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ABSTRACT

This dissertation focuses on the theoretical investigation of non-adiabatic collision pro-
cesses of complex atoms, ions, and molecules. The inelastic processes, particularly charge
transfer due to ion-atom collisions and quenching and excitation in atom-atom collisions,
are studied using a quantum-mechanical molecular-orbital close-coupling method, which is
based on the perturbed stationary state approach adopting molecular orbitals as basis func-
tions. Within this collision model, the motion of nuclei is governed by adiabatic potential
energy surfaces which are constructed from the motion of electrons. Transitions between
adiabatic molecular states are driven by non-adiabatic couplings. With the adiabatic poten-
tial energies and non-adiabatic couplings provided by the multireference single- and double-
excitation configuration interaction method, a set of coupled Schrédinger equations is solved
to obtain the collisional cross sections. We discuss the theoretical method in detail giving
the coupled-channel equations in the adiabatic and diabatic representations. A transforma-
tion between the adiabatic and diabatic pictures are described. The partial wave analysis to
obtain radial coupled equations and the resulting S-matrix is discussed. In order to extend

the current theoretical method for ion-atom collisions to ion-molecule collisions, the infinite



order sudden approximation is adopted to reduce the complexity arising from the rotational
motion of molecular targets. Applications of these methods to three different collision sys-
tems are given. In N-H™ collisions, rate coefficients, total and state-selective cross sections for
electron capture processes are presented. For Na-He collisions, collisional cross sections and
rate coefficients for elastic scattering and inelastic quenching and excitation are given. Addi-
tionally, the variation of scattering lengths with reduced mass and collision energy and their
relation to vibrational bound states of the quasi-molecule are illustrated. Finally, for HT-CO
collisions, we calculate vibrationally-resolved cross sections elucidating vibronic transitions
for three different orientation angles. Angle-averaged results are given. The steric effect is
prominent in the angle-dependent results.

INDEX WORDS: ion-atom collisions, atom-atom collisions, ion-molecule collisions, charge
exchange, scattering length, vibronic interactions, non-adiabatic
interactions
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CHAPTER 1

INTRODUCTION

Living in a world constructed from atomic and molecular building blocks, the understanding
of a variety of macroscopic and microscopic phenomena due to colliding atoms and molecules
is of considerable importance and interest. Collisions between ions, atoms, and molecules
play crucial roles in a wide range of applications, such as the early Universe, the interstellar
medium, planetary atmospheres, fusion energy, and radiotherapy.

In the review by Lepp et al. [1], it was highlighted that atomic and molecular processes
control the evolution of the Universe, and are also important probes for our understanding
of it. Due to the low-density of interstellar space, microphysical processes, such as collisional
ionization or charge transfer, govern most physical and chemical phenomena within an astro-
nomical plasma. In modern computational astrophysics, a large-scale numerical simulation
of astronomical spectra, such as with the code CLOUDY [2], requires large quantities of
atomic and molecular data. With the precise rate coefficients provided by atomic and molec-
ular scattering calculations, the spectral synthesis through a numerical simulation is able to
compare with and to interpret the observed spectrum on a quantitative basis. In particular,
with improvements in telescope detector technology, comes unprecedented advancement in
astronomical observational resolution and sensitivity which realizes the investigation of the
atmospheres of extrasolar planets and other objects. Through the observation of absorp-
tion spectrum and the theoretical study of a variety of collisional mechanisms, it is possible
to reveal the physical conditions in the atmospheres of extrasolar planets. Besides planets,

another interesting phenomena, X-ray emission, occurring in cometary atmospheres has also



drawn a great deal of attention. Since X-ray emission in space is generally thought to origi-
nate from hot collisional plasmas, it is surprising to discover strong X-ray emission from cold
cometary atmospheres. To explain such a particular circumstance, charge exchange processes
occurring at the interface of the coma and solar wind are major mechanisms.

In addition to implications to astrophysics, research in controlled fusion to produce energy
also counts on the availability of accurate atomic and molecular data. Cross-section data for
ion-atom collision processes play crucial roles in the edge plasma of magnetic confinement
fusion devices, such as Tokamaks, in which a critical ion-atom collision process occurring
in the edge plasma is charge transfer. Another practical application is relevant to ion-based
radiotherapy. The interactions of ions with biomolecules, such as DNA, are responsible for
biological radiation damage processes. The electron capture of the RNA base uracil by col-
lisions of C?" ions [3] had been studied to understand the ionization and fragmentation
dynamics of uracil. However, as mentioned in [4], theoretical studies are sparse. More cal-
culations of ion-biomolecule collisions are needed in order to have a better understanding of
the damage mechanisms of biomolecules.

In atomic collisions, theoretical methods can be categorized as perturbative or non-
perturbative. For high-energy collisions, where the projectile velocity is much larger than
the velocity of the orbital electron in the target, the ionization channel is a dominant pro-
cess. Generally, it’s believed that the perturbative approach is valid for this circumstance. In
contrast, due to many inelastic channels, strongly coupled together, and being nearly impos-
sible to single out a dominant channel, a non-perturbative method such as the close-coupling
approach is taken to be an appropriate description for low- to intermediate-energy collisions.
According to the treatment of nuclear motion, the close-coupling method can be divided into
a semiclassical model and a quantum-mechanical description. In a semiclassical formalism,
the motion of nuclei can be described by a classical trajectory for collisions where the de
Broglie wavelength of the projectile is much less than the typical interaction range, while

electronic wave functions are governed by the time-dependent Schrodinger equation. The



merits of a semiclassical representation are that it provides an intrinsically simple picture of
the collision dynamics and reduces the complexity of computations. However, its disadvan-
tage is the neglect of the quantum effects of nuclear motion, which might be critical at low
energies. For a quantum mechanical approach, both nuclei and electrons are treated fully in a
quantal description. Although the difficulty of numerical calculation increases, taking advan-
tage of the fully quantal method to perform close-coupling computations becomes available
with the advanced technology of high-speed computing.

In close-coupling methods, the wave function is expressed by an expansion of a set of
basis functions. There are two types of basis functions that are commonly used. One is the
atomic orbital (AO) method and the other is the molecular orbital (MO) method. The AO
method is believed to be an appropriate description of intermediate-energy collisions. Each
atomic orbital is located at the target or projectile such that the atomic characteristics are
retained throughout the collision. It is obvious that the atomic-orbital expansion approach is
valid for large internuclear separations, but is incapable of providing an accurate description
for small internuclear separations which is important for slow collisions. On the contrary, the
molecular-orbital expansion approach is more appropriate for describing slow collisions. The
concept of the molecular orbital is based on work by Hund [5] and Mulliken [6]. In 1929, the
paper by Lennard-Jones [7] was the first one to treat molecular orbital theory in a quanti-
tative way. Although the MO model provides a better treatment for slow collisions than the
AO model, the MO method has intrinsic problems in which the correct asymptotic boundary
conditions of the scattering wave function are not fulfilled and the Galilean invariance of the
coupled equations is violated. To avoid these defects, the so-called electron translation factor
(ETF) had been introduced to remove the difficulties associated with the conventional MO
method [8, 9].

The major focus of my investigations is aimed at the inelastic collision processes of
charge transfer, quenching, and excitation to promote the modeling of interstellar gas and

planetary atmospheres going beyond standard assumptions of thermodynamic equilibrium.



In addition, an investigation of elastic atom-atom collisions for ultra-low energies is carried
out to explore the characteristics of scattering lengths. The calculations of ion-atom or atom-
atom collisions are based on the perturbed stationary state (PSS) model in which the basis
functions are constructed by the molecular orbitals, or so-called molecular-orbital close-
coupling (MOCC) method. The PSS approximation was devised by Mott with the aim of
treating slow encounters between atomic systems [10]. In an excellent review article of slow
atomic collisions by Delos [8], the PSS theory and its problems are discussed in great detail.
A complete description of the MOCC method is given in the book of Bransden and McDowell
9].

We adopt the quantum-mechanical MOCC method neglecting ETFs to investigate the
different collision systems, which include ion-atom, atom-atom, and ion-molecule collisions.
For a practical application of ion-atom collisions, we study charge exchange processes for
collisions of nitrogen with protons and singly ionized nitrogen with hydrogen. The results
are helpful to elucidate the discrepancy between observed and predicted emission line ratios
of N to N* in Seyfert 2 galaxies and provide a comparison of rate coefficients due to radial
and rotational couplings with spin-orbit coupling.

As an application to atom-atom collisions, the interaction of sodium with helium has
been studied from thermal energies to the ultracold. Rate coefficients for collisional exci-
tation and de-excitation of sodium due to helium collisions at thermal energies are useful
for the clarification of whether or not non-local thermodynamic equilibrium (NLTE) effects
can account for the magnitude of sodium absorption in the extrasolar giant planet (EGP)
HD 209458b. The level populations of atoms are determined by the rates of all collisional
processes, such as excitation and de-excitation, and radiative processes, such as photoab-
sorption, spontaneous and stimulated emission. Local thermodynamic equilibrium (LTE) is
valid for cases in which all transitions are dominated by collisional rates. For a gas in LTE,
the level populations for each species are obtained by the Saha-Boltzmann distribution and

are related to the gas temperature when the density is sufficiently large. If the collisional



rates are small or the density is below some critical value and radiative rates are large, LTE
doesn’t hold. Extending to ultra-low energies, scattering lengths become dominant physical
quantities for the study of collisions. The variation of the scattering length with the reduced
mass of the system provides a test of the sensitivity of the scattering length to the poten-
tial. The relation between the scattering length and bound states of the collision complex is
explored.

In the early 1970s, rotational excitation due to molecular collisions had drawn consid-
erable attention. Based on a rigid rotator model, a set of close-coupling equations devised
by Arthurs and Dalgarno [11] was widely applied to the study of rotational transitions in
scattering problems [12, 13]. Due to the complexity arising from the molecular rotational
degree of freedom, many efforts were made to simplify the angular momentum coupling. The
“sudden approximation” [14, 15], which is a time-scale criterion based on the assumption of
an slow internal degree of freedom compared to the time scale or “suddenness” of the colli-
sion event, is widely used in the treatment of inelastic molecular collisions. Taking advantage
of the development of the sudden approximation in rotational transitions of molecular col-
lisions, most investigations for vibronic transitions of ion-molecule collisions are performed
within the framework of the infinite order sudden approximation (IOSA). The IOSA is actu-
ally an approach comprising the energy sudden approximation (ESA) and the centrifugal
sudden approximation (CSA). When the collision time of a projectile is much smaller than
molecular rotational periods, one could use the ESA to simplify the rotational motion of
molecular targets. The criterion of using the CSA requires that the radial relative motion of
the projectile is much faster compared to its angular relative motion. The detailed description
of ESA, CSA, and IOSA can be found in the articles of Sidis [16] and Baer [17].

Within the framework of IOSA, we extend the quantal MOCC approach to investigate
ion-molecule collisions and apply it to charge transfer processes due to proton collisions with
CO. Since the solar wind is primarily composed of protons, its interaction with planetary

atmospheres or cometary comas is dominated by charge exchange processes due to atomic



or molecular collisions with protons. X-ray emission is usually considered to result from
hot collisional plasmas. In 1996, it was surprising that X-ray emission was discovered in
comet Hyakutake [18] because cometary atmospheres are cold. It becomes an interesting
topic to understand the mechanism of X-ray emission from comets [19], and charge exchange
processes occurring in the interface between the solar wind and cometary atmospheres. Since
CO is an important molecule in a variety of astrophysical objects and a comet is a mixture
of frozen H,O and CO, collisions of CO with protons are believed to be of importance in
many different astronomical environments. Taking advantage of the IOSA approach, we take
into account the vibrational motion of target molecule and study the vibrationally-resolved
charge transfer due to CO collisions with protons and CO™ collisions with H. The orientation
angle-dependent cross sections explicitly illustrate the steric effect in ion-molecule collisions.

In Chapter 2, a detailed discussion of the MOCC method includes the coupled-channel
equations in the adiabatic and diabatic representation, adiabatic-diabatic transformation,
partial wave analysis, S-matrix, and IOSA approach. Three applications based on the quantal
MOCC and IOSA methods for ion-atom, atom-atom, and ion-molecule collisions are pre-
sented in Chapters 3-5, respectively. In Chapter 6, a summary of present investigations and

an outlook of future research directions are given.



CHAPTER 2

THE SCATTERING THEORY

2.1 COUPLED-CHANNEL EQUATIONS IN THE ADIABATIC REPRESENTATION

The Hamiltonian, H, of a system of two nuclei A and B with masses M 4 and Mpg, respectively,
separated by a vector R and one electron with a position vector s with respect to the center

of mass of the nuclei, is given in atomic units by

1 1
H=— 2 _ 24V 2.1
2/~LVR vas+ : (2.1)

where p = MaMp/(My + Mpg), m = (M4 + Mg)m./(Ma + Mg +m,) ~ 1 with m, = 1
a.u., and V represents nucleus-nucleus and nucleus-electron Coulomb interactions. The total

wave functions ¥ can be expanded in terms of adiabatic molecular orbitals (s, R) as

=Y (s R)F(R) 22

The adiabatic molecular orbitals 1;(s, R) are solutions of the Schrédinger equation for the

one-electron system,
V24V — o (B)] 4y R) =0, (2.3)
and satisfy the orthonormality condition,
[ V(5. R)vy(s. Ryds = 0. (2.4)

£;(R) in Eq (2.3) is an eigenvalue of the one-electron system and also an electronic potential

curve for the nuclear motion which varies parametrically with R.



From the Schrédinger equation,
HY = BV, (2.5)

taking advantage of the variational method, the coupled equations for channel functions

F;(R) are provided by
/wj(s, R)[H — E]¥(s, R)ds = 0. (2.6)

where E is the total energy and i = 1,2, ...N. Then with the use of Egs. (2.1) and (2.2) (see

Appendix A), we obtain

Vi + E]F(R) = i[Mij(R) +Pi;(R) - Vr|Fj(R) (2.7)

where k? = —2u(e;(R) — E), while M;;(R) and P;;(R) are defined as

Mij(R) = = [ 07(s,R)Vit(s, R)ds (2.8)

and

Pyj(R) = —2 [ 07 (s, R)Vat; (s, R)ds. (2.9)

Eq. (2.7) is the perturbed stationary state equation obtained in molecular coordinates (s, R)
9].

The adiabatic molecular orbitals are usually calculated in the body-fixed frame of refer-
ence, in which the z’-axis is directed along the internuclear line between the two nuclei (see
Fig. 2.1). The body-fixed frame is conventionally obtained from the space-fixed frame by
three rotations with the three Euler angles, «, 3, and 7 (see Appendix B). Because of the
symmetry with respect to the z’-axis in the body-fixed frame for this system, we set v = 0
and denote a = ® and § = O. ® and © are the azimuthal and polar angles of R in the
space-fixed frame. The components (2',y’, 2’) of position vectors r’ in the body-fixed frame
can be expressed in terms of their components (z, vy, z) of r in the space-fixed frame through

the following transformation:

r' = R(O,P)r, (2.10)



S
S

Figure 2.1: The relation between the space-fixed coordinates (z,y, 2)
and the body-fixed coordinates (z’,7/, 2’).

where

cos©cosP cosOsin® —sinO
R(©,®) = —sin ® cos @ 0 : (2.11)
sin@cos® sinOsin® cosO
Since R is along the 2’-axis in the body-fixed frame, the adiabatic molecular orbitals (s, R)
in the space-fixed frame can be expressed as @j (s, R) in the body-fixed frame. In addition,
because RTR = I, the expression of the operator V2 in the body-fixed frame is the same
as V2 in the space-fixed frame except for replacing variables (z,y, z) by (z/,v/, ). Taking
advantage of this invariance, the formalism of the coupled equations, Eq. (2.7), is unaltered,

but the molecular orbitals ¢;(s, R) are replaced by t;(s’, R), where the orbitals 1;(s’, R)



10

satisfy
S VAV (R Gy R) =0 (212
and
L.i(s', R) = £\9(s', R), (2.13)

where L, is the z-component of the electronic angular momentum in the body-fixed frame
and A\; = 0,1,2,3, ... referred to one-electron levels, o, 7, §, and ¢. Note that the molecular
orbitals in the body-fixed frame depending on the magnitude of R. The wave function ¥

using the molecular orbitals in the body-fixed frame can be written as

v = gjl@bj(s', R)F;(R), (2.14)
while
M ( /w s, R)V40;(s', R)ds (2.15)
and
P,(R) = —2 / Ui (s, R)Vrib;(s', R)ds. (2.16)

According to Egs. (2.10) and (2.11), s’ is not only a function of s but also a function of ©
and ®. This leads to

0 Jd ox 0 dy’ 0 07 0 | -

8Rw (S R) @‘F@@‘F@@‘Fa——/] ]( ) (217&)
J -, __0’ ox' 0 oy’ 0 07 0| -

%%’(&R) = _% +%% +%8_y’ + a5 90 07 ] V;(s’, R), (2.17b)
a -, B 9 ox 0 oy 0 07 0

20V = 156 T 00 T avay T ov oz 1%( B), (2.17¢)

o 9

where 75, =5, and denote the derivatives taken with s’ held constant in the body-fixed

frame. Using Egs. (2.10) and (2.11), the derivatives with respect to R, ©, and ® in the
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space-fixed frame (see Appendix C) can be expressed as

