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ABSTRACT 

 Mathematical modeling is the process of quantitatively describing a particular system, 

process, or phenomenon. It can be utilized to detect patterns and interactions that cannot be 

understood with the current data available and to test hypotheses that are difficult to evaluate 

experimentally. In this dissertation, mathematical modeling is used in three unique ways. (1) We 

extended an existing mathematical model of glucose and insulin dynamics to account for renal 

filtration and excretion of glucose, in order to investigate the effect of treatment for a diabetes 

medication. We quantified and compared daily glucose and sodium reabsorption through sodium 

glucose cotransporters 2 (SGLT2) in healthy, controlled, and uncontrolled diabetes and 

following treatment with an SGLT2 inhibitor. (2) We captured high frequency physiological data 

(e.g. temperature, blood pressure) via telemetry from nonhuman primates during health and 

malaria infection. Using a multiple-component cosinor model, we were able to quantify changes 



in biological rhythm parameters that helped classify between health and disease states. (3) We 

created a model of erythrocytic glucose to investigate the role of malaria parasite glucose 

utilization on red blood cell bursting cycles.  The malaria parasite cannot store energy and relies 

on the host's erythrocytic glucose. Infected erythrocytes burst at regular 24, 48, or 72 hr intervals. 

The model was applied to understand and propose experimentally testable hypotheses regarding 

the role of malaria parasites in altering cell energy availability and triggering bursting.  Overall, 

mathematical modeling in these research areas provided novel insights into the various health 

and disease states.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND AND MOTIVATION 

Mathematical modeling is the process of quantitatively describing a particular system, process, 

or phenomenon. It can be utilized to detect patterns and interactions that cannot be understood 

with the current data available and to test hypotheses that are difficult to evaluate experimentally. 

Mathematical models describing populations and the transmission of infectious diseases have 

been successful in epidemiology allowing public health officials to predict where an outbreak 

could be eminent or where a past outbreak may have started. In addition to the scale of human 

populations, mathematical modeling can also be used to quantify a process that is not visible to 

the eye, such as action potential in a neuron1. Mathematical modeling is used in a variety of 

scales and disease contexts in this dissertation. 

 

1.1.1 Diabetes Medication 

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) reduce glucose levels in diabetes by 

inhibiting renal glucose reabsorption in the proximal tubule, resulting in urinary glucose 

excretion. A recent large cardiovascular outcomes trial2 suggested that the SGLT2i empagliflozin 

may also decrease risk of renal dysfunction. Because sodium (Na) and glucose reabsorption are 

coupled through SGLT2, it is hypothesized that the renal benefits may be derived from lowering 

Na reabsorption in the PT, which would lead to favorable renal hemodynamic changes. 
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However, the quantitative contribution of SGLT2 to PT Na reabsorption, as well as the 

differences between healthy and diabetic subjects, and the impact of SGLT2i on PT Na 

reabsorption are unknown.  

 

1.1.2 Telemetry and Disease Detection for Malaria 

Early detection of physiological changes due to infectious diseases, such as malaria, could guide 

treatment prior to the onset of symptoms and pathogenic consequences. Current malaria 

diagnostic tests, generally used once a patient has symptoms, confirm the presence of infections 

caused by malaria parasites in the blood. However, when the host initially gets infected, the 

malaria parasite travels to the liver and is undetectable in the blood for a period of days. A 

diagnostic method is needed that would detect the parasite’s presence during this liver stage 

period preceding blood-stage infections and symptomology. Early treatment may reduce the 

prospects for complications3,4,5, and can lead to a decrease in transmission of the infectious 

disease, thus protecting others in the community.   

 

1.1.3 Malaria Parasite and Glucose Interactions 

The malaria parasite cannot store energy and instead relies on host erythrocytic glucose as an 

energy source during the human blood stage. The exact mechanism for synchronization of the 

erythrocytic cycle bursting is unknown. Traditionally, this synchronization of erythrocyte 

bursting was thought to be related to light stimulus. A recent published study6 showed that the 

erythrocytic cycle timing changes 12 hours based on nightly feeding times as opposed to daily 

feeding times; this suggests that glucose availability could be related to this synchronization. A 

better understanding of the interaction between the host’s erythrocytes glucose concentrations 
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and the malaria parasite is needed to aid in the development of future treatment strategies to 

combat disease progression. 

 

1.2 OBJECTIVE, HYPOTHESIS, AND SPECIFIC AIMS 

The proposed research aims propose to use mathematical modeling to provide novel insights into 

the various health and disease contexts.  

 

1.2.1 Specific Aim 1: Extend an existing mathematical model of glucose and insulin 

dynamics to quantify renal filtration, reabsorption, and excretion of glucose and sodium in 

healthy, controlled, and uncontrolled diabetes and following treatment 

with canagliflozin, an SGLT2i. 

The objective of this aim was to build a model that could quantify daily proximal tubule 

reabsorption through sodium glucose cotransporter 2 (SGLT2) under normal and diabetic 

conditions and following treatment with an SGLT2 inhibitor. Since sodium and glucose 

reabsorption are coupled through SGLT2, it is hypothesized that lowering sodium reabsorption 

in the proximal tubule may lead to favorable renal hemodynamic changes. Once the published 

model7-9 was extended, model fitting with published data was conducted to identify parameters 

representing both healthy and type 2 diabetes mellitus (T2DM) subjects. The renal threshold for 

glucose parameter was specifically estimated (with all other parameters fixed) for different 

SGLT2i doses using published data in order to model the pharmacologic effects of an SGLT2i. 

Model simulations were then performed using these parameter sets to quantify (1) the 

contribution of SGLT2 to PT sodium reabsorption under normal conditions, (2) the degree to 
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which PT sodium reabsorption through SGLT2 is increased in diabetes, and (3) the reduction in 

PT sodium reabsorption due to SGLT2 inhibition. 

 

1.2.2 Specific Aim 2: Develop and implement a telemetry system, data infrastructure, and 

analysis pipeline for early detection of physiological changes due to pathogenesis, a case 

study of malaria. 

Our second aim was to quantify biological rhythms in physiological signals (temperature, 

activity, blood pressure and electrocardiogram) between baseline and infection stages for the 

malaria parasite, Plasmodium knowlesi. We hypothesize that there is a disruption in these 

rhythms due to infection before symptoms occur. We developed telemetry methods to detect and 

monitor physiological changes in nonhuman primates prior to and in the course of disease 

progression. Daily biological rhythm parameters were obtained using a multiple-component 

cosinor model to classify between healthy baseline and infection using machine learning 

algorithms. 

 

1.2.3 Specific Aim 3: Model the malaria parasite’s effect and dependence upon host 

erythrocytic glucose concentrations. 

The objective of this aim was to build a model that quantified glucose and adenosine 

triphosphate (ATP) concentrations in the red blood cell under healthy conditions and during 

malaria infection. In order to characterize the interaction between the malaria parasite and 

erythrocytic glucose concentrations, we needed to describe glucose transport10  between the 

plasma and red blood cell and how glucose gets utilized under healthy red blood cell conditions 

before we could explore the parasite effect. We hypothesize that erythrocytic bursting and 

parasite release could be related to exhaustion of glucose and consequently depleted erythrocytic 
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ATP levels. By modeling diurnal glucose concentrations and incorporating parasite dynamics, 

we aim to test our hypothesis mathematically and further investigate the relationship between 

erythrocytic glucose and parasite synchronization. 
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CHAPTER 2 

MODEL-BASED EVALUATION OF PROXIMAL SODIUM REABSORPTION THROUGH 

SGLT2 IN HEALTH AND DIABETES AND THE EFFECT OF INHIBITION WITH 

CANAGLIFLOZIN1 
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2.1 ABSTRACT 

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) reduce glucose levels in diabetes by 

inhibiting renal glucose reabsorption in the proximal tubule (PT), resulting in urinary glucose 

excretion. A recent large cardiovascular outcomes trial suggested that the SGLT2i empagliflozin 

may also decrease risk of renal dysfunction. Because sodium (Na) and glucose reabsorption are 

coupled through SGLT2, it is hypothesized that the renal benefits may be derived from lowering 

Na reabsorption in the PT, which would lead to favorable renal hemodynamic changes. 

However, the quantitative contribution of SGLT2 to PT Na reabsorption, as well as the 

differences between healthy and diabetic subjects, and the impact of SGLT2i on PT Na 

reabsorption are unknown. In this study we extended an existing mathematical model of glucose 

dynamics to account for renal glucose filtration and excretion. We utilized this model to quantify 

glucose and Na reabsorption through SGLT2 in healthy, controlled, and uncontrolled diabetes 

and following treatment with canagliflozin. In healthy, controlled diabetic, and uncontrolled 

diabetic states, Na reabsorption through SGLT2 was found to be 5.7%, 11.5%, and 13.7% of 

total renal Na reabsorption, and 7.1% to 9.5%, 14.4% to 19.2%, and 17.1% to 22.8% of Na 

reabsorption in the PT alone. The model predicted that treatment of controlled diabetes with 

canagliflozin returns PT Na reabsorption through SGLT2 to normal levels. The degree of 

increased PT Na reabsorption due to SGLT2 is likely sufficient to drive pathologic changes in 

renal hemodynamics, and restoration of normal Na reabsorption through SGLT2 may contribute 

to beneficial renal effects of SGLT2 inhibition. 
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2.2 INTRODUCTION  

Diabetes is the leading cause of chronic kidney disease. The progressive decline in glomerular 

filtration rate (GFR) in diabetic kidney disease is often preceded by a period of hyperfiltration, 

and the degree of early hyperfiltration is predictive of the subsequent rate of GFR decline.1 

Although the causes of hyperfiltration are still debated, the tubulocentric hypothesis postulates 

that hyperfiltration is a consequence of a primary increase in proximal tubule (PT) sodium 

reabsorption in diabetes.2 We have recently demonstrated this tubular hypothesis of 

hyperfiltration mathematically and shown that it can produce glomerular hypertension and 

potentially contribute to renal injury and GFR decline, particularly when coupled with 

impairment of the pressure-natriuresis mechanism.3  

The primary increase in PT sodium reabsorption consistently observed in diabetes 4-6 is at 

least partially due to coupled glucose and sodium reabsorption through sodium glucose 

cotransporters (SGLT). Under normal conditions nearly all filtered glucose is reabsorbed in the 

PT, and 90% to 97% of this reabsorption occurs through SGLT2 in the S1 and S2 segments. The 

remaining 3% to 10% occurs through SGLT1 in the S3 segment of the PT. The capacity for 

glucose reabsorption through SGLT is not unlimited, and there is a threshold above which excess 

filtered glucose is excreted in the urine.  

SGLT2 inhibitors (SGLT2i) reduce glucose levels in type 2 diabetes mellitus (T2DM) by 

inhibiting glucose reabsorption in the PT of the kidney, resulting in urinary glucose excretion 

(UGE). In a recent large clinical trial,7 the SGLT2 inhibitor empagliflozin was found to 

dramatically slow the rate of GFR decline in patients with T2DM and decrease cardiovascular 

risk. Because sodium and glucose reabsorption are coupled through SGLT2, it is hypothesized 
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that lowering sodium reabsorption in the PT may lead to favorable renal hemodynamic changes 

and subsequently contribute to renal and cardiovascular protection. 

However, the quantitative contribution of SGLT2 to tubular sodium reabsorption, as well 

as the differences between healthy and diabetic subjects, and the impact of SGLT2i on sodium 

reabsorption, have not been quantified. In this study we extended an existing mathematical 

model of glucose and insulin dynamics8,9 to account for renal filtration and excretion of glucose. 

We then used this model to quantify daily PT sodium reabsorption through SGLT2 under normal 

and diabetic conditions and following treatment with an SGLT2 inhibitor. 

 

2.3 METHODS 

2.3.1 Model Description 

In order to quantify sodium reabsorption through SGLT2, we must first quantify glucose 

reabsorption because glucose is the rate-limiting factor, and sodium is reabsorbed along with 

glucose through SGLT2 at a 1:1 molar ratio. To this end, a published mathematical model of 

glucose and insulin dynamics8-10 was extended to include renal filtration, reabsorption, and 

excretion of glucose and sodium, as described below. 

Renal Filtration, Reabsorption, and Excretion of Glucose and Sodium. Glucose is filtered 

freely through the glomerulus so that the filtered glucose load 𝛷𝑔𝑙𝑢,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 is a 

function of the glomerular filtration rate (GFR) and plasma glucose concentration (Cglu): 

𝛷𝑔𝑙𝑢,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝐺𝐹𝑅 ∗ 𝐶𝑔𝑙𝑢      (Eq. 2.1) 
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Under normal conditions filtered glucose is nearly completely reabsorbed through SGLT 

in the PT, and urinary glucose excretion contributes little to glucose elimination. However, at 

high plasma concentrations, filtered glucose can exceed the kidney’s capacity for reabsorption. 

The plasma concentration at which filtered glucose exceeds the renal capacity for glucose 

reabsorption has been defined as the renal threshold for glucose excretion (RTG).11 

The renal capacity for glucose reabsorption (RC) is then given by: 

𝑅𝐶 =  𝑅𝑇𝐺 ∗ 𝐺𝐹𝑅      (Eq. 2.2) 

The rate of glucose reabsorption in the proximal tubule is then: 

𝛷𝑔𝑙𝑢,𝑟𝑒𝑎𝑏𝑠 = min (𝛷𝑔𝑙𝑢,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑, 𝑅𝐶)    (Eq. 2.3) 

Any glucose not reabsorbed is then excreted, so that the rate of urinary glucose excretion 

(RUGE) is: 

𝑅𝑈𝐺𝐸 =  𝛷𝑔𝑙𝑢,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 −  𝛷𝑔𝑙𝑢,𝑟𝑒𝑎𝑏𝑠    (Eq. 2.4) 

Thus, when plasma glucose concentration (Cglu) is less than the renal threshold for 

glucose excretion (RTG), all glucose is reabsorbed, and Φglu,excr is 0.When Cglu exceeds RTG, the 

excess filtered glucose is excreted.  

