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CHAPTER 1

INTRODUCTION

In this first chapter, we briefly motivate and outline our study of cohomological

n-equivalences.

1.1 BACKGROUND IN RATIONAL HOMOTOPY THEORY

In 1953, Serre published [Ser53|, which studied “homotopy mod €”, where € is a class of
commutative groups satisfying certain closure axioms. In particular, when € is is taken to
be the class of torsion abelian groups, one obtains a notion of rational homotopy

equivalence via the following result of Serre:

Theorem 1 (Whitehead-Serre). For a continuous map f: X — Y between simply

connected spaces, the following are equivalent:
1 m(f) : m(X) @72 Q = 7 (V) ®z Q is an isomorphism
2. H(f;Q): H(X;Q) = H.(Y;Q) is an isomorphism.
3. H*(f;Q) : H*(X;Q) — H*(Y;Q) is an isomorphism.

Definition 1. A map f: X — Y satisfying the above equivalent conditions is called a
rational homotopy equivalence. Two spaces X and Y have the same rational homotopy type
if they can be connected by a string of rational equivalences (i.e. not necessarily

composable sequence of rational homotopy equivalences).

In [Qui67, [Qui69], Quillen describes a categorical formalism for homotopy theory by

axiomatizing the classes of weak equivalences, fibrations, and cofibrations. In particular,



the category of topological spaces with the above notion of rational equivalence fell under
this formalism (under suitable connectivity assumptions). This framework importantly
provided a way of verifying that various homotopy categories (the categories obtained by
localizing weak equivalences) are equivalent. In particular, the rational homotopy category
of topological spaces was shown to be equivalent to several other homotopy categories
coming from algebraic categories, including differential graded Lie algebras and differential
graded cocommutative coalgebras. This allows for a purely algebraic formulation of rational
homotopy theory. By taking linear duals for differential graded coalgebras of finite type,
one could also extend the results to the category of differential commutative graded
algebras, where the notion of rational equivalence is given by quasi-isomorphisms, i.e. maps
that induce isomorphisms on cohomology.

An alternative construction by Sullivan, [Sul77, [DGMST75, [Sul73] provided a direct
functor from spaces to differential graded commutative algebras via the functor of
“polynomial de Rham forms” of a space. This approach did not require the same
connectivity conditions as [Qui69] nor did it require the differential graded algebras to be
of finite type. It is shown in [BG76] that this induces an equivalence on the homotopy
categories of spaces, as per Quillen’s homotopical algebra. Moreover, Sullivan also
emphasized the use of minimal models of differential graded algebras, which provide
representatives of rational homotopy types that are unique up to isomorphism and enable
many computations. In particular, the minimal model of the algebra of polynomial de
Rham forms on a space was shown to correspond precisely to the Postnikov tower of the
space. He also defined formal differential graded algebras as those having the same rational
homotopy type as their cohomology algebras (which are considered as differential graded

algebras with differential 0).



1.2 MOTIVATING PROBLEM

The problem in rational homotopy theory that motivated our current study is the problem
of computing My, the moduli space of rational homotopy types whose cohomology is
isomorphic to a fixed graded commutative algebra H. This is studied by [SS12] using the
bigraded and filtered models of differential graded algebras of [HS79]. My always has a
point corresponding to the formal rational homotopy type, which can be represented by H
itself, with differential 0, or by the bigraded minimal model of H that [HS79] provides. In
this context, it is useful to study Massey products, a type of higher order operation in
cohomology, as invariants of the rational homotopy type, including as obstructions to
formality (in the sense that the formal rational homotopy type, all higher order Massey
products are 0).

For the case when H® = 0 for i > n, we were led to wonder how much information is
needed to distinguish rational homotopy types in My. Specifically, as is remarked in
[GM13, Ch. 8], for simply connected CW complexes of dimension n, the process of building
the Postnikov tower for the CW complex becomes “formal” after the nth stage is
constructed. Therefore, the rational homotopy type should be determined by the n-type in
this context, and the determination of My when H? = 0 for i > n should be determined by
the distinct n-types with cohomology isomorphic to H through degree n. This is what we
confirm with the notion of cohomological n-equivalences of differential graded algebras.
These are maps that induce an isomorphism on cohomology in degrees < n and an
injection on degree n + 1 cohomology. This definition, in particular the condition on n + 1,
was chosen to match the properties of the stages of the minimal model (see Section .
We point out in Chapter [2| a few references where similar concepts have appeared. This
formulation of n-equivalence ensures that our n-types are uniquely represented up to
isomorphism by a n-minimal algebra (Proposition [3)).

Finally, with the definition of n-equivalence in hand along with the corresponding

localized category, we can anticipate some future work. Namely, we hope to modify the



theory of perturbations in [SS12, [HS79| for calculating the moduli space of n-types with
cohomology isomorphic to a fixed graded algebra concentrated in finitely many degrees in a
way that avoids infinitely generated models, at least for cohomology algebras of finite type.
Moreover, it seems reasonable for when H is not concentrated in finitely many degrees,
that we could approximate My by considering the sequence of truncated algebras H="
and the corresponding moduli spaces M y<. for n =0,1,2,3,.... Furthermore, as is often
the case in rational homotopy theory, one can imagine a “dual” theory of n-equivalences
and n-types in terms of differential graded Lie algebras (see [FT81] for a summary of the

dual concepts).

1.3 OUTLINE OF TOPICS COVERED

In Chapter [2] we begin by reviewing and fixing notation for graded algebra. We introduce
cohomological n-equivalences as well as the main examples when over a field of
characteristic 0, namely n-minimal models and n-Sullivan models. Finally, we briefly recall
the definition of homotopy of maps between differential graded algebras and some relevant
properties.

In Chapter |3| we study the category of differential graded commutative algebras
localized with respect to cohomological n-equivalences. We briefly review localization of
categories and then describe the categorical framework of Cartan-Eilenberg categories
[GNPRI10]. This provides a convenient conceptual backdrop for comparing categories
localized with respect to a class of weak equivalences and with a notion of homotopy
equivalence. One of our goals is to show that just as for rational homotopy theory of dgc
algebras (that is when we localize by the class of quasi-isomorphisms), the category of dgc
algebras localized by cohomological n-equivalences is equivalent to the homotopy category
of cofibrant objects, which are n-Sullivan algebras in our context (Theorem . Then
[GNPR10|] provides a theorem that reduces this goal to checking that n-Sullivan algebras

satisfy the the same lifting properties with respect to n-equivalences that Sullivan algebras



do with respect to quasi-isomorphisms. The verification of these lifting lemmas is written
out in detail.

In the last part of Chapter [3| we make precise the “finite determination principle” that
originally motivated us. Specifically, when H® = 0 for ¢ > n, then rational homotopy types
with cohomology isomorphic to H are determined by n-types whose cohomology agrees
with H through degree n. We actually prove a more precise version of this statement that
allows some nonzero cohomology in degree n + 1 by noticing some degree n + 1 cohomology
is invariant under n-equivalences. Finally, we use this finite determination principle in
examples where we can determine My using n-equivalences for the appropriate value of n.

Finally, in Chapter |4/ we prove that Massey products in cohomology through degree
n + 1 are preserved by n-equivalences (Theorem |8) . In this sense n-equivalences “detect”
Massey products that n-quasi-isomorphisms would not be able to. In other words, no
nonzero subset of H"*! is invariant under any n-quasi-isomorphism in general, but in this
chapter we show that Massey products in degree n + 1 are an invariant of an n-type. To this
end, we review the definition of higher Massey products and their defining systems from
[Kra66]. To prove that Massey products are preserved by n-equivalences, we establish some

lemmas about modifying defining systems and pulling them back along n-equivalences.



