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ABSTRACT

The ring of algebraic cycles modulo algebraic equivalence on an abelian variety is an
interesting and mysterious object. When the abelian variety is the Jacobian of a smooth
curve, Arnaud Beauville defined a certain subring, called the tautological ring, which has
become of great interest to a number of mathematicians. Recently Ben Moonen defined the
small and the big tautological rings for Jacobians modulo rational equivalence, both of which
surject onto the tautological ring of Beauville.

In this thesis, the notions of tautological rings of Beauville and Moonen are generalized
to pairs, consisting of an abelian variety and a subvariety. The tautological ring modulo
algebraic equivalence is then studied for the pairs: Prym variety P of a double cover C' — C
and Abel-Prym curve @D(C') Generators and certain relations, called “Polishchuk relations”,
for the tautological ring of the pair (P, (C)) are determined. Given a complete linear system
g, on C, Beauville constructed and studied two subvarieties V{ and V; of P, called special
subvarieties. He showed that Vy and V; have the same class in the cohomology ring of P. In
this thesis it is shown that in many cases V and V; are, in fact, algebraically equivalent. The
class of the union of Vy and V; turns out to belong to the tautological ring and is expressed

in terms of its generators.
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Chapter 1

Introduction

1.1 Tautological rings

For a non-singular variety V', we let CH(V') denote the Chow ring of V' modulo rational
equivalence with Q-coefficients. The quotient CH(V')/~,j, modulo algebraic equivalence is
denoted by A(V'). We work over C, the field of complex numbers.

Let X be an abelian variety. Besides the intersection product, the ring CH(X) is endowed

with Pontryagin product defined by

* *
T1 * Ty = M (pi71 - PaTa),

where m: X x X — X is the addition morphism and p;: X x X — X is the projection
onto the j* factor, [BL, p.530]. If VW C X are subvarieties, set-theoretically [V] * [W] =
{fv+w:v e V,we W} More precisely, [V] x [W] = deg(myxw)[V + W] if the addition

map m: V x W — V + W is generically finite, and [V] % [W] = 0 otherwise. Moreover, the



Chow ring of X is bi-graded,
CH(X) = €D CH"(X) ).
D,

The p-grading is by codimension. The Beauville grading (s) is characterized by: = €
CHP(X)(s) if and only if k*x = k* 5z for all k € Z, where k also denotes the endomor-
phism of X given by x — kz, see [Be86]. The (s)-component of a cycle Z is denoted by Z).
There is a Fourier transform

Fy: CH(X) — CH(X),

which has been defined by Beauville in relation to the Fourier-Mukai transform, see Section
2.4. The operations *, Fx and the bi-grading descend to A(X).

When X is the Jacobian J of a smooth curve C of genus g, we may fix a point o € C' and
embed C' in J via the Abel map ¢: x — O¢(x — 0). The small tautological ring taut(C') of
J is defined to be the smallest Q-subalgebra of CH(J) under the intersection product, which
contains the class of the image of C' under ¢, and is stable under the operations *, F;, k*
and k, for all k € Z. The big tautological ring Taut(C') is defined in the same way, except
it is required to contain the image of ¢,: CH(C') — CH(J), see [Mo, Def.3.2, p.487]. The
tautological ring for Jacobians was originally defined and studied by Beauville in [Be04] as
a Q-subalgebra 7 (C') of A(J) under the intersection product. In [Be04] it was shown that
T (C) is generated by the classes w!, ..., w9~!, where w9~? = (1/d!)C*?. The generators
for the tautological rings taut(C') and Taut(C') of the Jacobian J have also been determined
in [Po07, Thm.0.2, p.461] and [Mo, Thm.3.6, p.489], respectively. The rings taut(C') and
Taut(C') have the same image, namely .7 (C'), in A(J).

The following definition generalizes the notions of various tautological rings for a Jaco-

bian. The original idea of considering pairs is due to R. Varley.



Definition 1.1.1. Let X be an abelian variety and let V C X be a subvariety. The small
and the big tautological rings taut(X, V) and Taut(X, V'), respectively, of the pair (X, V)
are the smallest subrings of CH(X) under the intersection product, which contain [V] and
CH(V'), respectively, and are stable under the operations x, Fx,k* and k, for all k € Z. The
image of Taut(X, V) in A(X) is called the tautological ring of (X, V) and is denoted by
T(X,V).

Our definition of the tautological rings:
taut(J, p(C)), Taut(J, o(C)) and T (J, p(C))

coincides with the previous definitions denoted in [Mo] by taut(C'), Taut(C) and 7 (C),
respectively.

Let 7: C — C be a degree 2 morphism, which is either étale or ramified at two points,
and let J be the Jacobian of C. The norm map Nm: J — J takes a linear equivalence
class Y, pj] € J of degree zero divisors on C' to the linear equivalence class |3 ;D)) € J.
By [Mu74], the connected component of the identity in ker(Nm: J — J) is a principally
polarized abelian variety (P,£), called the Prym variety of C' — C. If we fix 6 € C, there
is a morphism ¢: C — P, called the Abel-Prym map, which is obtained by composing
C — J i Os(% — 6) with 1 — ¢: J — J, where ¢ is the involution induced by the
involution on C' exchanging the sheets of the cover. If C' is non-hyperelliptic, then 1 is a
closed embedding in the étale case, and identifies the ramification points in the ramified case,
[BL, Prop.12.5.2, p.378]. If C is hyperelliptic, ) has degree two onto its image.

The outline of the contents of this thesis is as follows. In Chapter 2, we collect the
foundational material that will be used in the sequel. In Chapter 3 we study the generators

and relations for the ring .7 (P,1(C)) under the intersection product. Consider the classes
o = Fr([Y(C))(n-1)) € A(P) for 1 < n < dim P. In Section 3.2 we show the following.



Theorem 1.1.2. The tautological ring T (P, (C)) is generated as a Q-subalgebra of A(P)

under the intersection product by the cycles ¢,, where 1 <n < dim P — 1 and n is odd.

In [Po05], a collection of relations, which we call Polishchuk relations, among the gen-
erators of .7(C) is obtained and studied. In Section 3.3 we show that Polishchuk re-
lations on J restrict to trivial relations on P, see Proposition 3.3.1. Also, using Pol-
ishchuk’s methods we find relations among the generators of .7 (P,1(C)), which resemble
those for Jacobians. To state the precise result, we recall some notation from [Po05]. Let
[1,7] :={1,2,3,...,r}. Assume that we are given integers k; > 1 for j =1,...,r. Given a

subset I = {iy,12,...,45} C [L.r], define the numbers:

(kiy + ...+ E;,)!

b(I) := ool g |

and  d(I):=ky +...+k, —s+1

Theorem 1.1.3. For each integer r > 1, odd integers ky,..., k. > 1, and each d with

0 <d <r—1 we have the relation,

m—1 —d—m~+r—>"_ k;
Z( )b(fl)"'b(fm) P Bl Cay = 0

o d+m-—r

in AP~4(P), where the sum is taken over all unordered partitions P, = {Iy,..., I} of [1,7]

into m disjoint nonempty parts such thatr —d <m <p—d+r—>3_ k.

In Chapters 4 and 5 we study the special subvarieties V; and V; of P associated to a
complete ¢ on C (see Section 4.2 for the definition of V4, V;). The Brill-Noether variety
W7 (C) parametrizes invertible sheaves L on C with degL = d and h°(L) > r + 1, see
[ACGH, p.153]. The expected dimension of W} (C) is the Brill-Noether number p(g,r,d) =

g— (r+1)(g —d+r). In Section 4.6 we prove the following.

Theorem 1.1.4. Assume that W} (C) is reduced and of dimension p(g,r,d). If p(g,r,d) > 0,

then Vi and Vi are algebraically equivalent.



Note that the inequalities d < 2g and 0 < 2r < d are needed for the special subvarieties
to be defined and homologically equivalent, respectively (see Section 4.2 for details). As a
consequence of Theorem 1.1.2, the tautological ring .7 (P, (C)) is spanned as a Q-vector

space by cycles of the form

() ) * [V (g * -+ [W(C)] ()

where n;,r > 0 are varying integers. In Section 5.2 we show that the class [V] of V := V,uV;
belongs to .7 (P, (C)) C A(P) and express [V] in terms of the generators of .7 (P,4(C)):

Theorem 1.1.5. If 0 < 2r < d < 2g, then the component of the class [V] in A9~ (P)w

is given by the formula [V = ct,,ﬂyd([w(é)]*’") where ¢y q are certain rational numbers

®)’

defined in Section 5.2.

Remark 1.1.6. The pairs: a Jacobian with an Abel curve and a Prym variety with an
Abel-Prym curve are special cases of a pair (X,7(C)), where X C J is a Prym-Tyurin
variety defined by the endomorphism o of .J satisfying certain properties and 7: C' — X is
the composition of an Abel map C' — J and (1 —0): J — X, see [BL, p.369] for details.
Moreover, every principally polarized abelian variety is a Prym-Tyurin variety, although not

in a unique way, [BL, Cor.12.2.4, p.371].

1.2 Notation and conventions

We work over the field C of complex numbers and the Chow rings are considered with Q-
coefficients. When we write “point”, we mean a closed point. The word “scheme” will mean
a noetherian separated scheme over C. By a node on a curve we mean an ordinary double
point (locally analytically given by xy = 0) and by a cusp on a curve we mean an ordinary

cusp (locally analytically given by y* = 23). By an (étale) double cover we mean a finite



(étale) morphism f: X — Y of schemes that has degree 2 on each irreducible component
of Y. m: C — C denotes a connected double cover, étale or ramified at exactly two points,
of a smooth curve C of genus g. (P,£) denotes the principally polarized Prym variety of
dimension p > 2 associated to 7: C'— C, where £ € A'(P) is the class of a theta divisor. If
7 is étale, p = g — 1, and, if 7 is ramified at two points, p = ¢. J and .J denote the Jacobians
of C'and C. We fix 6 € C and let ¢: C' — J be the Abel map x +— Og(z — 6). ¢ denotes the
involution on C' such that C'/¢ = C' and also the induced involution on J. We let u: J — P
be the restriction of (1 — ¢) on the image and ¢ := uw o ¢: C — P be the Abel-Prym map.
We take o = 7(6) and let ¢: C'— J be the Abel map x — O¢(z — 0). We take the Fourier
transform Fp: A(P) — A(P) to be Fp(x) = pa.(piz - €*), where £ := pi& + p5é — m*€ is the
class of the Poincaré line bundle on P x P, m: P x P — P is the addition morphism and
p1, p2 are the projections from P x P onto P. If X is a scheme, we say that a generic (resp.,
general) element x € X has property 2, if & holds on the complement of a countable union
of closed subschemes of X (resp., on a dense Zariski open subset of X). The Brill-Noether

number is denoted by p(g,r,d) =g — (r+1)(g —d+r).



Chapter 2

Equivalence relations on algebraic

cycles

2.1 Rational, algebraic, and homological equivalence

Let X be an irreducible projective variety of dimension n. Given an integer 0 < k < n,

consider the group Z;(X) of k-cycles on X, which are by definition finite formal sums
m121 + mQZQ + -+ ’ITLTZ,«7

where m; € Z and Z; is a k-dimensional subvariety of X. A k-cycle Z = ). m;Z; is called
effective if m; > 0 for all . By definition, two k-cycles Z and Z' on X are rationally
equivalent if there is an effective (k+1)-cycle V = 3", n;V; on X x P!, projecting dominantly

to P! (i.e., each V; dominates P!), and an effective k-cycle W on X such that

‘/|X><{b} =7 + W and ‘/\Xx{b’} = Z/ + W



for some points b,b’ € P!. We shall denote the group of k-cycles modulo rational equiv-
alence by CHy(X) or by CH" "(X) (the upper index is the codimension of the cycle). If
X is smooth, then CH(X) := @, CH'(X) has the structure of a graded (by codimension /)
commutative ring with 1 (= the fundamental class [X] of X') under the intersection product,
which is called the Chow ring of X, [Fu, 8.3, p.140] (note that CH'(X) is denoted by A'(X)
in [Ful).

A coarser equivalence relation on Z;(X), which is also of great interest, is algebraic
equivalence. The definition of algebraic equivalence is analogous to the definition of rational
equivalence, except instead of P! we are allowed to use any smooth connected curve C. The
group of k-cycles modulo algebraic equivalence will be denoted by A (X) (or by A" *(X),
if the emphasis is on codimension). When X is smooth, A(X) := @, A/(X) also has the
structure of a graded commutative ring with 1 (= the fundamental class [X] of X), which is
called the Chow ring of X modulo algebraic equivalence.

There is yet a coarser equivalence relation on Z;(X) called homological equivalence, which
comes from topology. One way to define this equivalence relation is to consider the singular
homology groups Hy(X). There is a group homomorphism cl: Z(X) — Ho,(X) called the
cycle class map, [Fu, p.372]. A cycle Z is homologically trivial if cl(Z) = 0. Two cycles are
homologically equivalent if their difference is homologically trivial.

The three equivalence relations on Zi(X) defined above are related as follows. Let
Rat,(X), Alg,(X), and Homg(X) be the subgroups of Z,(X) consisting of cycles that are
rationally, algebraically, and homologically equivalent to zero, respectively. We have inclu-

sions of groups

Raty(X) C Alg,(X) C Homg(X).

