TCPMISSING: AN INTELLIGENT ANALYTICAL COMPONENT FOR THE
DETERMINATION OF MISSING PACKETS
by
REBEKAH BLACK
(Under the Direction of Walter D. Potter)
ABSTRACT
TCPMissing is a program that evaluates a TCP tracedildetermine the number of
missing packets caused by the application because the sysseranhing on is not fast
enough to capture, process, or store all the packets. Although packefdosstion is
generally computed and reported to the capture program, this infomuaies not get
stored and distributed with the file. An important tool in traffi@lgsis would be an
application that could take an input file and determine the avesagedte caused by the
capture program. In addition to implementing a sequential algorithrsolve this
problem, genetic programming is used to develop a mathematochd! o intelligently
solve the problem of missing packets. The discovered equation enrapled and tested
in order to compare the performance of both methods in computing the number of

missing packets.

INDEX WORDS: Artificial Intelligence, Computer Science, Intrusiortda#ion,
Network Security, Genetic Programming, Transmission Control
Protocol, Evolutionary Computing in Java, Java Packet Capture

TCPMISSING: AN INTELLIGENT ANALYTICAL COMPONENT FOR THE

DETERMINATION OF MISSING PACKETS

by

REBEKAH BLACK

BS, The University of Georgia, 2006

A Thesis Submitted to the Graduate Faculty of The University of GeorgiatialPa

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2006

© 2006
Rebekah Black

All Rights Reserved

TCPMISSING: AN INTELLIGENT ANALYTICAL COMPONENT FOR THE

DETERMINATION OF MISSING PACKETS

by

REBEKAH BLACK

Major Professor: Walter D. Potter
Committee: Daniel M. Everett
Kang Li

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School
The University of Georgia
May 2006

DEDICATION

"It could be a torture chamber or a dungeon or a hideous pit or anything!”
‘It's just a student's bedroom, sergeant.’

‘You see?™ (Terry Pratchett, “Men At Arms”)

| would like to dedicate this thesis to the main philosophers who shaped my
thinking during my time as a graduate student: Kahlil Gibran and Terry Ptaiche
college experience is a time of stretching, and during this period | found the thoughts
Gibran and Pratchett particularly refreshing and endearing, and even humaraus. T
large extent, the adoption of their views affects the way | approach life, eveayHe w
approached researching and writing my thesis. The reader of my thesisangyize the

influence of Gibran or Pratchett. In the words of Gibran,

“And | say that life is indeed darkness save when there is urge,

And all urge is blind save when there is knowledge,

And all knowledge is vain save when there is work,

And all work is empty save when there is love;

And when you work with love you bind yourself to yourself, and to one

another, and to God.” (“The Prophet”)

ACKNOWLEDGEMENTS

This thesis was hard. | would like to thank several people for their help to me.

First 1 would like to thank Don Potter for being my advisor. And for inspiring an
interest in me for the field of Al in my first years at UGA. And for contaiguio mentor
and advise me along the educational path.

| would like to thank Dan Everett for inspiring me in the field of network security
during my first years at UGA. And for all those age-appropriate bevetagéong the
way!

| would like to thank Kang Li for giving me the platform and knowledge and
inspiration to do much of this project. It was during his network security cladfitisat
began this project, and without his intellectual guidance, | would never have had the tools
to finish it.

| would like to thank Kris Kochut for the departmental assistantships. | have
really cherished the opportunity to teach 1301 students during my time as a grad student
And the financial assistance was much appreciated!

| would like to thank Hamid Arabnia for his thoughtful TA assignments. | always
ended up with just the right responsibilities each semester. In addition to thosguties
Arabnia went the extra mile with his open door policy. There was never a moment when
he was too busy. He made time to give students his full attention, and his advice always

demonstrates his innate understanding of the bigger picture.

vi

Brian Smith was an invaluable Al technique resource. He knows his stuff in and
out and is also an excellent and patient teacher. He could intuit exactly avthaioit
understand yet and always knew what direction to point me in.

Mayukh Dass proved to be a huge mentor along the way, always helpful and
supportive. | am always impressed by the thoughtful advice he has to offer on all my
gueries. There is nothing | am doing he has not already done, and done well! Thanks for
being such an inspiration!

| would like to extend my deep appreciation to Dorothy Denning, Rebecca Bace,
and Raven Alder for giving me of their time and allowing me to conduct extensive
telephone interviews with them. They were generous in sharing their wisgdbm a
experiences with me, all of which contributed greatly to this endeavor. | hopetosir pa
cross again in the future.

| would like to thank my grandfather for his financial contributions to “Project
Rebekah Black” over the years. | could never have made it this far without you!

My mom and dad have always been supportive of my goals and dreams. | am glad
that they have been able to live close by in this period of my life so that they cald sha
in much of my experiences. | appreciate how much you put up with in this tumultuous,

changing period of my life.

vii

Page
ACKNOWLEDGEMENTS ... e Vi
LIST OF FIGURES ...ttt e e e e e e e e e nn e e e eees X
GLOSSARY OF TERMS AND ACRONYMS Xi
FORW ARDttt e e et e e e e e st e e e e e e ntnn e e e e e ennnn e e eenens 1
CHAPTER
1 INTRUSION DETECTION. .. .ottt 4
The Importance of Intrusion DeteCtionccooeeviviiiieiiiiicre e, 5
Key Players in Intrusion Detectionccoovviivviiiiiiiiiiiiiie e eeeeee e 8
Current Breakthroughs in Intrusion Detectionccccevvveeiieeeiiieeveeeeeiiinns 23
2 AN ANALYTICAL INTRUSION DETECTION COMPONENT 27
TCP as a Reliable Data Transfer ServiCecccoccvvviveeiiiiiiieeeeee e 28
Implementation of TCPMISSINGcoiiiiiiieicciieeceeeecer e e e eeeeaaeens 30
(O T] [T Vo[35
Special Cases for Packet ANalySIS........ccooviiiiiiieiiiiiiieeeeer e 37
RESUIES . 39
CONCIUSIONS ...ttt e e e e e e e e e e e e 47
3 AN INTELLIGENT ANALYTICAL COMPONENTccoviiiiiiiiiiieeeeeenenn 49
Artificial Intelligence Techniques ShOWCASEccovvvvvvviiiiiiiiiieiieeeeeee, 50
A Genetic Programming Implementation Using ECJ.............cccoevvvvvvvivinnns 52

TABLE OF CONTENTS

viii

R ESUIS ..o e e 69

4 A COMPARISON OF BOTH APPROACHES ..., 74
Ease of Implementation............oooevuiiiiiiii e 75
ol o1 = (o ORI 76
CONCIUSION ...ttt e e s s e e e e 77
REFERENGCES ... et e e e e e e e e e ennnns 78
APPENDICES

A TCPMISSING API DOCUMENTATION

B SELECT CODE FROM THE GP IMPLEMENTATION OF TCPMISSING

(€1 S Yo] (] 1o o 1= 17 USSP 97
MultiValuEdREQIreSSION.JAVAuvvvieiiiiiie e e e e e e e e 102

ECPMISSING.PAIAMScciieieeeeeeeiiiisee e e e e e e e e e e e e e e e e e s e e e e e e eeeeeeaeeeeeennnnnns 106
o - V- 108
OUL.STAL ... 109

ix

LIST OF FIGURES

Figure 1: The depiction of two flows within the dump filedl1lbccvvvvveeeiiinnenn. 39
Figure 2: Representing flow 1 based upon the differemdbd amount of time between
each acknowledgment packet SENt............iiceeeeeecciriiiire e 40
Figure 3: Representing flow 1 based upon the amoumfafmation acknowledged by
each destination host PACKET.............ueiieiiiece e 42
Figure 4: Representing flow 2 based upon the differemdbd amount of time between
each acknowledgment packet SENt............ciceeeeeecciriiiere e 43
Figure 5: Representing flow 2 based upon the amount ohiatown acknowledged in each
consecutive destination host packet...........cccceeeeveeeiiciiiiee e 44
Figure 6: The average number of projected missing paeketemputed by TCPMissing
for 1, 2, 4, and 10 removed packetsS..........ccceveeciiieee e 45
Figure 7: The average number of missing packets as computeggiRissing for 20, 100,
400, and 1000 removed PACKELS...........ceeiiicceeemmceeeeerrreeee e e e ssieree e e e e e ennneeeeammas 46
Figure 8: Representation of ECJ’s genetiC programmisiBY............cccvveereeerrirveeeeeenanns 62
Figure 9: A breeding pipeline conceptualization of thehaws$ used by ECJ to create a
new population from an old ONEceviiicceeeeee e 65

Figure 10: Screenshot of ECJ running on the TCPMissindgimb.............cccccceeeeennee. 68

GLOSSARY OF TERMS AND ACRONYMS

ACK oo, Acknowledgment [Pcccccooiiiiiiiee e Internedtécol
Al o Artificial Intéflence IPSEC Internet Protocol Security
ANN ..., Artificial Neural Network 1Tcccovvveveeennnd Information Technology
APl ... Application Program Interface JPCAPcccccceee.... Java Packet CAPture
ARP ... Address Resolution Protocol NIDSccccocveeenee Network-based IDS
BGP ...cooovvveeee Border Gateway Protocol OOPL Object-Oriented Programming
Language

CS Computereduie

OS Qperating System
DIDS ..o DistributedS

SAR ..o Segmentation and Reassembly
ENIAC Electronic Numerical Integrator

Analyzer and Computer SciTech. US Gov’'s Science and Technology

EOT . End of Transmission SEQ........cccccccviiiiiiinneenn. Sequence Number
ES o, ExpBgtstem SIDS ... Storage-based IDS
FIN e Finish SPAWAR SPAce and WARfare
GA Genetic AlgorithmSRI Stanford Research Institute
GP Genetic ProgrammingSYNcooeeiiiiiiiiieeiiiiieeeeen, Synchronize
HIDS ... Host-based IDSTCP Transmission Control Protocol
HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDS ..., Intrusion Detection System

FORWARD

Intrusion detection systems have evolved into complexrdricate creatures.
They have been given this opportunity because there iseamereasing market for
security solutions from an ever growing Internet threatnBtaough many different
efficient intrusion detection systems currently exisg easy for the setup and
configuration to be forgotten or ignored by system adsnators. In addition, new attacks
are constantly being engineered that can bypass systaritysdeartially because of these
reasons, and the sometimes slow response of humaaspared to computers, artificial
intelligence techniques have become popular in the intrdgtection domain.

The basic premise behind real-time intrusiondtiei is to analyze packets for
malicious patterns as they come off the wire. In @ldiib performing this check as the
first line of defense, it is also common to store nekvinaffic in files for possible later
analysis in case post-attack forensics becomes negessa

Files containing network traffic information egsaty contain all the packets
passing through the network in a certain time frame.dfiles can be stored either as
binary or as text files, and they are usually referred tdasp” or “trace” files.

As Internet speeds increase, it has become possilthe application
performing the capture of the packets to have troubleikgep. When that happens,
certain packets may go missing from the dump file bez#he system was not fast enough

to capture, process, or store all the packets. Thiissel to packets that may be dropped
1

at the network level. Packets dropped at the netweoeh teay be lost due to network
conditions such as congestion. Those packets never ntakéeir destination and require
retransmission whereas “missing” packets do not be¢hegeare only missing from the
trace file, not the actual network traffic stream.

Although packet loss information is generally coragu#nd reported to the
capture program, this information does not get stored iagtribdted with the file. An
important tool in traffic analysis would be an apgiima that could take an input file and
determine the number of missing packets caused by theeapogram. Knowing this
information is important because it would affect thexnga in which post-attack forensics
is conducted. Knowing that the full amount of data islakte at their fingertips would
allow investigators to proceed as usual. However, beingeaivat some packets may be
missing from the trace file will alert investigatoospossible loss of data and help prevent
them from reaching erroneous conclusions based on an iteterdptaset.

TCPMissing is an enterprising application thagings as input a trace file and
calculates the number of missing packets. The TCPMisdgagithmic solution is
elucidated in detail in chapter two. In addition to dep&lg an algorithmic solution,
genetic programming was used to engineer a mathematiel@yas a solution to this
problem. The mathematical equation resulting from gepetigramming contains
variables representing packet values from the inpuafileoperators which manipulate
those variables in some way. The result obtained fr@tuating the equation signifies
whether a packet has gone missing or not.

Genetic programming often arrives at surprising angraigsolutions to often

very difficult problems. It helps to have a well-defirdblem with known solutions to set
2

as the fitness function for the evolutionary computatibmghis case, with files of packets,
it is easy to remove selected packets thus knowing exastyevand how many were
removed. The genetic programming approach is described ireciiage.

Chapter one discusses the development of network seasyliscipline and how
previous research done in this field pointed the waytds' TCPMissing. It specifically
focuses in on the work of three key female figures in agtwecurity and shows how their
insights capture the overarching mentality permeatiagdcurity field today. It was
through exposure to these women'’s experiences, contribugiotsdvice that the idea for

a genetic programming solution to TCPMissing arose.

CHAPTER 1

INTRUSION DETECTION

Intrusion detection systems have been around the blockasguees. An intrusion
detection system is essentially a program whose purptseletect either anomalous or
malicious behavior and report it though the proper cHanasually to alert the system
administrator so that appropriate counter-action caaksn. This is opposed to intrusion
prevention measures which consist of now standard ademgecurity practices such as
smart password choosing. The first section of this chhpjklights in more detail the
importance of developing this field of study.

A monumental paper written by James Anderson in 198hé&suaff discussion
concerning intrusion detection systems as we know tAeterson’s paper covered basic
audit trails and how they were good indicators of any sugfgdehavior going on in the
system [Ande1980]. However, Anderson conceded that evautlietrail may be
subverted by a malicious user. This was really the fifgepaf its type, even though it did
not explicitly use the term “intrusion detection” andid dot detect intrusions in real time.

Stanford Research Institute (SRI) became interestexrirsion detection systems
in 1984. SR is a Californian-based independent non-pesféarch institute that conducts

research for clients such as government or private eggefithie US government sponsored

SRI's Dorothy Denning to conduct research on intruseteation systems and develop a
model for future implementations. The Navy contractétd @RI to produce the first IDS
implementation IDES (Intrusion Detection Expert Systengniidng was not even aware of
James Anderson’s paper at the time of her work with intnudgbection.

In addition to Dorothy Denning, Rebecca Bace and Raverr Alee also
contributed to the development of the IDS field. The sés®ction of this chapter
highlights their experience working in this field and thetabutions and impact they have
made. Not only has their work influenced the field of intsngletection, but their insight
and advice has, to a certain degree, determined tteeaiogiwriting of this thesis. Much of
the information presented was gleaned from recent tehephterviews conducted first
hand with the three women mentioned above.

The last section of this chapter wraps up this basiegof intrusion detection by
presenting some of the most recent work done in the)& fihe specific examples
presented were chosen because they also represent shemenoit creative techniques

found to counter increasingly cunningly crafted intruslmeats.

The Importance of Intrusion Detection

As the Internet increases in importance in the rgd&is in our culture, for
commerce, communication, and even entertainment, itraiseases in its propensity to
become a target, whether it be for a political activiakimg a statement or a teenager
exploring his world.

Network attacks are common and prolific. It is increasidgfjcult to write

software to detect attacks as the creativity and detation of attackers increases. As
5

information technology becomes ever more capable of refiregen individual’s identity
online, the chance for abuse also increases. Ideimgitltas become a common and real
threat.

Many aspects of information technology make everyday tasks easpér. Online
banking saves time and money. Online shopping is extremiely gud convenient for the
buyer who knows exactly what they want. Large amounisfafmation can now be
catalogued and stored to be called back up near-instantnabiie touch of a button.
IRS records, school records, even medical records are sto@mputers. Having
information in this form increases the productivity affetiency of businesses, and that
has contributed to the spread and proliferation of coenpethnology. And yet, the chance
for abuse also increases.

“For every action, there is an equal and opposite reacstatgs Newton’s second
law. If hackers have reacted to the spread of informé&icdmology by attempting to
subvert systems into performing actions designersnatigidid not intend, then intrusion
detection is in turn a counter-reaction to that trend.ddty does intrusion prevention
attempt to countdgnownintrusion techniques, but it also seeks to preemptsteengthen
systems againsinknownintrusions.

Intrusion detection recognizes that the toughest guardtmaj catch every single
attack, and attempts to provide ways to realize aokaiaaking place and notify the
administrator who then in turn can take measures to adiesituation. These measures
may include stopping the current attack maybe by denmgttacker access to the
attacked system or by completely removing the system dicess to the Internet, at least

until the weakness is identified.

Once the weakness is identified, the administrator atetatrengthen the
system, maybe by creating/changing passwords for thargystdixing application/system
vulnerabilities that allowed the original break-in txor.

The administrator may even go so far as to attempt towdistioe identity of the
perpetrator. This might be useful for preventing fututacls by the same savvy attacker.
In the short term, detaining or incarcerating an attackghthpirevent the immediate spread
of ideas or techniques used in the original attack.é¥ew in the long term, these ideas are
likely to be repeated whether by the same individual eeldped independently by
another. So this method of intrusion prevention isfegsrable than that of taking
technical steps to strengthen the cyber-security asfectsystem.