Cumulative glucose reabsorption and cumulative urinary glucose excretion (UGE) are 

given by: 

𝑑(𝑐𝑢𝑚𝐺𝑙𝑢𝑅𝑒𝑎𝑏𝑠)

𝑑𝑡
=  𝛷𝑔𝑙𝑢,𝑟𝑒𝑎𝑏𝑠     (Eq. 2.5) 

𝑑(𝑈𝐺𝐸)

𝑑𝑡
= 𝑅𝑈𝐺𝐸     (Eq. 2.6) 

Because SGLT2 transports glucose and sodium at a 1:1 molar ratio, the cumulative 

sodium reabsorbed through SGLT2 is equivalent to glucose reabsorbed through SGLT2: 

𝑐𝑢𝑚𝑁𝑎𝑅𝑒𝑎𝑏𝑠𝑆𝐺𝐿𝑇2 = 𝑐𝑢𝑚𝐺𝑙𝑢𝑐𝑅𝑒𝑎𝑏𝑠𝑆𝐺𝐿𝑇2   (Eq. 2.7) 
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SGLT2 is only 1 of several transporters involved in sodium reabsorption in the proximal 

tubule. Cumulatively, all of these transporters reabsorb around 60% to 80% of the filtered 

sodium load. As with glucose, sodium is freely filtered across the glomerulus, so that filtered 

sodium load is given by: 

ΦNa,filtered = 𝐺𝐹𝑅 ∗ 𝐶𝑁𝑎     (Eq. 2.8) 

where CNa is the plasma concentration of Na. Thus, assuming 70% fractional reabsorption, total 

PT sodium reabsorbed in the PT each day is given by: 

𝑐𝑢𝑚𝑁𝑎𝑅𝑒𝑎𝑏𝑠𝑡𝑜𝑡𝑎𝑙 =  0.7 ∗ ΦNa,filtered ∗ 24 ∗ 60   (Eq. 2.9) 

 

2.3.2 Glucose and Insulin Model 

A previously published model of glucose-insulin dynamics8-10 was altered to include renal 

excretion of glucose. The model schematic, adapted from Jauslin et al9 to show glucose 

elimination through renal excretion, is shown in Figure 2.1. For full details, the reader is referred 

to Jauslin and colleagues.8-10  

In this model the rate of change of glucose in the central (plasma) compartment (GLUC) 

is modeled as the sum of glucose absorption rate (ABSG), endogenous glucose production rate 

(GPRO), glucose elimination rate (GELI), and glucose distribution rate (GDIS). We have added a 

term to account for the rate of urinary glucose excretion (RUGE) (Eq. 2.10). Thus, under 

conditions in which plasma glucose concentration is below the renal threshold for glucose 

excretion RTG, the model is identical to the previously published model. But the updated model 

can now accommodate the case of glucose levels elevated above RTG, or when RTG is lowered 

through SGLT2 inhibition. 

𝑑(𝐺𝐿𝑈𝐶)

𝑑𝑡
= 𝐴𝐵𝑆𝐺 + 𝐺𝑃𝑅𝑂 − 𝐺𝐸𝐿𝐼 − 𝐺𝐷𝐼𝑆 − 𝑅𝑈𝐺𝐸    (Eq. 2.10) 
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Plasma glucose concentration Cglu is given in equation 2.11, where VG is the central 

volume of distribution of glucose. 

𝐶𝑔𝑙𝑢 =
𝐺𝐿𝑈𝐶

𝑉𝐺
  (Eq. 2.11) 

All other model equations were taken directly from Jauslin and colleagues.8-10 
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Figure 2.1. Model schematic, adapted from Figure 1 of Jauslin et al.9 CLG indicates clearance of 

glucose; CLGI, insulin-independent glucose clearance; CLI, clearance of insulin; kA, rate constant 

for glucose absorption; kGE, rate constant for glucose-stimulated insulin secretion; kIE, rate 

constant for insulin effect compartments; Q, equilibrium constant between peripheral and central 

glucose; RUGE, rate of urinary glucose excretion. 
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2.3.3 Data 

Data were obtained by digitization from a published study in 29 T2DM patients treated with 

placebo or 50, 100, and 300 mg canagliflozin.12 In this study patients were required to be on a 

stable antihyperglycemic regimen with fasting plasma glucose between 140 and 270 mg/dL and 

HbA1c between 6.5% and 9.5% at baseline. Patients were given 3 standard meals containing 

approximately 100 g carbohydrates at 10 minutes, 4.5 hours, and 10 hours after administration of 

the study drug. Plasma glucose was measured with frequent blood samples over 24 hours, and 

cumulative 24-hour UGE was assessed through urine collection at day –1 and day 1. For full 

protocol details, see Devineni et al.12 

 

2.3.4 Model Fitting 

Jauslin et al have used this model previously to describe both healthy subjects10 and T2DM 

patients.8,9 We have updated the model to include the effect of glucose clearance through renal 

mechanisms. Because healthy subjects experience minimal UGE, the previously estimated 

parameters describing healthy subjects are still appropriate for simulating healthy subjects.8,10 

However, T2DM subjects may have nonzero UGE at baseline. In addition, there may be 

substantial variation between diabetic patients in different studies with different 

inclusion/exclusion criteria. Thus, it was necessary to reestimate a subset of model parameters to 

describe the T2DM population in Devineni et al.12 Specifically, we reestimated parameters 

describing glucose-dependent insulin clearance, the rate of insulin effectiveness, the incretin 

effect on insulin excretion (Sinc), and the newly introduced parameter describing RTG by 

simultaneously fitting plasma glucose and 24-hour UGE data from the placebo arm of this 

study.12 
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 Estimation of the Pharmacologic Effects of the SGLT2 Inhibitor Canagliflozin on RTG. 

SGLT2 inhibitors like canagliflozin act by effectively reducing the renal threshold for glucose 

reabsorption.11 In order to explore the effects of SGLT2 inhibition on glucose and sodium 

excretion, we first estimated the effect of treatment with canagliflozin on RTG. For this 

estimation all other model parameters remained fixed, and RTG was estimated for each dose of 

canagliflozin in the study by simultaneously fitting both plasma glucose and UGE.12 

 

2.3.5 Model Simulations 

In this study we first sought to quantify (1) the contribution of SGLT2 to PT sodium reabsorption 

under normal conditions, (2) the degree to which PT sodium reabsorption through SGLT2 is 

increased in diabetes, and (3) the reduction in PT sodium reabsorption due to SGLT2 inhibition. 

Glucose and sodium filtration, reabsorption, and excretion over the course of a day were 

simulated in a healthy, controlled T2DM (cT2DM), and uncontrolled T2DM (uT2DM) virtual 

patient given 3 doses of 100 g glucose throughout the day, representing a standard meal. 

Parameters for the cT2DM virtual patient were determined from the model fitting described 

above. To simulate uT2DM, the cT2DM virtual patient was then modified by increasing baseline 

plasma glucose to 280 mg/dL. Filtered glucose load, glucose reabsorption, and glucose excretion 

were simulated for each case. Total sodium reabsorption through SGLT2, as well as the fraction 

of filtered sodium reabsorbed through SGLT, was determined according to equations 2.9 and 2.7, 

respectively. 

To evaluate the effect of SGLT2 inhibition on PT sodium reabsorption, we then repeated 

these simulations in the cT2DM virtual patient, with and without a dose of canagliflozin 300 mg 

(as modeled by setting RTG to the corresponding estimated value for that dose). 
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2.3.6 Software Implementation 

The model was implemented in Berkeley Madonna (version 8.3.18; University of California, 

Berkeley, California). Model code is provided in the supplement. Data from the studies11,12 were 

digitized from the published figures using Matlab (Mathworks, Natick, Massachusetts). 

 

2.4 RESULTS 

Estimated model parameter values for cT2DM, fit to the placebo arm of Devineni et al,12 are 

given in Table 2.1. All other parameter values were taken from Jauslin et al.8-10 The estimated 

values for glucose-dependent insulin clearance, rate of insulin effectiveness, and Sinc differed but 

were of the same order of magnitude as previously estimated values. The baseline glucose levels 

in Devineni et al were higher than in Jauslin et al, suggesting that patients in the Devineni study 

were more severely diabetic. The lower estimated values for glucose-dependent insulin clearance 

and the rate of insulin effectiveness, which together represent sensitivity to insulin, as well as 

Sinc, which represents the incretin response to glucose intake, are consistent with a more severely 

diabetic population. The estimated values for RTG at each dose were very similar to those 

determined by Devineni et al12 (see Table 2.2). 

As shown in Figure 2, the updated model was able to describe the data for both plasma 

glucose and 24-hour UGE in T2DM patients on placebo and 3 doses of canagliflozin. A single 

parameter change—lowering RTG to represent SGLT2 inhibition—was sufficient to describe not 

only dose-dependent changes in UGE but also the resulting reductions in plasma glucose. The 

estimated values for RTG at each dose were similar to those determined by Devineni et al12 (see 

Table 2.2). 
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2.4.1 Contribution of SGLT2 to PT Sodium Reabsorption Under Normal and Diabetic 

Conditions  

Figure 2.3A-C shows the simulated renal filtered glucose load over 24 hours in healthy, cT2DM, 

and uT2DM virtual patients. As long as the filtered load is below RC, all filtered glucose is 

reabsorbed. When filtered glucose exceeds RC, the excess glucose is excreted. Thus, the area 

under both the filtered glucose and RC curves (shaded in blue) is the total amount of glucose 

reabsorbed in the PT over 24 hours. The area between the filtered glucose and RC curves 

(shaded in orange) is the total amount of glucose excreted. Figure 3E and F compares the 

cumulative 24-hour glucose excretion and reabsorption, respectively, for each case. Because 

SGLT2 reabsorbs glucose and sodium at a 1:1 molar ratio, Figure 2.3F also represents sodium 

reabsorption through SGLT2. Figure 2.3G shows the percentage of total filtered sodium that is 

reabsorbed through SGLT2 in each case. 

In healthy volunteers, filtered glucose remains well below RC at all times, and thus, no 

glucose is excreted; all is reabsorbed. In cT2DM, filtered glucose is higher, but RC is also 

higher, and the capacity is only exceeded for short periods of time following each meal. Thus, 

nearly all the filtered glucose load is still reabsorbed. In fact, in the cT2DM case, glucose 

reabsorption, and thus sodium reabsorption through SGLT2, is twice that of the healthy case 

(1614 vs 804 mmol/24 h). Glucose excretion in this case is nonzero but fairly small — 46 

mmol/d, or about 9 g/d. 

In uT2DM the filtered glucose load is higher, but because the filtered glucose load 

exceeds the RC for longer periods of time after each meal, most of the additional filtered glucose 

is excreted rather than reabsorbed. The 24-hour UGE is increased 4.6-fold compared to the 
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cT2DM case (219 vs 27 mmol/d, or 42 vs 9 g/d). But the increase in reabsorbed glucose and 

sodium is only increased by 20%: 1908 vs 1614 mmol/d. 

As a fraction of total filtered Na load, in the healthy virtual patient, 5.7% of filtered Na is 

reabsorbed through SGLT2. In the cT2DM case, this doubled to 11.5%. In uncontrolled diabetes 

this increased a little further, to 13.7%. Because the PT reabsorbs 60% to 80% of the filtered 

sodium load, this means that 7.1% to 9.5%, 14.4% to 19.2%, and 17.1% to 22.8% of sodium 

reabsorption in the PT is due specifically to SGLT2, in the healthy, cT2DM, and uT2DM virtual 

patient, respectively. 

Table 2.1. Estimated Model Parameters for cT2DM and Comparison with Previously 

Determined Values 

Parameter Description Value Previous 

Value 

CLGI, (L/min)/(mIU/L) Insulin-dependent glucose clearance 0.0024 0.0059 

kIE, /min Rate constant for insulin effect compartment 0.0077 0.0213 

Sinc, 1/mmol Slope of effect of glucose absorption on 

insulin release (incretin effect) 

0.076 0.18 

RTG, mmol/L Renal threshold for glucose excretion 13.5 N/A 

GSS, mmol/La Initial glucose concentration 11.3 8.8 

ISS, mIU/La Initial insulin concentration 13.5 8.6 

GFR (mL/min)a Glomerular filtration rate 110  

CNa (mEq/L)a Plasma sodium concentration 140  

Previous data are from Jauslin et al.8-10 Parameters unchanged from Jauslin et al are not shown. 
aParameters taken from Devineni et al,12 rather than estimated. 

