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Chapter 1

Introduction

In this first chapter, we briefly motivate and outline our study of cohomological

n-equivalences.

1.1 Background in Rational Homotopy Theory

In 1953, Serre published [Ser53], which studied “homotopy mod C”, where C is a class of

commutative groups satisfying certain closure axioms. In particular, when C is is taken to

be the class of torsion abelian groups, one obtains a notion of rational homotopy

equivalence via the following result of Serre:

Theorem 1 (Whitehead-Serre). For a continuous map f : X → Y between simply

connected spaces, the following are equivalent:

1. π∗(f) : π∗(X)⊗Z Q→ π∗(Y )⊗Z Q is an isomorphism

2. H∗(f ;Q) : H∗(X;Q)→ H∗(Y ;Q) is an isomorphism.

3. H∗(f ;Q) : H∗(X;Q)→ H∗(Y ;Q) is an isomorphism.

Definition 1. A map f : X → Y satisfying the above equivalent conditions is called a

rational homotopy equivalence. Two spaces X and Y have the same rational homotopy type

if they can be connected by a string of rational equivalences (i.e. not necessarily

composable sequence of rational homotopy equivalences).

In [Qui67, Qui69], Quillen describes a categorical formalism for homotopy theory by

axiomatizing the classes of weak equivalences, fibrations, and cofibrations. In particular,
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the category of topological spaces with the above notion of rational equivalence fell under

this formalism (under suitable connectivity assumptions). This framework importantly

provided a way of verifying that various homotopy categories (the categories obtained by

localizing weak equivalences) are equivalent. In particular, the rational homotopy category

of topological spaces was shown to be equivalent to several other homotopy categories

coming from algebraic categories, including differential graded Lie algebras and differential

graded cocommutative coalgebras. This allows for a purely algebraic formulation of rational

homotopy theory. By taking linear duals for differential graded coalgebras of finite type,

one could also extend the results to the category of differential commutative graded

algebras, where the notion of rational equivalence is given by quasi-isomorphisms, i.e. maps

that induce isomorphisms on cohomology.

An alternative construction by Sullivan, [Sul77, DGMS75, Sul73] provided a direct

functor from spaces to differential graded commutative algebras via the functor of

“polynomial de Rham forms” of a space. This approach did not require the same

connectivity conditions as [Qui69] nor did it require the differential graded algebras to be

of finite type. It is shown in [BG76] that this induces an equivalence on the homotopy

categories of spaces, as per Quillen’s homotopical algebra. Moreover, Sullivan also

emphasized the use of minimal models of differential graded algebras, which provide

representatives of rational homotopy types that are unique up to isomorphism and enable

many computations. In particular, the minimal model of the algebra of polynomial de

Rham forms on a space was shown to correspond precisely to the Postnikov tower of the

space. He also defined formal differential graded algebras as those having the same rational

homotopy type as their cohomology algebras (which are considered as differential graded

algebras with differential 0).
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1.2 Motivating Problem

The problem in rational homotopy theory that motivated our current study is the problem

of computing MH , the moduli space of rational homotopy types whose cohomology is

isomorphic to a fixed graded commutative algebra H. This is studied by [SS12] using the

bigraded and filtered models of differential graded algebras of [HS79]. MH always has a

point corresponding to the formal rational homotopy type, which can be represented by H

itself, with differential 0, or by the bigraded minimal model of H that [HS79] provides. In

this context, it is useful to study Massey products, a type of higher order operation in

cohomology, as invariants of the rational homotopy type, including as obstructions to

formality (in the sense that the formal rational homotopy type, all higher order Massey

products are 0).

For the case when H i = 0 for i ≥ n, we were led to wonder how much information is

needed to distinguish rational homotopy types in MH . Specifically, as is remarked in

[GM13, Ch. 8], for simply connected CW complexes of dimension n, the process of building

the Postnikov tower for the CW complex becomes “formal” after the nth stage is

constructed. Therefore, the rational homotopy type should be determined by the n-type in

this context, and the determination ofMH when H i = 0 for i > n should be determined by

the distinct n-types with cohomology isomorphic to H through degree n. This is what we

confirm with the notion of cohomological n-equivalences of differential graded algebras.

These are maps that induce an isomorphism on cohomology in degrees ≤ n and an

injection on degree n+ 1 cohomology. This definition, in particular the condition on n+ 1,

was chosen to match the properties of the stages of the minimal model (see Section 2.2).

We point out in Chapter 2 a few references where similar concepts have appeared. This

formulation of n-equivalence ensures that our n-types are uniquely represented up to

isomorphism by a n-minimal algebra (Proposition 3).

Finally, with the definition of n-equivalence in hand along with the corresponding

localized category, we can anticipate some future work. Namely, we hope to modify the
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theory of perturbations in [SS12, HS79] for calculating the moduli space of n-types with

cohomology isomorphic to a fixed graded algebra concentrated in finitely many degrees in a

way that avoids infinitely generated models, at least for cohomology algebras of finite type.

Moreover, it seems reasonable for when H is not concentrated in finitely many degrees,

that we could approximate MH by considering the sequence of truncated algebras H≤n

and the corresponding moduli spaces MH≤n for n = 0, 1, 2, 3, . . .. Furthermore, as is often

the case in rational homotopy theory, one can imagine a “dual” theory of n-equivalences

and n-types in terms of differential graded Lie algebras (see [FT81] for a summary of the

dual concepts).

1.3 Outline of Topics covered

In Chapter 2 we begin by reviewing and fixing notation for graded algebra. We introduce

cohomological n-equivalences as well as the main examples when over a field of

characteristic 0, namely n-minimal models and n-Sullivan models. Finally, we briefly recall

the definition of homotopy of maps between differential graded algebras and some relevant

properties.

In Chapter 3 we study the category of differential graded commutative algebras

localized with respect to cohomological n-equivalences. We briefly review localization of

categories and then describe the categorical framework of Cartan-Eilenberg categories

[GNPR10]. This provides a convenient conceptual backdrop for comparing categories

localized with respect to a class of weak equivalences and with a notion of homotopy

equivalence. One of our goals is to show that just as for rational homotopy theory of dgc

algebras (that is when we localize by the class of quasi-isomorphisms), the category of dgc

algebras localized by cohomological n-equivalences is equivalent to the homotopy category

of cofibrant objects, which are n-Sullivan algebras in our context (Theorem 5). Then

[GNPR10] provides a theorem that reduces this goal to checking that n-Sullivan algebras

satisfy the the same lifting properties with respect to n-equivalences that Sullivan algebras
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do with respect to quasi-isomorphisms. The verification of these lifting lemmas is written

out in detail.

In the last part of Chapter 3, we make precise the “finite determination principle” that

originally motivated us. Specifically, when H i = 0 for i > n, then rational homotopy types

with cohomology isomorphic to H are determined by n-types whose cohomology agrees

with H through degree n. We actually prove a more precise version of this statement that

allows some nonzero cohomology in degree n+ 1 by noticing some degree n+ 1 cohomology

is invariant under n-equivalences. Finally, we use this finite determination principle in

examples where we can determine MH using n-equivalences for the appropriate value of n.

Finally, in Chapter 4 we prove that Massey products in cohomology through degree

n+ 1 are preserved by n-equivalences (Theorem 8) . In this sense n-equivalences “detect”

Massey products that n-quasi-isomorphisms would not be able to. In other words, no

nonzero subset of Hn+1 is invariant under any n-quasi-isomorphism in general, but in this

chapter we show that Massey products in degree n+ 1 are an invariant of an n-type. To this

end, we review the definition of higher Massey products and their defining systems from

[Kra66]. To prove that Massey products are preserved by n-equivalences, we establish some

lemmas about modifying defining systems and pulling them back along n-equivalences.



Chapter 2

Cohomological n-equivalence

2.1 Definitions and Notation

In this section, we establish some basic terminology and notation concerning graded

algebra. In this section, k will denote a commutative ring with unit 1. For the most part,

we are following the notation of [FHT01, Chapter 3].

• A graded k-module V will be a collection of k-modules indexed by the non-negative

integers. We will write V = (V q)q≥0. Elements of V q are said to have degree q, and we

write |x| = q or deg x = q for x ∈ V q.

• We say a graded module V has finite type if it is finitely generated in each degree.

• If k is a field, then V is called a graded vector space.

• Submodules, quotients, direct sums, and products are defined “degree-wise.” The

tensor product V ⊗W of two graded vector spaces is given by

(V ⊗W )q = ⊕i+j=qV i ⊗W j.

• A degree ` linear morphism f : V → W of graded modules is a collection of k-linear

maps fq : V q → W q+` for q ≥ 0. If we refer to a linear morphism without specifying a

degree, then we mean a degree 0 linear morphism.