All these steps of dealing with a security breach ofraprder system are
dependent upon correctly identifying an intrusion infits¢ place. This is why intrusion
detection has risen to such an important place in ouetgogdihe role intrusion detection
has been given is “equal and opposite” to that of irdrugself in that they are both
necessary to push the bounds of computer science foatvanth an exhilarating pace. No
one would argue that they are not opposite, althoughgtiedisy might be debated. The
term “equal” is used here in the sense of balancing foiltascombined together, have the
effect of driving forward humanity’s digital acumenislinot to be confused with the sense
of the term “equal” that refers to a value-based appitogmiaf this culture’s technical
know-how. Obviously, the hacker’s set of skills oftereineith the general disapproval of
Western culture due to the often detrimental effectstiagy arise from the practice of his

black art.

The scrutiny of roles assigned to various segmentsqddpulation is an
interesting and sometimes controversial subject tysithe last sentence of the paragraph
above contains reference to a third person possessiteas personal pronoun. It is also
masculine. This was intentionally done to illustraterthieh-remarked upon tendency for
the hacker population to be comprised of males, if nassetily young nor white any
more [vanM2000].

An interesting correlation to this point is the fd@ttwomen do seem to crop up in
the history of intrusion detection. Perhaps this is gfegbciety’s intricate set of checks and
balances to help keep the wheels turning smoothly. $ueiis addressed in more detail in
the next section after presenting three current exampigsroén doing intrusion detection

and doing it well.

Key Players in Intrusion Detection

The purpose of this section is to outline a few of thegtayers in the history of
intrusion detection systems, written in such a wayp aemonstrate the impact of women
in intrusion detection and their influence upon curreseaech. Specifically, the women
that have been focused on and interviewed are the faljpwiorothy Denning, Rebecca
Bace, and Raven Alder.

Dorothy Denning first did work in real time intrusion dgten system back in
1984, and the Navy did most of the funding. Teresa Luals®a big name in the intrusion
detection field and eventually was hired on by Denning lip\wigh her research. Lunt was

on the team that did the first implementation ohbiag’s initial model. That was back

when intrusion detection was first coming into being, andnidgy and Lunt both played
large roles in that early stage. Currently, there aiiewskvomen involved in researching
intrusion detection (Raven Alder) and even women CEOUimgap commercial
intrusion detection companies (Rebecca Bace).

This section also takes a brief look at why women gothme field of intrusion
detection. Traditionally the field of security has belongeohen, and even recently
computer science still seems to be something of a disdgline, especially when looking
at percentages of doctoral degrees earned by men wese. In fact, at the rate women
are earning computer science doctoral degrees, paritymeih will not be reached until
the academic year 2087-88, more than 80 years fronjMosk2002]. This runs counter
to the observation that many women have been involvéetidevelopment of intrusion
detection, from its conception in the early eightiksdday where even more women have
joined the scene. This section explores the specdiores of three women for entering the
field of intrusion detection. It also generalizes on wigrétmay be the propensity for
women to be drawn to intrusion detection, as oppossdr® other area of computer
science.

Since there is greater cultural viscosity to hampeettigy of women onto the
computer science scene, women who do stick within tlogotiree are often very good at
what they do, or at least the most stubborn. In esseswal factors weed out all but the
most determined women. That is what prompted these thseestudies. It was hoped that
women who had defeated the odds by penetrating a largedydisalpline such as network

security within computer science would also be awarbeofdctors that led to their success

and the underpinning mentality of the security commukitgwledge which could bring

about greater insight into the bigger picture and focssareh on critical areas.

Dorothy Denning

In 1984, Stanford Research Institute (SRI) became sieztén Intrusion Detection
Systems. SRl is a Californian-based independent nort-pge&arch institute that conducts
research for clients such as government or private sgefihie US government sponsored
SRI's Dorothy Denning to conduct research on intruseteation systems and develop a
model for future implementations. The Navy contractétd @RI to produce the first IDS
implementation IDES (Intrusion Detection Expert Systengniidng was not yet aware of
James Anderson’s paper on audit analysis at the time.

When Denning came to SRI, some work was already going andit analysis,
and she participated in that. After she was there lititeabit, Karl Levitt (Associate
Director of the lab, now at UC Davis) became interestgulirsuing intrusion detection
systems, and she was assigned to that field. SPAWAR andLib@is sponsored their
work at the time. Lubdis and Levitt had the initial notidémloing intrusion detection using
expert systems. While Denning was at SRI, Levitt hangegtoject to her and Peter
Neumann, but Denning was the one with the vision of wgrt do it in real-time instead
of using expert systems to analyze audit systemsthfteiact. They all put together the
proposal and SPAWAR ended up providing funding for thegteof a conceptual model.
Dorothy Denning was a principle investigator on what bectima model project for

intrusion detection systems [Denn1987, model]. Andersmai& was mostly just audit

10

material analysis. The intrusion detection systenkv@nning did focused on real-time
identification, which contributed greatly to that fieldgnn2006].

In other circles, people were working on network intrusidect®n systems. After
Denning and her team got the project going, they werd@hdek beyond SRI to see what
other people were doing in similar veins. At SciTeche$arn_unt was doing work in 1985
concerning network intrusion detection systems. Denniregl liind then rehired Lunt to
come over to SRI and work on her IDS projects [Denn2006].

Denning got involved in security for two reasons: iswaeresting to her and had
ideas that generated interest among those with fundingrp&he has remained in the area
of network security because it has proven to be a richuanative field to someone with
her talent and ideas. Her goals have always been in thddrrsense of upholding high
moral standards of honesty and excellence, which are bothagibutes to hold when

working in the area of computer security [Denn2006].

Rebecca Bace

Even back in the late eighties, Denning’s work was alreadii@radar, but Bace
did not meet Denning till around the 1990 timeframe. & stédl not a huge research
community at that point, and so researchers coulasjily things like the national
conference (a get together of the three hundred people cotnputer security research
community, and then another three hundred government peameer those at the
conference [Bace2006]).

It was the most serendipitous of rationale that got B#oecomputer security.
(Bace’s partner at Infidel, Terri Gilbert, says that sepetyds what happens when one

11

consciously makes a piece of oneself available-thingdverge. “It's amazing how
things converge over time [Thie2002].”) Bace origipndfiought she would get a degree in
civil engineering at University of Alabama, but she pegpshort because she hated
thermodynamics. She kept taking little side-trips on laén o her degree because she
truly did not want to continue down that path. She kneswgnted to do something
engineering-wise but had not yet discovered her niche. “8&kédarn to be an engineer,
but in denial about the whole thing,” says her husbant Bhe finally graduated with a
degree in Computer Science and even went back to gedtarim@n CS with an emphasis
in system engineering. It was very practicum orientededtittie, an overarching
engineering degree that focused on industrial technikeshe thermodynamics class in
guestion. Later as a graduate student she went back andtinerdibdynamics coursework
in physics in desperation, just to prove to herselfghatcould do it. The people teaching
thermodynamics at the time were steam-table guys,imgfér US Steel there in
Birmingham, and it seemed hopelessly brain-dead to Baey. Were definitely not pros
on the teaching end, they were practicing engineeng mech industrial engineers, and it
was a different level of practice from academia. Shetimasnly woman in the program
and it was a bizarre situation. It was also a ticket oute Bzft the civil engineering
program [Bace2006].

She finished her undergrad through a remote situationghrNew York
University, which was very aggressive back then on theteslearning scene, even though
it is a lot more common now. She got her undergradugree¢hat way and then dived

back into the masters program [Bace2006].

12

Timing worked out so that she finally finished her undaigate work and hit the
job market during a down time in 1982. She had gotten edainilate 1981 and moved to
Baltimore. Right before she got married, her mother-intak ill. In agreement with her
in-laws, Bace went to school during the day, and took agher mother-in-law at night.
She stayed kind of out of the job market, just nooddiregind with consulting work here
and there. She ended up with a happenstance connectiamtdacéted near her in a post
where she ran the IT shop. She worked with them whilewleee doing a system change-
over. It was a civil engineering job so she knew their apptins pretty well and helped
them with their outsourcing business.

Somewhere in there she read a magazine ad for the NSA agheueruiting like
crazy. She sent them her resume, and just for jolliestresmn her husband’s as well. Right
about the time she had settled into her new job, the d&é#ne calling. They ended up
hiring her husband before her and she continued workingheitemall firm. The NSA
finally called her and offered her a job as well [Bax#].

She talked to her husband that evening about how shetditimoshe wanted to
leave her “Nirvana” job not four miles from her house; létezl both the job and the
organization. But her husband said, “No, no, you've gobtae to work for the NSA.”
Bace asked him to tell her three good reasons whyhstubds He pointed out that the
commute was long, so they would actually get to spend sSoreddgether every day. He
also brought up those guys that they remembered from azadéim may have
mismatched shoes on, or who think so hard walking down thenhaathey run into the

wall as examples of the types of brilliant co-workery tlveuld get to rub shoulders with.

13

“The NSA is crawling with people like that. You were bhéo work here.” So she went
through the rest of the interviews and the NSA ended umhier, too [Bace2006].

The career values for Bace at that point made her wantrkoatva place where
there was educational support, and the government is wefjmeed for supporting those
with plans for graduate school. And she knew at that ploatshe did want to work up that
part of the career chain. Bace also enjoyed being in disitwehere folks were celebrating
for having strong family values. A lot of it was clasgaals [Bace2006].

Bace’s current career objectives are obviously quiterdnt. Things change over
life. Bace works more and more with women who are coithirayugh the career path at the
executive level. It is the most rewarding work she doesh&hended up with the handle
of “mom” or “den mother” [Thie2002]. Bace mentors foraganization called The
Executive Women’s Forum which functions as a portal threughbh young women
figure out what they want to do in the information seg(genior executive business field.
And she loves it! It has involved into a passion over das, This group consists of
basically directors-level and above. They draw from at#ecorporate, and government.
It is a truly amazing group: professors, directors of larganizations, the heads of the big
banks of New York. CSO magazine sponsors the group. Bgmgsdurning the whole
notion of women in technical organizations on its heaaleMolleagues understand that
the women in this group have got something specialdtattually of great value. A lot of
Bace’s male colleagues say how envious they are thaewdave something that they do
not have and how it represents a leg up for them on thespimfi@l scene [Bace2006].

To a certain extent, Bace thinks it is important to befoatable flexing with what

gets thrown in an individual’s direction. In terms of liéelot of times a person might end
14

up in a scenario or role that one would never have dreffor oneself. There is a place
for being tenacious in general about life goals, but if onedoes that, that person might
be missing out on a better scene, a better set of giesjBace2006].

In Rebecca Bace’s case, computer security as it stamdeeatly did not exist
when she was a child. The computer barely existed whenasha hild, at least not in a
way that was visible to her. The availability and actesghat is going on is also an issue.
There is a lot to be said for understanding that flexigitnot necessarily the bad news
that folks in career counseling would have studentsuse]Race2006].

Rebecca Bace would agree that the history of intrudgbection has been shaped
by female influence. When looking at the history of fieldsaé&nce (specifically those
pioneered back in the mechanical revolution, and edlyectemputer science) it tends to
become a traversal through the hall of male greats. Cemgeience seems to be
inundated by male influence, even today. Recent surgejtsendicate that while women
in science are gaining more doctoral degrees yearlyeifigld of computer science there
has actually been a decrease since the eighties in the noimiznen earning doctorates
[Mosk2002].

Henry Louis Mencken once said, “For every complex problaretts a simple
solution...and it is wrong.” It is a good guess that the same euphecais be applied to
discerning the reason women seem to be drawn to the figlthwgion detection, the cross-
roads of two traditionally male disciplines: securitgd @emputing. There are many
influencing factors that could have brought about thieese of female interest in a
traditionally male science. One factor could be theierfte of the government since

WWII when the draft moved a large percentage of memwfoilte country and out of the
15

computer workforce. The government began recruiting vimoimetep up and fill the gap,
and women were hired to calculate missile trajectaied program ENIAC [ECP2006].

Rebecca Bace is putting her money on another aspecthaind the fact that in
computing, security in particular requires a differeno$ekills than classic computing.
And frankly she thinks women do a better job with hargdthose aspects, and part of that
is the matter of (her colleagues roll their eyespii reak down the roles in computing,
security folks end up being the physicians, or the healthpraviders. That requires a
different set of skills, and a more integrated sekiissthan pure computing. Pure
computing can accommodate those folks who end up doing#tlee heavy lifting, those
who may not be so verbal or socially adept, in a lot cfxaBhese types are bright beyond
belief (intellectual prowess has never been an issueléth) and may be clashing in the
authoritative working environment. Typically programmees@uite gifted but also very
free spirits. A whole generation of management domaitribaitions focused on how to
manage free spirits. These stereotyped free spintegtgmmers are sort of a cultural
hallmark of computing [Bace2006].

With security, one does not get that luxury. The secaadbgsultant ends up dealing
with folks who in most cases are grumpy. In the infdiomeage, they are feeling violated.
One has to deal with them in a situation where clearftapacatastrophe is going on, and
people react in the same way they do as in other sitisatvhere they have been personally
violated. In those situations it does not hurt to bela htiore socially adept. In the end, it is
how one deals with the carbon unit that determines whettler is success or not. There

are a lot of things that traditionally this culture faesi®sn women and thus they are easier

16

to do, and this includes the caretaking aspect needeedaity and intrusion detection
[Bace2006].

A lot of it rises from a dry academic research modef@f¥here one has to strip
all these aspects away and focus on the goods. Thergvaodeaworld of operators out
there, but when the rubber hits the road in the operasenale, things are messier than
they are ever going to be. The job of an academic reseasdbestrip all that away as
collateral. The issue with that is, in the operationaldyavhat is viewed as collateral and
pure research is actually the value proposition, wisiethhat consumers are willing to pay
money to resolve. In those situations it is not onlyatten of a more comfortable
marketplace; there really are compelling reasons thatawato better in these things
[Bace2006].

Bace has this to say about Denning, “She’s a realligbtiperson. It helps to be
working with a lot, and believe me, she works with a lot. Dlat’that shy and unassuming
demeanor befuddle you. She’s a truly, truly brillianspea.” And as to the difference in
interview styles, Bace confides, “She’s a lot betteriplised than | am. I'm much more a
free spirit, much more like a guy in some aspects. | hateagement etc... part of
Dorothy’s greatness in this scene is she’s perhapaakedisciplined person | know. And
there’s a lot to be said for that. She’s done extraordiwark in the area and deserves
points and every bit of credit. | worry that she is so camet unassuming a personality that
folks tend to downplay her contributions which have lpgsin extraordinary [Bace2006].”

Bace considers her greatest contribution to be her nreyptwork she does for the
Executive Women’s Forum. On that she says, “I get todra,mvhich is great fun. | get to

be the keeper of the rolodex for the community.” It is a godadmfar a southern girl of
17

Japanese heritage. One of the upsides of growing up indtieis that she learned how to
put together communities. Instead of that being somethingsthahsidered to be a
guestionable value, Bace thinks that in this day andcagegctivity is absolutely critical.
She is not sure it is realistic to expect everybody e laose skills, but somebody on the
team has to. It works out beautifully for the sort of teiBgice does right now. She gets to
keep the rolodex. She gets to make sure that when new thoogigon the scene, they
are not repeating themselves. She makes sure that newdalksg in get decent
mentoring when it is available. Those things put wind dimanother person’s wings, and
it makes it a lot easier for a new person to accomhlkstpotential [Bace2006].

One key insight Bace offers is best understood from ttepeetive that everyone is
still at-pointin the life-cycle of intrusion detection. IT in genesaktill a pretty immature
and unformed discipline, as the technical disciplinesSgmething as relatively trivial and
single-use as automotive transportation has taken thez patt of a century to actually
become real such that the fundamental things such as sadedp #orth can be understood.
Then having some sort of understanding how relativelyatare IT is at this point is also
appropriate. In the broader sense, it helps academics figtivhat a reasonable
expectation for them in terms of contributions are,itastalso helpful in terms of laying
down some sort of reasonable impact characterizatidimeoimings thatlo get done
[Bace2006].

A second insight was the importance of career flexbilitere is a lot of
encouragement not to be flexible. A lot of the formal pragoan is laid on you by the
academic area, but because this is still by and largeraature area, it is important to

remember that particularly when one is in situationsrevbee may be struggling to make
18

sense of something that simply does not make sens@, litechelpful to say, “Well, I'm
willing to write that off to the immaturity of the arédhat is a situation where there is not
a lot of encouragement to do that, but it is an impottang) to remember in the big picture

[Bace2006].

Raven Alder

Raven Alder got into intrusion detection by pure acdidés a graduate student,
one of her teaching assistant responsibilities was totamaime class mailing list and
website. So essentially, she came out of graduate seftbdbasic skills in HTML and
UNIX administration. Due to her technical skills, shasvhired as a network engineer in
2002 even though (like a true Renaissance woman) shddgpieles in multiple disciplines.
Although Alder had just started the job, her company dyréad a complex network in
place. One of the router’s she was responsible for hadectaahd she had to figure out
how that had happened. They had not updated their mgesgstems in several years, so
one of the first things Alder did was to get a new operatystem up and running for these
routers. As part of the assessment she was doing befdremanof the routers got
rebooted but did not come back up! This was because thatiogesystem had been
replaced with an MP3 of a Weird Al Yankovic song. It was sone’s idea of a joke
[Alde2006].

Alder had to figure out how that happened, and that was/ére #hat got her into
security. The intersection between network engineeridgsaourity continues to be an
interest of Alder’s, so much so that most of what she bas & backbone/network related

[Alde2006].