 

 

Table 2.2. Estimated Values of Renal Threshold for Glucose Excretion and Renal Capacity for 

Glucose Reabsorption Following Treatment with SGLT2i Canagliflozin Compared with 

Reported Values 

Parameter Definition Placebo Cana 

50 mg 

Cana 

100 mg 

Cana 

300 mg 

RTG,mg/dL 

(mmol/L), 

estimated 

 

Renal threshold for glucose excretion 244 

(13.5) 

148 

(8.2) 

106 

(5.9) 

99 

(5.5) 

RTG,mg/dL, 

reported12 

 

 235 143 97.5 104 

RC (mmol/h), 

calculated 

Renal capacity for glucose reabsorption 89 54 38 36.3 

Cana indicates canagliflozin. 
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Figure 2.2. The model describes the glucose concentration-time profile (A-D) and 24-hour UGE 

(E) in T2DM patients on placebo or 50, 100, or 300 mg canagliflozin.12 Cana indicates 

canagliflozin; T2DM, type 2 diabetes mellitus; UGE, urinary glucose excretion. 
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Figure 2.3. A-D, Filtered glucose load in (A) healthy, (B) controlled T2DM, (C) uncontrolled 

T2DM, and (D) controlled T2DM treated with 100 mg canagliflozin. E, Twenty-four-hour UGE 

(equal to orange area in A-D). F, Twenty-four-hour cumulative glucose (equal to blue area in A-

D). Also represents sodium reabsorption through SGLT2 because sodium and glucose are 

reabsorbed at a 1:1 molar ratio. G, Percentage of total filtered Na load that is reabsorbed through 

SGLT2. Blue shaded area indicates total amount of glucose reabsorbed. Orange shaded area 

indicates total amount of glucose excreted. Cana indicates canagliflozin; cT2DM, controlled type 

2 diabetes mellitus; RC, renal capacity for glucose reabsorption; uT2DM, uncontrolled type 2 

diabetes mellitus; UGE, urinary glucose excretion. 

 

 

2.4.2 Effect of SGLT2 Inhibition on PT Sodium Reabsorption  

Figure 3D shows the filtered glucose load in the cT2DM virtual patient when the RC has been 

lowered by treatment with canagliflozin 100 mg. Treatment with canagliflozin lowers RTG and 

RC, resulting in more excretion (orange) and less reabsorption of glucose (blue) compared to the 

cT2DM case without canagliflozin (Figure 2.3B). Because more glucose is excreted, it also 

mitigates the postprandial rise in glucose. The 24-hour UGE is increased from 46 mmol/d (9 g/d) 

to 630 mmol/d (121 g/d) (Figure 2.3E). Importantly, glucose and sodium reabsorption through 

SGLT2 are restored to normal levels (Figure 2.3F, G). 
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2.5 DISCUSSION  

This study quantified the contribution of SGLT2 to renal sodium reabsorption in health and 

disease and following treatment with an SGLT2 inhibitor. In the healthy state, SGLT2 accounts 

for a relatively small fraction of total sodium reabsorption (about 6%), although it represents a 

slightly larger contribution to PT-specific sodium reabsorption (7% to 9%). In the diabetic state, 

when blood glucose levels are increased to near RTG, this contribution is doubled to around 12% 

of total, or 14% to 19% of PT sodium reabsorption. These values are consistent with previous 

studies showing that PT sodium reabsorption is increased 5% to 25% in diabetes.4-6 Treatment 

with an SGLT2i normalizes the fraction of sodium reabsorption through SGLT2. 

Increased PT sodium reabsorption affects GFR and glomerular capillary hydrostatic 

pressure in several ways. First, increased PT reabsorption reduces sodium flow through the 

macula densa, stimulating tubuloglomerular feedback that dilates the afferent arteriole and 

increases glomerular hydrostatic pressure.2 Second, increased PT sodium reabsorption reduces 

fluid flow through the PT and thus reduces Bowman’s space pressure that opposes filtration.2,5,13 

Third, as we have recently illustrated mathematically,3 an increase in PT sodium reabsorption 

causes a sodium imbalance, which must be corrected. Under normal conditions, sodium 

reabsorption through other transporters along the nephron may be downregulated to compensate 

and restore sodium balance. However, when this compensatory downregulation is impaired, the 

only remaining way to restore sodium balance is by increasing filtration. As long as a sodium 

balance persists, sodium and fluid accumulate, increasing blood pressure, glomerular hydrostatic 

pressure, and GFR until the point that sodium excretion again matches intake. Our previous 

simulations suggest that a 7% to 10% increase in PT sodium reabsorption would be sufficient to 

cause elevation in glomerular hydrostatic pressure, especially if coupled with impairment in 
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distal regulation of sodium reabsorption—a common feature in diabetes. Coupled with our 

previous work, the current study confirms that the magnitude of increase in sodium reabsorption 

due to SGLT2 is likely sufficient to produce pathologic changes in glomerular hemodynamics. 

It may seem counterintuitive that sodium retention is increased in diabetes because 

diabetes is often associated with excess urine production and dehydration. However, these 

periods of dehydration usually occur when blood glucose levels have become excessively 

elevated. Our simulations demonstrate that during periods of uncontrolled hyperglycemia, as 

blood glucose rises above RTG, the capacity of SGLT2 for glucose (and sodium) reabsorption is 

exceeded, and most of the excess glucose is excreted in the urine, so that there is only a small 

additional increase in sodium reabsorption through SGLT2. At the same time, because there is 

substantial glucosuria in the uncontrolled state, we can speculate that osmotic diuresis and 

associated solvent drag may actually lead to an overall reduction in sodium reabsorption (and 

increase in excretion) in this case. In other words, as long as glucose levels in the diabetic patient 

remain at or below RTG, there is overall sodium retention due to SGLT2, but as glucose rises 

above RTG, SGLT2-related sodium retention may be countered by losses due to osmotic diuresis, 

leading to polyuria and dehydration. 

In these simulations, we assumed that all additional glucose reabsorption in diabetes is 

through SGLT2. However, although SGLT1 normally reabsorbs only 3% to 10% of filtered 

glucose, in diabetes, when the glucose reabsorption capacity of SGLT2 is surpassed and the load 

of glucose reaching the S3 segment increases, there is likely some compensation through 

increased SGLT1 reabsorption. The increase in renal threshold for glucose excretion from about 

150 mg/dL in nondiabetics to about 250 mg/dL in diabetics is likely due to a combination of 

proximal tubular growth and increased SGLT2 density but also increased SGLT1 activity. 
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Because the degree of compensation through SGLT1 is difficult to distinguish from these other 

factors, the current model did not attempt to model SGLT1 compensation. However, we can 

deduce that because SGLT1 reabsorbs sodium and glucose at a 2:1 molar ratio, compared to the 

1:1 molar ratio for SGLT2, any portion of the increase in glucose reabsorption from the normal 

to diabetic state due to increased reabsorption through SGLT1 rather than SGLT2 would result in 

an even higher increase in sodium reabsorption. Therefore, the increase of 12% calculated here is 

a lower bound. 

Our results also indicate that treatment with an SGLT2 inhibitor such as canagliflozin 

normalizes the contribution of SGLT2 to tubular sodium reabsorption. By normalizing PT 

sodium reabsorption, an SGLT2i may indirectly reduce glomerular capillary hypertension and 

slow the rate of renal injury. This is consistent with the GFR response observed in the EMPA-

REG trial.7 An acute reduction in GFR (over the first few weeks of the trial) was observed, 

consistent with a hemodynamic response to the drug (ie, lowering of glomerular pressure), 

followed by a much slower rate of GFR decline compared to placebo. In addition, SGLT2 

inhibitors have been shown to reduce proteinuria,14 another indication of lowering of glomerular 

hypertension. In addition to direct effects on PT sodium reabsorption, the glucosuria caused by 

SGLT2 inhibitors induces an osmotic diuresis effect, which may further contribute to excess 

sodium and water excretion and subsequently alter systemic and renal hemodynamics. In this 

study, we could not evaluate the osmotic diuresis contribution of SGLT2i on sodium 

reabsorption. 

Because we did not directly account for possible compensatory reabsorption through 

SGLT1 in the model, we also must consider whether SGLT1 compensation might impact the true 

effect of SGLT2 inhibition on decreasing sodium reabsorption. We do not believe this is the case 
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for the following reason. Even controlled diabetics tend to have levels of glucose excretion that 

are measurably larger than in nondiabetics, and increases in plasma glucose are associated with 

increases in glucose excretion. This suggests that even with a compensatory increase in renal 

threshold for glucose excretion, diabetic patients operate near saturation of both SGLT1 and 

SGLT2 transporters. Further increases in blood glucose levels result in excess filtered glucose 

that neither SGLT1 nor SGLT2 transporters are able to reabsorb. Therefore, it follows that when 

an SGLT2 inhibitor is given, the amount of glucose reaching the SGLT1 in the S3 will increase, 

but because SGLT1 transporters are already reabsorbing their maximum capacity, their ability to 

compensate further is likely small. Therefore, we believe that the model-predicted effects of 

SGLT2 inhibition on sodium and glucose reabsorption are accurate. Still, it should be noted 

though that although SGLT1 are likely already saturated and do not compensate under SGLT2 

inhibition, a therapy that inhibits both SGLT1 and SGLT2 would be expected to further increase 

glucose excretion. As illustrated in Figure 2.3E, there is still substantial glucose reabsorption 

during treatment with canagliflozin. This may be due to incomplete SGLT2 suppression, 

reabsorption by SGLT1, or both. A dual inhibitor would potentially increase glucose excretion 

further and, because of the 2:1 sodium glucose ratio of SGLT1 inhibitors, would have an even 

greater impact in reducing sodium reabsorption than a selective inhibitor. 

In this study we assumed a normal GFR in all cases. The level of GFR determines the 

filtered glucose and sodium load and thus will affect total amount of sodium reabsorbed. Early 

diabetes is frequently characterized by renal hyperfiltration. In hyperfiltering patients, the filtered 

glucose load, and thus the predicted increases in glucose and sodium reabsorption, could be even 

higher. In diabetics who develop chronic kidney disease, GFR declines, but single-nephron GFR 

increases as the remaining uninjured nephrons try to compensate for lost nephrons. This may 
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also affect the dynamics of glucose and sodium reabsorption. In future work, by coupling the 

glucose-insulin dynamics model with a model of renal hemodynamics, we plan to evaluate the 

impact of renal hyperfiltration as well as the consequences of a decline in GFR, as nephrons are 

lost, on sodium reabsorption through SGLT2. 

We focused in this study on quantifying the contribution of SGLT2 on proximal sodium 

reabsorption in diabetes and the impact of SGLT2i in reducing it because of the increasingly 

recognized role of increased proximal reabsorption in glomerular hypertension and subsequent 

renal damage. However, SGLT2 inhibitors may have favorable effects on renal function through 

other mechanisms as well. By reducing proximal reabsorption, they may favorably alter oxygen 

consumption along the nephron.15 They have also been shown to reduce inflammation and 

tubular fibrosis. This may be an indirect effect of improved renal hemodynamics and reduced 

proteinuria and oxygen consumption but could also be an independent effect of SGLT2 

inhibitors.16 Further mechanistic studies, as well as long-term outcomes studies investigating 

renal end points, are needed to more fully understand the renoprotective effects of SGLT2 

inhibitors. 

In this work we expanded an established model of glucose and insulin dynamics to 

account for glucose clearance through urinary glucose excretion. We demonstrated that by 

changing only a single parameter, RTG, the model was able to reproduce the reduction on blood 

glucose observed with the SGLT2 inhibitor canagliflozin. To our knowledge, this is the first 

model to mechanistically incorporate renal clearance of glucose in a model of glucose dynamics. 

Although under normal conditions, renal clearance of glucose is negligible, this is an important 

clearance route in uncontrolled diabetes and during treatment with an SGLT2i. Thus, this model 
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expansion may be useful beyond the current questions, when considering glucose dynamics in 

diabetics and/or under SGLT2i. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 

 

 

2.6 REFERENCES 

1. Bjornstad P, Bjornstad P, Snell-Bergeon JK, et al. Rapid GFR decline is associated with 

renal hyperfiltration and impaired GFR in adults with Type 1 diabetes. NEPHROLOGY 

DIALYSIS TRANSPLANTATION. 2015;30(10):1706-1711. 

2. Vallon V, Thomson SC. Renal Function in Diabetic Disease Models: The Tubular 

System in the Pathophysiology of the Diabetic Kidney. In. United States: ANNUAL 

REVIEWS INC; 2012:351. 

3. Hallow KM, Gebremichael Y, Helmlinger G, Vallon V. Primary proximal tubule 

hyperreabsorption and impaired tubular transport counterregulation determine glomerular 

hyperfiltration in diabetes: a modeling analysis. American Journal of Physiology 

(Consolidated). 2017(5):819. 

4. Vallon V, Blantz RC, Thomson S. Homeostatic efficiency of tubuloglomerular feedback 

is reduced in established diabetes mellitus in rats. In. United States: AMERICAN 

PHYSIOLOGICAL SOCIETY; 1995:F876. 

5. Vallon V, Richter K, Blantz RC, Thomson S, Osswald H. Glomerular Hyperfiltration in 

Experimental Diabetes Mellitus: Potential Role of Tubular Reabsorption. In. United 

States: WILLIAMS & WILKINS; 1999:2569. 

6. Hannedouche TP, Delgado AG, Gnionsahe DA, Boitard C, Lacour B, Grünfeld JP. Renal 

hemodynamics and segmental tubular reabsorption in early type 1 diabetes. Kidney 

International. 1990;37(4):1126-1133. 

7. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and Progression of Kidney 

Disease in Type 2 Diabetes. New England Journal of Medicine. 2016;375(4):323-334. 

8. Jauslin PM, Silber HE, Frey N, et al. An integrated glucose-insulin model to describe oral 

glucose tolerance test data in type 2 diabetics. Journal of Clinical Pharmacology. 

2007(10):1244. 

