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Abstract

This dissertation focuses on the theoretical investigation of non-adiabatic collision pro-

cesses of complex atoms, ions, and molecules. The inelastic processes, particularly charge

transfer due to ion-atom collisions and quenching and excitation in atom-atom collisions,

are studied using a quantum-mechanical molecular-orbital close-coupling method, which is

based on the perturbed stationary state approach adopting molecular orbitals as basis func-

tions. Within this collision model, the motion of nuclei is governed by adiabatic potential

energy surfaces which are constructed from the motion of electrons. Transitions between

adiabatic molecular states are driven by non-adiabatic couplings. With the adiabatic poten-

tial energies and non-adiabatic couplings provided by the multireference single- and double-

excitation configuration interaction method, a set of coupled Schrödinger equations is solved

to obtain the collisional cross sections. We discuss the theoretical method in detail giving

the coupled-channel equations in the adiabatic and diabatic representations. A transforma-

tion between the adiabatic and diabatic pictures are described. The partial wave analysis to

obtain radial coupled equations and the resulting S-matrix is discussed. In order to extend

the current theoretical method for ion-atom collisions to ion-molecule collisions, the infinite



order sudden approximation is adopted to reduce the complexity arising from the rotational

motion of molecular targets. Applications of these methods to three different collision sys-

tems are given. In N-H+ collisions, rate coefficients, total and state-selective cross sections for

electron capture processes are presented. For Na-He collisions, collisional cross sections and

rate coefficients for elastic scattering and inelastic quenching and excitation are given. Addi-

tionally, the variation of scattering lengths with reduced mass and collision energy and their

relation to vibrational bound states of the quasi-molecule are illustrated. Finally, for H+-CO

collisions, we calculate vibrationally-resolved cross sections elucidating vibronic transitions

for three different orientation angles. Angle-averaged results are given. The steric effect is

prominent in the angle-dependent results.

Index words: ion-atom collisions, atom-atom collisions, ion-molecule collisions, charge
exchange, scattering length, vibronic interactions, non-adiabatic
interactions
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Chapter 1

Introduction

Living in a world constructed from atomic and molecular building blocks, the understanding

of a variety of macroscopic and microscopic phenomena due to colliding atoms and molecules

is of considerable importance and interest. Collisions between ions, atoms, and molecules

play crucial roles in a wide range of applications, such as the early Universe, the interstellar

medium, planetary atmospheres, fusion energy, and radiotherapy.

In the review by Lepp et al. [1], it was highlighted that atomic and molecular processes

control the evolution of the Universe, and are also important probes for our understanding

of it. Due to the low-density of interstellar space, microphysical processes, such as collisional

ionization or charge transfer, govern most physical and chemical phenomena within an astro-

nomical plasma. In modern computational astrophysics, a large-scale numerical simulation

of astronomical spectra, such as with the code CLOUDY [2], requires large quantities of

atomic and molecular data. With the precise rate coefficients provided by atomic and molec-

ular scattering calculations, the spectral synthesis through a numerical simulation is able to

compare with and to interpret the observed spectrum on a quantitative basis. In particular,

with improvements in telescope detector technology, comes unprecedented advancement in

astronomical observational resolution and sensitivity which realizes the investigation of the

atmospheres of extrasolar planets and other objects. Through the observation of absorp-

tion spectrum and the theoretical study of a variety of collisional mechanisms, it is possible

to reveal the physical conditions in the atmospheres of extrasolar planets. Besides planets,

another interesting phenomena, X-ray emission, occurring in cometary atmospheres has also

1
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drawn a great deal of attention. Since X-ray emission in space is generally thought to origi-

nate from hot collisional plasmas, it is surprising to discover strong X-ray emission from cold

cometary atmospheres. To explain such a particular circumstance, charge exchange processes

occurring at the interface of the coma and solar wind are major mechanisms.

In addition to implications to astrophysics, research in controlled fusion to produce energy

also counts on the availability of accurate atomic and molecular data. Cross-section data for

ion-atom collision processes play crucial roles in the edge plasma of magnetic confinement

fusion devices, such as Tokamaks, in which a critical ion-atom collision process occurring

in the edge plasma is charge transfer. Another practical application is relevant to ion-based

radiotherapy. The interactions of ions with biomolecules, such as DNA, are responsible for

biological radiation damage processes. The electron capture of the RNA base uracil by col-

lisions of Cq+ ions [3] had been studied to understand the ionization and fragmentation

dynamics of uracil. However, as mentioned in [4], theoretical studies are sparse. More cal-

culations of ion-biomolecule collisions are needed in order to have a better understanding of

the damage mechanisms of biomolecules.

In atomic collisions, theoretical methods can be categorized as perturbative or non-

perturbative. For high-energy collisions, where the projectile velocity is much larger than

the velocity of the orbital electron in the target, the ionization channel is a dominant pro-

cess. Generally, it’s believed that the perturbative approach is valid for this circumstance. In

contrast, due to many inelastic channels, strongly coupled together, and being nearly impos-

sible to single out a dominant channel, a non-perturbative method such as the close-coupling

approach is taken to be an appropriate description for low- to intermediate-energy collisions.

According to the treatment of nuclear motion, the close-coupling method can be divided into

a semiclassical model and a quantum-mechanical description. In a semiclassical formalism,

the motion of nuclei can be described by a classical trajectory for collisions where the de

Broglie wavelength of the projectile is much less than the typical interaction range, while

electronic wave functions are governed by the time-dependent Schrödinger equation. The
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merits of a semiclassical representation are that it provides an intrinsically simple picture of

the collision dynamics and reduces the complexity of computations. However, its disadvan-

tage is the neglect of the quantum effects of nuclear motion, which might be critical at low

energies. For a quantum mechanical approach, both nuclei and electrons are treated fully in a

quantal description. Although the difficulty of numerical calculation increases, taking advan-

tage of the fully quantal method to perform close-coupling computations becomes available

with the advanced technology of high-speed computing.

