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Abstract

The performance of KNbO3, as a photorefractive crystal in the visible region, can be

dramatically improved when impurities are incorporated into the host by doping. These

materials lead to improvements in numerous technological applications such as optical

data storage and phase conjugate mirrors. In this dissertation, KNbO3 doped with various

3d transition metals e.g. Cr, Mn, Fe, Co and Ni, are investigated, with the long-term

goal of extending the spectral range of the photorefractive KNbO3 into the IR region.

The electronic structure studies based on Density Functional Theory, described in this

dissertation, has resulted in identifying definite trends in the impurity levels that could

be explained in terms of crystal field and exchange field splitting. Different types of Fe

impurity centers with coordinating and non-coordinating oxygen-vacancies have also been

investigated. These results provide useful insights into the nature of the reduction center

Fe3+ to Fe2+, which has been found to be a key contributor to a significantly enhanced

photorefractive performance.

Index words: photorefractive effect, DFT, crystal field splitting, exchange splitting
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Chapter 1

Introduction

Over the past three decades, the diverse range of tunable properties of ferroelectric ma-

terials has driven an intense scientific and technological research effort in this area (refer

to [1] and the references therein). A prototypical example is the ferroelectric material

BaTiO3 which is used in dielectric capacitors in non-volatile computer memories. This

application exploits material properties like switchable macroscopic spontaneous polariza-

tion, which is a key functional feature in this family of compounds. Other properties, like

very large piezoelectric and pyroelectric responses, have also received a lot of attention,

as they can be utilized for applications such as the transducers and actuators used in, for

example, car crash detectors responsible for air-bag deployment.

Potassium niobate or KNbO3, which exhibits the ABO3 stoichiometry, belongs to a

very important class of ferroelectrics called perovskites. The important properties of

perovskites range from ferromagnetism, piezoelectricity, colossal magnetoresistance, and

spin-dependent transport to high-temperature superconductivity and nonlinear optical

phenomena [1–4]. The richness of these properties stems from both the great compo-

sitional diversity within the family of perovskites and the strong interplay amongst the

elastic, electric, magnetic, and optical responses of these materials. Table.1.1 lists some

of the applications of the extensive variety of pervoskite materials available [5].
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Structurally, the ABO3-type perovskite is paraelectric above the Curie temperature,

TC, and the unit cell describes a high symmetry cubic phase where the A atoms are

located at the corners of the cube, the B atom at the body center and the O atoms at the

face centers as indicated in Fig.1.1(a). Thus the six O atoms are symmetrically arranged

around a central B atom defining the vertices of a octahedron. The resulting oxygen

cage, with B atom at its center, forms a network of BO6 complexes with A atoms lying

in the interstices which, in turn, are 12-fold coordinated to the neighboring O, as seen in

Fig.1.1(b). It is to be noted here that these corner-sharing BO6 units are predominately

Applications Perovskite Materials

Multilayered Capacitors BaTiO3

Second Harmonic Generator KNbO3

Piezoelectric Transducer Pb(Zr,Yi)O3

Electrooptic Modulator (Pb,La)(Zr,Ti)O3

Dielectric Resonator BaZrO3

Thick Film Resistor BaRuO3

Elecrostrictive Actuator Pb(Mg,Nb)O3

Magnetic Bubble Memory GdFeO3

Laser Host YAlO3

Ferromagnet (Ca,La)MnO3

Refractory Electrode LaCoO3

Table 1.1: Important applications of some perovskite materials.

responsible for the diverse functionality found in the perovskites. The environment of

ideal perovskite dictates that given any two cations, the one with smaller size will occupy

site B while the larger one is favored for the A site. Furthermore, the sum of their

formal charges is +6, which balances exactly the negative charges due to the O2− anions,

rendering the unit cell electrically neutral. Thus, usually, A is an alkaline metal e.g. Li,
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(a)

A-site cation

B-site cation

Qxygen anion

(b)

BO6

Figure 1.1: (a) A prototype cubic unit cell of the perovskite structure with formula unit
ABO3 and the origin centered on the B-site cation. (b) A-site cations at the centers of
the BO6 octahedral units. [001] direction points out of the page.

Na or K with oxidation state +1, an alkaline earth metal e.g. Mg, Ca, Ba with oxidation

state +2 or a rare earth element e.g. La (oxidation state +3). The corresponding B site

is occupied by transition metals with oxidation states +5, +4 or +3, respectively. Below

TC, several perovskites e.g. BaTiO3, PbTiO3, PbZrO3, KNbO3 and NaNbO3 exhibit one

or more ferroelectric or antiferroelectric structural phase transitions, while materials like

SrTiO3 and KTaO3 undergo no such changes and remain nonpolar throughout. Finding

the origin of these phase transitions forms a crucial part of the perovskite related scientific

literature. As per one approach motivated by the size of the ions, the ionic radii rA, rB

and rO of the participating atoms, A, B and O respectively are such that the tolerance

factor, t, first introduced by Goldschmidt [6], and defined to be t =
rA + rO√
2(rB + rO)

, ideally

equals to one. In other words, if the sizes of the constituent ions are optimal, there is no

strain in the structure. Distortions tend to occur as the cations allocated to sites A and
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B are inappropriately sized to fit into the ideal perovskite. This imposes increasing strain

on the structure. Under such circumstances the tolerance factor deviates from one. The

perovskite structure is relieved of such strain by structural modifications like displacement

of A and/or B cations, tilting or rotation of the octahedral units, or a suitable combination

of these modifications that changes the six B-O bond lengths nonuniformly. B-site cation

displacement is more common and calls for small shifts of the B atom from its ideal

position towards one of the surrounding O atoms. This off-centered movement gives rise

to a permanent dipole moment leading to ferroelectric effects. All these different types

of distortions are aimed at producing a structure that is energetically more favorable. In

an alternative but equivalent view, displacive ferroelectric transitions are attributed to

the presence of “soft-modes” [7, 8]. This concept is based on the assumption that the

crystal gets unstable against particular normal modes of vibration of the lattice. Then in

the symmetric cubic phase, there exists a certain unstable or soft phonon mode, whose

frequency decreases as the temperature approaches TC and becomes zero at TC. This

implies that the free energy is minimized at some finite amplitude of the soft mode at

this temperature, rather tun at zero amplitude, producing a structure of lower symmetry

with a finite dipole moment. However, for some materials, many results, inconsistent

with the soft-mode theory, have been explained on the basis of an alternate theory based

on the “order-disorder” model. According to this theory, some ions or group of ions

which were disordered in the high temperature paraelectric phase, are ordered in the low

temperature ferroelectric phase, again producing a nonzero dipole moment in the unit

cell [9–12]. Despite decades of research, there is still controversy regarding the nature of

the origin of the ferroelectric transitions with contradictory evidence in support of both

these competing theories of order-disorder and soft-mode behavior.

KNbO3, noteworthy among the perovskites, is usually grown by the Czochralski

method [13]. Upon cooling from the growth temperature 1050 ◦C to room tempera-

ture, the three subsequent ferroelectric phase transitions are observed as follows: from

4



paraelectric cubic to tetragonal at 450 ◦C, from tetragonal to orthorhombic at 225 ◦C and

finally from orthorhombic to the rhombohedral ground state below -10 ◦C [14, 15]. The

unit cells of these different phases are shown in Fig. 1.2.

Of the three ferroelectric phases of KNbO3, the room-temperature orthorhombic phase

has probably attracted most attention from experimental as well as theoretical researchers

because of its suitability to a wide range of practical applications. A vast amount of data

related to the nature of the Nb atom shift in this phase has been extracted from neutron

scattering [16] and Raman scattering [17–19] experiments, X-ray absorption fine-structure

(EXAFS) measurements of the local Nb environments [20], as well as time-resolved Raman

experiments [21,22].

Ab initio methods were also used for in-depth analysis at the microscopic level. Density

Functional Theory (DFT), based on Kohn Sham principles, is an extremely powerful first-

principles tool that can be used to investigate the electronic ground-state properties of

solids and molecules. By treating the systems at the quantum level, the DFT approach

allows one to calculate and predict properties accurately, thus providing insights that can

guide experimental characterization and synthesis of existing and new materials. In the

simplest application of first-principles based techniques, the calculation of total energy,

atomic forces and unit-cell stresses were used to determine the equilibrium geometry

[1] and the relevant structural parameters, i.e., lattice constants, atomic positions and

bulk moduli of the various phases of KNbO3. It is important to note here that the

calculations of ferroelectric distortive transitions in KNbO3 involve very small energy

differences and are sensitive to the numerical approximations [23], so that careful testing

is required. Other fruitful areas of research include lattice dynamics, calculations of

Born effective charges and spontaneous polarization, the piezoelectric response and linear

dielectric constants in KNbO3 [24–32].

The small magnitude non-linear effects in this crystal became significant and observ-

able after the invention of laser. The orthorhombic KNbO3 (point group is mm2), being
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(a) Cubic Unit Cell (b) Tetragonal Unit Cell

(c) Orthorhombic Unit Cell (d) Rhombohedral Unit Cell

Figure 1.2: Unit cells of the different phases of KNbO3. (Not drawn to scale: The size of
the spheres used to represent different atoms do not correspond to the ionic radii of the
atoms. The distortions are exaggerated manyfold for clarity.)
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non centrosymmetric, was found to be an ideal candidate for displaying second-order

nonlinear effects. The absence of center of a inversion, combined with a large value of

spontaneous electric polarization at room temperatures and high packing density of po-

larizable NbO6 units was found to yield large values of electro-optic coefficients [33, 34]

and nonlinear optical susceptibilities [35, 36]. The three independent elements of the

dielectric tensor were evaluated at the room temperature [37, 38]. These anisotropic re-

fractive indices, yielding phase matching abilities, were exploited to make pure crystals

good frequency converters.

Additionally, it was found that the second-order, non-linear opto-electric effect com-

bines with the photoconductive properties in certain perovskites, including KNbO3, to

yield the very interesting phenomenon of photorefractivity. Photorefractivity is a light-

induced, reversible non-linear phenomenon that changes the refractive index of a material

locally in response to a spatially modulated light intensity. It has been exploited ef-

fectively in high-tech applications including real-time holographic optical data storage,

photorefractive solitons, optically induced waveguides, optical computing, information

processing and optical neural networks [33]. The photorefractive properties were discov-

ered in the late 60s, primarily in doped and undoped inorganic crystals e.g. LiNbO3,

BaTiO3, Bi12SiO20 and KNbO3 [33], although recently some semiconductors and organic

polymers are also found to exhibit photorefractivity [39,40]. The main characteristic fea-

ture of such effects is that relatively low light powers can induce large material changes,

optical sources being for example helium-neon, diode or small argon lasers. This high

sensitivity comes at the expense of relatively slow response times which can vary from

milliseconds to hours [33].

Photorefactive materials are photoconductive and electro-optic [41]. Photoconductiv-

ity means that light of adequate wavelength can excite charge carriers, either electrons or

holes, from localized photoactive centers such as donors or acceptors, into conduction or

valence band. The electro-optic or Pockels effect is a non linear material response where

7



the local refractive index varies in accordance with the local electric field applied to the

material. The combination of the carrier-trap dynamics and the electro-optic process en-

ables suitable materials to display photorefactive effects. When two coherent beams are

incident and cross in a photorefractive material producing an interference pattern of alter-

nate dark and light fringes, as shown in Fig.1.3(a), more charge carriers are preferentially

photoexcited in the brighter regions than in the darker ones (Fig.1.3(b)). In the Figures

1.3(a) and (b), H and L represent the high and low light intensity regions and electron

concentrations respectively. For simplicity only electrons are considered. The mobile elec-

trons in the conduction band, respond to this concentration gradient by diffusing from

a high density to a low density region. The diffusion current, being proportional to the

gradient of the electron density, is 90◦ out of phase with respect to the latter as shown in

Fig.1.3(c). In the darker regions, some electrons that have migrated from brighter regions,

as well as locally excited electrons, will get captured by deep trapping centers thereby

reducing their density. This leads to a progressive accumulation of electrons in darker

regions leaving behind a higher density of uncompensated, immobile, positively charged

donors (Fig.1.3(d)). Such a spatially modulated charge density creates a spatially modu-

lated electric space-charge field that is 90◦ out of phase with the spatial charge distribution

(Fig.1.3(e)). The space-charge field, by means of the linear elecro-optic or Pockels effect,

modulates the refractive index of the material locally. Therefore, in this class of materi-

als, a periodic optical standing wave can give rise to a periodically modulated index of

refraction, resulting in an optical volume grating that is out of phase with respect to the

interference pattern created by the incident beams, as shown in Fig.1.3(f). This phase

difference is responsible for an irreversible energy transfer between the two beams. Several

theoretical approaches modeling this effect have been developed, with the band transport

model [42–44] being currently the most widely used.

A remarkable property of photorefractive materials, as detailed above, is their ability

to transfer energy between beams interacting in the volume of the material [33], and
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Figure 1.3: Different processes involved in the photorefractive effect.
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this phenomenon is referred to as two-beam coupling or two-wave mixing. This process

has emerged to be a very promising area of research, as a weak information bearing

signal can be amplified by transferring energy form an intense pump beam, an effect that

is maximized when the phase shift between the interference pattern and grating is π
2
.

The two-beam coupling forms the basis of important nonlinear phenomena, for example,

self-pumped phase conjugation and mutually-pumped phase conjugation used effectively

in optical devices like photorefractive phase conjugate mirrors. These mirrors have the

ability to compensate dynamically for the phase disturbing aberrations that arise in laser

cavities, enabling solid-state lasers to operate at higher intensities.

KNbO3, an important member of the family of ferroelectric photorefractives, is the

material of choice in many nonlinear applications because of its large effective electro-optic

coefficients and its stability over a wide temperature range (-50◦ C to 220◦ C) [45]. Impu-

rities and defects unavoidably present in the real material of KNbO3, with ionization en-

ergies smaller than the band gap (3.3 eV), provide the charge centers for photoexcitation.

These levels can be introduced and influenced by intentional doping of the crystal melt of

KNbO3 [45]. The dopants affected the different photorefractive performance parameters,

such as, carrier mobility, trapping time, effective trap density, electro-optic coefficient and

others. Fe-doped crystals have been the subject of extensive experimental investigation

with the aim of enhancing the photorefractive response to visible light [46–48]. A compre-

hensive collection of data of the fundamental physical parameters governing the photore-

fractive performance of Fe-doped KNbO3 at visible wavelengths has been reported [49].

Many authors claim that KNbO3:Fe is one of the most efficient photorefravtives in the

visible range. Other impurities like Cu, Co, Mn, Ni and Rh have also been studied, with

promising results [50–56]. Significant improvements have been reported in two-beam cou-

pling gain and self-pumped phase conjugate reflectvities when the KNbO3 host is doped

with Mn, Cu, Co and Ni [57, 58]. Additionally, it has been found that the extension

of the spectral response of KNbO3 into the near infrared can be achieved through dop-

10



ing [59, 60], for example, Ni-doping has extended the spectral response to 830 nm [60].

All these improvements in the samples doped with Fe, Mn and Ni are achieved at the

expense of introducing a long response time of several seconds for two-beam coupling at

a moderate intensity level. This problem is overcome by doping with rubidium, reducing

the response time to the milliseconds range, but at the expense of very low two-beam cou-

pling gain coefficients [61,62]. Thus, the possibility of controlling various photorefractive

performance parameters of KNbO3 via doping has led to a search of newer dopants that

would generate properties tailored to IR applications.

Additionally, the effect of a reductive treatment on crystals of Fe-doped KNbO3 has

been found to be particularly important. Reducing KNbO3:Fe crystals, converts a frac-

tion of the Fe3+ dopants into Fe2+, where the valence state is reduced by one unit charge.

As pointed out in [49], this leads to electrons donated by Fe2+ being the main photoex-

cited charge carriers and Fe3+ acting as traps to the photo excited conduction electrons.

The resulting donor-acceptor combination facilitates the build-up of the space charge

field, which is at the core of the photorefractive effect. Under visible irradiation, reduced

KNbO3:Fe shows a significant improvement of photorefractive sensitivity and speed, for

example, faster two-beam coupling and phase conjugation, that could be used advan-

tageously in areas such as optical computing [63]. Various Fe-defect centers have been

identified experimentally [64–66]. They are of the following types (i) Fe3+ - VO, where a

Fe3+ ion replaces a Nb5+ ion and a charge compensating oxygen-vacancy VO, is created

in the first coordination shell of the impurity, (ii) an isolated Fe3+ substituting a niobium

ion and (iii) Fe3+
K - VK, where the Fe3+ replaces a K+ ion and an associated vacancy is

located in the first coordination shell of the K atoms. As a result of the electron para-

magnetic resonance (EPR), optical absorption and electrical conductivity measurements

conducted in the investigations reported in [67], it has been found that Fe2+ - V centers

play a very important role as the main photorefractive centers when they are formed by
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electro-reduction of Fe3+ - V complexes. Whether the Fe substitutional impurity at the

Nb-site or the K-site is responsible for Fe2+ formation remains an open question.