CHAPTER 2

COHOMOLOGICAL n-EQUIVALENCE

2.1 DEFINITIONS AND NOTATION

In this section, we establish some basic terminology and notation concerning graded
algebra. In this section, k£ will denote a commutative ring with unit 1. For the most part,

we are following the notation of [FHTO1, Chapter 3].

e A graded k-module V will be a collection of k-modules indexed by the non-negative
integers. We will write V' = (V?),>¢. Elements of V¢ are said to have degree ¢, and we

write |z| = q or degx = ¢ for x € V9.
o We say a graded module V' has finite type if it is finitely generated in each degree.
e If k is a field, then V is called a graded vector space.

e Submodules, quotients, direct sums, and products are defined “degree-wise.” The
tensor product V @ W of two graded vector spaces is given by
(VW) =@V @ Wi,

o A degree { linear morphism f:V — W of graded modules is a collection of k-linear
maps f, : VI — W for ¢ > 0. If we refer to a linear morphism without specifying a

degree, then we mean a degree 0 linear morphism.

o A graded k-algebra is a graded k-module A = (A?),>o with an associative
multiplication A ® A — A (usually written = ® y — xy) with an identity element
1 € A°. An morphism of graded algebras f : A — B is a degree 0 linear map
satisfying f(1) = 1 and f(zy) = f(z)f(y) for all z,y € A and f(1) = 1.



e If k contains %, then A graded module V' generates a free commutative graded algebra
AV by taking the tensor algebra on V' and forming the quotient by the ideal
generated by the elements v ® w — (—1)"*lw @ v. If V has a basis {v1,vs,...}, we
write A(vy,vs,...) for AV.

Definition 2. A morphism of graded k-modules f : V' — W is an n-surjection if f, is

surjective for ¢ < n.

Our main objects of study will be differential graded algebras, or dg algebras for short.
e A graded algebra A is commutative if xy = (—1)Wyx for all x,y € A.

o A degree  derivation 6 : A — A is a degree ¢ linear map such that

O(wy) = o)y + (=1)Txd(y).

o A differential graded algebra (abbrv. dg algebra) is a pair (A, d) with A a graded
algebra and differential d: a degree 1 derivation such that d?> = d o d = 0. Usually the
algebra corresponding to the differential is clear from the context, but if specificity is
needed, then we shall write (A, d,). Since we will almost always be referring to

differential graded algebras, we will often refer to (A, d) simply as A.

o We will write dgc algebra for ‘differential graded commutative algebra.” We may

write d = d4 when we need to distinguish between differentials.

e The cohomology algebra of a dg algebra is H(A) = H*(A) = ker(d)/im(d), which is
indeed a graded algebra. If (A, d) is a dgc algebra, then H(A) is commutative graded

algebra.

o A morphism of dg algebras f: A — B is an algebra morphism that commutes with

the differentials: fdq = dgf, or fd = df for short.

e A dg algebra morphism as above induces a morphism of graded algebras

H(A) — H(B), which we will denote by f* or H(f). If H*(f) is an isomorphism for



all 7 , then we say that f is a quasi-isomorphism, and if it is an isomorphism for

0 <1< n, wesay [ is a n-quasi-isomorphism.

e A dg algebra A is n-connected if H°(A) =k and H'(A) = 0 for 0 < i < n (sometimes
this is referred to as cohomologically n-connected). We refer to 0-connected as

connected.

Since k is typically fixed in the contexts we consider below, we will write DGCA for
the category of dgc algebras over £ and DGCA (A, B) for the set of morphisms of dg
algebras A — B.

Our purpose in this paper is to see some of the consequences of the following definition.

Definition 3. A dg algebra morphism f : A — B is called a cohomological n-equivalence if
H(f): H(A) — H'(B) is an isomorphism for ¢ < n and H"*(f) is a monomorphism.
More generally, we say dg algebras A and B belong to the same cohomological n-type if they

can be connected by a path of cohomological n-equivalences (not necessarily composable).

One simple example of a n-equivalence from a dg algebra A is to let I = A>"*! and let
(B, d) be the quotient algebra B = A/I with the induced differential. Then the quotient
map A — B provides a cohomological n-equivalence. Over a field of characteristic 0, we

give more useful examples in the following section.

Remark 1. If n: A — B is a dgc algebra map, then 7 is also a morphism of the underlying
cochain complexes, and so the mapping cone C(n) can be considered. Then 7 is a
cohomological n-equivalence if and only if H(C(n)) =0 for 0 <i < n+ 1 (see [GMI13,
Section 10.3], where C(n) is denoted M,,).

Since we typically do not refer to any other types of n-equivalence, we will often drop
‘cohomological.” The concept of cohomological n-equivalence has appeared in [Ark11] for
topological spaces, and it is dual to the concept of homotopical n-equivalence of spaces,

namely maps f : X — Y such that m;(X) — m;(Y) is an isomorphism for i < n and m,41(f)



is a surjection. The condition has also appeared in [SY03] and in [CC17] (under the name
n-quasi-isomorphism). Moreover, in some sources the conditions on H* or 7; are shifted
down one degree (that is H™ is injective and m, is surjective with isomorphisms in degrees
<n-1).

What we hope to show in the following chapters is that cohomological n-equivalence is
sufficient for studying the “homotopical information” in degrees up to n. More specifically,
while the category DGCA has a model structure with the class of weak equivalences being
quasi-isomorphisms, it does not have a model structure whose class of weak equivalences is
cohomological n-equivalences. However, we show in Chapter [3| that the localization by the
class of weak-equivalences still shares many of the results that the localization with respect
to quasi-isomorphisms has. For example, we can prove that morphisms from n-Sullivan
algebras can be uniquely lifted along n-equivalences up to homotopy, and consequently
that n-equivalences induce bijections on the set of homotopy classes of maps having
n-Sullivan algebras as a source (see Definition @ for n-Sullivan algebras). Similarly,
n-surjective dg algebra morphisms can play the role of fibrations in DGCA, which are
degree-wise surjections, and thus n-surjective n-equivalences have properties that trivial
fibrations have in a model category. The following property of n-surjective n-equivalences
will be used several times in Chapter [3] in particular for establishing the lifting properties

of n-equivalences.

Lemma 1. Suppose that n: A — B is a n-surjective n-equivalence of dg algebras. If a € A
and dna = 0 (equivalently nda = 0) with dega < n, then there ezists a cocycle z € A and
an element a’ € A such that na = nz + dna’ = n(z + da’) (this says that cocycles in the

image of n have preimages which are cocycles).

Proof. Suppose a € A satisfies dna = 0, that is na is a cocycle in B. Since 7 is a
n-equivalence, surjectivity of n* implies the existence of a cocycle z € A such that

n*[z] = [na]. Thus, nz and na differ by a coboundary; na = nz + db for some b € B. Finally,
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n-surjectivity implies that there is @’ € A with na’ = b, and so na = nz + dna’ = n(z + da’),

as claimed. O

2.2

EXAMPLES OF n-MODELS

In this section, k£ will denote a field of characteristic 0.

(a)

We can construct n-Sullivan models of connected dgc algebras. The construction of
Sullivan models in [FHT01, Ch. 12] can be adapted to make models f : AV — A
where AV is a Sullivan algebra generated in degrees < n, which we refer to as a
n-Sullivan algebra. Since AV is generated in degrees < n, we can expect AV to be

finitely generated when H(A) is 1-connected and of finite type.

See [FHTOI1, FHTI5L [Sul77] for the theory of minimal models. We will recall some
important facts. A minimal algebra is in particular a Sullivan algebra. If p: M — A
is the minimal model of (A, d), write M (n) for the subalgebra of M generated by
elements of degree < n and p, = p|r (). Then M is determined by the properties: M
is the increasing union of subalgebras Q = M (0) C M (1) C M(2) C M(3) C --- with

maps p, : M(n) — A such that

(i) M(n) is a minimal dgc algebra generated by elements in degrees < n,
(ii) p, induces an isomorphism on cohomology in degrees < n,

(iii) p, induces an injection on cohomology in degree n + 1.

