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ABSTRACT

The tokamak has been the preferred design for fusion test reactors since the 70’s. While the
tokamak holds promise to be one of the most efficient in the field of fusion research, it is still
important to achieve minimal energy field configurations for the sake of demonstrating commercial
potential. In 1986, John B. Taylor solved the problem of finding energy minimizing vector fields on
the flat torus, given certain constraints. This paper will explore the fundamentals of fusion energy
and give an overview of Taylor’s solution.
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CHAPTER 1

INTRODUCTION

1.1 A BRIEF HISTORY OF FUSION POWER

Fusion is the process of combining light nuclei in order to create heavier nuclei and energy. While
this is a scientific definition, one does not need modern science to witness fusion power at work in
nature. As we examine the night sky and all the stars scattered among its canvas, we are witnessing
fusion power at work. It is fusion that powers the stars and keeps them burning over the billions of
years of their lifespans. And it is for this reason that fusion is perhaps the most pure and generous
source of energy we can draw upon. But before we can talk about harnessing fusion power on

Earth, it would help us to know the conditions for it to take place in nature’s source.

A star forms when a massive amount of hydrogen gas and dust, in what is known as a nebula, is
pulled together by gravitational attraction. As the matter draws closer together, collisions begin to
take place. Eventually, the gravitational attraction brings the matter so close together, that pressure
is generated near the center of mass. This pressure causes heating and speeds up collisions. When
temperatures are significantly high enough, hydrogen atoms ionize and form what is known as a
plasma. This happens because, at high temperatures, the collisions are strong enough to knock
electrons free. Simply put, a plasma is a ”soup” of free nuclei and electrons. When the plasma
temperature and pressure rises enough such that the electromagnetic repulsion force between
nuclei is less than the attracting strong force, then the nuclei fuse and form a helium nucleus. This
fusing releases energy which generates an outward-pointing vector field of force - a field that can
be pictured as vectors normal to the surface of a sphere. The outward force pushes against the

inward force caused by the gravitational colapse. Over time, an equilibrium between the forces is
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reached and a new star becomes stable and begins its lifespan of billions of years.

The energy required to overcome the electromagnetic repulsion of hydrogen nuclei is high -
so high in fact, that temperatures must be in the realm of millions of degrees Celcius before fusion
reactions can take place. It is this high level of energy that is responsible for the fact that there
are no small! stars in the universe. In order for the gravitational force (the weakest of the four
fundamental forces) to create enough pressure to overcome the electromagnetic force, mass must
be exceptionally high. Because of this fact of nature, we must exclude traditional means of star

formation as a method of harnessing fusion power on earth. What then are we left with?

The primary barrier to overcome is the electromagnetic force. We must somehow create a con-
trolled” environment with enough energy so that two hydrogen nuclei can collide with each other
and bind through the strong force. Researchers have tried a couple promising methods of creating
such an environment. One method is known as inertial confinement and it involves heating a pellet
of hydrogen fuel with powerful lasers, causing an explosion of the outer shell, thus generating an
inward force to start a fusion reaction at the core of the pellet. Although this method has shown
promise, there is a different method that has been in the process of research since the 50’s and it

involves the use of externally generated electromagnetic fields.

Remember when we said that, as a star forms, hydrogen atoms ionize and form a plasma before
fusion takes place. Well, one peculiar property of the plasma state of matter is that it has a charge.
Because of the charged nature of a plasma, it has the ability to conduct a current and also to
respond to a magnetic field. So if we could create a leak-proof “magnetic bottle” so to speak,
one that encloses the plasma, and heat the plasma to sufficient temperatures, then theoretically we

would have a controlled fusion reaction. This has, in fact, been what researchers in the field of

'Small is meant in terms of total mass, not volume. Black holes and neutron stars are small in terms of
volume, but still extremely massive.
2A hydrogen bomb is powered by a fusion reaction, but it is certainly not controlled.



controlled fusion power have been doing for decades already. Since the 50’s, plasma physicists
have been successfully achieving fusion reactions in experimental reactors by use of magnetic
fields to contain the plasmas. The Princeton Plasma Physics Laboratory and its TFTR(Tokamak
Test Fusion Reactor), which ran from the 80’s until decommissioning in 1997, achieved controlled

fusion reactions and plasma temperatures over 500 million degrees Celcius.

In fusion reactor design, the Q-factor is defined to be a ratio of output energy to input energy.
A Q-factor higher than 1 means that the output energy is higher than the input energy. In order for
a fusion reactor to be commercially viable, it would have to have a Q-factor significantly higher
than 1. Otherwise, there would be no point. The TFTR unfortunately was not able to demonstrate
this, but the ITER project, which is currently under construction, will demonstrate a Q-factor of
at least 10. Regardless of the Q-factor of the TFTR, it was a remarkable achievement in fusion

energy research and it has contributed immensely to scientific knowledge.

Researchers knew that, in order to give fusion power a fighting chance in the commercial world,
they would have to create a test reactor that could achieving a promising Q-factor. It is here that
the ITER project steps up. ITER, or International Tokamak Experimental Reactor, is another test
fusion reactor currently being constructed in Cadarache, France. ITER is a joint effort between
several nations, all sharing the cost in various proportions, and it will be the largest test fusion
reactor built to date. To give an idea of its size, the combined weight of the electromagnetic field
coils alone is over 10,000 metric tons and the reactor is anticipated to generate vertical compres-

sion forces in the realm of 400MN.

Although TFTR is now decommisioned, the “tokamak™ design has remained promising in the
field of controlled fusion power, leading the way to the current ITER project. The tokamak’s
geometry has a number of interesting properties, one being the bootstrap current present in a

toroidal plasma. Although discussion of the bootstrap current is not within the scope of this thesis,



a motivated reader may find it to a be good starting point for researching the history of popularity
in the tokamak design. Suffice it to say, the geometry of a fusion reactor plays an integral role in

its efficiency and viability.

1.2 THE TOKAMAK AND TOROIDAL GEOMETRY

The word tokamak comes from a juxtaposition of Russian words that together mean toroidal
magnetic chamber. A tokamak works by creating a toroidal magnetic field that confines hydrogen
plasma so that it may be heated to sufficient temperatures for fusion reactions to take place. The
field must be strong, as it is the pinch effect (the magnetic field compressing the plasma) that
is responsible for much of the initial heating of the plasma. Other methods are used to induce
plasma heating such as resistive heating (running a current through the plasma) and neutral beam
injection, but the field configuration itself will be responsible for a significant portion of reactor
efficiency. An inefficient field configuration can require more energy to sustain a reaction. While
this is certainly of significance in the lab, it will be even more important when testing fusion

energy for commercial purposes.

