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ABSTRACT 

A snake-in-the box code, first described in [Kautz, 1958], is an achordal open path in a 

hypercube.  Finding bounds for the longest snake at each dimension has proven to be a difficult 

problem in mathematics and computer science.  Evolutionary techniques have succeeded in 

tightening the bounds of longest snakes in several dimensions [Potter, 1994] [Casella, 2005].  

This thesis utilizes an Iterated Local Search heuristic with adaptive memory on the snake-in-the-

box problem.  The results match the best published results for problem instances up to dimension 

8.  The lack of implicit parallelism segregates this experiment from previous heuristics applied to 

this problem.  As a result, this thesis provides insight into those problems in which evolutionary 

methods dominate.  
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CHAPTER ONE    INTRODUCTION 

 

1.1 OVERVIEW 

 

This chapter introduces the combinatorial optimization problems and the notion of an intractable 

problem.  Heuristics and meta-heuristics are then discussed with a focus on metaheuristics 

utilizing adaptive memory.  A problem called the snake-in-the-box problem is then briefly 

introduced. 

 

1.2 COMBINATORIAL OPTIMIZATION PROBLEMS 

 

 Many problems exist that cannot be solved by traditional methods.  These problems often 

suffer from combinatorial explosion, meaning that the solution space (or number of states) of the 

problem grows as an exponential function of the problem size.  In the literature, when a problem 

suffers from combinatorial explosion and the instance of the problem is large enough it is 

commonly referred to as an intractable problem.  An intractable problem is one for which no 

known polynomial-time algorithm exists and whose solution cannot be computed in a 

straightforward way in a reasonable amount of time.   

Given a set of feasible solutions, S, a discrete optimization problem is one for which a 

real-valued objective function, f, consisting of one or more discrete values, is defined on S.  The 

set S is commonly referred to as the state-space and the function f is referred to as the fitness 

function (within the context of Genetic Algorithms), or the cost function.  The element(s) of S
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with a minimal (or possibly maximal) f value is known as the optimum of the problem.  If S is a 

finite set, the problem then becomes a combinatorial optimization problem [Lee, 2004].  

Combinatorial optimization involves determining an optimal value from the elements of S.  

Since S is finite, an enumeration of all possible solutions will provide the optimum value in any 

combinatorial optimization problem.  Often, however, enumeration is not a desirable choice and 

in many cases an intractable one.  The notion of a combinatorial optimization problem can be 

formalized as follows.  Given a set, S, of feasible solutions and an objective function f, such that f 

maps elements of S to R, find the element s* of S, such that f( s* ) <= f( s ) for all s in S. 

 

1.3 THE SNAKE-IN-THE-BOX PROBLEM 

 

The snake-in-the-box problem (or the problem of finding the longest snakes in hyper-

cubes) is an example of a combinatorial optimization problem.  The problem entails finding the 

longest achordal path through an n-dimensional hypercube.  Interest in snake-in-the-box codes 

began with [Kautz, 1958] in the context of unit distance, error checking codes.  Similar to Gray 

codes, snakes are commonly referred to as circuit codes (or circuit codes of spread 2).  By using 

the visited nodes of the hypercube as code words, SIB codes found application in analog to 

digital conversion [Klee, 1970].  If a codeword has one bit corrupted in the communication 

process, it either corrupts to a neighbor on the path (negligible errors) or a non-codeword (error 

detected).  Similarly, if a subset of a SIB code is chosen in such a way that code words differ by 

at least two bits, the result is an error-correcting code (for single-bit errors).  SIB codes have 

found application in other areas as well.  They have been used in constructing electronic locking 



3 

schemes in [Kim, 2000] and [Dunin-Barkowski, 1999] uses a SIB code in a cerebellar learning 

model.  A formal introduction to the Snake-in-the-Box problem is presented in chapter 4. 

 

1.4 HEURISTICS &  META-HEURISTICS 

  

 In searching for an optimal solution in S, a heuristic is a “rule of thumb” that is believed 

to encourage the search into areas with optimal or near-optimal solutions.  Heuristic approaches 

differ from exact methods in that they do not guarantee that a globally optimal value will be 

reached.  A popular heuristic search algorithm is the classical descent method.  In this method a 

random element of S is initially chosen as the starting point.  Iteratively, the starting point is 

replaced with an element adjacent to it with the smallest f value.  This continues until a local 

minimum is found (not necessarily a global minimum).  Note that this heuristic may only be 

applied to problems for which S is a metric space or for S where the notion of “adjacent” 

elements is meaningful. 

 The term meta-heuristic describes a more sophisticated search where a heuristic is used 

to guide other, simpler heuristics.  Some examples of the more popular meta-heuristics are given 

below: 

• The genetic algorithm uses a population of solutions and “evolves” better 

population members (with respect to the fitness function) by repeatedly 

applying mating and mutation operators [Holland 1975][Goldberg 1989]. 

• The simulated annealing algorithm simulates the cooling process of a metal 

[Kirkpatrick 1983]. 
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• Ant colony optimization emulates a colony of ants by simulating “pheromone 

trails” the ants would leave as they search the solution space [Colorni 1992]. 

• Tabu Search attempts to emulate human memory by keeping track of 

previously visited solutions in a “tabu list”.  This is hoped to drive the search 

out of local minima [Glover 1986]. 

 

 These and other meta-heuristic strategies have gained popularity with many 

combinatorial optimization problems.  Good meta-heuristics can dramatically reduce the time 

required to solve a problem by eliminating the need to consider unlikely possibilities or states.  

Meta-heuristic methods however, do not guarantee that an optimal solution will be found in a 

tractable way.  If the optimal solution to problems is not always found, then why has so much 

attention been diverted to these methods in the last two decades?  The answer is that modern 

meta-heuristic approaches provide “good” quality (optimal, or near optimal) solutions in a short 

amount of time.  Many practical optimization problems to which meta-heuristics are applied are 

created by roughly simulating a real problem in such a way that to find a global optimum is not 

necessarily more beneficial than finding a “near” optimum. 

 The aforementioned meta-heuristic strategies are all modeled after naturally occurring 

processes.  A study of these techniques follows in the next chapter.  By investigating these 

heuristics, we hope to determine which features are necessary when tailoring a heuristic to a 

specific problem.  The result is an Iterated Local Search (ILS) algorithm that utilizes adaptive 

memory.  Details of the algorithm are presented in Chapter 5. 
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1.5 THESIS MOTIVATION  

 

 The snake-in-the-box problem has been analytically studied by many researchers, 

including [Kautz, 1958][Wojciechowski, 1989][Abbot, 1991][Snevily, 1994].  Many of these 

approaches resulted in establishing new upper and or lower bounds for the SIB problem in 

various dimensions.  A lower-bound proof by construction was first attempted heuristically by 

[Potter 1994] when they tailored a genetic algorithm to the dimension 8 SIB problem.  An 

exhaustive search of the solution space in dimension 7 was carried out computationally by 

[Kochut 1996].  Since then, there have been a number of computational methods employed, 

many of these being heuristic methods.  The heuristic approaches used to date have been 

primarily based on evolutionary methods.  This thesis presents a non-evolutionary method and 

hopes to present a new strategy for finding maximal snakes and tighten the bounds on maximal 

snakes.  This thesis arrives at an Iterated Local Search algorithm with adaptive memory tailored 

for finding snake-in-the-box codes.   

 

1.6 THESIS ORGANIZATION 

 

 The thesis is organized as follows.  Chapter 2 presents a study of some of the widely used 

heuristics that are founded on naturally occurring systems.   Chapter 3 gives a formal 

presentation of the snake-in-the-box problem.  Chapter 4 describes the metaheuristic known as 

Iterated Local Search and the more general class of metaheuristics that employ Adaptive 

Memory.  Chapter 5 outlines the process utilized in this paper and Chapter 6 presents our results.  

We present our conclusions and further research goals in Chapter 7. 
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CHAPTER TWO    NATURE INSPIRED HEURISTICS 

 

2.1 OVERVIEW 

 
 Heuristic approaches to combinatorial optimization problems have developed 

dramatically in the last three decades.  They have been successful in tackling many difficult 

optimization problems for which finding a solution in a straight-forward manner is 

computationally infeasible.  Some of the most widely used heuristic techniques are inspired from 

naturally occurring systems and include: genetic algorithms, tabu seach, simulated annealing and 

ant colony optimization.  The systems that these approaches are based on are biological 

evolution, intelligent problem solving, physical sciences and swarm intelligence, respectively.  

These heuristic approaches can be classified according to the particular characteristics of each 

algorithm.  This classification leads to a better understanding of what strengths and shortcomings 

each method contains. 

 

2.2  APPROACHES 

 

In this section, we present an overview of some of the most popular heuristic approaches that 

owe part of their inspiration to a naturally occurring process. 
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2.2.1 GENETIC ALGORITHMS 

 

 Inspired by Darwin’s theory of evolution, genetic algorithms were first developed by 

[Holland, 75] and formalized into their modern representation by [Goldberg, 89].  Genetic 

Algorithms solve problems by evolving an answer from a pool of possible solutions.  The 

algorithm begins with a set of possible solutions (chromosomes) called a population.  Each 

chromosome in the population has an objective function value (fitness) associated with it.  This 

fitness is an indicator of how “good” of a solution the chromosome is.  Certain (more fit) 

chromosomes are then chosen to help create a new population.  This is motivated by the hope 

that the new population (next generation) will be, on average, more “fit” than the previous one.  

The process of choosing chromosomes is called selection.  Once a set of chromosomes has been 

selected, they must mate to form a new population – this is called mating or recombination.  This 

process is repeated for either a predetermined number of generations or until the average fitness 

stops improving for a set number of generations.  This setup poses a problem.  What happens if 

all of the initial chromosomes are too similar?  Or what happens if, through generations of 

breeding with the same population size, the population becomes too similar?  This can be 

problematic if the algorithm converges around a local minimum/maximum.  To combat this, a 

mutation operator is applied after recombination.  The mutation operator slightly changes 

chromosomes to give each generation some diversity. 
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2.2.2 ANT COLONY OPTIMIZATION  

 

 The ant colony optimization technique was developed as a result of an experiment 

performed with Argentine ants by [Goss, 1989].  In the experiment, a group of ants and supply of 

food were placed together.  The food supply, however, was physically separated from the ants in 

such a way that the ants had to take one of two bridges to reach the food.  At first, the ants chose 

random paths.  As time progressed, the ants began to take the shorter of the two bridges.  This 

result can be attributed to the pheromone trails that the ants leave as they travel.  Since the travel 

time is shorter on the small bridge, more ants are able to cross it when compared to the longer 

bridge, thus marking the small bridge with more pheromones.  The ACO algorithm follows this 

process by considering a population of solutions (ants) that move from neighboring solution to 

neighboring solution.  As each solution is visited, information about the move to that solution is 

recorded as a pheromone trail.  This information may be updated as the solution is being built 

(online step-by-step pheromone updating) and/or after the solution has been built (online delayed 

pheromone updating).  These pheromone trails affect the future move selections of all of the ants 

of the population (ants are encouraged to move on pheromone trails).  To discourage the ants 

from converging too quickly along a path, the pheromone trail dissipates, much in the same way 

that a real scent does. 

 In addition to the details of the aforementioned process, ant colony optimization 

techniques are commonly equipped with other features.  One common practice is for an ant to 

deposit an amount of pheromone proportional to the quality of the solution it is building.  

Depending on the problem being tackled, the ants are sometimes given some type of memory 

structure.  In some versions of the ant colony optimization technique, the pheromone trail is 
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updated by a more centralized entity (that is, an agent that incorporates information about the 

entire search, not just one ant).  This type of update is referred to as offline pheromone updating 

[Dorigo, 1999]. 

 

2.2.3 TABU SEARCH 

 

 Tabu search’s modern form can be accredited to [Glover, 86], based on work that he had 

done previously [Glover, 77].  Tabu search is now an established optimization technique that is 

competitive with nearly all other heuristic techniques.  A heuristic designed to exploit an element 

of human cognition in its searches, tabu search does this by “memorizing” its states as it visits 

solutions in the domain.  The memories that it builds are then used to influence the search.  There 

have been a large collection of tabu search variants proposed for various combinatorial 

optimization problems since Glover’s seminal paper.  The basic structure of the tabu search 

method, however, is a local search algorithm equipped with a tabu list.  The tabu list records 

information about the state of the search at each visited solution in order to discourage the search 

from revisiting those solutions.  Just what information is recorded, as well as how that 

information influences the search, is a topic that has been actively researched in recent years. 

 While the basic structure of tabu search was outlined above, it should be noted that most 

tabu search implementations are highly customized to the problem at hand.  While much of the 

literature focuses on the tabu list and how long it keeps its contents, this should not be the only 

focal point.  The real focus of tabu search is not to just keep a list of information about the 

search, but to use that information in a way to guide the search to better regions in the search 

space.  In doing this, the notions of long-term and short-term memory must be applied.  Short-
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term memory is typically represented by the use of the tabu list to record the characteristics of 

recently visited solutions (also known as recency-based memory) and thus keeps the search 

diversified.  Long-term memory is commonly used to record information about the best solutions 

in order to intensify the search around those particular regions of the search space. 

 

2.2.4 SIMULATED ANNEALING 

 

 An annealing process begins at a high temperature, which allows atoms to move freely.  

As the temperature is decreased, the atoms slow and eventually settle, forming a crystal.  If the 

temperature is decreased rapidly, the resulting crystal is typically marred with defects.  If the 

temperature is decreased slowly (annealed), then the resulting crystal typically suffers from far 

fewer defects.  The simulated annealing technique, motivated by observations of crystallization 

during an annealing process, was introduced by [Kirkpatrick, 83].  The annealing process is 

translated into algorithmic form by incorporating a temperature parameter, T, and a cooling 

schedule into a local search algorithm.  First, the local search begins with a solution, S.  This 

solution is perturbed in some way and accepted by the search with a probability that is dependent 

on the objective function values of the solutions and on the temperature parameter, T.  As T 

decreases, the probability of moving the search from a better state to a worse state decreases as 

well.  Determining the optimal cooling schedule is left up to the implementer of the algorithm.  