0 - J -
@'Iﬂj(s/, R) = @’ij(s/,R), (218&)
B g 1.,
S5 ) = |~ 56
il dy(s R), (2.18b)

0P 0P
= —icosOL,;(s', R) +isin OL,; (s, R), (2.18c)

i&j(s’, R) = [i —icosOL, +isinOL ] b;(s', R)

where L, f/y, and L, are defined as the components of electronic angular momentum in the

body-fixed frame, and follow the commutation relations,
[Li, Lj] = i€sjn L, (2.19)

where €, is the Levi-Civita or permutation tensor of rank 3. With the help of Eq. (2.18),
the gradient of v;(s’, R) with respect to R, ©, and ® can be evaluated and P;;(R) can be

expressed as

P, (R) = {u )+ 62LGIL, 1)
+<1>{ “gt@A S+ = <|L |y>]} (2.20)

The notation (i|O|j), in which O is an arbitary operator, is defined as

Gl0L) = [ 6(s', R)OUS(S', R)ds' (2:21)

Then we immediately obtain that

0 2 0
Py(R) -V <|u%ﬂ~4wm%
.2 OF o 0

where we use the fact of Eq. (2.18a).
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Similarily,
. 0? 2 0 - o
M;;(R) :_<Z|8R2 +§@|]> <%|L2+LZIJ)
2c0tO - . cot ©
- R2 )\J<Z|Lx|j> R2 )\252] (223)

Combining Egs. (2.22) and (2.23), the terms on the right hand side of Eq. (2.7) are given in

the following form:

1
R2?sin®>©
.02 20 L2+L
+<Z‘W‘§@+T'J>

0 2 0
2l 1) 5 + s (11

oR ' R
<|L )y 0 =
it = A (il L) cot O] (2.24)

M;;(R)+P;;(R) - Vg = [)\2 cos® © +i2); cos 988 ] 0ij

For the left hand side of Eq. (2.7), the operator V& can be expressed in spherical polar

coordinates as

VR=75+ =55+ 55 |55 + Ot O~

0 20 1 [ o2 0 1 (9_2 (2.95)
OR?>  ROR R?|00? 00 51n2@8(1>2 '

Thus, based on Eqs. (2.24) and (2.25), Eq. (2.7) can be written as

a—2+cot@i—|— !
002 0O  sin’O

N{ * L2+ L

9% 1

0
o T

2
5 — 1\, COSs @)

+ kf} RE(R)

= 34l = o+ ) 2l ) o

(2.26)

Furthermore, we can define

00  sin’O

2 1 2
0892 + cot @i + —= <88 — 1)\, COS @) — A?] : (2.27)

as well as the radial coupling V;#(R) and the rotational (Coriolis) coupling V;$'(R) as

92 L2+ L2 0
] AisAj s (2.28)

V) = |Gl = 5 + )~ 205l o o
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and

2
R

o0 O (| Lylj) 0 L
Z<Z|Ly|j>%_z<s|in(|-)>a_¢_)\j<Z|Lx|j>C0t@ : (2.29)

It is worth noticing that in Vif(R), operators L2 + E; which can be expressed in terms of

the ladder operators,

L,=L,+iL,, (2.30)
and
L. =1L,—iL, (2.31)
so that
2412 = %<L+L_ VI L), (2.32)

connects states with the same values of A. The rest of the terms including % and 88—;2 are
also zero for states with different values of A, because 9;(s’, R), an eigenfunction of L, with

the eigenvalue A;, can be formally written as
Bi(,R) = Ay(r', 0, R)e (2.33)
where 7/, 0, and ¢’ are components of s’ in spherical polar coordiantes, and
2 A
/0 "N TN dg = 277'5)\1.7)\].. (234)

Consequently, the radial coupling V;f(R) becomes zero if states that it connects have different
values of . Using the definitions of Egs. (2.27), (2.28), and (2.29), Eq. (2.27) can be simply

written as

FoT=N _NpE
{ A +ki}RFi<R>—_zmj (R)+ VE(RIRF,(R).  (2:35)

J=1
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2.2 COUPLED-CHANNEL EQUATIONS IN A DIABATIC REPRESENTATION

In the coupled equations of channel functions F;(R), the radial coupling VR includes three

9 1\ O 82 - .I_,g—i-f/z. . .
terms, —2(i|5%[7) 35, —(il3pzl7) and (i|=5z"|j). We introduce matrix elements A;;(R) and

B,;(R), which are defined as

Ay(R) = il 1) (2.36)
and
B (R) = (i ). (2.37)

The Hellman-Feynman theorem [20] enables us to express A;;(R) in the form

A4(R) = ~amam orli): 7] (2.38)
0, i=7.

It is obvious that the matrix with elements of A;;(R) is skew symmetric, A;; = —A;;, due
to Eq. (2.38) and since A;;(R) is real. Due to the Wigner-von Neumann non-crossing rule
[21], adiabatic states, i and j, with the same symmetry will never cross each other, i.e.
gi(R) # ¢j(R) for any value of R. However, it is posssible that two states approach each
other in a narrow region of R to make a so-called avoided-crossing. In the case of an avoided-
crossing, the A;;(R) is nearly singular or changes vary rapidly near the avoiding-crossing.
This behavior can cause difficulties when numerical methods, such as finite-differencing, are
used. In order to overcome this problem, one way is to use a diabatic basis instead of the
adiabatic basis. The idea is to make a unitary transformation for adiabatic molecular orbitals
and channel functions such that A;;(R) in the diabatic representation becomes zero.

Given a unitary matrix with elements C;;(R), the transformation for adiabatic molecular

orbitals ;(s’, R) into diabatic orbitals 1%(s’, R) is given by

(s, R) Zzpl s', R)Ci;(R). (2.39)
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Since the expansion of the total wave function W in the adiabatic basis is equivalent to the

expansion in the diabatic basis, we obtain
Y Ui, R)F;(R) =Y 9i(s’, R)G;(R), (2.40)
i J

where G(R) are channel functions in the diabatic representation. Substituting Eq. (2.39)
for ¢%(s’, R) in Eq. (2.40) leads to

(s RF(R) = 3 3 dhls, R)Cy (R (R)
% j i
= Z?Zi(S/,R) Zcij(R)Gj(R)' (2.41)
( J
Therefore, the transformation of channel functions is given by
F(R) = Y Cy(R)G,(R). (2.42)
J

To ensure that the symmetries are preserved in the diabatic representation, the transfor-
mation only combines the adiabatic molecular orbitals with the same symmetry, ¢.e. adiabatic
o orbitals transform to diabatic o orbitals only. Since the symmetries are preserved, the cou-
pled equations in the diabatic representation can be obtained from the same procedure as

discussed previously. It is worth noticing that
_ 1 _

[ a5 By | Vi V] (s R (2.43)
gives £;(R)Jd;; in the adiabatic basis. It indicates that there is no contribution of the integral
from terms with ¢ # j. However, the same integral in the diabatic basis could have terms
with @ # j.

In Eq. (2.43), substituting the diabatic orbitals ¥d(s’, R) for the adiabatic molecular
orbitals 1;(s’, R), we obtain
_ 1 _
Ui(R) = [ ds'i(s', R)[=5 V2 + VIS, R). (2.44)

From Eq. (2.39) and the result of the integral (2.43), the expression for U;;(R) becomes

Uyi(R) = > CL(R)e(R)Cyy(R). (2.45)
k
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Because k} = —2u(g;(R) — E), we can replace e;(R) in Eq. (2.45) with —% + E. Thus, the
relation between U;;(R) and k? is given by

—2uU35(R) + 2uEd;; = Z R)Cy;(R). (2.46)

Using the expansion of U in terms of the diabatic basis and the definition of U;;(R) in

Eq. (2.44), the coupled-channel equations in the diabatic representation are expressed as

No(1o* I N
; { L‘?R2 B Z] 0ij — 20uU;5(R) + 2uE5,~j} RG,(R)

N
=3 ["ViE(R) + V§(R)| RG;(R), (2.47)
where “V#(R) and V¥ (R) are the radial and rotational coupling, respectively. The “V;}(R)

and ?V§ (R) have exactly the same form as V;¥(R) and V,§'(R) of the coupled-channel equa-

tions in the adiabatic basis states, but are taken with respect to the diabatic basis states.

2.3 ADIABATIC-DIABATIC TRANSFORMATION

For the coupled-channel equations in the diabatic basis, we similarly denote A%(R) and
Bidj(R) as matrix elements of the operators -2 5x and 6R2, respectively, which are parts of the

radial coupling “V;¥(R), namely

AL(R) = (0 17%) (2.48)
and
oo O
B (R) = (i |8R2 159, (2.49)

where |i4) stands for the diabatic basis state i. Provided that the diabatic basis |k¢) is
complete, we could insert an identity operator into Eq. (2.49) such that it can be written in

terms of A%(R) as

BY(R) = <z‘d|% 3 Ik‘d><k‘d|%|jd>
—ZA (R)AL (R )+d%Ad(R) (2.50)
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From Eq. (2.48), the relation between A% (R) and A;;(R) obtained using the transformation
of Eq. (2.39) is given by

AL(R) = S (HCH(R) o Oy (RI)

kl

d
=Z@u%#% )+ X CLU Au(RICi(R)
k

d
k

To ensure that A%(R) vanishes, it is required, for each k,

dRCkJ +ZAM )Cii(R) = 0. (2.52)

In addition, B{;(R) will vanish as well by Eq. (2.50) as long as the basis is a complete set.
Therefore, the solution of Eq. (2.52) gives the unitary transformation to obtain the diabatic

basis states. To solve Eq. (2.52), we adopt the boundary condition,

lim Cz_] (R) = 52']'7 (253)

R—o00

in order to let U;;(R) in Eq. (2.45) approach the eigenvalues ¢; of the adiabatic molecular

orbitals, i.e.

The differential equation (2.52), together with the boundary condition (2.53) can be sum-

marized in one integral equation, namely
C(R) = 8y, +Z / Au(R)Cry(R)dR.. (2.55)
The solution of this integral equation can be obtained by iteration:

Cyi(R) = 0y + /R AR Ay (Ry) + 0 /R ARy Aw(Ry) /R dRyAr;(Rs)
k 1

+%3/R deAik(Rl)/Rl ngAkl(RQ)/RZ dR3A1j(Rs) + ... (2.56)
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For the two-state case, the matrix of A(R) with elements A;;(R) is represented by

. 0 An(R)
(R) = . (2.57)
—A5(R) 0

With A;;(R) given, the solution of Cj;(R) can be written explicitly as

Cll - C22
== 1 —/ deAlg(Rl)/ dRQAlQ(RQ)
R R1
+ /R ARy Ara(Ry) /R ARy Asa(Ry) /R ARy Aro(Ry) /R AR Aa(Ry)
+...
]_ [e') [e’9)
—1- /R dR1 Avs(Ry) /R ARy Avs(Ry)
1 [e’) [e') ') [e’e)
+5 / ARy As(Ry) / dRyArs(Ry) / dR3Avs(Ry) / dRsAvs(Ry)
'JR R R R
+...

= cosw(R) (2.58)
and

Crp=—-Cxn
:/ dR1A12(R1) _/ dR1A12(R1)/ dRQAlg(Rg)/ dR3A12(R3)
£ R Ry Ro
+...
= /R dR1A12(R1>
1 o oo 00
3 /R dR1A12(Ry) /R dRyA15(Ry) /R dR3A15(Rs)
+...
= sinw(R), (2.59)

where we used [22]

/ AR A (R:) / dRsA1a(Rs)... / dR, As(R,)
R Ry R

n—1

1 © 00 00
— E/R dR1A12(R1)/R ngAlg(Rg).../R dR, A2 (R,) (2.60)
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and define
w(R)Ehéch?Am(Rﬁ. (2.61)

In matrix form, the transformation matrix C'(R) for the two-state case is given by

O(R) = cosw(R) sinw(R) | (2.62)
—sinw(R) cosw(R)

Its unitary property can be easily proved and the boundary condition of R — oo is satisfied.
C(R) here is the rotation matrix. For three- and four-state cases, analytical expressions of

the transformation matrix C'(R) were given by the work of Heil et al. [23].

2.4 PARTIAL WAVE ANALYSIS

The channel functions (nuclear wave functions) of coupled Schrodinger equations can be
expanded in terms of total angular momentum wave functions to obtain coupled radial
equations. In the scattering systems, we neglect the interaction of the electronic spin and the
orbital angular momentum (i.e. spin-orbit coupling) so that the total angular momentum J
is the sum of the nuclear orbital angular momentum N and the electronic orbital angular
momentum L. Using the expression relating angular momentum in spherical polar coordi-

nates to Cartesian components (see Appendix D), we have the following

Jy = Jy+id,
= exp (iP) (% + i cot @8% + sir?@) , (2.63)
J_=J, —iJ,
= exp (—iP) (—% + i cot 68% + sir?@) ; (2.64)
and
Jo=—il (2.65)
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where we neglect primes on the derivatives, because channel functions are only dependent on
R. Taking advantage of Eqgs. (2.63), (2.64), and (2.65), the operator J? defined in Eq. (2.27)
can be proved to be the square of the total angular momentum J (see Appendix E). Because

J? and J, commute, we could find simultaneous eigenfunctions Hy, ,(©, ®) so that
J’Hy,,(0,®) = J(J + 1)Hy;,(0, P), (2.66)
and
J.H{; (0, ) = MH{, (0, D), (2.67)

where M is the projection of the total angular momentum J onto the z-axis of the space-fixed
frame. The ®-dependence of Hy (6, ®) can be obtained directly from Eq. (2.67), while the

©-dependence is given by [24, 25]

GO of (v [ (g (SR

o
20+ M+ 2J—20—M—\
X [cos %} [sin %] : (2.68)
where
n n!
(m) - m!(n —m)!’ (2:69)
and
J+ M))(J = M)!
Ny = : 2.
M $ (J4+N!(J =) (2:70)

Ni;  is determined by the normalization property of Hy, (0, ®):

47
2J +1

T 2 ,
/0 sin©d6 [ dPH{; (6, 9)H),,(6, @) = 5 Sasnnr- (2.71)

Eq. (2.68) also could be rewritten in terms of the Jacobi polynomial using Rodrigues’ formula

[24], namely

A-M J—M
di\(0) = NA‘Z,A% [(%) (1— )71+ p)" ™+ (2.72)
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where pu = cos ©.

The eigenfunctions Hy, (6, ®) can be written as

H{, ,(0,®) = (—=1)*"d], () exp (iM®P). (2.73)

and the expansion of channel function G;(R) is

1
Gi(R) = 1 3 g/ (R)HY, , (0, ) (2.74)
J

In order to obtain coupled radial equations, we substitute Eq. (2.74) for the channel function
in Eq. (2.47) and use the orthogonal property of HJ‘{/, /\j(@, ®) to cancel the angular part of
the channel function. Because the rotational coupling dV;]C(R) is the only one which includes
derivatives with respect to © and ®, we need to clarify operations of the rotational coupling
on HJ{/[ /\j(@, ®) in advance. Replacing the L, and L, by L, and L_, the rotational coupling

in Eq. (2.47) can be written in the form of

VER) = o { WY |+ g + <ot
%—@ﬂL_Ud)lg%—%$£()§%—%Kﬂmt@]}. (2.75)
Due to the commutation relations,
[, Jy] = £, (2.76)
and the help of
J J, = —J— 1, (2.77)
and
JoJ_ =3~ J2+ ., (2.78)

the result of operators J; and J_ acting on Hy; ) (0, @) are given by

JeH,, (0,@) = /(J £ M +1)(J F M)Hj,y, , (0, ®). (2.79)
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Using Eq. (2.79) and the fact of
dJM,,\j(_@) = dij,M(@)a (2~80)

which is easily proved by Eq. (2.68), we can obtain useful relations as follows (see

Appendix F),

0 0
[ZF%—FS:O@&(I)jL)\ cot@]H 5 (0. 9)
= JT £+ 1) FA)HY, 11(0,9). (2.81)

According to Egs. (2.75) and (2.81) followed by normalization integrals, it leads to

— 2J+1 7 2 " /
WE(R) = 4: /0 5in ©d6 /O dOHY; , (0, 8)'VE (R)HY, , (0, )
(i) L+ |5%)
= =Gt (= M)+ Ay + D)2
i?|L_|5¢
St [(J X)) = A+ 1)) %. (2.82)
Due to the properties of L, and L_,
5>\i7>\j—1<id|[_’+|jd> =0 (283)
and
Sroy (i1 = 0. (2.84)
We can rewrite “V,$'(R) as
_ ’id ’LE -d
DG R) = =28 0,01 (1 = A+, + D)2 EHAT)
iiL, |77
F200 2,1 (T +X)(T = Ay + 1)) %. (2.85)
Finally, the coupled radial equations extracted from Eq. (2.47) are given as
0? A? —J(J+1
N
=Y [VER) + VS (R) g} (R), (2.86)

where g7 (R) is defined in Eq. (2.74).
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2.5 THE SCATTERING S-MATRIX

The coupled radial Schrodinger equations can be expressed in matrix form as

d2
— 1 J = 2.
[dRQ + V(R)} G'(R) =0, (2.87)
where I is the identity matrx, 0 the null matrix and V the symmetric potential matrix with
elements
AN — J(J+1)
Vij(R) = ——Fp5—0i;
+ > CL(R)K:Cos(R)
dy/R dy,C
—Vij (R) = Vi (R). (2.88)

Each column of the square matrix G’(R) is a linear independent solution including each
radial channel function as an element for the coupled equations. In other words, g;;(R) is
the ith channel component of the jth independent solution. A general solution is a linear
combination of channel functions.