The standard euclidean metric on a solid torus in R? can lead to some complicated mathematics
when attempting to find minimal energy vector fields in said domain. By instead considering the

domain of the solid flat torus>

, we can look at a simpler mathematical model for finding minimal
energy vector fields. Any point in the flat torus can be specified using a 3-variable coordinate
system, but unlike the standard torus, it is not embeddable in R3. We can visualize the flat torus as

a cylinder with the top and bottom identified. Using the flat torus as our domain removes some of

the mathematical complexity caused by the bending around the major axis in the standard torus.

3 After this point, I will use the terms torus and flat torus to mean solid torus and solid flat torus
respectively.



The Woltjer problem in plasma physics deals with finding minimal energy vector fields on the flat

torus. We will discuss the Woltjer problem in this paper and examine some simplified cases.*

4See chapter 4.2 and chapter 5.



CHAPTER 2

ELECTROMAGNETISM BASICS

2.1 FUNDAMENTALS OF ELECTROMAGNETISM

An electromagnetic field is actually a composition of two separate fields. These two fields are
known as the electric field, E, and the magnetic field, B. The etymology for the term electro-
magnetic” involves the strong codependence these fields have on each other. A changing electric
field will create a magnetic field and a changing magnetic field has the ability to induce an electric
current, J, in a conductor. This relationship sets a basis by which many modern day electrical
devices were designed. Consider the power supply that charges a laptop computer. Inside the
power supply is a device called a transformer which steps the voltage down to a smaller AC
voltage. This device uses the intimate relationship between electric currents and magnetic fields to
achieve this. The power supply receives an input of 110VAC and has an output usually somewhere
in the neighborhood of 16-20VDC. The sinusoidal wave form of the alternating input current
creates a magnetic field in a coil of wire, known as the primary coil. This magnetic field induces a
smaller AC current in an adjacent coil of wire, known as the secondary coil. The exact voltage of
the output AC current is determined by the ratio of the number of windings between the primary
and secondary coils. Then, the smaller AC output current passes through a rectifier to be converted

to DC.

In the middle 1800’s, a man by the name of James Clerk Maxwell, through many years of
experimental research and mathematical computation, wrote down exact mathematical relation-

ships between electric and magnetic fields. He came up with four equations which are at the heart



of classical electrodynamics. They are referred to as Maxwell’s Equations. We list them below:

1
V-E= — .
E=_p 2.1
JoB
V-B=0 (2.3)
JE
VxB=puJ+ Hog = - (2.4)

The constants & and py are known respectively as the permittivity of free space and the perme-
ability of free space.! It is equations 2.2 and 2.4 that give us the precise relationships between
changing electric fields and changing magnetic fields, the relationships by which devices such as

transformers operate.

Equation 2.3 is a powerful result as it tells us all magnetic fields are divergence-free. This
peculiar property of magnetic fields leads to some eloquent mathematical formulations in their
regard. In this paper, the vector fields we will be most interested in are those vector fields that are
divergence free. After we introduce the Biot-Savart operator in the next section, we will use it to

prove equation 2.3.

Another interesting property of electric and magnetic fields is that they exert a force on charged
particles and this force can be quantified exactly. The force is given by the Lorentz Force Law as

follows:

F=Q(E+ (vxB))

'Quantitatively, & = 8.85 x 10712 -C and pig = 4z x 107 &%



It should be noted that this equation is axiomatic and verified by experimental evidence.

2.2 THE B10T SAVART OPERATOR AND AMPERE’S LAW

Since the most fundamental aspect of controlled thermonuclear fusion is the magnetic field, I find it
pedagogically consistent to begin with the Biot-Savart Operator. The Biot-Savart Law describes the
magnetic field B at a position y induced by a steady line current J at a position x. The Biot-Savart

Operator is given by?:

_ Ho J(x) x Y—F ix.

B(y) = BS((0) = 42 |

ly — x|’

where Q is the domain which the current flows through (for instance a wire, which can be modelled

as a long cylinder). Since the magnetic force obeys an inverse square law, the \yy—_;P term follows

naturally. 3 (From this point on, we will reference B(y) as B and J(x) as J where the position

dependence is assumed to be understood.)
Ampere’s Law describes the magnetic field induced by a current. It can be thought of as an
inverse of the Biot-Savart operator. Through some basic vector algebra, we can derive Ampere’s

Law from the Biot-Savart Operator:

We begin by taking the curl of both sides of the Biot-Savart Law:

VxB:Vx@/Jx Y- ax.
drla |y—x|

’I have explicitly indicated y-dependence on B and x-dependence on J in the definition as this will be
important to note when we derive Ampere’s Law.
3If we turn the numerator into a unit vector, the denominator becomes squared rather than cubed.



:&/Vx J><y dx.
4T Jo y—x/’

Ho y—x y—x y—X y—X
S v]s-@v) XX )
Am Q[<|Y—X|3 > ly —x[? ( |y—X|3) ly —x|?

The first and fourth terms in the integral will be zero since nabla is operating on y, and J is only

dependent on x. The third term will integrate to zero leaving only the second term to make a

contribution. The second term simplifies* into 4753 (x). Thus we are now left with:>

Ho [y 4n83
47r/gJ 478° (x) dx

Ho
4r (47J) = pod
We have now derived Ampere’s Law and we can write it as:®

VXBZ[,L()J

We will find both the Biot-Savart Law and Ampere’s Law essential as we develop more focused
concepts for which to describe the flow of plasma in a magnetic field. One of these concepts,
helicity, we will define shortly. It will put into quantitative measure the degree to which magnetic
field lines wrap around each other. But first we will prove one of Maxwell’s Equations, equation

2.3, using the Biot Savart Operator. We start with the operator and take its divergence:

VI»lo/J
|y X|

4See Griffiths’ Introduction to Electrodynamics p. 223-224 for a more detailed explanation as the sim-
plification is somewhat cumbersome.

>The & represents the dirac-delta function, which is not really a function in a true sense. It is defined by
the following two properties: 1) §(x —a) =0, when x # a, and 2) [, §(x —a)dx =1 if a € Q.

