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ABSTRACT 

 Genetically obese mice exhibit mutations in leptin or its receptor and are 
inappropriate for studying human obesity, a hyperleptinemic condition with an intact 
leptin system.  High-fat diets reportedly induce resistance to peripherally administered 
leptin and may better represent obese humans.  35-day-old, C57BL/6J high-fat (45% kcal 
fat) fed mice housed individually did not decrease food intake or body weight in response 
to central or peripheral leptin injections.  Peripheral infusions of leptin reduced body fat 
of 35-day-old mice and 15-week-old mice fed high-fat diet but had no effect on adipocyte 
glycerol or free fatty acid release in adult mice suggesting that leptin reduces body fat by 
mechanisms other than lipolysis.  Group-housing young mice on bedding prevented fat 
loss in high-fat fed female C57BL/6J mice suggesting that the lipopenic effect of leptin is 
in part due to increased thermogenesis.  These studies suggest the development of leptin 
resistance is complex and involves additional factors.   
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CHAPTER 1 

INTRODUCTION 

In the United States, the increasing incidence of obesity is described as an 

epidemic with one of five adults classified as obese and more than half of the adult 

population being overweight (13).  Obesity is associated with an increased risk for 

diseases such as hypertension, Type II diabetes, and coronary heart disease (15).  Obesity 

is a disease of increased adipose tissue mass, which is not only a site of long-term energy 

storage but also is an active participant in the regulation of energy balance.  One way in 

which adipose tissue participates in the regulation of energy balance is through the 

production and secretion of leptin (18).  The maintenance of body weight during various 

conditions including food restriction and overfeeding suggests that body fat mass is 

tightly regulated, however, the precise regulatory mechanism has not been defined.  The 

existence of internal regulators of body fat mass was suggested by early parabiosis 

studies, which established a role for a circulating adiposity signal(s) (3).  Discovery of 

leptin in 1994 reinforced the idea that there are biological determinants of body fat mass 

and leptin was proposed to be the signal produced by the fat tissue that indicates to the 

hypothalamus the size of the fat stores (18).  This notion was supported by evidence that 

leptin could enter the central nervous system by a saturable transport system (1), which 

allows the protein to interact with hypothalamic leptin receptors, Ob- Rs.  The expression 

of Ob-Rs is not limited to the hypothalamus and ubiquitous expression of the receptors in 

peripheral tissues suggests that leptin is involved in processes in the periphery. 
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Rodent models either lacking leptin, the ob/ob mouse, or its receptor, the db/db 

mouse, have helped us to better understand leptin’s role in energy balance.  Studies 

administering leptin to ob/ob mice and lean littermates have shown that leptin reduces 

food intake and body weight; the weight loss is a specific loss of adipose tissue (7, 8, 14).  

Failure to observe such effects in db/db mice indicates that the receptor is critical for 

leptin’s function (2, 7, 9).  There is a continuum of leptin sensitivity:  db/db mice are 

unresponsive or ‘resistant’ due to lack of the leptin receptor, ob/ob mice are extremely 

sensitive to the effects of leptin, and lean mice fall somewhere in between the db/db and 

ob/ob mouse in terms of responsiveness.   

Mutations such as those that occur in ob/ob and db/db mice are rare in humans (5, 

12).  In contrast, the majority of obese humans are hyperleptinemic but fail to reduce 

food intake and maintain body weight in response to elevated levels of endogenous leptin 

(4).  Similar observations have been made in mice where increased leptin concentrations 

associated with increased body mass fail to limit intake of energy and expansion of 

adipose tissue (6).  This observation has lead to the idea that ‘leptin resistance’ is a 

potential cause of obesity (11).  Mice fed a high-fat diet also have been described as 

resistant to leptin’s effects on food intake and body weight (10, 16) and, therefore, may 

be a more appropriate model for studying human obesity than the genetically obese 

rodents which are not representative of the majority of obese humans.  Studies describing 

‘leptin resistance’ have focused on leptin’s effects on energy intake and body weight and 

have not determined the effects of high-fat feeding on leptin’s peripheral effects, 

although emerging evidence suggests that leptin exerts direct effects in the periphery to 
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reduce body fat mass (17).  Additionally, the mechanisms underlying the described 

‘resistance’ are still undefined.   

The objectives of this thesis are  (1) to further characterize the development of 

high-fat diet induced ‘leptin resistance’ by examining the effects of gender, strain, 

housing conditions, and method of leptin administration on the development of diet 

induced ‘leptin resistance’; (2) to determine the effects of high-fat feeding on leptin-

induced lipolysis; (3) to determine if ‘leptin resistance’ is associated with reduced leptin 

receptor protein in peripheral tissues.  
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CHAPTER 2 

LITERATURE REVIEW 
 

LEPTIN 

Leptin, the protein encoded by the ob gene, was identified using positional 

cloning and proposed to be the hypothesized adipose-derived signal important for 

regulation of fat stores (108).  Adipose tissue is the primary source of leptin (108) but ob 

mRNA is expressed at lower levels in other tissues including the stomach (6, 74, 89) and 

skeletal muscle (44, 50, 98). Leptin circulates in the blood as a 16 kD protein in 

concentrations proportional to the percent body fat (23).  Both tissue expression (83) and 

serum leptin levels (3) display a diurnal rhythm linked with feeding patterns and may in 

part be regulated by insulin (83).  In mice, serum leptin levels increase around midnight 

with feeding and reach a maximum in early morning before onset of the light cycle (3).  

Leptin circulates in serum in both bound and free forms with different distributions 

observed in lean and obese individuals:  lean subjects have more bound leptin whereas 

obese subjects have primarily free leptin (46, 88).  The soluble leptin receptor (Ob-Re), 

described in more detail below, binds leptin with high affinity (25, 62) and is proposed to 

be the primary binding protein in the human circulation (55).  The role of bound leptin in 

the serum is not completely understood but may result in a prolonged half- life of leptin 

and/or delayed leptin clearance (47, 75).  In addition, bound leptin has been suggested to 

be biologically inactive (47).  It remains to be determined if bound leptin is protected 

from degradation during transport or if binding renders the protein inactive.   
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LEPTIN RECEPTORS 

The leptin receptor, a single-membrane spanning receptor and a member of the 

class I cytokine receptor family, was cloned from the mouse choroid plexus by Tartaglia 

and colleagues (93).    Six splice variants have been identified:  Ob-Ra (56), Ob-Rb (56), 

Ob-Rc (56), Ob-Rd (56), Ob-Re (56), and r-Ob-Rf (100).  Ob-Rb, the long-form receptor 

contains a long intracellular domain important for intracellular signal transduction (19, 

93).  Ob-Ra, Ob-Rc, and Ob-Rd are short- form receptors in that they have an identical 

extracellular and transmembrane domain to Ob-Rb but lack a complete intracellular 

domain (56). Ob-Re is a soluble receptor lacking both transmembrane and intracellular 

domains (56).  r-Ob-Rf has been identified as a short isoform in the rat (100).  Ob-Rb is 

expressed at high levels in the hypothalamus (56, 63, 100) but also has been detected in 

most peripheral tissues including the lung (63, 95, 100), adipose tissue (12, 56, 63), testes 

(56, 63), and stomach (63, 74, 89, 100) at a low level of expression.  The short- form 

receptors are ubiquitously expressed with high levels in a number of tissues including the 

testes (45, 56), liver (100), kidney (45, 100), adipose tissue (45, 56), and lung (45, 100).  

The function of these receptors is not fully understood, however, the observed variation 

in tissue expression suggests differential effects in the tissues.  Short-form receptors 

expressed in the choroid plexus (56, 78, 93) and the brain microvessels (10) may be 

involved in transport of leptin into the central nervous system.  This is supported by 

studies showing that rats lacking the short-form receptor have reduced leptin transport 

across the blood brain barrier; however, the transport is not eliminated in these rats 

suggesting the presence of an additional transporter (53).  Ob-Re, the soluble receptor, is 

expressed in adipose tissue, hypothalamus, heart, and testes (56) and, as described above, 
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is capable of binding leptin in the circulation (25, 62) where it likely functions in leptin 

transport.  The specific functions of the leptin receptor isoforms remain to be fully 

elucidated.     

LEPTIN SIGNALING 

Leptin signaling occurs through activation of the JAK-STAT pathway.  Leptin 

binding to the Ob-Rb receptor results in dimerization of the leptin receptor (105) and 

phosphorylation of tyrosine residues of Jak2, a member of the janus kinase family (36).  

The autophosphorylation of Jak2 results in its activation and phosphorylation of the tail 

of the receptor, which binds the Src homology 2 (SH2) domain of the signal transducers 

and activators of transcription (STATS) (24, 49).  STAT bound to the leptin receptor is 

phosphorylated on tyrosine and forms either homo- or heterodimers that translocate to the 

nucleus where the STATS regulate gene transcription (24).  In contrast to in vitro studies 

indicating leptin receptor signaling activates STAT 1 (8), STAT 3 (8, 37), STAT 5 (8, 

37), and STAT 6 (37), studies in vivo have found that leptin binding to the receptor 

activates only STAT 3 (73, 96).  The short- form of the receptor appears to be incapable 

of activating the JAK-STAT signaling pathway (8, 36, 37, 96) but may have some 

signaling capabilities through other pathways (76). 

EFFECTS OF LEPTIN 

Leptin has demonstrated roles in energy balance (1, 42), glucose metabolism (35, 

42), reproduction (42, 84), angiogenesis (87), and immune function (27, 42).  The studies 

described here focus on leptin’s role in the regulation of energy balance and its specific 

effects on adipose tissue although leptin has important roles in liver glucose turnover (52) 

and muscle fatty acid oxidation (90).   
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The critical role of leptin in energy balance is best demonstrated by two 

spontaneous single point mutations in the mouse: ob/ob and db/db mice.  The ob/ob 

mouse has a mutation that is a premature stop codon in the ob gene, which results in 

production of an inactive protein (108).  ob/ob mice are characterized by extreme obesity, 

hyperphagia, hypothermia, and infertility (22).  Genetically obese and diabetic db/db 

mice exhibit a syndrome similar to the ob/ob mouse described above with obesity, 

hyperphagia, and severe Type II diabetes (22, 48).  Unlike the ob/ob mouse, the db/db 

mouse produces leptin but has a mutation in the db gene encoding the leptin receptor, 

which results in an absence of the Ob-Rb receptor and replacement by the short- form 

receptor (19) that has little or no signaling capabilities (8, 36, 37, 76, 96). 

As expected, central and peripheral leptin administration reverses many 

abnormalities of the ob/ob mouse including reduced food intake and body weight (15).  

Leptin’s effects on body weight are associated with specific reductions in fat while 

maintaining lean body mass (40, 43, 80).  In addition to reducing food intake and body 

weight, ob/ob mice also respond to peripheral leptin by increasing activity (80) and body 

temperature (43, 80) while normalizing oxygen consumption (80), serum cholesterol 

(57), serum glucose and insulin concentrations (43, 57, 80, 91), reducing corticosterone 

(91), and increasing uncoupling protein (UCP) expression (43).  Due to lack of the leptin 

receptor, db/db mice do not reduce food intake or lose weight in response to 

adminstration of exogenous leptin (15, 40, 57).   

  Leptin also results in small transient reductions in food intake and decreased 

body weight when administered centrally (15) or peripherally (39, 40, 43, 57, 80) to 

normal, lean mice.  In all cases, however, ob/ob mice respond to a much greater degree 
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than lean mice indicating they are especially sensitive to the effects of leptin (43, 80).    

In both lean and ob/ob mice, small doses (0.6-40 µg/kg) of leptin administered centrally 

reduce food intake and body weight and the same effects can only be seen with larger 

peripheral doses (400-4000 µg/kg) supporting the role of the central nervous system in 

mediating leptin’s effects (91).  The hypothalamus has been the proposed target of leptin, 

however, there is new evidence to suggest that other areas of the brain, including the 

caudal brain stem (38), are involved in mediating leptin’s inhibitory effects on food 

intake and body weight.  

Leptin’s effects on body weight with exclusive loss of fat are not simply 

secondary effects of reduced food intake (43) as evidenced by pair-feeding studies (57).  

Leptin administered by adenoviral gene transfer results in complete elimination of body 

fat at circulating leptin levels of 8 ng/ml (18) and at extremely high concentrations (>20 

ng/ml) leptin can eliminate adipose tissue through mechanisms that do not require neural 

input to the adipose tissue (104), supporting the notion that leptin may have direct actions 

on adipocytes (103).   

The mechanisms by which leptin specifically reduces body fat mass are poorly 

understood.  Leptin could potentially limit adipocyte development by decreasing 

adipocyte differentiation and/or proliferation, however, studies in this area have shown 

conflicting results.  Supraphysiologic concentrations of leptin have little or no effect on 

the differentiation of human preadipocytes (5) but increase both proliferation and 

differentiation of rat subcutaneous preadipocytes (67).  In a human marrow stromal cell 

line, hMS2-12, leptin’s effects on adipocyte differentiation markers were confusing and 

conflicting but the overall effect appeared to be reduced adipocyte differentiation (94).  
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The number of adipocytes available for lipid storage is also determined by the rate 

of apoptosis or programmed cell death.  Few studies have investigated leptin’s role in 

induction of apoptosis, although, recent evidence suggests that central (81) and peripheral 

leptin treatment (21) may induce apoptosis in adipocytes. 

Additionally leptin may reduce body fat mass by inhibiting lipogenesis or 

stimulating lipolysis.  Studies investigating leptin’s effects on lipogenesis are thus far 

inconclusive.  In human adipocyte cultures, leptin concentrations at 10 ng/ml and 100 

ng/ml decreased insulin-stimulated glucose uptake by adipocytes, therefore, limiting 

substrate availability for lipogenesis (107).  In vivo leptin injections reduced the lipogenic 

rate in white adipose tissue of lean and gold thioglucose treated mice, a model of obesity 

due to hypothalamic infarction (13).  In contrast, in vivo administration of leptin in rats 

did not alter lipogenic rate in white adipose tissue (65).  Harris (41) reports that adipocyte 

lipid synthesis and glucose utilization is reduced with in vivo peripheral leptin infusions 

(10 µg/ day) but found no effect of in vitro leptin (6.3 nM) exposure on adipocyte lipid 

synthesis and glucose utilization.  Studies investigating leptin’s ability to stimulate 

lipolysis have also produced mixed results.  In vitro studies suggest a direct lipolytic 

effect of leptin, which may be mediated through adipocyte Ob-Rb (31, 33, 82, 86).  The 

in vitro effect of leptin on lipolysis is dose-dependent (34) and depot specific with 

subcutaneous adipocytes having higher rates of lipolysis than omental adipocytes (32).  