As pointed out in [B176b], Alg, (X)/Rat,(X) should be thought of as the “continuous” part
of CHy(X). However, A;(X) = Z,(X)/Alg,(X) need not be finitely generated, as we’ll see.



There are group homomorphisms CHy(X) — Ax(X) — Hax(X). However, the following
examples show that the three equivalence relations can be very different. If X is a generic
quintic threefold in P* or a generic abelian threefold (Hom;(X)/Alg;(X)) ® Q is infinite
dimensional, [Cl, No]. If X is a non-singular projective variety of dimension > 2 with
RO(X, Q%) > 0 for some g > 2, then Alg,(X)/Rato(X) is larger that the group of rational
points on any abelian variety (for precise statements see [Mu68] for the case dim X = 2 and
[Ro] for the general case). On the other hand, there are examples of Fano threefolds for
which Alg, (X)/Rat;(X) is isomorphic to an abelian variety, see [B176b, BlMur]. Also, there
are algebraic varieties, for example flag varieties, for which all three equivalence relations
coincide.

Cycles of dimension n — 1 (equivalently, of codimension 1) on X are of special interest
and they are called divisors. Algebraic and homological equivalence coincide for divisors and
are in general strictly coarser than rational equivalence, which for divisors is usually called

linear equivalence, [Fu, 19.3.1, p.385].

2.2 Facts from intersection theory

We shall repeatedly use the following facts from intersection theory. For simplicity we
assume that X and Y are projective varieties, although the results stated below hold in a

more general setting.

1. Pull-back: If f: X — Y is either a flat morphism or an l.c.i. morphism, then there is
a group homomorphism f*: CH(Y) — CH(X), called the pull-back. If X and Y are
non-singular, f* is a ring homomorphism. If f is flat, then for a subvariety V' C Y,

(W) = [f~1(W)], [Fu, 1.7, p.18; 6.6, p.112].

2. Proper push-forward: If f: X — Y is a proper morphism, then for every k there is
a group homomorphism f,: CHy(X) — CHg(Y), called push-forward. If V. C X is a

9



subvariety, put W = f(V') and let deg(V/W) be the degree of fiy: V — W or 0 if fii
is not finite, then f.([V]) = deg(V/W)[W], [Fu, 1.4, p.11]. Note that f, is not a ring

homomorphism for the intersection product.

3. Projection formula: For any o € CH(Y'), 8 € CH(X): f.(f*a-8) = «- f., whenever

all the operations involved are defined.

4. Flat base change of a proper morphism: 1f g: S — Y is flat and f: X — Y is proper,

form the fiber-product diagram:

then for any o € CH(X): g*f.a = (f)«(¢')*a.

2.3 Basics on cycles on abelian varieties

Let (X, 0) be a principally polarized abelian variety (ppav) of dimension g. The dual
abelian variety is denoted by X* := Pic’(X) and we let \g: X — X' be the isomorphism
induced by § € CH'(X). There are two ring structures on CH(X): intersection product and
Pontryagin product. As we have seen, pull-back is a ring homomorphism for the intersection
product, but push-forward in general is not a ring homomorphism for this operation. On the
other hand, push-forward by a homomorphism of abelian varieties is a ring homomorphism
for the Pontryagin product *, but pull-back is not in general a ring homomorphism for ,
[La, p.9; MvdG]. The relationship between the two products has been studied in [Po08] and
[Bl76a, Lem.1.1, p.218].

10



In what follows we shall consider the rings CH(X) and A(X) with Q-coefficients, that is,

tensored by Q, without changing the notation.

2.4 The Fourier transform

A brief historical account is as follows. It appears that the Fourier transform on the
cohomology ring was defined for the first time in the paper [Li] of Lieberman. In [Muk],
Mukai gave a more general definition on the derived category of an abelian variety. In [Be83,
Be86], Beauville introduced and studied the analogous notion on the Chow ring. Since its
appearance, the Fourier transform in all of its incarnations has been a powerful tool in the
study of abelian varieties and was generalized to other settings as well. In what follows,
we shall be working with the Fourier transform on the Chow ring CH(X) and the Chow
ring A(X) modulo algebraic equivalence. The definitions and properties below are stated for
CH(X) but they hold verbatim for A(X).

Let ¢ := pi0 + p50 — m*0 be the first Chern class of the Poincaré sheaf on X x X, where
m: X X X — X is the addition morphism and py,ps: X x X — X are the projections. The
Fourier transform Fx: CH(X) — CH(X) on the Chow ring of X is defined by the formula

Fx(z) = pz,*(ee - piz).

Note that usually the Fourier transform takes objects on X to objects on the dual abelian
variety X*. More precisely, let us denote the “usual” Fourier transform by #x: CH(X) —

CH(X"), whose definition is

Fx(z) = pxe. (¥ - pi2),

where py, pxt are the projections from X x X' and Iy := (1x X A\g)*/ is the first Chern class

of the Poincaré bundle on X x X*. Since )y is flat and px: is proper, then by Section 2.2,

11



item 4, and the Cartesian diagram

lxx)\g

X x X X x Xt
p2l lpxt
X o Xt

we obtain

(()\9)* o ﬁ’x) (2) = (M) Dxt (elX p}z)
= pa(1x X Ag)* (e - pi2)

= pa(e - piz) = Fx(2).

Therefore, the two definitions are related by the formula Fx = (M\g)* o Fx.
Let Y be a ppav of dimension h and let f: X — Y be a homomorphism of abelian
varieties. The dual homomorphism f*: Y — X' is defined by L + f*L. The main properties

of the Fourier transform that we shall use are the following:

(P1) Fx o Fx = (=1)*(=1)%

(P2) Fx(xxy) = Fx(z)- Fx(y) and Fx(z-y) = (=1)7Fx(2) * Fx(y);
(P3) Fx(z) =€ ((z-€?) xe?), where z = (—1)*x.

(P4) Fy o fo=(f")" 0o Fx and Fx o f* = (=1)9""(f!), o Fy;

Proof. For proofs of (P1) and (P2) we refer to [Be83, Prop.3, p.243] or [BL, Ch.16]. The
property (P3) is taken from [Be04, 2.3iv, p.684] and the proof is as follows. Let w: X x X —
X x X be the automorphism (z,y) — (—z,z + y), then p; ow = —py,py 0o w = m, and

m ow = po. Therefore, substituting the definition of ¢ and using the fact that (—1)*¢ = 0

12



we obtain:
Fx(x) = pau(e’ - pia) = e’ pa(pi(e’ - z) -e7™)
= e'pow (pi(e” - x) - e ) =€ mu((—pr) (€ - @) - eT)
= 'm.(pi(z-e”) - py(e””)) =€’ - ((T-e”) x ™).
A more general version of (P3) is proven in [Po08, Lem.1.4, p.707].

The identities in (P4) were originally stated for an isogeny [Be83, Prop.3(iii), p.243], but
they hold more generally for any homomorphism of abelian varieties, see also [MvdG]| for
the proof of %y o f, = (f')* o Fx in the setting of abelian schemes. The proof of (P4) is
as follows. Let py,py: and qx, qy: be the projections from Y x Y* and X x Y* onto the
indicated factors. As above, we let [x and ly be the first Chern classes of Poincaré bundles

on X x X" and Y x Y, respectively. On the one hand,

Ty (fiz) = pyea (€Y -0y fu(2)) = pyen (€ - (f X 1ye)uqx2)

= pyes(f X 1ye) ((f % Lyt)*el qxz) = gy ((1x X fhyrelx S qx2),

where for the last equality we used the identity (f x 1y¢)*ly = (1x X f")*Ix, which follows
from the universal property of the Poincaré bundle [BL, Prop.2.5.2, p.38|.
On the other hand, using the Cartesian diagram

XXYt%XXXt

qyt l ipxt
ft

v X!

Y

13



we may compute:

(f)" 0 Fx(2) = (f)pxrs (€™ px(2))
= gy (1x % )" (e px(2))

= gy ((Ix % f9)"e™ - qk(2)).

This shows the first identity: Zy o f, = (f*)* o Zx.
To prove Fx o f* = (=1)9th(f), o Fy, we apply the first identity to f! and use (P1)
and the fact that (f*)" = f under the canonical identifications of (X')" with X and (Y*)!

with Y:

2.5 The Beauville grading

The Chow ring of X is graded by codimension, CH(X) = €?_, CH*(X), where CH*(X)
is the group of codimension a cycles on X modulo rational equivalence. There is a second
grading, which is due to Beauville [Be86], and is defined as follows. For k € Z, let k: X — X

also denote the morphism x — kz. For any 0 < a < g, let CH*(X)(,) be the subgroup of

14



CH®(X) consisting of classes x with the property k*z = k**~*z for all k € Z\{0}. In other
words, CH*(X)(,) is the simultaneous eigenspace of weight 2a — s for the operators k*. In
[Be86], it is shown that CH*(X) = @;_,_, CH"(X)(). Note that there is an alternative
characterization: © € CH*(X)y) if and only if k,x = k*~2*"z for all k € Z\{0}.

Moreover, in [Be86, p.255], it was conjectured that CH*(X)() = 0 for all s < 0 and all a.
This has been verified by Beauville and Bloch for a € {0,1,9 — 2,9 — 1, ¢}, [Be86, Prop.8,
p.255; Bl74a, Thm.4.7, p.227].

Note that CH’(X) = CH%(X)(). Also, CH'(X) = Pic*(X)g and CH' (X)) =
Pic’(X)g, where Pic®(X)g is the subgroup of symmetric invertible sheaves, tensored with
Q. Thus, the Beauville decomposition of CH'(X) can be reinterpreted as the fact that any
Q-divisor D on X can be written as a sum of a symmetric Q-divisor and an algebraically
trivial Q-divisor:

D+ (-1)*D D—(=1)*D

D—
2 + 2

and the summands are unique up to linear equivalence.

Also, AY(X) = AYX)() =~ Pic*(X)g ~ NS(X)g, where NS(X)g is the Néron-Severi
group of X consisting of Q-divisors on X modulo algebraic equivalence.

Furthermore, the Beauville grading is preserved by the following operations on cycles on

abelian varieties:
(P5) FxCH*(X)(s) = CH "™ (X)(s);

(P6) if 2 € CHYX)(y and y € CH"(X)w), then 2 -y € CH™(X)uy and z xy €
CH"™9(X) (s40);

(P7) if f: X — Y is a homomorphism of abelian varieties, then f*CH"(Y");) € CH"(X)s)
and f.CH"(X),) C CH*"(Y)s), where ¢ = dimY — dim X.

Proof. See [Be86, Prop.2, p.648] or [BL, 16.5, p.534]. ]
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2.6 Examples

Put ¢, := {{s3xx, let [X] be the fundamental class of X, and for a point € X, let

[z] € CHY(X) be its class. We shall use the following additional properties of Fy:
L Fx(X]) = (=1)?[0] and Fx([0]) = [X];
2. Fx(l) = (=1)9 325 (0] — [¢])*" and Fx([z]) = ™,

whose proofs follow immediately from [BL, Cor.16.3.3, p.529; Prop.16.3.6, p.531] using the
fact that Fx = (A\g)* o Zx (F in [BL] is our Fx).

Note that since any two points on X are algebraically equivalent (X is assumed to be
connected), then A9(X) ~ A9(X ) ~ Q. In particular, A9(X),) = 0 for all s > 1. By
Fourier dualty A™(X), = 0 for all m > 1. Also, A°(X)p) = Q- [X] and A'(X) ~
A (X)) =Q-90.

Example 1. Let E be an elliptic curve with a marked point 0. We may take 6 = [0].
We have CH'(E) (1) = Pic’(E)q, CH'(E)) = Q- [0], and CH°(E) = Q- [E]. The Fourier
transform exchanges CH(E) and CH'(E) g by sending [E] to —[0] and sends CH'(E) ) to
itself by the rule ¢, — [z] — [0].

Modulo algebraic equivalence, A'(E);) = 0 and Fx exchanges A°(E) = Q - [E] and
AY(E) ) = Q- [0] as above.

Example 2. Let (S, 0) be a principally polarized abelian surface. Then CH"(S) = Q-[9];
CH'(9)1) = Pic”(S)g, CH'(S)(0) = Q- 6. The Fourier transform induces isomorphisms
CH"(S) — CH?*(S)() and CH'(S)u) — CH?*(S)u) and automorphisms of CH'(S)() and
CH?(9)(2). Since the geometric genus py(S) = 1, by a theorem of Mumford [Mu68], CH?(S)
is “infinite dimensional”, i.e., is larger than the set of closed points of any abelian variety.

By Fourier duality, CH?*(S)) ~ CH'(S)1) ~ Pic’(S)g and CH?*(S)(g) ~ CH’(S)) ~ Q
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are “finite dimensional”, we see that CH?(S)() is the part that makes CH*(S) “infinite
dimensional”.
Modulo algebraic equivalence, the only non-zero groups are A°(S), A'(S) o), and A%(S) o)

each of which is isomorphic to Q.

