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ABSTRACT 

 Inflammation has been known to be the underlying cause of many diseases, including 

cancer, autoimmune conditions, atherosclerosis and infections, and is a major factor in aging. A 

well-known inflammation-associated disease in the lung is bronchoconstriction, which is 

commonly observed in asthma. Inflammatory diseases pose substantial global health and economic 

burden. Therefore, many experimental and computational studies have shed light on their 

dynamics and mechanisms. To further the understanding of inflammation dynamics, new methods 

are needed to complement experiments. The goal of this research is to develop informatics 

methods, including network and agent-based models, -to investigate inflammation dynamics and 

lung bronchoconstriction. Specific objectives of this dissertation include development of an 

informatics model of bronchoconstriction and agent-based inflammation, and development of new 

metrics to further analyze the underlying responses. The results of this study are consistent with 

the findings in the literature. Analysis of the results from information metrics indicated that 

bronchoconstriction is an adaptive network process and the network metrics can be used to identify 

its progression. Further, the course of inflammation and process of wound healing are related to 



 

the complexity of cell-to-cell interactions. These findings may help to further address the cellular 

level processes in various diseases and other applications. 
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 CHAPTER 1 

INTRODUCTION  

Inflammation is a response to stimulation by invading pathogens or endogenous signals 

such as damaged cells that results in tissue repair or pathology. For a long time, inflammation has 

been viewed as a beneficial response by the body to combat infections and recover injury. 

However, recent researches have shifted the perspective by revealing that inflammations, at times, 

can be harmful rather than beneficial, and a common factor in many diseases. Inflammation is 

initiated by complex interactions between cells, molecules, and pathways. The various pathways 

responsible for inflammation mean that inflammation can be switched on and off in any number 

of ways. Inflammation can lead to harmful consequences if it is initiated and is left active.  

Inflammation has been known to be the underlying cause of many diseases, including 

cancer, autoimmune conditions, atherosclerosis and infections, and is a major factor in aging. In 

fact, there is an effort at unifying the principle of disease through inflammation [1][2]. The 

common theme in inflammation is the signaling of cells, release of cytokines and chemokines, 

destruction of cells such as epithelial cells, fibrosis, and resolution (wound healing, inflammation 

inhibition). Normally, once necessary conditions are fulfilled, the inflammation proceeds quickly, 

followed by gradual resolution. However, if mechanisms inhibiting inflammation are not present, 

then inflammation can persist at a low level (chronic inflammation). Resolution is not simply 

suppressing the stressing agent.  The cells involved need to actively produce mediators to inhibit 

inflammation (homeostasis). Furthermore, the composition of the environment (the type of cells, 
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the cytokines) and their interaction are important in determining the progression of inflammation 

and resolution [3].  

The exact mechanism in which (chronic) inflammation causes various diseases to vary in 

terms of the cells involved is actively researched. For example, people who eventually develop 

diabetes have a high level of inflammatory molecules such as TNF-alpha. TNF-alpha may increase 

the production of glucose and triglycerides, which lower the performance of insulin in the 

absorption of blood sugar. Furthermore, insulin itself is anti-inflammatory. Hence, inflammation 

initiates the environment for insulin resistance that leads to (and even hastens) diabetes. The 

relation between cancer and inflammation can be straightforward. Inflammatory cytokines harm 

cells, damage the DNA, and create mutant genes that lead to cancer.  

The lung tissue is in constant exposure to inflammatory agents such as pollutants and 

pathogens. These inflammatory agents can start or exacerbate bronchoconstriction such as asthma 

and chronic obstructive pulmonary disease (COPD). Another inflammatory disease in the lung is 

ventilator-induced lung injury (VILI) where inflammation is initiated by tissue overstretching.  

Asthma and COPD are very common and their incidence is increasing globally, placing 

substantial health and economic burden [4]. Both diseases are characterized by airway constriction, 

ventilation heterogeneity (defects) and chronic inflammation markers. However, in some cases, 

the clinical features overlap, leading to difficulty in diagnosis. One defining characteristic 

distinguishing them is the distribution of the disease: asthma is mainly located in larger airways 

(conducting zone, although small airways can be affected too), while COPD predominantly affects 

small airways.  
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To understand the mechanism, the behavior, and to develop diagnostic measures, many 

experimental and computational models of inflammation have been developed and conducted. The 

dynamics of inflammation can be modeled using ordinary differential equation (ODE) of reaction-

diffusion (RD) based models. For instance, inflammation was modeled as a consequence RD of 

cytokines [5] theorized to be involved in cell death. Cell death can then be obtained by solving a 

series of ODEs. A major shortcoming of the ODE-based model is that by ignoring spatial 

information, it may overlook important aspects of inflammation itself. The partial differential 

equation (PDE)-based model overcomes this limitation. However, this is not a popular approach 

in inflammation studies [6]. Some related studies used PDE-based models for understanding 

wound healing as a part of the mechano-sensitive response in tissue [7][8]. Another commonly 

employed approach in inflammation studies involves discrete-based models such as Cellular 

Automata (CA) [9]. The discrete model has an advantage in that it accounts for both spatial and 

temporal aspects as well as stochasticity.  

Several studies have demonstrated the feasibility of using a discrete model to explain 

aspects of acute pulmonary inflammation. For instance, Angela et al. used a CA model to study 

bacterial infection and healing in a model lung environment [10]. Another model used the discrete 

model to study inflammation induced by particulate matter inhaled into the lung [11]. Other 

applications of CA models include cancer spread modeling [12][13], disease infection [14] and 

inflammation [10][11][15]. However, this study did not address the effect of agent interactions in 

inflammation progression and resolution.  

On the other hand, studies of the lung ranging from acoustic analysis [16], tissue 

deformation [17] and fluid analysis [18] have been carried out. However, bronchoconstriction 



 

4 

 

involves interaction between millions of airway at different hierarchical sites. There is a lack of 

investigations into the behavior of airways interaction and the morphological changes it induces.   

 

1.1 KNOWLEDGE GAP 

Several studies have demonstrated the feasibility of using a discrete model to explain 

aspects of acute pulmonary inflammation. For instance, Angela et al used a CA model to study 

bacterial infection and healing in a model lung environment [10]. Another model used the discrete 

model to study inflammation induced by particulate matter inhaled into the lung [11]. However, 

these models did not incorporate the effect of mechanical strain in inflammation. 

Recently, there is a growing interests in applying information theoretic approach for 

analysis of physical and biological system [19] [20]. This is based on the premise that information 

is physical and may govern or drive physical systems. Using this approach, biochemical reactions 

can be formulated as a process that converts information into work [21]. Cells migration and 

inflammation are dependent on signal transduction and certain series of events. An impairment in 

cell communication leads to all sorts of disorders and diseases. However, there is a lack of study 

and framework for inflammation in terms of information as a quantity. By quantifying information, 

it is possible to quantify cell-to-cell and cell-to-environment interactions and it may help explain 

why certain chain of events lead to either normal or chronic inflammations.  

Another application of information theoretic approach is the use of mathematical graph (or 

network) as domain of a model (instead of Euclidian space). The graph analog of PDE has been 

proposed by Ref [22]. Some problems can be naturally formalized using graph domain, such as 
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leaf venation formation [23], river network structure and its effect on ecological biodiversity [24], 

and spatial evolution of cities [25]. This formulation enable investigation into factors that drive 

their morphological evolutions. However, there is a lack of graph-based formulation of lung 

dynamics. 

 

1.2 DISSERTATION OVERVIEW AND RESEARCH OBJECTIVE 

The rest of this dissertation is divided into three chapters. Chapter 2 presents the agent-

based model for inflammation. Chapter 3 presents the informatics analysis of inflammation, and 

Chapter 4 presents a network model for lung bronchoconstriction. Fig 1.1 illustrates the work flow 

of this research.  

 

Figure 1.1. The models developed in this research and their applications. 

The objective of this research is to develop informatics methods to fill the knowledge gaps 

mentioned previously. Informatics methods consist of a number of tools to properly describe and 

investigate the interaction between many components in a system. Informatics attempts to 

implement concepts from information theory for problems in various fields such as biology, 
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physics, and health science. Methods and concepts employed in informatics include agent-based 

model, network theory and its complexity measures, and information flow/exchange. Specifically, 

the objective of this research is, 

1) Development of an informatics model of bronchoconstriction as a tool to investigate the 

relationship between lung structural complexity and disease progression.  

2) Development of an agent-based model for inflammation to carry out analysis of 

inflammation in terms of cells interactions and collective dynamics. 

3) Development of informatics model to identify dominant factors in the complex 

interrelationship of agents in the inflammation process. 

 

This research is conducted based on the following hypotheses: 

1) The course of inflammation can be modulated by mechanical stimuli 

2) Flow of information (among cells, between cells and environment)  plays an important role 

in determining the outcome of inflammation. 

3) Bronchoconstriction is similar to network optimization process that removes edges to 

optimize the current state of the network.  
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CHAPTER 2 

SIMULATION OF WOUND HEALING AND CELL’S DYNAMICS UNDER STRAIN-

INDUCED INFLAMMATION 

2.1 INTRODUCTION 

Acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and chronic 

obstructive pulmonary disease (COPD) cause significant inflammation, especially in patients who 

are subject to mechanical ventilation. Despite the well-known ventilation-associated inflammation 

and organ failure risks [26], mechanical ventilation is still an essential approach for restoring 

respiratory function in patients. The main risk with mechanical ventilation is that it leads to 

excessive pressure, which induces mechano-sensitive pathways in alveolar tissue that may lead to 

inflammation as well as systemic organ failure. Inflammation can be characterized as a complex 

chain reaction involving tissue constituents along with many cytokines and leads to tissue damage 

that reduces the functionality of organs. For instance, stretch-induced inflammation is known to 

cause a cascade of organ failures during mechanical ventilation. 

In this study, we simulated a virtual lung environment to study the influence of the elastic 

field on the dynamics of inflammation. The elastic field is a term borrowed from solid mechanics 

to describe strain or stretch. This elastic field is seen as a potential factor that drives the tissue 

constituents to inflammation states. A discrete informatics model that accounts for probabilistic 

adaptation using existing experimental data was developed. The model is largely discrete to 

conform to the CA model paradigm and is built upon a mechanistic approach to each tissue 
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constituent in the inflammation process. The model developed here reflects the redundant chain of 

events and shows certain thresholds of tissue recovery during inflammation. Several scenarios of 

strain levels are investigated and the results obtained are presented and discussed. 

2.2 CELLULAR AUTOMATA 

CA is a discrete and rule-based model that has been used for both physics and biological 

modeling. A well-known compilation of CA-oriented physical model is a work by Chopard and 

Droz [9]. They covered common physical model such as fluid flow, elastic solid, diffusion and 

reaction-diffusion. Ermentrout et al [12], compiled various CA model in biology. This works 

covered CA model built to give pattern commonly found in biological system. The models built 

based on description of the components and interactions in associated biological system. Recent 

application of CA includes cancer spread modeling [13], disease infection [14] and inflammation 

[10]. These models consist of several “agents” that interacts to give rise to the dynamics of the 

environment. Reynolds et al [10], defined several agents in the model that represent epithelium 

and macrophages with finite states. These agents change states according to environmental 

interactions. Other studies would provide further information on possible agents definition on CA 

model [11][15].  

A CA model typically consists of a set of uniform “cells” (or agents), space represented by 

grids, and rules that define the cells behavior. The cells can be seen as mini-computer that 

computes the rules. Mathematically, a CA is defined in terms of set theory as a tuple: 

A = {G, E, U, f}                                                                                                                                               (2.1) 
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where G , E , U and f are a grid of cells, set of finite states of cells, set of neighborhood and 

set of local rule, respectively. The grid is typically defined as d-dimensional square grid, that is 

G = ℤd. The state is typically defined as a finite set of numbers (e.g., binary, real). There is various 

definition of neighborhood, one of the most used is Moore’s neighborhood, defined as U(xi) =

{x|||xi − x||
∞ 

≤ 1}. The local rule defines the evolution of state. The general form of rule is, 

z(x)t+1 = f(zt|U(x))                                                                                                                                        (2.2) 

where z(x)t is state at x at time step t, and zt|U(x) is state at the neighborhood of x. One of 

the most common forms of local rules in CA is employing conditionals, which can also be 

represented as step function, 

zt {
1   if A

0   else 
                                                                                                                                                         (2.3) 

where A is conditional statement(s). The conditional statements typically involve the states 

of neighbors. Other recurring local rule is the summation of states, 

z(x)t+1 = z(x)t + ∑ zt|𝑈(𝑥)                                                                                                     (2.4) 

In this study, these two general forms of rule are used. The boundary of CA grid can be 

defined by two conditions: fixed or periodic. Fixed boundary condition imposes a constant value 

on the boundary. Periodic boundary lends itself from molecular modeling, and is used to approach 

large domain. It imposes continuum between two opposite facing boundaries. This condition can 

also be seen as a domain which satisfies torus topology.  
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2.3 DETAILS ON AGENT-BASED MODEL FOR INFLAMMATION 

Inflammation is a complex process that involves the release and spread of cytokines and 

cell’s interaction with the environment. Inflammation is mainly the interplay between reaction-

diffusion (R/D) of cytokines and cells response. To model this, discrete computational method was 

employed. The model is based on CA. The discrete model employed in this study is largely based 

on probability. As usual, the CA model is built upon a definition of grid. In this study, square two-

dimensional grid is used. There are four layers of grid: epithelial cells, motile cells (cells with 

motility), cytokines, proteins and elastic field grid. As per CA modeling, the evolution of the grids 

is dictated by a set of rules. The rules and grids are explained below. Fig 2.1 illustrates the CA 

model with multiple grids, as well as a graph showing the causal path of the CA model.  
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Figure 2.1: CA with multiple grids, each grid represents the event and dynamics in the tissue. The 

graph on the left shows the causal path of the events. Each edge associated with plus (+) sign 

represent positive feedback to the vertex it is pointing on (activation, release/adding concentration, 

healing), while the one associated with negative sign (-) carries negative feedback (inhibition, 

damage). 

2.3.1 EPITHELIAL CELLS GRID 

The epithelial cells grid is a typical CA grid, with only two states: 1 and 0, representing 

“dead” and “healthy”, consecutively. The rules that defines evolution of the CA cells in this grid 

are, 

Fibrosi
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𝑧1
𝑡+1(𝑥) = {

1, 𝑟𝑎𝑛𝑑(𝛼1, 𝛽1) < 𝑧3𝑇𝑁𝐹
𝑡 (𝑥)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑜𝑟 ℎ𝑒𝑎𝑙𝑖𝑛𝑔  
        (2.5) 

𝑧1
𝑡+1(𝑥) = 𝑠𝑎𝑚𝑝(𝑑, 𝑤)        (2.6) 

where 𝑧1
𝑡(𝑥) is the epithelial cell’s state at time step 𝑡 and location 𝑥, 𝑧3𝑇𝑁𝐹

𝑡 (𝑥) is concentration of 

pro-inflammatory cytokine occupying the same grid coordinate, 𝑟𝑎𝑛𝑑  is random number 

generator based on beta function probability density, 𝛼1 and 𝛽1 are two beta function parameters, 

and 𝑠𝑎𝑚𝑝(𝑑, 𝑤) is random sampling algorithm that samples data set 𝑑 by weights 𝑤. Eq. 2.5 

describes the state transition by cytokine and fibroblast. The healing condition comes from cell 

mitosis and fibroblast, and described by Eq. 2.7 and 2.8 below, 

𝑢𝑛𝑖𝑟𝑎𝑛𝑑 < 𝑃𝑚𝑡          (2.7) 

𝑧1
𝑡+𝑡ℎ(𝑥) = 1    𝑤ℎ𝑒𝑛 𝑧2𝑓

𝑡 (𝑥) = 2       (2.8) 

where 𝑢𝑛𝑖𝑟𝑎𝑛𝑑 is uniform random number generator between 0 and 1, 𝑃𝑚𝑡 is mitosis rate, and 

𝑧2𝑓
𝑡  is the state of motile cells grid. The mitosis rate defines the probabilistic rate of mitosis, as part 

of self-healing process of the cells. Eq. 2.6 describes state transition by the presence of fibrosis 

(explained in Fibrosis section). Function 𝑠𝑎𝑚𝑝 randomly chooses the state of a cell, 𝑑, with some 

bias 𝑤. In this case, 𝑑 is the possible state the grid can have (i.e., 0 and 1). The weight 𝑤 skews 

𝑠𝑎𝑚𝑝 to choose state 1 according to the numbers of fibrosis site at vicinity (Nc). The rationale for 

damage caused by fibrosis is that the more fibrosis occurs in a location, the more likely it is to 

cause damage to tissue. 
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2.3.2 MOTILE CELLS 

The motile cells are capable to move according to concentration gradient (chemotaxis). 