9. Jauslin PM, Frey N, Karlsson MO. Modeling of 24-Hour Glucose and Insulin Profiles of 

Patients With Type 2 Diabetes. The Journal of Clinical Pharmacology. 2011;51(2):153-

164. 

10. Silber HE, Jauslin PM, Frey N, Gieschke R, Simonsson USH, Karlsson MO. An 

Integrated Model for Glucose and Insulin Regulation in Healthy Volunteers and Type 2 

Diabetic Patients Following Intravenous Glucose Provocations. The Journal of Clinical 

Pharmacology. 2007;47(9):1159-1171. 

11. Sha S, Devineni D, Ghosh A, et al. Canagliflozin, a novel inhibitor of sodium glucose co-

transporter 2, dose dependently reduces calculated renal threshold for glucose excretion 

and increases urinary glucose excretion in healthy subjects. DIABETES OBESITY & 

METABOLISM. 2011;13(7):669-672. 

12. Devineni D, Curtin CR, Murphy J, et al. Pharmacokinetics and Pharmacodynamics of 

Canagliflozin, a Sodium Glucose Co-Transporter 2 Inhibitor, in Subjects With Type 2 

Diabetes Mellitus. JOURNAL OF CLINICAL PHARMACOLOGY. 2013;53(6):601-610. 

13. Vallon V, Blantz RC, Thomson S. Glomerular hyperfiltration and the salt paradox in 

early [corrected] type 1 diabetes mellitus: a tubulo-centric view. Journal Of The 

American Society Of Nephrology: JASN. 2003;14(2):530-537. 

14. Petrykiv SI, Laverman GD, Zeeuw Dd, Heerspink HJL. The albuminuria lowering 

response to dapagliflozin is variable and reproducible between individual patients. 

Diabetes, Obesity & Metabolism. 2017. 



29 

 

 

15. Layton AT, Vallon V, Edwards A. Predicted consequences of diabetes and SGLT 

inhibition on transport and oxygen consumption along a rat nephron. AMERICAN 

JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY. 2016;310(11):F1269-F1283. 

16. Fioretto P, Zambon A, Rossato M, Busetto L, Vettor R. SGLT2 Inhibitors and the 

Diabetic Kidney. Diabetes Care. 2016;39(Supplement 2):S165. 

 



30 

 

 

 

 

CHAPTER 3 

DETECTION OF PHYSIOLOGICAL PERTURBATIONS VIA HIGH FREQUENCY 

TELEMETRY DATA. A CASE STUDY OF MALARIA1.  
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3.1 ABSTRACT 

Early detection of physiological changes due to infectious diseases could guide treatment prior to 

the onset of symptoms and pathogenic consequences. Here we developed telemetry methods to 

detect and monitor physiological changes in nonhuman primates prior to and in the course of 

infectious disease progression, specifically malaria. Current malaria diagnostic tests, generally 

used once a patient has symptoms, confirm the presence of infections caused by malaria parasites 

in the blood. We analyzed high-frequency physiological data captured from telemetry devices 

implanted in Macaca mulatta and M. fascicularis prior to and after infection with P. knowlesi 

sporozoites. Our results show for the first time that host physiological perturbations can be 

detected while malaria parasites are multiplying in the liver, a step that precedes blood-stage 

infections and symptomology. These data provide an impetus for the development of novel 

preemptive telemetry systems for the diagnosis of malaria and possibly other infectious diseases.   
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3.2 INTRODUCTION  

Early and accurate detection of the physiological changes due to pathogenesis of 

infectious disease can help ensure rapid treatment prior to, or during, the onset of symptoms. 

Early treatment may reduce the prospects for complications1,2,3, and can lead to a decrease in 

transmission of the infectious disease, thus protecting others in the community. Inflammatory 

processes due to infection can be detrimental or beneficial to the host depending upon their 

intensity and duration4. Timely detection of infection may allow for the development of 

strategies to control the imbalance of inflammatory processes thus decreasing risk for further 

complications. 

Current methods for early diagnosis vary and have known limitations. Imaging5, 

polymerase chain reaction (PCR)-based diagnostics6, rapid molecular detection7, and 

immunologic tests8 are among some of the tools used to detect infectious diseases. Imaging has 

been used in conditions that cause damage greater than the spatial resolution of the technology of 

choice, e.g. > 1mm using T4 MRI9. PCR-based diagnostics are effective for a variety of 

infectious diseases but require that pathogens be present in the tissue type or sample studied, e.g. 

mouth swab, blood1, etc. Rapid molecular detection assays rely on non-invasive collection of 

samples, e.g. nose swab10, sputum7, etc., but not all pathogens are present in those easily 

accessible samples. Immunologic assays have been useful for diagnosis, and require an 

understanding of the immunologic responses expected and the antigen or antibody specific to a 

disease; however, antigen recognition is, in some cases, broad and highly variable from 

individual to individual8. Overall, current methods for diagnosis of infectious diseases are limited 

by the amount of time required to process results, further tests required to confirm diagnosis to 

administer the correct treatment1, and test sensitivity.  
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In this study, we overcome limitations of current diagnostic methods using telemetry 

devices. They provide a unique perspective on physiological signals through high frequency 

sampling rates and continuous measurements. Telemetry systems capture data produced by 

sensors via electrical signals which are converted and recorded as digital data11. Possible 

measures can include temperature12, activity13, electrocardiogram (ECG)14, 

electroencephalogram (EEG)15, oxygen concentration16, and others. These signals can be 

captured through an extrinsic system, or via surgically implanted intrinsic devices. Captured data 

can be used to characterize the health status of a subject. Implantable telemetry devices have 

been employed to investigate physiological status in clinical settings, disease progression17, and 

vaccine reactogenicity18. For example, telemetry implants in cynomolgus monkeys allowed 

researchers to obtain continuous hemodynamic parameters in a dose toxicity study that would 

have been otherwise impossible to obtain from a freely-moving nonhuman primate19. Absence of 

data related to rapid physiological changes can lead to an incomplete or inaccurate understanding 

of an individual's health or disease state; these data can only be obtained and quantified with  

continuous data capturing systems20.  

The high frequency sampling of these physiological signals enables detection of disease 

signs that may have been missed otherwise. Telemetry devices have been used to characterize 

infectious disease signs and detect early infection (REF?). Temperature captured via telemetry in 

nonhuman primates has been explored to identify aerosol-exposure to brucellosis and 

Venezuelan equine encephalitis virus 21,22. In murine models, body temperature has been 

identified as an early indicator of mortality for staphylococcal enterotoxic shock23. Telemetric 

recordings in marmosets after inoculation of dengue virus showed an induced fever and decrease 

in activity24. Temperature changes in nonhuman primates have been explored as an early 
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identifier for Ebola Virus Infection25. Temperature and activity data obtained through biosensors 

has been used for early detection of infection in pigs26.  

The study of telemetry signals is the study of time series. Frequency analysis of time-

dependent signals can characterize biological rhythms and detect when perturbations, also called 

chronodisruptions27,28, occur, indicating disease or disease risk for an individual29-31. The 

maintenance of these biological rhythms, especially sleep structure, is important for immune 

function32. When rhythm parameters differ from baseline for an individual, this may indicate 

disease risk29.  

 

3.2.1 Case Study: Early detection of infection in malaria 

Malaria was responsible for approximately 219 million (95% CI: 203-262 million) cases in 2017, 

with 92% occurring in the African region alone33. Immediately after entering a host via mosquito 

inoculation, Plasmodium parasites travel to the liver where they infect hepatocytes and multiply 

significantly. During the liver stage, the host does not experience symptoms, thus parasite 

presence often goes undetected. After multiplying in the liver for a number of days (based on the 

parasite species34), parasites enter the bloodstream where they begin an exoerythrocytic cycle of 

red blood cell infection, multiplication, and rupture. As parasites multiply in the blood, 

symptoms may occur and malaria diagnosis can be made35. Symptoms of Plasmodium infection 

include fever, chills, muscle aches, headache, nausea, and vomiting among others36, which can 

be misdiagnosed in the absence of a formal malaria diagnostic test, potentially leading to 

inappropriate and ineffective treatment for this disease.   

Current commercial diagnostic technologies are limited to the blood stage of an infection 

and are generally used once a person has symptoms typical of malaria. Such diagnostic methods 



35 

 

 

include the current gold standard of laboratory diagnosis by detecting infected red blood cells by 

microscopy, rapid diagnostic tests that detect parasite proteins or byproducts in blood 

samples37,38, and PCR tests that confirm the parasite’s presence in the blood6,39. Newer methods 

include imaging flow cytometry to detect the erythrocytic stage40 and breathalyzers, which can 

detect malaria-associated biomarkers and mosquito attractants; these have not been made 

commercially available yet41. However, there is still a critical delay of many days from the time 

of sporozoite inoculation and liver infection until these blood-based detection methods can be 

effective. 

In this study, we captured high frequency physiological data from implanted telemetry 

devices in two species of macaques (Macaca mulatta and M. fascicularis) infected with 

Plasmodium knowlesi. We detected biological rhythm disruptions that differentiate pre-infection 

periods from the liver stage. The telemetry devices were turned on for a baseline pre-infection 

period, and through the course of longitudinal infections. Our methods and results showcase this 

emerging technology and highlight its potential application for disease diagnostics and use in 

public health management. 

 

3.3 METHODS/RESULTS 

3.3.1 Custom automated telemetry system, high-volume continuous data transfer, and 

analysis overview 

We designed and implemented an automated system to collect, store, and analyze telemetry data, 

approximately 2.5 terabytes (Fig. 3.1). Temperature, activity, blood pressure, and 

electrocardiogram (ECG) measures were obtained from a cohort of six M. mulatta and seven M. 

fascicularis through implantable telemetry devices to capture nearly uninterrupted data (1 -1000 
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Hz, see Table 3.1) during the pre-infection baseline period (days -10 – 0) and the longitudinal 

infection period (days 1 – 10), which was initiated by the inoculation of P. knowlesi sporozoites. 

Additional information related to the surgical procedure can be found in the Online Methods. 

An L11 Physiotel Digital implant device42 that captures ECG, temperature, blood 

pressure, and activity was surgically inserted into the abdomen of the nonhuman primates 

(NHPs) (see surgery information in Online Methods). The device contained sensors for 

temperature, three orthogonal accelerators, a catheter that allowed for blood pressure readings, 

and biopotential leads enabling ECG capture. All variables were sampled according to the 

frequencies found in Table 3.1. 

 

Table 3.1: Experimental Details and Sampling Frequencies per Physiological Variable.  
   Sampling Frequencies 

Experiment 
ID 

Host Species Number of 
Subjects 

Temperature ECG Accelerometer 
(X,Y,Z) 

Blood 
Pressure 

E30 M. mulatta 2 1 Hz 1000 Hz 10 Hz 1000 Hz 

E07B M. fascicularis 7 1 Hz 1000 Hz 10 Hz 500 Hz 

E06 M. mulatta 4 1 Hz 1000 Hz 10 Hz 500 Hz 
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A 

 

B 

 

Figure 3.1: Experimental design and data transfer process. (A) Idealized experimental timeline 

with infection stage indications. The liver stage determination day range is described in the 

Online Methods. (B) Overview of data acquisition, transfer, and storage processes, starting from 

the telemetry device ending in data analysis. See Online Methods for more details. 
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3.3.2 Hardware 

The signal from the telemetry implants was transmitted through radiofrequency and detected by 

receivers, connected to corresponding components from a vendor42, that transferred the data to 

the ‘telemetry computer’ dedicated for collection of these data (Fig. 3.1B).  A barometric 

pressure sensor was in the same facility where the nonhuman primates were located, capturing 

data at 1 Hz. 

 

3.3.3 Data Transfer 

It was necessary to architect and implement a custom software solution to parse the data 

because, at the time of this study, no vendor's software could export it at full sampling frequency 

in real-time (see Online Methods for details). Furthermore, our solution efficiently merged the 

operations of parsing raw data files and loading a relational database. Raw files were retained in 

an iRODS-managed file repository (https://irods.org/).  

To protect against data loss, all files were retained on the telemetry computer until the 

conclusion of each experiment (Table 3.1) and confirmation that all files were transferred to the 

centralized server. As a second safeguard to protect against data loss due to possible damage of 

the telemetry computer, all files were also archived on a network-attached storage until the end 

of each experiment and the same confirmation of transfer. After each experiment, checksums for 

all files on the telemetry computer were generated and compared to checksums of transferred 

files at the centralized server.  
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3.3.4 Data Preprocessing 

Data preprocessing refers to the activities involved in filtering outliers, filling in or ignoring 

systematically missing data, and down-sampling. The data created by the vendor’s software 

reported missing data with a different set number per channel, which allowed us to identify 

readings that in reality corresponded to missing data.  

Averages per minute for each variable type were obtained using the first fifteen seconds 

of each minute if there was adequate data in that minute interval. The following minute-average 

features were computed per data type: blood pressure, acceleration, temperature, and ECG R 

peak. Blood pressure sensors are affected by barometric pressure; to analyze the blood pressure 

readings, the atmospheric pressure average per experiment was subtracted from the raw blood 

pressure data. The mean arterial pressure was computed by identifying the average systolic and 

diastolic pressure and the sum of one-third of the average systolic pressure and two-thirds of the 

diastolic pressure. The Euclidean norm was computed for accelerometer data in three orthogonal 

directions to characterize overall changes in activity and the average of the standard deviation of 

the Euclidean norm was used as a feature for activity.  

