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Abstract

The ring of algebraic cycles modulo algebraic equivalence on an abelian variety is an

interesting and mysterious object. When the abelian variety is the Jacobian of a smooth

curve, Arnaud Beauville defined a certain subring, called the tautological ring, which has

become of great interest to a number of mathematicians. Recently Ben Moonen defined the

small and the big tautological rings for Jacobians modulo rational equivalence, both of which

surject onto the tautological ring of Beauville.

In this thesis, the notions of tautological rings of Beauville and Moonen are generalized

to pairs, consisting of an abelian variety and a subvariety. The tautological ring modulo

algebraic equivalence is then studied for the pairs: Prym variety P of a double cover C̃ → C

and Abel-Prym curve ψ(C̃). Generators and certain relations, called “Polishchuk relations”,

for the tautological ring of the pair (P, ψ(C̃)) are determined. Given a complete linear system

grd on C, Beauville constructed and studied two subvarieties V0 and V1 of P , called special

subvarieties. He showed that V0 and V1 have the same class in the cohomology ring of P . In

this thesis it is shown that in many cases V0 and V1 are, in fact, algebraically equivalent. The

class of the union of V0 and V1 turns out to belong to the tautological ring and is expressed

in terms of its generators.
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Russia (esp., Andrej Bragar’, Lev Konstantinovskiy) for their support. Special thanks go to

my friend Jim Stankewicz for reading and commenting on an earlier version of this thesis.

iv



Contents

1 Introduction 1

1.1 Tautological rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Equivalence relations on algebraic cycles 7

2.1 Rational, algebraic, and homological equivalence . . . . . . . . . . . . . . . . 7

2.2 Facts from intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Basics on cycles on abelian varieties . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 The Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 The Beauville grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Tautological rings modulo algebraic equivalence 18

3.1 The Fourier transform of an Abel-Prym curve . . . . . . . . . . . . . . . . . 18

3.2 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Polishchuk relations and the sl2 action . . . . . . . . . . . . . . . . . . . . . 26

4 Algebraic equivalence of special subvarieties 36

4.1 Étale double covers and square trivial invertible sheaves . . . . . . . . . . . . 37

4.2 Special subvarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



4.3 Compactified Jacobians and autoduality . . . . . . . . . . . . . . . . . . . . 40

4.4 Presentation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Brill-Noether varieties and their families . . . . . . . . . . . . . . . . . . . . 43

4.6 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Classes of special subvarieties 58
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Chapter 1

Introduction

1.1 Tautological rings

For a non-singular variety V , we let CH(V ) denote the Chow ring of V modulo rational

equivalence with Q-coefficients. The quotient CH(V )/∼alg modulo algebraic equivalence is

denoted by A(V ). We work over C, the field of complex numbers.

Let X be an abelian variety. Besides the intersection product, the ring CH(X) is endowed

with Pontryagin product defined by

x1 ∗ x2 = m∗(p
∗
1x1 · p∗2x2),

where m : X × X → X is the addition morphism and pj : X × X → X is the projection

onto the jth factor, [BL, p.530]. If V,W ⊂ X are subvarieties, set-theoretically [V ] ∗ [W ] =

{v + w : v ∈ V,w ∈ W}. More precisely, [V ] ∗ [W ] = deg(m|V×W )[V + W ] if the addition

map m : V ×W → V + W is generically finite, and [V ] ∗ [W ] = 0 otherwise. Moreover, the
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Chow ring of X is bi-graded,

CH(X) =
⊕
p,s

CHp(X)(s).

The p-grading is by codimension. The Beauville grading (s) is characterized by: x ∈

CHp(X)(s) if and only if k∗x = k2p−sx for all k ∈ Z, where k also denotes the endomor-

phism of X given by x 7→ kx, see [Be86]. The (s)-component of a cycle Z is denoted by Z(s).

There is a Fourier transform

FX : CH(X)→ CH(X),

which has been defined by Beauville in relation to the Fourier-Mukai transform, see Section

2.4. The operations ∗,FX and the bi-grading descend to A(X).

When X is the Jacobian J of a smooth curve C of genus g, we may fix a point o ∈ C and

embed C in J via the Abel map ϕ : x 7→ OC(x− o). The small tautological ring taut(C) of

J is defined to be the smallest Q-subalgebra of CH(J) under the intersection product, which

contains the class of the image of C under ϕ, and is stable under the operations ∗,FJ , k∗

and k∗ for all k ∈ Z. The big tautological ring Taut(C) is defined in the same way, except

it is required to contain the image of ϕ∗ : CH(C) → CH(J), see [Mo, Def.3.2, p.487]. The

tautological ring for Jacobians was originally defined and studied by Beauville in [Be04] as

a Q-subalgebra T (C) of A(J) under the intersection product. In [Be04] it was shown that

T (C) is generated by the classes w1, . . . , wg−1, where wg−d = (1/d!)C∗d. The generators

for the tautological rings taut(C) and Taut(C) of the Jacobian J have also been determined

in [Po07, Thm.0.2, p.461] and [Mo, Thm.3.6, p.489], respectively. The rings taut(C) and

Taut(C) have the same image, namely T (C), in A(J).

The following definition generalizes the notions of various tautological rings for a Jaco-

bian. The original idea of considering pairs is due to R. Varley.
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Definition 1.1.1. Let X be an abelian variety and let V ⊂ X be a subvariety. The small

and the big tautological rings taut(X, V ) and Taut(X, V ), respectively, of the pair (X, V )

are the smallest subrings of CH(X) under the intersection product, which contain [V ] and

CH(V ), respectively, and are stable under the operations ∗,FX , k∗ and k∗ for all k ∈ Z. The

image of Taut(X, V ) in A(X) is called the tautological ring of (X, V ) and is denoted by

T (X, V ).

Our definition of the tautological rings:

taut(J, ϕ(C)),Taut(J, ϕ(C)) and T (J, ϕ(C))

coincides with the previous definitions denoted in [Mo] by taut(C),Taut(C) and T (C),

respectively.

Let π : C̃ → C be a degree 2 morphism, which is either étale or ramified at two points,

and let J̃ be the Jacobian of C̃. The norm map Nm: J̃ → J takes a linear equivalence

class [
∑

j p̃j] ∈ J̃ of degree zero divisors on C̃ to the linear equivalence class [
∑

j π(p̃j)] ∈ J .

By [Mu74], the connected component of the identity in ker(Nm: J̃ → J) is a principally

polarized abelian variety (P, ξ), called the Prym variety of C̃ → C. If we fix õ ∈ C̃, there

is a morphism ψ : C̃ → P , called the Abel-Prym map, which is obtained by composing

C̃ → J̃ , x̃ 7→ OC̃(x̃ − õ) with 1 − ι : J̃ → J̃ , where ι is the involution induced by the

involution on C̃ exchanging the sheets of the cover. If C̃ is non-hyperelliptic, then ψ is a

closed embedding in the étale case, and identifies the ramification points in the ramified case,

[BL, Prop.12.5.2, p.378]. If C̃ is hyperelliptic, ψ has degree two onto its image.

The outline of the contents of this thesis is as follows. In Chapter 2, we collect the

foundational material that will be used in the sequel. In Chapter 3 we study the generators

and relations for the ring T (P, ψ(C̃)) under the intersection product. Consider the classes

ζn = FP
(
[ψ(C̃)](n−1)

)
∈ A(P ) for 1 ≤ n ≤ dimP . In Section 3.2 we show the following.

3



Theorem 1.1.2. The tautological ring T (P, ψ(C̃)) is generated as a Q-subalgebra of A(P )

under the intersection product by the cycles ζn, where 1 ≤ n ≤ dimP − 1 and n is odd.

In [Po05], a collection of relations, which we call Polishchuk relations, among the gen-

erators of T (C̃) is obtained and studied. In Section 3.3 we show that Polishchuk re-

lations on J̃ restrict to trivial relations on P , see Proposition 3.3.1. Also, using Pol-

ishchuk’s methods we find relations among the generators of T (P, ψ(C̃)), which resemble

those for Jacobians. To state the precise result, we recall some notation from [Po05]. Let

[1, r] := {1, 2, 3, . . . , r}. Assume that we are given integers kj > 1 for j = 1, . . . , r. Given a

subset I = {i1, i2, . . . , is} ⊂ [1.r], define the numbers:

b(I) :=
(ki1 + . . .+ kis)!

ki1 ! · · · kis !
and d(I) := ki1 + . . .+ kis − s+ 1.

Theorem 1.1.3. For each integer r ≥ 1, odd integers k1, . . . , kr > 1, and each d with

0 ≤ d ≤ r − 1 we have the relation,

∑
Pm

(
m− 1

d+m− r

)
b(I1) · · · b(Im)ζ

[p−d−m+r−
Pr
i=1 ki]

1 ζd(I1) · · · ζd(Im) = 0

in Ap−d(P ), where the sum is taken over all unordered partitions Pm = {I1, . . . , Im} of [1, r]

into m disjoint nonempty parts such that r − d ≤ m ≤ p− d+ r −
∑r

i=1 ki.

In Chapters 4 and 5 we study the special subvarieties V0 and V1 of P associated to a

complete grd on C (see Section 4.2 for the definition of V0, V1). The Brill-Noether variety

W r
d (C) parametrizes invertible sheaves L on C with degL = d and h0(L) ≥ r + 1, see

[ACGH, p.153]. The expected dimension of W r
d (C) is the Brill-Noether number ρ(g, r, d) =

g − (r + 1)(g − d+ r). In Section 4.6 we prove the following.

Theorem 1.1.4. Assume that W r
d (C) is reduced and of dimension ρ(g, r, d). If ρ(g, r, d) > 0,

then V0 and V1 are algebraically equivalent.
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Note that the inequalities d < 2g and 0 < 2r < d are needed for the special subvarieties

to be defined and homologically equivalent, respectively (see Section 4.2 for details). As a

consequence of Theorem 1.1.2, the tautological ring T (P, ψ(C̃)) is spanned as a Q-vector

space by cycles of the form

[ψ(C̃)](n1) ∗ [ψ(C̃)](n2) ∗ · · · ∗ [ψ(C̃)](nr),

where ni, r ≥ 0 are varying integers. In Section 5.2 we show that the class [V ] of V := V0∪V1

belongs to T (P, ψ(C̃)) ⊂ A(P ) and express [V ] in terms of the generators of T (P, ψ(C̃)):

Theorem 1.1.5. If 0 < 2r < d < 2g, then the component of the class [V ] in Ag−r−1(P )(t)

is given by the formula [V ](t) = ct,r,d
(
[ψ(C̃)]∗r

)
(t)

, where ct,r,d are certain rational numbers

defined in Section 5.2.

Remark 1.1.6. The pairs: a Jacobian with an Abel curve and a Prym variety with an

Abel-Prym curve are special cases of a pair (X, τ(C)), where X ⊂ J is a Prym-Tyurin

variety defined by the endomorphism σ of J satisfying certain properties and τ : C → X is

the composition of an Abel map C → J and (1 − σ) : J → X, see [BL, p.369] for details.

Moreover, every principally polarized abelian variety is a Prym-Tyurin variety, although not

in a unique way, [BL, Cor.12.2.4, p.371].

1.2 Notation and conventions

We work over the field C of complex numbers and the Chow rings are considered with Q-

coefficients. When we write “point”, we mean a closed point. The word “scheme” will mean

a noetherian separated scheme over C. By a node on a curve we mean an ordinary double

point (locally analytically given by xy = 0) and by a cusp on a curve we mean an ordinary

cusp (locally analytically given by y2 = x3). By an (étale) double cover we mean a finite
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(étale) morphism f : X → Y of schemes that has degree 2 on each irreducible component

of Y . π : C̃ → C denotes a connected double cover, étale or ramified at exactly two points,

of a smooth curve C of genus g. (P, ξ) denotes the principally polarized Prym variety of

dimension p ≥ 2 associated to π : C̃ → C, where ξ ∈ A1(P ) is the class of a theta divisor. If

π is étale, p = g−1, and, if π is ramified at two points, p = g. J̃ and J denote the Jacobians

of C̃ and C. We fix õ ∈ C̃ and let ϕ̃ : C̃ → J̃ be the Abel map x 7→ OC̃(x− õ). ι denotes the

involution on C̃ such that C̃/ι = C and also the induced involution on J̃ . We let u : J̃ → P

be the restriction of (1 − ι) on the image and ψ := u ◦ ϕ̃ : C̃ → P be the Abel-Prym map.

We take o = π(õ) and let ϕ : C → J be the Abel map x 7→ OC(x− o). We take the Fourier

transform FP : A(P )→ A(P ) to be FP (x) = p2∗(p
∗
1x · e`), where ` := p∗1ξ + p∗2ξ −m∗ξ is the

class of the Poincaré line bundle on P × P , m : P × P → P is the addition morphism and

p1, p2 are the projections from P ×P onto P . If X is a scheme, we say that a generic (resp.,

general) element x ∈ X has property P, if P holds on the complement of a countable union

of closed subschemes of X (resp., on a dense Zariski open subset of X). The Brill-Noether

number is denoted by ρ(g, r, d) = g − (r + 1)(g − d+ r).
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Chapter 2

Equivalence relations on algebraic

cycles

2.1 Rational, algebraic, and homological equivalence

Let X be an irreducible projective variety of dimension n. Given an integer 0 ≤ k ≤ n,

consider the group Zk(X) of k-cycles on X, which are by definition finite formal sums

m1Z1 +m2Z2 + · · ·+mrZr,

where mi ∈ Z and Zi is a k-dimensional subvariety of X. A k-cycle Z =
∑

imiZi is called

effective if mi ≥ 0 for all i. By definition, two k-cycles Z and Z ′ on X are rationally

equivalent if there is an effective (k+1)-cycle V =
∑

i niVi on X×P1, projecting dominantly

to P1 (i.e., each Vi dominates P1), and an effective k-cycle W on X such that

V|X×{b} = Z +W and V|X×{b′} = Z ′ +W

7



for some points b, b′ ∈ P1. We shall denote the group of k-cycles modulo rational equiv-

alence by CHk(X) or by CHn−k(X) (the upper index is the codimension of the cycle). If

X is smooth, then CH(X) :=
⊕

l CHl(X) has the structure of a graded (by codimension l)

commutative ring with 1 (= the fundamental class [X] of X) under the intersection product,

which is called the Chow ring of X, [Fu, 8.3, p.140] (note that CHl(X) is denoted by Al(X)

in [Fu]).

A coarser equivalence relation on Zk(X), which is also of great interest, is algebraic

equivalence. The definition of algebraic equivalence is analogous to the definition of rational

equivalence, except instead of P1 we are allowed to use any smooth connected curve C. The

group of k-cycles modulo algebraic equivalence will be denoted by Ak(X) (or by An−k(X),

if the emphasis is on codimension). When X is smooth, A(X) :=
⊕

lA
l(X) also has the

structure of a graded commutative ring with 1 (= the fundamental class [X] of X), which is

called the Chow ring of X modulo algebraic equivalence.

There is yet a coarser equivalence relation on Zk(X) called homological equivalence, which

comes from topology. One way to define this equivalence relation is to consider the singular

homology groups Hk(X). There is a group homomorphism cl : Zk(X)→ H2k(X) called the

cycle class map, [Fu, p.372]. A cycle Z is homologically trivial if cl(Z) = 0. Two cycles are

homologically equivalent if their difference is homologically trivial.

The three equivalence relations on Zk(X) defined above are related as follows. Let

Ratk(X),Algk(X), and Homk(X) be the subgroups of Zk(X) consisting of cycles that are

rationally, algebraically, and homologically equivalent to zero, respectively. We have inclu-

sions of groups

Ratk(X) ⊂ Algk(X) ⊂ Homk(X).