A first-principles based theoretical model would be an effective tool in gaining a de-

tailed understanding of the mechanisms involving the formation and stabilization of dif-

ferent impurities and associated vacancies. It is also essential from the crystal growth

and reduction perspective, to have insights into how the impurities are coordinated by

charge-compensating defects (e.g., oxygen vacancies). The ultimate aim for such a study

would be to find the “ideal impurity candidate(s)” tailored to optimize the photorefractive

performance of KNbO3 beyond the visible range. The Density Functional Theory (DFT)-

based model proposed and developed in this dissertation, is a first step towards unravelling

an extremely complicated multi-step process like photorefractivity, which involves several

dynamical processes on multiple time scales. An attempt is made to understand, from

band structures and density of states (DOS) and projected density of states (pDOS) cal-

culations, explained in detail in the later chapters, various impurity level trends in doped

KNbO3 that would provide guidance in the synthesis of new enhanced materials.

The remainder of this dissertation is organized as follows: Chapter 2 provides an

overview of the DFT formalism, which is the tool used in the work presented in the

later chapters. Chapter 3 describes the DFT-based code used and the parameters for the

present DFT calculations. It also details convergence tests, along with other preliminary

considerations. The calculations related to bulk KNbO3 are also discussed in this chapter.

Chapter 4 describes the model and the electronic-related results when pure KNbO3 is

doped with a series of 3d transition metal impurities i.e., Ti, V, Cr, Mn, Fe, Co and

Ni. Chapter 5 describes an investigation of the effects of the position of the charge-

compensating oxygen vacancy in systems with an Fe3+ impurity. Finally, Chapter 6

provides conclusions and discusses future directions for this research program.
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Chapter 2

First Principles Total-energy

Methodology

2.1 Background

Our modern visualization of materials of any form (condensed, liquid, gaseous, homoge-

neous, heterogeneous or others), in the microscopic realm, as an ensemble of atomic nuclei

and electrons interacting via electrostatic forces, was firmly established in the early 20th

century. It was understood that the matter, at such a small spatial scale, does not obey

the classical laws of Newtonian mechanics and electromagnetism. Building blocks for the

new field of quantum mechanics were laid by the idea of quanta of energy introduced by

Planck (originally proposed in 1900) and Bohr’s postulates [68] of nonradiating orbits in

atoms. This was propelled further by the Schrödinger equation [69] published in 1926 that

soon extended to multi-electron and eventually to multi-atom systems such as molecules

and solids.

Detailed analysis of complex many-body systems requires computer simulations that

can be of either classical or quantum-mechanical nature. The former is a semi-empirical

approach that takes advantage of the already available experimental data to parameterize
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the force of interaction between the atoms to reproduce data like equilibrium geometries,

bulk moduli, vibrational frequencies and others. In situations where a priori knowledge

of the material is not available we have to resort to the second option of first-principles, or

ab initio, methods within the quantum-mechanical framework. In non-relativistic cases,

this amounts to solving the time-independent Schrödinger equation associated with the

system, in compliance with certain assumptions. To understand its salient features let us

consider the Hamiltonian of a system of N electrons subjected to an external potential of

P nuclei, represented as [70]

Ĥ =−
N∑
i=1

h̄2

2me

52
i +

e2

2

N∑
i=1

N∑
j 6=i

1

|ri − rj|

− e2

N∑
i=1

P∑
I=1

ZI
|ri −RI |

−
P∑
I=1

h̄2

2MI

52
I +

e2

2

P∑
I=1

P∑
J 6=I

ZIZJ
|RI −RJ |

+ VEXT ,

(2.1)

where i, j run over electrons, I, J over nuclei and 52 is the Laplacian operator. The

symbols e and me denote the charge and the mass of an electron, MI the mass of the

nucleus and ZI the atomic number of the I th nucleus. Furthermore, R = {RI}, where

I = 1, · · · , P and r = {ri}, where i = 1, · · · , N denote a set of nuclear and electronic

coordinates (including spin) respectively. The terms on the right hand side of the equality

in (2.1), from left to right, are the electronic kinetic energy, the internal potential energy

due to the electron-electron two-body Coulomb repulsive interaction, the electron-nuclear

Coulomb energy, the nuclear kinetic energy, the potential energy due to the nuclei inter-

acting among themselves and finally the term that includes other external fields like static

electric or magnetic or electromagnetic fields of laser-atom interaction when present and is

assumed to be zero in this discussion. In principle, access to all the information regarding
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the properties of a system, both physical and chemical, can be obtained by solving the

stationary version of Schrödinger equation,

ĤΨtotal
n (r,R) = ξnΨtotal

n (r,R) (2.2)

where Ĥ is given in (2.1), ξn are the different energy eigenvalues and Ψtotal
n are the cor-

responding many-body eigenfunctions, which must be antisymmetric with respect to ex-

change of electronic coordinates in r and symmetric or antisymmetric (depending on

nuclear spin) with respect to exchange of nuclear coordinates R [70].

This is a difficult problem virtually impossible to solve without resorting to approxima-

tions except for a very limited number of trivially simple systems. Complete analytical

solutions, within the full quantum-mechanical framework, are available only for cases

such as the hydrogenoid atoms or the H2
+ molecule. Exact numerical solutions are lim-

ited to homogeneous electron gas, atoms with a small number of electrons and for a few

small molecules. Among several other contributing factors, the primary sources of this

intractability are (1) that the computational effort required to solve for all Ψtotal
n scales

exponentially with exponent1 3(N + P ), with N , P being large; (2) that the Coulomb

potential is a two-body interaction. As a result, the presence of an electron in one region

of space affects how the electrons in some other region behave. In other words, elec-

trons cannot be treated as independent entities, thus precluding the separation of the

Schrödinger equation into (N + P ) single-body problems. Furthermore, the interactions

are too strong to be treated perturbatively.

Certain well controlled assumptions play effective roles in making Equation (2.2)

amenable to numerical solutions without loosing the key physics behind the many-body,

multi-component systems. First is the Born-Oppenheimer approximation [71]. It pro-

1The coefficient 3 is due to the three spatial degrees of freedom of each particle and the exponential
scaling factor arises from the correlated Coulomb interaction of each particle with the otherN−1 particles.
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poses that the nuclear motion can be completely decoupled from the electronic motion if

we consider the former in the time scale of the electrons. With the forces on the particles

being the same, and the electrons being much lighter compared to the massive nucleus (the

mass of a proton is 1836 times the mass of an electron), a classical picture suggests that

the electronic velocity is much larger, about two orders of magnitude faster, compared to

that of the nucleus. In fact, the nucleus is rendered stationary in the Born-Oppenheimer

picture. This enables us to neglect the kinetic energy of the nuclei completely. The

potential energy, due to internuclear interaction, Eii given by the last term in (2.1), be-

comes constant (since all the nuclear positions, RI ’s, are assumed to be fixed in space)

and doesn’t contribute to the electronic description, but, can be added later to yield the

the total energy of the system. Consequently we can decouple the total wave function

into electronic and nuclear (i.e., vibrational, rotational) components (Ψtotal = Θnuclear ×

Φelectronic ). As Kohanoff [70] points out, the composite solution of Equation (2.2) can be

of the form

Ψtotal(R, r, t) =
∑
n

Θn(R, t)Φn(r,R), (2.3)

where Θn(R, t) represents the time evolved eigenstate of the nuclear subsystem when the

electrons are in one of the adiabatic eigenstates, Φn(r,R) for a fixed nuclear configuration

given by R. The function Φn(r,R) satisfies the time independent Schrödinger equation

ĥeΦn(r,R) = εn(R)Φn(r,R), (2.4)

where εn(R) defines the different nuclear potential energy surfaces. The electronic Hamil-

tonian operator ĥe is given by

ĥe = T̂ + V̂ee + V̂ext, (2.5)
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where the operators on the right hand side are as follows: T̂ represents the electronic

kinetic energy operator, V̂ee the electron-electron interaction and V̂ext refers to the inter-

action of electrons with external fields (a generalization of electron-nuclear interactions).

It is interesting to note how this partial differential equation now depends on variable r

only, with the 3P nuclear coordinates embedded in R behaving as a parameter. Adopting

Hartree units (h̄ = me = e = 4π
ε0

= 1), the operators in Eq (2.5), are explicitly of the form

T̂ = −1

2

N∑
i=1

52
i ; V̂ee =

1

2

N∑
i=1

N∑
j 6=i

1

|ri − rj|
=

N∑
i<j

1

|ri − rj|
;

V̂ext = −
N∑
i=1

P∑
I=1

ZI
|ri −RI |

=
N∑
i=1

vext(ri)

(2.6)

It is to be emphasized that the Φn(r,R) describes the electronic behavior corresponding

to a static external potential due to a particular frozen-in nuclear configuration. When

allowance has to be made for motion of the nucleus, the electrons can be thought of

as following the nuclear dynamics instantaneously and relaxing to the ground state of

the electronic hamiltonian corresponding to the new nuclear configuration. Henceforth,

for all future references, Φn(r1, r2, .....rN ) is regarded as the many body electronic wave

function2, where the condensed coordinate ri represents a set of both position and spin

values for N electrons {ri, σi}3.

One needs to remember two important features while trying to solve for Φn. The fact

that the electrons are fermions requires that their wave functions must be antisymmetric

(i.e., the wave function must change sign when two electrons are interchanged) as given

by,

Φn(r1, r2, ..ra...rb, .....rN ) = −Φn(r1, r2, ..rb...ra, .....rN ) (2.7)

2R is dropped for brevity.
3 σi refers to the spin which is neglected for all our calculations unless otherwise specified.
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This phenomenon is often referred to as exchange and must be captured correctly in

the eigenstate solution of the many-body system. Further, Coulomb interaction between

electrons results in their motions being correlated. Thus, our aim is to find suitable

approximations that enable us to detangle this formidable mathematical problem with-

out compromising the essential physics and chemistry. This effort is worthwhile as the

knowledge about the electronic eigenstates give access to a wealth of information.For ex-

ample, the electronic ground state yields information about atomic structure, the relative

stability of different structures, elastic properties, polarizabilities and dielectric proper-

ties, molecular and lattice vibrations and so on. The excited states, on the other hand,

determine the electronic transport and optical properties.

Now, with |Φ〉 representing the N-electron state, the expectation value of the electronic

Hamiltonian ĥe in Eqn. (2.5) yields energy as

E =
〈Φ|ĥe|Φ〉
〈Φ|Φ〉 ≡ 〈ĥe〉 = 〈Φ|T̂ + V̂ee + V̂ext|Φ〉 (2.8)

=

∫
1

∫
2

· · ·
∫
N

d3r1d
3r2 · · · d3rN Φ∗

(
−1

2

N∑
i=1

52
i +

N∑
i<j

1

|ri − rj|
+

N∑
i=1

vext(ri)

)
Φ (2.9)

The last term in Eqn (2.9) can be rewritten as

〈Φ|V̂ext|Φ〉 =

∫
vext(r)ρ(r)d3r (2.10)

where ρ(r) refers to the electron density of an eigenstate Φ. Such simplification is not

possible for the other two terms in (2.9). Thus we write

E = 〈T̂ 〉+ 〈V̂ee〉+ 〈V̂ext〉

E = 〈T̂ 〉+ 〈V̂ee〉+

∫
vext(r)ρ(r)d3r

E = 〈T̂ 〉+ 〈V̂ee〉+ Vext[ρ]

(2.11)
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where [ρ] denotes a density functional4. If sensible approximations would allow us to

model kinetic energy (T) and internal (i.e., electron-electron) energy (Vee) as explicitly

dependent only on density, in the form of density functionals, then electronic density

could be looked upon as the fundamental variable of the many-body problem. This

concept would vastly simplify the mathematical intractability of the problem. Then, one

could map a 3N -dimensional (N ≈ 1023) problem onto a 3-dimensional space (density is

a function of 3 coordinates i.e., 3 Cartesian directions only) without loss of generality.

This scheme is referred to as density functional theory, since it expresses each term in the

energy as a functional of the density and is discussed in greater detail in the next section.

2.2 Modern Density Functional Theory

Early on there were some heuristic attempts to express the kinetic and internal energies

as functionals of electronic density only. One of the most well known of such schemes,

proposed by Thomas [72] and Fermi [73] independently, is often regarded as the precursor

to the modern density functional theory (see A.1). The Thomas-Fermi approach falls short

of the goal of providing a useful description of electron in matter, as it neglected both

exchange and correlation and treated kinetic energy as a local functional of density5. As a

result the theory suffers from many problems the most critical among them being its failure

to explain the bonding between atoms and hence the formation of molecules and solids.

There were other attempts failing to improve the Thomas-Fermi results significantly. It

was not before three decades thereafter that modern density functional theory, could

be placed on firm mathematical ground with help of two theorems by Hohenberg and

Kohn [74].

4A functional is a mapping that takes a function to a number and is represented in terms of square
brackets [ ]

5Thomas-Fermi theory works reasonably well when the electronic density is smooth as in alkali metals.
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ρ0(r) vext(r)

Φi,Φ0 ĥe

Figure 2.1: First Hohenberg-Kohn Theorem visualized.

2.2.1 Hohenberg-Kohn Theorems and Kohn-Sham Ansatz

Hohenberg-Kohn First Theorem (HK1): The external potential of a system of inter-

acting particles is unambiguously determined by the ground-state electronic density, apart

from a trivial additive constant.

Corollary: Since the hamiltonian is fully determined, except for a constant shift in en-

ergy, it follows that the many-body wavefunctions for all the states (ground and excited)

can be obtained. Therefore, all properties of the system are completely determined given

only the ground-state density.

The proof of the theorem is given in A.3. A schematic representation of HK1, following

Martin [75], is shown in Fig 2.1, where the ground state wave function Φ0, correspond-

ing to the ground-state density ρ0(r), is the state with the lowest energy that obeys the

symmetries of the particles and all the conservation laws.

Hohenberg-Kohn Second Theorem (HK2): For any given external potential, a func-

tional of energy in terms of the particle density can be defined.

Corollary: The ground-state energy may be obtained variationally from the global mini-

mum of the energy functional. The density that minimizes the total energy functional is

the exact ground state density.

The proof of this theorem is given in A.4.
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The HK theorems allow us to write

EHK[ρ] = 〈Φ[ρ]|ĥe|Φ[ρ]〉

= 〈Φ[ρ]|T̂ + V̂ee|Φ[ρ]〉+

∫
vext(r)ρ(r)d3r

= FHK[ρ] +

∫
vext(r)ρ(r)d3r

≥ E[ρ0] = E0 = 〈Φ[ρ0]|ĥe|Φ[ρ0]〉

(2.12)

where ρ is some nonnegative density normalized to N, ρ0 is the ground state density and

FHK[ρ] = 〈Φ[ρ]|T̂ + V̂ee|Φ[ρ]〉 is a universal functional that is same for all electron systems

and does not depend on the external potential explicitly but only on electron density.

Thus the goal of expressing energy as a functional of electronic density, mentioned in

the previous section, has been achieved in principle6. The insightful guidance of the HK

theorems allows us to represent the total energy of a system of N correlated electrons as an

explicit electron-density functional (2.21). But we still lack the feasible methodology for

calculating the universal functional FHK[ρ] that has contributions from both the kinetic

energy T and electron-electron interaction, Vee. The recipe for explicitly constructing the

functional was provided by Kohn-Sham ansatz [78].

Kohn and Sham took an important step in attempting to solve the many-body electron

problem by replacing the difficult real system, with all its intractable challenges by a

reference fictitious system of non-interacting electrons yielding the same ground state

density as the real system. In a seminal paper in 1965, they made use of the fact that the

wave function of a system of N non-interacting electrons can be conveniently expressed

as a Slater determinant (SD) of the one-electron orbitals {φi(ri)}7. The kinetic energy

of such a system can be easily computed. Then, the non-interacting equivalent reference

6One important point to be considered here is that there is no way to ensure that the electron density
referred to in the above formulation is not unphysical i.e., it might fail to generate wave functions that
are anti-symmetric, a primary requirement for fermions like electrons. Levy and Lieb [76, 77] addressed
this issue with a constrained variational search strategy.

7ΦSD(r) = 1√
N !

SD [φ1(r1)φ2(r2) · · ·φN (rN )]
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system of density ρ(r) is described by the Hamiltoninan,

ĥKS =
N∑
i=1

[
− h̄2

2m
52

i +vR(ri)

]
, (2.13)

where N is the total number of electrons that interact only with the reference potential

vR (includes interactions with all the nuclei and possibly other external fields) and not

among themselves. The corresponding energy functional is

EKS[ρ(r)] = TR[ρ(r)] +

∫
ρ(r)vR(r)d3r , (2.14)

where the density of the auxiliary system is constructed from the independent one electron

orbitals {φi},

ρ(r) =
N∑
i=1

|φi(r)|2, (2.15)

and the independent-particle kinetic energy TR is given by

TR = −1

2

N∑
i=1

〈φi|52|φi〉 (2.16)

The Kohn-Sham ansatz demands that such an auxiliary system be chosen carefully so

that its ground-state electron density coincides with that of the real system, ρ0. Then,

the HK theorems ensure that the ground-state energies are same i.e.,

EKS[ρ] ≥ EKS[ρ0] = E0 , (2.17)

the equality being valid only for ρ = ρ0, where EKS[ρ0] equals the ground state energy

E0 of the real system. This means that the functional derivative of EKS[ρ] must vanish

for the corresponding ground-state density. Applying variational principle and rules of

functional derivation to (2.14), subjected to the constraint that the density yields the
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correct number of electrons, we get8

δ

δρ(r)

[
EKS[ρ̃]− µR

∫
ρ(r)dr

]
ρ=ρ0

= 0 , or, (2.18)

δTR

δρ(r)
+ vR = µR , (2.19)

where µR, the Lagrangian multiplier of the constraint, is interpreted to be the chemical

potential of the reference system.