Once it has been found, it can usually be applied to similar problems. 
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2.3 COMPARING THE METHODS 

 

 The general structures of the aforementioned heuristic approaches may, at first glance, 

not seem to share common characteristics.  There is, however, a simple unifying agent among  

these algorithms.  Each heuristic mimics the naturally occurring concepts of selection 

(optimization) and mutation (randomization) [Colorni, 1996].  Genetic algorithms follow this 

trend in a straightforward manner.  Ant colony optimization achieves randomization through the 

use of random-walk agents (ants).  The optimization process is garnered in the building of 

pheromone trails.  In the simplest case, the tabu list found in tabu search implementations 

provides an element randomization in the search.  Optimization occurs as a result of the hill-

climbing strategy commonly invoked.  The tabu search literature (as well as the literature of most 

other heuristic approaches) focuses on the balancing of intensification (thoroughly inspecting 

local minima) with diversification (thoroughly inspecting the solution space).  This concept is 

comparable to the ideas of optimization and mutation, respectively.  Randomization is an 

obvious element of simulated annealing.  The optimization occurs as the temperature drops and 

the search converges around a local minimum. 

 While the optimization and randomization concepts previously outlined provide insight 

into the fundamentals of nature-inspired heuristics, a more intimate comparison of the methods 

follows. 
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2.3.1 MULTIPLE SEARCH AGENTS V. SINGLE SEARCH AGENTS 

 

 Perhaps the most obvious way of partitioning the above methods is to separate them into 

population-based and single-point searches.  Genetic algorithms and ant colony optimization are 

both methods that are searching with a population of solutions at each iteration.  Tabu search and 

simulated annealing, however, keep only one current solution.  While at a first glance it may 

seem that a population-based approach is automatically superior to the single-point approach, 

this is not always the case.   

 For example, [Areibi, 2001] asserts that single-point searches are superior to population-

based methods in solving the partitioning and placements problems.  This is due to single-point 

searches being more equipped to perform finely tuned searches.  Population-based approaches, 

especially evolutionary methods, are good at exploring the solution space since they search from 

a set of designs and not from a single design.  Typically population-based searches, while good 

at covering a diverse part of the search space, are susceptible to being very “near” optimal 

solutions and never finding them.  This behavior is a result of genetic algorithms and ant colony 

optimization making large jumps in the neighborhood graph (via constructing solutions with ants 

and applying genetic operators, respectively) [Birattari, 2001].  These methods are able to follow 

a discontinuous walk through the search space.  The single-point approaches do not have this 

behavior.  In a single point approach such as tabu search or simulated annealing, a continuous 

walk through the search space is typically adhered to.  At each iteration, the solution changes to 

another solution in its neighborhood. 

 The purpose of population-based searches such as genetic algorithms and ant colony 

optimization is for the agents of the populations to eventually “agree” on an optimal solution.  In 
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contrast to this idea, one of the main goals of tabu search is to prevent the search from 

converging, so that the search may continue investigating unexplored regions of the solution 

space until a threshold is satisfied.  Convergence in a tabu search algorithm manifests itself as 

cycling - repeating a sequence of solution transitions indefinitely, or as pointed out by [Battiti, 

1994] as restricting the search around a chaotic attractor.  The list from which tabu search gets its 

name is responsible for keeping the search out of local minima.  In simulated annealing, the 

element of randomization is so prevalent that the search only converges as the temperature drops. 

 

2.3.2 MEMORY UTILIZING V. MEMORYLESS METHODS 

 

 Of the four approaches highlighted here, three of the four utilize information about 

previous iterations when calculating search moves in the current iteration.  The most obvious 

candidate for being a memory utilizing method is tabu search.  Typically, tabu search uses a 

combination of explicit and attributive memories.  Explicit memory is used when entire solutions 

are memorized in the search.  Typically, only elite solutions are recorded in this fashion, 

although versions of tabu search exist that record entire solutions in the tabu list (this is known as 

Strict-Tabu) [Glover, 97].  Attributive memory uses information about the attributes of 

previously visited solutions.  This memory is used to encourage moves toward particular areas of 

the solution space (intensification) and to discourage moves toward particular areas of the 

solution space (diversification).  

 While tabu search is based upon one observer that “remembers” aspects of solutions in 

order to make “smarter” decisions in the future, ant colony optimization relies on a population of 

“dumb” observers.  The tabu list style of adaptive memory is replaced with a group memory of 
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pheromone trails.  Ant colony optimization takes a set of random walking agents and encourages 

them to converge by affecting their decisions with the pheromone trails.  These pheromone trails 

can be considered as a type of adaptive memory [Birattari, 2001], since they are constructed 

from visited solutions and their corresponding fitness values.  These pheromone trails encourage 

the ants to choose paths that lead to relatively “good” regions of the solution space 

(intensification).  An evaporation mechanism is usually employed, so that the ants do not follow 

along a single path of pheromones (diversification).  The information contained in the 

pheromone trails may also be utilized and modified in a more straightforward manner, i.e. by a 

daemon that uses global information to affect the search. 

 The population of solutions acts as a form of memory in genetic algorithms.  In 

particular, the schemata of the solution strings are “remembered” (or more appropriately, 

“inherited”) from the previous generation.  Thus, the population can be thought of as an 

overview of information about previous iterations.  Reproduction and recombination operators 

eventually cause schemata of the solution strings to increase/decrease in proportion to their 

relative fitness in the population [Holland, 75], leading the search into better regions of the 

solution space.  

 Simulated annealing does not utilize any type of memory in its search.  

 The group of heuristics that utilize a form of memory have recently been grouped under 

the name “Adaptive Memory Programming” [Taillard, 1998]. These methods are characterized 

by common elements in their general structures.    These commonalities are: keeping some type 

of memory about previously visited solutions, using this memory to generate a new starting 

solution and then applying a search method to this new starting solution.  For a more in-depth 

discussion on the topic, see [Taillard, 1998]. 
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2.3.3 NEIGHBORHOOD STRUCTURES  

 

 Solution construction in genetic algorithms is not the result of static neighborhoods.  In 

fact, the mutation operator can arbitrarily change a solution to a different neighborhood at each 

iteration.  This type of neighborhood, coupled with the concept of a population suggests that 

genetic algorithms will search more of the solution space than would a single-pointed, 

neighborhood-based search.  [Areibi, 1995] asserts that interchange methods, such as those used 

in the recombination stage of genetic algorithms, are more likely to fail to converge to “optimal” 

solutions.   

 Tabu search's use of long-term and short-term memory have affects on the neighborhood 

structure of the search.  Short-term memory typically reduces the size of the current 

neighborhood by excluding the moves listed as “tabu”.  Longer term memories are used to 

expand the current neighborhood to include solutions that would not be in the neighborhood 

otherwise [Glover, 1997].  Thus, the use of memory creates a dynamic neighborhood for the 

search at each iteration. 

 Simulated annealing utilizes what is typically referred to as a static neighborhood.  That 

is, any solution visited twice in the search will experience the same set of neighboring solutions. 

 In ACO, the term neighborhood is reserved for the choices available by each agent when 

constructing a solution.  These neighborhoods are static in nature, and choices made are affected 

by the pheromone trails.  Neighborhoods of entire solutions are not defined, as each solution is 

built be a separate, semi-random process (ant).  ACO algorithms that utilize the notion of a 

daemon may incorporate global information into the search and therefore could alter the 
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neighborhood structure that the ants experience.  In a graph problem, for example, a daemon 

could rule out a section of the graph by pruning edges. 

 

2.4 CONCLUSIONS 

 

 In investigating the heuristic approaches that are based in naturally occurring systems 

similarities emerge.  The roles of randomization and optimization are prevalent in each of the 

techniques.  The methods differ in their approaches and by what importance they place on the 

ideas of randomization and optimization.  Simulated annealing and ant colony optimization are 

essentially randomized searches with constraints (in the form of an annealing schedule and 

pheromone trails) that encourage optimization.  Tabu search and genetic algorithms, however, 

are optimizing searches with constraints enforcing randomization (in the form of a tabu list and 

the mutation operator). 

 In pointing out the differences and potential shortcomings of these heuristic techniques, it 

should not be surprising that, in practice, hybrid algorithms are commonly employed.  In order 

for a metaheuristic to be successful on an optimization problem, it must balance the effort it 

exerts on exploring the search space with the effort it exerts in exploiting the information 

gathered from previously visited solutions [Birattari, 2001].  Incorporating elements from 

multiple heuristic approaches allows more flexibility to achieve this balance.  
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CHAPTER 3 ITERATED LOCAL SEARCH 

 

3.1 INTRODUCTION 

 

 Over the last two decades, heuristic techniques have become more and more competitive.  

Less attention has been given to the general structures of the algorithms and more attention has 

been reserved for problem specific tailoring of the methods.  Iterated Local Search (ILS) is a 

metaheuristic designed to embed another, problem-specific, local search as if it were a “black-

box”.  This allows Iterated Local Search to keep a more general structure than other 

metaheuristics currently in practice. 

 The basic idea of ILS is described as follows.  Generate a starting solution, s0, and repeat 

the following.  Execute the black-box local search on s0 to obtain s0', a locally optimal value.  

Modify this value in some way as to arrive at a new solution s1.  This simple type of search has 

be reinvented numerous times in the literature, with one of its earliest incarnations appearing in 

[Lin, 1973]. 

 

3.2 BASICS OF THE ALGORITHM 

 

 In order to construct an ILS, one first needs an optimization problem, with an objective 

function, f, defined over a solution space, S.  Given these things, a local search procedure 

specific to the problem must be obtained.  This local search procedure, denoted by localf, should 

take in a starting solution Ss∈  and return a locally optimal value.  Let this locally optimal value 
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be denoted by s* and let the set of all local optima be denoted by S*, a proper subset of S.  Then 

localf defines a surjection from S to S*.  The ultimate goal of the Iterated Local Search is to 

perform a search on the set S*.  It accomplishes this by repeatedly iterating the procedure localf, 

at each iteration generating an s* of S*.   

 First, an initial solution, so, is constructed, either randomly or with some construction 

method.  This solution is passed to the local search, resulting in a new locally optimal solution, s.  

This is the “current” solution of the algorithm and will remain so until another solution is 

accepted to be the current solution.  The locally optimal solution is changed in some way, 

resulting in s'.  How the locally optimal solutions are changed is an implementation detail carried 

out in the procedure perturb.  Ideally, the perturb operation “transforms an excellent solution into 

an excellent starting point for a local search” [Lourenco, 2001].  s' is then passed to the local 

search, resulting in a another new locally optimal solution, s*.  This new local optimum then 

must pass certain acceptance criterion (this is defined in the procedure accept) and if it does, s* 

becomes the new “current” solution.  Note that the “current” solution of the ILS metaheuristic 

refers to the solution that will act as the starting solution for the black-box search in the next 

iteration.  More details regarding the perturb and accept procedures are covered in the sections 

that follow.   

 The Iterated Local Search involves four main components: creating an initial solution, a 

black-box heuristic that acts as a local search on the set S, the operation perturb, which modifies 

a solution; and the procedure accept, which determines whether or not a perturbed solution will 

become the starting point of the next iteration.  Pseudo-code for the algorithm is given below. 
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Iterated Local Search 
     Let: 
 f  the function to minimize  
 Local f  a local search with the objective of minimizing f 
 S  the set f is defined on 
 s  an element of S 
 S*  the set of f(s), or local optima 
 s*  an element of S* 
 Perturb Perturbation function 
 Accept Acceptance Criterion 
     Then: 

Choose an initial solution s 0 in S  
s* = L f (s 0) 
s  = s* 
Loop 

s' = Perturb( s ) 
s* = Localf( s' ) 
if( Accept( s* ) == true ) 

s = s' 
endLoop 

 

3.3 DIVERSIFICATION V. INTENSIFICATION 

 

 When exploring the search space, it is important for the ILS procedure to adequately 

search local regions.  It is also important for the ILS procedure to not spend too much of its 

computational efforts around local optima, effectively limiting the search to a few regions of the 

domain.  The former need describes the idea of intensification (ensuring that the process 

thoroughly inspects each local minima) of the search, while the latter describes the idea of 

diversification (making sure the process is not searching a subset of the domain).  The effective 

balancing of intensification and diversification is one of the largest hurdles encountered when 

tailoring any metaheuristic for a specific problem.  Multiple strategies exist for accommodating 

both, and a few of them are discussed in the following sections.   
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3.4 ILS COMPONENTS 

 

This section explores the components that compose the ILS heuristic.  These include 

determining the starting solution, a black-box search, a method of perturbing a solution and a 

method to determine whether a solution should be accepted for the next iteration. 

 

3.4.1 STARTING SOLUTION 

 

 The initial solution used in the ILS is typically found one of two ways: a random solution 

is generated or a greedy construction heuristic is applied.  In applying a greedy heuristic, better 

solutions can be found in a shorter amount of time.  It has been shown, however, that this is true 

only in the short-term.  Longer running algorithms see no significant difference in solution 

quality based on the initial solution [Stutzle, 1998]. 

 

3.4.2 BLACK-BOX LOCAL SEARCH 

 

 Ideally, the local search that provides the backbone of the ILS method should always 

return a local optimum and it should find that local optimum as efficiently as possible.  Since this 

step is usually the most time consuming and since it occurs at each iteration of the metaheuristic, 

a slow local search can lead to poor performance of the overall method. 
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3.4.3 PERTURBATION SCHEME 

 

 The perturbation scheme takes a locally optimal solution, s* and produces another 

solution to start the local search from in the next iteration.  In the best case, the perturb procedure 

will result in a solution outside of the visited basins of attraction.  That is, it will be “near” a 

previously unvisited local optimum.  Choosing the correct perturbation scheme is important, 

because it has a great influence on the intensification/diversification characteristics of the overall 

algorithm.  Perturbation schemes are commonly referred to as “strong” and “weak”, depending 

on how much they affect the solution that they change.  A perturbation scheme that is too strong 

has too much diversity and will reduce the ILS to an iterated random restart heuristic.  A 

perturbation scheme that is too weak has too little diversity and will result in the ILS not 

searching enough of the search space.  The perturbation scheme should be chosen in such a way 

that it is as weak as possible while still maintaining the following condition: the likelihood of 

revisiting the perturbed solution on the next execution of localf should be low [Lourenco, 2001].  

The strength should remain as low as possible to speed up execution time.  The desired 

perturbation scheme will return a solution near a locally optimal value.   If this is the case, the 

local search algorithm should take less time to reach the next locally optimal value. 

 Components from other metaheuristics have been incorporated into the perturbation 

phase.  [Battiti, 1997] use memory structures similar to tabu search to control the perturbation.  

In doing so, one can force intensification when globally “good” values are reached and force 

diversification when the search stagnates in an area of the search space.  Borrowing from 

simulated annealing, temperature controlled techniques have been used to force the perturbation 
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to change in a deterministic manner.  Basic variable neighborhood search employs a 

deterministic perturbation scheme. 