In close-coupling methods, the wave function is expressed by an expansion of a set of

basis functions. There are two types of basis functions that are commonly used. One is the

atomic orbital (AO) method and the other is the molecular orbital (MO) method. The AO

method is believed to be an appropriate description of intermediate-energy collisions. Each

atomic orbital is located at the target or projectile such that the atomic characteristics are

retained throughout the collision. It is obvious that the atomic-orbital expansion approach is

valid for large internuclear separations, but is incapable of providing an accurate description

for small internuclear separations which is important for slow collisions. On the contrary, the

molecular-orbital expansion approach is more appropriate for describing slow collisions. The

concept of the molecular orbital is based on work by Hund [5] and Mulliken [6]. In 1929, the

paper by Lennard-Jones [7] was the first one to treat molecular orbital theory in a quanti-

tative way. Although the MO model provides a better treatment for slow collisions than the

AO model, the MO method has intrinsic problems in which the correct asymptotic boundary

conditions of the scattering wave function are not fulfilled and the Galilean invariance of the

coupled equations is violated. To avoid these defects, the so-called electron translation factor

(ETF) had been introduced to remove the difficulties associated with the conventional MO

method [8, 9].

The major focus of my investigations is aimed at the inelastic collision processes of

charge transfer, quenching, and excitation to promote the modeling of interstellar gas and

planetary atmospheres going beyond standard assumptions of thermodynamic equilibrium.
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In addition, an investigation of elastic atom-atom collisions for ultra-low energies is carried

out to explore the characteristics of scattering lengths. The calculations of ion-atom or atom-

atom collisions are based on the perturbed stationary state (PSS) model in which the basis

functions are constructed by the molecular orbitals, or so-called molecular-orbital close-

coupling (MOCC) method. The PSS approximation was devised by Mott with the aim of

treating slow encounters between atomic systems [10]. In an excellent review article of slow

atomic collisions by Delos [8], the PSS theory and its problems are discussed in great detail.

A complete description of the MOCC method is given in the book of Bransden and McDowell

[9].

We adopt the quantum-mechanical MOCC method neglecting ETFs to investigate the

different collision systems, which include ion-atom, atom-atom, and ion-molecule collisions.

For a practical application of ion-atom collisions, we study charge exchange processes for

collisions of nitrogen with protons and singly ionized nitrogen with hydrogen. The results

are helpful to elucidate the discrepancy between observed and predicted emission line ratios

of N to N+ in Seyfert 2 galaxies and provide a comparison of rate coefficients due to radial

and rotational couplings with spin-orbit coupling.

As an application to atom-atom collisions, the interaction of sodium with helium has

been studied from thermal energies to the ultracold. Rate coefficients for collisional exci-

tation and de-excitation of sodium due to helium collisions at thermal energies are useful

for the clarification of whether or not non-local thermodynamic equilibrium (NLTE) effects

can account for the magnitude of sodium absorption in the extrasolar giant planet (EGP)

HD 209458b. The level populations of atoms are determined by the rates of all collisional

processes, such as excitation and de-excitation, and radiative processes, such as photoab-

sorption, spontaneous and stimulated emission. Local thermodynamic equilibrium (LTE) is

valid for cases in which all transitions are dominated by collisional rates. For a gas in LTE,

the level populations for each species are obtained by the Saha-Boltzmann distribution and

are related to the gas temperature when the density is sufficiently large. If the collisional
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rates are small or the density is below some critical value and radiative rates are large, LTE

doesn’t hold. Extending to ultra-low energies, scattering lengths become dominant physical

quantities for the study of collisions. The variation of the scattering length with the reduced

mass of the system provides a test of the sensitivity of the scattering length to the poten-

tial. The relation between the scattering length and bound states of the collision complex is

explored.

In the early 1970s, rotational excitation due to molecular collisions had drawn consid-

erable attention. Based on a rigid rotator model, a set of close-coupling equations devised

by Arthurs and Dalgarno [11] was widely applied to the study of rotational transitions in

scattering problems [12, 13]. Due to the complexity arising from the molecular rotational

degree of freedom, many efforts were made to simplify the angular momentum coupling. The

“sudden approximation” [14, 15], which is a time-scale criterion based on the assumption of

an slow internal degree of freedom compared to the time scale or “suddenness” of the colli-

sion event, is widely used in the treatment of inelastic molecular collisions. Taking advantage

of the development of the sudden approximation in rotational transitions of molecular col-

lisions, most investigations for vibronic transitions of ion-molecule collisions are performed

within the framework of the infinite order sudden approximation (IOSA). The IOSA is actu-

ally an approach comprising the energy sudden approximation (ESA) and the centrifugal

sudden approximation (CSA). When the collision time of a projectile is much smaller than

molecular rotational periods, one could use the ESA to simplify the rotational motion of

molecular targets. The criterion of using the CSA requires that the radial relative motion of

the projectile is much faster compared to its angular relative motion. The detailed description

of ESA, CSA, and IOSA can be found in the articles of Sidis [16] and Baer [17].

Within the framework of IOSA, we extend the quantal MOCC approach to investigate

ion-molecule collisions and apply it to charge transfer processes due to proton collisions with

CO. Since the solar wind is primarily composed of protons, its interaction with planetary

atmospheres or cometary comas is dominated by charge exchange processes due to atomic



6

or molecular collisions with protons. X-ray emission is usually considered to result from

hot collisional plasmas. In 1996, it was surprising that X-ray emission was discovered in

comet Hyakutake [18] because cometary atmospheres are cold. It becomes an interesting

topic to understand the mechanism of X-ray emission from comets [19], and charge exchange

processes occurring in the interface between the solar wind and cometary atmospheres. Since

CO is an important molecule in a variety of astrophysical objects and a comet is a mixture

of frozen H2O and CO, collisions of CO with protons are believed to be of importance in

many different astronomical environments. Taking advantage of the IOSA approach, we take

into account the vibrational motion of target molecule and study the vibrationally-resolved

charge transfer due to CO collisions with protons and CO+ collisions with H. The orientation

angle-dependent cross sections explicitly illustrate the steric effect in ion-molecule collisions.