OThis is essentially equation 2.4 without the time-dependent term.
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HO/ y—X
== | V. X d
am Ja (J |y—X|3> i

Ho y—Xx y—X
== LA A v/ —J-lVv d
4n/9[|y_x|3 (VxJ)—1J ( XIy—xP)] X

Both terms in our integral will be zero since we have the curl of J with respect to y and the the curl

of a position vector. Thus we obtain:’

2.3 FLUX, ENERGY, AND HELICITY

2.3.1 FLUX

Qualitatively, flux is a measure of the vector field lines that pass through some given surface.
Let Q denote the flat solid torus and picture a circular cross section, X, which plasma is passing
through, such that dX € dQ, and for which V models the flow of the plasma.’ If the flow through

this cross-section is high, we say the flux is high. We define the flux through a surface X to be:

Fe(V) = 72 V- ndA 2.5)

"Up until this point, I have followed a convention to use bold letters when indicating vector quantities as
to avoid confusion. But from here on, quantities which are vector quantities should be clear through context
and will be printed in standard typeset.

8 may be thought of as analogous to the current density we discussed when talking about Biot-Savart.
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Moreover, in the solid flat torus (and in the standard torus), the flux value is independent of the

cross-sectional surface chosen. Thus we can drop the X subscript on the F (V') and just say:
F(V) = 7{ V- ndA 2.6)
z

where X is any cross-sectional surface in the solid flat torus.

Mathematically, flux would be an extra variable to consider in the case of plasma confinement.
But as it turns out, flux that moves with a plasma through a closed contour is constant.” This fact

will be important later as we establish a relationship between Energy, Helicity, and Flux.

2.3.2 ENERGY

We may assign, to each vector field V, a scalar quantity we shall call Energy. Energy is given by:

/ V|*dt
Q

If we let VF(Q) denote the space of vector fields on Q, then we can define the L? inner product on
that space as:

<V.W >:/ V.-Wdrt
Q

Now we can write energy simply as:

E(V)=(V,V) (2.7)

9See p. 124 of Goldston’s and Rutherford’s Introduction to Plasma Physics.
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Since we stated earlier that V can be thought of as modeling the flow of a confined plasma, one
can think of the energy definition as “kinetic energy” associated with a vector field. This analogy
should help us better understand the real world scenarios we are attempting to model.

2.3.3 HELICITY

A vector potential for a vector field, B, is defined as a vector field, A, such that its curl is equal to
B, i.e. V x A = B. Using this definition of vector potential, magnetic helicity is defined classically

as follows:

H(B) = /QA-BdT

where A is the vector potential for B.

To migrate this definition to one we will use for arbitrary divergence free vector fields, we
note that, for any divergence free vector field, V, BS(V) is a vector potential for V. Thus we may

now define helicity for a divergence free vector field as:
H(V) = /Q V.BS(V)dt
or equivalently,'”
H(V)=(V,BS(V)) (2.8)

Due to the toroidal geometry of most modern test fusion reactors, helicity becomes an important
quantity in determining the level of energy within the reactor. During the first fraction of a second
when plasma is injected in a reactor, the plasma is highly turbulent. After this time however, the

plasma “relaxes” and helicity is, for our purposes, a conserved quantity. Thus it makes sense for

10This definition could also apply to vector fields with non-zero divergence; however, the scope of this
paper is primarily focused on those vector fields that are divergence free.



us to consider helicity a constraint for calculating energy.

13



CHAPTER 3

MATHEMATICAL PRELIMINARIES

In looking for energy minimizing vector fields, it will help us to be more familiar with Bessel’s
equation and the decomposition of vector fields. Rather than incorporating these things in the
middle of the discussion of finding energy minimizing vector fields, I found it more organization-
ally sound to place them in a preliminary fashion. A brief presentation of Bessel’s equation and its
solution is given in the first section of this chapter. Then, we will give an overview of The Hodge
Decomposition for Vector Fields and state the theorem. As much as I would like to discuss some
of the proof for the Hodge Theorem, my lack of background in algebraic topology hinders me.
Moreover, it it is quite lengthy. A motivated reader can examine the proof in Cantarella, DeTurck,

and Gluck’s Vector Calculus and the Topology of Domains in 3-Space.

3.1 BESSEL’S EQUATION

Bessel’s equation is a second order differential equation of the following form:
2.1 / 2 2\ .,
Y +xy + (x"=v7)y=0, (v>0) (3.1)

More precisely, we would call this Bessel’s equation of order v. Let p(x),q(x) € R[x]. If p and ¢
are analytic at xy then every solution of y” + p(x)y’ + g(x)y = 0 is analytic at some xy. Thus we can
write y(x) as:

y(x) = i an (x—xp)" .
n=0

Using the method of Frobenius:

14
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If p has a simple pole and g has a pole of order 2, then we can rewrite Equation 3.1 as:
Y+ x(xp(x)y + (Pg(x))y =0 (3.2)

Then we know xp(x) and x?¢(x) are analytic. Thus we can expect a solution:

y(x)=x" Z anx".

n=0

Now we find a Frobenius Solution:

y(x) = Z ax T

k=0

Putting this back into Bessel’s Equation:

(oo}

Z (((k+r)2—v2)ak+ak72)xk+r:0 (ap #0).
k=0

Now we set each coefficient of each power of x equal to 0:

k=0: (rP=v)ag = 0 (3.3)
k=1: (r+1)*=v)a = 0 (3.4)
k>2: (r+k)?—V)ar+ao = 0 (3.5)
From equation 3.3, r = +v. From equation 3.5, a; = —mak,z (k > 2). From equation 3.4,
a;=0and thusay =a3 =a5=---=0.
(—1kag (—1Dkvlag

2k = 22kk!(vk)(v—|—k—1)...(v+1) - 22kk!(v—1—k)! (VGZ)~

If v Z:
_ (D" +1)ag
C2%KT (v k1)

axg
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and thus we have

) o —1)* X\ 2k+v
y(x) =ap2'T'(v+ ng <5> :

This function is called Bessel’s function of the first kind of order v and is usually written:

There is also a Bessel function of the 2nd kind, usually denoted Y, but this particular function has

a singularity and is of no use to us here.

3.2 THE HODGE DECOMPOSITION THEOREM FOR VECTOR FIELDS

Let Q be a compact domain in R? having a smooth boundary 9. Define VF(Q) to be the infinite
dimensional vector space of all C* vector fields in . Then the Hodge Theorem tells us that we can
decompose VF(Q) into five mutually orthogonal subspaces. We measure orthogonality by means

of the L? inner product:
<V,W >=/ V-Wdt
Q

We will not prove the Hodge Decomposition Theorem for Vector fields as it is lengthy and beyond

the scope of this paper. However, we will discuss briefly the decomposition and its organization.