19

Alder actively pioneers a lot of the backbone security aspéter job, although
there are certainly other people that are pushing thedaoies of that field. The theoretical
research in security is a couple steps ahead of whatnishonly put into practice, which is
also true for most fields. But there are a lot of cagesre people are not even doing the
simple things that are known to be best practice be¢hegelo not believe the threats are
real [Alde2006].

ZDNet Australia released an article in 2004[Gray200diiling five famous
“hackers” putting their skills to good use. Raven Aldeswhosen as the first candidate.
The article got put up on Slashdot, and as Alder keptitlpthe posts, she felt really
shocked in an unpleasant way by some of the commentssg to the article. “The
immediate response was let’s be really, really sex@itahe girl [Slas2004].”

The Cisco threat of summer 2005 was the most tumudtpetiod of Raven Alder’s
career to date. Effectively, there was a remote boobixjgmonstrated in a backbone
router. The exploit basically proved a point that hachbeleg debated but no one had ever
shown that in practice it was possible. Then in the sumh&90%, Michael Lynn came
along and demonstrated that “Yes it is possible, lweedt [Ever2005].”

Cisco responded by trying to cover up the fact that tiisdver happened. They
censored the proceedings of the conference wherestsarch was released and resorted to
all sorts of means to prevent his research from beieggetl. They slapped him with a
restraining order so he could not disclose his reseAldbr was giving a talk at a DefCon
security event (in fact, she has the distinction ofdpée first woman to deliver a technical
presentation at the famed DefCon hacker conference in égasy on how to further

protect a backbone and how to make sure that routerbametivork setup is secure as
20

possible. Right before her talk, Lynn revolutionizedfredd by saying “Hey, you know
that theoretical vulnerability? Well, look! I've dort¥ iSo Alder ended up speaking about
that and Cisco’s response which was actually a really lstake on their part. A major
vender like that with infrastructure everywhere shouldogoteen covering up and hiding
the evidence of a major security problem. That kind of behawoes not inspire
confidence in customers. Alder disclosed that a bettermesgdor Cisco would have been
to admit it had been confronted with ground breaking resgarch, and then to respond
quickly and appropriately by making new patches and reletisémg. In this case, Cisco
would have done much better projecting an aura of cord&land helpfulness, “Please
call our support center if you need any help with this pd&® are here for you.” That
would have been so much better [Alde2006].”

Because Cisco went through considerable efforts to ssgpggn’s conclusions,
Alder went through considerable effort to make surg fut out. “They weren't very fond
of me for that,” she remembers [Alde2006].

One key insight Alder offers comes from her experiencdmdeaith companies
who have definite proven vulnerabilities and her attempet them to take fixes. The trick
to presenting research to management, in order to getéthembrace change, is that it
helps greatly to speak to what interests them. Whesugding a major corporation to
install a new kind of firewall, do not say, “Oh, thigeézlly, really cool and awesome, you
should totally get this.” No, you have to give them aaeds change. One of the things
that a lot of brilliant technical people fail to dagsmake a business case for things that
need to be done to those people in management who mayderstand the technical

benefits and who might not embrace things that are teadhyntorrect because they may
21

not understand why they are important. Ironically paworking in the field of intrusion
detection is an entirely non-technical aspect that ihmstto present work in such a way

that it makes sense to those who need to act on it ¢ermept it [Alde2006)].

Conclusion

In conclusion, the walk from the inception of intrusiatettion to where it is today
has been shaped by several key female influences. Inghmning), Dorothy Denning was
the initial trailblazer who pioneered real-time auchil analysis for the first intrusion
detection systems. Women like Rebecca Bace helped sbageercial intrusion detection
into what it is today, and women such as Raven Aldermoatiloing their bit to move the
field of intrusion detection forward through research.

Intrusion detection, and especially intrusion preveni®a,largely defensive
maneuver, and as seen in history, women are often théefirtesguard house and home
as the men go off to fight wars. Indeed, much of what catesigood security practices
are the meticulous setting up and fine-tuning of settipggctices which are often left
undone through carelessness or ignorance.

By studying the influence of female figures on the histowy @evelopment of
intrusion detection, one is able to gain a sense of hawem have contributed to the
field’s “excellence” (the current buzzword for diverdity the corporate workspace). By
understanding how a broader range of perspectives hadatedrio the excellence of
intrusion detection systems today, this becomes a aabewshich provides concrete and
long-term repercussions to how humanity may wish toagmbr gender balance in any area
of life or specifically the areas of male-dominated s@enc

22

This section has focused on the work and wisdom of threekeale figures in
network security. Their insights capture the overarchiegtality permeating the security
field today. Denning demonstrated that using Al technigquése field of intrusion
detection can have profound and long-lasting results. Intfeectomplete incorporation (if
such a thing exists or is possible) of Al into intrusietedtion is still not fully realized.
There are still many aspects of intrusion detectiotrttight be improved upon by using
Al technigues. Bace showed that it is important to befadable flexing with what gets
thrown in one’s direction. In addition, she reminded tlseaech community that as a
science, intrusion detection is still “at point” in lifecycle, and therefore one must be
patient with setbacks and willing to embrace new routdsrhg lead to something
unexpectedly better. Alder emphasized the need to presaatrch results in an
understandable (almost empathic) way to maximize tpacdtrof breakthrough research or
even to bring about change. It was through exposure to thesenis@rperiences,
contributions, and advice that the idea for a genetic pmograg solution to TCPMissing

arose.

Current Breakthroughs in Intrusion Detection

After intrusion detection started rolling, it begandeemble a snow ball rolling
down a mountain. It kept gathering more and more to,itsetfoming larger as it picked up
speed. In the twenty-first century, intrusion detectigstems encompass levels of

complexity sometimes staggering. For instance, recerk in intrusion detection has

23

embraced various aspects of computing such as storaggemaent and distributed
computing to broaden and strengthen the abilities afsitn detection systems.

In 2003, a storage-based intrusion detection systemerap ®n a machine’s file
server. This gave it distinct advantages when it came tatonimg activity and to
maintaining compromise independence. Compared to a nebasdd intrusion detection
system, one that has to track all the packets cominghatsystem, a storage-based model
is much more efficient [Penn2003].

Having an intrusion detection system set up on thegaarderface means that any
changes to persistent data will be seen, and mangéantactions are themed around some
sort of change to persistent data, be it manipulatisgesy utilities to adding backdoors,
tampering with audit log files to eliminate evidence,esetting file attributes to hide
changes. However, with this type of detection system, ihtiheder does not attempt to
tamper with the file system, then his actions maymetected, but any actions taken will
not be persistent across reboot. This is an argumerdgdalar restarts of the machine
[Penn2003].

A storage-based intrusion detection system is moi@eeft than a network-based
intrusion detection system because it consumes f@seurces. It does not have to check
the contents of every single packet because only thenaatioich attempt to modify the
file system are pertinent. However, there is a tradeadfie amount of rules to check and
the amount of resources used by the file server. No on&lwvant to use the storage-
based model if it significantly slowed down their gyst especially when there was no

suspicious activity going on. When tests were don@estorage-based implementation,

24

they found that as long as no rules matched, the systdormed the same for O rules or
1000 rules, which is an adequate starting point for gtimieacy [Penn2003].

Another attractive feature is the compromise indeperedehthe storage-based
model. Host-based and especially network-based moddie#drsubject to compromise.
Due to the escalatory nature of information warfare, séebaged intrusion detection
systems may be cracked someday. However, their very maales this a difficult
proposition. The only way to access the storage inteidagither through a special
physical terminal or based on tunneling cryptography [Per8}200

Another intrusion detection system that wins efficiepoints is the distributed
intrusion detection system which uses a Dimension-b@kesification Algorithm to
balance the load among processors [Shen2003]. The appesglety bere is that multiple
processors handling a heavy network load get the processinfpdtarebecause many
processors have more resources to contribute to badaiina load (hence more efficient).
Therefore, the packets are divided up and sent to diffprecessors to be analyzed.
However, the packets in one attack stream are intexdeilatone another, and as such,
should all be processed together on one machine to iat@igprocess communication,
which is expensive. This is where the Dimension-basedifitagion Algorithm comes
into play. Based on the algorithm, all the packets thaalsl belong in one stream together
are sent to one processor to be analyzed together [Sh¢n2003

In conclusion, IDS advances have evolved intrusion detetgchniques to beyond
the point of just explicitly checking packets for knowtaek patterns, although this still
exists as a valid approach. It is common today to find Gaersubtle approaches to combat

increasingly sneakier attacks.
25

Considering the complexity of current intrusion detectigstems, it is important
for IDS researchers to focus on the building block amréaresearch. Whereas the field
of network security might be represented as a buildimgwall of intrusion detection is
made up of many well-placed, solid bricks. This thesisdd add another brick to that

wall in the form of a genetic programming solution to TCHihig.

26

CHAPTER 2

AN ANALYTICAL INTRUSION DETECTION COMPONENT

The basic premise behind real-time intrusion detecsiom analyze packets for
malicious patterns as they come off the wire. In &ldib performing this check as the
first line of defense, it is also common to store netvinaffic in files for possible later
analysis.

Files containing network traffic information essentialbytain all the packets
passing through the network in a certain time frame.&files can be stored either as
binary or as text files, and they are usually referred tdasp” or “trace” files.

As Internet speeds increase, it has become possibleefapgtication performing
the capture of the packets to have trouble keeping upn\itiaehappens, certain packets
may go missing from the dump file because the systesmatafast enough to capture,
process, or store all the packets. This is opposed totpahlae may be dropped at the
network level. Those packets require retransmissioneasenissing packets do not.

Although packet loss information is generally computedrapdrted to the capture
program, this information does not get stored and disértbwith the file. An important
tool in traffic analysis would be an application that ddake an input file and determine

the average loss rate caused by the capture program.

27

This information is vital to know in a post-attack aspbere. It stands to reason
that an analysis of the attacker’s actions, methodologyc@mdnands might yield valuable
information as to the identity or motive of the attackeraddition, understanding this
information will help the defenders prepare the systama possible repeat performance of
the attack. Analysis of the attack is critical, but periog analysis on an incomplete trace
file might lead to frustration and confusion, or worsginformation.

What seems to be required is an algorithm to run thrthegpackets of a file, and
while this algorithm would not be able to predict tkaat contents of any given missing
packet, at the very least it should be able to calcuiatedrrect percentage of total missing

packets. It turns out that the rules of TCP makefgaigsthis criterion feasible.

TCP as a Reliable Data Transfer Service

The theory behind determining missing packets is basdueanies of the
Transmission Control Protocol (TCP). TCP is a reliabla dransfer service in that it
provides retransmission of lost data, provisions for outrdér data, and even stipulations
for how to handle duplicate data [RFC71981].

Every TCP connection begins with a three-way handshag&dailmark of reliable
data transfer. This special “handshake” coordinatemiti@ sequence number of both the
source and destination host. The flag that marks thitise gpecial packets is the SYN
flag, to signify the process of synchronizing the sega@uenbers. The sequence number
used in conjunction with the acknowledgment number i4 wiagkes the TCP magic

happen [RFC71981].

28

The sequence number is used by the source host tor&ekpt the amount of
information already sent. The acknowledgment number kesgsdf the amount of data
already received by the destination host. If the sdunsédoes not receive an
acknowledgement for the data sent within a certain anajuimhe, the source host
assumes that packet was lost, dropped or mutilatecelyetivork, and retransmits the
packet. In some cases, it is possible for the acknowileelgieto arrive right after this
retransmission. This signifies duplicate data has bewetn Isut does not cause a problem
because TCP is able to discard duplicate packets ategti@ation side when it is
reconstructing the data flow and then only acknowleldgenéw data received
[RFC71981].

One way to determine if a packet has been dropped by therkesio see if
retransmission occurs after a timeout period startirey tfe time that the packet was first
expected to arrive has already passed.

Another tricky scenario to handle is late packetpamkets that arrive out of order.
Although TCP reorders out-of-order packets, it is possiblake the trace at an
intermediary point (such as a router) where the packetat the mercy of network
conditions. It would be wrong to immediately classify akeh as dropped or missing if it
does not immediately show up in the network trace ipr@per spot. It could be late, and
TCP allows for this by reconstructing the data flowtsnproper order at the destination
side [RFC71981]. Initially, an attempt was made to ke@pNlissing generalized enough
to be able to run on a live stream of traffic as welirasput file. This made handling this
scenario a bit trickier. However, the problem becomes o live traces are discarded

because the simple solution is to reorder the packéte ifile before computation.
29

Finally, in order to finish off the connection after all thega has been sent, a
special flag is used to bring about the end. This fagailed “FIN” to signify that the
source has finished transmitting all the data it needsnd for this session [RFC71981].

Despite the many complications that arise from dealitiy a«complex protocol for
reliable data transfer, it is possible to develop anrifgo to determine missing packets
based on the rules of TCP. This is done based on the pafgiagkets in the trace and
looking at the fields in the packet TCP header. The spdieifds which are of interest to
the determining algorithm are source IP address, destiri& address, source port
number, destination port number, acknowledgment nurabguence number, and certain
flags such as SYN or FIN.

The basic concept is to arrange the packets into theirmffops (connections)
and from that standpoint begin reconstructing the degarst If a point is reached in the
stream where there is a discontinuity in the sequenobenrs of the packets, a
determination has to be made. The packet could be latket€omine this, keep reading in
the stream. Or a packet could be dropped or timeouwteleymine this, look for duplicate
packets or retransmission. Or a packet could just be migeimghe trace and this is what
we attempt to determine by looking at the immediately suriogrmhckets to see if the

data stream acts as normal.

Implementation of TCPMissing

TCPMissing is a program that evaluates a dump file tierohéne the number of

missing packets caused by the application because thesygeaunning on is not fast

30

enough to capture, process, or store all the packets slapposed to packets that may be
dropped at the network level. These packets requiresetiasion whereas missing
packets do not. Throughout this section the distinctiomaide between these two types of
packets by always referring to the first type of packe captured by the application as a
“missing” packet. It is important to realize that thacket belongs in the trace. It was on
the wire with the other packets. It presumably eventualiyesrat its destination.

The second type of packet that never reaches its destinat “dropped” or “lost”
packet. Packets are lost due to congestion on the netwbga Wio or more hosts attempt
to transmit at the same time, both of their messageseegarbled. TCP can attempt to
recover from congestion using either the slow-start ndetindast retransmit. Even though
a message can safely make it out of the host netwanliayi have to take many paths to
make it across the Internet to its destination netwbik.during any of these segments that
congestion may occur and the packet may be lost. TCP redawerkst packets by
providing retransmission if a timeout occurs and no ackeaigment is received from the
destination.

Two java files were needed to write this progrdicpmissingava held the file
parsing and flow assignment coéiow.javawas where most of the flow processing and
analysis took place. TCPMissing was coded in Javke&advantage of the JPCAP
library. JPCAP is the Java overlay to LIBPCAP, whikhie format that all dump data
files are saved in [Cars2003]. It was necessary to dodmieaappropriate Java library

extensions since JPCAP is not part of the standard ibaaey |

31

The following command prompt line compiles both filesegsary to run
TCPMissing:“javac Tcpmissing.java Flow.java.Similarly, to run the TCPMissing

program, execute the following commatjdva Tcpmissing [filename].”

Command Line Parameters

Required:

args[Q] - trace data file name

Optional:

args[1] - keyword "where" : which packet to eliminaiptional with

args[3] and args[4]

args[2] - integer value denoting location of which peicto remove

args[3] - keyword "num” : how many packets to removajooal with

args[1] and args[2]

argsl[4] - integer value indicating how many packets tnoge

args[5] - keyword "stats" : prints out results andtstcs

If the keyword “where” is found in the command line, mieger is expected to
follow it as the value for variable “luckyPacket.” Likewise the keyword “num;” the
program will look for an integer value in the next args[initialize “miss.”

The keyword “stats” is desirable for individual pragraxecutions. However when
batch files are being run, the omission of this keywaldoypass the onscreen results

display, thus saving valuable time when processing mutxseutions to generate
32

valuable statistics. Because removing a packet from aiggooverses another might
affect results depending on whether it hit upon an uncdwgrecial case or not, it was
necessary to perform multiple runs through the data rergolve packets from different
positions and then average the results.

The results can still be viewed by accessing the ofitpugjenerated and named
according to the “num” parameter. The file name generailede of the following format:

Filename format: (miss.toString() + miss)

Example: If two packets are removed from the traces raquals two and

filename is “2miss.”

Batch Scripts

In order to generate data for a test case, it was diesicabse a file which had
already been pre-determined to contain only one missickep (‘feallld’), and this only
due to a flow being recorded from the middle of the streatean of catching it at the
beginning. Thus the one missing packet it caught watsnhege. In order to test the
TCPMissing code, this otherwise whole file was usetha starting point from where to
semi-randomly remove different numbers of packets lagal ¢valuate the performance of
the program at predicting the corresponding number oimgipsckets.