In Chapter 2, a detailed discussion of the MOCC method includes the coupled-channel

equations in the adiabatic and diabatic representation, adiabatic-diabatic transformation,

partial wave analysis, S-matrix, and IOSA approach. Three applications based on the quantal

MOCC and IOSA methods for ion-atom, atom-atom, and ion-molecule collisions are pre-

sented in Chapters 3-5, respectively. In Chapter 6, a summary of present investigations and

an outlook of future research directions are given.



Chapter 2

The scattering theory

2.1 Coupled-channel equations in the adiabatic representation

The Hamiltonian,H, of a system of two nuclei A andB with massesMA andMB, respectively,

separated by a vector R and one electron with a position vector s with respect to the center

of mass of the nuclei, is given in atomic units by

H = − 1

2µ
∇2

R
− 1

2m
∇2

s
+ V, (2.1)

where µ = MAMB/(MA + MB), m = (MA + MB)me/(MA + MB + me) ' 1 with me = 1

a.u., and V represents nucleus-nucleus and nucleus-electron Coulomb interactions. The total

wave functions Ψ can be expanded in terms of adiabatic molecular orbitals ψj(s,R) as

Ψ =
∑

j=1

ψj(s,R)Fj(R). (2.2)

The adiabatic molecular orbitals ψj(s,R) are solutions of the Schrödinger equation for the

one-electron system,

[

−1

2
∇2

s
+ V − εj(R)

]

ψj(s,R) = 0, (2.3)

and satisfy the orthonormality condition,

∫

ψ∗
i (s,R)ψj(s,R)ds = δij. (2.4)

εj(R) in Eq (2.3) is an eigenvalue of the one-electron system and also an electronic potential

curve for the nuclear motion which varies parametrically with R.

7
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From the Schrödinger equation,

HΨ = EΨ, (2.5)

taking advantage of the variational method, the coupled equations for channel functions

Fj(R) are provided by

∫

ψ∗
i (s,R)[H − E]Ψ(s,R)ds = 0. (2.6)

where E is the total energy and i = 1, 2, ...N . Then with the use of Eqs. (2.1) and (2.2) (see

Appendix A), we obtain

[∇2
R

+ k 2
i ]Fi(R) =

N
∑

j

[Mij(R) + Pij(R) · ∇R]Fj(R) (2.7)

where k 2
i = −2µ(εi(R) − E), while Mij(R) and Pij(R) are defined as

Mij(R) = −
∫

ψ∗
i (s,R)∇2

R
ψj(s,R)ds (2.8)

and

Pij(R) = −2
∫

ψ∗
i (s,R)∇Rψj(s,R)ds. (2.9)

Eq. (2.7) is the perturbed stationary state equation obtained in molecular coordinates (s,R)

[9].

The adiabatic molecular orbitals are usually calculated in the body-fixed frame of refer-

ence, in which the z′-axis is directed along the internuclear line between the two nuclei (see

Fig. 2.1). The body-fixed frame is conventionally obtained from the space-fixed frame by

three rotations with the three Euler angles, α, β, and γ (see Appendix B). Because of the

symmetry with respect to the z′-axis in the body-fixed frame for this system, we set γ = 0

and denote α = Φ and β = Θ. Φ and Θ are the azimuthal and polar angles of R in the

space-fixed frame. The components (x′, y′, z′) of position vectors r′ in the body-fixed frame

can be expressed in terms of their components (x, y, z) of r in the space-fixed frame through

the following transformation:

r′ = R(Θ,Φ)r, (2.10)
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Figure 2.1: The relation between the space-fixed coordinates (x, y, z)
and the body-fixed coordinates (x′, y′, z′).

where

R(Θ,Φ) =

















cos Θ cos Φ cos Θ sin Φ − sin Θ

− sin Φ cos Φ 0

sin Θ cos Φ sin Θ sin Φ cos Θ

















. (2.11)

Since R is along the z′-axis in the body-fixed frame, the adiabatic molecular orbitals ψj(s,R)

in the space-fixed frame can be expressed as ψ̄j(s
′, R) in the body-fixed frame. In addition,

because RTR = I, the expression of the operator ∇2
s′

in the body-fixed frame is the same

as ∇2
s

in the space-fixed frame except for replacing variables (x, y, z) by (x′, y′, z′). Taking

advantage of this invariance, the formalism of the coupled equations, Eq. (2.7), is unaltered,

but the molecular orbitals ψj(s,R) are replaced by ψ̄j(s
′, R), where the orbitals ψ̄j(s

′, R)
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satisfy

[

−1

2
∇2

s′
+ V − εj(R)

]

ψ̄j(s
′, R) = 0 (2.12)

and

L̄zψ̄j(s
′, R) = ±λjψ̄j(s

′, R), (2.13)

where L̄z is the z-component of the electronic angular momentum in the body-fixed frame

and λj = 0, 1, 2, 3, ... referred to one-electron levels, σ, π, δ, and φ. Note that the molecular

orbitals in the body-fixed frame depending on the magnitude of R. The wave function Ψ

using the molecular orbitals in the body-fixed frame can be written as

Ψ =
N
∑

j=1

ψ̄j(s
′, R)Fj(R), (2.14)

while

Mij(R) = −
∫

ψ̄∗
i (s

′, R)∇2
R
ψ̄j(s

′, R)ds′ (2.15)

and

Pij(R) = −2
∫

ψ̄∗
i (s

′, R)∇Rψ̄j(s
′, R)ds. (2.16)

According to Eqs. (2.10) and (2.11), s′ is not only a function of s but also a function of Θ

and Φ. This leads to

∂

∂R
ψ̄j(s

′, R) =

[

∂′

∂R
+
∂x′

∂R

∂

∂x′
+
∂y′

∂R

∂

∂y′
+
∂z′

∂R

∂

∂z′

]