 

3.4.4 ACCEPTANCE CRITERIA 

 

 When the current solution, s, is perturbed, the result is the new solution s'.  s' is then 

passed to the black-box search heuristic.  The resulting local optimum must pass acceptance 

criterion for s' to be designated as the new “current solution”.  Just as perturbation can range 

from too much intensification (no perturbations) to too much diversification (perturb all elements 

of the solution), acceptance criterion choices affect the search in a similar way.  The most 

dramatic acceptance criterion on the side of diversification is to accept all perturbed solutions.  

This type of practice can undermine the foundations of ILS, since it encourages a random-walk 

type search.  Contrasting with this is to accept only solutions that are improvements to the 

globally optimal value.  Many implementations of ILS employ this type of acceptance strategy 

[Rossi-Doria, 2002].  This type of criterion, especially with a weak perturbation scheme, can 

restrict the search from escaping the current basin of attraction.  Moreover, with this type of 

scheme the probability of reaching the same locally optimal value increases – a trait that reduces 

the algorithm's overall effectiveness.  Large perturbations are only useful if they can be accepted.  

This only occurs if the acceptance criterion is not too biased towards better solutions [Lourenco, 

2001].  The tabu search relies on occasionally moving the search into areas with worse objective 

functions in order to better search the solution space.  [Stutzle, 1998] shows that acceptance 

criteria that accept some worse solutions outperform their best-only counterparts.    
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3.4.5 STOPPING CRITERIA 

 

Generally, the algorithm executes until one of the following conditions is met: 

• A predetermined number of cycles have occurred 

• The best solution has not changed for a predetermined number of cycles 

• A solution has been found that is beyond some predetermined threshold. 

Notice that the 3 methods constitute 3 different approaches: The first method executes 

independently of the performance of the process (time).  The second method stops executing 

when the performance of the method stops improving (performance).  The third method stops 

executing when a solution is found that is “good enough” (utility). 

 

3.5 ADAPTIVE MEMORY PROGRAMMING 

 

 The term Adaptive Memory Programming (AMP) was first used in [Glover, 1997].  Here 

it refers to long term memory strategies that can be applied to tabu search.  These memories, 

Glover proposes, can be used to intensify and diversify the search in a more effective way than is 

possible with short-term memory alone.  In [Taillard, 1998] an investigation into heuristics that 

utilize a form of memory is undertaken.  These heuristics included genetic algorithms, scatter 

search, tabu search and ant colony optimization. By their investigation into these memory 

utilizing methods, a new, more general understanding of the term adaptive memory 

programming surfaces.  The characteristics common to heuristics that employ memory structures 

are the following: 
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1) a set of solutions/solution attributes or an aggregation of the solutions and their 

attributes is memorized 

2) a provisory solution is constructed using this information 

3) the provisory solution is improved upon, typically with some well-known 

heuristic 

4) the memory is updated with information from the solution 

 

AMP, when defined this way, is found in many of the most successful metaheuristic strategies 

[Taillard, 1998].  Typically, solutions in step 2 are constructed by taking elements of different 

solutions from step one and combining them (usually with some linear operator).  The data 

structures holding the solutions or the solutions themselves are then modified in step 4 after a 

local search has been applied.   

 [T. Stutzle 1998] asserts that “incorporating memory into ILS improves performance”.  

Our investigation into nature-inspired heuristics shows us that each relies on an element of 

randomization and an element of memory.  Since ILS is generally implemented as a stochastic 

search, it provides the element of randomization needed.  Many metaheuristics, including those 

inspired by nature, can be considered as adaptive memory programs.  Incorporating a form of 

adaptive memory into the ILS will allow us to create an algorithm that incorporates these ideas. 
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CHAPTER 4 THE SNAKE-IN-THE-BOX PROBLEM 

 

 This chapter presents an overview of the Snake-in-the-box (SIB) problem.   

 

4.1 DEFINITIONS AND NOTATION 

 

 Let G represent a finite, non-directed graph.  Then V(G) and E(G) are the vertex and edge 

sets of G, respectively.  A path P in G is defined as a subgraph of G, where 

},...,,{)( 210 kxxxxPV =  and },...,,{)( 1322110 kk xxxxxxxxPE −= .  When xx =0 k, the path is said to 

be a circuit.  A chord defined on the path P in the graph G is an edge )(GEe∈  such that e is not 

an element of E(P) and its defining vertices are elements of V(P).  Thus a chord is and edge not 

in the path, but whose vertices are in the path. 

Hypercubes 

 Q is a standard cube if 8)( =QV , 12)( =QE  and each vertex, )(QVv∈  has degree 3.  

Figure 4.1 depicts a cube graph. 
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Figure 4. 1 – A three dimensional hypercube 

 
 
 Similar to the graph of a cube, a hypercube is an extension of this idea into dimensions 4 

and greater.  A hypercube of dimension d is an undirected graph on d2  vertices and 

dd ⋅−12 edges, where each vertex is connected to exactly d other vertices.  While the definition of 

a hypercube holds for any positive d, the word hypercube is typically reserved for graphs with 

3>d .  Hypercubes of dimension d will be represented by Qd.  Figure 2 depicts a hypercube of 

dimension 4 (Q4).  For a more detailed description, we direct the reader to [Harary, 1988]. 

  

 

Figure 4. 2 – A four dimensional hypercube 
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 A useful property of hypercubes is that the nodes can be mapped to binary sequences of 

length d.  In this mapping, two vertices in a hypercube are adjacent if and only if their binary 

sequences differ by exactly one bit.  Figure 4.3 depicts the standard cube when this mapping is 

applied.  From this point on, we will not distinguish between a vertex on the hypercube and its 

binary sequence. 

  

 

 

Figure 4. 3 – A standard cube with binary encoding of vertices 

 

 It is interesting to note that a hypercube of dimension d can be constructed from two 

hypercubes of dimension d-1.  This construction is performed by connecting similar vertices.  

For example, consider the following figure, where a hypercube of dimension 4 is constructed 

from two hypercubes of dimension 3.  Then the bit representation of each node can be updated 

by adding a ‘1’ to each node originally in the left dimension 3 hypercube and by adding a ‘0’ to 

each node originally in the right dimension 3 hypercube. 
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Figure 4. 4 – A four dimensional hypercube depicted as the joining of two three dimensional 
hypercubes 

 

4.2 SNAKES 

A d-dimensional snake is defined as a path S on Qd such that S is achordal.  The following figure 

depicts a snake in dimension 3. 

 

 

Figure 4. 5 – A snake of length 4 on the standard cube 

 
Similarly, a d-dimensional coil is a achordal circuit through Qd.  Figure 4.6 depicts a coil in 

dimension 3. 
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Figure 4. 6 – A coil of length 6 on the standard cube 

 

 Throughout this paper, a d-dimensional snake will be referred to as a d-snake and 

similarly, a d-dimensional coil will be referred to as a d-coil.  A maximal snake is a snake that 

violates the definition of a snake when it is extended by adding any vertex to the front or back of 

its path sequence.  While coils and snakes are closely related in their definitions and applications, 

this thesis does not address issues pertaining directly to coils.   

 A longest snake in Qd is the snake with the largest possible number of vertices.  S(d) will 

denote the longest snake in dimension d.  Similarly, a longest d-coil will be denoted by C(d).  

Longest snakes have been determined for hypercubes up to dimension 7.  Longest snakes for 

dimensions > 7 remain an open problem. 

 Much attention has been given to determining theoretical bounds for C(d) (a bound for 

S(d) can easily be derived from this by subtracting two).  Kautz showed a lower bound in [Kautz, 

1958], namely that 

     )(2)2( dCdC ≥+  

from which it follows that  

2/2)( ddC λ> , where λ  is a positive constant 
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Various researchers improved on this bound with [Abbot, 1991] constructing the current best 

lower bound, expressed as 

)(2
256

77
dCd ≤  

The current tightest upper bound for dimensions 7 <= d <= 11 was given in [Snevily, 1994] and 

is expressed as 

 










+−
−≤ −

)2(

1
12)(

2

1

dd
dC d

 

 

As pointed out by [Rajan, 1999], these bounds leave a large margin of error: )/2( 2ddΘ .  This 

analysis of C(d), while interesting, does not directly apply to S(d) [Potter, 1994].  The only 

bound that can be directly derived is the one for which a d-snake is constructed directly from 

C(d), giving  

     2)()( −≥ dCdS  

[Abbott, 1991] increased the lower bounds for coils in dimension 8-20 using proof by 

construction techniques.  [Paterson, 1998] used a technique based on arranging equivalence 

classes of the snakes to improve many of these bounds.  The current lower bounds found non-

computationally for S(d) are shown in table 4.1. 
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Table 4. 1 – Upper and lower bounds for S(d) in dimensions 7 to 11 

D Calculated Lower Bound Computed Lower Bound Calculated Upper Bound 

7 46 [Kautz, 1958] 50 [Kochut, 1996] 60 [Snevily, 1994] 

8 96 [Paterson, 1998] 97 [Rajan, 1997] 123 [Snevily, 1994] 

9 168 [Abbott, 1991] 186 [Casella, 2005] 250 [Snevily, 1994] 

10 338 [Paterson, 1998] 358 [Casella, 2005] 504 [Snevily, 1994] 

11 618 [Paterson, 1998] 680 [Casella, 2005] 1012 [Snevily, 1994] 

  

The value for S(d) in dimension 7 is exact – it was determined computationally through 

exhaustive search.  

 The current best value of S(8) of 97 was determined computationally by [Rajan, 1999] 

using a technique that incorporated maximal snakes from smaller dimensions.  Beginning with 

[Potter, 1994], heuristic approaches have been applied to the problem, aiming to improve lower 

bounds of SIB codes by constructing examples.  Recently, [Casella, 2005] reported using a 

stochastic hill-climber to find values of 186, 358 and 680 for dimensions 9, 10 and 11, 

respectively.  Figure 4.7 depicts the effect that computation has had on tightening the bounds on 

S(d) for dimensions 5 to 11.   
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Current Bounds for S(d) 
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Figure 4. 7 – A comparison of S(d) bounds obtained computationally & non-computationally 

 

4.3 APPLICATIONS OF SNAKE-IN-THE-BOX CODES 

 

 Snakes and their closed counterparts, coils, are often referred to as circuit codes of spread 

2.  Interest in snake-in-the-box codes began with [Kautz, 1958] in the context of unit distance, 

error checking codes.  By using the visited nodes of the hypercube as code words, SIB codes 

found application in analog to digital conversion [Klee, 1970].  If a codeword has one bit 

corrupted in the communication process, it either corrupts to a neighbor on the path (negligible 

errors) or a non-codeword (error detected).  Similarly, if a subset of a SIB code is chosen in such 

a way that code words differ by at least one bit, the result is an error-correcting code (for single-

bit errors).  SIB codes have found application in other areas as well.  They have been used in 
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constructing electronic locking schemes in [Kim, 2000] and [Dunin-Barkowski, 1999] uses a SIB 

code in a cerebellar learning model.   
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CHAPTER 5  AN OUTLINE OF THE PROCESS 

 

5.1 INTRODUCTION 

 

 The task of finding SIB codes is equivalent to finding circuit codes of spread 2.  Highest-

quality solutions to this problem are those snakes with the longest path lengths.  The longer the 

path, the more useful the code is in applications [Klee, 1970].  Aside from the lengths of the 

snakes, the execution time is also an important characteristic to consider when evaluating the 

usefulness of a particular method.  This chapter begins by describing a simple snake construction 

heuristic.  We then show how this heuristic can be used within the Iterated Local Search 

metaheuristic.  We then present an adaptive memory based heuristic that utilizes the ILS 

procedure developed. 

 

5.2 SNAKE CONSTRUCTION HEURISTIC 

 

 In order to implement an Iterated Local Search, one needs some type of local search 

heuristic to iterate over.  That local search heuristic should be computationally efficient, since it 

will be executed repeatedly throughout the ILS.  Previous heuristic approaches to finding 

maximal snakes rely on populations of feasible paths in the hypercubes.  These paths must then 

be inspected to see if they lie in the domain of feasible snakes.  This check for feasibility is 

typically carried out in an objective function evaluation for the snake at each iteration of the 

algorithm.  Objective function values are typically dependant upon the maximal length snake 
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contained in the sequence.  This is usually realized as a function that, beginning with the first 

node of the sequence, checks each subsequent node for feasibility until a non-feasible node is 

found.  The number of feasible nodes found before this point constitutes the length of the snake.  

Given a node sequence of length n, the average objective function evaluation is on the order of 

O(n2).  Another commonly employed method for determining the objective function value of a 

node sequence is to treat the sequence as a circular list, and then finding the longest snake within 

that list.  Computing the objective function this way means that the previously detailed objective 

function must be executed n times, resulting in an operation on the order of O(n3).   

 Here, we take a different approach.  Instead of constructing a feasible path in the 

hypercube and then determining its fitness, we construct a feasible snake, updating its fitness as 

each node is added to its end.  The result is a local search heuristic that restricts its search to 

those valid paths through the hypercube that constitute snake-in-the-box codes.  In order to 

accomplish this task, information about the state of the hypercube that the current solution lies in 

must be recorded.  More particularly, an induced subgraph is constructed alongside the solution.  

The induced subgraph is a subgraph of the hypercube, consisting of all nodes and edges 

contained in the current solution, as well as all possible chordal nodes and edges to the current 

path of the solution. 