As pointed out in [Bl76b], Algk(X)/Ratk(X) should be thought of as the “continuous” part

of CHk(X). However, Ak(X) = Zk(X)/Algk(X) need not be finitely generated, as we’ll see.

8



There are group homomorphisms CHk(X)→ Ak(X)→ H2k(X). However, the following

examples show that the three equivalence relations can be very different. If X is a generic

quintic threefold in P4 or a generic abelian threefold
(
Hom1(X)/Alg1(X)

)
⊗ Q is infinite

dimensional, [Cl, No]. If X is a non-singular projective variety of dimension ≥ 2 with

h0(X,Ωq
X) > 0 for some q ≥ 2, then Alg0(X)/Rat0(X) is larger that the group of rational

points on any abelian variety (for precise statements see [Mu68] for the case dimX = 2 and

[Ro] for the general case). On the other hand, there are examples of Fano threefolds for

which Alg1(X)/Rat1(X) is isomorphic to an abelian variety, see [Bl76b, BlMur]. Also, there

are algebraic varieties, for example flag varieties, for which all three equivalence relations

coincide.

Cycles of dimension n − 1 (equivalently, of codimension 1) on X are of special interest

and they are called divisors. Algebraic and homological equivalence coincide for divisors and

are in general strictly coarser than rational equivalence, which for divisors is usually called

linear equivalence, [Fu, 19.3.1, p.385].

2.2 Facts from intersection theory

We shall repeatedly use the following facts from intersection theory. For simplicity we

assume that X and Y are projective varieties, although the results stated below hold in a

more general setting.

1. Pull-back : If f : X → Y is either a flat morphism or an l.c.i. morphism, then there is

a group homomorphism f ∗ : CH(Y ) → CH(X), called the pull-back. If X and Y are

non-singular, f ∗ is a ring homomorphism. If f is flat, then for a subvariety V ⊂ Y ,

f ∗([W ]) = [f−1(W )], [Fu, 1.7, p.18; 6.6, p.112].

2. Proper push-forward : If f : X → Y is a proper morphism, then for every k there is

a group homomorphism f∗ : CHk(X) → CHk(Y ), called push-forward. If V ⊂ X is a

9



subvariety, put W = f(V ) and let deg(V/W ) be the degree of f|V : V → W or 0 if f|V

is not finite, then f∗([V ]) = deg(V/W )[W ], [Fu, 1.4, p.11]. Note that f∗ is not a ring

homomorphism for the intersection product.

3. Projection formula: For any α ∈ CH(Y ), β ∈ CH(X): f∗(f
∗α · β) = α · f∗β, whenever

all the operations involved are defined.

4. Flat base change of a proper morphism: If g : S → Y is flat and f : X → Y is proper,

form the fiber-product diagram:

XS
g′ //

f ′

��

X

f

��
S

g // Y,

then for any α ∈ CH(X): g∗f∗α = (f ′)∗(g
′)∗α.

2.3 Basics on cycles on abelian varieties

Let (X, θ) be a principally polarized abelian variety (ppav) of dimension g. The dual

abelian variety is denoted by X t := Pic0(X) and we let λθ : X → X t be the isomorphism

induced by θ ∈ CH1(X). There are two ring structures on CH(X): intersection product and

Pontryagin product. As we have seen, pull-back is a ring homomorphism for the intersection

product, but push-forward in general is not a ring homomorphism for this operation. On the

other hand, push-forward by a homomorphism of abelian varieties is a ring homomorphism

for the Pontryagin product ∗, but pull-back is not in general a ring homomorphism for ∗,

[La, p.9; MvdG]. The relationship between the two products has been studied in [Po08] and

[Bl76a, Lem.1.1, p.218].
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In what follows we shall consider the rings CH(X) and A(X) with Q-coefficients, that is,

tensored by Q, without changing the notation.

2.4 The Fourier transform

A brief historical account is as follows. It appears that the Fourier transform on the

cohomology ring was defined for the first time in the paper [Li] of Lieberman. In [Muk],

Mukai gave a more general definition on the derived category of an abelian variety. In [Be83,

Be86], Beauville introduced and studied the analogous notion on the Chow ring. Since its

appearance, the Fourier transform in all of its incarnations has been a powerful tool in the

study of abelian varieties and was generalized to other settings as well. In what follows,

we shall be working with the Fourier transform on the Chow ring CH(X) and the Chow

ring A(X) modulo algebraic equivalence. The definitions and properties below are stated for

CH(X) but they hold verbatim for A(X).

Let ` := p∗1θ+ p∗2θ−m∗θ be the first Chern class of the Poincaré sheaf on X ×X, where

m : X ×X → X is the addition morphism and p1, p2 : X ×X → X are the projections. The

Fourier transform FX : CH(X)→ CH(X) on the Chow ring of X is defined by the formula

FX(z) := p2,∗(e
` · p∗1z).

Note that usually the Fourier transform takes objects on X to objects on the dual abelian

variety X t. More precisely, let us denote the “usual” Fourier transform by FX : CH(X) →

CH(X t), whose definition is

FX(z) := pXt,∗
(
elX · p∗Xz

)
,

where pX , pXt are the projections from X ×X t and lX := (1X ×λθ)∗` is the first Chern class

of the Poincaré bundle on X ×X t. Since λθ is flat and pXt is proper, then by Section 2.2,

11



item 4, and the Cartesian diagram

X ×X 1X×λθ //

p2

��

X ×X t

pXt

��
X

λθ // X t,

we obtain

(
(λθ)

∗ ◦FX

)
(z) = (λθ)

∗pXt,∗
(
elX · p∗Xz

)
= p2,∗(1X × λθ)∗

(
elX · p∗Xz

)
= p2,∗(e

` · p∗1z) = FX(z).

Therefore, the two definitions are related by the formula FX = (λθ)
∗ ◦FX .

Let Y be a ppav of dimension h and let f : X → Y be a homomorphism of abelian

varieties. The dual homomorphism f t : Y t → X t is defined by L 7→ f ∗L. The main properties

of the Fourier transform that we shall use are the following:

(P1) FX ◦ FX = (−1)g(−1)∗;

(P2) FX(x ∗ y) = FX(x) · FX(y) and FX(x · y) = (−1)gFX(x) ∗ FX(y);

(P3) FX(x) = eθ ·
(
(x̄ · eθ

)
∗ e−θ), where x̄ = (−1)∗x.

(P4) FY ◦ f∗ = (f t)∗ ◦FX and FX ◦ f ∗ = (−1)g+h(f t)∗ ◦FY ;

Proof. For proofs of (P1) and (P2) we refer to [Be83, Prop.3, p.243] or [BL, Ch.16]. The

property (P3) is taken from [Be04, 2.3iv, p.684] and the proof is as follows. Let ω : X×X →

X × X be the automorphism (x, y) 7→ (−x, x + y), then p1 ◦ ω = −p1, p2 ◦ ω = m, and

m ◦ ω = p2. Therefore, substituting the definition of ` and using the fact that (−1)∗θ = θ
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we obtain:

FX(x) = p2,∗(e
` · p∗1x) = eθp2,∗(p

∗
1(eθ · x) · e−m∗θ)

= eθp2,∗ω∗ω
∗(p∗1(eθ · x) · e−m∗θ) = eθ ·m∗((−p1)∗(eθ · x) · e−p∗2θ)

= eθm∗(p
∗
1(x̄ · eθ) · p∗2(e−θ)) = eθ · ((x̄ · eθ) ∗ e−θ).

A more general version of (P3) is proven in [Po08, Lem.1.4, p.707].

The identities in (P4) were originally stated for an isogeny [Be83, Prop.3(iii), p.243], but

they hold more generally for any homomorphism of abelian varieties, see also [MvdG] for

the proof of FY ◦ f∗ = (f t)∗ ◦FX in the setting of abelian schemes. The proof of (P4) is

as follows. Let pY , pY t and qX , qY t be the projections from Y × Y t and X × Y t onto the

indicated factors. As above, we let lX and lY be the first Chern classes of Poincaré bundles

on X ×X t and Y × Y t, respectively. On the one hand,

FY (f∗z) = pY t,∗
(
elY · p∗Y f∗(z)

)
= pY t,∗

(
elY · (f × 1Y t)∗q

∗
Xz
)

= pY t,∗(f × 1Y t)∗
(
(f × 1Y t)

∗elY · q∗Xz
)

= qY t,∗
(
(1X × f t)∗elX · q∗Xz

)
,

where for the last equality we used the identity (f × 1Y t)
∗lY = (1X × f t)∗lX , which follows

from the universal property of the Poincaré bundle [BL, Prop.2.5.2, p.38].

On the other hand, using the Cartesian diagram

X × Y t
1X×f t //

qY t

��

X ×X t

pXt

��
Y t

f t // X t,

13



we may compute:

(f t)∗ ◦FX(z) = (f t)∗pXt,∗
(
elX · p∗X(z)

)
= qY t,∗(1X × f t)∗

(
elX · p∗X(z)

)
= qY t,∗

(
(1X × f t)∗elX · q∗X(z)

)
.

This shows the first identity: FY ◦ f∗ = (f t)∗ ◦FX .

To prove FX ◦ f ∗ = (−1)g+h(f t)∗ ◦FY , we apply the first identity to f t and use (P1)

and the fact that (f t)t = f under the canonical identifications of (X t)t with X and (Y t)t

with Y :

FX ◦ f ∗(w) = FX ◦ f ∗ ◦ (−1)h(−1)∗Y ◦FY t ◦FY (w)

= (−1)hFX ◦ ((−1)Y ◦ f)∗ ◦FY t ◦FY (w)

= (−1)hFX ◦FXt ◦ ((−1)Y ◦ f)t∗ ◦FY (w)

= (−1)g+h(−1)∗Xt ◦ (f t)∗ ◦ (−1)Y t,∗ ◦FY (w)

= (−1)g+h(−1)∗Xt ◦ (−1)Xt,∗ ◦ (f t)∗ ◦FY (w)

= (−1)g+h(f t)∗ ◦FY (w).

2.5 The Beauville grading

The Chow ring of X is graded by codimension, CH(X) =
⊕g

a=0 CHa(X), where CHa(X)

is the group of codimension a cycles on X modulo rational equivalence. There is a second

grading, which is due to Beauville [Be86], and is defined as follows. For k ∈ Z, let k : X → X

also denote the morphism x 7→ kx. For any 0 ≤ a ≤ g, let CHa(X)(s) be the subgroup of

14



CHa(X) consisting of classes x with the property k∗x = k2a−sx for all k ∈ Z\{0}. In other

words, CHa(X)(s) is the simultaneous eigenspace of weight 2a − s for the operators k∗. In

[Be86], it is shown that CHa(X) =
⊕a

s=a−g CHa(X)(s). Note that there is an alternative

characterization: x ∈ CHa(X)(s) if and only if k∗x = k2g−2a+sx for all k ∈ Z\{0}.

Moreover, in [Be86, p.255], it was conjectured that CHa(X)(s) = 0 for all s < 0 and all a.

This has been verified by Beauville and Bloch for a ∈ {0, 1, g − 2, g − 1, g}, [Be86, Prop.8,

p.255; Bl74a, Thm.4.7, p.227].

Note that CH0(X) = CH0(X)(0). Also, CH1(X)(0) = Pics(X)Q and CH1(X)(1) =

Pic0(X)Q, where Pics(X)Q is the subgroup of symmetric invertible sheaves, tensored with

Q. Thus, the Beauville decomposition of CH1(X) can be reinterpreted as the fact that any

Q-divisor D on X can be written as a sum of a symmetric Q-divisor and an algebraically

trivial Q-divisor:

D =
D + (−1)∗D

2
+
D − (−1)∗D

2

and the summands are unique up to linear equivalence.

Also, A1(X) = A1(X)(0) ' Pics(X)Q ' NS(X)Q, where NS(X)Q is the Néron-Severi

group of X consisting of Q-divisors on X modulo algebraic equivalence.

Furthermore, the Beauville grading is preserved by the following operations on cycles on

abelian varieties:

(P5) FXCHa(X)(s) = CHg−a+s(X)(s);

(P6) if x ∈ CHa(X)(s) and y ∈ CHb(X)(t), then x · y ∈ CHa+b(X)(s+t) and x ∗ y ∈

CHa+b−g(X)(s+t);

(P7) if f : X → Y is a homomorphism of abelian varieties, then f ∗CHa(Y )(s) ⊂ CHa(X)(s)

and f∗CHa(X)(s) ⊂ CHa+c(Y )(s), where c = dimY − dimX.

Proof. See [Be86, Prop.2, p.648] or [BL, 16.5, p.534].
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2.6 Examples

Put `x := `|{x}×X , let [X] be the fundamental class of X, and for a point x ∈ X, let

[x] ∈ CHg(X) be its class. We shall use the following additional properties of FX :

1. FX([X]) = (−1)g[0] and FX([0]) = [X];

2. FX(`x) = (−1)g
∑g

k=1
1
k
([0]− [x])∗k and FX([x]) = e`x ,

whose proofs follow immediately from [BL, Cor.16.3.3, p.529; Prop.16.3.6, p.531] using the

fact that FX = (λθ)
∗ ◦FX (F in [BL] is our FX).

Note that since any two points on X are algebraically equivalent (X is assumed to be

connected), then Ag(X) ' Ag(X)(0) ' Q. In particular, Ag(X)(s) = 0 for all s ≥ 1. By

Fourier dualty Am(X)(m) = 0 for all m ≥ 1. Also, A0(X)(0) = Q · [X] and A1(X) '

A1(X)(0) = Q · θ.

Example 1. Let E be an elliptic curve with a marked point 0. We may take θ = [0].

We have CH1(E)(1) = Pic0(E)Q, CH1(E)(0) = Q · [0], and CH0(E) = Q · [E]. The Fourier

transform exchanges CH0(E) and CH1(E)(0) by sending [E] to −[0] and sends CH1(E)(1) to

itself by the rule `x 7→ [x]− [0].

Modulo algebraic equivalence, A1(E)(1) = 0 and FX exchanges A0(E) = Q · [E] and

A1(E)(0) = Q · [0] as above.

Example 2. Let (S, θ) be a principally polarized abelian surface. Then CH0(S) = Q·[S];

CH1(S)(1) = Pic0(S)Q, CH1(S)(0) = Q · θ. The Fourier transform induces isomorphisms

CH0(S) → CH2(S)(0) and CH1(S)(1) → CH2(S)(1) and automorphisms of CH1(S)(0) and

CH2(S)(2). Since the geometric genus pg(S) = 1, by a theorem of Mumford [Mu68], CH2(S)

is “infinite dimensional”, i.e., is larger than the set of closed points of any abelian variety.

By Fourier duality, CH2(S)(1) ' CH1(S)(1) ' Pic0(S)Q and CH2(S)(0) ' CH0(S)(0) ' Q
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are “finite dimensional”, we see that CH2(S)(2) is the part that makes CH2(S) “infinite

dimensional”.

Modulo algebraic equivalence, the only non-zero groups are A0(S), A1(S)(0), and A2(S)(0)

each of which is isomorphic to Q.

Example 3. Let X be a principally polarized abelian threefold. If X is generic, then

by a theorem of Nori [No] (see also [Ba]), A2(X) is infinite dimensional as a vector space

over Q. Since A2(X)(2) = 0 and A2(X)(0) ' Q, then we conclude that A2(X)(1) is the part

that makes A2(X) infinite dimensional, see also [CoPi]. The Fourier transform induces an

automorphism of A2(X)(1).
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Chapter 3

Tautological rings modulo algebraic

equivalence

Throughout this section π : C̃ → C is a connected double cover, which is either étale or

ramified at two points. Also, we shall use the following additional notation. The translation

map x 7→ x+ a on an abelian variety is denoted by τa. Let i : P ↪→ J̃ be the inclusion of the

Prym variety P into the Jacobian J̃ of C̃. Let ΘJ , ΘJ̃ , and Ξ be theta divisors on J , J̃ , and

P , respectively, such that ΘJ̃ restricts to 2Ξ on P . Let LP be the Poincaré sheaf on P × P

normalized by the conditions LP |{b}×P ' LP |P×{b} ' OP (Ξ − τ ∗b Ξ) for all b ∈ P . Let LJ̃

and LJ be Poincaré sheaves on J̃ × J̃ and J × J , respectively, normalized analogously.

