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CHAPTERONE INTRODUCTION

1.1 OVERVIEW

This chapter introduces the combinatorial optimization problems and tioa btan intractable
problem. Heuristics and meta-heuristics are then discussédawmibcus on metaheuristics
utilizing adaptive memory. A problem called tkaake-in-the-boxproblem is then briefly

introduced.

1.2 GOMBINATORIAL OPTIMIZATION PROBLEMS

Many problems exist that cannot be solved by traditional methbusse problems often
suffer fromcombinatorial explosionmeaning that the solution space (or number of states) of the
problem grows as an exponential function of the problem size. Indleure, when a problem
suffers from combinatorial explosion and the instance of the proldelarge enough it is
commonly referred to as antractable problem. An intractable problem is one for which no
known polynomial-time algorithm exists and whose solution cannot be cadnpatea
straightforward way in a reasonable amount of time.

Given a set of feasible solutions, Sdiacrete optimization problens one for which a
real-valued objective function, f, consisting of one or more disar&ues, is defined on S. The
set S is commonly referred to as gtate-spacend the function f is referred to as tfitmess

function (within the context of Genetic Algorithms)r thecost function The element(s) of S



with a minimal (or possibly maximal) f value is known as the optnof the problem. If Sis a
finite set, the problem then becomescambinatorial optimization problenjLee, 2004].
Combinatorial optimization involves determining an optimal value fitbm elements of S.
Since S is finite, an enumeration of all possible solutionspralvide the optimum value in any
combinatorial optimization problem. Often, however, enumeration is ntible choice and

in many cases an intractable one. The notion of a combinatorializgtion problem can be
formalized as follows.Given a set, S, of feasible solutions and an objective function f, such that f

maps elements of SR find the element s* of S, such that f(s*) <=f(s ) forallsin S.

1.3 THE SNAKE-IN-THE-BOX PROBLEM

The snake-in-the-box problerfor the problem of finding the longest snakes in hyper-
cubes) is an example of a combinatorial optimization problem. Theepnodtails finding the
longest achordal path through an n-dimensional hypercube. Interestkieria-the-box codes
began with [Kautz, 1958] in the context of unit distance, error chgaodes. Similar to Gray
codes, snakes are commonly referred toit@siit codes @r circuit codes of spread)2 By using
the visited nodes of the hypercube as code words, SIB codes founchi@qplin analog to
digital conversion [Klee, 1970]. If a codeword has one bit corruptetiancommunication
process, it either corrupts to a neighbor on the path (negligibles)eaoa non-codeword (error
detected). Similarly, if a subset of a SIB code is chossnch a way that code words differ by
at least two bits, the result is an error-correcting codesifuyle-bit errors). SIB codes have

found application in other areas as well. They have been used in cbngtalectronic locking



schemes in [Kim, 20004nd [Dunin-Barkowski, 1999] uses a SIB code in a cerebellar learning

model. A formal introduction to the Snake-in-the-Box problem is presented in chapter 4.

1.4 HEURISTICS& META-HEURISTICS

In searching for an optimal solution in Sheuristicis a “rule of thumb” that is believed
to encourage the search into areas with optimal or near-optimabaslutHeuristic approaches
differ from exact methods in that they do not guarantee that a lylaijziimal value will be
reached. A popular heuristic search algorithm is the clasgsaent method. In this method a
random element of S is initially chosen as the starting poimratively, the starting point is
replaced with an element adjacent to it with the smallestuevaThis continues until a local
minimum is found (not necessarily a global minimum). Note that ltleuristic may only be
applied to problems for which S israetric spaceor for S where the notion of “adjacent”
elements is meaningful.

The termmeta-heuristiadescribes a more sophisticated search where a heuristiadis use
to guide other, simpler heuristics. Some examples of the moreapapeta-heuristics are given
below:

* The genetic algorithmuses a population of solutions and “evolves” better

population members (with respect to the fithess function) by repigate
applying mating and mutation operators [Holland 1975][Goldberg 1989].
* Thesimulated annealinglgorithm simulates the cooling process of a metal

[Kirkpatrick 1983].



» Ant colony optimizatioemulates a colony of ants by simulating “pheromone
trails” the ants would leave as they search the solution space [Colorni 1992].

 Tabu Searchattempts to emulate human memory by keeping track of
previously visited solutions in a “tabu list”. This is hoped to drivesteerch

out of local minima [Glover 1986].

These and other meta-heuristic strategies have gained populaitiy many
combinatorial optimization problems. Good meta-heuristics can dcaityatreduce the time
required to solve a problem by eliminating the need to consider ynjlosisibilities or states.
Meta-heuristic methods however, do not guarantee that an optimabsaliti be found in a
tractable way. If the optimal solution to problems is not alwaysd, then why has so much
attention been diverted to these methods in the last two decadesan3wer is that modern
meta-heuristic approaches provide “good” quality (optimal, or neanaptsolutions in a short
amount of time. Many practical optimization problems to whicharheturistics are applied are
created by roughly simulating a real problem in such a watytthfind a global optimum is not
necessarily more beneficial than finding a “near” optimum.

The aforementioned meta-heuristic strategies are all ntb@dler naturally occurring
processes. A study of these techniques follows in the next chaBtelinvestigating these
heuristics, we hope to determine which features are necesbary tailoring a heuristic to a
specific problem. The result is an lterated Local Seailch) (algorithm that utilizes adaptive

memory. Details of the algorithm are presented in Chapter 5.



1.5 THESISMOTIVATION

The snake-in-the-box problem has been analytically studied by mesearchers,
including [Kautz, 1958][Wojciechowski, 1989][Abbot, 1991][Snevily, 1994]. Many hw&se
approaches resulted in establishing new upper and or lower bounds 8iBth@oblem in
various dimensions. A lower-bound proof by construction was firstnptexl heuristically by
[Potter 1994] when they tailored a genetic algorithm to the dimer&i&iB problem. An
exhaustive search of the solution space in dimension 7 was catriecdomputationally by
[Kochut 1996]. Since then, there have been a number of computational metmoldyeel,
many of these being heuristic methods. The heuristic apm@eascked to date have been
primarily based on evolutionary methods. This thesis presents a oluti@vary method and
hopes to present a new strategy for finding maximal snakesdirdrithe bounds on maximal
snakes. This thesis arrives at an Iterated Local Searcfitlahgavith adaptive memory tailored

for finding snake-in-the-box codes.

1.6 THESISORGANIZATION

The thesis is organized as follows. Chapter 2 presents adftadge of the widely used
heuristics that are founded on naturally occurring system&hapter 3 gives a formal
presentation of the snake-in-the-box problem. Chapter 4 describes tdteeunistic known as
Iterated Local Search and the more general class of mettlmsuthat employ Adaptive
Memory. Chapter 5 outlines the process utilized in this pape€Chagter 6 presents our results.

We present our conclusions and further research goals in Chapter 7.



CHAPTERTWO NATURE INSPIREDHEURISTICS

2.1 OVERVIEW

Heuristic approaches to combinatorial optimization problems have logede
dramatically in the last three decades. They have been dutdastackling many difficult
optimization problems for which finding a solution in a straight-fadvamanner is
computationally infeasible. Some of the most widely used heutesthniques are inspired from
naturally occurring systems and include: genetic algorithabsi, $each, simulated annealing and
ant colony optimization. The systems that these approachesaseel lon are biological
evolution, intelligent problem solving, physical sciences and swatelligence, respectively.
These heuristic approaches can be classified according to timilparcharacteristics of each
algorithm. This classification leads to a better understarafimdnat strengths and shortcomings

each method contains.

2.2 APPROACHES

In this section, we present an overview of some of the most populastiteapproaches that

owe part of their inspiration to a naturally occurring process.



2.2.1 GENETICALGORITHMS

Inspired by Darwin’s theory of evolution, genetic algorithms west developed by
[Holland, 75] and formalized into their modern representation by [Gald&3]. Genetic
Algorithms solve problems by evolving an answer from a pool ofilplessolutions. The
algorithm begins with a set of possible solutions (chromosome®dcallpopulation. Each
chromosome in the population has an objective function value (fitnesgjaed with it. This
fitness is an indicator of how “good” of a solution the chromosomeGsrtain (more fit)
chromosomes are then chosen to help create a new population. Tlosvested by the hope
that the new population (next generation) will be, on average, migréhdn the previous one.
The process of choosing chromosomes is called selection. Onicefaomosomes has been
selected, they must mate to form a new population — this is callédg or recombination. This
process is repeated for either a predetermined number of genermr until the average fitness
stops improving for a set number of generations. This setup poses amprobleat happens if
all of the initial chromosomes are too similar? Or whatpleas if, through generations of
breeding with the same population size, the population becomes toarg8imirhis can be
problematic if the algorithm converges around a local minimum/maximTo combat this, a
mutation operator is applied after recombination. The mutation opesaghtly changes

chromosomes to give each generation some diversity.



2.2.2 ANT COLONY OPTIMIZATION

The ant colony optimization technique was developed as a resuh ek@eriment
performed with Argentine ants by [Goss, 1989]. In the experiment, a group ohdrgs@oly of
food were placed together. The food supply, however, was physicadlyased from the ants in
such a way that the ants had to take one of two bridges to redolodheAt first, the ants chose
random paths. As time progressed, the ants began to take the shinetved bridges. This
result can be attributed to the pheromone trails that the amesdsahey travel. Since the travel
time is shorter on the small bridge, more ants are able te traden compared to the longer
bridge, thus marking the small bridge with more pheromones. Theagx@ithm follows this
process by considering a population of solutions (ants) that move frigimbogng solution to
neighboring solution. As each solution is visited, information about the toavat solution is
recorded as a pheromone trail. This information may be updatin@ a®lution is being built
(online step-by-step pheromone updating) and/or after the solution mabwkd€online delayed
pheromone updating). These pheromone trails affect the future moveosslet all of the ants
of the population (ants are encouraged to move on pheromone trails). cbardge the ants
from converging too quickly along a path, the pheromone trail digsipatuch in the same way
that a real scent does.

In addition to the details of the aforementioned process, ant colomyizgiton
techniques are commonly equipped with other features. One commoneradbc an ant to
deposit an amount of pheromone proportional to the quality of the solutienbitilding.
Depending on the problem being tackled, the ants are sometimessgventype of memory

structure. In some versions of the ant colony optimization technijeepiteromone trail is



updated by a more centralized entity (that is, an agent that imatepanformation about the
entire search, not just one ant). This type of update is réferras offline pheromone updating

[Dorigo, 1999].

2.2.3 TABU SEARCH

Tabu search’s modern form can be accredited to [Glover, 86], basearlothat he had
done previously [Glover, 77]. Tabu search is now an established ogionitachnique that is
competitive with nearly all other heuristic techniques. A heuargsigned to exploit an element
of human cognition in its searches, tabu search does this by “margdiiz states as it visits
solutions in the domain. The memories that it builds are then used to influence the $hareh.
have been a large collection of tabu search variants proposed for vaoousnatorial
optimization problems since Glover's seminal paper. The béasictwre of the tabu search
method, however, is a local search algorithm equipped with a tabuTl. tabu list records
information about the state of the search at each visited solatmder to discourage the search
from revisiting those solutions. Just what information is recordedwell as how that
information influences the search, is a topic that has been actively reskarchcent years.

While the basic structure of tabu search was outlined above, it d®uldted that most
tabu search implementations are highly customized to the probleamét While much of the
literature focuses on the tabu list and how long it keeps its centbig should not be the only
focal point. The real focus of tabu search is not to just keksi af information about the
search, but to use that information in a way to guide the sealodttey regions in the search

space. In doing this, the notions of long-term and short-term memasy be applied. Short-



term memory is typically represented by the use of the tabtolrecord the characteristics of
recently visited solutions (also known as recency-based meraody)thus keeps the search
diversified. Long-term memory is commonly used to record infaanatbout the best solutions

in order to intensify the search around those particular regions of the searh spac

2.2.4 SVULATED ANNEALING

An annealing process begins at a high temperature, which alowss to move freely.
As the temperature is decreased, the atoms slow and eventtiddlyfeeming a crystal. If the
temperature is decreased rapidly, the resulting crystgpisally marred with defects. If the
temperature is decreased slowly (annealed), then the resulgstgl aypically suffers from far
fewer defects. The simulated annealing technique, motivated keyvahsns of crystallization
during an annealing process, was introduced by [Kirkpatrick, 83]. Mheading process is
translated into algorithmic form by incorporating a temperapaemeter, T, and a cooling
schedule into a local search algorithm. First, the local sda¥gins with a solution, S. This
solution is perturbed in some way and accepted by the search prabability that is dependent
on the objective function values of the solutions and on the temperatareegper, T. As T
decreases, the probability of moving the search from a bettertstatworse state decreases as
well. Determining the optimal cooling schedule is left up toithplementer of the algorithm.