Example 3. Let X be a principally polarized abelian threefold. If X is generic, then
by a theorem of Nori [No] (see also [Ba]), A*(X) is infinite dimensional as a vector space
over Q. Since A*(X)() = 0 and A%(X) ) ~ Q, then we conclude that A*(X ) is the part
that makes A%(X) infinite dimensional, see also [CoPi]. The Fourier transform induces an

automorphism of A*(X)).
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Chapter 3

Tautological rings modulo algebraic

equivalence

Throughout this section 7: C' — C' is a connected double cover, which is either étale or
ramified at two points. Also, we shall use the following additional notation. The translation
map z — & 4 a on an abelian variety is denoted by 7,. Let i: P < J be the inclusion of the
Prym variety P into the Jacobian J of C. Let ©;, © 7, and = be theta divisors on J, J, and
P, respectively, such that O ; restricts to 22 on P. Let .Zp be the Poincaré sheaf on P x P
normalized by the conditions Zp|pxp ~ Lp|pxpy ~ Op(E — 7, E) for all b € P. Let £

and .%; be Poincaré sheaves on J x J and J x J, respectively, normalized analogously.

3.1 The Fourier transform of an Abel-Prym curve

In this section we compute the Fourier transform Fp[)(C)] of an Abel-Prym curve in
A(P) and obtain a formula analogous to the one in [Be04, Prop.3.3, p.685]. The formula

for Fp[1p(C)] can also be deduced from [Na, Prop.3.1, p.226], where the K-theoretic Fourier

transforms of certain bundles on J are related to their counterparts on P.
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Recall that ¢ and § denote the genera of C' and C, respectively, and consider the classes
1 g
~G—d ._ " Axd k() . - k
Wi = d!C and N¥(w) = o El AL

where \i,..., \; are the roots of the equation A9 — M 1@! + ...+ (=1)9w9 = 0. The classes
N¥(w) are Newton polynomials in the classes w' and are used to express the Chern character
of a vector bundle in terms of its Chern classes, [Fu, Ex.15.1.2, p.284]. Recall from the
introduction that i: P < J is the inclusion and u: J — P is the morphism (1 —¢): J — J

restricted to P on the image.

Lemma 3.1.1. The Fourier transforms on P and J are related by the formulas
Fpou, =i oF; and Fpoi* = (=1)7"u, o F;,

where § = dim J and p = dim P.

Proof. By definition, the composition

P Pt
is the inclusion i: P < .J. Therefore, using (P4) we obtain:

fPOU*ZAzoypOu*:)\ZO(ut)*09~:)\ZO(ut)*o()\é_l)*fj:i*on.

On the other hand, i = (A\;' o 0 Ae)" = (Ae)' oo (A7) = Aeouwo AJ?, and therefore,

)\5_1 0i' o Ay = u. Thus, using (P4) and the identity (\¢)* = ()\gl)* (remember that ¢ is an
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isomorphism), we obtain the other part of the lemma:

Froi® = (A) o Fpoi® = (1P 1), o (i'). 0 7

O

Proposition 3.1.2. The Fourier transform of the class of the Abel-Prym curve w(é) on a

Prym variety P of dimension p is given by the formula:
Fpl(C)] = —("N' (@) + ... +i* NP ().

Proof. By [Be04, Prop.3.3], F;[¢(C)] = —(N'()+. ..+ N9(w)). Therefore, by Lemma 3.1.1
we get Fp[t(C)] = (Fpow)[3(C)] = (" 0 FP[R(C)] = —(*N' (@) + ... + " NP(@)). O

3.2 (Generators

Let [4(C)] = [¥(C)] o)+ - -+[¥(C)](p-1) be the decomposition of [¢/(C')] into homogeneous
components for the Beauville grading, i.e., [¢(C)]m) € AP~ (P) ).

Definition 3.2.1. For each 1 <n < p = dim P define the cycle ¢, = Fp([(C)]n-1))-

Note that by [Be04, Cor.3.4, p.686], N"(w) € A™(J)n-1), and therefore, by Proposition
312, (, = —t*N"(w) € A"(P)(n-1). Furthermore, since Fp o Fp = (—1)P(—1)*, then
Fp(G) = (=17 [(C))(n_1). The main theorem in [Be04] gives a set of generators for

the tautological ring of the Jacobian of a smooth connected curve. In the remainder of this

section we shall show how to extend the argument in [Be04, Sec.4] in order to obtain a set

of generators for .7 (P, ¢(C)).
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Consider the Q-vector subspace .7 of A(P) spanned by the cycles of the form

Cn1 : Cn2 o 'gnra

where 1 < n; < pand r > 1 are integers. The image Fp(.7’) of &' under Fp is spanned as

a (Q-vector space by the elements of the form

fP(Cnl : Cn2 e Cnr) = j:[l/)(c)]ﬁu—l) koo x [¢(C>](nr—1)

We have the following lemma, whose proof is taken from [Be04, Lem.4.2].

Lemma 3.2.2. Fp(.7") is spanned by the classes (ki [1(C)])*- - - (k. [0(C)]), where r and

k1, ..., k. are positive integers.

Proof. Since k. [1)(C)] = P28 K>+ [1)(C)] () then

(k[ (ON) % (ke [(ON]) = (Ra ==k )® D K R [(O) ]y # - % [0(C) )

where the sum is taken over n = (ny,...,n,) € [0,p— 1]". So, we see that (ky,[t)(C)]) * - - - *
(kpi[t(C)]) belongs to Fp(.7"). We claim that we can choose p” r-tuples, k = (ki ..., k),
which make the p” x p" matrix (axn) with entries ax n := k{* - - - k' invertible (n runs through
[0,p —1]"). For each 1 < ¢ < p", let ko := (¢, fp,...,épT_l), then det(ak,n) is a non-zero
Vandermonde determinant. Hence, the matrix (ak,n) is invertible. This shows that each

cycle [0(C)]nyy * -+ * [¥(C)](ny) can be expressed as a Q-linear combination of cycles of the
form (k1. [t (C)]) * -+~ # (kru[2(O)]). O

Theorem 3.2.3. The tautological ring T (P, (C)) is generated as a Q-subalgebra of A(P)

under the intersection product by the cycles (,, where 1 <n <p—1 and n is odd.
Proof. First, we note that ¢, € AP(P)(-1) = {0} (recall from Section 2.6 that AP(P)) =0
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for all s > 0 and p > 1 by assumption), hence (, = 0. Also, since ¥(C) has symmetric
translates, [1/(C)](,) = 0 for all odd n, and therefore, ¢, = 0 for all even n. The rest of the
proof proceeds as in [Be04, Sec.4]. First, we note that ¢, € 7 (P, Y(C)) forall 1 < n < p, and
therefore, 7' C T (P, (C)). We shall show that .7" = .7 (P,¢(C)). By definition, .7 is
generated as a (Q-algebra under the intersection product by elements which are homogeneous
for the Beauville grading, and therefore, .7 is stable under the intersection product and the
operations k., k*. Thus, to prove the equality .7’ = 7 (P, (C)), we must check that .7
contains [1/(C)] and is stable under Fp and .

Assume that " is stable under Fp. Then (—1)P~"*'[t)(C)](n_1y = Fp((,) implies that
T contains [(C)] = 3, [W(C)]my. Also, given x; € T, let ; = (=1)?(=1)*Fp(z;) € T’

for i = 1,2. Using [P1, Sec.2.4; Lem.3.1.1] we obtain:
Fp(2:) = (=1)P(=1).Fp o Fp(x;) = (=1)"(—1).(=1)"(=1)"z; = x;,

and therefore, x1 x x9 = Fp(1) * Fp(Z2) = (—1)PFp(iy - &) € T’ by [P2, Sec.2.4]. This
shows that it suffices to prove that .7’ is invariant under Fp, which we do next.

Since .7’ is stable under the intersection product, Fp(.7') is stable under Pontryagin
product. Furthermore, by [P3, Sec.2.4], Fp(z) = €* - ((z - €) x e7%), where 7 = (—1)*z.
Thus, to prove the inclusion Fp(7') C 7’ it is enough to check that Fp(.7’) is invariant
under intersection with &.

By Lemma 3.2.2 it suffices to show that £ - ((kl*[w(é’)]) ke ok (k:r*[l/z(é')])) belongs to

Fp(7"). Consider the composition

P,

where ¢ = (¢,...,%), k = (k1,..., k) with k;:  — kiz, and m: P" — P is the addition
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morphism. Note that

u[CT] = (ke [W(O)]) * - - * (e [0 (O)))-

Therefore,

Hence, it suffices to show that v,v*¢ € Fp( 7).

By the theorem of the cube [Mu70, p.55], we have
mE =Y pi&—> phei(Le),
i i<j

t

where p;,p;; are projections from P" onto the ith ith and j* factors, respectively. This,

together with k¢ = k2 and (K, kj)*c1(Lp) = kikje1(Lp), implies that

VE= D RGYTE =Y kikyal (b, v) e (Lp), (3:2.1)

1<j

where ¢;, ¢i; are projections of C” onto the ", i*" and j* factors, respectively.
Next, we compute (¢,1)*c;(-ZLp). The result [BL, Prop.12.3.4, p.374] in our notation

states that 20 ; ~u, Nm*(0 ;) +u*E. Consequently, the following identity holds in A(.J x .J)
(u,u)"c1(Lp) = 2¢1(L5) — (Nm, Nm)*c; (). (3.2.2)

Let Az and A¢ be the diagonals in C x C and C x C, respectively. Applying the See-saw

theorem [Mu70, p.54], we see that

(@, (ﬁ)*gj ~ OCQ (Aé —(Cx0—0X C) (3.2.3)
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and likewise (@, v)*.Z; ~ Oc2(Ac — C' x 0 — 0 x C). Using the commutative diagram

- -~ (33 ~ -

CXC%JXJ

(7r7r) (NmNm)
(oyp)

we obtain

(Nmo@,Nmo @)% ~ (m,7)" Oc2(Ac — C x 0—0 x C). (3.2.4)

Since ¥ = u o @, then from (3.2.2), (3.2.3) and (3.2.4) we obtain:

() 1 (L) = (6, @) (1, u)*e1 (L)
= 23, @) e1(Z) — (3, 8)"(Nm, Nm)*e: (Z))

= 2(957 @)*Cl($j> - (Nm © 957 Nm o ¢>*Cl($J)

~ag 2(Apg —Cx0—0xC)— (m,m1)"(Ac —C xo0—o0xC).

Furthermore, (7, 7)*A¢ = Ag + (1,1)*Ag, where 1: €' — C denotes the identity morphism,

and therefore,

(¥, 9) c1(Lp) ~ag A — (1,0)"Ap (3.2.5)

Substituting (3.2.5) into the identity (3.2.1), we see that v*¢ is algebraically equivalent to a
linear combination of divisors of the form ¢;6 and ¢;;3*As, where 3 is one of the morphisms

(1,1) or (1,¢). The cycles v.q;;As and v.q;;(1,1)*Ag are proportional to cycles of the form

([ (C)]) % -+ (-1 (O)]), where (1, ..., L) is
(koo ki kg ke k4 k) and (ky, . ke kg, ke s — k),

respectively, and the symbol k/:\] means that k; is omitted from the list. Since v,g;0 is
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proportional to the cycle (ki [1/(C)]) * - - - % (kp[10(C)]) with ki, [10(C)] omitted, we see that
v,0*¢ belongs to Fp(T"). O

Modulo homological equivalence, the tautological ring of the Jacobian J is the subalgebra
of H*(J,Q) generated by the class 0 of the theta divisor on J. If C is generic of genus > 3, the
Ceresa cycle C'— (—1)*C' is not zero on J modulo algebraic equivalence, [Ce]. In particular,
this implies that C' is not proportional to a power of § in 7 (J,¢(C)). Indeed, any power
of 0 is symmetric, i.e. is stable under (—1)*, which is not the case for any non-zero scalar
multiple of C. Hence, at least for a generic Jacobian, .7 (J, ¢(C)) is not generated by 6. As
in the case of J, the tautological ring of the pair (P, w(é)) modulo homological equivalence
is the subalgebra of H*(P,Q) generated by &, the class of the principal polarization of P.
On the other hand, in contrast with Jacobians, for any Prym variety (P,¢) the Ceresa-
type cycle [(C)] — (=1)*[1(C)] is zero in 7 (P, (C)), because the Abel-Prym curve has
symmetric translates. Nevertheless, if P is generic and of dimension p > 5, then by the
proof of [Fa, Thm.4.5, p.117], the class ([¢)(C)]*") ) is non-zero in A(P) for 1 <r < p — 3.
Also, A?(P)(1) = 0, because AP(P) ~ Q ~ AP(P)(). Since Fp: AP(P)qy — AY(P)q) is an
isomorphism, then A'(P)«y = 0, and therefore, A'(P) = A'(P)q). This shows that [¢)(C")] )
is not in the subring generated by &, because § = &g, and thus, &~ € AP~1(P)y by [P6,
Sec.2.5]. Therefore, if P is generic and of dimension > 5, the tautological ring T (P, (C))

18 not generated by &.