So pn : M(n) — A is a cohomological n-equivalence (in fact, this motivated our
definition of cohomological n-equivalence), and we call it the n-minimal model of A.
In [FHTT5, page 109], it is shown that n-minimal models are unique up to
isomorphism. Sometimes we may wish to speak of a n-minimal algebra on its own,
not paired with a n-equivalence to any other dgc algebra, in which case we mean a

minimal dgc algebra AV such that V' is concentrated in degrees < n.



11

We will see some concrete examples of n-minimal models in the examples at the end of

Chapter [3] (e.g. Example [2)).
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CHAPTER 3

LocaLizING DGCA WITH RESPECT TO n-EQUIVALENCES

We begin by briefly recalling the notion of localization of a category. Then we review the
formalism of categories with strong and weak equivalences, as described by [GNPRI0].
This framework helps us compare the category of dgc algebras localized by n-equivalences
with the “homotopy category” of n-Sullivan algebras with homotopy classes of maps as

morphisms.

3.1 CATEGORICAL FORMALISM

3.1.1 LOCALIZATION OF CATEGORIES

First, we briefly review localization of categories. Let C be a category and S a class of
morphisms in C. The localization is a category C[S™!] and a functor v : C — C[S™!] with
the following universal property: If F': C — D is any functor such that F'(s) is an
isomorphism for all s € S, then F factors uniquely through C[S™!], i.e. there exists
F':C[S7!'] — D such that F' = F’" o~. The category C[S™!] can be constructed by formally
inverting the morphisms in S so that they become isomorphisms in C[S™!]. See

[GNPRI0, [GZ12] [GMO3] for details on the construction of S~!C. In particular, for objects
X,Y € C, the morphisms X — Y in C[S™!] are equivalence classes of paths of the form

x L Ch hoo. Cy %y where fi represents a left or right pointing arrow in C such

that the “backwards” arrows (the ones pointing left) are members of S. The equivalence

relation on these paths is generated by the following operations:

(i) Omitting the identity map,
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(ii) replacing adjacent maps pointing in the same direction by their composition,
(iii) omitting two adjacent maps when they are the same, but point in opposite directions.
In particular, item (iii) above is what formally inverts the members of S in C[S™1].

Definition 4. The class S is called saturated if for f € MoryC, v f is an isomorphism in
C[S~!] if and only if f € S. The saturation of S, denoted S, is the smallest saturated class

of morphisms containing S.

Remark 2. S can also be characterized as the preimage of S under .

Finally, we will require the notion of relative localization of a subcategory for the results
from [GNPRI10] that appear in the following section (specifically, Theorem (3| and its

consequence Theorem [f)).

Definition 5. Let C be a category, S a class of morphisms in C, and M a full subcategory
of C. The relative localization of the subcategory M of C with respect to S, denoted by
M[S71,C], is the full subcategory of C[S™!] whose objects are those of M.

3.1.2 CATEGORIES WITH STRONG AND WEAK EQUIVALENCES

Here we review some concepts from [GNPRI10]. Let C be a category and S and W classes of
morphisms in C that are closed under composition and such that S C W. Members of S
are called strong equivalences and members of W are called weak equivalences.

Because S C W, the localization « : C — C[W 1] factors through the localization

§:C— C[S7Y:
|
C[S_l] T)C[W_l]

where 7' : C[S™!] — C[W™!] is identified with the localization C[W ] = C[S~]|[§(W)~!].
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Definition 6. Call an object M of C cofibrant if for every weak equivalence w : Y — X,

the map
CISTN(M,Y) = C[ST'(M, X) g wog

is a bijection. In other words, every map f: M — X in C[S™!] lifts uniquely in C[S™] to f
such that
Y

ra A
f

s w
v

commutes in C[S™1].
In [GNPRI10], the following equivalent condition for an object to be cofibrant is proven.

Theorem 2 (GNPR10). An object M of C is cofibrant if and only if
Y CIST(M, X) = CW (M, X) grrwoyg
s a bijection for every X € ObC.

Definition 7. Given X € ObC, a cofibrant left model for A is a weak equivalence M — X,
where M is cofibrant. A category with strong and weak equivalences is called a left

Cartan-Eilenberg category if every object in C has a cofibrant left model.

Every connected dgc algebra has a Sullivan model (Example [1]), which are the cofibrant
objects in DGCA,. So DGCA, is a Cartan-Eilenberg category with W given by
quasi-isomorphisms and S given by homotopy equivalences. We will modify this to hold for
n-equivalences below.

Now we summarize some results for the special case when the class of strong
equivalences comes from a congruence [ML13, pg. 52|. If ~ denotes the congruence, then
we can take S to be the maps f € MorC such that if f: X — Y, then there exists
g:Y — X with fog~ 1y and go f ~ 1x. In this context, S and ~ are compatible if

f ~ g implies §f = dg in C[S™!]. We can form the category C/~ whose objects are the
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same as C and whose morphisms are given by C(X,Y)/~ for X,Y € ObC. In general, C/~

and C[S™!] are not equivalent, but they are equivalent if S and ~ are compatible.

Proposition 1 (GNPR10). If S and ~ are compatible, then C/~ and C[S™'] are

canonically isomorphic.

Proof. The compatibility condition implies that the localizing functor ¢ factors through
quotient functor 7 : C — C/~, that is there exists ¢ : C/~— C[S™!] such that ¢pom = 4.
One can check that 7 has the universal property of localization with respect to S, and

hence that there is a canonical isomorphism C[S™!] 2 C/~. O

The congruence ~ and a compatible class of morphisms for it above is exemplified by
the homotopy relation on maps in various categories with S the class of homotopy

equivalences, including homotopy of dgc algebras described in the next section (Definition

Finally, [GNPR10] provides the following “recognition theorem.”

Theorem 3 (GNPR10). Let (C,S,W) be a category with strong and weak equivalences and

M a full subcategory of C. Suppose that

(1) For any w:Y — X in W and any f € C(M,X) with M € Ob M, there exists a
morphism g € C[S™'(M,Y) such that wog= f in C[S™'].

(ii) For any w:Y — X in W and M € Ob M,

CIS™(M,Y) = C[ST(M, X)

g—wog
18 1njective,
(i11) for each X € ObC, there exists a weak equivalence M — X with M € Ob M.

Then the following are true:
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(1) every object of M is cofibrant,
(2) (C,S, W) is a left Cartan-FEilenberg category, and
(3) the functor M[S™,C] — C[W™!] is an equivalence of categories.

The key distinction is in assumption (i), which says that cofibrant objects in C can be
recognized by checking the lifting property on morphisms f € MorC (by definition,
cofibrant objects are required to have the lifting property on all f € Mor C[S™!], which in
general would mean working with paths of morphisms in C). Thus, this hypothesis of the
theorem make it easier to identify a subcategory of cofibrant models. Most of the work in
the following section is verifying the hypotheses (i) and (ii), so that we can apply the

conclusion to DGCA and the class of n-equivalences.

3.2 APPLICATION TO n-EQUIVALENCES IN DGCA

In this section we work over a field k of characteristic 0. We shall apply the above formalism
to the category DGCA. Let DGCA, denote the full subcategory of DGCA consisting of
cohomologically connected dgc algebras (that is, dgc algebras A such that H°(A) = 0).

Let W, be the class of cohomological n-equivalences and construct DGCA[W, '], as
described in section above. Let S be generated by the congruence ~, which is the
equivalence relation on DGCA (A, B) transitively generated by homotopy equivalence ~ of
dg algebra maps.