Once it has been found, it can usually be applied to similar problems.

10



2.3 GOMPARING THEMETHODS

The general structures of the aforementioned heuristic approachgsat first glance,
not seem to share common characteristics. There is, howeverple sinifying agent among
these algorithms. Each heuristic mimics the naturally oegurconcepts of selection
(optimization) and mutation (randomization) [Colorni, 1996]. Genetic dhgos follow this
trend in a straightforward manner. Ant colony optimization achiemedomization through the
use of random-walk agents (ants). The optimization process isrg@rime the building of
pheromone trails. In the simplest case, the tabu list found in tasahsemplementations
provides an element randomization in the search. Optimizationsoasua result of the hill-
climbing strategy commonly invoked. The tabu search literature (as wh# &terature of most
other heuristic approaches) focuses on the balancing of intetisiiqghoroughly inspecting
local minima) with diversification (thoroughly inspecting the solutspace). This concept is
comparable to the ideas of optimization and mutation, respectivelyndoRezation is an
obvious element of simulated annealing. The optimization occuteasmperature drops and
the search converges around a local minimum.

While the optimization and randomization concepts previously outlined prowsdght
into the fundamentals of nature-inspired heuristics, a more inticoat@arison of the methods

follows.

11



2.3.1 MNULTIPLE SEARCHAGENTS V. SINGLE SEARCHAGENTS

Perhaps the most obvious way of partitioning the above methods is tategpam into
population-based and single-point searches. Genetic algorithms acwlamt optimization are
both methods that are searching with a population of solutions at estfoit. Tabu search and
simulated annealing, however, keep only one current solution. Whéefiggt glance it may
seem that a population-based approach is automatically superioe sngle-point approach,
this is not always the case.

For example, [Areibi, 2001] asserts that single-point searakesugerior to population-
based methods in solving the partitioning and placements problemsis his to single-point
searches being more equipped to perform finely tuned searches.atlophlsed approaches,
especially evolutionary methods, are good at exploring the solution sipaeethey search from
a set of designs and not from a single design. Typically pigoibased searches, while good
at covering a diverse part of the search space, are suseeptibkeing very “near” optimal
solutions and never finding them. This behavior is a result of galgbathms and ant colony
optimization making large jumps in the neighborhood graph (via constrisctingons with ants
and applying genetic operators, respectively) [Birattari, 200hEese methods are able to follow
a discontinuous walk through the search space. The single-point apprdacheshave this
behavior. In a single point approach such as tabu search or sohaatealing, a continuous
walk through the search space is typically adhered to. At eaehian, the solution changes to
another solution in its neighborhood.

The purpose of population-based searches such as genetic algonithrastacolony

optimization is for the agents of the populations to eventually “agreeh optimal solution. In

12



contrast to this idea, one of the main goals of tabu search isetenprthe search from
converging, so that the search may continue investigating unexpkegexhs of the solution
space until a threshold is satisfied. Convergence in a tablh ssdgarithm manifests itself as
cycling -repeating a sequence of solution transitions indefinitely, or asepomit by [Battiti,

1994] as restricting the search around a chaotic attractor. The list frichn tabu search gets its
name is responsible for keeping the search out of local minimasimulated annealing, the

element of randomization is so prevalent that the search only converges agptratiere drops.

2.3.2 MEMORY UTILIZING V. MEMORYLESSMETHODS

Of the four approaches highlighted here, three of the four utihifmrnnation about
previous iterations when calculating search moves in the curezatiagh. The most obvious
candidate for being a memory utilizing method is tabu search. cdlljpi tabu search uses a
combination of explicit and attributive memories. Explicit memsmysed when entire solutions
are memorized in the search. Typically, only elite solutiorms racorded in this fashion,
although versions of tabu search exist that record entire solutions in the téhslist known as
Strict-Tabu) [Glover, 97]. Attributive memory uses information abth# attributes of
previously visited solutions. This memory is used to encourage movasitparticular areas of
the solution space (intensification) and to discourage moves towatidufzar areas of the
solution space (diversification).

While tabu search is based upon one observer that “rememberstsasipsaclutions in
order to make “smarter” decisions in the future, ant colony opttraizeelies on a population of

“‘dumb” observers. The tabu list style of adaptive memorypkced with a group memory of

13



pheromone trails. Ant colony optimization takes a set of randommga#igents and encourages
them to converge by affecting their decisions with the pheromoitee tilghese pheromone trails
can be considered as a type of adaptive memory [Birattari, 2001¢ iag are constructed
from visited solutions and their corresponding fitness values. Thesenpdree trails encourage
the ants to choose paths that lead to relatively “good” regionshef solution space
(intensification). An evaporation mechanism is usually employethatdhe ants do not follow
along a single path of pheromones (diversification). The informatmmamed in the
pheromone trails may also be utilized and modified in a more Isti@iggard manner, i.e. by a
daemon that uses global information to affect the search.

The population of solutions acts as a form of memory in geragorithms. In
particular, the schemata of the solution strings are “remembdpedinore appropriately,
“inherited”) from the previous generation. Thus, the population can be thodighs an
overview of information about previous iterations. Reproduction and recotmobiraperators
eventually cause schemata of the solution strings to increassdde in proportion to their
relative fitness in the population [Holland, 75], leading the searahbetter regions of the
solution space.

Simulated annealing does not utilize any type of memory in its search.

The group of heuristics that utilize a form of memory haventyg been grouped under
the name “Adaptive Memory Programming” [Taillard, 1998hese methods are characterized
by common elements in their general structures. These comtigsnalie: keeping some type
of memory about previously visited solutions, using this memory to genaraew starting
solution and then applying a search method to this new starting soll#@mmna more in-depth

discussion on the topic, see [Taillard, 1998].
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2.3.3 NEIGHBORHOODSTRUCTURES

Solution construction in genetic algorithms is not the resultaticsheighborhoods. In
fact, the mutation operator can arbitrarily change a solutiondifeaent neighborhood at each
iteration. This type of neighborhood, coupled with the concept of a populatigestsighat
genetic algorithms will search more of the solution space thaonld a single-pointed,
neighborhood-based search. [Areibi, 1995] asserts that interchange metlubdas those used
in the recombination stage of genetic algorithms, are more li&dhjiltto converge to “optimal”
solutions.

Tabu search's use of long-term and short-term memory hawtsaidfe the neighborhood
structure of the search. Short-term memory typically rexluitee size of the current
neighborhood by excluding the moves listed as “tabu”. Longer term resmmane used to
expand the current neighborhood to include solutions that would not be in the neggitbor
otherwise [Glover, 1997]. Thus, the use of memory creates a dymaglcborhood for the
search at each iteration.

Simulated annealing utilizes what is typically referreésaca static neighborhood. That
is, any solution visited twice in the search will experience the same segjoiboeng solutions.

In ACO, the term neighborhood is reserved for the choicetablaby each agent when
constructing a solution. These neighborhoods are static in nature, anesaneide are affected
by the pheromone trails. Neighborhoods of entire solutions are noedeés each solution is
built be a separate, semi-random process (ant). ACO algoritiehautilize the notion of a

daemon may incorporate global information into the search and theretmid alter the
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neighborhood structure that the ants experience. In a graph probleaxafaple, a daemon

could rule out a section of the graph by pruning edges.

2.4 GONCLUSIONS

In investigating the heuristic approaches that are based inaltyataccurring systems
similarities emerge. The roles of randomization and optinozagre prevalent in each of the
techniques. The methods differ in their approaches and by what angerthey place on the
ideas of randomization and optimization. Simulated annealing and antycmgbtimization are
essentially randomized searches with constraints (in the &dran annealing schedule and
pheromone trails) that encourage optimization. Tabu search andcgalgetithms, however,
are optimizing searches with constraints enforcing randomiz@ticdhe form of a tabu list and
the mutation operator).

In pointing out the differences and potential shortcomings of thesesti@techniques, it
should not be surprising that, in practice, hybrid algorithms are cognemployed. In order
for a metaheuristic to be successful on an optimization problemyst balance the effort it
exerts on exploring the search space with the effort it exerexploiting the information
gathered from previously visited solutions [Birattari, 2001]. Incopugaelements from

multiple heuristic approaches allows more flexibility to achieve thisbala

16



CHAPTER3 ITERATED LOCAL SEARCH

3.1 INTRODUCTION

Over the last two decades, heuristic techniques have become moner@ancbmpetitive.
Less attention has been given to the general structures dfjtnghens and more attention has
been reserved for problem specific tailoring of the methodgatdi# Local Search (ILS) is a
metaheuristic designed to embed another, problem-specific, locah sesaif it were a “black-
box”. This allows Iterated Local Search to keep a more gersratture than other
metaheuristics currently in practice.

The basic idea of ILS is described as follows. Generagtagtsolution, sO, and repeat
the following. Execute the black-box local search on sO to obtain kiXakly optimal value.
Modify this value in some way as to arrive at a new solutionTs$iis simple type of search has
be reinvented numerous times in the literature, with one of iie&ancarnations appearing in

[Lin, 1973].

3.2 BASICS OF THEALGORITHM

In order to construct an ILS, one first needs an optimization prolblgman objective
function, f, defined over a solution space, S. Given these things, a local sgacddure
specific to the problem must be obtained. This local search procdéaed byocal, should

take in a starting solutioeJ S and return a locally optimal value. Let this locally optimaleal
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be denoted bg* and let the set of all local optima be denotedhya proper subset & Then
local defines a surjection fror8 to S*. The ultimate goal of the Iterated Local Search is to
perform a search on the &t It accomplishes this by repeatedly iterating the procddued,

at each iteration generating sthof S*.

First, an initial solutions,, is constructed, either randomly or with some construction
method. This solution is passed to the local search, resultingew &cally optimal solutiors.
This is the “current” solution of the algorithm and will rema&a until another solution is
accepted to be the current solution. The locally optimal solutiachasiged in some way,
resulting ins'. How the locally optimal solutions are changed is an implertientdetail carried
out in the procedurperturh. Ideally, the perturb operation “transforms an excellent solution into
an excellent starting point for a local search” [Lourenco, 20&1]s then passed to the local
search, resulting in a another new locally optimal solut$n, This new local optimum then
must pass certain acceptance criterion (this is defined iprttoedureaccepj and if it doess*
becomes the new “current” solution. Note that the “current” solutiahefLS metaheuristic
refers to the solution that will act as the starting solutamttie black-box search in the next
iteration. More details regarding tperturb andacceptprocedures are covered in the sections
that follow.

The Iterated Local Search involves four main components: creatimgtial solution, a
black-box heuristic that acts as a local search on th& #et operation perturb, which modifies
a solution; and the procedure accept, which determines whether ampeaturbed solution will

become the starting point of the next iteration. Pseudo-code for the algoritivenivglow.
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Iterated Local Search

3.3

search local regions.
computational efforts around local optima, effectively limiting $karch to a few regions of the
domain.
thoroughly inspects each local minima) of the search, while ther ldescribes the idea of
diversification (making sure the process is not searching atsofbde domain). The effective
balancing of intensification and diversification is one of the Erierdles encountered when

tailoring any metaheuristic for a specific problem. Multigletegies exist for accommodating

Let:

f the function to minimize

Local ¢ a local search with the objective of minimizing f
S the set f is defined on

S an element of S

S* the set of f(s), or local optima

s* an element of S*

Perturb  Perturbation function
Accept Acceptance Criterion

Then:

Choose an initial solution s 0inS
s*=L ¢(So)
s =gs*
Loop

s' = Perturb( s )

s* = Localf( s")

if( Accept( s*) == true)

s=¢g

endLoop

DIVERSIFICATION V. INTENSIFICATION

When exploring the search space, it is important for the ILS proedduadequately

both, and a few of them are discussed in the following sections.
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3.4 ILS COMPONENTS

This section explores the components that compose the ILS heuriBtiese include
determining the starting solution, a black-box search, a method oflpegw solution and a

method to determine whether a solution should be accepted for the next iteration.

3.4.1 STARTING SOLUTION

The initial solution used in the ILS is typically found one of tmays: a random solution
is generated or a greedy construction heuristic is applied. Inia@ygreedy heuristic, better
solutions can be found in a shorter amount of time. It has been showwvenothat this is true
only in the short-term. Longer running algorithms see no signifid#ference in solution

quality based on the initial solution [Stutzle, 1998].