In contrast, in vitro ovine adipocyte metabolism was unaffected by physiological levels 

of leptin (77).  Likewise, lipolytic rates of human adipocytes expressing Ob-Rb were 

unaffected by large doses of leptin (500 ng/ml) (5).  One study suggests that lipolysis 

induced by leptin is of a different nature than lipolysis induced by norepinephrine (99).  
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Norepinephrine-stimulated lipolysis resulted in release of both glycerol and free fatty 

acid from rat adipocytes (99).  In contrast, leptin- induced lipolysis was associated with 

glycerol but not free fatty acid release suggesting an increase in free fatty acid oxidation 

(99).  Other studies investigating leptin-stimulated lipolysis found that 0.1 nM leptin 

increased fatty acid release by 177% in mouse epididymal adipose tissue in comparison 

with controls (54).    In vivo studies using high doses of leptin have shown lipolytic 

effects.    Leptin (10 mg/kg) administered as a single intraperitoneal injection increased 

glycerol release (~50%) in adipocytes from lean C57BL/6 mice (30).  Similarly, leptin 

transfer into ob/ob mice through the muscle increased in vivo lipolysis (71).  Currently 

there are no in vivo studies investigating the effects of physiological concentrations of 

leptin on lipolysis.  The studies described in this thesis will determine if physiological 

doses of leptin are capable of inducing lipolysis in vivo. 

LEPTIN RESISTANCE 

The spontaneous mutations in ob/ob and db/db mice have greatly enhanced our 

understanding of leptin and its functions, but similar mutations in humans are rare (28, 

70).  A majority of the obesity in humans is characterized by high levels of leptin and 

increased expression of ob mRNA, however, these levels are incapable of regulating or 

limiting body weight gain (23, 64).  Similar observations have been made in mice where 

the high leptin concentrations associated with increased body mass fail to limit intake of 

energy or expansion of adipose tissue (29).  This observation has lead to the idea that 

‘leptin resistance’ is a potential cause of obesity (69).  ‘Leptin resistance’ may be defined 

as a reduced response or a lack of response to leptin’s ability to reduce food intake and 



 13

maintain body weight.  In addition to obesity, consumption of high-fat diets (60, 97) and 

aging (102) have been found to induce ‘leptin resistance’.   

LEPTIN RESISTANCE INDUCED BY A HIGH-FAT DIET 

Rodents fed a high-fat diet reportedly develop peripheral leptin resistance.  

C57BL/6 mice fed a high-fat diet are insensitive to peripheral leptin injections (60, 97) 

and a continuous leptin infusion (0.4 mg/kg/day) is incapable of preventing the obesity 

and diabetes caused by consumption of a high-fat diet (92).  The effects of high-fat 

feeding on central leptin responsiveness are less clear.  Centrally administered leptin 

produces dose-dependent reductions in food intake and body weight of peripherally 

resistant high-fat fed mice (97).  Similarly, high-fat fed rats decrease food intake in a 

dose-dependent manner in response to intracerebroventricular leptin (61).  In contrast, 

C57BL/6J mice fed a high-fat diet for prolonged periods (19 weeks) become insensitive 

to central leptin (60).  High-fat fed rats also reportedly have a reduced sensitivity to 

centrally injected leptin (106).  These studies suggest that the progressive development of 

‘leptin resistance’ that begins with early peripheral resistance followed by later 

development of central resistance is dependent on time of exposure to a high-fat diet.  

The mechanisms by which high-fat feeding inhibits the normal feeding response to 

exogenous leptin treatment have yet to be determined.  It appears that there is an initial 

attempt by the body to maintain body weight and energy homeostasis when challenged 

with a high-fat diet.  Acute exposure to a high-fat diet decreases tissue expression of 

peptides such as neuropeptide Y and Agouti related peptide (109), both of which 

normally increase food intake, and stimulate leptin secretion (109).  These changes would 

be expected to decrease food intake and maintain body weight, however, despite these 
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changes body weight increases in the high-fat fed animals (109).  The specific aspect of 

the system that eventually gives way to dysregulation of body weight is unknown.   

It is not clear if ‘leptin resistance’ develops in response to dietary components or 

the increasing adiposity that accompanies high-fat feeding.  There is evidence to support 

an association between diet composition and ‘leptin resistance’.   Development of 

peripheral leptin resistance in high-fat fed rats is not immediate but does occur within 5 

days of exposure to a high-fat diet and leptin responsiveness is restored if low-fat diet is 

provided immediately after leptin treatment, suggesting it is not due to adiposity (58).  

Most studies, however, have not separated diet from adiposity. 

Various mechanisms for ‘leptin resistance’ have been suggested including 

abnormal leptin synthesis or secretion (1), impaired transport into the brain (16, 85), 

dysfunctional leptin receptors (72), and altered post-receptor signaling (1).  Observations 

that high-fat diets lower endogenous leptin secretion (4) and interrupt the normal diurnal 

variation in serum leptin (17) support the possibility that altered synthesis or secretion of 

leptin contributes to ‘leptin resistance’.  Studies examining the role of leptin transport in 

the development of ‘leptin resistance’ have failed to produce conclusive results.  High-fat 

diets have been shown to increase the expression of Ob-Ra at the blood brain barrier (11) 

an effect that would be expected to increase leptin entry to the brain given the potential 

role for Ob-Ra in regulation of leptin transport into the central nervous system.  In 

contrast, a separate study reported reduced leptin transport at the blood brain barrier in 

animals with high-fat diet- induced obesity (14).  Also, observations that leptin transport 

into the brain is saturated at circulating leptin levels found in lean rats further suggests 

that increased levels of leptin, as found in obese animals, may have limited access to 
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receptors in the central nervous system (7).  Further studies are needed to clarify the 

effect of feeding a high-fat diet on leptin transport into the brain. 

Studies examining the effects of high-fat feeding on leptin receptor mRNA 

expression have also produced conflicting results.  Several studies have shown no effect 

of high-fat feeding on Ob-Ra or Ob-Rb mRNA expression in the brain (26, 68).  

Similarly, male Wistar rats fed a high-fat diet for 15 weeks did not have changes in either 

Ob-Rb or Ob-Ra mRNA expression in the hypothalamus, white adipose tissue, brown 

adipose tissue or liver (79).  In contrast, in situ hybridization showed an increase in leptin 

receptor mRNA expression in the mouse choroid plexus and arcuate nucleus after 8 

weeks of high-fat feeding followed by a decrease in expression after 19 weeks of high-fat 

feeding (59).  Although the effects of leptin on mRNA expression of receptors remain 

unclear, there is evidence that high-fat diets down-regulate Ob-Rb and Ob-Ra protein 

levels suggesting translational regulation of the receptors (68).  

Some studies suggest that ‘leptin resistance’ may be due to post-receptor 

signaling defects.  El-Haschimi (26) showed that peripheral leptin (100 µg) was incapable 

of inducing STAT 3 DNA binding in the hypothalamus of C57BL/6J mice fed high-fat 

diet and that central leptin (0.5 µg) produced a smaller response (75% lower) in mice fed 

a high-fat diet than in mice fed a low-fat diet (26).  Because leptin receptor protein was 

not measured, the loss of STAT 3 DNA binding could be secondary to a reduced number 

of receptors.  Additional studies have investigated the role of inhibitory proteins such as 

suppressor of cytokine signaling-3 (SOCS-3), which has been shown to interfere with 

leptin signal transduction (9), and protein inhibitor of activated STAT  (PIAS-3), which 

inhibits DNA-binding activity of STAT 3 (20) in the development of leptin resistance.  
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One study has found increased SOCS-3 mRNA in epididymal fat pads from high-fat fed 

rats (101).  In contrast, other studies using high-fat fed rodents have failed to show 

changes in mRNA expression of either SOCS-3 or PIAS-3 (26, 79). 

Few studies have examined how high-fat feeding alters leptin’s action in the 

periphery.  Steinberg and Dyck (90) demonstrated an inhibition of leptin’s stimulatory 

effect on lipid oxidation and inhibitory effect on triglyceride synthesis in the soleus 

muscle of rats with high-fat feeding.  High-fat feeding is also associated with a decrease 

in lumbar sympathetic nerve activity and mean arterial pressure in leptin-treated Wistar 

rats while there is an increase in both measures in low-fat fed, leptin-treated animals (66).  

This is a relevant finding considering leptin’s effects on metabolism is in part mediated 

by the sympathetic nervous system increasing thermogenesis and energy expend iture (2).  

Johnson et al. (51) found that adipose tissue taken from high-fat fed, centrally resistant 

Sprague-Dawley rats had a similar in vitro lipolytic response to leptin as chow-fed, leptin 

responsive rats.  The high-fat fed rats, however, were less responsive to isoproterenol-

stimulated lipolysis than their chow-fed counterparts.  The studies described in this thesis 

will determine if leptin- induced lipolysis is altered in mice made leptin resistant by high-

fat feeding. 

SUMMARY 

            Leptin in the presence of its receptor(s) plays a very important role in energy 

balance that is best demonstrated by the phenotypes of the ob/ob and db/db mouse 

models.  The mechanisms whereby leptin regulates food intake and reduces body fat 

mass are still unclear.  Furthermore, it is puzzling why a condition such as obesity occurs 

in the presence of high levels of leptin.  One explanation is that obese persons are 
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resistant to the effects of leptin.  Mice fed high-fat diet are resistant to leptin’s effects on 

food intake and body weight (97) but the point in the leptin pathway that is altered by 

high-fat feeding, giving way to body weight dysregulation, remains undefined.  The 

purposes of this thesis are to characterize high-fat diet induced leptin resistance in mice 

and to investigate whether inhibition of leptin- induced lipolysis or downregulation of 

peripheral leptin receptor(s) is involved in the development of leptin resistance. 

HYPOTHESIS TO BE TESTED 

• Mice weaned onto a high-fat diet will be resistant to peripherally but not centrally 

administered leptin at 6 weeks of age. 

• Adult mice fed a high-fat diet will be resistant to the fat-reducing effects of leptin 

administered as a constant peripheral infusion. 

• Leptin resistance in adult mice fed a high-fat diet will be associated with an 

inhibition of leptin- induced lipolysis and a downregulation of leptin receptors in 

adipose tissue. 
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CHAPTER 3 

METHOD OF LEPTIN DOSING, STRAIN, AND GROUP HOUSING INFLUENCE 

LEPTIN SENSITIVITY IN HIGH-FAT-FED WEANLING MICE1 

                                                 
1 Bowen, H., Mitchell, T.D., and  R.B.S. Harris.  Accepted by The American Journal of Physiology.   
      Reprinted here with permission of publisher, 11/14/2002. 
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ABSTRACT 

High-fat diets are reported to induce resistance to peripherally administered leptin.  In an 

attempt to develop a model of juvenile diet- induced obesity mice were weaned onto high-

fat diet. Male and female, 35 day-old, C57BL/6J high-fat (45% kcal fat) fed mice housed 

individually on grid floors did not decrease food intake or body weight in response to 

intraperitoneal (30 ug), lateral ventricle (5ug) or 3rd ventricle (0.5 ug) injections of leptin.  

Body weight and fat were significantly reduced by 13-day intraperitoneal infusions of 10 

ug leptin/day, which doubled circulating leptin.  Leptin infusion also reduced body fat in 

weanling, high-fat fed NIH Swiss mice.  Group-housing mice on bedding prevented loss 

of fat in high-fat fed male and female NIH Swiss and female C57BL/6J mice.  These 

results indicate that peripherally infused leptin reduces fat, in part, by increasing 

thermogenesis and that inhibition of food intake in high-fat fed mice requires either 

chronic activation of central leptin receptors or is independent of receptors that inhibit 

feeding in response to an acute central injection of leptin.   
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INTRODUCTION 

Leptin, a 16 kD protein secreted by the adipose tissue, has been hypothesized to 

act as a signal from the periphery to the central nervous system (CNS) indicating the size 

of energy stores (39).  Leptin enters the brain by a saturable transport system (3), where it 

activates hypothalamic long-form leptin receptors, Ob-Rb.  Although five leptin receptor 

isoforms exist in mice, only Ob-Rb is abundantly expressed in the hypothalamus and 

appears to possess full signaling capabilities (36).  These receptors are responsible for the 

inhibitory effect of leptin on food intake and other physiological functions including 

reproduction.  Initially it was assumed that leptin would act as a lipostatic signal, 

inhibiting food intake during periods of positive energy balance and enlargement of body 

fat mass (39).  It has been reported that in young lean rats there is a direct negative 

correlation between circulating concentrations of leptin and  body fat mass when leptin 

remains within the narrow range normally found in these animals (6).  Leptin 

administration also induces weight loss and a transient inhibition of food intake in lean, 

wild-type, mice (17, 27).  Low doses of leptin administered directly into the brain 

produce effects comparable to those seen with larger doses administered in the periphery, 

supporting the concept that leptin- induced changes in energy balance are mediated by 

receptors in the CNS (34). In obese animals (16) and humans (5) circulating 

concentrations of leptin increase in proportion with body fat mass and the relationship 

between leptin and adiposity is lost.   It is now hypothesized that, rather than increased 

levels of leptin signaling energy excess, a reduction in circulating concentrations of leptin 

conserves energy during periods of energy deficit by inhibiting activity of some energy 

expensive processes (1).   
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A majority of human obesity is characterized by high circulating levels of leptin 

and increased adipose tissue expression of leptin mRNA.  These high levels of leptin do 

not down regulate body fat mass, which has led to the concept of leptin-resistance (5), 

defined as a defect in leptin signaling that allows a dysregulation of energy balance and a 

failure to decrease body weight and food intake in response to increasing leptin 

concentrations (7, 9).  In addition, the leptin levels in obese humans appear unresponsive 

to short-term changes in nutritional status, as large changes in body mass (>7%) are 

required before circulating concentrations of leptin change significantly (19).  Several 

authors have reported that male mice and rats exposed to a high-fat diet also are 

unresponsive to peripheral injections of leptin (23, 37), and that continued consumption 

of a high-fat diet eventually results in reduced central leptin sensitivity (24), suggesting 

that this model accurately reflects the human obese condition.   The development of 

peripheral leptin resistance appears to be rapid, developing within 16 days in 5-week old 

mice on a 45% kcal fat diet (37) and within 5 days in rats fed a 56% kcal fat diet (23). 