ψ̄j(s
′, R), (2.17a)

∂

∂Θ
ψ̄j(s

′, R) =

[

∂′

∂Θ
+
∂x′

∂Θ

∂

∂x′
+
∂y′

∂Θ

∂

∂y′
+
∂z′

∂Θ

∂

∂z′

]

ψ̄j(s
′, R), (2.17b)

∂

∂Φ
ψ̄j(s

′, R) =

[

∂′

∂Φ
+
∂x′

∂Φ

∂

∂x′
+
∂y′

∂Φ

∂

∂y′
+
∂z′

∂Φ

∂

∂z′

]

ψ̄j(s
′, R), (2.17c)

where ∂′

∂R
, ∂′

∂Θ
, and ∂′

∂Φ
denote the derivatives taken with s′ held constant in the body-fixed

frame. Using Eqs. (2.10) and (2.11), the derivatives with respect to R, Θ, and Φ in the
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space-fixed frame (see Appendix C) can be expressed as

∂

∂R
ψ̄j(s

′, R) =
∂′

∂R
ψ̄j(s

′, R), (2.18a)

∂

∂Θ
ψ̄j(s

′, R) =

[

∂′

∂Θ
− iL̄y

]

ψ̄j(s
′, R)

= −iL̄yψ̄j(s
′, R), (2.18b)

∂

∂Φ
ψ̄j(s

′, R) =

[

∂′

∂Φ
− i cos ΘL̄z + i sin ΘL̄x

]

ψ̄j(s
′, R)

= −i cos ΘL̄zψ̄j(s
′, R) + i sin ΘL̄xψ̄j(s

′, R), (2.18c)

where L̄x, L̄y, and L̄z are defined as the components of electronic angular momentum in the

body-fixed frame, and follow the commutation relations,

[L̄i, L̄j] = iεijkL̄k, (2.19)

where εijk is the Levi-Civita or permutation tensor of rank 3. With the help of Eq. (2.18),

the gradient of ψ̄j(s
′, R) with respect to R, Θ, and Φ can be evaluated and Pij(R) can be

expressed as

Pij(R) = −2

{

R̂〈i| ∂
′

∂R
|j〉 + Θ̂

−i
R

〈i|L̄y|j〉

+Φ̂
[−i cot Θ

R
λjδij +

i

R
〈i|L̄x|j〉

]}

. (2.20)

The notation 〈i|O|j〉, in which O is an arbitary operator, is defined as

〈i|O|j〉 ≡
∫

ψ̄∗
j (s

′, R)Oψ̄j(s
′, R)ds′. (2.21)

Then we immediately obtain that

Pij(R) · ∇R = −2〈i| ∂
∂R

|j〉 ∂
∂R

+ i
2

R2
〈i|L̄y|j〉

∂

∂Θ

−i 2

R2 sin Θ

[

〈i|L̄x|j〉 − cotΘλjδij
] ∂

∂Φ
, (2.22)

where we use the fact of Eq. (2.18a).
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Similarily,

Mij(R) = −〈i| ∂
2

∂R2
+

2

R

∂

∂R
|j〉 +

1

R2
〈i|L̄2

x + L̄2
y|j〉

−2 cot Θ

R2
λj〈i|L̄x|j〉 +

cot2 Θ

R2
λ2

jδij. (2.23)

Combining Eqs. (2.22) and (2.23), the terms on the right hand side of Eq. (2.7) are given in

the following form:

Mij(R) + Pij(R) · ∇R =
1

R2 sin2 Θ

[

λ2
j cos2 Θ + i2λj cos Θ

∂

∂Φ

]

δij

+ 〈i| − ∂2

∂R2
− 2

R

∂

∂R
+
L̄2

x + L̄2
y

R2
|j〉

− 2〈i| ∂
∂R

|j〉 ∂
∂R

+
2

R2

[

i〈i|L̄y|j〉
∂

∂Θ

− i
〈i|L̄x|j〉
sin Θ

∂

∂Φ
− λj〈i|L̄x|j〉 cotΘ

]

. (2.24)

For the left hand side of Eq. (2.7), the operator ∇2
R

can be expressed in spherical polar

coordinates as

∇2
R

=
∂2

∂R2
+

2

R

∂

∂R
+

1

R2

[

∂2

∂Θ2
+ cotΘ

∂

∂Θ
+

1

sin2 Θ

∂2

∂Φ2

]

. (2.25)

Thus, based on Eqs. (2.24) and (2.25), Eq. (2.7) can be written as






∂2

∂R2
+

1

R2





∂2

∂Θ2
+ cot Θ

∂

∂Θ
+

1

sin2 Θ

(

∂

∂Φ
− iλi cos Θ

)2


 + k2
i







RFi(R)

=
N
∑

j=1

{

〈i| − ∂2

∂R2
+
L̄2

x + L̄2
y

R2
|j〉 − 2〈i| ∂

∂R
|j〉 ∂
∂R

(2.26)

+
2

R2

[

i〈i|L̄y|j〉
∂

∂Θ
− i

〈i|L̄x|j〉
sin Θ

∂

∂Φ
− λj〈i|L̄x|j〉 cotΘ

]}

RFj(R).