In an attempt to cast (2.12) in a comparable form to (2.19), it cannot be emphasized

enough that the exact many-body kinetic energy, T , is not the kinetic energy of the

reference KS system as it omits correlation effects. The idea of a non-interacting kinetic

energy TR, on the other hand, is a useful one, as it permits us to model T as the sum

of two managable pieces: non-interacting kinetic energy TR accounting exactly for the

most important part of the kinetic energy and the interaction contributions considered

separately in the exchange-correlation term (See below and Exchange and Correlation

section on page 26).

Similarly a useful strategy is to express the Vee term in (2.12) as a sum of two con-

tributions. The first one, referred to as Hartree energy, is a significant component of

Vee. It is the long-range classical electrostatic energy calculated by assuming that each

electron interacts with the mean electronic charge without disturbing it. Mathematically,

the Hartree term is exactly given by

EHartree[ρ] =
1

2

∫ ∫
d3rd3r′

ρ(r)ρ(r′)

|r − r′| . (2.20)

This mean-field approach not only ignores the effect of electron-electron repulsion but

also incurs the error of unphysical self-interaction. The self-interaction error arises be-

8 δF [f ]
δf(x) is referred to as a functional derivative, distinguished from a partial derivative.
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cause of the fact that the mean charge density is obtained by summing over all the

electrons including the test electron itself. This, together with the missing kinetic en-

ergy correlation contribution, is accounted for in the second contribution known as the

exchange-correlation (Exc). Therefore, the terms of the HK energy functional (2.12) that

make the most important contribution to the energy are exact and computable, while all

the ignorance about the complex interacting system is grouped together and assigned to

Exc which generally makes a much smaller contribution to the energy. Exc can be reason-

ably approximated as a local or nearly local functional of density. Thus, the HK energy

functional of (2.12) is usually rewritten, within the Kohn-Sham framework, in the form

E[ρ] = TR +

∫
vext(r)ρ(r)d3r + EHartree[ρ] + EXC[ρ] . (2.21)

As in (2.18), applying the variational principle to (2.21) the following is obtained:

δ

δρ(r)

[
E[ρ]− µR

∫
ρ(r)dr

]
ρ=ρ0

= 0 or, (2.22)

δTR

δρ(r)
+ vext(r) +

∫
ρ(r′)

|r − r′|dr
′ + vXC = µ . (2.23)

Here, µ is the chemical potential of the real system, and vxc =
δExc

δρ(r)
is a multiplicative

potential capturing the effects of exchange and correlation as described above. Since there

is no charge flow between real and auxiliary systems, equating µR in (2.19) to µ in (2.22),

we get

vR = vext(r) +

∫
ρ(r′)

|r − r′|dr
′ + vXC . (2.24)
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Thus, the total energy of a multi-electron system, characterized by an electron density

ρ =
N∑
i

|φi|2, following (2.21), is given by

E[ρ] = − h̄2

2m

∑
i

〈 φi|52
i |φi〉+

∫
drρ(r)vext(r)+

e2

2

∫ ∫
drdr′

ρ(r)ρ(r′)

|r − r′| +EXC[ρ] , (2.25)

It is important to note here that the ion-ion interaction Eii, given by the last term in

(2.1), should be added to (2.25) for a complete picture. Eii, which is merely a sum

over Coulomb pair repulsions, is a constant for a given ionic configuration. Then (2.25)

is directly minimized with respect to the single electron KS orbitals, {φi}, to yield the

ground-state electron density and energy of the interacting system. This minimization

problem, by Raleigh-Ritz theorem [79], is equivalent to solving an eigenvalue problem of

the form (2.26). It is a set of coupled non-linear Schrödinger-like Kohn-Sham equations

given by:

[
−1

2
52 +vext(r) +

∫
ρ(r′)

|r − r′|dr
′ + vXC(r)

]
φi(r) = εi(KS)φi(r) (2.26)

where εi(KS), the Kohn-Sham eigenvalues, corresponds to the Lagrange multiplier used in

the correponding minimization problem. Thus, the KS equations describe the behavior of

non-interacting electrons in an effective reference potential vR. This system of equations

are required to be solved iteratively for self-consistency because vR is constructed from

the density which we are solving for. In the process, the density used to construct vR and

solve the equations (2.26) coincides with the new density constructed from the solved set

of orbitals using (2.15).

The KS eigenvalues, εi(KS), should not be interpreted as one-electron excitation en-

ergies of the interacting many body system. Rather they are the excitation energies of

the fictitious non-interacting system used to deduce the ground-state electronic density.

However, it turns out that KS eigenvalues and the true many-body energy spectrum often
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have much in common qualitatively, if not quantitatively. Therefore, much can be learned

about the true excitation spectrum by examining the KS energy spectrum provided one

is looking at trends and not making quantitative predictions.

Exchange and Correlation

The KS approach is an exact theory provided the exact exchange-correlation functional

Exc were known. It is interesting to note that given an exact vxc, the exact Kohn-Sham

functional EKS can be constructed which yields the exact ground-state energy and hence

the exact ground-state density of the real system. But in practice KS theory is an approx-

imate one as an exact EXC is unknown. Instead, comparatively simple approximations

have been made that have proven quite successful for accurately describing an array of

diverse systems. This simplification reduces the computational costs as well as allows

for accurate, efficient predictions of material properties. A satisfactory description of a

realistic condensed matter system depends on essentially how good the approximations

are. To understand the phenomena of exchange and correlation within the limited scope

of this dissertation, an implicit definition of EXC as in (2.27) is very helpful. In terms of

the Honenberg-Kohn functional FHK (see (2.21)), EXC can be expressed as,

EXC[ρ] = FHK[ρ]− (TR[ρ]) + EHartree[ρ]) , (2.27)

or in a more revealing form

EXC[ρ] = 〈T̂ 〉 − TR[ρ] + 〈V̂ee〉 − EHartree[ρ] ; (2.28)

i.e., EXC is simply the sum of errors made in using non-interacting kinetic energy and

treating the electron-electron interaction in the classical mean-field approach.
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The exchange-correlation energy, EXC, is the sum of two terms, exchange energy (Eex)

and correlation energy Ec. The exchange phenomenon takes into account the behavior

of two electrons, with like spins σ, in the vicinity of each other. According to the Pauli

Exclusion Principle, the many-body wave function for a system of electrons must be anti-

symmetric with respect to swapping the particle labels for any pair of electrons. This

places a condition on the allowed many-body wave functions that they must vanish when

two electrons of the same spin state have the same spatial coordinates. No such constraint

exists for the electrons of the opposite spin states. Therefore, the Pauli principle alone

guarantees that the like-spin electrons will stay farther apart, on average, than opposite-

spin electrons. Since the Coulomb interaction between the electrons is repulsive, this

exchange effect due to Pauli principle means that like-spin states tend to be lower in

energy than opposite-spin states. This energetic difference is referred to as “exchange

energy” even though it is ultimately electrostatic in nature. Assuming wave functions to

be orthonormal, the exchange energy can be expressed as [80],

Eex = −e
2

2

∑
σ

∫ ∫
drdr′

δσσ′ |∑i φ
σ∗
i (r)φσi (r′)|2
|r − r′| . (2.29)

Calculations reveal that the non-zero EXC for a single-electron system is equal to |EHartree|,

which cancels the spurious self-interaction term in EHartree. An alternative way of inter-

preting EXC that provides useful insight takes into account the fact that the presence of

an electron at a point r in space will cause the charge density from all of the remaining

electrons with same spin to have hole or lack of charge in the vicinity of r. This explicit

interaction of each electron with its corresponding exchange hole [75] is manifest when

EXC is expressed as

Eex =
e2

2

∫
ρ(r)

∫
ρex(r′)

|r − r′|drdr
′ (2.30)
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Apart from the quantum mechanical repulsion associated with like-spins of the electrons,

as described above, there is a classical repulsion as well due to their electric charge. In-

tuitively, correlation can be thought of as an instantaneous interaction when an electrons

pushes away other electrons, due to Coulomb repulsion, as it moves around. This ten-

dency for electrons to stay apart diminishes the repulsion energy. A complete analysis of

correlation is beyond the scope of this dissertation and can be found in [70].

Exchange and correlation can be combined yielding EXC given by,

EXC[ρ] = e2

∫
ρ(r)εXC([ρ], r)dr = e2

∫
ρ(r)

∫
ρ̃XC(r, r′)

|r − r′| drdr
′ , (2.31)

where the exchange-correlation hole density ρ̃XC comes about in a manner similar to

(2.30). The details of ρ̃XC can be found in references [75,81].

The most widely used approximate exchange-correlation functionals used in solid-state

calculations are the Local Density Approximation (LDA) [82] and the Generalized Gradi-

ent Approximation (GGA) [83–85]. In LDA, the exchange-correlaltion energy per electron

at a point r, εXC, in the inhomogeneous electron gas is equal to εHEG
XC in a homogeneous

electron gas (HEG) that has the same density as the local density in inhomogeneous gas

at r. Mathematically,

EXC[ρ] = e2

∫
ρ(r)εHEG

XC [ρ(r)]dr (2.32)

The latter can be computed with great accuracy using quantum Monte-Carlo simulation

[75,82,86]. Even though LDA is assumed to be purely local while the true EXC is not, the

results compare well with the experiments. The discrepancies that do remain are found to

follow systematic trends. For example, LDA typically overestimates binding energies and

underestimates bond lengths. Consequently lattice constants are typically too short by

about 1% - 2% while bulk moduli are too large by about 30% compared to experimental

findings [87]. The effects of nearby inhomogenity on the electron density around each

28



electron that has been ignored in LDA, is partially addressed in GGA which incorporates

the local density gradient as in

EXC[ρ] = e2

∫
ρ(r)εXC[ρ(r),5ρ(r)]dr (2.33)

It has been demonstrated that GGA gives good atomic ground-state energies [88, 89].

Some examples of GGA functionals used by the physics community are those due to

Perdew, Burke and Ernzerhof (PBE) [83], to Becke (B88) [84] and to Perdew-Wang (PW-

91) [85]. As with LDA, the errors due to GGA are found to be systematic, i.e., the bond

lengths are somewhat overestimated.

2.2.2 Practical implementation of Kohn-Sham Methods

So far we have made some headway in unravelling the mathematically intractable prob-

lem of N correlated electrons by mapping onto an equivalent problem of N independent

electrons moving in an effective reference potential vR, provided we can find a suitable

approximation for the exchange-correlation term vXC. In addition, however, we need the

following computational tools to successfully implement KS approach in real systems.

Plane Wave Basis: In order to take a step forward we need to choose a basis set. For

crystalline solids, the present area of focus, one natural choice is plane waves. This is

because, in such solids with a periodic potential v(r) = v(r +R) for all R in the Bravais

lattice, the electrons are represented by Bloch states φn k [90]. Furthermore, φn k can be

written as a product of a function un k that has the same periodicity as the potential and

a purely imaginary phase factor arising from translational symmetry:

φn k(r) = eik·run k(r) (2.34)
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where un k(r) = un k(r + R) that can be expanded naturally into Fourier series. For the

present purpose, the KS eigenstates satisfying (2.26) must have the Bloch form. We can

identify the quantum state label i used previously being replaced by n k used to label

Bloch functions where n is the band index and k is a wave vector in the first Brillouin Zone

(BZ). An alternative, equivalent form of Bloch’s theorem that provides useful insight, is:

φn k(r + R) = eik·Rφn k(r) (2.35)

This representation emphasizes the fact that the values of an electron eigenfunction of

two unit cells, linked by lattice vector R, differ only by a phase factor eik·r. It is to be

noted that the corresponding probability densities are same, since a phase factor has unit

modulus. The Bloch’s theorem permits the calculation of the properties of an infinite,

periodic solid by considering only a single unit cell. Therefore, in crystalline solids, the

otherwise prohibitively expensive computational load is made tractable and efficient by

exploiting lattice periodicity with the help of Bloch’s theorem.

Since the functions un k are periodic, they can be expanded in a Fourier series as,

un k(r) =
∑
G

Cn k(G)eiG·r (2.36)

where Cn k(G) is the expansion coefficient corresponding to the plane wave eiG·R and the

G are reciprocal lattice vectors defined through G ·R = 2πn, where n is an integer. Thus

the full Bloch functions also can be written as a discrete plane-wave expansion:

ψn k(r) =
∑
G

Cn k+G ei(k+G)·r (2.37)

Except for G = 0, all the reciprocal lattice vectors lie outside the first BZ and an infinite

number of them are required to describe the electron orbitals with infinite precision.
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However, in practice it has been found that, for large enough |G|, the contribution of the

plane waves decreases exponentially with the increasing kinetic energy
∣∣∣ h̄2(k+G)

2m

∣∣∣2, and the

series in (2.37) can be truncated after a finite number of terms without loosing important

information. A finite basis set optimizes computational resources as well. A cutoff energy,

Ecut, is chosen such that only plane waves with kinetic energy less than some Ecut are

included in the process and the size of the basis set for a given calculation is set as:

∣∣∣∣ h̄2(k + Gmax)

2m

∣∣∣∣2 ≤ Ecut (2.38)

For the case k = 0, (2.38) describes a sphere of radius, Gmax, given by

|G| ≤ Gmax =

√
2mEcut

h̄2 = 2
√
Ecut[Ry] (2.39)

For Bloch functions corresponding to different k-points in the Brillouin zone, different

number of plane-wave basis functions survive the truncation of (2.38). A cutoff energy

suitable for the problem at hand is deduced by performing convergence tests of some

benchmark quantity as a function of increasing Ecut.

Representation of one-electron orbitals in terms of plane waves has the advantage of

being complete (in principle this basis spans the associated Hilbert space completely)

and mathematically desirable because of its simplicity. The calculation of energy and its

derivatives like forces and stresses is analytic and simple in this representation compared

to localized basis sets.

Brillouin Zone Sampling: Thus far we know that for a complete description, Bloch’s

theorem allows us to consider a single unit cell rather than the infinite crystal. But

this description introduces the wave-vector parameter, k, restricted to the first BZ. In

principle, however, there are infinitely many k-points in the BZ for an infinite crystal.

At this point, replacing one infinite quantity, the number of electrons, with another, the
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number of k-points, may not seem to be an improvement. A way out of this problem is the

important observation that it is not required to consider each of the k points individually.

The wave functions, at k-points that are sufficiently close, are very similar. Therefore,

the wave functions over a small portion of the BZ can be represented by a wave function

at a particular k-point. Several methods have been devised to find special sets of k-points

that will optimally sample the BZ (for example, the Monkhorst-Pack grid [91] used in

this work). In this light, any function f that needs to be integrated over the BZ, e.g. the

electron density, can be expressed as

f(r) =
Ω

(2π)3

∫
BZ

F (k)dk =
∑
j

wjF (kj) , (2.40)

where F (k) is the Fourier transform of f(r), Ω is the real space cell volume and wjs are

the weighing factors that sum up to one. The number of k-points can be further reduced

by appealing to the point group symmetry of the lattice. In that case,

f(r) =

P (nj)∑
j=1

w′jF (kj) , (2.41)

where P (nj) is the symmetry-dependent number of points in the irreducible wedge of the

Brillouin zone. The weighing factors, w′j, are now given by the the ratio of the order of

the little group of the k-point to the full group of the crystal.

Pseudopotentials: Calculations involving all electrons in the atoms, including both

core and valence electrons, are very difficult to carry out using a plane-wave basis. This is

because the strong peaks of the tightly bound core states near the nucleus and the highly

oscillatory nature of the valence states in the core region, required by orthogonalization

constraint, impose stringent demands on the plane wave basis. These sharp features

require plane waves of very short wavelengths for a faithful representation, and therefore

a very high Ecut must be used to achieve adequate convergence. Therefore, a lot of effort
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is wasted by using plane waves to describe the highly localized core states that are rather

inert to their chemical environment and do not contribute to the material properties

that we are interested in. On the other hand, it is desirable to retain the plane wave

basis for the reasons already mentioned. Remembering that information about valence

states in the core region is not strictly necessary and that valence electrons are solely

responsible for chemical bonding, the nucleus and the core electrons can be replaced

by point-like “pseudo-ion”, whose interaction with valence electrons is described by a

screened pseudo potential, without loss of crucial information. This pseudopotential is

carefully constructed such that its scattering properties for the valence electrons are the

same as the all-electron potential and it must mimic core-valence interactions reliably

over a wide range of conditions. In other words, the corresponding pseudo wave-function,

Ψpseudo, is an eigenstate of a pseudo hamiltonian with the same eigenvalues as ΨAE
9. The

smooth pseudo wavefunction, different from the true wave function, has no nodes inside

some cutoff radius rc (see Fig. 2.2 (a) and (b)). Beyond rc it decays exactly like as

all-electron function. As a result of this smoothness, many fewer plane waves are required

in the Fourier expansion.