In a previous experiment, we found that female C57BL/6J mice fed a high-fat 

(45% kcal fat) diet for 15 weeks remained responsive to peripheral administration of 

leptin both as a constant peripheral infusion and as a single bolus injection (14).  The 

obvious explanation for the conflicting results with high-fat fed mice in our study and 

those of others (23, 37) was that the gender of the mice influenced sensitivity to leptin, as 

we have previously reported significant effects of gender on the response to both central 

and peripheral administration of leptin in mice that over-express agouti protein (15).  The 

initial objective of this study was to identify factors that contribute to the development of 

leptin resistance in young mice weaned onto a high-fat diet.  Due to the failure to induce 
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leptin resistance in older female mice (14) we included both males and females in this 

study to determine the importance of gender in the development of leptin resistance in 

high-fat fed mice.  Mice were offered the high-fat diet from 10 days of age, while they 

were still suckling, so that they were never exposed to a low-fat diet.  Based on the 

observation that 5-week old mice were leptin resistant after 16 days on a 45% kcal fat 

diet (37), we anticipated that the high-fat fed mice would be leptin resistant, providing an 

appropriate model for the study of juvenile, diet- induced obesity.   The initial 

experiments demonstrated that high-fat fed male and female mice were, at least partially, 

resistant to central injections of leptin but were fully responsive to peripheral infusions of 

leptin, therefore, additional experiments compared the effects of strain, gender, and 

housing conditions of the mice on the sensitivity to peripherally infused leptin in 5-week 

old mice weaned onto either low- or high-fat diet.   

METHODS 

Animals and Diet 

Male and female C57BL/6J and NIH Swiss mice were obtained from breeding 

colonies maintained at the University of Georgia.  Mice were housed at 73°F with lights 

on 12 hours/day from 7.00 a.m.  They had free access to food and water except where 

specified.  Dams and their litters were fed either low-fat diet containing 10% kcal as fat 

(Diet 12450B; Research Diets, NJ) or high-fat diet containing 45% kcal as fat (Diet 

12451; Research Diets, NJ) starting 10 days postpartum.  Pups were weaned at 28 days of 

age and, at 30 days of age, single-housed mice were housed individually in cages with 

grid floors to allow for measures of food intake.  Group-housed mice were housed 3-4 

mice per cage on bedding.  Only two male and two female pups were taken from each 
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litter for incorporation into studies to minimize litter-specific responses.  All 

experimental procedures were approved by the Institutional Animal Care and Use 

Committee of the University of Georgia and were conducted in conformity with the APS 

Guiding Principles in the Care and Use of Animals (2).   

Experiment 1: The effects of intracerebroventricular leptin injection on single-housed 

C57BL/6J mice 

This study tested whether young, high-fat fed C57BL/6J mice responded to 

central leptin injections by reducing food intake or weight gain.  Male and female single-

housed C57BL/6J mice, aged 34 days, were fitted with bilateral cannulas of the lateral 

ventricle using the procedure of Guild and Dunn (12).  Briefly, a 1 cm saggital incision 

was made along the skin covering the skull followed by placement of the cannulae at 0.6 

mm posterior and +/- 1.6 mm lateral of the bregma.  One-week later mice within each 

dietary treatment were divided into 2 groups of 7-9 males or 8-13 females and were 

injected unilaterally with 5 µg leptin (recombinant murine leptin; R&D Systems, MN) in 

1.5 ul of PBS or an equal volume of PBS.    This dose was in the middle of the range of 

doses used by Van Heek et al. (37) to demonstrate development of peripheral but not 

central leptin  resistance in mice fed a 45% kcal fat diet for 56 days. The mice were 

housed in shoe-box cages with an elevated grid floor to allow measurement of food 

intake.  Food was placed on the grid floor and intake, measured to 0.01 g, was corrected 

for spillage that collected below the grid.  Food intakes and body weights were recorded 

at 24 hour intervals for 3 days before injections.  On test days, mice were food deprived 

from 7.00 a.m. and were injected at 4.00 p.m.  Food was returned to the cages one hour 

after injection and food intake was recorded 4, 14, 24, 38, and 48 hours post- injection.  
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Body weights were recorded 14 and 38 hours post- injection.  One week later, the 

procedure was repeated with treatments switched.  At the end of the study, methylene 

blue dye was injected into the cannulae and placement was verified by visually 

examining staining of the ventricles.    

Because the results of this experiment indicated that the high-fat fed mice were 

resistant to leptin, but subsequent experiments showed that the mice responded to 

peripheral infusions of leptin, we repeated the study using mice with 3rd ventricle 

cannulas.  A 30 gauge guide cannula (Plastics One, VA) was placed using the stereotaxic 

co-ordinates of 0.8 mm posterior, 0.2 mm lateral and -2.5 mm dorsal to the bregma.  The 

mice were allowed to recover from surgery for one week and then baseline daily food 

intakes and body weights were recorded at 5.00 p.m. each day for 3 days.  On the test day 

the mice were food deprived from 7.00 a.m. until 5.00 p.m. when they received a 3rd 

ventricle injection of 0.5 ug leptin in 0.5 ul PBS or an equal volume of PBS.  Food was 

returned to the cages and intakes were measured 4, 14, 24, 48 and 72 hours after 

injection. Body weights were recorded at 24, 48 and 72 hours after injection.  One week 

after the first injection the procedure was repeated except that the treatment groups were 

switched.  There were 5-6 mice per treatment group.  At the end of the experiment the 

mice were injected with 4 ug NPY at 8.00 a.m. and those that did not eat at least 0.5 g of 

food within 2 hours were excluded from the experiment. 

Experiment 2: The effects of peripheral leptin infusion on single-housed C57BL/6J mice 

The results of the previous experiment indicated that the young mice weaned onto 

high-fat diet were resistant to central injections of leptin.  The objective of this 

experiment was to test whether the high-fat fed mice were also resistant to the effects of 



 40

peripheral leptin infusion on food intake, body composition and insulin status.  C57BL/6J 

mice fed low- or high-fat diet were single-housed and daily food intakes and body 

weights were recorded for 3 days.  Male and female mice from each dietary treatment 

were further divided into 2 weight-matched groups of 5-6 male mice or 7-9 female mice.  

At 34 days of age the mice were fitted with an intraperitoneal (i.p.) Alzet miniosmotic 

pumps (Model 1002; Durect Corp., CA).  One group was infused with PBS and the other 

with 10 µg leptin /day for 13 days.  Food intakes and body weights were measured daily.  

On Day 10 of infusion, mice were deprived of food from 7.00 a.m. to 12.00 p.m. and 

small blood samples were collected from the tail for measurement of fasting insulin 

(Mouse Insulin RIA; Linco Research Inc., MO) and glucose (Accumet glucometer; 

Boehringer Mannheim, Gmg., Germany).  On day 13, mice were decapitated and trunk 

blood was collected for measurement of serum leptin (Mouse Leptin RIA; Linco 

Research Inc.).  Gonads, gonadal, mesenteric, and retroperitoneal fat were weighed and 

the gut was cleaned.  Tissues were returned to the carcass for determination of body 

composition as described previously (18). 

Efficiency of energy gain for the different groups of mice was calculated.  The 

proportion of carcass weight that was protein or fat at the end of the experiment and 

weight gain during the period of infusion were used to calculate gain in carcass energy, 

assuming that the energy cost of gaining either fat or protein is 12.6 kcal/g (29).  This 

value was divided by total energy consumed during the period of infusion to give an 

estimate of the efficiency of gain. 
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Experiment 3: The effects of peripheral leptin infusion on single-housed NIH Swiss mice. 

            In Experiment 2, we found that C57BL/6J mice fed high-fat diet responded to 

peripheral leptin infusions by reducing body fat content.  Therefore, in this experiment 

we tested whether the retention of leptin-responsiveness was strain-specific and 

determined whether NIH Swiss mice became leptin-resistant when they were fed a high-

fat diet.  These mice showed a 96% preference for the high-fat over the low-fat diet when 

offered a choice between the two diets and older male NIH Swiss mice significantly 

increased their body fat mass when offered the high-fat diet used in this study.  The 

experimental design was exactly the same as in Experiment 2 except that groups of 5 

male and 4-5 female single-housed NIH Swiss mice were used in this study and carcass 

composition was not determined although fat depot weights were recorded. 

Experiment 4: The effects of peripheral leptin infusion on group-housed C57BL/6J mice 

            In Experiments 2 and 3 we found that single-housed mice fed high-fat diet 

responded to peripheral infusions of leptin, independent of strain.  Leptin reduced body 

fat content without causing any substantial inhibition of food intake, implying that there 

was a leptin- induced stimulation of thermogenesis.  Therefore, we conducted this study 

with the mice housed in conditions that minimized the need for heat production and 

tested whether group-housed C57BL/6J mice fed high-fat diet responded to peripheral 

infusions of leptin.  The experimental design was the same as for Experiment 2 except 

that mice were group-housed, as described above, so that food intakes could not be 

recorded.  There were 8-9 male mice and 7-8 female mice per treatment group.   
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Experiment 5: The effects of peripheral leptin infusion on group-housed NIH Swiss mice 

           Group-housed C57BL/6J mice in Experiment 4 responded to leptin by reducing 

their body fat content, therefore, we tested whether responsiveness was dependent upon 

the strain of the mouse.  The experimental design was the same as for Experiment 4 

except that there were 7-9 male and 7-8 female NIH Swiss mice per treatment group. 

Experiment 6: The effects of peripheral leptin injection on single-housed C57BL/6J mic 

            All of the high-fat fed mice in Experiments 2-5 responded to peripheral infusions 

of leptin by reducing body fat content.  Others have reported leptin-resistance in high-fat 

fed mice given daily peripheral injections of leptin (24, 37).  Therefore, in this study we 

tested whether single-housed C57BL/6J mice were resistant to i.p. injections of leptin.  

Single-housed male and female mice from each dietary treatment were divided into 2 

groups and daily food intakes and body weights were recorded for 3 days before initiation 

of injections.  Mice were 35 days of age on the first day of injection.  On three 

consecutive test days each mouse was injected i.p. with either PBS or 30 µg leptin (~1.5 

mg/Kg).  Food intakes and body weights were recorded for 5 days after the first injection.  

One hour after the last injection, small blood samples were obtained from the tail vein for 

measurement of serum leptin concentration.  The procedure was repeated one week later 

with treatments switched.    

Statistics 

            Body weight, weight change, and energy intake measures were analyzed by 

repeated measure ANOVA with day or time as the repeated measure.  Baseline measures 

of body weight or energy intake were used as covariates in body weight and energy 

intake analysis and in experiments where mice served as their own control, mouse was 



 43

considered a covariate. Organ weights, body composition, and serum measurements were 

analyzed by ANOVA.   Each analysis was initially conducted with data for both males 

and females (Statistica, StatSoft, OK).  The analysis was then repeated independently for 

each sex.  In some instances, the mice were further separated by diet to detect differences 

between control and leptin treated mice.  Differences between individual groups on a 

specific day was determined by post-hoc Duncan’s multiple range test.  Differences were 

considered significant at p<0.05. 

RESULTS 

Experiment 1: The effects of intracerebroventricular leptin injection on single-housed 

C57BL/6J mice 

           This experiment tested the effects of centrally injected leptin on male and female 

C57BL/6J mice fed low-fat or high-fat diet.  Weight gain was influenced by both gender 

and leptin (Gender: p<0.01, Leptin: p<0.001, Leptin x Time: p<0.05: Figure 3.1).  Leptin 

had no effect on weight gain of any of the male mice but reduced weight gain 38 hours 

after the injection in female mice fed the low-fat diet, but not those fed high-fat diet 

(Figure 3.1B).  The changes in weight gain even of low-fat fed mice were small but were 

in the same range (3-5% of body weight) reported by others testing the response of 

C57BL/6J mice to central injections of leptin (24).  Male mice fed the high-fat diet had 

higher cumulative energy intakes than those fed the low-fat diet at 4, 24, 38, and 48 hours 

post-injection (p<0.05: Figure 3.2A) but leptin did not have any significant effect on 

intake of male mice in either dietary treatment at any time point.  Female mice fed high-

fat diet had higher energy intakes than those fed the low-fat diet 24 hours after injection 

(p<0.01).  Leptin reduced energy intake of low-fat fed female mice 38 (p<0.01) and 48 
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hours (p<0.04) post- injection but did not have any significant effect on mice fed high-fat 

diet (Figure 3.2B).  The reduction in energy intake of low-fat fed mice was small (15.7% 

for females) but similar to that reported by others (24) for mice receiving lateral ventricle 

injections of leptin. 

           Leptin injection into the 3rd ventricle had no significant effect on energy intakes 

of any of the mice (data not shown).  Leptin did inhibit weight gain in low-fat fed male 

mice at 72 hours post- injection and low-fat fed female mice 48 hours post- injection, but 

did not significantly inhibit weight ga in in high-fat fed mice (Gender: NS, Leptin: NS, 

Diet x Gender: p<0.03, Leptin x Diet: p< 0.05, Gender x Time: p<0.02: Figure 3.3).   

Experiment 2: The effects of peripheral leptin infusion on single-housed C57BL/6J mice 

This experiment tested the effects of peripheral leptin infusion on single-housed 

male and female C57BL/6J mice.  Serum leptin concentrations were higher in female 

than male mice and increased with leptin infusion (Table 3.1).  Fasting glucose and 

insulin concentrations on Day 10 of infusion were higher in males than females and the 

high-fat diet further increased fasting insulin in male mice.  Leptin reduced fasting 

glucose levels in female mice fed low-fat diet and fasting insulin levels in male mice fed 

high-fat diet (Table 3.1).     

Male mice were heavier than females but diet had no effect on their body weight.  

In contrast, high-fat fed female mice were heavier than low-fat fed females (Figures 3.4C 

and D).  Leptin significantly reduced the body weight of all animals (Gender: p<0.05, 

Diet: NS, Leptin: p<0.0001, Gender x Day: p<0.0001, Leptin x Day: p<0.0001, Gender x 

Leptin x Day: p<0.01: Figure 3.4).  Low-fat fed male mice infused with leptin weighed 

less than their controls from Day 2 of infusion, the difference in body weights was 
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significant from Day 4 for high-fat fed male mice (Figures 3.4A and B).  Similar 

responses were found in female mice (Figures 3.4C and D). 