The Torelli theorem [ACGH, p.245] for principally polarized Jacobians implies that every
principally polarized Jacobian has a unique tautological ring in the sense of [Be04]. It is well
known that the Torelli theorem does not hold for Prym varieties, which means that a given
principally polarized abelian variety may have a structure of a Prym variety in multiple
ways. As a consequence, given a Prym variety P, we may have choices for an Abel-Prym

curve, which a priori may give different tautological rings of pairs (P,1(C)). There are
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four explicit counter-examples to the Prym-Torelli problem: covers of hyperelliptic curves,
Donagi’s tetragonal construction, Verra’s construction with plane sextics, and the recent
construction of Izadi and Lange using ramified covers, [Mu74, p.346; Do; IL; Ve]. We do not
know whether the tautological ring of the pair (P,1(C)) is always independent of the choice
of an Abel-Prym curve. One approach to answer this question is to see whether the various
Abel-Prym curves are algebraically equivalent on the Prym variety. As explained below, the
answer to this question is known in the case of general (resp., generic) Pryms of dimension
2 <p <4 (resp., p>6).

Let Z, and 7, 1 be the moduli spaces of étale double covers of smooth curves of genus g
and principally polarized abelian varieties of dimension g — 1, respectively. The Prym map
P Ky — A,y associates to an étale double cover the corresponding Prym variety. We
know that the general fiber of the Prym map is connected, whenever 2 < g — 1 < 4, see
D092, §6; 1295]. Therefore, on general Pryms of dimension 2 < p < 4, the Abel-Prym curves
are algebraically equivalent. According to [DS, Thm.2.1, p.34], the Prym map %5 — <% has
degree 27. We do not know whether the 27 Abel-Prym curves on a generic Prym of dimension
5 are algebraically equivalent or not. Finally, we remark that due to the generic injectivity
of the Prym map for curves of genus g > 7 [De, Ka, FS, We87], a generic Prym variety P
of dimension > 6 has a unique Abel-Prym curve w(é), and therefore, the tautological ring

of the pair .7 (P,(C)) depends only on P.

3.3 Polishchuk relations and the sl, action

By [Ku], any polarization (the class of an ample symmetric divisor) on an abelian variety
X gives rise to an sly := sl5(Q) action on CH(X'), which descends to an sl action on A(X).

Let sl =Q- f+ Q- h+ Q- e with [e, f] = h;[e, h] = —2¢;[f, h] = 2f. We normalize the sl
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action on CH(.J) as in [Mol:

Analogously, the sl action on CH(P) is given by:

e(a) =—¢-a,  fla)=—[(C)]@) *a, hewi(py,, = (20— j — p)id.

When 7: C — C'is étale, § = 2g—1 and dim P = g—1, and, when 7: C' — C'is ramified

at two points, § = 2¢ and dim P = ¢. Following [Po05 and Mo|, let

By [CvG, Thm.1.3(3); Po05, Cor.0.2, p.877|, p, =0 forn > g/2+1, i.e., for n > g+1. Thus,
T(C) := F(J,p(C)) is generated by py,...,p,. In what follows we shall use the notation
p[ld] = p?/d! for d > 0 and p[ld} =0 for d < 0, following [Po05], and the analogous notation

M.~ ¢d4/d) for d > 0 and ¢! := 0 for d < 0.

The relations in the rings .7 (C), taut(C), and Taut(C') have been studied recently in
[CvG, He, vdGK, Po05, Po07, Mo]. In [Po05], Polishchuk developed a powerful tool for
producing relations among the generators of .7 (C'). Consider the operator 2, which acts on
A(J) as —f € sly, that is, Z: a — [3(C)]() * a. Note that [3(C)]) * a = Fj(p -.7-"}1(04)),
and S and U in [Po05] are our F; and Z, respectively. It turns out that 2 is a differential
operator with respect to the intersection product and can be described as follows. Let

R = Q|x1, 3, .. .] be the polynomial ring in infinitely many indeterminates with degx, = n
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and consider the differential operator

2 n

m,n>1

1
D = —§81 + - Z (m N n) $m+n—laman7

acting on R, where 0y, = 0,, is the partial derivative with respect to z;. Let k: R — 9(6’)
be the surjective map xz, — p, for n > 1. By [Po05], Kk o D = & o k, which describes the
action of Z explicitly.

Polishchuk showed that the polynomials of the form F(z1,zs,...) = D" - - - ™) with
d>0, Zle im; = §, and my < § give the relations F(py,pa,...) = 0 in .7 (C), see [Po05,
Thm.0.1(i); Mo, 2.1, p.476]. We shall call these relations Polishchuk’s relations. Note that
with the above assumption on the m;’s, we have p{"* ---p;"* € Aé(j)(s) with s > 0 because
my < §. Since A9(J)(s) = 0 for all s > 0, then p}™ - - p;** = 0. Following [Mo)], we shall call
the relations of the form pi™ ---p/™* = 0 with Zle im; = g and my < g trivial relations.
Thus, Polishchuk started with trivial relations and after applying powers of & obtained new
relations many of which were no longer trivial. Polishchuk conjectured that for a generic

curve, this procedure gives a complete set of relations among the generators for .7 (C'), [Po05,
p.879].

Next, we observe that Polishchuk’s relations “descend” to relations among the tautolog-
ical cycles on P. Indeed, by Proposition 3.1.2 and Theorem 3.2.3, the restriction homomor-
phism i*: A(J) — A(P) induces a surjective ring homomorphism (under the intersection
product): i*: F(J) — F(P,1(C)) such that p, — ¢, for all n. Thus, polynomial relations
among the p,,’s restrict to analogous polynomial relations among the (,’s. However, we have

the following proposition.

Proposition 3.3.1. All Polishchuk relations among the generators of 9(6’) become trivial

after restriction to P.

Proof. By [Po05, Thm.0.1, p.876 and 2.3(ii), p.885], any Polishchuk relation can be written
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as

~ k "
gd(p[lg 2z ]pn1 o Pp,) =0, (3.3.1)

where n; > 1 for all ¢ (Polishchuk’s U and g are our & and g, respectively). For the above
relation to be non-trivial we must have Ele n; < gand d < k — 1. As a consequence,
k < g/2, and therefore, g —d > §/2+ 1. Since 2(AY(P)) C A""}(P), then the left hand side
of (3.3.1) is homogeneous of degree g — d. Since § —d > §/2+ 1 > dim P, then the above

relation becomes 0 = 0 after pull-back by 7*. O

By analogy with [Po05], let us consider the operator
Dp: A(P) — A(P),  aw [(C))e) *a,

which can also be written as Zp(a) = Fp(¢; - Fp'(a)). Let Rp := Q[x1, 73,75, . ..] be the
polynomial ring in infinitely many indeterminates with odd indices and degx,, = n, and let
kp: Rp — F(P,(C)) be the natural homomorphism , + ¢,. In what follows we shall
compute, similarly to [Po05], a differential operator Dp on Rp such that kpo Dp = Ppokp.

Given integers ky, ..., k,, define the cycle

@kt k) = (kL [(O)]) %5 (ke [0 (O)).

Note that w(ky, ..., k) is related to Polishchuk’s w(ky, ..., k) € A(J), [Po05, p.881], by the

formula w, (w(ky, ..., k) = @(k1, ..., k). By analogy with [Po05, Lem.2.2], we have:

Lemma 3.3.2. Given integers r > 1 and ky, ..., k,, the following identity holds in A(P):

& wlh,... k) =2pY Kwlky,. .. k... k)
=1

_Zkzkj(w(kl—i_k];?/k\u7/k\'j77k7‘)_w(kz_kj77/]%1777%_777]{7'))

1<j
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Proof. Using the notation of the proof of Theorem 3.2.3 we have:

VE=Y KIGUtE— Y kikgl (v, 1) i (ZLp)
i=1

1<i<j<r
=2 kqlol — Y kikigl(Ae — (1,0 Ag).
i=1 1<i<j<r
Since & - w(ky, ..., k) = v,0*¢, the result of the lemma follows from the formulas:

~

’U*q;}Aé:ZU(]{ZZ‘+kj,...7ki,...,7€\j,...,kr>

U*q;}(l,b)*Aé = ZU(]{?Z - kj, ce ,?{Z\u .. .,k’j, .. .,kr).

Let Q(t) := Zf:_ll ;t', where t is an indeterminate. We have the following lemma.
Lemma 3.3.3. There is an identity of polynomaials in ty, ..., 1,

—

PZp(Q(t1) - Qt,)) = _sztiQ(tl) Q) - Q(t)

D (G 8)Qt 1) — (8 = £)Qt: — 1) Q(tr) -+ Q(t) - Q(ty) -~ Q(t,).
1<i<j<r
Proof. First, for any integers ki, ..., k,, using Proposition 3.1.2, we obtain the formula:

Fp(w(ky, ... k) = ki k.Qk1) - - Q(k,.).

Using this formula together with Lemma 3.3.2 and the fact that Zp(a) = Fp((;- Fp'(a)) =
—Fp(€ - Fp'(a)) we may check that the identity of the lemma holds if t; = k; for all

t=1,...,r. Since kq, ..., k, are arbitrary integers, the identity of polynomials follows. [J
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Proposition 3.3.4. For any integer n > 0 and any odd integers ki, ..., k. > 3:

Io(cGy - G) = 2(—ptn—1+ S (ki + )G, G,

=1

+2 Z (k+k><1 <k+k Gy + Cz Z’;er

1<i<y<r

Proof. First, note that for any integers ng,...,n,, not necessarily odd, @p((l[n] Coy =+ Cpy) 18
equal to 1/n! times the coefficient of 1 - - - ¢77¢" in Zp(Q(t1) - -- Q(¢,)Q(t)™). The coefficient

in question can be computed:

( —2pn+2n(n —1) 4 2n Z(”z + 1)) T

=1

+ ) (1+(—1)"j1)(m+nj)€1(nl+n]1Cm"'Cm' oy G

1<i<j<r

If we take n; = k; odd for all i = 1,...,r, then the above expression can be rewritten as
2n(—p+n—1+4> (ki+1)G "G G (3.3.2)
i=1
ki + k; —~ ~
2 % ( >Q@+k1@f~@,~@,~@ﬁ
1<i<j<r
and the result follows after multiplying by 1/n!. ]

Theorem-Definition 3.3.5. The operator Pp acts on T (P,(C)) in the same way as the

operator

Dp = —2]?81 + Z (mﬂ—: n) xm—&—n—laman

m,n>1
odd

acts on Rp (the summation is over all odd integers m,n > 1). More precisely, kp o Dp =

Dp o Kp.
Proof. By looking at the Expression 3.3.2 in the proof of Proposition 3.3.4, we see that Zp
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acts as the differential operator

2(—p — 1)O) + 201010 +2 Y (m + Ddndy + (m; ”) Lot 1O

m>3 m,n>3
odd odd

The desired result follows by rewriting the above operator using the identities:

m+n m+n
> ( . ):Um+n_18m8n:2x18f+22(m—|—1)xm8m81—|— > ( N )xm+n_10m8n

m,n>1 m>3 m,n>3
odd odd odd
and 811’181 — xlﬁf = 81. ]

Thus, starting with trivial relations in 7 (P,w(é)), we may apply Zp to obtain new
relations. Next, we shall write these relations explicitly, as was done in [Po05] in the case of
Jacobians. Given an integer n > 0 and a number or an operator x, let us use the notation
(1) ==a(x—1)---(x—n+1)/nl. Weset ({) =1andif n <0, (%) = 0. Define the following

differential operators:

1 m-+n
AP ::é Z < m )xm—&—n—laman

m,n>3
odd

Hp:=—p—14+x0, + Z(n + 1)x,0,,

n>3
odd

then we may check that Dp = 2(01Hp + Ap). For an operator T', we let 71" := T /n! be

the n'* divided power.
Lemma 3.3.6. For every n > 0 we have the equality of differential operators acting on Rp:
) _ g~ i p il (HP =
D} =2 ;al AP( o )
Proof. As in [Po05, Lem.2.7, p.884], we may check this by induction on n using the commu-
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tation relations:

[817 AP] = 07 [HP781] = _817 [HP7AP} = _2AP

Definition 3.3.1. Given an integer r > 1, integers ky,..., k. > 1, and a subset I =

{i1,49,...,is} C{1,2,...,r} define the numbers

(kll + + kzs)!

b(I) := e "kisl

and d(I) =k +...+k,—s+1.

Theorem 3.3.7. For each integer r > 1, odd integers kyi,..., k. > 1, and each d with

0<d<r—1, we have the relation,

m—1 [p—d—m+r—>""_, ki]
b(I)---b(l,, i=1 i —0
; (d+ _— r> (1) -+ b(Ln)G Cary) ** * Cd(Im)

in AP=4(P), where the sum is taken over all unordered partitions P, = {I1,..., I} of
[1,r] = {1,2,...,r} into m disjoint nonempty subsets such that r —d < m < p—d+r —

22;1 ki

Proof. Using [Po05, Lem.2.8, p.884], we may check that for each j > 0,
A[J](xl Tgy -+ T, Z b(1)- I ])fL’l ]xd(h) “Ld(1—j)>

where the sum is taken over all unordered partitions &,_; = {[1,...,1._;} of [1,7] into
r — j disjoint nonempty parts. Since gl[p—ZLl ki](’kl -+ (g, = 01in A(P), we obtain the relation
.@,E”( {piZ’LI ki}Ckl -+ (k,) = 0. Using Theorem 3.3.5 and Lemma 3.3.6, this relation can be

33



rewritten as

d .
n r—1—y —dt = ks
’ Z( ' )CP’ bl G0 N b (L) Cary - Car ) = 0,
Py

n p—
=0 J

which differs from the relation in the statement of the theorem by a factor of 2" (after the

substitution m = r — j and rearrangement of the summands). O
Corollary 3.3.8. If p > 3, then (, =0 for alln > %p +1.