Unlike the axioms for weak equivalences in model categories or similar axiomatic
approaches to homotopy theory, W,, does not have the two-out-of-three property. In
general, a class of morphisms W in a category is said to have the two-out-of-three property
if for any composable morphisms f and g of the category, any two of f, g, or go f
belonging to W implies the third morphism belongs to W as well. However, W,, does

satisfy two out of the three conditions of the two-out-of-three property.
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Lemma 2. Let f and g be composable morphisms in DGCA.

(i) The class Wy, is closed under composition, that is f,g € W, implies go f € W,,.

(i1) If go f and g are n-equivalences, then f is also a n-equivalence.

Proof. (i) This follows from the definition of n-equivalence since isomorphisms and

monomorphisms are closed under composition.

(ii) In general, if g and g o f are isomorphisms in a category, then so is f. Similarly if g
and g o f are monomorphisms in a category. The lemma follows from applying these

facts to H'(f) for 0 <i < n and H""(f), respectively.

We recall the homotopy relation for differential graded algebras. Recall that A(t, dt)
denotes the free dgc algebra generated by ¢ in degree 0 and dt in degree 1 with differential
d(t) = dt. In particular, H°(A(t,dt)) = k and H'(A(t,dt)) = 0 for i > 0. Moreover, A(t, dt)
has two augmentations g, 1 : A(t,dt) — k where ¢;(t) =i and ¢;(dt) = 0 (in short, the
evaluations t — 0,1).

Definition 8. Let fy, fi : A — B be two dg algebra morphisms. A homotopy between fy
and f; is a morphism H : A — B ® A(t,dt) such that eg o H = fy and €1 0 H = f;. In this

case, we say fo and f; are homotopic and write fo ~ fi.

We will be mainly interested in homotopic maps having a Sullivan algebra as the

domain because of the following results.
Proposition 2. Let (AV,d) be a Sullivan algebra and A any dgc algebra.
(a) If fo, fr : AV — A are homotopic maps of dg algebras, then fi = ff, that is fo and f
induce the same map on cohomology.
(b) On the set DGCA(AV, A), ~ is an equivalence relation. We denote the set of
homotopy classes of maps by [AV, A].

Proof. These are Propositions 12.7 and 12.8 in [FHTO1]. O
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3.2.1 LIFTING LEMMA

Recall the following definition from Chapter

Definition 9. A n-Sullivan algebra is a Sullivan algebra (AV,d) generated in degrees < n,

ie. VI=0 for ¢ > n.

Let nSull denote the full subcategory of DGCA whose objects are n-Sullivan algebras.

The following lifting lemma proof is adapted from [FHTO0I] to work for n-equivalences.
Lemma 3 (Lifting Lemma). Let n: A — B be a n-surjective cohomological n-equivalence
and let f : AV — B be a dg algebra map, where (AV,d) is a n-Sullivan algebra. Then there
exists a lift f: AV — A such that f =no }’V

A
f/i

n

Proof. Because (AV,d) is a Sullivan algebra, we can write it as an increasing union of
graded vector spaces V' (0) C V(1) C --- such that V(k) = V(k — 1) & Vj, where
d(Vi) € AV (k — 1). We construct f inductively.

Assume f has been constructed on (AV(k),d) and that f =no f. Let v € Vi, and
note that degv < n. Since 7 is n-surjective and degv < n, there exists an a’ € A such that
na’ = fv. Moreover, dv € AV (k) by the Sullivan condition, and so fis defined on dv. In

fact, fdv is a cocycle in (4, d) since
dfdv = fd*v = 0.

Hence, we have that n*[fdv] = f*[dv] = f*0 = 0, which implies that [fdv] = 0 by the
assumption that n is an n-equivalence and deg(dv) < n + 1. So there is some a” € A such
that da” = fdv.

Our goal is to show that we can choose a single a € A that satisfies both the equations

na’ = fv and da” = fdv from above. Start by choosing a’ as before, but choose a” € A such
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that da” = da’ — fdv. We can do this since the class [da’ — fdv] is in kern, = 0:
nda' = dna = dfv = fdv = nfdv = n(da’ — fdv) =0.

It follows that dna” = 0 (by the equation above). Thus, Lemma [1| says there exists a
cocycle z € A and element a” € A such that n(a”) = nz + dna"” = n(z + da").
Set 2z’ = z + da", which is a cocycle in (A, d), and set a = a’ — a” + 2. Now a should

satisfy the two necessary equations for fv to be well-defined if we set fo = a:
na=nad —a" +2)=nd —nld —-2)=fv—-0= fv
and
da=d(a —a"+2)=d(d —d") = fdv.
Therefore, we can extend fto V(k + 1), completing the induction. O
Now we work towards establishing the more general lifting property removing the
n-surjectivity condition.
Remark 3. In the following lemma, we will need the fact that cocycles of the dgc algebra
B ® A(t,dt) for any dgc algebra B can be put in the form b® 1 or b ® fdt, where b is a
cocycle in B and f = f(t) is a polynomial in ¢ with coefficients in k (so fdt represents an

arbitrary degree 1 element of A(t,dt)). Furthermore, a cocycle b ® f(t)dt is actually a

coboundary since if F' is any antiderivative of f, then
d(-DYpe F) = (-1)ldbe@ F+ b dF =b® fdt.

Thus, any nonzero cohomology class is represented by a cocycle of the form b ® 1. Indeed,

the inclusion B — B ® A(t,dt), b+— b® 1 is a quasi-isomorphism.

Lemma 4. Let n: A — B be a n-surjective cohomological n-equivalence. Let P be the pull

back in the diagram below:

P T Ax A
ml ann
B & A(t, dt) BxB

(1peo,1per)
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Finally, let p: A® A(t,dt) — P be the map induced by:
(1aco,1ac1) : AQA(t,dt) > Ax A and n®id: A® A(t,dt) - B ® A(t,dt)
Then p = (n ®1id, 14g¢, 14€1) is also a n-surjective n-equivalence.

Remark 4. The above lemma provides the same result as Lemma 2.18 in [Cirl5], where the
fiber product we call P is called the double mapping path P(n,n) in [Cirld]. In this context,
Cirici uses a formalism of P-categories, which are categories with a functorial path P and
classes of weak equivalences and fibrations satisfying axioms sufficient for doing homotopy
theory. Lemma 2.18 is then needed for the same reason as we need below in the proof of
lifting property, namely to lift homotopies through a trivial fibration. The analysis in this
work can be seen through this lens as well, indeed Cirici uses DGCA with the path
P:A— A® A(t,dt) as an example of a P-category with the usual weak equivalences and
fibrations, that is quasi-isomorphisms and surjections, respectively. However, weak
equivalences in [Cirl5] are assumed to have the two-out-of-three property, and Lemma 2.18
uses the two-out-of-three property in a way that the class of cohomological n-equivalences
does not satisfy. However, as we will see below in the proof of {4, the result of Lemma 2.18

in our context can be checked directly without reference to the two-out-of-three property.

Before proving the above lemma, we will characterize the coboundaries in P.

Lemma 5. The coboundaries in P are of the form (b® fdt, z, z") where b is a cocycle in B,

f is a polynomial in t, and z,z" are cocycles in A.