According to Egs. (2.52), (2.53), and (2.85), we have the asymptotic limit
R*Vy(R) =5 [\ = J(J + 1) + (k:R)*| 6
~(i*[L; + L, 1i")
—265, 0,11 (7 = M) (T + Ay + D]V ()3T, |5)
+205, -1 [(J + M) (T = Ay + D)2 (9)iL, |5%). (2.89)

If \;, <id\fi + fz\jd), and (i%|iL,|j%) compared with J(J 4 1) can be neglected as R — oo,
the off-diagonal terms of Eq. (2.87) will vanish and only diagonal terms remain. Namely,

d? , JUI+1)|
2 _ 2\ I GI(R) = 2.

dR2 + kz R2 gu( ) 07 ( 90)

which is the Riccati-Bessel equation. Two linear independent solutions of Eq. (2.90) are the

Riccati-Bessel functions, j;(k;R) and 715 (k;R), which can be expressed as

i(kR) = kRj(kR) % sin(k,R— LJn
JJ( ) JJ( ) ( 2 ) (2‘91)

iy(kR) = kRns(kR) "% cos(k;R — LJ7),
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where j;(k;R) and n;(k; R) are spherical Bessel functions of the first and second kind, respec-
tively. Therefore, the general solution of Eq. (2.87) in the asymptotic region can be expressed
as a linear combination of Riccati-Bessel functions or spherical Bessel functions. The method
we adopt for solving this multichannel scattering problem is the multichannel log-derivative

method of Johnson [26]. In this approach, the log-derivative matrix is defined to be

-1

y(R) = [¢"(R)] [¢"(B)] ", (2.92)

where the prime means differentiation with respect to R, while the boundary conditions are

chosen to be
G’(0) =0 (2.93)
and
¢’0)] =1. (2.94)
Using Eq. (2.92) to eliminate the second derivative term of G/(R) in Eq. (2.87), we obtain
Y (R) +V(R) + y*(R) =0 (2.95)

with 4/(0) which is a diagonal matrix with infinite elements. The numerical techniques for
solving the differential equation (2.95) are given in Ref. [26]. The numerical solutions of
Eq. (2.95) are required to match the asymptotic form of the wave function, namely for some

Ry which is numerically large enough to be regarded as infinity,
G'(R)=J(R)+ N(R)K’, R> Ry (2.96)

where K is the reaction matrix. The diagonal matrices J(R) and N (R) for the open channels

are defined as

Jij(R) = 5ijk]‘_1/2jJ(ij)
N (R) = 6,k *h,(k;R).

I

(2.97)
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Taking advantage of the multichannel log-derivative method, y(Ry) can be obtained and
the C-matrix may be extracted from Eqs. (2.92) and (2.96). On the other hand, because the
spherical Bessel functions, j; and n;, can be expressed in terms of spherical Hankel functions,
hg) (outgoing waves) and hf) (incoming waves), we also could describe the asymptotic

boundary condition, instead of using Eq. (2.96), by the following:
G'(R) = HP(R) + HY(R)S’, R — o (2.98)

where H(" and H® are diagonal matrices with elements defined as

(1) —
Hii' (R) = 6
(2) _

I

52 exp [i(k;jR - %Jﬂ')} (2.99)
L exp [—z’(k]—R - %JTI‘)]

ity
Comparing Egs. (2.96) and (2.98), we can obtain a relation between the S-matrix and the

K-matrix as
8 =[1+ik!] [1-ik’] (2.100)

Solving the coupled radial Schrodinger equations, the solution of the ith linear indepen-

dent radial wave function, g}, (R), can be written as
gin(R) =3 C g (R) = 3 G GH(R). (2.101)
j j

According to Eq. (2.74), the ith general solution of the nuclear wave finction, G, (R), can

be expressed as
(i) ) Giieys
Gm(R) =) C}"Gi(R)=>_> C; fHM,Aj(Ga ®), (2.102)
J J J
and asymptotically as

CanR) =% OJ@% {5j,~/<:;1/2 exp {—z’(k:iR _ %Jﬁ)]
J J

_ 1
_STEV exp [z’(ij _ §J7r)] } HJ,, (0, ). (2.103)

Ji'vy
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Alternatively, the scattering amplitude f;;(©,®) is defined by the asymptotic form of the

nuclear wave function:

exp (ik;R)

2.104
S (2104

where k; is in a direction parallel to the direction of incidence, which we take to be the

z-axis. Because the expansion of incident plane waves in terms of spherical Bessel functions

exp (ik;z) = [(4m)(2J + 1 ]1/2 i’ j;(k;R)H 0)\ , (2.105)
7

Gin(R) can be rewritten as a linear combination of incoming spherical waves, exp (—ik;R) /R,

and outgoing spherical waves, exp (ik;R)/R. The coefficients for incoming waves are

Abj;

2 [(4m) (2] + D)2 (2.106)
2k; =
and for outgoing waves are
Ad
S 3 [l @ + 0 H ]+ Af (2.107)
k5 J

where we use the fact of §;; - W = 0ji—7— \/ﬁ Comparing the coefficients of incoming and outgoing

spherical wave in Egs. (2.103), (2.106), and (2.107), we find that the scattering amplitude is

independent of ® and given by

)27 + 1] H, (0, ®) [65 — Syl (2.108)

f]l _J2F

Given the scattering amplitude, the corresponding differential cross section is given by (see

Appendix G)

dO'jZ'

_ kj 2
o = e (2:109)

and the integral cross section in term of the S-matrix is

J

aji:%zj(zjﬂ)wﬂ ST, (2.110)
v J
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2.6 INFINITE ORDER SUDDEN APPROXIMATION

From the point of view of coupled equations, the study of collisions of neutral and ionic
atoms with molecules faces the problem of increased complexity. Compared to ion-atom
collisions, the degrees of freedom for a system of ion-molecule collisions increases due to
the addition of vibrational and rotational motion of the molecule. The rapid increase of
the number of channels of vibronic or ro-vibronic states leads to the treatment of coupled
scattering equations becoming a formidable task. Over the past four decades, progress has
been made in the development of approximate methods, which can be traced with the review
article of Tully [27], the book of Bernstein [15], the work of Kleyn et. al. [28] and Baer [29].

In order to reduce the complexity arising from the rotational and vibrational degrees
of freedom, the so-called infinite order sudden approximation (IOSA) provides a practical
approach to deal with coupled-channel calculations for vibronic transition processes. One
of the first quantal coupled-channel calculations using IOSA was reported by McGuire and
Bellum [30]. The IOSA approach is based on the energy sudden (ES) and centrifugal sudden
(CS) approximations. For the ES approximation, the spacings between the rotational levels
of the target molecule are neglected. This is equivalent to treating all of rotational levels as
degenerate. In other words, one replaces the various wave numbers with respect to the various
rotational levels by an effective wave number. Qualitatively, the criteria for the validity of
this approximation requires that the rotational periods of the target molecule are much larger
than a characteristic collision time of the projectile relative to the target center of mass. In
general, atom- or ion-molecule collisions with collision energies larger than 0.1 eV /u fulfill
the condition.

In the CS approximation, the relative radial velocity of the projectile needs to be much
faster than the velocity of its rotational motion around the molecule center of mass. Based
on this assumption, the CS approximation apparently would fail in the vicinity of a classical

turning point due to the lack of radial velocity at these points by definition. On the other
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Figure 2.2: Jacobi coordinates for a A-BC system.

hand, the approximation is more applicable for collisions with small projectile orbital angular
momentum of the projectile because of the small centrifugal barrier.

Within the framework of the MOCC method, the treatment of ion-molecule collisions is
carried out under the IOSA approach. It is appropriate to describe these collision systems
in Jacobi coordinates as follows: R is the vector pointing from the target molecule center of
mass to the projectile, r the vector representing the internal geometry of the target molecule,
and ~y the angle between R and r (see Fig. 2.2). After removal of the center of mass motion,
the Hamiltonian for collisions of atom A with diatomic molecule BC is written as

1 1
H=-——V% -
2:U“R R 2;“7“

where pur = Ma(Mp+ Mc)/(Ma+ Mg+ Mc) and p, = MpMe/(Mp+ Me). V(R, r,s) rep-

1
e §v§ +V(R,1,s), (2.111)

resents nucleus-nucleus, nucleus-electron, and electron-electron Coulomb interactions. The
origin of electronic position vectors s is chosen to be the nuclear center of mass of the ABC
system. The mass polarization terms are neglected. It is worth mentioning that there will be

a summation over electronic kinetic energy operators if the system involves more than one
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electron. The total wave function ¥ in terms of diabatic molecular orbitals ¥{(s’, R,7,7),
where s’ represents the electronic position vector in the body-fixed frame, can be expanded
as
U =>"yls’, R, 7, 7)Nie(R, 1), (2.112)
kv
where the nuclear wave function Ni(R,r) is given by the expansion of a complete basis set

&1 (r) of the diatom:

Z G (R) & (r (2.113)

The &, (r) are eigenfunctions of the equation

_QM (R - 0077’;7) gku(r) = Eku gky(r); (2114)

where v is taken as a parameter, Fy, is an eigenvalue and Uy, a diagonal element of the dia-
batic potential matrix which becomes the potential curve of the diatom BC as R approaches
the asymptotic limit. Uy, is, therefore, independent of v as R — oco. The orthonormal prop-

erty of &, (r) is given by
<£ky|£k/,/> = (1 — 5kk’) /drék,,(r)gk/,,/(r) + (5kk15,/,,/. (2115)

Under the assumption of the ES approximation, the &, (r) can be expressed as

gkv(r) = Xkl;n(” |jk> mjk>7 (2'116)

where |ji, m;,) represents a rotational wave function, with j, = 0 in practice, and x,(r),

the vibrational wave function of the diatom, satisfies the equation

1 d?
2,u,,d dr?

+ Ui (R — 00, 7) | Xew(T) = Erw Xawo (7). (2.117)

Expanding Uy, by r with respect to it’s equilibrium position r., the eigenvalue E}, has the

following relation with the vibrational excitation energy eg,:

Er, = Ugp(R — 00,7 =1¢) + €4y (2.118)
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Inserting the total wave function ¥ into the Schrodinger equation followed by projections on
Pi(s', R,r,v) and &, (r), we can obtain a set of coupled Schrodinger equations:

(Vi +k) G ) =203 3 (X (1) Ui (R, 7 7) e (1) G (R)
j#i v

+ 20 DX ()| My + Py - Vel (r)Giw(R),  (2.119)
where k2, is defined as
ki, = 2pr [E = (alUa(R, 7, 7) [Xav)] (2.120)

while M;; and P;; are given as Eqs. (2.8) and (2.9) except replacing the adiabatic electronic

wave function by a diababtic one. The term

O (1) [Uii (R, ) X (7)), (2.121)

which is a integral of diabatic electronic potential energies U;; over vibrational wave functions,
is the so-called diabatic vibronic energy and FE is the total energy of the system. We make

the approximation that the diabatic vibronic energies can be obtained by

X (Ui (R, 7, 7) X (1)) = Uii(R, 1 = e, 7y) + €in- (2.122)

The vibrationally-resolved couplings (vibronic couplings) appearing in the right hand side of
Eq. (2.119) come mainly from two parts. One is the integral of the off-diagonal term U;; over
vibrational wave functions, where U;; is the diabatic electronic coupling resulting from the
interaction between molecular states of the same symmetry (A = \’). The other one is the
integral related to M;; and P;; over vibrational wave functions, while in the diabatic repre-
sentation only the electronic couplings connecting molecular states with different symmetry
(A= X =£1) in the M;; and P;; remain.

Since within the framework of IOSA, the coupled equations are solved for each orientation
angle v, the S-matrix, using the same approach described in Sec. 2.4, is extracted from
the asymptotic boundary condition and is parametrically dependent on . Therefore, the

major physical quantities, cross sections, for transitions driven by vibronic couplings are
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v-dependent. This leads to vibrationally-resolved state-to-state cross section oy, ;,,(E,~y) for
transitions from the vth vibrational state of the ith electronic state to the v'th vibrational

state of the kth electronic state expressed in terms of S-matrix elements as

TGiy
ok i(B,7) = 25 2227 + DISia (I, (2.123)
wo o J

where k;, denotes the wave number for the A-BC center-of-mass motion of the initial
incoming channel and g;, is the initial approach probability factor for the electronic state.
Given the state-to-state cross sections, we can sum over all final vibronic states to obtain

the vibrationally-resolved initial state-selective cross section

0w (E,7) =Y onr (B, 7), (2.124)
kv’

or all initial vibronic states to give the vibrationally-resolved final state-selective cross section

Thr (E,7) = D O in (B, 7). (2.125)

In LTE, the distribution of initial states for molecular targets depends on the molecular gas
temperature 7. In order to take this effect into account, the population of initial vibrational
states for molecular targets is determined with a Boltzmann distribution. The total cross

section for a given temperature T and orientation angle v is given by

O'(E,T, ’Y) _ Zil/ exp(_giu/ka)aiV(Eafy) : (2126)

i exp(—¢ci/kT)

where ¢;, are the excitation energies of the diatom and k; the Boltzmann constant.
The physical quantities independent of orientation angle are obtained following an inte-

gral over the orientation angle v, which gives angle-averaged cross sections as [17]

]_ ™
o(B,T) = 5/0 o(E,T,~) sinvdy. (2.127)

It is easy to see from Egs. (2.126) and (2.127) that angle-averaged total cross sections for a
given temperature 7" are independent of the order of taking a Boltzmann distribution and

integration over the orientation angle.



CHAPTER 3

ELECTRON CAPTURE IN COLLISIONS OF N* wiTH H AND Ht wiTH N

As an application of ion-atom collisions, the quantal MOCC approach is applied to charge
transfer processes due to collisions of N* with atomic hydrogen and H™ with atomic nitrogen.
The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and
rotational couplings obtained with the multireference single- and double-excitation configu-
ration interaction (MRD-CI) approach. Total and state-selective cross sections for the energy
range 0.1 meV/u - 1 keV /u are presented and compared with existing experimental and the-
oretical data. A large number of low-energy resonances are obtained for exoergic channels
and near the threshold of endoergic channels. Rate coefficients are also obtained and compar-
ison to previous calculations suggests nonadiabatic effects dominate for temperatures greater

than 20,000 K, but that the spin-orbit interaction plays a major role for lower temperatures

31).

3.1 INTRODUCTION

In the electron capture process, electrons are transferred from one atomic system to another
during a collision. The importance of electron capture is not only in understanding of dynam-
ical mechanisms for atomic and molecular collisions, but also in practical applications. In
many environments of current research, such as planetary atmospheres and astrophysical
and laboratory plasmas, charge transfer can have a crucial influence. Because of the abun-
dance of ions in astronomical environments, charge transfer may be the dominant process in

establishing the ionization balance and may also influence spectral line emission. In addition,

32
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a deeper understanding of the electron capture process will also help in modeling the edge
region of tokamak fusion plasmas [32].

In this work we investigate the reactions
N*(2p* P) + H «» N(2p® 2D°) + HT — 1.4372 eV, (3.1)

and

N*(2p* *P) + H «» N(2p* *S°) + HT + 0.9467 eV, (3.2)

using the MOCC method. The theoretical method for the scattering calculations has been
described in Chapter 2 and has also been given in the literature [33, 34]. A brief description of
the electronic structure calculations is presented in Section 3.2. In Section 3.3 the adiabatic
potentials and nonadiabatic couplings of NH™ are discussed. The resulting cross sections and
rate coefficients including total and state-selective are given in Section 3.4 and compared
with the existing experimental data and previous calculations. Astrophysical implications
are given in Section 3.5. Section 3.6 gives a summary of this chapter. Atomic units are used

unless otherwise noted.

3.2 ELECTRONIC STRUCTURE CALCULATIONS

The ab initio adiabatic potentials and nonadiabatic couplings in the present work are
obtained from the MRD-CI method which has been detailed earlier in Buenker and coworker’s
publications [35, 36, 37]. Here only information relevant to the present calculation is speci-
fied. The atomic orbital basis sets for molecular calculations consist of contracted Gaussian
functions. The (8s2p) basis for the hydrogen atom is contracted in [5s2p] and augmented by
one s-, one p-, and one d-type diffuse function with exponents which are 0.0195, 0.042, and
1.1 respectively. For the nitrogen atom, the (15510p2d) basis is contracted in [9s6p2d]. Eight
molecular states including five doublets and three quartets are considered for collisions of

the NHT system. The finite difference technique [38, 39] has been applied to obtain radial
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couplings (matrix elements of J/0R), while rotational couplings have been calculated by

employing appropriate pairs of CI eigenfunctions.

