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ABSTRACT 

 Technological advancements have added a new dimension to the teaching and 

learning of mathematics. Research has praised the use of simulations as a technological 

tool in probability instruction. Using a social constructivist perspective, this study 

addressed secondary students' reasoning about probability distributions using simulations. 

A probabilistic thinking framework developed by Jones, Langrall, Thornton, and Mogill 

(1999) and the GAISE curriculum framework endorsed by the American Statistical 

Association (2007) were used to trace the evolution of secondary students' probabilistic 

reasoning in this study.  

 Four classes of Advanced Placement Statistics students were randomly assigned 

to two groups, a control group using a formulaic, textbook-oriented approach to learning 

about probability distributions and a simulation group using physical and technological 

simulations to supplement their learning. Students were subjectively designated as low- 

and high-level students based on course histories and performance in the class. A mixed-

methods design included a pre-, post-, and retention test for quantitative sources of data 



and written feedback, student interviews, and observation notes for qualitative sources of 

data.  

 Results from the quantitative analysis did not show significant group differences 

on the posttest but did show significant group differences on the retention test.  

Performance level differences were significant on the posttest but not on the retention 

test, and the interaction of group and level was significant for the posttest scores but not 

for the retention scores. Low-level students in the simulation group appeared to benefit 

more from the simulations than the high-level students.  Qualitative results revealed that 

students in the simulation group reasoned differently about probability distributions than 

students in the control group. The simulations initiated new representational structures to 

aid the students in their conceptual understanding. Interviews, written feedback, and 

observations indicated a connected understanding of such critical concepts as 

randomness, variation, central tendency, distribution, and the law of large numbers.  

 Although the study reinforced the persistence of various probabilistic 

misconceptions, the results fuel an optimism that simulations can possibly lead to 

conceptual change in students' understanding of probabilistic concepts. The results 

indicate that using such exploratory instructional designs in the teaching of probability 

and probability distributions can lead to the achievement of an equilibrium among 

students in the classroom.  
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CHAPTER 1 

BACKGROUND AND RATIONALE 

Introduction 

 In his push for democratic ideals in education, John Dewey proclaimed the aim of 

education to enable students to think, to exercise “freedom of observation and of 

judgment” in an ever-changing world (Dewey, 1938/1997, p. 69). Advancements in 

technology have resulted in an information, data-driven society. For one to understand 

the current world in which one lives, it is necessary to process and interpret this deluge of 

data. In keeping with the push for social progress, the field of education must be in a non-

static, ever-changing pursuit of this goal. As a mathematics educator for the past twenty-

four years, I have been a buoy on the water – I have seen technology burst the dam of 

traditional, textbook-dominated instruction in the field of mathematics, thus opening an 

entire new frontier of learning. This new frontier is dynamic, animated, and allows 

students to delve much deeper into their cognitive potential than previous instruction. As 

I have witnessed a dramatic shift in the way we teach mathematics, I have also noticed a 

more subtle change in the curricular offerings at the secondary level. In the late 1990s, I 

was asked to teach an Advanced Placement (AP) Statistics course at my high school 

which tripled in enrollment the following year. A few years later when teaching Algebra 

Two for the first time in over seven years, I noticed an increased emphasis on statistics, 

probability, and data analysis in the course objectives. In addition to several sections of 

AP Statistics currently offered at my high school, the curriculum now includes a Discrete 
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Mathematics/Statistics course for college preparatory students, and all levels of the 

integrated math courses contain standards that include a data analysis component. 

 It appears that school systems are finally heeding the call toward the pursuit of 

statistical literacy. In his historical development of statistics education, Truran (2001) 

notes it was not until the last two decades that probability and statistics found a secure 

place in the primary and secondary agenda. The International Association for Statistical 

Education (IASE) replaced the former International Statistical Institute (ISI) Education 

Committee in 1991 which is when Vere-Jones claims "statistical education can be said to 

have come of age" (Vere-Jones, 1995, p. 3). The formation of this association was 

prompted by the International Conference on Teaching Statistics (ICOTS) Round Table 

conferences which began in the early 1980s and continue today. These gatherings of 

educators, researchers, government officials, and statisticians further the social and 

educative necessity of incorporating statistics and probability in the regular school 

curriculum. In 1994, in response to the growing concerns regarding world numeracy, the 

ISI Executive Committee formed the World Numeracy Project (WNP) with the goal “to 

spread quantitative skills around the world in areas and populations (especially in 

developing countries and among the young) that could benefit from increased knowledge 

of numbers and their applications, with particular regard to statistics.” (International 

Statistical Literacy Project [ISLP], 2012, para. 1).  IASE eventually reared this project 

thus increasing the statistical flavor of the initiative, and eventually in late 2001, the 

project was renamed the International Statistical Literacy Project (ISLP).  

 

 



 

3 

Curriculum Standards 

 Concurrent with the increased interest in statistical literacy from the IASE was the 

realignment of the National Council of Teachers of Mathematics (NCTM) Principles and 

Standards (2000) with an increased emphasis on data analysis and probability. An entire 

content standard titled Data Analysis and Probability appeared at all grade levels from 

pre-kindergarten through grade twelve. Objectives in this content standard for grades 9-

12 call for students to be able to: 

 Formulate questions that can be addressed with data and collect, organize, 

and display relevant data to answer them 

 Select and use appropriate statistical methods to analyze data 

 Develop and evaluate inferences and predictions that are based on data 

 Understand and apply basic concepts of probability (NCTM, 2000) 

Sub-objectives for understanding concepts of probability call for students to be 

able to: 

 Understand the concepts of sample space and probability distribution and 

construct sample spaces and distributions in simple cases 

 Use simulations to construct empirical probability distributions 

 Compute and interpret the expected value of random variables in simple 

cases 

 Understand the concepts of conditional probability and independent events 

 Understand how to compute the probability of a compound event  

(NCTM, 2000) 
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 A decade later we see individual states encouraging the development of 

probabilistic and statistical reasoning with the formation of the Common Core State 

Standards Initiative (CCSSI) (CCSSI, 2011). In an effort to provide consistent and 

rigorous expectations across the state and to prepare students for both college and career 

goals, educators and standards experts developed the Common Core Georgia 

Performance Standards (CCGPS) which were adopted as part of the CCSSI in Georgia in 

July, 2010 (Georgia Department of Education, 2011). Statistics and probability is one of 

the six conceptual categories of the CCGPS that encourage modeling and the exploration 

of empirical situations to improve reasoning skills and to make better, informed decisions 

(Georgia Department of Education, 2011). With the emphasis on modeling, the CCSSI 

cites the value of technology with visualizations of consequences with changing 

parameters and the ability to compare predictions with empirical data (CCSSI, 2011).  

The CCGPS encourages the use of simulations in model testing and statistical inference 

and the development of probability distributions using both theoretical and empirical 

probabilities (Georgia Department of Education, 2011).   

 Both the CCSSI and the NCTM Standards reflect the importance of developing a 

deep, conceptual, data-driven understanding of mathematics as opposed to a formalist, 

procedural, mechanistic approach and promote the role of teacher as guide in presenting 

students with “the opportunity to learn important content through their explorations of the 

problems and to learn and practice a wide range of heuristic strategies.” (NCTM, 2000, p. 

341). The added challenge facing those teaching probabilistic concepts is the abundance 

of erroneous judgmental heuristics that students, and even teachers, often use to solve 

problems involving uncertainty (Piaget & Inhelder, 1975; Kahneman, Slovic, & Tversky, 
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1982; Konold, 1989). Research shows that formal instruction in probability and statistics 

does not necessarily promote a deeper, conceptual understanding of the concepts of 

randomness and chance (Wilensky, 1995; Batanero & Sanchez, 2005). NCTM 

encourages the use of simulations to build probability distributions from empirical data 

and to help students overcome common probabilistic misconceptions (NCTM, 2000). 

Though the focus of this publication with regard to secondary probabilistic instruction 

appears to be on computer simulations, the text does emphasize the necessity of 

understanding the underlying reality that the simulation models purport to represent. 

Exposure to actual experiments involving dice and coins is encouraged. With such 

directive publications as NCTM’s Principles and Standards and CCSSI that provide the 

framework for many mathematics curricula adopted by school districts, there is an 

obligation to ensure these prescriptive expectations elicit the desired outcomes. My study 

seeks to illuminate the value of using simulations in the teaching of probability and 

probability distributions.  

Simulations 

 Published literature reviews indicate a growing interest in the use of simulations 

in the teaching of probabilistic and statistical reasoning, though many of these articles 

express merely anecdotal praises of the technology, affective benefits for the students, or 

small case studies (Becker, 1996; Mills, 2002). As Shaughnessy and Bergman (1993) 

pointed out in their directions of future research in probability and statistics, teacher 

partnerships in research can provide invaluable insight into the effects of instruction on 

student understanding of probability constructs, and simulations can offer a significant 

tool for exploratory situations involving data and chance . This study seeks to connect 
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teaching and research and enrich the empirical literature by looking further into the use of 

simulations as a tool for reasoning about probability distributions, overcoming 

probabilistic misconceptions associated with distributions, and developing appropriate 

conceptions in a classroom setting.   

 Statistics education is peculiar in that the content permeates the boundaries of 

many disciplines, and advancements in technology have widened this span. Many 

academic fields have conducted research relative to probabilistic reasoning as uncertainty 

is an ubiquitous state. Though many adhere to the distinction among mathematics and 

statistics, and subsequently mathematical reasoning and statistical reasoning, the reality is 

that more statistics courses are taught by instructors from mathematics departments 

(Moore & Cobb, 2000). Most certainly, this rings true in the secondary setting as 

typically no statistics departments even exist. Yet, as Truran (2001, p. 10) states in his 

cursory distinction, “the ‘Mathematics’ of stochastics seems to be less well defined than 

for many other mathematical topics.” Indeed, it may be this ambiguity and ambivalence 

of meaning that causes frustration for so many when learning stochastic concepts as this 

starkly contrasts the deterministic nature of the pure mathematical content with which 

students are accustomed. Shaughnessy and Bergman (1993) clarify the use of the word 

"stochastics" as referring to both probability and statistics.  Truran notes the insecurities 

many mathematics teachers experience with regard to teaching statistics and probability 

and proclaims the impending pedagogical challenge with his statement “Stochastics may 

have found a place within mathematics education, but this place is not yet secure” (2001, 

p. 10).  This study seeks to inform secondary mathematics educators as they are being 

asked to implement probability and statistics into their Common Core curricula. 
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Probabilistic Misconceptions 

 As a veteran teacher, I have always sought to understand how some mathematics 

topics evade students and create confusion. I seek to link concepts for children at their 

level of understanding and then attempt to find novel ways to present the mathematical 

topics to help the students have less difficulty. Repetitively, without fail, the topic that 

has most bewildered, alienated, and frustrated my Advanced Placement Statistics students 

each year has been the topic of probability. In their limited exposure to probability in 

such classes as Algebra Two, I have heard some of my brightest students say they were 

baffled by probability, and it contributed to their only “non-A” grades on mathematics 

tests. When I query the source of the difficulty, these students have been unable to put 

their finger on anything in particular, though they refer to “not understanding what the 

question is asking, not being able to gauge whether the answer seems correct or not, and 

not understanding what I am really finding.” Most likely these students were taught a 

relatively quick unit on probability and were instructed primarily with the use of 

axiomatic formulas for probability. I believe that this formalistic approach to teaching 

probability leads to conceptual difficulties which promote feelings of alienation and 

frustration.  

In an effort to help my students gain a better understanding of probability, I 

wanted to help my students place the confusing topic of probability in the bigger context 

of a probability distribution. I believe that some of the struggles with probability relate to 

errors from proportional reasoning most likely due to the prevalent use of proportions in 

rate calculations in prior mathematics courses. The students seem unable to distinguish 

between deterministic rate calculations and random outcome probabilities, both which 
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make use of proportional reasoning but in different ways.  I believe the evaluation of 

probabilistic tasks could be improved with more emphasis given to constructing and 

examining the sample space of outcomes prior to calculating the probability and thus an 

encouragement of distributional thinking (Prodromou, 2007b). Errors in both 

proportional reasoning and sample space have been noted in the literature (Jones & 

Thornton, 2005; Horvath & Lehrer, 1998).  

A challenge lies in the design of instructional activities that can eradicate these 

probabilistic misconceptions. Time constraints prevent activities that require large spans 

of time, and the manner in which methods of instruction are enacted could hinder as well 

as help a student’s understanding. Obviously, the abstract theoretical approach to 

teaching probability cannot eradicate these errors regarding proportional reasoning and 

sample space. The student has nothing concrete, visual, or real to support their 

conjectures making conceptual change and development unlikely. I believe the use of 

simulations in instruction can aid in improving these intuitive errors, though a critical 

consideration is how simulations can be used to improve them. A few years ago, I 

observed my student teacher using simulations to teach a unit on probability to my 

Algebra Two classes. The student teacher was not familiar with the use of simulations for 

teaching probability, and throughout the instruction of the unit, the concept of simulations 

and how they could be used to model random phenomena completely eluded the students. 

It reinforced the idea that simulations could possibly confound the already nebulous grasp 

of probability even more if not used in a constructive and meaningful way to promote 

understanding (Klein, 2005). I, too, had often sensed the reluctant use of simulations 

from students in earlier AP Statistics classes that I had taught as I assumed they were 
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confused by the lack of understanding of the tool itself. Comments from students when 

reviewing simulations for the AP Statistics exam echo a familiar “Yeah, I don’t really get 

those things.” 

 By monitoring student reasoning during simulations oriented to the development 

of the notion of probability distribution, this study addresses the challenge of how 

teachers can juggle customary pedagogical constraints yet still make constructive use of 

simulations specifically in the development of probabilistic reasoning.  

Research Questions 

 This study seeks to examine the use of simulations as an instructional tool for 

secondary school instruction on probability. Recent studies have confirmed that 

secondary students are capable of developing conceptions of the simulation process 

(Zimmermann, 2002). The literature also confirms that despite this understanding of the 

construction of simulation models and belief in the model itself, students continue to be 

plagued by common misconceptions of probability (Zimmermann, 2002). Research 

incorporating the use of computer simulation tools in the understanding of sampling 

distributions with college students indicates a persistent, underlying, foundational 

struggle with the concept of distribution (Chance, delMas, & Garfield, 2004). I believe 

the struggle to understand the inferential applications of statistics is rooted in the lack of 

understanding of the concept of a probability distribution. My belief in the concept of 

distribution as the primary, consolidating structure between exploratory data analysis and 

inferential statistics echoes similar beliefs of other researchers (Cobb, 1999; Bakker & 

Gravemeijer, 2004; Scheaffer, Watkins, & Landwehr, 1998). The evolutionary 

development of the construct of distribution provides the scaffolding necessary to extend 
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understanding to the abstract notions of sampling distributions. This study sought to 

narrow the analysis of the use of simulations in instruction specifically to monitor the use 

relative to the development of the construct of probability distribution. The following 

research questions propelled the study: 

1. Does the use of simulations as an instructional tool aid in improving 

secondary students’ understanding of probability distributions?  

2. How does the use of simulations as an instructional tool help and/or 

hinder secondary students’ understanding of probability distributions?  

For purposes of this study, probability distributions will be restricted to discrete random 

variables and are defined as a list of all possible values of the random variable and their 

associated probabilities (Yates, Moore, & McCabe, 1999). Yates and colleagues (1999,  

p. 287) define a simulation as “the imitation of chance behavior, based on a model that 

accurately reflects the experiment under consideration.” For the purposes of this study, 

simulations will include physical manipulatives such as dice as well as random number 

tables and technological simulations involving the TI-83/84 calculator and statistical 

software Minitab©. The majority of the simulations will use the Minitab© software.  
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CHAPTER 2 

THEORETICAL PERSPECTIVES AND REVIEW OF THE LITERATURE 

 This chapter highlights the theoretical perspectives that frame this research. Both 

learning and cognitive philosophies are discussed followed by past and current research 

relevant to this study.  

Theoretical Perspectives 

 This study is framed from a social constructivist perspective. I believe that 

students learn through active construction of their own knowledge. Through facilitation 

and probing, a teacher can help a student progress cognitively from their current mental 

state to a progressively higher level. In accordance with Vygotsky’s zone of proximal 

development (ZPD), a teacher can design a social setting of problem solving that fosters 

the development of a "budding" concept and guides a student towards the maturation of 

that cognitive development (Vygotsky, 1978). Cultural tools such as computers and 

calculators coupled with the social dynamics of the natural classroom setting can be used 

in a teacher's instructional design in such a way to encourage new conceptual models that 

help to promote understanding.   

 A theory that guided the design of my study is the theory of conceptual change.  

Although this theory of learning has its origin in science education, any field plagued 

with misconceptions could benefit from this theory which highlights testing prior 

conjectures and beliefs. The two primary components of conceptual change involve 

discovering students’ misconceptions about a specific topic and then using a myriad of  
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techniques to help students alter their erroneous conceptualizations (Davis, 2001). 

Posner, Strike, Hewson, and Gertzog (1982) initially proposed three conditions necessary 

to accommodate conceptual change. First, there must be a sense of recognized 

inadequacy and dissatisfaction with one's current conceptions. Subsequently, the new 

conception must be sensible and seem to fit cohesively into one's current schema. Finally, 

the new conception must be advantageous and show signs of productive and powerful 

ways of processing information (Posner, Strike, Hewson & Gertzog, 1982).  This initial 

theory of conceptual change was challenged due to the absence of the emotional or 

affective and was revised in 1992 to include the role of social, institutional, and 

motivational factors as a fourth condition in the process of conceptual change. The theory 

was broadened to suggest the notion that alternative conceptions could be induced as a 

result of instructional decisions (Tyson, Venville, Harrison, & Treagust, 1997).  Pintrich, 

Marx, and Boyle (1993) continued to push the motivational factor of learners as a 

necessary consideration for conceptual change and addressed the role that peer 

interaction, student-teacher interaction, learning communities, and classroom contexts 

may play in the actualization of that change (Pintrich, Marx, & Boyle, 1993). Teachers 

who promoted student engagement and inquiry-based tasks where students sensed control 

of their learning were more likely to see conceptual change in their students. Previous 

research supports that having students use simulations to  confront and reason with 

contradictory predictions involving sampling distributions helps to foster possible 

cognitive change and improve the impact of the technological tools on student reasoning 

(Chance, delMas, & Garfield, 2004). 
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Probabilistic Conceptions and Misconceptions  

 With the absence of data analysis and probability in Western academia until 

recent decades, much of the earlier research regarding probabilistic reasoning was 

conducted strictly with a developmental focus in the field of cognitive psychology. In 

their quest of explaining children's intuitive notions of chance, Piaget and Inhelder (1975) 

performed various random experiments with different age groups of children. With the 

primary goal to support his developmental theory, Piaget conducted various random tasks 

with children in three age groups: four to seven, seven to eleven, and eleven to twelve 

years. These groupings corresponded respectively with his proposed stages of cognitive 

development: the preoperational, concrete operational, and formal operational stages. 

Children in the preoperational stage predicted occurrences of random tasks with a sense 

of regularity and reversibility. They expected arrangements of colored balls to return to 

their previous state after being mixed. The awareness of possible outcomes did not follow 

an enumerative process, and intuitive judgments of prediction were highly subjective 

with reliance on such personal preferences as favorite color (Piaget & Inhelder, 1975). 

Children in the concrete operational stage recognized the pattern of random mixture 

though they were unable to formally operate within the mathematical structure of 

permutations. It was during this second stage of development that Piaget posited the 

recognition of uncertainty occurred. Subsequently, it was not until the age of eleven or 

twelve that Piaget noted the formal understanding of random behavior (Piaget & 

Inhelder, 1975). Piaget compared both random mixtures which could be observed 

physically as well as random tosses and drawings which he characterized as more 

abstract and requiring higher cognitive abilities than the physical observations. 
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Conclusions from both types of activities led to Piaget’s claim that it is not until the 

formal operational stage that children exhibit a probabilistic intuition founded on 

progressive quantification.  

 Fischbein (1975) challenged Piaget’s claims from a pedagogical standpoint. With 

a developmental rationale, Piaget had purposefully not considered the influence of 

instruction on children's understanding of chance. On the contrary, Fischbein assumed an 

interest in the notion of intuition and the interactive role of the instructional setting. He 

differentiated what he termed primary and secondary intuitions as intrinsic cognitions 

based on one’s individual life experience in contrast to those based on task-specific 

instruction.  Through Vygotsky’s influence with the zone of proximal development, 

Fischbein believed that appropriate pedagogical choices could alter one’s primary 

intuitions, though his extensive research that spanned several decades confirmed that this 

accomplishment would not be a simple endeavor. Similar to Piaget’s cognitive 

developmental stages, Fischbein developed a framework for the stages of probabilistic 

intuitions but one that was founded on instructional intervention. For children under 7 

years of age, the instructional effect was at a minimum though Fischbein did believe that 

children at this age exhibited some sense of the indeterminate nature of events. From 7 to 

12 years of age, children did seem to develop a mental schemata relative to prediction 

and to respond to instructional strategies for comparing odds, though this was also the 

stage where probabilistic misconceptions were believed to materialize. Finally, in the 

formal operational stage, the quantification of probability became more developed, 

receptivity to instruction improved, and children seemed responsive to either 

reinforcement or refutation of their predictions (Fischbein, 1975). Fischbein’s 
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contributions fuel the optimism to continue to develop and refine instructional methods to 

help students overcome common misconceptions with probability. The responsiveness to 

the refutation of the children's conjectures suggests the possibility of conceptual change. 

Through his work with children and probabilistic misconceptions, Fischbein and 

Schnarch hailed "probability does not consist of mere technical information and 

procedures leading to solutions. Rather, it requires a way of thinking that is genuinely 

different from that required by most school mathematics" (1997, p. 104). The author 

supports Fischbein's notion of the overemphasis on formalistic instruction in the school 

system as an impediment to probabilistic reasoning.  

 Around the same time that Piaget, and subsequently Fischbein, were developing 

frameworks regarding the evolution of probabilistic reasoning, the emerging paradigm of 

cognitive psychology began to permeate the realm of decision-making. Much of the 

founding research on probabilistic misconceptions is credited to the cognitive 

psychologists, Kahneman, Slovic, and Tversky (1982). These psychologists noted 

specific judgmental heuristics that people tend to use when making decisions regarding 

uncertain events. Through studies of primarily undergraduate and graduate students as 

well as panels of experts, they identified several erroneous, judgmental heuristics in the 

context of uncertainty.  The representativeness heuristic (Kahneman, Slovic, & Tversky, 

1982) occurs when people assume random behavior in the short run should resemble the 

long-term behavior of the population. For example, students may think that the sequence 

of boys and girls in BGGB is more likely to represent children in a family than BBBB. In 

a similar vein, people tend to neglect the effect of sample size on the possible outcomes. 

Given, for example, a population of 50% green and 50% red marbles, many may believe 
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the chances of getting 70% green would be the same regardless if you took a sample of 

10 or a sample of 1000 marbles. The representative heuristic also signals lack of 

understanding or acceptance of the concept of independence often termed “gambler’s 

fallacy”, that what occurs on one trial will not affect the occurrence on the next trial. If 

someone flips a coin and gets four heads in a row, they are likely to believe that the 

chance of getting a tail on the next toss is higher due to the four previous tosses 

(Kahneman et al., 1982).  

 The propensity to base probabilities on one’s unique experiences leads to the 

availability heuristic (Kahneman et al., 1982). One who experiences much sickness in 

their family may project the probability of various diseases to be higher than the actual 

figure. This error indicates the egocentric failure of one to consider the bigger population 

of probabilistic events.  

 Another debated heuristic is the neglect of base rates, often termed base-rate 

fallacy. When given prior probabilities, people tend to deem these as insignificant and 

only calculate probabilities on the limited information that they identify as important. 

Thus this heuristic produces faulty projections primarily with the calculation of 

conditional probabilities as people ignore the condition. Prior research on base-rate 

fallacy has often included examples that warrant personal stereotypical reactions. For 

example, subjects were informed of a 7:3 composition of engineers and lawyers. Yet 

when given descriptions of these individuals, the subjects assigned equal probabilities to 

the two professions (Kahneman et al., 1982). There is some debate regarding the validity 

of the base rate fallacy with incongruencies noted in laboratory settings versus real world 
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situations. These conflicts urge studies to delve deeper into the subject’s own mental 

processes and representation of the task at hand (Koehler, 1996).  

 The conjunction fallacy occurs when the chance of a compound event, A and B, is 

deemed more likely than that of one of the individual events and thus contradicts the rule 

of probability: (  and ) ( | )* ( ) ( | )* ( )P A B P A B P B P B A P A  . After presenting subjects 

with descriptions such as “ ‘John is 27 years old, with an outgoing personality. At college 

he was an outstanding athlete but did not show much ability or interest in intellectual 

matters,’” Kahneman, Slovic, and Tversky (1982, p. 95) found that subjects claimed John 

was more likely to be a “gym teacher” than just a “teacher.” 

 Konold (1989) furthered the misconception literature base initiated by Kahneman, 

Slovic, and Tversky with interviews that shed light on students’ reasoning in uncertain 

situations. From the verbal responses, it was deduced that students held a conflicting, 

non-normative view of the goal of the probabilistic task. The “outcome approach” was 

the term given to this reasoning that rested on the prediction of just a single outcome. 

Students who use this reasoning fail to see the task as one among many thus ignoring the 

relative frequency component of probabilistic calculations. The decisions tend to produce 

qualitative predictions with certainty such as “Yes, this event will happen” or “No, this 

event will not happen” and due to the emphasis on the single trial, students would also 

subsequently  judge their predictions with extremist evaluations of “right” or “wrong” 

once the event had occurred. The interpretation given to “50% chance” was admission 

that one was not sure what would happen, and chances between 0% and 100% were 

evaluated based on their proximities to the anchor values of 0%, 50%, and 100%. 

Another characteristic of those exhibiting the outcome approach is the causal justification 
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of the resulting outcomes. For example, in a bone tossing experiment (Konold, 1989), 

students felt that inspection of the bone or consideration of the thrower rather than 

inspection of repeated trials would yield a more accurate probability estimate. In a similar 

vein, these students rejected the use of an urn model with weighted stones as a 

representation of the sides of the bone. This result has significant implications for the use 

and acceptance of simulation models to imitate real-world random behavior. In the design 

of my study, I was interested in students' acceptance of both physical and technological 

simulations as models of random behavior due to this discrepancy noted in the literature. 

 Green (1990) conducted a four-year longitudinal study with a large sample of  

7-11 year olds on tasks involving random patterns and comparison of odds. He divided 

the students into groups according to gender and ability based on subjective evaluations 

of general reasoning ability. Over the four-year period, students showed similar 

improvement in random pattern tasks according to both gender and ability. There was, 

however, a significant difference in improvement according to ability on the more 

difficult comparison of odds questions with the higher ability students showing a 

dramatically higher percentage correct. Green speculated the role of school mathematics 

in this discrepancy as ratio and proportion were typically well-developed concepts in the 

school mathematics curriculum and random patterns were not.  

 The equiprobability bias has been observed in both younger and older students 

primarily evidenced with the previously mentioned misuse of the phrase “50-50.” 

Researchers have found that this penchant for equal assignment of probabilities extends 

even beyond events with more than two possible outcomes (Lecoutre, 1992). By 

changing tasks involving outcomes of a pair of dice to outcomes of geometric figures on 
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cards, Lecoutre suggested an improvement in the equiprobability bias for situations 

deemed less random by the students, though this improvement did not seem to extend to 

new situations. I believe this tendency comes partly from the type of proportional and 

part-whole reasoning the students have been exposed to in previous mathematics 

instruction and partly from their neglect of combinatorial reasoning with regard to order 

and construction of sample space. A greater emphasis on the visualization of sample 

space relative to the assigned probabilities may allow the students to modify this 

tendency.  