Proof. To see this, we first show that if (0,0, da) € P for some a € A, then (0,0, da) is
indeed a coboundary. The compatibility condition on (0,0, da) € P means that nda = 0,
and so by Lemma [I| there is a cocycle z € A and element a’ € A with na = n(z + da’). Then
(n(a) ® 1,z 4+ dd’, a) is easily checked to satisfy the compatibility condition for P and
din(a)®1,z+dd,a) = (0,0,da). The same argument shows that if (0,da,0) € P, then

(0, da,0) is also a coboundary.
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Now we consider an element of the form (b ® fdt, z, 2') as in the claim. The
compatibility condition for (b ® fdt, z, 2') being in P implies that n(z) = 0 = n(z'), and so
(b® fdt,0,0), (0, z,0), (0,0, z") are all elements of P. So it suffices to show that
(b® fdt,0,0), (0,z,0) and (0,0, z') are both coboundaries. For (b ® fdt,0,0), if F' is an
antiderivative of f, then (b® F, F(0), F'(1)) is in P (n is the identity on the underlying field
k) and d(b® F, F(0), F(1)) = (b® fdt,0,0). To see that (0, z, 2’) is a coboundary, note that
n(z) = n(z') = 0 implies that z = da and 2’ = da’ for some a,a’ € A since 7 is a
n-equivalence. Thus, (0, z,0) = (0, da,0) and (0,0, z') = (0,0, da’) are coboundaries by the

special case considered above. O

Proof of Lemmalj. First we check that p is n-surjective. It suffices to find preimages for

elements in P of the form (b® 1,a,d’), (b@t* a,a’), and (b @ t*dt,a,d’) for a,a’ € A", and

b € B=" (except in the third case, where degb < n) since these elements linearly span P.
For (b® 1,a,a’) € P, we have by definition of P that b = n(a) = n(a’). Then the

element a ® (1 —t) +d ®t € A® A(t,dt) is a preimage of (b® 1,a,ad’):

pla®@ (1—t)+d @t)=(nla)® (1 —1t)+n(a) @t,aze(l — t) + a’eo(t), ac1(1 — t) + a’eq(t))
—(b®(1—t)+b®t,a+0,0+d)

=(b®1,a,d)

Similarly for an element of the form (b® t*,a,a’) with k > 0. This satisfies n(a) = 0 and
n(a’) = ¢ by the construction of P, and so a ® (1 — tF) + a’ ® t* is easily seen to be a
preimage again. Finally, suppose we have (b ® t*dt, a,a’) € P with b € B<" and k > 0.
Again using the construction of P, we have that n(a) = n(a’) = 0 (since ¢y and £, both
map dt to 0). Since 7 is n-surjective, we can choose a” € A such that n(a”) = b. Now
a" @tFdt +a® (1 —t) +a’ @t can be seen to be a preimage of (b® t*dt, a,a’) under p. This
establishes the n-surjectivity of p.

Now we establish that p is a n-equivalence. For injectivity of p*, suppose p*[z ® 1] =0

with z € A a cocycle. Since p(z ® 1) = (n(2) ® 1, 2, 2), p*[z ® 1] = 0 means in particular
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that z is a coboundary in A. So there is a € A and such that da = z, and thus
d(a® 1) = z® 1. Note that p* is in fact injective in every degree.

It follows from Remark [3| that cocycles in P are of the form (b® 1, z,2") or
(b® fdt,z,z") where b € B and z,z’ € A are all cocycles and f is a polynomial in ¢. The
lemma directly above shows that (b ® fdt, z, 2) is a coboundary. So to check surjectivity of
p* it suffices to see that cocycles of the form (b ® 1, z, 2’) have a cocycle preimage where
6], 2], |2'| < mn. As an element of P, (b® 1, z,2’) € P implies n(z) = n(z’) = b. In particular,
n*[z] = n*[#'], which implies 2’ = z 4 da for some a € A by the injectivity of n*. Then z ® 1

is a cocycle of A ® A(t,dt) and
pPrlell=[nelz2) =[belz2)] =[] z2)

since 2/ = z + da implies that (b® 1,2,2') — (b® 1,2,2) = (0,0,da) (so p(z ® 1) and

(b® 1, z,2') differ by a coboundary). This shows that p* is surjective in degrees < n. O

With the previous two results, Lemmas [3] and [ the following more general lifting
property (removing the n-surjectivity condition) can be proven by formally following the

proof in [FHTOI].

Theorem 4 (Lifting Property). Let n: (A,d) — (B,d) be any cohomological n-equivalence
and let f: (AV,d) — (B,d) be a morphism from a n-Sullivan algebra (AV,d). Then there
exists f : (AV,d) — (A,d) such that no f ~ f. Consequently, composing with n induces a
bijection

ny : [AV, Al = [AV, B, n4(g) =nog.

Proof. Because we have the previous lifting lemma [3] we can follow the same argument as
in Proposition 12.9 of [FHT01]. We begin by assuming 7 is n-surjective, in which case the
previous lifting lemma implies that 7, is surjective. To prove injectivity, suppose we have
fo, f1 : AV — A such that no fo ~no fi. Let H: AV — B ® A(t,dt) be a homotopy from
no fotono fi. Let P and p: A® A(t,dt) — P be as in the above lemma [ The diagram
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below commutes:

AV (vafl) A X A
Hl j(nm)
B&A(td) B x B

So there is an induced map H = (H, fo, f1) : AV — P. Since p is a n-surjective
n-equivalence by Lemma [4] we can lift the map H to a map H:AV =5 A® A(t,dt) by

lemma |3 such that H = po H in the following commutative diagram:

A® A(t,dt)
P
AVAe———P— -~ AxA
H 1

It follows that (gg,e1) 0 H = m o H = (fy, f1) (since H = (H, fo, f1)), i.c. that g0 H = f,
and e, 0 H = f1- Therefore, we have shown that no fy >~ no f; implies fy >~ f;.

The general case where the n-surjectivity hypothesis on 7 is dropped follows from the
above special case using the same argument as in [FHT0I] using their “surjective trick”
which factors 7 into A 2 A®RE-S B , where \ and ¢ are quasi-isomorphisms and o is
surjective. By reviewing the construction of £ and o, one can easily see that o is a

surjective n-equivalence when 7 is a n-equivalence. O]

Now, we show that morphisms between n-Sullivan algebras in the localized category
DGCA[WW, ] can be regarded as homotopy classes of maps as opposed to equivalence

classes of zig-zags in DGCA..

Lemma 6. On the categories nSull and DGCA, the class S of equivalences generated by

the congruence ~ is compatible with ~.
Proof. See [Cirl5]. O

Thus, it follows from Proposition [1] that DGCA[S™!'] 2 DGCA/~ and
nSull[S~! DGCA] & nSull/~.
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The lifting property, Theorem [4] verifies that hypotheses (i) and (ii) of Theorem [3 hold,
where M = nSull and C = DGCA,. Hypothesis (iii) of Theorem [3| follows from the
existence of n-Sullivan models for every connected dge algebra (Section [2.2)). Therefore,
using the above compatibility lemma and Theorem [3, we have the following equivalence of

categories.

Theorem 5. The following categories are equivalent:

DGCA([W, '] ~ nSull[S™', DGCA(] = nSull/ ~

3.2.2 THE FINITE DETERMINATION PRINCIPLE

For a connected dgc algebra A, let [A],, denote the cohomological n-type of A, that is the
collection of dgc algebras that are n-equivalent to A. As mentioned in Section [2.2] every
dgc algebra A has n-minimal and minimal models which are unique up to isomorphism. We
will denote the minimal model of A by p: M4 — A and the corresponding n-minimal

model Ma(n) C M by p, : Ma(n) — A.

Remark 5. Since every connected dgc algebra has a n-minimal model, if nMin denotes the
full subcategory of n-minimal dgc algebras, then (DGCA,, S, W,,) is also a Sullivan
category in the sense of [GNPRI10], and we can replace nSull with nMin in the above
Theorem [5l

Proposition 3. Suppose A and B are isomorphic in DGCA[W. Y], i.e. there is a path of
cohomological n-equivalences between A and B. Then there is an isomorphism
M4(n) — Mpg(n). Consequently, any n-type of a dgc algebra can be represented uniquely up

to isomorphism by a n-minimal dgc algebra.

Proof. 1t suffices to check that if n : A — B is an n-equivalence, then M4(n) = Mg(n).
Since M4(n) — A — B is a composition of n-equivalences, we see that M4(n) — B is a

n-minimal model for B. Since n-minimal models are unique up to isomorphism, it follows

that Ma(n) = Mg(n). O
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By the above proposition, we can fix a n-minimal algebra M (n) for a particular n-type
such that every dgc algebra A in that n-type has a n-equivalence M (n) — A. This leads us

to make the following definition.