3.4.2 BAcK-Box LoCAL SEARCH

Ideally, the local search that provides the backbone of themiéthod should always

return a local optimum and it should find that local optimum as efficiently as posSiiviee this

step is usually the most time consuming and since it occurstaiteeation of the metaheuristic,

a slow local search can lead to poor performance of the overall method.
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3.4.3 HERTURBATION SCHEME

The perturbation scheme takes a locally optimal solution, s* aadupes another
solution to start the local search from in the next iteration. In the besttbagerturb procedure
will result in a solution outside of the visited basins of atiwac That is, it will be “near” a
previously unvisited local optimum. Choosing the correct perturbatbanse is important,
because it has a great influence on the intensification/divaettsiinccharacteristics of the overall
algorithm. Perturbation schemes are commonly referred tetam§” and “weak”, depending
on how much they affect the solution that they change. A perturbahemscthat is too strong
has too much diversity and will reduce the ILS to an iterated ran@start heuristic. A
perturbation scheme that is too weak has too little diversity ahdresult in the ILS not
searching enough of the search space. The perturbation scheme shahdddrein such a way
that it is as weak as possible while still maintaining thefeohg condition: the likelihood of
revisiting the perturbed solution on the next executiolo@dk should be low [Lourenco, 2001].
The strength should remain as low as possible to speed up execotmn fThe desired
perturbation scheme will return a solution near a locally optuakie. If this is the case, the
local search algorithm should take less time to reach the next locally opéiunel

Components from other metaheuristics have been incorporated into thebgtesn
phase. [Battiti, 1997lise memory structures similar to tabu search to control the lpegrtur.
In doing so, one can force intensification when globally “good” valueseached and force
diversification when the search stagnates in an area of Hrehsepace. Borrowing from

simulated annealing, temperature controlled techniques have beeio deexk the perturbation
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to change in a deterministic manner. Basic variable neighborheatths employs a

deterministic perturbation scheme.

3.4.4 ACCEPTANCECRITERIA

When the current solutiors, is perturbed, the result is the new solutgn s' is then
passed to the black-box search heuristic. The resulting local wptimust pass acceptance
criterion fors' to be designated as the new “current solution”. Just as perburlzain range
from too much intensification (no perturbations) to too much diversdicgperturb all elements
of the solution), acceptance criterion choices affect the searehsimilar way. The most
dramatic acceptance criterion on the side of diversificatido accept all perturbed solutions.
This type of practice can undermine the foundations of ILS, sirmectturages a random-walk
type search. Contrasting with this is to accept only solutionsatteaimprovements to the
globally optimal value. Many implementations of ILS employ tigjge of acceptance strategy
[Rossi-Doria, 2002]. This type of criterion, especially with aakv@erturbation scheme, can
restrict the search from escaping the current basin of tattnac Moreover, with this type of
scheme the probability of reaching the same locally optimakviakcreases — a trait that reduces
the algorithm's overall effectiveness. Large perturbationsrdyeuseful if they can be accepted.
This only occurs if the acceptance criterion is not too biasedrtls better solutions [Lourenco,
2001]. The tabu search relies on occasionally moving the searchieagwaith worse objective
functions in order to better search the solution space. [Stutzle, $8B68k that acceptance

criteria that acceomeworse solutions outperform their best-only counterparts.
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3.4.5 STOPPINGCRITERIA

Generally, the algorithm executes until one of the following conditions is met:

* A predetermined number of cycles have occurred

* The best solution has not changed for a predetermined number of cycles

* A solution has been found that is beyond some predetermined threshold.
Notice that the 3 methods constitute 3 different approaches: Tsie niethod executes
independently of the performance of the process (time). The secetdnstops executing
when the performance of the method stops improving (performance).thiftieanethod stops

executing when a solution is found that is “good enough” (utility).

3.5 ADAPTIVE MEMORY PROGRAMMING

The term Adaptive Memory Programming (AMP) was first usefsiover, 1997]. Here
it refers to long term memory strategies that can be apfiedbu search. These memories,
Glover proposes, can be used to intensify and diversify the seaaahore effective way than is
possible with short-term memory alone. In [Taillard, 1998] an inyabin into heuristics that
utilize a form of memory is undertaken. These heuristics inclgeéeétic algorithms, scatter
search, tabu search and ant colony optimization. By their investigatto these memory
utilizing methods, a new, more general understanding of the tmdaptive memory
programming surfaces. The characteristics common to heurlsicerhploy memory structures

are the following:
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1) a set of solutions/solution attributes or an aggregation of the solatrwhgheir
attributes is memorized

2) a provisory solution is constructed using this information

3) the provisory solution is improved upon, typically with some well-known
heuristic

4) the memory is updated with information from the solution

AMP, when defined this way, is found in many of the most successftdheuristic strategies
[Taillard, 1998]. Typically, solutions in step 2 are constructedaking elements of different
solutions from step one and combining them (usually with some lineaatoper The data
structures holding the solutions or the solutions themselves are thgfiesh in step 4 after a
local search has been applied.

[T. Stutzle 1998] asserts that “incorporating memory into itbroves performance”.
Our investigation into nature-inspired heuristics shows us that efiels on an element of
randomization and an element of memory. Since ILS is genemghgmented as a stochastic
search, it provides the element of randomization needed. Many mes$tibs, including those
inspired by nature, can be considered as adaptive memory progtacwsporating a form of

adaptive memory into the ILS will allow us to create an algorithm that incGtgmthese ideas.
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CHAPTER4 THE SNAKE-IN-THE-BOX PROBLEM

This chapter presents an overview of the Snake-in-the-box (SIB) problem.

4.1 DEFINITIONS AND NOTATION

Let G represent a finite, non-directed graph. TR¢G) andE(G) are the vertex and edge
sets of G, respectively. A pathP in G is defined as a subgraph d&, where
V(P) ={Xy, X, %,.. %} and E(P) ={X,X;, X, X5, X, X5,.. X, X, }. Whenx, = Xy, the path is said to
be acircuit. A chorddefined on the patR in the graplG is an edgee[] E(G) such thatis not

an element oE(P) and its defining vertices are elementsv/@P). Thus a chord is and edge not

in the path, but whose vertices are in the path.

Hypercubes

Q is a standard cube ¥ (Q) =8, |E(Q)| =12 and each vertexyJV(Q) has degree 3.

Figure 4.1 depicts a cube graph.
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Figure 4. 1 — A three dimensional hypercube

Similar to the graph of a cubehgpercubas an extension of this idea into dimensions 4

and greater. A hypercube of dimensidnis an undirected graph 02° vertices and

2°" [t edges, where each vertex is connected to exacttifer vertices. While the definition of
a hypercube holds for any positidethe word hypercube is typically reserved for tsamvith

d >3, Hypercubes of dimensiahwill be represented b@". Figure 2 depicts a hypercube of

dimension 4 (¢). For a more detailed description, we directrérader to [Harary, 1988].

Figure 4. 2 — A four dimensional hypercube
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A useful property of hypercubes is that the nathes be mapped to binary sequences of
lengthd. In this mapping, two vertices in a hypercube adg@cent if and only if their binary
sequences differ by exactly one bit. Figure 4 Biate the standard cube when this mapping is
applied. From this point on, we will not distingbibetween a vertex on the hypercube and its

binary sequence.

100 ™

110 L

o on

Figure 4. 3 — A standard cube with binary encodihgertices

It is interesting to note that a hypercube of disiend can be constructed from two
hypercubes of dimensiott1l This construction is performed by connectingilsimvertices.
For example, consider the following figure, wheréypercube of dimension 4 is constructed
from two hypercubes of dimension 3. Then the diresentation of each node can be updated
by adding a ‘1’ to each node originally in the ldfinension 3 hypercube and by adding a ‘0’ to

each node originally in the right dimension 3 hyjde.
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Figure 4. 4 — A four dimensional hypercube depiegdhe joining of two three dimensional
hypercubes

4.2 SNAKES
A d-dimensional snakis defined as a path S @1 such that S is achordal. The following figure

depicts a snake in dimension 3.

100 1

110 111

o on

Figure 4. 5 — A snake of length 4 on the standalic

Similarly, ad-dimensional coilis a achordal circuit througl®. Figure 4.6 depicts a coil in

dimension 3.
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100 1

110 111

o o1

Figure 4. 6 — A coil of length 6 on the standartecu

Throughout this paper, d-dimensional snake will be referred to asd&nakeand
similarly, ad-dimensional coil will be referred to asdacoil. A maximal snakeés a snake that
violates the definition of a snake when it is exieth by adding any vertex to the front or back of
its path sequence. While coils and snakes arelgloslated in their definitions and applications,
this thesis does not address issues pertainingtlgite coils.

A longest snakén Q% is the snake with the largest possible numberediaes. S(d)will
denote the longest snake in dimensibnSimilarly, a longest-coil will be denoted byC(d).
Longest snakes have been determined for hyperaybés dimension 7. Longest snakes for
dimensions > 7 remain an open problem.

Much attention has been given to determining tigzal bounds fo€(d) (a bound for
S(d)can easily be derived from this by subtracting)twiéautz showed a lower bound in [Kautz,
1958], namely that

C(d+2)=2C(d)
from which it follows that

C(d) > A12%? 'whereA is a positive constant
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Various researchers improved on this bound withbj@h 1991] constructing the current best

lower bound, expressed as

7 24 <c(d)
25¢

The current tightest upper bound for dimensionsd<= 11 was given in [Snevily, 1994] and

is expressed as

cd) < 2d-1(1— 2;)
(d*-d+2)

As pointed out by [Rajan, 1999], these bounds lealarge margin of erro ©(2° /d?). This
analysis ofC(d), while interesting, does not directly apply $¢d) [Potter, 1994]. The only
bound that can be directly derived is the one fbictv ad-snake is constructed directly from
C(d), giving

S(d)=C(d) -2
[Abbott, 1991] increased the lower bounds for cdits dimension 8-20 using proof by
construction techniques. [Paterson, 1998] usedchnique based on arranging equivalence
classes of the snakes to improve many of thesedsouihe current lower bounds found non-

computationally foiS(d)are shown in table 4.1.
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Table 4. 1 — Upper and lower bounds $¢d)in dimensions 7 to 11

D Calculated Lower Bound Computed Lower Bound CateddJpper Bound
7 46 [Kautz, 1958] 50 [Kochut, 1996] 60 [Snevilpay]

8 96 [Paterson, 1998] 97 [Rajan, 1997] 123 [Snelidp4]

9 168 [Abbott, 1991] 186 [Casella, 2005] 250 [Shevig94]

10 338 [Paterson, 1998] 358 [Casella, 2005] 5048y 1994]

11 618 [Paterson, 1998] 680 [Casella, 2005] 1012y8y, 1994]

The value forS(d) in dimension 7 is exact — it was determined comonally through
exhaustive search.

The current best value &(8)of 97 was determined computationally by [Rajan, 299
using a technique that incorporated maximal snékes smaller dimensions. Beginning with
[Potter, 1994], heuristic approaches have beernieapp the problem, aiming to improve lower
bounds of SIB codes by constructing examples. RBceCasella, 2005] reported using a
stochastic hill-climber to find values of 186, 38®&d 680 for dimensions 9, 10 and 11,
respectively. Figure 4.7 depicts the effect tlmhputation has had on tightening the bounds on

S(d)for dimensions 5 to 11.
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Current Bounds for S(d)
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Figure 4. 7 — A comparison &f{d)bounds obtained computationally & non-computatitynal

4.3 APPLICATIONS OFSNAKE-IN-THE-Box CODES

Snakes and their closed counterparts, coils, #ea oéferred to asircuit codes of spread
2. Interest in snake-in-the-box codes began withufi€, 1958] in the context of unit distance,
error checking codes. By using the visited nodeth® hypercube as code words, SIB codes
found application in analog to digital conversidflide, 1970]. If a codeword has one bit
corrupted in the communication process, it eitf@rupts to a neighbor on the path (negligible
errors) or a non-codeword (error detected). Snhgilef a subset of a SIB code is chosen in such
a way that code words differ by at least one h#, iesult is an error-correcting code (for single-

bit errors). SIB codes have found application theo areas as well. They have been used in
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constructing electronic locking schemes in [KimQ@Pand [Dunin-Barkowski, 1999] uses a SIB

code in a cerebellar learning model.
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CHAPTERS5 AN OUTLINE OF THEPROCESS

51 INTRODUCTION

The task of finding SIB codes is equivalent talfirg circuit codes of spread 2. Highest-
quality solutions to this problem are those snakiis the longest path lengths. The longer the
path, the more useful the code is in applicatidfied, 1970]. Aside from the lengths of the
snakes, the execution time is also an importantacieristic to consider when evaluating the
usefulness of a particular method. This chaptgmseby describing a simple snake construction
heuristic. We then show how this heuristic canused within the Iterated Local Search
metaheuristic. We then present an adaptive merbased heuristic that utilizes the ILS

procedure developed.