 
5.3 SOLUTION REPRESENTATION 

 
Node Sequence 

An array of integers, in the range [0,2d), represents the path as a sequence of nodes of the 

hypercube.  The length of this sequence corresponds to the length of the snake.  One such 

possible node sequence of length 6 in dimension 4 is 

   {0, 1, 3, 7, 15, 6}  
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Transition Sequence  

In [Potter, 1994], a GA is employed to find high-quality solutions to the SIB problem.  In doing 

so, the traditional method of representing a path as a sequence of nodes on the graph is replaced 

by a representation of the path as a sequence of transitions.  The transition sequence, originally 

introduced by [Abbott, 1991] can be constructed from the node sequence as follows: 

 
for( int i = 1; i < nodeSequence.length; i++ ){ 
 transitionSequence[i]=log2(nodeSequence[i-1]^nodeSequence[i]); 
} 
 
Similarly, the node sequence can be reconstructed from the transition sequence as follows: 
 
for( int i = 0; i < transitionSequence.length; i++ ){ 
 nodeSequence[i+1]=(nodeSequence[i]^(1<<transitionSequence[i])); 
} 
 
 The transition sequence takes advantage of the symmetry of the hypercube since it is 

possible for a single transition sequence to describe multiple node sequence paths by beginning 

each sequence at a different node of the hypercube (of course, this can be achieved with a node 

sequence by fixing the first element in the sequence).  More importantly, any modification to the 

transition sequence will result in a valid path.  That is not to say, however, that any modification 

to the transition sequence will result in a valid snake.  The aforementioned snake represented as a 

transition sequence would appear as 

   {0, 1, 2, 3, 0} 

 

5.4  INDUCED SUBGRAPH 

 

 As mentioned earlier, each solution keeps an induced subgraph constructed from the 

current path.  This graph contains all of the nodes of the path, as well as any nodes directly 
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adjacent to the graph.  Thus, when a node is to be added to the transition sequence, each of the d 

possible nodes to append can be checked for viability via the induced graph.   

 
boolean procedure tryAddEnd( transitionNode end ){  
    // the Transition Node to add, converted to a Node Sequence     
    // Node 
    NodeSequenceNode endNode = convertToNodeSequenceNode( end ); 
    // for each dimension 
    for (i = 0 to dimension)  
  // check to see if the node to add will form a chord 
      // omit checking if i == end, b/c that refers to the 
  // previous node in the path 
  if( i != end && inducedGraph.canFormChord( endNode ) ) 
      return false; 
    return true; 
} 

 

 As previously mentioned, evaluating the length of the snake beginning with the first node 

is an operation on the order of O(n2), where n is the length of the sequence.  Each node must be 

compared with all other nodes in the sequence to determine feasibility.  In our construction 

heuristic, once a maximal snake has been found (no nodes exist that can be added while 

maintaining solution feasibility), the effective runtime for constructing the solution is on the 

order of O(dn), where n is the length of the snake and d is the dimension.   

 Another reason for choosing the construction technique stems from the uncertainty 

involved when assigning a SIB code an objective function value.  The most obvious choice is the 

length of the snake.  This is problematic because the cardinality of the set of maximal snakes of 

length n in a given dimension can be unknown.  This evaluation does not provide a practical way 

to distinguish solutions in a way suitable for intelligent search through the solution space.  That 

is, the range of the objective function is too small to make intelligent choices in a straightforward 

manner.  [Casella, 2005] proposed a modified objective function where “tightly-coiled” (that is, 
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they left the most nodes of the graph free for future extension of the snake) snakes were given a 

higher fitness value.  While this helps to granulate the range of objective function values, it does 

not do so by much and could possibly discourage optimal solutions from being found.  Since a 

straightforward objective function evaluation does not seem to add additional insight to our 

search, we use the construction technique. 

 In constructing a SIB code, feasible nodes are appended to the solution randomly.  We 

decided to make this process random primarily to keep the process as computationally efficient 

as possible.  A randomized search, while not “intelligent”, does benefit from low computing 

overhead and avoids some of the pitfalls of a deterministic search (cycling, for example).  These 

things, coupled with the fact that so little is known about the structures of optimal SIB codes 

influenced this decision. 

 As covered in the Chapter 3, the ILS algorithm is composed of four basic elements: a 

function to generate an initial solution, a function to perturb the current solution, a black-box 

search procedure and a set of acceptance criteria.  The SIB construction heuristic outlined above 

will act as the black-box local search procedure in our ILS algorithm. 

 Iterated Local Search 
     Let: 
 f the function to minimize  
 Local f  a local search with the objective of minimizing f 
 S the set f is defined on 
 s an element of S 
 S* the set of f(s), or local optima 
 s* an element of S* 
 Perturb Perturbation function 
 Accept Acceptance Criterion function 
     Then: 

Choose an initial solution s0 in S 
s* = L f (s0) 
s=s* 
Loop 
 s' = Perturb( s ) 
 s* = Localf( s' ) 
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 if( Accept( s* ) == true ) 
  s = s* 
end Loop 
 
 
 
 
 

5.5 ITERATED LOCAL SEARCH 

 

 Section 5.4 discusses how each of the elements of the iterated local search were 

implemented. 

 

5.5.1 INITIAL SOLUTION 

 

 The starting solution is the transition sequence {0,1,2}.  This is chosen as the seed since 

all SIB codes are isomorphic to a SIB code that originates from {0,1,2} [Kochut, 1996].  

 

5.5.2 PERTURBATION SCHEME 

  

 Once a solution reaches a maximal state (no nodes can be added to the end while 

maintaining its feasibility status), nodes are removed from the end.  This constitutes the 

perturbation scheme.  How many nodes to remove in a single perturbation of a solution is a 

function of the length of the current solution.  The number of possible nodes to remove ranges 

between 1 and n, where removing one node returns the solution to its state on the previous 

iteration and removing n nodes returns the solution to its state on the first iteration.  A linear 

probability distribution dictates the likelihood of any particular perturbation being chosen.  

Therefore, the average perturbation will cut each of the solutions in half.  Thus, an implicit 
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intensification occurs around better fit solutions.  This type of scheme encourages exploration 

around each solution, while still maintaining the possibility of large perturbations. 

 

 

5.5.3 ACCEPTANCE CRITERIA 

 

 The most dramatic acceptance criterion on the side of diversification is to accept all 

perturbed solutions.  This undermines the foundations of ILS, since it reduces the search to a 

random-walk.  Similarly, the most dramatic acceptance criteria on the side of intensification is to 

accept only those solutions that are better than the best value found.  This type of criterion, 

especially with a weak perturbation scheme, can restrict the search from escaping the current 

basin of attraction.  [Stutzle, 1998] shows that acceptance criteria that allow some worse 

solutions outperform their best-only counterparts.    

 If the solution resulting from a local search on the perturbed solution is at least as good as 

the best solution, the perturbed solution is accepted for the next iteration.  Thus, worse moves are 

allowed, since multiple snakes with the same lengths may have different potential for aiding the 

search. 

  While the process outlined above proves an efficient method to construct snakes, the lack 

of intelligent decision making makes it little more than a random search.  The section that 

follows outlines a strategy for incorporating memory into the search in order to intensify the 

search in an intelligent way. 
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5.6 PRINCIPLE OF PROXIMATE OPTIMALITY  

 

 As illustrated by [Rajan, 1999], snakes of dimension d are often composed of maximal 

snakes of dimension d-1.  This insight allows the exploitation of a technique employed by certain 

tabu search algorithms – the principle of proximate optimality.  In [Glover, 1997], the proximate 

optimality principle is outlined.  It states that “good solutions found at one level are likely to be 

found close to good solutions at an adjacent level”.  In tabu search, this principle is realized by 

searching within one level for a set number of iterations and then restoring the best solution 

found before proceeding to the next level.   

 This type of strategy is realized here by searching first for suitable maximal snakes in 

dimension d and using these solutions as starting solutions for the search in dimension d+1.  

Given the symmetry of the hypercube and, particularly the ability to form a hypercube of 

dimension d from two hypercubes of dimension d-1, this is an intuitive strategy.   

 As noted by [Taillard], the characteristics common to heuristics that employ memory 

structures are the following: 

1. a set of solutions/solution attributes or an aggregation of the solutions and their attributes 

is memorized 

2. a provisory solution is constructed using this information 

3. the provisory solution is improved upon, typically with some well-known heuristic 

4. the memory is updated with information from the solution 

 

 As an example, assume that we are interested in finding s(7).  Then we can utilize the ILS 

described above, where the initial solution is {0,1,2} to do so.  A more powerful alternative, 

however, is to seed our ILS in dimension 7 with a maximal snake from dimension 6.  This still 

leaves the question of which dimension 6 snake to use.  Our approach builds a population of the 
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longest snakes at each dimension and repeatedly uses them as seeds in an ILS.  Each of the 

snakes is reduced to its isomorphic equivalent up to reversal as in [Rajan, 1999].  This reduces 

the search space by ensuring that any two snakes that we search are not permutations of one 

another.  The likelihood that a snake will be chosen as the initial solution of a search in the next 

dimension is dependent on its own length and how well it has performed in the past as an initial 

solution.  That is, given two dimension 6 snakes, s1 and s2, of the same length, if s1 has resulted in 

finding better dimension 7 snakes it will be chosen with a higher probability and vice versa.  This 

is realized by keeping the solutions sorted, first by length and then by their performance.  A 

linear probability distribution based on this ordering is used to determine the likelihood that a 

solution will be chosen as the next seed.   

 
s  = current solution 
ILS  = Iterated Local Search 
SPi   = pool of dimension i solutions  
 
Repeat: 
 for ( int d = lowestDimension to highestDimension ) 
  if( d == lowestDimension ) 
   // perform ILS with {0,1,2} 
   s = ILS( {0,1,2} ) 
  else 
   // perform ILS with a seed from the previous 
   // dimension 
   s = ILS( SP(d-1).getSolution() ); 
   // update status of s in the d-1 dimension 
   // solution pool 
   SP(d-1).updateSolution(s); 
  // add s to the pool of dimension d solutions  
  SP(d-1).add(s); 
   
 
 

 It should be noted that the lowest dimension searched in this scheme does not benefit 

from having a population of solutions to begin its search with.  Instead, the solution {0,1,2} is 

used.  Therefore, consideration must be taken to ensure that the ILS can properly explore this 
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dimension without the aide of a population of solutions.  In our experiment, we determined that 

the ILS could easily explore dimension 6 (this is discussed in the following chapter), so we 

utilized it as the starting point of our searches.   

 

5.7 PARAMETER TUNING 

 

 In the process outlined above, consideration must be given to two things: how long to 

execute each ILS and how large to make each solution pool.  Making each ILS run for too many 

iterations will result in more intensification around solutions, but take more computation time 

that could be spent exploring other areas.  Similarly, a solution pool that contains too few 

solutions will restrict the search to certain areas, while a solution pool with too many solutions 

may cause the search to avoid necessary intensification around potential optimum values.  These 

decisions are made empirically and will be discussed in the results chapter.  Stopping criteria for 

the procedure outlined above consists of executing either for a predetermined number of 

iterations or until a suitable solution has been found.   

 

 

 

 

 

 

 

 

 

 

 



44 

CHAPTER 6  RESULTS 

 

6.1 ITERATED LOCAL SEARCH  

 

 Prior to incorporating the ILS into the AMP algorithm, it was necessary to inspect its 

performance alone.  The results below were obtained by executing the ILS alone with initial 

solution {0,1,2}.  The following table outlines our results. 

 

Table 6.1 – S(d) results for ILS with no memory 

Dimension Average Best Overall Best Current Lower 
Bound, S(d) 

6 26 26 26 

7 47.1 48 50 

8 79.7 84 >=97 

9 131.6 132 >=186 

 

 

 As can be seen from the results, the ILS performs well in dimension 6 (consistently 

converging to S(d) in a few seconds), but fails to sufficiently explore problem instances of 

greater dimension.  For this reason, dimension 6 is chosen as the vantage point for the AMP 

algorithm. 
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6.2 ITERATED LOCAL SEARCH WITH ADAPTIVE MEMORY 

 

 When incorporating adaptive memory into the ILS as described in chapter 5, two main 

parameters must be tuned: the solution pool size and the stopping critera for the ILS at each 

iteration of the AMP algorithm.  Increasing the solution pool size diversifies the search by 

allowing more seeds to be explored.  As a consequence, the average length of snakes in this list 

grows at a rate slower than that of a solution pool of a smaller size.  This leads to more time 

being spent searching from seeds with shorter lengths.  The length of the seed, however, is not 

the only criteria that determines whether it is a worthy starting point for a search.   

 The program was executed with solution list sizes of 5, 10, 25, 50 and 100.  For each of 

these instances the program was executed with varying stopping criteria in the embedded ILS.  

The ILS stopping criteria were to stop after 5, 10, 25, 50 and 100 iterations.   Each of the 25 

instances described here were executed 10 times for approximately 30 minutes each. 

 Table 6.2 outlines the consequences of varying the solution list size in the algorithm.  

Each value in column 2 represents the average found over all instances with varying stopping 

criteria. 

Table 6. 2 – ILS with AMP results, varying solution list size, dimension 7 

Solution List Size Average Best Snake 
Found 

Worst Snake Found 
Upon Termination 

Best Snake Found 
Upon Termination 

5 48.75 48 50 

10 49.05 48 50 

25 48.85 48 50 

50 49.3 49 50 

100 50 50 50 
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 As one can see, increasing the solution list size allows for the type of diversification 

necessary to achieve optimal values.  There is an almost steady progression of solution quality 

with the increase. Table 6.3 outlines the same situation in dimension 8. 

 

Table 6. 3 - ILS with AMP results, varying solution list size, dimension 8 

Solution List Size Average Best Snake 
Found 

Worst Snake Found 
Upon Termination 

Best Snake Found 
Upon Termination 

5 94.15 91 97 

10 94.15 92 97 

25 94.3 94 97 

50 94.8 93 97 

100 95.25 94 97 

 

 The results of increasing the solution list size in dimension 8 mirror those of dimension 7.  

There seems to be a direct correlation between the solution size and solution quality.  As the two 

previous tables show, finding the best snake does not seem to be effected by the list size at all.  

Figure 6.3 outlines the same situation in dimension 9. 
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Table 6. 4 - ILS with AMP results, varying solution list size, dimension 9 

Solution List Size Average Best Snake 
Found 

Worst Snake Found 
Upon Termination 

Best Snake Found 
Upon Termination 

5 166.9 164 174 

10 165.9 163 171 

25 167.2 164 172 

50 168.4 165 174 

100 168.2 164 170 

 

In dimension 9, the situation has changed somewhat.  While there does seem to be a 

slight correlation with the solution list size and solution quality, the relation is not 

straightforward.  The success of the instances with solution list = 5 can be attributed to the need 

for more intensification around solutions in dimension 9.  While some dimension 8 snakes may 

provide seeds that extend to dimension 9 snakes in the 170’s easily (that is, the number of 

possible paths allowed from the snake is small relative to the number of possible paths allowed 

from other snakes of the same length), other dimension 8 snakes may require ample exploration 

to achieve such results.  Therefore, in keeping a small solution list size, these dimension 8 snakes 

are extended enough times to achieve this. 