Furthermore, we can define

J2
i = −





∂2

∂Θ2
+ cotΘ

∂

∂Θ
+

1

sin2 Θ

(

∂

∂Φ
− iλi cos Θ

)2

− λ2
i



 , (2.27)

as well as the radial coupling V R
ij (R) and the rotational (Coriolis) coupling V C

ij (R) as

V R
ij (R) =

[

〈i| − ∂2

∂R2
+
L̄2

x + L̄2
y

R2
|j〉 − 2〈i| ∂

∂R
|j〉 ∂
∂R

]

δλi,λj
, (2.28)
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and

V C
ij (R) =

2

R2

[

i〈i|L̄y|j〉
∂

∂Θ
− i

〈i|L̄x|j〉
sin Θ

∂

∂Φ
− λj〈i|L̄x|j〉 cotΘ

]

. (2.29)

It is worth noticing that in V R
ij (R), operators L̄2

x + L̄2
y which can be expressed in terms of

the ladder operators,

L̄+ ≡ L̄x + iL̄y, (2.30)

and

L̄− ≡ L̄x − iL̄y, (2.31)

so that

L̄2
x + L̄2

y =
1

2
(L̄+L̄− + L̄−L̄+), (2.32)

connects states with the same values of λ. The rest of the terms including ∂
∂R

and ∂2

∂R2 are

also zero for states with different values of λ, because ψ̄j(s
′, R), an eigenfunction of L̄z with

the eigenvalue λj, can be formally written as

ψ̄j(s
′, R) = Aj(r

′, θ′, R)eiλjφ′

, (2.33)

where r′, θ′, and φ′ are components of s′ in spherical polar coordiantes, and

∫ 2π

0
ei(λj−λi)φ

′

dφ′ = 2πδλi,λj
. (2.34)

Consequently, the radial coupling V R
ij (R) becomes zero if states that it connects have different

values of λ. Using the definitions of Eqs. (2.27), (2.28), and (2.29), Eq. (2.27) can be simply

written as

{

∂2

∂R2
− J2

i − λ2
i

R2
+ k2

i

}

RFi(R) =
N
∑

j=1

[V R
ij (R) + V C

ij (R)]RFj(R). (2.35)
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2.2 Coupled-channel equations in a diabatic representation

In the coupled equations of channel functions Fj(R), the radial coupling V R
ij includes three

terms, −2〈i| ∂
∂R

|j〉 ∂
∂R

, −〈i| ∂2

∂R2 |j〉 and 〈i| L̄
2
x+L̄2

y

R2 |j〉. We introduce matrix elements Aij(R) and

Bij(R), which are defined as

Aij(R) ≡ 〈i| ∂
∂R

|j〉 (2.36)

and

Bij(R) ≡ 〈i| ∂
2

∂R2
|j〉. (2.37)

The Hellman-Feynman theorem [20] enables us to express Aij(R) in the form

Aij(R) =















− 1
εi(R)−εj(R)

〈i|∂V
∂R

|j〉, i 6= j

0, i = j.
(2.38)

It is obvious that the matrix with elements of Aij(R) is skew symmetric, Aij = −Aji, due

to Eq. (2.38) and since Aij(R) is real. Due to the Wigner-von Neumann non-crossing rule

[21], adiabatic states, i and j, with the same symmetry will never cross each other, i.e.

εi(R) 6= εj(R) for any value of R. However, it is posssible that two states approach each

other in a narrow region of R to make a so-called avoided-crossing. In the case of an avoided-

crossing, the Aij(R) is nearly singular or changes vary rapidly near the avoiding-crossing.

This behavior can cause difficulties when numerical methods, such as finite-differencing, are

used. In order to overcome this problem, one way is to use a diabatic basis instead of the

adiabatic basis. The idea is to make a unitary transformation for adiabatic molecular orbitals

and channel functions such that Aij(R) in the diabatic representation becomes zero.

Given a unitary matrix with elements Cij(R), the transformation for adiabatic molecular

orbitals ψ̄i(s
′, R) into diabatic orbitals ψ̄d

j (s
′, R) is given by

ψ̄d
j (s

′, R) =
∑

i

ψ̄i(s
′, R)Cij(R). (2.39)
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Since the expansion of the total wave function Ψ in the adiabatic basis is equivalent to the

expansion in the diabatic basis, we obtain

∑

i

ψ̄i(s
′, R)Fi(R) =

∑

j

ψ̄d
j (s

′, R)Gj(R), (2.40)

where Gj(R) are channel functions in the diabatic representation. Substituting Eq. (2.39)

for ψ̄d
j (s

′, R) in Eq. (2.40) leads to

∑

i

ψ̄i(s
′, R)Fi(R) =

∑

j

∑

i

ψ̄i(s
′, R)Cij(R)Gj(R)

=
∑

i

ψ̄i(s
′, R)

∑

j

Cij(R)Gj(R). (2.41)

Therefore, the transformation of channel functions is given by

Fi(R) =
∑

j

Cij(R)Gj(R). (2.42)

To ensure that the symmetries are preserved in the diabatic representation, the transfor-

mation only combines the adiabatic molecular orbitals with the same symmetry, i.e. adiabatic

σ orbitals transform to diabatic σ orbitals only. Since the symmetries are preserved, the cou-

pled equations in the diabatic representation can be obtained from the same procedure as

discussed previously. It is worth noticing that

∫

ds′ψ̄∗
i (s

′, R)
[

−1

2
∇2

s′
+ V

]

ψ̄j(s
′, R) (2.43)

gives εj(R)δij in the adiabatic basis. It indicates that there is no contribution of the integral

from terms with i 6= j. However, the same integral in the diabatic basis could have terms

with i 6= j.

In Eq. (2.43), substituting the diabatic orbitals ψ̄d
i (s

′, R) for the adiabatic molecular

orbitals ψ̄j(s
′, R), we obtain

Uij(R) =
∫

ds′ψ̄d∗
i (s′, R)[−1

2
∇2

s′
+ V ]ψ̄d

j (s
′, R). (2.44)

From Eq. (2.39) and the result of the integral (2.43), the expression for Uij(R) becomes

Uij(R) =
∑

k

C†
ik(R)εk(R)Ckj(R). (2.45)
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Because k2
i = −2µ(εi(R) − E), we can replace εk(R) in Eq. (2.45) with − k2

k

2µ
+E. Thus, the

relation between Uij(R) and k2
k is given by

−2µUij(R) + 2µEδij =
∑

k

C†
ik(R)k2

k(R)Ckj(R). (2.46)

Using the expansion of Ψ in terms of the diabatic basis and the definition of Uij(R) in

Eq. (2.44), the coupled-channel equations in the diabatic representation are expressed as

N
∑

j=1

{[

∂2

∂R2
− J2

i − λ2
i

R2

]

δij − 2µUij(R) + 2µEδij

}

RGj(R)

=
N
∑

j=1

[

dV R
ij (R) + dV C

ij (R)
]

RGj(R), (2.47)

where dV R
ij (R) and dV C

ij (R) are the radial and rotational coupling, respectively. The dV R
ij (R)

and dV C
ij (R) have exactly the same form as V R

ij (R) and V C
ij (R) of the coupled-channel equa-

tions in the adiabatic basis states, but are taken with respect to the diabatic basis states.