There are two main recipes for constructing a pseudopotential, the norm-conserving

approach and the ultrasoft approach. The norm-conserving pseudopotential [70, 92] re-

quires, among other things, that the norm of the true and the pseudo-wavefunction inside

the pseudized core region (r ≤ rc) should coincide. This ensures a high degree of accu-

racy and transferability from one system to another at the expense of the pseudopotential

being fairly hard. In ultrasoft pseudopotentials [93, 94], the norm-conserving condition

is relaxed, resulting in much smoother but still highly transferable potentials where the

plane-wave cutoff is reduced considerably. Once the pseudopotential is obtained, its imple-

mentation in the KS equations is quite straightforward. The vext(r) or the ionic potential

in (2.26) is now replaced by the pseudo potential vps(r) while all other terms remain

9AE refers to all-electron case
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(a) A schematic representation of pseudopoten-
tial and pseudo wave function

(b) Oxygen pseudo wavefunction

Figure 2.2: Pseudopotential and pseudo wave function.

unaltered. All calculations in this dissertation were carried out using ultrasoft pseudo

potentials. For a more in depth discussion of pseudo potentials see [70].

Ground State Solution: Until now, theoretically, the intractable task of determining

Ψ(r1, r2, . . . rN), for N ≈ 1023, has been reduced to evaluating φn k(r) for a discrete set

of points {k} in the first BZ and for a number of bands that is of the order of the number

of electrons per unit cell. To obtain the ground-state energy of a strongly many-electron

system in practice there are two possible approaches. The first one is to consider the

total energy E[{φi}] as a functional of KS wave functions {φi} or the potential [95]. This

strategy then calls for minimization techniques like conjugate gradient method (see A.5)

to be applied directly on (2.25). The basic idea is to take a single-particle trial wave

function and minimize the contribution of this state to the total energy (i.e., by varying

the plane wave coefficients), while obeying the orthogonality condition to all other states.

The second and most widely used approach is to replace the nonlinear minimization prob-

lem by an eigenvalue problem. For solid-state applications, expansion of electron wave
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functions in terms of plane waves of the form (2.37) cast the KS differential equations of

the form (2.26) into a particularly simple eigenvalue problem:

∑
G′

[
h̄2

2m
|k + G|2δGG′ + Ṽex(G−G′) + ṼH(G−G′) + ṼXC(G−G′)

]
×

Cn k+G′ = εn(k)Cn k+G ,

(2.42)

where Ṽ refers to the Fourier transform of the respective potential. For each k-point

included in the BZ sampling, there are Npw such equations coupled through the self-

consistent electron density:

ρ(r) =
∑

k∈BZ

wk

Nk∑
n=1

f (k)
n |φn(k)(r)|2 , (2.43)

where Nk is the number of electronic states occupied at each k point, f
(k)
n is the occupation

number of the KS state nk, weighted by factors wk. There are many ways to approach

the solution of the set of equations in (2.42). The most standard approach calls for matrix

diagonalization applying techniques such as block Davidson diagonalization [96], the size

of the matrix being determined by the choice of the cut-off energy Ecut. In this method,

working with a reduced basis helps to extract only the lowest lying eigenvalues important

to us. Solution by diagonalization scales as N3 where N is the number of electrons in

a unit cell. The flow chart on page 37 illustrates such a scheme. It is to be noted that

several details have been omitted in the flowchart for brevity.

As seen in the flowchart, the process starts with an initial guess for electron density,

usually a superposition of atomic electron densities. Then the KS reference potential vR

is calculated. It is convenient to calculate several pieces of vR in reciprocal space; for

example, the kinetic energy is diagonal in reciprocal space, and the Hartree potential,

which is a convolution in real space becomes merely a product in reciprocal space. On

the other hand, vext and vXC are more naturally calculated in real space. The trans-
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formation of wave functions and electron density back and forth between real space and

reciprocal space is handled very efficiently by Fast Fourier Transform algorithm which has

a computational cost of NFFTlogNFFT, where NFFT is the total number of points in the

FFT grid. The KS equations are then solved to obtain the single-particle eigenvalues and

wave functions for a given configuration of nuclei. Subsequently a new electron density

is calculated from the wave functions. After this, one or more self-consistent conditions

are checked. Self-consistent condition(s) may include change of total energy or electron

density from the previous iteration. Specifically, extensive time and effort goes into start-

ing off with a good initial guess as well as mixing old and new particle densities prior

to the next iteration. Additionally for completeness of the picture, spin should also be

included. If self-consistency is not achieved, the current electron density is mixed with

that from the previous cycle to obtain a new electron density. The mixing algorithm

is chosen to optimize the SCF convergence. A new iteration starts with the newly ob-

tained density. Such a cycle is referred to as one electronic iteration. After several such

electronic iterations self-consistency is reached. Then quantities like total energy, atomic

forces, unit-cell stress, electronic band structures, etc can be calculated for this particular

atomic arrangement. If forces and stresses are not below a specified tolerance, the atoms

are moved according to a quasi-Newton relaxation algorithm, and electronic iterations

are initiated as before. This cycle is known as an atomic iteration. Each atomic iteration

encompasses several electronic iterations. After multiple atomic iterations the equilibrium

configuration is achieved, and the calculation has ended.
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Figure 2.3: Basic scheme for solving Kohn-Sham Equations Iteratively.
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Chapter 3

Computational Details

3.1 Software and Hardware

The ab initio electronic-structure calculations and modeling in this thesis, using plane

waves and pseudopotentials within the density functional theory framework, were per-

formed using a computer code package known as Quantum ESPRESSO (QE) [97], which

stands for opEn Source Package for Research in Electronic Structure, Simulation, and

Optimization. The QE-based simulations, presented in this dissertation, run on a cluster

which currently comprises five 4-CPU 3GHz, 64-bit Intel core 2 Quad (Apple Computers)

nodes with either 32GB or 48 GB of RAM respectively. The nodes are connected by

gigabit ethernet connections. This facility also allows for 3 TB of local data storage.

Keeping in mind that the primary job of a DFT code is to calculate the energy and the

relevant properties of a system in its ground state, this integrated suite of codes is built

around core executibles such as pw.x that is concerned with geometrical optimization of

atomic configurations and evaluation of the self-consistent potential (i.e., the reference

potential vR as defined in (2.24)) and charge density and hence the total energy for a

relaxed structure in the ground electronic state. Once vR is determined, the self-consistent

Hamiltonian of the system is known, and pw.x is used to solve the KS equations non-self-
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consistently to obtain KS eigenvalues in various situations, for example, along a specified

path in the BZ, as in band structure calculations, or on a denser grid of k-points for density

of states (DOS) and projected density of states (pDOS) calculations. QE also includes

several post-processing tools, such as ph.x for phonon calculations, pp.x for data analysis

and plotting charge density and wave functions as well as data extraction for density

of states and atomic-projection calculations using dos.x and projwfc.x respectively.

Omitting the details, the schematic representation in Fig. 3.1 shows the basic architectural

organization of the code relevant to the runs.

In QE, the user can specify the calculations to be performed on a system defined by

its characteristic properties and constraints, through an interface called the “input file”.

Page 41 provides a very simple overview of the input file [98]. As seen in the sample

input file, it consists of several sections, or “namelists”, defined between the “&” and “\”

characters together with some mandatory and optional “cards” mentioned at the end.

Namelists are a standard input construct in Fortran 90. There are recommended default

settings for all the parameters used for building up different namelists; however the user

may also specify the value of an input variable when the default value is inadequate. The

“cards” are specific to the QE code and are always required to specify a system under

study [99]. Both of these can be fine-tuned by the user according to the area of focus.

Only the important parameters that were changed during the runs will be discussed. It

is to be noted here that systematic convergence testing is absolutely essential in choosing

certain parameters of the input file to achieve a balance between computational efficiency

and accuracy.
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An input file has the following structure:

&CONTROL

Control the flux of calculation and the amount of I/O

on the disk and screen.

/

&SYSTEM

This section specifies with the unit cell of the system under

consideration.

/

&ELECTRONS

This block control the algorithms used to obtain self -consistent

solution of the KS equations for electrons.

/

[ &IONS

This section is optional and used for geometric optimization.

It is ignored otherwise.

/ ]

[ &CELL

The section , ignored otherwisee , is used when unit cell volume

and shape needs to be optimized.

/ ]

The following are the mandatory “cards” to be included in the input file.

ATOMIC_SPECIES

Names of different atomic species , their atomic masses

and the corresponding pseudo potential files.

ATOMIC_POSITIONS

Positions of different atoms in the unit cell.

K_POINTS

Coordinates and weights of k-points for BZ integration can be

chosen in a number of ways.
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Before describing the computational details, it is helpful to know that the systems

investigated in this work mainly include pure orthorhombic KNbO3 as well as KNbO3

with substitutional impurities at the Nb and K sites. The impurities focussed upon in this

dissertation, titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe),

cobalt (Co) nickel (Ni) and silver (Ag), are either experimentally observed or potentially

relevant. Now, QE invokes three-dimensional periodic boundary conditions. Under such

circumstances, the distance between the dopant and its periodic image, in a 10-atom

conventional unit cell of pure KNbO3, is such that their effects are not entirely localized,

and the substitutional impurity does not behave like an isolated point defect as desired.

This can be mitigated if we move to larger unit cells or supercells so that there is a reduced

interaction between a given dopant and it neighboring periodic images. However, one

also has to take into account the increased computational load that this strategy imposes.

Calculations reveal that a 2×2×2 supercell with 80 atoms is an optimal candidate for unit

cell given our computational resources. So for all the calculations presented here, unless

otherwise specified, a 2×2×2 supercell has been used.

The first input parameter of relevance is CALCULATION. It determines the type of task

to be performed. The options scf (self-consistent field), relax (structural optimization),

nscf (non-scf) and bands were used for the analysis of different systems studied in this

dissertation. For a SCF or total-energy calculation, the KS equations are solved iteratively

as described previously in Fig. 2.3. A self-consistent value for the total energy is obtained

after several electronic iterations whenever the difference in energy from two consecutive

steps is less than the threshold value specified by the input variable CONV THR, which was

set to either 1.0 × 10−8 Ry or 1.0 × 10−6 Ry in this work, depending on the size of the

unit cell under study.

Following a total energy calculation for a specific ionic configuration, the forces on

each atom and the stress tensor for the unit cell can be computed. Those quantities

can be used to determine the lowest energy crystal structure. A system is considered to
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be geometrically optimized if both the following conditions are met simultaneously: the

total energy change between two scf steps is less than the specified tolerance value of

ETOT CONV THR, which was set at 0.5× 10−4 Ry here, and all the components of force are

less than the FORC CONV THR value of 0.5×10−3 Ry/Bohr. If these structural convergence

criteria are not met, the atoms are moved in a direction determined by the forces. Such

atomic iterations, interleaved with electronic iterations, are repeated until the ground-

state structure with vanishing forces is obtained. During the structural optimization, all

atoms are allowed to relax to their equilibrium positions, within the constraints of the

system symmetries. During this structural relaxation, some selected atom (or symmetri-

cally equivalent atoms) are held fixed in space. The cell volume or shape remains constant

during all our runs, as it would be for real systems with impurity concentration of 1-2 % 1.

The specific algorithm used for ionic minimization can be specified by ION DYNAMICS tag.

We have used the Broyden-Fletcher-Goldfarb-Shanno method, which is a qausi-Newton

approach [100–103].

Another computational parameter of importance is ECUTWFC, which is the kinetic en-

ergy cutoff for the wave functions and is expressed in Ry. An advantage of using ultrasoft

over norm-conserving pseudopotentials is that one can work with a lower cutoff. This is

desirable from the computational perspective because it retains high accuracy at reduced

computational cost. An input variable that goes hand in hand with ECUTWFC is ECUTRHO,

which is the kinetic energy cutoff for charge density and potential which is usually set at

4 to 12 times ECUTWFC. Mandatory convergence testing reveals that the optional cutoff for

the material studied here is higher than the highest recommended cutoffs of its individual

constituent elements. The well-converged plane wave basis energy cutoff and charge cutoff

used in this work are 50 Ry and 600 Ry respectively.

To simulate the ion-core interaction with valence electrons, we have used ultrasoft

pseudopotentials supplied in the Quantum Espresso package [97] as well as the pseudopo-

1The theoretical concentration used in the work presented here is 6.25% as discussed later on page 59.
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tential vault [104]. The Vanderbilt recipe [94] was followed for all the elements except

for K where the RRKJUS parameterization [105] was the only option available. The

valence and the semi-core states that were explicitly treated as valence include the K-

3s -3p and -4s; Nb-3s -3p, -3d, -4s and -4p; O-2s and -2p states. Hence, the K atom

is treated with 9 electrons, Nb with 13 electrons and O with 6 electrons. The valence

states of the different impurities at the A- and B- sites of KNbO3 are given in Table

3.1. Ultrasoft pseudopotentails have the advantage of being able to use a smaller cut-

off energy, which is desirable for computational efficiencies. Additionally, relaxing the

norm-conserving condition in ultrasoft pseudopotentials helps in more effectively pseudiz-

ing the 3-d wave functions of the third row transition elements, which constitute the

majority of the impurities studied. The exchange-correlation effects were implemented

following Perdew-Burke-Ernzerhof parametrization for the Generalized Gradient Approx-

imation [83] (chapter 4) and the Perdew-Zunger parametrization [106] for the Local Den-

sity Approximations (chapter 5).

The k-points required for sampling the BZ of a given crystal structure are generated

using the K POINTS card. For the structural optimization related calculations, all the k-

points are obtained with the automatic option. Under such circumstances it is sufficient

to specify the Monkhorst-Pack [91] sampling grid only. Additionally, It must be ensured

that the total energy of a system is satisfactorily converged with respect to the number

of k-points determined by the dimension of the grid. Pure KNbO3 is an insulator. The

requirement of supercell in real space, corresponding to a smaller Brillouin zone (BZ) in

reciprocal space, makes the calculations on a relatively smaller k-points grid reliable as far

as accuracy is concerned. The 3d transition elements, treated as impurities in KNbO3:Im

(Im: impurity), on the other hand, imparts a small but non-negligible metallic character

(i.e., partially filled bands) to the pristine host material. Metals require denser grids

compared to the insulators to capture the details of the Fermi surface [92] accurately.
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Impurity

Atom

Total Number

of Valence

Electrons

Reference

Pseudopotential

Configuration

Ti 12 3s23p64s23d1

V 13 3s23p64s23d34p0

Cr 14 3s23p64s14p03d5

Mn 15 3s23p64s24p03d5

Fe 16 3s23p63d6.54s14p0

Co 9 4s13d8

Ni 10 4s13d9

Ag 11 6s16p0.55d9.5

Table 3.1: Important pseudopotential parameters for different atoms used later as substi-
tutional impurities in KNbO3: Core charges and reference configurations
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It was found that good convergence was achieved with a 4×4×4 Monkhorst-Pack BZ

sampling grid for the structural relaxation calculations with 2×2×2 supercell.

The final set of option tags is related to the occupation of bands by electrons. For

the ground state in non-magnetic insulators and semiconductors, the bands are filled with

two electrons of opposite spins, at each k-point, from the lowest energy up until all the

electrons are used up. Under such circumstances the top of the highest filled band is

referred to as the Fermi level, following which there is a gap of forbidden energies and

finally empty energy levels. For all our calculations involving bulk KNbO3, an insulator,

the input variable OCCUPATIONS was set at fixed. This option reliably recreates the

“band gap” picture. In metals, on the other hand, the spins of the electrons become

more important, and we need to switch to spin-polarized calculations. This is effected

in Quantum Espresso by setting NSPIN to a value of 2, i.e., a spin-polarized calculation

which effectively doubles the number of k-points considered as compared to the non-spin-

polarized case in insulators. As a result the calculations take significantly longer. In

deciding the appropriate value for the variable OCCUPATIONS in metal-like situations, it is

to be noted that metals are characterized by the absence of a band gap at the Fermi level.

Thus occupied and unoccupied levels are arbitrarily close in energy. Evaluating quantities

like charge density involves summation over the user-specified discrete set of k- points.

As the electron occupancies jump from one to zero (a step function in the summation)

in a given band, as k-points are scanned from to another, the highest occupied bands

can exit or enter the sum as the eigenvalues and hence the Fermi level, adjusts from

one electronic iteration to the next. This leads to an unphysical, macroscopic charge

redistribution or “charge sloshing” due to microscopic energy changes. So when dopants

like Ti, V, Cr, Mn, Fe, Co, Ni, Ag and Cu are included in the host material, this unstable

situation hinders the convergence. Slower convergence and additional k-points makes

the calculations computationally more expensive. If the step function is replaced with

a smoother function, i.e., a continuous distribution function, faster convergence can be
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achieved with minimal sacrifice in accuracy. Physically this would amount to allowing

part of an electron in one band and the remainder in another. This partial electron

occupancy is referred to as “electron smearing”. While conceptually this is unphysical,

it is a computationally practical solution to an otherwise significantly slow convergence

problem. The parameter OCCUPATIONS is then set at “smearing” while the Gaussian

scheme is chosen for the SMEARING tag. The smearing width is controlled by the DEGAUSS

variable, which was set to 0.02 Ry in this work.