• A graded k-algebra is a graded k-module A = (Aq)q≥0 with an associative

multiplication A⊗ A→ A (usually written x⊗ y 7→ xy) with an identity element

1 ∈ A0. An morphism of graded algebras f : A→ B is a degree 0 linear map

satisfying f(1) = 1 and f(xy) = f(x)f(y) for all x, y ∈ A and f(1) = 1.

6
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• If k contains 1
2
, then A graded module V generates a free commutative graded algebra

ΛV by taking the tensor algebra on V and forming the quotient by the ideal

generated by the elements v ⊗ w − (−1)|v|·|w|w ⊗ v. If V has a basis {v1, v2, . . .}, we

write Λ(v1, v2, . . .) for ΛV .

Definition 2. A morphism of graded k-modules f : V → W is an n-surjection if fq is

surjective for q ≤ n.

Our main objects of study will be differential graded algebras, or dg algebras for short.

• A graded algebra A is commutative if xy = (−1)|x||y|yx for all x, y ∈ A.

• A degree ` derivation δ : A→ A is a degree ` linear map such that

δ(xy) = δ(x)y + (−1)`|x|xδ(y).

• A differential graded algebra (abbrv. dg algebra) is a pair (A, d) with A a graded

algebra and differential d: a degree 1 derivation such that d2 = d ◦ d = 0. Usually the

algebra corresponding to the differential is clear from the context, but if specificity is

needed, then we shall write (A, dA). Since we will almost always be referring to

differential graded algebras, we will often refer to (A, d) simply as A.

• We will write dgc algebra for ‘differential graded commutative algebra.’ We may

write d = dA when we need to distinguish between differentials.

• The cohomology algebra of a dg algebra is H(A) = H∗(A) = ker(d)/ im(d), which is

indeed a graded algebra. If (A, d) is a dgc algebra, then H(A) is commutative graded

algebra.

• A morphism of dg algebras f : A→ B is an algebra morphism that commutes with

the differentials: fdA = dBf , or fd = df for short.

• A dg algebra morphism as above induces a morphism of graded algebras

H(A)→ H(B), which we will denote by f ∗ or H(f). If H i(f) is an isomorphism for
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all i , then we say that f is a quasi-isomorphism, and if it is an isomorphism for

0 ≤ i ≤ n, we say f is a n-quasi-isomorphism.

• A dg algebra A is n-connected if H0(A) = k and H i(A) = 0 for 0 < i ≤ n (sometimes

this is referred to as cohomologically n-connected). We refer to 0-connected as

connected.

Since k is typically fixed in the contexts we consider below, we will write DGCA for

the category of dgc algebras over k and DGCA(A,B) for the set of morphisms of dg

algebras A→ B.

Our purpose in this paper is to see some of the consequences of the following definition.

Definition 3. A dg algebra morphism f : A→ B is called a cohomological n-equivalence if

H i(f) : H i(A)→ H i(B) is an isomorphism for i ≤ n and Hn+1(f) is a monomorphism.

More generally, we say dg algebras A and B belong to the same cohomological n-type if they

can be connected by a path of cohomological n-equivalences (not necessarily composable).

One simple example of a n-equivalence from a dg algebra A is to let I = A>n+1 and let

(B, d) be the quotient algebra B = A/I with the induced differential. Then the quotient

map A→ B provides a cohomological n-equivalence. Over a field of characteristic 0, we

give more useful examples in the following section.

Remark 1. If η : A→ B is a dgc algebra map, then η is also a morphism of the underlying

cochain complexes, and so the mapping cone C(η) can be considered. Then η is a

cohomological n-equivalence if and only if H i(C(η)) = 0 for 0 ≤ i ≤ n+ 1 (see [GM13,

Section 10.3], where C(η) is denoted Mη).

Since we typically do not refer to any other types of n-equivalence, we will often drop

‘cohomological.’ The concept of cohomological n-equivalence has appeared in [Ark11] for

topological spaces, and it is dual to the concept of homotopical n-equivalence of spaces,

namely maps f : X → Y such that πi(X)→ πi(Y ) is an isomorphism for i ≤ n and πn+1(f)
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is a surjection. The condition has also appeared in [SY03] and in [CC17] (under the name

n-quasi-isomorphism). Moreover, in some sources the conditions on H i or πi are shifted

down one degree (that is Hn is injective and πn is surjective with isomorphisms in degrees

≤ n− 1).

What we hope to show in the following chapters is that cohomological n-equivalence is

sufficient for studying the “homotopical information” in degrees up to n. More specifically,

while the category DGCA has a model structure with the class of weak equivalences being

quasi-isomorphisms, it does not have a model structure whose class of weak equivalences is

cohomological n-equivalences. However, we show in Chapter 3 that the localization by the

class of weak-equivalences still shares many of the results that the localization with respect

to quasi-isomorphisms has. For example, we can prove that morphisms from n-Sullivan

algebras can be uniquely lifted along n-equivalences up to homotopy, and consequently

that n-equivalences induce bijections on the set of homotopy classes of maps having

n-Sullivan algebras as a source (see Definition 9 for n-Sullivan algebras). Similarly,

n-surjective dg algebra morphisms can play the role of fibrations in DGCA, which are

degree-wise surjections, and thus n-surjective n-equivalences have properties that trivial

fibrations have in a model category. The following property of n-surjective n-equivalences

will be used several times in Chapter 3, in particular for establishing the lifting properties

of n-equivalences.

Lemma 1. Suppose that η : A→ B is a n-surjective n-equivalence of dg algebras. If a ∈ A

and dηa = 0 (equivalently ηda = 0) with deg a ≤ n, then there exists a cocycle z ∈ A and

an element a′ ∈ A such that ηa = ηz + dηa′ = η(z + da′) (this says that cocycles in the

image of η have preimages which are cocycles).

Proof. Suppose a ∈ A satisfies dηa = 0, that is ηa is a cocycle in B. Since η is a

n-equivalence, surjectivity of η∗ implies the existence of a cocycle z ∈ A such that

η∗[z] = [ηa]. Thus, ηz and ηa differ by a coboundary; ηa = ηz + db for some b ∈ B. Finally,
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n-surjectivity implies that there is a′ ∈ A with ηa′ = b, and so ηa = ηz + dηa′ = η(z + da′),

as claimed.

2.2 Examples of n-Models

In this section, k will denote a field of characteristic 0.

(a) We can construct n-Sullivan models of connected dgc algebras. The construction of

Sullivan models in [FHT01, Ch. 12] can be adapted to make models f : ΛV → A

where ΛV is a Sullivan algebra generated in degrees ≤ n, which we refer to as a

n-Sullivan algebra. Since ΛV is generated in degrees ≤ n, we can expect ΛV to be

finitely generated when H(A) is 1-connected and of finite type.

(b) See [FHT01, FHT15, Sul77] for the theory of minimal models. We will recall some

important facts. A minimal algebra is in particular a Sullivan algebra. If ρ : M → A

is the minimal model of (A, d), write M(n) for the subalgebra of M generated by

elements of degree ≤ n and ρn = ρ|M(n). Then M is determined by the properties: M

is the increasing union of subalgebras Q = M(0) ⊆M(1) ⊆M(2) ⊆M(3) ⊆ · · · with

maps ρn : M(n)→ A such that

(i) M(n) is a minimal dgc algebra generated by elements in degrees ≤ n,

(ii) ρn induces an isomorphism on cohomology in degrees ≤ n,

(iii) ρn induces an injection on cohomology in degree n+ 1.

So ρn : M(n)→ A is a cohomological n-equivalence (in fact, this motivated our

definition of cohomological n-equivalence), and we call it the n-minimal model of A.

In [FHT15, page 109], it is shown that n-minimal models are unique up to

isomorphism. Sometimes we may wish to speak of a n-minimal algebra on its own,

not paired with a n-equivalence to any other dgc algebra, in which case we mean a

minimal dgc algebra ΛV such that V is concentrated in degrees ≤ n.
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We will see some concrete examples of n-minimal models in the examples at the end of

Chapter 3 (e.g. Example 2).



Chapter 3

Localizing DGCA with respect to n-equivalences

We begin by briefly recalling the notion of localization of a category. Then we review the

formalism of categories with strong and weak equivalences, as described by [GNPR10].

This framework helps us compare the category of dgc algebras localized by n-equivalences

with the “homotopy category” of n-Sullivan algebras with homotopy classes of maps as

morphisms.