 Decreasing the amount of time each ILS executes diversifies the search by allowing more 

time to be spent on a variety of seeds.  The following table outlines the effects in dimension 7 of 

varying the stopping criteria of the ILS within the algorithm.  The ILS executed at each iteration 

of the AMP algorithm for 5, 10, 25, 50 or 100 iterations. 
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Table 6. 5 - ILS with AMP results, varying ILS stopping criteria, dimension 7 

ILS Iterations Average Best Snake 
Found 

Worst Snake Found 
Upon Termination 

Best Snake Found 
Upon Termination 

5 49.15 48 50 

10 49.12 48 50 

25 49.05 48 50 

50 49.19 48 50 

100 49.0 48 50 

 

In dimension 7, the stopping criteria of the ILS appears to have a minimal effect on the 

performance of the algorithm. 

 

Table 6. 6 - ILS with AMP results, varying ILS stopping criteria, dimension 8 

ILS Iterations Average Best Snake 
Found 

Worst Snake Found 
Upon Termination 

Best Snake Found 
Upon Termination 

5 93.7 92 96 

10 94 92 96 

25 94.75 94 96 

50 94.7 94 97 

100 95.2 94 97 

 

The results in dimension 8 are more forthcoming with establishing a relationship between 

the stopping criteria of the ILS and the solution quality found.  More intensification improves the 

average performance of the algorithm and allows for the best solutions to be found. 
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Table 6. 7 - ILS with AMP results, varying ILS stopping criteria, dimension 9 

ILS Iterations Average Best Snake 

Found 

Worst Snake Found 

Upon Termination 

Best Snake Found 

Upon Termination 

5 166.0 164 173 

10 166.2 164 171 

25 167.8 166 171 

50 169 166 171 

100 170.3 166 174 

 

The effects of increasing the number of ILS iterations at each step of our AMP algorithm 

are more obvious in dimension 9.  There is an established correlation between solution quality 

and the number of iterations performed.  All of the best solutions are found when the ILS 

performs more consecutive iterations. 

 So we see that increasing the solution pool size and increasing the number of ILS 

iterations has a direct affect on the quality of solutions obtained.  It is a mistake, however, to 

assume that both parameters should be tuned according to these findings only.  Since each of 

these parameters effects the overall intensification and diversification of the search, we felt that 

they were closely related.  Thus, we found it necessary to tune them simultaneously. 

 Since solutions of high quality seem to be easily obtained for dimension 7, the following 

section focuses on optimizing the parameters for snake hunting in dimensions 8 and 9.  The 

following table shows the average best snake found from 10 executions of our algorithm with 

varying ILS stopping criteria and solution pool size. 
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Table 6. 8 - ILS with AMP results, stopping criteria & solution pool size, dimension 8 

  ILS Iterations 

  5 10 25 50 100 

5 93 93 94.75 95.25 95.25 

10 93.25 93.25 95.75 95 95 

25 94.25 94.75 94 94.5 96 

50 95.25 95 95 96.5 95.75 

S
ol

ut
io

n 
P

oo
l S

iz
e 

100 95.25 95 95 96.25 95.25 

 

As can be seen from the table, the best overall values are obtained when a balance is 

reached between intensifying the search through more ILS executions and diversifying the search 

through larger solution pool sizes.   

The following table outlines the same scenario in dimension 9.  Here, the best results are 

obtained when the solution pool is small and the ILS iterations are large.  This would imply that 

more intensification is needed around solutions in this dimension.  Comparable solutions are 

obtained with larger solution pool sizes.  Shorter ILS durations, however, result in degradation of 

the solution quality. 
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Table 6. 9 - ILS with AMP results, stopping criteria & solution pool size, dimension 9 

  ILS Iterations 

  5 10 25 50 100 

5 165 165.2 167.1 168.2 172.6 

10 165.6 168 168.3 169.1 168.1 

25 165.1 165.6 171.2 169.7 171.7 

50 169.4 169 170 168.9 171.2 

S
ol

ut
io

n 
P

oo
l S

iz
e 

100 165.4 167 169.8 170.2 170 

 

Our results with the best parameters for dimensions 8 and 9 are presented in the following tables. 

Table 6. 10 - Dimension 8, ILS iterations = 50, Solution Pool size = 50 

Snake Length Iterations of AMP Iterations of ILS Time(s) 

77 1 50 0 

78 2 100 0 

81 3 150 0 

82 5 250 0 

84 25 1250 1 

85 63 3150 2 

86 94 4700 3 

90 201 10050 5 

91 744 37200 20 

92 1146 57300 30 

93 1690 84500 44 

95 4632 231600 120 

97 28528 1426400 877 
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Table 6. 11 - Dimension 9, ILS iterations = 5, Solution Pool size = 100 

Snake Length Iterations of AMP Iterations of ILS Time(s) 

143 1 100 0 

149 7 700 1 

151 1 1000 1 

152 19 1900 2 

155 53 5300 6 

156 58 5800 7 

157 288 28800 33 

158 526 52600 60 

159 767 76700 88 

164 1171 117100 135 

165 1645 164500 190 

166 2193 219300 254 

167 2427 242700 2819 

168 3657 265700 4275 

175 9889 988900 11646 
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CHAPTER 7 CONCLUSIONS AND FUTURE DIRECTION 

 

7.1 CONCLUSIONS  

 

 Given the symmetry of the hypercube in any dimension, the snake-in-the-box problem 

would seem to have an intuitively symmetric solution.  Unfortunately, this is not the case.  

[Aichholzer, 1997] notes that conjectures proved about hypercubes in certain dimensions are 

rarely generalized for hypercubes of all dimensions.  The snake-in-the-box problem, because of 

its ties to the hypercube, suffers the same condition.  It is because so little can be determined 

about snakes mathematically, heuristic approaches to the problem have been successful in 

tightening the bounds of maximal snakes in several dimensions [Potter, 1994][Casella, 2005].  

 The performance of this approach is encouraging since all of the previous heuristic 

approaches to finding maximal snake-in-the-box codes rely on population-based searches.  

Population-based heuristic approaches are good at exploring the solution space since they search 

from a set of designs and not from a single design.  Single-point searches, however, are more 

equipped to perform finely tuned searches.  Iterated Local Search is a single-point search that 

incorporates elements of a population-based search in that it is able to make large jumps in the 

solution space.  The method employed here relies on the incorporation of maximal snakes found 

in previous dimensions into the search. 
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7.2 FUTURE DIRECTION 

 More sophisticated strategies could be incorporated into the adaptive memory used in this 

implementation.  For example, the size of the solution pool used could be adaptive, increasing 

when diversification is needed and decreasing when intensification is needed.  The size of the 

solution pool could also differ across the varying instances of the search.  That is, the size of the 

dimension 6 solution pool could differ from the size of the dimension 7 solution pool and so on.  

Additionally, elements of the ILS could be altered to improve performance.  The perturb scheme 

could be changed to an adaptive one, so that snakes found during the ILS would be perturbed 

even more around poor solutions (diversifying) and even less around good solutions 

(intensifying). 

 Additionally, the ILS method outlined here could be incorporated into other, existing 

snake-finding strategies.  Since the ILS only explores feasible snakes that can be extended from a 

base snake, it can be a powerful (and computationally fast) technique for performing a local 

search around an optimal value. 

 This experiment is well suited to be parallelized.  Each dimension could be searched via a 

separate thread of execution, or multiple systems could be utilized on the same dimension, all 

sharing in and updating the same pool of solutions. 
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APPENDIX A    JAVA CODE 

 
 
import java.util.Arrays; 
 
/** 
 * The ASnakeAttribute class provides a skeletal im plementation 
 * of the ITabuListElement and ISolutionAttribute  
 * interfaces defined in package tabusearch.  ASnak eAttribute 
 *  defines an attribute to a Snake object (an indu ced  
 * path in a hypercube). 
 * 
 * @author William Brown 
 * @version 1.01, 10/10/2004  
 */ 
public abstract class ASnakeAttribute extends ASolu tionAttribute implements 
Comparable{ 
 
    /** 
     * Compares two ASnakeAttribute objects using t he fitness values  
     * of the ASnakeAttribute objects.  If the obje ct passed in is  
     * not of type ASnakeAttribute, then a ClassCas tException 
     *  is thrown.  The result is exactly zero when  the equals(Object) 
     *  method would return true.  Otherwise, retur ns this.fitness  
     *  - o.fitness. 
     * 
     * @param o the ASnakeAttribute 
     * @return int 
     * @throws ClassCastException 
     */  
  public int compareTo(Object o){ 
   if( o instanceof ASnakeAttribute ){ 
    return (int)(1000 * ( fitness -      
    ((ASnakeAttribute)o).getFitness() )); 
   }else{ 
    throw new ClassCastException("ClassCastExceptio n in   
     ASnakeAttribute.compareTo(o): " + o); 
   } 
  } 
 
 /** 
  * Compares this ASnakeAttribute to the object pas sed in..   
  *  Returns true if and only if the object to comp are with is a  
  *  ASnakeAttribute object with the same values  
  * 
  * @param o - the Object to compare with 
  * @return boolean  
  */   
  public abstract boolean equals(Object o); 
    



/** hashCode() 
  * returns the hashCode value of this ITabuListEle ment 
  */  
  public int hashCode(){ 
  long h = 1234; 
  int sum = 0; 
  for( int i = 0; i < values.length; i++ ) 
   sum += values[i]; 
        h ^= sum; 
  return (int)((h >> 32) ^ h);    
  } 
   
}// class ASnakeAttribute 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



/**  
 * The ASolutionAttribute class provides a skeletal  implementation 
 * of the ITabuListElement and ISolutionAttribute i nterfaces.  This class is 
 * utilized when a tabu search chooses to give solu tion modifications  
 * tabu status, as opposed to giving entire solutio n tabu status. 
 * 
 * @author William Brown 
 * @version 1.08, 09/28/2004 
 */ 
 public abstract class ASolutionAttribute implement s ISolutionAttribute{ 
 
  // values representing the attribute 
  protected int[] values;  
  // objective function value  
 protected double fitness;  
 /** 
  * Given an ISolution s, applies this ASolutionAtt ribtue 
  * object to s.  Implementation details are left t o the programmer. 
  * computation may be done in a class that extends  ISolution or  
  * in this class itself. 
  *  
  * @param s the ISolution 
  */     
 public abstract ISolution applyAttribute(ISolution  s); 
 
 /** 
  * Compares this ASolutionAttribute to the object passed in..   
  *  This method may be invoked by compareTo(Object ), thus 
  *  correct implementation is important for the Ta buList to perform 
       *  correctly. 
  * 
  * @param o the Object to compare with 
  * @return boolean  
  */  
 public abstract boolean equals(Object o); 
 
 /** 
  * Computes a hashcode for this object based on it s array values. 
  * 
  * @return int the hashcode 
  */ 
 public int hashCode() { 
  long h = 1234; 
  for (int i = values.length; --i >= 0; ) 
   h ^= values[i] * (i + 1); 
  return (int)((h >> 32) ^ h); 
 }   
   
 /** 
  *  Returns the objective function value of this I Solution 
  * 
  * @return double the fitness. 
  */ 
 
 public double getFitness(){ 
   return fitness; 
  } 



   
 /** 
  * Returns a reference to the int[] representing t his 
       * ASolutionAttribute's values. 
  * 
  * @return int[] the values 
  */ 
 public int[] getValues() { 
  return values; 
 }  
  
  /** 
  * Returns a String representation of this ASoluti onAttribute 
  * .  The format is as follows: 
  * "<classname> {values of the array, comma delimi ted} 
       * <fitness>" 
  * where <classname> is equivalent to the call  
       *    this.getClass().getName() 
  * 
  * @return String the object as a String 
  * 
  */ 
 public String toString() { 
  String result = this.getClass().getName() + "\t{" ; 
  for (int i = 0; i<values.length-1; i++) { 
   result += values[i] + ","; 
     } 
     result += values[values.length-1] + "}\t" + fi tness; 
     return result; 
 } 
  
 }// class ASolutionAtribute 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



import java.util.*; 
import java.io.*; 
 
/**  
 * The Snake class provides an implementation of th e ISolution 
 *  interface in the tabusearch package.  A Snake i s defined 
 * mathematically as  
 *  an induced path in a hypercube, or 
 *  a path in a hypercube with no chords, or 
 *  a code of spread 2. 
 * 
 * @author William Brown 
 * @version 1.26, 2/11/2005 
 */ 
 
class Driver{ 
  
   
 private static String outputDir; 
 private static int startDim;  // smallest dimensio n to explore 
 private static int endDim;  // largest dimension t o explore  
 private static int listSize;  // size of solution pool list 
 private static int ilsIteration; // number of ILS iterations   
 
 public static void main( String args[] ){ 
   
  ilsIteration = Integer.parseInt( args[0] ); 
  listSize = Integer.parseInt( args[1] ); 
  startDim = Integer.parseInt( args[2] ); 
  endDim = Integer.parseInt( args[3] ); 
  Util.gen = new Random( Integer.parseInt( args[4] ) ); 
 
  // Create solution pools 
     SnakeList[] seeds = new SnakeList[endDim-start Dim+1]; 
  for (int k = 0; k < seeds.length; k++) { 
      seeds[k] = new SnakeList( listSize ); 
     }  
        
     StopWatch sw = new StopWatch(); 
  int best8 = 0; 
  int best9 = 0;     
 
     // for set amount of time 
     for( int iteration = 1; sw.elapsedTime() < 180 0000; iteration++ ){  
       
      // create initial solution 
      int[] v = {0,1,2};     
   Snake s = new Snake( v,startDim ); 
      
   // for each dimension 
   for( int k = 0; k < endDim-startDim+1; k++ ){  
      
    // perform ILS search  
    Snake s2 = getSnake( s ); 
    if( k != 0 ){ 
    // update the solution pool based on the soluti on's  
    // performance 



     seeds[k-1].update( s, s2.getSnakeLength() ); 
     seeds[k-1].sort(); 
    }    
    // add the solution to the solution pool 
    seeds[k].add( s2.reduce() ); 
       
    // need index in range [0,seeds[i].size()-1] 
    int index = Util.gen.nextInt( seeds[k].size()+1 )+1; 
    // currently in range [1,seeds[i].size()+1] 
    index = Util.gen.nextInt( index ); 
    // currently in range [0,seeds[i].size()] 
    index = seeds[k].size() - index; 
    // currently in range [0,seeds[i].size()] 
    if( index != 0 ){ 
     index--; 
    } 
     
    // print results as they improve in dimensions 8 & 9 
    s = new Snake( seeds[k].get(index).getValues(),   
     k+startDim+1 );  
    if( k == 2 && seeds[2].getBest().getSnakeLength () >  
     best8 ){ 
     best8 = seeds[2].getBest().getSnakeLength(); 
     System.out.println (iteration + "\t" +   
      sw.elapsedTime()); 
     System.out.println (seeds[2].getBest()); 
    }else if( k == 3 &&       
     seeds[3].getBest().getSnakeLength() > best9 ){  
     best9 = seeds[3].getBest().getSnakeLength(); 
     System.out.println (iteration + "\t" +   
      sw.elapsedTime()); 
     System.out.println (seeds[3].getBest()); 
    }          
   }// for 
    