The grids can contain three states: 0, 1, and 2, representing non-existence of cells, inactivated, 

activated and secondary state for the motile cells. Simple probabilistic model of cell motility is 

used here, i.e., 

 𝑎2 = 𝑠𝑎𝑚𝑝(𝑈(𝑥, 𝑟), 𝑧3
𝑡(𝑥))        (2.9) 

𝑧2
𝑡+1(𝑥)|𝑈(𝑥) = {

1, 𝑎𝑡 𝑧2
𝑡(𝑎2)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (2.10) 

where 𝑠𝑎𝑚𝑝(𝑤, 𝑑) has been used once again, with different terms regarding 𝑤 and 𝑑. In 

this case, 𝑠𝑎𝑚𝑝 randomly choose local grid site according to neighborhood 𝑈(𝑥, 𝑟) where 𝑟 is 

neighborhood radius, and the choice is biased according to 𝑧3
𝑡, which is the state of cytokine grid 

at current cell location, 𝑥 . Variables in Eq. 2.10 is as follow: 𝑈(𝑥) is Moore’s neighborhood 

function, 𝑧2
𝑡(𝑥) is the state of motile cell’s grid at time step 𝑡.  

There are two type of motile cells, the macrophages (agent of inflammation) and fibroblasts 

(agent of healing). The state transition of the grid is applied toward grid with state 𝑧2
𝑡(𝑥) > 0 (the 

grid occupied by motile cells), and governed by rule as follow, 

𝑧2
𝑡+1(𝑥) = {

1
2
0

𝑡𝑝𝑜𝑝 > 𝜖𝑝𝑜𝑝 

         𝑧1
𝑡 = 1 (𝑓𝑖𝑏𝑟𝑜𝑏𝑙𝑎𝑠𝑡), 𝑟𝑎𝑛𝑑(𝛼2, 𝛽2) < 𝑧4

𝑡(𝑥)(𝑚𝑎𝑐𝑟𝑜𝑝ℎ𝑎𝑔𝑒)
       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑜𝑟 𝑖𝑓 𝑡𝑖𝑚 > 𝜖𝑖𝑚

    (2.11) 

where 𝜖𝑖𝑚 is the age of motile cells, 𝑧4
𝑡(𝑥) is the state of elastic field grid (which will be explained 

later) and the random number generation using beta function probability density has been used 

once again. The rule in Eq. 2.11 is applied to both type of motile cells, only differ in minor detail 
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as follow (including the rule for activation as shown in Eq. 2.11). The macrophages are still mobile 

after activation, while fibroblast will stay at the last grid site after activation. The latter represents 

fibroblast healing at injured site. This means the rule in Eq. 2.9 and 2.10 still applies to 

macrophages after activation, but not fibroblasts. In addition, the 𝜖𝑖𝑚 of fibroblast also reduced by 

75% after activation. 

When activated, the motile cells release cytokines. Each type of motile cells is associated 

with specific cytokine (i.e., macrophage releases TNF, and fibroblast release TGF). Macrophage 

tends to release TNF where the environment experiences more strain, while fibroblast tends to 

release TGF in presence of TNF. However, TGF inhibits macrophage in releasing TNF. Hence, 

the CA reflects activator-inhibitor system. The cytokines release by motile cells can generally be 

expressed as, 

𝑧3𝑇𝑁𝐹
𝑡+1 (𝑥) = {

1, 𝑟𝑎𝑛𝑑(𝛼3, 𝛽3) ≥ 𝑧3𝑇𝐺𝐹
𝑡 (𝑥) 𝑤ℎ𝑒𝑛 𝑧2𝑚

𝑡 (𝑥) = 2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (2.12) 

𝑧3𝑇𝐺𝐹
𝑡+1 (𝑥) = {

1, 𝑟𝑎𝑛𝑑(𝛼4, 𝛽4) ≤ 𝑧3𝑇𝑁𝐹
𝑡 (𝑥) 𝑤ℎ𝑒𝑛 𝑧2𝑓

𝑡 (𝑥) = 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (2.13) 

where 𝑧3
𝑡(𝑥) is the state of cytokine grid at time 𝑡, the subscript denotes the type of cytokine, 𝑧2

𝑡(𝑥) 

is the state of motile cell grid at the same time step, and subscript 𝑚 and 𝑓 denote the type of 

motile cell which is macrophage and fibroblast, consecutively, 𝛼  and 𝛽  are beta function 

parameters which are given in Table 2.1. Fig 2.2 illustrates the beta probability distribution that 

describe relations in Table 2.1. 
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Table 2.1: Beta Function Parameters 

No Case 𝛼 𝛽 

1 Epithelial cells grid (Eq A5) 5 1 

2 Macrophages activation (Eq A11) 5 1 

3 TNF Release (Eq. A12) 1 3 

4 TGF Release (Eq. A13) 2 1 

 

 

 

Figure 2.2: Illustration of beta distribution that determine probabilistic relations in Table 2.1 and 

Table 2.3. 

The population of motile cells are also kept at averagely 𝑛𝑖𝑚 numbers, with 0.25 variance. 

This means the top condition in Eq. 2.11 applies at random grid location to ensure the population 

is at 𝑛𝑖𝑚 on average. As before, the beta function and rules parameters are given in Table 2.1 and 

Table 2.2, consecutively. 

 

Table 2.2: Model parameters for simulations  

Mitosis probability, 𝑃𝑚𝑡 1/5 

Healing time, 𝑡ℎ 5 
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Fibrosis time, 𝐾𝑐 0.1 

TNF diffusity, 𝐷 0.07 

TGF diffusity, 𝐷 0.1 

TNF dissolution constant, 𝐾 1 × 10−3 

TGF dissolution constant, 𝐾 1 × 10−5 

Collagen damage probability Nc/9 

Repopulation of motile cells, 𝜖𝑝𝑜𝑝 5 iterations 

Motile cells life time, 𝑡𝑖𝑚 20 iterations 

Motile cells velocity ( ∝ 𝑟) 3 cells/ iterations 

Population of motile cells 25 

 

 

2.3.3 CYTOKINE GRID 

The cytokine grid contains an array of CA cells to simulate the spread of cytokines by 

diffusion, and its disintegration over time. One way to simulate spread is to employ additive rule 

such as, 

𝑧3(𝑥)𝑡+1 = ∑ 𝑘𝑖  𝑧3(𝑥)𝑡
𝑈(𝑥)         (2.14) 
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where 𝑘𝑖 is a set of constant corresponding to neighborhood function, 𝑈(𝑥). To determine 𝑘𝑖, one 

may gain insights from a system appear as numerical solution of diffusion equation with additional 

disintegration terms,  

𝑑𝐶/𝑑𝑡 = 𝐷 ∙ ∇2𝐶 − 𝐾 ∙ 𝐶        (2.15) 

where 𝐶 is concentration, 𝐷 is diffusity, 𝐾 is a constant determining the rate of disintegration. 

Numerical solution by Finite Difference Method gives, 

𝑧3
𝑡+1(𝑥) = 𝑧3

𝑡(𝑥) + 𝐷 ∑ 𝑘𝑖 𝑧3
𝑡(𝑥)𝑈(𝑥) − 𝐾 𝑧3

𝑡(𝑥)     (2.16) 

where Neumann’s neighborhood is used, and cells have continuous state, and 𝑘𝑖 = 1 − 4𝐷 for 

𝑈(𝑥) = 0, and 𝑘𝑖 = 𝐷 otherwise. Values of 𝐷 and 𝐾 are shown in Table 2.1. 

 

2.3.4 ELASTIC FIELD GRID 

It is theorized that mechanical strain on tissue activate ion channel(s) on the cells that leads 

to the release of array of cytokines [27]. In this model, the mechanical strain is represented by 

another layer of CA grid as a discretized strain field. The FEM simulation in the study provide 

insights of the strain distribution. This is translated into discretized distribution of strain field in 

the CA grid. This strain field acts energy gradient in activating the motile cells. The model 

simplifies the activation process by ignoring molecular mechanism of ion channels opening by 

strain and cells signaling pathway that leads to release of specific cytokines. In addition, only 

macrophage is activated by strain. The rule dictating macrophage activation is expressed in Eq. 

2.10. 
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2.3.5 FIBROSIS 

The healing by fibroblasts release TGF that contributes to production of collagen. Hence, 

there is a surge of collagen concentration as a result of healing by fibroblasts. This introduces scar 

to the tissue, and reduce tissue compliance. In the present study, we represent this phenomenology 

where collagen deposits produced after healing add risks to damage on epithelial cells. In CA, the 

site of these collagen deposits are the same as the location of fibroblast after activation. The effect 

of these collagen deposits will stay after specified time, as shown Table 2.2 as fibrosis time. The 

rule of collagen deposits is as follow, 

𝑧5
𝑡+𝑡ℎ(𝑥) = {

1, 𝑎𝑡 𝑧2𝑓
𝑡 (𝑥) = 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (2.17) 

 

2.3.6 SUMMARY OF RULES 

To summarize the CA rules, Table 2.3 outlines the rules according to the grid types. These 

rules were implemented in MATLAB. The statistical toolbox has been used for random algorithm 

𝑟𝑎𝑛𝑑 and 𝑠𝑎𝑚𝑝. The 𝑠𝑎𝑚𝑝 is basically a randomized data sampling algorithm, and Matlab R2016 

uses the algorithm by Wong and Easton [28]. 

The simulation is run for a domain representing tissue experiencing mechanical strain, 

expressed in elastic field grid of CA. The grids contain 100 by 100 cells, where a biological 

epithelial cell size is around 1 𝜇m. The boundary condition used is periodic boundary condition, 

where continuum between two opposite edge of the boundary is imposed, that is, 

𝑧𝑡|Γ1(𝑥) = 𝑧𝑡|Γ2(𝑥)         (2.18) 
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where Γ1 and Γ2 are set of two opposing boundaries. 

 

Table 2.3: Summary of CA model developed for this study. The state value 0 and 1 for list No.1 

mean dead and living. The state value 0, 1 and 2 of grid No.2 are: inactivated, activated and empty 

grid. The state value of grid No. 3 and 4 represents concentration of associated. 𝑧𝑖
𝑡 is state of grid, 

where 𝑖 is subscript that refers to number assigned for each type of grid (column 1). 

No Type Behavior Rules 

1 Epithelial cells Fixed 

State transition: 

Apoptosis is highly likely as TNF increases [29] 

 

𝑧1
𝑡+1(𝑥) = {

1, 𝑟𝑎𝑛𝑑(𝛼1, 𝛽1) < 𝑧3𝑇𝑁𝐹
𝑡 (𝑥), 𝑜𝑟  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑜𝑟 𝐡𝐞𝐚𝐥𝐢𝐧𝐠 
  

𝑧1
𝑡+1(𝑥) = 𝑠𝑎𝑚𝑝(𝑑, 𝑤)   

Healing: 

1. Mitosis: 𝑢𝑛𝑖𝑟𝑎𝑛𝑑(0,1) < 𝑃𝑚𝑡  

2. Fibroblast: 𝑧1
𝑡+𝑡ℎ(𝑥) = 1 𝑤ℎ𝑒𝑛 𝑧2𝑓

𝑡 (𝑥) = 2  

2 Motile cells Mobile 

Locomotion: 

Motile cells move by biochemical gradient [30] 

 

𝑎2 = 𝑠𝑎𝑚𝑝(𝑈(𝑥, 𝑟), 𝑧3
𝑡(𝑥)) 

𝑧2
𝑡+1(𝑥)|𝑈(𝑥) = {

1, 𝑎𝑡 𝑧2
𝑡(𝑎2)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Repopulation: 

𝑥 = (𝑛𝑔𝑟𝑖𝑑) 𝑢𝑛𝑖𝑟𝑎𝑛𝑑(0,1)  

𝑧2

𝑡+𝑡𝑝𝑜𝑝(𝑥) = 1  

Macrophage 

State transition: 

Macrophage is activated by TNF, and releases TNF 

where strain level is high [31][32] 

 

𝑧2𝑚
𝑡+1(𝑥) = {

1
2
0

𝑡𝑝𝑜𝑝 > 𝜖𝑝𝑜𝑝 

𝑟𝑎𝑛𝑑(𝛼2, 𝛽2) < 𝑧4
𝑡(𝑥)

       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑜𝑟 𝑖𝑓 𝑡𝑖𝑚 > 𝜖𝑖𝑚

  

TNF release: 

𝑧3𝑇𝑁𝐹
𝑡+1 (𝑥)

= {
1, 𝑟𝑎𝑛𝑑(𝛼3, 𝛽3) ≥ 𝑧3𝑇𝐺𝐹

𝑡 (𝑥) 𝑤ℎ𝑒𝑛 𝑧2𝑚
𝑡 (𝑥) = 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Fibroblast 

State transition: 

Fibroblast is likely to release TGF in the presence of 

TNF [33]. It is activated by the presence of dead 

epithelial cell, and will differentiate at the location of 

damage. TGF increases collagen synthesis [34] 

 

𝑧2𝑓
𝑡+1(𝑥) = {

1
2
0

𝑡𝑝𝑜𝑝 > 𝜖𝑝𝑜𝑝 

                𝑧1
𝑡 = 1 

       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑜𝑟 𝑖𝑓 𝑡𝑖𝑚 > 𝜖𝑖𝑚
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TGF release: 

𝑧3𝑇𝐺𝐹
𝑡+1 (𝑥)

= {
1, 𝑟𝑎𝑛𝑑(𝛼4, 𝛽4) ≤ 𝑧3𝑇𝑁𝐹

𝑡 (𝑥) 𝑤ℎ𝑒𝑛 𝑧2𝑓
𝑡 (𝑥) = 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Fibrosis Location: 

𝑧5
𝑡+𝑡ℎ(𝑥) = {

1, 𝑎𝑡 𝑧2𝑓
𝑡 (𝑥) = 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

3 Cytokines Diffusing 

State Transition (Diffusion, continuous value):  

Diffuse and disintegrate [30] 

𝑧3
𝑡+1(𝑥) = 𝑧3

𝑡(𝑥) + 𝐷 ∑ 𝑘𝑖 𝑧3
𝑡(𝑥)𝑈(𝑥) − 𝐾 𝑧3

𝑡(𝑥)  

4 Elastic Field Constant Constant States 

5 Fibrosis  

Decaying:  

𝑧5
𝑡+1 = 𝐾𝑐 ∗ 𝑧5

𝑡 

    

2.4 SHANNON’S ENTROPY 

Shannon’s entropy is a measure of information content in a sequence or in a data. It is 

expressed as, 

𝑆 = − ∑ 𝑃𝑖 log2 𝑃𝑖𝑖  (2.19) 

where 𝑆 is Shannon’s entropy, and 𝑃𝑖 is the sequence or data. A homogeneous sequence (such as 

{0,0,0,0}) has zero entropy. Shannon’s entropy can be used to quantify the order of a configuration 

in two-dimensional space. Disordered configuration has higher Shannon’s entropy than uniform 

configuration.  
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2.5 IMPLEMENTATION 

The model is implemented using MATLAB R2016A. The code was designed to be 

modular. Several modules were categorized in the implementation: cells life cycle module, cell 

motility, cell population, and the diffusion module. The cells life cycle module controls the 

changes in cells’ states during the simulation. The cells motility module controls the dynamics of 

the cells’ taxis while the cell population module regulates cells’ population during the simulation 

and initial cells’ placement. Finally, the diffusion module generates the spread of cytokines 

through diffusion. All modules except the diffusion module are designed to be probabilistic. The 

MATLAB random generation function included in Statistical Toolbox was used.  

Using the code developed, several cases were simulated. These case studies were also used 

to test the validity of our model. Additional details on the case studies are presented in the next 

section. The grid for all cases was defined as a square grid and periodic boundary conditions were 

applied. Each cell represents the scale size of a cell (approximately 1 μm).  

The CA model is a qualitative model; hence, it did not use real values (with units). The 

states of CA cells representing physical variables (strain and cytokines concentration) were 

expressed as continuous values between zero and one. This can be interpreted for analysis using 

normalized values, or as a state between non-existent strain or cytokines, and maximum strain or 

cytokines on a discrete location.  

The model consists of several parameters (as listed in Table 2.1 and Table 2.2 for the case). 

It is difficult to determine these parameters, but some justifications and assumptions can be made. 

The use of distribution function can be inferred from experiments that measure the dependency of 

events in inflammation. For example, beta distribution parameters were inferred from results in 
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[32]. Other beta distribution parameters were assumed to follow the results in [32], with a slight 

modification to increase or reduce its occurrence. These parameters were selected from numerical 

experiments and used throughout the case studies.  

The assumption for other parameters in Table 2.2 is as follows. Constants D and K can be 

inferred from the behavior of the activator-inhibitor system. The activator typically diffuses faster 

and does not remain longer than the inhibitor, hence DTNF>DTGF and KTNF>KTGF. Next, we 

assumed the fibrosis is a byproduct of healing (by fibroblasts) and remains longer than the process 

of healing itself. Results from a previous study [11] also helped to determine the values of motile 

cells population and velocity.  