3.1 Categorical Formalism

3.1.1 Localization of Categories

First, we briefly review localization of categories. Let C be a category and S a class of

morphisms in C. The localization is a category C[S−1] and a functor γ : C → C[S−1] with

the following universal property: If F : C → D is any functor such that F (s) is an

isomorphism for all s ∈ S, then F factors uniquely through C[S−1], i.e. there exists

F ′ : C[S−1]→ D such that F = F ′ ◦ γ. The category C[S−1] can be constructed by formally

inverting the morphisms in S so that they become isomorphisms in C[S−1]. See

[GNPR10, GZ12, GM03] for details on the construction of S−1C. In particular, for objects

X, Y ∈ C, the morphisms X → Y in C[S−1] are equivalence classes of paths of the form

X
f0

C1
f1 · · ·Ck

fk
Y where fi represents a left or right pointing arrow in C such

that the “backwards” arrows (the ones pointing left) are members of S. The equivalence

relation on these paths is generated by the following operations:

(i) Omitting the identity map,

12
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(ii) replacing adjacent maps pointing in the same direction by their composition,

(iii) omitting two adjacent maps when they are the same, but point in opposite directions.

In particular, item (iii) above is what formally inverts the members of S in C[S−1].

Definition 4. The class S is called saturated if for f ∈ Mor0 C, γf is an isomorphism in

C[S−1] if and only if f ∈ S. The saturation of S, denoted S, is the smallest saturated class

of morphisms containing S.

Remark 2. S can also be characterized as the preimage of S under γ.

Finally, we will require the notion of relative localization of a subcategory for the results

from [GNPR10] that appear in the following section (specifically, Theorem 3 and its

consequence Theorem 5).

Definition 5. Let C be a category, S a class of morphisms in C, and M a full subcategory

of C. The relative localization of the subcategory M of C with respect to S, denoted by

M[S−1, C], is the full subcategory of C[S−1] whose objects are those of M.

3.1.2 Categories with Strong and Weak equivalences

Here we review some concepts from [GNPR10]. Let C be a category and S and W classes of

morphisms in C that are closed under composition and such that S ⊆ W . Members of S

are called strong equivalences and members of W are called weak equivalences.

Because S ⊆ W , the localization γ : C → C[W−1] factors through the localization

δ : C → C[S−1]:

C
δ
��

γ

%%
C[S−1]

γ′
// C[W−1]

where γ′ : C[S−1]→ C[W−1] is identified with the localization C[W−1] ∼= C[S−1][δ(W )−1].
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Definition 6. Call an object M of C cofibrant if for every weak equivalence w : Y → X,

the map

C[S−1](M,Y )→ C[S−1](M,X) g 7→ w ◦ g

is a bijection. In other words, every map f : M → X in C[S−1] lifts uniquely in C[S−1] to f̃

such that

Y

w
��

M
f
//

f̃
>>

X

commutes in C[S−1].

In [GNPR10], the following equivalent condition for an object to be cofibrant is proven.

Theorem 2 (GNPR10). An object M of C is cofibrant if and only if

γ′ : C[S−1](M,X)→ C[W−1](M,X) g 7→ w ◦ g

is a bijection for every X ∈ Ob C.

Definition 7. Given X ∈ Ob C, a cofibrant left model for A is a weak equivalence M → X,

where M is cofibrant. A category with strong and weak equivalences is called a left

Cartan-Eilenberg category if every object in C has a cofibrant left model.

Every connected dgc algebra has a Sullivan model (Example 1), which are the cofibrant

objects in DGCA0. So DGCA0 is a Cartan-Eilenberg category with W given by

quasi-isomorphisms and S given by homotopy equivalences. We will modify this to hold for

n-equivalences below.

Now we summarize some results for the special case when the class of strong

equivalences comes from a congruence [ML13, pg. 52]. If ∼ denotes the congruence, then

we can take S to be the maps f ∈ Mor C such that if f : X → Y , then there exists

g : Y → X with f ◦ g ∼ 1Y and g ◦ f ∼ 1X . In this context, S and ∼ are compatible if

f ∼ g implies δf = δg in C[S−1]. We can form the category C/∼ whose objects are the
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same as C and whose morphisms are given by C(X, Y )/∼ for X, Y ∈ Ob C. In general, C/∼

and C[S−1] are not equivalent, but they are equivalent if S and ∼ are compatible.

Proposition 1 (GNPR10). If S and ∼ are compatible, then C/∼ and C[S−1] are

canonically isomorphic.

Proof. The compatibility condition implies that the localizing functor δ factors through

quotient functor π : C → C/∼, that is there exists φ : C/∼−→ C[S−1] such that φ ◦ π = δ.

One can check that π has the universal property of localization with respect to S, and

hence that there is a canonical isomorphism C[S−1] ∼= C/∼.

The congruence ∼ and a compatible class of morphisms for it above is exemplified by

the homotopy relation on maps in various categories with S the class of homotopy

equivalences, including homotopy of dgc algebras described in the next section (Definition

8).

Finally, [GNPR10] provides the following “recognition theorem.”

Theorem 3 (GNPR10). Let (C, S,W ) be a category with strong and weak equivalences and

M a full subcategory of C. Suppose that

(i) For any w : Y → X in W and any f ∈ C(M,X) with M ∈ ObM, there exists a

morphism g ∈ C[S−1](M,Y ) such that w ◦ g = f in C[S−1].

(ii) For any w : Y → X in W and M ∈ ObM,

C[S−1](M,Y )→ C[S−1](M,X)

g 7→ w ◦ g

is injective,

(iii) for each X ∈ Ob C, there exists a weak equivalence M → X with M ∈ ObM.

Then the following are true:
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(1) every object of M is cofibrant,

(2) (C, S,W ) is a left Cartan-Eilenberg category, and

(3) the functor M[S−1, C]→ C[W−1] is an equivalence of categories.

The key distinction is in assumption (i), which says that cofibrant objects in C can be

recognized by checking the lifting property on morphisms f ∈ Mor C (by definition,

cofibrant objects are required to have the lifting property on all f ∈ Mor C[S−1], which in

general would mean working with paths of morphisms in C). Thus, this hypothesis of the

theorem make it easier to identify a subcategory of cofibrant models. Most of the work in

the following section is verifying the hypotheses (i) and (ii), so that we can apply the

conclusion to DGCA and the class of n-equivalences.

3.2 Application to n-Equivalences in DGCA

In this section we work over a field k of characteristic 0. We shall apply the above formalism

to the category DGCA. Let DGCA0 denote the full subcategory of DGCA consisting of

cohomologically connected dgc algebras (that is, dgc algebras A such that H0(A) = 0).

Let Wn be the class of cohomological n-equivalences and construct DGCA[W−1
n ], as

described in section 3.1.1 above. Let S be generated by the congruence ∼, which is the

equivalence relation on DGCA(A,B) transitively generated by homotopy equivalence ' of

dg algebra maps.

Unlike the axioms for weak equivalences in model categories or similar axiomatic

approaches to homotopy theory, Wn does not have the two-out-of-three property. In

general, a class of morphisms W in a category is said to have the two-out-of-three property

if for any composable morphisms f and g of the category, any two of f , g, or g ◦ f

belonging to W implies the third morphism belongs to W as well. However, Wn does

satisfy two out of the three conditions of the two-out-of-three property.
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Lemma 2. Let f and g be composable morphisms in DGCA.

(i) The class Wn is closed under composition, that is f, g ∈ Wn implies g ◦ f ∈ Wn.

(ii) If g ◦ f and g are n-equivalences, then f is also a n-equivalence.

Proof. (i) This follows from the definition of n-equivalence since isomorphisms and

monomorphisms are closed under composition.

(ii) In general, if g and g ◦ f are isomorphisms in a category, then so is f . Similarly if g

and g ◦ f are monomorphisms in a category. The lemma follows from applying these

facts to H i(f) for 0 ≤ i ≤ n and Hn+1(f), respectively.

We recall the homotopy relation for differential graded algebras. Recall that Λ(t, dt)

denotes the free dgc algebra generated by t in degree 0 and dt in degree 1 with differential

d(t) = dt. In particular, H0(Λ(t, dt)) = k and H i(Λ(t, dt)) = 0 for i > 0. Moreover, Λ(t, dt)

has two augmentations ε0, ε1 : Λ(t, dt)→ k where εi(t) = i and εi(dt) = 0 (in short, the

evaluations t 7→ 0, 1).

Definition 8. Let f0, f1 : A→ B be two dg algebra morphisms. A homotopy between f0

and f1 is a morphism H : A→ B ⊗ Λ(t, dt) such that ε0 ◦H = f0 and ε1 ◦H = f1. In this

case, we say f0 and f1 are homotopic and write f0 ∼ f1.