     }// for  
 
 } 
 
 /* Performs an ILS on the Snake object passed in f or ilsIteration 
         iterations */ 
 private static Snake getSnake( Snake sn ){ 
  ISolution sCurrent, s0 = sn; 
   
  // Create ILS instance 
  SnakeILS s = new SnakeILS( sn.getDimension() ); 
  
  s.startingLength = sn.getSnakeLength(); 
   
  // generate starting solution 
  sCurrent = s.localSearch( s0 ); 
  for (int i = 0; i < ilsIteration; i++) { 
   // perturb 
   ISolution sPerturb = s.perturb( sCurrent ); 
   // local search 
   ISolution sTemp = s.localSearch(sPerturb); 
   // acceptance criteria 



   if( s.accept( sTemp ) ){ 
    sCurrent = sTemp; 
   }      
     } 
     return (Snake)(s.getBest()); 
 } 
  
}// class Driver 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



import java.io.*; 
 
/**  
 * The Snake class provides an implementation of th e ISolution 
 *  interface in the tabusearch package.  A Snake i s defined 
 *  mathematically as  
 *  an induced path in a hypercube, or 
 *  a path in a hypercube with no chords, or 
 *  a code of spread 2. 
 * 
 * @author William Brown 
 * @version 1.10, 2/17/2005 
 */ 
 
class ILSOnly{ 
  
 public static void main( String args[] ){ 
   
  try{ 
   FileWriter fw = new FileWriter( new File("ILSOnl y_" + 
     args[0] + ".out") ); 
   StopWatch sw = new StopWatch(); 
   int dimension = Integer.parseInt( args[0] ); 
      
   // Initial Solution   
   int[] vals = {0,1,2}; 
   Snake s0 = new Snake( vals, dimension ); 
    
   // Best values known for dimensions 6,7,8,9 
   int[] bestVals = {26,50,97,186}; 
    
   ISolution sCurrent; 
   Snake sn = s0; 
    
   SnakeILS s = new SnakeILS( sn.getDimension() ); 
   s.startingLength = sn.getSnakeLength(); 
    
   // Generate Initial Solution 
   sCurrent = s.localSearch( s0 ); 
   int counter = 0; 
 
   for (;sw.elapsedTime() < 1000 * 60 * 30 &&    
    s.getBest().getFitness() < bestVals[dimension-6 ];) { 
    counter++; 
 
    // Perturb Solution 
    ISolution sPerturb = s.perturb( sCurrent ); 
     
    // Perform Local Search 
    ISolution sTemp = s.localSearch(sPerturb); 
     
    // Check with Acceptance Criteria 
    if( s.accept( sTemp ) ){ 
     sCurrent = sTemp; 
    }     
    if( counter % 1000 == 0 ) 



     fw.write ( counter + "\t" + sw.elapsedTime() +   
     "\t" + s.getBest() + "\t" + sCurrent + "\n" );  
    if( counter % 10000 == 0 ) 
     System.out.println (s.getBest());  
      } 
      fw.write ("\n"); 
      fw.write ( counter + "\t" + sw.elapsedTime() + "\t" +   
   s.getBest() ); 
      fw.flush(); 
      System.out.println (s.getBest()); 
     }catch( Exception e ){ 
      e.printStackTrace(); 
     }// catch 
 
 }// main() 
}// ILSOnly 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



import java.util.Iterator; 
 
/** 
 *  This interface defines the behavior necessary t o implement a 
 *  neighborhood around 
 *  an ISolution object.  Note that this interface does NOT provide any  
 *  methods for constructing the neighborhood.  Ins tead, the behaviour is   
 * defined in such a way that elements may be added , removed, and retrieved 
 * in a set-like (no repeats) fashion. 
 * 
 *  @author William Brown 
 *  @version 1.01, 08/28/2004  
 */ 
public interface INeighborhood{ 
  
 /**  
  *  Adds the Object to this INeighborhood. 
  * 
  *  @param o the Object to add 
  */ 
  public void add( Object o ); 
 
 /**  
  * Returns the last (largest) element in the set.  The largest element 
  * is the element that satisfies the following sta tement for all other 
  * elements in the INeighborhood: 
  *  largestElement.compareTo(anyOtherElement) > 0 
  * 
  * @return Object the largest element 
  */ 
  // public Object best(); 
    
 /**  
  * Removes all ISolution elements from this Neighb orhood. 
  */ 
  public void clear(); 
  
 /**  
  * Returns true if and only if this INeighborhood  
  *  contains no elements. 
  * 
  * @return boolean 
  */ 
  public boolean isEmpty(); 
  
 /**  
  * Returns a java.util.Iterator object over the el ements of the  
  * Neighborhood, preserving their natural ordering .  
  * 
  * @return Iterator over the set 
  */ 
  public Iterator iterator(); 
  
 /**  
  *  Removes the Object from this Neighborhood. 
  * 
  *  @param o the Object to remove 



  */ 
  public void remove( Object o ); 
  
 /**  
  * Returns the number of elements in this Neighbor hood 
  *  
  * @return int the number of elements present in t his Neighborhood. 
  */ 
  public int size(); 
 
 /**  
  * Returns a String representation of this Neighbo rhood  
  *  
  * @return String  
  */ 
  public String toString(); 
  
}// interface INeighborhood 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



/** 
 * This interface defines the methods necessary for  an object to be  
 * considered a Solution in a TabuSearchTabuSearch implementation. 
 * Classes implementing ISolution must also impleme nt the Comparable 
 * interface.  Otherwise, there can be no ordering at the time that a 
 * Neighborhood is created.  
 * 
 * @author William Brown 
 * @version 1.01, 08/28/2004 
 */ 
public interface ISolution extends Comparable{  
 
 /** 
     * Returns true if and only if the object passe d in is another ISolution 
     * and is equal to this ISolution.  This method  is utilized in the 
     * ITabuList to determine ISolution membership in the 
     * tabu list.  It may also be used inside compa reTo(Object) to determine 
     * the 0 case.  
     * 
     * @param o the Object to compare with 
     * @return boolean true if equal, false otherwi se 
     */ 
     public boolean equals(Object o); 
 
 /** 
  *  Returns the objective function value of this I Solution 
  * 
  * @return double the objective funciton value 
  */ 
  public double getFitness(); 
 
 /** 
  * Returns the values of this ISolution 
  * 
  * @return int[] the values that define this ISolu tion 
  */ 
  public int[] getValues(); 
 
 /** 
  * Computes a hashcode for this ISolution.  Utiliz ed by the 
  * TabuList class. 
  * 
  * @return int the hashcode 
  */ 
  public int hashCode(); 
  
 /** 
  * Returns a String representation of this ISoluti on 
  * 
  * @return String 
  */ 
  public String toString(); 
 
}// interface ISolution 
 
 
 



/** 
 * This interface defines the methods necessary to Implement an 
 * ISolutionAttribute  
 * An ISolutionAttribute is an Attribute of an ISol ution.  How this 
 * statement is interpreted is dependent upon the s pecific implementation. 
 * 
 * @author William Brown 
 * @version 1.08, 09/28/2004 
 */ 
public interface ISolutionAttribute { 
   
 /** 
  * Given an ISolution s, applies this ASolutionAtt ribtue 
  * object to s.  Implementation details are left t o the programmer.  
       * Actual computation may be done in a class that extends ISolution or  
  * in this class itself. 
  *  
  * @param s the ISolution 
  */      
 public ISolution applyAttribute(ISolution s); 
 
 /** 
  * Returns a String representation of this ASoluti onAttribute 
  * .  The format is as follows: 
  * "<classname> {values of the array, comma delimi ted} 
  *  <fitness>" 
  * where <classname> is equivalent to the call 
  *    this.getClass().getName() 
  *   
  * @return String the object as a String 
  */ 
 public String toString(); 
 
 /** 
  * Returns a reference to the int[] representing t his 
  * ASolutionAttribute's values. 
  * 
  * @return int[] the values 
  */ 
 public int[] getValues(); 
 
 /** 
  * Compares this ASolutionAttribute to the object passed in..   
  *  This method may be invoked by compareTo(Object ), thus 
  *  correct implementation is important for the Ta buList to perform 
  *  correctly. 
  * 
  * @param o the Object to compare with 
  * @return boolean  
  */  
 public boolean equals(Object o); 
 
 /** 
  * Computes a hashcode for this object based on it s array values. 
  * 
  * @return int the hashcode 
  */ 



 public int hashCode(); 
   
 /** 
  *  Returns the objective function value of this I Solution 
  * 
  * @return double 
  */ 
 public double getFitness();  
 
}// ISolutionAttribute 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



/** 
 * This interface defines the methods necessary for  an Iterated Local Search 
 * procedure. 
 * The IteratedLocalSearch algorithm acts as follow s: 
 * 
 * For a set number of iterations, or until termina tion condition is met: 
 *   1. Generate a starting solution, s. 
 *   2. Change s in some way, resulting in s* 
 *  3. local search on s* until a local optimum is reached, s*' 
 *  4. Make sure that s* meets acceptance criteria 
 *   5. If s*' meets the criteria, set s = s*' 
 *  6. Repeat from 2 
 * 
 * 
 * @author William Brown 
 * @version 1.0, 12/28/2004 
 */ 
public interface IteratedLocalSearch{ 
  
 /** 
     * Returns an ISolution to be used as the start ing solution in the 
     * Iterated Local Search 
     * @return ISolution 
     */ 
 public ISolution generateInitialSolution(); 
  
 /** 
     * Returns an ISolution that is a local optima in the search.  This local 
     * search procedure begins with starting ISolut ion, s, and improves upon 
     * it until a the local optima is reached. 
     * @param ISolution the starting solution 
     * @return ISolution the local optimum 
     */ 
 public ISolution localSearch( ISolution s ); 
  
 /** 
     * Returns an ISolution that is a perturbation of the solution s. 
     * @param ISolution the solution to perturb 
     * @return ISolution the resulting solution aft er perturbation 
     */ 
 public ISolution perturb( ISolution s ); 
  
 /** 
     * Returns true if the ISolution passed in meet s certain criteria. 
     * The ISolution is typically then used in the method localSearch(). 
     * @param ISolution the ISolution to check agai nst the 
     * criteria 
     * @return true if the ISolution passes 
     */ 
 public boolean accept( ISolution s ); 
 
}// class IteratedLocalSearch 
 
 
 
 
 



import java.util.Iterator; 
import java.util.Set; 
import java.util.TreeSet; 
import java.util.SortedSet; 
 
/**  
 * This class implements the INeighborhood interfac e.  It represents the  
 * neighborhood to a solution in a Local Search.  N ote that this class does  
 * NOT provide any methods for constructing the nei ghborhood.  This 
 * particular implementation uses a  
 * java.util.SortedSet Tree to keep the elements so  that an 
 * ordering over the elements of the neighborhood i s maintained.  This 
 * ordering is dependent on the compareTo(Object) m ethod defined in the class  
 *  implementing ISolution.  
 *  
 *  @author William Brown 
 *  @version 1.01, 08/28/2004 
 */ 
public class Neighborhood implements INeighborhood{  
  
  // The set of neighboring elements 
  private SortedSet neighbors; 
 
  /** 
   * Constructs a new Neighborhood that acts as a s et to hold 
   * neighboring elements of a Solution.  Uses a ja va.util 
   * .TreeSet object to hold the elements. 
   */ 
  public Neighborhood( ){ 
  this( new TreeSet() ); 
  } 
    
  /** 
   * Constructs a new Neighborhood that acts as a s et to hold 
   * neighboring elements of a Solution.  Uses the java.util 
   * SortedSet object to hold the elements. 
   */ 
  public Neighborhood( SortedSet s ){ 
   neighbors = s; 
  } 
  
 /**  
  *  Adds the Object to this Neighborhood. 
  * 
  *  @param o the Object to add 
  */ 
  public void add( Object o ){ 
  neighbors.add( o );  
  } 
 
 /**  
  * Returns the last (largest) element in the set.  The largest element 
  * is the element that satisfies the following sta tement for all other 
  * elements in the Neighborhood: 
  *  largestElement.compareTo(anyOtherElement) > 0 
  * 
  * @return Object the largest element 



  */ 
   public Object best(){ 
    return ((SortedSet)neighbors).last(); 
   } 
 
 /**  
  * Removes all ISolution elements from this Neighb orhood. 
  */ 
  public void clear(){ 
  neighbors.clear(); 
  } 
  
 /**  
  * Returns true if and only if this Neighborhood  
  *  contains no elements. 
  * 
  * @return boolean 
  */ 
  public boolean isEmpty(){ 
  return neighbors.isEmpty(); 
  } 
  
 /**  
  * Returns a java.util.Iterator object over the el ements of the  
  * Neighborhood, preserving their natural ordering .  
  * 
  * @return Iterator over the set 
  */ 
  public Iterator iterator(){ 
  return neighbors.iterator(); 
  } 
 
 /**  
  *  Removes the Object from this Neighborhood. 
  * 
  *  @param o the Object to remove 
  */ 
  public void remove( Object o ){ 
   neighbors.remove(o); 
  }  
  
 /**  
  * Returns the number of elements in this Neighbor hood 
  *  
  * @return int the number of elements present in t his Neighborhood. 
  */ 
  public int size(){ 
  return neighbors.size(); 
  } 
 
 /**  
  * Returns a String representation of this Neighbo rhood  
  *  
  * @return String  
  */ 
  public String toString(){ 
  String result = ""; 



   
  if( !neighbors.isEmpty() ){ 
   for( Iterator i = neighbors.iterator(); i.hasNex t(); ){ 
    result += i.next().toString() + "\n"; 
   } 
  }  
  return result; 
  }    
}// class Neighborhood 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



/** 
 * The NeighborhoodBuilder class provides an implem entation of 
 * the generateNeighborhood method.  This provides a way for an  
 * INeighborhood object to be filled with ISolution Attributes. 
 * 
 * @author William Brown 
 * @version 1.12, 11/01/2004 
 */ 
public class NeighborhoodBuilder { 
  