Proof. If d = r — 1, the integers ki, ..., k. > 3 are odd and >_;_, k; = p, then by Theorem
3.3.7, (p—r+1 = 0. If p is even, then we may write p as one of the following: 6/ — 2, 6[, or
61 + 2 for some [ > 1, and we obtain (,41 = (o1 = ... = G—(21—3) = 0. If p is odd, then we
may write p as one of the following: 6/ — 3,6/ — 1, or 6/ + 1 for some [ > 1, and therefore,

G =C2="...= C—(2a-2 = 0. Since ¢, = 0 for all n even, the result follows. O

It is interesting to determine the kernels
ker (kp: Rp — ﬂ(P,w(C'))) and ker (7*: T(J) — 9(P,@/J(C~’))).

We don’t have complete answers to these questions at this point, but we offer the following
observations and conjectures. From the proof of [Fa, Thm.4.5, p.117], we know that for a
generic Prym variety P of dimension p > 5, the cycle ([1)(C)]*")) is non-zero in A(P) for
1 <r < p—3, and therefore, by Fourier duality, ¢/¢3 # 0 in A(P) for 0 < j < p — 4. Note,
however, that (¢; = 0 for j > p — 4. Since ¢ = —¢ € AY(P)q), then ¢ # 0 in A(P) for
1 < j < p. These results seem to be the only non-vanishing results for tautological classes
on Pryms known thus far. On the other hand, by analogy with Polishchuk’s conjecture for

T (C), [Po05, p.879], we may conjecture that for a generic Prym the set of relations given

in Theorem 3.3.7 is complete.
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Examples: For p <5 there are no non-trivial Polishchuk relations.
p=2 T (P¥(C)) ~ Qlal/(¢D)-
p =3 Z(Pv(C)) ~Qa]/(¢).
p =4 Qlxy,zs)/(2?, 23, x123) — T (P,¢(C)) with z, — (,, and I do not know if (s is
non-zero on a generic Prym of dimension 4.
2

p =5 Qlxy,zs)/ (28,23, 2225) — T (P,¢(C)), and this is an isomorphism for a generic

Prym of dimension 5, because (1(3 # 0 on such a Prym.

For 6 < p <10, the non-trivial Polishchuk relations are:

p =620 =0 (d=1k = ky =3). Furthermore, if P is generic, .7 (P,¢(C)) ~
Qa1 ws]/ (], 23, 2iw3).

p=T 200G+ G =0(d=1,k =ky=3).

p=8 102G+ CE=0(d=1,k =ky =3),56¢( =0 (d =1,k =3,k = 5).

p=9 GG+ 3GGE =0(d=1,k =ky =3),56(¢r + (3¢ =0 (d =1,k =3,k = 5),
60¢3(s =0 (d=1,ky = kg = ks =3), 1680(; =0 (d = 2,ky = ky = k3 = 3).

p=10: 3 GH+EE =0(d =1k =k, = 3), 287G +C1G¢G =0 (d =1,k = 3,k = 5),
12060 = 0 (d = 1,ki = 3,ky = 7), 60G1(3G + 265 = 0 (d = Lk = ky = k3 = 3),
1680C1Cr + 603G = 0 (d = 2, ky = ko = ky = 3).

Remark 3.3.9. If C has a base-point-free ¢, then by [He, vdGK], for every N > d—2r +1,

the following relation holds in A(J):

Z (a1 + D! (ar + DA ag) * - * [P(C)](ar) = 0

a1+-+ar=N

Applying . this yields the following relation in A(P) for every N > d — 2r + 1:

S (@D (@ + D)y - * ()] = 0.

a1+-+ar,=N
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Chapter 4

Algebraic equivalence of special

subvarieties

In this chapter we assume that the double cover 7: C' — C is connected and étale. In
this section we let r,d, g be integers such that 0 < 2r < d < 2¢g. Also, S will denote a
smooth connected but not necessarily complete curve. For a morphism X — S, the fiber
over s is denoted by X, and for a sheaf F on X, F, := Fjx, is the restriction. If X is an
integral projective scheme, we let Pic} be the connected component of the identity in the
Picard scheme of X. If X is a smooth curve, we let Xy denote the d"" symmetric product of
X. An integral curve with n ordinary double points (resp., n ordinary cusps) and no other
singularities will be called n-nodal (resp., n-cuspidal).

B will denote a smooth connected curve of genus g — 1. B,, will denote the 1-nodal
curve obtained by gluing distinct points p and ¢ on B. Also, B, will denote the 1-cuspidal
curve, whose normalization is B, and such that the point p € B maps to the cusp of B,,.
For simplicity, both normalization morphisms B — B,, and B — B, will be denoted by v

and the distinction will be clear from the context.
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4.1 Etale double covers and square trivial invertible
sheaves

Let us recall our convention that “scheme” means (here) a noetherian separated scheme
over C. Also, by an étale double cover we mean a finite étale morphism f: X — Y of
schemes of degree 2 on each irreducible component of Y.

The exercise [Ha, Ex.2.7(b), p.306] asks to show that for a smooth curve Y there is a
one-to-one correspondence between étale covers f: X — Y of degree two and points of order
two in Pic(Y), i.e., invertible sheaves £ on Y such that £%? ~ Oy. This correspondence is
valid in a more general setting, as we show next.

Let us recall from [AKT70, p.124] the definition of the discriminant of a flat morphism

f: X — Y of schemes. Since f is flat, f,Ox is a locally free Oy-module. The trace
Tr: Endy,, (f.Ox) — Oy

is a homomorphism of Oy-modules, which can be described locally as follows. If V is an
open affine set in Y such that f,Ox is free over V, then Tr sends gy € Endo, v)(f:Ox(V))

to the trace

tr(gvz f*Ox(V) — f*OX(V)) € Oy(V)

Since f,Ox is locally free then there is a natural isomorphism End,  (f.Ox) = (f.Ox)" ®
f+Ox, [Ha, Ex.IL5.1b, p.123], which gives a natural map f.Ox — End, (f.Ox). The
Oy-module homomorphism

TI"X/Yi f+:Ox — Oy

obtained by composing the above natural map with Tr is also called the trace.

To Tryx,y we may associate a natural map u: f.Ox — (f.Ox)". For V.C Y open and
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a € f.Ox(V) define
uy(a): f.Ox(V) = Oy (V)

by b+ Trx,y(ab). This gives a homomorphism

f*OX(V> — Homoy(v) (f*O)((V), Oy(V)),a — UV(CL),

which is the local description of w. This induces the discriminant

dx/y = det(u) € Hom(det f*OX,det(f*OX)v),

which is the map on top exterior powers induced by u. The image of

dx/y X id: (det f*OX)®2 — Oy

is called the discriminant ideal and is denoted by Dx/y. The main result we shall use is:
Dxy = Oy if and only if f is étale, [AK70, p.124]. In this case, dx/y ®id is an isomorphism,
[Ha, Ex.I1.7.1, p.169], so

(det f,Ox)%? ~ Oy.

Proposition 4.1.1. Let Y be a scheme. There is a one-to-one correspondence between étale

double covers of Y and locally free sheaves L on'Y with L ~ Oy.

Proof. Let £ be an invertible sheaf on Y such that £%? ~ Oy. Let us fix an isomorphism

©: L2 — Oy. Define an Oy-algebra structure on Oy @ L by

{a,b) - (a', V') = (aad’ + @(bV'),al’ + a'b).

Let X := Spec(Oy @ £) with the natural morphism f: X — Y, [Ha, Ex.IL.5.17, p.128].
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Since f,Ox ~ Oy @ L, then (det f,Ox)®? ~ L%? ~ Oy. This implies that the discriminant
ideal Dx/y coincides with Oy, and therefore, f is étale.

Conversely, let f: X — Y be an étale double cover. Consider the short exact sequence

!
0—= Oy L= ,0x —=—>0, (4.1.1)
where £ := coker(f*: Oy — f.Ox). Since f is étale and £ ~ det f,Ox [Ha, Ex.IL.5.16d,
p.128], then by the discussion preceding the proposition: £%% ~ Oy
The trace homomorphism

TTX/YI f:O0x — Oy

provides a splitting of the sequence (4.1.1), and therefore, f.Ox ~ Oy @ L. This shows that

the two constructions are inverses of each other. O

4.2 Special subvarieties

Assume that C' has a complete ¢}, which is viewed as a subvariety G4 C C,; isomorphic
to P". Let us recall the definition of the special subvarieties V; and V; of P associated to
Gy, cf. [Be82|. First, we assume that G, contains a reduced divisor. Consider the following
commutative diagram

Ca—" ]

i iNm

Cy—% T,
where the horizontal maps are abelian sum mappings pq: D — Oc(D — do), ¢q: D —
Oa(D — db) and m, is induced by m: C — C. The variety ¢q(m;'(Gy)) is contained in the
kernel of the norm map Nm: J — J and has two connected components Vy and V;, [Be82,

p.365; We81, p.98|. After a translation of one of the components V4 or V;, we assume that
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both of them are contained in P and, by definition, V;, and V; are called special subvarieties
of P. The union V,UV] is denoted by V. In the case where GG; has a base-point of multiplicity
> 2, V is non-reduced and we may define it as a cycle [V] := @q.(73[G4]) with multiplicities,
where [G4] € CH™"(Cy), [Be82, p.359]. In this case Vj and V; can also be defined as cycles
so that [V] = [Vo] + [V4].

By Clifford’s theorem, the inequalities 0 < d < 2¢ imply that d > 2r, except when the g},
is the canonical system or a multiple of a gi. In these two cases the special subvarieties are
not even homologically equivalent, see [Be82, Rem.3, p.362 and p.366]. However, if 2r < d,
then the subvarieties V and V; are homologically equivalent, i.e., V5 and V; have the same

cohomology class

2d—2r—1 . 59—7‘—1
(g—r—1)!

in H20="=1(P,7Z), see [Be82, Prop.1, p.360 and Thm.1, p.364].

Special subvarieties have been used in the study of threefolds and intersections of three
quadrics in P?"*4 [We81; Be82, Sec.4,5] and also in the Prym-Torelli problem [Be82, Sec.3;
SV02; Na; NLJ.

4.3 Compactified Jacobians and autoduality

We shall use the results of [AK80, EGK] in the sequel and we recall the part of the theory
that we need. Let C — S be a flat family of integral curves whose fiber over s is denoted by
Cs. We assume that the family C/S has a section ¢ whose image lies in the smooth locus
of the morphism C — S. Given an integer n and an S-scheme T, a torsion-free rank one
sheaf of degree n on Cr := C xgT is a T-flat coherent O¢,-module F such that F; := F,
is a torsion free rank one sheaf on the fiber C; over t € T and x(F;) — x(O¢,) = n for
every t € T'. There is a projective S-scheme J_g/s, called the compactified Jacobian of C/S,

that parametrizes torsion-free rank one sheaves of degree n on the fibers of C/S, see [EGK,
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p.594] and references therein. More precisely, jg/s is the fine moduli scheme representing

the following functor of S-schemes:
T — {torsion-free rank one sheaves of degree n on C' xgT}/~,

where F ~ G if and only if there exists an invertible sheaf £ on 7" such that F ~ G ® 7;.L
and mp: C XgT — T is the projection. A sheaf P; on C xg jg/s is called a Poincaré sheaf, if
P4 satisfies the following universal property. For any S-scheme 7" and any T-flat torsion-free
rank one sheaf F of degree n on C xg T, there is a unique morphism f: T — jg /s such that
F is equivalent to the pull-back of P; by the induced morphism 1 x f: C xgT — C Xg jg /s
More precisely, there is an invertible sheaf £ on T such that (1 x f)*P; ~ F @ n5.L. Let us
note that P, exists because all the fibers of C — S are integral, [AK80]. Furthermore, Py is
uniquely determined up to tensoring with a pull-back of an invertible sheaf on jg /s

There is also an open subscheme Jg,o C j{}/s, called the (generalized) Jacobian of C/S,
parametrizing those sheaves that are invertible. The schemes Jg/ g and jg/ ¢ are flat over S by
[AIK, p.8] and their fibers over s € S are denoted by .J7 and jgs, respectively. The section
o: S — C gives an invertible sheaf N of degree one on C, which determines an Abel map
Ay: C — jg/s, see [EGK, p.595]. On the fiber Cy, the Abel map is given by z — m, ® N,
where m, is the maximal ideal in the local ring Og, ... If the geometric fibers of C — S have
double points at worst, then by [EGK, Thm.2.1] the Abel map induces an isomorphism of
group-schemes:

A% Pic%,  — J9..
ne e o Jeys
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4.4 Presentation schemes

In Section 4.6 we shall use the construction of [AK], called the presentation scheme, which
we recall next. Let X be an integral curve with a unique double point and let v: X’ — X be
the normalization. Given an integer n, the presentation scheme PY parametrizes injective
morphisms h: L — v, M, called presentations, such that L € J%, M € J%,. By [AK], the

presentation scheme P¥ fits into a diagram

Py s Jn

|

X
where £ and A send (h: L — v, M) to L and M, respectively. Note that in [AK] the degree
of Lis x(L), not x(L) — x(Ox), as it is for us.