We will be mainly interested in homotopic maps having a Sullivan algebra as the

domain because of the following results.

Proposition 2. Let (ΛV, d) be a Sullivan algebra and A any dgc algebra.

(a) If f0, f1 : ΛV → A are homotopic maps of dg algebras, then f ∗0 = f ∗1 , that is f0 and f1

induce the same map on cohomology.

(b) On the set DGCA(ΛV,A), ∼ is an equivalence relation. We denote the set of

homotopy classes of maps by [ΛV,A].

Proof. These are Propositions 12.7 and 12.8 in [FHT01].
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3.2.1 Lifting Lemma

Recall the following definition from Chapter 2.

Definition 9. A n-Sullivan algebra is a Sullivan algebra (ΛV, d) generated in degrees ≤ n,

i.e. V q = 0 for q > n.

Let nSull denote the full subcategory of DGCA whose objects are n-Sullivan algebras.

The following lifting lemma proof is adapted from [FHT01] to work for n-equivalences.

Lemma 3 (Lifting Lemma). Let η : A→ B be a n-surjective cohomological n-equivalence

and let f : ΛV → B be a dg algebra map, where (ΛV, d) is a n-Sullivan algebra. Then there

exists a lift f̃ : ΛV → A such that f = η ◦ f̃ :

A

η
����

ΛV
f
//

f̃
==

B

Proof. Because (ΛV, d) is a Sullivan algebra, we can write it as an increasing union of

graded vector spaces V (0) ⊆ V (1) ⊆ · · · such that V (k) = V (k − 1)⊕ Vk, where

d(Vk) ⊆ ΛV (k − 1). We construct f̃ inductively.

Assume f̃ has been constructed on (ΛV (k), d) and that f = η ◦ f̃ . Let v ∈ Vk+1, and

note that deg v ≤ n. Since η is n-surjective and deg v ≤ n, there exists an a′ ∈ A such that

ηa′ = fv. Moreover, dv ∈ ΛV (k) by the Sullivan condition, and so f̃ is defined on dv. In

fact, f̃dv is a cocycle in (A, d) since

df̃dv = f̃d2v = 0.

Hence, we have that η∗[f̃dv] = f ∗[dv] = f ∗0 = 0, which implies that [f̃dv] = 0 by the

assumption that η is an n-equivalence and deg(dv) ≤ n+ 1. So there is some a′′ ∈ A such

that da′′ = f̃dv.

Our goal is to show that we can choose a single a ∈ A that satisfies both the equations

ηa′ = fv and da′′ = f̃dv from above. Start by choosing a′ as before, but choose a′′ ∈ A such
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that da′′ = da′ − f̃dv. We can do this since the class [da′ − f̃dv] is in ker η∗ = 0:

ηda′ = dηa′ = dfv = fdv = ηf̃dv ⇒ η(da′ − f̃dv) = 0.

It follows that dηa′′ = 0 (by the equation above). Thus, Lemma 1 says there exists a

cocycle z ∈ A and element a′′′ ∈ A such that η(a′′) = ηz + dηa′′′ = η(z + da′′′).

Set z′ = z + da′′′, which is a cocycle in (A, d), and set a = a′ − a′′ + z′. Now a should

satisfy the two necessary equations for f̃v to be well-defined if we set fṽ = a:

ηa = η(a′ − a′′ + z′) = ηa′ − η(a′′ − z′) = fv − 0 = fv

and

da = d(a′ − a′′ + z′) = d(a′ − a′′) = f̃dv.

Therefore, we can extend f̃ to V (k + 1), completing the induction.

Now we work towards establishing the more general lifting property removing the

n-surjectivity condition.

Remark 3. In the following lemma, we will need the fact that cocycles of the dgc algebra

B ⊗ Λ(t, dt) for any dgc algebra B can be put in the form b⊗ 1 or b⊗ fdt, where b is a

cocycle in B and f = f(t) is a polynomial in t with coefficients in k (so fdt represents an

arbitrary degree 1 element of Λ(t, dt)). Furthermore, a cocycle b⊗ f(t)dt is actually a

coboundary since if F is any antiderivative of f , then

d((−1)|b|b⊗ F )) = (−1)|b|db⊗ F + b⊗ dF = b⊗ fdt.

Thus, any nonzero cohomology class is represented by a cocycle of the form b⊗ 1. Indeed,

the inclusion B → B ⊗ Λ(t, dt), b 7→ b⊗ 1 is a quasi-isomorphism.

Lemma 4. Let η : A→ B be a n-surjective cohomological n-equivalence. Let P be the pull

back in the diagram below:

P π2 //

π1
��

A× A
η×η
��

B ⊗ Λ(t, dt)
(1Bε0,1Bε1)

// B ×B
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Finally, let ρ : A⊗ Λ(t, dt)→ P be the map induced by:

(1Aε0, 1Aε1) : A⊗ Λ(t, dt)→ A× A and η ⊗ id : A⊗ Λ(t, dt)→ B ⊗ Λ(t, dt)

Then ρ = (η ⊗ id, 1Aε0, 1Aε1) is also a n-surjective n-equivalence.

Remark 4. The above lemma provides the same result as Lemma 2.18 in [Cir15], where the

fiber product we call P is called the double mapping path P(η, η) in [Cir15]. In this context,

Cirici uses a formalism of P -categories, which are categories with a functorial path P and

classes of weak equivalences and fibrations satisfying axioms sufficient for doing homotopy

theory. Lemma 2.18 is then needed for the same reason as we need below in the proof of

lifting property, namely to lift homotopies through a trivial fibration. The analysis in this

work can be seen through this lens as well, indeed Cirici uses DGCA with the path

P : A 7→ A⊗ Λ(t, dt) as an example of a P -category with the usual weak equivalences and

fibrations, that is quasi-isomorphisms and surjections, respectively. However, weak

equivalences in [Cir15] are assumed to have the two-out-of-three property, and Lemma 2.18

uses the two-out-of-three property in a way that the class of cohomological n-equivalences

does not satisfy. However, as we will see below in the proof of 4, the result of Lemma 2.18

in our context can be checked directly without reference to the two-out-of-three property.

Before proving the above lemma, we will characterize the coboundaries in P .

Lemma 5. The coboundaries in P are of the form (b⊗ fdt, z, z′) where b is a cocycle in B,

f is a polynomial in t, and z, z′ are cocycles in A.

Proof. To see this, we first show that if (0, 0, da) ∈ P for some a ∈ A, then (0, 0, da) is

indeed a coboundary. The compatibility condition on (0, 0, da) ∈ P means that ηda = 0,

and so by Lemma 1 there is a cocycle z ∈ A and element a′ ∈ A with ηa = η(z + da′). Then

(η(a)⊗ 1, z + da′, a) is easily checked to satisfy the compatibility condition for P and

d(η(a)⊗ 1, z + da′, a) = (0, 0, da). The same argument shows that if (0, da, 0) ∈ P , then

(0, da, 0) is also a coboundary.



21

Now we consider an element of the form (b⊗ fdt, z, z′) as in the claim. The

compatibility condition for (b⊗ fdt, z, z′) being in P implies that η(z) = 0 = η(z′), and so

(b⊗ fdt, 0, 0), (0, z, 0), (0, 0, z′) are all elements of P . So it suffices to show that

(b⊗ fdt, 0, 0), (0, z, 0) and (0, 0, z′) are both coboundaries. For (b⊗ fdt, 0, 0), if F is an

antiderivative of f , then (b⊗ F, F (0), F (1)) is in P (η is the identity on the underlying field

k) and d(b⊗ F, F (0), F (1)) = (b⊗ fdt, 0, 0). To see that (0, z, z′) is a coboundary, note that

η(z) = η(z′) = 0 implies that z = da and z′ = da′ for some a, a′ ∈ A since η is a

n-equivalence. Thus, (0, z, 0) = (0, da, 0) and (0, 0, z′) = (0, 0, da′) are coboundaries by the

special case considered above.

Proof of Lemma 4. First we check that ρ is n-surjective. It suffices to find preimages for

elements in P of the form (b⊗ 1, a, a′), (b⊗ tk, a, a′), and (b⊗ tkdt, a, a′) for a, a′ ∈ A≤n, and

b ∈ B≤n (except in the third case, where deg b < n) since these elements linearly span P .