5.2 SVAKE CONSTRUCTIONHEURISTIC

In order to implement an lterated Local Searcte aeeds some type of local search
heuristic to iterate over. That local search tsigrishould be computationally efficient, since it
will be executed repeatedly throughout the ILS.eviRius heuristic approaches to finding
maximal snakes rely on populations of feasible paththe hypercubes. These paths must then
be inspected to see if they lie in the domain efsiiele snakes. This check for feasibility is
typically carried out in an objective function ewafion for the snake at each iteration of the

algorithm. Objective function values are typicatlgpendant upon the maximal length snake
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contained in the sequence. This is usually redlee a function that, beginning with the first
node of the sequence, checks each subsequent orotEagibility until a non-feasible node is
found. The number of feasible nodes found befoise doint constitutes the length of the snake.
Given a node sequence of lengtithe average objective function evaluation is ondfaer of
O(). Another commonly employed method for determirting objective function value of a
node sequence is to treat the sequence as a ciisyland then finding the longest snake within
that list. Computing the objective function thiayymeans that the previously detailed objective
function must be executertimes, resulting in an operation on the orde®@f’).

Here, we take a different approach. Instead ofsttacting a feasiblgath in the
hypercube and then determining its fitness, we tcocisa feasiblesnake updating its fitness as
each node is added to its end. The result is @ EEarch heuristic that restricts its search to
those valid paths through the hypercube that domstsnake-in-the-box codes. In order to
accomplish this task, information about the stathe hypercube that the current solution lies in
must be recorded. More particularly, an inducduagsaph is constructed alongside the solution.
The induced subgraph is a subgraph of the hypercotesisting of all nodes and edges
contained in the current solution, as well as aligible chordal nodes and edges to the current

path of the solution.
5.3 SDLUTION REPRESENTATION

Node Sequence

An array of integers, in the range [f),2represents the path as a sequence of node=of th
hypercube. The length of this sequence corresptmdbe length of the snake. One such
possible node sequence of length 6 in dimensi@n 4 i

{0,1,3,7,15, 6}
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Transition Sequence

In [Potter, 1994], a GA is employed to find highatjty solutions to the SIB problem. In doing
so, the traditional method of representing a path aequence of nodes on the graph is replaced
by a representation of the path as a sequentrardditions The transition sequence, originally

introduced by [Abbott, 1991] can be constructednftbhe node sequence as follows:

for( int i = 1; I < nodeSequence.length; i++ ){
transi ti onSequencel[i] =l ogz:(nodeSequence[i - 1] *nodeSequence[i]);

}
Similarly, the node sequence can be reconstrucbed the transition sequence as follows:
for( int i =0; i < transitionSequence.length; i++ ){

nodeSequence[i +1] =(nodeSequence[i ] "(1l<<transitionSequence[i]));

}

The transition sequence takes advantage of thensymy of the hypercube since it is
possible for a single transition sequence to desanultiple node sequence paths by beginning
each sequence at a different node of the hyper@fbmurse, this can be achieved with a node
sequence by fixing the first element in the segagndlore importantly, any modification to the
transition sequence will result in a valid pathhafis not to say, however, that any modification
to the transition sequence will result in a vahdlse. The aforementioned snake represented as a
transition sequence would appear as

{0, 1, 2, 3, 0}

54 INDUCED SUBGRAPH

As mentioned earlier, each solution keeps an iedusubgraph constructed from the

current path. This graph contains all of the nodiethe path, as well as any nodes directly
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adjacent to the graph. Thus, when a node is tdded to the transition sequence, each ofithe

possible nodes to append can be checked for wiabi#i the induced graph.

boolean procedure tryAddEnd( transitionNode end ){
// the Transition Node to add, converted to a Node Sequence
// Node
NodeSequenceNode endNode = convertToNodeSequenceNode( end );
I/ for each dimension
for (i = 0 to dimension)
Il check to see if the node to add will form a chord
/I omit checking if i == end, b/c that refers to the
Il previous node in the path
if(i '= end && inducedGraph.canFormChord( endNode ) )
return false;
return true;

As previously mentioned, evaluating the lengtihef snake beginning with the first node
is an operation on the order ©{rY), where n is the length of the sequence. Each nudg be
compared with all other nodes in the sequence termine feasibility. In our construction
heuristic, once a maximal snake has been foundnfues exist that can be added while
maintaining solution feasibility), the effectiventime for constructing the solution is on the
order ofO(dn), where n is the length of the snake dnslthe dimension.

Another reason for choosing the construction tegher stems from the uncertainty
involved when assigning a SIB code an objectivetion value. The most obvious choice is the
length of the snake. This is problematic becahsecardinality of the set of maximal snakes of
length n in a given dimension can be unknown. €keuation does not provide a practical way
to distinguish solutions in a way suitable for Ilgent search through the solution space. That
is, the range of the objective function is too dritamake intelligent choices in a straightforward

manner. [Casella, 2005] proposed a modified oiedtnction where “tightly-coiled” (that is,
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they left the most nodes of the graph free forritextension of the snake) snakes were given a
higher fitness value. While this helps to grareildie range of objective function values, it does
not do so by much and could possibly discouraganaptsolutions from being found. Since a
straightforward objective function evaluation doest seem to add additional insight to our
search, we use the construction technique.

In constructing a SIB code, feasible nodes areiaghgd to the solution randomly. We
decided to make this process random primarily &pkihie process as computationally efficient
as possible. A randomized search, while not “igieht”, does benefit from low computing
overhead and avoids some of the pitfalls of a datestic search (cycling, for example). These
things, coupled with the fact that so little is kmoabout the structures of optimal SIB codes
influenced this decision.

As covered in the Chapter the ILS algorithm is composed of four basic eleraeat
function to generate an initial solution, a funatim perturb the current solution, a black-box
search procedure and a set of acceptance crit€ha.SIB construction heuristic outlined above
will act as the black-box local search procedureuniILS algorithm.

Iterated Local Search

Let:
f the function to minimize
Local ¢ a local search with the objective of minimizing f

S the set f is defined on

S an element of S

S*  the set of f(s), or local optima

s* an element of S*

Perturb  Perturbation function

Accept Acceptance Criterion function

Then:
Choose an initial solution sO in S
s*=L (s0)
S=s*
Loop

s' = Perturb(s)
s* = Localf( s")
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if( Accept( s*) == true)
S =s*
end Loop

5.5 ITERATED LOCAL SEARCH

Section 5.4 discusses how each of the elementthefiterated local search were

implemented.

5.5.1 NITIAL SOLUTION

The starting solution is the transition sequer@d 2}. This is chosen as the seed since

all SIB codes are isomorphic to a SIB code thainates from {0,1,2} [Kochut, 1996].

5.5.2 HERTURBATION SCHEME

Once a solution reaches a maximal state (no nodesbe added to the end while
maintaining its feasibility status), nodes are reew from the end. This constitutes the
perturbation scheme. How many nodes to remove single perturbation of a solution is a
function of the length of the current solution. eThumber of possible nodes to remove ranges
between 1 and n, where removing one node retumssdlution to its state on the previous
iteration and removing n nodes returns the solutmits state on the first iteration. A linear
probability distribution dictates the likelihood @y particular perturbation being chosen.

Therefore, the average perturbation will cut eathhe solutions in half. Thus, an implicit
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intensification occurs around better fit solutionghis type of scheme encourages exploration

around each solution, while still maintaining tresgibility of large perturbations.

5.5.3 ACCEPTANCECRITERIA

The most dramatic acceptance criterion on the eiddiversification is to accept all
perturbed solutions. This undermines the foundatiof ILS, since it reduces the search to a
random-walk. Similarly, the most dramatic accepgacriteria on the side of intensification is to
accept only those solutions that are better thenbtst value found. This type of criterion,
especially with a weak perturbation scheme, catriceshe search from escaping the current
basin of attraction. [Stutzle, 1998] shows thate@tance criteria that alloome worse
solutions outperform their best-only counterparts.

If the solution resulting from a local search ba perturbed solution is at least as good as
the best solution, the perturbed solution is aezefdr the next iteration. Thus, worse moves are
allowed, since multiple snakes with the same lengtlay have different potential for aiding the
search.

While the process outlined above proves an efiicmethod to construct snakes, the lack
of intelligent decision making makes it little motean a random search. The section that
follows outlines a strategy for incorporating megnanto the search in order to intensify the

search in an intelligent way.
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5.6 RRINCIPLE OFPROXIMATE OPTIMALITY

As illustrated by [Rajan, 1999], snakes of dimengdaare often composed of maximal
snakes of dimensiod+1. This insight allows the exploitation of a teirjue employed by certain
tabu search algorithms — the principle of proxingagmality. In [Glover, 1997], the proximate
optimality principle is outlined. It states thagdod solutions found at one level are likely to be
found close to good solutions at an adjacent levét’tabu search, this principle is realized by
searching within one level for a set number ofaitiens and then restoring the best solution
found before proceeding to the next level.

This type of strategy is realized here by seaghiirst for suitable maximal snakes in
dimensiond and using these solutions as starting solutiongHersearch in dimension d+1.
Given the symmetry of the hypercube and, partitpldre ability to form a hypercube of
dimensiond from two hypercubes of dimensiaiil, this is an intuitive strategy.

As noted by [Taillard], the characteristics commntonheuristics that employ memory
structures are the following:

1. a set of solutions/solution attributes or an agatieg of the solutions and their attributes
is memorized
2. aprovisory solution is constructed using this infation

3. the provisory solution is improved upon, typicalith some well-known heuristic

4. the memory is updated with information from theusioin

As an example, assume that we are interesteddinfj s(7). Then we can utilize the ILS
described above, where the initial solution is {P}lto do so. A more powerful alternative,
however, is to seed our ILS in dimension 7 with aximal snake from dimension 6. This still

leaves the question @fhichdimension 6 snake to use. Our approach buildspalation of the
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longest snakes at each dimension and repeatedéytismn as seeds in an ILS. Each of the
snakes is reduced to its isomorphic equivalentougetersal as in [Rajan, 1999]. This reduces
the search space by ensuring that any two snakésviih search are not permutations of one
another. The likelihood that a snake will be cimoae the initial solution of a search in the next
dimension is dependent on its own length and hoWitMeas performed in the past as an initial
solution. That is, given two dimension 6 snalsgands,, of the same length, & has resulted in

finding better dimension 7 snakes it will be chos&th a higher probability and vice versa. This
is realized by keeping the solutions sorted, fingtlength and then by their performance. A
linear probability distribution based on this oidgris used to determine the likelihood that a

solution will be chosen as the next seed.

S = current solution
ILS = lterated Local Search
SP, = pool of dimension i solutions

Repeat:
for (int d = lowestDimension to highestDimension )

if( d == lowestDimension )
/I perform ILS with {0,1,2}
s =1LS({0,1,2})

else
/I perform ILS with a seed from the previous
/I dimension
s = ILS( SP(d-1).getSolution() );
// update status of s in the d-1 dimension
// solution pool
SP(d-1).updateSolution(s);

// add s to the pool of dimension d solutions

SP(d-1).add(s);

It should be noted that the lowest dimension seatdh this scheme does not benefit
from having a population of solutions to beginsearch with. Instead, the solution {0,1,2} is

used. Therefore, consideration must be taken sarerthat the ILS can properly explore this
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dimension without the aide of a population of solu$. In our experiment, we determined that
the ILS could easily explore dimension 6 (this iscdssed in the following chapter), so we

utilized it as the starting point of our searches.

57 PRRAMETER TUNING

In the process outlined above, consideration rbasgiven to two things: how long to
execute each ILS and how large to make each solptol. Making each ILS run for too many
iterations will result in more intensification arml solutions, but take more computation time
that could be spent exploring other areas. Siiyijlax solution pool that contains too few
solutions will restrict the search to certain aressile a solution pool with too many solutions
may cause the search to avoid necessary interigificaround potential optimum values. These
decisions are made empirically and will be discdseehe results chapter. Stopping criteria for
the procedure outlined above consists of execuéitiger for a predetermined number of

iterations or until a suitable solution has beamfh
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CHAPTERG REsuULTS

6.1 ITERATED LOCAL SEARCH

Prior to incorporating the ILS into the AMP algbrn, it was necessary to inspect its

performance alone. The results below were obtdiyeskecuting the ILS alone with initial

solution {0,1,2}. The following table outlines orgsults.

Table 6.1 -S(d) results for ILS with no memory

Dimension Average Best Overall Best Current Lower
Bound, S(d)
6 26 26 26
7 47.1 48 50
8 79.7 84 >=97
9 131.6 132 >=186

As can be seen from the results, the ILS perfowell in dimension 6 (consistently
converging toS(d) in a few seconds), but fails to sufficiently exgoproblem instances of
greater dimension. For this reason, dimension éh@sen as the vantage point for the AMP

algorithm.

44



6.2 ITERATED LOCAL SEARCH WITH ADAPTIVE MEMORY

When incorporating adaptive memory into the ILSdascribed in chapter 5, two main
parameters must be tuned: the solution pool sizetl@ stopping critera for the ILS at each
iteration of the AMP algorithm. Increasing the ug@n pool size diversifies the search by
allowing more seeds to be explored. As a consemehe average length of snakes in this list
grows at a rate slower than that of a solution mdch smaller size. This leads to more time
being spent searching from seeds with shorter hsng@he length of the seed, however, is not
the only criteria that determines whether it isatwy starting point for a search.