Male mice had significantly higher energy intakes than females and mice fed the 

high-fat diet consumed more energy than those fed low-fat diet (p<0.05: Figure 3.5), but 

leptin significantly reduced energy intake of all animals (Gender: p<0.02, Diet: p<0.0005, 

Leptin: p<0.00001, Day: p<0.00001, Gender x Diet: p<0.05, Gender x Day: p<0.0005, 

Diet x Day: p<0.01: Figure 3.5).   

At the end of the experiment, male mice had significantly heavier gonadal and 

retroperitoneal adipose depots than females (Table 3.2) and high-fat diet increased the 

size of  both retroperitoneal and epididymal fat pads, but leptin reduced the size of these 

pads in all male mice.  In contrast, there was no effect of either diet or leptin treatment on 

the weight of the mesenteric depot or testes weight.  In females, high-fat feeding 

significantly increased, whereas leptin decreased, the weights of all fat depots measured 

except the mesenteric depot in high-fat fed mice.  There was no effect of either diet or 

leptin infusion on uterine weight.  Due to increased body size, male carcasses were 

heavier than females with more fat, water, and protein (Table 3.2).  Male mice fed high-

fat diet had more carcass fat than those fed low-fat diet but leptin reduced carcass fat 

content in both dietary groups.  There were no effects of diet or leptin treatment on 

carcass weight, water, protein, or ash for male mice.  Female mice fed a high-fat diet had 

heavier carcasses, more fat and more protein than those fed the low-fat diet.  In females, 

leptin infusion reduced carcass weight, fat, and protein in both dietary groups but the 

effect on protein did not reach significance in mice fed low-fat diet (p=0.06).  There was 

no effect of diet or leptin on carcass ash or water in female mice.  There was a substantial 
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(50 - 90%) reduction in efficiency of energy utilization for gain of carcass tissue (Table 

3.3) in all leptin infused mice.   

Experiment 3: The effects of peripheral leptin infusion on single-housed NIH Swiss mice. 

Results for the leptin- infused single-housed NIH Swiss mice were similar to those 

found in C57BL/6J mice and are summarized in Table 3.4.  There was no effect of gender 

on serum leptin concentrations but leptin infusion significantly increased serum leptin 

levels in all treatment groups.  Fasting glucose concentrations were higher in males than 

females and leptin reduced fasting glucose concentrations in female mice fed low-fat diet 

(p=0.05).  There were no differences in fasting insulin levels between any of the groups.    

Male mice gained more body weight than females but leptin inhibited body 

weight gain in both high-fat and low-fat fed male and female mice.  In contrast to the 

C57BL/6J weanlings, there were no gender or diet effects on energy intake.  Leptin 

significantly reduced the total amount of energy consumed by male high-fat fed, but not 

low-fat fed, mice during the 13-day infusion period.  There were no differences in total 

energy intakes of leptin infused female mice fed either diet. The effects of diet, gender 

and leptin on organ weights were also similar to those observed in C57BL/6J mice.  Male 

mice had significantly heavier gonadal and retroperitoneal fat pads than females.  In male 

mice, high-fat feeding increased the size of the mesenteric, retroperitoneal, and 

epididymal adipose pads while leptin infusion decreased the weight of the epididymal 

and retroperitoneal depots but not the mesenteric depot.  No effects were observed on 

testes weight.  In female mice, mesenteric and retroperitoneal fat pad weights were 

increased with high-fat feeding and leptin reduced the size of the mesenteric, 
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retroperitoneal, and parametrial adipose depots.  There were no effects of diet or leptin on 

uterine weight.   

Experiment 4: The effects of peripheral leptin infusion on group-housed C57BL/6J mice 

            This experiment tested the effects of peripheral leptin infusion on group-housed 

male and female mice.  Serum leptin concentrations were higher in male than female 

mice and were approximately doubled with leptin infusion (data not shown).  Fasting 

serum glucose concentrations were higher in male than female mice and neither diet nor 

leptin influenced fasting glucose or insulin concentrations (data not shown).  There was a 

significant effect of leptin on body weight of all of the mice (Gender NS, Diet NS, Leptin 

p<0.0001, Day p<0.0001, Gender x Diet p<0.05, Gender x Day p<0.0001, Leptin x Day 

p<0.0001, Gender x Diet x Day p<0.005: Figure 3.6).    

At the end of infusion male mice fed high-fat diet had heavier fat pads than those 

fed low-fat diet (Table 3.5) but there was no effect of diet on fat pad weights in females.  

Leptin tended to reduce the weights of all fat pads in all mice but the difference was only 

significant for the epididymal fat in low-fat fed males, the retroperitoneal fat pad in high-

fat fed males and the mesenteric depot in high-fat fed females.  There was no effect of 

diet or leptin on the weights of the testes or uterus of male or female mice, respectively.  

All aspects of carcass composition except fat were greater for male than female mice 

(Table 3.5) and leptin reduced carcass weight (p<0.05).   Carcass fat content was 

increased in high-fat fed male, but not female, mice compared with low-fat fed animals 

and leptin tended to reduce carcass fat content in all groups but the difference was only 

significant for males fed high-fat diet and females fed low-fat diet.  The lack of a 

statistically significant response in low-fat fed males may be due to the minimal amount 
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of body fat present (<1 g) in these animals because leptin reduced carcass fat content by 

30%. 

Experiment 5: The effects of peripheral leptin infusion on group-housed NIH Swiss mice 

            This experiment was conducted to determine whether failure to consistently 

induce leptin resistance in group-housed mice fed high-fat diet was due to the strain of 

the mice.  Male and female NIH Swiss mice were group-housed and infused with leptin 

for 13 days and the data are summarized in Table 3.6.  Serum leptin levels were higher in 

males than females and were increased by leptin infusion.  The difference did not reach 

statistical significance in female mice fed high-fat diet.   Serum glucose concentrations 

were higher in male than female mice and increased in female mice fed a high-fat diet.  

Leptin reduced fasting glucose concentrations of female mice fed the low-fat diet 

(p<0.05).  There were no gender, diet, or leptin effects on fasting insulin concentrations. 

Leptin significantly inhibited weight gain in female but not male NIH Swiss mice.  

Gonadal and retroperitoneal fat was significantly heavier in male than female mice and 

high-fat diet increased the size of these depots in male but not female mice, when all 

treatment groups within gender were considered.  In low-fat fed male mice, leptin 

reduced the size of the mesenteric, retroperitoneal, and epididymal fat.  In low-fat fed 

females, leptin reduced the weight of the retroperitoneal and parametrial fat.  Similar to 

the results for group-housed C57BL/6J mice, all aspects of carcass composition were 

greater for male than female mice.  Leptin had no effect on protein, water, or ash in any 

group but reduced body fat content of male and female mice fed the low-fat diet.  There 

was no effect of leptin on body fat content of male or female mice fed high-fat diet.   
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Experiment 6: The effects of peripheral leptin injection on single-housed C57BL/6J mice 

           This experiment was conducted to determine if peripheral leptin resistance in high-

fat fed mice was dependent upon the method of leptin administration.  A single i.p. 

injection of 30 µg leptin produced an approximate 100-fold increase in circulating leptin 

concentrations in all mice, measured 1 hour after the last injection (data not shown).  

There were no effects of diet or leptin on weight gain in male mice, however, leptin 

inhibited weight gain on the second and third day of injection in low-fat fed female mice 

(Gender NS, Diet NS, Leptin NS, Day p<0.0001, Gender x Leptin p<0.05, Gender x 

Leptin x Day p<0.05: Figure 3.7A).  There was no significant effect of diet or leptin on 

the energy intakes of male mice.  In female mice, leptin inhibited intake of low-fat fed 

females on the days of leptin injection (Figure 3.7B) 

DISCUSSION 

The initial objective of these studies was to develop a mouse model of juvenile 

diet- induced leptin resistance and we chose to wean mice onto a high-fat diet because it 

was anticipated that this would accelerate the development of leptin resistance.  Other 

investigators have reported that exposure of 5 week-old mice to a high-fat diet for 16 

days induces peripheral, but not central, leptin resistance (37).  Therefore, it was 

surprising to find that 6 - 7 week-old mice that had been weaned onto a high-fat diet 

showed an attenuated response to the central effects of leptin on food intake and weight 

gain but remained fully responsive to the effects of peripheral infusions of leptin on body 

weight and body fat mass.  These results are consistent with those of Halaas et al (13) 

who found that female mice fed a 45% kcal fat diet for 10 weeks lost weight in response 

to daily i.p. injections of leptin, but contrast with those of Van Heek et al (37) who found 
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that male mice became resistant to the effects of i.p. injections of leptin on food intake 

and body weight when they were fed a 45% kcal fat diet for only 16 days.  In Experiment 

6 we tested whether the method of peripheral leptin administration influenced our 

interpretation of whether, or not, the mice were leptin resistant.  We found that single 

daily injections of 30 ug leptin, which induced a 100-fold increase in circulating 

concentrations of leptin, had no significant effect on either food intake or body weight of 

low-fat or high-fat fed male mice.  Thus it is possible that previous studies that found 

mice resistant to peripheral injections of leptin would find them responsive to peripheral 

infusions of leptin. 

Van Heek et al (37) reported that high-fat fed C57BL/6 mice became resistant to 

peripheral injections of leptin faster than high-fat fed AKR mice, implying that 

background strain influences the development of leptin resistance and that a factor, other 

than dietary fat content, such as body mass or adiposity, is responsible for the leptin 

resistance (37).  In the experiments described here we tested both C57BL/6J and NIH 

Swiss mice on the high-fat diet and found that both strains of mice were fully responsive 

to the peripheral infusions of leptin, even though the fat pads of some of the high-fat fed 

mice were double the size of those in low-fat fed mice.  The role of body fat mass in 

determining leptin-responsiveness also is challenged by a study that shows that rats 

become resistant to peripheral leptin within 5 days of being offered a high-fat diet, but 

high-fat fed rats responded to leptin within 1 day of being returned to the low-fat diet 

(23).  These changes in sensitivity to peripheral leptin are too rapid to be determined by 

the size of body fat stores. 
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Mistry et al. (25) examined the energetic responses to centrally administered 

leptin in lean and ob/ob pups and found that lateral ventricle injection of leptin did not 

inhibit food intake until the pups were 28 days old, whereas energy expenditure was 

stimulated in 17-day old pups.   Therefore, although the centrally-mediated stimulation of 

thermogenesis by leptin develops earlier than centrally-mediated inhibition of food intake 

in mice, this cannot account for the development of central, but not peripheral, leptin 

resistance in mice in our experiments because they were 5 to 7 weeks old at the time that 

leptin was administered.   Older mice fed a high-fat diet for 8 weeks  become resistant to 

peripheral injections of leptin but remain responsive to centrally administered leptin.  

With continued exposure to the high-fat diet the response to centrally injected leptin is 

attenuated after 16 weeks on the diet (24).   In this experiment, we found that 

consumption of a high-fat diet from weaning attenuated the response to a lateral ventricle 

and a 3rd ventricle injection of leptin in 6 to 7-week old mice.  These results indicate that, 

in mice that have never consumed a low-fat diet, sensitivity to centrally administered 

leptin is compromised more quickly than when older animals are switched from a low-fat 

(chow) to a high-fat diet.   

A previous study in lean C57BL/6J mice reported changes in food intake of 

neonatal mice as early as 30 minutes after central injections of leptin (25).  In contrast, 

we did not observe significant changes in food intake or body weight until 38 hours after 

lateral or 3rd ventricle injections.  The mice in the previous study were only food 

deprived for 4 hours before the leptin injections, whereas our mice were food deprived 

for 9 hours.  The longer period of food deprivation, and increased hunger of the mice, 

may have resulted in immediate eating by both leptin-treated and control groups of mice.  
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The observed delay in the response to leptin may also be explained by observations that 

lateral ventricle injections of leptin do not immediately block feeding but decrease the 

size of meals and the rate of feeding in rats (21).  A study in which male Wistar rats 

received 3rd ventricle injections of leptin showed that meal size was only reduced with the 

second meal after injection (8), which may explain why we did not find any differences 

in food intake 4 hours after injection in Experiment 1.  

Few studies have examined the effects of peripheral leptin infusions in mice fed 

high-fat diet.  One long-term study investigated whether leptin infusions could prevent 

the development of obesity and diabetes in mice fed a high-fat diet (35).   Although 

subcutaneous infusion of leptin (0.4 mg/kg/day, 8-10 ug/mouse/day) reduced body 

weight and food intake during the first 5 weeks of infusion, there were no differences in 

body weights, food intakes, or fat pad weights of leptin- infused and control mice at the 

end of the 12 week study.  The mice in this study (35) were group housed and the results 

from experiments described here suggest that the housing conditions and the gender of 

the mice may influence whether leptin infusions change body fat mass.   

The differences between single-housed and group-housed mice may be 

attributable to differences in thermogenic capacity because group-housed animals huddle 

and reduce the requirement for heat production from each animal.  The degree of  

huddling varies according to ambient temperature and gender, with females more likely 

to huddle than males (4).  Because of the reduced requirement for heat production,  

brown adipose tissue thermogenesis (20, 22) and food intake (28) are inversely related to 

number of animals per cage.  One of the mechanisms by which leptin induces weight loss 

is by stimulating heat production (25,27) and leptin has been shown to increase brown 
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adipose tissue mRNA expression of uncoupling proteins (UCP2 and 3) (31).  These 

observations suggest that loss of body fat in single-housed, leptin treated mice may be, at 

least partially,  dependent on leptin- induced thermogenesis, which is consistent with our 

observations of decreased efficiency of energy utilization in Experiment 2.  In group-

housed animals the need for thermogenesis is reduced and the effect of leptin on body 

composition is limited.  This is consistent with observations by Stehling et al. (32) that 

the reduced body fat mass of juvenile lean Zucker rats  injected subcutaneously with 

leptin was entirely due to an increase in energy expenditure, but that leptin did not 

stimulate energy expenditure when the rats were reared in thermoneutral conditions (33).  

Because group-housing in our experiment inhibited leptin activity in high-fat fed, but not 

low-fat fed mice, diet composition must directly influence the mechanisms by which 

leptin induces loss of body fat in mice. 