 As defined by Yates, Moore, & McCabe (1999), conditional probability of event 

B occurring given that A occurs is 
( and )

( | )
( )

P A B
P B A

P A
  when P(A) > 0, and the concept 

of independence of events is presented as satisfaction of the conditional statement P(B|A) 

= P(B). Not surprisingly, Fischbein and Gazit (1984) discovered that middle school 

students showed misconceptions related to the changing sample space with conditional 

probability of without replacement tasks. Students showed proportional errors when 

comparing part to part without considering the changing total number of outcomes.  

 Based on their research of middle school students, Tarr and Jones (1997) 

developed a framework for students’ thinking in conditional probability and 

independence that corresponded with other comparable frameworks showing cognitive 

development. In summary, level one is characterized by subjective evaluation of 

probabilities with a preponderance in the belief that one can control outcomes. Level Two 

shows an attempt to employ numerical reasoning in the calculation of probabilities, 

though representativeness and equiprobability misconceptions dominate their 

calculations. Level Three shows recognition of changing probabilities of outcomes 
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depending on preceding events though still shows a tendency to revert to 

representativeness, whereas Level Four distinguishes with and without replacement 

probabilities with minimal evidence of misconceptions. This framework was the 

validation study in conjunction with the development of a later probabilistic thinking 

framework developed from a socioconstructivist case study of third-grade students to 

address the instructional impact on probabilistic reasoning (Jones, Langrall, Thornton, & 

Mogill, 1999). With the same levels one through four, this study specifically addressed 

the constructs of sample space, probability of an event, probability comparisons, and 

conditional probability for both one-outcome and two-outcome events.  Though this 

framework was used in the evaluation of an instructional program for third-graders, the 

four-level design adapted from Biggs and Collis’ levels of cognitive thinking (Biggs & 

Collis, 1991) and the socioconstructivist orientation make it appropriate to use as a 

framework for probabilistic reasoning in my study as well. Instructional tasks were used 

in a case study to monitor students' maturation across the four constructs. Probabilistic 

reasoning was tracked relative to the four levels of development - subjective, transitional 

between subjective and quantitative, informal quantitative and numerical. Though the 

researchers were able to conclude that instruction helped to promote significant 

movement from one level to the next, results showed that progression was not necessarily 

uniform as some students reverted back to previous levels on later assessments. Students 

showed persistent struggles with listing outcomes of the sample space and incorporating 

part-part and part-whole reasoning to accurately calculate probabilities.  
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Technology and Simulation 

 Kaput and Roschelle’s view of technology in the field of mathematics education 

was one of liberation. As more and more students were expected to learn higher and 

higher levels of mathematics, they posited that computational media in the evolution of 

mathematical representations could result in a "democratisation of access to mathematical 

reasoning" (Kaput and Roschelle, 1997, p. 1). Through their work with the SimCalc 

Project and MathWorlds software, Kaput and Roschelle saw the tremendous value and 

potential of using technology to link multiple representations and add motion to a child's 

understanding of otherwise static conceptualizations. Though most of their work was 

with algebra students in learning the concepts of rates of change in preparation for 

advanced concepts in calculus, their promotion of the mathematics of change and 

variation was catalytic in the encouragement of simulations in probability and statistics 

instruction (Kaput and Roschelle, 1998). I agree with Kaput and Roschelle regarding the 

necessity to incorporate fluidity in our pedagogical decisions regarding probability 

distributions to avoid the shallow understandings of variation resulting from 

deterministic, formalistic methods of instruction. Though simulations have shown mixed 

results as an instructional tool in probability, as technological tools continue to advance, 

researchers continue to push for its use in developing students’ empirical understanding 

of probability and to allow for connections to be made between the various camps of 

probability theory. To date, the amount of formal research conducted on simulations in a 

realistic setting continues to be sparse (Batanero & Sanchez, 2005). Existing research is 

dominated by smaller case studies and qualitative analyses. The most successful 

examples of students’ conceptual change regarding probabilistic reasoning have been 
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instructional settings that encourage students to make predictions and then use empirical 

results to compare, confront, and reflect on their predictions (Tarr & Lannin, 2005).  

 Whole-class studies on simulations with a focus on probability distributions are 

sparse especially in the secondary setting. With the increased attention to probability and 

data analysis in the school curriculum, more studies are now being done to further 

Fischbein’s call and address the instructional impact on probabilistic reasoning. In her 

study with a comparable sample of AP Statistics students, Zimmermann (2002) 

conducted a whole-class teaching experiment with twenty-three participants to examine 

students' reasoning during probability simulations. Over a 12-day experiment, students 

were taught how to use probability simulations with their calculator to solve contextual 

problems involving probability. Students showed through instruction they were capable 

of understanding the underlying assumptions of a probability simulation mainly with 

regard to evaluating the validity of a probability generator, constructing a valid 

probability generator to simulate various contextual, probabilistic situations and use the 

results of the simulation to calculate empirical probabilities. Zimmermann noted that 

invalid reasoning typically resulted from student errors in proportional reasoning and 

determining appropriate sample spaces. Initial difficulties with two-dimensional trials 

tended to improve with instruction, and most of the students accepted the "randomness" 

of the output from the simulation devices. The primary tool used in Zimmermann's study 

was the TI-83 calculator.  

 delMas, Garfield and Chance (1999) have been conducting evolutionary studies 

on the effect of computer simulations with college students over a seven-year period 

looking for continuous improvement in the instructional tool. These researchers 
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specifically looked at undergraduate students’ statistical reasoning about sampling 

distributions using a computer program called Sampling Distributions programmed by 

delMas. The program was a student-controlled program that allowed for manipulations of 

shapes and changes in sample size.  While results indicated improvement in students’ 

statistical reasoning, most of the improvement was relative to visual assessment items 

indicating a persistent struggle to develop a deeper, conceptual understanding of 

sampling distributions and their connectedness with the concepts of sample, population, 

distribution, sampling, and sampling variability. From my own experience with sampling 

distribution applets that allow for student manipulation, I believe some of the difficulties 

resulting from the Sampling Distributions software stem from the student’s disconnect 

with the technological generation of the distributions. A possible scaffolding with 

students’ own generation of sample observations and sample means could possibly help 

foster a deeper connection between the resulting graphical representations and the 

underlying conceptual structures.  

Probability Distributions 

 Pratt and Noss (2002) questioned the scarcity of coverage of randomness and 

distributions in the middle and secondary curriculums contesting the implication that only 

high achievers could achieve this level of conceptual understanding.  Like Fischbein, 

Pratt and Noss believed that instruction dominated by deterministic models hindered 

children’s probabilistic intuitions. Their studies with 10 and 11-year old children 

interacting with computational devices used to simulate random devices called the 

Chance-Maker microworld showed that children began to see that manipulation of the 

workings box and repetition of trials led to fairness in the simulated random generators. 
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Pratt reminded us of the need to question the transference of knowledge from the virtual 

microworld setting to conventional settings and to pedagogically strive to merge the two 

closer together.  

 Prodromou and Pratt (2006) conducted design experiments in an attempt to design 

microworlds that encourage an assimilation between two perspectives of distribution, the 

data-centric perspective and the modeling perspective. The data-centric perspective refers 

to the data-driven empirical distribution resulting from the collection of actual data, 

whereas the modeling perspective refers to the theoretical distribution of all possible 

outcomes and their probabilities. Through iterations of simulations involving a Basketball 

microworld with small paired groupings of 14-15 year olds, Prodromou and Pratt sought 

to study the students' conceptions of the duality of causal and stochastic factors in the 

development of the construct of distribution. Both Prodromou and Pratt believe the key to 

statistical inference lies in the understanding of the merging of the two perspectives of 

distribution. Through their iterations of the Basketball microworld, Prodromou and Pratt 

concluded that the students were able to detect causal agents of variation as they 

manipulated the speed and release angle buttons. As the researchers began to introduce 

random error arrows, the students then began to discern another uncontrollable source of 

variation. In conclusion, the researchers deemed the students were able to perceive the 

difference between the data-centric model as the actual outcome versus the modeling 

distribution as the intended outcome with a growing sense of how the Law of Large 

Numbers helped to merge these two perspectives. On the other hand, their discourse did 

not illustrate an understanding of the underlying probabilistic source of both types of 

distributions. With an emerging emphasis on exploratory data analysis (EDA) in statistics 
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instruction, it is significant to remember to address the theoretical distribution as a source 

of the data-driven distribution. Again, however, with a strong reliance on animated 

computer simulations, one has to question the transference of the situated learning to a 

different setting and context.  

Curriculum Frameworks 

 The mission of the American Statistical Association (ASA) includes, among other 

aspects of promoting statistical science, the improvement of statistics education for all 

students (American Statistical Association, 2007).  As part of this strategic mission, the 

association provided grants for the creation of the GAISE report (Guidelines for 

Assessment and Instruction in Statistics Education) in August 2005 which detailed a 

curriculum framework for statistics instruction and assessment at both the Pre K-12 level 

as well as the undergraduate introductory level. The development of the framework is 

justified as the need for statistical literacy abounds in decision making inherent in both 

our personal and professional lives (ASA, 2007). The formal report was published in 

2007 and underlines the importance of the understanding of the concept of variation as 

the salient and striking distinguishing aspect between statistics and mathematics and thus 

includes progression in the understanding of the nature of variability as the driving factor 

in the development of  the four components of statistical problem solving (Metz, 2010). 

The framework presents these four components descriptively in terms of the application 

of variability at each stage: 

 Formulate Questions - Anticipating Variability - Making the Statistics 

Question Distinction 

 Collect Data - Acknowledging Variability - Designing for Differences 
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 Analyze Data - Accounting of Variability - Using Distributions 

 Interpret Results - Allowing for Variability - Looking beyond the Data 

(ASA, 2007, pp. 11-12) 

Although the Analyze Data component is the only one that specifies the use of 

distributions in the framework, all components essentially require the understanding and 

application of distributions as variation and distributions go hand in hand. The GAISE 

report recognizes that statistical literacy is a developmental process and thus specifies 

three levels of development within each of the four components. Levels A, B, and C 

assume a sequential developmental process, although these levels are not necessarily age-

specific or grade-level specific. From an instructional standpoint, the framework posits 

that Level A is a more teacher-centered goal, whereas B and C are more student-centered 

and aligned with a constructivist approach. For the Analyze Data component, the 

development in using distributions across levels is specified as: 

 Level A - Use particular properties of distributions in the context of a 

specific example 

 Level B - Learn to use particular properties of distributions as tools of 

analysis 

 Level C - Understand and use distributions in analysis as a global concept 

(ASA, 2007, p. 14) 

Though this framework was published after the design of my study, the results can be 

analyzed within this framework, and implications from my study can be made with 

regard to future instructional decisions regarding probability distributions and the GAISE 

framework.  
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 This research is well-situated at a time when exploratory data analysis is emerging 

as an integral part of teaching statistics. Modeling activities are encouraged as a way to 

make learning relevant and realistic to today’s society. Researchers agree that a 

conceptual understanding of distributions is a foundational component of understanding 

variation and making the connection to statistical inference. Computer simulations have 

shown promise in helping students formulate the relationship between a distribution 

formed by the collection of data and the conceptual abstraction of a probability 

distribution. With animated computer simulations, however, one must question the 

dependency on the machine itself and whether profound understanding of the underlying 

structures occurs. My study seeks to embellish the developing literature with regard to the 

role that random number simulations play in the development of students' reasoning of 

probability distributions in a whole-class setting. My study will specifically look at the 

connections made between sample space, probabilistic misconceptions, data distributions 

and probability distributions.  
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CHAPTER 3 

RESEARCH METHODOLOGY 

 This chapter outlines the action research methodology incorporated in this 

teacher-researcher study along with a description of the methods, procedures, 

instrumentation and data sources used in the study. The chapter is introduced with a 

description of a pilot study conducted two years prior to the actual study which was used 

to inform and develop the larger body of research.  

Pilot Study 

 The embryonic stages of this research took place with a brief pilot study I 

conducted with my Advanced Placement statistics students two years prior to the actual 

study discussed in this dissertation. At that time my rudimentary focus was on the role of 

simulations in students' understanding of randomness. The primary purpose of the pilot 

study was to provide a framework for developing the simulation tasks and classroom 

procedures that would eventually become the protocol for my larger study. The pilot 

study consisted of a two-day activity that allowed students to test their conjectures on 

various questions regarding randomness and probability by using dice manipulatives and 

group comparisons. The activity worksheet can be found in Appendix A. Twenty-seven 

students participated in the study that provided myriad data sources including students' 

written artifacts, researcher observations, witness observations, and audiotapes. The pilot 

study took place in February so the students had already covered the units on probability 
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and were currently learning concepts regarding sampling distributions and statistical 

inference.  

 On the first day students were given four multiple-choice questions to answer 

individually with written explanations justifying their cognitive processes. In addition, 

they were asked to rate their confidence level on each question from 1 (not confident at 

all) to 5(very confident). On the second day the students used a fair die with five faces 

marked black and one face marked white to simulate the following question from the 

previous day: 

 Five faces of a fair die are painted black, and one face is painted white. The die is  

 rolled six times. Which of the following results is more likely? 

  (a) Black side up on five of the rolls; white side up on the other roll 

  (b) Black side up on all six rolls 

  (c) Choices a and b are equally likely 

 

Students were asked to compare their individual simulation results with their original 

conjectures and to discuss any new discoveries. Belief in the simulation was tested as the 

students were asked whether they would change their original answer to the question and 

why. Subsequently, students were then asked to compare their results with other group 

members and pool their results with their group and eventually the entire class.  

 Quantitative analysis was used to calculate percentages of correct responses, and  

qualitative analysis was used to code responses according to appropriate reasoning, 

common misconceptions cited in the literature, and new emerging patterns or nuances.  

The following table summarizes the quantitative results: 
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Table 3.1  

Pilot Study Percentage of Correct Responses and Confidence Rating Results 

 

 Question 

#1 

Question 

#2 

Question 

#3 

Question 

#4 

Percentage of correct responses 44% 63% 22% 100% 

Confidence Rating Mean 3.5 3.6 3.7 4.3 

Confidence Rating Standard 

Deviation 

0.8 1.1 1.1 0.8 

 

The low scores on three of the four questions substantiated the persistent difficulties cited 

in the literature despite prior instruction in probability (delMas, Garfield & Chance, 

1999). Based on the confidence ratings, the students were fairly accurate in discerning 

their abilities to answer the questions appropriately, but interestingly, the qualitative 

analysis revealed that correct responses were not always justified with appropriate 

probabilistic reasoning. The question that presented the greatest struggle for students 

accentuated the documented difficulties with compound events and deficiencies in 

combinatorial thinking (Jones, Langrall, Thornton, & Mogill, 1999; Zimmermann, 2002).  

Qualitatively, students seemed to have a secure acceptance of the concept of 

independence as it related to Bernoulli trials and did not fall victim to the 

representativeness heuristic and positive or negative recency effects as shown by the 

results of Question #4. Linguistic analysis indicated a secure understanding of the 

construct as students were able to support the terminology with descriptive definitions. In 

addition, many students understood the Law of Large Numbers at some level and could 

describe why a hospital with fewer births would yield a gender proportion significantly 

different from 0.50. The most significant result to come from the pilot study was the 

affirmation that students could, indeed, construct their own knowledge from doing the 

simulations with minimal intervention from my teacher directives. Despite the simplicity 
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of the study, the results were rich in confident promises of teachable moments. The 

students were not afraid to admit their mathematical errors, and, in fact, welcomed the 

ability of the simulations to correct them in their thinking.  Many students expressed 

initial confusion and frustration with the simulations, but the group and whole class 

comparisons proved beneficial in transforming the perturbations to an enlightened 

awareness of variation differences in small and large samples. Curiously, the student 

perturbations seemed to elegantly mimic the noise and high variation inherent in random 

behavior - initial confusion and frustration with an eventual calming as stability 

increased, variation lessened, and patterns emerged with the increasing number of trials. 

Karol was a strong mathematics student who favored using formulas over doing the 

simulations, but she proclaimed at the end, "It appears that the law of large numbers is 

very important because the beginning simulations did not match the math but the more 

simulations we took, the more the results resembled the math. I am a firm believer in the 

math and this reinforced that feeling because my individual results were so different from 

my group, the class, and what the math said." Several of the stronger students failed to 

validate the simulation results that conflicted with their formulaic answers as they 

steadfastly supported and believed only “the math.” 

 In summary, pedagogical decisions that arose from the pilot study were the 

omission of audiotapes as they were too muffled, contained too much empty space, and 

did not provide value-added data to the analysis, inclusion of tasks that included peer-to-

peer and group comparisons to model short-term and long-term behavior, and a focus 

primarily on technological simulations over physical simulations due to a significant 

mistrust in the randomness of the die. Surprisingly, 67% of the students believed that 
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people have some form of control over the outcomes that result from rolling the die. The 

stronger students' stubbornness to validate the simulation was curious to me and 

influenced my decision to address performance level as a factor in my study.  

Research Methods 

 This study incorporated a mixed methods analysis with both qualitative and 

quantitative methods used to analyze the data collected. The structure of the analysis and 

frame for the research questions was a comparative design experiment to address 

differences in probabilistic understanding for students using simulations to guide their 

learning with students who learned the probability concepts in a more formalistic lecture 

and textbook setting. Quantitative methods consisted of a multivariate MANCOVA 

design to analyze posttest and retention scores from assessments designed to measure 

statistical reasoning. Using pretest scores as the covariate, mean scores on the posttest 

and retention tests were compared between the treatment group using simulations in the 

learning of probability concepts and the control group (traditional learning) to seek 

evidence of the effect of the simulations on student learning. Qualitative analysis was 

conducted to probe deeper into the conceptual differences between the two groups of 

students. Interview responses and written responses from student worksheets were mined 

for these differences in student cognitive processing.  

 As discussed by Greene, Caracelli, and Graham (1989), the mixed method design 

for this particular study serves the purposes of triangulation, complementarity, and 

expansion in an effort to give an extensive look into the common construct of students’ 

probabilistic reasoning. Description of subjects involved in the study, the sources of data, 
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the instruments used in the analysis, and the methods of analysis are all described in this 

chapter.  

 Much of the research on misconceptions of probability has been done in artificial, 

non-instructional settings (Piaget & Inhelder, 1975; Kahneman, Slovic, & Tversky, 

1982). Shaughnessy and Bergman (1993) encouraged the inclusion of teachers in future 

research regarding probability and statistics in the schools to help fuse the gap between 

the teaching and research communities and to allow for longitudinal record-keeping of 

changes in student conceptions and misconceptions in a realistic classroom setting. As 

both the principal investigator and teacher of the students in the sample, the research 

methodology for this study falls under the paradigm of action research with the primary 

goal to improve both teaching and learning in the specific mathematical context of 

probability. As described by Doerr and Tinto, the action research methodology evokes 

images of a “cyclic process of problem identification, action, and reflection aimed at 

changes in practice.” (Doerr & Tinto, 2000, p. 403). With action research, the teacher 

assumes a more dominant role in the generation of knowledge to add to the research base, 

and the immersion of research in one’s practice helps to fuse the perceived rift in research 

and practice. The effect of this type of research results in the reciprocity of benefits: the 

existing research is enhanced by  the applicability and relevance of knowledge gained in 

a practical setting, and the practitioner is informed and enlightened so as to improve his 

or her professional expertise.   The cyclical process whereby reflection helps to solve 

current problems regarding the teaching of a concept as well as to generate new problems 

is represented by Schön’s nodes of inquiry for the reflective practitioner (Doerr & Tinto, 

2000). This process consists of bidirectional links between knowing in action and 
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reflection in action to produce a continuum of discovery and new learning.  In essence, 

through this reflective inquiry that characterizes action research, the teacher begins to 

develop their dual role as teacher and researcher (Feldman & Minstrell, 2000). From their 

action research studies with sampling distributions, delMas, Garfield and Chance (1999) 

developed their own model of classroom research specifically adapted to statistics 

education. Four foundational questions are suggested to guide the instructors in their 

classroom research: 

 What is the problem? What is not working in the class? What difficulties 

are students having learning a particular topic or learning from a particular 

type of instructional activity? The identification of the problem emerges 

from experience in the classroom, as the teacher observes students, 

reviews student work, and reflects on this information. As a clearer 

understanding of the problem emerges, the teacher may also refer to 

published research to better understand the problem, to see what has 

already been learned and what is suggested regarding this situation, and to 

understand what might be causing the difficulty. 

 What technique can be used to address the learning problem? A new 

instructional technique may be designed and implemented in class, a 

modification may be made to an existing technique, or alternative 

materials may be used, to help eliminate the learning problem.  

 What type of evidence can be gathered to show whether the 

implementation is effective?  How will the teacher know if the new 
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technique or materials are successful? What type of assessment data will 

be gathered? How will it be used and evaluated?  

 What should be done next, based on what was learned? Once a change has 

been made, and data have been gathered and used to evaluate the impact 

of the change, the situation is again appraised. Is there still a problem? Is 

there a need for further change? How might the technique or materials be 

further modified to improve student learning? How should new data be 

gathered and evaluated?  (delMas, Garfield, & Chance, 1999, para. 1).  

My study followed this sequential model of classroom research and focused on the topics 

that, as a teacher, I had observed to produce the greatest difficulty.  

   As a veteran teacher who has seen teacher autonomy, respect and empowerment 

dwindle over the span of decades in her career, this exercise in study, reflection and 

change became a liberating experience renewing my faith in my expertise as a 

professional, my ability to come to know my students and intimately explore their 

understanding, and that through my direction and research efforts, I could come to better 

know my students and could responsibly make improved, informed decisions about the 

betterment of their learning. 

Participants 

 The setting for my study was a large, public high school in the southeastern 

United States in a suburban, predominantly middle to upper-class neighborhood. Four 

classes for a total of fifty-five students taking Advanced Placement (AP) Statistics 

comprised my sample. The subjects were predominantly seniors who had completed three 

years of mathematics prior to taking AP Statistics including Geometry, Algebra Two, and 
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Precalculus or Trigonometry respectively in that order.  Most of the students were on the 

honors or gifted track and, therefore, had taken Precalculus instead of Trigonometry. 

Differences in the curriculum for these two courses were minimal with rigor being the 

primary distinction.  Five of the students were gifted sophomores who were concurrently 

taking gifted Algebra Two, and five of the students were juniors who were concurrently 

taking Precalculus. There were eight AP Statistics classes offered at the school, and the 

subjects of this study had been placed in four of these classes based on their scheduling 

needs. This study was conducted prior to Common Core curricular revisions so exposure 

to data analysis and probability was limited. The study was conducted from November 

until early January of the 2007-08 school year. The subjects had completed units on 

exploratory analysis, normal distributions, regression, and experimental design prior to 

the start of the study. For all of these students, this course was their first extensive 

exposure to probability and statistics. The only prior instruction in probability was either 

in review courses for the Scholastic Aptitude Test or a small unit taught two years earlier 

in an Algebra Two course. Previous exposure to probability consisted primarily of the 

fundamental counting principle, compound events, and beginning combinatorics in the 

context of simple probabilistic tasks describing such things as marbles, coins, spinners, 

and dice. Students had very little exposure to technological simulations, and none of the 

students had prior experience with Minitab© software. An extensive unit on probability 

fits into the course outline for AP Statistics objectives with simulations of random 

behavior and probability distributions as required sub-topics under the probability strand. 

On the end-of-course AP examination, the students are often asked to analyze a string of 

randomly generated digits and to calculate and compare experimental and theoretical 



 

37 

probabilities. The dominant method of simulation in the AP Statistics curriculum is the 

random number generator on the Texas Instrument TI-83 graphing calculator. Students 

are expected to know and apply theoretical probability formulas, but simulations are 

recognized by readers of the exam as legitimate means for arriving at solutions to the free 

response and multiple choice questions on the exam.  

 I was the primary teacher for all four of the classes used in the study thus 

controlling for teacher variation. I have been a mathematics teacher in the public school 

system for the past twenty-four years and have taught statistics at the high school and 

college level for the past fourteen years. Although I have always believed in teaching 

mathematics for conceptual understanding, I had relied primarily on traditional teaching 

and lecture methods in the past. As a statistics instructor, I believe that technological 

advancements provide an opportunity for a greater population of students to access the 

learning of this subject. The technology provides a tool with the ability to quickly process 

large amounts of data and offer multiple representations for various statistical and 

probabilistic constructs. Students who struggle to understand the abstractions inherent in 

the formality of mathematics have a renewed hope in grasping a conceptual 

understanding of data analysis, probability, and statistics with the use of technology as a 

pedagogical tool. The AP Statistics curriculum calls for the use of the Texas Instruments 

TI-83 or TI-84 calculator as the technological tool of choice. The students who take the 

Advanced Placement test in May are allowed to use the calculators throughout the test. 

As a result, most of my prior instruction with my AP classes centered around using the 

calculator as opposed to doing computer simulations. I had some familiarity with using 

Minitab© from my college-level statistics courses so I chose this software to support the 
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majority of the simulation tasks in my study as I felt the simulations would be easier to 

program, easier to understand, easier to process large amounts of data, and had better 

visual graphics than the calculator to help the students form their conceptions of a 

distribution.  

 Two other AP Statistics teachers from my high school were used as witness 

teachers during some of the lab sessions. They observed the students and took notes 

during the simulation exercises. Although these teachers did not observe all lab sessions, 

their intermittent observations served to give third-party, unbiased feedback as well as to 

validate my own qualitative conclusions from the labs.  

Procedures 

 At the time of the study, I taught five sections of AP Statistics. Two weeks prior 

to the onset of the instructional unit on probability, I randomly selected one of the classes 

to serve as a comparison group in the development of the assessment instrument. A group 

of ten mathematics teachers from my high school and the students in the comparison 

group were given a pretest assessment. Results from this comparison were analyzed both 

quantitatively and qualitatively and were then used to adjust the questions on the pretest 

to its final form. The remaining four classes of AP Statistics were then randomly assigned 

to the treatment and control groups - two of the classes were used in each of the groups. 

One week prior to the onset of the instructional unit on probability, these four classes 

were given the revised pretest assessment. Two days before the start of the study, the two 

simulation classes were taken to the lab to be introduced to the Minitab© software to 

control for confounding effects from lack of understanding of the technology. The 

students were taught how to generate random data using the software, and assumptions 
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regarding randomness and independence were discussed. All of the students in the study 

were designated as low- or high-performing level based on previous course histories, 

prior grades in mathematics courses, and performance in the AP class thus far in the 

school year. Students were asked to volunteer to participate in one-on-one interviews 

throughout the instructional unit, and from this pool I selected three from each of the two 

comparative groups with a mixture of both low- and high-level students from each group.  