3.3 POTENTIALS AND COUPLINGS

For the present calculations, adiabatic potentials for NHT include eight molecular states
which are 1 4¥7, 2 4%~ 1 411, 1 2%, 22X, 1 2I1, 2 2I1, and 1 %2A. Fig. 3.1 shows the adi-
abatic potentials as a function of internuclear distance R for R = 1 to 10 (a.u.). As inter-
nuclear distance approaches infinity, these eight molecular states will degenerate into three
separated-atom states which are N(2p3 45°) + HT, N*(2p? 3P) + H, and N(2p* 2D°) + H™.
The corresponding relations are displayed in Table 3.1.

The interactions between different molecular states result from nonadiabatic radial and
rotational couplings. Radial coupling results from the interaction between molecular states of
the same symmetry (A=A’) while rotational coupling is due to interaction between molecular
states of different symmetry (A=A’+1), where A is the projection quantum number of the
electronic orbital angular momentum onto the internuclear axis. Nonadiabatic couplings as a
function of R are plotted in Fig. 3.2. The radial couplings include interactions of two quartet
Y.~ states, two doublet >~ states, and two doublet II states, while the rotational couplings
comprise interactions of the quartet II state with quartet ¥~ states, and doublet II states
with doublet ¥~ and A states.

Given adiabatic potentials and couplings, we transform them to a diabatic representation
by a unitary transformation [23] as described in Section 2.3. In Fig. 3.3, several diagonal
diabatic potentials are plotted and compared with the adiabatic potential energies. It is
clear that the adiabatic potential curves of the same symmetry don’t cross, but crossings
may occur in the diabatic representation. However, adiabatic and diabatic potential curves
will merge into identical asymptotical atomic energies at large R. In order to get reliable cross

sections near the threshold, we make an asymptotic fit to join the ab initio data smoothly
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Table 3.1: Comparison of asymptotic separated-atom energies between
the MRD-CI calculations and experiments for the eight molecular states
of NHT. These states are of symmetries 2%~ 2411, and 2A.

Asymptotic atomic state Mol. state This work Expt.

(eV) (eV)
N(2p” '8°) + HF 175" 0.0000 0.0000
N*(2p% 3P) + H 2 4%~ 0.7143 0.9467
1211 0.7180 -
1411 0.7241 -
12%- 0.7258 -
N(2p® °D°) + H* 2 211 2.6407 2.3840
12A 2.6411 -
2 2%~ 2.6435 -
to the long range form —5z;, where « is the dipole polarizability. We adopted o = 4.50 for

H and o = 7.42 and 11.17 for N(2p?® 15°) and N(2p® 2D°), respectively.

Several major off-diagonal diabatic couplings are illustrated in Fig. 3.4. The couplings
in Fig. 3.4(a) show the important interactions between the asymptotic atomic states of
N(2p® 4S°) + HT and NT(2p? 3P) + H for the charge transfer process in the NHT system,
while the couplings in Fig. 3.4(b) give us the important interactions between NT(2p? 3P)+H
and N(2p* 2D°) + HT. The related adiabatic labelings corresponding to a specific diabatic

coupling are indicated above the symbol in the figures.

3.4 RESULTS AND DISCUSSION

3.4.1 CROSS SECTIONS

The state-selective cross sections for the electron capture process are evaluated by using

the molecular electronic structure and coupling data in Section 3.3, but with the potentials
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shifted to match the experimental asymptotic energies as listed in Table 3.1. The contribu-
tions from the individual partial waves are summed as in Eq. (2.110) until a convergence of
the state-selective cross section is achieved. The total cross section then can be obtained from
the sum of state-selective cross sections. The results over the energy range from 0.1 meV/u
to 1 keV /u are illustrated in Fig. 3.5 for total cross sections and state-selective cross sections
of reactions (3.1) and (3.2), which are endoergic and exoergic respectively. In our calculation,
reaction (3.1) includes five channels, 12X~ 1 21, 2 2X7, 2 21, and 2 2A, while there are
three channels including 1 X7, 1 41, and 2 X~ in reaction (3.2). It is clear from the cross
sections that for the energy region between 10 and 500 eV /u capture into N(2p? 15°) is the
dominant path. As the collision energy approaches 1.53 eV/u, cross sections for capture
into the N(2p3 2D°) decrease rapidly to zero because of the approach of the N(2p® 2D°) +
H* threshold. In addition, from the inset plot of Fig. 3.5, we find several orbiting resonances
[32] due to quasibound rovibrational states of the quasimolecule. Although these features
have been found and studied theoretically in different collision systems [40], there is still no
experimental verification. On the other hand, cross sections for capture into the N(2p? 5°)
display Langevin behavior [34] at the lowest energies. Later we will also see this behavior
exhibited in the rate coefficients (see Fig. 3.7) that tend to a constant in the corresponding
temperature range. Again referring to Fig. 3.5, the comparison of the total cross sections of
the present work to experimental results [41] shows the best agreement in the energy region
above 100 eV /u, but with significant discrepancies for lower energies. The discrepancies are
likely related to uncertainties in the incident ion beam and the neutral target. A signifi-
cant fraction of the incident beam may have included metastable Nt and doubly charged
molecular ions.

The cross sections for charge transfer processes in the collision of atomic nitrogen with
H* are presented in Fig. 3.6. We find numerous orbiting resonances in the low energy region
for each process. For the collision of N(2p? 45°) with HT, comparisons with the calculations

of Kimura et al. [42] and Cabrera-Trujillo et al. [43] illustrate that the theoretical results, all
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obtained with different methods, are in good agreement except for the low energy portion
of the calculation of Kimura et al. In addition, we also display the experimental results of
Gilbody et al. [44] in Fig. 3.6, but for collisions of protons with Ny; the concept of additivity
appears not to be valid for this collision system, at least for energies less than 1 keV /u.
For collisions of metastable N(2p* 2D°) with HT, we are unaware of experimental or other

theoretical data with which to compare our results.

3.4.2 RATE COEFFICIENTS

In Figs. 3.7-3.8 and Table 3.2, we present the rate coefficients for collisions of NT with
atomic hydrogen and H" with atomic nitrogen. The rate coefficients «(7T), where T is the
temperature, are determined by averaging over the cross section o(E) with the Maxwellian

energy distribution,

1 2 \%2 foo
a(T)zﬁ(%—T) /0 o(E)E exp (—E/k,T)dE, (3.3)

where k; is the Boltzmann constant and p is the reduced mass of the system.

In Fig. 3.7, because reaction (3.1) is endoergic, the rate coefficient drops abruptly to
zero as T approaches the threshold. On the contrary, the exoergic reaction (3.2), tends to a
constant. The rate coefficient also displays slight fluctuations due to the orbiting resonances
in the cross sections. For reaction (3.2), the results of Steigman et al. [45] are much larger
than all other calculations. Comparing our total rate coefficients to the calculations of Butler
and Dalgarno [46], we find their results are also larger below ~20,000 K, but become smaller
than the current results above ~20,000 K. The discrepancy is related to the consideration
of different coupling mechanisms in the calculations: spin-orbit between the 1 X~ and 1 2II
states in the earlier work and nonadiabatic radial and rotational interactions in the current
study. Therefore an estimate of the total rate coefficients can be obtained by summing the
results from both mechanisms with spin-orbit coupling dominating below ~20,000 K, and

radial/ rotational coupling the primary mechanism above ~20,000 K.
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Rate coefficients for the reverse of reactions (3.1) and (3.2) are presented in Fig. 3.8. For
the reverse of reaction (3.2), our results are smaller than the predictions of Kimura et al. and
Steigman et al. The former discrepancy is consistent with the observation (see Fig. 3.6) that
our cross sections are smaller than those of Kimura et al. for energies less than 100 eV /u. The
rate coefficients of Kingdon and Ferland [47] were obtained by applying detailed-balance to
the spin-orbit rate coefficients of Butler and Dalgarno. Again they are larger than the current
results for temperatures less than or approximately equal to 20,000 K. A reasonable estimate
of the total rate coefficient for the reverse of reaction (3.1) could be obtained by summing
the two results. Finally, no data exists for the metastable nitrogen reaction, the reverse of
process (3.2). The rate coefficient for the process is expected to approach a constant, but

apparently for temperatures less than ~10 K.

3.5 ASTROPHYSICAL IMPLICATIONS

Nitrogen is the sixth most cosmically abundant element and as such has been observed in a
variety of astrophysical and atmospheric environments. In particular, the role of the charge
exchange reaction (3.2) and its reverse in photoionized gas has been investigated recently.
Kingdon and Ferland [48] have studied the role of exothermic charge transfer reactions, such
as process (3.2), on the thermal equilibrium of photoionized nebulae. For a typical model of
a nova shell, they found that charge transfer could contribute up to ~60 percent of the total
heating with most of the contribution coming from reaction (3.2). Therefore, the magnitude
of charge transfer heating is dependent on the value of the rate coefficients for this reaction.
In another example, a discrepancy has been known for many years between the observed and
predicted emission line ratios of N to N in narrow line region clouds of Seyfert 2 galaxies.
Oliva, Marconi, and Moorwood [49] have proposed through extensive modeling that if the
rate coefficients for reaction (3.2) and its reverse are reduced by a factor of ~30, then the
discrepancy could be resolved. In both cases, the modeling was carried out with the spectral

synthesis code Cloudy [2] which incorporates the charge transfer rate coefficients of Butler
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N*+H — N+ HT. The dashed and dotted line are state-selective cross
sections. The final states of N are indicated in the figure. Solid line and
x are total cross sections for the present work and the measurement of
Stebbings et al. [41].
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Table 3.2: Rate coefficients for electron capture from collisions of (a):
N(2p? 2D°) and (b): N(2p® 4S°) with H*, and for electron capture into (c):
N(2p? 4S°) and (d): N(2p® 2D°) from NT(2p? *P) + H. (e): total rate coeffi-
cients for reactions (c¢) and (d).

Rate Coefficients a(T) (cm?/s)

'®) — ) © Q) ©
6 1.32(-14)° 1.08(-14) 1.08(-14)
8 1.73(-14) 1.12(-14) 1.12(-14)
10 2.20(-14) 1.13(-14) 1.13(-14)
20 4.09(-14) 1.09(-14) 1.09(-14)
40 5.82(-14) 0.36(-15) 9.36(-15)
60 7.31(-14) 8.21(-15) 8.21(-15)
80 8.68(-14) 7.42(-15) 7.42(-15)
100 9.60(-14) 6.90(-15) 6.90(-15)
200 1.47(-13) 5.83(-15) 5.83(-15)
400 2.33(-13) 5.64(-15) 5.64(-15)
600  3.20(-13)  1.88(-22)  6.00(-15) 6.00(-15)
800  3.72(-13)  2.05(-20)  6.55(-15)  1.44(-22)  6.55(-15)
1000 4.49(-13)  3.52(-19)  7.19(-15)  1.14(-20)  7.19(-15)
2000  5.89(-13)  1.40(-16)  1.12(-14)  6.13(-17)  1.13(-14)
4000 7.28(-13)  4.91(-15)  2.41(-14)  4.71(-15)  2.89(-14)
6000  8.08(-13)  2.24(-14)  4.31(-14)  2.02(-14)  6.35(-14)
8000  8.87(-13)  5.49(-14)  6.65(-14)  4.43(-14)  1.11(-13)
10000 9.84(-13)  1.06(-13)  9.62(-14)  7.39(-14)  1.70(-13)
20000  1.68(-12)  1.14(-12)  5.64(-13)  2.92(-13)  8.56(-13)
40000 4.64(-12)  1.24(-11)  4.65(-12)  1.31(-12)  5.96(-12)
60000  1.17(-11)  4.00(-11)  1.39(-11)  4.06(-12)  1.80(-11)
80000  2.46(-11)  8.59(-11)  2.87(-11)  9.37(-12)  3.81(-11)
100000 4.33(-11)  1.51(-10)  4.94(-11)  1.73(-11)  6.68(-11)
200000  2.18(-10)  7.50(-10)  2.40(-10)  9.63(-11)  3.37(-10)
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and Dalgarno [46] for these two processes. Further, the relevant temperatures are between
~9000 and 18,000 K. The current rate coefficients, due to radial and rotational coupling, are
significantly smaller than the spin-orbit results of Butler and Dalgarno, which were obtained
with an approximate spin-orbit coupling value. If this value proves to be overestimated, the
discrepancy in the Seyfert 2 galaxy line ratios would be resolved, but the role of charge
exchange heating would be reduced. A complete close-coupling calculation involving radial,
rotational, and spin-orbit coupling is needed which would be the first of its type that we are
aware of. Further, we are unaware of measurements in an energy regime where spin-orbit

coupling dominates.

3.6 SUMMARY

We have investigated electron capture in collisions of N* with H and H* with N. Comparison
with the existing experimental data suggests that total cross sections from the quantum-
mechanical MOCC approach gives reasonable results. The discrepancies at low energy with
the measurements of Stebbings et al. may be due to considerable experimental uncertainties
in the knowledge of the reactant and product species. Further, comparison of the two state-
selective cross sections, reveals that N (2p? 3P°) + H— N(2p? 45°) + H* dominates the total
cross section in the low energy regime. However, it becomes nearly equal to capture to the
excited state N(2p3 2D°) at higher energies. For the collision of N with HT, our calculation
is very similar to the theoretical results of Cabrera-Trujillo et al. and is in good agreement
with the calculation of Kimura et al. at the highest energies, but not for energies less than
100 eV /u. Total and state-selective measurements are needed for these collision systems.
Rate coefficients given by our calculations are smaller than those reported by Steigman
et al. and Kimura et al. Comparisons with the work of Butler and Dalgarno suggests that
radial and rotational coupling is the dominant mechanism for temperatures above ~20,000

K, while spin-orbit coupling dominates at lower temperatures.



CHAPTER 4

ELASTIC AND INELASTIC PROCESSES IN COLLISIONS OF NA(3s,3P) WITH HE FROM

THERMAL ENERGIES TO THE ULTRACOLD

Elastic and inelastic low-energy collisions of sodium due to helium are investigated using the
quantum-mechanical close-coupling method with molecular wave functions. The calculations
adopt adiabatic potentials and nonadiabatic radial and rotational couplings obtained with
the MRD-CI approach. The potentials are fitted to long-range dispersion coefficients and
adjusted with a model interaction in the van der Waals well region. Collisional cross sections
for energies between 0.1 peV and 10 eV and rate coefficients as a function of temperature
between 10 pK and 10,000 K are obtained for elastic scattering, Na(3p — 3s) quenching,
and Na(3s — 3p) excitation. The variation of the scattering lengths with reduced mass and
collision energy at ultracold temperatures for the 1 22+ and 2 2X* states are presented and
their relation to vibrational bound states are illustrated. The results are relevant to studies
of cold atom collisions between alkali and rare-gas pairs and, in the thermal regime, modeling

NLTE effects in Na D absorption lines in extrasolar planets and brown dwarfs.

4.1 INTRODUCTION

In 2001, Charbonneau et al. [50] made the first observation of an atmospheric constituent
in an extrasolar planet. In a transit observation, they detected sodium absorption in the
extrasolar giant plant (EGP) HD 209458b. However, the inferred absorption was only half
the expected value leading Barman et al. [51] to suggest that the electronic states of Na were
not in equilibrium. In order to explore the mechanism for the decrease in sodium absorption,

well-determined collisional cross section for interactions of Na with the main atmospheric
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constituents, Hy and He, are necessary. In particular, electronic excitation processes by neu-
tral species become dominant in cool atmospheric environments due to the small electron
abundance.

Although the electronic excitation process of ground state sodium atoms in collisions
with ground state helium has been investigated in a number of theoretical [52, 53, 54, 55]
and experimental [56, 57, 58] studies, the available data are all above 100 eV. The thermal
regime has been relatively unexplored except for studies on fine-structure branching fractions
in optical collisions [59] and collisional broadening of Na resonance lines [60]. To shed further
light on this problem, we apply the quantum-mechanical coupled-channel (CC) method,
which adopts a perturbed stationary state expansion of the molecular wave functions, to
this collision system with the ultimate aim of extending the cross section down to threshold
to provide data relevant for astrophysical modeling.

Collisions of alkali and rare-gas atoms are also of interest in the ultracold regime as
highlighted in the recent special issue on cold collisions and cold molecules [61]. In this work,

we explore the elastic scattering processes
Na(3s 29) + He — Na(3s 29) + He, (4.1)
Na(3p ?P°) + He — Na(3p *P°) + He, (4.2)
and inelastic quenching and excitation
Na(3s 29) + He < Na(3p ?P°) + He, (4.3)

for energies between 0.1 peV and 10 eV. Total elastic cross sections are analyzed by partial-
wave contributions to illustrate the significance of small partial waves in the low-energy
regime. For X states, elastic cross sections are characterized by scattering lengths at the zero-
energy limit. In addition, the sign of the scattering length reflects features of the potential
curves. The sensitivity of the scattering length to the potential is investigated by varying the
reduced mass of the system. The dramatic variation of the scattering length due to bound

states produced by mass-scaled potentials is also illustrated.
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A description of the theoretical method was presented in Chapter 2 for scattering calcu-
lations and in Section 4.2 for the current molecular structure. In Section 4.3, the adiabatic
potentials and nonadiabatic couplings of Na-He are discussed. The resulting cross sections
and rate coefficients are given in Sections 4.4.1 and 4.4.2. The variation of the scattering
lengths with reduced mass and collision energy are displayed and discussed in Section 4.4.3.
Sections 4.5 and 4.6 discuss astrophysical implications and summarize this chapter, respec-

tively.

