10322 0.023753 
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Table B.2 — Continued 

 

  Pacific Mountain WestNorthC WestSouthC EastNorthC EastSouthC 

Pacific 1 

     Mountain -0.06376 1 

    WestNorthC -0.0901 -0.08585 1 

   WestSouthC -0.1 -0.09528 -0.13463 1 

  EastNorthC -0.11214 -0.10684 -0.15098 -0.16756 1 

 EastSouthC -0.08968 -0.08544 -0.12073 -0.134 -0.15026 1 

SAtlantic -0.15516 -0.14783 -0.20889 -0.23184 -0.25998 -0.2079 

MdAtlantic -0.07676 -0.07313 -0.10334 -0.11469 -0.12861 -0.10285 

NewEngland -0.0462 -0.04402 -0.0622 -0.06904 -0.07742 -0.06191 

 

  SAtlantic MdAtlantic NewEngland 

SAtlantic 1 

  MdAtlantic -0.17795 1 

 NewEngland -0.10711 -0.05299 1 

 

Table B.3: Correlation Matrix for Linear Regression Variables within MSA Census Tracts 

  PerRoadChg MeanIncome PerWhite PerAmIndia PerAsian PerPacIsla 

PerRoadChg 1 

     MeanIncome 0.078334 1 

    PerWhite 0.048556 0.337289 1 

   PerAmIndia -0.01692 -0.12964 -0.0968 1 

  PerAsian 0.029809 0.218115 -0.24852 -0.02808 1 

 PerPacIsla -0.00025 -0.00377 -0.11333 0.046048 0.336829 1 

PerOther -0.04412 -0.25953 -0.37604 0.11337 0.071129 0.046162 

PerHispani -0.00036 -0.2389 -0.2682 0.087533 0.037518 0.034042 

PerBlack -0.04491 -0.33811 -0.83417 -0.03911 -0.14762 -0.0382 

MeanAge -0.03163 0.356576 0.409073 -0.12264 -0.04912 -0.05278 

PopDensKm2 -0.08461 -0.06413 -0.29569 -0.00521 0.223134 0.034989 

Pacific -0.02523 0.091109 -0.10985 0.0927 0.390407 0.233729 

Mountain 0.043559 -0.01335 0.085604 0.168525 -0.05067 0.032254 

WestNorthC -0.01017 -0.0215 0.10169 0.01331 -0.06032 -0.02895 

WestSouthC 0.057883 -0.06059 -0.02453 0.082106 -0.0782 -0.03726 

EastNorthC -0.0537 -0.07889 0.040463 -0.07564 -0.11808 -0.06719 

EastSouthC 0.004433 -0.07316 -0.00747 -0.04403 -0.09651 -0.03052 

SAtlantic 0.076037 -0.00565 -0.04938 -0.08527 -0.10455 -0.05497 

MdAtlantic -0.06678 0.066046 -0.02734 -0.07518 0.04329 -0.05281 

NewEngland -0.02049 0.073891 0.091198 -0.04069 -0.0278 -0.02727 
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Table B.3 — Continued 

 

  PerOther PerHispani PerBlack MeanAge PopDensKm2 Pacific 

PerOther 1 

     PerHispani 0.888593 1 

    PerBlack -0.04027 -0.09727 1 

   MeanAge -0.44227 -0.40915 -0.24416 1 

  PopDensKm2 0.297067 0.252099 0.117685 -0.18355 1 

 Pacific 0.350976 0.290225 -0.17922 -0.06155 0.049802 1 

Mountain 0.090222 0.094936 -0.13067 -0.03896 -0.05237 -0.12376 

WestNorthC -0.10501 -0.12145 -0.04454 -0.0295 -0.06584 -0.10938 

WestSouthC 0.072286 0.18854 0.016432 -0.12379 -0.08429 -0.15606 

EastNorthC -0.14423 -0.17173 0.068439 0.00802 -0.05936 -0.19525 

EastSouthC -0.10984 -0.13108 0.090937 -0.00816 -0.07958 -0.10029 

SAtlantic -0.15509 -0.1025 0.167147 0.100362 -0.10888 -0.218 

MdAtlantic -0.02368 -0.05216 0.029585 0.071892 0.333125 -0.19174 

NewEngland -0.03366 -0.06422 -0.07019 0.054177 -0.01338 -0.10094 

 

  Mountain WestNorthC WestSouthC EastNorthC EastSouthC SAtlantic 

Mountain 1 

     WestNorthC -0.06693 1 

    WestSouthC -0.0955 -0.0844 1 

   EastNorthC -0.11948 -0.1056 -0.15066 1 

  EastSouthC -0.06137 -0.05424 -0.07739 -0.09683 1 

 SAtlantic -0.1334 -0.11791 -0.16822 -0.21047 -0.10811 1 

MdAtlantic -0.11733 -0.1037 -0.14795 -0.18511 -0.09509 -0.20668 

NewEngland -0.06177 -0.0546 -0.07789 -0.09746 -0.05006 -0.10881 

 

  MdAtlantic NewEngland 

MdAtlantic 1 

 NewEngland -0.0957 1 

 

 

 

 

 