  /**  
   * Constructs an INeighborhood of ASolutionAttrib utes. 
   * This is performed by constructing a neighborho od of SnakeEnds and 
  * SnakeSwap elements. 
  * @param s - the ISolution to construct the neigh borhood around 
  * @param n - the INeighborhood to fill 
  */ 
 public static void generateNeighborhood( ISolution  s,  
      INeighborhood n ){ 
 
  Snake sn = (Snake)s; 
  int dimension = sn.getDimension(); 
 
  // SnakeEnds 
  for (int i = 0; i < dimension; i++) { 
   int[] ea = new int[2]; 
   ea[0] = sn.getSnakeLength(); 
   ea[1] = i; 
   // see if it 'makes sense' to add this SnakeEnd 
      if( sn.tryAddEnd( ea[1] ) ){ 
       ISolutionAttribute end = new SnakeEnd(ea); 
       // add it to the INeighborhood 
       ((SnakeEnd)end).setFitness( Util.gen.nextDou ble() ); 
       n.add( end ); 
      } 
     }    
      
 }// generateNeighborhood   
  
}// class NeighborhoodBuilder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



import java.util.Arrays; 
 
/**  
 * The Snake class provides an implementation of th e ISolution 
 *  interface in the tabusearch package.  A Snake i s defined 
 * mathematically as  
 *  an induced path in a hypercube, or 
 *  a path in a hypercube with no chords, or 
 *  a code of spread 2. 
 * 
 * @author William Brown 
 * @version 1.26, 2/11/2005 
 */ 
 final class Snake extends Solution{ 
   
  // Fields 
 
 // the dimension of the hypercube this snake is de fined on  
  private int dimension;    
 // array representing the path as a series of move ments  
  private int[] transitionSequence;  
 // array representing the path as a series of node s  
  private int[] nodeSequence;    
 // adjacency graph of the hypercube with path info rmation  
  private InducedNode[] inducedGraph;  
 // current length of the snake  
  private int snakeLength;    
 
 // protected double fitness  
 // protected int[] values 
  
   /** 
    * Constructs a new Snake with the given transit ion sequence array 
    * on a hypercube of the passed in dimension. 
    */      
  public Snake( int[] v, int d ){ 
   super(v); 
   transitionSequence = values; 
   dimension = d; 
    
   // Reduces the Snake 
  int[] map = new int[dimension]; 
  for( int i = 0; i < map.length; i++ ) 
   map[i] = -1; 
  int current = 0;  
  for( int i = 0; i < values.length; i++ ){ 
   int x = values[i]; 
   if ( map[ values[i] ] == -1 ){ 
    map[x] = current; 
    current++; 
   } 
  values[i] = map[ values[i] ]; 
  }    
  // Reduces the Snake 
    
   // create node sequence 
   nodeSequence = new int[ values.length ]; 



   constructNodeSequence(); 
   // create the induced subset of the hypercube 
   inducedGraph = new InducedNode[ 1 << dimension ] ; 
   for (int i = 0; i < inducedGraph.length; i++) 
   inducedGraph[i] = new InducedNode(); 
   constructInducedGraph(); 
   snakeLength = values.length; 
   fitness = snakeLength; 
  } 
 
    /** 
     * Constructs a new Snake with the given data f or use when all 
     * instance data is computed outside the class.   Utilized by the clone() 
     *  method. 
     */ 
  public Snake( int[] v, int[] ns, int d, double f ){ 
   super(v); 
   this.transitionSequence = values; 
  this.nodeSequence   = ns; 
  this.dimension    = d; 
  this.inducedGraph   = new InducedNode[1<<d]; 
  for (int i = 0; i < inducedGraph.length; i++) 
   inducedGraph[i] = new InducedNode(); 
   this.constructInducedGraph(); 
   this.fitness    = f; 
   this.snakeLength   = (int)fitness; 
   }   
   
 /** 
  * Creates a deep copy of this Snake object. 
  *  
  * @return the copy of this Snake 
  */    
 public Object clone(){ 
   int[] v = new int[values.length]; 
   System.arraycopy(values,0,v,0,values.length); 
   int[] ns = new int[ nodeSequence.length ]; 
   System.arraycopy(nodeSequence,0,ns,0,ns.length);  
   return new Snake( v, ns, dimension, fitness ); 
  }    
   
 /** 
     * Reduces this snake to one that is in its iso morphism class.  It does 
     * so by replacing the sequence with another on e in which the first 
     * appearance of any transition node is not pre ceded by another node of 
     * greater value. 
     *  For example, if the starting transition seq uence is: 
     *  {2, 1, 3, 2, 0} 
     *  The resulting sequence will be: 
     *  {0, 1, 2, 0, 3} 
     * 
     * @return a new Snake with the reduction perfo rmed on its values  
     */     
 public Snake reduce(){  
  int[] map = new int[dimension]; 
  for( int i = 0; i < map.length; i++ ) 
   map[i] = -1; 



  int current = 0;  
  for( int i = 0; i < values.length; i++ ){ 
   int x = values[i]; 
   if ( map[ values[i] ] == -1 ){ 
    map[x] = current; 
    current++; 
   } 
  values[i] = map[ values[i] ]; 
  }  
  return new Snake( values, dimension );  
 }     
    
 /** 
     * Returns a Snake with the path reversed 
     * 
     * @return the reversed Snake 
     */    
  public Snake reverse(){   
   int[] rev = new int[ values.length ]; 
   System.arraycopy(values,0,rev,0,values.length);  
   for (int i = 0; i < rev.length/2; i++) { 
   int temp  = rev[i];    
   rev[i] = rev[ rev.length-1-i ]; 
   rev[ rev.length-1-i ] = temp; 
  } 
  Snake s = new Snake( rev, dimension ); 
  return s; 
  }  
     
 /* Constructs the node sequence array representati on */  
 private void constructNodeSequence(){ 
  nodeSequence = new int[ transitionSequence.length +1 ]; 
  nodeSequence[0] = 0; 
  for( int i = 1; i < nodeSequence.length; i++ ) 
   nodeSequence[i] = nodeSequence[i-     
    1]^(1<<transitionSequence[i-1]); 
 } 
  
 /* Constructs a graph of InducedNodes representing  the hypercube 
    Each node remembers if it was a part of the pat h AND 
    the identity of all other nodes adjacent to it that ARE a part of 
    the path. This information can be utilized when  determining the 
    fitness value of any modification to the Snake */ 
 private void constructInducedGraph(){ 
  for (int i = 0; i < inducedGraph.length; i++) { 
   inducedGraph[i].inPath = false; 
   inducedGraph[i].position = -1; 
     } 
 
  // population  
  for( int i = 0; i < nodeSequence.length; i++ ){ 
   inducedGraph[ nodeSequence[i] ].inPath = true; 
   inducedGraph[ nodeSequence[i] ].position = i; 
   for( int j = 0; j < dimension; j++ ) 
      inducedGraph[nodeSequence[i]^(1<<j)].values[j ] = true;  
  } 
 }   



    /** 
     * @author William Brown 
     * @version 1.00, 09/24/2004  
     *  
     * Class that represents a node in the induced hypercube subgraph, 
     * inducedGraph defined in class Snake.  Stores  information regarding  
     *   which adjacent nodes (if any) are in the p ath --> int[] 
     *  whether the node is in the path --> boolean  
     *  which number node is the node --> int 
     */    
 class InducedNode{ 
  public boolean[] values = new boolean[ dimension ]; 
  public boolean inPath = false; 
  public int position = -1; 
 } 
 
  /** 
  * Returns the fitness of this Snake after it has been extended 
  * by one node.  If the extension causes the snake  to violate its 
  * properties, it returns 0;  
  * 
  * @param int the node to add 
  * @return double 
  */ 
 public boolean tryAddEnd( int end ){  
  // the transition to add, converted to a node 
  int endNode = nodeSequence[ nodeSequence.length-1  ]^(1<<end); 
  // for each dimension 
  for (int i = 0; i < dimension; i++) { 
   // check to see if surrounding nodes are occupie d 
   if( i != end && inducedGraph[ endNode ].values[i ] ){ 
    return false; 
   } 
     } 
  return true; 
 }   
  
 /** 
     * Appends a transition to the end of the trans ition sequence in this 
     * snake. 
     * 
     * @param int - the next "step" to take in the transition sequence  
     */ 
 public void addEnd( int end ){ 
  // extend the transitionSequence array by one 
  int[] tranSeq = new int[ transitionSequence.lengt h+1 ]; 
  System.arraycopy( transitionSequence, 0, tranSeq,  0,    
       transitionSequence.length ); 
  transitionSequence = tranSeq; 
  // add the new node 
  transitionSequence[ transitionSequence.length-1 ]  = end; 
  // update values array 
  values = transitionSequence; 
   
  // extend the nodeSequence array by one 
  int[] nodeSeq = new int[ nodeSequence.length+1 ];  



  System.arraycopy( nodeSequence, 0, nodeSeq, 0,     
   nodeSequence.length ); 
  nodeSequence = nodeSeq; 
  int endNode = nodeSequence[ nodeSequence.length-2  ]^(1<<end); 
  // add the new node 
  nodeSequence[ nodeSequence.length-1 ] = endNode; 
 
  // update the induced graph  
  inducedGraph[ endNode ].inPath = true; 
  inducedGraph[ endNode ].position = snakeLength+1;   
  // for each neighboring node, leave endNode's 'ma rk' 
  for( int i = 0; i < dimension; i++ ) 
   inducedGraph[ endNode^(1<<i) ].values[i] = true;  
   
  // update fitness & snake length  
  fitness += 1; 
   
  snakeLength += 1;  
  //evalFitness(); 
 }  
  
 /** 
  * Returns the dimension of the hypercube that thi s Snake is defined 
  * on. 
  * 
  * @return int the dimension of the hypercube 
  */ 
 public int getDimension() { 
  return dimension;  
 } 
 
 /** 
  * Returns the length of the Snake formed by this Snake object. 
  * 
  * @return int the length of the snake 
  */ 
 public int getSnakeLength() { 
  return snakeLength;  
 }  
   
 /** 
  * Returns a double representing the objective fun ction value of this  
  * Snake object. 
  * 
  * @return double the objective function value 
  */ 
 public double getFitness() { 
  return snakeLength;  
 }    
 
 /** 
  * Subtracts a node from the end of the node seque nce of this snake.   
  * The transition sequence is also updated, as wel l as the induced  
  * graph.  The net result of the operation is that   
  * getSnakeLength() will be 1 smaller after this m ethod has executed. 
  */  
 public void subtractEnd(){ 



   
  int endNode = nodeSequence[ nodeSequence.length-1  ]; 
   
  //update transition sequence 
  int[] tranSeq = new int[ transitionSequence.lengt h-1 ]; 
  System.arraycopy( transitionSequence, 0, tranSeq,  0,    
   tranSeq.length ); 
  transitionSequence = tranSeq; 
  values = transitionSequence; 
   
  //update node sequence 
  int[] nodeSeq = new int[ nodeSequence.length-1 ];  
  System.arraycopy( nodeSequence, 0, nodeSeq, 0, no deSeq.length ); 
  nodeSequence = nodeSeq; 
   
  //update induced graph  
  inducedGraph[ endNode ].inPath = false; 
  inducedGraph[ endNode ].position = -1; 
  // for each neighboring node, leave endNode's 'ma rk' 
  for( int i = 0; i < dimension; i++ ){ 
   inducedGraph[ endNode^(1<<i) ].values[i] = false ; 
  }   
  // update fitness & snakeLength 
  fitness -= 1; 
  snakeLength -= 1; 
   
 } 
 
}// class Snake 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



import java.util.Arrays; 
 
/** 
 * The SnakeEnd class represents an additional node  that can be  
 * appended to a Snake (an induced path in a hyperc ube). 
 * 
 * @author William Brown 
 * @version 1.02, 10/29/2004 
 */ 
public final class SnakeEnd extends ASnakeAttribute { 
  
 /** 
     * Constructs a new SnakeEnd with the given arr ay, the given  
     * Snake object and the new fitness value. 
     */   
  public SnakeEnd( int[] vals ){ 
   values = new int[vals.length]; 
   System.arraycopy(vals,0,this.values,0,vals.lengt h); 
  } 
   
 /** 
  * Given a Snake s, applies this SnakeEnd object  
  * to s.   
  * WARNING:  It should be noted that this applicat ion is performed 
  * "blindly".   
  * That is, this method should not be invoked on a  Snake unless 
  * the method tryAddEnd in class Snake has returne d 
  * a value greater that the fitness of that Snake.   
  *  
  * @param s - the ISolution 
  * @throws ClassCastException if s is not of type Snake 
  */   
  public ISolution applyAttribute( ISolution s ){ 
   if( s instanceof Snake ){ 
    ((Snake)s).addEnd( values[1] ); 
    return s;  
   }else 
    throw new ClassCastException();  
  } 
   
 /** 
     * Compares two SnakeEnd objects using the fitn ess values of 
     * the SnakeEnd objects.  If the object passed in is not of type 
     * SnakeEnd, then a call to super.compareTo(Obj ect)  
     * is made.  The result is exactly zero when th e equals(Object)  
     * method would return true.  Otherwise, return s a negative if this  
     * SnakeEnd object is "less than" the other Sna keEnd  
     * object and a positive int otherwise. 
     * 
     * @param o the SnakeEnd 
     * @return int 
     */  
  public int compareTo( Object o ){ 
   if( o instanceof SnakeEnd ){ 
    if( this.equals( o ) ) 
    return 0;  
    // multiply by factor b/c fitnesses differ by l ess than 1  



    return (int)( 10000 * (fitness -      
    ((SnakeEnd)o).getFitness()) ); 
   }else 
    return super.compareTo(o); 
  } 
 
 /** 
  * Compares this SnakeEnd to the object passed in. .   
  *  Returns true if and only if the object to comp are with is a  
  *  SnakeEnd object with the same values (the same  node is being  
  *  replaced with the same node number). 
  * 
  * @param o - the Object to compare with 
  * @return boolean  
  */   
  public boolean equals( Object o ){ 
   if( o instanceof SnakeEnd ){ 
    // compare the values of the two SnakeEnds 
    int[] other = ((SnakeEnd)o).getValues(); 
   return ( other[0] == values[0] && other[1] == va lues[1] ); 
  }else 
   return false;  
  }   
 
 /** 
     * Returns an int indicating the transition seq uence node that this  
     * SnakeEnd represents. 
     * 
     * @return int 
     */  
  public int getEndValue(){ 
  return values[1]; 
 } 
  
 /** 
 * Returns an int representing the position that th is SnakeEnd 
 * takes in the Snake object. 
      * @return int 
      */  
  public int getPosition(){ 
   return values[0]; 
  } 
  