SinceTcpmissings a rather static class, writing another program toatepléy
create instances of tAiepmissingbject and iterate through it that way was not a workable
option. The separate class in question would have atstrbuble opening and closing
multiple files. Instead the workable solution was totheprogram once but call it

multiple times from the command line using a simpkeejegant batch command:
33

for%ain(0123456789)docommand/cfor%bin(01234567809)

do java Tcpmissing reallb where [%a%b] num [how mamgitoove]

The above command is a doufile loop which rund cpmissingone hundred times
in order to remove the packets from a variety of diffesemi-random places. Every time
the program completes, the results are appended tatih éile ((how many removed] +
“miss”) in the following format:

%a%Db Tcpmissing.missing

The first parameter identifies the current iteratiaouigh the program. The second
parameter is the number of calculated missing packéts. $aved this way can be opened
and graphed later to see the mean result.

Since the resulting data is appended to the end of amgxgten file (the
appending flag is always set to true), re-computatibasld only be attempted after first
clearing the file of all old data. This is done simplytia tommand line with the following
command:

type “">[filename]

Javadoc Generation
Although at present perhaps TCPMissing might be a bit tecifapfor general
reuse, the decision was made to document the work in i@l it available for perusal

online. The following command created the html files invagic directory:

34

javadoc Tcpmissing.java Flow.java —private —link
http://java.sun.com/j2se/1.4/docs/api -link

http://netresearch.ics.uci.edu/kfujii/fJPCAP/doc/javadd javadoc

The first link shown above ties the TCPMissing documeamtab the main
Java.Sun APl homepage. The second link tied the TCiRigidescumentation to the
JPCAP classes used to implement the program. These JB&8Bs are not found on the
main Java.Sun APl homepage. The resulting documentatiohnef TCPMissing classes

can be found in Appendix A.

Challenges

The first challenge arose from the decision to use JP@#Pfad of manual parsing.
Most work underway at UGA at the time relied on manual pgrsf regular text files.
Since no one else had led the way using JPCAP parsbigas¥ files, it was at first
uncertain how to learn it, how to install it, or evenvtto acquire it. In fact, various
versions of JPCAP exist on the web. One of the greateftstoms encountered resulted
from the fact that documentation had been found for ardiftel PCAP package than the
one that had been downloaded and installed. After things vaek on the same page,
everything began to make more sense and fall into ordeddHGAP package that had
been downloaded was easy to learn, if not documented veryitvslinade the file
parsing task achievable.

The actual packet parsing had been the second major cddocemJPCAP became

understandable, it was obvious that with a couple Watlggl commands, one could go

35

from a large binary file to its constituent packets easily quickly. However, the problem
then became how to allocate enough resources to hargestaumes of packets. This
proved to be more difficult than first anticipated. It wastplated that normally it would

be a simple matter to work within a moving window ofkes and remove packets on-the-
go. That way, the system would only need to keep traaknairkable number of packets at
any one time. With the programming language C, the keyudeletecould have been used
to help allocate and de-allocate memory. However, Javiisatic garbage collection and
the non-existence aleletemade this task a little more challenging. With large ammof
packets (more than around 6000), TCPMissing would termiviliiean
EXCEPTION_ACCESS_VIOLATION.

After many hours trying to decipher and debug this gmbit was decided to work
around it by processing dump files at about 4000 packetsnae.aThis problem occurs
because the java virtual machine runs out of memory piagesgremely large files,
especially those consisting of large numbers of incamfilevs. These incomplete flows
represent a problem because they cannot be procesdeel ¢ilid of the file after it is
certain there is no more data. Otherwise, a flow mightématurely processed and cause
errors down the road. So the program keeps waiting fdflthidlags to signify end of data
so that it can begin processing the flow for missing gacléis means that more and
more flows keep building up till the system runs out efmory.

This problem has a simple work-around. When executing thegmmogn the
command line, specify additional parameters to incrémssize of memory the Java
virtual machine has to work with:

java -cp . -Xms100m -Xmx300m Tcpmissing [filename]
36

Special Cases for Packet Analysis

There were many special cases to keep in mind when hgrtldé packet analysis.
In addition to treating FIN’'s and SYN'’s differently tharrmal packet transactions, it was
also necessary to write separate code to allow for digplekets, out of order packets,
and packets sent when the receiver’s window shrinks ¢o ktevas falsely predicted that
flow processing would be moderately easy once JPCARNnstdled and parsing packets.
It seemed like a straightforward task that only requarétile time, effort, and clear-
thinking. However, it was not, and there were manykaapent pouring through output
trying to reorganize the algorithms to account for manyscasepreviously anticipated.

The basic idea was to try to predict the other guy’s nektawledgment number
based solely on the packets that had come before. Bhistien was imposed because
down-the-line it would make converting the program to agaityn-time traces easier. If
the next packet did not have the predicted ACK number, dittvas a special case, or

some packet was missing from the trace.

Normal Case
In the usual case, the predicted ACK is generated by addirdpta length onto the

sequence number.

SYN Case
Even though a SYN packet does not carry any data, the acamwent that

comes back must be incremented by one.

37

FIN Case
A fin packet may or may not carry data with it. It wasgible to write code that
handled the case with data by treating it similarlg tiormal case and the case with no

data by incrementing the sequence number by one, muchdil&viN case.

Duplicates
Here the identification field became helpful. If two pask&ere found with the
same identification number, then it was just a duplipatket case and not a missing

packet.

Delay
Sometimes packets can arrive out of order. Again, apeaide had to be written

that would allow for this and not automatically increrne missing packet counter.

Window Zero

As part of TCP flow control, the receiver advertises a sgndow when more
processing time is required on an already full incominfgeb. In this case, the sequence
number would equal one less than its predicted ACK nurmimer whenever this happens,

the window size is set equal to zero.

Other Cases

There were several other cases that were not implem@ihtese cases were
determined to occur so rarely as to not seriously affectesults of preliminary testing of
the system and so they were left undone to seefiteitintelligence techniques could

deduce all the cases and outperform a (marginally) inaimplgorithm.
38

One example of a special case that was not implementeifltwaspackets are
missing one right after another. The algorithm will ble &b detect that a gap occurs, but
will not be able to correctly determine the exact numbgaokets that should be filling

that gap.

Results

Testing the program required the use of the tried-and-trudildatause since the
beginning. When first starting to play with JPCAP &atn everything it could do, a file
called reallb’ was used to figure out how to parse packets. There werprimary TCP

flows in this file. They are plotted below.

time vs. ack numbers

250000

200000 +

150000

ack#

100000

50000 -

0 -+ TTTTTT AT T T T T T TTTTTT

N A I AR AN > O B O D P
P E H S b‘éo P &S &N PP PSS SO
373 ¥ P ¥ 0% ¥ ¥ ¥ 0¥ 07 07 o¥ o o ¥ o

time

Figure 1: The depiction of two flows within the dump file&l1’

39

The graph shown above depicts the data transfer pragfregs flows. Each dot
represents one packet. The dot is colored black or red degemdthe respective flow it
belongs to. The acknowledgement number for that packetrde&sr the dot’s placement
on the y-axis. The x-axis is change in time. As time a®es, the acknowledgement
numbers increase for both of the flows, signifying thecessful transmit and receipt of
data.

One flow (depicted in black) experienced regular, steagytdasfer. The other
flow (depicted in red) displayed signs of heavy tran&filowed by three distinct periods
of “zero window” behavior where the dots follow a path par&b the x-axis signifying no
receipt of new data. As files were parsed and graphedsifagcinating how often flows
had the tendency to develop predictable patternselfottowing figures, the packets
graphed are all acknowledgment packets. This was domepicasis the importance of

acknowledgment numbers in the determination of missinggbsc

flow 1

0.8
0.7

: T]

IR -

UL

0

1 4 7 101316 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

‘—o—lapse in time ‘

Figure 2: Representing flow 1 based upon the difference in the amount of
time between each acknowledgment packet sent

40

Flow one is the steadily increasing (black) flow frora ghievious chart. This figure
shows the temporal difference (delay) between alptwiets from the receiving
(destination) host in the transmission. The y-axis sdr@m zero seconds up to 0.8
seconds. The x-axis contains the packet number. So fopéxgmacket number three was
delayed almost 0.75 seconds after the last packet, tketsanumber four and five were
sent less than 0.1 seconds after the last packet sahe flow.

This graph, seen in conjunction with the next, demonstth&operation of
delayed acknowledgements in TCP. When the recipient éoesives a packet from the
source host, it will wait a small period of time to gesnother packet from the same host
comes in and acknowledge both of the packets at once. Tayedelcknowledgement
behavior dramatically decreases wasted bandwidth, aswlg@ddgment packets for single
direction transmissions do not contain any other datsetr own. However, in order to
avoid a timeout, the destination host only waits so longhte second packet to come. In
this case, after about 0.7 seconds, it would go aheadistracknowledge the first packet

received.

41

flow 1

3500
00 %W‘WW‘WWW
2500 \

2000

L —
— |
L —
— |
I
— |
L —
— |
I
— |
|
L —
— |
I
— |
L —
— |
L —
— |
I
— |
L —
— |
L —
— |
I
— |
L —
— |

\

SLTD G G G S S S G S G S G G G i
1000
500
0

1 4 7 101316 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

—e— amount sent

Figure 3: Representing flow 1 based upon the amount of
information acknowledged by each destination host packet
The graph above makes this delayed acknowledgment busititite clearer. It is

similar to the last graph in that it represents the agledgment packets from the
destination host, only this time the y-axis is the ami@f information acknowledged by
every packet. Every three packets (for example packets fowegand five) were
acknowledging about 3000 bytes of data apiece. This is ettaisource host was
consistently sending out packets of size 1460 bytes afibeadestination host would wait
till it received two of those packets adding up to 29%@dand then acknowledge that
amount of information received. However, then the destinditost would receive only one
packet from the source and be kept waiting a while for the detoravoid causing a
timeout and retransmission by the source, the destinadsindoes not want to wait too
long to acknowledge packets, so it went ahead and ackigedel 460 bytes received in

packet six. Although this seems like bursty behavior, oviéalbvides for the steady

42

transmission of data (no need for retransmission) tipgiosts the slow-and-steady
increase behavior displayed in the very first graph.

This flow analysis has been done on the filatlly’ so that it might become
apparent how even simple looking flows can easilyiriédl complex patterns of which
TCPMissing must be careful not to be deceived by. Ftangs, it is not enough to simply
check for delayed acknowledgments for every two receivekkpa As seen,
acknowledgements can also be sent after just one paakaditbtimeouts. This analysis of
“reallb’ helped in the design stage of the problem to avoid comntiatigpand establish

special case scenarios of delayed acknowledgements wemsediate acknowledgments.

flow 2

i

et

i
[s
. i

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101

—e— lapse in time

| -
H i
4 [¢
I

|
%
\

e
— |

Figure 4: Representing flow 2 based upon the difference in the
amount of time between each acknowledgment packet sent

Just as flow two levels off in three places in thgt fjraph, it is apparent here where
the window cuts to zero in three distinct places ihithese places that plateau behavior

occurs as long delays of about 0.7 seconds occur betaelempacket. Again, here a clear

43

pattern is discernable as change in time is plottmtgahe y-axis and packet numbers are
plotted along the x-axis.

flow 2

zzzz! ‘ﬂ\ | | | “ lr

1000 A

500 A

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106

—e— amount sent

Figure 5: Representing flow 2 based upon the amount of
information acknowledged in each consecutive destination host
packet
It is perhaps even more blindingly apparent what is gomigp Figure 5. Here
packets are plotted according to the amount of informatocknowledged by each one.
Packets 0-3, 27-36, 61-70, and 94-100 all acknowledge 8 frgta the sender. Because
these empty packets are grouped together and correspedoeriods of delay (long wait
between successive transmissions) shown in Figur@dints towards a zero window
scenario where the sender must wait for permission fnemeiceiver to increase packet
size up from zero. This analysis o€allld’ helped in the design stage of the problem to
establish the special case scenario of zero window behavior
In order to test the TCPMissing algorithm, the filed1l5’ continued to be used as
the default test-case file. When runnimgailh” the TCPMissing program finds one
missing packet. This is correct because one flow stetite middle (no SYNSs) so the

program counts the first packet in the interrupted flewa anissing packet case. This was
44

taken as the base input and scripts were written to fhasegh “reallb” and remove one
packet from a hundred different semi-random places aledlate the results for each
iteration. Since this was done a hundred times and aretitf packet positions,
presumably different scenarios would be touched upon eweeytiiggering different
branches of the algorithm. After completion of all thesiithe average could be computed
to see that the resulting percentage predicted misgsgretty much what was expected.

This was also done for two, four, and ten removed packets

Missing Packets

gt M

Ch U A
l'.lﬂlYllllﬂlﬂl'llI‘IllVlll'l'l’k‘Hlllllllll‘llll
RN L I AR 1}

i 'MMM““]
T A

Figure 6: The average number of projected missing packets as
computed by TCPMissing for 1, 2, 4, and 10 removed packets

As seen from Figure 6, the purple line on the bottom defhetaverage results
obtained from successively removing one packet from difféoeations in the file. The

pink line depicts the average results for removing tackpts from the file. The yellow

45

line depicts the results of removing four packets. Andthe line depicts 10 removed
packets.

Depending upon the different positions the packets couldibevesd from, the
program tended to choke on packets removed from specéa sasnarios not explicitly
coded for in TCPMissing, and it was this type of behatviat prompted initial interest in
having an artificial intelligence technique to learmpé&sform this type of computation and
infer the special case scenarios.

Despite this unfortunate behavior for specific runs,ayes of total runs tend to

stick pretty closely to the actual number of removed pgacke

Missing Packets

VT W W W S W W W R L W

Figure 7: The average number of missing packets as computed by
TCPMissing for 20, 100, 400, and 1000 removed packets

46

Attempting to remove more packets than around 5% skewssbks and slowly
the TCPMissing program falters and begins catching leskeasdnissing packets. This
behavior is shown in Figure 7. To a certain extent, itilshioe possible to make the
TCPMissing program more robust, by adding more specialsnarios, and that should
be able to increase the percentage it can computeehbefalters. But it is important to
recognize that eventually one must reach a limit bedhesECPMissing program is
dependent on packet information for results. It is ¢ogycal that with not enough packet
information, it will not be able to compute resultsreotly. Eventually, with enough packet
loss, even a person would have trouble reconstructing the.flss more and more packets
go missing, the less information TCPMissing has to watlk to correctly carry on with

computations.

Conclusions

The results shown above are promising. Because not enghy existing special
case was accounted for, there was a little variance iauttome depending upon the
location where the packet was removed from. However, thalbagerages were
consistent.

TCPMissing advances research in the field of intrudetection by determining
the number of missing packets in a file created by adredpture application. Even though
TCPMissing is an important component of any netwodkigty system, it had not yet been
implemented. This project does that. TCPMissing shbatspredicting missing packets

that are supposed to be in a trace can be done with aédes@accuracy.

47

It remains for future work to refine the techniques use@®PMissing to yield
greater accuracy over more specialized cases. In fadteadimution than trying to
predetermine every existing special case and code for eagvoaitebe to incorporate Al
learning techniques into the system. In the next chaeetig programming is used as an
alternate solution to the TCPMissing problem. The Gflementation ends up being faster

to code, more accurate, and more efficient.

48

CHAPTER 3

AN INTELLIGENT ANALYTICAL COMPONENT

Today intrusion detection systems are complex and irdritény commercial
ventures have grown out of the opportunity to tap intarteeket for security from an ever
growing Internet threat. Even though many different effitsystems currently exist, the
setup/configuration is often neglected by system adirators. Partially because of this
reason, and the sometimes slow response of humans aaredrtgpcomputers, artificial
intelligence techniques have become popular in the intridgtection domain.

Previous work has been done in combining the areas o$ioitr detection systems
with Al learning techniques as far back as 1986 when Bgioenning blazed trails with
her development of a general model for a real-time imnudetection expert system
capable of detecting penetrations and other forms of ciemalbuse [Denn1987]. There
was steady progress made in the intrusion detectilihdiging the next twenty years. In
1992, Koral llgun based his thesis on a real-time intrudeiection system, an expert
system that analyzed state transitions [ligu1992]. Ip#per done by Jeremy Frank in
1994, he outlines the current and future approachesdorporating learning techniques

into intrusion detection systems [Fran1994]. In 1995d8ap Kumar completed his

49

dissertation by studying pattern matching as a meanpresent and detect intrusions

[Kumal995].

Artificial Intelligence Techniques Showcase

This section is a partial future work section masquegpds a survey of Al
techniques. It presumptuously assumes that the industesearcher might take any of the
following techniques as a starting point for further expiona

Al technigues are many and varied, and there are nadigyways to apply Al
techniques to a problem. Usually one is chosen ovehandéepending on the exact nature
of the goal trying to be accomplished. This sectionhighlight a basic Al technique and
then describe how it could have been used in the settihg GICPMissing problem. The
next section will focus on genetic programming and why g @fesen as the Al technique

of choice for TCPMissing.

Artificial Neural Networks

A neural network consists of a set of highly intercoreectodes [Cann2000].
Depending upon the weights attached to each node, and themrawhich the network is
trained, it will become consistent in responding withilsir outputs to similar inputs.
Essentially it is a black box that can be trained tpared in an “intelligent” manner
[Cann1998].

Because of the learning abilities of neural networlesy thave often been an
attractive option for detecting intrusions [Debal992], tiey were an attractive option for
implementing TCPMissing. The algorithm developed to detegmiissing packets in a

50

TCP trace file is exactly the type of black box problent ¢ha be fed into a neural
network. The theory is that a neural network could performedisa or better than the
algorithm. Based upon current research, no one has &ttopdo TCPMissing with a

neural network before.