The decision to address performance level in my study was prompted by differences 

noted in my pilot study regarding the acceptance of the simulations and evidence in the 

literature that technological tools could aid in the teaching and learning of those students 

not as experienced in formal mathematics (Kaput & Schorr, 2002).  Unstructured, open-

ended interviews were given to the volunteer students at various times throughout the 

study based on my observations during each teaching lesson and based on both the 

students' verbal and written comments following each lesson. The instructional unit was 

organized according to the text used in the class titled The Practice of Statistics  (Yates, 

Moore, & McCabe, 1999). I chose and developed the simulation tasks based on my own 

research, similar tasks cited in the literature, my own beliefs regarding the use of sample 

space in developing the concept of a distribution, and the sequence of topics presented in 

the text. Both the treatment and control groups learned the same topics and were given 

the same notes on matched days throughout the instructional unit, although practice for 

the control group was conducted with textbook exercises during class and practice for the 

treatment group was conducted with simulations in the computer lab and in the 

classroom. At the end of the instructional unit, all four classes were given a posttest and 

subsequently a retention test three weeks later following winter break.   
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Instruments 

 The instruments used in the study consisted of a pretest given one week prior to 

the start of the instructional unit, a posttest given one week following the conclusion of 

the instructional unit, a retention test given three weeks following the conclusion of the 

instructional unit, and daily task worksheets given throughout the instructional unit. I 

developed all the instruments used in the study though they were adapted from research 

tools used in related studies and cited in the literature. One instrument, in particular, was 

used extensively in the development of the pretest, posttest, and retention test. Garfield 

(1998) initially developed  The Statistical Reasoning Assessment (SRA) as an instrument 

to be used in the ChancePlus Project to meet the increasing need of assessing secondary 

students’ understanding and application of appropriate statistical reasoning as the 

inclusion of these concepts in the secondary curriculum was on the rise. Early in my 

research on students’ struggles with probabilistic reasoning, Garfield’s research on 

sampling distributions sparked my interest which led to my pursuit in developing 

students’ conceptual understanding of distributions. The SRA is an objective assessment 

with 20 multiple-choice items heavily embedded with probabilistic computation and 

reasoning. The construction of the assessment was built on various types of reasoning 

associated with data analysis and statistical reasoning: reasoning about data, reasoning 

about representations of data, reasoning about statistical measures, reasoning about 

uncertainty, reasoning about samples, and reasoning about association (Garfield, 1998). 

Due to the prevalence of erroneous probabilistic intuitions evident from the research, the 

SRA also included items based on these common misconceptions cited in the literature – 

misconceptions involving averages, the outcome approach, sample percentages of the 
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population, law of small numbers, representativeness, and the equiprobability bias. Test 

retest reliability results for the SRA were 0.70 for the correct total score and 0.75 for the 

incorrect reasoning scores (Liu, 1998).  From the call for improved assessments in 

statistics education, a NSF-funded project called ARTIST (Assessment Resource Tools 

for Improving Statistical Thinking) spearheaded by Garfield and colleagues produced a 

refined and broader assessment called the Comprehensive Assessment of Outcomes in 

Statistics (CAOS).  Many of the 40 multiple-choice items on this assessment were 

selected from a database of questions developed from the ARTIST project. The relevant 

scales on this assessment were broadened to include such topics as bivariate data, 

sampling distributions, confidence intervals and significance testing (delMas, Garfield, 

Ooms, & Chance, 2007). Many of the items included in my pretest, posttest, and 

retention tests were pulled from this database.  

 My adapted assessment included questions primarily from the ARTIST database 

as well as some used in other studies on probabilistic reasoning (delMas, Garfield, & 

Chance, 1999; Konold, 1995; Fischbein & Schnarch, 1997; Konold, 1989). In addition, as 

my course was a preparatory course for the Advanced Placement test in May, I included 

some sample questions on probability from Barron's How to Prepare for the AP Statistics 

Examination (Sternstein, 2000).  My original pretest consisted of 25 questions including  

multiple-choice and true-false items. These items were primarily selected from the data 

representation and probability scales from the ARTIST database. Whereas the ARTIST 

scale identification labeled these items as probability literacy, probability computation 

reasoning, probability reasoning, and data representation literacy, I specifically chose 

items to correspond more specifically to the topics of sample space, shape of distribution, 
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proportional reasoning, probabilistic reasoning, representativeness, independence, 

compound events, conditional probability, law of large numbers, binomial distribution, 

and geometric distribution. To test the validity of my own assessment, the original pretest 

was distributed to a sample of ten mathematics instructors at my high school. Only four 

of these teachers had taught AP Statistics, three had tutored AP Statistics, and the 

remainder of the sample had very little exposure or experience in teaching probability 

and statistics concepts. The sample of "experts" was used to calculate a KR-20 internal 

consistency reliability coefficient, to support content validity with the appropriateness of 

the items for a secondary course on the introduction of probability and to make 

suggestions with regard to wording, bias or omission of topics. The contrasted groups 

approach was used to establish construct validity. One of five of my AP Statistics classes 

was randomly selected for instrument development. A two-sample t-test comparing 

teacher scores on the pretest with student scores showed that teachers fared significantly 

higher (t = 4.71, p value = 0.000, df = 14). The questions that proved the most difficult 

for both groups were those involving compound events. A KR20 coefficient for the 

pretest was calculated to be 0.77 showing a favorable measure of internal consistency. 

Based on a qualitative analysis of teacher comments and suggestions, five more questions 

were added, and some of the questions were reworded for clarity and gender neutrality 

reducing the confounding effect from question ambiguity.  

Interviews 

 Interviews were given to selected students from each of the two groups 

intermittently throughout the study. The interview questionnaires were typically 

unstructured, open-ended probability questions either identical to exercises covered in 
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class discussion or items analogous to these exercises. These interviews were informal 

and were often catapulted from a quick, cursory glance at the responses from the daily 

task worksheets or from interesting developments noted during the classroom tasks that 

warranted clarification or that generated some special interest in further pursuit. 

Interviews were conducted either during a student's advisement period during the day or 

after school. Following a similar "interview teaching approach" to other studies on 

students' probabilistic reasoning (Rubel, 2007), I typically watched a student perform a 

given exercise and asked the student to think out loud so I could more closely monitor 

their thinking. From their initial response to the question, I was able to further probe into 

the cognitive processing of the interviewed students. Journal notes and audiotapes were 

taken during each of the interviews to add to the data sources.  

Worksheets and Lab Activities 

 Worksheets for both groups and lab activities for the simulation group were used 

for each of the designated tasks in the study. The worksheets that were given each day 

prior to the simulation activity were the same for both groups to allow for me to monitor 

developmental differences throughout the study.  Theories of social constructivism and 

conceptual change guided my design of the labs. From a social constructivist perspective, 

I strategically designed the labs to build on knowledge developed in previous labs so the 

tasks would fall within the zone of proximal development (ZPD) (Vygotsky, 1978). 

Questions that I asked on the lab worksheets and ones I asked aloud as I monitored 

classroom activity were designed to provide scaffolding  so connections and learning 

could take place. I designed each lab activity with a goal to promote conceptual change 

through the simulation activity (Posner, Strike, Hewson, & Gertzog, 1982). Typically the 
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lab would begin with a scenario and question prompting the student to come up with an 

answer or make a conjecture or both. The student would then be guided on how to 

conduct a simulation using the technology and would subsequently be asked if they 

would change their answer or conjecture after conducting the simulation. Common 

misconceptions noted in the literature were used to choose activities that were likely to 

generate conflict with students' conjectures and predictions (Fischbein & Schnarch, 1997; 

Kahneman, Slovic, & Tversky, 1982; Konold, 1989; Lecoutre, 1992).  Students were 

given the opportunity to comment on discoveries made through the simulation so as to 

monitor conceptual change and cognitive processing during the activity.  

Research Journal 

 I kept a journal throughout the entire study recording my observations throughout 

the daily tasks for both the treatment group and control group as well as during the 

student interviews. Significant discourse was of particular interest as well as concepts 

that seemed particularly easy or difficult for the students. Two other statistics teachers 

observed the lab sessions on several occasions and recorded field notes of their 

observations as well. These notes were compared so triangulation could be achieved to 

strengthen validity of the researcher's observations and to supplement my own reflections 

of significant activity. 
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CHAPTER 4 

RESULTS OF THE STUDY  

 The following research questions guided the analysis of the data: 

1. Does the use of simulations as an instructional tool aid in improving  

secondary students’ understanding of probability distributions?  

2. How does the use of simulations as an instructional tool help and/or 

hinder secondary students’ understanding of probability distributions?  

The first question was addressed through quantitative analyses of the pretest, posttest, and 

retention tests given one week prior to the study, one week following the study, and three 

weeks following the study and winter break respectively. Qualitative analyses were 

conducted from comments on the pretest, responses on the daily task worksheets, journal 

notes from daily observations, student interviews, and comments on the posttest. The 

regularity of the qualitative sources of data allowed me to trace the developmental 

changes of the students from the beginning of the study through the end and to note 

transitions according to the probabilistic thinking framework and GAISE framework 

mentioned in the literature review (Jones, Langrall, Thornton, & Mogill, 1999; American 

Statistical Association, 2007).  

Quantitative Analysis of Results 

 To answer my first research question and confirm whether simulations as an 

instructional tool showed a significant treatment effect, four AP Statistics classes were 

randomly assigned, two each, to the treatment and control groups. The treatment group 
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was taught a unit on probability distributions over a two-week period with daily usage of 

either the TI-83 graphing calculator or Minitab© software in the computer lab. The 

control group was taught the same content over the same period of time but through 

textbook-dominated instruction, formulaic solutions, and notes given in class. Kaput and 

Roschelle posited that technology used as a pedagogical tool could "democratize access 

to ideas that have historically required extensive algebraic prerequisites." (Kaput, & 

Roschelle, 1997, p. 1).  In accordance with Kaput and Roschelle’s proposition and my 

own observations of performance-level differences from my pilot study, I used student 

course histories and performance in the class up to the point of the study to designate 

students as either low- or high-level students. A low-level designation does not mean the 

student is a low-performing student, in general, as all participants were placed in 

Advanced Placement Statistics. These low and high designations are relative only to 

other participants.  

 The assignment to groups resulted in the following student counts: 

Table 4.1 

Summary of Group Counts by Level 

 

Number of Students Low Level High Level Total 

Group 0 

(Control Group) 

17 12 29 

Group 1 

(Treatment Group - Simulations) 

12 14 26 

Total  29 26 55 

 

 Comparisons were made using a 2x2 factorial MANCOVA design using the 

pretest scores as the covariate. The two dependent variables were posttest and retention 

scores with two independent variables, Group (Treatment vs. Control) and Level (High 

vs. Low).  Means and standard deviations of the three assessments in the study are 
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presented in the following table. Scores on each assessment were calculated by the 

number of questions correct with maximum scores possible of 30. 

 Table 4.2 

 Summary of Assessment Means and Standard Deviations 

 

Assessment Mean Standard Deviation N 

Pretest 16.73 3.24 55 

Posttest 20.20 3.43 55 

Retention 19.47 4.26 55 

 

 Descriptive statistics with consideration of the independent and dependent 

variables are summarized in the table below: 
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 Table 4.3 

 Summary of Posttest and Retention Test Means and Standard Deviations 

 

                    Group      Level     Mean Std. Deviation N 

Post              Control       Low 

                                        High 

                                        Total 

                    

                     Treatment   Low 

                                        High 

                                        Total 

                    

                     Total           Low 

                                        High 

                                        Total 

16.82 

22.75 

19.28 

 

20.58 

21.79 

21.23 

 

18.38 

22.23 

20.20 

2.88 

2.56 

4.02 

 

        1.83 

2.55 

2.29 

 

3.10 

2.55 

3.43 

17 

12 

29 

 

12 

14 

26 

 

29 

26 

55 

Retention      Control       Low 

                                        High 

                                        Total 

                    

                     Treatment   Low 

                                        High 

                                        Total 

                    

                     Total           Low 

                                        High 

                                        Total 

15.94 

20.92 

18.00 

 

21.08 

21.14 

21.12 

 

18.07 

21.04 

19.47 

4.04 

3.90 

4.64 

 

        3.26 

3.16 

3.14 

 

4.49 

3.45 

4.26 

17 

12 

29 

 

12 

14 

26 

 

29 

26 

55 

 

 

 Figure 4.1. Group Means on Posttest and Retention Test 
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 From Figure 4.1 above we see that the means for the simulation group were 

higher on both the posttest and retention test than the control group.  

 

 

 Figure 4.2  Group Means on Posttest for Low- and High-level Students 

 

 From Figure 4.2 we see the posttest means for low-level students were higher in 

the simulation group than the control group, but means for the high-level students were 

slightly higher in the control group than the simulation group.  
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 Figure 4.3. Group Means on Retention Test for Low- and High-level Students 

 

 From Figure 4.3 we see the retention test means for low-level students were 

higher in the simulation group than the control group, but these means for high-level 

students were nearly the same among both groups. 

 For the MANCOVA analysis, the Box's Test of Equality of Covariance Matrices 

was checked for the homogeneity of variance assumption and was not rejected (p = .540). 

In addition, Levene's Test of Equality met the assumption of equal error variance of the 

dependent variables across groups for both dependent variables, posttest (p = .241) and 

retention test (p = .148). The pretest covariate showed a strong relationship with both 

posttest scores (p < .01) and retention scores (p < .001) after controlling for main and 

interaction effects. Finally, the Kolmogorov-Smirnov test was initially used to satisfy the 

normality assumption of the dependent variables across all groupings of the independent 

variables. 
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 Table 4.4 Kolmogorov-Smirnov Results 

Assessment Group Level K-S Statistic df Significance 

(lower bound)*  

Posttest Control Low .104 17 .200* 

Retention Control Low .165 17 .200* 

Posttest Control High .187 12 .200* 

Retention Control High .193 12 .200* 

Posttest Treatment Low .208 12 .159 

Retention Treatment Low .111 12 .200* 

Posttest Treatment High .193 14 .169 

Retention Treatment High .161 14 .200* 

 

 The multivariate tests of between-subjects effects did not show GROUP 

(treatment vs. control) as a significant main effect for the posttest scores (F(1, 50) = 

2.154, p = .148) but did show GROUP as a significant main effect for the retention scores 

(F(1, 50) = 4.309, p = .043). The tests showed LEVEL (low vs. high) as a significant 

main effect for the posttest scores (F(1, 50) = 21.456, p < .001) but not for the retention 

scores (F(1, 50) = 2.943, p = .092). The GROUP*LEVEL interaction was significant for 

the posttest scores (F(1, 50) = 6.934, p = .011) but not for the retention scores (F(1, 50) = 

1.804, p = .185). Main effect and interaction plots serve to illuminate these significant 

relationships: 
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 Figure 4.4. Marginal Means of Posttest by Group 

 

 The interaction plot of marginal means on the posttest show increased scores for 

the simulation group versus the control group for low-level students. A different pattern 

emerges for the high-level students as we see a slight decrease in the simulation group 

scores versus the control group scores.  

 

 Figure 4.5. Marginal Means of Retention Test by Group 
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 The interaction plot of marginal means on the retention test show increased scores 

for the simulation group versus the control group for both low-level and high-level 

students; however, as we see from the steeply-sloped line with the low-level students, the 

change is more prominent for the low-level students than the high-level students.  

 

 

 Figure 4.6. Marginal Means of Posttest by Level 

 

 Switching LEVEL to the horizontal axis more clearly shows the significant 

interaction effect on the posttest (p = .011). The control group shows a marked difference 

in performance between the low and high-level students on the posttest. The simulation 

group shows a greater balance in scores between the two different levels of students.  
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 Figure 4.7. Marginal Means of Retention Test by Level 

 

 From the retention test interaction plot, we once again see a greater imbalance in 

scores within the control group compared to the nearly horizontal line for the simulation 

group.  

 In summary, the quantitative results are informative, significant, and exciting. The 

evidence supports Kaput and Roschelle’s proposition of technology's ability to provide 

"democratization of access to mathematical reasoning" as we see substantially higher 

scores for the lower level students in the simulation group compared to their control 

group counterparts on both the posttest and the retention test (Kaput & Roschelle, 1997, 

p. 1). On both the posttest and retention tests, we see an equitable balance between the 

low- and high-level students' performance which is in stark contrast to the asymmetric 

inequity easily apparent in the control group results. In addition, the retention test 

discrepancy between the simulation group and the control group for both levels of 
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understanding of probability and probability distributions. For the low-level students who 

are often left bewildered and confused by formal probabilistic notions and formulas, the 

simulations appeared to offer a grounded, simpler approach to making sense of complex 

probabilistic ideas.   

Qualitative Analysis of Results 

 This next section of this chapter will take an evolutionary look at the qualitative 

differences in reasoning about probability and probability distributions from the 

beginning of the study with the pretest, through the daily labs and activities that ensued, 

and finally with the posttest and retention test. Recorded observations, audiotaped 

interviews with selected students of both levels, and student responses on daily 

worksheets provided the basis for these qualitative conclusions. The probabilistic 

thinking framework developed by Jones and colleagues provided a foundation for 

monitoring and organizing the growth and development in the students' thinking 

throughout the study (Jones et al., 1999).  

The Pretest 

 An item-by-item analysis of the pretest peformance for both the simulation group 

and the control group showed similar patterns. The pretest can be found in Appendix B.  
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 Figure 4.8. Pretest Proportion of Correct Responses By Question  

 

 The four most difficult questions for both groups (Questions 5, 17, 18 and 30) 

involved the shape of a binomial distribution given a real-life scenario, the most probable 

average number of defects of two cars given probabilities of the number of defects, the 

most probable outcome from a real-life geometric distribution, and a question illustrating 

the conjunction fallacy (Kahneman, Slovic, & Tversky, 1982).  A summary of the correct 

response percentages along with the content strand of the question for each group are 

given in Table 4.5 below: 
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Table 4.5 

Summary of Pretest Correct Response Percentages by Question  

 

Question Control Simulation Content 

1 17% 42% compound events 

2 52% 38% sample space 

3 48% 46% shape 

4 31% 31% binomial distribution 

5 17% 12% binomial shape 

6 34% 23% sample space 

7 76% 77% shape 

8 93% 88% independence 

9 93% 85% independence 

10 69% 73% representativeness 

11 34% 27% sample space  

12 76% 85% shape 

13 86% 62% shape 

14 41% 65% representativeness 

15 86% 92% proportional reasoning 

16 45% 42% law of large numbers 

17 3% 8% compound events 

18 7% 0% geometric distribution 

19 48% 73% independence 

20 62% 81% independence 

21 62% 85% shape 

22 55% 65% compound events 

23 45% 77% randomness 

24 55% 62% conditional probability 

25 45% 62% geometric distribution 

26 38% 46% equiprobability 

27 79% 100% randomness 

28 97% 100% outcome approach 

29 90% 100% independence 

30 10% 12% conjunction fallacy  

 

 A qualitative analysis using open coding and the constant comparative method 

revealed an abundance of common misconceptions throughout the pretest responses 

(Patton, 2002). The misconceptions were not readily apparent from all of the multiple-
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choice or true-false responses, but each question allowed a space for written feedback. 

These written responses from the students projected many of the misconceptions already 

noted in the literature and were coded accordingly. As the responses were mined, I 

compared the misconceptions to previously recorded ones seeking the emergence of any 

new misconceptions in the data.  

 Collectively, the students had a sound preliminary understanding of the shape of a 

distribution if given a picture of the graph as evidenced by the high percentages of correct 

responses for Questions 7, 12, 13 and 21. Shapes of distributions had previously been 

taught in the earlier weeks of the semester when covering exploratory data analysis. Very 

few students described the shape of the graph in terms of the association with probability, 

although one student responded with question 7 "I looked at how the frequency per week 

mainly decreased as the food costs per week increased creating a right-skewed 

distribution." The high percentage of correct responses to Question 21 along with 

explanations stating "the middle values are most likely to happen" confirmed the students' 

connection of shape and probability for the majority of the students in both groups. 

Students struggled to determine shape when this task involved independently calculating 

probabilities related to single or compound events as evidenced by the low percentages of 

correct responses in Questions 3 and 5. This low percentage was likely not due to the lack 

of understanding of shape but due to the lack of understanding how to calculate the 

probabilities themselves. Interestingly, several students took Question 3 and showed an 

overlay of Joe's right-skewed distribution with Tonya's symmetric distribution in an 

attempt to determine the shape of the distribution of the number of  books they will buy 

together. Most likely, this stems from prior instruction on combination of functions which 
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is actually an insightful strategy although ultimately they looked at the sum of the 

functions instead of the product and did not consider all possible combinations.  

 The pretest results indicated an excessive tendency to add probabilities and/or 

outcomes when determining compound event solutions regarding probabilities or sample 

space. This was resoundingly true for Questions 1, 2 and 22. One student even 

commented in the written feedback space "I know percentages but I don't know how to 

combine them." Difficulties with calculating probabilities of compound events has 

previously been noted in the literature (Polaki, 2005; Zimmermann, 2002).  In addition, I 

saw a tendency to compute averages when this calculation was not appropriate. For 

example, with Question 1 when computing the probability that Joe and Tonya will 

purchase no books, some students took Joe's probability of buying 0 books and averaged 

it with Tonya's probability of buying 0 books adding 0.5 + 0.25 = 0.75 and then dividing 

this by either 2 or 6. A student that divided by 6 commented "because it showed 6 

options." This tendency seems to stem from the tremendous preponderance to associate 

equal weights to all probabilistic calculations. I have seen a similar reliance on dividing 

by the total number of outcomes when teaching students to calculate expected value of a 

probability distribution. Cobb (1999) noted similar tendencies in his research and 

suggested this as a reflection of traditional, formalistic mathematics instruction. The 

students showed an attempt to answer the question quantitatively but with no logical 

arguments indicative of levels 1 and 2 in the Jones et al. probabilistic thinking framework 

(Jones et al., 1999).  

 As I anticipated, many students incorrectly relied on deterministic proportional 

calculations to answer some of the probability questions and even expressed their belief 
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that some information was missing when they were not given part-whole information in 

the problem. On Question 4, numerous students showed the proportion 90/100 = x/4 

which gave them an answer of x = 3.6 only to then completely ignore that the question 

asked for the LEAST PROBABLE value of x. Such reasoning is indicative of Level 2 in 

the probabilistic thinking framework (Jones et al., 1999). These students then put 3 or 4 

for their answer based on this x value. This indication supports my theory of a reliance on 

deterministic calculations from prior math classes where students view the goal as 

coming up with the one correct answer to the question based on evaluating a function or 

solving an equation. Question 5 student comments also confirmed a dependency on being 

able to find the correct answer or specific value rather than consider all possible 

outcomes. The question seeks the shape of the distribution of the number of correct 

answers if you guess on a 20-question multiple-choice test with 5 choices per question. 

One student commented  "I don't understand. How are you supposed to find the shape. 

Although you should draw a graph, on what basis. We don't have the correct answer. It's 

missing an entire variable." Similarly, another stated "Am I supposed to know how many 

are correct?" and another "You don't know how many are correct." These comments are 

an indication of the weakness and lack of understanding of a random variable with 

multiple outcomes and probabilities. Question 18 was a geometric distribution question 

stating that a basketball player makes 80% of her free throws and asking for the most 

probable number of throws it will take until she misses one. Students resorted to their 

familiar proportional rate calculations and set up the proportion 8/10 = 4/5 putting 4 as 

their answer even though the assumption of a fixed 5 trials was irrelevant to the question 

and to the type of distribution. Similarly, one student commented "I'm not sure how many 
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she is throwing anyways." Question 23 was a true-false question stating that a 60% 

chance of rain for the next five days means that it should rain exactly 3 out of the 5 days. 

Students who were typically dependent on proportional rate calculations showed 60/100 

= 3/5 and chose "true" for their answer.  

 Students also exhibited Konold's outcome approach on Question 23 with such 

responses as "Every day has 60% not the whole 5 days" and "Each day has a 60% chance, 

not the week" indicating their failure to see probability as a relative frequency application 

(Konold, 1989). This localized tendency and failure to see the more global aspect of 

outcomes in probability calculations can also be associated with Level 2 in the 

probabilistic thinking framework (Jones et al., 1999). 

 Collectively on the pretest,  most of my students exhibited level 1 subjective and 

level 2 transitional probabilistic thinking (Jones et al., 1999) with such subjective reasons 

as "because I've played yatzee before" to justify the most likely roll of three dice in 

Question 11 and "I don't get caught" for the reasoning in Question 29 regarding getting 

caught for sneaking out of the house. An attempt to list outcomes in the calculation-

oriented questions involving compound events and/or sample space typically showed an 

incomplete and unsystematic way of listing outcomes as noted in the framework for 

transitional thinking.  

 Amongst scattered evidence of the representativeness and independence 

misconceptions, the most protrusive misconception I noticed on the pretest was the 

equiprobability bias (Lecoutre, 1992). It was obvious through both calculations and 

comments that many students believed that probability meant "equal chance." On 

Question 6 regarding the most likely roll of a die with black and white faces, one student 
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put "they are both possible" and put "equally likely" as her response. Another put "It's 

probability" and selected "equally likely." Question 5 regarding the shape of a binomial 

distribution with 20 multiple-choice questions and 5 choices per question summoned the 

following responses: "Randomly guessing makes there an equal chance for every 

question" and "An equal number of choices per question should result in no skewness" 

followed by "It seems you would maybe get equally as many right as wrong if guessed."  

 Comparison charts of percentage of questions correct within each group by level 

of student are given below: 

 

 

 Figure 4.9. Pretest Proportion of Correct Responses By Question for Simulation  

         Group 

 

 The largest percentage discrepancies between the low- and high-level students in 

the simulation group included questions regarding sample space, compound events, 

binomial distributions, shape, representativeness, independence and conditional 

probability.  
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 Figure 4.10. Pretest Proportion of Correct Responses By Question for Control  

           Group 

 

 The largest percentage discrepancies between the low and high-level students in 

the control group included questions regarding compound events, binomial distributions, 

combinatorial reasoning, shape, independence, and equiprobability.  

Day 1 - Sample Space 

 The goal of this first activity was to help students conceptualize the outcomes of 

an experiment and eventually to construct the sample space of all possible outcomes. 

Personally, I believe that this foundational concept in the study of probability 

distributions is not typically developed well or emphasized with students, yet 

understanding how to generate and analyze the possible outcomes helps bridge the 

understanding between possible values of a random variable, the graphical representation 

of the random variable and eventually probabilities and the theoretical distribution of the 

random variable. My hope was that the simulations would help the students discover 

outcomes they had not previously thought of, to notice that some outcomes occurred 
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more frequently than others and to notice the combinatorial aspect of the outcomes. On 

Question 3 on the pretest, there were several students who listed all possible  

combinations of outcomes to arrive at their answer. These students got correct answers 

for this question compared to the majority of students who missed this question. The 

listing of outcomes is generally a simplistic, fundamental skill which should prove to be 

accessible to both low- and high-level students. 

  Both the control group and simulation group were given the same initial page of 

the activity sheet. Both were taught the fundamental counting principle and tree diagrams 

as methods for generating all possible outcomes and were asked to complete three 

exercises listing outcomes in the sample space. All classes were divided into small 

groups. The simulation group was then given instructions on how to generate random 

number sequences using their TI-83 calculator and was asked to simulate problems 1, 2, 

and 3 from the first page. The worksheet and lab for this activity can be found in 

Appendix E.  Both groups were asked to compare their answers with their group 

members. Time constraints proved to be a deterrent for completing this activity in the 

simulation groups as  the calculator simulations took longer than anticipated. As a result, 

some groups were only able to simulate problem 1 with the coins.  

 Both groups showed difficulty in their initial construction of the sample spaces. 

The problem involving the weather pattern proved more difficult for the students than the 

coin and spinner problems most likely due to familiarity with coins and spinners from 

previous math courses. The weather example will typically prove to be more difficult 

later as the chance of rain or no rain is not necessarily a 50-50 chance as many students 

will assume based on the equiprobability bias inherent in the pretest results (Lecoutre, 
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1992). Coin and spinner problems typically assume equal probabilities when given as 

examples to students.  

 The first problem presented the tossing of a coin 3 times. When asked for how 

many outcomes there were in the sample space, some students erroneously multiplied 

2*3 = 6. As one student explained, "There are 2 things you can get everytime you flip a 

coin so 2 x 3 = 6." Subsequently, the list of outcomes from some students was then 

incorrectly written as  

     HT HT HT 

or  others incorrectly put {H, T, H, T, H, T} to support their incorrect total of 6 outcomes.  