4.2 FELECTRONIC STRUCTURE CALCULATIONS

The ab initio adiabatic potentials and nonadiabatic couplings are obtained with the MRD-CI
method which has been detailed previously by Buenker and coworkers [35, 63, 37, 62, 63].
Here only descriptions relevant to the present calculation is specified. The basis functions
for the molecular calculations consist of contracted Gaussian-type functions which have the

form,

N e 7Y (9), (4.4)

where N,, is the normalization constant and Y}, is a spherical harmonic. The (5s4p3d) basis
for the helium atom [64] is contracted to [4s4p2d] including one s-, one p-, and one d-type
diffuse functions with exponents which are 0.027, 0.023, and 0.020 respectively. For the
sodium atom [65], the (15s9p5d) basis is contracted to [9s7p5d] including one s-, one p-, and
one d-type diffuse functions with exponents which are 0.023, 0.021, and 0.018, respectively.
The finite difference technique [38, 39] has been applied to obtain radial couplings (matrix
elements of 0/JR), while rotational couplings have been calculated by employing appropriate
pairs of CI eigenfunctions. All couplings have been computed with the electronic coordinate

origin at the center of mass of the Na-He system.
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4.3 POTENTIALS AND COUPLINGS

For low-energy collisions of Na(3s,3p) with He, the major effects and interactions for this
system are dominated by three molecular states, 1 22+, 1 2I1, and 2 2X*, and three couplings
connecting them. For the present scattering calculations, adiabatic potentials for these states
are fitted to long-range dispersion coefficients and adjusted with a model interaction in the
van der Waals well region. We used ab initio data calculated with the MRD-CI method as
a function of internuclear distance R from 0.2 to 9.5 a.u. For R greater than 9.5 a.u., the

model potential proposed by Cvetko et al. [66],

Ce (b ’ —bR —(2/3)bR —(1/3)bR
< 16. .
U(R) 120 (3) (ae Xxe e ) , bR < 16.6, (4 5)
was used to join the van der Waals well region smoothly to the long-range part of the

potentials, while the long-range potential is described by
Cs (b\° Cs Cs C
_ -6 < ) ae— 'R 6 8 10

U(R) 7~ @ PR2166. (4.6)

120 \3
The parameters adopted for each molecular state are listed in Table 4.1, where the Cjg
coefficients are taken from Zhu et al. [67] and the others are obtained by fitting to the ab
1matto data. We also present in Table 4.1, the equilibrium separations r,, and well depths ¢
obtained from our fits. Compared to other theoretical predictions of the dispersion coefficients
68, 69, 70], the Cs, Cs and Cjo that we utilize for the 1 22T state are in good agreement.
We are unaware of other determinations of C's and Cyq for the excited states. r,, and € for
the ground state are within 1% and 3%, respectively, of the values computed in Refs. [66]
and [69]. While similar parameters have not been previously reported for the 2 2%+, our r,,
is within the uncertainty of the measurement of Havey, Frolking, and Wright [71] for the
1 211 state. However, our well depth is 38% larger than the experimental value [71]. As the
internuclear distance approaches infinity, these three molecular states degenerate into two
separated-atom states which are Na(3s 25) + He and Na(3p 2P°) + He as given in Table 4.2.

For couplings driving the transitions between different molecular states, there are two

nonadiabatic rotational couplings, which result from the interaction between molecular states
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Table 4.1: Parameters of long-range potentials for 1 22+, 1 2II, and 2 2XF corre-
sponding to Egs. (4.5) and (4.6). Also listed are the equilibrium distances r,, and
well depths e. All values are given in atomic units.

Molecular a b X Cs Cy Cho T €
States
12%+ 4345.27 1.00 86.763 25.1 1328.00 95140.00 12.0 5.95(-6)°
1211 517.81 1.71 65408 43.4 598.04 10712.99  4.20 3.01(-3)
22y 8400.00 0.63 86.031 79.5 10656.51 1856973.87 21.5 5.82(-7)

The notation A(-B)=A x 1075,

Table 4.2: Comparison of asymptotic separated-atom energies between the
MRD-CIT calculations and experiment for the lowest three molecular states of

Na-He.
Separated-atom  Experimental Theoretical ~ Molecular United-atom
States Energies® (eV) Energies (eV)  States States
Na(3s 25)+He 0.0 0.0 1227 Al(3p 2P°)
Na(3p 2P°)+He 2.1037 2.0768 1211 Al(3p 2P?)

2.0868 225+ Al(4s 25)

¢NIST Atomic Spectra Database,
http://physics.nist.gov/PhysRefData/ASD /index.html.

with different symmetry (A=A’+1), and one nonadiabatic radial coupling, which is due to
the interaction between molecular states with the same symmetry (A=A").

A unitary transformation [23] is applied to transform the potentials and couplings into
a diabatic representation as described in Section 2.3. The adiabatic and diabatic potentials
are displayed in Fig. 4.1. The largest modification due to the unitary transformation is for

the 1 2XT and 2 2+ potentials. In Fig. 4.2, the nonadiabatic radial coupling, 1 2X7-2 23+,
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and the corresponding diabatic potential coupling are displayed. Two rotational couplings are
presented in Fig. 4.3, where the coupling between states 2 227 and 1 2II approach a constant
with increasing R. This will be seen to have a great influence on the collision dynamics of

the 2 2X* state in the low-energy region.

4.4 RESULTS AND DISCUSSION

4.4.1 CROSS SECTIONS

For the elastic scattering process (4.1), the molecular state 1 X+ dominates the interaction
in the low-energy region. For the elastic scattering process (4.2), the collision cross sections
of 1 2IT and 2 X% are not only dominated by their individual potentials, but also affected by
the nonadiabatic couplings. The total and partial-wave elastic cross sections for the 1 2X* are
displayed in Fig. 4.4. The s-wave (J = 0) contribution dominates at ultracold energies with
the cross section becoming constant for £ < 107% eV. The peak of the total cross section
at 5 pueV results from the contribution of the partial wave, J = 1, while the J = 2 term is
responsible for the slight shoulder in the total cross section. The inset of Fig. 4.4 shows the
comparison of the present calculations to the theoretical prediction of Bottcher et al. [52] for
energies between 0.01 and 1 eV. The small discrepancy is a consequence of the difference in
adopted potentials where Ref. [52] used a model potential method with a Hartree-Fock core.

Fig. 4.5 illustrates the total cross sections and the variation with energy of the partial-
wave cross sections with J = 1 — 5 for elastic collisions in the 1 2II state. For this state,
we made the approximation that the centrifugal potential is given in Hund’s case (b) by
Ve=[J(J+1)—A?/(2uR?). The maximum of each partial-wave cross section is primarily
influenced by three factors. The partial-wave cross sections are proportional to the inverse
of the collision energy, at very low energy, and the total angular momentum. In addition,
the orbiting resonances increase the magnitude of partial-wave cross sections dramatically.
In Fig. 4.5, it is apparent that there is a resonance due to a quasi-bound state for J = 2.

As a result of this resonance, a sharp peak is observed in the total cross section. The cross
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Figure 4.1: Adiabatic (solid curves) and diabatic (dotted curves) poten-
tials for Na-He as functions of internuclear distance R. The adiabatic
and diabatic potentials for the 12II state are indistinguishable.
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section drops abruptly at energies between 1072 and 1078 eV due to the centrifugal barriers,
which increase in height with increasing J. In the higher energy region, the contribution of
higher partial waves to the total cross section increases in importance with several hundreds
or thousands of partial waves contributing at each energy. Although the maximum of the
individual partial-wave cross sections gradually reduces, the sum of thousands of partial
waves (not shown) causes the large total cross section at high energy.

For elastic collisions in the 2 2X* state, the total and the J = 0 — 5 partial-wave cross
sections are presented in Fig. 4.6. Because the contribution of the J = 0 partial wave is small
compared with other partial waves, the J = 0 term is displayed in the inset which illustrates
that J = 0 becomes prominent in the low-energy region with the total cross section reaching
a finite value in the zero-energy limit. Partial-wave analysis shows that the J = 2 term,
similar to that of the 1 2II, has a resonance which results in the peak in the total cross
sections. The sensitivity of resonances to the potentials and couplings has been discussed by
Krems and Dalgarno [72]. We find that the resonances in the 2 22 cross section disappear
if we turn off the 1 2II-2 2X* coupling; meanwhile, the total cross sections of both the 1 2II
and 2 2X7 will be diminished greatly at high energy. Therefore, the resonance in the cross
sections of the 2 X7 state is due to a quasi-bound state supported by the 1 2II potential,
which causes the effect through the 1 2I1-2 2XF coupling.

The cross sections for inelastic collision processes (4.3), which include quenching and
excitation reactions, are displayed respectively in Fig. 4.7 and Fig. 4.8. The quenching process
from Na(3p) to Na(3s) due to collisions of He includes two de-excitation paths, 1 2IT to 1 22T
and 2 2XF to 1 2X7F. Fig. 4.7 displays the total and state-to-state cross sections compared
to the state-to-state results neglecting the 1 2I1-2 2X* coupling. For energies less than 1 eV,
quenching from 1 2II to 1 2X7 is the dominant process. Several distinct orbiting resonances
appearing in the cross sections are due to quasi-bound states of the quasimolecule. It is worth
noting that both different quenching processes have the same resonance position. However,

the resonances at energies lower than 0.01 eV have mostly disappeared for the 2 2X% to
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1 237* transition when the 1 2II-2 2X* coupling is set to zero, but they still appear in the
1 2IT to 1 22+ quenching cross sections, though reduced in magnitude. This implies that
these resonances are due to quasi-bound states supported by the 1 2II potential. In addition,
for energies less than 107 eV, the 2 2X7- 1 25+ cross section obeys the Wigner threshold
law [73] (see thin dotted line in Fig. 4.7), when the 1 %II-2 ?%* coupling is removed. The
broad resonance in the quenching cross sections near 10~® eV and the main resonance in the
elastic cross sections of the 1 2II and 2 X% states are close in energy as both are due to the
same quasi-bound state provided by the 1 2II potential. The broad width of this resonance
indicates that the corresponding quasi-bound state has a short lifetime because its position
is near the top of the potential barrier. On the other hand, the resonance position is sensitive
to the couplings which will shift the position of the quasi-bound state. The magnitude of the
resonance near 10~% eV becomes less pronounced when the 1 2II-2 2%+ coupling is removed
(see thin dashed line in Fig. 4.7).

The excitation cross sections of Na(3s) to Na(3p) due to He collisions are given in Fig. 4.8.
The most significant contribution to total excitation cross sections is through the excitation
of molecular state 1 2XF to 2 2X7F for energies larger than 2.8 eV. Because of the 2 2X7F
threshold at 2.1 eV, the cross sections go to zero abruptly as the threshold is approached.

The inset details the orbiting resonances occurring near the threshold.

4.4.2 RATE COEFFICIENTS

The rate coefficients «(T), where T is the temperature, are determined by averaging over the
cross section o(F) with the Maxwellian energy distribution, as given by Eq (3.3). In Fig. 4.9,
rate coefficients for elastic scattering processes, (4.1) and (4.2), are presented as functions of
temperatures between 1 K and 100 K for each of the molecular states. The behavior of the
rate coefficients for the 1 22+ state is proportional to T/2 because the elastic cross section
is constant as the collision energy approaches zero. Similarly, due to nearly constant cross

sections in the higher energy region for the 2 2X* and 2 2II states, the rate coefficients are
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Table 4.3: Fitting parameters of inelastic rate coefficients for Na(3s — 3p) excitation and
Na(3p — 3s) quenching due to collisions with He and H.

Na(3s — 3p) Na(3p — 3s)
He H He H
(4,000-10,000 K)  (3,000-10,000 K) (10-10,000 K)  (3,000-10,000 K)
@ (cm®/s)  7.53(-12)° 0.567(-12) 1.80(-20) 1.175(-12)
by 10.00 10.458 0.39 5.440
c1 (K) 723.44 1097.773 2000.00 3341.270
a (cm?/s) 1.55(-9) 2.469(-9) 1.80(-16) 2.108(-11)
by 21.00 22.352 3.83 4.198
o (K) 551.40 674.551 3500.00 1279.273

9The notation A(-B)=A x 10~ 5.

also approximately proportional to T%2. On the other hand, the sudden decline of the rate
coefficients at temperatures lower than 10~* K for these two states indicates the influence
of the centrifugal barrier from the J = 1 term. Fig. 4.10 illustrates the variation of rate
coefficients with T' from 107% to 10* K for inelastic collisions. The rate coefficients are larger
for the exoergic reaction, Na(3p 2 P°)+He — Na(3s 25)+He, than for the endoergic reaction,
Na(3s 25)+He — Na(3p 2P°) + He, as expected. For convenience we have fitted the inelastic

rate coefficients to the relation

a(T) = zi:a,- <ﬁ>b exp (—g) : (4.7)

The fit coefficients are given in Table 4.3 and are valid for T" < 10,000 K.

4.4.3 SCATTERING LENGTHS AND ULTRACOLD COLLISIONS

As the collisional energy achieves the regime of the zero-energy limit, the scattering length
can be used to characterize the scattering. In the present work of multi-channel scattering,

taking advantage of the complex scattering length formalism [75, 76] is an useful way to
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incorporate the effect of inelastic collisions into the equivalent one-channel problem. The

complex scattering length is defined as
a=a" —ia (4.8)

With the relations for the s-wave phase shift, 9 = —ka, in the low-energy limit and the

S-matrix element,

ST = i (4.9)
we can obtain
Re(SY,) = e~ 2at cos(2k,al) (4.10)
and
m(SY ) = —e —2kat gin (2k,a 0, (4.11)

and the complex scattering length can be expressed in terms of the real part of the S-matrix

element, Re(S%,), and the imaginary part, Im(S° ), as

ro__ —1 -1 Im(Sgcoz>
a, = T tan <m> (4.12)
and
— T ln{[Re( 7+ [Im(S2)]%. (4.13)

In the low-energy regime, s-wave scattering dominates. Therefore, for a specific entrance

channel o, the elastic and inelastic cross sections, ¢ and o™, can be reduced to (see also

Eq. (2.110))
B (4.14)

e ax

e v
O'l:k—2|1—50

and

o = 72 Z B ﬁ|2 (1 — | aa|2) . (4.15)

a a<f

In the zero-energy limit, both cross sections have Simple relations in terms of the complex

scattering length components

o5 — 4m(ag)” + (ag)’] (4.16)
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and

fo" — k_af)" (4.17)

To illustrate the stability and convergence of the scattering lengths and also, to explore
the dependence of the scattering length on the potentials (see for example Jamieson and
Zygelman [77]), we present the real part of the scattering length as a function of collisional
energy and reduced mass for the 1 22T and 2 2?27 states (see Fig. 4.11 and Fig. 4.12). In
both cases, the scattering length reaches stable values for each reduced mass as the energy is
reduced down to 107? eV. The variation of the scattering length with reduced mass is seen
to be quite different for the two cases. According to Fig. 4.13 and Fig. 4.14, the scattering
lengths for both states change from positive to negative with increase of the reduced mass.
However, for the 1 22T state, the scattering length has singularities near reduced masses of
2 and 16.5 u, at ~7.5 u for the 2 227 state.

The sign and the singularities of the scattering length are strongly related to the char-
acter of the potential. The sign depends on many factors including whether the potential is
dominated by an attractive or repulsive interaction and whether bound states are supported
[22]. Single-channel binding energies of bound vibrational states with J = 0 for different
reduced masses, which are shown in Fig. 4.15 and Fig. 4.16, indicate that zero-energy reso-
nances exist at ~2 and ~16.5 u for the 1 22+ state and at ~7.5 u for the 2 22+ state. They
are consistent with the reduced masses for which singularities are found in the scattering
lengths. In the case of 2Na-*He with reduced mass of 3.41 u, it is capable of producing one
s-wave bound state near the 1 2XT dissociation limit such that the sign of the scattering
length is positive (37.3 ag). On the other hand, it is impossible to support a bound state in
the 2 2X% potential for a reduced mass less than ~8 u. Therefore, the scattering length is
negative for the 2 227 state of Na-He. The reason its value is close to zero (—0.686 ag) is due
to the strong repulsive interaction of 2 2X™ potential. The repulsive portion of the potential
gives a positive contribution to the scattering length which reduces the negative contribu-

tion due to the bound-state-less attractive well. With decrease in reduced mass, which is
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equivalent to reducing the depth of the van der Waals well since the effective potential is
2uV (R)/h?, the scattering length becomes positive for the 2 2X* state. It illustrates that
repulsive interaction overcomes the attractive interaction to turn the scattering length from
negative to positive values.