 In the experiments described here peripheral infusions of leptin reduced the body 

fat mass of single-housed, high-fat fed mice that had a reduced sensitivity to central 

injections of leptin.  These results suggest either that the central receptors in high-fat fed, 

but not low-fat fed, mice need to be chronically stimulated by leptin for there to be an 

effect on food intake or that the body fat-reducing effects of peripheral leptin are not 

mediated by the same receptors that are responsible for the central inhibition of food 

intake by leptin, and that some of the response may result from a direct action of leptin on 

peripheral tissues.  In vitro (11, 30) and in vivo (10) studies have shown that leptin 

directly stimulates lipolysis in adipocytes and it has been reported that dennervated fat 

depots are reduced in hyperleptinemic rats (38), implying that the metabolic changes 

responsible for loss of fat in leptin- treated animals are independent of the activation of 
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central leptin receptors.  The mechanisms by which fat is specifically decreased by 

peripheral infusions of leptin in high-fat fed weanling mice need to be clarified, but our 

results suggest that leptin may act directly in the periphery and that part of the response is 

due to an increase in thermogenesis.  

 As shown in the results, peripheral infusions of leptin produced variable 

increases in serum leptin concentrations ranging from no change in concentration (low-

fat fed group-housed C57BL/6J females) to a 4-fold increase (single-housed C57BL/6J 

females).  Although all mice received the same dose of leptin and it was not adjusted for 

body weight, these differences are unlikely to be due to the size of the animals because 

the group-housed females were smaller than most of the other animals in this study.   In 

addition, the measured serum leptin concentrations did not necessarily correlate with 

leptin response because body fat content was significantly lower in low-fat fed, leptin-

treated group-housed female C57BL/6J mice compared with their controls.  One possible 

explanation for this discrepancy is that the RIA kit we used to measure leptin has been 

reported to measure leptin binding protein (Ob-Re) in addition to leptin (26), thus no 

distinction is made between free (bioactive) leptin, bound leptin and leptin binding 

protein.  The effect of leptin infusions on serum fasting glucose and insulin 

concentrations also varied between treatment groups but the reason for the inconsistent 

changes in this study are unknown and were not investigated. 

In summary, the experiments described here show that mice weaned onto a high-

fat diet develop an insensitivity towards peripheral and central injections of leptin at 5-7 

weeks of age, however, these mice respond to peripheral infusions of leptin by 

specifically reducing body fat mass.  The results from the group-housing experiments 
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suggest that leptin partially exerts its effects on body fat in high-fat fed mice through 

increased thermogenesis and, in situations where thermogenic capacity is reduced, leptin 

has limited effects on body weight regulation.  Because human obesity is associated with 

‘leptin resistance’, characterized by maintenance of an enlarged body fat mass in the 

presence of increased concentrations of endogenous leptin (5), it is important that we find 

an appropriate animal model to study this condition.  Mice fed a high-fat diet have been 

reported to be resistant to peripheral injections of leptin (24, 37) but the studies described 

here demonstrate that, in weanling mice fed a high-fat diet, the response to peripherally 

administered leptin is determined by gender, strain, housing conditions and method of 

leptin administration.  Therefore, we need to develop a better understanding of the factors 

that influence the development of leptin resistance before we can evaluate its role in 

facilitating the development and maintenance of an obese state.  
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Table 3.1: Serum hormone concentrations for single-housed C57BL/6J mice in Experiment 2. 

 
 Low-Fat High-Fat Statistical Summary 

 PBS Leptin PBS Leptin  

Serum Leptin (ng/ml)     

Males 1.8 ± 0.7 3.7 ± 1.4 1.8 ± 0.4 3.8 ± 0.6 G: p<0.005, L: p<0.001,  

Females 1.5 ± 0.2A 8.0 ± 0.9B 3.1 ± 1.3A 11.0 ± 2.6B G x L: p<0.01 

Fasting Glucose (mg/dl)     

Males 157 ± 10 137 ± 6 139 ± 9 131 ± 7 G: p<0.01, L: p<0.003 

Females  134 ± 11A 117 ± 6AB 141 ± 4A 99 ± 11B  

Fasting Insulin (ng/ml)     

Males 0.38 ± 0.6A 0.22 ± 0.07A 2.46 ± 0.46B 0.50 ± 0.14A G: p<0.001, D: p<0.001, L: p<0.001,  

Females 0.37 ± 0.13 0.18 ± 0.04 0.58 ± 0.22 0.37 ± 0.11 G x D: p<0.001, G x L: p<0.01,  

D x L: p<0.005, G x D x L: p<0.005 
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Data are means ± sem for groups of 5-6 male mice or 7-9 female mice.  Fasting glucose and insulin was measured on Day 10 of  an 

i.p. infusion of either PBS or 10 ug leptin/day.  Serum leptin levels were measured at the end of the 13 day infusion.  Values for a 

specific parameter that do not share a common superscript are significantly different at p<0.05, determined by a two-way ANOVA 

and post-hoc Duncan’s Multiple Range Test.  G: Gender, D: Diet, L: Leptin. 
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Table 3.2: Organ weights and body composition of single-housed male and female C57BL/6J mice infused with leptin or PBS. 

     
 Low-fat High-fat Statistical Summary 

 PBS Leptin PBS Leptin  

Male      

Organ Weights (mg)      

Mesenteric Fat 151 ± 20 119 ± 19 112 ± 15 123 ± 8 G x D: p<0.02 

Retroperitoneal Fat 70 ± 7A 29 ± 8B 100 ± 13C 61 ± 8A G: p<0.001, D: p<0.005, L: p<0.001 

Epididymal Fat 265 ± 29AC 128 ± 32B 365 ± 29C 193 ± 42AB G: p<0.001, D: p<0.03, L: p<0.001  

Testes 184 ± 6 182 ± 5 185 ± 6  169 ± 23  

Carcass Composition (g)      

Carcass Weight 20.4 ± 0.6 19.1 ± 0.9 22.4 ± 2.1 19.4 ± 0.6 G: p<0.001 

Fat 1.9 ± 0.1A 1.1 ± 0.2B 2.5 ± 0.3C 1.6 ± 0.2AB G: p<0.001 D: p<0.008, L: p<0.001 

Water 13.3 ± 0.5 13.1 ± 0.5 14.1 ± 1.3 12.7 ± 0.4 G: p<0.001 
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Protein 4.5 ± 0.1 4.2 ± 0.2 5.0 ± 0.5 4.3 ± 0.1 G: p<0.001 

Ash 0.80 ± 0.02 0.77 ± 0.03 0.86 ± 0.10 0.79 ± 0.04  

Female      

Organ Weights (mg)      

Mesenteric Fat 124 ± 17AB 78 ± 13A 188 ± 18C 142 ± 18BC G x D: p<0.02, D: p<0.001, L: p<0.008 

Retroperitoneal Fat 33 ± 5A 8 ± 2B 75 ± 7C 20 ± 5AB G: p<0.001, D: p<0.001, L: p<0.001,  

D x L: p<0.006 

Parametrial Fat 170 ± 19A 77 ± 8B 261 ± 29C 127 ± 14AB G: p<0.001, D: p<0.001, L: p<0.001 

Uterus 119 ± 13 118 ± 12 97 ± 14 118 ± 18  

Carcass Composition (g)      

Carcass Weight 17.2 ± 0.6A 15.8 ± 0.3B 18.5 ± 0.4C 16.6 ± 0.4AB G: p<0.001, D: p<0.02, L: p<0.001 

Fat 1.3 ± 0.2A 0.6 ± 0.1B 2.0 ± 0.2C 0.9 ± 0.2B G: p<0.001, D: p<0.004, L: p<0.001 
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Water 11.5 ± 0.4 11.0 ± 0.2 11.6 ± 0.3 11.3 ± 0.4 G: p<0.001 

Protein 3.6 ± 0.1AB 3.4 ± 0.04A  4.1 ± 0.2C 3.7 ± 0.1B G: p<0.001, D: p<0.001, L: p<0.003 

Ash 0.75 ± 0.02 0.74 ± 0.01 0.78 ± 0.02 0.75 ± 0.02  

 

Data are means ± sem for groups of 5-6 male mice or 7-9 female mice.  Body composition was determined after 13 days of infusion of 

either PBS or 10 µg leptin/day.  Values for a specific parameter that do not share a common superscript are significantly different at 

p<0.05, determined by a two-way ANOVA and post-hoc Duncan’s Multiple Range Test.  G: Gender, L: Leptin, D: Diet. 
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Table 3.3: Efficiency of Energy Utilization in male and female C57BL/6J mice infused with leptin or PBS. 

 

 Low-fat High-fat Statistical Summary 

 PBS Leptin PBS Leptin  

Male      

Gain in Carcass Energy 

(kcal/12 days) 

9.9 + 1.6A 4.9 + 1.3B 11.9 + 1.1A 4.1 + 1.0B D: NS, L: p<0.0001, Int: NS 

Energy Intake (kcal/12 days) 188 + 3A 171 + 5B 216 + 6C 197 + 7A D: P<0.0001, L: p<0.004, Int: NS 

Efficiency of gain (%) 5.3 + 0.8A 2.8 + 0.8B 5.5 + 0.6A 2.0 + 0.5B D: NS, L: p<0.0002, Int: NS 

Female      

Gain in Carcass Energy 

(kcal/12 days) 

7.7 + 2.6A 0.8 + 0.9B 8.3 + 1.4A 1.4 + 0.7B D: NS, L: p<0.0001, Int: NS 

Energy Intake (kcal/12 days) 177 + 3A 157 + 4B 184 + 6C 169 + 3A D: p<0.0001, L: p<0.0001, Int: NS 

Efficiency of gain (%) 4.2 + 1.5A 0.4 + 0.6B 4.4 + 0.7A 0.8 + 0.4B D: NS, L: p<0.0001, Int: NS 
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Data are means + sem for groups of 5-6 male mice or 7-9 female mice.  Gain in carcass energy was calculated from weight gain 

during infusion and proportional body composition at the end of infusions.  It was assumed that the energy cost of gaining 1 g of either 

fat or protein was 12.6 kcal (29).  Energy intake was the total energy consumed during the leptin infusion and efficiency was 

calculated as energy gain divided by energy intake.  Values for a specific parameter that do not share a common superscript are 

significantly different at P<0.05.
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Table 3.4: Body weight, energy intake, organ weights, and serum hormones of single-housed NIH Swiss mice infused with leptin or 

PBS in Experiment 3. 

 

 Low-fat  High-fat Statistical Summary 

 PBS Leptin PBS Leptin  

Male      

Preinfusion Weight (g) 25.0 ± 1.3A 25.4 ± 0.9A 29.6 ± 0.7B 29.2 ± 0.8B D: p<0.001 

Weight Change (g/13 d) 3.4 ± 0.7AC 0.8 ± 0.7B 4.0 ± 0.4A 1.9 ± 0.5BC G: p<0.001, L: p<0.002 

Total Energy Intake (kcal/13 d) 227 ± 13A 213 ± 9A 265 ± 6B 233 ± 12A L: p<0.005 

Organ Weights (mg)      

Mesenteric Fat 150 ± 21AB 92 ± 16A 200 ± 30B 190 ± 21B D: p<0.005 

Retroperitoneal Fat 93 ± 20AB 13 ± 5A 208 ± 35C 103 ± 34B G: p<0.001, D: p<0.005, L: p<0.005,  

G x D: p<.05 
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Epididymal Fat 363 ± 72A 90 ± 24B 726 ± 90C 389 ± 78A G: p<0.001, D: p<0.001, L: p<0.001,  

G x D: p<0.05  

Testes 171 ± 10 174 ± 18 191 ± 9 176 ± 7  

Serum Hormones      

Leptin (ng/ml) 2.2 ± 0.4A 4.9 ± 0.8B 2.2 ± 0.2A 4.1 ± 0.7B L: p<0.001 

Fasting Glucose (mg/dl) 117 ± 24 77 ± 11 121 ± 22 133 ± 9 G: p<0.05 

Fasting Insulin (ng/ml) 0.15 ± 0.05 0.50 ± 0.37 0.31 ± 0.17 0.60 ± 0.32  

Female      

Preinfusion Weight (g) 20.9 ± 1.2 21.3 ± 0.6 23.4 ± 0.6 22.8 ± 0.7 D: p<0.05 

Weight Change (g/13 d) 1.9 ± 0.8AC -0.7 ± 0.5B 2.2 ± 0.17A -0.1 ± 0.6B G: p<0.0005, L: p<0.001 

Total Energy Intake (kcal/13 d) 217 ± 7 212 ± 9 227 ± 7 210 ± +6  

Organ Weights (mg)      

Mesenteric Fat 144 ± 19A 59 ± 7B 203 ± 17C 139 ± 16A D: p<0.001, L: p<0.001 

Retroperitoneal Fat 49 ± 9A 11 ± 7B 91 ± 12C 27 ± 15AB G: p<0.001, D: p<0.05, L: p<0.001, G x 
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D: p<0.05 

Parametrial Fat 170 ± 26AB 50 ± 27B 314 ± 56A 150 ± 96AB G: p<0.001, L: p<0.05, G x D: p<0.05  

Uterus 164 ± 19 191 ± 36 182 ± 18 153 ± 11  

Serum Hormones      

Leptin (ng/ml) 1.4 ± 0.4A 3.6 ± 0.3BC 1.7 ± 0.5AB 4.8 ± 1.2C L: p<0.002 

Fasting Glucose (mg/dl) 103 ± 12 54 ± 20 99 ± 11 88 ± 14 G: p<0.05 

Fasting Insulin (ng/ml) 0.25 ± 0.12 0.25 ± 0.20 0.13 ± 0.10 0.84 ± 0.49  

 

Data are means ± sem for groups of 5 male mice or 4-5 female mice.  Mice were infused with PBS or 10 µg leptin/day for 13 days 

from 34 days of age.  Weight change is the difference between body weights on Day 13 and preinfusion weight. Fasting glucose and 

insulin were measured on Day 10 of infusion and serum leptin was measured at the end of the 13-day infusion.  Values for a specific 

parameter that do not share a common superscript are significantly different at p<0.05, determined by a two-way ANOVA and post-

hoc Duncan’s Multiple Range Test.  G: Gender, D: Diet, L: Leptin. 
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Table 3.5: Organ weights and body composition of group-housed C57BL/6J mice infused with leptin or PBS in Experiment 4.      