For (b⊗ 1, a, a′) ∈ P , we have by definition of P that b = η(a) = η(a′). Then the

element a⊗ (1− t) + a′ ⊗ t ∈ A⊗ Λ(t, dt) is a preimage of (b⊗ 1, a, a′):

ρ(a⊗ (1− t) + a′ ⊗ t) = (η(a)⊗ (1− t) + η(a′)⊗ t, aε0(1− t) + a′ε0(t), aε1(1− t) + a′ε1(t))

= (b⊗ (1− t) + b⊗ t, a+ 0, 0 + a′)

= (b⊗ 1, a, a′)

Similarly for an element of the form (b⊗ tk, a, a′) with k > 0. This satisfies η(a) = 0 and

η(a′) = c by the construction of P , and so a⊗ (1− tk) + a′ ⊗ tk is easily seen to be a

preimage again. Finally, suppose we have (b⊗ tkdt, a, a′) ∈ P with b ∈ B<n and k ≥ 0.

Again using the construction of P , we have that η(a) = η(a′) = 0 (since ε0 and ε1 both

map dt to 0). Since η is n-surjective, we can choose a′′ ∈ A such that η(a′′) = b. Now

a′′ ⊗ tkdt+ a⊗ (1− t) + a′ ⊗ t can be seen to be a preimage of (b⊗ tkdt, a, a′) under ρ. This

establishes the n-surjectivity of ρ.

Now we establish that ρ is a n-equivalence. For injectivity of ρ∗, suppose ρ∗[z ⊗ 1] = 0

with z ∈ A a cocycle. Since ρ(z ⊗ 1) = (η(z)⊗ 1, z, z), ρ∗[z ⊗ 1] = 0 means in particular



22

that z is a coboundary in A. So there is a ∈ A and such that da = z, and thus

d(a⊗ 1) = z ⊗ 1. Note that ρ∗ is in fact injective in every degree.

It follows from Remark 3 that cocycles in P are of the form (b⊗ 1, z, z′) or

(b⊗ fdt, z, z′) where b ∈ B and z, z′ ∈ A are all cocycles and f is a polynomial in t. The

lemma directly above shows that (b⊗ fdt, z, z′) is a coboundary. So to check surjectivity of

ρ∗ it suffices to see that cocycles of the form (b⊗ 1, z, z′) have a cocycle preimage where

|b|, |z|, |z′| ≤ n. As an element of P , (b⊗ 1, z, z′) ∈ P implies η(z) = η(z′) = b. In particular,

η∗[z] = η∗[z′], which implies z′ = z + da for some a ∈ A by the injectivity of η∗. Then z ⊗ 1

is a cocycle of A⊗ Λ(t, dt) and

ρ∗[z ⊗ 1] = [(ηz ⊗ 1, z, z)] = [(b⊗ 1, z, z)] = [(b⊗ 1, z, z′)]

since z′ = z + da implies that (b⊗ 1, z, z′)− (b⊗ 1, z, z) = (0, 0, da) (so ρ(z ⊗ 1) and

(b⊗ 1, z, z′) differ by a coboundary). This shows that ρ∗ is surjective in degrees ≤ n.

With the previous two results, Lemmas 3 and 4, the following more general lifting

property (removing the n-surjectivity condition) can be proven by formally following the

proof in [FHT01].

Theorem 4 (Lifting Property). Let η : (A, d)→ (B, d) be any cohomological n-equivalence

and let f : (ΛV, d)→ (B, d) be a morphism from a n-Sullivan algebra (ΛV, d). Then there

exists f̃ : (ΛV, d)→ (A, d) such that η ◦ f̃ ∼ f . Consequently, composing with η induces a

bijection

η# : [ΛV,A]→ [ΛV,B], η#(g) = η ◦ g.

Proof. Because we have the previous lifting lemma 3, we can follow the same argument as

in Proposition 12.9 of [FHT01]. We begin by assuming η is n-surjective, in which case the

previous lifting lemma implies that η# is surjective. To prove injectivity, suppose we have

f0, f1 : ΛV → A such that η ◦ f0 ' η ◦ f1. Let H : ΛV → B ⊗ Λ(t, dt) be a homotopy from

η ◦ f0 to η ◦ f1. Let P and ρ : A⊗ Λ(t, dt)→ P be as in the above lemma 4. The diagram
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below commutes:

ΛV
(f0,f1) //

H
��

A× A
(η,η)

��
B ⊗ Λ(t, dt)

(1Bε0,1Bε1)
// B ×B

So there is an induced map H = (H, f0, f1) : ΛV → P . Since ρ is a n-surjective

n-equivalence by Lemma 4, we can lift the map H to a map H̃ : ΛV → A⊗ Λ(t, dt) by

lemma 3 such that H = ρ ◦ H̃ in the following commutative diagram:

A⊗ Λ(t, dt)

ρ

��

(ε0,ε1)

''
ΛV

H

//

H̃
88

P π1
// A× A

It follows that (ε0, ε1) ◦ H̃ = π1 ◦H = (f0, f1) (since H = (H, f0, f1)), i.e. that ε0 ◦ H̃ = f0

and ε1 ◦ H̃ = f1. Therefore, we have shown that η ◦ f0 ' η ◦ f1 implies f0 ' f1.

The general case where the n-surjectivity hypothesis on η is dropped follows from the

above special case using the same argument as in [FHT01] using their “surjective trick”

which factors η into A
λ−→ A⊗ E σ−→ B, where λ and σ are quasi-isomorphisms and σ is

surjective. By reviewing the construction of E and σ, one can easily see that σ is a

surjective n-equivalence when η is a n-equivalence.

Now, we show that morphisms between n-Sullivan algebras in the localized category

DGCA0[W−1
n ] can be regarded as homotopy classes of maps as opposed to equivalence

classes of zig-zags in DGCA.

Lemma 6. On the categories nSull and DGCA, the class S of equivalences generated by

the congruence ∼ is compatible with ∼.

Proof. See [Cir15].

Thus, it follows from Proposition 1 that DGCA[S−1] ∼= DGCA/∼ and

nSull[S−1,DGCA] ∼= nSull/∼.
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The lifting property, Theorem 4, verifies that hypotheses (i) and (ii) of Theorem 3 hold,

where M = nSull and C = DGCA0. Hypothesis (iii) of Theorem 3 follows from the

existence of n-Sullivan models for every connected dgc algebra (Section 2.2). Therefore,

using the above compatibility lemma and Theorem 3, we have the following equivalence of

categories.

Theorem 5. The following categories are equivalent:

DGCA0[W−1
n ] ' nSull[S−1,DGCA0] ∼= nSull/∼

3.2.2 The Finite Determination Principle

For a connected dgc algebra A, let [A]n denote the cohomological n-type of A, that is the

collection of dgc algebras that are n-equivalent to A. As mentioned in Section 2.2, every

dgc algebra A has n-minimal and minimal models which are unique up to isomorphism. We

will denote the minimal model of A by ρ : MA → A and the corresponding n-minimal

model MA(n) ⊆M by ρn : MA(n)→ A.

Remark 5. Since every connected dgc algebra has a n-minimal model, if nMin denotes the

full subcategory of n-minimal dgc algebras, then (DGCA0, S,Wn) is also a Sullivan

category in the sense of [GNPR10], and we can replace nSull with nMin in the above

Theorem 5.

Proposition 3. Suppose A and B are isomorphic in DGCA0[W−1
n ], i.e. there is a path of

cohomological n-equivalences between A and B. Then there is an isomorphism

MA(n)→MB(n). Consequently, any n-type of a dgc algebra can be represented uniquely up

to isomorphism by a n-minimal dgc algebra.

Proof. It suffices to check that if η : A→ B is an n-equivalence, then MA(n) ∼= MB(n).

Since MA(n)→ A→ B is a composition of n-equivalences, we see that MA(n)→ B is a

n-minimal model for B. Since n-minimal models are unique up to isomorphism, it follows

that MA(n) ∼= MB(n).



25

By the above proposition, we can fix a n-minimal algebra M(n) for a particular n-type

such that every dgc algebra A in that n-type has a n-equivalence M(n)→ A. This leads us

to make the following definition.

Definition 10. For a dgc algebra A and n-minimal model ρn : M(n)→ A, let H i
nπ(A)

denote the image of H i(M(n)) under ρn for i ≤ n+ 1 and let H i
nπ(A) = 0 for i ≥ n+ 2. We

refer to Hnπ as the cohomology of the n-type [A]n.

Clearly, H i
nπ(A) = H i(A) for i ≤ n since n-equivalences induce isomorphisms in these

degrees. However, Hn+1
nπ (A) and Hn+1(A) do not agree in general, and so we are left to

wonder what part of degree n+ 1 cohomology is invariant under any n-equivalence. The

subset Hn+1
nπ (A) can be regarded as the largest invariant subset. Indeed, if η : A→ B is a

n-equivalence and ρ : MA(n)→ A and σ : MB(n)→ B are n-minimal models, then η lifts

to an isomorphism η̄ : MA(n)→MB(n) such that

MA(n)
η̄ //

ρ

��

MB(n)

σ

��
A η

// B

commutes up to homotopy. However, homotopic maps induce the same map on cohomology

(Proposition 2), and so the digram commutes after applying Hn+1. In particular, this

means that

η∗(Hn+1
nπ (A)) = η∗ρ∗(Hn+1(MA(n))) = σ∗η̄∗(Hn+1(MA(n))) = σ∗(Hn+1(MB(n))) = Hn+1

nπ (B).