The code was run in a workstation with the following specifications: Windows 7 Operating 

(64 bit) system, 2.6 GHz processor (Intel Xeon) and 64 GB RAM. MATLAB parallel processing 

was not implemented into the code. We carried out ten simulations for each of the cases considered 

below. Each case was run for 10,000 iterations.  

2.6 RESULTS 

The CA model grid represents tissue under mechanical stress. Three levels of tissue strain, 

low (0.35), medium (0.5) and high (0.9) were considered. These magnitudes of strain may be 

related to physiological relevant cases for smaller airways under different mechanical ventilation 

conditions (low/high tidal volume and PEEP) [35]. The CA model is used to quantify the 

population dynamics of the cells, which can be used to infer the severity of inflammation. The 

results of inflammation obtained from the simulations are presented below. 
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2.6.1 QUALITATIVE VALIDATION 

Fig 2.3 shows the time course of simulation in terms of the number of dead epithelial cells 

(top left), also termed as inflammation score. The result shows a typical inflammation time course, 

as described in Refs. [34][36][37]. The time course generally consists of inflammation phase and 

recovery (wound healing) phase and can be identified by the fluctuation of the number of cells 

involved in the process.  

Fig 2.3 also shows spatial visualization of cells (top right) of the simulation after iteration 

500, which depicts multiple injury sites (grey regions), including two marked locations (A and B) 

where most motile cells congregated. The next two plots below it show the number of macrophages 

and fibroblasts on location A and location B during the simulation time course. It can be seen that 

the elevation of injury was followed by an increased number of macrophages. This is eventually 

followed by a recovery phase where fibroblasts migrated (the number of fibroblast on each location 

increased) and repaired tissue (the number of dead epithelial cells decreased). These results 

demonstrate that the model is capable of replicating events commonly found during inflammation, 

as described in various literature  [34][36][37].  

In Fig 2.3, we can also observe that the number of iterations for the simulation to complete 

(i.e., simulation time) to exhibit inflammation and healing phase is 10,000 iterations. If we consider 

the velocity of motile cells, 𝑉𝑚 to be in the range of 1 to 10 microns/min [38] (where motile cells 

migrate at each iteration), and a grid size to be in the range of 10-20 microns (corresponds to the 

size estimate of macrophage and fibroblast [39][40], then the total simulation time can be estimated 

to be 10000 × 𝑉𝑚, which corresponds to 10,000 to 100,000 minutes or approximately 7 to 70 days. 
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These values are within the range of actual wound healing time span as reported in literatures such 

as [41]. 

 

Figure 2.3: A sample of inflammation time course. Top left: time course dead epithelial cells 

(injury severity) on the whole tissue space, depicts phase of elevated injury (number of death of 

epithelial cells) followed by recovery. Top right: visualization of spatial aspects of the model, 

showing the location of injury (dead epithelial cells), macrophages, fibroblasts and wound healing 

site. Middle and Bottom: number of macrophages, fibroblasts, and dead epithelial cells on 

Location A and Location B. 

2.6.1.1 PRO- AND ANTI- INFLAMMATORY CYTOKINES 

The pro-inflammatory cytokines and anti-inflammatory cytokines exhibit the natural 

process of the activator-inhibitor system [42]. In this model, as activated motile cells move, they 

Iterations Iterations 

Iterations 
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release cytokines. One defining feature of the activator-inhibitor system is that in the presence of 

anti-inflammatory cytokines, pro-inflammatory cytokines will be suppressed. To demonstrate this 

behavior in this model, we took a sample (10 samples) of results with a strain=0.35. This is shown 

in Fig. 2.4 and 2.5. Fig. 2.4 shows the state of two cytokines at 400 iterations. Fig. 2.4(a) shows 

the CA grid of TGF. Fig. 2.4(b) is the CA grid of TNF.  

 

Figure 2.4: (a) the state of TGF cytokines on the grid, (b) the state of TNF cytokines. Both were at 

t=400. The color plots represent the state (concentration) of TGF and TNF. 

 

As can be seen in Fig. 2.4(b), TNF at Location A and B had spread, and it triggered the 

release of TGF at these two locations as well (as can be seen in Fig. 2.4 (a)). Fig 2.5 shows the 

time course in these two locations. As can be seen, as TNF concentration at A (circle-blue lines) 

diffused, it triggered the release of TGF at A (dotted-circle red lines) at around 200 simulation 

time. Afterward, the TGF concentration rose and suppressed the concentration of TNF (as can be 

seen in declining circle-blue lines at approximately 300 simulation time).  



 

27 

 

 

Figure 2.5: The behavior of TNF and TGF resembles an activator-inhibitor system. The letters 

correspond to locations indicated in Fig 2.4.  

 

The same behavior can be seen for Location B (diamond-yellow and diamond-dotted 

purple lines). As TGF concentration increased over time (diamond-dotted purple lines), the TNF 

concentration (diamond-yellow lines) declined. On the other hand, when an anti-inflammatory 

cytokine is not present, the pro-inflammatory cytokine maintains its presence. This is demonstrated 

in Location C. As can be seen in Fig. 2.4 (b), there was the presence of TNF at C, but the location 

was lacking TGF (Fig. 2.4 (b)). Hence, as can be seen in Fig. 2.5 (green line), the TNF kept 

releasing (the spike) and diffused at the location, while TGF was non-existent.  

Thus, it has been demonstrated that the activator-inhibitor system exists on the CA grid, 

although there is no explicit coupling between the two cytokines in the model. The activator-

inhibitor system portrayed by motile CA cells’ (stochastic) movement and cytokines diffusion 

keeps signaling the motile CA cells. We only presented one sample result in this subsection since 

the results presented so far are specific to a location. The release of cytokines is random; therefore, 

in the other sample results, the locations of release will be different from the ones shown in A, B, 

Iterations 
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and C. However, one can infer the consistency of this model’s stochastic simulation from the 

overall behavior of the informatics model, which is discussed in the subsection below. 

 

2.6.2 SENSITIVITY ANALYSIS 

Sensitivity analysis was carried out by running simulations with the same parameters (as 

listed in Table 2.1 and 2.2) ten times. These parameters determine a case (such as chronic or normal 

inflammation case), therefore they are fixed variables for sensitivity analysis. When a simulation 

is initialized, the locations of motile cells are randomized. Then the events are executed according 

to probability rules. To test sensitivity of the model to initial conditions, ten simulation trials were 

carried out. Fig 2.6 (a) shows all results of ten simulation trials plotted as number of dead epithelial 

cells against iterations. As can be seen, they follow the same trends. Fig 2.6 (b) shows the mean 

and standard error of all ten simulation trials per iteration. The standard error was found to be 4.23 

on average, with standard deviation of 2.97. Maximum standard error is 15.04. Therefore, the 

initial conditions do not significantly influence the course of the system. 

 

Figure 2.6: (a) plot of ten simulation results (number of dead epithelial cells) with the same 

parameters. (b) the mean of ten simulation trials taken for each iteration with standard errors. 
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2.6.3 EFFECT OF STRAIN MAGNITUDE ON CYTOKINES CONCENTRATION 

It is well established that airway and alveolar tissue respond to mechanical stimuli and 

there exists a correlation between increased strain magnitude and increased pro-inflammatory 

cytokines concentration [43][44]. Fig 2.7 shows TNF concentrations when the strain magnitude is 

increased. The TNF concentrations shown are averages of random samples (of 500 CA cells) from 

the whole CA grids, taken at different time steps.  

 

Figure 2.7: Evolution of TNF per strain, taken at three simulation points. The concentration is 

averaged for the whole CA grid, with 500 samples of CA cells. 

 

It is well known that the average concentration of pro-inflammatory cytokines on the CA 

grid increases with the magnitude of strain. However, when the three data points were plotted and 

a low order interpolation was performed, it was found that the increases with respect to strain are 

linear in general. 

2.6.4 EFFECT OF STRAIN ON INFLAMMATION 

Suppose we define an inflammation score by the number of dead epithelial cells during the 

course of the simulation. We present here the results of simulation with strains of 0.35, 0.5 and 
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0.9, which represent tissues under low, medium and high levels of strain. The strain experienced 

by tissue is subject to fluctuation during breathing. However, the time scale of breathing rhythm 

is much shorter than inflammation events (for instance, the breathing cycle has a period of four 

seconds, while inflammation may be apparent in days). Hence, the strain on the grid can be 

interpreted as the average strain during inflammation, and it was constant during the simulation. 

However, fluctuation of strains may also exist for other reasons (for example, when some part of 

the lung cannot accommodate sufficient airflow, the other parts will overstretch to compensate). 

Hence, we also present a case study where the CA grid experiences fluctuation of strain. 

Fig. 2.8 shows ten samples of the evolution of dead epithelial cells after ten thousand time 

units, with the mean and standard error plotted. Notice the standard error lines have a noticeable 

gap in the lower strain case. As strain increased, the results showed less variance and thus thinner 

standard error gaps. One noticeable trend depicted in Fig. 2.7 shows that the number of dead 

epithelial cells increased quickly at the beginning, and stabilized later on. This is a consistent 

behavior irrespective of the level of strain on the CA grid. However, higher strain led to higher 

amplitude (higher number of dead epithelial cells). 
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Figure 2.8: Inflammation over the course of time as represented by numbers of dead epithelial cells 

during the simulation. Thin-blue lines show standard error of 10 samples of simulations. Thick-

red lines are the mean. Magnification of last plot (strain=0.9) is provided for clarity.  

 

The CA also exhibited adaptive behavior and is apparent in the case of fluctuating strain. 

Fig. 2.9 shows the fluctuation of strain and the number of dead epithelial CA cells after one 

thousand iterations, again with the mean and standard error of ten samples of simulation for each 

case. It is apparent in the case of fluctuation with two peaks there is a suppression of inflammation 

during the second peak of strain (as can be seen from the approximately 45% lower number of 

dead epithelial CA cells during the second peak). This also appears in the other cases with more 

fluctuations: at some point during simulation there is apparent suppression of inflammation in 

response to later fluctuation. However, there remains some degree of inflammatory response (i.e., 

there are still some numbers of dead epithelial cells).  

Iterations 

Iterations 

Iterations 
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Figure 2.9: (a) Inflammation during strain fluctuation. Top: fluctuation of strains, with 2, 5 and 10 

peaks. Bottom: motile response from the fluctuated strains. Thin-blue lines represent the standard 

error of 10 samples of simulation. Thick-red lines are the mean. (b) and (c) Extended simulations 

with more peaks of the fluctuating strains. 

2.7 DISCUSSION 

A CA model was developed based on the phenomenology of inflammation. The model 

takes into account the motility of motile cells, cytokines diffusion, and two damage events 

(apoptosis and fibrosis) and healing events (fibroblast and mitosis) on the epithelium. In this 

model, strain activates macrophages [31], which releases pro-inflammatory cytokines (TNF) [32]. 

TNF induces apoptosis [45] and signals fibroblasts [33] to release anti-inflammatory cytokine 
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(TGF) [33]. The TGF suppresses macrophages from releasing TNF and induces fibrosis on 

epithelium (causing damage). The model was tested with several cases, representing tissue 

experiencing low, medium and high strain under mechanical ventilation. The results were 

compared qualitatively with the phenomenology of inflammation. The model successfully 

emulated activator-inhibitor behavior [42] and strain-activated cytokines release [43][44]. 

Furthermore, the model successfully captured the qualitative behavior of inflammation in general 

(for an example case, refer to [46]).  

Based on the results, there is a threshold of recovery from healing (as shown in Fig. 2.8). 

The damage on the tissue always went up until a certain point, and then was suppressed and later 

stabilized. The number of dead epithelial cells do not show a steady increase or decrease from that 

point onwards. This can be interpreted as the tissue and its constituents (as a system) reaching a 

new equilibrium. The damage exists, but the tissue has consistently recovered. The last case, where 

strain= 0.9, represents the extreme magnitude of strain, similar to the severely ventilated condition. 

One would have expected that higher strain would lead to the elimination of all epithelial cells. 

However, as can be seen in Fig. 2.8 for strain=0.9, only about 2% of epithelial cells (in a 100 by 

100 grid of cells) undergo apoptosis, and the whole grid steadily recovers from the damage after 

time=2000. A portion of the epithelium is still damaged (by apoptosis) through the course of the 

simulation. However, it was suppressed and was “maintained” at minimum. This suggests the 

existence of an inflammation suppression threshold. It also suggests that this healing threshold is 

needed to maintain a minimum amount of apoptosis occurrence (minimum numbers of dead 

epithelial CA cells). Hence, some damage is needed to maintain optimum healing. Furthermore, 

the CA shows adaptive behavior as a response to fluctuating strain, as if early exposure of strain 

fluctuation helps the motile system to react during the latter fluctuation. 
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Figure 2.10: Top: Spatial distribution of motile cells. Suppression of inflammation (measured by 

numbers of dead epithelial CA cells) may have emerged from motile cells configuration and spatial 

distribution of cytokines. Bottom: Shannon’s entropy of motile cells (macrophages and fibroblasts 

configuration during simulation. The background line (green) is original data, thick-blue line is 

smoothed data using moving average with span of 1000. The entropy of motile cells’ configuration 

started to fall approximately at the peak of inflammatory response (around time=1500), and rose 

to stabilize when inflammatory response flattened. 

Iterations 

Iterations 

Iterations= 75 

Iterations= 1500 

Iterations= 7000 
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The CA was built to model the innate immune system, and there is no explicit adaptive 

feature (such as memory in the adaptive immune system). Questions remain on the source of 

inflammatory response suppression and adaptive behavior shown. To explain this behavior, one 

can look at another aspect of CA simulation: the spatial distribution of CA cells (Fig. 2.10). At 

first, the motile CA cells seem to move randomly. However, by signaling (triggered by the 

presence of strain on the whole grid), the movements become less chaotic, more ordered. This is 

evident if one takes the spatial distribution of motile cells at each time step, and measures 

Shannon’s entropy of the grid (Fig. 2.10). It is evident that the entropy dropped until it stabilized 

to a point during the course of the simulation. The movement of motile cells maximizing their 

entropy, and stabilizing after peak inflammation, suggests there are reconfiguration and 

convergence into a certain configuration. 

Based on these results, we hypothesize that the adaptive behavior originates mainly from 

the spatial and temporal aspect of motile cells configuration. The motile cells, at some point during 

simulation, will converge into a certain configuration spatially. However, these motile cells died 

after some time, and the new motile cells arrived on the grid. But the old motile cells had left 

excess cytokines on the grid to be picked up by the new motile cells. This hastened the new cells 

to reconfigure on the grid. Thus, this behavior can be seen as an optimum propagation of signaling 

among motile cells spatially and temporally. This puts more importance on not only the spatial 

aspect of motile cells configuration but also the temporal aspect. 

The model presented in this study successfully emulated the qualitative behavior of 

inflammation. In the future, the model can be extended for quantitative modeling by fitting the 

probability distribution with data from experiments. Furthermore, the model only considers two 
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kind of cytokines and motile cells, and the outcome of subcellular process (such as chemotaxis 

and healing). The model can be extended by incorporating other tissue constituents and cytokines, 

as well as subcellular processes, and potentially provide more insights into inflammation 

dynamics. 

2.8 CONCLUSION 

A discrete informatics model based on the CA approach was developed to capture 

inflammation dynamics under different mechanical strain/stretch scenarios. The model takes into 

account certain aspects of inflammation, especially inflammatory mediators as expressed by 

different cytokines as well as existing experimental data. The simulation model investigated the 

effects of low, medium and high strain conditions on inflammation dynamics. Results suggest 

there is a threshold of innate healing capacity in tissue. The tissue as a system can suppress the 

inflammatory response; however, some degree of inflammatory response eventually remains. The 

visualization of the CA simulation grid revealed the spatial distribution of dead cells, fibroblasts, 

and macrophages. Visualization results also suggest that certain inflammation conditions would 

lead to a distinct pattern on epithelial cells. It will be interesting to pursue future research that will 

involve extending the current model to include other mechanisms as well as comparing patterns 

and results obtained from the simulation to imaging data or cellular experiments. 

 

  



Chapter 3

Computational Simulation of Cell-to-Cell Communication During

Inflammation and Aging

3.1 Introduction

The immune system relies heavily on signal transduction between cells [47-48]. Cells have

two main methods of communication: by diffusive agents (e.g., cytokines) and active agents

(e.g., cargo). An impairment in cell communication leads to all sorts of disorders and diseases

[49-52]. Accordingly, it has been proposed that cells naturally form ”social networks” [53]. In

addition, spatial patterning and self-organisation of cells also emerges from diffusion-based

communications [54]. Alteration of cell-cell communication is known to be associated with

aging and consequently affects inflammatory response (termed inflammaging) [55], which

consequently changes the collective dynamics. Furthermore, it can be reasoned that the

course of inflammation might be determined by cell-cell interaction. Hence, analysis of cell-

cell interactions may reveal insight into the fundamental aspects of inflammation as a process.