Finally, we comment that because of the large energy gap between the molecular states
correlating to the Na(3s) and Na(3p) the imaginary part of the scattering length a® for the
2 2%+ state is negligibly small. We defer presenting results of the 1 2II scattering length
to a future work because such a calculation will require inclusion of coupling of the fine
structure terms correlating with the Na(3p), which may also have an influence on the 2 2¥+
for energies less than ~1072 eV. The accumulation of the dependence of the scattering length
on the potential and fine-structure-coupling effects suggest that the magnitude and sign of
the 2 2% scattering length is uncertain. On the other hand, Fig. 4.13 illustrates that the
positive value of the ground state scattering length is robust and that its magnitude is
unlikely to varying by more than a factor of two. Therefore, ultracold collisions of ground

state Na and He will be dominated by repulsive interactions.

4.5 ASTROPHYSICAL IMPLICATIONS

The Na D line is observed in absorption in a variety of astrophysical sources and in emission
when sufficiently energetic electrons are available to populate the 3p levels. In the former
case, the density in most objects, e.g. stellar atmospheres, is large enough to ensure that the
electronic levels are in LTE.

While the indirect observation of atomic Na in the atmosphere of the transiting EGP
HD 209458b was a ground-breaking achievement [50], the observed difference in the transit
depth in and out of the region of the Na D line was only about half that expected from model
predictions [78, 79, 80]. A number of possibilities to explain this discrepancy was suggested
by Charbonneau et al. [50] and later expanded on by Fortney et al. [81]. They considered the

following scenarios: depletion of Na into molecules and or condensates, subsolar metallicity
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(though its companion star is of solar metallicity), NLTE Na photoionization due to the
companion’s ultraviolet (UV) flux, and cloud opacity. Using a parameterized description of
the cloud’s vertical distribution and base, Fortney et al. were able to reproduce the observa-
tions as cloud opacity tends to reduce the strength of line absorption features. However, the
physics of cloud formation is still in its infancy and a complete, robust description requires
a treatment of gravitational settling of the condensate grains which is not yet available.

Barman et al. [51] proposed another possibility for which, in principle, the physics is well
known: Na is in NLTE. This explanation has a number of attractive features: exotic processes
do not need to be imposed and Na (and other species) is likely to be in NLTE. This is the
case due to the low effective temperature of the planet (~1500 K), which results in low
electron abundances (~107%), and the strong, non-Planckian UV radiation from the primary
which is only 0.045 AU away. The lack of electrons means that the Na level populations
can only be thermalized by collisions with Hy, He, or H which are expected to have smaller
collisional cross sections. Unfortunately, the difficulty in performing NLTE calculations is
the lack of collisional rate coefficients for the dominant atmospheric constituent Hy. In their
model, Barman et al. [51] used electron excitation rate coefficients as a substitute for Hy rate
coefficients and found significant departures in the 3s and 3p level populations from LTE.
This resulted in a reversal in the core of the Na D absorption lines which would appear as a
reduced line depth in low resolution.

In the current work, we have obtained rate coefficients for collisional excitation and
deexcitation of Na due to He as shown in Fig. 4.10. The rate coefficients are very small for
temperatures less than 10 K and the process will therefore be very inefficient at thermalizing
the Na level populations. In the inset to Fig. 4.10, the Na-He rate coefficients are compared
to the same transitions for collisions due to H which were computed from the cross sections
of Belyaev et al. [74]. Fit coefficients for Na-H collisions are given in Table 4.3. While the
Na-H rate coefficients are 4-5 orders of magnitude larger, atomic hydrogen will mostly be

tied-up in Hy in an EGP, so that the relative efficiently of the Na-H to Na-He processes will
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be significantly smaller than the ratio of the rate coefficients. The excitation rate coefficients
for collisions due to Hy are currently unknown, but their magnitude might be expected to be
intermediate between the H and He perturber values. As the rate coefficients for all neutral
perturbers are smaller than those due to electron impact, the significant departure from LTE
obtained by Barman et al. would appear to be a robust result and a valid interpretation for

a inferred reduced Na abundance in HD 209458b.

4.6 SUMMARY

Elastic and inelastic collisions of Na(3s,3p) with He have been investigated using the
quantum-mechanical CC approach. The major results include total cross sections, partial-
wave cross sections, and rate coefficients for elastic scattering for processes (4.1) and (4.2);
total cross sections, state-to-state cross sections, and rate coefficients for the quenching
and excitation processes (4.3); and the scattering length as a function of reduced mass and
collision energy for 1 2% and 2 22" states.

The comparison of our results to the theoretical prediction of Bottcher et al. shows good
agreement for the elastic cross sections of the 1 2XT state. In the ultracold region, the elastic
total cross sections of 1 2%+ and 2 2XT states are determined solely by s-wave scattering.
Through partial-wave analysis, the orbiting resonances due to quasi-bound states resulting in
sharp peaks imposed upon total cross sections are illustrated. The quenching cross sections
are dominated mostly by the de-excitation from 1 2II to 1 2X%, while the excitation from
the 1 22+ to 2 2X" has the main contribution for the excitation cross sections for energies
larger than 2.8 eV. The comparison with results without the 1 2II-1 2XT rotational coupling
illustrates that this coupling has significant influence on both elastic and inelastic cross
sections and resonances. The scattering lengths are sensitive to the reduced mass. In other
words, a change in the potential could cause dramatic variation of the scattering length
which is primarily controlled by the location of a zero-energy resonance. The large positive

value for the 1 2X7 state of the Na-He system reveals that there is a bound state supported
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by the 1 22+ potential, while the scattering length of small negative value close to zero for
the 2 2X7* state manifests that, based on the lack of a bound state for the 2 23+ potential,
the attractive part of potential slightly overcomes the repulsive part of the potential.
Finally, the small rate coefficients obtained for inelastic collisions of Na with He
strengthens the argument made by Barman et al. [51] that the sodium electronic level
populations are out of equilibrium in the atmosphere of the extrasolar giant planet HD

209458b.



CHAPTER 5

VIBRATIONALLY-RESOLVED CHARGE TRANSFER FOR PROTON COLLISIONS WITH CO

AND H Corvrisions wita CO™

In this chapter, ion-molecule collisions are illustrated by an application of a quantal MOCC
method utilizing the IOSA [82] to electron capture processes for proton collisions with carbon
monoxide, and reverse processes for collision energies between 0.5 and 1000 eV /u. The poten-
tial surfaces and couplings, computed with the MRD-CI method for a range of HT-CO
orientation angles and C-O separations, are adopted in the scattering calculations. Results
including vibrationally-resolved and orientation-angle-dependent cross sections are presented
for a range of CO and CO™ vibrational levels. Comparison with experiment is made where
possible and the relevance of the reaction in astrophysics and atmospheric physics is dis-

cussed.

5.1 INTRODUCTION

Electron capture processes are well known to be of great interest in many fields of study and
are relevant to planetary atmospheres, the interstellar medium, and controlled-thermonuclear
fusion. In particular, many investigations are focused on collisions of protons with atoms
or molecules, since the major constituent of the solar wind are protons. For example, the
interaction of the solar wind with the atmospheres of planets or comets plays a crucial role
in understanding X-ray emission from these objects and the interface between the solar wind
and their atmospheres. X-ray emission from charge exchange also has the potential to provide

information on the composition of the atmospheres and the solar wind.
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For the specific case of electron capture by protons in collisions with CO, numerous
measurements have been carried out over the past five decades [44, 83, 84, 85, 86, 87], but
the number of theoretical studies [88, 89, 90| are sparse. The effect of molecular orientation,
the so-called steric effect, for proton-CO collisions was discussed in the theoretical work of
Kimura et al. [88] and Kumar et al. [90]. In Kimura et al., a quantal MOCC calculation was
performed which considered three orientation angles (v = 0°,90°, and 180°) of the target
molecule. However, CO was held fixed at its equilibrium distance r, = 2.1 a¢ throughout
the collision; the so-called “electronic approximation” (EA). Kumar et al. also performed a
EA calculation, but with a time-dependent wave-packet propagation (TDWP) method. In
a preliminary investigation [89], Stancil relaxed this restriction and considered vibrational
motion of CO. This allowed for the computation of vibrationally-resolved cross sections
within the IOSA [15, 16, 17|, which has been discussed in Section 2.6, and demonstrates that
an EA calculation is inappropriate for collision energies less than ~100 eV /u.

Extending the earlier investigation [89], the present work includes a significant enhance-
ment in the CO and CO™ vibrational bases in order to provide more accurate and more
extensive information on vibrationally-resolved electron capture. The collision process con-

sidered in this work is
H" + CO(X 'SF,v) «» H+ COT(X 22, 1/), (5.1)

which is endoergic by 0.416 eV for v = v/ = 0 in the forward direction.

The theoretical approach for the scattering calculation was given in Chapter 2 and par-
ticularly, in Section 2.6 for IOSA. The potentials and couplings in the adiabatic and diabatic
representation for three collision configurations are discussed in Section 5.2. The results of
state-to-state, state-selective, and angle-averaged total cross sections are illustrated in Sec-
tion 5.3 including the discussion and comparison with the existing experimental data and
previous calculations. Section 5.4 addresses the implications to astrophysics and atmospheric
physics from the current results, while Section 5.5 briefly gives the summary of the present

investigations.
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5.2 ELECTRONIC STRUCTURE CALCULATIONS

Ab initio calculations were performed for the potential surfaces and coupling matrix elements
of the HCO™' molecular ion. The calculations were carried out using the MRD-CI method
(35, 36, 37, 62, 63] with the cc-pVTZ basis for H, C, and O atoms of Dunning [65]. In
this work we consider three collision configurations defined in Fig. 5.1 with v = 0°, 90°, and
180°. For each +, the adiabatic potentials and couplings as functions of the H-CO internuclear
distance R are computed with five different fixed C-O internuclear separations of r = 1.7,
1.9, 2.1, 2.3, and 2.5 ag, where 2.1 aq is the equilibrium distance of the CO molecule. For
the collision energies computed in this work, we consider the two lowest electronic states
only, as the remaining excited states are more than 2.5 eV higher in energy and therefore
of secondary importance in the collision dynamics. The two lowest potentials, with CO at
its equilibrium geometry r = r., are shown in Fig. 5.2 and correspond to the asymptotes
HT+CO(X '¥7) and H+CO™(X 2¥T). For v = 0° and 180°, the X 'Y+ and 2 'ST states
were computed in the Cs, subgroup of the Cy, point group, while for v = 90°, the 1 ' A’ and
2 1 A" were calculated in the C, point group [88]. The adiabatic potentials of these two states
as functions of R and various r are shown in Figs. 5.3, 5.4, and 5.5 for different orientation
angles. The nuclear radial coupling matrix elements, which connect these two states, are
displayed as functions of R and various 7 in Figs. 5.6, 5.7, and 5.8 for three different collision
geometries.

For convenience in the scattering calculations, we make a unitary transformation from
the adiabatic picture to a diabatic representation (see Section 2.3) for the electronic poten-
tials and couplings. The resulting diagonal terms of the electronic diabatic potentials are
adjusted to match the experimental asymptotic energies for v = v/ = 0. The vibronic dia-
batic potential energies are then obtained by shifting the appropriate electronic energy by
the vibrational excitation energies as shown in Figs. 5.9, 5.10, and 5.11 (see Eq. (2.122)). The
vibronic diabatic couplings are obtained by averaging the electronic diabatic couplings over

the vibrational wave functions. The dominant vibronic couplings are shown in Figs. 5.12,
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Figure 5.1: Collisions of H" with CO defined in Jacobi coordinates.

5.13, and 5.14 for transitions connecting the states v with v/ = v, and v + 1. The vibronic
couplings for larger |Av/| are significantly smaller. The CO™ and CO ground state potentials,
used to generate the vibrational wave functions, where taken from Krupenie and Weissman

[91] and Borges et al. [92], respectively.

5.3 RESULTS AND DISCUSSION

The charge exchange cross sections for collisions of HY with CO and H with CO™ were
calculated for three orientations, i.e. v = 0°, 90°, and 180°, of the molecular target and
included eleven and nine vibrational channels for CO and CO™, respectively. Examples of
vibrationally-resolved state-to-state cross sections for HT-CO collisions for v = 0 — v/ =
0 — 5 are illustrated in Fig. 5.15. The difference in the cross sections among three angles
becomes more conspicuous with increasing final vibrational excitation. For v” > 2, the angle-
averaged results are primarily determined by the behavior of the v = 0° cross sections. In

Fig. 5.16, angle-averaged state-to-state cross sections for v = 0 are given as a function of
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Figure 5.6: Nonadiabatic radial couplings of H-CO* as functions of R
with r = 1.7, 1.9, 2.1, 2.3, and 2.5 a( for v = 0°.
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Figure 5.7: Nonadiabatic radial couplings of H-CO™ as functions of R
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V' for two collision energies. The Av = 0 transition is shown to be the dominant process
which is a consequence of the dominance of the corresponding vibronic coupling. Further,
since the vibronic couplings diminish with increasing v/, the cross sections tend to decrease
as well. This behavior is directly related to the overlap of the initial CO and final CO™
vibrational wave functions which is nearly diagonal since the equilibrium separations of the
two molecules are very similar. This suggests that to a rough approximation, the so-called
centroid approximation (CA) where a purely electronic cross section is multiplied by Franck-
Condon-like ionization factors, is valid for this collision system for collision energies above
~100 eV /u.

State-to-state cross sections for HT-CO collisions with three orientation angles and v > 0
are shown in Figs. 5.17-5.19. In the high energy regime, the transition from the initial vibronic
state v to a final vibronic state v/ = v is the most dominant process, while in the low energy
limit, i.e. near the threshold, the most significant process is a transition to a final vibronic
state which is the nearest state in the asymptotic limit. Referring to the vibronic couplings
in Figs. 5.12-5.14, it is obviously illustrated that the most important coupling connects two
vibronic states of v = /. However, since the couplings are largest at short R and the final
vibronic potentials are repulsive (see Figs. 5.9-5.11), the peaks in the couplings are only
sampled for relatively large collisions energies. For example, in Fig. 5.18(a) the cross section
for v =1 — v/ = 1 increases with collision energy to become the dominant channel above 10
eV /u. For smaller collision energies, capture to v/ = 0 is the primary channel due to a smaller
energy gap. For v = 2, similar trends are seen in Fig. 5.18(b) with the largest cross section to
V' = 2 for energies larger than ~10 eV /u and to v’ = 1 for smaller energies. Capture to v/ = 0
is also seen to be significant at low energies and will likely become the dominant channel for
energies below the v/ = 1 threshold since it is the only exoergic channel. Analogous behavior
is seen for other initial CO(v) states. Angle-averaged state-to-state cross sections of HT-CO

collisions are shown in Figs. 5.20(a)-(d), which are dominated by collisions at v = 0° for the
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same reasons as discussed in Fig. 5.15. The behavior of the different v and v/ channels are
the same as presented above.

The initial state-selective cross sections (v = 0 — 10), given by Eq. (2.124), for v = 0°,
90°, and 180° collisions of H* with CO are displayed respectively in Figs. 5.21, 5.22, and
5.23. According to the state-to-state cross sections, the convergence of initial state-selective
cross sections with respect to the present final states included is reliable except for v = 8,
9, and 10, for which more vibronic states are likely needed. For low energies, the initial
state-selective cross sections increase with increasing v. Because all final states are endoergic
for v = 0 and 1 (see Figs. 5.9-5.11), the cross sections are expected to drop sharply due
to the threshold. For v > 1, exoergic channels become available which result in the rise of
cross sections. For the higher energy region, i.e. energies larger than ~70 eV /u for the case
of v = 90°, the cross sections increase with decreasing v. For v = 0° and 180° and energies
larger than ~30 eV /u, the initial state-selective cross sections approach values of similar
magnitude. The angle-averaged initial state-selective cross sections are shown in Fig. 5.24,
which except for v = 9 and 10, are weakly dependent on v for energies greater than 50 eV /u.

Figs. 5.25-5.30 are similar to Fig. 5.16 and Figs 5.21-5.24, except for the reverse process of
H collisions with CO™ (/). Fig. 5.25 shows angle-averaged state-to-state cross sections which
have behaviors similar to HT-CO, except that exoergic channels are available for all initial
states. As discussed previously, v/ = v transitions eventually become the most important
as long as the collision energy is large enough. A comparison of final CO vibrational cross
sections at relatively high (~1 keV/u) and low (~10 eV /u) collision energy is presented in
Fig. 5.26. Generally, a CA-type trend is evident except at low energy where the capture to
v=0 and 1 are nearly equal. The latter is a result of competition between coupling strengths
and asymptotic energy gaps. Initial state-selective cross sections for v = 0°, 90°, and 180°
are shown respectively in Figs. 5.27-5.29. The dominant initial state for electron capture is
v/ = 0 in the high energy regime while the cross section decreases with increasing v’. For

the low energy region, capture from larger v/ becomes more important. In addition, because
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there are exoergic collision channels involved in the electron capture process for any initial
state v/, all cross sections are expected to rise as the energy approaches zero. In Fig. 5.30,
angle-averaged initial state-selective cross sections are presented which demonstrate some
dependence of orientation angle by the comparison with Figs. 5.27-5.29.