2.3 Adiabatic-diabatic transformation

For the coupled-channel equations in the diabatic basis, we similarly denote Ad
ij(R) and

Bd
ij(R) as matrix elements of the operators ∂

∂R
and ∂2

∂R2 , respectively, which are parts of the

radial coupling dV R
ij (R), namely

Ad
ij(R) ≡ 〈id| ∂

∂R
|jd〉 (2.48)

and

Bd
ij(R) ≡ 〈id| ∂

2

∂R2
|jd〉, (2.49)

where |id〉 stands for the diabatic basis state i. Provided that the diabatic basis |kd〉 is

complete, we could insert an identity operator into Eq. (2.49) such that it can be written in

terms of Ad
ij(R) as

Bd
ij(R) = 〈id| ∂

∂R

[

∑

k

|kd〉〈kd| ∂
∂R

|jd〉
]

=
∑

k

Ad
ik(R)Ad

kj(R) +
d

dR
Ad

ij(R). (2.50)
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From Eq. (2.48), the relation between Ad
ij(R) and Aij(R) obtained using the transformation

of Eq. (2.39) is given by

Ad
ij(R) =

∑

kl

〈k|C∗
ki(R)

∂

∂R
[Clj(R)|l〉]

=
∑

k

C†
ik(R)

d

dR
Ckj(R) +

∑

kl

C†
ik(R)Akl(R)Clj(R)

=
∑

k

C†
ik(R)

[

d

dR
Ckj(R) +

∑

l

Akl(R)Clj(R)

]

. (2.51)

To ensure that Ad
ij(R) vanishes, it is required, for each k,

d

dR
Ckj(R) +

∑

l

Akl(R)Clj(R) = 0. (2.52)

In addition, Bd
ij(R) will vanish as well by Eq. (2.50) as long as the basis is a complete set.

Therefore, the solution of Eq. (2.52) gives the unitary transformation to obtain the diabatic

basis states. To solve Eq. (2.52), we adopt the boundary condition,

lim
R→∞

Cij(R) = δij, (2.53)

in order to let Uij(R) in Eq. (2.45) approach the eigenvalues εi of the adiabatic molecular

orbitals, i.e.

Uij(R → ∞) = εi(R → ∞)δij. (2.54)

The differential equation (2.52), together with the boundary condition (2.53) can be sum-

marized in one integral equation, namely

Cij(R) = δij +
∑

k

∫ ∞

R
Aik(R

′)Ckj(R
′)dR′. (2.55)

The solution of this integral equation can be obtained by iteration:

Cij(R) = δij +
∫ ∞

R
dR1Aij(R1) +

∑

k

∫ ∞

R
dR1Aik(R1)

∫ ∞

R1

dR2Akj(R2)

+
∑

kl

∫ ∞

R
dR1Aik(R1)

∫ ∞

R1

dR2Akl(R2)
∫ ∞

R2

dR3Alj(R3) + .... (2.56)
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For the two-state case, the matrix of A(R) with elements Aij(R) is represented by

A(R) =









0 A12(R)

−A12(R) 0









. (2.57)

With Aij(R) given, the solution of Cij(R) can be written explicitly as

C11 = C22

= 1 −
∫ ∞

R
dR1A12(R1)

∫ ∞

R1

dR2A12(R2)

+
∫ ∞

R
dR1A12(R1)

∫ ∞

R1

dR2A12(R2)
∫ ∞

R2

dR3A12(R3)
∫ ∞

R3

dR4A12(R4)

+...

= 1 − 1

2

∫ ∞

R
dR1A12(R1)

∫ ∞

R
dR2A12(R2)

+
1

4!

∫ ∞

R
dR1A12(R1)

∫ ∞

R
dR2A12(R2)

∫ ∞

R
dR3A12(R3)

∫ ∞

R
dR4A12(R4)

+...

= cosω(R) (2.58)

and

C12 = −C21

=
∫ ∞

R
dR1A12(R1) −

∫ ∞

R
dR1A12(R1)

∫ ∞

R1

dR2A12(R2)
∫ ∞

R2

dR3A12(R3)

+...

=
∫ ∞

R
dR1A12(R1)

− 1

3!

∫ ∞

R
dR1A12(R1)

∫ ∞

R
dR2A12(R2)

∫ ∞

R
dR3A12(R3)

+...

= sinω(R), (2.59)

where we used [22]

∫ ∞

R
dR1A12(R1)

∫ ∞

R1

dR2A12(R2)...
∫ ∞

Rn−1

dRnA12(Rn)

=
1

n!

∫ ∞

R
dR1A12(R1)

∫ ∞

R
dR2A12(R2)...

∫ ∞

R
dRnA12(Rn) (2.60)
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and define

ω(R) ≡
∫ ∞

R
dR′A12(R

′). (2.61)

In matrix form, the transformation matrix C(R) for the two-state case is given by

C(R) =









cosω(R) sinω(R)

− sinω(R) cosω(R)









. (2.62)

Its unitary property can be easily proved and the boundary condition of R → ∞ is satisfied.

C(R) here is the rotation matrix. For three- and four-state cases, analytical expressions of

the transformation matrix C(R) were given by the work of Heil et al. [23].