Now rather than just outright stating all five subspaces that compose VF(Q), I find it peda-

gogically consistent to first note that VF(€) can be written in terms of two larger subspaces; that
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is, knots and gradients. We define knots, K, and gradients, G, as follows:

K={VeVFQ):V-V=0,V-n=0}

G={VEVFQ):V=Vg}

We see that a knot is any vector field that is divergence free and tangent to the boundary while
a gradient is simply a vector field that is the gradient of some scalar. A powerful result of this
decomposition is that the space of all smooth vector fields can be broken into orthogonal compo-
nents that lie in these two sets. This decomposition is non-trivial and requires finding solutions of
the Laplace and Poisson Equations with Dirichlet and Neumann Boundary Conditions. | However,
once the decomposition has been made, it can be shown relatively easy that the two spaces are

orthogonal. We can check this by simply taking their L? inner product:

Let Vk € K and V; € G. Then:
<Vk,Vg >:/ Vi -Vgdt :/ VK'V(pdT
Q Q
for some ¢. Now, using vector identity B.5, we obtain:

/VK‘VWT:/ (V- (oVk) — o(V-Vk))dt
Q Q

The second term in the integral is zero since Vx must be divergence free by definition. Thus we

have only the first term to consider. Applying the divergence theorem, we have:

/ V- (@Vk)dt = ]{ PVido
Q oQ

And since Vi is tangent to the boundary by definition, we have that our integral is zero.

!See Vector Calculus and the Topology of Domains in 3-Space by Cantarella, DeTurck, and Gluck.
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We may now write:

VF(Q) =Ko G (3.6)

Now we have two primary categories for which our vector fields can be decomposed. Each of these
categories has its own decomposition as well. More specifically, we can decompose K into the two
orthogonal subspaces of fluxless knots, FK, and harmonic knots, HK. We define FK and HK as

follows:

FK = {V € K : all interior fluxes are zero}

HK={VeK:VxV =0}

We can write:

K=FKOHK (3.7

We can also decompose G into three mutually orthogonal subspaces. These three subspaces are
curly gradients, CG, harmonic gradients, HG, and grounded gradients, GG. We define CG, HG,
GG as follows:

CG ={V € G: V-V =0,all boundary fluxes are zero}
HG ={V € G:V-V =0,0¢ is locally constant on JQ}

GG ={VeG:q|y)o=0}

We can write:

G=CGoHGDGG (3.8)
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Now that we have decomposed both knots and gradients into their mutually respective subspaces,

we can combine equations 3.6, 3.7, and 3.8 to obtain:2

VF(Q) = FK® HK @ CG  HG © GG

On a last note of preliminaries, we’d like to define a special kind of vector field called a curl

eigenfield. We will denote the space of curl eigenfields as CE where:>

CE={VeVF(Q): A st. VXV =41V}

21t should be noted that what we have not proved anything here, but rather only stated a result that we
get from the Hodge Decomposition Theorem for Vector Fields. The actual proofs of these statements are not
trivial and are beyond the scope of this paper.

3For a much more thorough treatment of the Hodge Decomposition Theorem for Vector Fields, please
see “Vector Calculus and the Topology of Domains in 3-Space” by Cantarella, DeTurck, and Gluck



CHAPTER 4

THE WOLTJER PROBLEM

4.1 PERIODS OF THE TORUS

We now take our discussion to focus on properties of periodicity in the flat torus. We will assume
that our flat torus has an aspect ratio bounded below by unity. First, let us imagine a loop going
around the long way' of our torus. Let us call this loop L. If we imagine another loop wrapping
the short way around the torus, we can call this loop M. Moreover, M bounds a surface inside the
torus that we shall call Xj;. The importance of ¥j; will become apparent later because we’ll be
interested in the flux through this surface. Now suppose we are given a vector field V and we wish
to follow our respective loops L and M around the torus through our vector field V. Then we define

quantities called longitudinal and meridional periods respectively as pz (V) and py (V) where:

pr(V) :/LV-ds 4.1)

pM(V)z/MV-ds 4.2)

The relationship of these periods to energy, flux, and helicity will become more apparent as we

prove a few theorems that follow.

I'Since the aspect ratio must be greater than unity, the long way will always be the circumference gener-
ated by the major radius.

20
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4.2 INTRODUCTION TO THE WOLTJER PROBLEM

The Woltjer Problem involves finding minimal energy fluid knots on a domain, given a fixed value

of helicity. It can be stated by the following pair of equations:

E(V)=<V,V > 4.3)

H(V)=C (4.4)

Recall we stated in Chapter 2 that the flux of a plasma will be conserved. Considering also the
flux of the plasma, we can simplify the Woltjer problem by adding the constraint that flux be held
fixed. This special case of the Woltjer problem is known as the Taylor problem. Moreover, we are
looking for solutions that are fluid knots, that is, vector fields that are smooth, divergence free,
and tangent to the boundary. We will see in Chapter 5 that solutions to this simplified case of the
Woltjer problem must necessarily be curl eigenfields and this will reduce the energy minimizing
problem to finding solutions of the equation V x V = AV. But before we proceed, we will establish
the relationship between energy, helicity, and flux. We start this process by looking at some vector

field relations.

4.3 VECTOR FIELD RELATIONS

Since solutions to Taylor’s problem will be knots that are also curl eigenfields, we will proceed to

establish a property of such vector fields.?

Proposition: Suppose V € KNCE. Then py (V) = AF (V).

For a more detailed reference of these propositions, refer to “The Taylor Problem in Plasma Physics”
by Dr. Jason Parsley.
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Proof: Using Stokes Theorem, we obtain that:

(V) :f V-ds:/ (V% V)-ndA
M Ty
Since V € CE, we can write:

/ (VXV)-ndA=A [ V-ndA=AF(V)
XM Y

QED
Proposition: E(V)=AH(V)+ pL(V)F(V)

We have two cases to consider here: the case where A = 0 and then when A #0. If A =0
then we essentially want to show that E(V) = p.(V)F (V). We start out by letting V = cZ. Then

we have:

I 27 ra
E(V)= / V.-Vdt = / / / c*rdrdpdz = wa’lc?
Q 0 J0 0

Now we calculate flux:

2 ra
F(V) :/ V-ndA :/ / crdrd@ = wa’c
Q 0 0

Finally, period is given by:
l
pr(V) :/V-ds:/ cdz =cl
L 0

Thus we have that E(V) = pr.(V)F(V) when A = 0.