When X = B, is 1-nodal, A\: Py~ — Jg is a P!-bundle, which has two distinguished
sections s, and s,. The morphism x: Pp — jgpq identifies the images Im(s,) and Im(s,)
with a shift and is an isomorphism outside of Im(s,) U Im(s,). More precisely, if M € Jg,
then « identifies s,(M) with s,(M ® Op(q — p)). Furthermore, the common image of x o s,
and k o s, coincides with 8jgpq, the locus of non-invertible sheaves.

When X = B, is 1-cuspidal, let p’ C B be the fiber over the cusp of B,,. There is an
embedding s, : Jg x p' — P such that Ao s, : Jg x p' — J§ is the first projection. The
scheme Pp ' is non-reduced along Im(s, ), although Jgpp itself is reduced. The morphism &
is bijective but is not an isomorphism: it maps the non-reduced locus Im(s,/) to the reduced

subscheme (9j§pp C jgpp and is an isomorphism outside of Im(s,).
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4.5 Brill-Noether varieties and their families

In classical algebraic geometry, to a smooth curve C' and integers » > 0,d > 1, one
associates the Brill-Noether scheme W[ (C'), which parametrizes invertible sheaves L on
C with degL = d and R°(L) > r + 1, [ACGH, p.153]. WZ(C) can be expressed as a
degeneracy locus of a morphism of locally free sheaves on Pic?(C), [ACGH, p.177]. The
expected dimension of Wj(C') is the Brill-Noether number p(g,7,d) =g — (r+1)(g—d+r).

The basic results of Brill-Noether theory which we shall use are:
1. Emistence: if p(g,r,d) > 0, then W7 (C) # 0.
2. Connectedness: if p(g,r,d) > 1, then W] (C) is connected.

3. Dimension: if C is a general curve, then Wj(C) is reduced and of dimension p(g,r,d),

when p(g,7,d) > 0 and is empty otherwise.

These fundamental results are due to many mathematicians: [FL, EH, GH, KL, Ke], see also
[ACGH].

In [AC, p.6 or ACGH, p.177] we may find a construction of the family of Brill-Noether
varieties associated to a family of smooth curves of genus ¢. In fact, this construction works
in a more general setting. We describe this next. Let C — S be a family of integral curves
of arithmetic genus g having a section whose image lies in the smooth locus of each fiber.
We shall construct a proper S-subscheme W) of jg/ g, extending the classical construction
for families of smooth curves.

Let 7y, m3 be the projections of C x g J_g /5 onto the first and the second factor, respectively.
The Poincaré sheaf Py is flat over C relative to the projection 71, and therefore, we may apply
the theory of cohomology and base-change, [Mu70, p.46]. This theory implies that every
point in jg /s has an affine open neighborhood U = Spec A such that there exists a complex

K* of free Opy-modules with the following property. Given any affine scheme V' = Spec B and
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a morphism of affine schemes V' — U, there is an isomorphism of functors on the category

of A-algebras B:
Hl(ﬂgl(U) XU Mpd|ﬁ;1(U) ®(9U Ov) >~ H2<F<‘/, K* ®0U Ov)), for all ¢ > 0. (451)

Let m and n be the ranks of K° and K', respectively, and let us identify I'(U, K°) and

(U, K') with T(U, O7) and T'(U, OF), respectively. By (4.5.1), there is an exact sequence
F<U7 O?) - F<U7 OE) — ' (ng(U)a 7)Cl|7r2*1(U)) —0,

where A is an n x m matrix with coefficients in I'(U, Oy ). Define W;U to be the subscheme
of U whose ideal Iy is generated by (m — r) x (m — r) minors of A. The ideal I; is also the
(9 — d + )™ Fitting ideal associated to the above exact sequence. The formation of Fitting
ideals is compatible with base-change and is independent of the choice of presentation (see
[AC, p.6] and references therein). Consequently, there exists a subscheme W of J4 /s such

that for every affine open set U as above
Tx-7
Wg m U = Wd,U-

The fiber of W} over s is denoted by W;(C,). As a set, W;(C,) consists of F € J¢ with
hY(Cs, F) > 1+ 1.

The sets of locally free and non-locally free elements of W,,(C,) will be denoted by Wi (Cs)
and OW,(C,), respectively. If C, is smooth then W, (C,) = Wi (C,) is the classical Brill-
Noether scheme as in [ACGH, p.153].

In Section 4.6 we shall make repeated use of the following two observations.

Proposition 4.5.1 (Flatness criterion). If all fibers of Wj(C) — S are reduced and have the

expected dimension p(g,r,d), then Wj(C) is flat over S.
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Proof. Since S is a smooth connected curve by our ongoing assumption, then by [Ha,
Prop.9.7, p.257] it suffices to check that no component of W}(C) is contained in a fiber
W,(C,) for some s € S. Since W5(C) is determinantal, then each irreducible component of
Wi (C) has dimension > p(g,7,d) + 1 at every point. But dim W,(C,) = p(g,r,d) for all
s € S by assumption, and therefore, no component of W} can be contained in a fiber (this

argument is adapted from [HM, p.267]). O

Proposition 4.5.2 (Principle of connectedness). Let X — S be a flat family of projective
schemes. If there exists a point sg € S such that Xy, is connected and reduced, then X, is

connected for each point s € S.

Proof. The hypotheses of the proposition imply that h°(O x.,) = 1. By upper semicontinuity
of s — h%(Oy,), there is a Zariski open subset U C S such that for all points s € U, X, is

connected. By [Ha, Ex.11.4, p.281], X is connected for each point s € S. ]

4.6 Main result

The following proposition is due to E. Izadi.

Proposition 4.6.1. Let C' be a smooth curve of genus g, which has a complete g}, with
0 < 2r <d<2g, andlet C — C be a connected étale double cover. If W1 (C) is connected and
either Wj_,(C) or Wi (C) is nonempty, then the special subvarieties Vo and Vi associated

to the g, are algebraically equivalent.

Proof. The cover C — C' determines a point of order two in JQ. Translating by O¢(do)
and going to the dual abelian variety of J&, gives a point of order two in PicO(Jg), which
determines an étale double cover jg — J&. Assume that W7 _ (C) is nonempty. Take

L e W) ,(C)and let C — Wj(C) be the embedding x +— L(x). We may check that there is
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a commutative diagram

—~

C—=Wj(C) —=J¢
|

C—=W(C) —=J¢,
where the two squares are Cartesian. The double cover ng — J& restricts to the connected
double cover C' — C, and therefore, the intermediate double cover W; (C) — WJ(C) is non-
trivial. Since W (C') is connected, this shows that WC}’ (C) is also connected. The special
subvarieties V and V; are members of a family of cycles over WC}’ (C). Since Wg (C) is

connected, Vy and V; are algebraically equivalent. The case when ngfll(C) is nonempty is

analogous (embed C' in W (C) by z — L(—=z) for a fixed L € Wi (C)). O

If p(g,7,d) < min{r +1,9 —d+r} and C' is general in the sense of Brill-Noether theory,
both W)_,(C') and WJ:%(C) are empty, because p(g,r,d—1) and p(g,r+1, d+1) are negative,
[ACGH, Thm.1.5, p.214]. Nevertheless, in what follows we shall show that V; and V] are
algebraically equivalent whenever p(g,r,d) > 0 and W} (C) is reduced and of the expected

dimension.

The Wirtinger cover is the étale double cover qu — B, where the curve qu is obtained
from two copies of B by identifying p and ¢ on one copy with ¢ and p, respectively, on the
other copy. Using [Be77, 6.1] we may find a smooth connected curve S such that C—C

and qu — B, vary in a family of double covers

é\ | / C
S
(S in [Be77] is not the same as our S) with the following properties: the fibers of C — S are

integral and at worst nodal, C and C are flat over S, 7 is étale, and there is a section o of
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C — S, which induces a degree one invertible sheaf N on C, as in Section 4.3. Assume that

B,, — By, lies over the special point s, € S. By Section 4.5 there is an associated family

WE(C) — S.

The étale double cover 7: C — C induces a morphism O < 7.Os, whose cokernel
is an invertible sheaf £ with the property £* ~ O¢. Let M := (A},) '(L), then M? is
isomorphic to the pull-back of an invertible sheaf on S. After replacing S by a Zariski open
subset containing sy, we may assume that M? is trivial. The relative spectrum jg /s =
Spec(Ojg/S @ M) over Jg,g gives an étale double cover jg/s — J¢,g. Pulling back via
the isomorphism jg/s — jg /s of tensoring with N ¢, we obtain an étale double cover
jg/s — jg/s, whose restriction to WJ(C) is denoted by WQ(C) — WJ(C). Over the special
point sy € S, we use the notation fgm — j%pq and Wg (Byy) — Wy(B,,) for the induced

double covers. We have:

Proposition 4.6.2. If 0 < p(g,r,d) < min{r + 1,9 — d + r}, then a general 1-nodal curve
B,, of arithmetic genus g satisfies: (1) W, (B,,) is connected, reduced, and has the expected

dimension p(g,r,d); (2) Wg(qu) is connected.
Assuming the above proposition, we prove the main result of this section:

Theorem 4.6.3. Let C' be a smooth curve of genus g, which has a complete g}, and such
that W1(C) is reduced and of dimension p(g,r,d). Let C — C be a connected étale double
cover and let Vy, Vi be the special subvarieties associated to the gj. If p(g,r,d) > 0, then Vj

and Vi are algebraically equivalent.

Proof. The idea of the proof is taken from [IT]. If p(g,7,d) > min{r + 1,9 — d + r}, then
either WJ_,(C) or ngfll(C’) is nonempty [Ke, KL], and Proposition 4.6.1 applies. Thus, we
may assume that 0 < p(g,7,d) < min{r + 1,9 —d +r}.

Let By, be a 1-nodal curve satisfying the conclusions of Proposition 4.6.2. We shall

degenerate WC’E(C) to WC}’(qu) and apply the principle of connectedness from Section 4.5.
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Consider the flat family 7: C — C over S and the associated family )7\75 (C) — Wi(C), as
described before Proposition 4.6.2. The schemes W5 (C) and W,(B,,) are reduced, have
dimension p(g,r,d), and appear as fibers of we: Wj(C) — S. After shrinking S, if necessary,
we may assume that all fibers of we are reduced and have dimension p(g,r,d), hence w¢
is flat by Proposition 4.5.1. This implies that the morphism VNVC}" (C) — S is also flat and
all of its fibers are reduced. Since /WC}”(BPQ) is connected, then by Proposition 4.5.2, so is
Wg (C). As in the proof of Proposition 4.6.1, this implies that V; and V; are algebraically

equivalent. O

Before giving the proof of Proposition 4.6.2, we need two preliminary observations. First,
let us show that jgpq — J_gpq has a description analogous to the Wirtinger cover qu —
B,,. Using the notation from Section 4.4, we see that the morphism k: Pfépq — jfépq is
the normalization. Let a: By, — jgpq be the composition of the Abel map (Section 4.3)
followed by the morphism Jj ~— J§ —of tensoring by AV. By the universal property of
normalization, the composition o v: B — Jj induces a morphism a: B — Pg . such
that the diagram

B—%~P}
By ——~ J. gpq

commutes. Applying Pic®, we get a commutative diagram:

0 -9 PicY
B S — d
PlCB Pqu

] e

icd, < Pic’,
d
PICqu o Jqu

The composition Aoa: B — Pfglpq — J4 is an Abel map (see Section 4.4 for the definition of

A), which implies that &* is injective. By the construction preceding Proposition 4.6.2, the
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invertible sheaves L,, and M, that determine qu — B,, and jfépq — jgpq, respectively,
satisfy a*(M,,) = L,,. Also, L, induces the trivial double cover of B, i.e., v*(L,,) = Op.
Therefore, using the commutativity of the above diagram and the injectivity of a*, we see

that k*(My,) = Opg . This shows that there is a Cartesian square
rq

d d Td
PBPq H PBPq - Jqu

| |

d K 7d
PBPQ JBPq ’

where the left vertical arrow is the trivial double cover. We conclude that jgpq is obtained
from ngq ]_[ngq by gluing Im(s,) and Im(s,) on one copy of ngq to Im(s,) and Im(s,),
respectively, on the other copy (the gluing is with a shift, as in the case of ng described in

Section 4.4).

Next, consider the induced double cover W; (Byy) — Wy(B,,). Let

W(p,q) = s~ (Wa(Bn))  W(p):=Im(s,) " W(p,q)  W(q) :=Im(sy) N W(p,q),
where the preimage and the images are scheme-theoretic. From the above description of
jﬁ,pq we see that W; (B,,) is obtained from two copies of W (p, ¢) by gluing W (p) and W(q)
on one copy to W(q) and W (p), respectively, on the other copy. Therefore, to show that
W; (By,) is connected, it suffices to prove that W(p,q) is connected and W (p), W(q) are
nonempty. Non-emptiness of W (p) and W(q) can be seen as follows. Since dim W} ,(B) >
plg —1,r,d—1) = p(g,r,d) — 1 > 0 (the last inequality holds by our ongoing assumption
p(g,r,d) > 0) and OW,(B,,) = {v.M | M € Wj_(B)}, then OW ,(B,,) is nonempty, [Ke,
KL]. It follows from Section 4.4 that x maps each of W (p) and W (q) onto OW,,(B,,), which
implies that W (p) and W (q) are nonempty. Connectedness of W(p, ¢) (for a general 1-nodal

curve By,) is much harder to show and it is the main point of the proof of Proposition 4.6.2
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below. The idea is to let p and ¢ come together and to consider the analogous locus W (p, p)
for the 1-cuspidal curve B,,. Although the scheme W (p, p) turns out to be connected, it is
also non-reduced. Hence, we may have h®(Oy(,,)) > 1, and therefore, we cannot apply the
principle of connectedness directly to conclude that W (p,q) is connected. Furthermore, it
is not clear a priori that the specialization W (p,q) ~~ W (p,p) is flat. To overcome these
difficulties, we shall use the determinantal loci Y (z,y), which are introduced in the next

paragraph.