3.1 The Fourier transform of an Abel-Prym curve

In this section we compute the Fourier transform FP [ψ(C̃)] of an Abel-Prym curve in

A(P ) and obtain a formula analogous to the one in [Be04, Prop.3.3, p.685]. The formula

for FP [ψ(C̃)] can also be deduced from [Na, Prop.3.1, p.226], where the K-theoretic Fourier

transforms of certain bundles on J̃ are related to their counterparts on P .
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Recall that g and g̃ denote the genera of C and C̃, respectively, and consider the classes

w̃g̃−d :=
1

d!
C̃∗d and Nk(w̃) :=

1

k!

g̃∑
i=1

λki ,

where λ1, . . . , λg̃ are the roots of the equation λg̃ − λg̃−1w̃1 + . . .+ (−1)g̃w̃g̃ = 0. The classes

Nk(w̃) are Newton polynomials in the classes w̃i and are used to express the Chern character

of a vector bundle in terms of its Chern classes, [Fu, Ex.15.1.2, p.284]. Recall from the

introduction that i : P ↪→ J̃ is the inclusion and u : J̃ → P is the morphism (1− ι) : J̃ → J̃

restricted to P on the image.

Lemma 3.1.1. The Fourier transforms on P and J̃ are related by the formulas

FP ◦ u∗ = i∗ ◦ FJ̃ and FP ◦ i∗ = (−1)g̃+pu∗ ◦ FJ̃ ,

where g̃ = dim J̃ and p = dimP .

Proof. By definition, the composition

P
λξ // P t ut // J̃ t

λ−1

θ̃ // J̃

is the inclusion i : P ↪→ J̃ . Therefore, using (P4) we obtain:

FP ◦ u∗ = λ∗ξ ◦FP ◦ u∗ = λ∗ξ ◦ (ut)∗ ◦FJ̃ = λ∗ξ ◦ (ut)∗ ◦ (λ−1

θ̃
)∗FJ̃ = i∗ ◦ FJ̃ .

On the other hand, it = (λ−1

θ̃
◦ ut ◦ λξ)t = (λξ)

t ◦ u ◦ (λ−1

θ̃
)t = λξ ◦ u ◦ λ−1

θ̃
, and therefore,

λ−1
ξ ◦ it ◦ λθ̃ = u. Thus, using (P4) and the identity (λξ)

∗ = (λ−1
ξ )∗ (remember that λξ is an
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isomorphism), we obtain the other part of the lemma:

FP ◦ i∗ = (λξ)
∗ ◦FP ◦ i∗ = (−1)g̃+p(λ−1

ξ )∗ ◦ (it)∗ ◦FJ̃

= (−1)g̃+p(λ−1
ξ )∗ ◦ (it)∗ ◦ (λθ̃)∗ ◦ FJ̃ = (−1)g̃+pu∗ ◦ FJ̃ .

Proposition 3.1.2. The Fourier transform of the class of the Abel-Prym curve ψ(C̃) on a

Prym variety P of dimension p is given by the formula:

FP [ψ(C̃)] = −
(
i∗N1(w̃) + . . .+ i∗Np(w̃)

)
.

Proof. By [Be04, Prop.3.3], FJ̃ [ϕ̃(C̃)] = −(N1(w̃)+ . . .+N g̃(w̃)). Therefore, by Lemma 3.1.1

we get FP [ψ(C̃)] = (FP ◦ u∗)[ϕ̃(C̃)] = (i∗ ◦ FJ̃)[ϕ̃(C̃)] = −(i∗N1(w̃) + . . .+ i∗Np(w̃)).

3.2 Generators

Let [ψ(C̃)] = [ψ(C̃)](0)+· · ·+[ψ(C̃)](p−1) be the decomposition of [ψ(C̃)] into homogeneous

components for the Beauville grading, i.e., [ψ(C̃)](n) ∈ Ap−1(P )(n).

Definition 3.2.1. For each 1 ≤ n ≤ p = dimP define the cycle ζn = FP
(
[ψ(C̃)](n−1)

)
.

Note that by [Be04, Cor.3.4, p.686], Nn(w̃) ∈ An(J̃)(n−1), and therefore, by Proposition

3.1.2, ζn = −i∗Nn(w̃) ∈ An(P )(n−1). Furthermore, since FP ◦ FP = (−1)p(−1)∗, then

FP (ζn) = (−1)p−n+1[ψ(C̃)](n−1). The main theorem in [Be04] gives a set of generators for

the tautological ring of the Jacobian of a smooth connected curve. In the remainder of this

section we shall show how to extend the argument in [Be04, Sec.4] in order to obtain a set

of generators for T (P, ψ(C̃)).
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Consider the Q-vector subspace T ′ of A(P ) spanned by the cycles of the form

ζn1 · ζn2 · · · ζnr ,

where 1 ≤ ni ≤ p and r ≥ 1 are integers. The image FP (T ′) of T ′ under FP is spanned as

a Q-vector space by the elements of the form

FP (ζn1 · ζn2 · · · ζnr) = ±[ψ(C̃)](n1−1) ∗ · · · ∗ [ψ(C̃)](nr−1).

We have the following lemma, whose proof is taken from [Be04, Lem.4.2].

Lemma 3.2.2. FP (T ′) is spanned by the classes (k1∗[ψ(C̃)])∗ · · · ∗ (kr∗[ψ(C̃)]), where r and

k1, . . . , kr are positive integers.

Proof. Since k∗[ψ(C̃)] =
∑p−1

n=0 k
2+n[ψ(C̃)](n) then

(k1∗[ψ(C̃)]) ∗ · · · ∗ (kr∗[ψ(C̃)]) = (k1 · · · kr)2
∑

n1,...,nr

kn1
1 · · · knrr [ψ(C̃)](n1) ∗ · · · ∗ [ψ(C̃)](nr),

where the sum is taken over n = (n1, . . . , nr) ∈ [0, p− 1]r. So, we see that (k1∗[ψ(C̃)]) ∗ · · · ∗

(kr∗[ψ(C̃)]) belongs to FP (T ′). We claim that we can choose pr r-tuples, k = (k1, . . . , kr),

which make the pr×pr matrix (ak,n) with entries ak,n := kn1
1 · · · knrr invertible (n runs through

[0, p − 1]r). For each 1 ≤ ` ≤ pr, let k` := (`, `p, . . . , `p
r−1

), then det(ak`,n) is a non-zero

Vandermonde determinant. Hence, the matrix (ak`,n) is invertible. This shows that each

cycle [ψ(C̃)](n1) ∗ · · · ∗ [ψ(C̃)](nr) can be expressed as a Q-linear combination of cycles of the

form (k1∗[ψ(C̃)]) ∗ · · · ∗ (kr∗[ψ(C̃)]).

Theorem 3.2.3. The tautological ring T (P, ψ(C̃)) is generated as a Q-subalgebra of A(P )

under the intersection product by the cycles ζn, where 1 ≤ n ≤ p− 1 and n is odd.

Proof. First, we note that ζp ∈ Ap(P )(p−1) = {0} (recall from Section 2.6 that Ap(P )(s) = 0
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for all s > 0 and p > 1 by assumption), hence ζp = 0. Also, since ψ(C̃) has symmetric

translates, [ψ(C̃)](n) = 0 for all odd n, and therefore, ζn = 0 for all even n. The rest of the

proof proceeds as in [Be04, Sec.4]. First, we note that ζn ∈ T (P, ψ(C̃)) for all 1 ≤ n ≤ p, and

therefore, T ′ ⊂ T (P, ψ(C̃)). We shall show that T ′ = T (P, ψ(C̃)). By definition, T ′ is

generated as a Q-algebra under the intersection product by elements which are homogeneous

for the Beauville grading, and therefore, T ′ is stable under the intersection product and the

operations k∗, k
∗. Thus, to prove the equality T ′ = T (P, ψ(C̃)), we must check that T ′

contains [ψ(C̃)] and is stable under FP and ∗.

Assume that T ′ is stable under FP . Then (−1)p−n+1[ψ(C̃)](n−1) = FP (ζn) implies that

T ′ contains [ψ(C̃)] =
∑

n[ψ(C̃)](n). Also, given xi ∈ T ′, let x̂i = (−1)p(−1)∗FP (xi) ∈ T ′

for i = 1, 2. Using [P1, Sec.2.4; Lem.3.1.1] we obtain:

FP (x̂i) = (−1)p(−1)∗FP ◦ FP (xi) = (−1)p(−1)∗(−1)∗(−1)pxi = xi,

and therefore, x1 ∗ x2 = FP (x̂1) ∗ FP (x̂2) = (−1)pFP (x̂1 · x̂2) ∈ T ′ by [P2, Sec.2.4]. This

shows that it suffices to prove that T ′ is invariant under FP , which we do next.

Since T ′ is stable under the intersection product, FP (T ′) is stable under Pontryagin

product. Furthermore, by [P3, Sec.2.4], FP (x) = eξ ·
(
(x̄ · eξ) ∗ e−ξ

)
, where x̄ = (−1)∗x.

Thus, to prove the inclusion FP (T ′) ⊂ T ′ it is enough to check that FP (T ′) is invariant

under intersection with ξ.

By Lemma 3.2.2 it suffices to show that ξ ·
(
(k1∗[ψ(C̃)]) ∗ · · · ∗ (kr∗[ψ(C̃)])

)
belongs to

FP (T ′). Consider the composition

v : C̃r
~ψ // P r

~k // P r m // P ,

where ~ψ = (ψ, . . . , ψ), ~k = (k1, . . . , kr) with ki : x 7→ kix, and m : P r → P is the addition
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morphism. Note that

v∗[C̃
r] = (k1∗[ψ(C̃)]) ∗ · · · ∗ (kr∗[ψ(C̃)]).

Therefore,

ξ ·
(
(k1∗[ψ(C̃)]) ∗ · · · ∗ (kr∗[ψ(C̃)])

)
= ξ · v∗[C̃r] = v∗

(
v∗(ξ) · [C̃r]

)
= v∗v

∗ξ.

Hence, it suffices to show that v∗v
∗ξ ∈ FP (T ′).

By the theorem of the cube [Mu70, p.55], we have

m∗ξ =
∑
i

p∗i ξ −
∑
i<j

p∗ijc1(LP ),

where pi, pij are projections from P r onto the ith, ith and jth factors, respectively. This,

together with k∗i ξ = k2
i ξ and (ki, kj)

∗c1(LP ) = kikjc1(LP ), implies that

v∗ξ =
∑
i

k2
i q
∗
iψ
∗ξ −

∑
i<j

kikjq
∗
ij(ψ, ψ)∗c1(LP ), (3.2.1)

where qi, qij are projections of C̃r onto the ith, ith and jth factors, respectively.

Next, we compute (ψ, ψ)∗c1(LP ). The result [BL, Prop.12.3.4, p.374] in our notation

states that 2ΘJ̃ ∼alg Nm∗(ΘJ) +u∗Ξ. Consequently, the following identity holds in A(J̃× J̃)

(u, u)∗c1(LP ) = 2c1(LJ̃)− (Nm,Nm)∗c1(LJ). (3.2.2)

Let ∆C̃ and ∆C be the diagonals in C̃ × C̃ and C × C, respectively. Applying the See-saw

theorem [Mu70, p.54], we see that

(ϕ̃, ϕ̃)∗LJ̃ ' OC̃2(∆C̃ − C̃ × õ− õ× C̃) (3.2.3)
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and likewise (ϕ, ϕ)∗LJ ' OC2(∆C − C × o− o× C). Using the commutative diagram

C̃ × C̃
(π,π)

��

(ϕ̃,ϕ̃) // J̃ × J̃
(Nm,Nm)

��
C × C

(ϕ,ϕ) // J × J,

we obtain

(Nm ◦ ϕ̃,Nm ◦ ϕ̃)∗LJ ' (π, π)∗OC2(∆C − C × o− o× C). (3.2.4)

Since ψ = u ◦ ϕ̃, then from (3.2.2), (3.2.3) and (3.2.4) we obtain:

(ψ, ψ)∗c1(LP ) = (ϕ̃, ϕ̃)∗(u, u)∗c1(LP )

= 2(ϕ̃, ϕ̃)∗c1(LJ̃)− (ϕ̃, ϕ̃)∗(Nm,Nm)∗c1(LJ)

= 2(ϕ̃, ϕ̃)∗c1(LJ̃)− (Nm ◦ ϕ̃,Nm ◦ ϕ̃)∗c1(LJ)

∼alg 2(∆C̃ − C̃ × õ− õ× C̃)− (π, π)∗(∆C − C × o− o× C).

Furthermore, (π, π)∗∆C = ∆C̃ + (1, ι)∗∆C̃ , where 1 : C̃ → C̃ denotes the identity morphism,

and therefore,

(ψ, ψ)∗c1(LP ) ∼alg ∆C̃ − (1, ι)∗∆C̃ . (3.2.5)

Substituting (3.2.5) into the identity (3.2.1), we see that v∗ξ is algebraically equivalent to a

linear combination of divisors of the form q∗i õ and q∗ijβ
∗∆C̃ , where β is one of the morphisms

(1, 1) or (1, ι). The cycles v∗q
∗
ij∆C̃ and v∗q

∗
ij(1, ι)

∗∆C̃ are proportional to cycles of the form

(l1∗[ψ(C̃)]) ∗ · · · ∗ (l(r−1)∗[ψ(C̃)]), where (l1, . . . , lr−1) is

(k1, . . . , k̂i, . . . , k̂j, . . . , kr, ki + kj) and (k1, . . . , k̂i, . . . , k̂j, . . . , kr, ki − kj),

respectively, and the symbol k̂j means that kj is omitted from the list. Since v∗q
∗
i õ is
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proportional to the cycle (k1∗[ψ(C̃)]) ∗ · · · ∗ (kr∗[ψ(C̃)]) with ki∗[ψ(C̃)] omitted, we see that

v∗v
∗ξ belongs to FP (T ′).

Modulo homological equivalence, the tautological ring of the Jacobian J is the subalgebra

of H∗(J,Q) generated by the class θ of the theta divisor on J . If C is generic of genus ≥ 3, the

Ceresa cycle C − (−1)∗C is not zero on J modulo algebraic equivalence, [Ce]. In particular,

this implies that C is not proportional to a power of θ in T (J, ϕ(C)). Indeed, any power

of θ is symmetric, i.e. is stable under (−1)∗, which is not the case for any non-zero scalar

multiple of C. Hence, at least for a generic Jacobian, T (J, ϕ(C)) is not generated by θ. As

in the case of J , the tautological ring of the pair (P, ψ(C̃)) modulo homological equivalence

is the subalgebra of H∗(P,Q) generated by ξ, the class of the principal polarization of P .

On the other hand, in contrast with Jacobians, for any Prym variety (P, ξ) the Ceresa-

type cycle [ψ(C̃)] − (−1)∗[ψ(C̃)] is zero in T (P, ψ(C̃)), because the Abel-Prym curve has

symmetric translates. Nevertheless, if P is generic and of dimension p ≥ 5, then by the

proof of [Fa, Thm.4.5, p.117], the class ([ψ(C̃)]∗r)(2) is non-zero in A(P ) for 1 ≤ r ≤ p − 3.