In Fig. 5.31, orientation-angle-dependent and orientation-angle-averaged total cross sec-
tions for single electron capture by protons with CO are displayed and compared with other
theoretical and experimental data. The calculations include a Boltzmann average of initial
vibrational states at 300 K using Eq. (2.126). The orientation effect of the target molecule
CO is elucidated through cross sections at the three specific angles. It’s obvious that v = 0°
has the largest cross section, compared to the other two angles for energies larger than ~20
eV /u. The experimental results of Gao et al. [85], Kusakabe et al. [86], and Cadez et al. [87]
were primarily measured for energies near or larger than 1 keV /u. For smaller energies, we
are only aware of the measurements of Gilbody et al. [44] and Gustafsson et al. [83]. The
current orientation-angle-averaged total cross sections are in generally good agreement with
the other theoretical and experimental data. The discrepancies between the present IOSA
results and the previous EA calculation [89], which neglected vibrational motion, illustrate
the significant vibrational effect for the low energy regime. The current IOSA results are gen-
erally smaller than the measurements which may be due to the limited number of considered
orientation angles or missing contributions from higher excited states. The orientation-angle-
dependent and -averaged total cross sections for H-CO™ collisions are displayed in Fig. 5.32.
Comparing to Fig. 5.31, the results of H-CO™ collisions in the high-energy region have a
similar trend to HT-CO. Electron capture through collisions at v = 0° are most significant,
while v = 180° has less contribution. We are unaware of other theoretical or experimental

results in this collision energy range for this system.
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5.4 ASTROPHYSICAL AND ATMOSPHERIC APPLICATIONS

CO is typically the second most abundant molecule, after molecular hydrogen, in a variety
of astrophysical objects including interstellar clouds. In comets, CO accounts for about 15%
of the gaseous material in the coma with the remainder due mostly to water. As a comet
travels through the solar system, it encounters the solar wind which is composed primarily of
protons with kinetic energies ranging from 0.2 to 3 keV /u. Collisions of CO with solar wind
protons is the dominant mechanism for producing CO™, which is observed in fluorescence in
comet tails [93], since solar photoionization is inefficient. As indicated in Fig. 5.15, CO™ is
predominately created in the ground vibrational state. Further, in the earlier study, it was
found that electron capture to electronically excited CO™ has a cross section more than two
orders of magnitude smaller than to the ground state [88]. Therefore, while charge transfer
creates CO™, the observed fluorescence is likely produced following electron-impact or solar
photon excitation. Charge exchange also results in a loss of protons, a process observed in
the coma of comet Halley, but previous models only considered proton charge exchange with
water [94].

The reverse process of H collisions with CO* may play a role in the chemistry of diffuse
interstellar clouds. Federer et al. [84] measured the rate coefficient to be 40% of the Langevin
value for a collision energy of 0.06 eV. This energy is too low for IOSA to be applicable, but
if the trend indicated in Fig. 5.25(a) holds to low energies, the current results suggest that
the charge transfer reaction H+CO™ would produced CO in v=1 and 2 even in very cold

environments.

5.5 SUMMARY

Calculations for electron capture during proton collisions with CO and H collisions with
CO™ have been performed for energies between 0.45 eV /u and 1 keV /u using the molecular-

orbital coupled-channel approach with the infinite order sudden approximation. The adia-
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batic potential curves and nonadiabatic radial couplings were obtained with the MRD-CI
method. Taking into account the vibrational motion of the molecules, the vibrationally-
resolved state-to-state and state-selective cross sections were obtained. The cross section
variation with vibrational states is analyzed and the results of three collision orientations
with v = 0°, 90°, and 180° manifestly elucidate the steric effect for HT-CO and H-CO™
collisions. The orientation-angle-averaged cross sections are in good agreement with experi-
ments and it is shown that the electronic approximation may not be reliable for energies less
than 100 eV /u. The large discrepancy between EA and IOSA calculations in the low-energy
regime also reflects the significant influence of molecular vibrational motion. More experi-
mental data for electron capture of protons with CO at energies less than 30 eV /u and for

H collisions with CO™ are needed.
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Figure 5.22: Initial state-selective cross sections of H* collisions with
CO (y =90°) for initial states of v = 0 — 10.
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Figure 5.23: Initial state-selective cross sections of HT collisions with
CO (y = 180°) for initial states of v = 0 — 10.
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Figure 5.24: Angle-averaged initial state-selective cross sections of HT

collisions with CO for initial states of v = 0 — 10.
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Figure 5.27: Initial state-selective cross sections of H collisions with
CO™ (v = 0°) for initial states of /' =0 — 8.
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Figure 5.28: Initial state-selective cross sections of H collisions with
CO™ (v =90°) for initial states of /' =0 — 8.
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Figure 5.29: Initial state-selective cross sections of H collisions with
CO™ (v = 180°) for initial states of v/ =0 — 8.
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Figure 5.30: Angle-averaged initial state-selective cross sections of H

collisions with CO™T for initial states of v/ = 0 — 8.
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CHAPTER 6

SUMMARY AND FUTURE RESEARCH

In this dissertation, I have focused on the MOCC method and appplied it to atom-ion, atom-
atom, and ion-molecule collisions. For ion collisions, the charge transfer process is known to
be crucial in many astrophyscial environments. My results for electron capture of N* with
H provide the important adiabatic potential energies and couplings calculated by MRD-CI,
charge exchange cross sections, and rate coefficients, which could clarify the role played
by radial and rotational coupling compared to spin-orbit coupling and the influence of the
process in photoionized nebulae and Seyfert 2 galaxies.

Collisions of Na with He are important in the thermal regime for astrophysical implica-
tions, but also of interest in the ultracold and at cold temperatures for buffer gas cooling of
sodium. The potential curves and couplings provided by the MRD-CI method are presented.
The total elastic cross sections compared with partial-wave cross sections are shown to eluci-
date the dominant channels. Total and state-to-state quenching and excitation cross sections
are also given. Thermal rate coefficients for electronic excitation of Na were also obtained
and will be used for modeling NLTE effects on Na D absorption lines in extrasolar planets.
For ultralow temperatures, my results elucidate the strong relation between the scattering
length and the depth of the electronic potential well.

I performed calculations of vibrationally-resolved electron capture due to collisions of
protons with CO taking the collision system orientation angle into account for ion-molecule
collisions. Adiabatic potentials and couplings as functions of the H-CO separation with five
different C-O separations and three orientation angles are provided by the MRD-CI method.

The MOCC method was extended to treat molecular targets adopting the IOSA approach.
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Vibronic and steric effects for the process were studied and illustrated by the angle-averaged
and angle-dependent state-to-state and total cross sections. Because proton collisions with
CO is an important process in cometary atmospheres and protons are the dominant species
in the solar wind, the reaction may explain the loss of solar wind protons observed at comet
Halley.

For my future research, I propose to apply my experience with the close-coupling method
to perform computational studies of large molecules, including biomolecules, and solid-state
quantum computing devices, as well as to other collisional processes of astrophysical impor-
tance. To date, complex molecules have been translationally cooled by Stark deceleration
[95]. With the ability to isolate a biomolecule in the gas phase, the potential to realize cold
biomolecules by these or other techniques is expected soon. I therefore propose to study
nonadiabatic interactions in collisions of cold biomolecules (e.g., uracil, thymine) with var-
ious atoms and polar molecules (e.g. NH, OH) which can also be cooled. I will use standard
quantum chemistry packages to generate potential surfaces and model the nonadiabatic cou-
plings. Such computational studies will give insight into cold biomolecular dynamics and
motivate future measurements.

The use of helium nanodroplets [96] for precision vibrational and electronic spectroscopy
has seen significant activity in the past decade with a large number of molecules including Cgq
and organic polyaromatics, among others, being studied. However, compared to gas-phase
spectroscopy, the He superfluid environment does result in line shifts and line broadening
which can be modeled by considered the binary He-molecule interaction. So far, line shift and
broadening calculations have been limited to HF, CO, and OCS. I propose to perform such
calculations for large molecules and ultimately to address biomolecules such as uracil. The
scattering calculations will be performed by adapting the general scattering code MOLSCAT
[97]. He-molecule potential surfaces will also be calculated with standard quantum chemistry

packages.
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In my current work on ion-molecule collisions, the IOSA method has been adopted which
neglects the internal rotational motion of the diatom. The method is therefore only valid
for translational energies much larger than the typical rotational energy spacing, ~0.5 eV.
To extend the HT-CO studies to lower energies, I propose to incorporate the internal rota-
tional angular momentum, say with a coupled-states or full close-coupling approach, with
electronic nonadiabatic interactions. Then it would be possible to provide rate coefficients
at astrophysical temperatures and to probe the cold temperature regime relevant to Stark

deceleration techniques.



BIBLIOGRAPHY

[1] S. Lepp, P. C. Stancil, and A. Dalgarno, J. Phys. B: At. Mol. Phys. 35, R57 (2002).

2] G. J. Ferland, K. T. Korista, D. A. Verner, J. W. Ferguson, J. B. Kingdon, and E. M.

Verner, Publications of the Astronomical Society of the Pacific 110, 761 (1998).

[3] M. C. Bacchus-Montabonel, M. Labuda, Y. S. Tergiman, and J. E. Sienkiewicz, Phys.
Rev. A 72, 052706 (2005).

[4] T. Schlatholter, F. Alvarado, S. Bari, and R. Hoekstra, Phys. Scr. 73 C113 (2006).
5] F. Hund, Z. Phys. 36, 657 (1926).

6] R. S. Mulliken, Phys. Rev. 32, 186 (1927).

[7] J. E. Lennard-Jones, Trans. Faraday Soc. 25, 668 (1929).

[8] J. B. Delos, Rev. Mod. Phys. 53, 287 (1981).

9] B. H. Bransden and M. R. C. McDowell, Charge Ezchange and the Theory of Ion-Atom
Collisions (Clarendon Press, Oxford, 1992).

[10] N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (Clarendon Press,
Oxford, 1965), p. 428.

[11] A. M. Arthurs and A. Dalgarno, Proc. R. Soc. Lond. A 256, 540 (1960).
[12] T. P. Tsien and R. T. Pack, Chem. Phys. Lett. 6, 54 (1970).

[13] S.-I. Chu and A. Dalgarno, Proc. R. Soc. Lond. A 342, 119 (1975).

123



124

[14] R. D. Levine, Chem. Phys. Lett. 4, 211 (1969).
[15] R. B. Bernstein, Atom-Molecule Collision Theory (Plenum Press, New York, 1979).

[16] V. Sidis, in Advances in Atomic, Molecular, and Optical Physics, edited by D. Bates
and B. Bederson (Academic, New York, 1990), Vol. 26, p. 161.

[17] M. Baer, in State-Selected and State-to-State Ion-Molecule Reaction Dynamics, edited

by M. Baer and C.-Y. Ng (John Wiley & Sons, New York, 1992), Part 2, p. 187.

[18] R. M. Héberli, T. I. Gombosi, D. L. D. Zeeuw, M. R. Combi and K. G. Powell, Science
276, 939 (1997).

[19] T. E. Cravens, Science 296, 1042 (2002).
[20] R. P. Feynman, Phys. Rev. 56, 340 (1939).
[21] J. von Neumann and E. P. Wigner, Z. Physik 30, 467 (1929).

[22] C. J. Joachain, Quantum Collision Theory, 3rd ed., (North-Holland, Amsterdam,
1083), p. 288; p. 341.

[23] T. G. Heil, S. E. Butler, and A. Dalgarno, Phys. Rev. A 23, 1100 (1981).

[24] A. R. Edmond, Angular Momentum in Quantum Mechanics (Princeton University

Press, New Jersey, 1957).
[25] R. N. Zare, Angular Momentum (Wiley-Interscience, New York, 1988).
[26] B. R. Johnson, J. Comput. Phys. 13, 445 (1973).

[27] J. C. Tully, in Dynamics of Molecular Collisions, edited by W. M. Miller (Plenum,
New York, 1976), p. 217.

[28] A. W. Kleyn, J. Los, and E. A. Gislason, Phys. Rep. 90, 1 (1982).



125

[29] M. Baer, in Topics in Current Physics: Molecular Collisions Dynamics, edited by J.
M. Bowman (Springer-Verlag, Berlin, 1983), Vol. 13, p. 117.

[30] P. McGuire and J. C. Bellum, J. Chem. Phys 71, 1975 (1979).

[31] C. Y. Lin, P.C. Stancil, J.-P. Gu, R. J. Buenker and M. Kimura, Phys. Rev. A 71,
062708 (2005).

[32] P. C. Stancil, B. Zygelman, N. J. Clarke, and D. L. Cooper, J. Phys. B: At. Mol. Phys.
30, 1013 (1997).

[33] B. Zygelman, D. L. Cooper, M. J. Ford, A. Dalgarno, J. Gerratt, and M. Raimondi,
Phys. Rev. A 46, 3846 (1992).

[34] B. Zygelman, P. C. Stancil, N. J. Clarke, and D. L. Cooper, Phys. Rev. A 56, 457
(1997).

[35] R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta 35, 33, (1974); 39, 217,
(1975).

[36] R.J. Buenker, in Current Aspects of Quantum Chemistry, edited by R. Carbo (Elsevier,
Amsterdam, 1981), Vol. 21, p. 17.

[37] S. Krebs and R. J. Buenker, J. Chem. Phys. 103, 5613, (1995).
[38] C. Galloy and J. C. Lorquet, J. Chem. Phys. 67, 4672, (1977).

[39] G. Hirsch, P. J. Bruna, R. J. Buenker, and S. D. Peyerimhoff, J. Chem. Phys. 45, 335,
(1980).

[40] N. Shimakura and M. Kimura, Phys. Rev. A 44, 1659 (1991).
[41] R. F. Stebbings, W. L. Fite, and D. G. Hummer, J. Chem. Phys. 33, 1226 (1960).

[42] M. Kimura, J. P. Gu, G. Hirsch, and R. J. Buenker, Phys. Rev. A 55, 2778 (1997).



126

[43] R. Cabrera-Trujillo, Y. Ohrn, E. Deumens, and J. R. Sabin, Phys. Rev. A 62, 052714
(2000).

[44] H. B. Gilbody and J. B. Hasted, Proc. R. Soc. London, Ser. A 238, 334 (1957).
[45] G. Steigman, M. W. Werner, and F. M. Geldon, Astrophys. J. 168, 373 (1971).
[46] S. E. Butler and A. Dalgarno, Astrophys. J. 234, 765 (1979).

[47] J. B. Kingdon and G. J. Ferland, Astrophys. J. Sup. Ser. 106, 205 (1996).

[48] J. B. Kingdon and G. J. Ferland, Astrophys. J. 516, L107 (1999).

[49] E. Oliva, A. Marconi, and A. F. Moorwood, Astron. Astrophys. 342, 87 (1999).

[50] D. Charbonneau, T. M. Brown, R. W. Noyes, and R. L. Gilliland, Astrophys. J. 568,
377 (2002).

[51] T.S. Barman, P. H. Hauschildt, A. Schweitzer, P. C. Stancil, E. Baron, and F. Allard,
Astrophys. J. 569, L51 (2002).

[52] C. Bottcher, T. C. Cravens, and A. Dalgarno, Proc. R. Soc. Lond. A 346, 157 (1975).

[53] N. Andersen and S. E. Nielsen, in Adv. At. Mol. Phys., edited by D Bates and B
Bederson (Academic, New York, 1982), p. 266.

[54] C. Courbin-Gaussorgues and V. Sidis, J. Phys. B: At. Mol. Phys. 18, 699 (1985).
[55] M. Kimura and J. Pascale, J. Phys. B: At. Mol. Phys. 18, 2719 (1985).

[56] W. Mecklenbrauck, J. Schén, E. Speller, and V. Kempter, J. Phys. B: At. Mol. Phys.
10, 3271 (1977).

[57] J. O. Olsen, N. Andersen, and T. Andersen, J. Phys. B: At. Mol. Phys 10, 1723 (1977).

[58] N. Andersen, T. Andersen, K. Bahr, C. L. Coche, E. Horsdal Pedersen, and J. Oest-
gaard Olsen, J. Phys. B: At. Mol. Phys. 12, 2529 (1979).



127

[59] L. L. Vahala, P. S. Julienne and M. D. Havey, Phys. Rev. A 34, 1856 (1986).
[60] C. Zhu, J. F. Babb, and A. Dalgarno, Phys. Rev. A 73, 012506 (2006).
[61] O. Dulieu, M. Raoult, and E. Tiemann, J. Phys. B: At. Mol. Opt. Phys. 39, (2006).

[62] R. J. Buenker, Proceedings of the Workshop on Quantum Chemistry and Molecular
Physics, edited by P. G. Burton (University of Wollongong Press, Wollongong, 1980),
p- 1.5.1.

[63] R. J. Buenker and R. A. Philips, THEOCHEM 123, 291 (1985).
[64] D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
[65] T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).

[66] D. Cvetko, A. Lausi, A. Morgante, F. Tommasini, P. Cortona, and M. G. Dondi, J.
Chem. Phys. 100, 2052 (1994).