The majority of our calculations focussed on adding substitutional impurities to a

2×2×2 supercell of the host material. A convenient strategy for testing convergence in

such a scenario is to start with a 1×1×1 unit cell of the pure material where the atoms

are arranged in their experimentally verified positions. Then the impurity atom is added

under the charge neutrality conditions specified in Section 4.2. ECUTWFC convergence is

tested in this sample structure. This is followed by a subsequent convergence test with

different combinations of k-point grid and smearing width using the converged value of

ECUTWFC found in the previous step. It is to be noted here that k-point and ECUTWFC

convergences are independent of each other.

Band structure calculations are central to the work presented here. This requires

calculation of energy eigenvalues at user specified k-points along a certain path in the BZ,

usually along high symmetry directions. This calls for non-scf calculations and is invoked

by the bands option for CALCULATION input variable. These non-scf calculations can only

be done after the scf potential of the system under consideration has been obtained. Now

the K POINTS card no longer uses the automatic option, and all the k-points are entered

manually.

Other non-scf calculations relevant to this work include density of states (DOS) and the

projected density of states (pDOS) calculations. Unlike quantities such as charge density

that are derived from scf calculations by integrating over the entire BZ, calculation of

DOS demands integration over different constant energy surfaces, E(k), inside the BZ,
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as seen in (A.17). This type of calculation requires a much denser k-point grid than is

needed for self-consistency, in order to make the best approximation for the constant-

energy surfaces. This is taken care of by using the “automatic” option for K POINTS set at

8×8×8. With nscf chosen as the task to be performed by the input variable CALCULATION,

the linear interpolation tetrahedra method is used in conjunction with OCCUPATIONS to

approximate the different constant-energy surfaces. Suitable post-processing tools like

dos.x and projwfc.x are used subsequently to extract the desired information.

3.2 Preliminary Calculations

In this section, preliminary calculations on pure KNbO3 are presented. This is of impor-

tance because the comparison between the readily available experimental data on pure

KNbO3, and the theoretical data from this work, helps to determine the suitability of the

different pseudopotentials used henceforth. Additionally, the relaxed unit cell of undoped

KNbO3 from this work can be used to set the initial atomic configuration in the supercells

used as basic unit cells in the subsequent chapters and obtained by expanding the pure

conventional orthorhombic unit cell two fold along the 〈100〉, 〈010〉 and 〈001〉 directions.

These atomic positions are subsequently relaxed to their optimum values.

KNbO3 has a high symmetry cubic phase (space group Pm3m) and is paraelectric in

nature at temperatures above 435 ◦C. In this phase KNbO3 K and Nb atoms are located

at the corner and body center respectively, and the O atoms are located at the face centers

of the unit cell. As the temperature is lowered, zone center and zone boundary distor-

tions along 〈100〉, 〈110〉, and 〈111〉 directions produces three successive phase transitions:

tetragonal (P4mm) below 435 ◦C, orthorhombic (Amm2) below 235 ◦C and rhombohedral

(R3m) below -10 ◦C. Each of these reduced-symmetry phases is ferroelectric, with the Nb

atom at the body center is displaced with respect to the O octahedral cage surrounding

it. This yields a non-zero spontaneous electric polarization that can be reversed with the
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application of external electric fields. The unit cells of these different phases are shown in

Fig. 1.2, and their relevant structural parameters, including the lattice constants as well

as the magnitude and direction of the displacements of the different atoms, calculated

in this work, are reported in Table 3.2. The ∆ symbols in Table 3.2, refer to the net

displacement expressed in terms of lattice coordinates of the associated atom from its

corresponding position in the cubic aristotype, along the direction specified in the sub-

script of ∆. In the experiments, the assumption that the center of mass cannot move

during a phase transition fixes the displacements of Nb atom(s) in terms of the other

atoms. This is incorporated in the present theoretical calculations by keeping the Nb

atom /atoms in each unit cell fixed in position during structural relaxation. Hence the

∆(Nb) are reported to be zero. The three oxygen atoms at the face centers of the high

symmetry cubic unit cell, which are equivalent in the cubic phase, are distinguished as OI,

OII and OIII, as they will not be identical in the subsequent lower symmetry phases. The

data for the orthorhombic phase which is important to our work, is reported separately

in Table 3.3.

The conventional unit cell of the orthorhombic phase has 10 atoms (two KNbO3 for-

mula units) and is denoted as the 1×1×1 base cell in upcoming discussions of larger super

cells. The lattice coordinates of the atoms in this cell are given as:

K at [ 0, 0, ∆z(K)] and [0, 0.5, 0.5+∆z(K)]

Nb at [0.5, 0, 0.5+∆z(Nb)] and [0.5, 0.5, ∆z(Nb)]

OI at [0, 0, 0.5+∆z(OI)] and [0, 0.5, ∆z(OI)]

OII at [0.5, 0.25+∆y(OII), 0.25+∆z(OII)] and [0.5, 0.75+∆y(OII), 0.75+∆z(OII)]

OIII at [0.5, 0.75-∆y(OII), 0.25+∆z(OII)] and [0.5, 0.25-∆y(OII), 0.75+∆z(OII)]

This room temperature phase is a result of zone boundary distortions of the high

symmetry cubic unit cell, leading to cell doubling. Following the notation used by Hewat

49



[14], the three optimized lattice vectors for the pure orthorhombic 1×1×1 KNbO3 cell,

computed here using the DFT-based QE code, are a = 3.942Å along 〈010〉, b = 5.614Å

along 〈101〉 and c = 5.619Å along 〈101〉, where vectors are written relative to the high

symmetry cubic phase (see Table 3.3). The spontaneous polarization is along the positive

〈010〉 direction. By comparing theoretical and experimental results in Table 3.3, it can

be seen that our calculations reproduced the relative magnitudes of the displacement of

OI and OII atoms, along the z direction, fairly well with the y displacement of OII being

reduced in magnitude compared to the experimental estimates [14]. However it is to

be noted that the magnitude of this displacement is itself very small, as pointed out by

Postnikov and Bostel [107].

The model for the undoped host material, KNbO3, used in the calculations presented

here, is obtained by expanding the pure, orthorhombic, conventional 1×1×1 unit cell two-

fold along the 〈100〉, 〈010〉 and 〈001〉 directions and therefore is referred to as a 2×2×2

supercell. The calculated band structure, total density of states and projected density of

states of a pure 2×2×2 KNbO3 supercell are displayed in Fig. 3.2(a) and (b) respectively.

These calculations used lattice constants a = 7.88 Å, b = 11.23 Å and c = 11.24 Å. Band

structure calculations involve solving KS equations for every k-point chosen by the user

along some path in the first BZ of the crystal using the scf potential already determined.

Here, the k-points are chosen so as to include several high symmetry points. The path

followed in this calculation starts from Γ and then goes to X to R to Y to Z and finally

to S. It is indicted in the x-axis of the Fig. 3.2a(i). It is to be noted that only the special

high symmetry k-points are indicated in the plot axis, although a total of 51 points were

used for the actual calculation.

Since pure KNbO3 is a non-magnetic insulator, it was possible to carry out non-spin-

polarized calculations. This was also verified by spin-polarized test calculations yielding

identical spin-up and spin-down KS eigenvalue distributions. It can be seen from Fig.

3.2a that the top of the valence band has been chosen as the zero of energy. This is
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Phase
Structural Parameters Structural Parameters [14]

(Theoretical) (Experimental)

cubic a = 4.025 Å a = 4.000 Å

Tetragonal

a = 3.956 Å a = 3.997 Å

c/a = 1.0118 c/a = 1.0165

∆z(K) = 0.01176 ∆z(K) = 0.023 ± 10

∆(Nb) = 0.0 ∆(Nb) = 0.0

∆z(OI) = 0.029 ∆z(OI) = 0.040 ± 3

∆z(OII) = 0.031 ∆z(OII) = 0.042 ± 3

∆z(OIII) = ∆z(OII) ∆z(OIII) = ∆z(OII)

Rhombohedral

a = 3.970 Å a = 4.016 Å

∆z(K) = 0.0080 ∆z(K) = 0.0112 ± 25

∆(Nb) = 0.0 ∆(Nb) = 0.0

∆x(OI) = 0.0180 ∆x(OI) = 0.0295 ± 5

∆z(OII) = 0.0198 ∆z(OII) = 0.0308 ± 7

Table 3.2: Comparison of the experimental and the theoretical (present work) structural
parameters of the cubic, tetragonal and rhombohedral phases of KNbO3.
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also the location of the Fermi level, EF. Therefore, the valence band here is completely

full, accommodating all 640 valence electrons, two per level, while the conduction band

is empty. Combining the k-resolved band structure information in reciprocal space, (Fig.

3.2a(i)), with the DOS plots which portrays the distribution of all electronic states with

energy in the unit cell (Fig.3.2a(ii)), helps one to gain comprehensive knowledge about

the different eigenstates of KNbO3 and its occupancies. It can also be noted that the

band structure is very similar to BaTiO3 [108], which undergoes the same sequence of

phase transitions as KNbO3. The band gap values reported in the literature are usually

with respect to a 1×1×1 system. In a separate band structure calculation in a 1×1×1

cell, the difference between the top of the valence band (VB) and the bottom of the

conduction band (CB) is found to be 1.77 eV as compared to the theoretical value of 1.4

eV in Ref. [109]. Experimentaly measured values are 3.79 eV (determined from Faraday

Phase
Structural Parameters Structural Parameters [14]

(Theoretical) (Experimental)

Orthorhombic

a = 3.950 Å a = 3.971 Å

b/a = 1.424 b/a = 1.435

c/a = 1.426 c/a = 1.441

∆z(K) = 0.009 ∆z(K) = 0.017± 1

∆z(Nb) = 0.0 ∆z(Nb) = 0.0

∆z(OI) = 0.025 ∆z(OI) = 0.021± 2

∆z(OII) = 0.022 ∆z(OII) = 0.035± 2

∆y(OII) = -0.0003 ∆y(OII) = 0.004± 2

Table 3.3: Comparison of the experimental and the theoretical (present work) structural
parameters of the orthorhombic phase of KNbO3.
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rotation at 77K [110]) and approximately 3.3 eV, as extrapolated to 0 K from the high

temperature cubic phase [15]. This discrepancy between the calculated and experimental

values of the band gap can be attributed to the fact that Kohn-Sham DFT is known to

significantly underestimate band gap energies, up to 50%, due to self interaction error

and the absence of a derivative discontinuity in the exchange-correlation potential [82].

A projection analysis onto different pseudized atomic wave functions is shown in Fig.

3.2b. It should be noted that the bottom of the CB mostly comprises niobium-4d states

while the top of the VB gets its features from the oxygen 2p states. The VB section from

−2 eV to about −3 eV exhibits strong hybridization between the oxygen-2p and niobium-

4d orbitals, a characteristic feature of the perovskites. The contribution of the alkali metal

cation, potassium, is negligible; potassium 3p states do not hybridize significantly with

the oxygen-2p states. If the present calculation window is extended to include all the lower

lying eigenvalues, it would be possible to see many almost flat bands corresponding to

the semi-core states of the different atoms deep in the VB. This flatness in energy reveals

the atomic-like nature of these states and verifies that they do not directly participate in

bonding.
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Chapter 4

Trends in KNbO3 Electronic

Structure with Various 3d Transition

Metal Dopant Species

4.1 Background

Dopants: Photorefractives are electro-optic and photoconductive materials as seen in

chapter 1. In response to an inhomogeneous illumination pattern of adequate wavelength

and intensity incident on such a material, the electrons (holes) are photo-excited from

localized photoactive centers, like donors (acceptors) in the band gap, to the conduction

band (valence band) of the material. In these extended states, the diffusion or drift (in the

presence of an external field) causes the quasi-free charge carriers to move towards darker

regions where, they are eventually trapped by the empty localized trap levels, re-excited

and re-trapped again. This leads to charge carriers being progressively accumulated in

the darker regions leaving, behind uncompensated oppositely charged brighter regions.

Consequently, a separation of charges, and hence a spatially modulated space charge

field, develops that lags behind the incident interference fringes by a phase difference.
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Finally, crystals with the linear electrooptic properties respond to this field in the form

of a modulated refractive index pattern. Thus, the presence of localized defect-states in

the band gap is crucial to the formation of the space-charge field which is at the core of

photorefractive properties. This has been confirmed when hydrothermally grown, almost

perfect Bi12SiO2 crystals were found to be devoid of any photochromic and photorefractive

properties [111, 112]. On the other hand, crystals containing defects, grown using the

same raw chemicals, exhibited photorefractive effects. The formal definition of point

defects classify them as any point like deviation from perfect crystalline order that breaks

the translational symmetry of a crystal. Point defects can be of the following types:

(i) intrinsic, produced during the growth process such as Schottky defects (vacancies),

Frenkel defects (vacancy-interstitial pairs), and antisite defects, (ii) extrinsic, arising from

substitutional or interstitial impurities or (iii) a combination of both, as in the work

presented here.

In a real material, the photorefractive process is an immensely complicated phe-

nomenon that involves interplay of different dynamical subsystems at multiple time scales.

The mathematical model trying to describe the actual photorefractive process has to con-

sider the coexistence of many factors, including multiple valence states of single (or more)

dopants, shallow and deep traps, electron-hole competition to name a few. One has to

resort to considerable simplifications to obtain even a solvable analytical model. This

theoretical work investigates the effect on the electronic structure of the photorefractive

material KNbO3 when doped with a +3 valence, 3d transition-metal as a function of

dopant species i.e., Cr, Mn, Fe, Co and Ni. This study can be regarded as a first step

towards unraveling the complex, multiple-mechanism dynamics in real photorefractive

samples. Better theoretical understanding of photorefractive models will contribute to-

wards the eventual aim of deducing “ideal” donor-acceptor combinations to maximize

several important photorefractive performance parameters such as beam-coupling coeffi-

cient.
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4.2 Setting Up the Theoretical Model

A- or B-site substitution: The photorefractive effect in nominally undoped KNbO3

is caused by iron impurities that occur in the niobium pentoxide component used during

the growth of the pure crystals [49]. The usual way to modify the pure host materials for

enhanced photorefractive performance is to dope them with transition metals such as Fe.

There are two possible ways of incorporating Fe, substitutionally into the host lattice: A-

site substitution (i.e., substituting for a K atom) and B-site substitution (i.e., substituting

for a Nb atom). Data from Electron paramagnetic resonance (EPR) experiments [64–66]

show that the angular variation of Fe3+ lines can be well explained by a model in which

Fe+3 substitutes for a Nb+5 ion. One can also arrive at the same conclusion of most likely

candidate for substitution by comparing the ionic radii of the different species involved.

As indicated in Table 4.1 the radii of Fe3+ and Nb5+ are comparable. The choice of B-site

substitution, followed in the present work, is also based on the optimum size of the unit

cell that plays a major role in determining the computational load. This is explained in

detail in the following Supercells section.

Supercells: The methodology described in Chapter 2 required a periodic structure.

Therefore, instead of modeling a single and isolated defect, the calculations in this work,

must model a periodic array of defects. Doping, on the other hand, should introduce

localized effects ideally, so that the intrinsic properties of the bulk, sufficiently away from

the dopant, do not change appreciably. So doping in KNbO3 cannot be simulated with

desired effects in the conventional 10-atom orthohrombic unit cell as impurities would

interact strongly with their periodic images. Hence, bigger unit cells or supercells are

required. To illustrate the situation, let us consider a 10 atom (i.e., 2 formula units)

orthorhombic unit cell with dimensions a, b and c along directions 〈100〉, 〈010〉, and

〈001〉, respectively, such that c > b > a. If such a conventional unit cell, or a 1×1×1

supercell as we may call it, is doped by replacing a Nb atom with an Fe atom, the distance
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Element Valence State Ionic Radius (Å) [113]

K 1+ 1.51

Nb 5+ 0.64

Ti 3+ 0.67

V 3+ 0.64

Cr 3+ 0.62

Mn 3+ 0.65

Fe 3+ 0.65

Co 3+ 0.61

Ni 3+ 0.60

Table 4.1: Comparison of the ionic radii of K, Nb and the different 3d transition metals
used as substitutional impurities.

between the dopant and its nearest neighbor is a. If now the unit cell is doubled along

〈100〉 direction to accommodate 20 atoms (i.e., 4 formula units), at the expense of the

computational load being quadrupled, the shortest distance between the Fe impurity and

its periodic image increases to b, as indicated in Fig.4.1a. Subsequent calculations with

this 2×1×1 super cell showed that the doping effects were highly non-localized. Hence a

bigger unit cell is necessary to ensure sufficiently reduced interaction between the impurity

and its periodic images. It is to be noted that the computation becomes expensive with
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the system size. In an effort to maintain a balance between computational efficiency and

doping concentration, a 2×2×2 super cell (Fig.4.1b) with 80 atoms (i.e., 16 formula units)

is chosen as the structural model for the investigations of defects and impurities in this

chapter. The resulting distance between a defect and its nearest periodic neighbor is now

2b. This corresponds to a theoretical doping concentration of 6.25%, still well above the

experimentally realized dopant concentration of ≈ 0.1 %, but the best that is presently

computationally feasible.