Also, Ap(P )(1) = 0, because Ap(P ) ' Q ' Ap(P )(0). Since FP : Ap(P )(1) → A1(P )(1) is an

isomorphism, then A1(P )(1) = 0, and therefore, A1(P ) = A1(P )(0). This shows that [ψ(C̃)](2)

is not in the subring generated by ξ, because ξ = ξ(0), and thus, ξp−1 ∈ Ap−1(P )(0) by [P6,

Sec.2.5]. Therefore, if P is generic and of dimension ≥ 5, the tautological ring T (P, ψ(C̃))

is not generated by ξ.

The Torelli theorem [ACGH, p.245] for principally polarized Jacobians implies that every

principally polarized Jacobian has a unique tautological ring in the sense of [Be04]. It is well

known that the Torelli theorem does not hold for Prym varieties, which means that a given

principally polarized abelian variety may have a structure of a Prym variety in multiple

ways. As a consequence, given a Prym variety P , we may have choices for an Abel-Prym

curve, which a priori may give different tautological rings of pairs (P, ψ(C̃)). There are
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four explicit counter-examples to the Prym-Torelli problem: covers of hyperelliptic curves,

Donagi’s tetragonal construction, Verra’s construction with plane sextics, and the recent

construction of Izadi and Lange using ramified covers, [Mu74, p.346; Do; IL; Ve]. We do not

know whether the tautological ring of the pair (P, ψ(C̃)) is always independent of the choice

of an Abel-Prym curve. One approach to answer this question is to see whether the various

Abel-Prym curves are algebraically equivalent on the Prym variety. As explained below, the

answer to this question is known in the case of general (resp., generic) Pryms of dimension

2 ≤ p ≤ 4 (resp., p ≥ 6).

Let Rg and Ag−1 be the moduli spaces of étale double covers of smooth curves of genus g

and principally polarized abelian varieties of dimension g − 1, respectively. The Prym map

P : Rg → Ag−1 associates to an étale double cover the corresponding Prym variety. We

know that the general fiber of the Prym map is connected, whenever 2 ≤ g − 1 ≤ 4, see

[Do92, §6; Iz95]. Therefore, on general Pryms of dimension 2 ≤ p ≤ 4, the Abel-Prym curves

are algebraically equivalent. According to [DS, Thm.2.1, p.34], the Prym map R6 → A5 has

degree 27. We do not know whether the 27 Abel-Prym curves on a generic Prym of dimension

5 are algebraically equivalent or not. Finally, we remark that due to the generic injectivity

of the Prym map for curves of genus g ≥ 7 [De, Ka, FS, We87], a generic Prym variety P

of dimension ≥ 6 has a unique Abel-Prym curve ψ(C̃), and therefore, the tautological ring

of the pair T (P, ψ(C̃)) depends only on P .

3.3 Polishchuk relations and the sl2 action

By [Ku], any polarization (the class of an ample symmetric divisor) on an abelian variety

X gives rise to an sl2 := sl2(Q) action on CH(X), which descends to an sl2 action on A(X).

Let sl2 = Q · f + Q · h+ Q · e with [e, f ] = h; [e, h] = −2e; [f, h] = 2f. We normalize the sl2
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action on CH(J̃) as in [Mo]:

e(α) = −θ̃ · α, f(α) = −[ϕ̃(C̃)](0) ∗ α, h|CHi(J̃)(j)
= (2i− j − g̃)id.

Analogously, the sl2 action on CH(P ) is given by:

e(α) = −ξ · α, f(α) = −[ψ(C̃)](0) ∗ α, h|CHi(P )(j)
= (2i− j − p)id.

When π : C̃ → C is étale, g̃ = 2g−1 and dimP = g−1, and, when π : C̃ → C is ramified

at two points, g̃ = 2g and dimP = g. Following [Po05 and Mo], let

pn := FJ̃
(
[ϕ̃(C̃)](n−1)

)
.

By [CvG, Thm.1.3(3); Po05, Cor.0.2, p.877], pn = 0 for n ≥ g̃/2+1, i.e., for n ≥ g+1. Thus,

T (C̃) := T (J̃ , ϕ̃(C̃)) is generated by p1, . . . , pg. In what follows we shall use the notation

p
[d]
1 := pd1/d! for d ≥ 0 and p

[d]
1 := 0 for d < 0, following [Po05], and the analogous notation

ζ
[d]
1 := ζd1/d! for d ≥ 0 and ζ

[d]
1 := 0 for d < 0.

The relations in the rings T (C̃), taut(C̃), and Taut(C̃) have been studied recently in

[CvG, He, vdGK, Po05, Po07, Mo]. In [Po05], Polishchuk developed a powerful tool for

producing relations among the generators of T (C̃). Consider the operator D , which acts on

A(J̃) as −f ∈ sl2, that is, D : α 7→ [ϕ̃(C̃)](0) ∗ α. Note that [ϕ̃(C̃)](0) ∗ α = FJ̃(p1 · F−1

J̃
(α)),

and S and U in [Po05] are our FJ̃ and D , respectively. It turns out that D is a differential

operator with respect to the intersection product and can be described as follows. Let

R = Q[x1, x2, . . .] be the polynomial ring in infinitely many indeterminates with deg xn = n
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and consider the differential operator

D := −g̃∂1 +
1

2

∑
m,n≥1

(
m+ n

n

)
xm+n−1∂m∂n,

acting on R, where ∂k = ∂xk is the partial derivative with respect to xk. Let κ : R→ T (C̃)

be the surjective map xn 7→ pn for n ≥ 1. By [Po05], κ ◦ D = D ◦ κ, which describes the

action of D explicitly.

Polishchuk showed that the polynomials of the form F (x1, x2, . . .) = Dd(xm1
1 · · ·x

mk
k ) with

d ≥ 0,
∑k

i=1 imi = g̃, and m1 < g̃ give the relations F (p1, p2, . . .) = 0 in T (C̃), see [Po05,

Thm.0.1(i); Mo, 2.1, p.476]. We shall call these relations Polishchuk’s relations. Note that

with the above assumption on the mi’s, we have pm1
1 · · · p

mk
k ∈ Ag̃(J̃)(s) with s > 0 because

m1 < g̃. Since Ag̃(J̃)(s) = 0 for all s > 0, then pm1
1 · · · p

mk
k = 0. Following [Mo], we shall call

the relations of the form pm1
1 · · · p

mk
k = 0 with

∑k
i=1 imi = g̃ and m1 < g̃ trivial relations.

Thus, Polishchuk started with trivial relations and after applying powers of D obtained new

relations many of which were no longer trivial. Polishchuk conjectured that for a generic

curve, this procedure gives a complete set of relations among the generators for T (C̃), [Po05,

p.879].

Next, we observe that Polishchuk’s relations “descend” to relations among the tautolog-

ical cycles on P . Indeed, by Proposition 3.1.2 and Theorem 3.2.3, the restriction homomor-

phism i∗ : A(J̃) → A(P ) induces a surjective ring homomorphism (under the intersection

product): i∗ : T (J̃)� T (P, ψ(C̃)) such that pn 7→ ζn for all n. Thus, polynomial relations

among the pn’s restrict to analogous polynomial relations among the ζn’s. However, we have

the following proposition.

Proposition 3.3.1. All Polishchuk relations among the generators of T (C̃) become trivial

after restriction to P .

Proof. By [Po05, Thm.0.1, p.876 and 2.3(ii), p.885], any Polishchuk relation can be written
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as

Dd(p
[g̃−

Pk
i=1 ni]

1 pn1 · · · pnk) = 0, (3.3.1)

where ni > 1 for all i (Polishchuk’s U and g are our D and g̃, respectively). For the above

relation to be non-trivial we must have
∑k

i=1 ni ≤ g̃ and d ≤ k − 1. As a consequence,

k ≤ g̃/2, and therefore, g̃− d ≥ g̃/2 + 1. Since D(Al(P )) ⊂ Al−1(P ), then the left hand side

of (3.3.1) is homogeneous of degree g̃ − d. Since g̃ − d ≥ g̃/2 + 1 > dimP , then the above

relation becomes 0 = 0 after pull-back by i∗.

By analogy with [Po05], let us consider the operator

DP : A(P )→ A(P ), α 7→ [ψ(C̃)](0) ∗ α,

which can also be written as DP (α) = FP (ζ1 · F−1
P (α)). Let RP := Q[x1, x3, x5, . . .] be the

polynomial ring in infinitely many indeterminates with odd indices and deg xn = n, and let

κP : RP → T (P, ψ(C̃)) be the natural homomorphism xn 7→ ζn. In what follows we shall

compute, similarly to [Po05], a differential operator DP on RP such that κP ◦DP = DP ◦κP .

Given integers k1, . . . , kr, define the cycle

$(k1, . . . , kr) := (k1∗[ψ(C̃)]) ∗ · · · ∗ (kr∗[ψ(C̃)]).

Note that $(k1, . . . , kr) is related to Polishchuk’s w(k1, . . . , kr) ∈ A(J̃), [Po05, p.881], by the

formula u∗
(
w(k1, . . . , kr)

)
= $(k1, . . . , kr). By analogy with [Po05, Lem.2.2], we have:

Lemma 3.3.2. Given integers r ≥ 1 and k1, . . . , kr, the following identity holds in A(P ):

ξ ·$(k1, . . . , kr) = 2p
r∑
i=1

k2
i$(k1, . . . , k̂i, . . . , kr)

−
∑
i<j

kikj

(
$(ki + kj, . . . , k̂i, . . . , k̂j, . . . , kr)−$(ki − kj, . . . , k̂i, . . . , k̂j, . . . , kr)

)
.

29



Proof. Using the notation of the proof of Theorem 3.2.3 we have:

v∗ξ =
r∑
i=1

k2
i q
∗
iψ
∗ξ −

∑
1≤i<j≤r

kikjq
∗
ij(ψ, ψ)∗c1(LP )

= 2p
r∑
i=1

k2
i q
∗
i [õ]−

∑
1≤i<j≤r

kikjq
∗
ij(∆C̃ − (1, ι)∗∆C̃).

Since ξ ·$(k1, . . . , kr) = v∗v
∗ξ, the result of the lemma follows from the formulas:

v∗q
∗
ij∆C̃ = $(ki + kj, . . . , k̂i, . . . , k̂j, . . . , kr)

v∗q
∗
ij(1, ι)

∗∆C̃ = $(ki − kj, . . . , k̂i, . . . , k̂j, . . . , kr).

Let Q(t) :=
∑p−1

i=1 ζit
i, where t is an indeterminate. We have the following lemma.

Lemma 3.3.3. There is an identity of polynomials in t1, . . . , tr:

DP (Q(t1) · · ·Q(tr)) = −2p
r∑
i=1

tiQ(t1) · · · Q̂(ti) · · ·Q(tr)

+
∑

1≤i<j≤r

(
(ti + tj)Q(ti + tj)− (ti − tj)Q(ti − tj)

)
Q(t1) · · · Q̂(ti) · · · Q̂(tj) · · ·Q(tr).

Proof. First, for any integers k1, . . . , kr, using Proposition 3.1.2, we obtain the formula:

FP ($(k1, . . . , kr)) = k1 · · · krQ(k1) · · ·Q(kr).

Using this formula together with Lemma 3.3.2 and the fact that DP (α) = FP (ζ1 ·F−1
P (α)) =

−FP (ξ · F−1
P (α)) we may check that the identity of the lemma holds if ti = ki for all

i = 1, . . . , r. Since k1, . . . , kr are arbitrary integers, the identity of polynomials follows.
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Proposition 3.3.4. For any integer n ≥ 0 and any odd integers k1, . . . , kr ≥ 3:

DP (ζ
[n]
1 ζk1 · · · ζkr) = 2

(
− p+ n− 1 +

r∑
i=1

(ki + 1)
)
ζ

[n−1]
1 ζk1 · · · ζkr

+ 2
∑

1≤i<j≤r

(
ki + kj
ki

)
ζ

[n]
1 ζki+kj−1ζk1 · · · ζ̂ki · · · ζ̂kj · · · ζkr .

Proof. First, note that for any integers n1, . . . , nr, not necessarily odd, DP (ζ
[n]
1 ζn1 · · · ζnr) is

equal to 1/n! times the coefficient of tn1
1 · · · tnrr tn in DP

(
Q(t1) · · ·Q(tr)Q(t)n

)
. The coefficient

in question can be computed:

(
− 2pn+ 2n(n− 1) + 2n

r∑
i=1

(ni + 1)

)
ζn−1

1 ζn1 · · · ζnr

+
∑

1≤i<j≤r

(
1 + (−1)nj−1

)(ni + nj
ni

)
ζn1 ζni+nj−1ζn1 · · · ζ̂ni · · · ζ̂nj · · · ζnr ,

If we take ni = ki odd for all i = 1, . . . , r, then the above expression can be rewritten as

2n
(
− p+ n− 1 +

r∑
i=1

(ki + 1)
)
ζn−1

1 ζk1 · · · ζkr (3.3.2)

+ 2
∑

1≤i<j≤r

(
ki + kj
ki

)
ζn1 ζki+kj−1ζk1 · · · ζ̂ki · · · ζ̂kj · · · ζkr ,

and the result follows after multiplying by 1/n!.

Theorem-Definition 3.3.5. The operator DP acts on T (P, ψ(C̃)) in the same way as the

operator

DP := −2p∂1 +
∑
m,n≥1

odd

(
m+ n

m

)
xm+n−1∂m∂n

acts on RP (the summation is over all odd integers m,n ≥ 1). More precisely, κP ◦DP =

DP ◦ κP .

Proof. By looking at the Expression 3.3.2 in the proof of Proposition 3.3.4, we see that DP
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acts as the differential operator

2(−p− 1)∂1 + 2∂1x1∂1 + 2
∑
m≥3
odd

(m+ 1)xm∂m∂1 +
∑
m,n≥3

odd

(
m+ n

m

)
xm+n−1∂m∂n.

The desired result follows by rewriting the above operator using the identities:

∑
m,n≥1

odd

(
m+ n

m

)
xm+n−1∂m∂n = 2x1∂

2
1 + 2

∑
m≥3
odd

(m+ 1)xm∂m∂1 +
∑
m,n≥3

odd

(
m+ n

m

)
xm+n−1∂m∂n

and ∂1x1∂1 − x1∂
2
1 = ∂1.

Thus, starting with trivial relations in T (P, ψ(C̃)), we may apply DP to obtain new

relations. Next, we shall write these relations explicitly, as was done in [Po05] in the case of

Jacobians. Given an integer n ≥ 0 and a number or an operator x, let us use the notation(
x
n

)
:= x(x− 1) · · · (x−n+ 1)/n!. We set

(
x
0

)
= 1 and if n < 0,

(
x
n

)
= 0. Define the following

differential operators:

∆P :=
1

2

∑
m,n≥3

odd

(
m+ n

m

)
xm+n−1∂m∂n

HP :=− p− 1 + x1∂1 +
∑
n≥3
odd

(n+ 1)xn∂n,

then we may check that DP = 2(∂1HP + ∆P ). For an operator T , we let T [n] := T n/n! be

the nth divided power.

Lemma 3.3.6. For every n ≥ 0 we have the equality of differential operators acting on RP :

D
[n]
P = 2n

n∑
i=0

∂n−i1 ∆
[i]
P

(
HP − i
n− i

)
.

Proof. As in [Po05, Lem.2.7, p.884], we may check this by induction on n using the commu-
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tation relations:

[∂1,∆P ] = 0, [HP , ∂1] = −∂1, [HP ,∆P ] = −2∆P .

Definition 3.3.1. Given an integer r ≥ 1, integers k1, . . . , kr > 1, and a subset I =

{i1, i2, . . . , is} ⊂ {1, 2, . . . , r} define the numbers

b(I) :=
(ki1 + . . .+ kis)!

ki1 ! · · · kis !
and d(I) := ki1 + . . .+ kis − s+ 1.