The program was executed with solution list size§, 10, 25, 50 and 100. For each of
these instances the program was executed withngastopping criteria in the embedded ILS.
The ILS stopping criteria were to stop after 5, 28, 50 and 100 iterations. Each of the 25
instances described here were executed 10 timeppooximately 30 minutes each.

Table 6.2 outlines the consequences of varyingstiletion list size in the algorithm.

Each value in column 2 represents the average fourd all instances with varying stopping

criteria.
Table 6. 2 — ILS with AMP results, varying solutilist size, dimension 7
Solution List Size Average Best Snake/orst Snake FounfiBest Snake Found
Found Upon Termination Upon Termination

5 48.75 48 50

10 49.05 48 50

25 48.85 48 50

50 49.3 49 50

100 50 50 50
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As one can see, increasing the solution list al®vs for the type of diversification
necessary to achieve optimal values. There isransa steady progression of solution quality

with the increase. Table 6.3 outlines the sameatsim in dimension 8.

Table 6. 3 - ILS with AMP results, varying solutibst size, dimension 8

Solution List Size Average Best Sndké/orst Snake FounfiBest Snake Found
Found Upon Termination Upon Termination

5 94.15 91 97

10 94.15 92 97

25 94.3 94 97

50 94.8 93 97

100 95.25 94 97

The results of increasing the solution list sizelimension 8 mirror those of dimension 7.
There seems to be a direct correlation betweesdh#ion size and solution quality. As the two
previous tables show, finding the best snd&es not seem to be effected by the list sizelat al

Figure 6.3 outlines the same situation in dimenS8ion
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Table 6. 4 - ILS with AMP results, varying solutibst size, dimension 9

Solution List Size Average Best Sndké/orst Snake FounfiBest Snake Found
Found Upon Termination Upon Termination

5 166.9 164 174

10 165.9 163 171

25 167.2 164 172

50 168.4 165 174

100 168.2 164 170

In dimension 9, the situation has changed somewNhdhile there does seem to be a
slight correlation with the solution list size argblution quality, the relation is not
straightforward. The success of the instances sathtion list = 5 can be attributed to the need
for more intensification around solutions in dimens9. While some dimension 8 snakes may
provide seeds that extend to dimension 9 snakekeirl70’s easily (that is, the number of
possible paths allowed from the snake is smaltiveldo the number of possible paths allowed
from other snakes of the same length), other difoars snakes may require ample exploration
to achieve such results. Therefore, in keepingalssolution list size, these dimension 8 snakes
are extended enough times to achieve this.

Decreasing the amount of time each ILS executexslifies the search by allowing more
time to be spent on a variety of seeds. The faoligwable outlines the effects in dimension 7 of
varying the stopping criteria of the ILS within takyorithm. The ILS executed at each iteration

of the AMP algorithm for 5, 10, 25, 50 or 100 it&vas.
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Table 6. 5 - ILS with AMP results, varying ILS stopg criteria, dimension 7

ILS Iterations

Average Best Sna

k&/orst Snake Foun

dBest Snake Foun

Found Upon Termination Upon Termination
5 49.15 48 50
10 49.12 48 50
25 49.05 48 50
50 49.19 48 50
100 49.0 48 50

In dimension 7, the stopping criteria of the ILSpaars to have a minimal effect on the

performance of the algorithm.

Table 6. 6 - ILS with AMP results, varying ILS stopg criteria, dimension 8

ILS Iterations

Average Best Sna

k&/orst Snake Foun

HBest Snake Found

Found Upon Termination Upon Termination
5 93.7 92 96
10 94 92 96
25 94.75 94 96
50 94.7 94 97
100 95.2 94 97

The results in dimension 8 are more forthcomindpwegtablishing a relationship between

the stopping criteria of the ILS and the solutiarality found. More intensification improves the

average performance of the algorithm and allowsHerbest solutions to be found.
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Table 6. 7 - ILS with AMP results, varying ILS stopg criteria, dimension 9

ILS lterations Average Best Snak&/orst Snake FoungdBest Snake Foun
Found Upon Termination Upon Termination

5 166.0 164 173

10 166.2 164 171

25 167.8 166 171

50 169 166 171

100 170.3 166 174

The effects of increasing the number of ILS itenasi at each step of our AMP algorithm

are more obvious in dimension 9. There is an éskadd correlation between solution quality

and the number of iterations performed. All of thest solutions are found when the ILS

performs more consecutive iterations.

So we see that increasing the solution pool s iacreasing the number of ILS

iterations has a direct affect on the quality diuBons obtained. It is a mistake, however, to
assume that both parameters should be tuned acgaalithese findings only. Since each of

these parameters effects the overall intensifinagiod diversification of the search, we felt that

they were closely related. Thus, we found it neagsto tune them simultaneously.

Since solutions of high quality seem to be easliliained for dimension 7, the following

section focuses on optimizing the parameters fakerhunting in dimensions 8 and 9. The

following table shows the average best snake fdum 10 executions of our algorithm with

varying ILS stopping criteria and solution poolesiz
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Table 6. 8 - ILS with AMP results, stopping crite& solution pool size, dimension 8

ILS Iterations
5 10 25 50 100
5 |93 93 94.75 95.25 95.25
% 10 | 93.25 93.25 95.75 95 95
é 25 | 94.25 94.75 94 94.5 96
é 50 | 95.25 95 95 96.5 95.75
@ 100| 95.25 95 95 96.25 95.25

As can be seen from the table, the best overallegabre obtained when a balance is
reached between intensifying the search througte i@ executions and diversifying the search
through larger solution pool sizes.

The following table outlines the same scenarioimeshsion 9. Here, the best results are
obtained when the solution pool is small and th® itlerations are large. This would imply that
more intensification is needed around solutionshis dimension. Comparable solutions are

obtained with larger solution pool sizes. Sholt& durations, however, result in degradation of

the solution quality.
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Table 6. 9 - ILS with AMP results, stopping crige&& solution pool size, dimension 9

ILS Iterations
5 10 25 50 100
5 165 165.2 167.1 168.2 172.6
% 10 | 165.6 168 168.3 169.1 168.1
é 25 | 165.1 165.6 171.2 169.7 171.7
é 50 | 169.4 169 170 168.9 171.2
@ 100| 165.4 167 169.8 170.2 170

Our results with the best parameters for dimensoaisd 9 are presented in the following tables.

Table 6. 10 - Dimension 8, ILS iterations = 50,Uioin Pool size = 50

Snake Length Iterations of AMP Iterations of ILS MEi(s)
77 1 50 0
78 2 100 0
81 3 150 0
82 5 250 0
84 25 1250 1
85 63 3150 2
86 94 4700 3
90 201 10050 5
91 744 37200 20
92 1146 57300 30
93 1690 84500 44
95 4632 231600 120
97 28528 1426400 877
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Table 6. 11 - Dimension 9, ILS iterations = 5, Siolo Pool size = 100

Snake Length Iterations of AMP Iterations of ILS MEi(s)
143 1 100 0

149 7 700 1

151 1 1000 1

152 19 1900 2

155 53 5300 6

156 58 5800 7

157 288 28800 33
158 526 52600 60
159 767 76700 88
164 1171 117100 135
165 1645 164500 190
166 2193 219300 254
167 2427 242700 2819
168 3657 265700 4275
175 9889 988900 11646
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CHAPTERY CONCLUSIONS ANDFUTURE DIRECTION

7.1 GONCLUSIONS

Given the symmetry of the hypercube in any dinmmsthe snake-in-the-box problem
would seem to have an intuitively symmetric solatio Unfortunately, this is not the case.
[Aichholzer, 1997] notes that conjectures proveduathypercubes in certain dimensions are
rarely generalized for hypercubes of all dimensiofite snake-in-the-box problem, because of
its ties to the hypercube, suffers the same camditilt is because so little can be determined
about snakes mathematically, heuristic approacbethé problem have been successful in
tightening the bounds of maximal snakes in sewdnaénsions [Potter, 1994][Casella, 2005].

The performance of this approach is encouragingesiall of the previous heuristic
approaches to finding maximal snake-in-the-box sodaly on population-based searches.
Population-based heuristic approaches are gooxpaireng the solution space since they search
from a set of designs and not from a single desig§imgle-point searches, however, are more
equipped to perform finely tuned searches. Iteratecal Search is a single-point search that
incorporates elements of a population-based seartifat it is able to make large jumps in the
solution space. The method employed here religh@mcorporation of maximal snakes found

in previous dimensions into the search.

53



7.2 RUTURE DIRECTION

More sophisticated strategies could be incorpdrat the adaptive memory used in this
implementation. For example, the size of the smupool used could be adaptive, increasing
when diversification is needed and decreasing whmsification is needed. The size of the
solution pool could also differ across the varyingtances of the search. That is, the size of the
dimension 6 solution pool could differ from theesiaf the dimension 7 solution pool and so on.
Additionally, elements of the ILS could be altetedmprove performance. The perturb scheme
could be changed to an adaptive one, so that srdalked during the ILS would be perturbed
even more around poor solutions (diversifying) aeden less around good solutions
(intensifying).

Additionally, the ILS method outlined here could mcorporated into other, existing
snake-finding strategies. Since the ILS only erggdeasible snakes that can be extended from a
base snake, it can be a powerful (and computatiofesdt) technique for performing a local
search around an optimal value.

This experiment is well suited to be paralleliz&hch dimension could be searched via a
separate thread of execution, or multiple systeouddcbe utilized on the same dimension, all

sharing in and updating the same pool of solutions.
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APPENDIX A Java CoDE

import java.util.Arrays;

/**

* The ASnakeAttribute class provides a skeletal im plementation
* of the ITabuListElement and ISolutionAttribute

* interfaces defined in package tabusearch. ASnak eAttribute

* defines an attribute to a Snake object (an indu ced

* path in a hypercube).

* @author William Brown

* @version 1.01, 10/10/2004

*

public abstract class ASnakeAttribute extends ASolu tionAttribute implements
Comparable{

/**

* Compares two ASnakeAttribute objects using t he fitness values

* of the ASnakeAttribute objects. If the obje ct passed in is

* not of type ASnakeAttribute, then a ClassCas tException

* is thrown. The result is exactly zero when the equals(Object)
* method would return true. Otherwise, retur ns this.fithess

* - o.fitness.

*

* @param o the ASnakeAttribute

* @return int
* @throws ClassCastException
*/

public int compareTo(Object 0){
if( 0 instanceof ASnakeAttribute ){
return (int)(1000 * ( fitness -
((ASnakeAttribute)o).getFitness() ));

telse{
throw new ClassCastException("ClassCastExceptio nin
ASnakeAttribute.compareTo(0): " + 0);

}
}
/**
* Compares this ASnakeAttribute to the object pas sed in..
* Returns true if and only if the object to comp are with is a

* ASnakeAttribute object with the same values
*

* @param o - the Object to compare with

* @return boolean

*/

public abstract boolean equals(Object 0);



/** hashCode()
* returns the hashCode value of this ITabuListEle

*

public int hashCode()}{
long h =1234;
int sum = 0;
for(inti=0; i <values.length; i++)

sum += values]i];
h A= sum;

return (int)((h >> 32) ~ h);

}

Y/ class ASnakeAttribute

ment



/**

* The ASolutionAttribute class provides a skeletal
* of the ITabuListElement and ISolutionAttribute i
* utilized when a tabu search chooses to give solu
* tabu status, as opposed to giving entire solutio

*

* @author William Brown

* @version 1.08, 09/28/2004

*

public abstract class ASolutionAttribute implement

/I values representing the attribute
protected int[] values;
/I objective function value
protected double fitness;
/**
* Given an ISolution s, applies this ASolutionAtt
* object to s. Implementation details are left t
* computation may be done in a class that extends
*in this class itself.
*
* @param s the ISolution
*/
public abstract ISolution applyAttribute(ISolution

/**
* Compares this ASolutionAttribute to the object
* This method may be invoked by compareTo(Object
* correct implementation is important for the Ta

* correctly.
*

* @param o the Object to compare with
* @return boolean

*

public abstract boolean equals(Object 0);

/**

* Computes a hashcode for this object based on it
*

* @return int the hashcode

*/

public int hashCode() {
long h =1234;
for (int i = values.length; --i >= 0; )

h A= valuesl[i] * (i + 1);

return (int)((h >> 32) ~ h);

}

/**

* Returns the objective function value of this |
*

* @return double the fitness.

*/

public double getFitness(){
return fitness;
}

implementation
nterfaces. This class is
tion modifications

n tabu status.

s ISolutionAttribute{

ribtue
o the programmer.
ISolution or

s);

passed in..
), thus
buList to perform

s array values.