 

3.3.5 Multiple-Component Cosinor Model and Statistical Analysis 

After each physiological signal was processed and downsampled to obtain minute averages of 

temperature, R peak height from ECG, mean arterial pressure and standard deviation of activity, 

these measures were divided into 24-hr intervals. For each individual, daily biological rhythm 

parameters were estimated using a multiple-component cosinor model and least squares 

estimation for each data type.  



40 

 

 

An implementation of the model43,44 was used with a fundamental circadian period (24-

hr) and corresponding harmonics, as illustrated in equation (3.1):  

𝑦 = 𝑀 + ∑ 𝑎𝑘𝑐𝑜𝑠 (
2𝜋𝑘𝑡

𝑇
+ 𝛷𝑘)

3

𝑘=1
,          (Eq. 3.1) 

where M is the Midline Estimating Statistic of Rhythm (MESOR), the weights  

𝑎𝑘 are related to the amplitude of the rhythms for different periods, T. The fundamental period of 

T when 𝑘 = 1 is 24 hours and the ultradian period harmonics are 12 and 8 hours. The phase 

shifts, 𝛷𝑘, are the translations for the cosine waveforms where the reference time is midnight 

local time. An example of model fit is illustrated in Fig. 3.2.  

The daily estimated parameters for an individual per data type were then grouped into 

pre-infection, liver stage, and blood stage for statistical comparison. Pre-infection was compared 

to liver stage using the Kruskal-Wallis nonparametric test for the distribution of each parameter, 

per variable type, per individual. This comparison identified the parameters for which the p-

value was less than 0.05 indicating a significant change from baseline. This comparison was also 

made between pre-infection and blood stage.  The statistically significant parameter changes that 

occurred in different parameters for the two host species are summarized in Table 3.2. These 

results were validated via statistical comparison between two intervals of pre-infection per 

individual.  
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Figure 3.2: Example Model Fit of Temperature Data. Example of temperature data collected 

for an individual during a day of pre-infection (gray circles) and corresponding multiple-

component cosinor model fit (red line). 

 

Table 3.2: Parameter Comparisons between Pre-infection and Infection Stages using 

Kruskal-Wallis Test. Comparisons were made with the pre-infection period data (Pre-) and both 

liver stage data captured during days 1 – 4 and blood stage data captured during days 6 – 9. A 

description of the determination of these tissue-specific days of the infections can be found in the 

Online Methods section. ECG = Electrocardiogram. MESOR = Midline Estimating Statistic of 

Rhythm.  Amp = Amplitude.  

 

 
 

3.3.6 Classification Analysis Between Pre-Infection and Liver Stage 

The feature matrix was obtained from the daily level parameters estimated per data type by the 

multiple-component cosinor model for all individuals for pre-infection and liver stage. Two 

machine learning algorithms were implemented for classification between pre-infection baseline 

and post-infection liver stage with this feature matrix as the input. An overview of the analysis 
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pipeline can be seen in Fig. 3.3. Online Methods have additional details about the machine 

learning algorithms used. 

The random forest with boosting algorithm aims to create a strong classifier from several 

weak iterative classifiers. We computed a sequence of simple trees (weak classifiers) where each 

tree learns from the mistakes of the previous tree, which in turn created a stronger classifier. 

First, we built a tree model for training data, then created a second tree model which allowed us 

to correct the errors from the first tree model. We added more decision trees until the boosting 

decision tree model could predict the training set perfectly, meaning the classification between 

pre-infection and liver stage on the training data was 100% correct. Using this model, we were 

able to accurately classify between pre-infection and liver stage days with an average accuracy of 

82% on the test data using 10-fold cross-validation.  

We implemented a feedforward fully-connected neural network for comparison. The goal 

of most feedforward networks is to minimize a loss function that is constructed using the 

comparison of desired outputs of the training set and the actual model output. We used the binary 

cross entropy function as the loss function. The architecture of the model was 10 layers with the 

feature matrix as the input. Using 10-fold cross-validation for this model, we obtained an average 

accuracy of 80% classification between pre-infection and liver-stage days after 200 epochs over 

the test data.   
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Figure 3.3: Analysis Pipeline Overview. Overview of analysis process from raw data to 

infection stage classification. 

 

3.4 DISCUSSION 

In this study, we implemented a telemetry system, data infrastructure, and analysis pipeline for 

early detection of physiological changes due to pathogenesis, using malaria as a model. The 

effectiveness of this system was demonstrated with P. knowlesi infection in two species of 

nonhuman primates, M. mulatta and M. fascicularis. Physiological signals (temperature, blood 

pressure, activity, and ECG) were continuously captured and used to characterize baseline 

biological rhythms and perturbations during infection with P. knowlesi.  

Our results show that physiological perturbations that were previously uncharacterized 

are occurring in the host during the liver stage. Using estimated biological rhythm parameters 

and machine learning algorithms, consensus classification between pre-infection and liver stage 

was obtained with over 80% accuracy. However, the mechanism of biological rhythm 

perturbation during the liver stage is unknown; it could be a disruption to the genetic circuits that 

regulate circadian rhythms or something else entirely 45,46.  

We used two different machine learning techniques on this data set to build consensus: 

artificial neural networks, and random forests. Due to the size of the data set, the neural network 
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was not consistent over the different validation sets. On some sets in the 10-fold cross-validation 

we received higher results than others. This could be caused by the neural network not having 

enough data to fully learn the patterns. However, the random forest method was more consistent 

over this data set and demonstrated a higher average classification rate.  Since both approaches 

achieved at least 80% accuracy it is likely that with more data, the classification accuracy would 

be similar if not higher.  

We recommend further studies be conducted to investigate what specific interaction 

causes this chronodisruption, as it may lead to treatment strategy improvements. Since the 

synchronization of host and parasite rhythms has been identified as an important part of host-

parasite interactions47,48, frequent sampling of telemetry data could provide novel insights into 

why we were able to use rhythm parameters to distinguish between pre-infection and liver 

stage49,50. 

  Given the relatively low cost of wearable telemetry devices, it is feasible to design a 

device for mass distribution in malaria endemic regions, to detect infection early and decrease 

the time to treatment. This intervention could have a profound impact in the control of malaria, 

and the morbidity and mortality attributed to it, by reducing illness and complications due to the 

disease, as well as transmission. It has also been suggested that chronotherapy51 of malaria would 

inform drug administration to coincide with the time of increased vulnerability of the parasite52 

in the erythrocytic stage.  

It is possible that there could exist chronodisruption signatures for other diseases, 

allowing for earlier and more accurate detection of them as well. Physiological changes due to 

pathogenesis include conditions that constrain movement, alter temperature, and disrupt sleep 

patterns, and other changes that can be detected globally with telemetry technology that is 
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readily available. As the field of precision medicine progresses, our proposed analysis and 

classification could be used in coordination with pre-existing health monitoring systems if 

additional clinical studies for validation occurred in the future. More research is needed. 

 

3.5 ONLINE METHODS 

3.5.1 Animals  

All animal procedures were performed at the Yerkes National Primate Research Center 

(YNPRC) of Emory University, approved by the Emory University Institutional Animal Care 

and Use Committee (IACUC), and carried out in accordance with the Animal Welfare Act and 

Regulations and Public Health Service Policy on the Humane Care and Use of Laboratory 

Animals.  

Yerkes National Primate Research Center is an Association for Assessment and 

Accreditation of Laboratory Animal Care International (AAALAC)-accredited institution, and all 

macaques in this study were housed in accordance with standards set forth by the Guide for the 

Care and Use of Laboratory Animals. Animals were housed indoors in quad-unit stainless steel 

caging. The animal housing rooms had 12:12h light-dark cycles, with temperature maintained 

between 65-75 degrees Fahrenheit and humidity kept between 30-70 percent. Animals were fed a 

commercial monkey chow (LabDiet 5037, LabDiet, St. Louis, MO) supplemented daily with 

fresh produce, and they had access to water ad libitum.   

 

3.5.2 Surgery and Device Implantation  

The animals were anesthetized with Telazol (3-5mg/kg IM) or ketamine (10 mg/kg IM) to 

facilitate surgical preparation and endotracheal intubation. They were maintained at a surgical 
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plane of anesthesia with isoflurane inhalant anesthetic mixed with oxygen and received an 

intravenous infusion of isotonic fluids at 5-10 mL/kg per hour. The PhysioTelTM L11 telemetry 

implant device42 was secured between the external and internal abdominal oblique muscles, with 

the arterial blood pressure catheter inserted into the femoral artery and advanced into the 

abdominal aorta, and the ECG leads placed in a lead II configuration in subcutaneous pockets on 

the thorax. Appropriate perioperative medications were given to maintain patient safety and 

facilitate telemetry device placement. Post-operative medications included flunixin meglumine 

(1 mg/kg SQ q6h) and buprenorphine (0.01-0.02 mg/kg SQ q6h) for pain management and 

ceftriaxone (25 mg/kg SQ q24h) to prevent infection. Each animal was allowed at least a two-

week recovery period before starting project work.   

 

3.5.3 Study design and experimental infections 

The procedures regarding experimental infection of non-human primates with simian malaria 

parasites have been described in detail elsewhere53-55. In this report, we used two species of 

macaques M. mulatta and M. fascicularis to assess differences in physiological parameters after 

experimental infection with P. knowlesi. These species of macaques have distinct clinical 

outcomes when infected with P. knowlesi. Infection of the experimental host M. mulatta is 

characterized by the development of high parasitemias that resulted in high mortality. This 

clinical phenotype of high susceptibility is in contrast with the outcome of the experimental 

infection of the natural host M. fascicularis characterized by the development of self-controlled 

parasitemias and chronic infections53-55. Clinical procedures were approved by the two 

Institutional Animal Care and Use Committees involved (EMORY IACUC and the Animal Care 
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and Use Review Office, ACURO, USAMRMC Office of Research Protections), and all the 

interventions complied with Animal Welfare Act regulations.   

Three groups of animals were used for the experiments described here. Six male rhesus 

macaques (M. mulatta) born and raised at the Yerkes National Primate Research Center 

(YNPRC) were randomized into two groups. 1) Two animals (RKy15 and REd16) were included 

in the group with the internal code E30, designed to test the effect of subcurative anti-malaria 

treatment in the susceptible host. 2) Four animals (RCl15, RIh16, RTe16, and RUf16) were 

included in the group with the internal code E06, designed to study acute infections.  The third 

group comprised seven male long-tailed macaques (M. fascicularis) commercially acquired from 

the Mannheimer Foundation, Inc completed a quarantine period at the YNPRC. These animals 

were included in the group with the internal code E07b to study chronic infections (H12C8, 

11C131, 12C136, H12C59, 12C53, 11C166 and12C44).    

Thirty-five to one hundred ten days before experimental infection an L11 telemetry 

device42 was surgically implanted between the external and internal oblique muscles. In each 

animal, the pressure sensor catheter was inserted into the right femoral artery, the ECG negative 

lead within the right pectoral region and the ECG positive lead at the level of the xiphoid 

process. Telemetry devices were activated ten to fifteen days before the experimental infection 

for the collection of physiological data. The P. knowlesi PKA+ isolate was used for experimental 

infections using a single batch of cryopreserved stocks of sporozoites isolated from Anopheles 

dirus, An. Gambiae, and An. stephensi mosquitoes as described.53-55 The infectivity of the batch 

used for the three groups of macaques described here was validated in malaria-naive rhesus 

macaques. For the experimental challenge and based on results obtained with the dry run 

infectivity experiments, an estimated number of ~2,500 viable cryopreserved sporozoites were 
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used for M. mulatta, and ~5,000 viable cryopreserved sporozoites were used for M. fascicularis, 

and the parasites inoculated intravenously. Capillary blood samples were obtained every day by 

standardized ear prick procedures and collected into EDTA-coated capillary tubes starting ten to 

fifteen days before experimental infection and during the clinical follow-up period after 

sporozoite inoculation. These samples were used for CBC analyses, parasite counts using 

Giemsa-stained thin and thick smears, quantification of reticulocytes by manual counting of new 

methylene blue stained blood smears, and for plasma collection for cryopreservation. Whole 

blood samples collected from the femoral vein and bone marrow aspirates derived from iliac 

crest puncture were collected into EDTA-coated Vacutainer tubes at several time points in the 

course of the experiments. These samples were used for multi-omic analyses including 

transcriptomics, metabolomics, and immune profiling.      

To avoid clinical complications due to the reported virulence of P. knowlesi in M. mulatta 

a subcurative treatment with artemether, a fast-acting antimalarial drug, was administered at 2 

mg/kg to REd16 eleven days after the experimental infection. None of the other animals received 

subcurative treatment in the course of the experimental infections. After completion of the 

clinical follow-up period, the macaques were euthanized and complete necropsy and 

histopathology analyses performed.  

 

3.5.4 Liver Stage Determination  

The liver stage of infection was defined as the period of time between the date of inoculation and 

two days before the first positive detection of DNA from the parasite in the whole blood. The 

duration of the liver stage after infection with P. knowlesi sporozoites was determined by PCR 

using the Plasmodium knowlesi S1 gene (PKH_080740). A Plasmodium knowlesi S1 gene 
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specific primer set (Forward primer: 5’ TGCGTCAAAGCAAAACGTGG 3’ and Reverse 

primer: 5’ TGTCAAGACCATTCCCCCTG 3’) was developed. These primers were 

demonstrated to amplify P. knowlesi genes but not host genes using positive and negative blood 

samples collected from either M. mulatta or M. fascicularis. To extract DNA from BD 

microtainer serum separator tubes (SST), a modified Qiagen DNeasy Tissue protocol was used. 