To show the case for A # 0, we first need to introduce the modified Biot-Savart operator. The

modified Biot Savart operator, BS'(V), is defined by restricting BS(V') to Q and then subtracting
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some gradient, Vi, so that V- BS'(V) = 0 and BS'(V) -n = 0. Thus we can say:

BS'(V)=BS(V)—Vs

Moreover, from the Hodge Decomposition Theorem, we also know that:

<V,Vg>=0

because of the inner product structure of VF(Q). Now we can establish a relationship between

helicity and the modified Biot-Savart operator:

H(V)=<V,BS(V) >=<V,BS'(V) - Vg >=<V,BS' (V) >

For the next step, we need to call on the fact that we can write:?

(V)
Al

BS'(V)==V 2 (4.5)

=) —

Accepting this fact, our result follows smoothly by starting with our definition of helicity:

H(v):/QV.Bs’(v)dr:/gv. (%V—”)S/)z) dr

Y vvac L V), Loy 1 1,
=1 [vevar—5 [ v-BEe = Ev) )LpL(V)/QV ads
1 1 1

Now multiplying through by A we obtain:

AH(V) =E(V) = pL(V)F (V)

3This is a nontrivial result and too involved to include justification of here. Please reference section 7 of
“The Taylor Problem in Plasma Physics” by Dr. Jason Parsley for a detailed treatment.
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QED

For our next proposition, recall from section 2 that we stated solutions to the Taylor problem

must necessarily be curl eigenfields (we will show this in Chapter 5).

Proposition H(V) = 0 if and only if Taylor solutions correspond to eigenfields with eigenvalue

Z€10.

— Suppose A = 0. Since Taylor solutions correspond to vector fields that are curl eigenfields, we
have V x V = 0. This implies V € HK. Moreover zero curl for V implies our vector potential A is

zero. In electromagnetism, helicity is defined classically as:

H(V) :/QA~Bdr

Since A is zero, then we have that H(V) = 0.

<= We established that E(V) = AH(V) + p(V)F(V). If H(V) = 0, then we have E(V) =
pL(V)F (V). Recall that we let V = cZ, and then we showed that E(V) = wa®lc? and F(V) = na’c.
So from that, we have E(V) = [cF (V). Choose W € K such that F(W) = F(V). By the Hodge
Decomposition Theorem, we can write W as the direct sum of two fields lying in distinct orthog-
onal subspaces. Namely, we can say W = Wrg 4+ Wpg where Wk € FK and Wyx € HK. We
know F(Wrk) = 0 by definition of FK. Thus we conclude that F(Wyg) = F(W) = F(V) which
implies Wy = V. Since E differs from F only by a scalar factor of /c, we may now state that
E(V)=E(Wuk) < E(W) = E(Whk) + E(Wrk). Thus any choice of W will only yield a higher

energy field.

QED



CHAPTER 5

AN OVERVIEW OF TAYLOR’S SOLUTION

5.1 LOOKING FOR CURL EIGENFIELDS

Let Q be the domain on which our vector field V is defined. Taylor’s problem asks us to find
fluid knots of minimal energy, given that helicity and flux are fixed. In section 9 of Influence of
Geometry and Topology on Helicity by Cantarella, DeTurck, Gluck, and Teytel, it is shown that
if a vector field V is divergence free and tangent to our boundary, d€, then the following equation
holds:

VxBS(V)=V

We will use this result to show that solutions to the Taylor Problem must necessarily be curl
eigenfields. We start with a Lagrange multipliers method from calculus of variations, given the

equation we obtained in the previous chapter:

E(V)=AH(V)+pL(V)F(V)

We will also need to know a couple properties of the modified Biot Savart operator. These will be

given here without proof:

1. BS' is linear: BS'(c1V) + c2Va) = ¢1BS' (Vi) + c2BS'(Va)

2. BS' is self-adjoint: < BS'(V),W >=<V,BS' (W) >

25



26

Accepting these two properties above and using methods from calculus of varations, we can

now derive the following:

Proposition: If V is a solution to E(V) =AH(V)+pr(V)F(V), then VXV = AV

We begin by considering small perturbations in our vector field, V, starting at time zero and repre-
sented by a quantity, W. Recall that the value of flux is independent of the surface we choose so long
as dX € dQ. So we are free to choose for any V, a Ly such that V x p; (V)F(V) = 0. If we differ-
entiate E(V +tW) = AH(V +tW)+ pr(V +1tW)F (V +tW) with respect to time, we have %E(V +
tW)=2 %H(V +tW)+ % (pL(V+tW)F (V +tW)). Rewriting, using our inner product definitions,
we have £ <V +tW,V +tW >= AL < BS'(V+tW),V +tW > +L(p (V +tW)F(V +tW)).
Expanding this out, it becomes 4 (< V,V > 42t <V,W > +12 <W,W >) = L (< BS'(V),V >
+2t < BS'(V),W > +12 < W,W >) + %(pL(V +tW)F(V +tW)). Now applying our time oper-
ator to the energy and helicity terms, we obtain 2 < V,W > +2t <W,W >=2 < BS'(V),W >
12t <W,W > +d(p (V+tW)F(V +tW)). If we let t = 0, then we have 2 < V,W >=21 <
BS'(V),W > +4 |,_o (pL(V +tW)F(V +tW)). Now, taking the curl of both sides, we have
Vx(2<V,W>)=Vx(2A<BS'(V),W>)+Vx (4 |,— (pL(V +tW)F(V +tW))). The curl of
the last term will be zero, and then we are left with V x (2 <V,W >) =V x (2A < BS'(V),W >).
Since this expression is true for any W, then V x V =V x ABS'(V). But we have shown for the

modified Biot Savart operator that V x BS'(V) = V. Thus V x V = AV. QED.

To solve our energy minimization problem, we now only need look for vector fields that are

curl eigenfields.



27

5.2 THE LUNDQUIST SOLUTION

We will begin by solving our Lagrange multiplier problem for energy minimization for the sim-
plest case. Given a standard basis of cylindrical coordinates, we start by holding ¢ and z contant.
Thus what we will be looking for is an energy minimizing vector field with dependence only on r.

The solution that we obtain by doing this is known as the Lundquist solution.