 Similarly, with the weather problem, the students were told to assume on a given 

day, it either rains or it doesn't rain. After being asked to suppose they record the weather 

results over the next four days, they were asked to tell how many outcomes there were in 

the sample space and then to list those outcomes. Once again, many students incorrectly 

showed 2*4 = 8 outcomes, and their listings included such patterns as: 

1R, 2R, 3R, 4R, 1N, 2N, 3N, 4N 

or 

1 1 Rain 

                  2 No Rain 

2 1 Rain 

                 2 No Rain 

3 1 Rain 

       2 No Rain 

4 1 Rain 

                  2 No Rain 

 

 On the spinner problem, an activity from the textbook (Yates et al, 1999), students 

were asked to imagine spinning the spinner 3 times. When prompted for how many  
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outcomes there were in the sample space, the students showed a similar additive pattern 

exhibited on the pretest and came up with 9 outcomes showing such patterns as: 

1) 1, 2, 3  2) 1, 2, 3,  3) 1, 2, 3 

or 

S = {11, 12, 13, 21, 22, 23, 31, 32, 33} 

or an incorrect tree diagram such as: 

  

 1 1 1 

1 2   2 2  3 2 

 3 3 3 

 

 Many students displayed an incorrect use of the counting principle by multiplying 

two numbers together despite the fact that all three exercises involved three or four trials. 

I speculate that this could, in part, be due to the way the counting principle is presented in 

most textbooks. From Yates, Moore, & McCabe (1999, p. 320), the multiplication 

principle is summarized as: 

 If you can do one task in a number of ways and a second task in b number of 

ways, then both tasks can be done in a x b number of ways.  

 Though teachers would, of course, explain that the rule can be generalized, the 

presentation of the rule typically shows a x b or m x n promoting the product of two 

factors in the calculation.   
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 Some students did not see their incongruencies between the number of outcomes 

and the list of outcomes in the sample space. For example, Anna said there were two 

outcomes for the weather question yet listed the sample space as {1R, 2R, 3R, 4R, 1N, 

2N, 3N, 4N}. The study suggests this is, in part, due to students' lack of clarity on what is 

meant by an outcome and the inability to extend their understanding to situations beyond 

single and simple trials to compound events (Zimmermann, 2002). In her study with 

secondary students' understanding of probability simulations, Zimmermann also noted 

this struggle that students had in constructing models for calculating joint probabilities.  

 Once the simulation group continued the activity with their calculators, the 

students seemed comfortable with the dummy coding and use of binary numbers to 

represent heads and tails when simulating the coin problem which boded well for 

upcoming random number simulations using Minitab© in the computer lab. The students 

seemed to notice that the outcome 1, 2, 3 was different from 2, 1, 3 on the spinner 

problem circling both as separate outcomes and noting similar combinatorial aspects 

from the other questions as well. Adam interestingly noticed that "even though we did 20 

trials all outcomes aren't necessarily going to show up" as he compared his simulation 

answer to the answer he obtained from using the counting principle. Like Adam, 

Donovan noticed he "only got 6 out of the outcomes the first time" on the coin problem 

that had 8 total outcomes. He tried it again and got all 8 outcomes among his 40 

repetitions noting differences in the results. When asked about his learning anything new 

from the simulations, he commented "The calculator is better at getting outcomes." This 

introductory simulation exercise fostered follow-up discussion regarding variation in  
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results and the number of repetitions necessary to see all possible outcomes which 

encouraged students to begin to conceptualize the law of large numbers, sampling 

variability and the discrepancy between empirical and theoretical distributions. Though 

some students claimed they did not learn anything new from the simulation and that "it 

was too long," others noted the benefits: 

 Molly had initially shown errors in her tree diagram on the spinner problem, and 

although she said "not really" for learning anything new with the simulations, she did 

note when comparing her pre- and post-simulation answers, "I have gotten 18 outcomes 

so far and in my previous I only had 9. I did my tree wrong. The calculator is really 

somewhat random, its giving me outcomes I hadn't thought about."  

 Similar to Donovan, Charles noticed that he did not find all his outcomes with 20 

trials but did 40 more on his own and found them all indicative of students constructing 

their own knowledge and building their own understanding of the law of large numbers 

through active learning.  

 Cole commented that the simulations made it "easier to find answers and mistakes 

than manually," and Wade and Alan working in a group together realized their answers 

on the weather question did not agree with their first page because "we didn't do separate 

raining results for each day." This comment is indicative of the simulation students using 

new representations developed from the technology to connect to other conceptual 

representations.  

 Whereas no students in the treatment group were left confused after doing the 

simulation, working through their mistakes and discrepancies, and having their group 
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discussions, Shanelle in the control group commented on the coin problem "I did 2*3 to 

get six and 2*2*2 to get 8 but I do not know which is right. A tree diagram will give me  

six also but I am still confused." Her tree diagram was wrong, but her list of outcomes 

was correct. Her peer-to-peer discussion failed to lead to a resolution, and without the aid 

of the representations developed from the technology, she was left unsure of the correct 

approach.  

Day 2 - Probability Rules, Independence, Multiplication Rule 

 Students in the control group were presented with notes regarding probability 

models,  the complement rule, the addition rule for disjoint events and the multiplication 

rule for independent events according to the Yates, Moore, & McCabe text (Yates et al, 

1999).  Students in the simulation group went to the computer lab and learned initially 

how to assign weights to events to develop an understanding beyond the equiprobability 

assumption (Lecoutre, 1992). The worksheets and lab for Day 2 can be found in 

Appendix F. Students began to see how Minitab© could assign a weight to simulate a 

basketball player being a 70% shooter and noticed that the random number generator 

produced binary numbers that favored the player making shots rather than missing them. 

Students repeated the sampling to get comfortable with the weighting procedure in 

Minitab© which also presented the opportunity to talk about variation in results and 

randomness. Students were asked to generate two columns of 100 shots each and 

compare their own results and then to compare with others sitting next to them. It was 

apparent that students were developing their own understanding of randomness. This 

developing conception of variation indicates the simulation activities were helping 

students progress from Level A to Level B noted in the GAISE framework (American 
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Statistical Association, 2007).  When asked if everyone had the exact same answers, the 

responses were as such: 

 "It's random. And in real life you won't get exact same numbers of makes and 

misses. 70% and 30% are averages." 

 "Our answers are close. This is reasonable because both of our outcomes should 

have been close to 30 misses and 70 makes."  

 "It randomly generated the same numbers as before, which is highly unlikely. I 

wouldn't expect it to happen too often."  

 Students were then instructed to explore joint probabilities by simulating the 

player shooting twice. They were prompted to remember the generation of the sample 

space of outcomes from the previous day and then to use Minitab© to calculate the 

percentage of no shots made, one shot made and two shots made. Finally, they were then 

instructed to generate a dotplot of their results and make the connection to the 

multiplication rule for independent events. In this transfer from the generation of 

outcomes to the sum of the number of shots made to the eventual dotplot, it was partly 

my intention to help the students begin to develop the construct of a random variable and 

the distribution of a random variable.  

 Shane, a low-level student who had struggled with the tree diagrams and sample 

space the day before showed improvement in his tree diagram as well as the generation of 

outcomes using the 11, 10, 01 and 00 notation to help him then list make-make, make-

miss, miss-make, and miss-miss outcomes. When describing the dotplots, students 

correctly associated the various frequencies with most likely and least likely number of 

baskets. Students compared their calculations of making both shots using the 
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independence rule with their simulated outcomes. When asked if his simulated answer 

agreed with his answer using the multiplication rule, one student who got exactly the 

same simulated probability as the formula stated "Yes it is identical which is probably 

uncommon that it hits it exactly." Comments such as these provide evidence that the 

students may be able to understand sampling variability, point estimation and interval  

estimation as they are cognizant of expected variation in their results and appear to be 

making a transition from Level B to Level C in the GAISE framework (ASA, 2007). 

When asked if their dotplots were the same as their neighbors, one student responded "No 

because there is variation." Another responded "They are not the same but they are close. 

My neighbors are also working with the data for a 70% shooter." This indication of 

knowledge of the source of the data and the connections made between the sample data 

and the source suggests that students are beginning to make the bi-directional link 

between the data-driven distribution and the modeling distribution encouraged by 

Prodromou and Pratt in their research (Prodromou & Pratt, 2006).  

Day 3 - Independence, General Addition Rule, Joint Probability 

 In this section of the text, the authors presented the use of Venn diagrams as a 

visual representation of the relationships among events and event probabilities. The 

notions of complementary events, disjoint events, and independent events were also 

presented with discussion of the general addition rule for union of events and 

multiplication rule for joint probability of independent events:  P(A and B) = P(A)P(B) if 

A and B are independent (Yates et al, 1999,). The topics of disjoint and independent 

events are typically confusing for students, and I personally struggled with the design of a 

simulation exercise that could properly embellish the students' understanding of these 
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topics. Too many topics were presented in this one section of the text, and I believe if I 

had split up the simulation tasks across several days, I would have seen more success 

with this lab. In addition,  it may be more logical to group the concept of independence 

with conditional probability to develop a better understanding of the concept. This 

activity lacked the flow of the previous ones and, in hindsight, did not encourage 

connections within the students' zones of proximal development.  

 Both the control group and simulation group were given notes with examples on 

formulas for P(at least one) using the complement rule, constructing Venn diagrams, and 

applying the general addition rule and the multiplication rule for independent events. The  

control group proceeded to work on exercises from the text whereas the simulation group 

went to the lab to use Minitab©. The worksheets and lab for Day 3 can be found in 

Appendix G. The simulation group was asked to simulate a company shipping boxes of 

computer chips that contained 4 chips assuming the company had a 6% defect rate. In 

hindsight, I should have picked a higher defect rate or another more appropriate 

simulation as many students got 0 defective items in all of their 100 boxes of 4 chips, and 

the magnitude of the conceptual understanding of the complement rule from the 

simulation was diminished. Students did understand from observation of their outcomes 

that "at least one" was inclusive of all outcomes except "none" thus bridging a conceptual 

understanding of the formula presented in the text.  

 The second part of the simulation was an attempt to use outcome analysis from 

the simulated results of rolling two dice to help the students distinguish among the terms 

mutually exclusive or disjoint, independent and dependent events, and to gain a deeper 

understanding of when and when not to apply the multiplication rule for compound 
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events. Students struggled to mathematically calculate the probability of A and B 

assuming A = rolling a 6 and B = sum of 12 despite a discussion of all possible outcomes 

when rolling two dice. Two other AP Statistics teachers assisted me during this lab, and 

we all spent a great deal of time helping students with their calculations thus taking time 

away from the actual simulation and the central points of the simulation exercise. 

Students did notice from the outcomes that you could only get a sum of 12 if the first 

value in the outcome was a 6 and thus concluded that the sum of 12 did depend on what 

they got on the first roll. On the other hand, they struggled to make sense of the 

mathematical formula and why their experimental calculation of the probability of getting 

a 6 on the first die and a sum of 12 did not reconcile with their assumption of 

independence and their theoretical calculation of P(A)*P(B). A follow-up discussion with 

both groups the following day using tree diagrams to illustrate why we could not use 1/36 

as the P(sum of 12) was conducted to aid the student's conceptual understanding of P(A 

and B) when A and B are dependent.  

Day 4 - Conditional Probability 

 Aligned with the frequentist approach to probability (Konold, 1989) and using the 

simulation outcome analysis techniques developed thus far in the study, my intent with 

this lab was to help the students understand that with conditional probability, the scope of 

relevant outcomes was reduced due to the conditions involved in the problem. Both 

groups were presented with the conditional probability formula P(A|B) = P(A and 

B)/P(B) and examples to illustrate the use of the formula using tree diagrams. The control 

group then worked examples at their desks while the simulation group worked the same 

examples using Minitab© in the lab. The worksheet and lab for Day 4 can be found in 
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Appendix H. The problem was a continuation of the rolling dice problem from the 

previous day. Time constraints in the lab once again prevented this lab from running 

smoothly as the students continued to struggle with reconciling their simulation results 

with their theoretical calculations. They did seem to understand that P(A|B) was not the 

same as P(B|A) because "you were looking at two different groups" indicative of Level 3 

reasoning in the probabilistic thinking framework (Jones et al., 1999).  

 Interviews following this lab did reveal important contrasts in the understanding 

of conditional probability from two high-level students, one from each of the two groups. 

Each was presented with the following question: Suppose the probability that a Hispanic  

marries another Hispanic is 97%.  The probability that a non-Hispanic marries a Hispanic 

is 5%.  2% of a population is Hispanic.  Find the probability that if a person marries a 

Hispanic that they are non-Hispanic? Shannon was a high-level student from the control 

group, and Alan was a high-level student from the simulation group. Both students 

calculated the probability correctly using the conditional probability formula and got an 

answer of 0.7164.  When Shannon was asked to explain what her answer meant, she 

seemed untrusting of her answer and commented "I don't get it. Why isn't it .05?" She 

was ignoring the condition and thinking of the question of finding the probability that a 

Non-Hispanic marries a Hispanic. When probing her to explain her understanding of the 

question and solution, she continued, "What I'm getting is that 71.64% of people that 

marry Hispanics are not Hispanics, but this seems too high because not that many Non-

Hispanic people marry Hispanics." When asked how he felt about his answer, Alan also 

commented that he felt his answer was too high. When probed to explain his 

understanding of the question and solution, he stated, "Well, I guess it could be that high 
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because most of the people are not going to be Hispanic. I get it more than just the 

formulas. I can't do the formulas sometimes, but I get what it is saying." Although Alan 

had a harder time articulating his thinking compared to Shannon, his comments did seem 

to indicate he understood the concept of the smaller scope of people that were being 

considered for the answer to the question and what that scope would contain based on the 

given probabilities in the question.  

Day 5 - Discrete Random Variables 

 This task was designed to help students further develop their understanding of the 

construct of a random variable and to begin to associate the results with an empirical 

probability distribution. Both groups were given the first part of the worksheet to 

complete before then being given notes on probability distributions and the formula for 

expected value.  The following day the control group worked on exercises from the text 

while the simulation group went to the lab. The worksheets and lab for Day 5 can be 

found in Appendix I. The text presented the construction of the probability distribution of 

a discrete random variable using a coin example with X = the number of heads in 4 tosses 

of a coin and explained that one must find the total number of outcomes first. Then to 

find P(X = 2), one needed to count the number of ways that X = 2 could occur. The 

weakness in using a coin example is the encouragement of an equiprobability bias as the 

two outcomes on a coin are equally likely. Unfortunately, given the pretest results, this 

was already a vulnerable area for these students.  

 The example on the worksheet assumed an 8% defect rate. The company was to 

ship four items to a customer. On the initial page of the worksheet, most students in both 

groups continued to show improvement in determining the number of possible outcomes 
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using both tree diagrams and the counting principle. In addition, the majority of students 

in both groups were able to transfer from the list of outcomes to generating all possible 

values of the random variable though a few carelessly listed 1, 2, 3 and 4 omitting the 

possibility of all non-defective items for a value of X=0. The most salient discrepancy 

between the pre-simulation responses from both groups was in constructing the 

theoretical probability distribution of X. Most of the students in the control group  

incorrectly calculated the probabilities in their distribution assuming equally likely 

outcomes and using part-whole reasoning. For P(X = 2), one stated "there are 6 outcomes 

out of the 16 that could have X = 2" and then calculated the probability as 6/16 = 0.375. 

All but a few of the control group students did the same types of calculations to complete 

their probability distribution table. On the other hand, there was more variation in the 

simulation group's calculations, some using the same equiprobability bias as the control 

group, but many trying to apply the actual 8% probability given in the problem. For those 

students that did use the 8% defect rate, many erroneously calculated the probabilities 

due to lack of combinatorial reasoning. For example, the P(X = 2) calculations showed 

.92*.92*.08*.08 neglecting to account for the 6 different ways that the two defective 

items could occur. The author posits that the consistent integration with data from the 

simulation group triggered an increased awareness of using the probabilities in their 

calculations as opposed to the equiprobability use of part/whole. Most students in both 

groups incorrectly calculated the mean of the random variable by disregarding the 

probabilities and just adding up the five values of X and dividing by the 5 possible 

outcomes : 0 + 1 + 2 + 3 + 4 = 10/5 = 2.  
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 The simulation generated meaningful discussion regarding the simulated 

probability distribution and the theoretical probability distribution. The exploration of 

data led to rich explanations regarding the true meaning of an 8% defect rate, a 

conceptual understanding of expected value of a probability distribution,  and a 

developing understanding of a probability distribution. Based on the simulated results, 

one student described the meaning of the 8% defect rate as "an average 8 out of each 100 

items will be defective." At this point in the study after five days of exploring data, I was 

confident the simulation students were developing a strong sense of variation and 

randomness. Due to the low defect rate, some students only showed 0, 1, and 2 defectives 

in their simulated outcomes which created a teachable moment regarding simulated 

probability distributions and theoretical probability distributions. When asked to describe 

this discrepancy with their answer before the simulation, one student replied "The 

computer simulation does not include the possibility of 3 or 4 defective items because 

those results are so rare in real life." Comments such as these give evidence that students 

in the simulation group were beginning to see the connection between their distributions 

and the larger global theoretical distribution and were moving between Levels B and C in 

the GAISE framework (ASA, 2007) and between Levels 3 and 4 in the probabilistic 

thinking framework (Jones et al., 1999). When asked to calculate the mean of their 

number of defective items using the simulated results and compare to the answer they got 

on the initial worksheet, students realized their mistakes and many noticed their tendency 

to assume equal weights. One student commented, "I didn't take the different values into 

account." From reading his responses, I was able to discern he meant the different 

weights or probabilities when he said "values." Students calculated the mean of their 
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simulated results by averaging all their values of the random variable X then comparing 

the answer to what they would have gotten if they had substituted the values in the 

expected value formula they were taught. When asked if the mean value made sense, one 

student replied, "Yes, because most of the values are 0, so the mean should be close to 0." 

Similarly, another stated, "Yes because the abundance of zeros will pull the mean down." 

Students were asked if they understood why their earlier predictions may have been 

incorrect. From the responses to this question, students realized such things as they forgot 

to include 0 as a possible value of X. This was readily apparent as most of the simulated 

results were 0 defective items. One student commented, "I learned that weight plays a  

huge role in determining which results are most likely and that not all probability 

distributions have equal weight." Another student said, "Yes, because the true probability 

of getting it effects the results." Others commented that they noticed the mean could be a 

decimal number even though the values of X were not decimals thus realizing that the 

mean is not necessarily the most probable value of a distribution. This was in contrast to 

a comment from a student in the control group. When discussing 2.6 for the expected 

value of the size of  an American household, Allyson questioned "Doesn't it have to be a 

whole number?" When I asked her why she thought it had to be a whole number, she 

responded "Because it's discrete." Although the control group students could accurately 

calculate the expected value using the formula, the understanding of what the answer 

represented was not as clear without the simulation. When the treatment group was asked 

what the simulation helped them learn about probability distributions, one student wrote, 

"It gave me a better understanding of what the % and probability answers mean. Helps 

me see what's happening" and another said, "Yes, at first I didn't understand what I was 
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finding for "value of X" but now I understand"  confirming that the simulations were 

helping the students develop a conceptual understanding of the concept of a random 

variable and the formulas that are presented in a textbook. The descriptive explanations 

of what we mean by a "probability distribution" included such responses as "Possible 

outcomes for X and chance of it happening, how often we will get certain outcomes for 

X" and "A probability distribution is a graph that shows the distribution of probability, 

like it shows how much probability for an x value compared to other x values."  

Day 6 - Representativeness 

 To start this activity, both groups were given some sample questions from the 

pretest regarding the representativeness heuristic. The control group then explored their 

answers to the questions with a discussion of the assumptions and formulas that would 

apply to the calculation of the probabilities of the various sequences. The simulation 

group used their TI-83 calculators to simulate the coin sequences and then pooled their 

results with other group members to note the changes in the calculations and to hopefully 

see results that were approaching equal probabilities for each sequence. As labs using the 

calculator typically seemed to go, this one took longer than anticipated so students were 

not able to finish the entire lab activity. The worksheet and lab for Day 6 can be found in 

Appendix J.  

 When I began to analyze the results from this activity, one of the most salient 

discrepancies I noticed right away was the large percentage of students in the control 

group who answered that the sequences in all three questions were all equally likely. 79% 

of the students in the control group answered "all of the above sequences are equally 

likely" for each of the three questions compared to 33% of the treatment group. After 



 

80 

looking more closely at the responses to the questions, I noticed that on Question 2 

regarding three fair dice, the students in the simulation group were more likely to show a 

list of outcomes to arrive at their answer. I believe this inclination to be due to the 

representations developed from analyzing outcomes from conducting the simulations. In 

addition, I believe the previous simulations were helping to improve their awareness of 

the equiprobability bias and to make them more cognizant of situations that were not 

necessarily equally likely. The control group students who were limited primarily to 

 using formulas in their understanding showed a propensity to fall back on the 

equiprobability bias. They didn't have the visual recollection of generated outcomes to 

remind them of this misconception. While many students had initially put that it was 

harder to get repeats in their explanations, after doing the simulation, students 

commented that it didn't matter what had happened previously as the calculator would 

still give an equal chance when generating the next list of numbers. Using the technology 

helped the students see there was no "memory" of what had happened previously thus 

aiding in their understanding and acceptance of the independence assumption. The 

pooling activity helped the students see that their results got closer to equal probabilities 

the more trials they observed and contributed to their developing understanding of the 

law of large numbers. Students acknowledged and responded that there was less variation 

in their pooled results and their pooled results were more accurate with what they 

expected would happen. One student who had time to conduct the simulation on the three 

dice problem had initially answered the question correctly but with incorrect reasoning. 

She had responded that the 5, 3 and 6 in any order would be more likely because it was 

less likely to get repeats. After conducting the simulation, she commented that she still 
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agreed with her answer but in her explanation, she now wrote "Yes, because the 5, 3, 6 

can be in any order, there are 6 ways but 555 has one way and 553 has 3."  

Day 7 - Law of Large Numbers 

 This activity presented a familiar "hospital" problem that prompted the students to 

choose whether a large or small hospital was more likely to record 80% or more female 

births (Fischbein & Schnarch, 1997). The worksheet and lab for Day 7 can be found in 

Appendix K.  Surprisingly, after the previous day's lab on representativeness when the 

simulation group pooled results with other students to see the effects of the law of large 

numbers, 43% of these students said both hospitals were equally likely to have 80% or 

more female births for Hospital A with 50 births a day compared to Hospital B with 10 

births a day. As noted in the literature, probability misconceptions are persistent and 

difficult to eradicate despite instruction (delMas, Garfield, & Chance, 1999), and the 

concept of variation was still elusive to many students shackled by their deterministic 

tendencies. In the development of the probabilistic thinking framework, it was noted that 

students could waver back and forth between levels especially with regard to common 

misconceptions (Jones et al., 1999).  In the control group, 41% believed the two hospitals 

were equally likely to have 80% or more female births. Most of these students in both 

groups reasoned with such responses as "because boys and girls probability is 50/50 so it 

doesn't matter how many births there are a day." This response reflects the opposing 

development of the principle of equivalence of ratios and the understanding of the law of 

large numbers which Fischbein and Schnarch (1997) cited as justification of the 

sustainable strength of this misconception over time. The outcome approach was apparent 

with such responses as "because it is equally likely to have a boy or girl no matter how 



 

82 

many births." Curiously, several students in the control group tried to "mathematically" 

calculate the answer to the question indicating an excessive reliance and dependency on 

formulas even when they may not be appropriate and still indicated probabilistic thinking 

at Level 2 according to the framework (Jones et al., 1999). This strategy reflects the 

emphasis on picking the right formula to get the correct final answer that is characteristic 

of traditional mathematics instruction (Cobb, 1999).  One student in the control group 

showed a type of tree diagram like the following: 

 

                25 girls 

Hosp A 25 boys 

  (50)              

 5 girls 

Hosp B 5 boys 

  (10) 

and then followed with an attempt at applying a formula: 

 A = P(50% boy and 30% girl) + (more girls) 

     = .80 + .15 = .95 

Figure 4.11. Tree diagram and formula solution approach for student in control group 

 

She then wrote "I have no idea how to get that 80% cause they are all equal." I believe 

this excessive reliance on meaningless formulas in a particular situation is a danger when 

trying to teach probability to students without a conceptual understanding of the 

constructs that underlie the formulas.  

.50 

.50 

.50 

.50 
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 The following day both groups were given notes on binomial random variables 

with associated formulas for the mean, variance, and the binomial formula for calculating 

probabilities and were introduced to foundational ideas regarding the formation of a 

sampling distribution of proportions by dividing the binomial formulas for mean and 

variance by the sample size. The simulation group then went to the lab to use Minitab© 

to illustrate the formulas and analyze comparison graphs for the two hospitals. Students 

clearly noticed the change in variation when converting from number of female births to 

proportion of female births. Although proportion plots for both hospitals were centered at 

0.5, students noted the smaller variation of results in the plot of the hospital with more 

births. When asked what they learned from doing the simulation, the comments were rich 

and indicative of the development of distributional reasoning (Shaughnessy, 2006).  One 

student commented, "I learned that variance is important in these studies. Before I didn't 

understand why we even needed to calculate variance."  Another noted, "It helped me 

visualize the difference between short-run and long-run." Evidence of distributional 

reasoning stood out with such comments as "I thought that by just having a p=0.5 

everything was equally likely. I forgot to consider sample size" and "I learned how to 

look at means and compare, how spread or predicted values match with the mean, and the 

difference between a lot of trials and fewer trials." As many students initially were giving  

explanations in terms of "number of" births, it was significant to read such comments as 

"while the variance may be higher in a larger group, probability can be more spread in the 

smaller one." Comments such as these illustrate a progression from additive reasoning to 

multiplicative reasoning as noted by Cobb (1999) and indicate the students' cognizance of 
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reasoning proportionally in contrast to relying on statistical reasoning solely through 

counts and frequencies as admonished by Shaughnessy (2006).  