Expert Systems

Expert systems also have the ability to continue lagmew patterns [Dass2003].
Expert systems are useful in cases where the necéssaviedge can be determined and
encoded into the system in such a way that encapsulatasathiledge of a similar human
expert. Often during the development phase of the systenregponding human expert is
brought in to help create the knowledge base.

An expert system would be an attractive option to pursovegards to TCPMissing
since the developer of a TCPMissing algorithm would havéneshihe pre-requisite
expert-level of knowledge needed to encode an expert systaatdition, a TCPMissing

expert system could learn new special case scenaiitosaase across them.

Genetic Programming

The genetic programming approach empowers the resear¢heh&vability to
solve difficult problems or achieve better human peréroe on “tricky” problems. In
general, this is done by finding a best guess approxighsdlution. This is done based on
the evolutionary techniques of representation, mutatecombination, parent selection,
and survivor selection [Eibe2003]. Genetic programmingaliasen as the Al
supplemental technique for TCPMissing because theithlguc approach used in

TCPMissing seemed slightly incomplete as it did nobaat for every possible special
51

case scenario. One possible scenario was when two packetsiigsing in order, back-to-
back.

It was proposed that a genetic programming approach woualdl®éo extrapolate
the subtle, if however rare, cases not explicitly caddbr in the sequential algorithm.
Throughout this chapter, the first implementation oPMissing is denoted as “the
algorithm.” This second implementation which utilizesetic programming is referred to

hereon as the GP solution.

A Genetic Programming Implementation Using ECJ

The genetic programming solution was implemented usingete-based
Evolutionary Computation Research System (ECJ). EGtaics helper classes that
provide the basic evolutionary techniques of representatutation, recombination, and
parent or survivor selection necessary to emulatécati€volution [Eibe2003].

Despite Java'’s reputation for slowness, it was agairechas the high-level
programming language of the GP solution. This was fegra¢reasons. First, because the
previous TCPMissing algorithm had also been writtenwa Jiawas desirous to keep the
project uniform by writing any later modules also inaléor easy incorporation into the
mother program. Second, despite Java’s reputatiotofercomputation, Java code can be
optimized to perform well [Davi2005], and third, tHgexct-oriented approach better
captures the core nature of TCPMissing. The separate fields packet are represented as
separate nodes within each individual tree. Java, ageat-obiented language, defines

these nodes as classes and this translates into twigitd code that is easily interpreted

52

by anyone trying to analyze the code. Furthermore, Jaaiébrexist for basic JPCAP and
ECJ functions which can easily be built upon, engenderidgeacouraging code reuse,
which is always an important consideration to a codeldper.

Perhaps most importantly, architecture-neutral Japarisable across multiple
platforms and perfect for the heterogeneous networkamient that is the Internet

[GosI1996].

System Simplification

Based on a proof-of-concept mentality, the purposmplementing a genetic
programming solution was to see if an ideal individoakplution tree) could be found to
successfully predict the number of packets missing frinaca. A good starting point was
to ascertain that genetic programming could handle thdestrgase. The simplest case
was determined to be a file containing packets from omgesspecific port on one specific
Internet host (or one direction of a single flow) withduplicate packets, no out-of-order
packets, and no timeouts. Window size of zero was takemamsideration since the TCP
response to that scenario is imperceptibly similardrmal functionality, at least from a
mathematical standpoint.

Varying packet length was taken into consideration sinclkgbdength can vary
from the size of the header information (but no actual messagent when window size
shrinks to zero during congestion) to the maximum segmmanivien network traffic
flows fast and freely. In between these two extremes arpaasyble intermediate lengths
than can occur based on various possible scenariosuCmease occurs when the push
flag is set. Usually, the sending program waits ungildbtput buffer is full before

53

transmitting. The push flag signifies that all current &gl information must be
encapsulated and sent immediately instead of waitingrfough content to completely fill
up the packet. This represents a core TCP behavior, soeang its importance and
frequency, the genetic programming approach was trainegoondata of varying packet
size, and it was considered part of the simplest-sasnario.

To increase the functionality of the genetic programmitgfisn to encompass all
the rest of the special case scenarios, a conjunct@nariety of different techniques
would be required. The first step would be to run a neaseatontaining a larger
representation of more TCP scenarios through the first prsiuglest case model. Then
any missing packets not detected by the ideal individoald be new targets for future
genetic programming work. This process could be repeated@ss there are new

scenarios to learn.

Node Selection

The first step in creating a genetic programming soluateciding on the
essential nodes. The more complex a problem is, the aciaed the problem will have in
its equation, and thus the more nodes it will contain. Blade used as operators or
operands in the tree, and depending upon their placemtina iree, affect how the tree is
evaluated. A tree is a representation of the solution iequdthis method of tree
representation using connected nodes enables the safti@problem to be modeled
mathematically where a traversal through the noddseafée will yield the equation.

In the framework of ECJ, this evaluation is done recuissiVi® start with, the
evaluation function is called on the root or top paredenin order to determine the value

54

of the root node, it must evaluate all of its childriest.fOften, the children of the root node
are parents of their own trees. Thus, control of exaetgtotinues traveling down the tree

until a terminal (or leaf) node is reached with no childiéhen values begin passing back

up the tree until all branches have been evaluated anddhnode can finally compute its

value, too.

In most cases, variables are terminal nodes on the etlye toée, so they can not
get their values from their children, because they have fitwe# values are the variable
inputs for evaluation of the tree. They represent the d@atslof the equation.

It is the operators, such as add, subtract, and nykyplich make up the function
set and populate the inner nodes of the tree in avdesttupon the variable nodes. These
mathematical operators all take exactly two nodesit@h, and are responsible for
manipulating them in such a way as to determine what galisepassed back up the tree.
In the case of add, the add node simply retrieves batlesv&lom its two children, adds
those values together, and returns the result.

There can be more complex inner nodes as well. Congidexxample, conditional
or switch nodes. A conditional node may have a varialmeer of children. Depending
on the value contained inside a conditional node, it saelduich branch of the tree to
follow, or which child’s value to return. For example, inANgissing, the flag field of a
packet header could be modeled as a conditional nod@assible for the flag field to
contain several possible values: ‘'SYN'’ to represent thetspnization bit and indicate
sequence numbers needed to be initially synchronizidi, térepresent the finish bit and
indicate that the sender has reached the end of itstogtan, ‘PSH’ to represent the push

bit and request the immediate transfer of data, ‘RSfépoesent the reset bit and indicate
55

the connection must be reset, ‘URG’ to representithent bit and indicate that the urgent
pointer field is valid, or simply ‘.’ to represent no @ntly set flag. To adequately model
each of these separate cases, the flag node would havhiliirerc. The children could be
terminal nodes or in fact just the beginning of longendinas of the tree. It does not
matter. The important point is that depending upon theevakide the flag node, only one
branch of the tree is chosen for execution. If the flag/ag set to ‘SYN’, the first child
would be chosen (the one corresponding to the ‘SYN’ eh@ind that would be the branch
of the tree modeling the case where the packet is a synzdtion packet, which would be
a different case than if it were a ‘PSH’ packet. Althougiwveich node on the flag field will
probably prove useful in an exhaustive implementatiohisfdroblem, for the purposes of
a proof of concept this node was eventually left odlheftree node final selection. This is
because the final nodes modeled the most basic of easksyodeling all flag selection
cases starts to deal with TCP behavior complexitiedahaut of the bounds of the scope
of the current problem.

Another possible switch node based on packet header miorms the source
verses destination address. Depending on whether ttemtpacket under consideration is
from the source or the destination might signify a déifee in how the packet is processed.
Again, depending on whether the source or destination bisetan this switch node
would determine whether the source or destination braritie dfee was traversed.
Eventually, when the simplest case was derived, this nad unneeded as well, since in
the simplest case, one deals with one side of a siogleection.

In the end, there were ten final nodes selected for gi@iueSeven nodes make up

the data objects setengthwas one of them, and contained a value of type double that
56

represented the length of the data transmitted in the ppaekgthwas a terminal node,
meaning it had no childreBeqwas another important terminal node used to represent t
sequence number of the current packet under investigitmmtained one value of type
double.Ackalso contained a double value that represented the acknavdetigumber of
the current packet under consideratidokjavais included in Apendix B as a
representative example ofzNodecustomization for the TCPMissing problem.

Another terminal node wdagegERCthe regular ephemeral random constant.
RegERGCcontained a value of type double that was initialiveal random number by the
program. This node was helpful in generating random cosstdating a constant in an
equation may mean success by providing a better firadss than that gotten from just
variables and operators.

Memory nodes were utilized to keep track of the packétid been seen before,
so that it could “remember” where it was in the curstréam of data, and forget
everything elseMOAckwas a terminal node containing a double value repregeiis
memory node’s acknowledgment number. In this dd€&ckwas always set to the value
of Ackfrom the immediately previous packet.

Similarly, MOSeqgwas a terminal node containing a double value represehéng t
memory node’s sequence number. Used in conjunction gtmemory node’s length, a
double value stored in terminal nodl®Length these three values from the memory node
should be sufficient for the base case discriminatianis§ing packets.

In addition to those seven terminal nodes, there wereititegaal nodes to help
with the processing, and these made up the functioAdetook its two children’s values

and added them together and returned the resulting daalbke @b subtracted the second
57

child’s value from the first and returned a double valpeagenting the resultslul also
depended upon the values of its two children; indhge it would return the result of
multiplying the two children together as a double value.

The ten nodes discussed above were determined to béesifftr testing the
simplest case scenario, and in fact, later it willdenghat this is true. This simply means
that arranging a subset of the seven variables anddpegators into some sort of equation
will yield the proper answer for whether a packet has guasing or not when evaluated

on each line of input from the dataset.

Creating Input

The input file for ECJ differed slightly from the ingile used by the previous
TCPMissing algorithm. The TCPMissing algorithm opened dprap file, and using
JPCAP, parsed out packets and represented them as objeetmory. The same approach
could have been taken with ECJ. Indeed, the two progranid be merged to perform the
same calculations on one input file in tandem. Howewesimplicity and clarity, a step-
by-step approach was taken, at least for this initiadfpsbconcept. The end result is that
there are several modules involved in the whole process.

The first module used was the Windump facility. Thisfisealy available program
used in the capture and processing of network trdffie.same exact data file was used for
ECJ as was used in testing the TCPMissing algorithhmgadgh with three-fourths of the
data trimmed out so that only the traffic seen by onéihase connection would be
presented to the tree. Instead of reading the binary faintiae file, a preprocessing step
was taken to simplify the input file. Running from t@mmand line, the Windump utility

58

was used to parse out only the packets seen by onelops connection with the
following commandwindump -ntttvv -r reallb host 128.192.101.108 and por2486€
data/abso2The same command could have been programmed in Java engblaée
inside ECJ.

The flag -# requests that the format of the timestamp be the eliféer of time in
microseconds from the time of the last packet receivemtdédf The flag ¥vrequests that
verbose output be activated, resulting in fields sucBamimber and time-to-live to also
be printed out. All these values were determined to be wédtidnation possibly needed
for the successful determination of packets from specaisc&lowever, they were
eventually unneeded in the simplest case scenario.

The resulting file, in this cas#dso2 contained one side of one connection. Next, it
was necessary to parse out some information and add eoolin@n to the file containing
information about the state of the file. File staterimfation represents the number of
missing packets and is necessary to evaluate the faheees in the genetic programming
solution. The state information was represented as @geinteither zero or one. If a packet
was removed from the immediately proceeding line, the valthee state column was set
to one. Otherwise if no packet was removed from thegediag line, the state was left at
zero. These values of either one or zero, depending upohewiie¢ successive packet
was removed or not, proved the basis for the fitness function

The module that took care of this functionality V@en2java, taking as input a file
generated by Windump and outputting a file ready for prowgsy ECJ. Again, this
module is entirely capable of being fully incorporatethim ECJ main program, but for

clarity’s sake was left to stand alone to demonstretaifferent steps of input preparation.
59

The following command was used to compile the progjawac -classpath .
Gen2.javaTo run the utility, the following command was usgda -cp . Gen2 abso2
This read in the file nameabso2(the filename was taken as a parameter on the command
line) and outputted a simpler file with only the pertinafiirmation needed for simple case
evaluation to a file calleshputb.out This file was then used by the genetic programming
solution as the input on which to base tree buildirgstns.

This leaves all the final processing up to ECJ. ECdrhes responsible for reading
in the file, parsing the information into the appropriatéalde arrays, and then iterating
through the arrays in such a way that the informationigietshe tree nodes at the proper
time and proper place.

Because reading from a file can be an expensive operg&tiahonly opens the file
once. It does this during an initial setup method anaduhis time stores all file values in
the appropriate variable arrays. For instance the adkdgment numbers are stored in a
double array callethputAck The state information on missing packets, essentialy
answer key, is stored in a double array cathesking

All values used inside ECJ were of type double. Thig &/bid errors in data
caused by truncation. Because random ephemeral cons@etsivtype double, the results
of any of their computations should be capable of beingegddssck on up to their parent
node which should also be of type double. Since during ggmetgramming nodes are
mixed and matched, it was ideal to maintain commonaltity uniformity among node
value types. Therefore, having one node of type doubleirgaration that they should all

be of type double.

60

Once all input values were represented in their propebla arrays in memory,

ECJ was ready to begin growing the trees.

Growing the Trees

The evolutionary concept decrees survival of the fittexd, that is what makes
genetic programming so powerful. The basic concept undettyengethods used to
evolve individuals is that nodes are randomly arrangedriees, and those arrangements
which perform the best are saved and modified for sam@egenerations. This ensures the
propagation of stronger performers, closer fits, and evigntba winning ideal individual,
which is basically the winning tree arrangement. A tsesniarrangement of nodes in such
a way that the evaluation of the nodes is done in afgperder that means the tree can be
translated into an equivalent mathematical expressiamenthe internal nodes become the

operators acting upon the terminal nodes which become thanolse

61

Funetion

Clones of Central Strongly Sat gnd
Prototypes Repositories Typed GP Prolotypes
GEPFJFIC“O"SBT
GFindividual species —» GPSpecies GP
Funcinfa
b T
fitness trees(0] owner fods node
functionset { —
[bar i [oo |
GPTree ‘\.._.J' "h—,.;-..-"

ContramE Constraints

treatype

GPType

GPMode

m i
‘Co straints retumtype

GPType
childtypes]0]

GPType

) childtypes[1]
constraints(} . constraints{) *

\

GPType

Constraints
retu !’ﬁlﬂ]&

Figure 8: Representation of ECJ’s genetic programming system
(ECJ:http://cs.gmu.edu/~eclab/projects/ecj/)

GPIndividualis a class that represents one individual (or one treleinwie total
population which can consist of multiple trees. A tssmade up of an amalgam of nodes
chosen from the function set and data object set, in essg®rators and variables.
GPNodeConstraintdefines the behavior of each node. The behavior of nodasgos in

the function set will differ from the behavior of datgem nodes. The inner function set

62

nodes, represented in the diagram above detheode, must evaluate both children
before returning a value up the tree. The data objeesnoepresented in the diagram
above adbar nodes, simply return their value.

GPTypeis a field found in each node specifying the type ofdern value. In the
case of TCPMissindg)oubleDataobjects were used throughout the ti2eubleDatais a
Java class that encapsulates values of the primitiveygetdouble To help avoid type
mismatchGPTreeConstraintalso contains &PTypefield. GPTypeguarantees that all
nodes maintain uniformity within the tree by having eactie return data of the same
type. Every node added to the tree should return a véloee-and-the-same type, and in
the case of TCPMissing, this type was DoubleData.

GPTreeConstraintalsomaintainsa GPFunctionSebbject GPFunctionSekeeps
track of all the nodes available for insertion into a.tte the case of TCPMissing, these
were the seven variable nodes and the three operator. Daotieg) the formation of trees,
nodes were selected from this pool depending on whethetesior node was needed for
operator functionalityf¢o) or whether a terminal node was needed to representhlear
(bar).

There are several important stages involved in evolvees. First there is the
generation of the initial population to consider. Thetween successive generations, trees
change according to mutations and crossovers and are détgctarvival based on some
fitness function. In ECJ, subclassesz#NodeBuildetake care of the tree generation
algorithms used in population initialization and ntigia

The initial population at the very beginning is generatd€iCJ according to the

principles of ramped half-and-half. There are two mett@dyrowing a tree. The full
63

method grows a full tree, meaning that each branch ingbdas a maximum possible
depth. Given a maximum depthDf.., all branches of the tree will be of s2gaxWwith no
variation in the size of each individual branch. Theothethod is the grow method where
the tree size may vary from one node to as many nodeafl &sup to the limit of Dyax IN
ramped half-and-half, a population of trees is created Wiadf¢he trees were grown using
the full method and half the trees were grown using tbe gnethod. Initially the
population size was set to 1024 individuals. Howevesrder to widen the gene pool and
see an increase in better results faster, the poputatietimit was increased by one order
of magnitude to 10,240 individuals per generation.

Once a population exists, the individuals must be aetatliagainst a fitness
function in case an ideal individual has evolved. Once &t idéividual is found, the
problem is solved and ECJ’s work is done. If no idediMidual was found, ECJ goes

through the process of creating the population that wifirise the next generation.