Solution



/**

* Returns a reference to the int[] representing t his
* ASolutionAttribute's values.
*
* @return int[] the values
*/
public int[] getValues() {
return values;

}
/**
* Returns a String representation of this ASoluti onAttribute
* . The format is as follows:
* "<classname> {values of the array, comma delimi ted}

* <fitness>"

* where <classname> is equivalent to the call
* this.getClass().getName()

*

* @return String the object as a String

*/
public String toString() {
String result = this.getClass().getName() + "\t{"
for (inti = 0; i<values.length-1; i++) {
result += valuesl[i] +",";

result += values|values.length-1] + "}\t" + fi tness;
return result;

}

}I class ASolutionAtribute



import java.util.*;
import java.io.*;

/**

* The Snake class provides an implementation of th
* interface in the tabusearch package. A Snakei

* mathematically as

* an induced path in a hypercube, or
* a path in a hypercube with no chords, or
* a code of spread 2.

*

* @author William Brown
* @version 1.26, 2/11/2005
*/

class Driver{

private static String outputDir;

private static int startDim; /l smallest dimensio
private static int endDim; /I largest dimension t
private static int listSize; /I size of solution
private static int ilslteration; /[l number of ILS

public static void main( String args[] ){

ilslteration = Integer.parselnt( args[0] );

listSize = Integer.parselnt( args[1] );

startDim = Integer.parselnt( args[2] );

endDim = Integer.parselnt( args[3] );

Util.gen = new Random( Integer.parselnt( args[4]

/I Create solution pools

SnakelList[] seeds = new SnakeList[endDim-start
for (int k = 0; k < seeds.length; k++) {

seeds[k] = new SnakelList( listSize );

}

StopWatch sw = new StopWatch();
int best8 = 0;
int best9 = 0;

/I for set amount of time
for( int iteration = 1; sw.elapsedTime() < 180

/I create initial solution
int[] v ={0,1,2};
Snake s = new Snake( v,startDim );

/I for each dimension

for(int k = 0; k < endDim-startDim+1; k++ ){

Il perform ILS search
Snake s2 = getSnake( s);
if(k!=0)

I/l update the solution pool based on the soluti on's

Il performance

e ISolution
s defined

n to explore
o explore
pool list
iterations

));

Dim+1];

0000; iteration++ ){



seeds[k-1].update( s, s2.getSnakeLength() );
seeds[k-1].sort();

// add the solution to the solution pool
seeds[k].add( s2.reduce() );

// need index in range [0,seeds]i].size()-1]
int index = Util.gen.nextInt( seeds[k].size()+1 )+1;
I currently in range [1,seedsJi].size()+1]
index = Util.gen.nextInt( index );
I currently in range [0,seeds]i].size()]
index = seedslk].size() - index;
I currently in range [0,seeds]i].size()]
if(index =0 ){
index--;
}

/I print results as they improve in dimensions 8&9
s = new Snake( seeds[k].get(index).getValues(),
k+startDim+1 );
if( k == 2 && seeds[2].getBest().getSnakeLength 0>
best8 )}{
best8 = seeds[2].getBest().getSnakelLength();
System.out.println (iteration + "\t" +
sw.elapsedTime());
System.out.printin (seeds[2].getBest());
lelse if(k == 3 &&
seeds[3].getBest().getSnakeLength() > best9 }{
best9 = seeds[3].getBest().getSnakelLength();
System.out.println (iteration + "\t" +
sw.elapsedTime());
System.out.printin (seeds[3].getBest());

YI for

Yl for

}

[* Performs an ILS on the Snake object passed in f or ilslteration
iterations */
private static Snake getSnake( Snake sn }{
ISolution sCurrent, sO = sn;

/l Create ILS instance
SnakelLS s = new SnakelLS( sn.getDimension() );

s.startingLength = sn.getSnakelLength();

/I generate starting solution

sCurrent = s.localSearch( s0 );

for (inti = 0; i <ilslteration; i++) {
/I perturb
ISolution sPerturb = s.perturb( sCurrent );
/l'local search
ISolution sTemp = s.localSearch(sPerturb);
/[ acceptance criteria



if( s.accept(sTemp ) ){
sCurrent = sTemp;
}

}
return (Snake)(s.getBest());
}

YI class Driver



import java.io.*;

/**

* The Snake class provides an implementation of th e I1Solution
* interface in the tabusearch package. A Snake i s defined
* mathematically as

* an induced path in a hypercube, or

* a path in a hypercube with no chords, or

* a code of spread 2.

*

* @author William Brown
* @version 1.10, 2/17/2005
*/

class ILSOnly{

public static void main( String args[] )}{

try{
FileWriter fw = new FileWriter( new File("ILSOnl y "+

args[0] + ".out") );
StopWatch sw = new StopWatch();
int dimension = Integer.parselnt( args[0] );

/I Initial Solution
int[] vals = {0,1,2};
Snake sO = new Snake( vals, dimension );

/I Best values known for dimensions 6,7,8,9
int[] bestVals = {26,50,97,186};

ISolution sCurrent;
Snake sn = s0;

SnakelLS s = new SnakelLS( sn.getDimension() );
s.startingLength = sn.getSnakelLength();

/I Generate Initial Solution
sCurrent = s.localSearch( s0 );
int counter = O;

for (;sw.elapsedTime() < 1000 * 60 * 30 &&
s.getBest().getFitness() < bestVals[dimension-6 1
counter++;

// Perturb Solution
ISolution sPerturb = s.perturb( sCurrent );

/I Perform Local Search
ISolution sTemp = s.localSearch(sPerturb);

I/l Check with Acceptance Criteria
if( s.accept( sTemp ) ){

sCurrent = sTemp;
}

if( counter % 1000 ==0)



fw.write ( counter + "\t" + sw.elapsedTime() +
"\t" + s.getBest() + "\t" + sCurrent + "\n" );
if( counter % 10000 ==0)
System.out.printin (s.getBest());
}
fw.write ("\n");
fw.write ( counter + "\t" + sw.elapsedTime() +"\t" +
s.getBest() );
fw.flush();
System.out.printin (s.getBest());
}catch( Exception e }{
e.printStackTrace();
}I catch

Y/ main()
I ILSOnly



import java.util.lterator;

/**

* This interface defines the behavior necessary t

* neighborhood around

* an ISolution object. Note that this interface

* methods for constructing the neighborhood. Ins

* defined in such a way that elements may be added
* in a set-like (no repeats) fashion.

* @author William Brown

* @version 1.01, 08/28/2004

*

public interface INeighborhood{

/**

* Adds the Object to this INeighborhood.

*

* @param o the Object to add
*/

public void add( Object o0 );

/**

* Returns the last (largest) element in the set.
* is the element that satisfies the following sta
* elements in the INeighborhood:

o implement a

does NOT provide any
tead, the behaviour is
, removed, and retrieved

The largest element
tement for all other

* largestElement.compareTo(anyOtherElement) > 0

*

* @return Object the largest element
*/
/I public Object best();

/**

* Removes all ISolution elements from this Neighb
*/

public void clear();

/**

* Returns true if and only if this INeighborhood
* contains no elements.

*

* @return boolean
*/
public boolean isEmpty();

/**

* Returns a java.util.lterator object over the el

* Neighborhood, preserving their natural ordering
*

* @return Iterator over the set
*/
public Iterator iterator();

/**

* Removes the Object from this Neighborhood.

*

* @param o the Object to remove

orhood.

ements of the



*/
public void remove( Object 0 );

/**

* Returns the number of elements in this Neighbor hood

*

* @return int the number of elements present in t his Neighborhood.
*
public int size();

/**

* Returns a String representation of this Neighbo rhood
*

* @return String
*/
public String toString();

M interface INeighborhood



/**

* This interface defines the methods necessary for an object to be

* considered a Solution in a TabuSearchTabuSearch implementation.

* Classes implementing I1Solution must also impleme nt the Comparable
* interface. Otherwise, there can be no ordering at the time that a

* Neighborhood is created.

*

* @author William Brown

* @version 1.01, 08/28/2004

*/

public interface ISolution extends Comparable{

/**

* Returns true if and only if the object passe d in is another 1Solution

* and is equal to this ISolution. This method is utilized in the

* [TabuList to determine ISolution membership in the

* tabu list. It may also be used inside compa reTo(Object) to determine
* the O case.

*

* @param o the Object to compare with

* @return boolean true if equal, false otherwi se

*/

public boolean equals(Object 0);

/**

* Returns the objective function value of this | Solution

*

* @return double the objective funciton value
*/
public double getFitness();

: Returns the values of this ISolution

: @return int[] the values that define this ISolu tion
p/ublic int[] getValues();

[

* Computes a hashcode for this ISolution. Utiliz ed by the

* TabulList class.

: @return int the hashcode
p/ublic int hashCode();
[xk
Returns a String representation of this ISoluti on
: @return String
p/ublic String toString();

M interface ISolution



/**

* This interface defines the methods necessary to
* |SolutionAttribute

* An ISolutionAttribute is an Attribute of an 1Sol

* statement is interpreted is dependent upon the s

*

* @author William Brown
* @version 1.08, 09/28/2004

*

public interface ISolutionAttribute {

/**

* Given an ISolution s, applies this ASolutionAtt
* object to s. Implementation details are left t

* Actual computation may be done in a class

* in this class itself.

*

* @param s the ISolution
*/
public I1Solution applyAttribute(ISolution s);

Implement an

ution. How this
pecific implementation.

ribtue
o the programmer.
that extends ISolution or

/**
* Returns a String representation of this ASoluti onAttribute
* . The format is as follows:
* "<classname> {values of the array, comma delimi ted}
*  <fithess>"
* where <classname> is equivalent to the call
*  this.getClass().getName()
*
* @return String the object as a String
*/
public String toString();
/**
* Returns a reference to the int[] representing t his
* ASolutionAttribute's values.
*
* @return int[] the values
*
public int[] getValues();
/**
Compares this ASolutionAttribute to the object passed in..
This method may be invoked by compareTo(Object ), thus

*

*

* correct implementation is important for the Ta
* correctly.
*
*
*

@param o the Object to compare with
@return boolean

public boolean equals(Object 0);

/**

* Computes a hashcode for this object based on it
* @return int the hashcode
*/

buList to perform

s array values.



public int hashCode();

/**

* Returns the objective function value of this |

*

* @return double
*/
public double getFitness();

}I 1SolutionAttribute

Solution



/**

* This interface defines the methods necessary for an Iterated Local Search
* procedure.
* The IteratedLocalSearch algorithm acts as follow S:

*

* For a set number of iterations, or until termina tion condition is met:
* 1. Generate a starting solution, s.

* 2. Change s in some way, resulting in s*

* 3. local search on s* until a local optimum is reached, s*

* 4. Make sure that s* meets acceptance criteria

* 5. If s* meets the criteria, set s = s*

* 6. Repeat from 2

*

*

* @author William Brown

* @version 1.0, 12/28/2004

*/

public interface IteratedLocalSearch{

/**

* Returns an ISolution to be used as the start ing solution in the
* |terated Local Search
* @return ISolution

*/

public ISolution generatelnitialSolution();

/**
* Returns an ISolution that is a local optima in the search. This local
* search procedure begins with starting ISolut ion, s, and improves upon

* it until a the local optima is reached.
* @param ISolution the starting solution
* @return 1Solution the local optimum

*/

public I1Solution localSearch( ISolution s );

/**
* Returns an ISolution that is a perturbation of the solution s.
* @param ISolution the solution to perturb
* @return 1Solution the resulting solution aft er perturbation
*/

public I1Solution perturb( ISolution s );

/**
* Returns true if the ISolution passed in meet s certain criteria.
* The ISolution is typically then used in the method localSearch().
* @param ISolution the ISolution to check agai nst the
* criteria
* @return true if the ISolution passes
*/

public boolean accept( ISolution s );

M/ class IteratedLocalSearch



import java.util.lterator;
import java.util.Set;
import java.util. TreeSet;
import java.util.SortedSet;

/**

* This class implements the INeighborhood interfac

* neighborhood to a solution in a Local Search. N

* NOT provide any methods for constructing the nei
* particular implementation uses a

* java.util.SortedSet Tree to keep the elements so

* ordering over the elements of the neighborhood i

* ordering is dependent on the compareTo(Object) m
* implementing ISolution.

*

* @author William Brown

* @version 1.01, 08/28/2004

*

public class Neighborhood implements INeighborhood{

/I The set of neighboring elements
private SortedSet neighbors;

/**

* Constructs a new Neighborhood that acts as a s
* neighboring elements of a Solution. Uses a ja
* TreeSet object to hold the elements.
*/
public Neighborhood( ){
this( new TreeSet() );
}

/**

* Constructs a new Neighborhood that acts as a s
* neighboring elements of a Solution. Uses the
* SortedSet object to hold the elements.
*/
public Neighborhood( SortedSet s }{
neighbors ='s;
}

/**

* Adds the Object to this Neighborhood.