Day 8 - The Binomial Distribution 

 Following the sequence of topics presented in the text, the last two topics that the 

students explored for this study were the binomial and geometric distributions. Both 

groups looked more closely at the binomial formula for calculating probabilities. The 

simulation group was reminded of the lab on discrete probability distributions to 

determine if this fit the conditions of a binomial setting. The examination of outcomes 

was relived as students were reminded of the importance in considering how many ways 

a company could have two defective items out of 4. Subsequently, the simulation group 

took the opportunity to look at the relationship between shape, sample size, and the 

binomial distribution in the lab using Minitab©. The worksheet and lab for Day 8 can be 

found in Appendix L. These students used the software to generate random data from a 

binomial distribution and analyzed changes in the plots as the parameters changed from p 

= .10, p = .50 and p = .90 using n = 10 trials. They predicted shapes of the distributions 

and calculated means from the formula they had learned. Students were then asked to 

predict shapes for p = .90 as they changed the number of trials from n = 5, n = 30 to n = 

100. Whereas the students noticed they had made correct predictions for the smaller 

number of trials, they were surprised to notice the changing shapes of the graphs as the 

number of trials increased from 5 to 100. This lab would hopefully have significant 

implications for the Central Limit Theorem for sampling distributions of proportions that 

would be taught in the following chapter.  
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Day 9 - The Geometric Distribution 

 For this final activity, both groups were presented with the conditions for a 

geometric distribution along with the formula for calculating the mean of a geometric 

distribution and the probability for a geometric random variable. The control group 

students looked at developing the distribution using the formulas whereas the simulation 

group looked at developing a simulated probability distribution first using a random 

number table and then comparing these calculations to their theoretical calculations. The 

worksheet and lab for Day 9 can be found in Appendix M. Prior to conducting the 

simulation, the students in both groups had been asked to predict what they believed 

would be the most probable number of trials until a success using a basketball player 

missing a basket and prizes in a cereal box examples. Most students had incorrect 

intuitions regarding the geometric distribution and predicted that it would take 3 or 4 

trials until the player missed a shot. Many students correctly answered that the chance of 

getting the first prize in the tenth cereal box was not higher than the chance of getting the 

first prize in the first box, but some noticed their reasoning was incorrect after conducting 

the simulation. The simulations using the random number table went slowly, so 

unfortunately the students were not able to conduct enough simulations to make their 

simulated probabilities reconcile with the theoretical probabilities. They were, however, 

able to notice their initial predictions were incorrect as most successes were recorded in 

the first or second trials. Many students struggled to understand why this was so, but 

some were able to justify the right-skewed shape mathematically due to the formula. As 

one student commented about the shape of the distribution, "Right skewed theoretically 

b/c every probability is usually less than 1, so the #s should get smaller, but w/ simulation 
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everything is random & different things can happen in the short run." Students were 

comfortable enough by now with the idea of the law of large numbers that they 

commented on the discrepancies between their empirical mean and theoretical mean as 

"there were only 20 trials in the simulation." At the end of the worksheet, students were 

asked to describe the differences in running simulations for a binomial with a basketball 

player taking three shots and the corresponding geometric distribution example. One 

student commented, "You're always going to be looking at 3 shots in a binomial. But in a 

geometric you do trials until a success. You would look for sets of 3 numbers instead of 

looking for numbers until you get a hit." Another student responded with a more 

descriptive answer based on the previous labs we had completed, "It would mean that you 

would have groups of three constantly. In a lab you would have three columns. All could 

be misses or a various combination with 2^3 options which is 8." Based on the pretest 

results with students' proclivity to look at part-whole calculations, I hoped that by 

conducting the actual simulation that this lab would help students notice the variation in 

the number of trials and understand the geometric distribution has a random variable that 

represents the total number of trials without it being a given, fixed value.  

The Posttest 

 A qualitative analysis of the posttest responses showed a heavy reliance on 

formulas, sometimes meaningless mathematical calculations, for many of the students in 

the control group. On the other hand, the responses from the simulation group showed a 

 mélange of methods indicative of their exposure to a wider variety of representations to 

aid them in their conceptual understanding of probability and probability distributions. 

Though questions regarding compound events still presented a struggle for both groups, 
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there was evidence that the simulations using the exploration of possible outcomes gave 

the students a starting point to build their solution. The following solution was given by a 

student in the simulation group on Question 2 of the posttest: 

 

 Figure 4.12. Listing of outcomes solution approach for student in simulation  

           group 

 

 An item-by-item analysis of the posttest peformance for both the simulation group 

and the control group showed very similar patterns again, but compared to the control 

group, the simulation group showed consistently higher percentages of correct responses 

than on the pretest item analysis. 
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Figure 4.13. Posttest Proportion of Correct Responses by Question 

 

A chart showing the percentage differences between the simulation group and control 

group (Simulation - Control) for both the pretest and posttest show the greatest gains for 

the simulation group on questions involving shape, law of large numbers, geometric 

distributions, and the conjunction fallacy. The simulation group had seen all of these 

topics from a process-oriented, data-centered perspective with the labs versus a formula-

oriented, content approach used with the control group. The questions with negative 

differences, highlighted in yellow, reflect topics from labs that I deemed less successful 

in the day-by-day discussions including compound events and representativeness. In 

designing my labs, these topics seemed to disrupt the flow of developing the concept of 

sample space to random variable to distribution of a random variable, so they may have 

been beyond the students' zones of proximal development.  Recall from the quantitative 

analysis, however, that GROUP did not show a significant main effect for posttest scores.  
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Table 4.6 

Summary of Percentage Correct Differences Between Groups (Simulation - Control) by 

Question  

 

Question Pretest Posttest Content 

1 25% -29% compound events 

2 -13% 4% sample space 

3 -2% 5% shape 

4 -0.3% 11% binomial distribution 

5 -6% 21% binomial shape 

6 -11% -2% sample space 

7 1% 14% shape 

8 -5% 12% independence 

9 -8% 5% independence 

10 4% -5% representativeness 

11 -8% -2% sample space  

12 9% 7% shape 

13 -25% 5% shape 

14 24% 2% representativeness 

15 6% -2% proportional reasoning 

16 -3% 27% law of large numbers 

17 4% -1% compound events 

18 -7% 22% geometric distribution 

19 25% 25% independence 

20 19% 6% independence 

21 23% 9% shape 

22 10% 11% compound events 

23 32% 10% randomness 

24 6% 9% conditional probability 

25 17% 13% geometric distribution 

26 8% 12% equiprobability 

27 21% 6% randomness 

28 3% 7% outcome approach 

29 10% 9% independence 

30 1% 19% conjunction fallacy  

 

Recall from the quantitative analysis that the GROUP*LEVEL interaction was significant 

for posttest scores. An item-by-item analysis of the pretest and posttest performance for  
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the low-level students and the high-level students from both groups accentuates the gains 

within each level.  

 

Figure 4.14. Pretest Proportion of Correct Responses by Question for Low-level  

           Students 

 

 

 

Figure 4.15. Posttest Proportion of Correct Responses by Question for Low-level  

           Students 
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The low-level students in the simulation group surpassed the correct response 

percentages for the control group with substantial differences on nearly every item on the 

posttest assessment. This dominance is more transparent in the following table showing 

percentage correct differences on the pretest and posttest for low-level students.  The 

yellow highlights show the questions with negative differences. 
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Table 4.7 

Summary of Percentage Correct Differences Between Groups (Simulation - Control) by 

Question for Low-level Students 

 

Question Pretest Posttest Content 

1 36% -38% compound events 

2 -22% 7% sample space 

3 -2% 21% shape 

4 15.0% 14% binomial distribution 

5 13% 40% binomial shape 

6 1% -12% sample space 

7 10% 28% shape 

8 -11% 12% independence 

9 -11% 1% independence 

10 16% -5% representativeness 

11 9% 1% sample space  

12 10% 12% shape 

13 -26% -4% shape 

14 11% 7% representativeness 

15 7% 27% proportional reasoning 

16 1% 26% law of large numbers 

17 8% 13% compound events 

18 -12% 30% geometric distribution 

19 16% 26% independence 

20 14% 16% independence 

21 22% 18% shape 

22 24% 9% compound events 

23 26% 16% randomness 

24 30% 18% conditional probability 

25 38% 24% geometric distribution 

26 40% 34% equiprobability 

27 29% 12% randomness 

28 6% 12% outcome approach 

29 12% 4% independence 

30 5% 36% conjunction fallacy  

 

The greatest gains for the low-level students in the simulation group from the pretest to 

the posttest were on questions involving shape of distributions, shape of binomial 

distributions, law of large numbers, geometric distributions, and the conjunction fallacy.  
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Figure 4.16. Pretest Proportion of Correct Responses by Question for High-level  

           Students 

 

 

Figure 4.17. Posttest Proportion of Correct Responses by Question for High-level  

           Students 
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Table 4.8 

Summary of Percentage Correct Differences Between Groups (Simulation - Control) by 

Question for High-level Students 

 

Question Pretest Posttest Content 

1 10% -19% compound events 

2 -8% -8% sample space 

3 -10% -15% shape 

4 -21% 4% binomial distribution 

5 -25% -3% binomial shape 

6 -29% 4% sample space 

7 -13% -3% shape 

8 1% 12% independence 

9 -6% 11% independence 

10 -12% -6% representativeness 

11 -29% -8% sample space  

12 12% 0% shape 

13 -29% 8% shape 

14 38% -7% representativeness 

15 0% -35% proportional reasoning 

16 -7% 21% law of large numbers 

17 -1% -19% compound events 

18 0% 7% geometric distribution 

19 38% 21% independence 

20 18% -6% independence 

21 18% -7% shape 

22 0% 13% compound events 

23 36% 0% randomness 

24 -15% -7% conditional probability 

25 -10% 3% geometric distribution 

26 -21% -17% equiprobability 

27 8% 1% randomness 

28 0% 0% outcome approach 

29 8% 8% independence 

30 -1% -4% conjunction fallacy  

 

 Comparatively, we can see that the high-level students in the simulation group did 

not fare as well with significant gains as the low-level students did with many negative 

differences highlighted in yellow. This is not surprising as notes from interviews, 
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discussion and written feedback indicate a preference for using mathematical formulas 

for the high-level students.  A large discrepancy in favor of the control group on Question 

15 prompted a closer inspection of the written feedback on that question. These responses 

revealed how the simulation on the law of large numbers actually hindered students' 

understanding of this particular question. Several students recalled the Hospital A versus 

Hospital B simulation and put that if one marble was chosen, Box B (with 60 red and 40 

blue marbles) would have a greater chance of giving a blue marble than Box A (with 6 

red and 4 blue marbles). One high-level student wrote: "Since there are a greater # of 

marbles in Box B, according to the law of large #'s the chance of picking a blue marble 

(even though its .40 for each box) should be closer since there are more marbles." 

Another wrote: "b/c although both boxes have the same theoretical probabilities, box B 

has a greater total amount of marbles which would produce imperical (sic) results that b/c 

they reflect "the long run" are more likely to reflect theoretical probability."  Both of 

these students had mistakenly associated the number of marbles in the populations as the 

number of trials that had been observed and did not see the misapplication of the law of 

large numbers as only one marble was being picked from the box. This conflict illustrates 

the tension between the developing notions of equivalence of ratios and the law of large 

numbers as noted previously (Fischbein & Schnarch, 1997).  

The Retention Test 

 The retention test was given three weeks following the posttest once the students 

returned to school from their winter break.  
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Figure 4.18. Summary Results of Proportion of Correct Responses by Question for All 

          Students on Pretest, Posttest, and Retention Test 

            

 Comparing the retention item analysis results to the pretest and posttest results, 

we see a return to increased variation reminiscent of the pretest variation. This behavior  
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reinforces the stubborn persistence of probabilistic misconceptions despite instruction 

noted in the literature (delMas et al, 1999).  

 

Table 4.9 

Summary of Retention Test Correct Response Percentages by Question  

 

Question Simulation Control Content 

1 62% 62% compound events 

2 54% 62% sample space 

3 69% 45% shape 

4 46% 24% binomial distribution 

5 81% 41% binomial shape 

6 8% 24% sample space 

7 81% 66% shape 

8 88% 72% independence 

9 88% 86% independence 

10 85% 72% representativeness 

11 50% 48% sample space  

12 100% 90% shape 

13 81% 66% shape 

14 62% 59% representativeness 

15 54% 55% proportional reasoning 

16 58% 45% law of large numbers 

17 23% 10% compound events 

18 46% 17% geometric distribution 

19 69% 62% independence 

20 92% 90% independence 

21 92% 90% shape 

22 73% 48% compound events 

23 100% 86% randomness 

24 96% 93% conditional probability 

25 88% 69% geometric distribution 

26 58% 24% equiprobability 

27 100% 90% randomness 

28 100% 97% outcome approach 

29 88% 83% independence 

30 19% 24% conjunction fallacy  
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The summarized assessment results by student for each of the two groups show some 

interesting results. The control group appears as a cacophony of scores seemingly as if 

the students just resorted to random guessing on each assessment. Several students had 

retention scores that dipped at or below pretest levels. Contrastingly, the simulation 

results show patterned, predictable, behavior with pretest results for most students lining 

the bottom layer and posttest and retention results closely skimming the top layer.  

 

 

Figure 4.19. Summary Results of Number of Questions Correct by Student on Pretest,     

          Posttest, and Retention Test for Control Group Students  
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Figure 4.20. Summary Results of Number of Questions Correct by Student on Pretest,     

          Posttest, and Retention Test for Simulation Group Students  

 

 Analogous to bringing a process under control, the researcher draws parallels with 

this graphical representation and posits this as evidence of conceptual change. The 

simulation group's performance reflects a stable, sustainable understanding of probability 

and probability distributions. Questions that indicated the greatest gains for the 

simulation students were ones involving shape, least and most probable events, geometric 

distributions, compound events, and equiprobability bias.  

 To conclude the results chapter of this study, I return to the voice of the student. 

Recall earlier queries that underlined student difficulties with probability: “not 

understanding what the question is asking, not being able to gauge whether the answer 

seems correct or not, and not understanding what I am really finding.” At the end of the 

posttest, students were asked to give their own definitions of terms and how they felt 

about probability. Students in the simulation group were subsequently asked if they 
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trusted the simulations and how they felt about the simulations. Responses from the 

simulation group include the following: 

 "Simulations are much easier than doing it by hand or actually collecting 

the data. Yes it helped because I could actually see what I was doing and if 

I was doing it right or wrong."  

 "When we first started the simulations I didn't like them because they 

seemed so complicated.  I didn't understand what I was really doing.  I 

was just following directions.  But, as I got used to it, I learned what the 

different columns meant. It helped me to visualize what was really  

happening. With just formulas you don't see what's happening.  Simulation 

helps to see what's really happening." 

 "I did enjoy the simulations. Formulas are great, but the simulations 

applied them to real-life situations.  It did help by allowing me to 

manipulate the situation into a way I can understand it while still sticking 

to the formulas. I didn't like how time-consuming it turned out to be, but 

that's really the only negative I can think of."  

Responses from the control group rendered an entirely different tone: 

 "I thought before I took this post test that I understood probability more 

than I actually do.  It seems like I don't know how to use or remember 

which formula goes with which problem or why.  Because I don't 

understand it, I don't really like it right now."  
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 "I think it's hard and confusing.  Everything runs together. I hate it, 

because everything looks like the same thing to me and I can't tell the 

difference."  

 "I'm confused about it.  I don't fully understand it, and I like to understand 

fully how something works instead of blindly following formulas."  
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CHAPTER 5 

SUMMARY AND DISCUSSION 

 In this final chapter I will summarize the findings from my study relative to the 

initial questions posed at the outset of the research, situate my results within the existing 

body of research, and discuss the limitations and implications of the study.  

Summary of the Results 

 With this study I sought to provide empirical evidence and to embellish the 

developing literature on the use of simulation as an instructional tool in the teaching of 

statistics, specifically in the area of probability distributions. Simulations are lauded in 

the existing research base and curriculum frameworks, though claims are justified 

primarily through smaller case studies in isolated settings and qualitative analysis. As 

both teacher and researcher, my Advanced Placement Statistics classes were used in the 

study.  I randomly assigned two classes to the treatment group using simulations in their 

instruction and two classes to the control group using traditional, textbook-guided 

instruction. I also subjectively designated the students as either low- or high-level 

performance based on previous course histories and performance in the class.  

 Both groups of students began the study with an abundance of common 

probabilistic misconceptions noted in the literature (Kahneman, Slovic, & Tversky, 1982; 

Konold, 1989; Lecoutre, 1992). Both groups initially showed a limited understanding of 

probability dominated by a goal-oriented, deterministic view of using formulas to get a 

correct answer. The two groups were immersed in a two-week series of teaching units 
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that centered on the development of an understanding of probability distributions with the 

primary difference in the two classroom environments being the technological tool of 

simulation. 

 The study addressed the following research questions: 

1. Does the use of simulations as an instructional tool aid in improving 

secondary students’ understanding of probability distributions?  

2. How does the use of simulations as an instructional tool help and/or 

hinder secondary students’ understanding of probability distributions? 

 To answer the first question I look initially at the quantitative results from the 

study. A 2x2 factorial MANCOVA showed group differences (simulation vs. control) 

were not significant on the posttest scores but were significant on the retention test 

scores. Level differences (low vs. high), however, were significant on the posttest scores 

but not on the retention scores, and the interaction of group and level was significant for 

the posttest scores but not for the retention test scores. 

 Kaput's passion with his work was in the "democratisation of access to 

mathematical reasoning" (Kaput & Roschelle, 1997, p. 1; Kaput & Schorr, 2002). Kaput 

et al. believed that technological tools were the pathway to learning complex 

mathematical ideas that historically were accessible only to those few who could 

understand the formal abstractions of these topics. He pushed the representational and 

modeling potential of the technological tools as a way for the multitude of other students 

to access the knowledge of these concepts that involved change and variation. Though 

few studies on using simulations in probabilistic and statistical instruction have addressed 

performance level, the results from my study are emancipatory. Probabilistic concepts 
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that could easily evade lower-level students can be made accessible to these students and 

have an equalizing effect on the traditional disequilibrium within the classroom. The 

quantitative results illuminate the performance of the low-level students in the simulation 

group. The low-level students in the simulation group made significant gains over the 

low-level students in the control group and nearly matched the mean performance of the 

high-level students in both the control group and the simulation group on the posttest. 

The low-level students in the simulation group made significant gains over the low-level 

students in the control group, surpassed the mean performance of the high-level students 

in the control group and nearly matched the mean performance of the high-level students 

in the simulation group on the retention test.  Qualitative results indicate that higher-level 

students tend to show a resistance to using simulations in their solutions to the problems 

and a preference for using mathematical formulae. This was noted from interviews, 

observation logs, as well as written responses dating back to the initial pilot study. This 

resistance possibly explains the insignificant or lesser gains from the high-level students 

in the simulation group as compared to the low-level students. Despite this penchant for 

mathematical formulae, the significantly higher retention test scores for the simulation 

group indicate that possibly the high-level students relied on their conceptual knowledge 

from the simulations when the recollection of appropriate formulas failed them.  Kaput 

and Schorr (2002) noted similar retention discoveries in their work with students from 

low-performing schools. The students made significant gains after using technology to 

learn complex algebraic concepts.  Years later, follow-up stories showed these students 

still relied on visual representations developed during prior instruction with the 

technology to trigger solution processes.  
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 The significant results on the retention test suggest that students who use 

simulations in their learning are likely to experience conceptual change. Posner, Strike, 

Hewson, and Gertzog (1982) proposed three, and later four, conditions necessary for 

conceptual change to take place. First, one must experience dissatisfaction with their 

current conception. Subsequently, the new conception must make sense and fit well 

within their current schema and offer productive ways of processing information. 

Instructional decisions and social context of the classroom may also play a role in 

successful change (Tyson, Venville, Harrison, & Treagust, 1997; Pintrich, Marx, & 

Boyle, 1993). The comparative design of my study, the inquiry-based nature of the lab 

sessions I constructed, and  the inclusion of a retention test provided a setting where 

conceptual change could be monitored. The collective quantitative results reflect a stable, 

sustainable understanding of probability and probability distributions for the students in 

the simulation group compared to unstable, highly variable results in the control group 

with many students reverting back to pretest performance. Qualitative analysis revealed 

that many students in the simulation group used visual representations developed during 

the simulation exercises and recollection imagery from the simulation experience to aid 

them in answering the questions on the posttest. Though qualitative feedback was not 

available for the retention test, it is plausible to conclude that the students continued to 

access these visual representations on this test as well.  

 To answer my second research question, I rely on a social constructivist 

perspective and retain a focus on the social nature of the classroom, the interactions 

between the teacher and the student, the peer interactions, and, most important to this 

study, the interactions with the simulation tool itself. It is significant to describe what the 
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simulation activities brought to the social experience and how they influenced student 

reasoning throughout the study.  The probabilistic thinking framework developed by 

Jones, Langrall, Thornton, and Mogill (1999) provided a framework to trace the 

progression and development in students' reasoning of probabilistic constructs and 

misconceptions relevant to the notion of probability distributions. These constructs 

included sample space, probability of an event, probability comparisons, conditional 

probability, and independence. Though the GAISE curriculum framework (American 

Statistical Association, 2007) was not initially considered in the design of my study due 

to the concurrent nature of the two events, this instructional framework proved relevant in 

the analysis of my findings as the three levels in this framework were more closely 

matched to the evolution of distributional thinking which was a focus of my study. 

 From the very beginning of the study with the development of the concept of 

sample space, students showed Level 1 and 2 reasoning in the probabilistic thinking 

framework (Jones et al., 1999) with incomplete listings of outcomes and an unsteady 

grasp of the concept of sample space. Through the simulations, the students in the 

treatment group gained confidence in their understanding of sample space as the 

technology prompted them to create outcome representations to guide them in their 

listings of multistage outcomes. These students began to develop a one-to-one mapping 

correspondence between the various representations of outcome listings, tree diagrams, 

and the fundamental counting principle which allowed them to move to Levels 3 and 4 in 

the framework. The control group students typically moved to Levels 3 and 4 through the 

instructional units with regard to sample space although the frequency of errors was 
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greater and confidence was low when confronted with conflicting results from their tree 

diagrams and the counting principle.  

 All students initially showed many probabilistic misconceptions, some even using 

subjective judgments in their pretest responses for some of the probability questions thus 

starting at Levels 1 and 2 in the framework. The simulation group quickly adapted to a 

frequentist orientation in their reasoning with probability as they made associations 

between the weights of the probabilities and the randomly generated outcomes from the 

technology. Both groups showed part-whole reasoning in their probability calculations, 

although the control group students showed a greater vulnerability to the equiprobability 

bias than the simulation students. Again, I believe the visualization resulting from the 

outcomes representation reminded the students that not every outcome would be given 

equal weight. The students in the simulation group illustrated a test-retest function of the 

simulations to validate their conjectures. Although I initially encouraged this interaction 

with the simulation based on the theory of conceptual change (Posner, Strike, Hewson & 

Gertzog, 1982), the students began to spontaneously incorporate this validation process 

even when they were not prompted. The validation procedure proved successful in 

promoting student recognition of probabilistic misconceptions, errors in proportional 

reasoning, and errors in combinatorial reasoning. This was in stark contrast to the control 

group students who experienced cognitive conflict within their class discussions but often 

could not reach a resolution. Ultimately the connections made between the various 

representations from the simulations and the resulting evolution from outcomes to values 

of a random variable to the resulting probability distribution graph allowed the simulation 

students to move to Level 4 with confidence whereas the control group students struggled 
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more with judgments involving "most likely" and "least likely" without the visual 

representations to guide them. The simulation activities for independent events, 

conditional probability, and representativeness proved too time-consuming for significant 

learning patterns to emerge. These concepts have been noted in the literature as areas 

where difficulties persist despite instruction (Batanero & Sanchez, 2005; Tarr & Lannin, 

2005), and further research needs to be conducted in these particular areas.  

 Qualitative evidence suggests that students in the simulation group reasoned 

differently about probability distributions than students in the control group. Responses 

from students in the simulation group suggest a weaponry of representations utilized by 

these students with conceptual constructions including outcome analysis, drawings, tables 

and formulas. These students articulated a sense of continuity and depth in their 

responses developed from their consistent, daily exposure to the generation of outcomes 

to the recognition of patterns and to the drawing of conclusions. The group comparisons 

of the simulation output allowed the students to construct their own knowledge of 

randomness, variation, central tendency, distribution, and the law of large numbers, all 

considered the bigger ideas to gain from a statistics class according to Scheaffer, 

Watkins, and Landwehr (1998). Like myself, these researchers see probability 

distributions as a critical factor in developing notions of statistical inference. By starting 

with outcome analysis and development of sample space for a specific example, the 

students had started at Level A in the GAISE framework. The easy movement among 

representations with the technology including spreadsheet sums allowed the students to 

then connect the outcomes to the concept of a random variable with its associated 

probability and then to a graphical representation. Here, along with peer-to-peer 
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comparisons, the simulation students were able to transfer to Level B with a developing 

understanding of the concept of an empirical probability distribution. The group 

comparisons and ability of the technology to generate a large number of trials continued 

the evolution with a developing understanding of the law of large numbers, and most 

seemed poised and ready to move to Level C as they began to understand generalizations 

to theoretical distributions. Limited by formulas and without the visual representations 

generated by the simulations, the control group struggled to make sense out of questions 

that required connected thinking about distributions. This is evidenced by the results as 

the most significant gains for the simulation group were on questions related to binomial 

distributions, geometric distributions and the law of large numbers.  

 It is significant to look at the results from the control group instruction. As noted 

earlier, I have taught for many years, and the earlier years I followed a traditional, 

teacher-centered approach. This is a natural tendency for me in my teaching as I believe it 

is for many mathematics instructors. There was still significant learning that took place in 

the control group - the high-level students performed just as well, and in some cases 

better, than the high-level students in the simulation group. Discussions were still 

oriented towards ways to develop conceptual representations for the probabilistic 

concepts being taught. The control group students found success in their representational 

systems including tree diagrams, tables, and formulas. Some of the assessment questions 

could be solved easily with the appropriate use of formulas, and as evidenced by the 

qualitative analysis, many of the control group students used this strategy. Calculations 

for probabilities involving simple events, fundamental counting principle, and expected 

value are fairly easy calculations mathematically, although these students could not 
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articulate the meaning of their answers as well as the simulation group in terms of how 

the solution fit into the bigger concept of a probability distribution. Many of the low-level 

students in the control group used formulas that indicated a tendency to revert to 

deterministic calculations involving setting up a proportion, adding, or taking averages 

which were inappropriate formulas to use for the probabilistic problems they were given.  

Limitations of the Study 

 As the sole teacher-researcher involved in this study, this type of study naturally 

presents the possibility of researcher bias. With a preconceived notion that simulations 

were helpful, there was a risk that I may inadvertently favor the simulation group in my 

instruction. To the best of my ability, I tried to equalize the instruction to both groups as 

much as possible except for the simulations themselves so as not to confound the 

treatment effects. Both groups received the same notes, and as the instructor for all of the 

classes, this eliminated the possibility of confounding effects from the variability of 

different instructors.  Although I was involved in discussions with both groups, I 

purposefully strived to allow the students to develop their own ideas.  The choice as 

teacher-researcher presented some advantages as the students were in their natural 

domain with no disruption from outside researchers conducting the study which may 

detract from the natural state of the classroom environment. As their regular teacher, 

there was a preexisting intimacy and comfort already set in place. In addition, there were 

two AP Statistics teachers at my school who served as observer-witnesses for some of the 

lab sessions.  These teachers recorded field notes of their observations as well so that 

comparisons could be made  and triangulation could be achieved.   
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 I believe the assessments used in this study could have been improved to reduce 

ambiguity of questions and to reduce the possibility of getting a question correct but with  

incorrect reasoning. The incorporation of written feedback and multiple choices that 

probed reasoning served well to reduce this risk, and the interviews allowed me to probe 

further into the nature of the students' reasoning to offset the objective assessment 

drawbacks.  Researchers in statistics education have noted the assessment challenge in 

monitoring appropriate statistical reasoning and the need to develop better instruments 

(Garfield, 2002).  All of my questions used in the pretest, posttest, and retention tests 

were either matched items or the same items to assure equality of assessments thus 

increasing the chance of confounding from learning effects from prior assessments. On 

the other hand, this seemed a better choice than using different assessments and running 

the risk of not testing the same objectives.  

 The interviews were unstructured, informal interviews that prompted students to 

think out loud so I could monitor the students' reasoning. Due to time constraints in the 

students' and my schedule, I was unable to conduct interviews after each lab. More 

frequent, structured interviews would have possibly produced a deeper look into how the 

simulations affected the evolution of the students' probabilistic reasoning.  

 For the most part, I believe the labs that I designed were beneficial and fell within 

the students' zones of proximal development to allow for learning to take place. A few of 

the labs such as the independence lab, the conditional probability lab, and the 

representativeness lab were either poorly designed or turned out to be too time-

consuming for any true learning benefits to be detected within the allotted timeframe. I 

believe that simulations in these areas can be helpful, but based on the limitations from 
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the instructional design of this study, these benefits could not be substantiated by the 

results.  