 
 Low-fat High-fat Statistical Summary 

 PBS Leptin PBS Leptin  

Male      

Organ Weights (mg)      

Mesenteric Fat 102 ± 10 91 ± 12 154 ± 33 131 ± 23 D: p<0.05 

Retroperitoneal Fat 45 ± 5AB 17 ± 3A 112 ± 18C 71 ± 21B D: p<0.005, L p<0.05 

Epididymal Fat 221 ± 6A 130 ± 21B 382 ± 54C 285 ± 56AC D: p<0.001, L: p<0.05,  

G x D: p<0.05 

Testes 189 ± 5 187 ± 4 189 ± 4  190 ± 3  

Carcass Composition (g)      

Carcass Weight 20.7 ± 0.5 19.6 ± 0.7 20.6 ± 0.7 20.0 ± 0.7 G: p<0.001 

Fat 1.01 ± 0.18AB 0.74 ± 0.10A 2.24 ± 0.25C 1.59 ± 0.26B D: p<0.001, L: p<0.05,  

G x D: p<0.05 
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Water 14.0 ± 0.3 13.6 ± 0.5 13.0 ± 0.4 13.1 ± 0.3 G: p<0.001 

Protein 4.9 ± 0.1 4.4 ± 0.2 4.6 ± 0.2 4.5 ± 0.1 G: p<0.001 

Ash 0.86 ± 0.02A 0.90 ± 0.03A 0.79 ± 0.01B 0.79 ± 0.02B G: p<0.005, D: p<0.005 

Female      

Organ Weights (mg)      

Mesenteric Fat 138 ± 14AB 126 ± 14A 165 ± 13B 103 ± 9A L: p<0.01 

Retroperitoneal Fat 44 ± 8 20 ± 7 62 ± 12 48 ± 18  

Parametrial Fat 249 ± 43 130 ± 24 258 ± 42 195 ± 52 L: p<0.05, G x D: p<0.05 

Uterus 114 ± 16 122 ± 20 112 ± 17  93 ± 9  

Carcass Composition (g)      

Carcass Weight 16.1 ± 0.3 15.1 ± 0.5 16.8 ± 0.7 15.8 ± 0.6 G: p<0.001 

Fat 2.1 ± 0.3A 1.1 ± 0.2B 2.0 ± 0.3AB 1.7 ± 0.4AB L: p<0.05, G x D: p<0.05 

Water 10.1 ± 0.3 10.2 ± 0.3 10.7 ± 0.3 10.1 ± 0.2 G: p<0.001 
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Protein 3.3 ± 0.1 3.1 ± 0.1 3.5 ± 0.1 3.8 ± 0.5 G: p<0.001 

Ash 0.75 ± 0.09 0.71 ± 0.03 0.77 ± 0.04 0.70 ± 0.08 G: p<0.005 

      

 

Data are means ± sem for groups of 8-9 male mice or 7-8 female mice.  Mice were housed 3 or 4 per cage and were infused with PBS 

or 10 µg leptin/day for 13 days from 34 days of age.  Values for a specific parameter that do not share a common superscript are 

significantly different at p<0.05, determined by a two-way ANOVA and post-hoc Duncan’s Multiple Range Test.  G: Gender, D: Diet, 

L: Leptin. 
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Table 3.6:  Body weight, organ weights, body composition and serum hormones of group-housed NIH Swiss mice in Experiment 5. 

 

 Low-fat High-fat Statistical Summary 

 PBS Leptin PBS Leptin  

Male      

Preinfusion Weight (g) 28.8 ± 1.2 28.6 ± 1.0 31.6 ± 1.1 31.2 ± 0.9 D: p<0.05 

Weight Change  1.7 ± 0.5 1.0 ± 0.7 0.9 ± 0.7 1.3 ± 0.1  

Organ Weights (mg)      

Mesenteric Fat 225 ± 29A 143 ± 24B 244 ± 24A 203 ± 29A D: p<0.05 

Retroperitoneal Fat 167 ± 31A 54 ± 24B 196 ± 30A 146 ± 28A G: p<0.001, D: p<0.05, L: p<0.01 

Epididymal Fat 460 ± 90A 225 ± 73B 627 ± 66A 562 ± 92A G p<0.001, D p<0.005, G x D p<0.05  

Testes 169 ± 6A 179 ± 8A 185 ± 8AB 211 ± 17B D p<0.05 

Body Composition (g)      

Carcasss Weight 27.0 ± 1.1 26.4 ± 1.3 28.9 ± 1.5 28.8 ± 0.9 G p<0.001 
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Fat 2.8 ± 0.5A 1.5 ± 0.3B 2.6 ± 0.3A 2.9 ± 0.3A G p<0.001, L p<0.05 

Water 17.1 ± 0.5 17.9 ± 0.8 18.8 ± 1.0 18.4 ± 0.9 G p<0.001 

Protein 6.0 ± 0.3 5.8 ± 0.3 6.2 ± 0.3 6.3 ± 0.2 G: p<0.001 

Ash 1.10 ± 0.02 1.19 ± 0.05 1.26 ± 0.09 1.18 ± 0.06 G: p<0.001 

Serum Hormones      

Leptin (ng/ml) 1.4 ± 0.3A 3.8 ± 0.5B 1.6 ± 0.3A 3.1 ± 0.5B G: p<0.05, L: p<0.001 

Fasting Glucose (mg/dl) 117 ± 7 96 ± 7 112 ± 9 115 ± 13 G: p<0.005 

Fasting Insulin (ng/ml) 0.68 ± 0.20 0.29 ± 0.04 0.72 ± 0.28 0.56 ± 0.19  

Female      

Preinfusion Weight (g) 21.5 ± 0.5 21.7 ± 0.7 22.0 ± 0.9 22.1 ± 1.0  

Weight Change (g/13 d) 2.6 ± 0.2A 1.2 ± 0.2B 2.3 ± 0.3A 1.0 ± 0.4B L p<0.001 

Organ Weights (mg)      

Mesenteric Fat 209 ± 15 148 ± 17 161 ± 12 173 ± 36  

Retroperitoneal Fat 60 ± 14A 23 ± 4B 63 ± 7A 45 ± 16AB G p<0.001, L p<0.05 
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Parametrial Fat 252 ± 51 122 ± 17 223 ± 29 218 ± 64  G p<0.001, G x D p<0.05 

Uterus 190 ± 12 156 ± 14 149 ± 17 167 ± 13  

Body Composition (g)      

Carcasss Weight 21.3 ± 0.4 20.1 ± 0.6 21.1 ± 0.7 20.4 ± 0.8 G p<0.001 

Fat 2.0 ± 0.2A 1.2 ± 0.1B 1.9 ± 0.1A 1.7 ± 0.2AB G p<0.001, L p<0.01 

Water 14.2 ± 0.2 13.8 ± 0.4 13.5 ± 1.0 14.6 ± 0.6 G p<0.001 

Protein 4.1 ± 0.1 4.2 ± 0.2 4.2 ± 0.2 3.4 ± 0.5 G p<0.001 

Ash 0.94 ± 0.02 1.10 ± 0.11 1.06 ± 0.10 0.96 ± 0.04 G p<0.001 

Serum Hormones      

Leptin (ng/ml) 1.2 ± 0.1A 2.8 ± 0.3B 1.6 ± 0.4A 2.1 ± 0.4AB G p<0.05, L p<0.005 

Fasting Glucose (mg/dl) 90 ± 8A 66 ± 9B 109 ± 7A 93 ± 8A G p<0.005, D p<0.01, L p<0.05 

Fasting Insulin (ng/ml) 0.75 ± 0.46 0.24 ± 0.07 0.39 ± 0.11 0.21 ± 0.04  
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Data are means ± sem for groups of 7-9 male mice and 7-8 female mice.  Mice were group housed and received 13-day i.p. infusions 

of  PBS or 10 ug leptin/day starting at 34 days of age.  Fasting glucose and insulin were measured on Day 10 of infusion and serum 

leptin was measured at the end of the 13-day infusion.  Values for a specific parameter that do not share a common superscript are 

significantly different at p<0.05, determined by a two-way ANOVA and post-hoc Duncan’s Multiple Range Test.  G: Gender, D: Diet, 

L: Leptin. 
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Figure 3.1: Change in body weight of male (A) and female (B) C57BL/6J single-housed 

mice fed low- or high-fat diet and given a lateral ventricle injection of 5 ug leptin or PBS 

in Experiment 1.  Data are means + sem for groups of 7-9 males or 8-13 female mice. 

Values for weight change in female mice at 38 hours that do not share a common 

superscript are significantly different at P<0.05, determined by two-way ANOVA and 

post-hoc Duncan’s multiple range test.  
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Figure 3.2: Cumulative food intake of male (A) and female (B) C57BL/6J single-housed 

mice fed low- or high-fat diet and given a lateral ventricle injection of 5 ug leptin or PBS 

in Experiment 1.  Data are means + sem for groups of 7-9 males or 8-13 female mice. 

Values for intake at specific time points that do not share a common superscript are 

significantly different at P<0.05, determined by two-way ANOVA and post-hoc 

Duncan’s multiple range test.  The absence of superscripts indicates no difference 

between groups at that time point. 
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Figure 3.3: Weight change of male (A) and female (B) single-housed C57BL/6J mice that 

received a 3rd ventricle injection of 0.5 ug of leptin or PBS in Experiment 1.  Data are 

means + sem for groups of 5 or 6 mice. Values for weight change of females 48 hours 

after the injection that do not share a common superscript are significantly different at 

P<0.05, determined by two-way ANOVA and post-hoc Duncan’s multiple range test.  
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Figure 3.4: Daily body weights of male (A and B) and female (C and D) single-housed 

C57BL/6J mice that were infused with 10 ug leptin/day from age 34 days in Experiment 

2.  Data are means + sem for groups of 5-6 male mice or 7-9 female mice. Asterisks 

indicate a significant (P<0.05) difference between leptin-treated and control mice, 

determined by repeated measures analysis of variance and post-hoc t-tests. 
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Figure 3.5: Daily food intakes of male (A and B) and female (C and D) single-housed 

C57BL/6J mice that were infused with 10 ug leptin/day from age 34 days in Experiment 

2.  Data are means + sem for groups of 5-6 male mice or 7-9 female mice.  Asterisks 

indicate a significant (P<0.05) difference between leptin-treated and control mice, 

determined by repeated measures analysis of variance and post-hoc t-tests. 
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Figure 3.6: Daily body weights of male (A and B) and female (C and D) group housed 

C57BL/6J mice that were infused with 10 ug leptin/day from age 34 days in Experiment 

4.  Data are means + sem for groups of 8-9 male mice or 7-8 female mice. Asterisks 

indicate a significant (P<0.05) difference between leptin-treated and control mice, 

determined by repeated measures analysis of variance and post-hoc t-tests. 
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Figure 3.7: Weight change (A) and food intake (B) of single-housed C57BL/6J mice that 

were injected i.p. with 30 ug of leptin in each of three days in Experiment 6.  Data are 

means + sem for groups of 5 or 6 mice.  Asterisks indicate significant differences 

(P<0.05) between control and leptin- treated low-fat fed female mice, determined by 

repeated measures analysis of variance and post-hoc t-test. 
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CHAPTER 4 

PERIPHERAL LEPTIN INFUSIONS FAIL TO STIMULATE LIPOLYSIS IN 

ADIPOCYTES FROM MICE FED EITHER LOW-FAT OR HIGH-FAT DIET2 

                                                 
2 Bowen, H.M. and R.B.S. Harris.  To be submitted to American Journal of Physiology 
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ABSTRACT 

The aim of this study was to determine whether mice fed high-fat diet were resistant to 

peripheral leptin infusions and if the resistance was associated with reduced leptin-

induced lipolysis.  It was further determined if there were changes in leptin receptor 

protein levels in serum or peripheral tissues.  Peripheral leptin infusions (10 µg/day) for 

13 days had no effect on the body weight or food intake of 15-week-old male C57BL/6J 

mice fed low-fat (10% kcal fat) or high-fat (45% kcal fat) diet for 5 weeks.  Leptin-

infused mice fed a high-fat diet had smaller epididymal and mesenteric fat depots and 

reduced body fat content compared with their controls.  Five-day infusions of leptin in 

15-week-old male mice fed low-fat or high-fat diet for 5 weeks had no effect on 

adipocyte glycerol or free fatty acid release.  There were no changes in leptin receptor 

protein levels in the serum, liver, lung, or white adipose tissue in response to diet or 

leptin treatment.  These results suggest that leptin resistance is determined by factors 

beyond dietary fat content and the mechanisms involved remain to be determined. 
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INTRODUCTION 

           Leptin, a16 kD circulating protein, is secreted primarily by adipose tissue and is 

hypothesized to be the adipose-derived signal important for regulation of fat stores (42).  

Peripheral (13, 15, 20, 30, 12) and central (3) leptin administration has been shown to 

reduce food intake and body weight in lean mice and the changes in food intake and body 

weight are thought to be mediated through hypothalamic long-form leptin receptors, Ob-

Rb (35).  Expression of Ob-Rb is not limited to the hypothalamus but has been detected 

in most peripheral tissues including the lung (24, 36, 39) and adipose tissue (2, 19, 24).  

In mice, there are three short- isoforms of the leptin receptor, Ob-Ra, Ob-Rc, Ob-Rd, that 

are ubiquitously expressed in both central and peripheral tissues (16, 19, 39).  In addition, 

there is a soluble leptin receptor, Ob-Re, capable of binding leptin in the serum (6, 23).  It 

is unknown whether this binding renders the protein inactive or protects the protein from 

degradation during transport.  The roles of the short- and soluble- isoforms of the leptin 

receptor in mediating leptin's actions remain to be determined. 

Leptin causes weight loss that is primarily loss of body fat but the magnitude of 

fat loss exceeds that expected from the reduced energy intake (15, 20), which implies that 

energy expenditure must be increased by leptin treatment. The mechanisms by which 

leptin specifically reduces body fat are poorly understood.  It has been proposed that, at 

high concentrations, leptin may have direct effects on adipocyte metabolism (41).  

Leptin, at supraphysiologic concentrations, has recently been shown to stimulate lipolysis 

both in vivo (10) and in vitro (9, 11, 31, 34).  Currently, there are no in vivo studies on the 

effects of physiological concentrations of leptin on lipolysis. 
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In obese persons serum leptin levels are high, however, these high levels do not 

inhibit food intake or body weight (5).  From this observation, it has been proposed that 

obesity is a condition associated with ‘leptin resistance’ (26), which may be defined as a 

reduced response, or a lack of response, to leptin’s ability to reduce food intake and 

maintain a constant body weight.  Studies in mice have shown a resistance to leptin’s 

effects on food intake and body weight in animals fed a high-fat diet (22, 37).  Similarly, 

we have found that 15-week-old Swiss mice fed a high-fat diet for 5 weeks do not lose 

body fat in response to peripheral infusions of leptin (carcass fat content: low-fat 

controls: 2.5 ± 0.3 g, low-fat leptin: 1.2 ± 0.3 g, high fat control: 2.6 ± 0.2 g, high-fat 

leptin: 2.6 ± 0.4 g).  Various mechanisms for ‘leptin resistance’ have been suggested 

including abnormal leptin synthesis or secretion (1), impaired transport of leptin into the 

brain (4, 33), dysfunctional leptin receptors (27), and altered post-receptor signaling (1).  