In the general Taylor Problem, we would have the following:

V(r,9,2) =Vi(r,0,2)f +Vo(r,0,2)@ +V.(r,9,2)2

But since we are letting V depend only on r, we can write the above as:

V(r) = Ve(r)P + Vo (r)@ + Ve(r)Z

The equation we wish to solve is:

VXV =Vx[Vi(r)F+Ve(r)@+V.(r)2] =4 [Vi(r)F+ Ve (r) @+ V,(r)Z]

We start by working with just the left hand side and simplifying:

1OV, aVe]. [aVe Vi) . 1[a(Ve) V],
e 1952 o2 1 [0 0,

Every partial derivative that is not with respect to r is going to be zero and thus we obtain:

V. 19V, aVe, (Ve V.
VXV =g et e T e )t
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Now we have that:

v, . aV, Vo \ . R . R
_a_rz(p (a—:) + 7¢) =21 [Vr(r)r—l—V(p(r)(p—l—VZ(r)z}

and thus we obtain the following three equations:

V,=0

I

or
aV, V.
e e

ar r AV,

From our first equation, we get:
19V,

Yo="7%,

We plug this back into our second equation and obtain:

19%V, 19V,
A or:  rA or ¢
Or likewise:
0%V, 9V,
2 z z 242y,
v ATV, =0

This equation may not appear to exactly take on the form of Bessel’s equation, but it does however
take on the form of what is commonly known as the parametric Bessel equation. The parametric
Bessel equation is given by x2y" +xy’ + (A%x?> — v?)y = 0. It can be shown fairly easily that the
parametric Bessel equation implies the Bessel equation. If we simply make the substitution that
x' = Ax, then we obtain:

B x/2 dZy
T A2dx2

/2d2 /d
YAy XAy ey

X' dy n_.2 pdy ,dy [ p
a2 e —A+(x“=Vv)y=x +xX—=4+x“"—v)y=0

A2+ —
+ A dx dx"? dx’
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And this is the original Bessel equation.

Now we know the solution to this equation must be:

V=J(@Ar)¢+Jo(Ar)Z

We now have the Lundquist solution for energy minimization sans A. To find A all we need do is
apply our boundary conditions and use the known values of zeros for the Bessel function. Since
energy must be zero at the boundary, then if we assume a normalized radius (R = 1), the value of
the Bessel function must also be zero when R=1. Thus we want to find a A such that Jy(A) = 0.

The first value of A for which this occurs can be determined numerically and it is approximately

2.404.

5.3 A MORE GENERAL SOLUTION

Making certain assumptions in order to simplify the mathematics, we have obtained a basic solu-
tion to energy minimization of confined plasmas. While this solution has many merits, it is dif-
ficult to resist the temptation to go a step further. Recall the small angle approximation for the
pendulum problem from elementary mechanics. You’ll remember that for small angles, we just
assume sin 8 ~ 6. This makes the mathematics simple, but deep down we may crave something
more intricate and exact. To get precise answers for the pendulum problem, we must consider
the general case which introduces the use of eliptic integrals to find solutions. But we can’t deny
that the small angle approximation provided us with a level of understanding. For the Lundquist
solution, using cylindrical coordinates, we hold both ¢ and z constant. To get a much better approx-

imation, we must consider fields where ¢ and z are not held constant. In order to do this, we’d set
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up our equation as before only now we consider dependency on all three variables:

ar X0

{1% %]A [avr avz}@ 1[8(TV¢) oV,
r

PETIEE 5, }z=7t[Vr(r,fp,z)r+V<p(r,<p,z)<p+Vz(r,<p,z)z}

From this we obtain the following three coupled partial differential equations:

19V, Ve
rap o M
v, av.
dz or AVe
1[a(Vy) V]
?{ or _a<p]_’WZ

Since the solution to the Taylor problem must lie in CE, we know that it must be a combination
of the Lundquist solution, V), and the arbitrary curl eigenfields an; - We know this because it was
shown! that these are all the curl eigenfields that are both tangent to the boundary and divergence

free. For reference we state what these are.

Vo=J1(Ar)¢ +Jo(Ar)2

Vnﬂ = (—%Jm(m’) + ’;Ll;fm(nr) + %{JmH (nr)) sin(m@ +kz)?

;Ler(nr) +ndpi1 (nr)) cos(m@ +kz)®

2
+n7]m (nr)cos(m@ +kz)2

Vit = (=) £ ) % i) ) costmp 342)

m mk
+ (_7Jm(nr) + =

+ (—?Jm(nr) + m—kJm(nr) + 11 (”’”)) sin(m F kz) P

Ar
2

+%Jm(nr)sin(m(p Fkz)2

where m € Z* U{0}, k € 22 (ZT U{0}), and A = VA2 +nZ.

I'See “The Spectrum of the Curl Operator on the Flat Torus” by Cantarella, DuTurck, Gluck.
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Proposition: Vi and for fields V! ., py (V! ) =0and F(V' ) =0.

Proof:

I 2

pr( ni1,k) = A IJm(na)cos(m(po—f—kz)dz

We consider two cases here: one for k # 0 and one for k = 0. If k # 0, then note we are integrating
over exactly one period(that is, we are going from 0 to /. Since cosine is a periodic function and
there is no other z dependence in our integral, then the value of the integral must be 0. If kK = 0,

then our cosine term is constant and we obtain:

PL(Vino) = Aldm(Aa)cos(mey)

We know that Vnﬂ is tangent to the boundary when:?

m mk nk
sz(na) =+ (—EJm(na) + TJmH (na))
Since k = 0, and we know that the above equation must hold for V,,, o to be tangent to the boundary,

then this implies the right hand side is zero and thus J,,(1a) = 0.

Now,

Vm 1 2r .
F(Vipx) = M = X/o aVv(a,@,z0)- ¢do

a

m mk 2
= (—7Jm(na) — EJm(na) +nJm+1(na)) /0 cos(m@ +kzo)d @

The periodicity of the cosine implies the integral is zero for m # 0. If m = 0, then we have

27;&]] (na)cos(kzo)

2See: Parsley, The Taylor Problem in Plasma Physiscs, Section 5.

F(Vm,k) =
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But we know that J; (Aa) = 0 and thus Vm,k we have F(V,, ;) = 0.

From this point, we have a few more steps to take before we arrive at our goal. We have already
stated that our solution must be a combination of Vjy and V,,, x. So let us write the Taylor solution

asW=aVy+ ﬁVmJ{ where «, B, m, and k are specific values we must determine.

The first thing to note is that the ratio of helicity to the square of flux determines the values
of our constants & and 3. To give a sketch of why this is true, we recall that F(V,, x) = 0 and so
we can write:

F(W) = aF(Vp)

Also:

H(W) = o*H(Vo) +2aB < BS(V), Vi > +B*H (Vi)

From these two equations, we can obtain values for o and f3.

_ —2aB <BS(Vo), Vs > ++/(2aB < BS(Vo), Vi >)* —4H (Vi i) (02H (Vo) —H(W))

P 2H V)

We also want the eigenvalue that will yield us the lowest energy level out of all A,,, ;’s. It turns out
that this occurs for m =1 and k ~ %.3

While the importance of these exact constants can primarily be seen in experimental physics,
it is nice to know that we can indeed quantify our results mathematically. This quantification,
although moderately tedious for our simplified scenarios, becomes almost impossible when more

real-world factors are introduced.