Implications for Teachers 

 Common Core State Standards (CCSSI, 2011) continue to push the influx of data 

analysis and probability within the secondary curriculum. Many teachers currently 

teaching these courses are unfamiliar with the teaching and learning of probabilistic and 

statistical thinking. These teachers are teaching courses such as algebra, geometry and 

precalculus and are familiar with a deterministic approach to teaching math.  As a result, 

they may choose a formulaic approach to teaching the data analysis segments within their 

courses rather than an approach that emphasizes simulations and exploratory methods.  

This study generates ideas for teachers on how they can design simulations that foster the 

development of new representational systems to encourage a deeper understanding of 

probability and probability distributions. The study enlightens awareness to the different, 

diverse performance levels within our classroom but with a viable option as to how to 

address these differentiated levels in instructional design. My earlier pilot study and 

previous teaching experience with simulations indicates that students are typically 

uncomfortable with learning through exploration and simulation at first. The results of 

my study give confirming evidence that students will most likely come to adjust, and 

even like, the experience and increase their confidence once they gain familiarity with the 

approach.  

Implications for Students 

 The implication of this study for students is one of liberation. Qualitative data 

analysis revealed a renewed interest, enjoyment, and confidence associated with the study 
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of probability due to the use of the simulations. Although participants in the study were in 

an AP Statistics course, the less advanced students showed the most benefit from the 

simulations. This is especially significant as more and more non-advanced students are 

being exposed to data analysis, probability, and statistics in the secondary curriculum. 

Evidence from the study supports that shallow instruction in data analysis and probability 

with no sense of the concept of variation or distribution produces only an isolated, 

temporary understanding for many students. It is with hope and optimism that I say with 

new standards focused on modeling activities and the implementation of technology that 

students will begin to gain an understanding of complex concepts which they may not 

have been capable of learning in the traditional school mathematics curriculum and to 

develop a positive self-concept of their mathematical abilities.  

Implications for Further Research 

 Although instinctively I knew that using data exploration and simulations would 

benefit my students, I was dubious that my results would be statistically significant.  Prior 

to the analysis of the data, I worried that the results would be disappointingly 

unconvincing as other noted attempts using simulations in the literature.  The results of 

this study have been convincing. Researchers should be encouraged to conduct whole-

class experiments to infuse the literature with undisputable evidence of the benefits of 

incorporating simulations in the teaching of statistics.  The study highlighted successful 

simulations as well as ones that did not seem successful.  Time constraints hinder the 

development of successful simulations that can be utilized in a realistic classroom setting.  

Further studies in realistic settings are encouraged to devise workable and successful 

simulations within the typical constraints. The results of my study indicate that 
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simulations can both help and hinder students' understanding of probability distributions. 

Simulations cannot be an isolated task but rather need to be a sequence of data-oriented 

lessons, pedagogically connected, so as to allow for the conceptual changes to take place. 

There is a need for research on suitable curriculum materials. Based on the results of the 

study, I suggest that simulations should be taught in conjunction with the formulas that 

apply but need to be well-developed enough to allow the students to reconcile their 

results with the outcomes from the formulas so a deeper understanding can occur. I 

believe the computer simulations allow for a more connected understanding of the 

construct of a probability distribution from generation of outcomes to development of a 

random variable to the graphical representation, but caution must be taken to assure the 

students understand what the graphs represent and the source of the representation. I 

suggest that in designing simulation activities relative to probability distributions 

researchers start with the notion of outcomes and sample space as the technology allows 

the students to develop representations that instill visualizations for the students when 

making necessary connections between the concepts.  

 This study has provided both quantitative and qualitative evidence of significant 

differences in secondary students’ reasoning when using simulations to learn about 

probability and probability distributions.  Results indicate that lower-level students may 

benefit more from the use of simulations than higher-level students perhaps due to 

higher-level students’ preference for formal mathematical rules and procedures.  Future 

researchers who are looking at the effect of simulations on student learning should note 

this differential when designing their studies to avoid masking significant differences 

with aggregate data. Both groups continued to show difficulty with compound events, 
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conditional probability, and independence. Further explorations with simulations in these 

areas are necessary with acknowledgement that these simulations will require a greater 

time commitment than others. Difficulties with compound events, conditional probability, 

and independence have been noted in the literature (Batanero & Sanchez, 2005; 

Zimmermann, 2002; Jones et al., 1999).  Frameworks such as GAISE (ASA, 2007) and 

the probabilistic thinking framework of Jones and colleagues (Jones et al., 1999; Tarr and 

Jones, 1997) are useful for detecting and monitoring conceptual development as students 

progress from one level to another in their reasoning. Efforts to improve assessments for 

statistical reasoning should continue to ensure that appropriate learning has taken place.  

Finally, similar studies should be conducted that continue the progression noted in this 

study and monitor the reasoning from the simulations and this prerequisite knowledge on 

distributions with regard to sampling distributions and statistical inference (Chance et al., 

2004).  

 The results of my study were exciting to me. I hope that these results will make a 

positive contribution to the limited, yet growing and developing, body of research in 

statistics education in the secondary setting. I believe simulations and a modeling 

approach to teaching mathematics show great promise in improving the learning and 

motivation of our students as it offers them a process-oriented approach to learning that 

makes their learning more successful and applicable to their lives.  
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APPENDIX A - PILOT STUDY QUESTIONNAIRE AND LAB SHEET 

 

AP Statistics                                                              Name _______________________ 

Concepts of Randomness 

 

For each of the following questions, circle the answer that you consider most appropriate. 

After each question, summarize your thoughts on each question and state why you chose 

the particular answer you circled. If you guessed, then state that. If you were able to 

narrow down your choices, then give details regarding how you were able to narrow them 

down. If you knew for sure which answer was correct, then state how you knew. Finally, 

for each question, circle a confidence scale number from 1 to 5 (with 1 = not confident at 

all to 5 = very confident) regarding the confidence you have in your circled answer.  

 

 

 

 

 

1. Five faces of a fair die are painted black, and one face is painted white. The die is 

rolled six times. Which of the following results is more likely? 

(a) Black side up on five of the rolls; white side up on the other roll 

(b) Black side up on all six rolls 

(c) Choices a and b are equally likely 

 

Summary for Question 1: 

 

 

 

 

 

 

 

 

 

 

 

  

 Confidence rating for Question 1: 1 2 3 4 5 

                                               (not confident at all)                               (very confident) 
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2. Half of all newborn babies are girls and half are boys. Hospital A records an 

average of 50 births a day. Hospital B records an average of 10 births a day. On a 

particular day, which hospital is more likely to record 80% or more female births? 

(a) Hospital A (with 50 births a day) 

(b) Hospital B (with 10 births a day) 

(c) The two hospitals are equally likely to record such an event 

  

Summary for Question 2: 

 

 

 

 

 

 

 

 

 

 

 

  

 Confidence rating for Question 2: 1 2 3 4 5 

                                             (not confident at all)                               (very confident) 

 

3. When two dice are thrown simultaneously, it is possible that one of the following 

results may occur. Result 1: A 5 and a 6 are obtained. Result 2: A 5 is obtained 

twice. Select the response that you agree with the most. 

(a) The chances of obtaining each of these results is equal. 

(b) There is a higher chance of obtaining Result 1 

(c) There is a higher chance of obtaining Result 2 

(d) It is impossible to give an answer 

  

Summary for Question 3: 

 

 

 

 

 

 

 

 

 

 

 

  

 Confidence rating for Question 3: 1 2 3 4 5 

                                             (not confident at all)                               (very confident) 
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4. When tossing a fair coin, there are two possible outcomes: heads or tails. Ronni 

flipped a coin three times, and in all cases heads came up. Ronni intends to flip 

the coin again. What is the chance of getting heads the fourth time? 

(a) smaller than the chance of getting tails 

(b) equal to the chance of getting tails 

(c) greater than the chance of getting tails 

 

  

Summary for Question 4: 

 

 

 

 

 

 

 

 

 

 

 

  

 Confidence rating for Question 4: 1 2 3 4 5 

                                             (not confident at all)                               (very confident) 
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Simulation Activity – Question 1                                         Name: _________________ 

                                                                                                Group Members: 

                                                                                                ________________________ 

                                                                                                ________________________ 

                                                                                                ________________________ 

 

Exercise #1: Five faces of a fair die are painted black, and one face is painted white. 

The die is rolled six times. Which of the following results is more likely? 

(a) Black side up on five of the rolls; white side up on the other roll 

(b) Black side up on all six rolls 

(c) Choices a and b are equally likely 

 

 

Materials: 

One fair die with five faces painted black and one face painted white 

 

Have each student in your group repeat this experiment 20 times. Each set of 6 

tosses is considered one repetition. Record the results of each roll on the attached 

spreadsheet. 

 

(a) Based on your individual simulation results, which do you think is more likely, a 

or b, or do you think they are equally likely? Why do you think that? 

 

 

 

 

(b) Does this answer agree with your answer prior to doing the simulation activity? 

 

 

 

 

(c) Is there anything that the simulation helped you realize that you didn’t think of 

when you answered the question prior to the simulation? Would that lead to a 

change in your answer to the question? Why would it lead to a change in your 

answer? (verify what you think the answer to the question is now) 

 

 

 

 

 

(d) Now compare your results to the results of your other group members? Did you 

all get similar results? If so, why do you think that happened? If not, why do you 

think that happened? (record each member’s results on attached spreadsheet) 
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(e) Pool your results with all of the other group members, and answer the question 

based on your combined results. Did the combined results cause you to change 

your answer from part c? If so, why? If not, why not? (verify what you think the 

answer to the question is now) 

 

 

(f) If you pool your group results with the whole class, what do you think will 

happen? Why do you think this will happen? 

 

 

 

 

(g) After looking at the other group results, how do the different group results 

compare to each other? Are the results similar to the comparison of your 

individual results with your other group members? (See step e). Record results on 

attached spreadsheet. 

 

(h) After comparing group results, do you want to change your answer to the question 

from what you put in part e? (verify what you think the answer to the question is 

now) 

 

 

 

 

 

(i) On a scale from 1 to 5 with 1 = not confident at all to 5 = very confident, how 

confident are you in your answer to part h? Why are you or are you not confident 

with this answer? 

 

 

 

 

 

(j) Do you think the answer would depend on the person rolling the die? Explain.  

 

 

 

 

 

(k) Summarize what you have learned from this simulation activity. Be as specific as 

possible.  
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 1
st
 toss 2

nd
 toss 3

rd
 toss 4

th
 toss 5

th
 toss 6

th
 toss 

example B W B B W B 

1       

2       

3       

4       

5       

6       

7       

8       

9       

10       

11       

12       

13       

14       

15       

16       

17       

18       

19       

20       

 

 

 

 % of choice A % of choice B 

   

Individual Result   

   

Group Member 1   

Group Member 2   

Group Member 3   

   

Group A Results   

Group B Results   

Group C Results   

Group D Results   

Group E Results   
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APPENDIX B - INSTRUMENT A PRETEST 

 

 

INSTRUMENT A 

 

For each question, record your answer on the answer sheet provided. Then for each 

question, give a rating on the appropriateness of the question as a measure of secondary 

student understanding of probability distributions (1 = LOWEST to 5 = HIGHEST). So, 

for example, if you feel the question is not appropriate at all, you would give it a low 

rating. If possible, then give written feedback on the appropriateness and difficulty of the 

items.  You may write your rating and feedback on the actual test rather than on the 

answer sheet.  

 

1. Joe and Tonya plan to visit a bookstore. Based on their previous visits to this 

bookstore, the probability distributions of the number of books they will buy are 

given below: 

 

# of books Joe will buy 0 1 2 

Probability 0.50 0.25 0.25 

 

 

# of books Tonya will buy 0 1 2 

Probability  0.25 0.50 0.25 

 

Assume that Joe and Tonya make their decisions independently, what is the 

probability that they will purchase no books on this visit to the bookstore? 

(a)  0.0625 

(b)  0.1250 

(c)  0.1875 

(d)  0.2500 

(e)  0.7500 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

 

 

2. Using the same scenario in Question #1, how many outcomes in the sample space 

are there? 

(a) 3 

(b) 5 

(c) 6 

(d) 9 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 
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3. Using the same scenario in Question #1 and letting the random variable represent 

the total number of books Joe and Tonya buy together, what shape does the 

probability distribution have? 

(a) uniform 

(b) right-skewed 

(c) left-skewed 

(d) mound-shaped  

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

 

4.   Circuit boards are assembled by selecting 4 computer chips at random from a large 

batch of chips. In this batch of chips, 90 percent of the chips are acceptable. Let X denote 

the number of acceptable chips out of a sample of 4 chips from this batch. What is the 

least probable value of X? 

(a)  0 

(b)  1 

(c)  2 

(d)  3 

(e)  4 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

 

5.  Assuming you randomly guess on a 20 question multiple-choice test with 5 choices     

per question, what shape does the distribution of the number of questions correct have?  

(a) left-skewed 

(b) right-skewed 

(c) uniform 

(d) symmetric, mound-shaped 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

6.  Five faces of a fair die are painted black, and one face is painted white. The die is  

rolled six times. Which of the following results is more likely? 

      (a)  Black side up on five of the rolls; white side up on the other roll  

(b)  Black side up on all six rolls  

(c)  a and b are equally likely  

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 
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7.   This is a distribution of how much money was spent per week for a random sample of 

college students. The following statistics were calculated: mean = $31.52; median = 

$30.00; interquartile range = $34.00; standard deviation = $21.60; range = $132.50.  

 

 

(question continued on next page)  

Given the statement:  The distribution of food costs basically looks bell-shaped, 

with one outlier.  Do you: 

(a)  Agree, it looks pretty symmetric if you ignore the outlier.  

(b)  Agree, most distributions are bell-shaped.  

(c)  Disagree, it looks more skewed to the left.  

(d)  Disagree, it looks more skewed to the right.  

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

8.   A fair coin is tossed, and it lands heads up. The coin is to be tossed a second time. 

What is the probability that the second toss will also be a head?  

(a)  1/4  

(b)  1/2  

(c)  1/3  

(d)  Slightly less than 1/2  

(e)  Slightly more than 1/2  

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 
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9.  Which of the following best describes the reason for your answer to the preceding 

question?  

(a)  The second toss is less likely to be heads because the first toss was heads.  

(b)  There are four possible outcomes when you toss a coin twice. Getting two heads 

 is only one of them.  

(c)  The chance of getting heads or tails on any one toss is always 1/2.  

(d)  There are three possible outcomes when you toss a coin twice. Getting two heads 

 is only one of them.  

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

10.  If a fair coin is tossed five times, which of the following ordered sequence of heads 

(H) and tails (T), if any, is MOST LIKELY to occur?  

(a)  H T H T T  

(b)  T H H H H  

(c)  H T H T H  

(d)  Sequences (a) and (c) are equally likely.  

(e)  All of the above sequences are equally likely.  

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

11. When three fair dice are simultaneously thrown, which of the following results is 

MOST LIKELY to be obtained? 

(a)  Result 1: A 5, a 3 and a 6 in any order  

(b)  Result 2: Three 5's  

(c)  Result 3: Two 5's and a 3  

(d)  All three results are equally likely.  

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 
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12.  Two distributions of test scores (questions 12 and 13) are presented below. For each 

distribution, select the one descriptor that best represents the shape of the distribution. 

 

 

 

(a)  Normal  

(b)  Skewed  

(c)  Bimodal  

(d)  Uniform  

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

13.  .   

(a)  Normal  

(b)  Skewed  

(c)  Bimodal  

(d)  Uniform  

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 
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14.  If a fair die is rolled five times, which of the following ordered sequence of results, if 

any, is MOST LIKELY to occur?  

(a)  3 5 1 6 2  

(b)  4 2 6 1 5  

(c)  5 2 2 2 2  

(d)  Sequences (a) and (b) are equally likely.  

(e)  All of the above sequences are equally likely.  

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

15.  Box A and Box B are filled with red and blue marbles as follows. Each box is 

shaken. You want to get a blue marble, but you are only allowed to pick out one marble 

without looking.  

 

 

Which box should you choose? 

(a)  Box A (with 6 red and 4 blue)  

(b)  Box B (with 60 red and 40 blue)  

(c)  It does not matter  

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

16.  Half of all newborn children are girls and half are boys. Hospital A records an 

average of 50 births a day. Hospital B records an average of 10 births a day. On a 

particular day, which hospital is more likely to record 80% or more female births?  

(a)  Hospital A (with 50 births a day) 

(b)  Hospital B (with 10 births a day) 

(c)  The two hospitals are equally likely to record such an event 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 
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17.  Suppose a car manufacturer makes cars with a 0.60 probability of having no defects, 

a 0.30 probability of having one defect, and a 0.10 probability of having 2 defects. If two 

cars were shipped to a dealer, what is the most probable average number of defects of the 

two cars? 

(a)  0 

(b)  0.5 

(c)  1 

(d)  1.5 

(e)  2 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

18.   A basketball player makes 80% of his free throws. If this player is asked to shoot 

free throws until he misses one, which of the following is the MOST PROBABLE 

number of throws it will take?  

 (a) 0 

 (b) 1 

 (c) 2 

 (d) 3 

 (e) 4 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

 

 

19.  True or False:  A weatherman predicts 70% chance of rain for the next five days. 

This means the most likely outcome is rain for the next five days.  

 (a) True 

 (b) False 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

 

20.  True or False:  A basketball player has a 60% field goal percentage. If he has made 

four shots in a row in a game, the likelihood of him making his next shot is higher than at 

the start of the game.  

 (a) True 

 (b) False  

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 
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21.   

 True or False: Given the distribution above, it is equally likely to get any one unit 

interval between 0 and 10 (ex. 0-1, 1-2, 2-3, etc. are all equally likely). 

(a)  True 

(b)  False 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

22.  Joe and Tonya plan to visit a bookstore. Based on their previous visits to this 

bookstore, the probability distributions of the number of books they will buy are given 

below: 

 

# of books Joe will buy 0 1 2 

Probability 0.50 0.25 0.25 

 

 

# of books Tonya will buy 0 1 2 

Probability  0.25 0.50 0.25 

True or False:  Letting the random variable represent the total number of books Joe 

and Tonya buy together, it is equally likely to get 0 books or 2 books total.  

(a)  True 

(b)  False 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 
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23. True or False:  A weatherman predicts 60% chance of rain for the next five days. 

This means that it should rain exactly 3 out of the 5 days. 

(a)  True 

(b)  False 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

24. True or False: Consider a standard 52-card deck and suppose you pull one card 

from the deck. The probability that it is a jack, given that it is a heart is the same 

as the probability that it is a heart, given that it is a jack.  

(a)  True 

(b)  False 

 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

25. True or False: The probability of getting a prize in a cereal box is 0.10. The 

chance of getting your first prize in the tenth box you buy is higher than the 

chance of getting your first prize in the first box you buy. 

(a)  True 

(b)  False 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

 

 

26.  True or False: Every morning when you arrive at school, you are either late or 

 not late. Thus, the probability of arriving late or not late is 50%-50%. 

(a)  True 

(b)  False 

 

 

Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 
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27.  The weather report on the news said there was an 80% chance of rain tomorrow. 

 This means it will rain tomorrow.  

(a)  True 

(b)  False 

 

      Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

 

 

28.  The weather report said there was an 80% chance of rain tomorrow. The next day 

 it did not rain.  The weather report was incorrect.  

(a)  True 

(b)  False 

 

      Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

 

29.  You snuck out of your house the last 4 weekends in a row and did not get caught.  

 This means you are bound to get caught this weekend.  

(a)  True 

(b)  False 

 

      Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

 

30.  A woman is bright, single, 31 years old, outspoken, and concerned with issues of 

 social justice. Which of the following is more likely? 

       (a)  She is a bank teller and a feminist 

       (b)  She is a bank teller 

(c)  They are equally likely 

 

      Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 
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APPENDIX C - INSTRUMENT B POSTTEST 

 

 

Name: _____________________________ Date: _______________ 

 

INSTRUMENT B 

 

For each question, record your answer on the answer sheet provided. Then for each 

question, give a rating on your CONFIDENCE LEVEL for each answer (1 = LEAST 

CONFIDENT to 5 = MOST CONFIDENT).  Then give a written explanation detailing 

your thought process as to how you arrived at your answer.  You may write your rating 

and feedback on the actual test rather than on the answer sheet.  

 

Steven and Beth plan to visit a record store. Their frequent trips to the store result 

in the following probability distribution of the number of compact discs they buy.  

 

  

 

Number of CDs Beth will buy 0 1 2 3 

Probability  0.25 0.30 0.25 0.20 

 

1. Consider the sample space for the number of CDs Steven will buy followed by the 

number of CDs Beth will buy. How many outcomes are there in the sample 

space? 

(a) 4 

(b) 8 

(c) 12 

(d) 16 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

 

 

 

 2. Using the same information given above, assume Steven and Beth make their 

decisions independently. What is the probability that Beth and Steven together will buy 

exactly two CDs in total?  

(a)  0.10 

(b)  0.125 

(c)  0.200 

(d)  0.225 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

Number of CDs Steven will buy 0 1 2 3 

Probability  0.20 0.25 0.40 0.15 
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3.     Using the same scenario above and letting the random variable represent the total 

number of CDs Steven and Beth buy together, what shape does the probability 

distribution have? 

(a)  uniform 

(b)  right-skewed 

(c)  left-skewed 

(d)  mound-shaped  

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

 

 

 

4.   Robots are assembled by selecting 3 computer chips at random from a large batch of 

chips. In this batch of chips, 90 percent of the chips are acceptable. Let X denote the 

number of acceptable chips out of a sample of 3 chips from this batch. What is the least 

probable value of X? 

(a)  0 

(b)  1 

(c)  2 

(d)  3 

 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

 

 

5.  Assuming a class of 20 randomly guesses on a 10 question multiple-choice test with 5 

choices per question, what shape does the distribution of the number of questions correct 

most likely have?  

(a)  left-skewed 

(b)  right-skewed 

(c)  uniform 

(d)  symmetric, mound-shaped 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 
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6.  Five faces of a fair die are painted white, and one face is painted black. The die is  

rolled six times. Which of the following results is more likely? 

(a)  White side up on five of the rolls; black side up on the other roll  

(b)  White side up on all six rolls  

(c)   a and b are equally likely  

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

7.   This is a distribution of how much money was spent per week for a random sample of 

college students. The following statistics were calculated: mean = $31.52; median = 

$30.00; interquartile range = $34.00; standard deviation = $21.60; range = $132.50.  

 

 

Given the statement:  The distribution of food costs basically looks bell-shaped, 

with one outlier.  Do you: 

(a)  Agree, it looks pretty symmetric if you ignore the outlier.  

(b)  Agree, most distributions are bell-shaped.  

(c)  Disagree, it looks more skewed to the left.  

(d)  Disagree, it looks more skewed to the right.  

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 
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8.   A fair coin is tossed, and it lands tails up. The coin is to be tossed a second time. 

What is the probability that the second toss will also be a tail?  

(a)  1/4  

(b)  1/2  

(c)  1/3  

(d)  Slightly less than 1/2  

(e)  Slightly more than 1/2  

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

9.  Which of the following best describes the reason for your answer to the preceding 

question?  

(a)  The second toss is less likely to be tails because the first toss was tails.  

(b)  There are four possible outcomes when you toss a coin twice. Getting two tails is   

 only one of them.  

(c)  The chance of getting heads or tails on any one toss is always 1/2.  

(d)  There are three possible outcomes when you toss a coin twice. Getting two tails is   

 only one of them.  

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

10.  If a fair coin is tossed five times, which of the following ordered sequence of heads 

(H) and tails (T), if any, is MOST LIKELY to occur?  

(a)  T H T H T 

(b)  T H T H H  

(c)  H T T T T  

(d)  Sequences (a) and (c) are equally likely.  

(e)  All of the above sequences are equally likely.  

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 
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11. When three fair dice are simultaneously thrown, which of the following results is 

MOST LIKELY to be obtained? 

(a)  Result 1: Three 2’s 

(b)  Result 2: A 3, a 6 and a 4 in any order   

(c)  Result 3: Two 1's and a 5  

(d)  All three results are equally likely.  

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

12.  Two distributions of test scores (questions 12 and 13) are presented below. For each 

distribution, select the one descriptor that best represents the shape of the distribution. 

 

 

 

(a)  Normal  

(b)  Skewed  

(c)  Bimodal  

(d)  Uniform  

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 
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13.  .   

(a)  Normal  

(b)  Skewed  

(c)  Bimodal  

(d)  Uniform  

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

14.  If a fair die is rolled five times, which of the following ordered sequence of results, if 

any, is MOST LIKELY to occur?  

(a)  3 6 6 6 6 

(b)  5 3 1 6 4  

(c)  2 1 3 4 6  

(d)  Sequences (a) and (b) are equally likely.  

(e)  All of the above sequences are equally likely.  

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 
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15.  Box A and Box B are filled with red and blue marbles as follows. Each box is 

shaken. You want to get a blue marble, but you are only allowed to pick out one marble 

without looking.  

 

 

Which box should you choose? 

(a)  Box A (with 6 red and 4 blue)  

(b)  Box B (with 60 red and 40 blue)  

(c)  It does not matter  

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

16.  In Game A, you toss a coin 60 times. In Game B, you toss a coin 8 times. You win 

the game if you toss at least 70% or more heads. If you play the game once, which game 

are you more likely to win?  

(a)  Game A  

(b)  Game B 

(c)  It is equally likely to win either game  

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

17.  Suppose a car manufacturer makes cars with a 0.70 probability of having no defects, 

a 0.20 probability of having one defect, and a 0.10 probability of having 2 defects. If two 

cars were shipped to a dealer, what is the most probable average number of defects of the 

two cars? 

(a)  0 

(b)  0.5 

(c)  1 

(d)  1.5 

(e)  2 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 
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18.   Assume it is equally likely to have a boy or girl. A couple decides to have children 

until they have a boy. Which of the following is the MOST PROBABLE number of 

children they will have?  

 (a) 1 

 (b) 2 

 (c) 3 

 (d) 4 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

 

 

19.  True or False:  A weatherman predicts 70% chance of rain each day for the next four 

days. This means the most likely outcome is rain every day for the next four days. 

Assume independence.  

 (a) True 

 (b) False 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

 

 

20.  True or False:  A basketball player has a 75% field goal percentage. If she has made 

three shots in a row in a game, the likelihood of her making her next shot is higher than  

at the start of the game.  

 (a) True 

 (b) False  

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 
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21.   

 True or False: Given the distribution above, it is equally likely to get any one unit 

interval between 0 and 10 (ex. 0-1, 1-2, 2-3, etc. are all equally likely). 

(a)  True 

(b)  False 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

22.       Steven and Beth plan to visit a record store. Their frequent trips to the 

store result in the following probability distribution of the number of compact 

discs they buy.  

 

 

  

 

Number of CDs Beth will buy 0 1 2 3 

Probability  0.25 0.30 0.25 0.20 

True or False:  Letting the random variable represent the total number of CDs that Steven 

and Beth buy together and assuming independence, it is less likely for them to buy 2 CDs 

total than 4 CDs total.  

(a)  True 

(b)  False 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

 

Number of CDs Steven will buy 0 1 2 3 

Probability  0.20 0.25 0.40 0.15 
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23.  True or False:  A weatherman predicts 80% chance of rain for the next five days.   

This means that it will rain exactly 4 out of the 5 days. 

(a)  True 

(b)  False 

 

      Confidence Scale (circle one):    1      2      3      4      5 

      Written Feedback: 

 

 

24.  True or False: Consider a standard 52-card deck and suppose you pull one card 

from the deck. The probability that it is a king, given that it is a face card is the same 

as the probability that it is a face card, given that it is a king.  