2.4 Partial wave analysis

The channel functions (nuclear wave functions) of coupled Schrödinger equations can be

expanded in terms of total angular momentum wave functions to obtain coupled radial

equations. In the scattering systems, we neglect the interaction of the electronic spin and the

orbital angular momentum (i.e. spin-orbit coupling) so that the total angular momentum J

is the sum of the nuclear orbital angular momentum N and the electronic orbital angular

momentum L. Using the expression relating angular momentum in spherical polar coordi-

nates to Cartesian components (see Appendix D), we have the following

J+ ≡ Jx + iJy

= exp (iΦ)

(

∂

∂Θ
+ i cot Θ

∂

∂Φ
+

λ

sin Θ

)

, (2.63)

J− ≡ Jx − iJy

= exp (−iΦ)

(

− ∂

∂Θ
+ i cotΘ

∂

∂Φ
+

λ

sin Θ

)

, (2.64)

and

Jz ≡ −i ∂
∂Φ

, (2.65)
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where we neglect primes on the derivatives, because channel functions are only dependent on

R. Taking advantage of Eqs. (2.63), (2.64), and (2.65), the operator J2
i defined in Eq. (2.27)

can be proved to be the square of the total angular momentum J (see Appendix E). Because

J2 and Jz commute, we could find simultaneous eigenfunctions HJ
M,λ(Θ,Φ) so that

J2HJ
M,λ(Θ,Φ) = J(J + 1)HJ

M,λ(Θ,Φ), (2.66)

and

JzH
J
M,λ(Θ,Φ) = MHJ

M,λ(Θ,Φ), (2.67)

where M is the projection of the total angular momentum J onto the z-axis of the space-fixed

frame. The Φ-dependence of HJ
M,λ(Θ,Φ) can be obtained directly from Eq. (2.67), while the

Θ-dependence is given by [24, 25]

dJ
M,λ(Θ) = NJ

M,λ

∑

σ

(

J + λ

J −M − σ

)(

J − λ

σ

)

(−1)J−M−σ

×
[

cos
Θ

2

]2σ+M+λ [

sin
Θ

2

]2J−2σ−M−λ

, (2.68)

where

(

n

m

)

=
n!

m!(n−m)!
, (2.69)

and

NJ
M,λ =

√

√

√

√

(J +M)!(J −M)!

(J + λ)!(J − λ)!
. (2.70)

NJ
M,λ is determined by the normalization property of HJ

M,λ(Θ,Φ):

∫ π

0
sin ΘdΘ

∫ 2π

0
dΦHJ∗

M,λ(Θ,Φ)HJ ′

M ′,λ(Θ,Φ) =
4π

2J + 1
δJJ ′δMM ′. (2.71)

Eq. (2.68) also could be rewritten in terms of the Jacobi polynomial using Rodrigues’ formula

[24], namely

dJ
M,λ(Θ) = NJ

M,λ

(1 − µ)
λ−M

2

(1 + µ)
λ+M

2





(

∂

∂µ

)J−M

(1 − µ)J−λ(1 + µ)J+λ



 , (2.72)
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where µ = cos Θ.

The eigenfunctions HJ
M,λ(Θ,Φ) can be written as

HJ
M,λ(Θ,Φ) = (−1)λ+MdJ

M,λ(Θ) exp (iMΦ). (2.73)

and the expansion of channel function Gj(R) is

Gj(R) =
1

R

∑

J

gJ
j (R)HJ

M,λj
(Θ,Φ). (2.74)

In order to obtain coupled radial equations, we substitute Eq. (2.74) for the channel function

in Eq. (2.47) and use the orthogonal property of HJ
M,λj

(Θ,Φ) to cancel the angular part of

the channel function. Because the rotational coupling dV C
ij (R) is the only one which includes

derivatives with respect to Θ and Φ, we need to clarify operations of the rotational coupling

on HJ
M,λj

(Θ,Φ) in advance. Replacing the L̄x and L̄y by L̄+ and L̄−, the rotational coupling

in Eq. (2.47) can be written in the form of

dV C
ij (R) =

−1

R2

{

〈id|L̄+|jd〉
[

− ∂

∂Θ
+

i

sin Θ

∂

∂Φ
+ λj cotΘ

]

+ 〈id|L̄−|jd〉
[

∂

∂Θ
+

i

sin Θ

∂

∂Φ
+ λj cot Θ

]}

. (2.75)

Due to the commutation relations,

[Jz, J±] = ±J±, (2.76)

and the help of

J−J+ = J2 − J2
z − Jz (2.77)

and

J+J− = J2 − J2
z + Jz, (2.78)

the result of operators J+ and J− acting on HJ
M,λj

(Θ,Φ) are given by

J±HJ
M,λj

(Θ,Φ) =
√

(J ±M + 1)(J ∓M)HJ
M±1,λj

(Θ,Φ). (2.79)
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Using Eq. (2.79) and the fact of

dJ
M,λj

(−Θ) = dJ
λj ,M(Θ), (2.80)

which is easily proved by Eq. (2.68), we can obtain useful relations as follows (see

Appendix F),
[

∓ ∂

∂Θ
+

i

sin Θ

∂

∂Φ
+ λj cot Θ

]

HJ
M,λj

(Θ,Φ)

=
√

(J ± λj + 1)(J ∓ λj)H
J
M,λj±1(Θ,Φ). (2.81)

According to Eqs. (2.75) and (2.81) followed by normalization integrals, it leads to

dV̄ C
ij (R) ≡ 2J + 1

4π

∫ π

0
sin ΘdΘ

∫ 2π

0
dΦHJ∗

M,λi
(Θ,Φ)dV C

ij (R)HJ ′

M ′,λj
(Θ,Φ)

= −δλi,λj+1 [(J − λj)(J + λj + 1)]1/2 〈id|L̄+|jd〉
R2

−δλi,λj−1 [(J + λj)(J − λj + 1)]1/2 〈id|L̄−|jd〉
R2

. (2.82)