Studies suggest that high-fat diets do not affect Ob-Ra or Ob-Rb mRNA expression in the 

brain (8, 25), liver, brown adipose tissue, or white adipose tissue (29) but down-regulate 

hypothalamic Ob-Rb and Ob-Ra protein levels (25).   

Using C57BL/6J mice, we sought to confirm the high-fat diet induced leptin 

resistance observed in 15-week old Swiss mice and to examine the effects of high-fat 

feeding on leptin’s peripheral actions.  Therefore, we examined the effects of high-

feeding on leptin receptor protein in serum and peripheral tissues including the liver, 

white adipose tissue, and lung.  We expected high-fat diets to induce leptin resistance by 

inhibiting leptin- induced lipolysis and down-regulating leptin receptor protein levels in 

white adipose tissue.    
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METHODS 

Animals and Diet 

Nine-week-old male C57BL/6J mice were purchased from Harlan Laboratories 

(Indianapolis, IN).  Mice were housed on bedding at 76°F with lights on 12 hours/day 

from 7.00 a.m. with free access to food and water.  From 10 weeks of age, mice were fed 

a low-fat diet containing 10% kcal as fat (Diet 12450B; Research Diets, NJ) or a high-fat 

diet containing 45% kcal as fat (Diet 12451; Research Diets, NJ).  At 14 weeks of age, 

the mice were placed in cages with grid floors to allow for measures of food intake.   

Experiment 1: Leptin Sensitivity 

This experiment was conducted to determine if adult C57BL/6J mice fed high-fat 

diet develop leptin resistance. After 3 days of adaptation to the grid floors, daily food 

intakes and body weights were measured for 3 days and mice in each diet treatment were 

divided into 2 weight-matched groups of 8-9 mice.  At 15 weeks of age, mice were 

anaesthetized by isoflourane inhalation and were fitted with intraperitoneal (i.p.) Alzet 

miniosmotic pumps (Model 1002; Durect Corp., CA).  One group was infused with PBS 

and the other with 10 µg leptin /day (recombinant murine leptin: R&D Systems, MN).  

Five days after pump placement, mice were deprived of food from 8.00 a.m. to 11.00 

a.m. and blood samples were obtained by tail-bleeding for measurement of triglycerides 

(Sigma kit 337-B: Sigma Chemical Co., MO) and free fatty acids (FFA: NEFA C kit: 

WAKO Chemicals, VA).  Blood glucose was measured using a glucometer (Glucometer 

Elite; Bayer Corp., NY).  After 13 days of infusion, mice were decapitated and trunk 

blood was collected.  Inguinal, mesenteric, retroperitoneal, and epididymal fat depots and 
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testes were dissected and weighed and the gut was cleaned.  All tissues were returned to 

the carcass for determination of body composition, as described previously (14). 

Experiment 2:  Effects of high-fat diet on leptin-induced lipolysis and leptin receptor 

protein 

This experiment was designed to test the effects of high-fat feeding and in vivo 

peripheral leptin infusions on lipolysis and leptin receptor protein levels.  After 3 days of 

adaptation to the grid floors, daily food intakes and body weights were measured for 3 

days and mice in each diet treatment were divided into 2 weight-matched groups of 10-11 

mice.  At 15 weeks of age, mice were anaesthetized by isoflourane inhalation and were 

fitted with intraperitoneal (i.p.) Alzet miniosmotic pumps (Model 1007D; Durect Corp., 

CA). One group was infused with PBS and the other with 10 µg leptin /day (recombinant 

murine leptin: R&D Systems, MN).  On Day 5 of infusion, mice were food deprived from 

7.00 a.m. to 10.00 a.m.  At 10.00 a.m., mice were decapitated and trunk blood collected 

for measurement of serum leptin (Mouse Leptin RIA: Linco Research Inc., MO), 

triglycerides (Sigma kit 337-B: Sigma Chemical Co., MO), and free fatty acids (FFA: 

NEFA C kit: WAKO Chemicals, VA).  Liver, lung, inguinal, retroperitoneal, and 

epididymal adipose tissues were weighed.  Epididymal and retroperitoneal depots were 

combined for measurement of glycerol and free fatty acid release from isolated 

adipocytes.  Samples of liver, lung, and inguinal fat were snap-frozen for measurement of 

short- and long-form leptin receptor protein by Western blot. 

Epididymal and retroperitoneal fat pads were pooled and adipocytes were isolated 

from the tissue by collagenase digestion [1 mg collagenase/ ml in Krebs Ringer 

bicarbonate buffer (KRBC), 5.0 mM glucose, 4% BSA, pH 7.5] for approximately 30 
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minutes at 37°C.  The cells were filtered through a 250 µm nylon screen and washed 3 

times in collagenase-free KRBC.  Following a thirty-minute rest period, 0.2 ml of 

isolated cells (45,000-65,000 cells) were incubated in shaking water baths with 0.4 mL 

KRBC, 5 mM glucose, 2% BSA, 0.1 mM ascorbic acid and 0.8 U/ml adenosine 

deaminase for 2 hours at 37°C.  Glycerol release into media was measured in triplicate 

for basal conditions and in duplicate for norepinephrine-stimulated conditions (100 nM 

and 10 µM norepinephrine).  All reactions were stopped by injecting 0.5 ml 1.0 N H2SO4 

into each flask.  Incubation media was aspirated from beneath the cells and frozen at  

–80°C for measurement of glycerol and free fatty acid concentrations. 

Glycerol content was determined in deproteinized media samples by an 

enzymatic/fluorometic method described by Edens et al. (7).  Samples of incubation 

media were deproteinized with 0.65 N  perchloric acid and neutralized with imidazole-

KOH buffer.  The reaction mixture consisting of glycine buffer [0.21 M glycine, 0.1% 2 

M magnesium chloride, 0.002 M ATP, pH 9.1], 67.5 U glycero-3-phosphate 

dehydrogenase, 15.3 U glycerokinase, 115 ul hydrazine hydrate was added to neutralized 

media samples in a 96-well plate.  After the addition of NAD+, glycerol release was 

determined by flourescence of NADH.  Free fatty acid content of incubation media 

samples were determined by enzymatic colorimetric assay (FFA: NEFA C kit: WAKO 

Chemicals, VA).  Glycerol and fatty acid release were expressed per 106 cells per 2 hours.  

Cell number and size distribution were determined by fixing 0.2 ml aliquots of isolated 

cells in osmium tetroxide (3%) (Electron Microscopy Sciences, PA).  Fixed adipocytes 

were rinsed with 0.9% NaCl and filtered through a 240 µm nylon screen and collected on 
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a 20 µm nylon screen.  Samples were suspended in 4% NaCl and analyzed on a Coulter 

electronic particle counter (Coulter Multisizer, Coulter Electronics, FL).  

The liver, lung, and inguinal pads from each mouse fed either a low- or high-fat 

diet were homogenized in Krebs bicarbonate buffer, pH 7.5, containing protease 

inhibitors (10 µM leupeptin, 2 U/ml aprotinin, and 1 µM phenylmethylsulfonylflouride).  

A crude membrane fraction was prepared by centrifuging the homogenate for 10 min at 

6,000 x g and then recentrifuging the supernatant at 6,000 x g for 10 min.  Samples (50 

µg) of the resulting supernatant from each tissue and 3 µl samples of serum were 

separated by SDS-PAGE in a 9% acrylamide gel in a Tris glycine buffer (25 mM Tris, 

192 mM glycine, and 0.1% SDS, pH 8.3).  The gel was cut so that proteins larger than 66 

kD were contained on the upper half of the gel and proteins smaller than 66 kD were on 

the bottom half.  Proteins from multiple gels were transferred to a single polyvinylidene 

difluoride membrane (Boehringer Mannheim, Mannheim, Germany) in 25 mM Tris, 192 

mM glycine, and 20% methanol buffer.  Leptin receptor was detected by Western blot 

using rabbit antimouse OB-R antibody (Affinity Bioreagents Golden, CO) at a 1:500 

dilution and an HRP-linked antirabbit IgG POD secondary antibody (Boehringer 

Mannheim) at a dilution of 1:10,000.  Actin was detected using a monoclonal antibody 

(Monoclonal AC-40: Sigma Chemical Co., MO) at a 1:1,000 dilution and a peroxidase 

conjugated antimouse IgG secondary antibody at a dilution of 1:4,000.  The blot was 

developed using a chemiluminescence system (BM Chemiluminescence Blotting 

Substrate, Boehringer Mannheim) according to the manufacturer’s directions.  The X-ray 

films were scanned and band density for the short- form and long-form leptin receptors 
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and actin were quantified using UnScan-It software (Silk Scientific Inc., Orem, UT).  The 

amount of Ob-R protein was expressed as a ratio to actin. 

Statistics 

            Body weight, weight change, and energy intake measures were analyzed by 

repeated measure ANOVA with day/time as the repeated measure.  Baseline measures of 

body weight or energy intake were used as covariates in body weight and energy intake 

analysis.  Organ weights, body composition, serum measurements, lipolysis, and cell size 

distribution were analyzed by ANOVA.  Differences between individual groups were 

determined by post-hoc Duncan’s multiple range test.  Differences were considered 

significant at p<0.05. 

RESULTS 

Experiment 1: Leptin Sensitivity 

            This experiment was conducted to determine if 15-week old male C57BL/6J mice 

fed a high-fat diet for 5 weeks were resistant to peripheral infusions of leptin.  Neither 

diet nor leptin significantly reduced body weight (Figure 4.1) or energy intake (Figure 

4.2), however, there was an effect of day (p<0.001) for both body weight and energy 

intake and an interaction of diet and day (p<0.01) for body weight only.  On Day 7, mice 

fed high-fat diet had higher energy intakes than mice fed low-fat diet and there was a 

significant reduction of energy intake in high-fat fed leptin treated mice (p<0.05) 

compared to their controls. 

             High-fat diet increased the weight of all fat pads examined (Table 4.1).  Leptin 

reduced the size of the epididymal, mesenteric, and retroperitoneal depots in mice fed 
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high-fat diet but not mice fed low-fat diet.  There were no effects of diet or leptin on 

testes weight. 

Mice fed the high-fat diet had heavier carcasses than mice fed low-fat diet with 

more fat and protein (Table 4.1).  Mice fed the low-fat diet had higher ash content than 

mice fed the high-fat diet, indicating greater skeletal growth in mice fed low-fat diet.  

High-fat diet increased body fat content.  Leptin reduced body fat content of mice fed 

high-fat but not low-fat diet.  When fat was expressed as a percent of carcass weight, the 

effect in high-fat fed leptin infused mice was significantly different compared to their 

controls (p<0.05; low-fat control 11.4%; low-fat leptin 10.3%; high-fat control 16.3%; 

high-fat leptin 13.3%).   

Mice fed the high-fat diet were hyperglycemic compared to mice fed the low-fat 

diet (Table 4.2).  Serum triglycerides, glycerol, and free fatty acids were not affected by 

diet or leptin (Table 4.2). 

Experiment 2:  Effects of high-fat diet on leptin-induced lipolysis and leptin receptor 

protein  

            In this study, the effects of peripheral infusions of leptin on lipolysis were 

determined in C57BL/6J mice fed low-fat or high-fat diet for 5 weeks.  Leptin inhibited 

body weight gain, however, the effect did not reach significance in mice fed low-fat diet 

compared to their controls (Table 4.3).  Leptin inhibited total energy intake during the 

infusion period.  Leptin had no effect on fat pad weights at the end of the 5-day infusion, 

however, high-fat feeding increased the size of all depots examined.   

            Isolated adipocytes from mice fed high-fat diet had higher rates of glycerol and 

free fatty acid release per 106 cells than those from mice fed low-fat diet (Figure 4.3).  
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Addition of both 100 nM and 10 µM norepinephrine to the incubation media stimulated 

glycerol and free fatty acid release.  There were no effects of leptin on basal or 

norepinephrine stimulated glycerol or free fatty acid release.  When norepinephrine-

stimulated glycerol or free fatty acid release was expressed as percent of basal lipolysis 

there were no differences between any of the groups (data not shown).   

            Cell number and size distribution was determined for aliquots of adipocytes 

isolated from the combined epididymal and retroperitoneal adipose pads. For all groups, 

more than 90% of the total cell volume was composed of cells less than 150 µm in size 

(Figure 4.4).  Control mice fed a low-fat diet had a higher percentage of cells in the size 

range of 51-75 µm compared to control mice fed high-fat diet. 

            Leptin receptors were measured by Western blot in the serum, inguinal adipose 

tissue, liver, and lung.  The short- form receptor(s) were detected in all tissues examined 

and the long-form receptor was detected in the lung (Figure 4.5).  There were no 

differences in leptin receptor protein in any tissue tested for any of the groups (data not 

shown). 

At the end of the 5-day infusion, serum leptin concentrations increased in all 

animals infused with leptin, however, the effect did not reach significance in high-fat fed 

mice (Table 4.3).  Serum triglycerides were decreased in leptin infused mice fed high-fat 

diet compared to the other groups.  There were no effects of leptin or diet on serum 

glycerol concentrations.  Mice fed low-fat diet had higher serum free fatty acids 

compared to mice fed high-fat diet.  
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DISCUSSION 

           This study was conducted to determine the effects of feeding a high-fat diet on 

leptin- induced lipolysis and leptin receptor protein levels in peripheral tissues.  Others 

have reported that mice fed a high-fat diet develop a resistance to leptin’s effects on food 

intake and body weight (37).  Preliminary studies in our laboratory demonstrated that 15-

week-old male Swiss mice consuming a high-fat diet for 5 weeks were resistant to the 

lipopenic effects of peripheral leptin infusions whereas leptin significantly reduced body 

fat content of low-fat fed mice.  Therefore, it is surprising that in this study, high-fat fed 

mice remained metabolically sensitive to infused leptin.  The results described here 

suggest that ‘leptin resistance’ is not determined by dietary fat content and the differences 

between this study and our preliminary data suggests that there may be an effect of 

background strain on leptin responsiveness.  The influential effects of strain are 

supported by Van Heek et al. (37) who found that C57BL/6J mice fed high-fat diet 

became resistant to the effects of peripheral leptin injections faster than AKR mice fed 

the same high-fat diet. Furthermore, AKR mice fed both low-fat or high-fat diet for 56 

days failed to decrease food intake and body weight in response to peripheral leptin 

injections, indicating that a factor other than dietary fat content is responsible 

development of resistance (37).  In addition to diet, it has been shown that aging is 

associated with leptin resistance.  Wang et al. recently demonstrated that 18-month old 

Zucker rats have reduced responses to adenovirus- induced hyperleptinemia in 

comparison with 2-month old rats (40).  Similarly, 12-month-old C57BL/6J mice 

peripherally infused with leptin (0.15-1.5 µg/hour) have delayed decreases in food intake, 

body weight, and body fat loss (18).  Scarpace et al. (32) found that aged rats (30 months 
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old) were less sensitive than young rats (6 months old) to 7-day infusions of 

pharmacological doses (1 mg leptin/day) with smaller changes in food intake and no 

change in oxygen consumption.   