3See: Parsley, The Taylor Problem in Plasma Physiscs, Section 8.



CHAPTER 6

A GLANCE AT THE TRANSITION TO THE STANDARD TORUS

While the Taylor solution provides us with simple geometric model for plasma flows, it should be
clear that its simplification omits several factors that must be considered in real-world applications.

The most obvious omission would be the bend or curvature of the standard torus.

The flat torus serves as an almost perfect model for high-aspect ratio curved tori because, for
any given small cross section, the degree of curvature is minimal. However for low-aspect ratio
tori, the degree of curvature is high, even for a small cross section, and thus we cannot expect
vector fields to behave the same as they do in a flat torus. All modern tokamaks are modelled
best by very low-aspect ratio tori. And in fact, the cross sections of these reactors are more like a
D-shape rather than a circle. These factors must be taken into account when considering the most

efficient field configuration of a fusion reactor.

Let us define the projected position of a particle, ¢, inside the torus, with respect to its major
axis to be as follows:

P, =R —rcos(@)

If we imagine a uniform vector field, say Vi, under cylindrical coordinates, flowing in the Z

direction in the flat torus, we note that the field lines all travel at the same rate no matter what

33



34

their distance from the boundary. See image: Now con-

sider bending this flat torus and connecting the identified ends as to form a standard torus, as

shown: If we retain the same vector field under our new
geometry, although the linear velocity remains the same among all field lines, the difference in
angular velocity, which now must be accounted for, causes a metric separation of all particles that
flow in different projected positions on the major axis. In other words, two particles that, in the flat
torus, would have remained next to each other forever, now drift apart at a constant rate propor-
tional to the difference in their projected positions on the major axis. We can calculate this rate, A,
as follows:

Aq = k(qu _P£12)

where k is the proportionality constant. We note that k£ will remain fixed as long as the major radius

of the torus remains fixed.
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As we can see in the above image of the standard torus, the vector field is flowing in the @
direction. Although this image does not give reference to the rate of flow of the field lines, imagine
a new vector field that would appear visually the same as the one above. But instead of the linear
velocity of all particles in the field being the same, we now have equal angular velocity. We will
call this new vector field V> and we note that there is some W such that V, = V| + W. As a field
quantity, W will be dependent on A,. And to consider the transition from flat to curved torus, W

must be taken into account.

We already stated heuristically, that as the aspect ratio of the curved torus is made smaller,
the role of W will become more significant. To take a brief look at this fact mathematically, we can

write:
W= / Agdt
Q

When the aspect ratio increases, the projected positions of particles become smaller. Thus we have

Ag4— > 0 for every particle, g. So we see that [W|— > 0 uniformly and thus W is identically zero.



APPENDIX A

VISUALIZATIONS AND CODING

In this section, I have placed some visualizations of vector fields and tori that were created using

Maple 11. The Maple code used to generate these images precedes them.

A.1 THE ASPECT RATIO OF A TORUS

The aspect ratio of a torus is defined to be the ratio of the major radius (the radius from the
geometric center to the center of any circle in the cross-section of the interior) to the minor radius
(the radius of any circle in the cross section of the interior). The aspect ratio of a proper torus has
a lower bound of 1. We can visualize this by imaging a scenario where the major radius is actually
smaller than the minor radius (as seen in the first picture). The object would no longer be a torus
and, in fact, would be topologically equivallent to a sphere. We also note that as the aspect ratio

approaches zero, the object atains the shape of a perfect sphere.

The second image is interesting in that it is actually tangent to itself at its geometric center. The

solid torus of aspect ratio 1 has the property that any longitudinal loop on the boundary is homo-

topic to a point. This cannot be said about a torus with aspect ratio greater than 1.

Below are some examples of tori (although the first image is not actually a torus) with aspect ratios

in increasing order.
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> reset:
> with (plots) :with (plottools):
> c[1]:=0.5;c[2]:=1;c[3]:=2;c[4]:=5;

c[l] := 0.5
cl[2] :=1
c[3] =2
cl[4] :=5

> plot3d ([ (1+(1/c[1])+*cos(v))*cos(u), (1+(1/c[1])*cos(v)) *sin (u)
, (1/c[1])*sin(v)],v=-10..10,u=-10..10, scaling=constrained,
numpoints=2500, shading=NONE) ;plot3d ([ (1+(1/c[2]) *cos (v)) xcos (u),
(1+(1/c[2]) *xcos (v))xsin(u), (1/c[2]) *sin(v)],v=-10..10,u=-10..10,
scaling=constrained, numpoints=2500) ;plot3d

([ (1+(1/c[3])*cos (v))*cos(u), (1+(1/c[3])*cos (v))*sin (u),
(1/c[3])*sin(v)],v=-10..10,u=-10..10, scaling=constrained,
numpoints=2500) ;plot3d ([ (1+(1/c[4])*cos(v))*cos(u), (1+(1/c[4])
x*cos (v))xsin(u), (1/c[4]) *sin(v)],v=-10..10,u=-10..10,
scaling=constrained, numpoints=2500);

>
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A.2 VECTOR FIELDS

A vector field can be visualized as a set of arrows indicating a direction of flow. Since a plasma in
a tokamak fusion reactor behaves as a fluid confined to the interior of a solid torus, we can model

them effectively using vector fields.

Below is an example of one of the most basic vector fields in cartesian coordinates. This vector

field is symmetric about all axes and points outward from the origin. But most important to note
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is that it actually gets “weaker” as it goes further out from the origin (this is represented by the
arrows becoming smaller). As it happens, this particular vector field can represent an electric field
of a point charge or a gravitational field from a point ( or any field that disperses its intensity at a

rate of an inverse square).

> F[l]:=vector ([x/(x"2+y " 2+272),y/ (x"2+y"2+272) ,2z/(x"2+y"2+2"2)1);

> fieldplot3d(F[1l],x=-1..1,y=-1..1,z=-1..1,thickness=2,scaling
=constrained, arrows=THICK) ;
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If we pictured the above vector field as, say, the gravitational field of the earth on a large enough
scale that the earth could be considered a point, we would note that these arrows are normal to the

surface of the earth.

But since we are dealing with tori primarily, let us define a vector field that is normal to the surface

of a torus - particularly, the vector field represented by the gradient.