[67] C.Zhu, A. Dalgarno, S. G. Porsev, and A. Derevianko, Phys. Rev. A 70, 032722 (2004).
[68] T. R. Proctor and W. C. Stwalley, J. Chem. Phys. 66, 2063 (1977).

[69] U. Kleinekathofer, M. Lewerenz, and M. Mladenovi¢, Phys. Rev. Lett. 83, 4717 (1999).
[70] J. Mitroy and M. W. J. Bromley, Phys. Rev. A 68, 062710 (2003).

[71] M. D. Havey, S. E. Frolking, and J. J. Wright, Phys. Rev. Lett. 45, 1783 (1980).

[72] R. V. Krems and A. Dalgarno, Phys. Rev. A 66, 012702 (2002).

[73] E. P. Wigner, Phys. Rev. 73, 1002 (1948).

[74] A. K. Belyaev, J. Grosser, J. Hahne, and T. Menzel, Phys. Rev. A 60, 2151 (1999).

[75] N. Balakrishnan, V. Kharchenko, R. C. Forrey, and A. Dalgarno, Chem. Phys. Lett.
280, 5 (1997).



128

[76] P. J. Leo, V. Venturi, I. B. Whittingham, and J. F. Babb, Phys. Rev. A 64, 042710
(2001).

[77] M. J. Jamieson and B. Zygelman, Phys. Rev. A 64, 032703 (2001).
[78] S. Seager and D. D. Sasslov, Astrophys. J. 537, 916 (2000).

[79] T. M. Brown, D. Charbonneau, R. L. Gilliland, R. W. Noyes, and A. Burrows, Astro-
phys. J. 552, 699 (2001).

[80] W. B. Hubbard, J. J. Fortney, J. I. Lunine, A. Burrows, D. Sudarsky, and P. Pinto,
Astrophys. J. 560, 413 (2001).

[81] J. J. Fortney, D. Sudarsky, I. Hubeny, C. S. Cooper, W. B. Hubbard, A. Burrows, and
J. I. Lunine, Astrophys. J. 589, 615 (2003).

[82] V. Sidis, in Collision Theory for Atomxz and Molecules, edited by F. A. Gianturco
(Plenum, New York, 1989).

[83] E. Gustafsson and E. Lindholm, Ark. Fys. 18, 219 (1960).

[84] W. Federer, H. Villinger, F. Howorka, W. Lindinger, P. Tosi, D. Bassi, and E. Ferguson,
Phys. Rev. Lett. 52, 2084 (1984).

[85] R. S. Gao, L. K. Johnson, C. L. Hakes, K. A. Smith, and R. F. Stebbings, Phys. Rev.
A 41, 5929 (1990).

[86] T. Kusakabe, K. Asahina, J.-P. Gu, G. Hirsch, R. J. Buenker, M. Kimura, H. Tawara,
and Yohta Nakai, Phys. Rev. A 62, 062714 (2000).

[87] 1. Cadez, J. B. Greenwood, A. Chutjian, R. J. Mawhorter, S. J. Smith, and M. Niimura,
J. Phys. B 35, 2515 (2002).

[88] M. Kimura, J.-P. Gu, G. Hirsch, R. J. Buenker, and P. C. Stancil Phys. Rev. A 61,
032708 (2000).



129

[89] P. C. Stancil, Physica Scripta T110, 340 (2004).
[90] T. J. D. Kumar, A. Saieswari, and S. Kumar, J. Chem. Phys. 124, 034314 (2006).
[91] P. H. Krupenie and S. Weissman, J. Chem. Phys. 43, 1529 (1965).

[92] I. Borges Jr., P. J. S. B. Caridade, and A. J. C. Varandas, J. Mol. Spectrosc. 209, 24
(2001).

[93] L. Magnani and M. F. A’Hearn, Astrophys. J. 302, 447 (1986).

[94] S. A. Fuselier, E. G. Shelley, B. E. Goldstein, R. Goldstein, M. Neugebauer, W.-H. Ip,
H. Balsiger, and H. Rerhe, Astrophys. J. 379, 734 (1991).

[95] H. L. Bethlem, G. Berden and G. Meijer, Phys. Rev. Lett. 83, 1558 (1999).
[96] J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

[97] J. M. Hutson and S. Green, Computer code MOLSCAT, version 14 (U.K. Engineering
and Physical Sciences Research Council Collaborative Computational Project No. 6,

1994).



APPENDIX A

THE DERIVATION OF COUPLED-CHANNEL EQUATIONS

Given the Hamiltonian in Eq. (2.1) and the total wave function ¥ in Eq. (2.2), the L.H.S.

of Eq. (2.5) is

HV(s,R) = [— NV% — %Vi + V] > (s, R)Fj(R)

J=1

1
o
=Z( 1)vR (Vats (5. R)F(R) + (5, B) (Ve (R)]

=i\ 2
+ 3 {=3 (Vs (. R)) E(R) + Vi (5, RIF(R) )
=3 {55 (Va6 R) B(R) — V(s R) - VrF(R)

U RITRE®R)|
_Qj v%sm+wwRﬂNM- (A1)
Using the above expression with Egs. (2.3) and (2.4), we obtain
[ (s, R (s, Ryds — izvjl {—i [ 05 R) [V (s, R)] dsFy (R)
[ B R V(5. R ds- Va5 (R)
_iaﬁv@(m + f-:j(R)@jF}(R)}

=3 [ M RBR) + 5Py (R) -Vl R)
~5-VAE(R) + & (R)R(R). (A2)
where M;;(R) is defined in Eq. (2.8) and P;;(R) is defined in Eq. (2.9). On the other hand,
/ﬁ@RWW&M$:EEm) (A.3)
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Given Egs. (A.2) and (A.3), Eq. (2.6) leads to
V3~ 20(ei(R) - B)] F(R) = Y My (R) + P, (R)- Ve F(R),  (Ad)

J=1

which is Eq. (2.7).



APPENDIX B

THE ROTATION MATRIX

The rotation matrix defining the transformation between the body-fixed frame (z’, %/, 2’) and
the space-fixed frame (z,y, z) is composed of three rotations corresponding to the three Euler
angles «, (3, and . Firstly, a rotation with the angle o about the z-axis brings the space-fixed
frame (x,y, z) to the frame (x1,y1,21) (see Fig. (B.1)). This rotation can be represented by

a transformation using a rotation matrix R(«),

cosa  sina 0
R.(a)=| —sina cosa 0 |- (B.1)
0 0 1
Secondly, a rotation with the angle 3 about the y;-axis brings the frame (z1,¥,21) to the

frame (x2, Y9, 22) (see Fig. (B.2)). This rotation is expressed by a transformation using a

rotation matrix R(03),

cosf 0 —sing
R,B)=| 0o 1 0 : (B.2)
sin 0 cosf

Thirdly, a rotation with the angle v about zo-axis brings the frame (5, Y2, 22) to the body-
fixed frame (2',y/,2’) (see Fig. (B.3)). This rotation is given by a transformation using a

rotation matrix R(7),

cosy siny 0
R,(v)=| —siny cosy 0 |- (B.3)
0 0 1
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o .

X, yl
y

Figure B.1: A rotation about the z-axis by an angle «

Figure B.2: A rotation about the y;-axis by an angle 3



Figure B.3: A rotation about the z5-axis by an angle ~
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Therefore, a rotation matrix R(7, 3, «) for a transformation from the space-fixed to the

body-fixed frame is given as a product of these three rotations:

R(’Va s, a) = R., (V)Rw (ﬁ)Rz(a) =

cos v cos (3 cos 7y

—sin o sin 7y

— cos v cos (3 siny

— sin v cos vy

cos asin 3

It is easily shown that for « = ®, 3 = O, and v = 0, Eq. (B.4) reduces to Eq. (2.11).

sin «v cos (3 cos 7y

+ cos asin vy

— sin v cos (Fsin 7y

+ cos «cosy

sin o sin 3

— sin (3 cos 7y

sin (3 sin y

cos 3

(B.4)



ELECTRONIC WAVE FUNCTION DERIVATIVES IN THE BF FRAME

APPENDIX C

According to Eq. (2.10), the relationship between an electronic position vector in the body-

fixed frame (2’4, 2’) and in the space-fixed frame (z,y, 2z) is given as

¥ =xcosOcos® + ycosOsin® — zsin O,

, —_—

Yy =—xsin® + ycos P,

2 =xsin O cos ® + ysin O sin d + z cos O,

From Eq. (C.1), we can obtain

ox’'
OR
ox'
20

oy’
20
07
B

or’

0P

oy’
00

07

od

a0,

~OR  OR

= —xsin®cos® — ysinOsin® — zcos O
:—Z/

=2xcosOcosP + ycosOsind — zsin O
=z,

= —x cos ©sin ® + y cos O cos P

=1y cosO,

= —xcosP —ysind

= —2'cos© — 2'sin O,

= —xsin ©sin ® 4 ysin © cos P
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(C.1a)
(C.1b)

(C.1c)

(C.2a)

(C.2b)

(C.2c)

(C.2d)

(C.2e)

(C.2f)



=1/ sin O.

With these derivatives, Eq. (2.17) gives the following relations:

9 _9
OR ~ OR’
o 9 0 5

- = - =
0 - 00 “or "oy
= % —_— i[_/y,

/

o _9 —l—y’cos@%—i—(—x’cos@—z/sin@) 0

b 0D

/

oo

0 . = AT
=35 —icosOL, +isinOL,,

where L, L,, and L, are defined as

— i+cos@ <—x'%+y'%> + sin © <y’ 0
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(C.2g)

(C.3a)

(C.3b)

(C.3¢)

(C.4a)

(C.4b)

(C.4c)

Similarily, the angular momentum (L,,L,,L.) in the body-fixed frame is related to its

components (L,,L,,L,) in the space-fixed frame by

L,= L,cos©cos® + L,cosOsin® — L,sinO,

L,=—L,sin® + L, cos P,

L, = L,;sin®©cos® + L,sin©sin® + L, cos O.

The reverse relationship is given as

L,= LxCOS@COS(I)—LySiIl@—G—EZSiIl@COS(I),

Ly

L,=—L,sin® + L, cosO.

L,cosOsin® + Ey cos® + L, sin O sin P,

(C.5a)
(C.5Db)

(C.5e)

(C.6a)
(C.6Db)

(C.6¢)



APPENDIX D

ANGULAR MOMENTUM IN SPHERICAL POLAR COORDINATES

Taking advantage of the transformation between Cartesian coordinates and spherical polar

coordinates,
1/2
R= (:L'2 + 9% + 22) / : (D.1a)
2
cos © :(:c2 PR Tel (D.1b)
tan :g, (D.1c)
x

we can transform the angular momentum in Cartesian coordinates,

(0 0
N, =—1 <y& — Za_y> ) (D.2a)

G 0
Ny=—1 <28_x - x$> , (D.2b)

{0 0
N,=—i <a:a—y — y%> : (D.2¢)
(D.2d)

into spherical polar coordinates,
N, =i (sin -2 + cot@ cos - (D 3a)
o =i |sin®ag +cotOcos b |, .3a
N, =t | — ®i+ t O si q)i (D.3b)
y=i| —coslos +cot Osin®om |, :
.0

Nz = — Za—(b' (D3C>
(D.3d)
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APPENDIX E

TOTAL ANGULAR MOMENTUM

The total angular momentum J is defined as

J=N+1L, (E.1)

where N is total nuclear orbital angular momentum and L is total electronic orbital angular
momentum. In the space-fixed frame, the operators of components of N can be expressed in

spherical polar coordinates (see Appendix D) as

. 0 0
Nx =1 <SII1 (b% + cot © cos ®8—(I)> s (E2)
Ny =i [~ cos®-L + cot O sin b (£3)
y =1 COs 90 CcO Sin 99 | .
and
.0
Nz = _Za—(b. (E4>

From the above expressions, it follows that

Ny =N, £iN,
= exp £(iP) :ti—i— 'cot@i (E.5)
= exp £(i 50 T 55 ) .
According to Eq. (E.1),
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Because
.0 o4
g = —za—q) —cosOL, +sinOL,, (E.7)
from Eq. (C.3¢) and
L,=—sin®L, + cosOL,, (E.8)

from Eq. (C.6¢) we can immediately prove that

o
JZ = _Zﬁ_(I) (E9>

On the other hand, the expression for J, is given as

Jp=J.+id,
— N, +iN, + L, +iL,
— Ny + L, +il,

= exp (iP) (% + ¢ cot @aa@) + L, + 1L, (E.10)

Substituting Eqgs. (C.3b) and (C.3c) for ;% and 2

3¢, and replacing L, and L, by their body-

fixed representations (see Eq. (C.6)), we can obtain

(7 s . L.
Jy = exp (iP) <% + i cot ®8<I>> + exp (1P) 6 (E.11)
Similarly, the expression of J_ is given as
J_=J, —iJ,
=N_+ L, —ily
= exp (—iP) —i%—zcot@ 0 + L, —iL (E.12)
- 00 0% v '
Following the same procedure as Eq. (E.11) leads to
. s o o L.
J_ =exp (—id) (—% + i cot @8<I>> + exp (—iP) =t (E.13)



From Eqs. (E.11) and (E.13), we can obtain

2 & 1 g -\ 0
JpJ_ = 307 cot@% - %o <cos @8—<I> - ZLZ> — .

Because the total angular momentum J can be written in the form
JP=J.J —J. +J2

applying Egs. (E.14) and (E.9) to Eq. (E.15), the expression for J? is given by

/2 / /
0 — cot @i L (88—(1)

2
E 56 s’e — 7 cos @LZ> + Lz.
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(E.14)

(E.15)

(E.16)



APPENDIX F

THE RAISING AND LOWERING OPERATOR

The relations of a raising J, or lowering J_ operator acting on a total angular momentum

state HJMM\(@, ®) are given by

JoHY,(0,@) = \/(J £ M+ 1)(J F M)H],,, (0, 0).

Substituting Eqgs. (2.63) and (2.64) for J, and J_, this leads to

: o . 0 A ;
exp (+i®) (:I:% + i cot 68—<I> + sin@) Hj, (0, )

— \/(J +M+1)(JF M)Hj/[:tl,A(@J D).

Because of Eq. (2.73), Eq. (F.2) can be written as

. 0 A— M cos©O
exp (£id) <:I:% + —no

= —\/(J + M+ 1)(J F M)dy1A(0) exp [i(M £ 1)9),

) dhia(@)exw 213

or

0 A—=Mcos®\ ; J
<4_—% + W) dyA(©) = —\/(Jﬂ: M +1)(J F M)dy1,,(0).

Let 8 = —0O, we obtain

ﬁ A— Mcosf
:Faﬁ B sin 3

Since di; (=) = d{ 1;(8) (see Eq. (2.80)), it is easy to obtain

( 0 AN—Mcosf

:F% ~ sing ) ds i (8) = _\/(‘]i M +1)(J F M)d p41(5).
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) n(—B) = /(T M 4 DT F M)dyarn(~5).

(F.2)

(F.3)

(F.4)

(F.5)

(F.6)



By an exchange of A\ and M, Eq. (F.6) becomes

( 0 M — Xcosf3

:F% ~ sing ) dis(8) = _\/(‘] £ X4+ D) F N (B).

Finally, let 3 = O to

:F__

0 M — Acos®©
00 sin ©

) 4 (0) = —/(T A+ DT F Nl ria (©).

Eq. (F.8) is equivalent to

0 0 .
[:F% + sirj@a—q) + Acot @] dl{/l,/\(@) exp (iM )

= —\/(J +tA+1)(JF )\)dj/[)\j:l(@) exp (iMP),

or

00  sin® 9d
= /(J A+ 1)(JF NH]; 1, (0,®).

l:{:i —+ ! i + A\ cot @1 H]{L)\(@a ®)
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(F.7)

(F.8)

(F.10)



APPENDIX G

THE DIFFERENTIAL CROSS SECTION

The differential cross section j—g is defined by the ratio of the number of particles scattered

into df) per unit time and the number of incident particles crossing unit area per unit time,
1.€.

a—adQ _ (jscaft : E)Ride
aQ (Jincid . Z)

(G.1)

where d2 is a differential solid-angle element, Z the incident direction, js.. the scattered
probability flux, and j;,.iq the incident probability flux.
For a transition from the incident channel ¢ into the open channel j with kf > 0, the

asymptotic channel wave function (see Eq. (2.104)) for the incident channel is
Gi(R) = Aexp (ik;z), (G.2)
and for the scattered channel is
A :
Cy(R) = 2 £(6, @) exp ik R). (@3)

By the definition of the probability flux

j = %Im(G*(R)VG(R)), (GA)

where p is the reduced mass of the scattering system, we obtain

. ~ 1 . 0
Jscatt * R = —Im Gj (R)—GJ(R) s
)%

= —2|f(0, )%, (G.5)
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and
. .1 . 0
A2
=k, G.6
. (G.6)
Therefore, Eq. (G.1) leads to
Oaji o k‘j 2
5402 = (0, 0) (G.)
or
doi; ki
d—§]2 = #|fji(@a P)|%. (G.8)