(a)  True 

(b)  False 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

25.  True or False: The probability of getting a prize in a cereal box is 0.20 or 1/5. 

The chance of getting your first prize in the fifth box you buy is higher than the 

chance of getting your first prize in the first box you buy. 

(a)  True 

(b)  False 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

26. True or False: Every morning when you arrive at school, you are either late or 

not late. Thus, the probability of arriving late or not late is 50%-50%.  

(a)  True 

(b)  False 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 
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27. The weather report on the news said there was a 90% chance of rain tomorrow. 

This means it will rain tomorrow. 

(a)  True 

(b)  False 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

 

 

28. The weather report said there was a 90% chance of rain tomorrow. The next day 

it did not rain. The weather report was incorrect.  

(a)  True 

(b)  False 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

 

29. You sped to work the last four days and did not get caught. This means you are 

more likely to get caught today. 

(a)  True 

(b)  False 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

 

 

30. You roll a die twice and get a sum of 7. Which of the following is more likely?  

(a)  You roll a 4 on the first roll and a 3 on the second one. 

(b)  You roll a 4 on the first roll. 

(c)  They are equally likely 

 

Confidence Scale (circle one):    1      2      3      4      5 

Written Feedback: 

 

 

Explain,  in your own words, your understanding of the following. Give detailed 

explanations. 

 

Law of large numbers – 
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Randomness –  

 

 

 

 

Expected value – 

 

 

 

 

Probability distribution – 

 

 

 

 

 

How do you feel about the concept of probability? Do you understand it? Do you like it? 

Explain.  

 

 

 

 

 

If you are in the simulation group, do you trust the simulations from the random number 

generators (calculator, computer, random number table, rolling dice, etc.)? Do you think 

they can be used to model real life? EXPLAIN. 

 

 

 

 

If you are in the simulation group, how do you feel about simulations? Do you feel they 

helped you in your learning of probability and randomness, and, if so, how? What were 

some positives and negatives about doing the simulations?  
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APPENDIX D - INSTRUMENT C RETENTION TEST 

 

 

 

Name: _____________________________ Date: _______________ 

 

INSTRUMENT C 

 

For each question, record your answer on the answer sheet provided.  

 

Jacob and Emily plan to visit a candy store. Their frequent trips to the store result 

in the following probability distribution of the number of pieces of candy they 

buy.  

 

Number of Candies Jacob will buy 0 1 2 3 4 

Probability 0.1 0.1 0.2 0.3 0.3 

 

  

 

 

 

1.  Consider the sample space for the number of candies Jacob will buy followed by 

 the number of candies Emily will buy. How many outcomes are there in the 

 sample space? 

(a)  5 

(b)  8 

(c)  12 

(d)  15 

 

 

 2. Using the same information given above, assume Jacob and Emily make their 

decisions independently. What is the probability that Jacob and Emily together will buy 

exactly two candies in total?  

(a)  0.03 

(b)  0.04 

(c)  0.05 

(d)  0.12 

 

3.     Using the same scenario above and letting the random variable represent the total 

number of candies Jacob and Emily buy together, what shape does the probability 

distribution have? 

(a)  uniform 

(b)  right-skewed 

(c)  left-skewed 

(d)  mound-shaped  

 

Number of Candies Emily will buy 0 1 2 

Probability 0.2 0.3 0.5 
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4.   Robots are assembled by selecting 3 computer chips at random from a large batch of 

chips. In this batch of chips, 90 percent of the chips are acceptable. Let X denote the 

number of acceptable chips out of a sample of 3 chips from this batch. What is the least 

probable value of X? 

(a)  0 

(b)  1 

(c)  2 

(d)  3 

 

 

 

5.  Assuming a class of 20 randomly guesses on a 10 question multiple-choice test with 5 

choices per question, what shape does the distribution of the number of questions correct 

most likely have?  

(a)  left-skewed 

(b)  right-skewed 

(c)  uniform 

(d)  symmetric, mound-shaped 

 

 

 

6.  Five faces of a fair die are painted white, and one face is painted black. The die is  

rolled six times. Which of the following results is more likely? 

(a)  White side up on five of the rolls; black side up on the other roll  

(b)  White side up on all six rolls  

(c)  a and b are equally likely  
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7.   This is a distribution of how much money was spent per week for a random sample of 

college students. The following statistics were calculated: mean = $31.52; median = 

$30.00; interquartile range = $34.00; standard deviation = $21.60; range = $132.50.  

 

 

Given the statement:  The distribution of food costs basically looks bell-shaped, 

with one outlier.  Do you: 

(a)  Agree, it looks pretty symmetric if you ignore the outlier.  

(b)  Agree, most distributions are bell-shaped.  

(c)  Disagree, it looks more skewed to the left.  

(d)  Disagree, it looks more skewed to the right.  

8. A die is rolled, and an odd number comes up. The die is to be rolled a second 

time. What is the probability that the second toss will also be an odd number? 

(a)  1/4  

(b)  1/3  

(c)  1/2  

(d)  Slightly less than 1/2  

(e)  Slightly more than 1/2  

9.  Which of the following best describes the reason for your answer to the preceding 

question?  

(a)  The chance of getting an odd or even number on any one roll is always ½. 

(b)  The second roll is less likely to be odd because the first roll was odd. 

(c)  There are 36 possible outcomes when you roll a die twice. Getting two odds is     

 only one of them. 

(d)  There are 12 possible outcomes when you roll a die twice. Getting two odds is 

 only one of them.  
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10.  If a fair coin is tossed five times, which of the following ordered sequence of heads 

(H) and tails (T), if any, is MOST LIKELY to occur?  

(a)  T H T H T 

(b)  T H T H H  

(c)  H T T T T  

(d)  Sequences (a) and (c) are equally likely.  

(e)  All of the above sequences are equally likely.  

 

11. When three fair dice are simultaneously thrown, which of the following results is 

MOST LIKELY to be obtained? 

(a)  Result 1: Three 2’s 

(b)  Result 2: A 3, a 6 and a 4 in any order   

(c)  Result 3: Two 1's and a 5  

(d)  All three results are equally likely.  

 

12.  Two distributions of test scores (questions 12 and 13) are presented below. For each 

distribution, select the one descriptor that best represents the shape of the distribution. 

 

 

 

(a)  Normal  

(b)  Skewed  

(c)  Bimodal  

(d)  Uniform  
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13.  .   

(a)  Normal  

(b)  Skewed  

(c)  Bimodal  

(d)  Uniform  

14.  If a fair die is rolled five times, which of the following ordered sequence of results, if 

any, is MOST LIKELY to occur?  

(a)  3 6 6 6 6 

(b)  5 3 1 6 4  

(c)  2 1 3 4 6  

(d)  Sequences (a) and (b) are equally likely.  

(e)  All of the above sequences are equally likely. 

 

15.  Box A and Box B are filled with red and blue marbles as follows. Each box is 

shaken. You want to get a blue marble, but you are only allowed to pick out one marble 

without looking.  

 

 

Which box should you choose? 

(a)  Box A (with 6 red and 4 blue)  

(b)  Box B (with 60 red and 40 blue)  

(c)  It does not matter  
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16.  In Game A, you toss a coin 60 times. In Game B, you toss a coin 8 times. You win 

the game if you toss at least 70% or more heads. If you play the game once, which game 

are you more likely to win?  

(a)  Game A  

(b)  Game B 

(c)  It is equally likely to win either game  

 

 

 

17.  Suppose a car manufacturer makes cars with a 0.70 probability of having no defects, 

a 0.20 probability of having one defect, and a 0.10 probability of having 2 defects. If two 

cars were shipped to a dealer, what is the most probable average number of defects of the 

two cars? 

(a)  0 

(b)  0.5 

(c)  1 

(d)  1.5 

(e)  2 

 

 

18.   Assume it is equally likely to have a boy or girl. A couple decides to have children 

until they have a boy. Which of the following is the MOST PROBABLE number of 

children they will have?  

 (a) 1 

 (b) 2 

 (c) 3 

 (d) 4 

 

 

 

19.  True or False:  A weatherman predicts 70% chance of rain each day for the next four 

days. This means the most likely outcome is rain every day for the next four days. 

Assume independence.  

 (a) True 

 (b) False 

 

 

 

20.  True or False:  A basketball player has a 75% field goal percentage. If she has made 

three shots in a row in a game, the likelihood of her making her next shot is higher than at 

the start of the game.  

 (a) True 

 (b) False  
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21.   

 True or False: Given the distribution above, it is equally likely to get any one unit 

interval between 0 and 10 (ex. 0-1, 1-2, 2-3, etc. are all equally likely). 

(a)  True 

(b)  False 

 

22.  Jacob and Emily plan to visit a record store. Their frequent trips to the store 

result in the following probability distribution of the number of compact discs 

they buy.  

 

 

  

 

Number of CDs Emily will buy 0 1 2 3 

Probability  0.25 0.30 0.25 0.20 

True or False:  Letting the random variable represent the total number of CDs that Jacob 

and Emily buy together and assuming independence, it is less likely for them to buy 2 

CDs total than 4 CDs total.  

(a)  True 

(b)  False 

 

23.  True or False:  A weatherman predicts 80% chance of rain for the next five days. 

 This means that it will rain exactly 4 out of the 5 days. 

(a)  True 

(b)  False 

 

      

Number of CDs Jacob will buy 0 1 2 3 

Probability  0.20 0.25 0.40 0.15 
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24.  True or False: Consider a standard 52-card deck and suppose you pull one card 

 from the deck. The probability that it is a king, given that it is a face card is the 

 same as the probability that it is a face card, given that it is a king.  

(a)  True 

(b)  False 

 

25.  True or False: The probability of getting a prize in a cereal box is 0.20 or 1/5. 

 The chance of getting your first prize in the fifth box you buy is higher than the 

 chance of getting your first prize in the first box you buy. 

(a)  True 

(b)  False 

 

 

 

26.  True or False: Every morning when you arrive at school, you are either late or 

 not late. Thus, the probability of arriving late or not late is 50%-50%.  

(a)  True 

(b)  False 

 

 

 

 

27.  The weather report on the news said there was a 90% chance of rain tomorrow. 

 This means it will rain tomorrow. 

(a)  True 

(b)  False 

 

 

 

 

28.  The weather report said there was a 90% chance of rain tomorrow. The next day 

 it did not rain. The weather report was incorrect.  

(a)  True 

(b)  False 

 

 

 

 

29.  You sped to work the last four days and did not get caught. This means you are 

 more likely to get caught today. 

(a)  True 

(b)  False 
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30.  You roll a die twice and get a sum of 7. Which of the following is more likely?  

(a)  You roll a 4 on the first roll and a 3 on the second one. 

(b)  You roll a 4 on the first roll. 

(c)  They are equally likely 
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APPENDIX E - SAMPLE SPACE WORKSHEET 

 

 

Sample Space     Name: __________________Date: ______ 

 

Answer the following WITHOUT doing a simulation: 

 

1. Suppose you toss a coin 3 times.  

How many outcomes are there in the sample space?  

List the outcomes in the sample space:  

 

 

 

 

 

Describe how you got your answer to the previous questions. 

 

 

 

 

 

2. Go to Activity 6 on p. 310 in your book (spinning the spinner 3 times). 

How many outcomes are there in the sample space? 

List the outcomes in the sample space: 

 

 

 

 

 

Describe how you got your answer to the previous questions. 

 

 

 

 

 

3. On a given day, it either rains or it doesn’t rain. Suppose you record the weather 

results over the next four days.  

How many outcomes are there in the sample space? 

List the outcomes in the sample space: 

 

 

 

 

 

Describe how you got your answer to the previous questions. 
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Now go back and use your calculator to SIMULATE the previous 3 exercises. 

(Do 20 repetitions with your calculator and compare to your group members to 

reach your answers). Describe how you simulated the situation. Do your 

conclusions from the simulation agree with your previous answers? Did you learn 

anything new from doing the simulation? 

 

 

Problem 1: 

Explain how you simulated: 

 

 

 

 

Do your answers agree with previous answers? Explain. 

 

 

Did you learn anything new from doing the simulation? Explain. 

 

 

Problem 2: 

Explain how you simulated: 

 

 

 

 

Do your answers agree with previous answers? Explain. 

 

 

Did you learn anything new from doing the simulation? Explain. 

 

 

Problem 3: 

Explain how you simulated: 

 

 

 

 

Do your answers agree with previous answers? Explain. 

 

 

Did you learn anything new from doing the simulation? Explain. 
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APPENDIX F - PROBABILITY, INDEPENDENCE, MULTIPLICATION RULE                    

LAB AND WORKSHEET 

 

 
Probability; Independence; Multiplication Rule 

 
So far, in using the TI83 and RandInt, we have given equal probability to all the integers 
generated. For example, doing RandInt(1, 6, 20) gave equal probability to the numbers 1 through 
6 on being generated.  
 
Sometimes values aren’t equally likely and thus we assign specific probabilities (weights) to those 
values. To illustrate the concept, let’s consider a specific example: 
 
Ex. 1 Suppose the probability that a basketball player makes a free throw is 70%. Let’s illustrate 
what the random behavior for 100 possible free throws could look like. Let 0 = miss and 1 = 
make.  
 
Go to PROGRAMS, then MINITAB and open this program. Down C1 (column 1) type in 3 zeros 
and 7 ones (this weights the miss as 30% and the make as 70%). 
 

 
 
Now click CALC at the top, then RANDOM DATA, then SAMPLE FROM COLUMNS as shown: 
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When the following window comes up, type in the appropriate columns (you will sample from C1 
and store your 100 results in C2). Make sure you check SAMPLE WITH REPLACEMENT. 
Then press OK.  
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Now Sort C2 by clicking MANIP at the top, then type in the following in the window, then press 
OK.  
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PART I.  How many cells contain zeros?  ________ How many cells contain ones? ______  
 
 
 
Now convert to percentages (since you simulated 100 shots this should be easy ie. if 22 cells 
contained zeros then this means 22% of the shots were misses and 78% were makes).   
Percent of Misses ___________ 
 
Percent of Makes ___________ 
 
Check with the people sitting next to you. Do they have the exact same answers? _______ Why 
or why not?  
 
 
Are you and your neighbors’ answers close? _______ Comment.  
 
 
 
 
 
Now we do not always want to have to type in a lot of numbers to assign our weights, so there is 
a shortcut we can take. To do the same problem as above, we can type in the values of our 
variable in C1 (in this case 0 and 1). In C2, we can assign the weights (SEE BELOW). 
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Next, click CALC, RANDOM DATA, then DISCRETE.  
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When the following window appears, store values in C3 as below. Then press OK.  
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Sort C3 now (press MANIP, SORT, and enter C3 in all the spaces in the window). Then press 
OK.  
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PART II. What percentage of the shots are misses? _____ What percentage are makes? _____ 
Are these answers the same as your previous answers? ________ Why or why not?  
 
Now let’s look at compound events, specifically joined by the word AND (which means the events 
may not be disjoint if they can possibly both occur).  
 
Definition of INDEPENDENT: Two events A and B are independent if knowing that one occurs 
does not change the probability that the other occurs. If A and B are independent, then  
P(A and B) = P(A) * P(B) (so we multiply probabilities with “AND”). This is the multiplication rule 
for independent events.  
 
PART III. Let’s go back to our basketball problem. Suppose the player shoots twice. Based on 
what you have learned over the past few days, how many different outcomes are there? 
_________  List the possible outcomes in the sample space:  
_______________________________ 
 
Use the same assigned values and probabilities in C1 and C2, but delete C3 values (just click at 
the top of C3 until the whole column is highlighted, then click DELETE on the keyboard). Now go 
and click CALC at the top of the screen, then RANDOM DATA, then DISCRETE again. Store 100 
values in BOTH C3 and C4 this time (representing TWO basketball shots) as shown below: 
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PART IV. You should now have 100 values down both C3 and C4. Suppose we want to calculate 
the probability that a player makes both shots so P(make AND make) which is the multiplication 
rule assuming the two shots are independent. Using the multiplication rule, what should our 
answer be theoretically (recall P(make) = .7)? SHOW WORK _________________________ 
 
To check and see if our simulation results confirm this, we will add up the C3 and C4 pairs of 
numbers and see which ones give us a sum of 2 (which means MAKE = 1 + MAKE = 1 and 1+1 = 
2). We will add the numbers and store our sums in C5. To do this, click CALC at the top, then 
CALCULATOR as shown below: 
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When the next window pops up, type in the following (you will add C3+C4 and store results in 
C5): 
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Now sort C5 by clicking MANIP then SORT then typing in the following: 
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PART V. Now count how many cells contain a 2 in C5 (which implies BOTH baskets were made) 
and convert to a percent (since it was based out of 100 this should be easy). What percent were 
both makes? __________ Does this agree with your answer based on the multiplication rule? 
Explain.  
 
 
 
 
Graph your results by clicking GRAPH at the top, then DOTPLOT and filling in the window with 
C5 as below: 
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PART VI. Then press OK. By looking at your dotplot, if a person is a 70% free throw shooter and 
takes 2 shots, how many is he/she MOST likely to make? ___________ how many is he/she 
LEAST likely to make? _____________ How can you tell by looking at the dotplot?  
 
 
Do your neighbors necessarily show the same dotplot? Why or why not?  
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Probability/Independence           Name: __________________ Date: ___________ 

Multiplication Rule 

 
PART I.  How many cells contain zeros?  ________ How many cells contain ones? ______  
 
 
 
Now convert to percentages (since you simulated 100 shots this should be easy ie. if 22 cells 
contained zeros then this means 22% of the shots were misses and 78% were makes).   
Percent of Misses ___________ 
 
Percent of Makes ___________ 
 
Check with the people sitting next to you. Do they have the exact same answers? _______ Why 
or why not?  
 
 
Are you and your neighbors’ answers close? _______ Comment.  
 

 

 
PART II. What percentage of the shots are misses? _____ What percentage are makes? _____ 
Are these answers the same as your previous answers? ________ Why or why not?  

 

 
PART III. Let’s go back to our basketball problem. Suppose the player shoots twice. Based on 
what you have learned over the past few days, how many different outcomes are there? 
_________  List the possible outcomes in the sample space:  
_______________________________ 

 
PART IV. You should now have 100 values down both C3 and C4. Suppose we want to calculate 
the probability that a player makes both shots so P(make AND make) which is the multiplication 
rule assuming the two shots are independent. Using the multiplication rule, what should our 
answer be theoretically (recall P(make) = .7)? SHOW WORK _________________________ 
 
PART V. Now count how many cells contain a 2 in C5 (which implies BOTH baskets were made) 
and convert to a percent (since it was based out of 100 this should be easy). What percent were 
both makes? __________ Does this agree with your answer based on the multiplication rule? 
Explain.  

 

 
PART VI. Then press OK. By looking at your dotplot, if a person is a 70% free throw shooter and 
takes 2 shots, how many is he/she MOST likely to make? ___________ how many is he/she 
LEAST likely to make? _____________ How can you tell by looking at the dotplot?  
 
 
Do your neighbors necessarily show the same dotplot? Why or why not?  
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APPENDIX G - INDEPENDENCE, GENERAL ADDITION RULE, JOINT       

   PROBABILITY LAB AND WORKSHEET 

 

 

6.2/6.3 Independence/General Addition Rule/Joint Probability 

 

Part I: A company ships boxes of 4 computer chips to its customers. Suppose from 

historical data, the company assumes a 6% defect rate. What is the probability that in a 

box of 4 that at least one of the chips is working properly? ___________ Predict your 

answer on your sheet (without performing any simulation).  

Now using a simulation, open Minitab program. Assign probabilities letting 0 = defective 

and 1 = working properly. Since P(defective) = .06 is given, what is the P(working 

properly)? _________ 

Your assignment of probabilities should look like the following: 

 
 

Now simulate 100 chips down C3, C4, C5, and C6 (we are using 4 columns since there 

are 4 chips). Remember we do this by clicking CALC at the top, then RANDOM DATA, 

then DISCRETE. Then when the following window appears, type: 
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Then press OK and you should have simulated data in all 4 columns. Next, we want to 

add up the four columns to see how many chips are working properly in each outcome 

(since working properly = 1 then our sum should show how many are working properly 

in each batch). To add C3 through C6, click CALC, then CALCULATOR, then type the 

following window: 
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Now sort C3 through C7 by clicking MANIP, SORT, then typing the following window: 
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PART I cont’d   Now since we based this out of 100 to make it easy to calculate 

percents, calculate what percent of the outcomes had at least one working properly 

_________. (This will probably be a lot of them if not all of them). How many outcomes 

had none of them working? _________ Since the sum of these two percents adds up to 

100%, then mathematically we should be able to find P(at least one) by using the formula 

P(at least one) = 1 – P(none).  
 

Example: Suppose the probability of passing a test is 0.8. The result of each test is 

independent of another test. If you take 3 tests, find the probability of passing at least one 

test. Realize that P(none) = fail AND fail AND fail and that AND means to multiply 

probabilities. What would your answer be and show how you got it? 

_____________________________________________________________________ 

 

PART II.  Realize that when we toss 2 dice, there are 36 total outcomes. The following 

chart shows all possible sums when we roll 2 dice:  

 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 
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Now try to answer the following question: Suppose you roll two dice. If event A = rolling 

a 6 on the first die and event B = sum of 12, try to calculate the probability of rolling a 6 

on the first die AND getting a sum of 12 by using formulas: 

________________________ 

 

Now, let’s test your calculation by using a simulation (we should get fairly close to the 

correct answer if we simulate 100).  

 

Clear out the columns from the previous data and type the numbers 1 through 6 down C1. 

Since they are equally likely outcomes, I don’t need to assign probabilities with Minitab.  

 
 

Now simulate rolling two dice (100 times) by clicking CALC, RANDOM DATA, 

SAMPLE FROM COLUMNS. The following window should appear so type in as 

follows. Make sure you check SAMPLE WITH REPLACEMENT below: 
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Now redo those same instructions: CALC, RANDOM DATA, SAMPLE FROM 

COLUMNS, but Store Samples in C3 rather than C2 (still check SAMPLE WITH 

REPLACEMENT). Then press OK. You should have simulations of tosses down both C2 

and C3.  

 

Now add C2 and C3 (to get the sum of your dice) by clicking CALC, CALCULATOR 

and typing in the following: 
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Now recall we are finding the probability of rolling a 6 on the first toss AND getting a 

sum of 12 (which means both must occur), so let’s sort the C2 and C3 according to C2 
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which is our first toss. Click MANIP, SORT, then type in the following: 

 
 

Now go find the percent of outcomes that have a 6 in C2 (for tossing a 6 on the first die) 

and have a sum of 12 in C4.__________ If you count how many outcomes show this, 

then since it was based out of 100 this will be your percent. Is this answer close to your 

predicted answer? __________ 

Are events A = getting a 6 on the first toss and B = getting a sum of 12 INDEPENDENT 

ie. the occurrence of the first does not affect or change the occurrence of the second? 

__________ To help you answer this, start at the top and scroll down noticing the types 

of sums you got when you rolled a one first, then when you rolled a two first, etc. Does 

what you roll on the first die seem to influence what sum you will get? _____________ If 

so, then the events are NOT independent and thus you CANNOT use the multiplication 

rule P(A and B) = P(A)*P(B).  

 

PART III.  Next, using our same results from PART II, let’s look at the following: 

Event A = rolling a 3 on the first toss and Event B = getting a sum of 7 with the two dice. 

Find the following probabilities from your simulated results (realize different students 

will get different answers): 

P(rolling a 3 on the first die) = ___________ 

P(getting a sum of 7 with both dice) = _____________ 

P(rolling a 3 on the first die AND getting a sum of 7) = ______________ 

P(rolling a 3 on the first die but NOT getting a sum of 7) = ______________ 

P(getting a sum of 7 but NOT rolling a 3 on the first die) = ___________________ 
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Using the information you calculated, see if you can complete the following Venn 

diagram: 

 
Now predict the answer to P(getting a 3 on first die OR getting a sum of 7) = _________ 

Check your simulated results by counting how many have either a 3 on the first die or a 

sum of 7 (careful that you do not double count any outcomes). Are these events mutually 

exclusive? __________ Why or why not? _____________________________________ 

Your answer when you count using your simulated results should agree with the answer 

you get if you add up the 3 numbers in your Venn diagram.  
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Name: _______________________________ Date: _________________ 

 

6.2/6.3 Independence/General Addition Rule/Joint Probability 

 

Part I: A company ships boxes of 4 computer chips to its customers. Suppose from 

historical data, the company assumes a 6% defect rate. What is the probability that in a 

box of 4 that at least one of the chips is working properly? ___________ Predict your 

answer on your sheet (without performing any simulation).  

Now using a simulation, open Minitab program. Assign probabilities letting 0 = defective 

and 1 = working properly. Since P(defective) = .06 is given, what is the P(working 

properly)? _________ 

 

PART I cont’d   Now since we based this out of 100 to make it easy to calculate 

percents, calculate what percent of the outcomes had at least one working properly 

_________. (This will probably be a lot of them if not all of them). How many outcomes 

had none of them working? _________ Since the sum of these two percents adds up to 

100%, then mathematically we should be able to find P(at least one) by using the formula 

P(at least one) = 1 – P(none).  
 

Example: Suppose the probability of passing a test is 0.8. The result of each test is 

independent of another test. If you take 3 tests, find the probability of passing at least one 

test. Realize that P(none) = fail AND fail AND fail and that AND means to multiply 

probabilities. What would your answer be and show how you got it? 

_____________________________________________________________________ 

 

Now try to answer the following question: Suppose you roll two dice. If event A = rolling 

a 6 on the first die and event B = sum of 12, try to calculate the probability of rolling a 6 

on the first die AND getting a sum of 12 by using formulas: 

________________________ 

 

Now go find the percent of outcomes that have a 6 in C2 (for tossing a 6 on the first die) 

and have a sum of 12 in C4.__________ If you count how many outcomes show this, 

then since it was based out of 100 this will be your percent. Is this answer close to your 

predicted answer? __________ 

Are events A = getting a 6 on the first toss and B = getting a sum of 12 INDEPENDENT 

ie. the occurrence of the first does not affect or change the occurrence of the second? 

__________ To help you answer this, start at the top and scroll down noticing the types 

of sums you got when you rolled a one first, then when you rolled a two first, etc. Does 

what you roll on the first die seem to influence what sum you will get? _____________ If 

so, then the events are NOT independent and thus you CANNOT use the multiplication 

rule P(A and B) = P(A)*P(B).  

 

PART III.  Next, using our same results from PART II, let’s look at the following: 

Event A = rolling a 3 on the first toss and Event B = getting a sum of 7 with the two dice. 

Find the following probabilities from your simulated results (realize different students 
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will get different answers): 

P(rolling a 3 on the first die) = ___________ 

P(getting a sum of 7 with both dice) = _____________ 

P(rolling a 3 on the first die AND getting a sum of 7) = ______________ 

P(rolling a 3 on the first die but NOT getting a sum of 7) = ______________ 

P(getting a sum of 7 but NOT rolling a 3 on the first die) = ___________________ 

Using the information you calculated, see if you can complete the following Venn 

diagram: 

 
Now predict the answer to P(getting a 3 on first die OR getting a sum of 7) = _________ 

Check your simulated results by counting how many have either a 3 on the first die or a 

sum of 7 (careful that you do not double count any outcomes). Are these events mutually 

exclusive? __________ Why or why not? _____________________________________ 

Your answer when you count using your simulated results should agree with the answer 

you get if you add up the 3 numbers in your Venn diagram.  
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APPENDIX H - CONDITIONAL PROBABILITY LAB AND WORKSHEET 

 

 

Conditional Probability 

 

Recall from the lab last week, when rolling two dice, let A = rolling a 6 on first die and B 

= sum of two dice, it appeared that P(A and B)   P(A)*P(B). Why do you think this rule 

did not apply? ___________________________________________________________ 

 

This is an example of conditional probability, or the probability of one event under the 

condition that we know another event. The symbol for “the probability of B occurring 

given that A has occurred” is ( | )P B A  so the “condition” appears after the slash mark.  