*

* @param o the Object to add

*/

public void add( Object 0 ){
neighbors.add( o );

}

/**
* Returns the last (largest) element in the set.

* is the element that satisfies the following sta
* elements in the Neighborhood:

e. It represents the
ote that this class does
ghborhood. This

that an
s maintained. This
ethod defined in the class

et to hold
va.util

et to hold
java.util

The largest element
tement for all other

* largestElement.compareTo(anyOtherElement) > 0

*

* @return Object the largest element



*/
public Object best(){

return ((SortedSet)neighbors).last();
}

/**
* Removes all ISolution elements from this Neighb
*
public void clear(){
neighbors.clear();
}

/**

* Returns true if and only if this Neighborhood
* contains no elements.
* @return boolean
*
public boolean isEmpty(){
return neighbors.isEmpty();
}

/**

* Returns a java.util.lterator object over the el
* Neighborhood, preserving their natural ordering
*
* @return Iterator over the set
*
public Iterator iterator(){
return neighbors.iterator();
}

/**

* Removes the Object from this Neighborhood.

* @param o the Object to remove

*/

public void remove( Object o {
neighbors.remove(0);

}

/**

* Returns the number of elements in this Neighbor
*
* @return int the number of elements present in t
*/
public int size(){

return neighbors.size();
}

/**

* Returns a String representation of this Neighbo
*
* @return String
*/
public String toString(){
String result ="";

orhood.

ements of the

hood

his Neighborhood.

rhood



if( 'neighbors.isEmpty() ){
for( Iterator i = neighbors.iterator(); i.hasNex t0;
result += i.next().toString() + "\n";
}
}

return result;

}
Y class Neighborhood



/**

* The NeighborhoodBuilder class provides an implem
* the generateNeighborhood method. This provides
* INeighborhood object to be filled with 1Solution

* @author William Brown

* @version 1.12, 11/01/2004

*

public class NeighborhoodBuilder {

/**

* Constructs an INeighborhood of ASolutionAttrib

* This is performed by constructing a neighborho

* SnakeSwap elements.

* @param s - the 1Solution to construct the neigh

* @param n - the INeighborhood to fill

*/

public static void generateNeighborhood( ISolution
INeighborhood n ){

Snake sn = (Snake)s;
int dimension = sn.getDimension();

/I SnakeEnds
for (inti = 0; i < dimension; i++) {
int[] ea = new int[2];
ea[0] = sn.getSnakeLength();
ea[l] =i;
/I see if it 'makes sense' to add this SnakeEnd
if( sn.tryAddEnd( ea[1] ) ){
ISolutionAttribute end = new SnakeEnd(ea);
// add it to the INeighborhood
((SnakeEnd)end).setFitness( Util.gen.nextDou
n.add( end );

}

}/I generateNeighborhood

}I class NeighborhoodBuilder

entation of
a way for an
Attributes.

utes.
od of SnakeEnds and

borhood around

ble() );



import java.util.Arrays;

/**
* The Snake class provides an implementation of th

* interface in the tabusearch package. A Snake i
* mathematically as

* an induced path in a hypercube, or
* a path in a hypercube with no chords, or
* a code of spread 2.

*

* @author William Brown

* @version 1.26, 2/11/2005

*

final class Snake extends Solution{

/I Fields

/l the dimension of the hypercube this snake is de
private int dimension;

I/l array representing the path as a series of move
private int[] transitionSequence;

Il array representing the path as a series of node

private int[] nodeSequence;

/I adjacency graph of the hypercube with path info
private InducedNode[] inducedGraph;

I current length of the snake

private int snakeLength;

/Il protected double fitness
/I protected int[] values

/**

* Constructs a new Snake with the given transit
* on a hypercube of the passed in dimension.
*/
public Snake( int[] v, intd ){
super(v);
transitionSequence = values;
dimension = d;

/I Reduces the Snake
int[] map = new int[dimension];
for(inti=0;i < map.length; i++)
mapli] = -1;
int current = 0;
for(inti=0; i < values.length; i++ ){
int x = valuesi];
if (map[ values[i] ] ==-1){
map[x] = current;
current++;

values][i] = map[ values]i] ];
}
/I Reduces the Snake

/I create node sequence
nodeSequence = new int[ values.length ];

e ISolution
s defined

fined on
ments
S

rmation

ion sequence array



constructNodeSequence();
/I create the induced subset of the hypercube
inducedGraph = new InducedNode[ 1 << dimension ] ;
for (inti = 0; i < inducedGraph.length; i++)
inducedGraph[i] = new InducedNode();
constructinducedGraph();
shakelLength = values.length;
fitness = snakelLength;

}
/**
* Constructs a new Snake with the given data f or use when all
* instance data is computed outside the class. Utilized by the clone()
* method.
*/
public Snake( int[] v, int[] ns, int d, double f )
super(v);
this.transitionSequence = values;
this.nodeSequence =ns;
this.dimension =d;
this.inducedGraph = new InducedNode[l<<d];
for (inti = 0; i <inducedGraph.length; i++)
inducedGraph[i] = new InducedNode();
this.constructinducedGraph();
this.fithess =f;
this.snakeLength = (int)fitness;
}
/**
* Creates a deep copy of this Snake object.
* @return the copy of this Snake
public Object clone(){
int[] v = new int[values.length];
System.arraycopy(values,0,v,0,values.length);
int[] ns = new int[ nodeSequence.length ];
System.arraycopy(nodeSequence,0,ns,0,ns.length);
return new Snake( v, ns, dimension, fithess );
}
* Reduces this snake to one that is in its iso morphism class. It does
* s0 by replacing the sequence with another on e in which the first
* appearance of any transition node is not pre ceded by another node of
* greater value.
* For example, if the starting transition seq uence is:
* {2,1,3,2,0}
* The resulting sequence will be:
* {0,1,2,0, 3}
* @return a new Snake with the reduction perfo rmed on its values

*

public Snake reduce(){

int[] map = new int[dimension];
for(inti=0;i < map.length; i++)
mapli] = -1;



int current = 0;
for(inti=0; i < values.length; i++ ){
int x = valuesJi];
if (map[ values[i] ] ==-1){
map[x] = current;
current++;

values][i] = map[ values][i] ]

return new Snake( values, dimension );

}

/**

* Returns a Snake with the path reversed

* @return the reversed Snake

public Snake reverse()}{

int[] rev = new int[ values.length |;

System.arraycopy(values,0,rev,0,values.length);

for (inti=0;i<rev.length/2; i++) {
inttemp = rev(i];
rev[i] = rev[ rev.length-1-i ];
rev[ rev.length-1-i | = temp;

}

Snake s = new Snake( rev, dimension );

return s;

}

[* Constructs the node sequence array representati
private void constructNodeSequence(){
nodeSequence = new int[ transitionSequence.length
nodeSequence[0] = 0;
for(inti=1;i < nodeSequence.length; i++)
nodeSequenceli] = nodeSequence[i-
1" (1<<transitionSequence]i-1]);

}

[* Constructs a graph of InducedNodes representing
Each node remembers if it was a part of the pat
the identity of all other nodes adjacent to it
the path. This information can be utilized when
fithess value of any modification to the Snake

private void constructinducedGraph(){

for (inti = 0; i <inducedGraph.length; i++) {
inducedGraph(i].inPath = false;
inducedGraph(i].position = -1;

/l population
for(inti=0; i < nodeSequence.length; i++ )}{
inducedGraph[ nodeSequence]i] ].inPath = true;
inducedGraph[ nodeSequence]i] ].position = i;
for(int j = 0; j < dimension; j++)
inducedGraph[nodeSequencel[i|*(1<<j)].values]j

on */

+11];

the hypercube

h AND

that ARE a part of
determining the

*/

] = true;



/**

* @author William Brown

* @version 1.00, 09/24/2004

*

* Class that represents a node in the induced

* inducedGraph defined in class Snake. Stores

* which adjacent nodes (if any) are in the p

* whether the node is in the path --> boolean
* which number node is the node --> int

*/

class InducedNode{
public boolean[] values = new boolean[ dimension
public boolean inPath = false;
public int position = -1;
}
/**
* Returns the fithess of this Snake after it has

* by one node. If the extension causes the snake
* properties, it returns 0;
*

* @param int the node to add
* @return double
*/
public boolean tryAddEnd( int end }{
/I the transition to add, converted to a node

hypercube subgraph,
information regarding
ath --> int[]

been extended
to violate its

int endNode = nodeSequence[ nodeSequence.length-1 M(1<<end);

/I for each dimension
for (inti = 0; i < dimension; i++) {

Il check to see if surrounding nodes are occupie d
if(i'= end && inducedGraph[ endNode ].valuesi 1)

return false;

}

return true;

}

/**

* Appends a transition to the end of the trans

* snake.

*

* @param int - the next "step" to take in the

*/

public void addEnd( int end ){

/I extend the transitionSequence array by one
int[] tranSeq = new int[ transitionSequence.lengt

System.arraycopy( transitionSequence, 0, tranSeq,

ition sequence in this

transition sequence

h+117;
01

transitionSequence.length );

transitionSequence = tranSeq;

// add the new node

transitionSequence][ transitionSequence.length-1 ]
/I update values array

values = transitionSequence;

/I extend the nodeSequence array by one
int[] nodeSeq = new int[ nodeSequence.length+1 |;

= end;



System.arraycopy( nodeSequence, 0, nodeSeq, 0,
nodeSequence.length );

nodeSequence = nodeSeq;

int endNode = nodeSequence[ nodeSequence.length-2

/[ add the new node

nodeSequence[ nodeSequence.length-1 ] = endNode;

/I update the induced graph
inducedGraph[ endNode ].inPath = true;
inducedGraph[ endNode ].position = snakeLength+1;
/I for each neighboring node, leave endNode's 'ma
for(inti=0;i < dimension; i++)
inducedGraph[ endNode”(1<<i) ].values][i] = true;

/I update fitness & snake length
fitness += 1,

snakelLength +=1;
/levalFitness();

}
/**

* Returns the dimension of the hypercube that thi
*on.
* @return int the dimension of the hypercube
*/
public int getDimension() {
return dimension;
}

/**
* Returns the length of the Snake formed by this
*
* @return int the length of the snake
*/
public int getSnakelLength() {
return snakelLength;
}

/**

* Returns a double representing the objective fun
* Snake object.
*
* @return double the objective function value
*/
public double getFitness() {
return snakelLength;
}

/**

* Subtracts a node from the end of the node seque
* The transition sequence is also updated, as wel
* graph. The net result of the operation is that

* getSnakeLength() will be 1 smaller after this m

*/

public void subtractEnd(){

]*(d<<end);

rk'

s Snake is defined

Snake object.

ction value of this

nce of this snake.
| as the induced

ethod has executed.



int endNode = nodeSequence[ nodeSequence.length-1 1;

/lupdate transition sequence

int[] tranSeq = new int[ transitionSequence.lengt h-17;

System.arraycopy( transitionSequence, 0, tranSeq, 0,
tranSeq.length );

transitionSequence = tranSeq;

values = transitionSequence;

/lupdate node sequence

int[] nodeSeq = new int[ nodeSequence.length-1 ];

System.arraycopy( nodeSequence, 0, nodeSeq, 0, no deSeq.length );
nodeSequence = nodeSeq;

/lupdate induced graph
inducedGraph[ endNode ].inPath = false;
inducedGraph[ endNode ].position = -1;
/I for each neighboring node, leave endNode's 'ma rk'
for(inti=0;i < dimension; i++ }{
inducedGraph[ endNode”(1<<i) ].values]i] = false ;

}
/I update fitness & snakelLength
fitness -= 1;

snakelLength -= 1;

}

Y class Snake



import java.util.Arrays;

/**
* The SnakeEnd class represents an additional node that can be
* appended to a Snake (an induced path in a hyperc ube).

* @author William Brown

* @version 1.02, 10/29/2004

*

public final class SnakeEnd extends ASnakeAttribute {

/**
* Constructs a new SnakeEnd with the given arr ay, the given
* Snake object and the new fitness value.
*/
public SnakeEnd( int[] vals ){
values = new int[vals.lengthl];
System.arraycopy(vals,0,this.values,0,vals.lengt h);

}
/**
* Given a Snake s, applies this SnakeEnd object
* 10 s.
* WARNING: It should be noted that this applicat ion is performed
* "plindly".
* That is, this method should not be invoked on a Snake unless
* the method tryAddEnd in class Snake has returne d
* a value greater that the fitness of that Snake.
*
* @param s - the 1Solution
* @throws ClassCastException if s is not of type Snake
*/
public ISolution applyAttribute( ISolution s ){
if( s instanceof Snake ){
((Snake)s).addEnd( values[1] );
return s;
lelse
throw new ClassCastException();

}
/**

* Compares two SnakeEnd objects using the fitn ess values of
* the SnakeEnd objects. If the object passed in is not of type
* SnakeEnd, then a call to super.compareTo(Obj ect)
*is made. The result is exactly zero when th e equals(Obiject)
* method would return true. Otherwise, return s a negative if this
* SnakeEnd object is "less than" the other Sna keEnd
* object and a positive int otherwise.
*
* @param o the SnakeEnd
* @return int
*/
public int compareTo( Object o ){
if( 0 instanceof SnakeEnd ){
if( this.equals(0))
return O;
/l multiply by factor b/c fithesses differ by | ess than 1



return (int)( 10000 * (fitness -
((SnakeEnd)o).getFitness()) );
lelse
return super.compareTo(0);

* Compares this SnakeEnd to the object passed in. .