A pipette tip was used to create an opening in the serum separation gel to enable gDNA 

extraction. ATL buffer and proteinase k were then added to the tube and allowed to incubate 

with the blood pellet followed by quick vortexing. The manufacturer’s suggested protocol was 

then followed for gDNA extraction. After extraction, samples were eluted in 200 µl of buffer, 

and the AppliedBiosystems’ PowerUp SYBR Green Master Mix was used in the PCR reactions. 

A fast cycling protocol using the following protocol 1x 50°C 2min, 1x 95°C 2min, 40x 95°C 

5sec, 60°C 45sec was used for amplification. Samples that had a detectable Ct were considered 

positive, and then, validated by performing DNA gel electrophoresis. A water negative control, a 

parasite negative monkey sample control and a parasite positive monkey sample control were 

included in each PCR run to serve as positive and negative controls. All reactions were repeated 

twice.  

 

3.5.5 Custom Software Solution   

The commercially available solution did not allow real-time access to high-frequency data. Data 

were continuously collected from telemetry implant devices via radio transfer to the telemetry 

computer physically located in the Yerkes National Primate Research Center (YNPRC) at Emory 

University. Vendor software42 stored the telemetry data in digital files, one file per subject per 

hour. An automated Windows Task Scheduler script was executed hourly on the telemetry 
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computer to transfer all files less than 180 minutes old to the local network attached storage 

(NAS) at Emory. This ensured files were collected on the NAS roughly as they were generated. 

Depending on the specific file type, files were generated either once per NHP per experiment or 

once per NHP per hour (roughly). Files were named for the experiment number, animal code, 

and (for hourly files) the date and time stamp of the last file modification. Next, an hourly cron 

job was executed on the NAS that transferred files from the computer receiving locally the 

signals to a centralized server for analysis via rsync. Checksums were used to ensure file 

integrity after transfer. An hourly automated email alert was used to track transfers and monitor 

available disk space. As hourly transfers from the YNPRC were confirmed, custom software 

automatically extracted each sensor's data stored in the file (ECG, temperature, etc.) as a series of 

"raw" timestamp-value tuples, e.g. [date+time] [value]" where the actual sampling time and 

value were derived from the raw values according to the vendor's documentation and loaded into 

a relational database.  

 

3.5.6 Analysis  

All analyses were performed in MATLAB 2018a and Python 3.7.3.  

 

3.5.7 Machine Learning Algorithms  

Random forest with boosting as well as a feed forward fully connected neural network were 

implemented for classification between pre-infection and liver stage. The random forest 

algorithm using the “Extreme Gradient Boosting” method in Scikit-learn with 10 k-fold cross-

validation56 was implemented. There were several configurations of the number of trees used and 

maximum depth that demonstrated the highest classification rates. The summary of 
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configurations and additional details can be found through the link in the Code Availability 

section.  

For the feedforward fully connected neural network, the architecture of the model 

includes 10 layers with the input layer having 28 neurons. The subsequent layer uses a Rectified 

Linear (ReLU) activation with 100 neurons, followed by ReLU activation with 50 neurons, 

hyperbolic tangent (tanh) activation with 30 neuron, ReLU activation with 15 neurons, tanh 

activation with 25 neurons, ReLU activation with 20 neurons, ReLU activation with 40 neurons,  

ReLU activation with 25 neurons, a dropout layer with p = 0.4, ReLU activation with 30 

neurons, a dropout layer with p = 0.4, and a sigmoid activation with 1 neuron. We used the 

binary cross entropy function as the loss function with the adam optimizer with a batch size of 

10. Using 10-fold cross-validation and 200 epochs over the data we computed the average 

accuracy of classification for this method. 
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CHAPTER 4 

MODELING THE INTERACTION BETWEEN THE MALARIA PARASITE AND HOST 

GLUCOSE CONCENTRATIONS1 
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4.1 ABSTRACT 

The malaria parasite cannot store energy and instead relies on host erythrocytic glucose as an 

energy source during the human blood stage. The exact mechanism for synchronization of the 

erythrocytic cycle bursting is unknown. Traditionally, this synchronization of erythrocyte 

bursting was thought to be related to light stimulus. A recent published study1 showed that the 

erythrocytic cycle timing changes 12 hours based on nightly feeding times as opposed to daily 

feeding times; this suggests that glucose availability could be related to this synchronization. We 

hypothesize that erythrocytic bursting and parasite release could be related to exhaustion of 

glucose and consequently decreased erythrocytic adenosine triphosphate (ATP) levels. In order 

to investigate how the malaria life cycle synchronizes with the host’s glucose concentration and 

metabolism, we constructed a model that incorporates plasma glucose and insulin dynamics, 

glucose transport into red blood cells, and erythrocytic glucose conversion to ATP. By modeling 

diurnal glucose concentrations and incorporating parasite dynamics, we aim to test our 

hypothesis mathematically and further investigate the relationship between erythrocytic glucose 

and parasite synchronization. A better understanding of the interaction between the host’s 

erythrocytes glucose concentrations and the malaria parasite is needed to aid in the development 

of future treatment strategies to combat disease progression. 
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4.2 INTRODUCTION 

An interesting relationship occurs between the malaria parasite and the host’s red blood cell that 

it invades during the blood stage or erythrocytic cycle. Since erythrocytes do not contain 

mitochondria, they rely on glucose undergoing anaerobic glycolysis to obtain adenosine 

triphosphate (ATP). Similarly, the malaria parasite cannot store energy and relies on the host’s 

intracellular glucose which it then metabolizes for energy. Upon entrance into the red blood cell 

(RBC), the parasite, forms a parasitophorous vacuole to contain itself within the cell. While the 

malaria parasite is in this vacuole, it undergoes asexual multiplication. The parasite changes the 

red blood cell’s typical discoid shape, plasma membrane permeability, rigidity of the membrane, 

and other characteristics2.  

 Mathematical modeling has been used to characterize malaria infection in multiple 

contexts. Epidemiological models3,4 have been used to understand transmission of disease. 

Models describing within-host dynamics and RBC population dynamics have been used to better 

understand disease progression5-7. Parasite access and metabolism of glucose has also been 

quantified8,9. 

The majority of the infected red blood cells (iRBC) burst and release the parasites, called 

merozoites at this stage, into the blood every 24, 48, or 72 hours depending on the species/strain 

of Plasmodium10. Once in the red blood cell, parasites undergo asexual multiplication, 

erythrocytic schizogony, which includes the cycle of merozoites infecting RBCs, maturation of 

trophozoites, and maturation and bursting of schizonts which releases merozoites into the blood. 

This bursting is mostly synchronized to the same time of day in the infected red blood cells, but 

the underlying mechanism is not fully known10. Traditionally, this synchronization of 

erythrocyte bursting was thought to be related to light stimulus. 



59 

 

 

A recent study by Prior et al.1 showed that the bursting time changed 12 hours between 

two populations of mice based on whether they were light or dark fed (the light-dark cycle was 

the same for both groups). This was surprising because it suggested that glucose availability may 

play a significant role in this synchronization. 

We know that the malaria parasite utilizes glucose for glycolysis and thus energy, but the 

relationship between parasite growth and glucose availability has not been quantified. 

Additionally, we do not know how the erythrocytic glucose concentration and consequently ATP 

levels may change as the parasite grows. If the RBC is depleted of glucose by the parasite, then 

ATP levels would be expected to drop as well. ATP is needed for the cell to maintain the 

integrity of its plasma membrane. Thus, if ATP is depleted due to the parasite’s presence, then 

this could be an important factor in the timing of RBC bursting and release of the parasites. The 

time of meal administration and other unknown factors could affect these dynamics as well. 

Since these processes can be difficult to measure experimentally in vivo, mathematical modeling 

may allow us to address some of these knowledge gaps. Modeling could inform future 

experiments needed to better understand these interactions and further test hypotheses related to 

the relationship of host glucose concentrations and parasite dynamics. 

To better understand the relationship between the parasite and host RBC through 

modeling we need to characterize the processes that affect RBC glucose concentrations and the 

corresponding current existing models. First, we need to describe plasma glucose and insulin 

dynamics to find the plasma glucose concentrations that would determine the extracellular RBC 

conditions. Meals affect plasma glucose and consequently erythrocytic glucose concentrations 

and should be simulated to mimic human host conditions. A well-established model by Jauslin et 

al.11-13 describes plasma glucose and insulin dynamics and simulates meals through an absorption 
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compartment. However, it does not specifically model RBC metabolism. Glucose transporter 1 

(GLUT1) transports glucose between the cell and blood. There are multiple transport models14,15 

that describe this process. However, they do not incorporate the processes affecting extracellular 

conditions and intracellular processes such as the glucose and insulin feedback mechanism and 

glycolysis. Once glucose is transported into the RBC, about 90% undergoes glycolysis and 10% 

goes to the pentose pathway16. There are multiple in-depth models of glycolysis and ATP 

generation that include feedback mechanisms17-20. However, these models characterize many of 

the species involved and are beyond the scope of this research. We need to have glycolysis 

expressed in a way that can then inform ATP production since the net molar yield of ATP from 

glucose is 1:2. The ATP concentration can be used to estimate a time of bursting once the levels 

drop below a lysis threshold as described later. 

 To our knowledge, there are not any models that relate plasma glucose dynamics with 

RBC glucose dynamics, rates of glycolysis, and ATP generation. Furthermore, no model has 

characterized the effect of the malaria parasite dynamics on intracellular glucose and ATP. 

To investigate the relationship between intracellular erythrocytic glucose availability and 

the malaria parasite, we constructed a mathematical model including plasma and erythrocytic 

glucose concentrations and parasite dynamics. We hypothesize that parasite bursting and parasite 

release could be due to glucose and thus ATP depletion in the red blood cells. We simulate 

steady state healthy erythrocytic conditions and then introduce the effect of the parasite on an 

erythrocyte to test our hypothesis. Since the exact relationship between glucose availability and 

parasite growth is unknown, we simulated several possible cases for this relationship with both 

day and night feeding to see how this might affect the time of bursting.  
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4.3 METHODS 

4.3.1 Overall Model Description 

In order to characterize the interaction between the malaria parasite and erythrocytic glucose 

concentrations, we first described glucose transport between the plasma to the red blood cell, as 

well as glucose utilization under healthy red blood cell conditions. A published mathematical 

model of glucose and insulin dynamics11-13 and a published model of glucose transport through 

the cell membrane14 were utilized, linked, and extended to describe the glucose concentrations in 

red blood cells. All differential equations were modeled in mM/min and corresponding 

parameter descriptions and values can be found in Table 4.1.  

 

Figure 4.1. Model Schematic. Glucose and insulin dynamics model from Jauslin et al11-13 was 

used to model plasma glucose concentrations with adaptations to include red blood cell glucose 

utilization. Glucose transporter 1, GLUT1, transports glucose between the plasma and inside the 

red blood cell. A glucose transport model from Alonso et al14 was adapted to describe this 

process. Glycolysis was simplified and modeled via hexokinase with the assumption that once 

glucose entered this pathway, it would complete glycolysis. Parasite growth was modeled using 
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multiple growth equations to test different hypotheses. Multiple scenarios for parasite growth 

dependence upon erythrocytic glucose concentrations were simulated. 

 

4.3.2 Plasma Glucose, Glucose Transport, and Intracellular Erythrocyte 

Plasma glucose and insulin dynamics were described using a published model11-13 to represent 

the plasma glucose available to red blood cells. The parameters describing a healthy individual’s 

glucose and insulin dynamics were taken from Brady et al21. The rate of change in the plasma 

glucose [GLUPlasma] from this model still included the sum of the glucose absorption rate 

(ABSG), endogenous glucose production rate (GPRO), glucose elimination rate (GELI), and 

glucose distribution rate (GDIS) where VG represents the volume of distribution of glucose. Since 

red blood cells are responsible for roughly 10% of glucose metabolism in the body16, total 

glucose elimination GELI is divided into two terms – GELI-non-RBC, and a new term describing 

glucose utilization by RBC. At baseline, GELI-non-RBC is set to 90% of the baseline total GELI, 

while the RBC glucose elimination term is constrained such that it equals 10% of baseline GELI 

(described later). Thus, the remaining additions to the plasma glucose equation reflected the 

transport of glucose across the red blood cell membrane in order to incorporate red blood cell 

utilization of glucose. The details of the model of transport of glucose across the red blood cell 

membrane are described in the next section. From this model, the rate of glucose movement into 

and out of the red blood cell is calculated per liter of RBC (GLULeavingRBC and GLUEnteringRBC). 

Net glucose entering all red blood cells is calculated as the difference of these rates, multiplied 

by total volume of red blood cells, 2 L, which is 40% of the average volume of blood in humans, 

5 L. At steady state, this amounts to about 10% of total glucose elimination from the body which 

was consistent with what we would expect for red blood cell glucose utilization. 