Theorem 3.3.7. For each integer r ≥ 1, odd integers k1, . . . , kr > 1, and each d with

0 ≤ d ≤ r − 1, we have the relation,

∑
Pm

(
m− 1

d+m− r

)
b(I1) · · · b(Im)ζ

[p−d−m+r−
Pr
i=1 ki]

1 ζd(I1) · · · ζd(Im) = 0

in Ap−d(P ), where the sum is taken over all unordered partitions Pm = {I1, . . . , Im} of

[1, r] = {1, 2, . . . , r} into m disjoint nonempty subsets such that r − d ≤ m ≤ p − d + r −∑r
i=1 ki.

Proof. Using [Po05, Lem.2.8, p.884], we may check that for each j ≥ 0,

∆
[j]
P (x

[n]
1 xk1 · · ·xkr) =

∑
Pr−j

b(I1) · · · b(Ir−j)x[n]
1 xd(I1) · · ·xd(Ir−j),

where the sum is taken over all unordered partitions Pr−j = {I1, . . . , Ir−j} of [1, r] into

r− j disjoint nonempty parts. Since ζ
[p−

Pr
i=1 ki]

1 ζk1 · · · ζkr = 0 in A(P ), we obtain the relation

D [d]
P (ζ

[p−
Pr
i=1 ki]

1 ζk1 · · · ζkr) = 0. Using Theorem 3.3.5 and Lemma 3.3.6, this relation can be
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rewritten as

2n
d∑
j=0

(
r − 1− j
n− j

)
ζ

[p−d+j−
Pr
i=1 ki]

1 ζk1 · · · ζkr
∑
Pr−j

b(I1) · · · b(Ir−j)ζd(I1) · · · ζd(Ir−j) = 0,

which differs from the relation in the statement of the theorem by a factor of 2n (after the

substitution m = r − j and rearrangement of the summands).

Corollary 3.3.8. If p ≥ 3, then ζn = 0 for all n ≥ 2
3
p+ 1.

Proof. If d = r − 1, the integers k1, . . . , kr ≥ 3 are odd and
∑r

i=1 ki = p, then by Theorem

3.3.7, ζp−r+1 = 0. If p is even, then we may write p as one of the following: 6l − 2, 6l, or

6l + 2 for some l ≥ 1, and we obtain ζp+1 = ζp−1 = . . . = ζp−(2l−3) = 0. If p is odd, then we

may write p as one of the following: 6l − 3, 6l − 1, or 6l + 1 for some l ≥ 1, and therefore,

ζp = ζp−2 = . . . = ζp−(2l−2) = 0. Since ζn = 0 for all n even, the result follows.

It is interesting to determine the kernels

ker
(
κP : RP � T (P, ψ(C̃))

)
and ker

(
i∗ : T (J̃)� T (P, ψ(C̃))

)
.

We don’t have complete answers to these questions at this point, but we offer the following

observations and conjectures. From the proof of [Fa, Thm.4.5, p.117], we know that for a

generic Prym variety P of dimension p ≥ 5, the cycle ([ψ(C̃)]∗r)(2) is non-zero in A(P ) for

1 ≤ r ≤ p− 3, and therefore, by Fourier duality, ζj1ζ3 6= 0 in A(P ) for 0 ≤ j ≤ p− 4. Note,

however, that ζj1ζ3 = 0 for j > p − 4. Since ζ1 = −ξ ∈ A1(P )(0), then ζj1 6= 0 in A(P ) for

1 ≤ j ≤ p. These results seem to be the only non-vanishing results for tautological classes

on Pryms known thus far. On the other hand, by analogy with Polishchuk’s conjecture for

T (C̃), [Po05, p.879], we may conjecture that for a generic Prym the set of relations given

in Theorem 3.3.7 is complete.
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Examples: For p ≤ 5 there are no non-trivial Polishchuk relations.

p = 2: T (P, ψ(C̃)) ' Q[ζ1]/(ζ3
1 ).

p = 3: T (P, ψ(C̃)) ' Q[ζ1]/(ζ4
1 ).

p = 4: Q[x1, x3]/(x5
1, x

2
3, x1x3) � T (P, ψ(C̃)) with xn 7→ ζn, and I do not know if ζ3 is

non-zero on a generic Prym of dimension 4.

p = 5: Q[x1, x3]/(x6
1, x

2
3, x

2
1x3) � T (P, ψ(C̃)), and this is an isomorphism for a generic

Prym of dimension 5, because ζ1ζ3 6= 0 on such a Prym.

For 6 ≤ p ≤ 10, the non-trivial Polishchuk relations are:

p = 6: 20ζ5 = 0 (d = 1, k1 = k2 = 3). Furthermore, if P is generic, T (P, ψ(C̃)) '

Q[x1, x3]/(x7
1, x

2
3, x

3
1x3).

p = 7: 20ζ1ζ5 + ζ2
3 = 0 (d = 1, k1 = k2 = 3).

p = 8: 10ζ2
1ζ5 + ζ1ζ

2
3 = 0 (d = 1, k1 = k2 = 3), 56ζ7 = 0 (d = 1, k1 = 3, k2 = 5).

p = 9: 10
3
ζ3

1ζ5 + 1
2
ζ2

1ζ
2
3 = 0 (d = 1, k1 = k2 = 3), 56ζ1ζ7 + ζ3ζ5 = 0 (d = 1, k1 = 3, k2 = 5),

60ζ3ζ5 = 0 (d = 1, k1 = k2 = k3 = 3), 1680ζ7 = 0 (d = 2, k1 = k2 = k3 = 3).

p = 10: 5
6
ζ4

1ζ5+ 1
6
ζ3

1ζ
2
3 = 0 (d = 1, k1 = k2 = 3), 28ζ2

1ζ7+ζ1ζ3ζ5 = 0 (d = 1, k1 = 3, k2 = 5),

120ζ9 = 0 (d = 1, k1 = 3, k2 = 7), 60ζ1ζ3ζ5 + 2ζ3
3 = 0 (d = 1, k1 = k2 = k3 = 3),

1680ζ1ζ7 + 60ζ3ζ5 = 0 (d = 2, k1 = k2 = k3 = 3).

Remark 3.3.9. If C̃ has a base-point-free grd, then by [He, vdGK], for every N ≥ d−2r+1,

the following relation holds in A(J̃):

∑
a1+···+ar=N

(a1 + 1)! · · · (ar + 1)![ϕ̃(C̃)](a1) ∗ · · · ∗ [ϕ̃(C̃)](ar) = 0.

Applying u∗ this yields the following relation in A(P ) for every N ≥ d− 2r + 1:

∑
a1+···+ar=N

(a1 + 1)! · · · (ar + 1)![ψ(C̃)](a1) ∗ · · · ∗ [ψ(C̃)](ar) = 0.
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Chapter 4

Algebraic equivalence of special

subvarieties

In this chapter we assume that the double cover π : C̃ → C is connected and étale. In

this section we let r, d, g be integers such that 0 < 2r < d < 2g. Also, S will denote a

smooth connected but not necessarily complete curve. For a morphism X → S, the fiber

over s is denoted by Xs, and for a sheaf F on X, Fs := F|Xs is the restriction. If X is an

integral projective scheme, we let Pic0
X be the connected component of the identity in the

Picard scheme of X. If X is a smooth curve, we let Xd denote the dth symmetric product of

X. An integral curve with n ordinary double points (resp., n ordinary cusps) and no other

singularities will be called n-nodal (resp., n-cuspidal).

B will denote a smooth connected curve of genus g − 1. Bpq will denote the 1-nodal

curve obtained by gluing distinct points p and q on B. Also, Bpp will denote the 1-cuspidal

curve, whose normalization is B, and such that the point p ∈ B maps to the cusp of Bpp.

For simplicity, both normalization morphisms B → Bpq and B → Bpp will be denoted by ν

and the distinction will be clear from the context.
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4.1 Étale double covers and square trivial invertible

sheaves

Let us recall our convention that “scheme” means (here) a noetherian separated scheme

over C. Also, by an étale double cover we mean a finite étale morphism f : X → Y of

schemes of degree 2 on each irreducible component of Y .

The exercise [Ha, Ex.2.7(b), p.306] asks to show that for a smooth curve Y there is a

one-to-one correspondence between étale covers f : X → Y of degree two and points of order

two in Pic(Y ), i.e., invertible sheaves L on Y such that L⊗2 ' OY . This correspondence is

valid in a more general setting, as we show next.

Let us recall from [AK70, p.124] the definition of the discriminant of a flat morphism

f : X → Y of schemes. Since f is flat, f∗OX is a locally free OY -module. The trace

Tr: EndOY (f∗OX)→ OY

is a homomorphism of OY -modules, which can be described locally as follows. If V is an

open affine set in Y such that f∗OX is free over V , then Tr sends gV ∈ EndOY (V )(f∗OX(V ))

to the trace

tr
(
gV : f∗OX(V )→ f∗OX(V )

)
∈ OY (V ).

Since f∗OX is locally free then there is a natural isomorphism EndOY (f∗OX) = (f∗OX)∨ ⊗

f∗OX , [Ha, Ex.II.5.1b, p.123], which gives a natural map f∗OX → EndOY (f∗OX). The

OY -module homomorphism

TrX/Y : f∗OX → OY

obtained by composing the above natural map with Tr is also called the trace.

To TrX/Y we may associate a natural map u : f∗OX → (f∗OX)∨. For V ⊂ Y open and
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a ∈ f∗OX(V ) define

uV (a) : f∗OX(V )→ OY (V )

by b 7→ TrX/Y (ab). This gives a homomorphism

f∗OX(V )→ HomOY (V )

(
f∗OX(V ),OY (V )

)
, a 7→ uV (a),

which is the local description of u. This induces the discriminant

dX/Y := det(u) ∈ Hom
(

det f∗OX , det(f∗OX)∨
)
,

which is the map on top exterior powers induced by u. The image of

dX/Y ⊗ id : (det f∗OX)⊗2 → OY

is called the discriminant ideal and is denoted by DX/Y . The main result we shall use is:

DX/Y = OY if and only if f is étale, [AK70, p.124]. In this case, dX/Y ⊗ id is an isomorphism,

[Ha, Ex.II.7.1, p.169], so

(det f∗OX)⊗2 ' OY .

Proposition 4.1.1. Let Y be a scheme. There is a one-to-one correspondence between étale

double covers of Y and locally free sheaves L on Y with L⊗2 ' OY .

Proof. Let L be an invertible sheaf on Y such that L⊗2 ' OY . Let us fix an isomorphism

ϕ : L⊗2 → OY . Define an OY -algebra structure on OY ⊕ L by

〈a, b〉 · 〈a′, b′〉 = 〈aa′ + ϕ(bb′), ab′ + a′b〉.

Let X := Spec(OY ⊕ L) with the natural morphism f : X → Y , [Ha, Ex.II.5.17, p.128].
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Since f∗OX ' OY ⊕ L, then (det f∗OX)⊗2 ' L⊗2 ' OY . This implies that the discriminant

ideal DX/Y coincides with OY , and therefore, f is étale.

Conversely, let f : X → Y be an étale double cover. Consider the short exact sequence

0 // OY
f] // f∗OX // L // 0, (4.1.1)

where L := coker(f ] : OY → f∗OX). Since f is étale and L ' det f∗OX [Ha, Ex.II.5.16d,

p.128], then by the discussion preceding the proposition: L⊗2 ' OY .

The trace homomorphism

TrX/Y : f∗OX → OY

provides a splitting of the sequence (4.1.1), and therefore, f∗OX ' OY ⊕L. This shows that

the two constructions are inverses of each other.

4.2 Special subvarieties

Assume that C has a complete grd, which is viewed as a subvariety Gd ⊂ Cd isomorphic

to Pr. Let us recall the definition of the special subvarieties V0 and V1 of P associated to

Gd, cf. [Be82]. First, we assume that Gd contains a reduced divisor. Consider the following

commutative diagram

C̃d
ϕ̃d //

πd
��

J̃

Nm
��

Cd
ϕd // J,

where the horizontal maps are abelian sum mappings ϕd : D 7→ OC(D − do), ϕ̃d : D̃ 7→

OC̃(D̃ − dõ) and πd is induced by π : C̃ → C. The variety ϕ̃d(π
−1
d (Gd)) is contained in the

kernel of the norm map Nm: J̃ → J and has two connected components V0 and V1, [Be82,

p.365; We81, p.98]. After a translation of one of the components V0 or V1, we assume that
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both of them are contained in P and, by definition, V0 and V1 are called special subvarieties

of P . The union V0∪V1 is denoted by V . In the case where Gd has a base-point of multiplicity

≥ 2, V is non-reduced and we may define it as a cycle [V ] := ϕ̃d∗(π
∗
d[Gd]) with multiplicities,

where [Gd] ∈ CHd−r(Cd), [Be82, p.359]. In this case V0 and V1 can also be defined as cycles

so that [V ] = [V0] + [V1].

By Clifford’s theorem, the inequalities 0 < d < 2g imply that d > 2r, except when the grd

is the canonical system or a multiple of a g1
2. In these two cases the special subvarieties are

not even homologically equivalent, see [Be82, Rem.3, p.362 and p.366]. However, if 2r < d,

then the subvarieties V0 and V1 are homologically equivalent, i.e., V0 and V1 have the same

cohomology class

2d−2r−1 · ξg−r−1

(g − r − 1)!

in H2(g−r−1)(P,Z), see [Be82, Prop.1, p.360 and Thm.1, p.364].

Special subvarieties have been used in the study of threefolds and intersections of three

quadrics in P2n+4, [We81; Be82, Sec.4,5] and also in the Prym-Torelli problem [Be82, Sec.3;

SV02; Na; NL].

4.3 Compactified Jacobians and autoduality

We shall use the results of [AK80, EGK] in the sequel and we recall the part of the theory

that we need. Let C → S be a flat family of integral curves whose fiber over s is denoted by

Cs. We assume that the family C/S has a section σ whose image lies in the smooth locus

of the morphism C → S. Given an integer n and an S-scheme T , a torsion-free rank one

sheaf of degree n on CT := C ×S T is a T -flat coherent OCT -module F such that Ft := F|Ct

is a torsion free rank one sheaf on the fiber Ct over t ∈ T and χ(Ft) − χ(OCt) = n for

every t ∈ T . There is a projective S-scheme J̄nC/S, called the compactified Jacobian of C/S,

that parametrizes torsion-free rank one sheaves of degree n on the fibers of C/S, see [EGK,
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p.594] and references therein. More precisely, J̄nC/S is the fine moduli scheme representing

the following functor of S-schemes:

T 7→ {torsion-free rank one sheaves of degree n on C ×S T}/∼,

where F ∼ G if and only if there exists an invertible sheaf L on T such that F ' G ⊗ π∗TL

and πT : C ×S T → T is the projection. A sheaf Pd on C ×S J̄dC/S is called a Poincaré sheaf, if

Pd satisfies the following universal property. For any S-scheme T and any T -flat torsion-free

rank one sheaf F of degree n on C ×S T , there is a unique morphism f : T → J̄dC/S such that

F is equivalent to the pull-back of Pd by the induced morphism 1× f : C ×S T → C ×S J̄dC/S.

More precisely, there is an invertible sheaf L on T such that (1× f)∗Pd ' F ⊗ π∗TL. Let us

note that Pd exists because all the fibers of C → S are integral, [AK80]. Furthermore, Pd is

uniquely determined up to tensoring with a pull-back of an invertible sheaf on J̄dC/S.