64

Mew Population
H

Vector
Mutation

Vector Breeding
Crossover Pipeline
Tree

N/
(Old Population)

BreedingPipelines

{copy, then modify individuals)
SelectionMethods

{select and return old individuals)

Figure 9: A breeding pipeline conceptualization of the methods used by ECJ to

create a new population from an old one

(ECJ:http://cs.gmu.edu/~eclab/projects/ecj)

Tournament selection is the selection method utillae&CJ to pick the parents of

the next generation. The variation of tournament seleaged by ECJ picks seven
possible parents from the total population, but thislmemoan vary. The greater the
tournament selection size, the greater the selectemsyre. Fox individuals picked at
random, the larger the valuexofthe greater the probability is that a good individual &ith
high fitness is among that group. This decreases theelbdacveak individual being
chosen as a parent. A larger selection size will morekly skew the selection of parents

for recombination towards those with higher fitness valdieselection pressure that is too

65

high is undesirable because it might lead towards cgaiee on a locally optimal solution
and not the ideal globally optimal solution.

According to the rules of tournament selection, a numbemolom individuals are
chosen from the population. These individuals are evedustcording to their fithess
functions and the strongest (best-performing) individsiahosen as the winner.

The fitness function for TCPMissing was based on the nuoflm®rrectly
identified missing packets. A tree that is unablaémtify the missing packets will have a
bad fitness value. False positives, or identifying mispanctkets where none exist, can also
adversely affect a tree’s fitness. As part of evaluaheditness for each tree, a training set
of data is required where the correct answer for everggimonding line of input is
predetermined. This is needed because the expectedmnestilbe available to the fithess
function for its use in comparing the performance of eadivigual with the ideal
performance. The training set of data for TCPMissinguotet! both the input dataset and
the expected results. This information was read into mefrmam a file created bgen2at
the start of the program.

From the figure above, it can be seen that tournameutiselés performed twice
during the breeding pipeline so that two parents can bewgliosrecombination. The
practiced method of recombination in ECJ is a subt@ssover. Picture a random node
chosen from the tree and then envision the subtreesamted with that node as its parent.
If it is a leaf, there is only one node in the subtrdgch is itself. Exchanging two
randomly chosen subtrees of two individuals in one geoeraill create two new
individuals for the population of the successive genearatiopefully creating trees with

performance closer to the ideal individual.
66

Mutation is essentially creating a new tree from an el tinrough some random
small variation. A random node is chosen in the olel &red used as the point of mutation.
First the subtree connected to that node is removed. & hew randomly generated tree is
grown to that point. There is a small caveat that gloegavith this method of mutation.
One needs to be aware that if left to themselves, #adsd become successively larger
throughout each generation. This is known as bloat, onslinf the fattest [Eibe1998]. In
an effort to avoid this problem, a maximum tree size finel@ according to maximum
depth and all trees are prevented from growing beyasd th

The selection and modification process represented bydbdibg pipeline
diagram can be repeated multiple times until sufficiedividuals are created to populate
the new generation. In TCPMissing, every generation dedsi 10,240 individuals.
When the number of individuals in the new generatioohesthe population size limit, the
breeding stage completes, and the new generation is @¢ataacheck for the existence of
an ideal individual. If none is found, then the curreamegation becomes the old generation
and a new generation must be created. This cycle cositimig either an ideal individual
is found or the maximum number of generations is reathddCPMissing, the maximum
number of generations was set to fifty. However, procesanmaly continued on for that

long as ideal individuals were usually found within tingt handful of generations.

Execution of ECJ on the TCPMissing Problem
The following is the output of the session where an ide@tidual was found. First

the program is compiled and then executed. After tworgéaes, an ideal individual was

67

found. To avoid large amounts of data from scrolliagss the screen, ECJ outputs data to
a file namedut.staf which can be found in Appendix B.

>>javac -classpath .;[location of ecj] ec\app\tcpmisgihjava

>>java -cp ec\app\tcpmissing;. ec.Evolve -file

ec\app\tcpmissing\tcpmissing.params -p stat.gather-fuie=

&8 Command Prompt JEM

C:\Documents and Settings‘\Red\Desktop\Ms thesis‘ecj\ecj>javac —classpath .;"C:\Documents and Settings‘\Red\Desktop\Ms thel’
sis\ecjsechapphtepnissing” echappstopnissing*, java

C:\Documents and Settings‘\Red\Desktop\Ms thesis\ecj\ecj>java —Bns3@Bm —Rmx48Bn —cp echapp\tcpmissing;. ec.Evolve —file e
chappstepnissing\tocpmissing.params —p stat.gather—full=true

ECJ
fAn evolutionary computation system (version 15)
By Sean Luke
Contributors: L. Panait, G. Balan, $. Paus, Z. Skolicki.
J. Bassett, R. Hubley, and A. Chircop
URL: http://cs.gnu.edu/"eclab/projectssecj/
Mail: ecj-helplcs.gnu.edu
(hetter: join ECJ-INTEREST at URL ahove?
Date: April 4, 2006
Current Java: 1.5.0_86 / Java HotSpot<(TM) Client UM-1.5.8_B6-h@5
Required Minimum Java: 1.3

Threads: hreed/1 evalsi

Seed: -1348799616

Woh: @

Setting up

Processing GP Types

Processing GP Node Constraints
Processing GP Function Sets
Processing GP Tree Constraints
Opening inputa.out...
Initializing Generation @
Generation 1

Generation 2

Found Ideal Individual

C:\Documents and SettingssRed\Desktop\Ms thesissecjsecjil

Figure 10: Screenshot of ECJ running on the TCPMissing problem

Once an ideal individual representing a solution egaaiéound, a small Java
program was built around this equation and consisted & thiain components. This Java

program is contained in a file call&PSolutionjavathat is included in Appendix B. The

68

first component of this class was responsible for readitigel dataset (in this case the trace
file of network traffic). The second component did thevigdéting of using the inputs as
values to evaluate the equation, multiple times if s&agy. For instance, an input file of
sizen packets would requine evaluations of the genetic programming equation. This
means that a genetic programming solution for the TCPijgsioblem would have a
complexity of O(n). The following was an equation discostdrg ECJ to solve for missing
packets:

(((((Seq-MOLength) - (MOSeq -0.5915718)) *

((Seq--0.11322764) - (MOAck * M0Seq))) * (((Ssep)

- (-0.075646505 + ((MOAck * MOLength) - (MOAck * Seq)))) *
((0.56651837 - Ack) * (Ack + MOLength)))))

The third component was responsible for displaying theogpite output and
results. This implementation of the genetic programmahgfisn allowed testing of the
equation on other datasets to determine the generaldyc@rectness) of the solution.

It was possible to start over from the original inplgt §ind remove a different
number of packets from different locations and stderee the correct answer. This means
that not only was the GP equation correct, but it asgeneral enough to allow for
different packets than the ones it was specifically échion to go missing and still pick up

on that fact.

Results

The methodology for determining the accuracy of the systasimuch the same as

it was for the non-learning component. It originally usaddrfiles where the number of

69

missing packets was pre-identified, removed accordipget@letermined percentages. The
percentages of missing packets removed and the peresmtagissing packets identified
by the genetic programming solution correspond exactly, lester than the results of the
non-learning component which were approximate. The geneticgonoging solution was
also able to perform better with a higher percentageisding packets. This makes sense if
it was able to extrapolate the underlying working mathiealanhodel. As if these benefits
were not enough, the genetic programming solution was aser ead simpler to
implement from a programmer’s perspective.

To achieve good results, it helped greatly to incrdssgénerations’ population
size. This value was set to 10,240, an order of magnitedease from the default value.
This increase in population size greatly increasedftlogeacy of the trees. This makes
sense because there were many more individuals to cliooséf reproduction and
mutation.

The randomness of the system was also different &r es. ECJ utilizes a seed
parameter which sets up the starting point foMagenneTwisterFast algorithm. This
random number generator has an extremely long period, wigahs that patterns are less
likely to be discernable. Setting the seed to be therduinee at the moment of execution
means that every run on the same problem will generd¢eetit random trees. Since ECJ
is fully deterministic, specifying a specific numevalue for the seed will generate the
same trees across different runs.

This work contributes greatly to the field of intrusiones¢ion because it develops

an intrusion detection component which is able to actayed TCP trace files to

70

determine after-the fact whether packets which should theeistream are missing, or
whether they were dropped by the network. This can tyeiwgortant for post-attack
analysis.

The genetic programming model is useful because it deratesproof of concept
that a solution can be found for determining missing pgadkem the simplest of input
streams. The attractive feature of genetic programmisigée the solutions are based on
mathematical models, they have the potential to achighetrates of accuracy than
systems based on sequential algorithms if all the alpeses are not selectively pre-
programmed.

One of the nice things about using ECJ as the gateway tetgyerogramming
solution is code reuse. The core functionalities of gepetigramming are already coded
and modularized. To make use of these functionaliggires minimum changes to the
program. To increase the node count, additional node classesvritten. However,
beyond that only two files needed to be modifidditiValuedRegressiojava and
tcpmissingparams and both of these files were included in Appendix B. figdky all
specifics of the particular implementation are coddtiese two files. And in this case,
instead of writing code to solve the actual problem, one smngtly write code to describe
the problem. This difference is important, becauseaslby for difficult problems, it is
much simpler to describe the problem than to writectitee to exhaustively solve it. And
indeed, the genetic programming solution was able tcaimideal individual (a regression
across the data points) within about two seconds or teaessive generations. This makes

genetic programming faster and cheaper.

71

It is also more efficient. Whereas a programmer mudicgkpinsert code for each
possible scenario, genetic programming handles the satsts automatically. However,
one thing to be aware of in evolving a tree is the cetapkss of training data. If the
training dataset does not represent all possible aspkitte problem, the genetic
programming solution might not recognize those missépgets if they are introduced
later. In addition, the training dataset must not corgaimneous data that could crop up
due to faulty preprocessing modules. One way to test fibgsito ECJ is to run similar
files through the TCPMissing algorithm, and see if resurkssimilar.

Another thing to watch out for in regards to thertirag dataset is that there are no
accidental patterns set up that could distract the igggregramming solution away from
the real problem. One problem experienced early on waththaleal individual found
during genetic programming could not perform correctly éiemrdint input files. If it was
presented with data other than the data it was traingtamuld not generalize due to the
fact that it had focused on a pattern not necessary frabéem, such as exactly every
third packet was removed. That is why it is importamh&ke sure the training dataset is
complete and fair as a truly random and representatbgestion of the problem space.

This presents one area of possible future work: thabefrig beyond proof-of-
concept to a full-bodied implementation of a genetic prognang solution that was
generalized enough to handle all possible specialstas®rios. This could be done either
by training on a completely generalized dataset, which roglat difficult determination to
make. Or the special cases could be slowly introducedglitse simplest case as the
starting point, test the solution equation on a fileesgnting a special case not yet

introduced to the system. If the missing packets arecity identified, good! Otherwise
72

use the mistakes as a starting point for successive genagiramming solutions for those
special case scenarios.

Another area of future work consists of extending thetfonality of the GP
solution to be able to account for both the source astindition machines involved in a
single flow, or even extending it to account for multijdevs. However, this functionality
is easy to implement using a preprocessing module (thedthattopted by the GP

solution) so it might not offer a great enough pay-ofheke it worthwhile to pursue.

73

CHAPTER 4

A COMPARISON OF BOTH APPROACHES

TCPMissing is an IDS analytical component used to etaloace files in post-
attack forensics to determine the number of missing padkaowing packets are missing
from the traffic log files can help investigators avoidtakes made based on incomplete
information.

This thesis has taken an in depth look at the develdpmhen IDS component for
the determination of missing packets according to tfferdnt approaches. The first
algorithmic approach stemmed from traditional computense techniques and attempted
to determine missing packets by identifying speciad cagnarios and applying separate
formulas to each case. The second approach simply ran &natgh a mathematical
equation determined according to the rules and resuigsnattic programming.

It was through the influence of Denning, Bace, and Aldardlgenetic
programming solution was developed for TCPMissing. Dukd¢a@omplex nature of TCP,
explicitly coding an algorithmic solution for every singlgecial case scenario turned out to
be a daunting task. This challenge prompted a switdiraétion as encouraged by Bace
with her advice to remain flexible and open to new pogsietter routes. Drawing upon
the success of Denning with her expert system IDS, aolation was sought which

would be faster, cheaper, and more efficient than the exaogithmic method. Alder’s
74

advice on presenting research results in an understangaldtable form helped guide the

writing of this thesis.

Ease of Implementation

Genetic programming presented the Al alternative to theitdgoc approach.
Using ECJ as the workhorse to perform most of the geneiizgmming functionalities
(such as representation, selection, and mutation),GRMissing problem was encoded. It
was easier and cheaper in man-hours to encogedbemof TCPMissing (as used in the
GP solution) than to encode an actual algorithmiclosive solutionto the problem of
TCPMissing.

Encoding the problem in ECJ involved specifying the isuid the expected result
that corresponded to that set of inputs. In the case BMi€3ing, this input file consisted
of a number of packets and the corresponding expectedwesudt number on each line
indicating whether a packet had been removed or not fromék®ps line. Then the rest
was up to ECJ to correctly determine the proper regresnitime dataset.

Although a GP implementation might prove a bit trickptirst time user of ECJ,
it was still much simpler than the algorithmic impkemtation of TCPMissing. In order to
successfully implement a solution to TCPMissing usiegatigorithmic approach, one must
separately encode every possible special case scenanaghaoccur under the umbrella
of complex behaviors of TCP. In essence, one must prograrorigete solution instead

of simply defining the complete problem as in genetic pragreang.

75

Accuracy

The GP solution was able to demonstrate more accugatiésréhan the algorithmic
approach. Both implementations were tested on theré I3’ by successively removing
different packets from the same file. The GP solutionatées to keep up with differences
in the location of the removed packets better than gwitimic approach. This is because
the genetic programming approach keeps creating successertins of individuals
until an ideal individual is found. Ideal individuals #inese which are able to correctly
identify all missing packets with no false positives. Theans that they perform perfectly
on the training dataset. It is part of creating a gooalsgéatvhich provides generality to the
solution so that it can also perform well on a diffeataset.

This was tested on the GP solution. The resultingteoueepresented by the ideal
individual was tested on different datasets than thespeefically used to train it. It
performed as expected with perfect accuracy in prediantisging packets.

The GP solution was also more efficient. The complexityaluating a
mathematical expression can be modeled as O(n) whetbe number of packets. An
equivalent execution of the algorithmic solution woulduregjthe traversal of several
possible branches of thought based upon the relevanalsgase scenarios at playmf
tasks or comparisons must be performed upon a paatateioto the spectrum of possible
special case scenarios, then the complexity for the dguodtapproach becomes O(mxn),

a worse complexity than that of the GP solution.

76

Conclusion

In conclusion, genetic programming held the solution tiffiaudt problem
involving the algorithmic implementation of TCPMissifighe problem occurred because
of the plethora of special case scenarios that arisef tie complexities of TCP. Where
genetic programming won out over the algorithmic implentemtavas that genetic
programming requires the encoding of just the problem, @eseg to the encoding of the
entire solution. The genetic programming solution was shovae easier to implement,

more accurate, and more efficient.

77

REFERENCES

[Alde2006] Alder, Raven. Telephone Interview with RebeB&tk. 1 Mar 2006.

[Ande1980] Anderson, James. “Computer Security Threatitdring and
Surveillance.” Technical report, James P Anderson Ca. \WWashington,

Pennsylvania. 26 February 1980.

[Axel2000] Axelsson, Stefan. “Intrusion Detection teyss: A Survey and Taxonomy.”
Goeteborg, Chalmers University of Technology, Departmie@bmputer

Engineering. 14 March 2000.

[Bace2006] Bace, Rebecca. Telephone Interview with RébBlack. 10 March 2006.

9:30-10:00am.

[Brow2000] Brown, John Seely, and Paul Duguid. "Mystof the Region: Knowledge

Dynamics in Silicon Valley." The Silicon Valley Eddgstanford University

Press p. 16-39 (2000). 6 Feb 2006

<http://www.sociallifeofinformation.com/Mysteries_ofiet Region.htm>.

[Brow2000] Brown, John Seely, and Paul Duguid. "ldedsded Your Business: Re-

Engineering the Future." The Internet Stand&dApril 2000. 6 Feb 2006

<http://www.thestandard.com/article/0,1901,14013,00.htmI>

78

[Cann1998]

[Cann2000]

[Cars2003]

[Dass2003]

[Davi2005]

[Debal992]

[Denn1987]

Cannady, James. “Atrtificial Neural NetwdiksMisuse Detection

National Information Systems Security Conference, NISS&ober 5-8

1998. Arlington, VA. p. 443-456.

Cannady, James. “Next Generation Intrusioadben: Autonomous
Reinforcement Learning of Network Attacks.” 23rd Natiom&rmation
Systems Security Conference, NISSC. 2000.

<http://csrc.nist.gov/nissc/2000/proceedings/papergia83>.

Carstens, Tim. “Programming with Pcap.”18p#003.

<http://www.tcpdump.org/pcap.htm>, <http://JPCAP.setorge.net/>.

Dass, Mayukh. “LIDS: A Learning Intrusion DatetSystem.” MS.

Thesis, University of Georgia, 2003.

Davies, Jason. “Optimizing Java for Speétktspade. Copyright 2005.
October 2005.

<http://www.netspade.com/articles/java/optimizing/speat:.