> a:=0.5;b:=Pi/2;c:=1;

a := 0.5
Pi
b [
2
c :=1
> F[2]:=(x,y,2)—>(c—sqgrt (x"2+y~2)) " 2+z"2-a"2;
2 2 2 2 2
F[2] := (x, y, z) —> (c — sqgrt(x +y)) + z - a

> gradF2:=VectorCalculus|[Gradient] (F[2] (X,V,2),[%X,v,2]);

+ 2 z e

> VectorCalculus[Gradient] (gradF2);

> A[2] :=implicitplot3d(F[2] (x,Vy,2),x=-b..b,y=-b..b,z=-b..Db,
scaling=constrained, axes=framed, numpoints=5000) :
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> B[2]:=fieldplot3d(gradfF2,x=-b..b,y=-b..b,z=-b..b,scaling=constrained
, axes=framed, color=blue, thickness=1,arrows=SLIM) :
> display ([A[2],B[2]]);

% o
M i
1.5 \%E ﬁﬁ;:f’
T ¢ G
G R e
Z I:I -II—":--" "'-:"—I-
= ? g
ke S
i i !,f,f:ﬁ ;}H“\
vl .
1.5 o % 21.5

A.3 VECTOR FIELDS INSIDE THE STANDARD AND FLAT TORI

Now that we have seen examples of different aspect ratio tori as well as some basic vector fields,
we might wish to picture some vector fields inside the torus. In a tokamak, the plasma flows on
the inside of a magnetic bottle whose interior is similar to that of a solid torus (A tokamak is not a

perfect torus however).

The easiest model for vector flows in a torus is to start with the flat torus. The flat torus can be
visualized as a cylinder with the top and bottom identified. The primary difference from a flat

torus and a standard torus is the metric. If we imagine a standard torus with an aspect ratio that
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we allow to become larger and larger, the metric approaches that of a flat torus. So flat tori can
be quite effective for modelling behavior of flows in large aspect ratio tori. Unfortunately, modern
tokamaks have low aspect ratios and the flat torus has its limitations as a model.

Below we show a vector field pointed in the Z direction of a flat torus.

af[0]:=1;b[0]:=1;

al0] :=1
b[0] :=1
> F[3]:=(x,y,2)->(x/al0]) "2+ (y/b[0]) "2-1;
2 2
X y
F[3] := (x, Yy, 2) —> ————— + - -1
2 2
al0] b[0]
> x[0]:=1;y[0]:=1;2[0]:=2;
x[0] :=1
y[0] =1
z[0] := 2

> C[l]:=implicitplot3d(F[3](x,vy,2),x=—x[0]..x[0],y=-y[0]..y[0],2z=0..2[0]
, Scaling=constrained, numpoints=2500, axes=framed) :
> V[1l]:=vector ([0,0,z]);

> C[2]:=fieldplot3d(V[1l],x=-x[0]..x[0],y=-y[0]..y[0],z=0..2[0],
scaling=constrained, axes=framed, color=blue,thickness=1, arrows=SLIM) :
> display ([C[1],C[2]]);
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We might wish to map this particular vector field to its equivalent in the standard torus. Unfortu-
nately, it doesn’t have an exact equivalent due to the non-uniform change in the metric. We see
above that all the field lines are flowing in a uniform direction at a uniform speed. However, an
analagous vector field in the standard torus would have field lines flowing faster and faster as they

moved further away from the geometric center.

Below we see an analagous vector field in a standard torus.

R := 2

> addcoords (tokamak, [r,u,v], [ (Rtr*xcos (u) ) xcos (v), (Rtr+cos (u))
xsin(v),rxsin(u)]);
> F:=vector ([ (R+cos (u)) *cos (v), (R+cos (u) ) *xsin(v),sin(u)]);
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F := [(2 + cos(u)) cos(v), (2 + cos(u)) sin(v), sin(u)]

> G:=vector ([0,0,1]);

> A:=plot3d(F,u=0..2%xPi,v=0..2xPi, scaling=constrained, shading=NONE) :
> B:=fieldplot3d (G, r=0..1,u=0..2xPi,v=0..2%Pi,scaling=constrained,
axes=framed, coords=tokamak, thickness=5, arrows=THIN) :

> display ([A,B]);
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The above vector field has zero helicity, but plasma flows in actual tokamaks do wrap around each
other with non-zero helicity. Below we can see a vector field flowing in both the i as well as the ¥

direction.

> H:=vector ([0,1,1]);
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> C:=fieldplot3d(H,r=0..1,u=0..2xPi,v=0..2%Pi,scaling=constrained
, axes=framed, coords=tokamak, thickness=5, arrows=THIN) :
> display ([A,C]);

A.4 EXTRAS (ENERGY AND HELICITY)

> with (LinearAlgebra);

Energy of a vector field V is defined to be the L1 inner product of V with itself over a given

domain. Our domain in this case is a torus where dV 1is given by:

dV:=(R-rxcos (u) ) *r+dr+xduxdv;
dv := (2 - r cos(u)) r dr du dv
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We will enter a few vector fields here including the two we plotted above and compare the energy

levels of these fields.

> V[1]:=<0,0,1>;V[2]:=<0,1,1>;V[3]:=<r,u,v>;

> for 1 from 1 to 3 do E[i]:=int (int(int(V[i].V[i]* (R-r*xcos (u))

*r,r=0..1),u=0..2+xP1i),v=0..2+xP1i) end do;

2
E[1] := 4 P1i
2
E[2] := 8 Pi
2 4
E[3] := -2/3 Pi + 32/3 Pi
> for 1 from 1 to 3 do E[i]:=evalf(E[i]) end do;

E[1] := 39.47841762
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We can see that the first vector field has half the energy level of the second. This difference in
energy is simply due to the non-zero helicity of the second field. Although it is practically impos-
sible to reduce the helicity to zero in a fusion reactor, we can see that efforts to reduce it as much

as possible are beneficial.



APPENDIX B

VECTOR IDENTITIES

A-(BxC)=B-(CxA)=C-(AXB)

Ax (BXC)=B(A-C)—C(A-B)
V(fg)=f(Vg)+g(Vy)

V(A-B)=Ax (VXB)+Bx (VxA)+(A-V)B+(B-V)A
V-(fA)=f(V-A)+A- (V)

V- (AxB)=B-(VxA)—A-(VxB)

VX (fA) = f(VxA)—Ax(Vf)

VX (AxB)=(B-V)A—(A-V)B+A(V-B)—B(V-A)

V- (VxA)=0

Vx(Vf)=0

Vx(VxA)=V(V-A)—V?A
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