This shows that Hnπ([A]n) is independent (up to isomorphism) of the choice of

representative A of an n-type. If M(n) is the n-minimal representative of a n-type, then

the cohomology of the n-type is by definition H≤n+1(M(n)), and so is the largest invariant

subset because id : M(n)→M(n) is a n-equivalence that induces the identity on

H≤n+1(M(n)). A slogan for this result is that n-minimal algebras have “minimal”

cohomology in degrees ≤ n+ 1 among representatives of their n-types.
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Remark 6. As mentioned above, H≤nnπ (A) = H≤n(A), but Hn+1
nπ (A) is only a subset of

Hn+1(A) in general. If α ∈ Hn+1(A) is decomposable, then α is a linear combination of

products of lower degree cohomology classes, and since these lower degree classes are all

preserved by n-equivalences, α will be preserved as well by the injectivity condition on

Hn+1 for n-equivalences. Therefore, Hn+1
nπ (A) always contains the subset of decomposable

cohomology. However, for some n-types, there may also be indecomposable classes in

Hn+1
nπ (A). We will prove in Chapter 4 that if α ∈ Hn+1(A) is represented by a Massey

product cocycle (which represents an indecomposable class in cohomology, in general), then

α is preserved by any n-equivalence, i.e. α ∈ Hn+1
nπ (A).

In fact, we expect Hn+1
nπ (A) to coincide with ker ζ∗ = (H+ ·H+)⊕K in degree n+ 1 in

the notation of [HS79], where ζ∗ is the dual of the Hurewicz map. This indicates that

Hn+1
nπ (A) is spanned by decomposable classes and those represented by matric Massey

products based on Remark 8.4(2) in [HS79] (see [May69] for details on matric Massey

products).

We give the following result as an analogy to the “finite determination” statement in

[GM13, page 71] that for simply connected CW complexes of dimension n, the construction

of the Postnikov tower for X is formal after the nth Postnikov section (though the

statement below does not require simple connectivity). It is a consequence of the

uniqueness of minimal models.

Proposition 4. Suppose that M(n) is a n-minimal dgc algebra, and let M be a minimal

algebra such that Hn+1(M) = Hn+1(M(n)) and H i(M) = 0 for i ≥ n+ 2, then M is unique

up to isomorphism with these properties.

Combined with the above ideas, we can write a more precise “finite determination

principle.”

Theorem 6. If A and B are dgc algebras with of the same n-type with n-minimal model

M(n). Moreover, assume that Hn+1(A) ∼= Hn+1(M(n)) ∼= Hn+1(B) and that
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H i(A) = H i(B) = 0 for i ≥ n+ 2. Then A and B have isomorphic minimal models, i.e. are

of the same rational homotopy type.

Proof. By assumption we have that A and B have the same cohomology in all degrees.

Moreover, we can regard the n-minimal models M(n)→ A and M(n)→ B as the nth

stage in the construction of MA and MB. So MA and MB are minimal algebras constructed

from M(n) satisfying H≤n+1 = H≤n+1(M(n)) and H i(M) = 0 for i ≥ n+ 2, and so

MA
∼= MB by the above proposition.

Remark 7. (1) Even though we are assuming A and B have isomorphic cohomology in

the above theorem, a priori the isomorphism on cohomology is realized though a path

of n-equivalences, where the intermediate dgc algebras in the path may have

cohomology in higher degrees (as the n-minimal model does typically). However, the

conclusion that A and B have the same rational homotopy type means they can be

connected by a path of quasi-isomorphisms (where the intermediate dgc algebras

must therefore have the same cohomology as A and B).

(2) A weaker version of the above theorem would be that H i(A) = H i(B) = 0 for

i ≥ n+ 1. In this case, it follows that Hn+1(M(n)) = 0 and the same conclusion

holds, and so a theory based on n-quasi-isomorphisms would give the same result. So

the above theorem shows that we can detect some “homotopical information” in

degree n+ 1 with n-equivalences that n-quasi-isomorphisms would not be able to.

The above results show that just as in rational homotopy theory (i.e. localizing the

class of quasi-isomorphisms), the n-minimal models of a n-type contain all the “homotopy

theoretic” information of the n-type. Moreover, as the first remark above indicates,

n-equivalences allow for a wider choice of models of a dgc algebra with finite dimensional

cohomology. While the full minimal model M → A of a dgc algebra A with finite

cohomology is a quasi-isomorphism, M will often require an infinite number of generators,

whereas a n-minimal model of A will be finitely generated, at least if H(A) is simply
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connected and of finite type. For example, for a fixed graded commutative algebra H, we

can consider the space MH of all rational homotopy types of dgc algebras that have

cohomology isomorphic to H. When H i = 0 for i� 0 and is of finite type, then the above

analysis indicates that we can classify these rational homotopy types by their n-minimal

models as opposed to their full minimal models, and since the n-minimal models are

finitely generated in general, the determination of MH should be simpler.

To illustrate the above comments concerning MH , consider the following examples

from [HS79]. In both cases we consider a commutative graded algebra H such that H i = 0

for i > n, for some n. We then show that the n-types that have cohomology H determine

the rational homotopy types with cohomology H.

Example 1. Let H = H(S2 ∨ S2; k) (recall that k is a field of characteristic 0 in this

section). We can see from the finite determination principle that MH consists of a single

rational homotopy type, i.e. that H is intrinsically formal. Then H0 = k and and H2 = k2,

with H i = 0 otherwise. Thus, if x and y denote generators of degree 2 for H, then

ρ2 : Λ(x, y)→ H is a 2-minimal model where |x| = |y| = 2, dx = dy = 0 and ρ2x = x,

ρ2y = y (note that we think of H as a dgc algebra with differential d = 0 when speaking of

any n-minimal model for it). Because of the small size of this example, this is clearly the

only 2-minimal algebra M such that cohomology H≤2(M) ∼= H(S2 ∨ S2). In other words,

there is a unique 2-type with cohomology isomorphic to H(S2 ∨ S2) through degrees ≤ 2,

represented by the 2-minimal algebra Λ(x, y). By the finite determination principle,

Theorem 6, we can conclude that there is a single rational homotopy type with cohomology

isomorphic to H, i.e. we recover the fact that S2 ∨ S2 is intrinsically formal (which is

verified by [HS79] via their obstruction theory).

Note that the minimal model ρ : M → H would be infinitely generated. This can be

anticipated from Hilton’s Theorem [Hil55], which implies that S2 ∨ S2 will have infinitely

many nonzero rational homotopy groups, along with the fact that the generators of a

minimal model of a space (say, simply-connected) are in one-to-one correspondence with
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rational homotopy classes of the space. But we can get a feeling concretely for why M will

be infinitely generated. Note that Λ(x, y) is not quasi-isomorphic to H. Indeed, H(Λ(x, y))

has much higher cohomology that needs to be killed as we build the stages of the full

minimal model for H. For example, [x2], [xy], [y2] ∈ H4(Λ(x, y)) are independent nonzero

cohomology classes, and so for the 3-minimal model ρ3 : M(3)→ H, we would add degree 3

generators A,B,C such that dA = x2, dB = xy, and dC = y2 and ρ3A = ρ3B = ρ3C = 0,

giving the 3-minimal algebra M(3) = Λ(x, y, A,B,C). However, H5(M(3)) is now

two-dimensional, spanned by the classes [−Ay + xB] and [−By + xC] (which are

representatives of the Massey triple products 〈x, x, y〉 and 〈x, y, y〉, respectively). So for the

4-minimal model, two more degree 4 generators, E and F are added to kill this cohomology

in degree 5: dE = −Ay+ xB and dF = −By+ xC and mapped to 0 under ρ4. This process

of adding generators to kill higher cohomology continues to build the full minimal model of

H, but we avoid it by considering the 2-type of H and invoking the finite determination

principle.

The following example builds on the one above.