Charge Compensation: In a perfectly ionic KNbO3 crystal, the atoms are in the ionic

states K1+, Nb5+ and O2−, and thus the question of charge neutrality upon doping with

impurity ions needs to be addressed. Iron can exist in a +2 , +3 or +4 stable oxidation

states. EPR experiments [47, 114] have verified stable Fe+3 in KNbO3. Fe+2 has also

been observed in n-type KNbO3 [48, 114]. Though there is no direct experimental data

regarding the thermodynamic stability of Fe+4, its presence has been observed in SrTiO3

and BaTiO3. For the work presented here and in the following chapters, Fe is forced into

a +3 oxidation state by removing an oxygen.

Theoretical calculations indicate that an energetically favorable way to maintain charge

neutrality if one of the Nb5+ ions is replaced by a Fe3+ ion is to remove one O2− ion near

the impurity, thereby resulting in a impurity-vacancy complex Fe
′′

Nb - V
..

O (Kröger-Vink

notation is used to represent the defect pair). The oxygen vacancy was chosen to lie in

the first coordination shell of the iron substitutional impurity. The model presented here,

then, for a KNbO3 crystal with a Fe
′′

Nb - V
..

O defect pair consists of a 2×2×2 supercell with

one Nb atom replaced by Fe and one coordinating O atom removed, yielding 79 atoms

per supercell.
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(a) A collection of 2×1×1 supercells with one Fe-O vacancy pair/cell are shown. Four such cells
are indicated with blue outlines. The distance between a Fe atom and its nearest neighbors is b.
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(b) A collection of 2×2×2 supercells with one Fe-O vacancy pair/cell are shown. Two such cells
are indicated with blue outlines. The distance between a Fe atom and its nearest neighbors is
2a.

Figure 4.1: Schematic representation of 2×1×1 and 2×2×2 super cells.
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4.3 Expected Doping Trends

The d electrons of transition metals play a very important role in determining the ma-

terial properties of pure and doped KNbO3. The 4d orbitals of Nb mix with the oxygen

2p orbitals to form the highest lying valence bands of KNbO3 as seen in Fig. 3.2. For

an isolated transition-metal impurity, the band picture is inappropriate, and instead the

impurity is viewed as an isolated ion in the fixed crystal field of the surrounding lattice.

It is then appropriate to consider competing effects on the atomic energy levels of the im-

purity. In this model, the impurity is not perfectly isolated, but rather exists as a periodic

array of widely spaced impurities. Therefore, residual band-like behavior is expected, but

the atomic nature of the impurity bands should still be recognizable.For 3d impurities, the

main competing effects that need to be considered in understanding trends in impurity

energy levels, are crystal-field splitting and exchange splitting of the atomic 3d-derived

states.

4.3.1 Crystal Field Splitting

In an independent-electron picture, the d orbitals of a transition metal ion, in free space,

are five-fold degenerate and can accommodate a maximum of ten electrons due to spin

degeneracy. When the transition-metal atom is placed at the center of a perfect octa-

hedron with O2− ions at the vertices, valence d electrons experience different repulsive

forces depending on the shape of the orbitals they occupy. The dz2 and dx2−y2 orbitals

have lobes that point directly towards the negative point charges on the O2− anion as

seen in Fig. 4.2. So the electrons in those states experience a strong Coulombic repulsion.

For the dxy, dyz or dxz orbitals, however, the O2− ions lie on the nodal planes, so that

electrons in these orbitals naturally stay away from the anions. As a result, these states

are energetically lower compared to dz2 or dx2−y2 . Thus the five degenerate levels split

due to the octahedral field into two sets: the higher lying doubly degenerate eg states
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Figure 4.2: Schematic representation of splitting of d-orbitals of the transition metal ion
in octahedral crystal field. The geometry of the three t2g and eg states are also shown
on the right. For each orbital, the transition metal atom is at the center (not shown)
surrounded by oxygen atom (shown as grey dots) located at the corners of the octahedra.

(dz2 and dx2−y2) and the lower lying triply degenerate t2gs states ( dxy, dyz and dxz). The

designations eg and t2g are traditional and derive from a symmetry analysis. This phe-

nomenon is referred to as crystal-field splitting and the amount of splitting is denoted by

∆cf . This parameter is found to decrease along the 3d row of the periodic table, going

from left to right [115].

4.3.2 Exchange Splitting

We need to consider another phenomenon that breaks the degeneracy of the 3d states. In

the absence of all electron-electron interactions, each orbital of a five-fold spin degenerate

d state, accommodates two electrons, one spin-up and one spin-down; hence, a maximum

of ten electrons can be accommodated each contributing the same energy. If Coulomb

repulsion is then turned on, it becomes energetically more costly to have two electrons

in the same d orbital than in different orbitals. The exchange interaction provides a
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symmetry constraint preventing electrons of like spins from achieving this high energy

arrangement. Electrons of opposite spins have no such constraint. Therefore, the exchange

interaction gives rise to an energetic preference for filling single-particle states of like

spin (say, spin up) before beginning to fill states of the opposite spin (say, spin down).

This energetic difference between spin-up and spin-down states is referred to as exchange

splitting. When exchange splitting is taken into consideration, spin-degenerate d levels

(the octahedron crystal field effect being neglected for the time being) split into two

separate sets of five-fold degenerate spin orbitals. One spin-up electron can be placed in

each of the lower-lying five levels while each of the higher lying five levels can accommodate

one spin-down electron. All the lower lying spin-up states are filled up before filling up

the energetically higher spin-down states. The energy difference between the spin-up and

spin-down levels defines the exchange splitting energy ∆ex which is interpreted as the

energy required to flip the spin of an electron. Moving across the 3d row of the periodic

table from Cr to Ni, it is known that ∆ex first increases from Cr to Fe and then decreases

from Fe to Ni [116].

4.3.3 Core Charge, Zeff

The atomic number of an element, Z, refers to its total nuclear charge in units of e.

For the present purpose of examining impurity trends across the 3d row, however, it is

more useful to define a core charge, Zeff = Z - 18, where the 18 electrons that make

up the closed-shell argon-like core are combined with the nucleus. In this admittedly

oversimplified picture, the closed-shell core electrons maximally screen the nucleus, and

the valence electrons feel a core charge of Zeff . How is then increasing Zeff expected to

affect the energy of the 3d states when going across the 3d row? Following a Bohr-model

argument, the energy of the 3d state (ignoring electron-electron interactions) should be

proportional to −Z2
eff . Therefore, as we move right across the 3d row from Cr, the valence

63



electrons encounter an increasingly attractive core: Zeff increases from 6 in Cr3+ to 7 in

Mn4+, 8 in Fe3+, 8 in Co3+ and 9 in Ni3+. Thus a higher value of Zeff , equivalent to

a more attractive core, more strongly pulls down the center of the 3d-derived levels of

the transition metal impurity as we progress from Cr to the right. In the KS eigenvalue

picture presented here, this trend with increasing Zeff is reflected in a tighter binding, or

downward migration, of the d-derived impurity energy levels from the conduction band

of the host material through the band gap and eventually into the valence band as the

impurity species go from the left end of the 3d row to the right end.

4.4 Results

In this study, we consider KNbO3 with various 3d transition metals substitutional im-

purities on the Nb-site. The impurities are chosen considering the following: firstly, the

size, or the ionic radius of the impurity should be comparable to the Nb5+ ion that it

replaces (refer to Table 4.1) to avoid excessive strain in the doped crystals. Secondly, only

impurities that exhibit a stable +3 oxidation state are considered in this work. To restore

charge balance when a +3 impurity ion substitute for a Nb5+ ion, a nearest neighbor

oxygen atom is removed to make a neutral vacancy, V
..

O.

The impurities chosen for this work are the transition metals Ti3+, V3+, Cr3+, Mn3+,

Fe3+, Co3+ and Ni3+. All calculations are spin polarized in contrast to the pure host study

as shown in Fig. 3.2. The calculated electronic properties such as band structure and

the projected density of states (pDOS) of the KNbO3 crystal with different impurities are

presented in Figs. 4.3 - 4.6. The data related to the substitutional impurities Ti and V are

presented in Fig. 4.3. Fig. 4.4 includes results related to Cr3+, Mn3+ and Fe3+ impurities

and Fig. 4.5 displays the characteristic features of Co3+ and Ni3+ impurities. Fe3+ has

been included in Fig. 4.5 for the sake of continuity. For comparing the important features

of impurity doping and identifying trends, the band structures and total DOS of spin-up
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and spin-down states, for all impurities, from Cr to Ni, are presented in the Fig. 4.6. It

is also to be noted that, for the sake of clarity, the bands contributed by the pure host is

faded in the background and only the impurity levels are highlighted and labelled. The

zero of energy, in all these plots, is adjusted with the top of the valence band of the pure

host KNbO3, and the Fermi level, EF, is denoted by a red dashed line.

Before presenting the results related to each dopant type, a few remarks, in general,

about the impurity levels appearing in the band gap of the doped structure are in or-

der: if theoretical impurity concentrations were comparable to those of experiments, the

impurity bands would have been quite flat, corresponding to highly localized states and

signifying minimum dopant-dopant interaction. In the present study, a fair amount of

residual dispersion in some of the impurity bands, owing to comparatively high theoret-

ical doping concentration, is observed. Additionally, the O-octahedron surrounding the

impurity is imperfect. Not only is it distorted by virtue of the orthorhombic symmetry of

the crystal lattice, but it also contains the charge-compensating oxygen vacancy. As a re-

sult the crystal-field split levels are not sets of precisely doubly or triply degenerate levels

but groups of two and three very closely lying levels that are not perfectly degenerate1.

KNbO3:Ti and KNbO3:V: The band structures of KNbO3:Ti and KNbO3:V crystals

resemble that of the undoped pure host with spin-up and down states being indistinguish-

able and no impurity levels in the band gap. These systems differ from pure KNbO3 in

that the Fermi level, EF, in these doped systems, pass through the conduction band (CB)

(as seen in Fig. 4.3). It is found that the valence band (VB), in KNbO3:Ti, is completely

full with one electron in the CB. It is to be noted that the Ti dopant, at a Nb5+-site,

was forced into a +3 oxidation state by removing an oxygen atom. The two electrons

thus released in the process, was expected to bind to the dopant atom thereby rendering

it a +3 oxidation state. The calculations imply that an oxidation state of +4 is more

1It is to be noted that the band structures, total DOS and the complete pDOS corresponding to the
individual substitutional impurity systems are presented in Appendix B.
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favorable for Ti atom than an oxidation state of +3 and the extra electron that did not

bind to Ti is now free in the CB. A similar situation prevails in KNbO3:V where none

of the two electrons released by oxygen-vacancy bound to the dopant. The vanadium

substitutional impurity, thus, remains in a +5 oxidation star while the two free electrons

are accommodated in the CB.

KNbO3:Cr: A set of three t2g-derived levels can be identified in the gap near the edge

Ti V
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Figure 4.3: Spin-up (↑) and spin-down (↓) band structures and projected DOS of
KNbO3:X3+ where X = Ti and V. In each case the impurity substitutes for a Nb5+

ion, with a charge-compensating oxygen vacancy in the coordinating octahedron.

of the conduction band in the spin-up configuration as shown in the Cr-labelled column

in the Fig. 4.4. The eg-derived levels are higher up in the conduction band beyond our

calculation window. The location of the Fermi level is such that all the three t2g-derived

levels are fully occupied. The corresponding pDOS plots indicate these impurity levels

are entirely contributed by impurity Cr-d states. The band structure for the spin-down

configuration (Fig. 4.4) shows that the impurity bands are higher up in the CB and do not

appear in the band gap. As a result, the total magnetization, M, predicted by the first-

principles calculations in this chapter, is 3µB/cell. The spin density is localized around

the impurity and corresponds to the difference in occupied ↑ and ↓ impurity 3d states.
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KNbO3:Mn: For spin-up states of Mn-doped KNbO3, we can see, in Fig. 4.4 a flat eg-

derived level in the middle of the forbidden energy gap. The group of three t2g-derived

levels lie lower in the gap, below close to the top of the valence band. All the four impurity

levels are fully occupied and are derived from Mn-d orbitals without any involvement of

Nb-d states. Additionally, spin-down configuration in Fig. 4.4 shows that, like Cr, there

are no impurity levels in the band gap. Here, M is 4 µB/cell.

KNbO3:Fe: For the iron impurity, as seen in the rightmost panel of Fig. 4.4, the spin-up

t2g states have left the band gap and are now within the valence band, preventing them

from being identified separately. The spin-up pair of eg-derived levels have fully emerged

from the conduction band and are now entirely visible in the band gap. These five levels

are fully occupied as can be verified from their position below the Fermi level. For the

spin-down eigenstates, we can identify the group of three t2g-derived states at the edge of

the conduction band. But these levels are unoccupied. As a result, the predicted magne-

tization, M, is 5 µB/cell.

KNbO3:Co: The calculated electronic structure of KNbO3:Co is shown in Fig. 4.5. Here,

as in KNbO3:Fe, the three spin-up t2g-derived levels are in the valence band now and are

fully occupied. One of the eg-derived levels is below the EF and hence occupied. The other

eg level is empty. Fig. 4.5, corresponding to spin-down states, indicates that the group of

three t2g-derived levels, in this case is partially occupied yielding a total magnetization of

2 µB.

KNbO3:Ni: For the spin-up states (Fig. 4.5), the group of three t2g-derived levels are

full as they form a part of the valence band. One eg-derived level, below EF, is occupied

while the other eg level is empty. The corresponding spin-down states look similar as seen

in Fig. 4.5, the difference being that only the t2g-derived levels are full while both the

eg-derived levels lie able the Fermi level and M is 1.05 µB/cell.
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4.5 Discussion

Before comparing the electronic structures of KNbO3 doped with various 3d transition

elements, it is important to note that competition between ∆cf and ∆ex results in two

situations. When ∆cf < ∆ex the exchange splitting dominates. In this case the ten de-

generate spin-orbitals split into two sets of five spin-orbitals, with the ones corresponding

to spin-up lower in energy than those corresponding to spin-down by ∆ex. The weaker

crystal-field effect then causes each of these 5-fold degenerate levels to split into t2g and

eg derived states as shown in Fig. 4.7a.It is less costly, energetically, to occupy the t2g↑

and eg↑ levels before filling the set of t2g↓ and eg↓ levels. For example, if there are six

d electrons (d6), the states are filled up as shown in Fig. 4.7a, maximizing the spin as

required by Hund’s rule. This is referred to as the high-spin state.

In the second case, when the magnitude of the exchange splitting is reduced such

that ∆cf > ∆ex, the crystal field splitting is the primary effect and exchange splitting is

secondary. Here the d orbitals are first split into three t2g orbitals and two eg orbitals.

At this point, the spin degeneracy is not broken, so each orbital can accommodate two

electrons. The comparatively small exchange splitting leaves the t2g↑ and t2g↓ spin-orbitals

all lower in energy than the eg↑ and eg↓ spin-orbitals, once spin-degeneracy is broken. This

case is illustrated in Fig. 4.7b. For example, the order of filling of a d5 system in this

case, is such that both spin-up and spin-down t2g levels are filled while all eg levels remain

unoccupied. This situation corresponds to a so-called low-spin state.

In an attempt to understand the trends with varying impurity species, Cr3+, Mn3+ and

Fe3+ are considered first because ∆ex is expected to increase with this progression. Then

the progression Fe3+, Co3+ and Ni3+ is followed where ∆ex is expected to decrease. It is

known that the effect of an increasingly attractive core (higher value of Zeff), as one moves

right from Cr, causes more defect levels to appear in the band gap progressively. This

is confirmed in Fig. 4.6 for the spin-up states of the first three dopants. Additionally, as
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Figure 4.7: Interplay between ∆cf and ∆ex.

per our prediction, ∆cf decreases and ∆ex increases progressively till Fe. So, the primary

effect here is due to exchange splitting and the crystal field effects becomes secondary.

Referring to Fig. 4.7a, it becomes clear that the higher value for exchange splitting is the

reason for the defect levels corresponding to the spin-down states to lie well above energy

gap beyond the calculation window. Therefore, in Cr and Mn they are not visible but

a sufficiently high Zeff in Fe pulls them down, binding the d levels more tightly and we

can finally identify the t2g group hanging at the conduction band edge in Fe spin down

configuration. Following Fig. 4.7a, we can expect an order of filing where the spin up

t2g − eg derived defect levels are occupied before the corresponding spin-down ones. This

is exactly what we see if we compare the band structures (↑ and ↓) of Cr, Mn and Fe as

shown in Fig. 4.6 and also take into consideration the position of the Fermi levels, EF, in

each case. But the higher energy ↓ states in Cr, Mn and Fe are unoccupied as expected.

For Co and Ni, the effect of higher Zeff , pulling down the center of the d-derived

impurity levels, is evident in the spin-down states. In contrast with the instances of Cr,

Mn or Fe, ∆ex for Co and Ni, decreases together with ∆cf . Now, ∆ex, decreases at a
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relatively faster rate than ∆cf so that the exchange splitting effect can be regarded as a

perturbation on the crystal field effect. The order of filling, as seen previously in Fig.4.7b,

is now different from that of Cr, Mn and Fe and the t2g states for ↑ and ↓ configurations

are filled prior to the corresponding eg levels, as verified in Fig. 4.6.