 /** 
  * Sets the fitness of this SnakeEnd to the double  passed 
  * in. 
       * @param double 
       */  
  public void setFitness( double f ){ 
   fitness = f; 
  }  
}// class SnakeEnd 
 
 
 
 
 



import java.util.Iterator; 
 
/** 
 * This class defines an Iterated Local Search proc edure for finding maximal  
 * snakes in a hypercube. 
 * The IteratedLocalSearch algorithm acts as follow s: 
 * 
 * @author William Brown 
 * @version 1.0, 12/28/2004 
 */ 
 
public class SnakeILS implements IteratedLocalSearc h{ 
  
 // FIELDS 
  
 private int dimension; // The dimension of the hyp ercube to search in 
 private Snake best;  // The best solution found so  far 
 public int startingLength; 
  
 /** 
     * Constructs a new SnakeSearch object set to f ind Snakes in dimension d 
     * @param int the dimension 
     */ 
 public SnakeILS( int d ){ 
  dimension = d; 
  best = (Snake)generateInitialSolution(); 
 } 
  
 /** 
     * Returns an ISolution to be used as the start ing solution in the 
     * Iterated Local Search 
     * @return ISolution 
     */  
 public ISolution generateInitialSolution(){ 
  int[] values = {0,1,2}; 
  Snake s = new Snake( values, dimension ); 
  return s; 
 } 
  
 /** 
     * Returns an ISolution that is a local optima in the search.  This local 
     * search procedure begins with starting ISolut ion, s, and improves upon 
     * it until a the local optima is reached. 
     * @param ISolution the starting solution 
     * @return ISolution the local optimum 
     */  
 public ISolution localSearch( ISolution s ){ 
  boolean canExtend = true; 
  // create a copy of our Solution 
  Snake copy = (Snake)(((Snake)s).clone()); 
  int counter = 0; 
   
  // Perform the local search here 
  // add nodes to the end of the Solution until it is maximal 
  while( canExtend ){ 
   counter++; 
   // create neighborhood of possible nodes to appe nd 



   Neighborhood neighbors = new Neighborhood(); 
   NeighborhoodBuilder.generateNeighborhood(copy, n eighbors); 
   if( neighbors.isEmpty() ){ 
    // exit if there are no viable neighboring node s 
    canExtend = false; 
   }else{ 
    // otherwise, add one to the end 
 
    Object o = neighbors.best(); 
    copy.addEnd( ( (SnakeEnd)o ).getEndValue() ); 
   }// if-else   
  }// while 
   
  //update the best solution found if necessary 
  if( copy.getFitness() >= best.getFitness() ) 
   best = (Snake)(((Snake)copy).clone());  
   
  // return the extended copy 
  return copy;  
 } 
  
 /** 
     * Returns an ISolution that is a perturbation of the solution s. 
     * @param ISolution the solution to perturb 
     * @return ISolution the resulting solution aft er perturbation 
     */  
 public ISolution perturb( ISolution s ){ 
   
  // create a copy 
  Snake copy = (Snake)(((Snake)s).clone()); 
   
  // choose number of nodes to remove from linear p robability  
  // distribution 
  int removeNumber =   Util.gen.nextInt( Util.gen.n extInt(   
   copy.getFitness() - (startingLength-5) + 1) + 1 ) + 3; 
   
  // remove aforementioned number of nodes 
  for (int i = 0; i < removeNumber && copy.getFitne ss() >   
   startingLength; i++) { 
      copy.subtractEnd(); 
     } 
      
     return copy; 
 }  
  
 /** 
     * Returns true if the ISolution passed in meet s certain criteria. 
     * The ISolution is typically then used in the method localSearch(). 
     * @param ISolution the ISolution to check agai nst the 
     * criteria 
     * @return true if the ISolution passes 
     */  
 public boolean accept( ISolution s ){ 
   
  // Accept if the solution matches the best within  1 
  if( s.getFitness() > best.getFitness()-1 ){ 
   if( s.getFitness() >= best.getFitness() ){ 



    best = (Snake)(((Snake)s).clone());  
   } 
   return true; 
  }else{ 
   return false; 
  }  
 } 
  
 /** 
     * Returns the best ISolution found in this ins tance of SnakeSearch 
     * @return ISolution the best solution found so  far 
     */  
 public ISolution getBest(){ 
  return best; 
 }  
 
 /** 
  * Returns a String representation of this SnakeSe archObject 
  * @return String 
  */ 
 public String toString() { 
 
  String sep = System.getProperty("line.separator") ; 
 
  StringBuffer buffer = new StringBuffer(); 
  buffer.append(sep); 
  buffer.append("dimension = "); 
  buffer.append(dimension); 
  buffer.append(sep); 
 
  buffer.append("best = "); 
  buffer.append(best); 
  buffer.append(sep); 
   
  return buffer.toString(); 
 } 
   
}// class SnakeILS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



import java.util.*; 
 
/**  
 * The SnakeList class provides an implementation o f a list of  
 * Snake objects.  The list is kept in ascending or der based on 
 * the result of the getSnakeLength() method from c lass Snake. 
 * Snake objects with the same  
 * @author William Brown 
 * @version 1.26, 2/11/2005 
 */ 
 
class SnakeList{ 
  
 private int maxSize; 
 private ArrayList<SnakeListNode> list; 
 private Snake best; 
  
 // Constructors 
 public SnakeList(){ 
  list = new ArrayList(); 
  maxSize = Integer.MAX_VALUE; 
 } 
  
 public SnakeList( int size ){ 
  list = new ArrayList(); 
  maxSize = size; 
 }  
 
 /** 
     * Returns true if a Snake was successfully add ed to this SnakeList 
     * @param Snake 
     * @return boolean  
     */ 
 public boolean add( Snake s ){ 
   
  for (int i = 0; i < list.size(); i++) { 
      if( get(i).equals(s) ){ 
       return false; 
      } 
     } 
   
  if( list.size() == maxSize ){ 
   SnakeListNode min = list.get(0); 
   
   for (int i = 1; i < list.size(); i++) { 
       if( list.get(i).best > 0 && list.get(i).best  < min.best &&  
   list.get(i).snake.getSnakeLength() <     
    min.snake.getSnakeLength() ){ 
        min = list.get(i); 
       } 
      } 
      list.remove(min); 
  }    
      
     int i = 0; 
     while( i < list.size() && list.get(i).snake.ge tSnakeLength() <  
    s.getSnakeLength() ) 



      i++; 
     list.add( i, new SnakeListNode(s) ); 
  return true; 
 }  
  
 /** 
     * Sets the maximum number of elements this Sna keList will hold 
     * @param int 
     */   
 public void setMaxSize( int ms ){ 
  maxSize = ms; 
  while( list.size() > maxSize ){ 
   list.remove(0); 
  } 
 } 
  
 /** 
     * Removes all elements in this SnakeList 
     */ 
 public void clear(){ 
  list.clear(); 
  best = null; 
 } 
  
 /** 
     * Returns the maximum number of elements this SnakeList will hold. 
     * @return int  
     */ 
 public int getMaxSize(){ 
  return maxSize; 
 } 
  
 /** 
     * Returns the Snake at the specified index 
     * @param int 
     * @return Snake  
     */ 
 public Snake get( int i ){ 
  return (list.get(i)).snake; 
 } 
  
 /** 
     * Returns the Snake in this list with the best  fitness  
     * value 
     * @return Snake  
     */ 
 public Snake getBest(){ 
  return (Snake)(list.get( list.size()-1 ).snake); 
 } 
  
 /** 
     * Removes the Snake element from this SnakeLis t 
     * @param Snake 
     */ 
 public void remove( Snake s ){ 
  list.remove( new SnakeListNode(s) ); 
 } 



  
 /** 
     * Returns an int representing the number of el ements currently 
     * in this SnakeList. 
     * @return int 
     */ 
 public int size(){ 
  return list.size(); 
 } 
  
 /** 
     * Returns a double representing the average fi tness 
     * of a Snake in this SnakeList. 
     * @return double  
     */ 
 public double getAverage(){ 
  int sum = 0; 
  for (int i = 0; i < list.size(); i++) { 
      sum += get(i).getSnakeLength(); 
     } 
     return (double)sum/list.size(); 
 } 
  
 /** 
     * Updates ordering of the Snake in the list. 
     * @param Snake 
     * @param int 
     */ 
 public void update( Snake s, int length ){ 
  for( int i = 0; i < list.size(); i++ ){ 
   if( list.get(i).snake.equals( s ) ){ 
    if(list.get(i).best < length){ 
     list.get(i).best = length; 
    } 
    list.get(i).iterations ++; 
   } 
  } 
 } 
   
 /** 
     * Returns a String representation of this Snak eList 
     * @return String 
     */  
 public String toString2(){ 
  String s = list.get(list.size()-1) + "\t" + getAv erage(); 
  return s; 
 } 
  
 /** 
     * Returns a String representation of this Snak eList 
     * @return String 
     */  
 public String toString(){ 
  String s = ""; 
  for (int i = 0; i < list.size(); i++) { 
      s += list.get(i).snake + " " + list.get(i).be st + "\n"; 
     } 



     return s; 
 } 
 
 /** 
     * Sorts the elements of this SnakeList.  
     */ 
 public void sort(){ 
  SnakeListNode[] sln = new SnakeListNode[list.size ()]; 
  list.toArray(sln); 
  Arrays.sort(sln); 
  list.clear(); 
  for (int i = 0; i < sln.length; i++) { 
      list.add( sln[i] ); 
     } 
 } 
 
 /** 
     * Encapsulates the Snakes added to this list  
     */ 
 class SnakeListNode implements Comparable{ 
  public Snake snake; 
  public int iterations; 
  public int best; 
  public SnakeListNode( Snake s ){ 
   snake = s; 
   iterations = 0; 
   best = 0; 
  } 
   
  public int compareTo( Object o ){ 
   SnakeListNode sln = (SnakeListNode)o; 
   if( snake.compareTo(sln.snake) == 0 )    
    return (int)(this.best-sln.best); 
   else 
    return snake.compareTo(sln.snake);  
  } 
   
  public boolean equals( Object o ){ 
   return snake.equals( ((SnakeListNode)o).snake );  
  } 
   
  public String toString(){ 
   return snake.toString() + "\t" + best + "\t" + i terations; 
  } 
   
 }  
  
}// class SnakeList 
 
 
 
 
 
 
 
 
 



import java.util.Arrays; 
 
/**  
 * The ASolution class is a skeletal implementation  of the  
 * ISolution and ITabuListElement interfaces in pac kage  
 * tabusearch.  More specifically, it gives a simpl e implementation 
 * for a solution that would be used in a tabu sear ch setting where entire  
 * solutions are kept in the tabu list.   
 * 
 * @author William Brown 
 * @version 1.03, 09/09/2004 
 */ 
 public class Solution implements ISolution{ 
  
 // values representing this solution 
 protected int[] values;   
 // objective function value 
 protected double fitness;  
 
 // CONSTRUCTOR 
 public Solution( int[] values ){ 
  this.values = new int[values.length]; 
  System.arraycopy(values,0,this.values,0,values.le ngth); 
 } 
 
 /** 
     * Compares two Solution objects using the fitn ess values of 
     * the Solution objects.  If the object passed in is not of type 
     * Solution, then a ClassCastException is throw n.   
     * The result is exactly zero when the equals(O bject)  
     * method would return true.  Otherwise, return s a negative if this  
     * Solution object is "less than" the other Sol ution  
     * object and a positive int otherwise.   
     * 
     * This method is utilized by the Neighborhood class in order to 
     * keep an ordered set of Solutions. 
     * 
     * @param o the Object with which to compare 
     * @return int comparison result 
     * @throws ClassCastException 
     */  
 public int compareTo(Object o) { 
  if( o instanceof Solution ){ 
   // if 2 objects are equal, return 0 
   if( this.equals(o) ) 
    return 0; 
   // otherwise, return the difference in fitness v alues  
   int x = (int)(1000*(fitness-((Solution)o).getFit ness() )); 
   return x; 
  }else{ 
   throw new ClassCastException(); 
  }  
 } 
  
 /** 
  * Compares this Solution to the object passed in. .   
  *  Returns true if and only if the object to comp are with is a  



  *  Solution object with the same values in the 'v alues' array. 
  *  That is, Arrays.equals(this.values,o.values) = = true. 
  *  For specific implementations, when different c riteria are used to  
  *  destinguish two solutions, this can be overrid den. 
  * 
  * @param o the Object to compare with 
  * @return boolean  
  *  @throws ClassCastException 
  */   
 public boolean equals(Object o){ 
  if( o instanceof Solution ) 
   return Arrays.equals( values, ((Solution)o).getV alues() ); 
  else 
   throw new ClassCastException();  
 } 
 
 /** 
  * Returns a double representing the objective fun ction value, or 
  * 'fitness' of this Solution. 
  * 
  * @return double the fitness 
  */ 
 public double getFitness() { 
  return fitness; 
 } 
  
 /** 
  * Returns a new, deep copy of this Solution 
  * 
  * @return Solution  
  */ 
 public Solution getSolution(){ 
  return new Solution( values ); 
 }  
 
 /** 
  * Returns a reference to the int[] representing t his Solution's 
  * values. 
  * 
  * @return int[] the values that define this Solut ion 
  */ 
 public int[] getValues() { 
  return values; 
 } 
 
 /** 
  * Computes a hashcode for this object based on it s array values. 
  * 
  * @return int the hashcode 
  */ 
 public int hashCode() { 
  long h = 1234; 
  for (int i = values.length; --i >= 0; ) 
  h ^= values[i] * (i + 1); 
  return (int)((h >> 32) ^ h);    
 } 
 



 /** 
  * Returns a String representation of this Solutio n. 
  * The format is as follows: 
  * "<classname> {values of the array, comma delimi ted} 
  * <fitness>" 
  * where <classname> is equivalent to the call 
  *  this.getClass().getName() 
  *  . 
  * 
  * @return String the object as a String 
  * 
  */ 
 public String toString() { 
  String result = this.getClass().getName() + "\t{" ; 
  for (int i = 0; i<values.length-1; i++) { 
   result += values[i];// + ","; 
     } 
     result += values[values.length-1] + "}\t" + fi tness; 
     return result; 
 } 
   
 }// class Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



import java.util.Random; 
 
/** 
 * Provides various utilities.  i.e. --> A static R andom Generator for all 
classes to share 
 */ 
public final class Util{ 
  
 public static Random gen = new Random(); 
   
}// class Util 
 
 