Example 2. Let H = H(S2 ∨ S2 ∨ S5). In this case, H2 = k2 and H5 = k, and all products

are 0. Let z ∈ H5 denote a generator. Because H is concentrated in degrees ≤ 5, we shall

consider all 5-types that have cohomology isomorphic to H in degrees ≤ 5. Once again, any

distinct 5-type will give a distinct rational homotopy type by the finite determination

principle. The 5-minimal model ρ5 : M(5)→ H is built from the 4-minimal algebra

Λ(x, y, A,B,C,E, F ) of the previous example by adding a generator z of degree 5 with

dz = 0 with ρ5z = z. So the 5-minimal algebra (Λ(x, y, A,B,C,E, F, z), d) represents the

5-type of the algebra H, and corresponds to the the formal rational homotopy type of H.

In [HS79], it is shown using Halperin-Stasheff’s filtered models that there is one other

rational homotopy type having cohomology isomorphic to H, i.e. that MH is a two-point

space. Specifically, consider the dgc algebra (Λ(x, y, A,B,C,E, F, z), D) where D = d on

each generator except E and F , where DE = dE + c1z and DF = dF + c2z where
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c1, c2 ∈ k are not both 0. With the new differential D, (Λ(x, y, A,B,C,E, F, z), D) is no

longer a minimal algebra, but it is still a 5-Sullivan model, and it is shown in [HS79] that

for any choice of c1, c2 with (c1, c2) 6= (0, 0), the resulting algebras are isomorphic, and so

they represent the same 5-type. Incidentally, a 5-minimal model for the non-formal space is

(Λ(x, y, A,B,C,E), d), where the generator F in the 4-minimal model of H is left out to

allow one of the degree 5 Massey product cocycles mentioned in the preceding example to

“survive.” So once again, by the finite determination principle, the fact that there are

exactly two 5-types whose cohomology through degree 5 agrees with H implies that there

are two rational homotopy types with cohomology types having cohomology H.

To compare with the approach in [HS79], once they establish that the filtered models

mentioned above represent the same rational homotopy type, they must also argue that

perturbations of the full minimal model of H do not represent any other rational homotopy

types since the full minimal model will have generators of arbitrarily high degree, and thus

the possibility for more perturbations than the ones that can be seen on the 5-model. They

are able to prove their claim using their obstruction theory. From our point of view,

however, the 5-Sullivan models are sufficient to distinguish the distinct rational homotopy

types.



Chapter 4

Massey Decomposable Cohomology

Under our concept of cohomological n-equivalence, it is clear that the cohomology through

degree n is an invariant among representatives of a cohomological n-type since

n-equivalences are defined to induce isomorphisms on cohomology through degree n.

However, the injectivity condition in degree n+ 1 makes it less clear what subset of Hn+1 is

invariant under n-equivalence. In general, if α ∈ Hn+1(A) for some connected dg algebra A

is decomposable, then α is a linear combination of products of lower degree cohomology

classes, and since these lower degree classes are all preserved by n-equivalences, α will be as

well. However, there are some cases when α will be preserved under any n-equivalence even

if it is indecomposable as an element of the algebra H(A), e.g. when α is a Massey product.

4.1 Review of Massey Products

In this section, we only assume k is a commutative ring with unity. We also do not assume

the dg algebras are commutative. First we recall the definition of p-fold Massey product

(following [Kra66], with different indices). For a ∈ A, a = (−1)|a|a.

Definition 11. Let (A, d) be a dg algebra and let aij ∈ A for 1 ≤ i ≤ j ≤ p excluding

(i, j) = (1, p) be elements such that aii is a cocycle representative of a cohomology class ai

and

daij =

j−1∑
k=i

aikak+1,j.

31
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The p-fold Massey product is the set of cohomology classes denoted by 〈a1, . . . , ap〉 that are

represented by the cocycles
p−1∑
k=1

aikak+1,p

for some choice of elements aij as above. We say that 〈a1, . . . , ap〉 is trivial or vanishes if it

can be represented by the 0 cohomology class.

The degree of a p-fold Massey product as above is

2 +
∑p

k=1(|ai| − 1) = 2− p+
∑p

i=1 |ai|. When convenient, we will write

µij =

j−1∑
k=i

aikak+1,j

so that daij = µij. Notice that µij is a representative of 〈ai, . . . , aj〉.

We also introduce the following refinement of the notion of a defining system.

Definition 12. Let ai ∈ H(A, d) for 1 ≤ i ≤ p. For 1 ≤ ` ≤ p− 1, an `-stage system for

(a1, . . . , ap) is a collection aij ∈ A for 1 ≤ i ≤ j ≤ p such that j − i < `,

(1) aii is a cocycle representative of the cohomology class ai,

(2)

daij =

j−1∑
k=i

aikak+1,j.

We write 〈a1, . . . , ap〉` for the set of `-stage systems for (a1, . . . , ap) (we show below the

sense in which this is independent of the choice of cocycle representatives).

Notice that whereas 〈a1, . . . , ap〉 is a set of cohomology classes, 〈a1, . . . , ap〉` is a set of

collections of cochains.

Example 3. (i) A 1-stage system for (a1, . . . , ap) is nothing more than a choice of

cocycle representatives (a11, . . . , app) for these cohomology classes.

(ii) A (p− 1)-stage system is a defining system in the above sense.
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It is illustrative to picture `-stage systems as partial upper triangular matrices. For

example, a 2-stage system for (a1, a2, a3, a4) would be

a11 a12 ∗ ∗

a22 a23 ∗

a33 a34

a44


Given an `-stage system, we can form the (`+ 1)-fold Massey product representatives

µij for j − i = `. We can then extend the `-stage system to a (`+ 1)-stage system iff there

exist aij ∈ A such that daij = µij, i.e. iff we can fill in the `th super-diagonal in the above

matrix (where the 0th super-diagonal means the diagonal aii).

4.2 Lemmas on Defining Systems

The following lemma generalizes Kraines’s theorem that changing the cocycle

representatives of a Massey product by coboundaries will not change the Massey product,

i.e. the Massey product is independent of the cocycle representatives of the cohomology

factors a1, . . . , ap (compare [Kra66]). Given an `-stage system, we use similar formulas to

show that we can make a new `-stage system if we start by changing one entry by a

coboundary.

Lemma 7. Let (aij) be a `-stage system for (a1, . . . , ap) in a dg algebra A, and let

a′mn = amn + db for some b ∈ A. Then we can construct a `-stage system (a′ij) by the

following formulas:

(i) a′ij = aij if i 6= m and j 6= n,

(ii) a′in = ain + ai,m−1b for i < m,

(iii) a′mj = amj − ban+1,j for j > n.
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Moreover, the Massey Product cocycles µ′ij for the modified system (a′ij) are either identical

or cohomologous to µij (in fact, µ′ij = µij if and only if i 6= m and j 6= n). Notice that only

entries in the column and row above and to the right of amn are modified.

Proof. We will write µ′ij =
∑j−1

k=i a
′
ika
′
k+1,j. It is clear that condition (1) of Definition 12 is

satisfied by (a′ij) since either a′ii = aii or a′mm = amm + db (in the case n = m).

Keeping in mind that only entries in the column and row above and to the right of amn

are modified, µ′ij = µij, so da′ij = daij = µij = µ′ij if i > m or j < n. We will check that

da′ij = µ′ij when i ≤ m and j ≥ n in three cases: (i) i < m and j > n, (ii) j = n, and (iii)

i = m. Note that the difficulty here is that in the formula for µ′ij now contains modified

and unmodified entries of the original `-stage system (aij)

(i) In this case, we show that µ′ij = µij and that da′ij = µij. In this case, the sum for µ′ij

contains only two modified terms, a′i,m−1a
′
mj and a′ina

′
n+1,j. These modified terms

simplify as

a′i,m−1a
′
mj + a′ina

′
n+1,j = ai,m−1(amj − ban+1,j) + (ain + ai,m−1b)an+1,j

= ai,m−1amj − ai,m−1ban+1,j + ainan+1,j + ai,m−1ban+1,j

= ai,m−1amj + ainan+1,j,

i.e. the modified terms simplify to match the unmodified terms in µij. Therefore, we

have that µ′ij = µij Since a′ij = aij, this verifies that da′ij = daij = µij = µ′ij.
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(ii) In this case, the only factors in the expansion of µ′in are a′kn for i+ 1 ≤ k ≤ m and

a′mn = amn + db. Thus, we have

µ′in =
n−1∑
k=i

a′ika
′
k+1,n

=
m−2∑
k=i

aika
′
k+1,n + a′i,m−1a

′
m,n +

n−1∑
k=m

aikak+1,n

=
m−2∑
k=i

aik(ak+1,n + ak+1,m−1b) + ai,m−1(amn + db) +
n−1∑
k=m

aikak+1,n

= µin + ai,m−1db+
m−2∑
k=i

aikak+1,m−1b

= µin + ai,m−1db+ µi,m−1b

= µin + ai,m−1db+ dai,m−1b.