Let us introduce two last bits of notation, state two lemmas (whose proofs are at the end
of the section), and give the proof of Proposition 4.6.2. First, by [EH], if X is an integral
curve with double points at worst, there is a scheme @Z(X ) parametrizing pairs (L, V') such
that L € W,(X) and V € H°(X, L) is a subspace of dimension r 4+ 1. There is a forgetful
morphism G,(X) — W,(X) and a subscheme G(X) C G,(X) pararmetrizing pairs (L, V)

with L locally free. Second, given points x,y € B (not necessarily distinct), define

Y(z,y) :={M e JL|h° (M) >r+1and h°(M(—z —y)) > r}

as a subscheme of J% with its natural structure of a determinantal locus (see Appendix to
this section for details), whose expected dimension can be computed using [Fu, Ch.14.3,

p-249] and is equal to p(g,r,d).

Lemma 4.6.4. If p(g,7,d) < min{r + 1, g +r — d}, then for a general 1-cuspidal curve By,

of arithmetic genus g, the scheme Y (p,p) is connected, reduced, and of dimension p(g,r,d).

Lemma 4.6.5. If both W™ (B) and Wj_,(B) are empty, then for any distinct points p,q €

B, the underlying topological spaces of the schemes Y (p,q) and W (p,q) are homeomorphic.

Proof of Prop.4.6.2. Say that an integral curve X of arithmetic genus g has property P, if

W5 (X) is connected, reduced, and of dimension p(g, r,d). Note that property P is open and
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depends on the integers r,d. By [EH, Thm.4.5 and Sec.9], there exists a rational g-cuspidal
curve X for which G,(X) is connected, reduced, and of the expected dimension, which
implies that P holds for X. Since a 1-nodal curve can be specialized to a g-cuspidal rational
curve, then P holds for a general 1-nodal curve. This proves part (1) of the proposition.

Connectedness of Wdr is an open property of 1-nodal curves. Therefore, to prove part
(2) of the proposition, it suffices to exhibit a single 1-nodal curve B,, such that Wg (Byg)
is connected. This will be done using 1-cuspidal curves. By Lemma 4.6.4, there exists a
1-cuspidal curve B, such that Y (p,p) is connected, reduced, and of dimension p(g,r,d).
Moreover, by the proof of Lemma 4.6.4, we may assume that both W;*'(B) and W _,(B)
are empty. Let us show that there exists a point ¢ € B\{p} such that Y (p,q) is connected.
Take a smooth, connected but not necessarily complete, curve T parametrizing divisors
{p+ @|t € T} on B such that ¢ # p for all t € T\{to} and ¢, = p. Consider a family
% — T, such that the fiber over a point t € T'is Y (p, ¢;). Since Y (p, p) is connected, reduced,
and of the expected dimension p(g, r, d), we may replace T with a Zariski open neighborhood
of ty, if necessary, to ensure that % — T is flat. By the principle of connectedness, this
implies that Y (p, ¢;) is connected for each point ¢t € T'.

Now, let us fix a point ¢ € B\{p} such that Y(p,q) is connected and consider the
l-nodal curve B,,. Since both Wjt!(B) and W} _,(B) are empty, then by Lemma 4.6.5,
the schemes W (p, q) and Y (p, q¢) have homeomorphic underlying topological spaces, hence
W (p,q) is connected. As described before the proof, Wg (B,,) is obtained by gluing two

copies of W(p, ¢), which implies that /Wj (B,,) is connected. ]

Proof of Lemma 4.6.4. Say that a smooth curve B of genus g—1 has property &, if W;H(B) =
Wi ,(B) = 0. Note that £ is an open property and depends on the integers r,d. Since
p(g,r,d) < min{r + 1,9 +r — d}, then both p(g — 1,7 + 1,d) and p(g — 1,r,d — 2) are neg-
ative. Therefore, by [ACGH, Thm.1.5, p.214], £ holds for a general smooth curve of genus

g — 1. By [EH, Thm.4.5 and Sec.9], there exists a rational g-cuspidal curve X for which
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G(X) is connected, reduced, and of the expected dimension. It follows that for a general
1-cuspidal curve B,, of arithmetic genus g the scheme @(Bpp) is connected, reduced, and
of dimension p(g,r,d).
For the remainder of the proof let us fix one such curve B, such that its normalization

B has property €. In particular, W' (B) = (), which implies that W;(Bpp) = @Z(Bpp). By
Section 4.4, there is a diagram

Pl - Jh,

|

T,
where k is proper, birational and bijective (hence, a homeomorphism on the underlying topo-
logical spaces). Let W(p,p) be the scheme-theoretic preimage x~ (W (B,,)), i.e., W(p,p)
is the fiber product of Pfépp and W,(B,,) over jgpp. Since ~ is birational and bijective
and W;(Bpp) is connected, reduced, and of dimension p(g,r,d), then W (p,p) is connected,
generically reduced, and of dimension p(g,r,d). Note that W(p,p) is non-reduced along
k1 (OW ,(B,,)). The scheme Y (p,p) is a determinantal locus whose expected dimension is
p(g,r,d), and therefore, dimY (p,p) > p(g,r,d), if Y(p,p) is nonempty. In the paragraph
below, we shall show that Y (p, p) is the set-theoretic image of W (p, p) under A. This implies
that Y(p, p) is connected and of dimension p(g,r,d). Moreover, being a determinantal locus
of the expected dimension, Y (p, p) is Cohen-Macaulay, [Fu, Thm.14.3c, p.250], and therefore,
has no embedded components. Thus, to show that Y (p,p) is reduced, it remains to prove
that Y'(p, p) is generically reduced. In [EH, Sec.4], it is shown that the G7 of a cuspidal curve
X is closely related to a certain determinantal locus in a Grassmann bundle over the scheme
of linear series of the normalization of X. In the case of 1-cuspidal curves this determinantal
locus is the scheme Y (p, p). In particular, using [EH, Thm.4.1, p.388 and Remark on p.389],
it is easy to see that the morphism G%(B,,) — Y (p,p), given by L +— v*L, is birational.

Since G7(B,,) is reduced, this shows that Y (p, p) is generically reduced.
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To complete the proof, let us check the set-theoretic equality A(W (p,p)) = Y(p,p). Let
sk be the sky-scraper sheaf on B,, supported at the cusp with fiber C. If L € W(B,,)
and L is invertible, then x~!(L) is a single reduced point (L — v,v*L) € W(p,p), whose
image in Jg is v*L. Consider the short exact sequence 0 — L — v,v*L — sk — 0 and the

associated long exact sequence
0—> H(L) —= H'(v*L) —2~C——> -

Since W™ (B) = (), then h°(v*L) = r+1 and 3 is the zero map. Therefore, the linear system
|L| pulls-back to the complete linear system |v*L|, which implies that h°(v*(L)(—2p)) = r.
Hence, v*L € Y (p,p). If L € OW,(B,,), let M := (v*(L)/torsion) @ Op(p). In this case
we have L ~ v,(M(—p)), [Al, Lem.1.5], and there is a natural presentation v,(M(—p)) —
v,M. The fiber k(L) is the point (v.(M(—p)) — v,M) € W(p,p) with multiplicity
2 (see Section 4.4), whose image in J¢& is M. Since h%(L) > r + 1 and W;™(B) = 0,
the inclusion L ~ v,(M(—p)) — v.M induces an isomorphism H°(M(—p)) ~ H°(M).
Therefore, h°(M) = r + 1 and h°(M(—2p)) > r, hence M € Y (p, p). O

Proof of Lemma 4.6.5. Let sk be the sky-scraper sheaf on B,, supported at the node with

fiber C. By Section 4.4, the presentation scheme ngq fits into the diagram

d K 7d
PBPQ JBPQ

l

d
Jg,

where A is a P!-bundle and « is the normalization morphism.
To prove the lemma, we shall show that A restricts to a bijective morphism A: W (p,q) —
Y (p,q). Since X is also proper, this will imply that A induces a homeomorphism on the

underlying topological spaces.
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First, let us check that A(W(p,q)) = Y(p,q). Recall from Section 4.4 that A sends a
presentation (L < v,M) to M € J&. If L € W(B,,) and L is invertible, then x~'(L) is a
single reduced point (L — v,v*L) € W (p,q). Consider the short exact sequence 0 — L —

v,v*L — sk — 0 and the associated long exact sequence
0— H(L) —= H'(w*L) 2> C—> -

Since W™ (B) = (), then h°(v*L) = r+1 and 3 is the zero map. Therefore, the linear system
|L| pulls-back to the complete linear system |v*L|, which implies that h°(v*(L)(—p—q)) = r,
see also [Ca09, Rem.2.2.1, p.1397]. Hence, v*L € Y (p,q). If L € OW,(B,,), then x'(L)
consists of two reduced points: (v,M(—p) — v, M) and (v,M'(—q) — v.M'), where M =
(v*(L)/torsion)®@Op(p) and M' = M®&Og(q—p), see Section 4.4. Note that L ~ v, M (—p) ~
v, M'(—q), which implies that h°(M), h°(M’) > r+1 and h°(M(—p—q)), R*(M'(—p—q)) > r.
Hence, M, M’ € Y (p, q). This shows that A(W (p,q)) = Y (p,q).

Second, let us show that \ is bijective. Since W)™ (B) and W} _,(B) are empty, then for
each M € Y(p,q), we have h°(M) =r+1 and h°(M(—p —q)) = r. As a consequence, there
is a unique morphism h: v, M — sk, which induces the zero map on global sections (if p and
q are not base points of M, this also follows from [Ca09, Lem.5.1.3(2), p.1420]). The sheaf
Ly = ker(h) has h°(Lys) = 4 1, and therefore, Ly, € Wi(B,,). From the description of A
given above, we see that the assignment M + (Ly; — v, M) is a set-theoretic inverse of \,

which shows that X is bijective. O]

Remark 4.6.6. The special subvarieties are not always algebraically equivalent, as is shown
in the following example. In the case of a trigonal curve C', the special subvarieties V) and
V; associated to a gi on C are related by V; = (—1)*V; (after an appropriate translation)
and P is isomorphic to the Jacobian of Vj, which has a g}, see [Be82, p.360 and p.366; Re].

Since p(g,1,4) = 6 — g, then all curves of genus at most 6 admit a g}. It follows from [Ce]
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and [Re] that Vj and V; are not algebraically equivalent on a generic “trigonal” Prym of

dimension 3 < p =g —1 < 6. Note that p(g,1,3) =4 — g <0, whenever p > 3.

4.7 Appendix

Fix integers g, r, d such that 0 < 2r < d < 2¢g and let B be a smooth curve of genus g — 1.

For any two points (not necessarily distinct) x,y € B, we have considered the locus
Y(x,y) = {M e JL|hB°(M) >r+ 1 and h°(M(—z —y)) > r}.

The purpose of this appendix is to show that Y (x,y) carries a natural scheme structure of
a determinantal locus in J%. Such loci are sometimes also referred to as Schubert loci or
Schubert varieties. A reference for their theory is [Fu, Ch.14]. We shall use the following

notation:
e ¥ := a Poincaré sheaf on B x Jg,
e D,, := an effective divisor of degree m >2(g — 1) —d+r — 1,
e ' =D, x Jg considered as a divisor on B X Jfé,

b ,Z(P) =Z® OBXJ%(F)7

¢: B x J& — J% is the second projection.

When there is no danger of confusion, given a divisor D on B, we let £ (D) := Z®(pull-
back of Op(D)) and Z(I'+ D) := £ (D)®0Op, 4 (I'). Our assumption m > 2(g—1)—d+r—1
and the Riemann-Roch formula imply that for any 1 < 7 < r—1 and any points py,...,p,_1 €
B, the sheaf ¢, Z(I' — p; — --- — p;) is locally free of rank d + m — j — g + 2 on J§ and
R'¢. 4T —p—---—p;) =0.
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Consider the following commutative diagram with exact rows:

0 Gl 6L (L) ——=¢.(Z()/2)

| ]

0—= 6. L (~x —y) —= . LT — v — y) —= 6. (L) R'¢, % (—x —y) —=0.

R'¢.% 0

It is easy to check that « is injective and [ is an isomorphism. Hence, o induces an injection
from ker(a) to ker(o).