Definition 10. For a dgc algebra A and n-minimal model p,, : M(n) — A, let H._(A)
denote the image of H*(M(n)) under p, for i <n+1 and let H' _(A) =0 for i > n + 2. We

refer to H,, as the cohomology of the n-type [A],.

Clearly, H' (A) = H'(A) for i < n since n-equivalences induce isomorphisms in these
degrees. However, H"'(A) and H""'(A) do not agree in general, and so we are left to
wonder what part of degree n 4+ 1 cohomology is invariant under any n-equivalence. The
subset H"1(A) can be regarded as the largest invariant subset. Indeed, if n: A — B is a
n-equivalence and p : M4(n) — A and o : Mg(n) — B are n-minimal models, then 7 lifts

to an isomorphism 77 : M4(n) — Mp(n) such that

Ma(n) —2= Mg(n)
pl l
A B

commutes up to homotopy. However, homotopic maps induce the same map on cohomology
(Proposition , and so the digram commutes after applying H""!. In particular, this

means that
' (HytH(A)) = n'p"(H" ™ (Ma(n))) = "7 (H" " (Ma(n))) = 0" (H" (Mp(n))) = Hy ' (B).

This shows that H,.([A],) is independent (up to isomorphism) of the choice of
representative A of an n-type. If M (n) is the n-minimal representative of a n-type, then
the cohomology of the n-type is by definition H="*'(M(n)), and so is the largest invariant
subset because id : M(n) — M (n) is a n-equivalence that induces the identity on
H=""1(M(n)). A slogan for this result is that n-minimal algebras have “minimal”

cohomology in degrees < n + 1 among representatives of their n-types.
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Remark 6. As mentioned above, HS"(A) = H="(A), but H"T'(A) is only a subset of
H"1(A) in general. If « € H""'(A) is decomposable, then « is a linear combination of
products of lower degree cohomology classes, and since these lower degree classes are all
preserved by n-equivalences, a will be preserved as well by the injectivity condition on
H"™" for n-equivalences. Therefore, H™1(A) always contains the subset of decomposable
cohomology. However, for some n-types, there may also be indecomposable classes in

H 1 (A). We will prove in Chapter 4| that if « € H""!(A) is represented by a Massey
product cocycle (which represents an indecomposable class in cohomology, in general), then
« is preserved by any n-equivalence, i.e. « € H'1(A).

In fact, we expect H™1(A) to coincide with ker (* = (H' - H") ® K in degree n + 1 in
the notation of [HS79], where ¢* is the dual of the Hurewicz map. This indicates that
H™1(A) is spanned by decomposable classes and those represented by matric Massey
products based on Remark 8.4(2) in [HS79] (see [May69] for details on matric Massey

products).

We give the following result as an analogy to the “finite determination” statement in
[GM13, page 71] that for simply connected CW complexes of dimension n, the construction
of the Postnikov tower for X is formal after the nth Postnikov section (though the
statement below does not require simple connectivity). It is a consequence of the

uniqueness of minimal models.

Proposition 4. Suppose that M(n) is a n-minimal dgc algebra, and let M be a minimal
algebra such that H""Y (M) = H"™Y(M(n)) and H' (M) =0 for i > n+2, then M is unique

up to isomorphism with these properties.

Combined with the above ideas, we can write a more precise “finite determination

principle.”

Theorem 6. If A and B are dgc algebras with of the same n-type with n-minimal model

M(n). Moreover, assume that H"1(A) = H""\(M(n)) = H""(B) and that
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H(A) = H(B) =0 fori>n+2. Then A and B have isomorphic minimal models, i.e. are

of the same rational homotopy type.

Proof. By assumption we have that A and B have the same cohomology in all degrees.
Moreover, we can regard the n-minimal models M (n) — A and M(n) — B as the nth
stage in the construction of M4 and Mpg. So M4 and Mp are minimal algebras constructed
from M (n) satisfying H=""!' = H="*1(M(n)) and H (M) = 0 for i > n + 2, and so

M, = Mp by the above proposition. O

Remark 7. (1) Even though we are assuming A and B have isomorphic cohomology in
the above theorem, a priori the isomorphism on cohomology is realized though a path
of n-equivalences, where the intermediate dgc algebras in the path may have
cohomology in higher degrees (as the n-minimal model does typically). However, the
conclusion that A and B have the same rational homotopy type means they can be
connected by a path of quasi-isomorphisms (where the intermediate dgc algebras

must therefore have the same cohomology as A and B).

(2) A weaker version of the above theorem would be that H'(A) = HY(B) = 0 for
i > n+ 1. In this case, it follows that H"*!(M(n)) = 0 and the same conclusion
holds, and so a theory based on n-quasi-isomorphisms would give the same result. So
the above theorem shows that we can detect some “homotopical information” in

degree n + 1 with n-equivalences that n-quasi-isomorphisms would not be able to.

The above results show that just as in rational homotopy theory (i.e. localizing the
class of quasi-isomorphisms), the n-minimal models of a n-type contain all the “homotopy
theoretic” information of the n-type. Moreover, as the first remark above indicates,
n-equivalences allow for a wider choice of models of a dgc algebra with finite dimensional
cohomology. While the full minimal model M — A of a dgc algebra A with finite
cohomology is a quasi-isomorphism, M will often require an infinite number of generators,

whereas a n-minimal model of A will be finitely generated, at least if H(A) is simply
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connected and of finite type. For example, for a fixed graded commutative algebra H, we
can consider the space My of all rational homotopy types of dgc algebras that have
cohomology isomorphic to H. When H*® = 0 for i > 0 and is of finite type, then the above
analysis indicates that we can classify these rational homotopy types by their n-minimal
models as opposed to their full minimal models, and since the n-minimal models are
finitely generated in general, the determination of My should be simpler.

To illustrate the above comments concerning My, consider the following examples
from [HS79]. In both cases we consider a commutative graded algebra H such that H' = (
for ¢ > n, for some n. We then show that the n-types that have cohomology H determine

the rational homotopy types with cohomology H.

Example 1. Let H = H(S%V 5% k) (recall that k is a field of characteristic 0 in this
section). We can see from the finite determination principle that My consists of a single
rational homotopy type, i.e. that H is intrinsically formal. Then H° = k and and H? = k2,
with H® = 0 otherwise. Thus, if T and 7 denote generators of degree 2 for H, then
p2 : A(z,y) — H is a 2-minimal model where |z| = |y| = 2, dv = dy = 0 and pox =7,
p2y =7 (note that we think of H as a dgc algebra with differential d = 0 when speaking of
any n-minimal model for it). Because of the small size of this example, this is clearly the
only 2-minimal algebra M such that cohomology H=*(M) = H(S? V S?). In other words,
there is a unique 2-type with cohomology isomorphic to H(S? Vv S?) through degrees < 2,
represented by the 2-minimal algebra A(z,y). By the finite determination principle,
Theorem [0, we can conclude that there is a single rational homotopy type with cohomology
isomorphic to H, i.e. we recover the fact that S? vV S? is intrinsically formal (which is
verified by [HS79] via their obstruction theory).