Analysis of cell-cell communications within the scope of collective behaviours is important

since new dynamics appear when cells move as part of a collective [56-57].

Due to its importance, several studies have analyzed cell-cell communication and its

spatial and temporal aspects [58-60], including a microfluidic device with image-tracking

developed to quantify spatio-temporal effects of macrophage and fibroblast communication

[54]. A number of models have been devised to to analyze collective migration of cells through

durotaxis [61-62] and chemotaxis [63-64] from the perspective of cells. These models enable

cell migration description from mechanical and biochemical points of view. A statistical
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mechanics model of cell migrations was also devised to frame the analysis in terms of collec-

tive dynamics [65]. However, there is a lack of analysis from the point of view of information

flow.

In a previous study [66-67], we investigated the migration of macrophages and fibrob-

lasts during inflammatory response. Macrophages and fibroblasts were initially assumed as

random-walking agents. However, once certain conditions are fulfilled and diffusive agents

are released, their random-walk is biased toward a location in their neighbourhood with high

concentration of cytokines (a simplification of chemotaxis). Inflammatory response normally

leads to the recovery phase. However, due to aging conditions, the recovery (healing) phase

may be delayed and lead to sustained injury (inflammaging).

In this study, we hypothesize that inflammaging as a process is dominated by macrophage

collective dynamics where macrophages act as leader cells in the collective. To investigate

this, we propose that cell-to-cell relationship in inflammaging can be modeled as a commu-

nication network, in this case, a bipartite network that maps the influence of macrophage

into fibroblast (Fig 3.1(a)). To construct this communication network, we proposed a proce-

dure to quantify information exchange between macrophages and fibroblasts. In this study,

we applied this procedure to cell migrations data from an agent-based simulation tool for

inflammatory response. Our procedure can be extended to experimental temporal data to

map the relationship between agents and events in a complex process such as inflammation.

3.2 Materials and Method

3.2.1 Agent-Based Model of Inflammation

The agent-based model is a grid-based model similar to Cellular Automata. consists of

multi-layered matrix representing different aspects of inflammation: the stimuli (strain), cells

(epithelium, macrophages and fibroblasts), and cytokines. Each aspect has different rule to

execute as described in the Method section. Some events are triggered by conditions fulfilled

in other matrix. Fig 2.2 in Chapter 2 shows the PDFs (probability density function) of four
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Figure 3.1: (a) Cell-to-cell communication is modeled as a map of influence from macrophage
(M) to fibroblast (F) and vice versa. (b) A visualization of network centrality is shown here,
where the size of nodes (red for macrophage and blue for fibroblast) corresponds to node’s
centrality. Higher node centrality means the node acts as a hub of information flow in the
network since it can reach other nodes with minimum connection

main events in the in-silico model: likelihood of macrophage activation by strain (top), apop-

tosis by TNF level (top), likelihood of macrophage synthesizing TNF based on TGF level

(middle), and likelihood of fibroblast synthesizing TGF based on TNF level (bottom). Table

3.1 presents the beta distribution parameters for these PDFs. Fig 3.2 shows all interactions

between agents in the model. Arrow direction indicates the causal flow.

Epithelial Cells

Epithelial cells cycle their states between dead (by apoptosis) and alive. Apoptosis depends

on the level of TNF [29]. The state transition rules are as follow,

1. All cells are initially alive.

2. A cell has probability to change its state to death in presence of TNF in its neighbor-

hood. Higher TNF level significantly increases the chance of apoptosis. We model this

likelihood by beta distribution function.
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Figure 3.2: Interaction between component in Agent-based model of inflammation. Arrow
indicate causal flow. Solid line indicates positive influence (activate, encourage). Dashed line
indicates negative influence. Light red circle highlights the focus of this study. Blue arrows
are events encouraged in the case of inflammaging. Red arrow indicates event impaired in
inflammaging.

3. A cell changes its state to ”alive” if at least a fibroblast present in its neighborhood.

This healing process takes place for a specified amount of time, th (Point 11 in Table

3.1). After th time, a neighborhood of healed epithelial is randomly assigned a fibrosis

site. Fibrosis site lasts for tf time (Point 12 in Table 3.1).

4. A cell has probability to change its state to death if there is a fibrosis site in its

neighborhood. The more fibrosis sites there are, the higher the probability. Hence,

the probability is determined by Nf/Nnei, where Nf is number of fibrosis site in the

neighborhood, and Nnei is the total number of neighboring cells. Neighborhood can be

Moore’s or Neumann’s. This used to model risk of injury by fibrosis.

5. A cell has Pmt probability to change its state to ”alive”. This is used to model self-

repair. The value was decided to account for its frequency relative to time step.
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Therefore, there are two rules for apoptosis (Point 2 and 4) and two rules for healing

(Point 3 and 5).

Motile Cells

Macrophages and fibroblasts are motile cells. Biological motile cells move by chemotaxis, and

they signal each other through signaling protein (cytokines). Macrophages and fibroblasts

are signaled by different cytokines [30]. In our model, macrophages are signaled by TNF (pro-

inflammatory cytokine) and fibroblast by TGF (anti-inflammatory cytokine). Macrophages

are activated by the presence of strains, and release TNF. Fibroblasts are activated by the

presence of TNF, and release TGF. State transition rules are as follow,

1. Movements (random-walk): motile cells randomly move to an adjacent location the

grid each time step. The random-walk is biased and the probability weights are deter-

mined from the associated cytokine’s value in the cell’s Neumann’s neighborhood. A

macrophage’s random-walk bias is determined by values of TNF level obtained from

TNF grid in the Neumann’s neighborhood of said macrophage’s site. Hence, when no

cytokine presents, motile cells movement is non-biased random walk, with the only

interaction is collision avoidance where each motile cell avoids occupying the same

space as the others.

2. Activation: macrophages are activated by the presence of strains, and activated

macrophages release pro-inflammatory cytokine (TNF). TNF release is probabilistic

according to level of TGF. Its probability density function was inspired by report [32].

Fibroblasts are activated by the presence of pro-inflammatory cytokines, and release

anti-inflammatory cytokine (TGF). TGF release is probabilistic according to level of

TNF [33]. The likelihood of macrophage activation, TNF and TGF release are modeled

by beta distribution functions.
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3. Cytokine secretion: Each motile cell releases cytokine stochastically. The probability is

defined by the level of associated cytokine’s value located on the same grid coordinates

as the motile cell. For example, the probability of a macrophage to release TNF is

determined by value in the TGF grid located on the same grid coordinate as the

macrophage.

Diffusing Cytokines

The cytokines in this model are assumed to be diffusing substance. There are two types of

cytokines: the pro-inflammatory one (termed TNF) and anti-inflammtory cytokine (termed

TGF). The rule is essentially a numerical solution of diffusion equation:

dφ/dt = D.∇2φ−K.φ

where φ is cytokine’s concentration, D is diffusion constant that controls spread rate of

cytokine, and K is dissolution constant that controls decaying rate of the cytokine. Typically,

D > K.

Other Considerations

Physical variable is assumed static in this study, and hence each grid unit contains constant

value throughout the simulation. For example, when simulation was run with strain of 0.2,

the grid unit contained value of 0.2.

Inflammaging as Delayed Healing

In aging cases, the following parameters are modified:

1. Increase time delay of TNF synthesis by macrophage, tM for aging condition 1 and 2.

This is point 11 in Table 3.1.

2. A parameter of distribution function, β, increase the likelihood of TNF synthesis by

stimuli. This is Point 9 entry of Table 3.1.
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Table 3.1: Model Parameters (itr = iteration(s))
No Definition Normal Aging

Case 1
Aging
case 2

1 Dimension of grid 100× 100 100× 100 100× 100
2 Ratio of TNF to TGF diffusity,

DTGF/DTNF

0.7 0.7 0.7

3 Ratio of TNF to TGF dissolution con-
stant, KTGF/KTNF

0.01 0.01 0.01

4 Motile cell’s velocity 1 grid/itr 1 grid/itr 1 grid/itr
5 Ratio of each immune cell popula-

tion (macrophage or fibroblast) to total
numbers of grid cells

0.002 0.002 0.002

6 Mitosis Probability, Pmt 1/5 itr 1/5 itr 1/5 itr
7 Macrophage activation by strain (beta

distribution parameters)
α = 5,
β = 1

α = 5,
β = 1

α = 5,
β = 1

8 TGF syntheses by fibroblasts (beta dis-
tribution parameters)

α = 2,
β = 1

α = 2,
β = 1

α = 2,
β = 1

9 TNF syntheses by macrophages (beta
distribution parameters)

α = 1,
β = 3

α = 1,
β = 2

α = 1,
β = 1.5

10 Epithelial cell apoptosis by TNF (beta
distribution parameters)

α = 5,
β = 1

α = 3,
β = 1

α = 1.7,
β = 1

11 Macrophage’s TNF synthesis delay, tM 1 itr 7 itr 15 itr
12 Fibroblast healing time, th 5 itr 7 itr 15 itr
13 Fibrosis time, tf 10 itr 15 itr 25 itr

3. A parameter of distribution function, β, to increase the likelihood of apoptosis. This

is Point 10 entry of Table 3.1.

4. Decrease the time for fibroblast to heal an epithelial cell, th. This is Point 12 entry of

Table 3.1.

5. Increase the time a fibrosis site lasts, tf . This is Point 13 entry of Table 3.1.
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3.2.2 Measure of Information Exchange

We used transfer entropy as a measure of information exchange between two temporal pro-

cesses. Information entropy, H, can be defined as the amount of uncertainty contained within

a random variable X,

H(X) =
∑
x∈X

p(x) log p(x) (3.1)

where p(x) is the probability of X having the value of x in the set X of all possible values of

X. As is typical in information theory, the logarithm used is base 2. Accordingly, the joint

and conditional entropy can also be defined as follows,

H(X, Y ) = −
∑
x∈X

p(x, y) log p(x, y) (3.2)

Transfer entropy is an extension of mutual information, which is a measure of common

information shared between two random variables. Mutual information between random

variable X and Y is expressed as,

I(X;Y ) = H(X) +H(Y )−H(X, Y ) (3.3)

where H(X) is information entropy of X, and H(X, Y ) is the joint information entropy of

X and Y . Expanding the concept of mutual information, one can define conditional mutual

information which is a measure of shared information between X and Y , given another

variable Y ′,

I(X, Y |Y ′) = H(X|Y ′) +H(Y |Y ′)−H(Z, Y |Y ′) (3.4)

In a temporal process, variable Y ′ can be Y at the previous time step. Hence, transfer

entropy between X and Y is I(X, Y |Y ′) and can be denoted as TX→Y .
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3.2.3 Information Exchange in Inflammatory Response

Inflammatory response is the result of signal transduction and coupling between many cells

and events. We focus our study on macrophages and fibroblasts that are typically seen as

agents with primarily conflicting roles. Macrophages typically are seen as a source of cytokine

that exacerbate inflammation while fibroblasts are seen as agents of recovery.

To quantify the information exchange or communication between macrophage and fibrob-

last collective, it is necessary to consider the observable aspect of the temporal process.

Migration properties such as directional persistence [68] have been used in the analysis of

cell collective dynamics. In this study, the communication between macrophage and fibrob-

last was analyzed on the basis of their change of angle. The reasoning is that if there is an

information transmission from a macrophage to a fibroblast, then it will alter the direction-

ality of said fibroblast’s migration. The direction of a cell can be represented as the angle

between the current and previous path taken by a cell, i.e.,

θt,t−1 = cos−1
mt.mt−1

|mt||mt−1|
(3.5)

where mt is the vector of the path of a cell at time t (Fig. 3.3). We denote this angle as

Mt and Ft for macrophage and fibroblast, subsequently. Transfer entropy, TF→M , between

Mt and Ft can be defined as the mutual information between the two random processes

conditional on a previous instance of Mt. It is expressed as,

TM→F = I(Ft−1;Mt|Mt−1)

=
∑
M i

t

∑
Mj

t−1

∑
Fk
t−1

p(M i
t ,M

j
t−1, F

k
t−1)× log

p(M i
t |M

j
t−1, F

k
t−1)

p(M i
t |M

j
t−1)

(3.6)

where p(Mt|Mt−1, Ft−1) is the probability of Mt given Mt−1 and Ft−1. The probability of

Mt, Mt−1 and Ft−1 are calculated by generating joint probability densities using binning

specifications between 0.001 to 0.01.
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Figure 3.3: (a) Two samples of the migration track of macrophages and fibroblasts during
inflammation after 500 time steps. They started as random walks, and as time progressed,
the random walk became more biased and they converged in a common region. (b) Change
of angle of a macrophage or fibroblast, as described in Sect 3.2.3. (c) a sample of change of
angle of a macrophage and a fibroblast migrating over time.
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Figure 3.4: Migration data (angle of locomotion) of 20 macrophages and 20 fibroblasts used
in this study

In this case, transfer entropy can be thought as the reduction in uncertainty of predicting

the direction of a fibroblast at time step t given its previous direction (at t−1) and direction

of a macrophage.

3.2.4 Implementation

The procedure of calculating transfer entropy, TM→F , is described below. Transfer entropy is

based on the probability distribution of data. For example, Fig 3.4 shows angle of migration

of 20 macrophages and 20 fibroblasts that were used in this study.

We denote M i
t = X and M j

t−1 = Y as macrophage angle at time or iteration t and

F k
t = Z as fibroblast angle at time or iteration t in the data. Joint probability distri-

bution p(M i
t ,M

j
t−1, F

k
t−1) = p(X, Y, Z) is calculated by binning the data in the form of

{M i
t ,M

j
t−1, F

k
t−1}. The binning specifications of 0.001 to 0.01 was used based on Ref [69].

Transfer entropy expression can be simplified as [70]
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TM→F =
∑
M i

t

∑
Mj

t−1

∑
Fk
t−1

p(M i
t ,M

j
t−1, F

k
t−1)× log

p(F k
t−1)× p(M i

t ,M
j
t−1, F

k
t−1)

p(M i
t , F

k
t−1)× p(M

j
t−1, F

k
t−1)

=
∑
X

∑
Y

∑
Z

p(X, Y, Z)× log
p(Z)× p(X, Y, Z)

p(X,Z)× p(Y, Z)

(3.7)

The term p(Z) and marginal probability, p(X,Z) and p(Y, Z), can be calculated from

p(X, Y, Z),

p(Z) =
∑
X

∑
Y

p(X, Y, Z) (3.8)

p(X,Z) =
∑
Y

p(X, Y, Z) (3.9)

p(Y, Z) =
∑
X

p(X, Y, Z) (3.10)

Using Eq. 3.8, Eq. 3.9 and Eq. 3.10, transfer entropy as in Eq. 3.7 can be calculated.

Pseudocode of transfer entropy is provided in Appendix B.

3.2.5 Validation and Sensitivity Analysis

Fig 3.5 shows plots of 10,000 points from three temporal random processes, named A, B and

C. Process A and Process C are independent to each other, but B is created by from A by

Bt = (At+1 +At)/1.85. This yields data set B with comparable statistical properties (Table

3.2).

Therefore, we expect information transfer between A and B, with direction from A to

B. When transfer entropy values between the three processes were calculated, the highest

value was found to be transfer entropy from A to B (A → B), while B → A is the second

highest (Table 3.3). This results indicate that there is information transfer between A and

B, with the direction is likely to be from A to B (highest transfer entropy value). The

rest of transfer entropy values are the lowest between all calculated values, indicating low
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Figure 3.5: Data points of three Random Processes A, B and C to test transfer entropy
approach.

Table 3.2: Statistical properties of A, B and C
Process Mean Standard Deviation Maximum

A 0.012 1.4 5.29
B 0.013 1.4 5.05
C 0.019 1.41 5.35

information transfer. This example demonstrate that transfer entropy can be used to infer

information transfer between temporal process and its direction.

Although A and C are two different processes, transfer entropy between them may still

have values due to the nature of random processes. Thus, transfer entropy values are more

useful with more data points. In this example, we tested transfer entropy with 10,000 data

points and demonstrate that this amount of data points is enough to discern information
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Table 3.3: Calculated Transfer Entropy Values of A, B and C
Direction Transfer Entropy
A→ B 1.69
B → A 0.34
A→ C 0.19
C → A 0.19
B → C 0.14
C → B 0.19

transfer between A, B and C. The inflammation simulations in this study were carried out

for 10,000 iterations.

3.2.6 Macrophage-Fibroblast (MF) Communication Network

Once the information exchange was calculated, the transfer entropy value can be used as a

criterion to construct a communication network connecting a macrophage to a fibroblast,

which is a bipartite graph, GMF (Fig 3.1(a)). We refer this as MF network.