𝑑[𝐺𝐿𝑈𝑃𝑙𝑎𝑠𝑚𝑎]

𝑑𝑡
= (

1

𝑉𝐺
) ∗ (𝐴𝐵𝑆𝐺 + 𝐺𝑃𝑅𝑂 − 𝐺𝐸𝐿𝐼−𝑛𝑜𝑛−𝑅𝐵𝐶  − 𝐺𝐷𝐼𝑆 + 𝑉𝑅𝐵𝐶 ∗ (𝐺𝐿𝑈𝐿𝑒𝑎𝑣𝑖𝑛𝑔𝑅𝐵𝐶 − 𝐺𝐿𝑈𝐸𝑛𝑡𝑒𝑟𝑖𝑛𝑔𝑅𝐵𝐶 ))     (Eq. 4.1) 
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Glucose transporter 1 [GLUT1] transports glucose across the red blood cell membrane in 

both directions and is an asymmetric carrier. A published model14 describing the transporter, its 

conformations, and changes in internal and external glucose concentrations was utilized and 

extended to model the relationship between plasma glucose and intracellular erythrocytic glucose 

concentrations [GLURBC]. [GLUT1] can be described as facing internally where the glucose-

binding site faces the inside of the cell (I) or externally where the glucose-binding site is visible 

on the outer surface of the RBCs plasma membrane (E). [GLUT1] was denoted as either bound 

(B) or unbound (U) with respect to glucose. Thus, there are a combination of states for the 

transporter for us to model. 

𝑑[𝐺𝐿𝑈𝑇1𝐸𝑈]

𝑑𝑡
 = 𝑘4 ∗ [𝐺𝐿𝑈𝑇1𝐼𝑈

] +   𝑘−1 ∗ [𝐺𝐿𝑈𝑇1𝐸𝐵
] − [𝐺𝐿𝑈𝑇1𝐸𝑈 ] ∗ (𝑘1 ∗ [𝐺𝐿𝑈𝑃𝑙𝑎𝑠𝑚𝑎] + 𝑘−4)    (Eq. 4.2) 

𝑑[𝐺𝐿𝑈𝑇1𝐸𝐵]

𝑑𝑡
 = 𝑘1 ∗ [𝐺𝐿𝑈𝑇1𝐸𝑈

] ∗ [𝐺𝐿𝑈𝑃𝑙𝑎𝑠𝑚𝑎] +   𝑘−2 ∗ [𝐺𝐿𝑈𝑇1𝐼𝐵
] − [𝐺𝐿𝑈𝑇1𝐸𝐵 ] ∗ (𝑘−1 + 𝑘2)    (Eq. 4.3) 

𝑑[𝐺𝐿𝑈𝑇1𝐼𝐵]

𝑑𝑡
 = 𝑘2 ∗ [𝐺𝐿𝑈𝑇1𝐸𝐵

] +  𝑘−3 ∗ [𝐺𝐿𝑈𝑇1𝐼𝑈
] ∗ [𝐺𝐿𝑈𝑅𝐵𝐶] − [𝐺𝐿𝑈𝑇1𝐼𝐵 ] ∗ (𝑘−2 + 𝑘3)    (Eq. 4.4) 

𝑑[𝐺𝐿𝑈𝑇1𝐼𝑈]

𝑑𝑡
 = 𝑘3 ∗ [𝐺𝐿𝑈𝑇1𝐼𝐵

] +   𝑘−4 ∗ [𝐺𝐿𝑈𝑇1𝐸𝑈
] − [ 𝐺𝐿𝑈𝑇1𝐼𝑈 ] ∗ (𝑘−3 ∗ [𝐺𝐿𝑈𝑅𝐵𝐶 ] + 𝑘−4)    (Eq. 4.5) 

Ultimately, the glucose transport equations allowed us to quantify changes in the rates of 

glucose leaving the red blood cell (GLULeavingRBC) and entering the red blood cell 

(GLUEnteringRBC).  

𝐺𝐿𝑈𝐿𝑒𝑎𝑣𝑖𝑛𝑔𝑅𝐵𝐶  =  𝑘−1 ∗ [𝐺𝐿𝑈𝑇1𝐸𝐵
] − 𝑘1 ∗ [𝐺𝐿𝑈𝑇1𝐸𝑈

] ∗ [𝐺𝐿𝑈𝑃𝑙𝑎𝑠𝑚𝑎]      (Eq. 4.6) 

𝐺𝐿𝑈𝐸𝑛𝑡𝑒𝑟𝑖𝑛𝑔𝑅𝐵𝐶  = 𝑘3 ∗ [𝐺𝐿𝑈𝑇1𝐼𝐵
] − 𝑘−3 ∗ [𝐺𝐿𝑈𝑇1𝐼𝑈

] ∗ [𝐺𝐿𝑈𝑅𝐵𝐶 ]     (Eq. 4.7) 

As seen in Equations 4.1 and 4.10, the net glucose transport is the difference between these 

values where the positive or negative reference is either the plasma or the red blood cell.  

The published model for glucose transport14 did not model plasma glucose interactions or 

internal metabolic processes that utilized glucose. To quantify changes in [GLURBC], glycolysis 

was modeled by incorporating kinetics of the first enzyme that catalyzes glycolysis, hexokinase. 
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Hexokinase can either be bound (B) or unbound (U) with respect to glucose. We assumed 

hexokinase is saturated at steady state under normal physiological conditions. Although there are 

many complex steps and feedback mechanisms for glycolysis in the red blood cell, we assumed 

that once glucose was bound to hexokinase, the entire glycolysis pathway would be completed. 

Hexokinase is the first rate limiting step in glycolysis and has the slowest in vitro enzymatic 

activity compared to all of the other glycolytic enzymes16,22.  Hexokinase affinity for glucose23, 

Km, has been measured experimentally and was used to find values for the parameters 𝑘1𝐻𝐾
 and 

𝑘−1𝐻𝐾
, as described in Table 4.1. 

𝑑[𝐻𝐾𝑈]

𝑑𝑡
 = −𝑘1𝐻𝐾

∗ [𝐻𝐾𝑈] ∗ [𝐺𝐿𝑈𝑅𝐵𝐶] + [ 𝐻𝐾𝐵] ∗ ( 𝑘−1𝐻𝐾
+ 𝑘2𝐻𝐾

)    (Eq. 4.8) 

𝑑[𝐻𝐾𝐵]

𝑑𝑡
 = 𝑘1𝐻𝐾

∗ [𝐻𝐾𝑈] ∗ [𝐺𝐿𝑈𝑅𝐵𝐶 ] − [𝐻𝐾𝐵] ∗ ( 𝑘−1𝐻𝐾
+ 𝑘2𝐻𝐾

)    (Eq. 4.9) 

Combining the net glucose transported inside the red blood cell, glycolysis modeled by 

hexokinase, and the pentose pathway which accounts for 10% of glucose utilization by RBCs, 

we obtained the expression for intracellular glucose, [GLURBC]. 

𝑑[𝐺𝐿𝑈𝑅𝐵𝐶]

𝑑𝑡
 = (𝑘3 ∗ [𝐺𝐿𝑈𝑇1𝐼𝐵

] −   𝑘−3 ∗ [𝐺𝐿𝑈𝑇1𝐼𝑈 ] ∗ [𝐺𝐿𝑈𝑅𝐵𝐶]) − (𝑘−1 ∗ [𝐺𝐿𝑈𝑇1𝐸𝐵
] − 𝑘1 ∗ [𝐺𝐿𝑈𝑇1𝐸𝑈

] ∗ [𝐺𝐿𝑈𝑃𝑙𝑎𝑠𝑚𝑎]) − 𝑘1𝐻𝐾
∗ [𝐻𝐾𝑈] ∗

[𝐺𝐿𝑈𝑅𝐵𝐶] + 𝑘−1𝐻𝐾
∗ [𝐻𝐾𝐵] − 0.10 ∗

𝐺𝐸𝐿𝐼−𝑅𝐵𝐶

𝑉𝐺
          (Eq. 4.10) 

We assume that once glucose is bound to hexokinase, it completes the rest of the 

glycolysis pathway, with a net yield of 2 moles of ATP per mole of glucose. Thus, the rate of 

ATP generation was 2 times the rate of glycolysis. ATP utilization was set to equal this rate at 

steady state.  

𝑑[𝐴𝑇𝑃𝑅𝐵𝐶]

𝑑𝑡
 = 2 ∗ (𝑘2𝐻𝐾

∗ [𝐻𝐾𝐵]) − 𝐴𝑇𝑃𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛     (Eq. 4.11) 

 

 

 



65 

 

 

4.3.3 Parasitic Growth and Corresponding Glucose Utilization 

When the Plasmodium parasite enters a red blood cell, it relies on intracellular glucose for 

energy as it matures. Thus, glucose in the infected red blood cell (GLUiRBC) also changes as a 

function of the schizont maturity. In our model we focused on describing the early stages of 

infection with a small enough number of infected red blood cells such that plasma glucose was 

not affected by the infected red blood cells yet. However, we know that an infected red blood 

cell can take in up to 100-fold more glucose than an uninfected red blood cell during late stage of 

schizont maturity8,24. We modeled schizont maturity or parasite growth as the number of 

merozoites that would be released from the red blood cell if it burst at that moment. Since the 

number of merozoites at the time of bursting is 10 on average25, we estimated that the host’s 

erythrocytic glucose would be depleted by a factor of ten times the parasite maturity being 

modeled times the typical red blood cell glucose utilization. Thus, parasite glucose utilization in 

mM/min is 10 ∗ 𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠 ∗ 𝐺𝐿𝑈𝑅𝐵𝐶𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 where the parasites per RBC were evaluated in three 

different cases to be described in the next section. 

𝑑[𝐺𝐿𝑈𝑖𝑅𝐵𝐶]

𝑑𝑡
 = (𝑘3 ∗ [𝐺𝐿𝑈𝑇1𝐼𝐵

] −   𝑘−3 ∗ [𝐺𝐿𝑈𝑇1𝐼𝑈
] ∗ [𝐺𝐿𝑈𝑅𝐵𝐶]) − (𝑘−1 ∗ [𝐺𝐿𝑈𝑇1𝐸𝐵

] − 𝑘1 ∗ [𝐺𝐿𝑈𝑇1𝐸𝑈
] ∗ [𝐺𝐿𝑈𝑃𝑙𝑎𝑠𝑚𝑎]) − 𝑘1𝐻𝐾

∗ [𝐻𝐾𝑈] ∗

[𝐺𝐿𝑈𝑅𝐵𝐶] + 𝑘−1𝐻𝐾
∗ [𝐻𝐾𝐵] − 0.10 ∗

𝐺𝐸𝐿𝐼−𝑅𝐵𝐶

𝑉𝐺
  − 10 ∗ 𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠 ∗ 𝐺𝐿𝑈𝑅𝐵𝐶𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛   (Eq. 4.12) 
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Table 4.1. Parameters Values for Healthy Red Blood Cell Conditions 

Parameter Description Value Units 

k1 GLUT1E/U binds to external glucose and 

becomes GLUT1E/B 

6.00 x 104 mM-1 min-1 

k-1  GLUT1E/B releases glucose externally 

and becomes GLUT1E/U 

3.12 x 105 min-1 

k2 GLUT1E/B changes conformation to 

GLUT1I/B 

6.00 x 104 min-1 

k-2  GLUT1I/B changes conformation to 

GLUT1E/B 

6.00 x 104 min-1 

k3 GLUT1I/B releases glucose internally and 

becomes GLUT1I/U 

3.12 x 105 min-1 

k-3  GLUT1I/U binds to internal glucose and 

becomes GLUT1I/B 

6.00 x 104 mM-1 min-1 

k4  GLUT1I/U changes conformation to 

GLUT1E/U 

6.00 x 104 min-1 

k-4  GLUT1E/U changes conformation to 

GLUT1I/U 

6.00 x 104 min-1 

k1 HK  Hexokinase binds to glucose to begin 

glycolysis.  

𝑘1𝐻𝐾
= (𝑘−1𝐻𝐾

+ 𝑘2𝐻𝐾
)/𝐾𝑚 

1.38 x 106 min-1 

k-1 HK  Hexokinase becomes unbound. Value 

was determined using steady-state 

concentrations.  

5.70 x 104 min-1 

k2 HK  Hexokinase phosphorylates glucose to 

glucose-6-phosphate. Calculated by 

dividing normal hexokinase activity 

determined by steady state conditions, 

1.64 x 10-1, by initial condition for HKB. 

2.57 x 104 min-1 

Km  Hexokinase affinity for glucose. Value 

within experimental range reported23. 

Used to find other Hexokinase 

parameters. 

6.00 x 10-2 mmol 

GLURBCUtilizat

ion  

Steady State Glucose Utilization by 

Healthy RBC 

3.80 x 10-1 mM/min 

    

 

4.3.4 Analysis Approach 

We simulated several scenarios for the parasite’s growth to investigate its dependence 

upon erythrocytic glucose concentrations and when ATP levels drop below the lysis threshold 

indicating time of bursting as described later. Since the parasite growth dependence upon glucose 
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is not fully understood, we simulated several cases for this relationship to investigate the effect 

on ATP concentrations.   

 

Case 1: We assumed that the parasite maturity depends upon the glucose concentrations within 

the red blood cell. If the erythrocytic glucose concentration in the infected red blood cell 

GLUiRBC drops below typical steady state concentrations (GLUSS) then the growth is slowed, but 

if the concentration surpasses GLUSS then the growth will increase. Under these conditions we 

simulated 2 types of growth: Case 1A represented exponential growth for the parasite (Eq. 4.13) 

and Case 1B represented logistic growth for the parasite (Eq. 4.14). Exponential and logistic 

growth are commonly used in population simulations. The parameter K in the logistic growth 

equation is defined as the carrying capacity of the environment. In this case it is equal to 10 since 

the average number of merozoites release upon bursting is 10 for Plasmodium25. 

Parameter descriptions and values can be found in Table 4.2. 