Note that the minimal model p : M — H would be infinitely generated. This can be
anticipated from Hilton’s Theorem [Hil55], which implies that S? vV S? will have infinitely
many nonzero rational homotopy groups, along with the fact that the generators of a

minimal model of a space (say, simply-connected) are in one-to-one correspondence with
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rational homotopy classes of the space. But we can get a feeling concretely for why M will
be infinitely generated. Note that A(x,y) is not quasi-isomorphic to H. Indeed, H(A(x,y))
has much higher cohomology that needs to be killed as we build the stages of the full
minimal model for H. For example, [z?], [zy], [y*] € H*(A(x,y)) are independent nonzero
cohomology classes, and so for the 3-minimal model p3 : M (3) — H, we would add degree 3
generators A, B, C such that dA = 2%, dB = zy, and dC = y? and p3A = p3B = p3C =0,
giving the 3-minimal algebra M (3) = A(x,y, A, B, C). However, H°(M(3)) is now
two-dimensional, spanned by the classes [-Ay + zB] and [—By + xC] (which are
representatives of the Massey triple products (z, x,y) and (z,y,y), respectively). So for the
4-minimal model, two more degree 4 generators, ' and F' are added to kill this cohomology
in degree 5: dF = —Ay + xB and dF = —By + C' and mapped to 0 under p4. This process
of adding generators to kill higher cohomology continues to build the full minimal model of
H, but we avoid it by considering the 2-type of H and invoking the finite determination

principle.
The following example builds on the one above.

Example 2. Let H = H(S?V S? Vv S°). In this case, H? = k? and H® = k, and all products
are 0. Let 7 € H® denote a generator. Because H is concentrated in degrees < 5, we shall
consider all 5-types that have cohomology isomorphic to H in degrees < 5. Once again, any
distinct 5-type will give a distinct rational homotopy type by the finite determination
principle. The 5-minimal model ps : M (5) — H is built from the 4-minimal algebra

A(z,y, A, B,C, E, F) of the previous example by adding a generator z of degree 5 with

dz = 0 with psz = Z. So the 5-minimal algebra (A(z,y, A, B,C, E, F, z),d) represents the
5-type of the algebra H, and corresponds to the the formal rational homotopy type of H.
In [HS79], it is shown using Halperin-Stasheff’s filtered models that there is one other
rational homotopy type having cohomology isomorphic to H, i.e. that My is a two-point
space. Specifically, consider the dgc algebra (A(z,y, A, B,C, E, F, z), D) where D = d on

each generator except E and F', where DE = dF + ¢1z and DF = dF + coz where
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1,02 € k are not both 0. With the new differential D, (A(x,y, A, B,C, E, F, z), D) is no
longer a minimal algebra, but it is still a 5-Sullivan model, and it is shown in [HS79] that
for any choice of ¢, ¢y with (cq, ¢2) # (0,0), the resulting algebras are isomorphic, and so
they represent the same 5-type. Incidentally, a 5-minimal model for the non-formal space is
(A(z,y, A, B,C, E),d), where the generator F' in the 4-minimal model of H is left out to
allow one of the degree 5 Massey product cocycles mentioned in the preceding example to
“survive.” So once again, by the finite determination principle, the fact that there are
exactly two 5-types whose cohomology through degree 5 agrees with H implies that there
are two rational homotopy types with cohomology types having cohomology H.

To compare with the approach in [HS79], once they establish that the filtered models
mentioned above represent the same rational homotopy type, they must also argue that
perturbations of the full minimal model of H do not represent any other rational homotopy
types since the full minimal model will have generators of arbitrarily high degree, and thus
the possibility for more perturbations than the ones that can be seen on the 5-model. They
are able to prove their claim using their obstruction theory. From our point of view,

however, the 5-Sullivan models are sufficient to distinguish the distinct rational homotopy

types.
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CHAPTER 4

MASSEY DECOMPOSABLE COHOMOLOGY

Under our concept of cohomological n-equivalence, it is clear that the cohomology through
degree n is an invariant among representatives of a cohomological n-type since
n-equivalences are defined to induce isomorphisms on cohomology through degree n.
However, the injectivity condition in degree n + 1 makes it less clear what subset of H"*! is
invariant under n-equivalence. In general, if « € H""1(A) for some connected dg algebra A
is decomposable, then « is a linear combination of products of lower degree cohomology
classes, and since these lower degree classes are all preserved by n-equivalences, o will be as
well. However, there are some cases when « will be preserved under any n-equivalence even

if it is indecomposable as an element of the algebra H(A), e.g. when « is a Massey product.

4.1 REVIEW OF MASSEY PRODUCTS

In this section, we only assume k is a commutative ring with unity. We also do not assume
the dg algebras are commutative. First we recall the definition of p-fold Massey product

(following [Kra66], with different indices). For a € A, @ = (—1)lla.

Definition 11. Let (A, d) be a dg algebra and let a;; € A for 1 <i < j < p excluding
(7,7) = (1,p) be elements such that a; is a cocycle representative of a cohomology class a;

and

7j—1
da;; = E i Qf41,5-
k=i
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The p-fold Massey product is the set of cohomology classes denoted by (ay, ..., a,) that are

represented by the cocycles
-1

3

Qi Okt1,p
1

i

for some choice of elements a;; as above. We say that (a, ..., a,) is trivial or vanishes if it

can be represented by the 0 cohomology class.

The degree of a p-fold Massey product as above is

24+ > _(Jail —1) =2—=p+ 3" |a;|. When convenient, we will write

j—1
Hij = Zaikak—f—l,j
k=i
so that da;; = ;. Notice that j;; is a representative of (a;, ..., a;).

We also introduce the following refinement of the notion of a defining system.

Definition 12. Let a; € H(A,d) for 1 <i <p. For 1 </ <p—1, an {-stage system for

(ai,...,ap,) is a collection a;; € A for 1 < i < j < p such that j —i < ¢,
(1) ay is a cocycle representative of the cohomology class a;,

(2)

j—1
da;j = Zaikak—i—lgﬂ
k=i
We write (ay,...,a,), for the set of (-stage systems for (ai,...,a,) (we show below the

sense in which this is independent of the choice of cocycle representatives).

Notice that whereas (ay,...,a,) is a set of cohomology classes, (a1, ..., ap), is a set of

collections of cochains.

Example 3. (i) A 1-stage system for (as,...,a,) is nothing more than a choice of

cocycle representatives (a1, .. ., ap,) for these cohomology classes.

(ii) A (p— 1)-stage system is a defining system in the above sense.



33

It is illustrative to picture /-stage systems as partial upper triangular matrices. For

example, a 2-stage system for (ay, as, as, as) would be

a1; a9 k *
Qoo Q23 %

33 Aa34

Qg4

Given an (-stage system, we can form the (¢ 4+ 1)-fold Massey product representatives
pi; for j —i = €. We can then extend the (-stage system to a (¢ + 1)-stage system iff there
exist a;; € A such that da;; = p;j, i.e. iff we can fill in the fth super-diagonal in the above

matrix (where the Oth super-diagonal means the diagonal a;;).

4.2 LEMMAS ON DEFINING SYSTEMS

The following lemma generalizes Kraines’s theorem that changing the cocycle
representatives of a Massey product by coboundaries will not change the Massey product,
i.e. the Massey product is independent of the cocycle representatives of the cohomology
factors ay, ..., a, (compare [Kra66]). Given an (-stage system, we use similar formulas to
show that we can make a new f-stage system if we start by changing one entry by a

coboundary.

Lemma 7. Let (a;;) be a (-stage system for (ai1,...,a,) in a dg algebra A, and let

/

Uy, = Qn + db for some b € A. Then we can construct a (-stage system (a;;) by the

following formulas:
(i) ai; = aij if i #m and j # n,
(i1) al, = ain + @im—1b for i <m,

(i1) ap,; = Amj — ban1; for j > n.
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Moreover, the Massey Product cocycles p; for the modified system (a’ij) are either identical
or cohomologous to p;; (in fact, ji; = p; if and only if i # m and j # n). Notice that only

entries in the column and row above and to the right of a,., are modified.

Proof. We will write y;; = S ddl, 11+ It is clear that condition (1) of Definition [12]is
satisfied by (aj;) since either a;; = a;; or ay,,, = @mm + db (in the case n = m).