Both high-fat feeding and increasing age are associated with concurrent increases 

in adiposity, therefore, it is unclear from the studies described above if fat mass, dietary 

components, or age of the animals determines the development of leptin resistance.  One 

study found that acute changes in dietary composition determine leptin sensitivity in rats 

(21).  For example, leptin sensitivity was reduced after only 5 days of high-fat diet 

exposure and returned as early as 1 day after reintroducing a low-fat diet (21).  These 

changes occured too quickly to be due to adiposity.  In contrast, a study by Vaselli et al. 

(38) suggests that resistance to inhibitory effects of leptin on feeding and body weight are 

determined by adiposity and not diet composition.  The complexity of leptin resistance 

requires additional studies to help us clearly define and understand those factors 

contributing to its development. 

 In a separate experiment, we examined how leptin- induced lipolysis and 

peripheral leptin receptors were affected by dietary fat content.  Although this experiment 

was conducted in a separate group of mice it is reasonable to assume that these mice were 

reflective of those in the first experiment as they were the same age, sex, and strain.  In 

addition, we measured serum triglycerides and free fatty acids in both groups and 

compared the measurements.  Serum samples from each experiment were collected after 

a similar period of fasting at the same time during the infusion, however, the samples 

obtained in Experiment 1 were from tail-bleeds whereas those in Experiment 2 were 

collected from the trunk at sacrifice.  There were no differences in free fatty acid 
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concentrations between the two groups of mice and there was no effect of leptin on serum 

glycerol concentrations although glycerol levels were twice as high in Experiment 1 

compared with those in Experiment 2.   

In Experiment 2, we found that adipocytes isolated from 16-week old mice 

infused with physiological doses of leptin did not have increased rates of glycerol release.  

This is in contrast to another study that found increasing lipolytic rates in adipocytes 

obtained from ob/ob and lean mice after a single intraperitoneal injection leptin one hour 

prior to sacrifice (10).  One milligram per kilogram doses of leptin were sufficient to 

increase glycerol release in adipocytes from ob/ob mice, however, glycerol release was 

only increased in lean mice after 10 mg/kg (~300 µg); doses that are probably no t 

reflective of physiological effects of leptin.  The lack of response in adipocytes isolated 

from high-fat fed mice which had a significant reduction in body fat in Experiment 1 

suggests, that at least in early stages of leptin infusion, there are no measurable increases 

in lipolytic activity to account for fat loss.  Although this study focused on lipolysis the 

fat loss observed in these mice may be due to decreased lipogenesis or secondary to 

reduced cell number. 

In the present study, we found no differences in protein levels of Ob-Re in the 

serum or the short- and long- isoform(s) of the leptin receptor in peripheral tissues, 

suggesting that high-fat diets do not change leptin receptor protein levels in the serum, 

liver, lung, and inguinal adipose tissue.  The leptin receptor in the serum represents the 

soluble leptin receptor, Ob-Re, which binds leptin in the circulation (6, 23).  The role of 

the leptin bound to Ob-Re in the circulation is not completely understood but the binding 

may prolong the half- life of leptin and/or delay leptin clearance (17, 28).  In addition, 
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bound leptin may be biologically inactive (17).  The role of the short-isoforms of the 

receptors are not clear, however, expression of the long-form receptor in the lung has 

been suggested to mediate leptin’s effects on cell proliferation in this tissue (36).  

Although several studies have reported Ob-Rb mRNA expression in the lung (24, 36), 

this is the first study to report protein expression in the lung. 

In conclusion, we show that development of leptin resistance occurs in response 

to factors other than dietary fat content.  These factors, which may include adiposity or 

aging, should be further studied so that appropriate intervention therapies can be 

developed.  Additionally we show that physiological concentrations of leptin 

administered in vivo are incapable of stimulating glycerol or free fatty acid release.  

Feeding a high fat diet fails to change leptin receptor protein levels in the serum, lung, 

liver, and inguinal adipose tissue.  
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Table 4.1:  Organ weights and body composition of C57BL/6J mice infused with leptin or PBS. 

                                                             Low-fat                           High-fat 

 
 PBS Leptin PBS Leptin Statistical Summary 

Organ Weights (mg)      

Inguinal Fat 383 ± 43A 333 ± 37A 689 ± 56B 550 ± 78B D p<0.0001 

Epididymal Fat 469 ± 58A 416 ± 29A 770 ± 52B 579 ± 92A D p<0.001 

Retroperitoneal Fat 146 ± 23AB 93 ± 11B 250 ± 22C 181 ±28A  D p<0.0005, L p<0.05 

Mesenteric Fat 175 ± 19A 184 ± 12A 254 ± 22B 185 ± 18A D p<0.05, D x L p<0.05 

Testes 177 ± 4 187 ± 4 188 ± 5 178 ± 7  

Carcass Composition (g)      

Carcass Weight 25.4 ± 0.7AB 24.5 ± 0.4A 27.0 ± 0.3B 26.3 ± 0.6B D <0.01 

Fat 2.9 ± 0.3AB 2.5 ± 0.2B 4.4 ± 0.2C 3.6 ± 0.4A D p<0.001, L p<0.05 
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Water 15.7 ± 0.4 15.5 ± 0.4 15.4 ± 0.3 15.7 ± 0.1  

Protein 5.8 ± 0.2AB 5.5 ± 0.1A 6.2 ±0.1B 6.1 ±0.2B D p<0.01 

Ash 0.98 ± 0.02 0.99 ± 0.02 0.95 ± 0.01 0.95 ± 0.01 D p<0.05 

 

Data are means ± sem for groups of 7-9 mice fed either a low-fat (10% kcal fat) or high-fat (45% kcal fat) diet from 10 weeks of age.  

Intraperitoneal pumps were placed at 15 weeks of age and PBS (control) or 10 µg leptin/day infused for 13 days. Values for a specific 

parameter that do not share a common superscript are significantly different at p<0.05, determined by a two-way ANOVA and post-

hoc Duncan’s Multiple Range Test. D: Diet, L: Leptin. 
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Table 4.2:  Serum hormones of C57BL/6J mice infused with leptin or PBS. 

                                                                Low-fat                            High-fat 
 
 PBS Leptin PBS Leptin Statistical Summary 

Glucose (mg/dl) 125 ± 3A 117 ± 4A 146 ± 7B 138 ± 4B D p<0.001 

Triglycerides (mg/dl) 87 ± 21 96 ± 10 59 ±10 67 ± 11  

Glycerol (mg/dl) 90 ± 30 84 ± 24 74 ± 20 69 ± 16  

Free Fatty Acids (mEq/l) 1.11 ± 0.15 1.21 ± 0.13 0.98 ± 0.11 0.96 ± 0.11  

 

Data are means ± sem for groups of 7-9 mice fed either a low-fat (10% kcal fa t) or high-fat (45% kcal fat) diet from 10 weeks of age.  

Intraperitoneal pumps were placed at 15 weeks of age and PBS (control) or 10 µg leptin/day infused for 13 days.  Serum glucose, 

triglycerides, glycerol, and free fatty acids were determined from fasting serum samples collected on Day 5 of infusion.  Values for a 

specific parameter that do not share a common superscript are significantly different at p<0.05, determined by a two-way ANOVA 

and post-hoc Duncan’s Multiple Range Test. D: Diet, L: Leptin. 
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Table 4.3:  Serum hormones, organ weights and body composition of C57BL/6J mice infused with leptin or PBS for five days. 

                                                               Low-fat                             High-fat 
 
 PBS Leptin PBS Leptin Statistical Summary 

Serum Hormones      

Leptin (ng/ml) 2.4 ± 0.3A  6.7 ± 1.3B 4.0 ± 1.0AB 6.4 ± 1.7B L p<0.01 

Triglycerides (mg/dl) 51 ± 6A 51 ± 4A 55 ± 8A 39 ± 4B D p<0.05 

Glycerol (mg/dl) 48 ± 2 45 ± 4 43 ± 5 36 ± 2  

Free Fatty Acids (mEq/l) 1.30 ± 0.04A 1.17 ± 0.07A 1.10 ± 0.10AB 0.93 ± 0.05B D p<0.005, L p<0.05 

Body Weight      

Body weight change (g) -0.4 ± 0.3A -1.1 ± 0.3A -0.4 ± 0.3A -2.2 ± 0.4B L p<0.001 

Energy Intake      

Total Intake (kcal) 63 ± 2A 55 ± 2B 66 ± 2A 53 ± 4B L p<0.001 
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Organ Weights (mg)      

Inguinal Fat 433 ± 55A 407 ± 68A 672 ± 99B 533 ± 85AB D p<0.05 

Epididymal Fat 574 ± 98AB 533 ± 75A 838 ± 109B 722 ± 107AB D p<0.05 

Retroperitoneal Fat 168 ± 30A 145 ± 26A 272 ± 38B 222 ± 40AB D p<0.01 

 

Data are means ± sem for groups of 10-11 mice fed either a low-fat (10% kcal fat) or high-fat (45% kcal fat) diet from 10 weeks of 

age.  Intraperitoneal pumps were placed at 15 weeks of age and PBS (control) or 10 µg leptin/day infused for 5 days. Serum leptin, 

triglycerides, glycerol and free fatty acids were measured from fasting serum samples collected on Day 5 of infusion.  Values for a 

specific parameter that do not share a common superscript are significantly different at p<0.05, determined by a two-way ANOVA 

and post-hoc Duncan’s Multiple Range Test. D: Diet, L: Leptin. 
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Figure 4.1:  Daily body weights of male C57BL/6J mice infused i.p. with leptin (10 

µg/day) or PBS (Control) for 13 days.  Mice had been fed either low-fat (10% kcal fat) or 

high-fat (45% kcal fat) from 10 weeks of age and pumps were surgically inserted at 15 

weeks of age.  Data are means ± sem for groups of 7-9 mice.  An asterisk indicates a 

significant difference (p<0.05) between control (PBS-infused) and leptin infused mice. 
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Figure 4.2:  Daily energy intakes of male C57BL/6J mice infused i.p. with leptin (10 

µg/day) or PBS (Control) for 13 days.  Mice had been fed either low-fat (10% kcal fat) or 

high-fat (45% kcal fat) from 10 weeks of age and pumps were surgically inserted at 15 

weeks of age.  Data are means ± sem for groups of 7-9 mice.  An asterisk indicates a 

significant difference (p<0.05) between control (PBS infused) and leptin infused mice.  
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Figure 4.3:  Adipocyte lipolysis in mice fed either low-fat (10% kcal fat) or high-fat (45% 

kcal fat) from 10 weeks of age and infused i.p. with 10 µg/leptin/day or PBS for 5 days. 

Data are means ± sem for groups of 10-11 mice. 
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Figure 4.4:  Cell size distribution for adipocytes from the combined epididymal and 

retroperitoneal fat depots of mice fed either low-fat (10% kcal fat) or high-fat (45% kcal 

fat) from 10 weeks of age and infused i.p. with 10 µg/leptin/day or PBS for 5 days.  Data 

are means ± sem for groups of 10-11 mice.  Within a given size range, groups that do not 

share a common letter are significantly different at p<0.05. 
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Figure 4.5:  Leptin receptor detected by Western blot using a polyclonal primary antibody 

raised to the extracellular portion of the receptor.   The blot is a representative sample 

from a low-fat control mouse.  S: Serum, A: Adipose, Li: Liver, Lu: Lung. 
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CHAPTER 5 

CONCLUSIONS 

 
The studies described in Chapter 3 show that young mice weaned onto a high-fat 

diet have a reduced sensitivity to central and peripheral injections of leptin but that these 

mice are still responsive to peripheral leptin infusions evidenced by a reduction in body 

fat mass.  It is suggested by the studies on group-housed weanling mice that the response 

to peripheral leptin infusions is partially mediated through an increase in thermogenesis.  

The results from experiments described in Chapter 4 show that adult mice fed low-fat but 

not high-fat diet do not reduce body fat when peripherally infused with leptin.  

Independent of the effect of leptin on body fat mass, there was no effect of leptin on 

adipocyte lipolysis measured as glycerol and free fatty acid release.  There also were no 

changes in leptin receptor protein levels in the serum or peripheral tissues that were 

associated with leptin infusion or dietary fat content. 

These studies were conducted to identify an appropriate model for studying 

human obesity.  Human obesity is a condition associated with increased serum leptin and, 

due to a failure to regulate body weight in the presence of increased endogenous leptin, 

has been described as a state of ‘leptin resistance’ (1).  Genetically obese mice do not 

serve as a good model of human obesity because of the mutation in leptin or its receptor.  

The majority of obese humans have all aspects of the leptin system but fail to respond to 

high endogenous levels of leptin.  Other investigators have reported that mice fed a high-

fat diet fail to decrease food intake and body weight in response to peripheral injections 
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of leptin and, therefore, may serve as a good model to study human obesity (2, 3).  The 

results summarized above suggests that dietary fat content does not determine the 

development of leptin resistance but the response to peripherally administered leptin is 

influenced by age, gender, strain, housing conditions, and method of leptin 

administration.  It is necessary to determine how each of these factors contributes to the 

development of leptin resistance in order to determine its role in the development of 

obesity.  If leptin resistance is due to adiposity then the resistance is secondary to obesity 

rather than a cause of obesity.  Furthermore, mechanisms involved in the development of 

leptin resistance must be identified to develop appropriate therapies that target the portion 

of the leptin pathway tha t is altered and eventually gives way to increased body fatness. 

The studies described here suggest that the development of leptin resistance is more 

complicated than failure to transport leptin across the blood brain barrier or a failure to 

inhibit food intake. 
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