We iteratively removed edge in GMF according to a pair’s TM→F . If a pair of macrophage

and fibroblast yields TM→F below a certain threshold TC , then an edge between them is not

included in GMF . This rule can be expressed as,

f(Mi, Fi) =

 {Mi, Fi} ∈ GMF , TMi→Fi
> TC

{Mi, Fi} /∈ GMF , TMi→Fi
≤ TC

where {Mi, Fi} denotes an edge between two nodes, Mi and Fi. We derived TC from the

estimated distribution of TM→F . Since TM→F is calculated for every pair of macrophage and

fibroblast, a TM→F distribution can be estimated. Based on TM→F distribution, we took the

most likely TM→F values for edge generation criterion. We define a range of values with the

mode of distribution as a point of reference. In this case, we used the first and third quartiles
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of TM→F distribution as the criterion of edge inclusion and to account for asymmetry of the

distribution.

To identify the dominant actor in the MF network, we estimate the Betweenness Cen-

trality, CB. Nodes with high centrality can find shorter paths to other nodes to cover the

whole network. Thus, in terms of information flow, nodes with higher centrality can easily

signal and influence other nodes, similar to the role of a leader. Betweenness centrality of a

node, C(v), is given by [22],

C(v) =
∑
i 6=v 6=j

σij(v)

σij
(3.11)

where σst is the total number of shortest paths from node s to node t and σst(v) is the

number of those paths that pass through v. Nodes with high centrality can find shorter

paths to other nodes to cover the whole network. Thus, in terms of information flow, nodes

with higher centrality can easily signal and influence other nodes.

3.2.7 Migration Data of Macrophage and Fibroblast

To obtain the temporal change of angle of macrophage and fibroblast, we employed agent-

based simulation as presented in our previous study [66-67]. The agent-based simulation is

able to capture the typical time course of inflammatory response, where a sudden rise in

inflammation score is followed by a steady decline until inflammation scores are negligible.

To simulate aging, we induced delayed healing [71-72] in the simulation. Aging is char-

acterized by an increased level of pro-inflammatory cytokine [73], impairment of wound

repair and tissue regeneration [72], and prolonged fibrosis [74-75]. Thus, we set the model

parameters reflecting these conditions: regulation of pro-inflammatory cytokine synthesis

(encouraged), apoptosis (encouraged), regeneration rate (impaired) and period of fibrosis

(prolonged). Fig 3.6 shows simulation results of inflammaging. It can be seen that for inflam-

maging cases, the inflammation scores did not decline immediately and were not followed by

full recovery (i.e., inflammation score were still apparent).
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Figure 3.6: Time course of inflammation under different levels of stimuli, S. Each time
course is an average of 10 simulations. For Normal cases, the time course always ends with
complete recovery as inflammation score becomes negligible toward the end of the simulation.
For inflammaging cases, some degree of sustained injury will be present. Each inflammation
time course is associated with certain macrophage-fibroblast information exchange.

To explain the inflammaging time course in terms of cell-to-cell communication, we

extracted the temporal change of angle of macrophage and fibroblast. A sample of motile cell

migration is shown in Fig 3.3(a). Fig. 3.3(a) shows the path of some motile cells after 500

iterations. Motile cells initially exhibit random walks, but as can be seen in Fig 3.3(a), the

movements of motile cells were converging into particular regions after a certain time. This

convergence corresponds to the time the cytokines took to spread over the grid by diffusion.

Fig 3.3(b) illustrates the scheme for calculation of change of angle, as explained by Eq. 3.5

in Sect 3.2.3. Fig 3.3(c) shows a sample of change of angle of randomly chosen macrophage

and fibroblast plotted over time.

For the purpose of this study, we carried out agent-based simulations and extracted

the tracks of macrophages and fibroblasts at each time step. The simulations involved 20

macrophages and 20 fibroblasts. The simulations were carried out under three level of stimuli,

S= 0.2, 0.4 and 0.8, and three aging progressions, termed Normal (N), Inflammaging (A1)
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and Severe Inflammaging (A2). In addition, simulations with no stimuli were also carried

out for comparison.

3.3 Results

Inflammation time course for all aging cases and stimuli level are shown in Fig 3.6. The zero

stimuli S = 0 cases do not provoke any response, because no signaling cytokine was released

and diffused. It can be seen in Fig 3.6 that the inflammation score (i.e., level of injury) for

inflammaging cases are worse than Normal cases, and the scores for inflammaging A1 are

worse than A2. Thus, for the purpose of discussion, we named the order of aging progression

as N > A1 > A2.

We repeated simulations of each stimuli level and aging progression for ten times. Fig

3.7 shows the estimated distribution of TM→F for each inflammation time course. As can be

seen, when no stimuli are present, the TM→F is close to zero (red lines). This is expected

since in this case, there is signaling involved in the macrophages and fibroblasts migrations.

Inflammaging (A1 and A2) shifts the TM→F toward zero (Fig 3.7, middle and right) such that

they overlap with no-stimuli TM→F distribution. Thus, migration dynamics of cells becomes

progressively dominated by random walk as aging progresses, and implies weak information

exchange between macrophage and fibroblast under inflammaging.

We constructed MF network for each case of inflammation. Fig 3.8(b) shows the estimated

betweenness centrality distribution of macrophage and fibroblast for all ten simulation trials.

The most prominent feature in Fig 3.8(b) is the opposite preference between macrophage

and fibroblast nodes due to inflammaging. As inflammaging severity advances (A1 (green) to

A2(red)), the likelihood of high centrality nodes on macrophage side raised, while fibroblast

nodes declined (the shifts are illustrated by arrows in Fig 3.8(b)). This conflicting relationship

applies to all stimuli level. In addition, the S = 0 cases have less preference of centrality (Fig

3.8(b), dashed line).
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Figure 3.7: Distribution of TM→F for each inflammation time course under Normal condition
(Left), Inflammaging (Middle) and Severe Inflammaging (Right). For simulation with no
stimuli (red lines), the TM→F is likely to be near zero. As inflammaging progresses from A1
to A2, the TM→F shifts toward zero as well, indicating weak information exchange between
macrophage and fibroblast.

The shifts in centrality distribution by stimuli level are not apparent as seen in Fig 3.8(b).

Hence, we calculated the ratio of maximum macrophage and fibroblast nodes centrality

(denoted as F and M , respectively) and averaging over all ten simulation trials for each

case. Fig 3.9 shows the ratio, F/M . As can be seen in Fig 3.9, F/M fell below 1.00 with

aging conditions, indicating the shift of centrality from fibroblast part to macrophage one. In

terms of stimuli level, although the shift in distribution is slight, the preference of centrality

can be observed in terms of F/M . As seen in Fig 3.9, the networks for aging cases lead to

F/M < 1.00 in general, indicating centrality is more likely on macrophage part. In Normal

cases, F/M is always bigger than 1.00, indicating centrality is more likely on fibroblast part.

Hence, we have a divergent trend in terms of stimuli level.

3.4 Discussion

In Fig 3.6, we found that inflammation time course in Normal cases eventually ends with full

recovery, while Aging 1 and Aging 2 leads to sustained injury of different intensity. Based

on Fig 3.6 and Fig 3.8(b), it is possible to associate node centrality in MF network with the

course of inflammation.
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Figure 3.8: (a) A sample of macrophage-fibroblast communication networks representing
inflammation (N) and inflammaging (A1 and A2). Red nodes denote macrophages while
blue nodes signify fibroblasts. Size of the nodes indicates the centrality of each node. It can
be observed that for inflammaging, macrophage node’s centrality, in general, are higher than
fibroblast nodes, indicating macrophages dominate the collective system in inflammaging.
(b) Distribution of centrality, CB, for different inflammation time course and stimuli. For all
stimuli levels, S, inflammaging causes the shift of centrality of MF network as indicated by
arrow: higher centrality on macrophage nodes (left) and lower centrality on fibroblast nodes
(right).
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Figure 3.9: (a) The ratio of fibroblast and macrophage centrality, F/M of the MF networks
for each inflammation time course (N denotes Normal inflammation, A1 denotes Inflam-
maging and A2 denotes Severe Inflammaging). F/M declines as the severity of inflammaging
advances, which indicate the shift of centrality from fibroblast, F , to macrophage, M . The
trend holds for all stimuli level. (b) The same data arranged according to stimuli. Stimuli
levels also shift centrality to a degree but not as significant as the severity of inflammaging.
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All inflammation followed by full recovery appears to have MF networks with lower

centrality in macrophage nodes, shifting the centrality toward fibroblast nodes. A sample

of these networks is visualized in Fig 3.8(a), marked as Normal. Inflammation that leads to

sustained injury (Inflammaging) tend to have MF networks with opposite preference: higher

centrality in macrophage nodes. Samples for the latter case are visualized in Fig 3.8(a),

marked as A1 and A2, respectively. Therefore, the fate of inflammation (i.e., full recovery,

or sustained injury) can be associated with the topology of the MF network.

The MF networks presented here may have encoded the primary role of the agents in

the system, or the degree to which agents drive the system. Fibroblast is assigned as an

agent that administers healing and suppresses inflammatory cytokine. Hence, the preference

of centrality to the fibroblast nodes in full-recovery cases might be indicative of its role. It

might also indicate that fibroblasts were the primary driver of the system for those cases.

Similarly, the macrophage is assigned as an agent that exacerbates inflammatory response

and primary motivator of injury. Preference of high centrality nodes in macrophage side may

be indicative of its role or influence to the system.

Another interpretation of the results is that macrophage-fibroblast MF network may

govern the course of inflammation (i.e., full or partial recovery). Consequently, the course of

inflammation may be modified by altering macrophage-fibroblast MF networks. Information

exchange estimated in this study is not solely driven by cytokines secretion and diffusion, but

also environmental factors such as, such as motile cell velocity and local density. A motile cell

avoids collision with each other and a crowded area can deter the movement of motile cells. In

real circumstance, biological fibers are also known to deter motile cells migration, impairing

immune response [76]. Thus, information exchange between macrophage and fibroblast can

be altered by modifying mechanical and environmental factors. Some authors have reported

methods to alter cell-cell interactions through mechanical means [12][15][77-78].
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3.5 Limitation

The migration data in this study were obtained from agent-based model. The motion of

agents in the model were limited to eight cardinal directions and hence the migration data

had limited and discrete angles.

3.6 Conclusion

The time course of inflammation relies on communication between cells. In this study, we

presented a method to model macrophage-to-fibroblast communication in inflammaging,

which we call as MF network. We demonstrate that the MF network characterised the time

course of inflammation. Normal inflammation yields MF network that indicate fibroblasts

are the collective leader of the system, while inflammaging yields MF network that indicates

macrophages dominate the collective dynamics. This is expected since macrophages are pri-

mary agents that exacerbate inflammatory response. Mapping the relationships between

coupled agents or events are important to determine which process to amplify or suppress.
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 CHAPTER 4 

NETWORK MODELING AND ANALYSIS OF BRONCHOCONSTRICTION 

The pulmonary system is a natural network of airway tubes, a fluidic transport network 

that forms a tree structure. Environmental and genetic conditions may cause obstruction of a 

number of airways in the system (termed bronchoconstriction). This may happen through an 

inflammatory response that leads to thickening of the airway lumen, leading to airway narrowing. 

When bronchoconstriction occurs, the lung ventilation (i.e., the volume of air reaching a region of 

the lung) becomes irregular or defective [79][80]. In another study, a framework for growth on a 

networked system has been proposed [23]. Under this framework, local growth is important to a 

networked system to achieve optimized, steady state connections. In this study, we proposed that 

bronchial constriction may arise from the same process. Since the airway tree can be naturally 

represented by a mathematical graph, we investigated the relationship between this process and 

graph (network) properties. We proposed a network-centric approach of the respiratory airways 

that can be used for morphological study of the lung in relation to disease. An overview of the 

approach of bronchial constriction quantification using adaptive network model and their network 

measures is shown in Fig 4.1. 
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Figure 4.1: An overview of the approach for bronchial constriction quantification 

4.1 METHOD 

In this section, the computational approach for modeling airflow in the airway tree is 

presented. The lung airway system was treated as a tree graph, where airway conductance acts as 

edge weight in the tree graph, and Kirchoff's law governs the flow. The mechanism of airway 

network adaptive behavior was inspired by the mechanics of canalization in plant venation. Next, 

we employed an informatics approach to analyze the final connectivity of airways by estimating 

graph measures.   

4.2 MODEL OF AIRFLOW 

Physiologically, the bronchial tree consists of bifurcating airways that start with the 

trachea. Each airway tract bifurcates 23 times. We termed each bifurcated airway as a generation 

number and the trachea as generation 0 (G0). This is illustrated in Fig 4.2(a). 
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Figure 4.2: (a) a three dimensional model of a pulmonary tree. (b) It can also be visualized as a 

Mandelbrot-like fractal. (c) The pulmonary tree is modeled as a tree network. The tree network 

generation is illustrated here, started from generation zero (trachea). The iteration is continued 

until generation 12. 

 

Each airway in the tree network resists the airflow. The resistance,𝑅, is given by  [81], [82], 

𝑅 =
8𝜇𝑙

𝜋𝑟4 (𝑅𝑒
𝐷

𝑙
)

1/2

 (4.1) 

where 𝜇 is air viscosity, 𝑅𝑒 is Reynold's number, 𝑙 and 𝑟 are length and radius of an airway unit, 

respectively, and 𝐷 = 2𝑟. To simplify the problem, we reduced the scale of the bronchial tree to 

12 generations. The resistance can be calculated for airways of all generations based on 

morphological characteristics of airways (i.e., radius and length). These parameters are given in 

[83]. By assuming Pousiville's flow, the flow through the network is, 

 (4.2) 
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where 𝐋 is the Laplacian matrix of a graph domain, 𝐩 is a vector of node potential, and 𝑺 is the 

node source. Although the simplifying assumption may not accurately describe the flow in the 

upper part of the airways (Generation 0-5), some models were developed through this assumption 

to characterize airflow in lung [82][79].  

We assume the node representing the trachea (Fig 4.2(b)) as the source of air flow, and 

thus modeled it as a current source. The alveoli pressure is designated as the ground nodes and 

hence the rest of the graph periphery (end nodes of the graphs in Fig 4.2(c)) is assumed as zero 

potential. The node potentials, 𝐩, across the graph domain are then solved through Eq. (4.1). Once 

node potentials are solved, the edge flow, 𝐈𝐞 is, 

𝐈𝐞 = 𝐊 ∙ 𝐏𝐞 (4.3) 

where 𝐾 = 𝑅−1 is conductance matrix, 𝐩𝐞 = 𝐀. 𝐩 is edge potential, and 𝐀 is the incidence matrix 

of the graph. L is related to A by 𝐋 = 𝐀𝐭. 𝐊. 𝐀.  

4.3 MODEL FOR NETWORK ADAPTATION 

In this study, a known phenomenon in asthma is used as the basis of model formulation. 

During ventilation defect, the collective lung airways adapt their morphological characteristics in 

response to decreased airflow in the whole lung (ventilation) [84]. As a consequence, the airflow 

and ventilation distributions are affected.  

This self-organization of the airways is arguably similar to another phenomenon of self-

organization in canalization in plant venation [23]. In response to flow, plant venation adapts the 

lumen to allow more flux in the same path. The change in lumen radius is thought to be mainly 
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driven by shear stress on venation wall. A general model for this dynamics was proposed in [23] 

as, 

𝑑𝐾𝑖

𝑑𝑡
= 𝑎(𝐼𝑖)

2𝛾 − 𝑏𝐾𝑖 + 𝑐 (4.4) 

where 𝐾𝑖 is conductance of each edge, 𝐼𝑖 is flow at the edge, and 𝑎, 𝑏, 𝑐, and 𝛾 are constants. Eq. 

4.4 can be non-dimensionalized by using the scaling factor definitions and the following 

dimensionless expressions, 

𝐼 ̅ = 𝐼/𝐼 ,   �̅� = 𝑝/�̂�,   𝑡̅ = (1/�̂�)�̂�,   �̅� =
𝑏′

𝑎
(

𝐼

𝑝
)

2𝛾 

�̂�  (4.5) 

The dimensionless form is, 

𝑑�̂�𝑖

𝑑𝑡
= 𝐼𝑖

2𝛾
− �̂�𝑖 + 𝜅 𝑒(−�̂�/(1+𝜌)) (4.6) 

where 𝑏′ = 𝑏 + 𝑟𝛿𝛾 , 𝜅 = (
𝑐

𝑎
) (

𝐼

𝑝
)

2𝛾

 and 𝜌 = 𝑏/(𝑟𝛿𝛾). The last two dimensionless parameters 

control the dynamics of Eq. 4.6 [23]. In a tessellated network, this system leads to two phase: 

highly connected network at low 𝜅 and 𝜌, and hierarchical networks at high 𝜅 and 𝜌. 
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Figure 4.3: (a) Procedure to obtain 𝛽 as a characterization of network centrality. A visualization 

of eigenvector centrality in a fraction of airway tree network is also shown. Higher node size 

indicates higher centrality. (b) A sample visualization of network cluster based on community 

detection algorithm for the same airway network in (a). In this example, the airway network has 

six clusters. (c) A sample of network renormalization/coarse-graining iteration of an airway tree 

network by CBB algorithm used in this study. The algorithm starts with a randomly selected node 

(red circle) and its neighbor separated at least 𝑙𝐵 − 1 degree. This node and its neighbors is reduced 

into one node in the first step (𝑁𝐵 = 1). The process applies to all nodes and is repeated until only 

a node left (𝑁𝐵 = 8 in this example)  
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4.4 MEASURE OF AIRWAY NETWORK COMPLEXITY 

A fundamental measure of a network is its node degree. Node degree is the number of 

connection a node has to other nodes. By the nature of the airway network, each node will mostly 

have a degree of three, since each airway is connected to three other airways (Fig 4.2(c)). Bronchial 

constriction alters the airway connectivity since some airways will be constricted and disconnected 

to the rest of the network. We consider several network measures to characterize the normal and 

altered airway network. 