There is also an open subscheme JnC/S ⊂ J̄nC/S, called the (generalized) Jacobian of C/S,

parametrizing those sheaves that are invertible. The schemes JnC/S and J̄nC/S are flat over S by

[AIK, p.8] and their fibers over s ∈ S are denoted by JnCs and J̄nCs , respectively. The section

σ : S → C gives an invertible sheaf N of degree one on C, which determines an Abel map

AN : C → J̄0
C/S, see [EGK, p.595]. On the fiber Cs, the Abel map is given by x 7→ mx ⊗Ns,

where mx is the maximal ideal in the local ring OCs,x. If the geometric fibers of C → S have

double points at worst, then by [EGK, Thm.2.1] the Abel map induces an isomorphism of

group-schemes:

A∗N : Pic0
J̄0
C/S
→ J0

C/S.

41



4.4 Presentation schemes

In Section 4.6 we shall use the construction of [AK], called the presentation scheme, which

we recall next. Let X be an integral curve with a unique double point and let ν : X ′ → X be

the normalization. Given an integer n, the presentation scheme P n
X parametrizes injective

morphisms h : L ↪→ ν∗M , called presentations, such that L ∈ J̄nX , M ∈ JnX′ . By [AK], the

presentation scheme P n
X fits into a diagram

P n
X

κ //

λ
��

J̄nX

JnX′ ,

where κ and λ send (h : L ↪→ ν∗M) to L and M , respectively. Note that in [AK] the degree

of L is χ(L), not χ(L)− χ(OX), as it is for us.

When X = Bpq is 1-nodal, λ : P n
Bpq
→ JnB is a P1-bundle, which has two distinguished

sections sp and sq. The morphism κ : P n
Bpq
→ J̄nBpq identifies the images Im(sp) and Im(sq)

with a shift and is an isomorphism outside of Im(sp) ∪ Im(sq). More precisely, if M ∈ JnB,

then κ identifies sp(M) with sq(M ⊗OB(q − p)). Furthermore, the common image of κ ◦ sp

and κ ◦ sq coincides with ∂J̄nBpq , the locus of non-invertible sheaves.

When X = Bpp is 1-cuspidal, let p′ ⊂ B be the fiber over the cusp of Bpp. There is an

embedding sp′ : J
n
B × p′ → P n

Bpp
such that λ ◦ sp′ : JnB × p′ → JnB is the first projection. The

scheme P n
Bpp

is non-reduced along Im(sp′), although J̄nBpp itself is reduced. The morphism κ

is bijective but is not an isomorphism: it maps the non-reduced locus Im(sp′) to the reduced

subscheme ∂J̄nBpp ⊂ J̄nBpp and is an isomorphism outside of Im(sp′).
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4.5 Brill-Noether varieties and their families

In classical algebraic geometry, to a smooth curve C and integers r ≥ 0, d ≥ 1, one

associates the Brill-Noether scheme W r
d (C), which parametrizes invertible sheaves L on

C with degL = d and h0(L) ≥ r + 1, [ACGH, p.153]. W r
d (C) can be expressed as a

degeneracy locus of a morphism of locally free sheaves on Picd(C), [ACGH, p.177]. The

expected dimension of W r
d (C) is the Brill-Noether number ρ(g, r, d) = g− (r+ 1)(g− d+ r).

The basic results of Brill-Noether theory which we shall use are:

1. Existence: if ρ(g, r, d) ≥ 0, then W r
d (C) 6= ∅.

2. Connectedness : if ρ(g, r, d) ≥ 1, then W r
d (C) is connected.

3. Dimension: if C is a general curve, then W r
d (C) is reduced and of dimension ρ(g, r, d),

when ρ(g, r, d) ≥ 0 and is empty otherwise.

These fundamental results are due to many mathematicians: [FL, EH, GH, KL, Ke], see also

[ACGH].

In [AC, p.6 or ACGH, p.177] we may find a construction of the family of Brill-Noether

varieties associated to a family of smooth curves of genus g. In fact, this construction works

in a more general setting. We describe this next. Let C → S be a family of integral curves

of arithmetic genus g having a section whose image lies in the smooth locus of each fiber.

We shall construct a proper S-subscheme Wr
d of J̄dC/S, extending the classical construction

for families of smooth curves.

Let π1, π2 be the projections of C×S J̄dC/S onto the first and the second factor, respectively.

The Poincaré sheaf Pd is flat over C relative to the projection π1, and therefore, we may apply

the theory of cohomology and base-change, [Mu70, p.46]. This theory implies that every

point in J̄dC/S has an affine open neighborhood U = SpecA such that there exists a complex

K• of free OU -modules with the following property. Given any affine scheme V = SpecB and

43



a morphism of affine schemes V → U , there is an isomorphism of functors on the category

of A-algebras B:

H i
(
π−1

2 (U)×U V,Pd|π−1
2 (U) ⊗OU OV

)
' H i

(
Γ(V,K• ⊗OU OV )

)
, for all i ≥ 0. (4.5.1)

Let m and n be the ranks of K0 and K1, respectively, and let us identify Γ(U,K0) and

Γ(U,K1) with Γ(U,OmU ) and Γ(U,OnU), respectively. By (4.5.1), there is an exact sequence

Γ(U,OmU ) A // Γ(U,OnU) // H1(π−1
2 (U),Pd|π−1

2 (U)) // 0,

where A is an n×m matrix with coefficients in Γ(U,OU). Define W
r

d,U to be the subscheme

of U whose ideal IU is generated by (m− r)× (m− r) minors of A. The ideal IU is also the

(g − d+ r)th Fitting ideal associated to the above exact sequence. The formation of Fitting

ideals is compatible with base-change and is independent of the choice of presentation (see

[AC, p.6] and references therein). Consequently, there exists a subscheme Wr
d of J̄dC/S such

that for every affine open set U as above

Wr
d ∩ U = W

r

d,U .

The fiber of Wr
d over s is denoted by W

r

d(Cs). As a set, W
r

d(Cs) consists of F ∈ J̄dCs with

h0(Cs, F ) ≥ r + 1.

The sets of locally free and non-locally free elements of W
r

d(Cs) will be denoted by W r
d (Cs)

and ∂W
r

d(Cs), respectively. If Cs is smooth then W
r

d(Cs) = W r
d (Cs) is the classical Brill-

Noether scheme as in [ACGH, p.153].

In Section 4.6 we shall make repeated use of the following two observations.

Proposition 4.5.1 (Flatness criterion). If all fibers of Wr
d(C)→ S are reduced and have the

expected dimension ρ(g, r, d), then Wr
d(C) is flat over S.
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Proof. Since S is a smooth connected curve by our ongoing assumption, then by [Ha,

Prop.9.7, p.257] it suffices to check that no component of Wr
d(C) is contained in a fiber

W
r

d(Cs) for some s ∈ S. Since Wr
d(C) is determinantal, then each irreducible component of

Wr
d(C) has dimension ≥ ρ(g, r, d) + 1 at every point. But dimW

r

d(Cs) = ρ(g, r, d) for all

s ∈ S by assumption, and therefore, no component of Wr
d can be contained in a fiber (this

argument is adapted from [HM, p.267]).

Proposition 4.5.2 (Principle of connectedness). Let X → S be a flat family of projective

schemes. If there exists a point s0 ∈ S such that Xs0 is connected and reduced, then Xs is

connected for each point s ∈ S.

Proof. The hypotheses of the proposition imply that h0(OXs0 ) = 1. By upper semicontinuity

of s 7→ h0(OXs), there is a Zariski open subset U ⊂ S such that for all points s ∈ U , Xs is

connected. By [Ha, Ex.11.4, p.281], Xs is connected for each point s ∈ S.

4.6 Main result

The following proposition is due to E. Izadi.

Proposition 4.6.1. Let C be a smooth curve of genus g, which has a complete grd with

0 < 2r < d < 2g, and let C̃ → C be a connected étale double cover. If W r
d (C) is connected and

either W r
d−1(C) or W r+1

d+1 (C) is nonempty, then the special subvarieties V0 and V1 associated

to the grd are algebraically equivalent.

Proof. The cover C̃ → C determines a point of order two in J0
C . Translating by OC(do)

and going to the dual abelian variety of JdC , gives a point of order two in Pic0(JdC), which

determines an étale double cover J̃dC → JdC . Assume that W r
d−1(C) is nonempty. Take

L ∈ W r
d−1(C) and let C → W r

d (C) be the embedding x 7→ L(x). We may check that there is

45



a commutative diagram

C̃ //

��

W̃ r
d (C) //

��

J̃dC

��

C // W r
d (C) // JdC ,

where the two squares are Cartesian. The double cover J̃dC → JdC restricts to the connected

double cover C̃ → C, and therefore, the intermediate double cover W̃ r
d (C)→ W r

d (C) is non-

trivial. Since W r
d (C) is connected, this shows that W̃ r

d (C) is also connected. The special

subvarieties V0 and V1 are members of a family of cycles over W̃ r
d (C). Since W̃ r

d (C) is

connected, V0 and V1 are algebraically equivalent. The case when W r+1
d+1 (C) is nonempty is

analogous (embed C in W r
d (C) by x 7→ L(−x) for a fixed L ∈ W r+1

d+1 (C)).

If ρ(g, r, d) < min{r+ 1, g− d+ r} and C is general in the sense of Brill-Noether theory,

both W r
d−1(C) and W r+1

d+1 (C) are empty, because ρ(g, r, d−1) and ρ(g, r+1, d+1) are negative,

[ACGH, Thm.1.5, p.214]. Nevertheless, in what follows we shall show that V0 and V1 are

algebraically equivalent whenever ρ(g, r, d) > 0 and W r
d (C) is reduced and of the expected

dimension.

The Wirtinger cover is the étale double cover B̃pq → Bpq, where the curve B̃pq is obtained

from two copies of B by identifying p and q on one copy with q and p, respectively, on the

other copy. Using [Be77, 6.1] we may find a smooth connected curve S such that C̃ → C

and B̃pq → Bpq vary in a family of double covers

C̃
τ //

��======== C

����������

S

(S in [Be77] is not the same as our S) with the following properties: the fibers of C → S are

integral and at worst nodal, C̃ and C are flat over S, τ is étale, and there is a section σ of
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C → S, which induces a degree one invertible sheaf N on C, as in Section 4.3. Assume that

B̃pq → Bpq lies over the special point s0 ∈ S. By Section 4.5 there is an associated family

Wr
d(C)→ S.

The étale double cover τ : C̃ → C induces a morphism OC ↪→ τ∗OC̃, whose cokernel

is an invertible sheaf L with the property L2 ' OC. Let M := (A∗N )−1(L), then M2 is

isomorphic to the pull-back of an invertible sheaf on S. After replacing S by a Zariski open

subset containing s0, we may assume that M2 is trivial. The relative spectrum J̃0
C/S :=

Spec(OJ̄0
C/S
⊕ M) over J̄0

C/S gives an étale double cover J̃0
C/S → J̄0

C/S. Pulling back via

the isomorphism J̄dC/S → J̄0
C/S of tensoring with N−d, we obtain an étale double cover

J̃dC/S → J̄dC/S, whose restriction to Wr
d(C) is denoted by W̃r

d(C) → Wr
d(C). Over the special

point s0 ∈ S, we use the notation J̃dBpq → J̄dBpq and W̃ r
d (Bpq) → W

r

d(Bpq) for the induced

double covers. We have:

Proposition 4.6.2. If 0 < ρ(g, r, d) < min{r + 1, g − d + r}, then a general 1-nodal curve

Bpq of arithmetic genus g satisfies: (1) W
r

d(Bpq) is connected, reduced, and has the expected

dimension ρ(g, r, d); (2) W̃ r
d (Bpq) is connected.

Assuming the above proposition, we prove the main result of this section:

Theorem 4.6.3. Let C be a smooth curve of genus g, which has a complete grd, and such

that W r
d (C) is reduced and of dimension ρ(g, r, d). Let C̃ → C be a connected étale double

cover and let V0, V1 be the special subvarieties associated to the grd. If ρ(g, r, d) > 0, then V0

and V1 are algebraically equivalent.

Proof. The idea of the proof is taken from [IT]. If ρ(g, r, d) ≥ min{r + 1, g − d + r}, then

either W r
d−1(C) or W r+1

d+1 (C) is nonempty [Ke, KL], and Proposition 4.6.1 applies. Thus, we

may assume that 0 < ρ(g, r, d) < min{r + 1, g − d+ r}.

Let Bpq be a 1-nodal curve satisfying the conclusions of Proposition 4.6.2. We shall

degenerate W̃ r
d (C) to W̃ r

d (Bpq) and apply the principle of connectedness from Section 4.5.
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Consider the flat family τ : C̃ → C over S and the associated family W̃r
d(C) → Wr

d(C), as

described before Proposition 4.6.2. The schemes W r
d (C) and W

r

d(Bpq) are reduced, have

dimension ρ(g, r, d), and appear as fibers of wC : Wr
d(C)→ S. After shrinking S, if necessary,

we may assume that all fibers of wC are reduced and have dimension ρ(g, r, d), hence wC

is flat by Proposition 4.5.1. This implies that the morphism W̃r
d(C) → S is also flat and

all of its fibers are reduced. Since W̃ r
d (Bpq) is connected, then by Proposition 4.5.2, so is

W̃ r
d (C). As in the proof of Proposition 4.6.1, this implies that V0 and V1 are algebraically

equivalent.

Before giving the proof of Proposition 4.6.2, we need two preliminary observations. First,

let us show that J̃dBpq → J̄dBpq has a description analogous to the Wirtinger cover B̃pq →

Bpq. Using the notation from Section 4.4, we see that the morphism κ : P d
Bpq
→ J̄dBpq is

the normalization. Let α : Bpq → J̄dBpq be the composition of the Abel map (Section 4.3)

followed by the morphism J̄0
Bpq
→ J̄dBpq of tensoring by N d

s0
. By the universal property of

normalization, the composition α ◦ ν : B → J̄dBpq induces a morphism α̃ : B → P d
Bpq

, such

that the diagram

B
α̃ //

ν

��

P d
Bpq

κ

��
Bpq α

// J̄dBpq

commutes. Applying Pic0, we get a commutative diagram:

Pic0
B

Pic0
P dBpq

α̃∗oo

Pic0
Bpq

ν∗

OO

Pic0
J̄dBpq

.
α∗

oo

κ∗

OO

The composition λ◦ α̃ : B → P d
Bpq
→ JdB is an Abel map (see Section 4.4 for the definition of

λ), which implies that α̃∗ is injective. By the construction preceding Proposition 4.6.2, the
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invertible sheaves Ls0 and Ms0 that determine B̃pq → Bpq and J̃dBpq → J̄dBpq , respectively,

satisfy α∗(Ms0) = Ls0 . Also, Ls0 induces the trivial double cover of B, i.e., ν∗(Ls0) = OB.

Therefore, using the commutativity of the above diagram and the injectivity of α̃∗, we see

that κ∗(Ms0) = OP dBpq . This shows that there is a Cartesian square

P d
Bpq

∐
P d
Bpq

//

��

J̃dBpq

��
P d
Bpq

κ // J̄dBpq ,

where the left vertical arrow is the trivial double cover. We conclude that J̃dBpq is obtained

from P d
Bpq

∐
P d
Bpq

by gluing Im(sp) and Im(sq) on one copy of P d
Bpq

to Im(sq) and Im(sp),

respectively, on the other copy (the gluing is with a shift, as in the case of J̄dBpq described in

Section 4.4).