* Returns true if and only if the object to comp are with is a

* SnakeEnd object with the same values (the same node is being
* replaced with the same node number).
*
*
*

@param o - the Object to compare with
@return boolean

public boolean equals( Object 0 ){
if( 0 instanceof SnakeEnd ){
/I compare the values of the two SnakeEnds
int[] other = ((SnakeEnd)o).getValues();

return ( other[0] == values[0] && other[1] == va lues[1]);
lelse
return false;
}
/**
* Returns an int indicating the transition seq uence node that this

* SnakeEnd represents.
*
* @return int
*/
public int getEndValue(){
return values[1];
}

/**
* Returns an int representing the position that th is SnakeEnd

* takes in the Snake object.
* @return  int

*/
public int getPosition(){
return values[O];
}
/**
* Sets the fitness of this SnakeEnd to the double passed
*in.
* @param double
*

public void setFitness( double f ){
fitness = f;

}
}I class SnakeEnd



import java.util.lterator;

/**

* This class defines an Iterated Local Search proc edure for finding maximal
* snakes in a hypercube.

* The IteratedLocalSearch algorithm acts as follow s:

*

* @author William Brown
* @version 1.0, 12/28/2004

*/
public class SnakelLS implements IteratedLocalSearc h{
/I FIELDS
private int dimension; // The dimension of the hyp ercube to search in
private Snake best; /I The best solution found so far
public int startingLength;
/**
* Constructs a new SnakeSearch object set to f ind Snakes in dimension d
* @param int the dimension
*/
public SnakelLS(int d ){
dimension = d;
best = (Snake)generatelnitialSolution();
}
/**
* Returns an ISolution to be used as the start ing solution in the

* |terated Local Search
* @return ISolution

*/
public I1Solution generatelnitialSolution(){
int[] values = {0,1,2};
Snake s = new Snake( values, dimension );
return s;
}
/**
* Returns an ISolution that is a local optima in the search. This local
* search procedure begins with starting ISolut ion, s, and improves upon

* it until a the local optima is reached.

* @param ISolution the starting solution

* @return 1Solution the local optimum

*/

public I1Solution localSearch( ISolution s ){

boolean canExtend = true;
/I create a copy of our Solution
Snake copy = (Snake)(((Snake)s).clone());
int counter = 0;

/! Perform the local search here
// add nodes to the end of the Solution until it is maximal
while( canExtend ¥

counter++;

/I create neighborhood of possible nodes to appe nd



Neighborhood neighbors = new Neighborhood();
NeighborhoodBuilder.generateNeighborhood(copy, n eighbors);

if( neighbors.isEmpty() ){

/I exit if there are no viable neighboring node S

canExtend = false;
telsef
I/l otherwise, add one to the end

Object o = neighbors.best();

copy.addEnd( ( (SnakeEnd)o ).getEndValue() );

Ml if-else
Y/ while

/lupdate the best solution found if necessary
if( copy.getFitness() >= best.getFitness() )
best = (Snake)(((Snake)copy).clone());

/l return the extended copy
return copy;

}

/**
* Returns an ISolution that is a perturbation
* @param ISolution the solution to perturb
* @return 1Solution the resulting solution aft
*/

public I1Solution perturb( ISolution s ){

/I create a copy
Snake copy = (Snake)(((Snake)s).clone());

/I choose number of nodes to remove from linear p

/I distribution

int removeNumber = Util.gen.nextInt( Util.gen.n
copy.getFitness() - (startingLength-5) + 1) + 1

/I remove aforementioned number of nodes
for (inti = 0; i < removeNumber && copy.getFitne
startingLength; i++) {
copy.subtracteEnd();
}

return copy;

}
/**

* Returns true if the ISolution passed in meet
* The ISolution is typically then used in the
* @param ISolution the ISolution to check agai
* criteria
* @return true if the ISolution passes
*/

public boolean accept( ISolution s ){

/I Accept if the solution matches the best within
if( s.getFitness() > best.getFitness()-1 ){
if( s.getFitness() >= best.getFitness() {

of the solution s.

er perturbation

robability
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best = (Snake)(((Snake)s).clone());

}
return true;
telse{
return false;
}
}
/**
* Returns the best ISolution found in this ins tance of SnakeSearch
* @return ISolution the best solution found so far

*/
public 1Solution getBest()}{
return best;
}

/**
* Returns a String representation of this SnakeSe archObject
* @return String
*
/
public String toString() {

String sep = System.getProperty("line.separator")

StringBuffer buffer = new StringBuffer();
buffer.append(sep);
buffer.append("dimension = ");
buffer.append(dimension);
buffer.append(sep);

buffer.append("best = ";
buffer.append(best);
buffer.append(sep);

return buffer.toString();
}

Y class SnakellLS



import java.util.*;

/**

* The SnakelList class provides an implementation o f a list of

* Snake objects. The list is kept in ascending or der based on
* the result of the getSnakelLength() method from ¢ lass Snake.

* Snake objects with the same
* @author William Brown

* @version 1.26, 2/11/2005

*/

class SnakeList{

private int maxSize;
private ArrayList<SnakeListNode> list;
private Snake best;

/I Constructors
public SnakeList(){

list = new ArrayList();

maxSize = Integer.MAX_VALUE;
}

public SnakeList( int size ){
list = new ArrayList();
maxSize = size;

}

/**
* Returns true if a Snake was successfully add ed to this SnakelList
* @param Snake
* @return boolean
*/
public boolean add( Snake s ){

for (inti=0;i< list.size(); i++) {

if( get(i).equals(s) ¥
return false;
}

}

if( list.size() == maxSize )}{
SnakeListNode min = list.get(0);

for (inti=1;i< list.size(); i++) {
if( list.get(i).best > 0 && list.get(i).best < min.best &&
list.get(i).snake.getSnakeLength() <
min.snake.getSnakeLength() ){
min = list.get(i);
}
}

list.remove(min);

}

inti=0;
while(i < list.size() && list.get(i).snake.ge tSnakeLength() <
s.getSnakeLength() )



i++;
list.add( i, new SnakeListNode(s) );
return true;

}
/**
* Sets the maximum number of elements this Sna keList will hold
* @param int
*/
public void setMaxSize( int ms ){
maxSize = ms;
while( list.size() > maxSize ){
list.remove(0);
}

}
/**
* Removes all elements in this SnakeList
*/
public void clear(){
list.clear();
best = null;

}

/**
* Returns the maximum number of elements this SnakelList will hold.
* @return int
*/

public int getMaxSize(){

return maxSize;
}

/**
* Returns the Snake at the specified index
* @param int
* @return Snake
*/

public Snake get( inti ){

return (list.get(i)).snake;
}

/**
* Returns the Snake in this list with the best fitness
* value
* @return Snake
*/

public Snake getBest(){

return (Snake)(list.get( list.size()-1 ).snake);
}

/**
* Removes the Snake element from this SnakelLis t
* @param Snake
*/
public void remove( Snake s )}{
list.remove( new SnakeListNode(s) );
}



/**
* Returns an int representing the number of el ements currently
*in this SnakelList.
* @return int
*/

public int size(){

return list.size();
}

/**
* Returns a double representing the average fi tness
* of a Snake in this SnakeList.
* @return double
*/
public double getAverage(){
int sum = 0;
for (inti=0;i < list.size(); i++) {
sum += get(i).getSnakeLength();

return (double)sum/list.size();

}
/**

* Updates ordering of the Snake in the list.
* @param Snake
* @param int

*
public void update( Snake s, int length }{
for(inti=0;i < list.size(); i++ ){
if( list.get(i).snake.equals( s ) ){
if(list.get(i).best < length){
list.get(i).best = length;
list.get(i).iterations ++;
}
}
}
/**
* Returns a String representation of this Snak eList
* @return String
*/
public String toString2(){
String s = list.get(list.size()-1) + "\t" + getAv erage();
return s;
}
/**
* Returns a String representation of this Snak eList
* @return String
*/

public String toString(){
String s ="";
for (inti=0;i < list.size(); i++) {
s += list.get(i).snake + " " + list.get(i).be st +"\n";



return s;

}
/**
* Sorts the elements of this SnakeList.
*/
public void sort(){
SnakelListNode[] sIn = new SnakeListNode[list.size 01
list.toArray(sin);
Arrays.sort(sIn);
list.clear();
for (inti=0;i < slIn.length; i++) {
list.add( sIn[i] );
}
/**
* Encapsulates the Snakes added to this list
*/

class SnakeListNode implements Comparable{

public Snake snake;

public int iterations;

public int best;

public SnakeListNode( Snake s }{
shake =s;
iterations = 0;
best = 0;

}

public int compareTo( Object o0 ){
SnakelListNode sIn = (SnakeListNode)o;
if( snake.compareTo(sIn.snake) == 0)
return (int)(this.best-sln.best);
else
return snake.compareTo(sIn.snake);

}

public boolean equals( Object 0 ){
return snake.equals( ((SnakeListNode)o).snake );

}
public String toString(){

return snake.toString() + "\t" + best + "\t" + i terations;
}

}

Y class SnakelList



import java.util.Arrays;

/**

* The ASolution class is a skeletal implementation
* |Solution and ITabuListElement interfaces in pac
* tabusearch. More specifically, it gives a simpl

* for a solution that would be used in a tabu sear
* solutions are kept in the tabu list.

*

* @author William Brown

* @version 1.03, 09/09/2004

*/

public class Solution implements 1Solution{

Il values representing this solution
protected int[] values;

Il objective function value
protected double fitness;

// CONSTRUCTOR
public Solution( int[] values X
this.values = new int[values.length];

System.arraycopy(values,0,this.values,0,values.le

}
/**

* Compares two Solution objects using the fitn
* the Solution objects. If the object passed
* Solution, then a ClassCastException is throw
* The result is exactly zero when the equals(O
* method would return true. Otherwise, return
* Solution object is "less than" the other Sol
* object and a positive int otherwise.
*
* This method is utilized by the Neighborhood
* keep an ordered set of Solutions.
*
* @param o the Object with which to compare
* @return int comparison result
* @throws ClassCastException
*/
public int compareTo(Object o) {
if( o instanceof Solution ){
[/l if 2 objects are equal, return 0
if( this.equals(o) )
return O;

/I otherwise, return the difference in fithess v
int x = (int)(1000*(fitness-((Solution)o).getFit

return x;
telse{
throw new ClassCastException();

}
/**

* Compares this Solution to the object passed in.
* Returns true if and only if the object to comp
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* Solution object with the same values inthe'v
* That is, Arrays.equals(this.values,o.values) =

* For specific implementations, when different ¢
* destinguish two solutions, this can be overrid
*
*
*
*

@param o the Object to compare with
@return boolean
@throws ClassCastException
*
public boolean equals(Object 0){
if( o instanceof Solution )
return Arrays.equals( values, ((Solution)o).getV
else
throw new ClassCastException();

}
/**

* Returns a double representing the objective fun
* 'fitness' of this Solution.
*
* @return double the fitness
*/
public double getFitness() {
return fitness;
}

/**

* Returns a new, deep copy of this Solution
*
* @return Solution
*/
public Solution getSolution(){
return new Solution( values );
}

/**

* Returns a reference to the int[] representing t
* values.
*
* @return int[] the values that define this Solut
*/
public int[] getValues() {
return values;
}

/**

* Computes a hashcode for this object based on it
*
* @return int the hashcode
*/
public int hashCode() {
long h =1234;
for (int i = values.length; --i >=0; )
h ~= values[i] * (i + 1);
return (int)((h >> 32) ~ h);
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/**

* Returns a String representation of this Solutio n.

* The format is as follows:

* "<classname> {values of the array, comma delimi ted}
* <fithess>"

* where <classname> is equivalent to the call

* this.getClass().getName()

*

*

* @return String the object as a String

*/
public String toString() {
String result = this.getClass().getName() + "\t{" ;
for (inti = 0; i<values.length-1; i++) {
result += values[i];// +",";

result += values|values.length-1] + "}\t" + fi tness;
return result;

}

}I class Solution



import java.util.Random;

/**

* Provides various utilities. i.e. --> A static R
classes to share

*/

public final class Util{

public static Random gen = new Random();

M class Util

andom Generator for all