4.4.1  EIGENVECTOR CENTRALITY 

Centrality is a measure of the importance of a node to the whole network. In eigenvector 

centrality, a node that is connected to many other high centrality node will score high in centrality. 

Eigenvector centrality 𝑐𝑖 of a node 𝑖 is described by [85], 

𝐀 𝐜 = 𝛌 𝐜 (4.7) 

where A is the adjacency matrix of the graph describing the network, and 𝜆  is the largest 

eigenvalue of A. Fig 4.3(a) visualizes centrality of a sample airway tree network that has 

undergone bronchial constriction and thus is asymmetric. For the full (unaltered) airway tree 

network (as in Fig 4.2(c), the node centrality distribution is shown in Fig 4.3(b). We characterized 

this distribution by fitting it into log-log relationship (Fig 4.3(a): middle and right ) according to,  

𝑓(𝑥) = 10𝛼𝑥𝛽 (4.8) 

We characterized the centrality by the power 𝛽. As a reference, the original (unaltered) 

airway network has 𝛽~1.85 (Fig 4.3(a): middle and right).  
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4.4.2 WIENER INDEX 

We also considered the Wiener index as network connectivity measure. It is described by 

[22],  

𝑊 =
1

2
∑ ∑ 𝐃(𝑣𝑖, 𝑣𝑗)𝑣𝑗𝑣𝑖

 (4.9) 

𝐃(𝑣𝑖 , 𝑣𝑗) = min
∏ 𝑖,𝑗

∑ 𝑤(𝑒𝑖𝑗)𝑒𝑖𝑗∈∏ 𝑖,𝑗  (4.10) 

where 𝑣𝑖 is node 𝑖, 𝐃(𝑣𝑖, 𝑣𝑗) is graph distance matrix, 𝑤(𝑒𝑖𝑗) is the weight of the edge 𝑒𝑖𝑗, and 

∏𝑖, 𝑗  is a set of edges connecting 𝑣𝑖 with 𝑣𝑗 . The Wiener index is the sum of the shortest path 

lengths between any pairs of nodes in the network. A small Wiener index indicates a more well-

connected network compared to other networks with a similar number of nodes having a large 

Wiener index.  

4.4.3 NETWORK CLUSTER 

To measure clustering in the network, we used the concept of community structure in a 

network. A community can be thought of as a cluster of nodes with more in-group connectivity 

than out-group connectivity. Community detection is computationally difficult and requires 

algorithms [86]. A well-known algorithm is based on a measure called modularity [86]: 

𝑄 =
1

𝑤𝑡
∑ (𝐴𝑖𝑗 −

𝑑𝑖𝑑𝑗

𝑤𝑡
)𝑖𝑗 𝛿(𝑖, 𝑗) (4.11) 

where 𝑤𝑡 is the sum of all edge weight in the network, 𝑑𝑖 and 𝑑𝑗 is the degree of node 𝑖 and 𝑗, 

respectively, 𝛿 is delta function with respect to iterator 𝑖 and 𝑗. The modularity Q can be positive 

or negative-valued, with higher positive value indicates a stronger assignment of two nodes 𝑖 and 

𝑗 in a community. In this way, the task of community detection becomes a problem of maximizing 
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modularity 𝑄 for a given division of network nodes. Fig 4.3(b) shows an example of network 

clustering of an airway tree into six clusters.  

4.4.4 NETWORK RENORMALIZATION 

Network renormalization can be thought of as an iterative coarse-graining of a network, 

similar to measurement of fractal dimensions of a data set. However, when reversed, the process 

is analogous to a growth model, and it has been described as a model for fractal network growth 

mechanism [87]. A mathematical model that described this process is,  

𝑁(𝑡) = 𝑛 𝑁(𝑡 − 1) (4.12) 

where 𝑛 > 1 is a rate constant. This equation is analogous to a typical discrete time population 

growth model [88]. However, for a given network, renormalization can be described by an 

algorithm similar to finding the fractal dimension of a graph describing a network. It can be used 

to identify the structure underlying a network (e.g., whether a network is fractal and modular or 

not) and its robustness [87].  

In this study, we hypothesized that bronchial constriction progression may share 

characteristics with network renormalization. Hence, we employed a renormalization algorithm on 

altered (constricted) airway network for comparison with the full, unaltered airway tree. Among 

the numbers of algorithms proposed, the Compact Box Burning (CBB) algorithm is the fastest in 

terms of performance and implementation without losing accuracy [89]. For a given network, 𝐺, 

with nodes 𝑁, the CBB algorithm is calculated following these steps, 

 Start with a set of all uncovered nodes, U 

 Select a random node 𝑖 from the set 𝑈 and remove it from 𝑈 
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 Remove all nodes 𝑗 whose distance 𝑙𝐵 from 𝑖 is 𝑙𝐵 ≤ 𝐿𝑖, where 𝐿𝑖 is a threshold of distance 

 Repeat the second and third step until 𝑈 is empty 

Through this algorithm, a network of 𝑁 nodes is iteratively coarse-grained into a graph 

with fewer nodes by grouping neighboring nodes separated by 𝑙𝐵 − 1 into 𝑁𝐵 number of boxes. 

This process is illustrated in Fig 4.3(c). In this study, 𝐿𝑖 is determined to be 2. 

4.5 IMPLEMENTATION 

To solve the flow in all nodes, Eq. 4.2. Runge-Kutta method was used to solve Eq. 4.6. A 

simulation was run until convergence was achieved. Convergence criteria are met when the 

solutions from the current and previous time steps are close enough (i.e., �̅� + 𝜎𝑝 < 10−10, where 

�̅�  and 𝜎𝑝 are the mean and standard deviation of 𝐩𝑡 − 𝐩𝑡−1 , respectively, and 𝐩 is the solution of 

Eq. 4.2). To induce bifurcation in the system, the conductance 𝐾𝑖 was varied by randomizing the 

diameter and radius from the baseline values (see Eq. 4.1) with a variance 𝜎 of 0.01.  

MATLAB 2018 was used to solve Eq. 4.2 and 4.6, while network analysis was carried out 

using Mathematica 10 using its built-in network analysis package. Simulation experiments were 

carried out to determine the value of 𝜅 and 𝜌 that yields tree network that corresponds to patchy, 

defective ventilation distribution. The values are 𝜌=0.625 and 𝜅 ranging from 0.16 to 3.2. 

4.6 RESULTS 

4.6.1 VALIDATION 

We compared the simulation results with previous results on pattern formation during 

bronchial constriction. The main feature of bronchial constriction is that the distribution of 
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ventilation is polarized and ventilation defects are clustered [79][84]. We defined indication of 

relative ventilation here as the ratio of local edge flow, 𝐈𝐞, of the constricted network to the original 

one. This ratio is termed 𝐼𝑟 in Fig 4.4. In Fig 4.4 (b) and (c), the polarized distribution of 𝐼𝑟 is 

clearly evident as observed in bronchial constriction [79]. 
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Figure 4.4: Left: histogram of ventilation distribution as flow ratio, 𝐼𝑟 , shows polarized 

distribution. Right: pattern formation of airways. The remaining airways after bronchial 

constriction are visualized as branches in a Mandelbrot-like tree. Color signifies the conductance, 

where yellow is the highest. In (b) and (c), many airways in different parts of the tree were 

constricted. Furthermore, the constriction tends to occur in a cluster. 

 

4.6.2 SENSITIVITY ANALYSIS 

Sensitivity analysis was carried out by running the simulations by perturbing the diameter 

(𝐷) and length (𝑙) of all airways as in Eq. 4.1. Diameter and length of airways determine the 

conductivity 𝐾𝑖 of the bronchial tree, and small variations were introduced randomly with mean 

values taken from Ref [83] and variance, 𝜎 . Different 𝜎  values were used to model aging in 

bronchial tree, since aging leads to alteration of airway’s morphology. Ten simulations were 

carried out with the same perturbation level (𝜎 values). Fig 4.5 shows the results of ten simulations 

with 𝜎 = 0.01. The results are presented as network cluster and standard deviation of flow at all 

edges. As can be seen, both values are the same for all ten trials. Increasing 𝜎 to 0.1 also yields the 

same results for all ten trials. Therefore, it can be concluded that the system is deterministic with 

the same level of perturbation. 
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Figure 4.5: Network cluster and standard deviation of edge flow for all edges from ten simulation 

trials, with two different level of perturbation (𝜎).  

 

4.6.3 EVOLUTION OF AIRWAY NETWORK COMPLEXITY 

 

Figure 4.6: The weighted tree network (represented by Mandelbrot-like tree) representing 

constricted and ventilated airways (Left). An equivalent network can be extracted by removing the 

constricted airways (Right). 

 

To characterize the airway network according to bronchial constriction progression, we 

converted the weighted airway networks (which is described by Laplacian matrix 𝐿 in Eq. 4.2 into 

a non-weighted network, which we call the simplified network (Fig 4.6). To obtain the simplified 

network, any edge with weight less than 10−8 (i.e., 𝐾𝑖 ≤ 10−8) was removed. We then computed 

the centrality, Wiener index and the cluster of the airway network as explained in the Method 

section. The results are plotted against 𝜅 which is the control parameter of the adaptation model 

(Eq. 4.6).  

From Fig 4.4, it can be observed that higher 𝜅 leads to more constricted airway networks 

(less ventilated airway). In Fig 4.7(a) for 𝜎  =0.01, it can be seen that the constricted airway 
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networks have reduced cluster numbers. Wiener index values are also reduced (Fig 4.7(b) ) as 

expected as airway connectivity reduced with bronchial constriction progression. The topology of 

the constricted networks can also be distinguished from the less constricted airway network as 

indicated by Fig 4.7(c). Note the 𝛽 value for unaltered airway network is ~1.85 (lower part of the 

y-axis in Fig 4.7(c) ). 

The airway tree is not symmetric, and as explained in Implementation section, this was 

taken into account with the introduction of variance 𝜎 to the diameter and length of the airway. 

We assume a condition such as aging increases the asymmetries of the airway tree. To simulate 

this, the variance 𝜎 was varied with 𝜎 =0.1 and 𝜎 =1, and the same computational procedures were 

carried out as before. In Fig 4.7(a), it can be seen that the more asymmetric airway networks (𝜎 

=0.1 and 𝜎=1) have an increased number of clusters as they are more constricted. However, the 

airway connectivity and network centrality of increased asymmetry cases (𝜎 =0.1 and 𝜎=1) are 

indistinguishable (Fig 4.7).  

 

 

Figure 4.7: Characteristics of airway network with various bronchial constriction and asymmetry 

level. (a) Cluster numbers declines as airway network becomes more constricted. (b) Wiener index 
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declines, indicating reduced airway connectivity. (c) 𝛽 values increased (in negative range) as 

airway network becomes more constricted, indicating changes in network topology. 

 

4.6.4 RENORMALIZATION AS A MODEL OF BRONCHOCONSTRICTION 

We carried out renormalization computation of the unaltered (full) airway tree network. 

The process is illustrated in Fig 4.3(c). Renormalization of full airway tree takes 𝑁𝐵 =38 on 

average. In this section, we compare bronchial constriction as modeled by network growth 

(coupled Eq. 4.2 and Eq. 4.6) and network renormalization (CBB algorithm). We extract networks 

generated with numbers of edges that are the nearest to growth model. In Fig 4.8, we compared 

the network centrality between the two models. The progression of 𝛽 values of the two models 

agreed well indicating similar evolution of network topology for iteration of 𝑁𝐵 (renormalization) 

and 𝜅 (network model). Snapshots of the networks are also shown in In Fig 4.8. 
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Figure 4.8: Comparison of centrality (𝛽 values) of networks generated by renormalization process 

(Renorm) and network growth model (Network). Snapshots of the networks are shown on the top. 

The y-axis values were scaled to range between 0 to 1 to emphasize the progression. 

 

4.7 DISCUSSION 

Complexity of the lung structure is known to be altered by disease. The lung airways under 

asthma and COPD (chronic obstructive lung disease) conditions can be distinguished from each 

other and healthy lungs by their complexity [90]–[95]. In this study, we incorporated the natural 

description of the lung as a network to characterize its structural alteration under bronchial 

constriction. In this study, we demonstrated that the lung with bronchial constriction has reduced 

Wiener's index and cluster numbers (Fig 4.7). The reduction of network clusters and Wiener index 
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indicates reduction of airway network complexity. Thus, these measures may be used for 

identification and characterization of lung structure under different diseases. Furthermore, it was 

shown in another study [87] that less complex networks are typically more vulnerable to an attack 

that removes nodes and hubs from the network. By referring to our previous results in Fig 4.7, we 

may also view bronchial constriction is a process that elevates the vulnerability of the airway 

networks after each "removal of edges" (or airway units). Thus the bronchial constriction is akin 

to a self-reinforcing process. 

We developed a computational model based on a general model of network growth. In this 

model, higher 𝜅 leads to a dynamics that reduce inefficient edges on a network (similar to an 

optimization process) [23]. As can be seen in Fig 4.4, our results show that higher 𝜅 yields highly 

constricted airway networks. This results may suggest that bronchial constriction, once triggered, 

may be fundamentally a network optimization process. 

In another study [87], another model of network growth based on the concept of 

renormalization was proposed. In said study, it was argued that network growth and 

renormalization (coarse-graining) are interrelated concepts. In this study, we compared the 

renormalization iteration of the airway tree network with the degradation of airway network from 

the network growth model (Fig 4.8). All three network measures agreed very well for networks 

(with a similar number of edges) generated by both processes. Thus, the results suggest that 

bronchial constriction may also share characteristics with network coarse-graining.  

These results presented so far may explain bronchial constriction in terms of network 

dynamics. The bronchial constriction may be analogous to network coarse-graining process that 

selectively remove edges. However, by removing edges and reducing network complexity, it also 
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increases the vulnerability of the whole network, which in turns exacerbate the disease further. 

Furthermore, our study demonstrates that it is possible to formulate a framework for modeling 

disease progression as a network-centric process 

4.7.1 LIMITATIONS 

The current model is limited to a problem with flux boundary condition (i.e., the flux at 

each node is known and the potentials are the solution) and resistance as the property of airway. 

Additional boundary conditions and incorporating airway compliance will enable the model to 

simulate a broader range of ventilation heterogeneity. 

4.8 CONCLUSION 

This study investigated bronchial constriction process modeled as adaptive network and 

quantified their network measures (network clustering, Wiener index and centrality). Lung airways 

are  modeled  as  a tree network and bronchial constriction as a network adaptation process. Results 

obtained from the model analysis suggest that network clusters and Wiener index declines by 74% 

and 71%, respectively, with increasing bronchial constriction. In  addition,  the airway network 

centrality under bronchoconstriction can be distinguished from  the normal lung conditions.  The 

resulting altered  networks show distinguishable characteristics  that can potentially be  used for 

identification of airway diseases. 
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 CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 CONCLUSION 

Informatics methods have been applied for analyzing problems of inflammation and 

bronchoconstriction. An agent-based model was used to model inflammation and wound healing. 

It reveals that periodic mechanical stimuli (strain) may enhance the robustness of innate immune 

response. Hence, the inflammation progression may be modulated by mechanical stimuli. The 

model is able to simulate chronic inflammation by modifying parameters relevant to aging. An 

informatics framework enables investigation into dominant factors in inflammation. It was 

revealed that in chronic inflammation, macrophages dominate the information exchange in the 

system.  

The lung is an example of a natural tree network, and bronchoconstriction was modeled as 

an adaptation process on network domain. This model enables the estimation of airway tree 

complexity which is important in diagnosing lung disease and investigation of its structure and 

function. The model is capable of simulating ventilation heterogeneity and estimate the 

corresponding airway tree complexity.  
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5.2 FUTURE WORK 

The limitation of current inflammation model is reduced redundancy of interactions (e.g., 

of cells and the cytokines, cell types). In biological systems, the different type of cells have 

overlapping roles, and so do cytokines. However, in the current model, the overlapping roles are 

simplified into inflammation exacerbating and inhibiting roles. Some degree of overlapping roles 

exist in the current model. However, as the degree of overlapping roles decreases, so is the 

emergent properties of the model. Future research will address the limitations. 