𝑑(𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠)

𝑑𝑡
 =

𝐺𝐿𝑈𝑖𝑅𝐵𝐶

𝐺𝐿𝑈𝑆𝑆
∗ 𝑘𝐸𝑥𝑝𝐺𝑟𝑜𝑤𝑡ℎ ∗ 𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠    (Eq. 4.13) 

𝑑(𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠)

𝑑𝑡
 =

𝐺𝐿𝑈𝑖𝑅𝐵𝐶

𝐺𝐿𝑈𝑆𝑆
∗ 𝑟𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 ∗ 𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠 (1 − (

𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠

𝐾
 ))    (Eq. 4.14) 

 

Case 2: We assumed parasite growth was affected when glucose concentrations, GLUiRBC, 

dropped below baseline concentrations but was not affected by greater glucose concentrations in 

the red blood cell.  Case 2A represented exponential growth for the parasite (Eq. 4.15) and Case 

2B represented logistic growth for the parasite (Eq. 4.16). Parameter descriptions and values can 

be found in Table 4.2. 

𝑑(𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠)

𝑑𝑡
 = min (1,

𝐺𝐿𝑈𝑖𝑅𝐵𝐶

𝐺𝐿𝑈𝑆𝑆
)  ∗ 𝑘𝐸𝑥𝑝𝐺𝑟𝑜𝑤𝑡ℎ ∗ 𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠    (Eq. 4.15) 

𝑑(𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠)

𝑑𝑡
 = min (1,

𝐺𝐿𝑈𝑖𝑅𝐵𝐶

𝐺𝐿𝑈𝑆𝑆
)  ∗ 𝑟𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 ∗ 𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠 (1 − (

𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠

𝐾
 ))   (Eq. 4.16) 
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Case 3: We assumed parasite growth was not dependent upon glucose. Case 3A represented 

exponential growth for the parasite (Eq. 4.17) and Case 3B represented logistic growth for the 

parasite (Eq. 4.18). Parameter descriptions and values can be found in Table 4.2. 

𝑑(𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠)

𝑑𝑡
 =  𝑘𝐸𝑥𝑝𝐺𝑟𝑜𝑤𝑡ℎ ∗ 𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠    (Eq. 4.17) 

𝑑(𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠)

𝑑𝑡
 = 𝑟𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 ∗ 𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠 (1 − (

𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠

𝐾
 ))   (Eq. 4.18) 

 

Table 4.2. Parameters Values for Infection Simulations. The parameters are used to simulate 

different cases as described in Equations 4.13 - 4.18. 

Parameter Description Value Units 

kExpGrowth Exponential growth constant Cases 1, 2: 2.00 x 10-3  

Case 3: 1.6 x 10-3 

 

GLUSS  Steady state glucose 

concentration 

5.20 x 101 mM 

K Carrying capacity for logistic 

growth for parasite 

1.00 x 101 Parasite 

Count per 

RBC 

rLogistic Rate in logistic growth model 

representing the proportional 

increase of the parasites per 

unit of time. 

5.00 x 10-3 

 

min-1 

 

 

4.4 RESULTS 

We sought to model the interaction between the malaria parasite and erythrocytic glucose 

concentrations to test our hypotheses that infected red blood cells burst based on glucose and 

thus ATP deprivation. Figure 4.2 illustrates the steady state concentrations for plasma and 

erythrocytic glucose, as well as other key factors in the red blood cell that affect erythrocytic 

glucose concentrations. We then simulated a meal of about 100 g carbohydrates being given 3 

times per day, Figure 4.3. 
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Figure 4.2. Healthy RBC Conditions at Steady State. All concentrations are in the red blood cell 

except for plasma glucose. GLUT1 conformations are represented as either bound or unbound 

and facing either internally or externally with respect to the red blood cell. 

 

 

Figure 4.3. Healthy RBC Conditions for Simulation of 3 Standard Meals. Each meal contained 

approximately 100 g carbohydrates. 
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 The parasite effect was then introduced and adjusted to simulate different scenarios. Case 

1 assumed that the parasite growth was affected by glucose concentration, Eq. 4.13 and 4.14, 

such that the parasite growth rate increased when erythrocytic glucose was above baseline 

glucose concentration and decreased when below baseline. The simulation for night and day 

feeding for both exponential and logistic growth of the parasites can be seen in Figure 4.4. For 

all simulations, glucose and ATP depletion in the infected cell was evident. Here we estimated 

the time of RBC bursting as the time when intracellular ATP concentrations dropped below a 

lysis threshold, defined as 25% of baseline ATP concentrations which has been reported as the 

threshold between apoptosis and necrosis for endothelial cells26. The night feeding time 

simulation showed a slight delay in the time of bursting for the exponential growth conditions as 

compared to the day feeding times, Figure 4.4A,B. This is what we would expect since the 

greatest parasite glucose utilization occurred in the second half of the day and thus meals during 

this time minimized glucose depletion unlike the simulation for day feeding times when 

additional glucose was not available during peak glucose utilization. For the night feeding time 

simulation with exponential parasite growth, the RBC burst close to 24 hours whereas the day 

feeding time simulation burst a few hours earlier. For the logistic growth simulations, Figure 

4.4C,D, both night and day feeding times resulted in similar bursting times, closer to 18 hours 

instead.  
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Figure 4.4. Healthy RBC Conditions vs Infected RBC Conditions for Case 1. Assumption: 

parasite growth is constantly affected by changes in erythrocytic glucose concentrations. Both 

exponential (A,B) and logistic (C,D)  growth for the parasite were simulated. Meals were 

simulated during the day (A,C) and at night (B,D). The parasite glucose utilization is represented 

as a fold increase of parasite glucose utilization compared to healthy red blood cell utilization. 

 

For Case 2, parasite growth was only affected when the erythrocytic glucose 

concentrations dropped below baseline, Eq. 4.14 and 4.15. The difference in time of bursting 
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between the night and day simulations in Figure 4.5A,B for exponential growth were more 

similar as compared to the difference for Case 1 for exponential growth day and night feeding 

simulations. This was expected since the feeding time or the time when glucose concentrations 

exceeded baseline should not affect parasite growth in this case. However, the period of time for 

glucose below baseline was slightly less for the night feeding simulation and hence minorly 

delayed the time of bursting. The logistic parasite growth simulations for Case 2, Figure 4.5C,D, 

had a closer time of bursting as opposed to the exponential growth simulations. In addition, the 

bursting for the logistic growth simulations were closer to 18 hours rather than 24 hours. 
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Figure 4.5. Healthy RBC Conditions vs Infected RBC Conditions for Case 2. Assumption: 

parasite growth is only affected when erythrocytic glucose concentrations drop below baseline. 

Both exponential (A,B) and logistic (C,D)  growth for the parasite were simulated. Meals were 

simulated during the day (A,C) and at night (B,D). The parasite glucose utilization is represented 

as a fold increase of parasite glucose utilization compared to healthy red blood cell utilization. 
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 For Case 3, parasite growth was independent of glucose concentrations. Thus, the 

parasite growth and parasite glucose utilization kept the traditional exponential (Figure 4.6A,B) 

or logistic growth (Figure 4.6C,D) curve shapes regardless of day or night feeding time 

simulations. Both exponential and logistic growth simulations reach 100-fold increase for 

parasite glucose utilization compared to an uninfected RBC. However, the burst times for the 

exponential growth simulations reach approximately 24 hours whereas the logistic growth 

simulations burst times are closer to 18 hours.  
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Figure 4.6. Healthy RBC Conditions vs Infected RBC Conditions for Case 3. Assumption: 

parasite growth is independent of glucose concentrations. Both exponential (A,B) and logistic 

(C,D) growth for the parasite were simulated. Meals were simulated during the day (A,C) and at 

night (B,D). The parasite glucose utilization is represented as a fold increase of parasite glucose 

utilization compared to healthy red blood cell utilization. 
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 ATP concentrations and time of bursting were sensitive to several parameters, primarily 

the ones involved in modeling glycolysis. The parameter k2HK was used to compute additional 

hexokinase rate parameter, k1HK, and thus glycolysis rates and ATP production.  Figure 4.7 

illustrates how different values of k2HK affect time of bursting due to ATP depletion for multiple 

cases and growth simulations for the parasite. In several cases, the ATP depletion does not reach 

the lysis threshold within 24 hours. For exponential growth simulations, the time of bursting was 

delayed through progression of cases as parasite growth dependence upon glucose concentrations 

waned. 

 

Figure 4.7. ATP Concentrations in Infected RBC with Variability in k2HK. Simulations for day 

feeding in infected RBC based upon different case assumptions and growth simulations. 

 

 

4.5 DISCUSSION 

This study quantified the erythrocytic glucose and ATP concentrations and corresponding 

changes due to parasite dynamics in order to estimate the time of bursting due to glucose and 

consequently ATP depletion. To our knowledge, this modeling and simulation combination is 
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novel. The simulation cases for parasite growth dependence upon glucose showed that Case 1’s 

assumption resulted in the greatest difference, although small, between the time of bursting for 

night vs day fed simulations. This would suggest that the actual parasite’s growth could be 

influenced by erythrocytic glucose conditions whether they are above or below baseline since the 

Prior et al1. study showed a change in bursting time with different feeding times. However, the 

study showed that the change in burst time did not happen overnight once the feeding times 

changed. It was not until approximately the 5th day that this change occurred. However, for all 

cases we saw ATP depletion and thus RBC bursting around 18-24 hours. 

 The model did not take into consideration several factors that would need to be addressed 

for modeling malaria infection and systemic glucose changes once parasitemia is increased later 

in the blood stage. The model assumed that the red blood cell was mature and not a reticulocyte. 

Reticulocytes are in circulation in the blood for about 1-2 days before maturation. Reticulocytes 

have different glycolytic characteristics27 and although they typically comprise about 1% of total 

RBCs, this percentage would change due to erythropoietic responses during malaria 

infection6,28,29. Certain species of Plasmodia demonstrate a preference for invading 

reticulocytes30. Thus, modeling RBC population dynamics would be important for modeling 

overall glucose changes later in the blood stage of infection. 

 Extension of this model could incorporate existing osmotic pressure models19 for lysis in 

Plasmodium infected RBCs31 and include a Plasmodium glycolysis model9 to further test the 

hypothesis that the depletion of glucose and thus ATP, results in the inability for the red blood 

cell to maintain its active transport channels resulting in osmotic pressure increase in the cell and 

lysis. Since the malaria parasite changes plasma membrane characteristics2, we would need to 

incorporate these as well to have a comprehensive RBC lysis model with parasite dynamics. 
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 Plasmodium falciparum hexose transporter (PfHT) inhibitors have recently been 

identified as possible anti-malarial drug targets32-34. If the parasites are deprived of glucose while 

in the RBC, their growth is inhibited. One obstacle for development of PfHT inhibitors is to 

specifically block PfHT and not host GLUT1. A recent study began identifying potential 

compounds that were high affinity, high selectivity inhibitors of PfHT34. Further work with our 

model could be done to quantify the effects of different PfHT inhibitors. 

Our model simulations showed that exponential growth consistently reproduced bursting 

around 18-24 hours even with different parasite growth assumptions. These simulations could 

better inform future experiments. Glucose utilization by the parasite as a function of parasite 

maturity would be a valuable experiment to better inform hypotheses and even drug development 

for PfHT inhibitors.  
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CHAPTER 5 

CONCLUSIONS 

 

The three specific research aims utilized mathematical modeling to provide novel insights into 

various health and disease contexts.  

 

SPECIFIC AIM 1: We extended an existing mathematical to quantify glucose and Na 

reabsorption through SGLT2 in healthy, controlled, and uncontrolled diabetes and following 

treatment with canagliflozin. In healthy, controlled diabetic, and uncontrolled diabetic states, Na 

reabsorption through SGLT2 was found to be 5.7%, 11.5%, and 13.7% of total renal Na 

reabsorption, and 7.1% to 9.5%, 14.4% to 19.2%, and 17.1% to 22.8% of Na reabsorption in the 

PT alone. The model predicted that treatment of controlled diabetes with canagliflozin returns PT 

Na reabsorption through SGLT2 to normal levels. The degree of increased PT Na reabsorption 

due to SGLT2 is likely sufficient to drive pathologic changes in renal hemodynamics, and 

restoration of normal Na reabsorption through SGLT2 may contribute to beneficial renal effects 

of SGLT2 inhibition. 

 

SPECIFIC AIM 2: We developed telemetry methods to detect and monitor physiological 

changes in nonhuman primates prior to and during malaria infection. Our results show, for the 

first time, that host physiological perturbations can be detected while malaria parasites are 

multiplying in the liver, a step that precedes blood-stage infections and symptomology. Early 
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detection of physiological changes due to infectious diseases could guide treatment prior to the 

onset of symptoms and pathogenic consequences. Thus, these data provide an impetus for the 

development of novel preemptive telemetry systems for the diagnosis of malaria and possibly 

other infectious diseases.   

 

SPECIFIC AIM 3: To investigate how the malaria life cycle synchronizes with the host’s 

glucose concentration and metabolism, we constructed a model that incorporates plasma glucose 

and insulin dynamics, glucose transport into red blood cells, and erythrocytic glucose conversion 

to ATP. By modeling diurnal glucose concentrations and incorporating parasite dynamics, we 

were able to reproduce erythrocytic ATP depletion indicative of RBC bursting after about 18-24 

hours depending upon the parasite growth function. Night vs day meal simulations had an effect 

on the shape of the curves for erythrocytic ATP and glucose concentrations and parasite growth 

and glucose utilization. However, it had a limited effect on the time of estimated RBC bursting 

due to ATP depletion. This model could help inform future experiments that could be done to 

provide endpoints to further inform our understanding of host glucose and ATP depletion and 

parasite synchronization of bursting. 

 

 

 