Keeping in mind that only entries in the column and row above and to the right of a,,,
are modified, p;; = ju;5, so daj; = da;j = pi; = pi; if i > m or j <n. We will check that
daj; = pj; when ¢ <m and j > n in three cases: (i) i <m and j > n, (ii) j = n, and (iii)

i = m. Note that the difficulty here is that in the formula for y;; now contains modified

and unmodified entries of the original (-stage system (a;;)

(i) In this case, we show that j;; = p;; and that da;; = p;;. In this case, the sum for y;
contains only two modified terms, @; ,, ,a;,; and @, a;, ., ;. These modified terms

simplify as

—/ / — ! — T — — T
A m—1mj + AinQpy1,5 = ai,m—l(amj - ban—i—l,j) + (am + ai,m—lb)an+1,j

= Qi;m—10mj — Cign—100n41j + Qinlng1j + Qim—1b0n11 5
= Qjm—10mj + Qinlpi1,,

i.e. the modified terms simplify to match the unmodified terms in p;;. Therefore, we

have that p;; = u;; Since aj; = ay;, this verifies that daj; = da;; = py; = ;.



35

(ii) In this case, the only factors in the expansion of yuf, are aj,, for i +1 < k < m and

o
ay,., = Gmn + db. Thus, we have
n—1
/ _ _/ /
Hip, = § :CL ikak+1,n
k=i
m—2 n—1
= g AikQpt1 T @ im—10p, , + g @i k1,0
m—2 n—1
= Qi (Qkt1,0 + Qr1,m—10) + @i m—1(@mpn + db) + E ik Qht1,n
m—2
= Win + @i m—1db + E QikQkt1,m—1b
k=i

= Min + Wim—1db + flim—1b

= fin + i m—1db + da; ;1.
Now it is clear that dal, = p

da;, = d(ain + @ m-1b) = dai, + da; ;m-—1b+ @jm-1db = 1,
Note that this also shows that pf, = i, + d(@;m—1b).

(iii) This is similar to the above case.

]

Now we see one way we can control (-stage systems under cohomological n-equivalence.

Theorem 7. Let f: A — B be a cohomological n-equivalence of connected dg algebras, and
let E = (b;;) be a (-stage system in B for by,...,b, € H*(B). Then there are a (-stage
systems D = (a;;) and E' = (b};) in (A, d) and (B,d), respectively, such that f(D) = £’

and the Massey product cocycles for E and E' are cohomologous.

Proof. We proceed by induction on k = j — i. Specifically, we show that for k=1,...,/—1
there exists a k-stage system Dy = (a;;) in A and an (-stage system E’ = (b;;) such that

f(Dy) = E'" and the (k + 1)-fold and lower Massey product cocycles for £’ are
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cohomologous to the corresponding ones for E. For k = 1, this amounts to choosing
cocycles a;; € A for 1 <i < p such that f(a;;) = b; + dey; for some cochains ¢; € B. This is
possible because f is an n-equivalence. We take E’ to be the (-stage system obtained by
repeatedly applying the previous lemma to modify E. As that lemma shows, the Massey
product cocycles for £’ are cohomologous to those of E.

Now assume that the claim holds for some value k£ where 1 < k < ¢ — 1. First we show
that Dy can be extended to a (k + 1)-stage system. Assume that f(Dy) = E, that is
f(ai;) = b;j for j —i < k. In particular, because f is a dg algebra homomorphism
f(vij) = pij, where v;; is the Massey cocycle for Dy. Since E is an f-stage system and
k <€ —1, we have b;; € E such that db;; = ;; for j —i = k + 2. Therefore, f(v;;) = db;j,
which means that [v;;] is in the kernel of f, for j —i = k + 2. Since f is an n-equivalence,
this kernel is trivial, and so v;; = da;; for some a,;; € A for j — i = k + 2, which extends Dy,
to a (k4 1)-stage system. Note that df (a;;) = f(da;;) = p;; = db;j, and so
f(aij) = b;j + dc;; for some ¢;; € B. Once again, by repeatedly applying the previous lemma
about modifying defining systems by coboundaries, we can construct an /-stage system E’
whose (k + 1)-diagonal is b;; + dcg;, and hence satisfies f(as;) = bj; for j —i <k + 1. This

completes the induction. O

4.3 MASSEY DECOMPOSABLE ELEMENTS OF COHOMOLOGY

In light of the above propositions, we introduce the following definition.

Definition 13. Let n > 0 and (A, d) be a dg algebra. The Massey decomposable elements
of H(A) are cohomology classes in the span of classes that are decomposable or are

representatives of a Massey product. This defines a subalgebra of H(A) that we will denote
by H Mas(A)-

As a corollary to Theorem [7] on defining systems, we have the following.
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Theorem 8. Let f: (A,d) — (B,d) be a cohomological n-equivalence between connected dg
algebras. Then f* induces a bijection on the Massey decomposable elements in degrees

<n-+1.

Proof. If § € H"™(B) is decomposable as an element of the algebra H(B), then 3 is a
linear combination of the cohomology factors from degrees 1,2, ..., n. Each of these lower
degree factors has a unique preimage under f* since f* is an isomorphism in these degrees,
and so the corresponding linear combination of preimage factors in H"™! will be a
preimage of 8. This preimage is unique because f* is injective in degree n + 1.

Now suppose [ can be represented by a Massey product cocycle. For any choice of
defining system for /3, Theorem [7] provides a defining system for a Massey product in A
whose image is cohomologous to 3. Conversely, any Massey product H"1(A) is mapped to
a Massey product in H""!(B) since as an algebra morphism, f preserves the equations

that define Massey products. O

Remark 8. (1) The reason for the term Massey decomposable is that o € H(A) can be
indecomposable with respect to the algebra multiplication on H(A), but should still
be considered “decomposable” if it represents a Massey product. Specifically, since a
Massey product in degree n + 1 consists of information (i.e. defining systems) from
degrees < n, it should be considered “decomposable,” even though the cohomology
class may actually be indecomposable in terms of the algebra structure on H(A).
Calling these classes Massey decomposable is meant to emphasize that they are

determined in lower degree.

(2) Theorem [8 above shows that Hy;"! is preserved by n-equivalences. When working
over a field of a characteristic 0, as in Section [3.2.2 we defined H,,, to represent the
largest invariant subset of cohomology of a n-type. So Theorem (8] says that
Hypas € Hye. In light of remark [6] in Section [3.2.2] it seems plausible that Hyp,s could

be generalized to include cohomology in the span of classes represented by matric
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Massey products, in which case Hﬁgj ! would presumably be equal to H,,, or in

other words the cohomology preserved by under any n-equivalence would be exactly
Hyp.s if matric Massey products are considered. We leave this possible modification

for future consideration.

Consider the following examples.

Example 4. (1) Let (A,d) = (A(z,y, 2, A, B),d) where de = dy = dz = 0, dA = xy, and

dB = yz, and |z| = 2, |y| = 2, and |z| = 2 (the degrees can be set arbitrarily, but we
choose to be concrete). In this case, the Massey triple product ([z], [y], [2]) is defined
and represented by u = Az +ZB in degree 5. The class [u] is indecomposable with
respect to the algebra structure of H(A) (which is easily seen for degree reasons in
this case since the only other indecomposable cohomology in lower degrees are the
classes [z], [y], and [z]). Thus, [¢] is an example of a Massey decomposable element

that is indecomposable with respect to the algebra structure on H(A).

Note over a field of characteristic 0, A is in fact a 4-minimal algebra and so the
identity A — A is can be regarded as a cohomological 4-equivalence. Thus,

(1] € Hyp,(A) C H? (A) is an indecomposable degree 5 invariant of the 4-type of A.

A similar statement can be made about the 4-minimal model of H = H(S? v S? v §°)
from Example [2]in Chapter [3] There are two indecomposable classes in degree 5
represented by Massey triple products, and so the 4-type of that minimal model has

two indecomposable invariant degree 5 cohomology classes.
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