To infer information exchange in the inflammation, simulated data were used. However, 

since it was designed to work with observable data, the method can be directly extended for 

analyses with real experimental data. This method can be used to determine the dominant factors 

or agents in a real setting for targeted treatment. This task will be the focus of future research.  

The current network model for bronchoconstriction is limited in terms of boundary 

condition availability and mechanical properties. Future works will be focused to overcome these 

limitations.  

 

5.3 CONTRIBUTIONS 

Although several agent-based models for inflammation exist [10][15][11], the effect of 

mechanical stimuli as a physical field was not introduced. This study presents a new formulation 

of agent-based inflammation model driven by mechanical strain and aging factors. The model also 

provides a general framework for extended analysis, such as cell migrations (demonstrated in 

Chapter 3) and effect of periodic or fluctuating stimuli to resilience of immune system 
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(demonstrated in Chapter 2, Section 2.3.3). The design of the framework is modular, enabling 

rapid adaptation to other problems with similar interacting events and units. 

Currently, there is a lack of computational framework for analyzing inflammation as 

information processing system, despite the importance of signal transduction in cells migration 

[54], diseases [49][52] and ultimately determining the fate of inflammations. In addition, complex 

process such as inflammation involves interaction between many events that determine its 

outcome. Therefore, a method to quantify information exchange between events are needed. In 

Chapter 3, method to quantify information exchange is introduced to fill the knowledge gap. 

Application of the method is demonstrated in Chapter 3 where dominant agents in (simulated) 

normal and chronic inflammation (inflammaging) were identified. In the future, the method can 

be extended to infer dominant events (such as cytokine release, fibrosis) given a case of 

inflammation (e.g., chronic or normal inflammation). Identifying dominant events or factors will 

provide automated inference of targets to inhibit or modulate the outcome of inflammation (e.g., 

inhibit cytokine release, inhibit macrophage migration). 

The lung is natural network and its morphology determines its function. However, there is 

a lack of graph-based computational framework for lung dynamics. In Chapter 4, a graph-based 

approach for simulating lung morphological changes due to bronchoconstriction is introduced. The 

graph-based approach naturally provide a way to estimate reduction of morphological complexity 

in the lung due to airway constriction. In the future, this approach can be extended to analyze other 

problems that can be formulated as a network/graph domain.  

The reports from this study have been published in Refs [66], [96] [97], [98] and [99]. 
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 APPENDIX A 

SUPPLEMENTAL MATERIALS FOR CHAPTER 2 

SIMULATION OF WOUND HEALING AND CELL’S DYNAMICS UNDER STRAIN-

INDUCED INFLAMMATION 

7.1 PSEUDOCODE  

Begin 

Parameters Initialization (Table 2.1 and Table 2.2) 

Matrix Initialization for Epithelial Cells Grid 

Matrix Initialization for TNF 

Matrix Initialization for TGF 

Matrix Initialization for Elastic Grid 

Matrix Initialization for Motile Cells and Fibrosis 

time= 1; 

While time < total time 

Execute Eq. 2.11 (Motile Cell Activation) 

Execute Eq. 2.16 (Cytokine Diffusion) 

Execute Eq. 2.12 and Eq. 2.13 (Cytokine release) 
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Epithelial Cells Subroutine: 

Execute Eq. 2.5 (Apoptosis and/or healing) 

Execute Eq. 2.6 (Fibrosis) 

Execute Eq. 2.9 and Eq. 2.10 (Motile cells migration) 

If 𝑡𝑖𝑚 (motile cell life time) of motile cell (i,j) < 0 

Reinitialize at random (i,j) location 

End  

time = time +1; 

End (While) 

End 

7.2 MATLAB IMPLEMENTATION 

7.2.1 MAIN FUNCTION 

function CAstartcase 
format compact 

  
fname= input('enter file name to store sim data: ','s'); 

  
%grid creation 
tissueSz=[100 100]; 
%--------------------------------------- 
% Parameters 
global totalIters; totalIters=1000; 
global totaltrial; totaltrial=1; 
% global fname; 
%___________________Stochastic Parameters_____________________________ 
%-----------------Beta Distribution parameters, (alpha, beta) ------------- 
%Macrophages Activation 
abia=[5,1]; 
%TNf and TGF releases 
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abtnf=[1,3]; 
abtgf=[2,1]; 
% Epithelial apopotosis 
abapop=[5,1]; 

  
%population variance 
musig=[0.5,0.25]; 

  
%---------------fixed cells (epithelial) 
% epthMat=zeros(tissueSz); 
%mitosis rate 
mt=5; 

  
%----------------------------diffusing grid 
% Diffusion-degradation constants: (diffusity, degradation) 
% DKtnf=[0.07, 1e-3];  %pro-inflammatory/activator ~ TNF 
% DKtgf=[0.1, 1e-5];   %anti-inflammatorty/inhibitor ~ TGF 
DKtnf=[0.1, 1e-3];  %pro-inflammatory/activator ~ TNF 
DKtgf=[0.07, 1e-5];   %anti-inflammatorty/inhibitor ~ TGF 

  
%---------------physical grid 
                                 wn=[2];   %number of oscillation in sinusoidal 

wave 
                                Amp=0.5; %amplitude 
                               strtype=4; 

  
Aact=1; 
%-----------------------------mobile cells: cells with motility 
%nstate: number of type of states, state and age 
%sval: the values of states (initial) 
%mcr=macrophages, fbr= fibroblasts 
%immune cell's velocity 
mcr_v=3; 
fbr_v=3; 
%mobile cell's cytokines sensitivity (affect locomotion) 
nrn=10; 

  
%immune cell repopulation rate 
tpoplc=5; 
%immune cell's age 
macrLife= 20; 
fbrLife= 20; 
%immune cells average population 
nMacroph= 25; 
nFibrob= 25; 

  
%additional 
%fibroblast differentiating time 
td=5;  
%collagen density-increase time 
% tclg=5; 
tclg=10; 

  
%initial/starting state 
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sval1=[1 macrLife]; 
sval2=[11 fbrLife]; 
%range of state of immune cells 
%macrophages 
strange_M=[1 10]; 
%fibroblasts 
strange_F=[11 20]; 
%immune cell's grid contain: state and age 
nstate=2; 
tpopl=tpoplc; 

  
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~``````````````````````````````````````` 
ncase=length(wn); 
for cs=1:ncase 
for trial=1:totaltrial 
     fprintf('\t\t\t\t\t\t\t\t\t\t\t trial: %i \n',trial) 
[CA]=iterate(tissueSz,abia,abtnf,abtgf,abapop,musig,mt,... 
    DKtnf,DKtgf,Amp,strtype,Aact,mcr_v,fbr_v,nrn,tpoplc,... 
    

nMacroph,nFibrob,td,tclg,sval1,sval2,strange_M,strange_F,nstate,tpopl,wn(cs))

; 

  
fname1= strcat(fname,'_tr',num2str(trial),'_wn',num2str(wn(cs))); 
save( fname1, 'CA','-v7.3' ) 
clear CA 

  
end 
end 

  
end   %end function 

 

7.2.2 SUBROUTINE ITERATE (MAIN CA LOOP) 

function [CA]=iterate(tissueSz,abia,abtnf,abtgf,abapop,musig,mt,... 
    DKtnf,DKtgf,Amp,strtype,Aact,mcr_v,fbr_v,nrn,tpoplc,... 
    nMacroph,nFibrob,td,tclg,sval1,sval2,strange_M,strange_F,nstate,tpopl,wn) 

  
% % Initialization 
% format compact 
%note: interchangeable in the notes:  
%mobile/motile cells & immune cells 
%taxis, locomotion, movement 
global totalIters;  

  
%__________________________________________________________________________ 
%-------------------------------------------------------------------------- 
%cell's array indexing 
fixed=1; mobile=2; diff=3; phys=4; 
%__________________________________________________________________________ 
%-------------------------------------------------------------------------- 
for tidx=1:totalIters 
CA{tidx,fixed,1}=zeros(tissueSz); 
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CA{tidx,mobile,1}=zeros(tissueSz); 
CA{tidx,mobile,2}=zeros(tissueSz); 
CA{tidx,mobile,3}=zeros(tissueSz); 
CA{tidx,diff,1}=zeros(tissueSz); 
CA{tidx,diff,2}=zeros(tissueSz); 
CA{tidx,phys,1}=zeros(tissueSz); 
end 

  
%store elastic field grid 
% wn=1;   %number of oscillation in sinusoidal wave 
for ti=1:totalIters 
% [epthStrain]= straindist(tissueSz,Amp,strtype); 
%sinusoidal increase of strain 
% Ampt=abs((Amp*sin(pi*wn*ti/totalIters))+ Amp/2); 
Ampt=abs((Amp*sin(pi*wn*ti/totalIters))); 
CA{ti ,phys,1}= straindist(tissueSz,Ampt,strtype); 
end 

  
tic; %start to count comp time 
cta=zeros(1,1); 

  
epthMat=zeros(tissueSz); 
%init immune cell's grid 
for istate=1:nstate 
motile(:,:,istate)= zeros(tissueSz); 
end 
%populate macrophages 
[motile]= populate(motile,sval1,strange_M,nMacroph,musig); 
%populate fibroblast 
[motile]= populate(motile,sval2,strange_F,nFibrob,musig); 

  
%---------------diffusing cells 
TNFmat=zeros(tissueSz); TGFmat=zeros(tissueSz); 

  
%      rng('shuffle'); 
%start simulation time 
for t=1:totalIters 
 fprintf('\t\t\t\t\t\t\t\t\t\t    sim time: %i \n',t) 
%store sim data each time step 
CA{t,fixed,1}=epthMat; 
CA{t,mobile,1}=motile; 
CA{t,diff,1}=TNFmat; 
CA{t,diff,2}=TGFmat; 
%specific output 
%macrophages only 
mtemp=motile(:,:,1);mtemp(mtemp==11 | mtemp==-1)=0; 
CA{t,mobile,2}=mtemp; 
%fibroblast only 
mtemp=motile(:,:,1); mtemp(mtemp==1 | mtemp==2)=0; 
CA{t,mobile,3}=mtemp; 

  
%---------------------Rules----------------------------------------------- 
%---------------------main update----------------------------------------- 
% macrophage activation 
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disp('activating macrophages') 
 [motile(:,:,1)]=inact2act(CA{t,mobile,1}(:,:,1),CA{t ,phys,1},Aact,abia);  
% [motile(:,:,1)]=inact2act(CA{t,mobile,1}(:,:,1),epthStrain,Aact,abia);  

  
 %cytokines releases and diffuse - add reaction diffusion here 
fprintf('\t\t\t\t\t diffusing cytokines \n') 
 [TNFmat,TGFmat]= 

cytodiff(CA{t,diff,1},CA{t,diff,2},motile(:,:,1),tissueSz,abtnf,abtgf,DKtnf,D

Ktgf); 

  
%epth liv to dead 
disp('apoptosis/necrosis') 
[epthMat]= hel2dead(CA{t,fixed,1}, CA{t,diff,1},motile,tissueSz,abapop);  

  
%---------------------second update----------------------------------------- 
%epth mitosis and fibroblast healing (separate this later) 
fprintf('\t\t\t\t\t healing \n') 
[epthMat,motile]=  dead2hel(epthMat, motile,tissueSz,mt,td,tclg); 

  
%mobile cells dead if life is over 
disp('immune cells age') 
[motile]=wbc2dead(motile);  

  
%macrophage moves randomly or toward TNF 
fprintf('\t\t\t\t\t immune cells move \n') 
%inactivated   
[motile]= wbcmove(motile,1,mcr_v,CA{t,diff,1},tissueSz,nrn); 
%activated  
[motile]= wbcmove(motile,2,mcr_v,CA{t,diff,1},tissueSz,nrn); 
%reduced speed 
% [motile]= wbcmove(motile,2,mcr_v-2,TNFmat,tissueSz); 

  
%fibroblast moves randomly or toward TGF 
[motile]=wbcmove(motile,11,mcr_v,CA{t,diff,2},tissueSz,nrn); 

  
%Repopulate mobile cells every 5 ticks if cell density is below average 
tpopl=tpopl-1; 
if tpopl ==0 
    disp('repopulation') 
    tpopl=tpoplc; 
%     strange=[1 10]; 
    [motile]=populate(motile,sval1,[1 10],nMacroph,musig);  
%     strange= [11 20]; 
    [motile]= populate(motile,sval2,[11 20],nFibrob,musig); 
end 

  
end   %time loop 

  
%display total computational time 
cta(1)=toc; 
if cta(1) < 60 
tun='seconds'; 
tc=1; 
else if cta(1)>= 60 & cta(1) < 3600 
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tun='minutes'; 
tc=60; 
else if cta(1) >= 3600 
tun='hours'; 
tc=3600; 
end 
end 
end 
fprintf('total time: %4.2f %s \n',cta(1)/tc,tun) 

  
end  %function end 

 

 

7.2.3 SUBROUTINE STRAINDIST (STRAIN DISTRIBUTION) 

function [epst]= straindist(tissueSz,Amp,type) 

  
% type=4; 

  
if type==1 %gaussian crest 1 
% A= Amp/0.0080; 
% mu = [0 0]; Sigma = [20 1; 1 20]; %case 1 
% A= Amp/0.0796; 
% mu = [0 0]; Sigma = [2 0.1; 0.1 2]; %case 2 
A= Amp/ 0.793; 
mu = [0 0]; Sigma = [0.2 0.01; 0.01 0.2]; 
x1=linspace(-3,3,tissueSz(1));  [X1,X2] = meshgrid(x1,x1); 
epst = A*mvnpdf([X1(:) X2(:)],mu,Sigma); 
epst = reshape(epst,length(x1),length(x1)); 

  
elseif type==2 %sinusoidal bumps 
        b=4; 
        A= Amp/ b; 
        x1=linspace(0,4*pi,tissueSz(1));  [X1,X2] = meshgrid(x1,x1); 
        epst= A*(2+(cos(X1) + cos(X2))); 
elseif type==3  %horizontal strips w/ small bumps 
        b=11.9993; 
        A=Amp/ b; 
        x1=linspace(0,4*pi,tissueSz(1));  [X1,X2] = meshgrid(x1,x1); 
        epst= A*( 5.9999 + (cos(X1) + 5*sin(X2) ) ); 
elseif type==4  %uniform 
    epst=Amp*ones(tissueSz(1),tissueSz(2)); 
elseif type==5 %cos center 
        b=4; 
        A= Amp/ b; 
        x1=linspace(0,2*pi,tissueSz(1));  [X1,X2] = meshgrid(x1,x1); 
        epst= A*(2+(cos(X1) + cos(X2))); 
elseif type==6 %gaussian crest 2 
A= Amp/0.1590; 
mu = [0 0]; Sigma = [1 0.01; 0.01 1]; 
x1=linspace(-3,3,tissueSz(1));  [X1,X2] = meshgrid(x1,x1); 
epst = A*mvnpdf([X1(:) X2(:)],mu,Sigma); 
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epst = reshape(epst,length(x1),length(x1)); 

  
elseif type==7 %gradation left high to right low 
        b=   20.9999; 
        A= Amp/ b; 
        x1=linspace(0,1*pi,tissueSz(1));  [X1,X2] = meshgrid(x1,x1); 
        epst= A*((20*cos(X1) + 1*sin(X2))); 

         
end 

  
end 

 

 

7.2.4 SUBROUTINE POPULATE (POPULATE THE GRID WITH MOTILE CELLS) 

function [motile] = populate(motile,sval,strange,celldensity,musig) 
%for one type of mobile cell 
rng('shuffle') 
ncell= length(find(motile(:,:,1) >= strange(1) & motile(:,:,1) <= strange(2) 

)); 

  
%non-occupied grid 
[xe,ye]= find(motile(:,:,1) == 0); 
xye=[xe,ye]; 
necell= length(xe); 
xeidx=[1:1:necell]; 

  
% if ncell < celldensity 
%stochastic: mu regulates skewness toward + or -, sig: spread of tolerances 
mu=musig(1); sig=musig(2); 
if ncell < celldensity+ round((sig*(rand-mu))*celldensity) 

  
%location of new cells 
% randomly select element in [xe,ye] -> empty grid location 
noisycd= celldensity+ round((sig*(rand-mu))*celldensity); 
newidx= datasample(xeidx, noisycd ) ; 
fillup=noisycd-ncell; 
    for igrid=1:fillup 
    motile( xe(newidx(igrid)), ye(newidx(igrid)) ,1)= sval(1); 
    end 
    for igrid=1:fillup 
    motile( xe(newidx(igrid)), ye(newidx(igrid)) ,2)= randi([sval(2)-10 

sval(2)+10]); 
    end 
end 

7.2.5 SUBROUTINE INACT2ACT (MACROPHAGE ACTIVATION BY STRAIN) 

function [MacrophMat]=inact2act(MacrophMat,epthStrain,A,abia) 
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%1 = inactivated. 2=activated 
%macrophage is activated by level of strains (directional) in connective 
%tissue, in this case, macrophmat grid also contains strain information 
%macrophages releases TNF (pro-inflammatory) & TGF (anti-inflammatory) by 

strains 
%macrophage moves toward TNF 
rng('shuffle'); 

  
szmcrMat=size(MacrophMat); 
[wx,wy]=find(MacrophMat==1); %find inactivated macrophages 
totalMCR=length(wx); 