Put £ = ¢.Z(') and F = ¢.(ZL(I")/ZL). To set up a determinantal locus as in
[Fu, p.243] we shall construct a flag Ay C Ay C ... C A, C A,y1 C E. Put A,y = F
and A, = ¢..Z2(I' — x —y). Fix points p1,...,p,—1 € B and for 1 < i < r — 1, put

A=, LT —x—y—p;— - —p;). Thus, we get a flag

A =¢LT—x—y—p1——pr1) C ... C Ay = 0. LT —2—y—p1) C A = 0L (T —2—Y)

of locally free subsheaves of E. Let a; := rk(A;). Using Riemann-Roch, we may compute:
ary1 = tk(F) = d+m — g + 2 (recall that m is the degree of the fixed divisor D,, on B),
ar, = apy1 — 2, and a; = a,11 — 2 — (r —i) for 1 < i < r — 1. Note that the rank of F'is
m. For M € J%, let A;(M) be the fiber of A; over M and let o(M): E(M) — F(M) be the

morphism on the fibers induced by o: E — F. Consider the determinantal locus

Q(A;0) = {M € J&| dim(ker(a(M)) N A;(M)) > i, 1 <i<r+1}.

For 1 < i < r — 1, the condition dim(ker(c(M)) N A;(M)) > i is a consequence of
dim(ker(o(M)) N A.(M)) > r, because the ranks of the A;’s go down by one starting with

1 =r. Let g,: A; — F be composition of the inclusion A; — FE followed by ¢: F — F.

o6



Using the calculation on the bottom of p.178 in [ACGH] for the 4th equality below, we have:

Q(A;0) = {M € J& | dim(ker(o(M)) N A;(M)) > i, forie {r,r+1}}
= {M e J&| dim(ker(o;(M))) > i, forie {r,r+1}}
= {M € J§ |rank(o,, (M) <d+m — (g — 1) — r and rank(o,(M)) < d+m — g — 7}
—{M e JL| (M) >r+1 and h°(M(—z —y)) > r}

=Y(z,y).

This defines the scheme structure of a determinantal locus on Y (z,y). By [Fu, Thm.14.3,

p.249], the expected codimension of Y (z,y) = Q(A; o) in J& is Y7 m—a;+i. For1 <i <r,

i

m—a;,+i=m—-—-n—-2—(r—i)+i=m-n+r-+2

=m—(d+m—-—g+2)+r+2=g—d+r,

and therefore,
r+1 T

Zm—arkizZ(m—ai+i)~l—(m—ar+1+r+1)
=1

=1
=r(g—d+r)+m—-n+r+l=r(g—d+r)+m—(d+m—g+2)+r+1

— () (g—d+r)—1.

Hence, the expected dimension of Y(z,y) =g —1—((r+1)(¢g —d+r) —1) = p(g,r,d).
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Chapter 5

Classes of special subvarieties

5.1 Beauville-Poincaré formulas

Let (J/,©) be a principally polarized Jacobian of a smooth curve C' of genus g. Let [C]
and [©] be the classes of the Abel curve and the theta divisor, respectively. The following

classical formula in H*(.J,Z) is due to Poincaré:

for 1 <p<yg.

For quite a while it was not known whether the above formula holds in A(J). In [CoT75,
Cor.4, p.97], it has been shown that the Poincaré formula does hold in A(J), if C' is hyper-
elliptic. This also follows from the result of Colombo and van Geemen [CvG, Thm.1.3(3)],
as observed in [Be04, p.687].

On the other hand, if C'is a generic curve of genus g > 3, then C'is non-hyperelliptic. In
fact, the result of Ceresa [Ce| implies that for such a curve [C](1) # 0 in A(J). Therefore, [C]

is not contained in the subring of A(J) generated by the class of the theta divisor, because
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[©]7 € AP(J)(o) for all 0 < p < g. In particular, Poincaré formulas do not hold for generic
curves of genus g > 3 even modulo algebraic equivalence.
Nevertheless, Beauville has found certain formulas in CH(.J), which generalize Poincaré

formulas in cohomology, [Be83]. These formulas hold verbatim in A(X). Let L be an ample

symmetric invertible sheaf on X (e.g., L = Ox(0)), v := h%(L) = %, and ¢y, = VL(QZI))!.
Theorem 5.1.1 (Beauville-Poincaré formula). For all0 <p < g,

Lr *(g—p)

Sy e CHP(X).

pt (9—p)
Proof. See either [Be83, Cor.2, p.249] or [BL, 16.5.6, p.537]. ]

We shall use is the following corollary.

Corollary 5.1.2 (Beauville, 1983). For p,q > 0 we have the following identity in CHP*479(X):

LP 4 <2g —p— q) L (pta—g)
— %k — =V  rE—
¢ g—p J+q—29)

Proof. As in [BL, p.538], we use Beauville-Poincaré formula twice:

E 2 e Cz(gfp) C*L(gfq)

* =V *
pl g (g-p)! (g9—9)
_ (29 —p— q) 02(2971741)
g—p» )(29—p—q)

29 — p — q L'(IH’Q*Q)
_ ( >—
g—p )(p+qg—g)
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5.2 Classes of special subvarieties in .7 (P, 9(C))

In this section we assume that 7: C' — C' is étale and recall that in this case dim P =
p =g — 1. Let us fix two integers r and d such that 0 < 2r < d < 2g. Throughout this
section the letters n and m will denote r-tuples of non-negative integers (ni,...,n,) and
(mq,...,m,), respectively. As in Section 4.2, @g: Cy — J, pq: Cq — J are abelian sum
mappings and 74: Cy — Cy is the map induced by 7: C' — C. Also, let |n| := 25:1 n; and
i1
Hn = H;:1 (_17)zjj :

For any pair n, m of r-tuples with 1 < n; < ... < n,, Z;Zl n; <d,and 0 < m; < n;/2

for all 7, define the following numbers:

L. Uy : For each ¢ > 1let ¢(¢) be the number of n;’s that are equal to ¢ and suppose that

nj =mng =...=n;, =L 1If q(¢) is not zero, let p(¢,n,m) be the number of permutations
of the ordered g(¢)-tuple (mj,, mj,,...,m; , ), and otherwise let p(¢,n,m) = 1. Then we set
e = L Sy

Note that if r = 1, then v,,, = 1 for all n,m. If r = 2, then v,,, = 1/2 if n; = ny and
my # me, and v, ,, = 1 otherwise.

2. A\pm @ This is the number

Anm:: 2d_|n‘ ,unl/nm d nl “ .. nr .
’ ’ In| /) \my my

3. dnm : Letey, ..., e, count the number of repeats in the sequence of pairs (ny, my), ..., (n,, m,).

For example, if the sequence of pairs is

(1,2),(1,2),(2,5),(2,3),(2,3),(2,3),(7,5),(3,3),(3,3), (3,3),
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then the associated sequence of repeats is 2,1, 3,1, 3. Let us define

Ay = €1)e0! - - - ).

)

Theorem 5.2.1. Let 0 < 2r < d < 2g and let V = VyUV] be the union of special subvarieties
of P associated to a complete and base point free g}, on C. The component of the class [V]

in AP7"(P)q is given by the formula

V] t) = Ct,r,d(W(é)]*T)(t)

where
,
ur = 2SS 2 Ty 2m)
n m<z M g=1
the outer sum is taken over the choices of r-tuples n = (ni,...,n,) of integers with 1 <
n < ...<mn, and 22:1 n; < d, the inner sum is taken over the choices of r-tuples m =
(mq,...,m,) of integers with 0 < m; < % for all j.

Proof. Let Gy denote the complete and base-point-free g; on C, considered as a subvariety
of C, isomorphic to P". Given an r-tuple n of positive integers, consider the generalized
diagonal

5n:{nlxl—|—n2x2+---+nrxr]x1,...,xrEC}

in the |n|-fold symmetric product of C. Let D € G be a fixed effective divisor, whose support
consists of d distinct points. In [He, Thm.3, p.888] we may find the following formula for
the class [Gq) € CHY™"(Cy):

[Ga] = Zﬂn[5n+01+"'+os}:

n,04
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where s = s(n) := d—|n| > 0 and the sum is taken over all r-tuples n with 1 <n; < ... <n,
and the choices of (unordered) sums o, := 0; + - -+ + 05 of pairwise distinct points in the
support of the fixed divisor D.

In order to compute 7j[Gy4], for each pair n,m of r-tuples with m; < n; for all j, we

introduce the modified generalized diagonals
Sn,m = { ijb(i'j) + (nj — mj):i'j ‘ 571, e ,i’r S é},
j=1

considered as subvarieties of the |n|-fold symmetric product of C'. We may check that

W2[5n+ol+---+os]=Zun,m<nl>---(nr)[Sn,m+a1+---+as},

~ my m,
mvgs

where the sum is taken over all r-tuples m with 0 < m; < "12—] for all j and all (unordered)
sums 4, = Uy + -+ - + s with @; € 77(0;) = {0;,¢(6;)}. To explain the number v, ,, note
that two ordered indexing pairs n, m and n, m’ with m # m’ may label the same generalized
diagonal. The number v, ,, is the adjustment for this redundancy. Passing to A(C’d), the

formula for the pull-back of a generalized diagonal becomes

* _ od—In| M ™15 —né
[0 + 01+ -+ + 0] T;L Vn’m(ml m [5n,m+(d |n|)o}

and we get:

TG =D ) A [Onm + (d = |n])d]. (5.2.1)

n
n mSi

The abelian sum mapping ¢, maps the subvariety 5nm + (d—|n|)o of Cy bijectively onto
a translate of the variety (myt +ny — my)(C) + -+ + (mpt + n, — m,)(C), where C C J

also denotes the Abel curve and (mj¢ + n; —m;) is viewed as an endomorphism of J. The
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number d,, ,, computes the degree of the addition morphism

(myt +ny —my)(C) X -+ X (mpt +n, —m,)(C) — Z(mjL +n; —m,)(0),

Jj=1

and therefore, by the definition of Pontryagin product we have:

(m1L +ny — m1)*[0] koeek (mr[/ +ny — mr)*[C] = dn,m [Z(mﬂ +n;— mj)(c) )

which implies the formula:

i[O + (d — [n])0] = djm (1 = 2m).[0(C)] % - % (n, = 2m, ). [0 (C)]. (5.2.2)

Since the composition of P < .J with u: J — P is multiplication by 2, then by (5.2.1) and

(5.2.2) we have the following identity in A(P):

2*[V] = Z Z 2:’: (nl - 2m1)*[¢(é)] Koo Xk (nr - 2mr‘)*[¢(é>]

We may extract the formulas for the homogeneous components of [V] by recalling that

kox = K*P=D% g for z € AY(P) ). O

In general, there is no canonical way of distinguishing V; from V;, and consequently, we
may not extract the formulas for [Vj] and [V4] from the formula for [V] in a direct way. In
particular, we do not know in general if [V;] € 7 (P,(C)). However, when V, and V; are
algebraically equivalent, [Vy] = [V1] in A(P) and we easily obtain a formula for their classes:

Vo] = V1] = 3[V] € Z(P,0(C)).
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5.3 Examples

First, we note that even when ¢, q # 0, the cycle ([¢/(C)]*")«) may itself be zero, e.g.,
when t is odd and r = 1, see the proof of Theorem 3.2.3.

Example 1. When Gy is a g} (the case r = 1), the formula in Theorem 5.2.1 reads

Vg =3 3 U (1) @-zmrw@no. G

n n m
n=1 mgg

In particular,
£92
(g—2)V

which corresponds to the singular cohomology class of V' and agrees with the formula in

V) = 2%73[(C)) o) = 2972 -

[Be82, Thm.1, p.364]. When ¢ = 2s > 0 is even, using the package ekhad from [PWZ] for

the software system maple and the resource [OEIS], it appears that

(4" —1)Bogya od—2

C2s,1,d =
Eat] S+1

Y

where B,, is the m™ Bernoulli number, defined by w5 = > B, In particular, the

coefficient ¢; 1 4 is non-zero when ¢ is even. When ¢ is odd, a closed formula for ¢;; 4 can also
be found using the package ekhad, but the formula that we obtained was very bulky, and

therefore, we do not include it here. In any case, when ¢ is odd, the class [1)(C)] is zero.
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Example 2. When G, is a ¢2, we may check that

2,[V]= BLZ3 8422« 2,7+ 87 x3,Z — 17 % 4,7 + 152 x5, 7

+B0Z % (2.2)? = L1252, Z %3, Z + 3 Z % 2,2 x 4,2 + 52 % (3.2)*

where Z = [1(C)]. Using the identification [¢)(C)]q) = 2 - 55’%2, and Corollary 5.1.2, an
(0) (g—2)!
elementary calculation shows that [V]) = 2- %, which agrees with the formula in [Be82].

By the proof of [Fa, Thm.4.5, p.117], we know that for a generic Prym variety P of
dimension p > 5, the cycle ([1&(0)}”)(2) is non-zero in A(P) for 1 < r < p—3. Consequently,
we may deduce the following non-vanishing results.

From the first example above we know that ¢y ;4 = —297*, which implies that V] #0,
where V' is associated to a g} on a generic curve C' of genus g > 6.

When r = 2, we have verified on a computer that ¢y 54 = 2977 for 0 < d < 100. Therefore,
[V]2) # 0 at least for 4 < d < 100, where V' is associated to a g; on a generic curve C' of
genus g > 6.

When r = 3, the coefficients ¢y, 4 are not always integers and do not seem to follow an
obvious pattern, but they still appear to be non-zero, which has been checked on a computer

for 3 <d < 50.
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