Next, consider the induced double cover W̃ r
d (Bpq)→ W

r

d(Bpq). Let

W (p, q) := κ−1
(
W

r

d(Bpq)
)

W (p) := Im(sp) ∩W (p, q) W (q) := Im(sq) ∩W (p, q),

where the preimage and the images are scheme-theoretic. From the above description of

J̃dBpq we see that W̃ r
d (Bpq) is obtained from two copies of W (p, q) by gluing W (p) and W (q)

on one copy to W (q) and W (p), respectively, on the other copy. Therefore, to show that

W̃ r
d (Bpq) is connected, it suffices to prove that W (p, q) is connected and W (p), W (q) are

nonempty. Non-emptiness of W (p) and W (q) can be seen as follows. Since dimW r
d−1(B) ≥

ρ(g − 1, r, d − 1) = ρ(g, r, d) − 1 ≥ 0 (the last inequality holds by our ongoing assumption

ρ(g, r, d) > 0) and ∂W
r

d(Bpq) = {ν∗M |M ∈ W r
d−1(B)}, then ∂W

r

d(Bpq) is nonempty, [Ke,

KL]. It follows from Section 4.4 that κ maps each of W (p) and W (q) onto ∂W
r

d(Bpq), which

implies that W (p) and W (q) are nonempty. Connectedness of W (p, q) (for a general 1-nodal

curve Bpq) is much harder to show and it is the main point of the proof of Proposition 4.6.2
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below. The idea is to let p and q come together and to consider the analogous locus W (p, p)

for the 1-cuspidal curve Bpp. Although the scheme W (p, p) turns out to be connected, it is

also non-reduced. Hence, we may have h0(OW (p,p)) > 1, and therefore, we cannot apply the

principle of connectedness directly to conclude that W (p, q) is connected. Furthermore, it

is not clear a priori that the specialization W (p, q)  W (p, p) is flat. To overcome these

difficulties, we shall use the determinantal loci Y (x, y), which are introduced in the next

paragraph.

Let us introduce two last bits of notation, state two lemmas (whose proofs are at the end

of the section), and give the proof of Proposition 4.6.2. First, by [EH], if X is an integral

curve with double points at worst, there is a scheme G
r

d(X) parametrizing pairs (L, V ) such

that L ∈ W r

d(X) and V ⊂ H0(X,L) is a subspace of dimension r + 1. There is a forgetful

morphism G
r

d(X)→ W
r

d(X) and a subscheme Gr
d(X) ⊂ G

r

d(X) pararmetrizing pairs (L, V )

with L locally free. Second, given points x, y ∈ B (not necessarily distinct), define

Y (x, y) := {M ∈ JdB |h0(M) ≥ r + 1 and h0(M(−x− y)) ≥ r}

as a subscheme of JdB with its natural structure of a determinantal locus (see Appendix to

this section for details), whose expected dimension can be computed using [Fu, Ch.14.3,

p.249] and is equal to ρ(g, r, d).

Lemma 4.6.4. If ρ(g, r, d) < min{r+ 1, g + r− d}, then for a general 1-cuspidal curve Bpp

of arithmetic genus g, the scheme Y (p, p) is connected, reduced, and of dimension ρ(g, r, d).

Lemma 4.6.5. If both W r+1
d (B) and W r

d−2(B) are empty, then for any distinct points p, q ∈

B, the underlying topological spaces of the schemes Y (p, q) and W (p, q) are homeomorphic.

Proof of Prop.4.6.2. Say that an integral curve X of arithmetic genus g has property P , if

W
r

d(X) is connected, reduced, and of dimension ρ(g, r, d). Note that property P is open and
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depends on the integers r, d. By [EH, Thm.4.5 and Sec.9], there exists a rational g-cuspidal

curve X for which G
r

d(X) is connected, reduced, and of the expected dimension, which

implies that P holds for X. Since a 1-nodal curve can be specialized to a g-cuspidal rational

curve, then P holds for a general 1-nodal curve. This proves part (1) of the proposition.

Connectedness of W̃ r
d is an open property of 1-nodal curves. Therefore, to prove part

(2) of the proposition, it suffices to exhibit a single 1-nodal curve Bpq such that W̃ r
d (Bpq)

is connected. This will be done using 1-cuspidal curves. By Lemma 4.6.4, there exists a

1-cuspidal curve Bpp such that Y (p, p) is connected, reduced, and of dimension ρ(g, r, d).

Moreover, by the proof of Lemma 4.6.4, we may assume that both W r+1
d (B) and W r

d−2(B)

are empty. Let us show that there exists a point q ∈ B\{p} such that Y (p, q) is connected.

Take a smooth, connected but not necessarily complete, curve T parametrizing divisors

{p + qt | t ∈ T} on B such that qt 6= p for all t ∈ T\{t0} and qt0 = p. Consider a family

Y → T , such that the fiber over a point t ∈ T is Y (p, qt). Since Y (p, p) is connected, reduced,

and of the expected dimension ρ(g, r, d), we may replace T with a Zariski open neighborhood

of t0, if necessary, to ensure that Y → T is flat. By the principle of connectedness, this

implies that Y (p, qt) is connected for each point t ∈ T .

Now, let us fix a point q ∈ B\{p} such that Y (p, q) is connected and consider the

1-nodal curve Bpq. Since both W r+1
d (B) and W r

d−2(B) are empty, then by Lemma 4.6.5,

the schemes W (p, q) and Y (p, q) have homeomorphic underlying topological spaces, hence

W (p, q) is connected. As described before the proof, W̃ r
d (Bpq) is obtained by gluing two

copies of W (p, q), which implies that W̃ r
d (Bpq) is connected.

Proof of Lemma 4.6.4. Say that a smooth curveB of genus g−1 has property E , ifW r+1
d (B) =

W r
d−2(B) = ∅. Note that E is an open property and depends on the integers r, d. Since

ρ(g, r, d) < min{r + 1, g + r − d}, then both ρ(g − 1, r + 1, d) and ρ(g − 1, r, d− 2) are neg-

ative. Therefore, by [ACGH, Thm.1.5, p.214], E holds for a general smooth curve of genus

g − 1. By [EH, Thm.4.5 and Sec.9], there exists a rational g-cuspidal curve X for which
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G
r

d(X) is connected, reduced, and of the expected dimension. It follows that for a general

1-cuspidal curve Bpp of arithmetic genus g the scheme G
r

d(Bpp) is connected, reduced, and

of dimension ρ(g, r, d).

For the remainder of the proof let us fix one such curve Bpp such that its normalization

B has property E . In particular, W r+1
d (B) = ∅, which implies that W

r

d(Bpp) = G
r

d(Bpp). By

Section 4.4, there is a diagram

P d
Bpp

κ //

λ
��

J̄dBpp

JdB,

where κ is proper, birational and bijective (hence, a homeomorphism on the underlying topo-

logical spaces). Let W (p, p) be the scheme-theoretic preimage κ−1(W
r

d(Bpp)), i.e., W (p, p)

is the fiber product of P d
Bpp

and W
r

d(Bpp) over J̄dBpp . Since κ is birational and bijective

and W
r

d(Bpp) is connected, reduced, and of dimension ρ(g, r, d), then W (p, p) is connected,

generically reduced, and of dimension ρ(g, r, d). Note that W (p, p) is non-reduced along

κ−1(∂W
r

d(Bpp)). The scheme Y (p, p) is a determinantal locus whose expected dimension is

ρ(g, r, d), and therefore, dimY (p, p) ≥ ρ(g, r, d), if Y (p, p) is nonempty. In the paragraph

below, we shall show that Y (p, p) is the set-theoretic image of W (p, p) under λ. This implies

that Y (p, p) is connected and of dimension ρ(g, r, d). Moreover, being a determinantal locus

of the expected dimension, Y (p, p) is Cohen-Macaulay, [Fu, Thm.14.3c, p.250], and therefore,

has no embedded components. Thus, to show that Y (p, p) is reduced, it remains to prove

that Y (p, p) is generically reduced. In [EH, Sec.4], it is shown that the Gr
d of a cuspidal curve

X is closely related to a certain determinantal locus in a Grassmann bundle over the scheme

of linear series of the normalization of X. In the case of 1-cuspidal curves this determinantal

locus is the scheme Y (p, p). In particular, using [EH, Thm.4.1, p.388 and Remark on p.389],

it is easy to see that the morphism Gr
d(Bpp) → Y (p, p), given by L 7→ ν∗L, is birational.

Since Gr
d(Bpp) is reduced, this shows that Y (p, p) is generically reduced.
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To complete the proof, let us check the set-theoretic equality λ(W (p, p)) = Y (p, p). Let

sk be the sky-scraper sheaf on Bpp supported at the cusp with fiber C. If L ∈ W
r

d(Bpp)

and L is invertible, then κ−1(L) is a single reduced point (L ↪→ ν∗ν
∗L) ∈ W (p, p), whose

image in JdB is ν∗L. Consider the short exact sequence 0 → L → ν∗ν
∗L → sk → 0 and the

associated long exact sequence

0 // H0(L) // H0(ν∗L)
β // C // · · ·

Since W r+1
d (B) = ∅, then h0(ν∗L) = r+1 and β is the zero map. Therefore, the linear system

|L| pulls-back to the complete linear system |ν∗L|, which implies that h0(ν∗(L)(−2p)) = r.

Hence, ν∗L ∈ Y (p, p). If L ∈ ∂W r

d(Bpp), let M := (ν∗(L)/torsion) ⊗ OB(p). In this case

we have L ' ν∗(M(−p)), [Al, Lem.1.5], and there is a natural presentation ν∗(M(−p)) ↪→

ν∗M . The fiber κ−1(L) is the point (ν∗(M(−p)) ↪→ ν∗M) ∈ W (p, p) with multiplicity

2 (see Section 4.4), whose image in JdB is M . Since h0(L) ≥ r + 1 and W r+1
d (B) = ∅,

the inclusion L ' ν∗(M(−p)) ↪→ ν∗M induces an isomorphism H0(M(−p)) ' H0(M).

Therefore, h0(M) = r + 1 and h0(M(−2p)) ≥ r, hence M ∈ Y (p, p).

Proof of Lemma 4.6.5. Let sk be the sky-scraper sheaf on Bpq supported at the node with

fiber C. By Section 4.4, the presentation scheme P d
Bpq

fits into the diagram

P d
Bpq

κ //

λ
��

J̄dBpq

JdB,

where λ is a P1-bundle and κ is the normalization morphism.

To prove the lemma, we shall show that λ restricts to a bijective morphism λ̄ : W (p, q)→

Y (p, q). Since λ̄ is also proper, this will imply that λ̄ induces a homeomorphism on the

underlying topological spaces.
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First, let us check that λ(W (p, q)) = Y (p, q). Recall from Section 4.4 that λ sends a

presentation (L ↪→ ν∗M) to M ∈ JdB. If L ∈ W r

d(Bpq) and L is invertible, then κ−1(L) is a

single reduced point (L ↪→ ν∗ν
∗L) ∈ W (p, q). Consider the short exact sequence 0 → L →

ν∗ν
∗L→ sk→ 0 and the associated long exact sequence

0 // H0(L) // H0(ν∗L)
β // C // · · ·

Since W r+1
d (B) = ∅, then h0(ν∗L) = r+1 and β is the zero map. Therefore, the linear system

|L| pulls-back to the complete linear system |ν∗L|, which implies that h0(ν∗(L)(−p−q)) = r,

see also [Ca09, Rem.2.2.1, p.1397]. Hence, ν∗L ∈ Y (p, q). If L ∈ ∂W
r

d(Bpq), then κ−1(L)

consists of two reduced points: (ν∗M(−p) ↪→ ν∗M) and (ν∗M
′(−q) ↪→ ν∗M

′), where M =

(ν∗(L)/torsion)⊗OB(p) andM ′ = M⊗OB(q−p), see Section 4.4. Note that L ' ν∗M(−p) '

ν∗M
′(−q), which implies that h0(M), h0(M ′) ≥ r+1 and h0(M(−p−q)), h0(M ′(−p−q)) ≥ r.

Hence, M,M ′ ∈ Y (p, q). This shows that λ(W (p, q)) = Y (p, q).

Second, let us show that λ̄ is bijective. Since W r+1
d (B) and W r

d−2(B) are empty, then for

each M ∈ Y (p, q), we have h0(M) = r+ 1 and h0(M(−p− q)) = r. As a consequence, there

is a unique morphism h : ν∗M � sk, which induces the zero map on global sections (if p and

q are not base points of M , this also follows from [Ca09, Lem.5.1.3(2), p.1420]). The sheaf

LM := ker(h) has h0(LM) = r+ 1, and therefore, LM ∈ W
r

d(Bpq). From the description of λ̄

given above, we see that the assignment M 7→ (LM ↪→ ν∗M) is a set-theoretic inverse of λ̄,

which shows that λ̄ is bijective.

Remark 4.6.6. The special subvarieties are not always algebraically equivalent, as is shown

in the following example. In the case of a trigonal curve C, the special subvarieties V0 and

V1 associated to a g1
3 on C are related by V1 = (−1)∗V0 (after an appropriate translation)

and P is isomorphic to the Jacobian of V0, which has a g1
4, see [Be82, p.360 and p.366; Re].

Since ρ(g, 1, 4) = 6 − g, then all curves of genus at most 6 admit a g1
4. It follows from [Ce]
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and [Re] that V0 and V1 are not algebraically equivalent on a generic “trigonal” Prym of

dimension 3 ≤ p = g − 1 ≤ 6. Note that ρ(g, 1, 3) = 4− g ≤ 0, whenever p ≥ 3.

4.7 Appendix

Fix integers g, r, d such that 0 < 2r < d < 2g and let B be a smooth curve of genus g−1.

For any two points (not necessarily distinct) x, y ∈ B, we have considered the locus

Y (x, y) = {M ∈ JdB |h0(M) ≥ r + 1 and h0(M(−x− y)) ≥ r}.

The purpose of this appendix is to show that Y (x, y) carries a natural scheme structure of

a determinantal locus in JdB. Such loci are sometimes also referred to as Schubert loci or

Schubert varieties. A reference for their theory is [Fu, Ch.14]. We shall use the following

notation:

• L := a Poincaré sheaf on B × JdB,

• Dm := an effective divisor of degree m ≥ 2(g − 1)− d+ r − 1,

• Γ := Dm × JdB considered as a divisor on B × JdB,

• L (Γ) := L ⊗OB×JdB(Γ),

• φ : B × JdB → JdB is the second projection.

When there is no danger of confusion, given a divisor D on B, we let L (D) := L⊗(pull-

back ofOB(D)) and L (Γ+D) := L (D)⊗OB×JdB(Γ). Our assumption m ≥ 2(g−1)−d+r−1

and the Riemann-Roch formula imply that for any 1 ≤ j ≤ r−1 and any points p1, . . . , pr−1 ∈

B, the sheaf φ∗L (Γ − p1 − · · · − pj) is locally free of rank d + m − j − g + 2 on JdB and

R1φ∗L (Γ− p1 − · · · − pj) = 0.
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Consider the following commutative diagram with exact rows:

0 // φ∗L // φ∗L (Γ) σ // φ∗(L (Γ)/L ) // R1φ∗L // 0

0 // φ∗L (−x− y) //

OO

φ∗L (Γ− x− y) σ̄ //

α

OO

φ∗
(L (Γ−x−y)

L (−x−y)

)
//

β

OO

R1φ∗L (−x− y) //

OO

0.

It is easy to check that α is injective and β is an isomorphism. Hence, α induces an injection

from ker(σ̄) to ker(σ).

Put E := φ∗L (Γ) and F := φ∗(L (Γ)/L ). To set up a determinantal locus as in

[Fu, p.243] we shall construct a flag A1 ⊂ A2 ⊂ . . . ⊂ Ar ⊂ Ar+1 ⊂ E. Put Ar+1 := E

and Ar := φ∗L (Γ − x − y). Fix points p1, . . . , pr−1 ∈ B and for 1 ≤ i ≤ r − 1, put

Ar−i := φ∗L (Γ− x− y − p1 − · · · − pi). Thus, we get a flag

A1 = φ∗L (Γ−x−y−p1−· · ·−pr−1) ⊂ . . . ⊂ Ar−1 = φ∗L (Γ−x−y−p1) ⊂ Ar = φ∗L (Γ−x−y)

of locally free subsheaves of E. Let ai := rk(Ai). Using Riemann-Roch, we may compute:

ar+1 = rk(E) = d + m − g + 2 (recall that m is the degree of the fixed divisor Dm on B),

ar = ar+1 − 2, and ai = ar+1 − 2 − (r − i) for 1 ≤ i ≤ r − 1. Note that the rank of F is

m. For M ∈ JdB, let Ai(M) be the fiber of Ai over M and let σ(M) : E(M)→ F (M) be the

morphism on the fibers induced by σ : E → F . Consider the determinantal locus

Ω(A;σ) = {M ∈ JdB | dim(ker(σ(M)) ∩ Ai(M)) ≥ i, 1 ≤ i ≤ r + 1}.