Now it is clear that da′in = µ′in:

da′in = d(ain + ai,m−1b) = dain + dai,m−1b+ ai,m−1db = µ′in.

Note that this also shows that µ′in = µin + d(ai,m−1b).

(iii) This is similar to the above case.

Now we see one way we can control `-stage systems under cohomological n-equivalence.

Theorem 7. Let f : A→ B be a cohomological n-equivalence of connected dg algebras, and

let E = (bij) be a `-stage system in B for b1, . . . , bp ∈ H∗(B). Then there are a `-stage

systems D = (aij) and E ′ = (b′ij) in (A, d) and (B, d), respectively, such that f(D) = E ′

and the Massey product cocycles for E and E ′ are cohomologous.

Proof. We proceed by induction on k = j − i. Specifically, we show that for k = 1, . . . , `− 1

there exists a k-stage system Dk = (aij) in A and an `-stage system E ′ = (bij) such that

f(Dk) = E ′ and the (k + 1)-fold and lower Massey product cocycles for E ′ are
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cohomologous to the corresponding ones for E. For k = 1, this amounts to choosing

cocycles aii ∈ A for 1 ≤ i ≤ p such that f(aii) = bii + dcii for some cochains cii ∈ B. This is

possible because f is an n-equivalence. We take E ′ to be the `-stage system obtained by

repeatedly applying the previous lemma to modify E. As that lemma shows, the Massey

product cocycles for E ′ are cohomologous to those of E.

Now assume that the claim holds for some value k where 1 ≤ k ≤ `− 1. First we show

that Dk can be extended to a (k + 1)-stage system. Assume that f(Dk) = E, that is

f(aij) = bij for j − i ≤ k. In particular, because f is a dg algebra homomorphism

f(νij) = µij, where νij is the Massey cocycle for Dk. Since E is an `-stage system and

k ≤ `− 1, we have bij ∈ E such that dbij = µij for j − i = k + 2. Therefore, f(νij) = dbij,

which means that [νij] is in the kernel of f∗ for j − i = k + 2. Since f is an n-equivalence,

this kernel is trivial, and so νij = daij for some aij ∈ A for j − i = k + 2, which extends Dk

to a (k + 1)-stage system. Note that df(aij) = f(daij) = µij = dbij, and so

f(aij) = bij + dcij for some cij ∈ B. Once again, by repeatedly applying the previous lemma

about modifying defining systems by coboundaries, we can construct an `-stage system E ′

whose (k + 1)-diagonal is bij + dcij, and hence satisfies f(aij) = b′ij for j − i ≤ k + 1. This

completes the induction.

4.3 Massey Decomposable Elements of Cohomology

In light of the above propositions, we introduce the following definition.

Definition 13. Let n ≥ 0 and (A, d) be a dg algebra. The Massey decomposable elements

of H(A) are cohomology classes in the span of classes that are decomposable or are

representatives of a Massey product. This defines a subalgebra of H(A) that we will denote

by HMas(A).

As a corollary to Theorem 7 on defining systems, we have the following.
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Theorem 8. Let f : (A, d)→ (B, d) be a cohomological n-equivalence between connected dg

algebras. Then f ∗ induces a bijection on the Massey decomposable elements in degrees

≤ n+ 1.

Proof. If β ∈ Hn+1(B) is decomposable as an element of the algebra H(B), then β is a

linear combination of the cohomology factors from degrees 1, 2, . . . , n. Each of these lower

degree factors has a unique preimage under f ∗ since f ∗ is an isomorphism in these degrees,

and so the corresponding linear combination of preimage factors in Hn+1 will be a

preimage of β. This preimage is unique because f ∗ is injective in degree n+ 1.

Now suppose β can be represented by a Massey product cocycle. For any choice of

defining system for β, Theorem 7 provides a defining system for a Massey product in A

whose image is cohomologous to β. Conversely, any Massey product Hn+1(A) is mapped to

a Massey product in Hn+1(B) since as an algebra morphism, f preserves the equations

that define Massey products.

Remark 8. (1) The reason for the term Massey decomposable is that α ∈ H(A) can be

indecomposable with respect to the algebra multiplication on H(A), but should still

be considered “decomposable” if it represents a Massey product. Specifically, since a

Massey product in degree n+ 1 consists of information (i.e. defining systems) from

degrees ≤ n, it should be considered “decomposable,” even though the cohomology

class may actually be indecomposable in terms of the algebra structure on H(A).

Calling these classes Massey decomposable is meant to emphasize that they are

determined in lower degree.

(2) Theorem 8 above shows that Hn+1
Mas is preserved by n-equivalences. When working

over a field of a characteristic 0, as in Section 3.2.2, we defined Hnπ to represent the

largest invariant subset of cohomology of a n-type. So Theorem 8 says that

HMas ⊆ Hnπ. In light of remark 6 in Section 3.2.2, it seems plausible that HMas could

be generalized to include cohomology in the span of classes represented by matric
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Massey products, in which case H≤n+1
Mas would presumably be equal to Hnπ, or in

other words the cohomology preserved by under any n-equivalence would be exactly

HMas if matric Massey products are considered. We leave this possible modification

for future consideration.

Consider the following examples.

Example 4. (1) Let (A, d) = (Λ(x, y, z, A,B), d) where dx = dy = dz = 0, dA = xy, and

dB = yz, and |x| = 2, |y| = 2, and |z| = 2 (the degrees can be set arbitrarily, but we

choose to be concrete). In this case, the Massey triple product 〈[x], [y], [z]〉 is defined

and represented by µ = Az + xB in degree 5. The class [µ] is indecomposable with

respect to the algebra structure of H(A) (which is easily seen for degree reasons in

this case since the only other indecomposable cohomology in lower degrees are the

classes [x], [y], and [z]). Thus, [µ] is an example of a Massey decomposable element

that is indecomposable with respect to the algebra structure on H(A).

Note over a field of characteristic 0, A is in fact a 4-minimal algebra and so the

identity A→ A is can be regarded as a cohomological 4-equivalence. Thus,

[µ] ∈ H5
Mas(A) ⊆ H5

4π(A) is an indecomposable degree 5 invariant of the 4-type of A.

(2) A similar statement can be made about the 4-minimal model of H = H(S2 ∨ S2 ∨ S5)

from Example 2 in Chapter 3. There are two indecomposable classes in degree 5

represented by Massey triple products, and so the 4-type of that minimal model has

two indecomposable invariant degree 5 cohomology classes.
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complémentarité des modèles. Bull. Soc. Math. Belg. Ser. A, 33:7–19, 1981.

39



40

[GM03] Sergei Gelfand and Yuri Manin. Methods of homological algebra. Springer, 2

edition, 2003.

[GM13] Phillip Griffiths and John Morgan. Rational homotopy theory and differential

forms, volume 16 of Progress in Mathematics. Springer, 2 edition, 2013.

[GNPR10] F. Guillén, V. Navarro, P. Pascual, and Agust́ı Roig. A Cartan–Eilenberg

approach to homotopical algebra. Journal of pure and applied algebra,

214(2):140–164, 2010.

[GZ12] Peter Gabriel and Michel Zisman. Calculus of fractions and homotopy theory,

volume 35. Springer, 2012.

[Hil55] Peter J Hilton. On the homotopy groups of the union of spheres. Journal of the

London Mathematical Society, 1(2):154–172, 1955.

[HS79] Stephen Halperin and James Stasheff. Obstructions to homotopy equivalences.

Advances in mathematics, 32(3):233–279, 1979.

[Kra66] David Kraines. Massey higher products. Transactions of the American

Mathematical Society, 124(3):431–449, 1966.

[May69] J. Peter May. Matric Massey products. Journal of Algebra, 12(4):533–568, 1969.

[ML13] Saunders Mac Lane. Categories for the working mathematician, volume 5.

Springer, 2013.

[Qui67] Daniel Quillen. Homotopical algebra. Lecture notes in mathematics, 1967.

[Qui69] Daniel Quillen. Rational homotopy theory. Ann. of Math, 90(2):205–295, 1969.

[Ser53] Jean-Pierre Serre. Groupes d’homotopie et classes de groupes abeliens. Annals

of Mathematics, pages 258–294, 1953.



41

[SS12] Mike Schlessinger and Jim Stasheff. Deformation theory and rational homotopy

type. arXiv preprint arXiv:1211.1647, 2012.

[Sul73] Dennis Sullivan. Differential forms and the topology of manifolds. Manifolds

Tokyo, pages 37–49, 1973.

[Sul77] Dennis Sullivan. Infinitesimal computations in topology. Publications
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