  

  
%"constitutive" relation for macrophages activation 
%based on probability distribution with some bounds, based on TNF distribution 
%on literature 
%exponential 

  
for cntMCR=1:totalMCR 

     
        if wx(cntMCR)-1>0 && wx(cntMCR)+1<szmcrMat(1) && wy(cntMCR)-1>0 && 

wy(cntMCR)+1<szmcrMat(2) %boundary detect 
            %this is the 'constitutive' 
%             disp('block 1 activated') 
            Pac=A*random('Beta',abia(1),abia(2)); 
            eps=epthStrain(wx(cntMCR),wy(cntMCR)); 

             
           if Pac <= eps 
%                disp('block 2 activated') 
            MacrophMat(wx(cntMCR),wy(cntMCR))=2; 
           end 
        end 
end 

  
end 

 

 

7.2.6 SUBROUTINE CYTODIFF (CYTOKINE DIFFUSION AND RELEASE) 

function [TNFmat,TGFmat]= 

cytodiff(TNFmat,TGFmat,motile,tissueSz,abtnf,abtgf,DKtnf,DKtgf) 

  
%diffusion------------------------------------------------------------------ 
%assume unity pseudo-diffusity constant 

  
% nrn=10; 
% TNF diffuse 
szmTNF=size(TNFmat); 
TNFt= TNFmat; 
TGFt= TGFmat; 
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Dp=DKtnf(1); Kp=DKtnf(2);  %pro-inflammatory/activator ~ TNF 
Da=DKtgf(1); Ka=DKtgf(2);  %anti-inflammatorty/inhibitor ~ TGF 

  
for i=1:szmTNF(1) 
    for j=1:szmTNF(2) 
           [mi,mj]= mooresnei(i,j,1,tissueSz); 
           grn=TNFmat(mi,mj); 
           grn(2,2)=0; 
           grn(1,1)=0; grn(1,3)=0; grn(3,1)=0; grn(3,3)=0; 

  
   TNFt(i,j) = TNFmat(i,j) + Dp*( (sum(sum(grn)))-4*TNFmat(i,j) ) - 

Kp*TNFmat(i,j); 

  
           [mi,mj]= mooresnei(i,j,1,tissueSz); 
           grn=TGFmat(mi,mj); 
           grn(2,2)=0; 
           grn(1,1)=0; grn(1,3)=0; grn(3,1)=0; grn(3,3)=0; 

  
   TGFt(i,j) = TGFmat(i,j) + Da*( (sum(sum(grn)))-4*TGFmat(i,j) ) - 

Ka*TGFmat(i,j); 

  
    end 
end 
% TGFmat=round(TGFt,nrn); 
% TNFmat=round(TNFt,nrn); 
TGFmat=TGFt; 
TNFmat=TNFt; 

  
%release------------------------------------------------------------------- 
%activated macrophages action---------------------------------------- 
%macrophages release TNF: can be stochastic or per ticke 
%rate of release ("per tick" mode) can be deterministic or stochastic 
%probability to release, Pr: 
% global totalIters 
% rt=5; 
% c=totalIters/rt; 
% Pr=c/totalIters; 
% Pr=1/rt;  

  
szmcrMat=size(motile); 
[wx,wy]=find(motile==2); 
totalMCR=length(wx); 

  
for cntMCR=1:totalMCR 
%stochastic release, tuned by TGF level 
   Pac=random('Beta',abtnf(1),abtnf(2)); 
   tgflev= TGFmat(wx(cntMCR),wy(cntMCR)); 
        %the more tgf, the slower tnf release 
        if Pac >= tgflev 
        TNFt(wx(cntMCR),wy(cntMCR))= 1; 
        end 

    
% %stochastic time 
%     Pp= rand; 
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%     if Pp < Pr/(tgflev+1) 
%     TNFmat(wx(cntMCR),wy(cntMCR))= 1; 
%     end 

    
end 

  
%TGF release by fibroblast 
szmcrMat=size(motile); 
[wx,wy]=find(motile==11); 
totalMCR=length(wx); 
for cntMCR=1:totalMCR 
   %stochastic release based on TNF level 
   Pac=random('Beta',abtgf(1),abtgf(2)); 
   tnflev= TNFmat(wx(cntMCR),wy(cntMCR)); 
        %the more tnf, the higher tgf release 
        if Pac <= tnflev 
        TGFt(wx(cntMCR),wy(cntMCR))= 1; 
        end 
end 

  
% TGFmat=round(TGFt,nrn); 
% TNFmat=round(TNFt,nrn); 
TGFmat=TGFt; 
TNFmat=TNFt; 

  
end 

 

7.2.7 SUBROUTINE HEL2DEAD (APOPTOSIS) 

function [epthMat]=hel2dead(epthMat,TNFmat,motile,tissueSz,abapop) 
%L -> Dead 
%0 -> 1 
%by TNF level & collagen existent (not level) 
rng('shuffle'); 

  
% tic; 
for xs=1:tissueSz(1) 
% tic; 
for ys=1:tissueSz(2) 
    %if fibrosis, keep flag 0 
    if motile(xs,ys,1)~=-2  
     if epthMat(xs,ys) ==0 
    %damage by TNF on THE cell 
     Pdead= random('Beta',abapop(1),abapop(2)); 
     tnflev= TNFmat(xs,ys); 
     if Pdead < tnflev 
         epthMat(xs,ys)=1; 
     else 
     %damage by collagen existent in Moore's neighborhood 
     [mx,my]=mooresnei(xs,ys,1,tissueSz); 
     %detect if there is collagen 
     clxy= find(motile(mx,my,1)==-2); 
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     lclxy=length(clxy); 
     %if collagen  
     if lclxy > 0 
       Pdead=datasample([0 1],1,'Weights',[1 1+(lclxy/9) ]); %max prob is 1/0 

= 2/1 
       epthMat(xs,ys)=Pdead; 
     end 

      
     end 
     end 
    end 
end 
end 

  
end 

  

 

 

7.2.8 SUBROUTINE DEAD2HEL (HEALING) 

function [epthMat,motile]=dead2hel(epthMat,motile,tissueSz,mt,td,tclg) 
%1. healing by mitosis 
rng('shuffle'); 
%mitosis rate: mt iteration 
%probability of mitosis: 
Pmt=1/mt;  
% K=1; 
[xs,ys]=find(epthMat==1); 
lenxs=length(xs); 
if lenxs>0  
%Method 1 
% for cntrx=1:lenxs 
%    [mx,my]=mooresnei(xs(cntrx),ys(cntrx),1,tissueSz); 
%    dumMat=epthMat(mx,my); 
%    nLive=sum(sum(dumMat==0)); 
%    P_cal=1-(1-rand(1)).^(nLive/( 10*(TNFmat(xs(cntrx),ys(cntrx))+1) )); 
%    if P_cal>=P_dh 
%        epthMat(xs(cntrx),ys(cntrx))=0; 
%    end 
%     
% end 
%Method 2 
for cntrx=1:lenxs 
%    Ctnf= TNFmat(xs(cntrx),ys(cntrx))+1; 
%    [mx,my]=mooresnei(xs(cntrx),ys(cntrx),1,tissueSz); 
%    eptmoore=epthMat(mx,my); 
%    nLive=sum(sum(eptmoore==0)); 
   P_cal= rand;  
   if P_cal < Pmt  %/(K*Ctnf) 
       epthMat(xs(cntrx),ys(cntrx))=0; 
   end 
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end 
end 

  
%2. fibroblast healing 
% healing is 5 ticks and then fibroblast dissappear 
[wx,wy]=find(motile(:,:,1) == 11); 
motileTemp= motile; 
lenxs = length(wx); 
% mn=1; 
% td=5; 
for cntrx=1:lenxs 
%epth states in Moore's neighborhood  
%     [mx,my]= mooresnei(wx(cntrx),wy(cntrx),mn,tissueSz);     
    [mx,my]= mooresnei(wx(cntrx),wy(cntrx),1,tissueSz);     
    %if there is dead epth in vicinity, %fibroblast differentiate, not 
    %moving = -1, but undetected as mobile cells--> affect collision, can 
    %be fixed by modifying move rules so that >0 moves and <0 stay, so 
    %find(~= 0) instead 
    localdm= epthMat(mx,my)== 1; 
    if sum(sum( localdm ))> 0 
     %fibroblast heals & reset clock for 
     %healing 

                                         
        motile(wx(cntrx),wy(cntrx),1)= -1; 
        motile(wx(cntrx),wy(cntrx),2)= td; 

  
     dmidx = datasample( find(localdm== 1), 1 ); 
     %coordinates in column 
     %make dummy moore's matrix, take element using lin idx 
%      mxm= repmat(mx,[length(mx) 1]);  mym= repmat(my',[1 length(my)]); 
     [mxm,mym]= mooresmatrix(mx,my); 
     gx(cntrx)= mxm(dmidx); gy(cntrx)= mym(dmidx); 

      
     %move fibroblast to randomly selected dead cell in vicinity 
     motileTemp(gx(cntrx),gy(cntrx),:) = motile(wx(cntrx),wy(cntrx),:); 
     motile(wx(cntrx),wy(cntrx), :)= 0; 
     motile(gx(cntrx),gy(cntrx),:) = motileTemp(gx(cntrx),gy(cntrx),:); 

      
    end 
end 

  
%3. Fibroblast heals after t ticks, and dissapear 
[wx,wy]=find(motile(:,:,1) == -1); 
% motileTemp= motile; 
lenxs = length(wx); 
% tclg= 10; 
if lenxs> 0                      
for ifbr=1: lenxs 
    if motile(wx(ifbr),wy(ifbr),2) >0  
    motile(wx(ifbr),wy(ifbr),2)= motile(wx(ifbr),wy(ifbr),2) -1; 
    else 
%     motile(wx(ifbr),wy(ifbr),1)= 0; 
    %assuming fibroblast correctly moved to dead epth above, if moved 
    epthMat(wx(ifbr),wy(ifbr))= 0; 
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    %fibroblast deposit collagen on last place 
    motile(wx(ifbr),wy(ifbr),1)= -2; 
    motile(wx(ifbr),wy(ifbr),2)= tclg; 
    end 
end 
end 

  
%4. collagen dissolve, 10% per tick 
%so collagen is on former dead epth then 
[wx,wy]=find(motile(:,:,1) == -2); 
lenxs = length(wx); 
if lenxs> 0 
for ifbr=1: lenxs 
    if motile(wx(ifbr),wy(ifbr),2) >0   
    motile(wx(ifbr),wy(ifbr),2)= motile(wx(ifbr),wy(ifbr),2) -1; 
    else         
    %collagen dissapear 
    motile(wx(ifbr),wy(ifbr),1)= 0; 
    end 
end 
end 

  
end 

 

 

7.2.9 SUBROUTINE WBC2DEAD (MOTILE CELLS LIFE TIME/RERANDOMIZATION) 

function [motile]=wbc2dead(motile) 

  
%mobile motile cells age states 
%motile that stop moving don't age here 
[xs,ys]=find(motile(:,:,1) > 0); 
cntx=length(xs); 

  
for igrid=1:cntx 
   %if age tick is over, mobile cell dies 
   if motile(xs(igrid),ys(igrid),2)== 0 
    motile(xs(igrid),ys(igrid),1)= 0; 
   else 
   %aging  
   motile(xs(igrid),ys(igrid),2) = motile(xs(igrid),ys(igrid),2) -1; 
   end 
end 

  

  
end 
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7.2.10 SUBROUTINE WBCMOVE (MOTILE CELLS LOCOMOTION) 

function [motile]=wbcmove(motile,ctype,gridSz,cytomat,tissueSz,nrn) 
%chemotaxis 
%move one type of cell 
%don't collide any other mobile cells 
 rng('shuffle'); 
[wx,wy]=find(motile(:,:,1)== ctype); 
ctWBCs=length(wx); 
motiletemp=motile; 
%  mooreidx= 1:1:(2*gridSz+1)^2; 

  
for igrid=1:ctWBCs  
    %Moore's neighbor of a mobile cell 
    [mx,my]= mooresnei(wx(igrid),wy(igrid),gridSz,tissueSz); 
    [mxm,mym]= mooresmatrix(mx,my); 
%     %collect all local unoccupied grid 
%     xye= find(motile(mx,my,1)== 0); 
%     lxye=length(xye); 

  
    %collect all local unoccupied grid 
    xyu=find(motile(mx,my,1)== 0); 

     
    %collect all local occupied grid, if exist 
    xye= find(motile(mx,my,1)~= 0); 
    lxye=length(xye); 
    %if there exist space to move 
    if lxye <= (2*gridSz+1)^2 
    %prepare the weight matrix  
    %local cytokine level 
    locyto=round(cytomat(mx,my),nrn); 
         %if no TNF, then uniform probability  
            if sum(abs(locyto))==0 locyto(:,:)=1; 
            end 

  
    %quick fix for negative concentration: 
    locyto(locyto<0)=0; 

  
    %"don't move to occupied" - quick fix 
    locyto(xye)=0; 

     
    % "don't stay" - quick fix 
    locyto(2,2)=0; 

     
    moveWeights= reshape(locyto,[(2*gridSz+1)^2 1]); 
        %if no TNF on unccopied grid, then uniform probability on 
        %unoccupied 
            if sum(abs(moveWeights))==0 moveWeights(xyu)=1; 
            end 

         
%   moveWeights= locyto(xye); 
    lmw=length(moveWeights); %lmw should be = lyxye though, check again 
%     moveWeights= reshape(locyto(xye),[],1);  
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    newidx = datasample([1:1:lmw],1,'Weights',moveWeights'); 

     
    gx(igrid) =  mxm(newidx);  gy(igrid) =  mym(newidx); 
    %else if there is not space to move-----------------------------   

  
    else 
% disp('stay------------------------------------------------------------------

---------') 
    %stay, don't need to execute above lines 
     gx(igrid) = wx(igrid);  gy(igrid) = wy(igrid); 
    end 
end 

  
%move the mobile cells (and its properties; state, age) 
for igrid=1:ctWBCs 
    motiletemp( gx(igrid), gy(igrid) ,:) = motile( wx(igrid),wy(igrid) ,:) ; 
    motile(wx(igrid),wy(igrid) ,:)= 0 ;  
    motile( gx(igrid), gy(igrid) ,:) =  motiletemp( gx(igrid), gy(igrid) ,:) ; 
end 

  
end 
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 APPENDIX B 

SUPPLEMENTAL MATERIALS FOR CHAPTER 3 

COMPUTATIONAL SIMULATION OF CELL-TO-CELL COMMUNICATION DURING 

INFLAMMATION AND AGING 

8.1 PSEUDOCODE 

8.1.1 TRANSFER ENTROPY 

Begin 

Import pairs of temporal data: 𝑋(𝑡) and 𝑌(𝑡) 

Binning of {𝑋(t), 𝑋(𝑡 − 1), 𝑌(𝑡 − 1)}  ( estimation of 𝑝(𝑋, 𝑌, 𝑍) ) 

Calculate  Eq. 3.8 ( estimation of 𝑝(𝑌(𝑡 − 1) ) 

Calculate Eq. 3.9 ( estimation of 𝑝(𝑋(𝑡), 𝑌(𝑡 − 1) ) 

Calculate Eq. 3.10 ( estimation of 𝑝(𝑋(𝑡 − 1), 𝑌(𝑡 − 1) ) 

Calculate Eq. 3.7 (estimation of 𝑇𝑋→𝑌) 

End 

 

8.1.2 TRANSFER ENTROPY NETWORK 

Begin 

         Initiate network nodes 𝑋𝑖 and 𝑌𝑖 

Import 𝑇𝑋→𝑌 matrix 
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For i=1 to length(𝑇𝑋→𝑌(: , 𝑗)) 

For j=1 to length(𝑇𝑋→𝑌(𝑖, : )) 

  If 
𝑇𝑋→𝑌(𝑖,𝑗)

𝑇𝑋→𝑌(𝑗,𝑖)
< 1 or 𝑇𝑐 (ratio of transfer entropy 𝑋𝑖 → 𝑌𝑖 and 𝑌𝑖 → 𝑋𝑖) 

   𝑌𝑖 → 𝑋𝑖 (create a network edge from 𝑌𝑖 to 𝑋𝑖) 

  Else 

   𝑋𝑖 → 𝑌𝑖  (create a network edge from 𝑋𝑖 to 𝑌𝑖) 

  End 

 End 

End  

End 
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