For 1 ≤ i ≤ r − 1, the condition dim(ker(σ(M)) ∩ Ai(M)) ≥ i is a consequence of

dim(ker(σ(M)) ∩ Ar(M)) ≥ r, because the ranks of the Ai’s go down by one starting with

i = r. Let σi : Ai → F be composition of the inclusion Ai ↪→ E followed by σ : E → F .
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Using the calculation on the bottom of p.178 in [ACGH] for the 4th equality below, we have:

Ω(A;σ) = {M ∈ JdB | dim(ker(σ(M)) ∩ Ai(M)) ≥ i, for i ∈ {r, r + 1}}

= {M ∈ JdB | dim(ker(σi(M))) ≥ i, for i ∈ {r, r + 1}}

= {M ∈ JdB | rank(σr+1(M)) ≤ d+m− (g − 1)− r and rank(σr(M)) ≤ d+m− g − r}

= {M ∈ JdB |h0(M) ≥ r + 1 and h0(M(−x− y)) ≥ r}

= Y (x, y).

This defines the scheme structure of a determinantal locus on Y (x, y). By [Fu, Thm.14.3,

p.249], the expected codimension of Y (x, y) = Ω(A;σ) in JdB is
∑r+1

i=1 m−ai+i. For 1 ≤ i ≤ r,

m− ai + i = m− (n− 2− (r − i)) + i = m− n+ r + 2

= m− (d+m− g + 2) + r + 2 = g − d+ r,

and therefore,

r+1∑
i=1

m− ai + i =
r∑
i=1

(m− ai + i) + (m− ar+1 + r + 1)

= r(g − d+ r) +m− n+ r + 1 = r(g − d+ r) +m− (d+m− g + 2) + r + 1

= (r + 1)(g − d+ r)− 1.

Hence, the expected dimension of Y (x, y) = g − 1− ((r + 1)(g − d+ r)− 1) = ρ(g, r, d).
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Chapter 5

Classes of special subvarieties

5.1 Beauville-Poincaré formulas

Let (J,Θ) be a principally polarized Jacobian of a smooth curve C of genus g. Let [C]

and [Θ] be the classes of the Abel curve and the theta divisor, respectively. The following

classical formula in H∗(J,Z) is due to Poincaré:

[Θ]·p
1

p!
=

1

(g − p)!
[C]∗(g−p)

for 1 ≤ p ≤ g.

For quite a while it was not known whether the above formula holds in A(J). In [Co75,

Cor.4, p.97], it has been shown that the Poincaré formula does hold in A(J), if C is hyper-

elliptic. This also follows from the result of Colombo and van Geemen [CvG, Thm.1.3(3)],

as observed in [Be04, p.687].

On the other hand, if C is a generic curve of genus g ≥ 3, then C is non-hyperelliptic. In

fact, the result of Ceresa [Ce] implies that for such a curve [C](1) 6= 0 in A(J). Therefore, [C]

is not contained in the subring of A(J) generated by the class of the theta divisor, because
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[Θ]·p ∈ Ap(J)(0) for all 0 ≤ p ≤ g. In particular, Poincaré formulas do not hold for generic

curves of genus g ≥ 3 even modulo algebraic equivalence.

Nevertheless, Beauville has found certain formulas in CH(J), which generalize Poincaré

formulas in cohomology, [Be83]. These formulas hold verbatim in A(X). Let L be an ample

symmetric invertible sheaf on X (e.g., L = OX(Θ)), ν := h0(L) = L·g

g!
, and cL := L·(g−1)

ν(g−1)!
.

Theorem 5.1.1 (Beauville-Poincaré formula). For all 0 ≤ p ≤ g,

L·p

p!
= ν

c
∗(g−p)
L

(g − p)!
∈ CHp(X).

Proof. See either [Be83, Cor.2, p.249] or [BL, 16.5.6, p.537].

We shall use is the following corollary.

Corollary 5.1.2 (Beauville, 1983). For p, q ≥ 0 we have the following identity in CHp+q−g(X):

L·p

p!
∗ L

·q

q!
= ν

(
2g − p− q
g − p

)
L·(p+q−g)

(p+ q − g)!
.

Proof. As in [BL, p.538], we use Beauville-Poincaré formula twice:

L·p

p!
∗ L

·q

q!
= ν2 c

∗(g−p)
L

(g − p)!
∗ c

∗(g−q)
L

(g − q)!

= ν2

(
2g − p− q
g − p

)
c
∗(2g−p−q)
L

(2g − p− q)!

= ν

(
2g − p− q
g − p

)
L·(p+q−g)

(p+ q − g)!
.
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5.2 Classes of special subvarieties in T (P, ψ(C̃))

In this section we assume that π : C̃ → C is étale and recall that in this case dimP =

p = g − 1. Let us fix two integers r and d such that 0 < 2r < d < 2g. Throughout this

section the letters n and m will denote r-tuples of non-negative integers (n1, . . . , nr) and

(m1, . . . ,mr), respectively. As in Section 4.2, ϕ̃d : C̃d → J̃ , ϕd : Cd → J are abelian sum

mappings and πd : C̃d → Cd is the map induced by π : C̃ → C. Also, let |n| :=
∑r

j=1 nj and

µn :=
∏r

j=1
(−1)nj−1

nj
.

For any pair n,m of r-tuples with 1 ≤ n1 ≤ . . . ≤ nr,
∑r

j=1 nj ≤ d, and 0 ≤ mj ≤ nj/2

for all j, define the following numbers:

1. νn,m : For each ` ≥ 1 let q(`) be the number of nj’s that are equal to ` and suppose that

nj1 = nj2 = . . . = njq(`) = `. If q(`) is not zero, let p(`, n,m) be the number of permutations

of the ordered q(`)-tuple (mj1 ,mj2 , . . . ,mjq(`)), and otherwise let p(`, n,m) = 1. Then we set

νn,m :=
d−r+1∏
`=1

1

p(`, n,m)
.

Note that if r = 1, then νn,m = 1 for all n,m. If r = 2, then νn,m = 1/2 if n1 = n2 and

m1 6= m2, and νn,m = 1 otherwise.

2. λn,m : This is the number

λn,m := 2d−|n| · µn · νn,m ·
(
d

|n|

)(
n1

m1

)
· · ·
(
nr
mr

)
.

3. dn,m : Let e1, . . . , ek count the number of repeats in the sequence of pairs (n1,m1), . . . , (nr,mr).

For example, if the sequence of pairs is

(1, 2), (1, 2), (2, 5), (2, 3), (2, 3), (2, 3), (7, 5), (3, 3), (3, 3), (3, 3),
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then the associated sequence of repeats is 2, 1, 3, 1, 3. Let us define

dn,m := e1!e2! · · · ek!.

Theorem 5.2.1. Let 0 < 2r < d < 2g and let V = V0∪V1 be the union of special subvarieties

of P associated to a complete and base point free grd on C. The component of the class [V ]

in Ap−r(P )(t) is given by the formula

[V ](t) = ct,r,d
(
[ψ(C̃)]∗r

)
(t)

where

ct,r,d := 2−2r−t
∑
n

∑
m≤n

2

λn,m
dn,m

r∏
j=1

(nj − 2mj)
t+2,

the outer sum is taken over the choices of r-tuples n = (n1, . . . , nr) of integers with 1 ≤

n1 ≤ . . . ≤ nr and
∑r

j=1 nj ≤ d, the inner sum is taken over the choices of r-tuples m =

(m1, . . . ,mr) of integers with 0 ≤ mj ≤ nj
2

for all j.

Proof. Let Gd denote the complete and base-point-free grd on C, considered as a subvariety

of Cd isomorphic to Pr. Given an r-tuple n of positive integers, consider the generalized

diagonal

δn =
{
n1x1 + n2x2 + · · ·+ nrxr |x1, . . . , xr ∈ C

}
in the |n|-fold symmetric product of C. Let D ∈ Gd be a fixed effective divisor, whose support

consists of d distinct points. In [He, Thm.3, p.888] we may find the following formula for

the class [Gd] ∈ CHd−r(Cd):

[Gd] =
∑
n,os

µn[δn + o1 + · · ·+ os],
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where s = s(n) := d−|n| ≥ 0 and the sum is taken over all r-tuples n with 1 ≤ n1 ≤ . . . ≤ nr

and the choices of (unordered) sums os := o1 + · · · + os of pairwise distinct points in the

support of the fixed divisor D.

In order to compute π∗d[Gd], for each pair n,m of r-tuples with mj ≤ nj for all j, we

introduce the modified generalized diagonals

δ̃n,m :=
{ r∑

j=1

mjι(x̃j) + (nj −mj)x̃j | x̃1, . . . , x̃r ∈ C̃
}
,

considered as subvarieties of the |n|-fold symmetric product of C̃. We may check that

π∗d[δn + o1 + · · ·+ os] =
∑
m,ũs

νn,m

(
n1

m1

)
· · ·
(
nr
mr

)[
δ̃n,m + ũ1 + · · ·+ ũs

]
,

where the sum is taken over all r-tuples m with 0 ≤ mj ≤ nj
2

for all j and all (unordered)

sums ũs = ũ1 + · · · + ũs with ũj ∈ π−1(oj) = {õj, ι(õj)}. To explain the number νn,m, note

that two ordered indexing pairs n,m and n,m′ with m 6= m′ may label the same generalized

diagonal. The number νn,m is the adjustment for this redundancy. Passing to A(C̃d), the

formula for the pull-back of a generalized diagonal becomes

π∗d[δn + o1 + · · ·+ os] =
∑
m≤n

2

2d−|n|νn,m

(
n1

m1

)
· · ·
(
nr
mr

)[
δ̃n,m + (d− |n|)õ

]

and we get:

π∗d[Gd] =
∑
n

∑
m≤n

2

λn,m
[
δ̃n,m + (d− |n|)õ

]
. (5.2.1)

The abelian sum mapping ϕ̃d maps the subvariety δ̃n,m + (d− |n|)õ of C̃d bijectively onto

a translate of the variety (m1ι + n1 − m1)(C̃) + · · · + (mrι + nr − mr)(C̃), where C̃ ⊂ J̃

also denotes the Abel curve and (mjι + nj −mj) is viewed as an endomorphism of J̃ . The
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number dn,m computes the degree of the addition morphism

(m1ι+ n1 −m1)(C̃)× · · · × (mrι+ nr −mr)(C̃)→
r∑
j=1

(mjι+ nj −mj)(C̃),

and therefore, by the definition of Pontryagin product we have:

(m1ι+ n1 −m1)∗[C̃] ∗ · · · ∗ (mrι+ nr −mr)∗[C̃] = dn,m

[ r∑
j=1

(mjι+ nj −mj)(C̃)
]
,

which implies the formula:

u∗ϕ̃d∗[δ̃n,m + (d− |n|)õ] =
1

dn,m
(n1 − 2m1)∗[ψ(C̃)] ∗ · · · ∗ (nr − 2mr)∗[ψ(C̃)]. (5.2.2)

Since the composition of P ↪→ J̃ with u : J̃ → P is multiplication by 2, then by (5.2.1) and

(5.2.2) we have the following identity in A(P ):

2∗[V ] =
∑
n

∑
m≤n

2

λn,m
dn,m

(n1 − 2m1)∗[ψ(C̃)] ∗ · · · ∗ (nr − 2mr)∗[ψ(C̃)].

We may extract the formulas for the homogeneous components of [V ] by recalling that

k∗x = k2(p−l)+tx for x ∈ Al(P )(t).

In general, there is no canonical way of distinguishing V0 from V1, and consequently, we

may not extract the formulas for [V0] and [V1] from the formula for [V ] in a direct way. In

particular, we do not know in general if [Vi] ∈ T (P, ψ(C̃)). However, when V0 and V1 are

algebraically equivalent, [V0] = [V1] in A(P ) and we easily obtain a formula for their classes:

[V0] = [V1] = 1
2
[V ] ∈ T (P, ψ(C̃)).
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5.3 Examples

First, we note that even when ct,r,d 6= 0, the cycle ([ψ(C̃)]∗r)(t) may itself be zero, e.g.,

when t is odd and r = 1, see the proof of Theorem 3.2.3.

Example 1. When Gd is a g1
d (the case r = 1), the formula in Theorem 5.2.1 reads

[V ](t) =
d∑

n=1

∑
m≤n

2

(−1)n−12d−n−t−2

n

(
d

n

)(
n

m

)
(n− 2m)2+t[ψ(C̃)](t). (5.3.1)

In particular,

[V ](0) = 2d−3[ψ(C̃)](0) = 2d−2 · ξg−2

(g − 2)!
,

which corresponds to the singular cohomology class of V and agrees with the formula in

[Be82, Thm.1, p.364]. When t = 2s ≥ 0 is even, using the package ekhad from [PWZ] for

the software system maple and the resource [OEIS], it appears that

c2s,1,d =
(4s+1 − 1)B2s+2

s+ 1
· 2d−2,

where Bm is the mth Bernoulli number, defined by t
et−1

=
∑∞

m=0 Bm
tm

m!
. In particular, the

coefficient ct,1,d is non-zero when t is even. When t is odd, a closed formula for ct,1,d can also

be found using the package ekhad, but the formula that we obtained was very bulky, and

therefore, we do not include it here. In any case, when t is odd, the class [ψ(C̃)](t) is zero.
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Example 2. When Gd is a g3
7, we may check that

2∗[V ] = 821
6
Z∗3 − 84Z∗2 ∗ 2∗Z + 89

6
Z∗2 ∗ 3∗Z − 7

4
Z∗2 ∗ 4∗Z + 1

10
Z∗2 ∗ 5∗Z

+89
8
Z ∗ (2∗Z)∗2 − 7

3
Z ∗ 2∗Z ∗ 3∗Z + 1

8
Z ∗ 2∗Z ∗ 4∗Z + 1

18
Z ∗ (3∗Z)∗2

− 7
24

(2∗Z)∗3 + 1
24

(2∗Z)∗2 ∗ 3∗Z,

where Z = [ψ(C̃)]. Using the identification [ψ(C̃)](0) = 2 · ξg−2

(g−2)!
and Corollary 5.1.2, an

elementary calculation shows that [V ](0) = 2 · ξg−4

(g−4)!
, which agrees with the formula in [Be82].

By the proof of [Fa, Thm.4.5, p.117], we know that for a generic Prym variety P of

dimension p ≥ 5, the cycle ([ψ(C̃)]∗r)(2) is non-zero in A(P ) for 1 ≤ r ≤ p−3. Consequently,

we may deduce the following non-vanishing results.

From the first example above we know that c2,1,d = −2d−4, which implies that [V ](2) 6= 0,

where V is associated to a g1
d on a generic curve C of genus g ≥ 6.

When r = 2, we have verified on a computer that c2,2,d = 2d−7 for 0 ≤ d ≤ 100. Therefore,

[V ](2) 6= 0 at least for 4 ≤ d ≤ 100, where V is associated to a g2
d on a generic curve C of

genus g ≥ 6.

When r = 3, the coefficients c2,r,d are not always integers and do not seem to follow an

obvious pattern, but they still appear to be non-zero, which has been checked on a computer

for 3 ≤ d ≤ 50.
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