The formula for calculating ( | )P B A is the following: 

( )
( | )

( )

P Aand B
P B A

P A
  

 

Notice that if we do some algebra and rearrange the above equation, solving for  

P(A and B), we get:  

 

P(A and B) = P(A)*P(B|A). This is the formula for “and” when dealing with events that 

are not necessarily independent. Recall, if independent events, then  

P(A and B) = P(A) * P(B). This must allow us to conclude that if events are independent, 

then P(B|A) = P(B).  

 

PART I.  Let’s illustrate with our previous example. Assume event A = rolling a 6 on the 

first die and event B = getting a sum of 12 on both die. Using the discussed formula 

above, predict the answer to P(getting a sum of 12 given that the first die is a 6). Show 

how you arrive at your answer: _____________________________________________ 

 

Now let’s simulate the results and calculate our empirical result. Open MINITAB. Down 

C1, type the numbers 1 through 6 as shown below: 
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Next, click CALC, RANDOM DATA, SAMPLE FROM COLUMNS, and type the 

following: 
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Repeat the previous step but instead of the bottom window storing values in C2, make the 

C2 say C3 the next time. (DON’T FORGET TO CHECK SAMPLE WITH 

REPLACEMENT).  

 

You should now have two columns, C2 and C3 which have simulated tossing a die. Now 

calculate the sums of the two dice by clicking CALC, CALCULATOR and the following: 
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Now SORT according to C2 by clicking MANIP, SORT, then the following: 

 

 
 

To estimate P(sum of 12| first die is a 6), count how many outcomes had a first roll of 6 

(this would mean how many of your C2 entries are 6’s). This will become your 

denominator. The numerator will be how many of your outcomes had both a 6 on the first 

toss (so C2 is 6) and also had a sum of 12 (so C4 is 12). Using the formula and your 

counted results, calculate: 

(first toss is a 6 ANDsum is 12)
( 12 | 6)

P(first toss is a 6)

P
P sumof first toss is a  =   _________________ 

 

Do these results agree (come close) with your initial prediction? __________________ 

 

Do you think that ( | ) ( | )?P A B P B A  ___________Why or why not? 

_____________________________________________________________________ 

 

Use your simulated results to show how you would calculate P(B|A). SHOW WORK on 

how you arrived at your answer: ______________________________ 

 

PART II. Try the following example. Assume A = getting a heads on the first toss and B 

= getting a heads on the second toss. Calculate P(A and B) and show work: 

______________________________________________________ 
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Now calculate P(B|A) and show work: ________________________________________ 

 

To simulate, you would type the numbers 0 and 1 down C1. Then click CALC, 

RANDOM DATA, SAMPLE FROM COLUMNS and type: 

 

 
 

Repeat but STORE SAMPLES in C3 rather than C2. Sort according to C2 by clicking 

MANIP, SORT, then the following: 
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To find P(A and B), count how many outcomes showed a 0 (Heads) in C2 and 0 in C3. 

Divide this by 100.  __________ 

 

To find P(B|A), count how many outcomes showed A and B (a 0 in C2 and a 0 in C3) 

and divide this by how many outcomes had a 0 in C2.  ________________ 

 

To find P(B) count how many outcomes have a 0 in C3 (you may want to sort according 

to C3) and divide this by 100.  ____________________ 

 

Are your answers to P(B|A) and  P(B) the same? ___________ If so, what does this 

mean? ____________________________________ 
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Conditional Probability  Name: _____________________ Date: ________ 

Worksheet  

Conditional Probability 

 

Recall from the lab last week, when rolling two dice, let A = rolling a 6 on first die and B 

= sum of two dice, it appeared that P(A and B)   P(A)*P(B). Why do you think this rule 

did not apply? ___________________________________________________________ 

 

PART I.  Let’s illustrate with our previous example. Assume event A = rolling a 6 on the 

first die and event B = getting a sum of 12 on both die. Using the discussed formula in 

the handout, predict the answer to P(getting a sum of 12 given that the first die is a 6). 

Show how you arrive at your answer: 

_____________________________________________ 

 

To estimate P(sum of 12| first die is a 6), count how many outcomes had a first roll of 6 

(this would mean how many of your C2 entries are 6’s). This will become your 

denominator. The numerator will be how many of your outcomes had both a 6 on the first 

toss (so C2 is 6) and also had a sum of 12 (so C4 is 12). Using the formula and your 

counted results, calculate: 

(first toss is a 6 ANDsum is 12)
( 12 | 6)

P(first toss is a 6)

P
P sumof first toss is a  =   _________________ 

 

Do these results agree (come close) with your initial prediction? __________________ 

 

Do you think that ( | ) ( | )?P A B P B A  ___________Why or why not? 

_____________________________________________________________________ 

 

Use your simulated results to show how you would calculate P(B|A). SHOW WORK on 

how you arrived at your answer: ______________________________ 

 

PART II. Try the following example. Assume A = getting a heads on the first toss and B 

= getting a heads on the second toss. Calculate P(A and B) and show work: 

______________________________________________________ 

Now calculate P(B|A) and show work: ________________________________________ 

 

To find P(A and B), count how many outcomes showed a 0 (Heads) in C2 and 0 in C3. 

Divide this by 100.  __________ 

 

To find P(B|A), count how many outcomes showed A and B (a 0 in C2 and a 0 in C3) 

and divide this by how many outcomes had a 0 in C2.  ________________ 

 

To find P(B) count how many outcomes have a 0 in C3 (you may want to sort according 

to C3) and divide this by 100.  ____________________ 

 

Are your answers to P(B|A) and  P(B) the same? ___________ If so, what does this 

mean? ____________________________________ 
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APPENDIX I - DISCRETE RANDOM VARIABLES LAB AND WORKSHEET 

 

 

Discrete Random Variables – Probability Distributions 

 
Now check your predicted answers by doing a simulation.  

Open MINITAB.  

 

Down C1, type 0 and 1 (0 will represent a non-defective item and 1 will represent a defective item). Down 

C2 type the probability weights as shown below: 

 

 
 

Now simulate a shipment of 4 items by using C3, C4, C5, and C6 and repeating this 100 times. Click 

CALC, RANDOM DATA, DISCRETE as shown below: 
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Then when the window appears, type the following: 

 

 
 

Press OK and you should have 4 columns of 0s and 1s representing the 4 items in the shipment. Since a 1 

represents a defective item, then by calculating sums of the 4 columns, we can see how many defective 

items are in a shipment. To calculate sums, click CALC, CALCULATOR as shown below: 



 

200 

 

 
 

When window appears, type the following: 
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Then Click OK and sums should appear in C7.  

Now Sort the sums by clicking MANIP, SORT, and when window appears type the following: 
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Press OK and calculate the relative frequency or probability (part/whole) of getting X = 2 defective items in 

the shipment. Compare this to your predicted answer to question #4 before doing the simulation. Now 

calculate relative frequencies for values of X = 0, X = 1, X = 2, X = 3, X = 4 and give an empirical 

probability distribution of X using a table (compare this to your predicted probability distribution answer to 

question #5 before doing the simulation and record result on sheet).  
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Next, construct a dotplot of your random variable X by clicking GRAPH, DOTPLOT as shown: 
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Then complete the window as shown: 

 
 

Press OK and use your dotplot to compare predicted answers to questions 6 and 8 before doing the 

simulation (record your answer on sheet).  
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To calculate the mean value of X based on your simulated results, minimize the dotplot screen to return to 

your spreadsheet screen. Click CALC, COLUMN STATISTICS as shown below: 
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Then complete the window as shown below: 

 
 

Press OK and compare the mean to your predicted mean in question #7 before the simulation (record result 

on sheet). Does it make sense that the mean would be this value based on the shape of your probability 

distribution? EXPLAIN (on sheet).  

 

Based on your simulated probability distribution in question #13, if you were to multiply the X value times 

the associated probability then add it to the next x value times the probability and do this for all values of X 

(ie the formula ( )X P X ) (for example, 0*.68 + 1*.30 + 2*.02 + 3*0 + 4*0 = 0.34) do you get the 

same answer as the mean you calculated in question #15? (record answer on worksheet). With probability 

distributions, does each X value then, in a sense, get “weighted” by its probability to give a “weighted 

mean?” (record answer on worksheet) 

 

 

 

 

 

 

 

 

 

 

 

 



 

207 

Discrete Random Variables   Name: __________________________ 

Probability Distributions    Date: _________________ 

 
Answer #1 – 8 BEFORE doing your simulation. 

 

 

1.  A company has an 8% defect rate. What does this mean?  

 

 

2.  If a company ships 4 items to a customer, how many possible outcomes are there? __________ 

     List the outcomes:  

 

 

     How did you arrive at your answer?  

 

 

 

3.  Letting the random variable X = the number of defective items in the shipment of 4, how many possible 

values of X are there? _________ List the values: ______________________________________ 

 

 

4.  What is the probability that X = 2 assuming independence?  _______________ How did you get this 

answer?  

 

 

 

5.  Give the theoretical probability distribution of X using a table: 

 

  

Value of X  

Probability of X  

 

 

 How did you get your answers for each value?  

 

 

 

 

6.  What shape would the probability distribution of X have? ______________________How do you 

know? 

 

 

 

7.What is the mean value of X? __________________  How do you know? 

 

 

 

 

8. What is the MOST probable value of X? ________________ How do you know?  

 

 

 

 

 



 

208 

AFTER DOING SIMULATION: Answer similar questions as you did before but now use your simulated 

results to answer. Some of your answers may be the same as they were before.  

 

9.  A company has an 8% defect rate. Based on your simulated results down each individual column, what 

does this mean?  

 

 

 

10.  If a simulated result gives 0010 that means an outcome of NNDN. If a company ships 4 items to a 

customer, how many different possible outcomes are there? __________ Is this answer the same as you 

thought before doing the simulation? EXPLAIN.  

      

 

 

       

 

 

 

11.  Letting the random variable X = the number of defective items in the shipment of 4, how many 

possible values of X are there? _________ List the values: ______________________________________ 

Are these the same answers you got before doing the simulation? EXPLAIN.  

 

 

12.  Based on your empirical results, what is the probability that X = 2?  _______________ Is this result 

close to your answer you got before doing the simulation? EXPLAIN.  

 

 

 

13.  Based on your simulation, give the empirical probability distribution of X using a table: 

 

  

Value of X  

Probability of X  

 

Is this close to the same answers you got before doing the simulation? _________ 

 

14.  What shape does your probability distribution of X have? ______________________Does this agree 

with your prediction before doing the simulation? EXPLAIN.  

 

 

 

15.What is the mean value of X? __________________  Based on the shape of the dotplot, does it make 

sense that the mean could be this value? EXPLAIN.  

 

 

 

 

16. Based on your simulated probability distribution in question #13, if you were to multiply the X value 

times the associated probability then add it to the next x value times the probability and do this for all 

values of X (ie the formula ( )X P X ) (for example, 0*.68 + 1*.30 + 2*.02 + 3*0 + 4*0 = 0.34) do 

you get the same answer as the mean you calculated in question #15? ________. With probability 

distributions, does each X value then, in a sense, get “weighted” by its probability to give a “weighted 

mean?” _____________ 
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17. What is the MOST probable value of X? ________________ Based on your answer to the previous 

question, do you think the most probable value of a discrete random variable is always the same as the 

mean value? EXPLAIN.  

 

 

 

18.  If you reached any contradictions to your original predictions, do you understand why your predictions 

may have been incorrect? EXPLAIN.  

 

 

 

 

19.  What did the simulation help you learn about probability distributions that you didn’t realize before 

doing the simulation?  

 

 

 

 

20.  Give your own explanation of what we mean by a “probability distribution.” What does a probability 

distribution tell us?  
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APPENDIX J - REPRESENTATIVENESS WORKSHEET 

 

 

Representativeness   Name: ____________________ Date: __________ 

 

Answer the following BEFORE doing simulation. 

 

 If a fair coin is tossed five times, which of the following ordered sequence of heads (H) 

and tails (T), if any, is MOST LIKELY to occur?  

a. H T H T T  

b. T H H H H  

c. H T H T H  

d. Sequences (a) and (c) are equally likely.  

e. All of the above sequences are equally likely.  

Why do you feel that you chose the answer that you did? EXPLAIN. 

 

 

 

 

 When three fair dice are simultaneously thrown, which of the following results is MOST 

LIKELY to be obtained? 

a. Result 1: A 5, a 3 and a 6 in any order  

b. Result 2: Three 5's  

c. Result 3: Two 5's and a 3  

d. All three results are equally likely.  

Why do you feel that you chose the answer that you did? EXPLAIN.  

 

 

 

  If a fair die is rolled five times, which of the following ordered sequence of results, if 

any, is MOST LIKELY to occur?  

a. 3 5 1 6 2  

b. 4 2 6 1 5  

c. 5 2 2 2 2  

d. Sequences (a) and (b) are equally likely.  

e. All of the above sequences are equally likely.  
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Why do you feel that you chose the answer that you did? EXPLAIN.  

 

 

 

 

SIMULATION 

 

Have each one in your group simulate 100 repetitions of the first question and record 

tally marks of each occurrence. You can get one repetition by clicking MATH   PRB  

RANDINT(0, 1, 5) enter. Then keep pressing enter until you have done 100 repetitions. 

Let 0 = H and 1 = T so that an outcome of 01011 would be HTHTT. You may get a lot of 

outcomes that don’t fit one of the 3 patterns so just don’t put a tally mark in that case.  

HTHTT    THHHH      HTHTH    

 

 

 

Once you have recorded tally marks, based on your INDIVIDUAL results, calculate 

empirical probabilities for each outcome by dividing the number of tally marks by 100. 

Do you still agree with your answer you put BEFORE the simulation? EXPLAIN.  

HTHTT probability =  

 

THHHH probability =  

 

HTHTH probability =  

 

 

 

 

 

Now compare your individual results with others in the group. Did you get similar 

results?  

 

Calculate probabilities of each outcome by pooling your tally totals with other group 

members and now dividing by 400 (if 4 in a group) or 500 (if 5 in a group) etc.  

HTHTT probability =  

 

THHHH probability =  

 

HTHTH probability =  

 

Do you still agree with your answer you put BEFORE the simulation? EXPLAIN. 

 

 

 

Do you think your pooled results or individual results are closer to the theoretical 

probability? EXPLAIN. See if you can calculate theoretical probability for each outcome. 
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Have each one in your group simulate 100 repetitions of the second question and record 

tally marks of each occurrence. You can get one repetition by clicking MATH   PRB  

RANDINT(1, 6, 3) enter. Then keep pressing enter until you have done 100 repetitions.  

You may get a lot of outcomes that don’t fit one of the 3 patterns so just don’t put a tally 

mark in that case.  

536 (any order)    555 (any order)     553 (any order)    

 

 

 

Once you have recorded tally marks, based on your INDIVIDUAL results, calculate 

empirical probabilities for each outcome by dividing the number of tally marks by 100. 

Do you still agree with your answer you put BEFORE the simulation? EXPLAIN.  

536 probability =  

 

555 probability =  

 

553 probability =  

 

 

 

 

 

Now compare your individual results with others in the group. Did you get similar 

results?  

 

Calculate probabilities of each outcome by pooling your tally totals with other group 

members and now dividing by 400 (if 4 in a group) or 500 (if 5 in a group) etc.  

536 probability =  

 

555 probability =  

 

553 probability =  

 

Do you still agree with your answer you put BEFORE the simulation? EXPLAIN. 

 

 

 

Do you think your pooled results or individual results are closer to the theoretical 

probability? EXPLAIN. See if you can calculate theoretical probability for each outcome.  
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Have each one in your group simulate 100 repetitions of the third question and record 

tally marks of each occurrence. You can get one repetition by clicking MATH   PRB  

RANDINT(1, 6, 5) enter. Then keep pressing enter until you have done 100 repetitions.  

You may get a lot of outcomes that don’t fit one of the 3 patterns so just don’t put a tally 

mark in that case.  

35162 (in order)    42615 (in order)    52222 (in order)     

 

 

 

Once you have recorded tally marks, based on your INDIVIDUAL results, calculate 

empirical probabilities for each outcome by dividing the number of tally marks by 100. 

Do you still agree with your answer you put BEFORE the simulation? EXPLAIN.  

35162 probability =  

 

42615 probability =  

 

52222 probability =  

 

 

 

 

 

Now compare your individual results with others in the group. Did you get similar 

results?  

 

Calculate probabilities of each outcome by pooling your tally totals with other group 

members and now dividing by 400 (if 4 in a group) or 500 (if 5 in a group) etc.  

35162 probability =  

 

42615 probability =  

 

52222 probability =  

 

Do you still agree with your answer you put BEFORE the simulation? EXPLAIN. 

 

 

 

Do you think your pooled results or individual results are closer to the theoretical 

probability? EXPLAIN. See if you can calculate theoretical probability for each outcome.  

 

 

 

 

What do your results from this simulation exercise say about short-run behavior versus 

long-run behavior? EXPLAIN.  
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APPENDIX K - LAW OF LARGE NUMBERS LAB AND WORKSHEET 

 

 

Simulation     

Law of Large Numbers 

 

Recall the problem from yesterday: 

  Half of all newborn children are girls and half are boys. Hospital A records an average 

of 50 births a day. Hospital B records an average of 10 births a day. On a particular day, 

which hospital is more likely to record 80% or more female births?  

(A) Hospital A (with 50 births a day) 

(B) Hospital B (with 10 births a day) 

(C) The two hospitals are equally likely to record such an event 

 

This is a binomial random variable. We can get the computer to simulate births from both 

hospitals by randomly generating how many girls out of 10 would be born on a given day 

and how many births out of 50 would be born on a given day. We will do 100 repetitions 

imitating what could happen on 100 different days given both situations.  

 

Open MINITAB. Type Hospital A and Hospital B in the column headings as shown 

below: 
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To simulate Hospital A (with 50 births a day), click CALC, RANDOM DATA, 

BINOMIAL as shown below: 
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When the window appears, type the following for 50 births and a 0.5 probability of 

success: 

 
 

Press OK. You should end up with numbers in C1 that represent how many girls are born 

that day out of the 50 births.  

 

Now to simulate Hospital B (with 10 births a day), click CALC, RANDOM DATA, 
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BINOMIAL and type the following when the window appears: 
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Then press OK. To analyze dotplots of the data, click GRAPH, DOTPLOT as shown 

below: 
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When the window appears, type the following: 

 
 

Then press OK.  

Now go to your worksheet and answer questions.  

 

Next, we will convert the values of our random variable into relative frequencies 

(probabilities) by dividing them by 50 (for 50 total babies) and 10 (for 10 total babies). 

Remember the theoretical probability for having a boy or girl is 0.50.  

 

Type in column headings in C3 and C4 as shown: 
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Next, click CALC, CALCULATOR. When the window appears, type in the following: 

 
 

Then press OK.  

Next click CALC, CALCULATOR. Then when the window appears, type the following: 



 

222 

 
 

Then press OK.  

Now do dotplots of the relative frequencies by clicking GRAPH, DOTPLOT. 
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When the window appears, type the following: 

 
 

Then press OK. 

Now go to worksheet and answer the questions.  
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Simulation    Name: _________________Date: _____________ 

Law of Large Numbers 

 

Compare dotplots of C1 and C2, and letting X = number of girls, which Hospital shows a higher variance in 

terms of the random variable? ________________Explain why you put this answer: 

______________________________________________________________________________________

__________________________________________________________ The formula for variance of a 

binomial random variable is (1 )Variance np p  where  

n = total number of trials and p = probability of having a girl in this case. Since both hospitals have p = 0.5, 

does it make sense that the hospital with the larger number of births would show a larger spread? 

EXPLAIN. 

______________________________________________________________________________________

__________________________________________________________ 

 

The mean of a random variable is np  . 

Calculate the mean of Hospital A with 50 births. _______________ Now calculate the mean of Hospital B 

with 10 births ______________.  

 

Does it make sense that the means would be these two numbers? EXPLAIN. 

 

 

 

Were both hospitals centered at their means? _______________ 

 

What shape did both distributions show? ________________________ 

 

Does it make sense why the distributions would show this shape? EXPLAIN.  

 

 

 

Now comparing the dotplots for C3 and C4 after converting to relative frequencies (probabilities), which 

hospital shows results closer to the theoretical probability? 

__________________________________________________________________ 

 

Can you explain why?  

 

 

If you had to predict the probability of having a girl from taking a sample from one of the hospitals, which 

hospital would you pick? ____________________ 

Why?  

 

 

 

If you answered the question about the hospitals now, would your answer be different than what you said 

yesterday? ______________ 

 

Explain what you have learned from doing the simulation: 
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APPENDIX L - BINOMIAL PROBABILITY DISTRIBUTIONS                                                                

       LAB AND WORKSHEET 

 

 

Binomial Probability Distributions 

 

Recall conditions of a binomial distribution: 

(a) each trial must have one of two possible outcomes called “success” and “failure” 

(b) each trial is independent of the others 

(c) there is a fixed number of trials 

(d) the probability of success is the same on each trial 

 

Recall from Friday’s lab that the mean of a binomial is np  and the standard deviation 

is (1 )np p    

 

Given the following scenarios,   

(i) a basketball player makes 10% of her free throws 

(ii) a basketball player makes 50% of her free throws 

(iii) a basketball player makes 90% of her free throws 

 

Go to your worksheet and answer the questions about these scenarios BEFORE 

doing the simulation.  

 

Now simulate the above example. Open MINITAB. 

Let C1 represent scenario 1 with the 10% shooter by clicking CALC, RANDOM DATA, 

BINOMIAL as shown: 
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When the window appears, type the following: 
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Let C2 represent scenario 2 with the 50% shooter by clicking CALC, RANDOM DATA, 

BINOMIAL. When the window appears, type the following: 

 
 

Let C3 represent scenario 3 with the 90% shooter by clicking CALC, RANDOM DATA, 

BINOMIAL. When the window appears, type the following: 
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Now to graph click GRAPH, CHARACTER GRAPHS, DOTPLOT as shown: 

 
 

When the window appears, type the following: 
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Maximize the sheet with the plots by clicking the maximize button as shown below and 

scroll up to see all the graphs. 
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Now go to your worksheet and answer the questions based on your graphs. 

 

Now go to SECTION II on the worksheet and answer the questions BEFORE doing 

the next simulation.  

 

To simulate and see how the number of trials affects the shape of a binomial distribution, 

we will take the 90% shooter and compare n = 5 trials, n = 30 trials and n = 100 trials.  

 

Minimize or close out the dotplot sheet. Delete the previous columns used on the original 

spreadsheet. You can do this by clicking and dragging across C1, C2, and C3 then 

pressing DELETE on the keyboard.  
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Now click CALC, RANDOM DATA, BINOMIAL. When the window appears, type the 

following: 

 
 

Next, click CALC, RANDOM DATA, BINOMIAL and when the window appears, type: 
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Next, click CALC, RANDOM DATA, BINOMIAL and when the window appears, type: 

 
 

To graph, click GRAPH, CHARACTER GRAPHS, DOTPLOT and do the same with the 

graphs as you did before.  

 

Now go to your worksheet and answer the questions based on your graphs.  
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Name: __________________________ Date: _______________ 

 

Binomial Probability Distributions 

 

Given the following scenarios,   

(i)        a basketball player makes 10% of her free throws 

(ii)       a basketball player makes 50% of her free throws 

(iii)      a basketball player makes 90% of her free throws 

 

If the basketball player took 10 free throw shots (so n = 10 trials), what shape do you 

think the graphs of the 3 scenarios would look like? EXPLAIN. 

 

 

 

 

What do you think the means of each of the 3 scenarios would be: 

(i) ___________  (ii) _____________ (iii) ______________ 

 

EXPLAIN: 

 

 

 

 

AFTER doing the simulation, did you notice anything different than what you predicted? 

Are the shapes what you expected?  Are the means most likely where you expected them 

to be? EXPLAIN.  

 

 

 

 

SECTION II. 

BEFORE SIMULATION: How do you think the shape of a distribution is affected by 

the number of trials? Predict the following shapes of the distributions assuming the 

shooter is a 90% shooter. 

(a) shape if the player takes 5 shots (n = 5)? EXPLAIN. 

 

 

(b) shape if the player takes 30 shots (n = 30)? EXPLAIN. 

 

 

(c) shape if the player takes 100 shots (n = 100)? EXPLAIN. 

 

 

AFTER DOING SIMULATION:  Did the shapes end up as you predicted above? 

EXPLAIN. 
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As the number of trials, n, increases, does the shape of the distribution become more 

“normal” (just base this on your observation even though we are not actually checking for 

normality)?  EXPLAIN.  
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APPENDIX M - GEOMETRIC PROBABILITY DISTRIBUTIONS WORKSHEET 

 

 

Name: ___________________________  Date: ______________________ 

 

Geometric Probability Distributions 

 

BEFORE doing your simulation, answer the following questions and EXPLAIN why you 

put the answer you did: 

A basketball player makes 80% of his free throws. If this player is asked to shoot free 

throws until he misses one, which of the following is the MOST PROBABLE number 

of throws it will take?  

(a)  0  (b) 1  (c) 2  (d) 3  (e) 4 

EXPLAIN: 

 

 

True or False: The probability of getting a prize in a cereal box is 0.10. The chance of 

getting your first prize in the tenth box is higher than the chance of getting your first 

prize in the first box you buy. 

(A) True 

(B) False 

EXPLAIN:  

 

Recall conditions for the geometric setting are the following: 

(i) each observation falls into one of two categories, “success” and “failure” 

(ii) the probability of “success,” p, is the same for each observation 

(iii) the observations are all independent 

(iv) the variable of interest is the number of trials required to obtain the first success 

We will simulate the first example: A basketball player makes 80% of his free throws. If 

this player is asked to shoot free throws until he misses one, which of the following is the 

MOST PROBABLE number of throws it will take?  
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How will you assign the numbers in the random number table to fit the assumption?  

 

How does using the random number table serve as a model for this geometric setting? In 

other words, EXPLAIN how the assumptions of the geometric setting are being met. 

 

 

Now simulate the situation by starting at a random starting place in your random number 

table. Simulate 20 repetitions and then compare to other members of your group. Show 

your tally marks below: 

 

Do your simulation results as well as your group members confirm your predicted answer 

BEFORE doing the simulation or do the results want to make you change your answer? 

EXPLAIN. 

 

Use your simulation results to construct a probability distribution for the random variable 

X = # of shots until the first miss  

 

List the outcomes associated with your probability distribution above ie. M, HM, HHM, 

etc. How could you find the theoretical probabilities for these outcomes? 

 

 

What shape would the distribution have? Will all geometric distributions have this similar 

shape? EXPLAIN. 

 

Use your calculator to find the mean number of trials it takes until the first miss (BASED 

on your SIMULATION probability distribution above). Explain how you calculated your 

mean.  
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The theoretical mean of a geometric distribution is 
1

p
   where p is probability of 

“success” in this case missing a shot. Is your empirical mean close to this theoretical 

mean? EXPLAIN.  

Let’s suppose this was a binomial setting with the same shooting probabilities. If a player 

takes 3 shots and you simulate this situation to find the empirical probabilities for X = # 

of shots the player misses. Would you still use the same assignment of random digits? 

EXPLAIN. 

 

How would running the simulation be DIFFERENT than the geometric setting? 

EXPLAIN. 

 

 

What did you learn from doing this simulation?  

 

 

 

 

 

 

 