The Kohn-Sham spectra, derived from DFT-calculations, can be used to predict trends

in the energies of the impurity levels as a function of the position in the third row of the

periodic table. The electron and hole excitations that involve the various impurity levels

in the different doped species are summarized in Table 4.2. This data can be used to

provide guidance to crystal growers interested in extending the spectral sensitivity of

doped KNbO3 into the infra-red (IR) region. It is to be noted that an electron transition

would excite an electron from a filled impurity level into the conduction band while a

hole transition would be possible if an electron is excited from a filled valence band into

an impurity level. A scaling factor, defined as the ratio of the experimental band gap of

pure KNbO3 to the DFT-derived Kohn-Sham theoretical band gap of the same obtained

in this work, is used to scale all the energies of the different impurity levels obtained here

from DFT calculations and are finally used for excitation predictions.

It is evident from Table 4.2 that, KNbO3, doped with different 3d transition metals,

show electron or hole excitations in the visible range. For example, in KNbO3:Fe, an

electron excited from the eHg↑ to the conduction band would cause an emission in the

visible range. This roughly corresponds to the experimental finding in Ref [67] that has

reported a visible emission of 2.5 eV in Fe-doped KNbO3 samples. Based on Table 4.2,

it appears that KNbO3:Cr is the most likely candidate for IR-sensitive photorefractive

effects as it has a shallow, filled t2g↑ impurity band, at approximately, 0.4 eV below the

conduction band .
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Chapter 5

Study of the Electronic Structures of

KNbO3 Doped with Different Types

of Fe-centers

5.1 Background

It has been observed experimentally [67, 117–119] that when Fe-doped KNbO3 crystals

undergo reduction to add an electron to the Fe3+ ion, there is a significant improvement

in the photorefractive figures of merit, for example, an increased gain coefficient and a

reduced response speed. Furthermore, investigations based on EPR, optical absorption

spectroscopy, electric conductivity and beam coupling studies [64–66] have identified the

following primary types of impurity centers in Fe-doped KNbO3 samples:

(i) Fe3+
Nb-VO, where a Fe3+ ion substitutes for a Nb5+ ion and a charge compensating

oxygen-vacancy, VO, is created in the first coordination shell of Fe3+
Nb.

(ii) Fe3+
Nb, where an isolated Fe3+ ion, without any coordinating vacancy, replaces a Nb5+

ion.

(iii) Fe3+
K -VK, where a Fe3+ ion occupies a K-site forming a nearest-neighbor K-vacancy.
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Reference [64] shows that, in the reduced Fe-doped KNbO3 crystals, an unspecified cen-

ter, of the form Fe3+ - V, is primarily responsible for its enhanced photorefrarctive per-

formance. The Fe3+ ion, in this generic defect-vacancy complex, is identified to be the

dominant impurity center for reduction i.e., a fraction of the Fe3+ ions readily reduce to

Fe2+ state, thereby increasing the effective number of electron-donor centers and conse-

quently changing the conductivity of the crystal from p- to n- type. The presence of this

donor-trap (Fe2+-Fe3+) site facilitates the build-up of a space-charge field, which manifests

as faster response time and higher two-beam coupling gain. The Fe3+ ion can substitute

for a Nb5+ or a K+ ion. However, the experiments could not conclusively distinguish

between Fe3+
Nb - VO and Fe3+

K - VK centers as the source of Fe2+ donors, although the

results in the reference [67] seem to support Fe3+
K - VK as the principal photorefractive

center.

5.2 Theoretical Models

Ideally, all three different types of centers ought to be considered theoretically. Modeling

the Fe3+
Nb - VO and Fe3+

Nb centers sufficiently accurately is computationally feasible within

DFT. However, molding the Fe3+
K - VK center with comparable accuracy turns out to be

computationally intractable at present for reasons described below. Therefore, the con-

clusions drawn from the pewswnt theoretical investigation are based on DFT calculations

for the first two types of impurity centers alone.

The Fe3+
Nb - VO complex is modeled using a 2×2×2 KNbO3 supercell. This large

unit cell ensures sufficiently small interactions between the defect-vacancy complex and

its periodic images. One of the sixteen Nb-sites, in the supercell, is substituted with a

Fe atom. Whether it adopts the Fe3+ oxidation state depends on whether that state is

energetically favorable. To make a likely outcome, an oxygen vacancy, in the first nearest

neighbor shell of FeNb, is introduced. This would allow a +3 ion to form on a nominally
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+5 site, without incurring the cost of non-neutral charge. A charge-neutral unit cell is

essential for calculations based on a periodic system, in order to avoid unphysical infinite

Coulomb energy that would otherwise result.

The isolated Fe3+
Nb center is modeled in a similar way as above, substituting a Nb5+ ion

with a Fe3+ ion. The only difference is the position of the charge-compensating vacancy,

which needs to be far away from the Fe-impurity to ensure minimum influence on the im-

purity which then can be considered to be isolated. Constrained by the size of the 2×2×2

supercell, the oxygen-vacancy is chosen to be located in the second coordination shell

of FeNb. It is a reasonable approximation that this non-coordinating vacancy will leave

the impurity isolated since KNbO3 has a high dielectric constant. These considerations

indicate that, attempting to model Fe3+
K - VK complexes, suitably charge-compensated

by additional vacancies and guaranteeing sufficiently small interactions between periodic

images, would require even larger unit cells and consequently greater computational re-

sources.

Within Quantum Espresso (QE), the DFT-based tool used for theoretical investiga-

tions in this dissertation, there is an option of adding an extra electron to a unit cell. To

make calculations feasible under the cumulative effect of the charged unit cell, QE adds an

uniform jellium compensating background charge. In the context of the work presented

in this section, additional calculations were carried out in which an electron was added to

the Fe3+
Nb - VO and isolated Fe3+

Nb systems. It was assumed that if this extra electron binds

to any of the Fe-centers, thereby reducing it to +2 state, it would be able to identify the

preferred Fe-center candidate for reduction.

Four types of impurity centers in KNbO3 were modeled: a Fe3+
Nb - VO complex, an

isolated Fe3+
Nb, a (Fe3+

Nb - VO) + e complex and an isolated Fe3+
Nb + e. The calculations

in the following sections were performed using DFT in the local density approximation.

In an attempt to understand the local environment of the various defect centers at a

microscopic level, electronic properties such as band structures, total DOS and projected
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DOS are calculated and compared. To account for the metallic nature of the substitutional

impurity Fe, spin polarized calculations are carried out. The results corresponding to the

spin-up (↑) and spin-down (↑) configurations are presented separately.

5.3 Results

5.3.1 Fe3+
Nb - VO and Fe3+

Nb centers:

The band structures, total density of states (DOS) and projected density of states (pDOS)

corresponding to a Fe3+
Nb - VO and an isolated Fe3+

Nb center in Fe-doped KNbO3, are shown

in Figs. 5.1 and 5.2. The vacancy in the surrounding O-octahedra coordinates with the

impurity FeNb in the first case, while it is non-coordinating in the second arrangement.

The first column of Fig. 5.1 contains two plots related to the spin-up (↑) and spin-down

(↓) states of Fe3+
Nb - VO, while the second column contains the same for the Fe3+

Nb. Each

of the plots in Fig. 5.1 consists of three subplots that share a common ordinate energy

expressed in eV. It is to be noted that the zero of the energy is adjusted to the position

of the top of the valence band in the pure host. The subplots are as follows:

(i) The left pane represents the k-resolved band structure of the two Fe-centers, currently

discussed, along the path Γ → X → R → Y → Z → S, in the first BZ corresponding to

the unit cell under consideration.

(ii) The middle pane shows the total DOS of the same system. The scale, indicated at

the top of the plot, is over the range 0 to 2400 states/eV.

(iii) The right pane shows the pDOS and highlights the presence of the impurity levels in

the valence band, conduction band and band gap. The scale, in this pane, ranges from 0

to 240 states/eV. The Fermi energy, EF, denoted by a red dotted line, runs through all

the subplots.
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Comparison of the band structure plots of host KNbO3 containing Fe3+
Nb - VO and

Fe3+
Nb centers indicate that the two share most of the broad features, differing only in

some small details. In the spin-up states, two impurity bands can be identified in the

band gaps of the respective modeled systems. These are eg-derived bands arising from

the octahedral crystal-field splitting of the impurity 3d levels. The remaining three lower-

lying t2g-derived bands are already within the valence band and cannot be distinguished

clearly. The origin and the distribution of t2g-eg levels have been described in detail in

Chapter 4. The states within the band gap are occupied and almost entirely composed of

iron 3d orbitals, with slight niobium 4d participation in both instances. Another notable

feature of these impurity bands, in both cases, is the fairly high amount of dispersion in

the upper eg band. Ideally, a truly isolated impurity band would be flat. However, the

dispersion of this impurity band can be attributed to the high doping concentration of this

model, which is 6.25%. Thus the interaction between the dopant and its images was not

entirely mitigated. A closer look at the spin-up impurity bands reveals that the splitting

between the two eg bands is larger in the Fe3+
Nb - VO system than in Fe3+

Nb. Another notable

feature is the relative flatness in the lower eg band and the corresponding sharp peak in

the DOS and pDOS plots in the case of FeNb center with a coordinating oxygen-vacancy.

Fairly high residual dispersion in the corresponding eg state, manifested as wriggles, with

reduced peak in DOS and pDOS plots, characterize the non-coordinating system.

For the ↓ states in both models, a group of three t2g-derived bands appear at the

conduction band edge. None of these bands are filled. A closer examination of the DOS

results indicate that the general features of the spin-down impurity states in both systems

are similar, with the exception of a second peak appearing around 2.5 eV in the Fe3+
Nb - VO

system, which is absent in the Fe3+
Nb system. This peak corresponds to a flat eg-derived

band. The higher energy eg-derived band is outside the calculated energy range, and for

the Fe3+
Nb system the spin-down eg impurity bands are both outside the energy range.
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Fig. 5.2 shows pDOS plots showing detailed contributions of the s, p and d orbitals of

each of the K, Nb, O and Fe atoms, to the conduction and valence bands as well as the

impurity bands for the Fe3+
Nb - VO and the Fe3+

Nb systems. Each subplot, corresponding to

an atom type, shows the pDOS due to the different orbitals involved, in both the spin-up

and down configurations. It is to be noted that the scales of pDOS due to various atoms,

are different, ranging from 4 states/eV for K to 40 states/eV for Nb and O and finally

240 states/eV for Fe. Since these plots are oriented differently from the band structure

plots, it is to be noted that the region to the left of EF denotes the valence band and that

to the right is the conduction band. The contribution of the K atoms in the energy window

displayed, as observed from the pDOS plots, are found to be in both these systems. It

was seen in Fig. 3.2, in the pure host, that oxygen p states are solely responsible for

forming the top of the valence band (VB) while the bottom of the conduction band (CB)

is mainly due to Nb d orbitals. In presence of the impurity Fe3+, the contributions from

Fe d is superimposed on these features. The result is that, in the spin-up configuration,

the bottom of the CB is primarily due to Nb d as in pure KNbO3 while the Fe d character

dominates the VB top. In the spin-down configuration, the CB bottom is primarily due to

Fe d states while the O p contribution is predominant in the VB top. In other words, the

Fe d assumes a key role, depending on the position of the impurity bands and competes

with or dominates over the background host pDOS distribution. Further, the impurity

bands are observed to be entirely made up of Fe d states in both spin-up and down

cases, as expected. It should also be noted that differences are present in the details

of the impurity-state features that are not significant enough to affect any dynamics in

the real material appreciably. In the pDOS corresponding to Fe3+
Nb - VO, a sharp peak,

corresponding to the localized, lower-lying eg band, near the VB, is noted in the spin up

scenario while this feature is broader and higher in energy in Fe3+
Nb-related pDOS. This

corroborates the data obtained from the band picture where the same eg is dispersive.
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The shape and amount of dispersion of the higher eg band is approximately the same in

both the the vacancy-coordinated and non-coordinated cases of Fe3+
Nb - VO and Fe3+

Nb.

5.3.2 (Fe3+
Nb - VO) + e and (Fe3+

Nb) + e centers:

To contrast with the Fe3+ centers, Fe2+ complexes with coordinating and non-coordinating

vacancies were also studied. The results pertaining to this models are presented in Figs

5.3 and 5.4. An important difference to be noted, with respect to the Fe3+ model, is the

position of the Fermi level EF. To accommodate the extra electron, EF now runs through

the bottom of the conduction band. The results in Fig. 5.3, corresponding to the (Fe3+
Nb

- VO) + e and (Fe3+
Nb) + e models, indicate that, the general distribution and shape of

energy levels in ↑ and ↓ states remain largely the same as in the Fe3+
Nb - VO and Fe3+

Nb cases,

presented in the previous section. As mentioned before, two spin-up eg-derived impurity

bands appear in the forbidden energy gap, while the corresponding group of three t2g

bands are further down in the valence band. The lower-lying eg in (Fe3+
Nb) + e is more

dispersive than the (Fe3+
Nb - VO) + e case, a feature also noted in Fe3+ model without the

extra electron. The impurity levels are mostly made up of Fe 3d orbitals. For ↓ states,

the group of three t2g, levels, now partially filled, can be identified at the edge of the

conduction band. It can be inferred from these features that the extra electron added to

the models here does not really bind to Fe3+ ion and remains a free conduction electron.

The pDOS results for the (Fe3+
Nb - VO) + e and (Fe3+

Nb) + e systems are presented in

Fig. 5.4. Within the range of this calculation, the potassium involvement is found to

be negligible irrespective of whether the oxygen vacancy, VO, is coordinating or not. As

seen before in Fig. 5.2, O p and Nb d play an important role in the shape of the valence

band top and conduction band bottom, respectively, only when the Fe d-derived impurity

states are far far off from the respective regions. The details of the localized impurity

levels, made up of Fe d states, does not differ significantly except for the observation that
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Figure 5.1: Comparison of band structures, DOS and projected DOS of KNbO3 con-
taining Fe3+

Nb - VO and isolated Fe3+
Nb impurity systems for spin-up (↑) and spin-down (↓)

polarizations.

the trend of peak heights in the spin-up and spin-down states in the (Fe3+
Nb - VO) + e

system are opposite to that found in the Fe3+
Nb - VO model earlier.

Electron densities were also calculated and plotted for all the four complexes considered

i.e., Fe3+
Nb - VO, (Fe3+

Nb - VO) + e, Fe3+
Nb and (Fe3+

Nb) + e. Two dimensional plots, as shown in

Figs. 5.5 and 5.6, depict the distribution of electron densities around the impurity Fe ion

and the coordinating and the non-coordinating oxygen vacancies respectively. Charges

of the impurity and the vacancy, in all the four systems considered, were evaluated by
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Figure 5.2: Comparison of the projected DOS of K, Nb, O and Fe of KNbO3 contain-
ing Fe3+

Nb - VO and isolated Fe3+
Nb impurity systems for spin-up (↑) and spin-down (↓)

polarizations.
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integrating over a sphere of radius 0.875 Å centered around FeNb and VO. It was found

that:

(i) For the Fe3+
Nb - VO system: charge of the impurity was 13.027 and the the charge of

the coordinating vacancy was 0.082.

(ii) For the (Fe3+
Nb - VO) + e system: charge of the impurity was 13.065 and the the charge

of the coordinating vacancy was 0.086.

(iii) For the Fe3+
Nb system: charge of the impurity was 12.981 and the the charge of the

non-coordinating vacancy was 0.073.

(iv) For the (Fe3+
Nb) + e system: charge of the impurity was 13.016 and the the charge of

the non-coordinating vacancy was 0.077.

The importance of these calculations will be discussed in the Section 5.4.

5.4 Discussion

The following inferences could be drawn from the theoretical calculations presented in

this chapter:

(i) No significant difference in the electronic structure of the Fe3+
Nb -VO and the isolated

Fe3+
Nb systems could be identified. It has been found experimentally [67] that the reduction

of the Fe3+-ions in an oxygen deficient atmosphere causes a dramatic decrease of the

Fe3+ - V concentration, by about a factor of 30, while concentration of Fe3+
Nb remains

unaffected. Given the similarities in the electronic and energetic properties of Fe3+
Nb -VO

and Fe3+
Nb revealed by these calculations there is no reason that the former would behave

differently than the latter. under reducing conditions. Thus, it can be argued that the

concentration of Fe3+
Nb - VO is likely to remain unaltered as well. This indirectly points

towards the likelihood of Fe3+
K - VK centers playing a dominant role as electron traps,

thereby reducing the charge state of the Fe ion, at a K-site, from +3 to +2.

(ii) The band structures, DOS and pDOS corresponding to Fe3+
Nb - VO and (Fe3+

Nb - VO) + e
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FeNb

(a) Fe3+
Nb - VO model

VO

(b) Fe3+
Nb - VO model

FeNb

(c) (Fe3+
Nb - VO) + e model

VO

(d) (Fe3+
Nb - VO) + e model

Figure 5.5: Plots indicating the electron distribution around Fe ion and the coordinating
oxygen-vacancy,VO, in Fe3+

Nb - VO and (Fe3+
Nb - VO) + e systems.

centers are strikingly similar. This shows that the extra electron that was added to

the unit cell, does not bind to Fe3+ ion, but rather remains a free conduction electron.