Debar, H., Becke, M., & Siboni, D. “A Neural NetkwvComponent for an
Intrusion Detection System.” IEEE Computer Society Sysnpgm on

Research in Security and Privacy. 1992. p 240-250.

Denning, Dorothy E. "An Intrusion Detectiondéb” IEEE Transactions

on Software Engineering, Vol. SE-13, No. 2, p. 222-23B,1887.

79

[Denn1996]

[Denn2006]

[Eibe2003]

[Ever2005]

[ECP20086]

[Fran1994]

[Fuji2006]

Denning, Dorothy E. "The Future of Cryptograp®ebrgetown
University. 6 Jan 1996. 1 Feb 2006

<http://www.cosc.georgetown.edu/~denning/crypto/Futurdzhtm

Denning, Dorothy. Telephone Interview witthBkah Black. 27 Jan 2006.

Eiben, A. E., and J. E. Smith. “Introductto Evolutionary Computing.”

Verlag Berlin Heidelberg: Springer, 2003. p 101-113.

Evers, Joris. "Hackers rally behind Cisco flender.” ZDNet1 Aug 2005.
06 Mar 2006
<http://www.zdnet.com.au/news/security/soa/Hackers ra#hind_Cisco

flaw_finder/0,2000061744,39205047,00.htm>.

"Technology Jobs for Women: Women and Their Rdlee Development
of the Modern Computer: Computer Wonder Women." Edcait
CyberPlayground (ECP): founded by Karen Ellis. 08 Feb. 2006

<http://www.edu-cyberpg.com/pdf/cwomen.pdf>.

Frank, Jeremy. “Artificial Intelligence amdrusion Detection: Current and
Future Directions.” Proceedings of the 17th National Coergbécurity

Conference. Baltimore, MD, pp 22-33, October 1994.

Fujii, Keita. JPCAP ver.0.5. Copyright (c) 2006. Q&iA2006.
<kfujii@ics.uci.edu>
<http://netresearch.ics.uci.edu/kfujii’fJPCAP/dod@ec/index.html>.

80

[Gosl1996]

[Gray2004]

[llgul1992]

[Katz2001]

[Kear2005]

[Kumal1995]

Gosling, James, and Henry McGilton. "The Jargguage Environment -
A White Paper." Sun Developer Network. May 1996. Sun Migstems.

Fall 2005 <http://www.javasoft.com/docs/white/langenv>.

Patrick Gray and Fran Foo. "Hackers: Under the Md@Net Australia

19 Apr 2004. 06 Mar 2006
<http://www.citationmachine.net/index.php?mode=form&g#sé&nonpri

nt&cm=12>.

llgun, Korel. USTAT - A Real-time Intrusion Det®n System for UNIX.

Master's Thesis, University of California at Santa Barbdoaember 1992.

T. Katzlberger, G. Biswas, J. Bransfenfj D. Schwartz, and TAG-V,
“Extending Intelligent Learning Environments with Thable Agents to
Enhance Learning,” Tenth Intl. Conf. on Al in Education: A)-i the
Wired and Wireless Futurd,D. Moore, C.L. Red.eld, and W.L. Johnson,

eds., I0S Press, Amsterdam, p. 389-397, May 2001.

Kearns, Dave. "The Man-in-the-Middle gets @Gawg in ID Theft."

Network World26 October 2005. 26 Feb 2006

<http://www.networkworld.com/newsletters/dir/2005/1024k/dmI|>

Kumar, Sandeep. “Classification and DetaatioComputer Intrusions.”
Ph.D. Diss. Department of Computer Sciences, Purdueekdity. August

1995.

81

[Mosk2002]

[Penn2003]

[Puke1996]

[RFC71981]

[Rowe2006]

[Shen2003]

Moskal, Barbara M. "A Summary of Results fribve Survey of the Earned
Doctorate: Women Earning Computer Science DoctoratestipGiing
Research News, p. 2, 11. May 2002. 26 Mar 2006

<http://www.cra.org/CRN/articles/may02/moskal.html>.

Pennington, Adam G. Strunk, John D. GrifbhnJLinwood. Soules, Craig
A.N. Goodson, Garth R. Ganger, Gregory R. “Storage-basecbion
Detection: Watching Storage Activity for Suspicious BebaVCarnegie
Mellon University. Proceedings of the"IlRSENIX Security Symposium,

Washington, DC. August 2003.

Puketza, N. Zhang, K. Chung, M. Mukherjee, Bs@i, R. A. “A
methodology for Testing Intrusion Detection Systems.” IEE&h3actions

on Software Engineering, 22(10), pp. 719-729, Oct. 1996.

“RFC 793: Transmission Control Protocol." ARInternet Program
Protocol Specification. September 1981.

<http://www.ietf.org/rfc/rfc0793.txt>.

Rowe, Neil C., and Sandra Schiavo. "An ligietit Tutor for Intrusion
Detection on Computer Systems." Computers and Educa®®8. 6 Feb

2006 <http://www.cs.nps.navy.mil/people/faculty/romitor.html>.

Sheng, Lu. Jian, Gong. Suying,Rui. “A Load Baignalgorithm for High

Speed Intrusion Detection.” Nanjing, China, Southesvénmsity,

82

[Slas2004]

[Snif2004]

[Thie2002]

[vanM2000]

Department of Computer Science and Engineering. Eastern Glorth)

Network Center of CERNET. 2003.

Human Interest Dept., posted by timothyckers: Under the Hood."
Online posting. 20 Apr 2004. Slashdot. 06 Mar 2006.

<http://developers.slashdot.org/article.pl?sid=04/2353230&tid=>.

Sniffen, Michael. "Privacy Protecting Progeaifilled.” Associated Press,
CastleCops, 15 Mar 2004. 1 Feb 2006.

<http://castlecops.com/modules.php?name=News&filetagtsid=4958>

Thieme, Richard. "The IDS Den Mother." InforimatSecurity April 2002.

26 Mar 2006 <http://infosecuritymag.techtarget.com/28@2qa.shtml>.

van Millingen, Liz. "Confidence to ContrelAttitudes Towards
Technology Based on a Developing Self-Identity.” British Relagical
Society, London Conference, poster presentation, D@@. 28 Apr 2006

<http://www.le.ac.uk/psychology/eavml/poster.london2000>.

83

APPENDIX A

TCPMISSING API DOCUMENTATION

Tcpmissing

Class Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class Tcpmissing

j ava. | ang. Obj ect

+--Tcpm ssi ng
All Implemented Interfaces:

[PCAPHandler

class Tcpmissing
extends Object

implements |[PCAPHandler

Program Name: TCP Missing
Author: Rebekah Black
Date: Spring 2004

Purpose: To determine the percentage of missing packets due to application failure as
opposed to network loss.

Class: Tcpmissing (where it all begins and eventually ends, like every good thing...)

Field Summary

(package | ARPs
private) number of ARP packets

84

static | ong

(package | jq d
private) S ayec

static int number of delayed packets
(package
private) dropped

static int number of dropped packets
éf?ig?g)e duplicate

static int number of duplicate packets
(peckete 1 e

st gt i Cai nz number of flows in trace file
(package | o\ps
private)

static | ong

number of ICMP packets

éf?\sg?g)e | uckyPac ket. .
static int determines which packet gets removed
(package map
static M stores the seperate unprocessed flows
(pgckage m ss
o g: : \éait ﬁ% how many packets get removed in any given run-through
(package | g ng
st g: : \éait Ez number of missing packets
(pgckage ot her
st a{J ,r Lv?toﬁ)g number of other currently non-processable type packets
(p:ackage TCPs
st a{J r Icvfgﬁ)g number of TCP packets
(pgckage t ot al
st aF ,r Lviatoﬁ)g total number of processed packets
(package | ppg
st a{J r Icvfgﬁ)g number of UDP packets
(package |\ \hosTurn
st g: : \éait Ez tracker of the lucky packet

85

Constructor Summary

(package Tcpmi ssing()
private)

Method Summary

voi d laddToFl ows(| PPacket packet)
Adds the TCPPacket to the appropriate flow

static void checkParans(String[] args)
Checks the incoming command line parameters from main

bool ean |filter()
Filter option to facilitate manual removing of packets

static void|finish()
Processes any unfinished flows once all packets have been recieved

voi d |handl ePacket (Packet packet)
A JPCAP instance must have first been created to generate the packets
passed in

static void|main(String[] args)
Opens a file, parses packets, and returns results

static void|printStats()
Preferably called at the end of the program when variable values have

finished changing

bool ean |saveResul t s(String namne)
Callable from main, brings in third command line parameter as the first
part of the new file name

Methods inherited from class java.lang.Object

, clone, equals, finalize, getdass, hashCode, notify, notifyAl,
regi sterNatives, toString, wait, wait, wait

Field Detail

total

static long total

86

total number of processed packets

ARPs
static | ong ARPs

number of ARP packets
TCPs
static |long TCPs

number of TCP packets
UDPs
static | ong UDPs

number of UDP packets
ICMPs
static long | CVMPs

number of ICMP packets
other

static | ong other
number of other currently non-processable type packets

missing
static int mssing
number of missing packets

dropped

static int dropped
number of dropped packets

duplicate

static int duplicate
number of duplicate packets

delayed

static int del ayed
number of delayed packets

Sflows

static int flows
number of flows in trace file

87

InckyPactket

static int |uckyPacket

determines which packet gets removed

whosTurn

static int whosTurn

7155

tracker of the lucky packet

static int mss

map

how many packets get removed in any given run-through

static Hashtable map

stores the seperate unprocessed flows

Constructor Detail
Tepmissing

Tcpm ssing()

Method Detail
handlePactket
publ i c voi d handl ePacket (Packet packet)

main

A JPCAP instance must have first been created to generate the packets passed in
Specified by:

handl ePacket in interface JPCAPHandl er

Parameters:

Packet - packet

Returns:

classifies the packet according to type. If it is a TCP packet, it is sent on in the
program. Otherwise it dies.

public static void main(String[] args)

throws | OException
Opens a file, parses packets, and returns results
Parameters:
ar gs[0] - trace data file name
args[1] - keyword "where" : which packet to eliminate, optional with 3 and 4
args[2] -int value of which packet to get rid of
args[3] - keyword "num" : how many packets to remove, optional with 1 and 2
args[4] - int value of how many packets to remove
args[5] - keyword "stats" : optional

88

Returns:
parses through the data file, filtering when necessary, and computes then displays the
percentage of missing packets.

addToFlows
public void addToFl ows(| PPacket packet)

finish

Adds the TCPPacket to the appropriate flow

Parameters:

| PPacket - must be of type TCPPacket

Returns:

recieves new packets into the correct hashmap flow. If the flow has been completed
and processed, it is removed from the hashmap

public static void finish()

Processes any unfinished flows once all packets have been recieved
Returns:
processes any flows left in the hashmap

checkParams

public static void checkParans(String[] args)

Checks the incoming command line parameters from main

Parameters:

ar gs[0] - trace data file name

args[1] - keyword "where" : which packet to eliminate, optional with 3 and 4
args[2] -int value of which packet to get rid of

args[3] - keyword "num" : how many packets to remove, optional with 1 and 2
args[4] - int value of how many packets to remove

args[5] - keyword "stats" : optional

Returns:

sets variables accordingly

saveResults

publ i ¢ bool ean saveResul ts(String nane)

filter

Callable from main, brings in third command line parameter as the first part of the
new file name

Parameters:

name - becomes part of writing file name and signifies the number of packets to
remove

Returns:

opens a file to append the necessary information to the end, returns true if successful

public boolean filter()

89

Filter option to facilitate manual removing of packets

Returns:

evenly removes 'miss' number of packets starting from TuckyPacket' going in
increments of 4000/miss, returns true if successful

printStats

public static void printStats()
Preferably called at the end of the program when variable values have finished

changing
Returns:

prints out the total number of different packet types

Class Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

90

Flow

Class Tree Deprecated Index Help

PREV CLASS NEXT CLASS
SUMMARY: INNER | FIELD | CONSTR | METHOD

Class Flow

java. l ang. Obj ect

+--Fl ow

class Flow

extends Object
Program Name: TCP Missing
Author: Rebekah Black

Date: Spring 2004

FRAMES NO FRAMES
DETAIL: FIELD | CONSTR | METHOD

Purpose: To determine the percentage of missing packets due to application failure as

opposed to network loss.

Class: Flow (logical representation of a flow and methods to analyze it forngissi
packets), depends on Tcpmissing as the driving end

Field Summary

private dest

| ong unique hash of destination machine and port

int |(fin

number of recieved fins in this flow

private |l ast Packet

| PPacket [] keeps track of the last recieved packets for each side

i nt |next Spot

pointer to the next place in the array of past packets

private|p

| PPacket keeps track of current working packet

Vect or |packets

number of packets in this flow

private|PredictedAck

91

l'ong[]

keeps track of each side's expected ack num

private previous
I nt keeps track of the index of the previous packet from same source
private|source
| ong unique hash of source machine and port
private|them
I nt identifier for the other side
static int |total Fl ons

tracks the total number of flows processed during one execution time

private
i nt

us
identifier for this connection

private

I terator

iterates through all the packets in this flow

Constructor Summary

Flow()

Initializes the variables needed to represent a flow

Method Summary

String

addPacket (| PPacket packet)

Adds the packet to the Vector packets

voi d

anal yze()

(Packet) p must point towards a packet, should call getNextPacket() first

voi d

finCase()

Handles the fin case

i nt

fi ndPrevi ous()

Called at least after the first packet has been inserted so that nextSpot does

NOT equal 0, bad...

bool ean

get Next Packet ()

A wonderfully robust function that takes care of most bookkeeping matters

that change with each new packet, retrieves the next packet from the packets
Vector

voi d

nor ()

Handles most intermediate cases, sets the predictedack for the other guy and

compares its own predictedack.

92

bool ean |out O Or der ()
Handles out of order packets

voi d |print()
Prints packets for debug purposes

voi d | processFl ow()
Begin analyzing this flow, one packet at a time

voi d |synCase()
Handles the syn case

Methods inherited from class java.lang.Object

, clone, equals, finalize, getdass, hashCode, notify,

noti fyAll,

regi sterNatives, toString, wait, wait, wait

Field Detail

fin
public int fin
number of recieved fins in this flow

packets

public Vector packets
number of packets in this flow

totalFlows

public static int total Fl ows
tracks the total number of flows processed during one execution time

Predicted Ack

private long[] PredictedAck
keeps track of each side's expected ack num

them

private int them
identifier for the other side

us

private int us

93

identifier for this connection

v

private lterator v
iterates through all the packets in this flow

P

private | PPacket p
keeps track of current working packet

lastPactket

private | PPacket[] | astPacket
keeps track of the last recieved packets for each side

nextSpot

public int nextSpot
pointer to the next place in the array of past packets

source

private | ong source
unique hash of source machine and port

dest

private | ong dest
unique hash of destination machine and port

previous

private int previous
keeps track of the index of the previous packet from same source

Constructor Detail
Flow

public Flow()
Initializes the variables needed to represent a flow

Method Detail
addPacket

public String addPacket (| PPacket packet)
Adds the packet to the Vector packets
Parameters:
packet - must be of type TCPPacket
Returns:

94

puts the packet into the flow and analyzes it if the packet is a reset packet or second
fin, returns "done" if the flow has been processed, otherwise returns "not yet"

processElow

public void processFl ow)
Begin analyzing this flow, one packet at a time
Returns:
increments number of flows in Tcpmissing, analyzes any packets available for
analyzation

getNextPacket

publ i ¢ bool ean get Next Packet ()
A wonderfully robust function that takes care of most bookkeeping matters that
change with each new packet, retrieves the next packet from the packets Vector
Returns:
returns true if another packet was retrieved successfully, false otherwise

findPrevions

public int findPrevious()

Called at least after the first packet has been inserted so that nextSpot does NOT equal
0, bad...
Returns:

returns the index in the lastPacket array where the previous packet from the same
source is stored, -1 otherwise

analyze
public void analyze()

(Packet) p must point towards a packet, should call getNextPacket() first
Returns:

processes the packet according to whether it is a special condition (syn, fin) or normal
(norm)

synCase

public void synCase()
Handles the syn case
Returns:
sets the predictedack for the other guy as its seq# + 1

finCase

public void finCase()
Handles the fin case
Returns:

95

sets the predictedack for the other guy as its seq# + 1 if the length of the packet is
zero, otherwise it is set to seq# + length

norm

public void norn()
Handles most intermediate cases, sets the predictedack for the other guy and compares
its own predictedack. If a discrepancy is found and no explaining special case exists for
it, the missing counter is incremented

ontOfOrder

publ i c bool ean out Of Order ()
Handles out of order packets
Returns:
a special case which returns true if a packet was recieved out of order

print
public void print()
Prints packets for debug purposes

Class Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

96

APPENDIX B

SELECT CODE FROM THE GP IMPLEMENTATION OF TCPMISSING

GPSolution.java

import java.io.FileWriter;

import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.lIOException;
import java.util.StringTokenizer;
import java.util.Stack;

import java.io.FileReader;

/**

*

* This program takes the input of a traffic capture dihel outputs
* the number of missing packets.