Furthermore, the electron density plots in the Fig. 5.5a do not indicate any additional

charge build-up around FeNb as compared to that seen in the Fig. 5.5c. It is to be noted

that the nominal charge of Fe is 16, as verified from the corresponding pseudo potential file

and the charge of the impurity Fe3+ ion, was found to be 13.027 and 13.065 in Fe3+
Nb -VO

and (Fe3+
Nb -VO) + e models respectively. Charge evaluation around VO, ideally expected

to be zero, also indicate that the external electron did not bind to Fe3+ - VO complex. The
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(c) (Fe3+
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(d) (Fe3+
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Figure 5.6: Plots indicating the electron distribution around Fe ion and the non-
coordinating oxygen-vacancy, VO, in Fe3+

Nb and (Fe3+
Nb) + e systems.

minor deviation of the calculated charges form the expected nominal charges is due to the

contribution from the bonding electrons. Additionally, the non-preference of the added

electron to bind to the impurity ion is also reflected in the isolated Fe3+
Nb and (Fe3+

Nb) + e

systems that provides additional evidence to the claim in (i) above that Fe3+
Nb -VO and the

isolated Fe3+
Nb systems behave in the same way. Therefore, in this study, Fe3+

Nb - VO did

not exhibit any preference for reduction, indicating that Fe3+
Nb - VO might not be readily

reducible in the real sample. Therefore it can be concluded that Fe2+ donors are probably

primarily obtained from K-site Fe substitutional impurities.

88



Therefore, the theoretical investigations presented in this section indicate the like-

lihood of a different Fe3+ - V center acting as the dominant impurity candidate for

reduction, e.g., the Fe3+
K - VK site proposed in Ref [67]. It will be fruitful in future

first-principles based calculations on KNbO3 crystals to examine these Fe3+
K - VK centers,

however at present these calculations were deemed computationally prohibitive.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In the investigations described in this dissertation, first-principles-based Density Func-

tional Theory was used as a tool to study doped KNbO3, a technologically important

photorefractive crystal. The effects of Nb-site substitution of pure KNbO3, by a series of

3d transition metals in the +3 oxidation state, e.g., Cr, Mn, Fe, Co and Ni were studied.

Qualitative trends in defect level energies with the positions of the dopants across the 3d

row of the periodic table were identified. These trends could be interpreted in terms of

crystal field and exchange splitting. By examining these results based on KS eigenval-

ues, electron and hole excitation systematics for doped KNbO3 were predicted without

making any quantitative claim. KNbO3:Cr was found to be the most likely candidate for

infrared-sensitive photorefractive applications.

A number of Fe-vacancy complexes were also studied in an effort to determine the

dominant source of the Fe2+ ions in reduced iron-doped KNbO3 that causes enhanced

photorefractive performance. No evidence, in terms of electronic structure properties

e.g., band structure, DOS and pDOS, were found that would support the possibility of

Fe3+
Nb - VO center being more readily reducible to Fe2+ than the isolated Fe3+ center. This
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implicitly provides evidence for the Fe3+
K - VK center as the dominant reducing center as

reported in the experimental work of Basun and co-workers [67].

6.2 Future Work

6.2.1 Ag Co-doping:

It has been shown that co-doping KNbO3 with Ag enhances linear absorption, photocur-

rent and photo refractive beam coupling efficiency of the crystal [118,119]. For theoretical

understanding of the processes that control the figures of merit microscopically, the DFT-

based model for Fe3+
Nb - VO center, described in detail in Chapters 4 and 5, has been

modified, where, now, in addition to a coordinating oxygen vacancy, a next nearest neigh-

bor K+ ion, belonging to the second coordination shell of FeNb is replaced with Ag+ ion.

Preliminary band structure data, as obtained in this ongoing work, is shown in Fig. 6.1.

The impurity levels, in the bandgap, contributed mostly by iron d states are not influenced

by the silver co-dopant. This behavior is expected as the Ag ion is sufficiently distant from

FeNb. The top of the valence band shows significant Ag participation, a feature that needs

to be studied in detail. DOS and pDOS calculations for the silver co-doped KNbO3:Fe

with Ag+ ion replacing a nearest neighbor K+ in the first coordination shell of FeNb, are a

part of an ongoing investigation. Additionally, copper co-doped KNbO3:Fe with nearest

neighbor and the next nearest neighbor K-vacancies are also being investigated.

6.2.2 Direct Fe2+ Modeling:

The enhanced photorefractive performance of reduced Fe-doped KNbO3 demands addi-

tional investigation. Explicit modeling of the Fe2+ - VO defect-vacancy complex, to verify

the approximate results of the subsection 5.3.2, would be a step forward. Another worth-

while effort would be the investigation of systems containing Fe2+
K - VK where the Fe2+
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ion now occupies a K-site and the vacancy is created by removing a K atom in the first co-

ordination shell. These calculations would require larger supercells to incorporate charge

compensation and reduced interaction between dopant center and its images. This would

require the use of more powerful computational resources.
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Appendix A

Miscellaneous

A.1 Thomas Fermi Model

Thomas Fermi model takes advantage of the fact for an ideal, homogeneous, non-interacting,

classically repulsive gas, the dependence of electronic density to the Fermi energy is ex-

plicitly known [120]. Therefore,

T [Φ] ≈ TTF [n] = CF

∫
d3r n5/3(r) (A.1)

where CF = 3
10

(3π2)
2
3 = 2.871 in Hartree units. The approximate internal potential

energy of the electrons, completely ignoring electron correlation and exchange, is the

classical Coulomb interaction energy of electron density n(r) acting with itself and is

given by

Vee[Φ] ≈ J [n] =
1

2

∫ ∫
d3r1d

3r2
n(r1)n(r2)

|r1 − r2|
(A.2)
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Therefore the total energy E, as in (2.11), can be expressed as a pure functional of the

electronic density

E ≈ ETF [n] = CF

∫
d3r n5/3(r) +

1

2

∫ ∫
d3r1d

3r2
n(r1)n(r2)

|r1 − r2|
+

∫
d3r v(r)n(r)

(A.3)

Exchange (Thomas-Fermi-Dirac model) and correlation [121] can also be included in this

model. The crude approximations in the Thomas-Ferm model fail to incorporate the cru-

cial quantum mechanical effects related to exchange and correlation leading to anomalous

quantitative predictions in areas such as shell structure in atoms and Friedel oscillations in

solids. The cause of such inaccuracies rests mostly on the fully local treatment of kinetic

energy.

A.2 Hamiltonian Variational Principle

An important stepping stone in understanding DFT is the Variational principle. The

ground state energy of a system, Egs, is given by the expectation of the Hamiltonian as

Egs = min
ψ

〈Ψ|ĤΨ〉
〈Ψ|Ψ〉 (A.4)

where the minimization is over all the variables of Ψ. Following variational principle, any

guess or trial solution for the ground state energy Etrial ≥ Egs, the equality sign being

valid only when the trial is the exact solution. Let us represent a normalized trial wave

function Ψtrial in terms of coefficients ci as

|Ψtrial〉 =
∑
i

ci|Ψtrial〉

〈Ψtrial|Ψtrial〉 =
∑
i

|ci|2 = 1

(A.5)
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Etrial = 〈Ψtrial|Ĥ|Ψtrial〉

= 〈
∑
i

ciΨi| Ĥ |
∑
j

cjΨj 〉

=
∑
i

∑
j

〈 ciΨn|Ej |ciΨj〉

=
∑
i

∑
j

c∗i cjEj〈Ψi|Ψj〉

=
∑
i

|ci|2Ei

= |c0|2E0 + |c1|2E1 + |c2|2E2 · · · + |cn|2En

(A.6)

{Ei} being an ordered set of solutions such that E0 <E1 <E2 · · · <En. For Etrial to be

the lowest ground state energy Egs the contribution from the higher order terms should

be zero or |c0|2 = 1.

A.3 Proof of Hohenberg-Kohn Theorem 1

Let us assume that two external potentials v
(1)
ext(r) and v

(2)
ext(r) that differ by no more than

an additive constant, yield two different ground states Φ
(1)
0 and Φ

(2)
0 with corresponding

eigenvalues E
(1)
0 and E

(2)
0 respectively, the ground state electron density n0(r) being the

same in both the instances. Following variational principle in A.2, we can write the

following inequality

E
(1)
0 = 〈 Φ

(1)
0 |Ĥ(1)|Φ(1)

0 〉 < 〈 Φ
(2)
0 |Ĥ(1)|Φ(2)

0 〉

〈Φ(2)
0 |Ĥ(1)|Φ(2)

0 〉 = 〈 Φ
(2)
0 |(Ĥ(1) − Ĥ(2) + Ĥ(2)|Φ(2)

0 〉

= E
(2)
0 + 〈Φ(2)

0 |Ĥ(1) − Ĥ(2)|Φ(2)
0 〉

= E
(2)
0 +

∫
d3r [ v

(1)
ext(r) − v

(2)
ext(r)]n0(r)

(A.7)
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Therefore we can write

E
(1)
0 < E

(2)
0 +

∫
d3r [ v

(1)
ext(r) − v

(2)
ext(r)]n0(r) (A.8)

Treating E
(2)
0 in exactly the same way we get

E
(2)
0 < E

(1)
0 +

∫
d3r [ v

(2)
ext(r) − v

(1)
ext(r)]n0(r) (A.9)

Adding (A.8) and (A.9) we get

E
(1)
0 + E

(2)
0 < E

(1)
0 + E

(2)
0 (A.10)

Clearly (A.10) is a contradiction leading to the conclusion that, for systems without de-

generate states1, two external potentials that differ from each other by no more than an

additive constant will always give rise to an unique ground state electron density.

A.4 Proof of Hohenberg-Kohn Theorem 2

EHK [n] = T [n] + Eint[n] +

∫
d3r vext(r)n(r) + EII

≡ FHK [n] +

∫
d3r vext(r)n(r) + EII

(A.11)

where

FHK [n] = T [n] + Eint[n] (A.12)

1Later, this was found to be valid for degenerate states as seen in [70].
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A.5 Steepest Descent and Conjugate Gradient

The simplest multivariate optimization technique which is quite inefficient is that of steep-

est descent. It is is stable, easy to implement and each iteration is computationally cheap.

Given a differentiable scalar function f(x), steepest descent iteratively slides down the

guess towards lower values of f by taking steps in the direction of the negative gradient

-5f . The negated gradient is the direction in which x would need to move to decrease

f the fastest. For the present purposes, the local gradient of the functional with respect

to Kohn-Sham orbitals, are used. It approaches the minimum in a zigzag way where the

new downhill search direction, always orthogonal to the previous, is stopped once a uphill

is encountered. Therefore, this algorithm uses information about the current sampling

point and neglects previous choices leading to its major drawback of slow convergence.

The philosophy of the Conjugate Gradient [122–124] method is to avoid this problem

by “learning from experience”, remembering the directions already explored. Here each

minimization step is carried out along a direction that is conjugated to all the previous

search directions. If gm is the steepest descents vector associated with iteration m, then

the conjugate gradients directions, dm, is given by

dm = gm + γmdm−1

where

γm =
gm · gm

gm−1 · gm−1

and γ1 = 0.

It is to be noted here that, given the number of plane waves involved in a calculation is

typically of the order ∼ 105, each iteration of a conjugate gradients minimizer could take

a long time. A preconditioning scheme is used to address this issue.
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A.6 Density of States

As shown in [75], and [120] given a general energy dispersion relation E(k), the density of

states per unit energy range per unit volume or just the density of states for convenience,

can be quantitatively expressed as,

D(E) =
∑
n

Dn(E) (A.13)

where Dn(E)dE is the number of allowed k points in the k-space of primitive cell, for the

nth band, in the energy range E and E + dE, calculated as shown below,

Dn(E)dE =
2

V
×
(
L

2π

)3 ∫
shell

dk ×


1, if E ≤ En(k) ≤ E + dE.

0, otherwise.

(A.14)

where the integral is extended over the volume of the shell in k space bounded by two

surfaces, Sn(E) and Sn(E + dE) on which the energy is constant at E and E + dE

respectively. The factor 2 arises as each level specified by n and k can accommodate 2

electrons and V is the volume of the cell. The volume integral can be converted into

a surface integral by considering that the element of volume between the two constant

energy surfaces, at a particular point k, is a right cylinder of base dS and altitude δk(k)

so that

Dn(E)dE =

(
1

4π3

)∫
Sn(E)

dk (A.15)

where δk(k) is the perpendicular distance between the constant energy surfaces concerned

and will carry from one point on the surface to another. Thus the difference in energy

between the two surfaces, dE, can be alternatively expressed in terms of the the k gradient

of En(k), 5En(k), which is a vector normal to the surface Sn(E) with a magnitude equal
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to the rate of change of En(k) in the normal direction. Therefore,

δk(k) =
dE

|5 En(k)| (A.16)

or, the density of states per unit volume per unit energy, for a given n is,

Dn(E) =
1

4π3

∫
Sn(E)

dS

|5 En(k)| (A.17)
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Appendix B

Band structure, DOS and projected

DOS of KNbO3 doped with various

3d transition metals
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(a) Band structure and total DOS of Ti3+-doped KNbO3 in spin-up (↑) configuration.
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(b) Band structure and total DOS of Ti3+-doped KNbO3 in spin-down (↓) configuration.

Figure B.1: Band structures and total DOS of KNbO3:Ti.
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(a) Projected DOS of K and Nb in ↑ and ↓ configurations of Ti3+-doped KNbO3.
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(b) Projected DOS of O and Ti in ↑ and ↓ configurations of Ti3+-doped KNbO3.

Figure B.2: Projected DOS of KNbO3:Ti.
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(a) Band structure and total DOS of V3+-doped KNbO3 in spin-up (↑) configuration.
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(b) Band structure and total DOS of V3+-doped KNbO3 in spin-down (↓) configuration.

Figure B.3: Band structures and total DOS of KNbO3:V.
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(a) Projected DOS of K and Nb in ↑ and ↓ configurations of V3+-doped KNbO3.
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(b) Projected DOS of O and V in ↑ and ↓ configurations of V3+-doped KNbO3.

Figure B.4: Projected DOS of KNbO3:V.
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(a) Band structure and total DOS of Cr3+-doped KNbO3 in spin-up (↑) configuration.
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(b) Band structure and total DOS of Cr3+-doped KNbO3 in spin-down (↓) configuration.

Figure B.5: Band structures and total DOS of KNbO3:Cr.
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(a) Projected DOS of K and Nb in ↑ and ↓ configurations of Cr3+-doped KNbO3.
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(b) Projected DOS of O and Cr in ↑ and ↓ configurations of Cr3+-doped KNbO3.

Figure B.6: Projected DOS of KNbO3:Cr.
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(a) Band structure and total DOS of Mn3+-doped KNbO3 in spin-up (↑) configuration.
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(b) Band structure and total DOS of Mn3+-doped KNbO3 in spin-down (↓) configuration.

Figure B.7: Band structures and total DOS of KNbO3:Mn.
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(a) Projected DOS of K and Nb in ↑ and ↓ configurations of Mn3+-doped KNbO3.
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(b) Projected DOS of O and Mn in ↑ and ↓ configurations of Mn3+-doped KNbO3.

Figure B.8: Projected DOS of KNbO3:Mn.
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(a) Band structure and total DOS of Fe3+-doped KNbO3 in spin-up (↑) configuration.
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(b) Band structure and total DOS of Fe3+-doped KNbO3 in spin-down (↓) configuration.

Figure B.9: Band structures and total DOS of KNbO3:Fe.
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(a) Projected DOS of K and Nb in ↑ and ↓ configurations of Fe3+-doped KNbO3.
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(b) Projected DOS of O and Fe in ↑ and ↓ configurations of Fe3+-doped KNbO3.

Figure B.10: Projected DOS of KNbO3:Fe.
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(a) Band structure and total DOS of Co3+-doped KNbO3 in spin-up (↑) configuration.
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(b) Band structure and total DOS of Co3+-doped KNbO3 in spin-down (↓) configuration.

Figure B.11: Band structures and total DOS of KNbO3:Co.
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(a) Projected DOS of K and Nb in ↑ and ↓ configurations of Co3+-doped KNbO3.
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(b) Projected DOS of O and Mn in ↑ and ↓ configurations of Co3+-doped KNbO3.

Figure B.12: Projected DOS of KNbO3:Co.
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(a) Band structure and total DOS of Ni3+-doped KNbO3 in spin-up (↑) configuration.
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(b) Band structure and total DOS of Ni3+-doped KNbO3 in spin-down (↓) configuration.

Figure B.13: Band structures and total DOS of KNbO3:Ni.
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(a) Projected DOS of K and Nb in ↑ and ↓ configurations of Ni3+-doped KNbO3.
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(b) Projected DOS of O and Ni in ↑ and ↓ configurations of Ni3+-doped KNbO3.

Figure B.14: Projected DOS of KNbO3:Ni.
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