* @version 1.0

* @author Rebekah Black

*

*/

public class GPSolution {
public static final int SIZE_DATA = 36; // the nln@r of packets read in from file

public static double[] missing= new double[SIZE_T;
public static double currentDeltaT=0;

public static double[] inputDeltaT= new double[BIDATA;
public static double currentID=0;

public static double[] inputlD= new double[SIZE_DATA
public static double Length=0;

public static double[] inputLength= new double[SIZE_TA;
public static double currentFlag=0;

public static double[] inputFlag= new double[SIZEATA];

97

public static double currentSrcDst=0;

public static double[] inputSrcDst= new double[SIZATA];
public static double Seq=0;

public static double[] inputSeq= new double[SIZE TH;
public static double Ack=0;

public static double[] inputAck= new double[SIZBATA];
public static double MOLength=0;

public static double M0Seq=0;

public static double MOAck=0;

public static void setup(String filename)

{

try{
/[This is where I'm going to open the input file and riead

System.out.printin("Opening ..."+filename);
FileReader inputFileReader = new FileRead@iiesis\\data\\"+filename);

/I Create Buffered/PrintWriter Objects
BufferedReader inputStream = new BufferedReagetftiieReader);

String inLine = null;

String temp = null;

StringTokenizer st = new StringTokenizer(temp=nem&));
int count = 0;

while ((inLine = inputStream.readLine()) != null && countS¥ZE_DATA) {

st = new StringTokenizer(inLine, " \t");
missing[count]=(new Double(st.nextToken())).deMallue();
/ISystem.out.print("missing: "+missing[count])
inputDeltaT[count] = (new Double(st.nextTokendgubleValue();
inputiD[count] = (new Double(st.nextToken()putbleValue();
inputLength[count] = (new Double(st.nextTokengyubleValue();
inputSrcDst[count] = (new Double(st.nextTokyrdpubleValue();
temp = st.nextToken();
if(temp.equalsignoreCase('S"))

inputFlag[count]=0;
else if(temp.equalsignoreCase("'F"))

inputFlag[count]=1,
else if(temp.equalsignoreCase("R"))

inputFlag[count]=2;
else //if(temp.equalsignoreCase("'P"))

inputFlag[count]=3;

98

/lelse inputFlag[count]=-1,

inputSeq[count] = (new Double(st.nextTokergpibleValue();
inputAck[count] = (new Double(st.nextTokengdubleValue();
/ISystem.out.print(" ack: "+inputAck[count]);

count++;

//System.out.printin("count: "+count);

Hiwnhile
} catch (IOException e) {

System.out.printin("IOException:");
e.printStackTrace();

}
}
public static void evaluate()
{
int hits = 0;

double sum = 0.0;
double expectedResult=0;
double calcMiss=0;

for(inti =0; i < SIZE_DATA,; i++){
currentDeltaT = inputDeltaT[i];
currentlD = inputlDIi;
currentFlag = inputFlagi];

if(currentSrcDst == 0){
MOSeq = Seq;
MOAck = Ack;
MOLength=Length;

Length =inputLengthli];
currentSrcDst = inputSrcDst[i];
Seq = inputSeq[i];

Ack = inputAckK]i];

expectedResult = missing[i];
calcMiss = expression();

if(expectedResult>0 && calcMiss > 0){
hits++;

99

else if (expectedResult ==0 && calcMiss <=0)
hits++;
else
sum++;
Hifor i

System.out.printin("sum: "+sum);
System.out.printin("hits:"+hits);
System.out.printin("calcMiss: "+calcMiss);

}

public static double expression(){

return (((((Seq - MOLength) - (M0Seq - 0.59157]18")

((Seq--0.11322764) - (MOAck *M0Seq)) XX (Seq* Seq)

- (-0.075646505 + ((MOAck * MOLength) - (MOAtSeq)))) *
((0.56651837 - Ack) * (Ack + MOLength)));))

}

public static double makeSt(){
try{

System.out.printin("Opening tree.out");

FileReader inputFileReader = new FileReaDek{hesis\\data\\tree.in");

/I Create Buffered/PrintWriter Objects
BufferedReader inputStream = new BufferedRéagetFileReader);
String outputFileName = "tree.out";
FileWriter outputFileReader = new FileWriter{mutFileName);
PrintWriter outputStream = new PrintWriterifoutFileReader);

String inLine = null;

String temp = new String();

StringTokenizer st = new StringTokenizer(temp);
int count = 0;

Stack s = new Stack();

Stack ¢ = new Stack();

String tmpSt1 = new String();

String tmpSt2 = new String();

while ((inLine = inputStream.readLine()) != null) {
st = new StringTokenizer(inLine, "\t ()");
while(st.hasMoreTokens())
s.push(st.nextToken());
}

100

while(!s.empty()){
String tmp= (String)s.pop();
if(tmp.equals('+") || tmp.equals("-") || tmp.equal§f{
tmpStl=(String)c.pop();
tmpSt2=(String)c.pop();

c.push(new String(" ("+ tmpStL +" " +tmp + " " + tmp$t2) "));
}

else c.push(tmp);

}
Ilwhile('c.empty())

outputStream.print(c.pop());

inputStream.close();
outputStream.close();
outputFileReader.close();
inputFileReader.close();

} catch (IOException e) {

System.out.printin("IOException:");
e.printStackTrace();
}

return 0.0;

}

/**

* Sole entry point to the class and application.
* @param args Array of String arguments.

*/

public static void main(String[] args) {

if(fargs[0].equals("makeSt™)){
setup(args[0]);
evaluate();
}
else makeSt();
System.out.printin(args[0]);

}

101

MultiValuedRegression.java

/*

Copyright 2006 by Sean Luke

Licensed under the Academic Free License version 3.0
See the file "LICENSE" for more information

*/

package ec.app.tcpmissing;
import ec.util.*;

import ec.*;

import ec.gp.*;

import ec.gp.koza.*;

import ec.simple.*;

import java.util.StringTokenizer;
import java.io.FileReader;
import java.io.BufferedReader;
import java.io.lIOException;

public class MultiValuedRegression extends GPProblepteiments SimpleProblemForm
{
public static final String P_DATA = "data";
public static final int SIZE_DATA = 36; // the nln@r of packets read in from file

public double[] missing= new double[SIZE_DATAKAO, 1, 2, 3, 4,5, 6, 7, 8, 16},
public double currentDeltaT=0;

public double[] inputDeltaT= new double[SIZE_DATFA
public double currentlD=0;

public double[] inputlD= new double[SIZE_DATA|;
public double currentLength=0;

public double[] inputLength= new double[SIZE_DATA|;
public double currentFlag=0;

public double[] inputFlag= new double[SIZE_DATA|;
public double currentSrcDst=0;

public double[] inputSrcDst= new double[SIZE_DATA];
public double currentSeq=0;

public double[] inputSeg= new double[SIZE_DATA];
public double currentAck=0;

public double[] inputAck= new double[SIZE_DATA|;

public DoubleData input;

public Object clone()

102

MultiValuedRegression newobj = (MultiValuedfRession) (super.clone());
newobj.input = (DoubleData)(input.clone());
return newobyj;

}

public void setup(final EvolutionState state,
final Parameter base)
{

Il very important, remember this
super.setup(state,base);

try{
/[This is where I'm going to open the input file and riead

System.out.printin("Opening inputa.out...");
FileReader inputFileReader = new FileRead@k{iesis\\data\\default38.txt");

/I Create Buffered/PrintWriter Objects
BufferedReader inputStream = new BufferedReagetfiiieReader);

String inLine = null;

String temp = null;
StringTokenizer st = new StringTokenizer(temp=newn§());
int count = 0;

while ((inLine = inputStream.readLine()) != null && countS¥ZE_DATA) {

st = new StringTokenizer(inLine, " \t");
missing[count]=(new Double(st.nextToken())).deMallue();
//System.out.print("missing: "+missing[count])
inputDeltaT[count] = (new Double(st.nextTokendgubleValue();
inputiD[count] = (new Double(st.nextToken()pudbleValue();
inputLength[count] = (new Double(st.nextTokendpubleValue();
inputSrcDst[count] = (new Double(st.nextTokprdpubleValue();
temp = st.nextToken();
if(temp.equalsignoreCase("S"))

inputFlag[count]=0;
else if(temp.equalsignoreCase("F"))

inputFlag[count]=1,
else if(temp.equalsignoreCase("R"))

inputFlag[count]=2;
else //if(temp.equalsignoreCase("'P"))

inputFlag[count]=3;
/lelse inputFlag[count]=-1,
inputSeg[count] = (new Double(st.nextTokergPlbleValue();
inputAck[count] = (new Double(st.nextTokengdubleValue();

103

/ISystem.out.print(" ack: "+inputAck[count]);
count++;
/ISystem.out.printin("count: "+count);

Hiwhile
} catch (IOException e) {

System.out.printin("IOException: "+e);
e.printStackTrace();

}

/l set up our input -- don't want to use the defese, it's unsafe here

input = (DoubleData) state.parameters.getiostéorParameterEq(
base.push(P_DATA), null, DoubleData.class);

input.setup(state,base.push(P_DATA));

public void evaluate(final EvolutionState state,
final Individual ind,
final int threadnum)

if (lind.evaluated) // don't bother reevaluating
{
int hits = 0;
double sum = 0.0;
double expectedResult;
double result;

for(int i =0; i < SIZE_DATA,; i++){
currentDeltaT = inputDeltaT[i];
currentlD = inputlDIi;
currentFlag = inputFlagi];

if(currentSrcDst == 0){
MO0Seq.m0Seq = currentSeq;
MOAck.mOAck = currentAck;
MOLength.mOLength=currentLength;

else {
M1Seq.m1Seq = currentSeq;
M1Ack.m1Ack = currentAck;
M1Length.mlLength=currentLength;

currentLength =inputLengthli];
currentSrcDst = inputSrcDst[i];
104

currentSeq = inputSeq([i];
currentAck = inputAckK{i];

expectedResult = missing[i];
((GPIndividual)ind).trees[0].child.gval
state,threadnum,input,stack, ((@ridual)ind),this);

if(expectedResult>0 && input.x > 0){
hits++;

}
else if (expectedResult ==0 && input.x <=0)
hits++;
else
sum++;

Mlifor i

I the fitness better be KozaFitness! abdtier be valid range
if(Math.abs(sum)>Float. MAX_VALUE)

sum = (Float. MAX_VALUE);
KozaFitness f = ((KozaFitness)ind.fithess);
f.setStandardizedFitness(state,(float)sum
f.hits = hits;
ind.evaluated = true;

}

105

tcpmissing.params

Copyright 2006 by Sean Luke and George Mason Uniyersit
Licensed under the Academic Free License version 3.0
See the file "LICENSE" for more information

parent.0 = ../../gp/koza/koza.params
generations = 50

HITT677

seed.0 = time
pop.subpop.0.size = 10240

the next four items are already defined in koza.paramsye
put them here to be clear.

We have one function set, of class GPFunctionSet
gp.fs.size=1

gp.fs.0 = ec.gp.GPFunctionSet

We'll call the function set "f0". It uses the default GR#nfo class
gp.fs.0.name =0

gp.fs.0.info = ec.gp.GPFuncinfo

We have ten nodes in the function/dataset. They are:
gp.fs.0.size =10

gp.fs.0.func.0 = ec.app.tcpmissing.Length
gp.fs.0.func.0.nc = ncO

gp.fs.0.func.1 = ec.app.tcpmissing.RegERC
gp.fs.0.func.1.nc = ncO

#MEMORY 0 NODES

gp.fs.0.func.2 = ec.app.tcpmissing.MOAck
gp.fs.0.func.2.nc = ncO

gp.fs.0.func.3 = ec.app.tcpmissing.M0Seq
gp.fs.0.func.3.nc = ncO

gp.fs.0.func.4 = ec.app.tcpmissing.MOLength
gp.fs.0.func.4.nc = ncO

gp.fs.0.func.5 = ec.app.tcpmissing.Seq
gp.fs.0.func.5.nc = ncO
gp.fs.0.func.6 = ec.app.tcpmissing.Ack
gp.fs.0.func.6.nc = ncO
gp.fs.0.func.7 = ec.app.tcpmissing.Add
gp.fs.0.func.7.nc = nc2

106

gp.fs.0.func.8 = ec.app.tcpmissing.Sub
gp.fs.0.func.8.nc = nc2
gp.fs.0.func.9 = ec.app.tcpmissing.Mul
gp.fs.0.func.9.nc = nc2

#Downsized Nodes, possible reentry in future implentienis
#gp.fs.0.func.0 = ec.app.tcpmissing.DeltaT
#gp.fs.0.func.0.nc = ncO

#gp.fs.0.func.1 = ec.app.tcpmissing.ID

#gp.fs.0.func.1.nc = ncO

#gp.fs.0.func.4 = ec.app.tcpmissing.Flag
#gp.fs.0.func.4.nc = nc4

#gp.fs.0.func.2 = ec.app.tcpmissing.SrcDst
#gp.fs.0.func.2.nc = nc2

eval.problem = ec.app.tcpmissing.MultiValuedRegression
eval.problem.data = ec.app.tcpmissing.DoubleData

The following should almost *always* be the same asenaddlem.data
For those who are interested, it defines the datatalged internally

inside ADF stack contexts

eval.problem.stack.context.data = ec.app.tcpmissing.Doatde

107

Ack.java

/*

Copyright 2006 by Sean Luke

Licensed under the Academic Free License version 3.0
See the file "LICENSE" for more information

*/

package ec.app.tcpmissing;
import ec.*;

import ec.gp.*;

import ec.util.*;

public class Ack extends GPNode

{
public String toString() { return "Ack"; }

public void checkConstraints(final EvolutionStateest
final int tree,
final GPIndividual typilcadividual,
final Parameter indivithzse)
{
super.checkConstraints(state,tree,typicaliddal,individualBase);
if (children.length!=0)
state.output.error("Incorrect number of childoe node " +
toStringForError() + " at " +
individualBase);

}

public void eval(final EvolutionState state,
final int thread,
final GPData input,
final ADFStack stack,
final GPIndividual individual,
final Problem problem)

DoubleData rd = ((DoubleData)(input));
rd.x = ((MultiValuedRegression)problem).currentAck;

}
}

108

out.stat

Generation 0

Subpopulation 0

Avg Nodes: 21.5955078125

Nodes/tree: [21.5955078125]

Avg Depth: 3.8587890625

Depthl/tree: [3.8587890625]

Mean fitness raw: 19.439648 adjusted: 0.061916064 hi&s608515625

Best Individual of Generation:
Evaluated: true
Fitness: Raw=1.0 Adjusted=0.5 Hits=35
Tree O:
* (* (* (* (- MOSeq MOACcKk) (+ Ack Ack))
(+ (- MOAck MOACcK) (- -0.35969096 MOACcK)))
(* (- (+ Length Ack) (* 0.66489494 MOAcKk))
(- (- -0.34293437 MOLength) (* Ack Seq))))
(* (* (+ (+ 0.80191904 -0.15020664) (- Seq
Length)) (- (+ MOLength M0OSeq) (- Seq -0.295&§0
(- (+ (+ Ack MOLength) (* Seq MOAck)) (+ (+ M@k MOLength) (- Length Seq)))))

Generation 1

Subpopulation 0

Avg Nodes: 24.4669921875

Nodes/tree: [24.4669921875]

Avg Depth: 4.32158203125

Depthl/tree: [4.32158203125]

Mean fitness raw: 14.832422 adjusted: 0.079840675 hits62378125

Best Individual of Generation:
Evaluated: true
Fitness: Raw=1.0 Adjusted=0.5 Hits=35
Tree O:
* (* (* (* (- MOSeq MOACcK) (+ Ack Ack))
(+ (- MOAck MOACcK) (- -0.35969096 MOACcK)))
(* (- (+ Length Ack) (* 0.66489494 MOAcK))
(- (- -0.34293437 MOLength) (* Ack Seq))))

109

(* (* (+ (+ 0.80191904 -0.15020664) (- Seq
Length)) (- (+ MOLength M0OSeq) (- Seq -0.295Z§9
(- (+ (+ Ack MOLength) (* Seq MOAck)) (+ (+ M@k MOLength) (- Length Seq)))))

Generation 2

Subpopulation 0

Avg Nodes: 32.061328125

Nodes/tree: [32.061328125]

Avg Depth: 5.130078125

Depthl/tree: [5.130078125]

Mean fitness raw: 14.019824 adjusted: 0.084965155 hi@8@17578125

Best Individual of Generation:

Evaluated: true

Fitness: Raw=0.0 Adjusted=1.0 Hits=36

Tree O:

(+ (* (+ Seq MOLength) (* -0.99107873 MOLength))
(* (- Seq MOLength) (- Seq M0Seq)))

Final Statistics

Total Individuals Evaluated: 30720

Best Individual of Run:

Evaluated: true

Fitness: Raw=0.0 Adjusted=1.0 Hits=36

Tree O:

(+ (* (+ Seqg MOLength) (* -0.99107873 MOLength))
(* (- Seq MOLength) (- Seq M0Seq)))

Timings

Initialization: 0.501 secs total, 221138 nodes, 441393022s/sec
Evaluating: 1.101 secs total, 799988 nodes, 726601.3 nedes/s
Breeding: 1.032 secs total, 578850 nodes, 560901.2 sedes/

Memory Usage

Initialization: 12225.477 KB total, 221138 nodes, 18.088293=s/KB
Evaluating: 0.0 KB total, 799988 nodes, Infinity nodes/KB
Breeding: 24170.758 KB total, 578850 nodes, 23.94836 noBes/K

110