Due to the properties of L̄+ and L̄−,

δλi,λj−1〈id|L̄+|jd〉 = 0 (2.83)

and

δλi,λj+1〈id|L̄−|jd〉 = 0. (2.84)

We can rewrite dV̄ C
ij (R) as

dV̄ C
ij (R) = −2δλi,λj+1 [(J − λj)(J + λj + 1)]1/2 〈id|iL̄y|jd〉

R2

+2δλi,λj−1 [(J + λj)(J − λj + 1)]1/2 〈id|iL̄y|jd〉
R2

. (2.85)

Finally, the coupled radial equations extracted from Eq. (2.47) are given as

N
∑

j=1

{[

∂2

∂R2
+
λ2

i − J(J + 1)

R2

]

δij − 2µUij + 2µEδij

}

gJ
j (R)

=
N
∑

j=1

[

dV R
ij (R) + dV̄ C

ij (R)
]

gJ
j (R), (2.86)

where gJ
j (R) is defined in Eq. (2.74).
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2.5 The scattering S-matrix

The coupled radial Schrödinger equations can be expressed in matrix form as
[

d2

dR2
I + V(R)

]

GJ(R) = 0, (2.87)

where I is the identity matrx, 0 the null matrix and V the symmetric potential matrix with

elements

Vij(R) =
λ2

i − J(J + 1)

R2
δij

+
∑

n

C†
in(R)k2

nCnj(R)

−dV R
ij (R) − dV C

ij (R). (2.88)

Each column of the square matrix GJ(R) is a linear independent solution including each

radial channel function as an element for the coupled equations. In other words, GJ
ij(R) is

the ith channel component of the jth independent solution. A general solution is a linear

combination of channel functions.

According to Eqs. (2.52), (2.53), and (2.85), we have the asymptotic limit

R2Vij(R)
R→∞−→

[

λ2
i − J(J + 1) + (kiR)2

]

δij

−〈id|L2
x + L

2
y|jd〉

−2δλi,λj+1 [(J − λi)(J + λj + 1)]1/2 〈id|iLy|jd〉

+2δλi,λj−1 [(J + λi)(J − λj + 1)]1/2 〈id|iLy|jd〉. (2.89)

If λi, 〈id|L2
x + L

2
y|jd〉, and 〈id|iLy|jd〉 compared with J(J + 1) can be neglected as R → ∞,

the off-diagonal terms of Eq. (2.87) will vanish and only diagonal terms remain. Namely,
[

d2

dR2
+ k2

i −
J(J + 1)

R2

]

GJ
ii(R) = 0, (2.90)

which is the Riccati-Bessel equation. Two linear independent solutions of Eq. (2.90) are the

Riccati-Bessel functions, ĵJ(kiR) and n̂J(kiR), which can be expressed as














ĵJ(kiR) = kiRjJ(kiR)
R→∞−→ sin(kiR− 1

2
Jπ)

n̂J(kiR) = kiRnJ(kiR)
R→∞−→ cos(kiR − 1

2
Jπ),

(2.91)
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where jJ(kiR) and nJ(kiR) are spherical Bessel functions of the first and second kind, respec-

tively. Therefore, the general solution of Eq. (2.87) in the asymptotic region can be expressed

as a linear combination of Riccati-Bessel functions or spherical Bessel functions. The method

we adopt for solving this multichannel scattering problem is the multichannel log-derivative

method of Johnson [26]. In this approach, the log-derivative matrix is defined to be

y(R) =
[

GJ(R)
]′ [GJ(R)

]−1
, (2.92)

where the prime means differentiation with respect to R, while the boundary conditions are

chosen to be

GJ(0) = 0 (2.93)

and

[

GJ(0)
]′

= I. (2.94)

Using Eq. (2.92) to eliminate the second derivative term of GJ(R) in Eq. (2.87), we obtain

y′(R) + V(R) + y2(R) = 0 (2.95)

with y′(0) which is a diagonal matrix with infinite elements. The numerical techniques for

solving the differential equation (2.95) are given in Ref. [26]. The numerical solutions of

Eq. (2.95) are required to match the asymptotic form of the wave function, namely for some

RN which is numerically large enough to be regarded as infinity,

GJ(R) = J (R) + N (R)KJ , R ≥ RN (2.96)

where K is the reaction matrix. The diagonal matrices J (R) and N (R) for the open channels

are defined as














Jij(R) = δijk
−1/2
j ĵJ(kjR)

Nij(R) = δijk
−1/2
j n̂J(kjR).

(2.97)
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Taking advantage of the multichannel log-derivative method, y(RN) can be obtained and

the K-matrix may be extracted from Eqs. (2.92) and (2.96). On the other hand, because the

spherical Bessel functions, jJ and nJ , can be expressed in terms of spherical Hankel functions,

h
(1)
J (outgoing waves) and h

(2)
J (incoming waves), we also could describe the asymptotic

boundary condition, instead of using Eq. (2.96), by the following:

GJ(R) = H(2)(R) + H(1)(R)SJ , R→ ∞ (2.98)

where H(1) and H(2) are diagonal matrices with elements defined as















H(1)
ij (R) = δijk

−1/2
j exp

[

i(kjR − 1
2
Jπ)

]

H(2)
ij (R) = δijk

−1/2
j exp

[

−i(kjR− 1
2
Jπ)

]

.
(2.99)

Comparing Eqs. (2.96) and (2.98), we can obtain a relation between the S-matrix and the

K-matrix as

SJ =
[

I + iKJ
] [

I − iKJ
]−1

. (2.100)

Solving the coupled radial Schrödinger equations, the solution of the ith linear indepen-

dent radial wave function, gJ
ith(R), can be written as

gJ
ith(R) =

∑

j

C
(i)
j gJ

j (R) =
∑

j

C
(i)
j GJ

ji(R). (2.101)

According to Eq. (2.74), the ith general solution of the nuclear wave finction, Gith(R), can

be expressed as

Gith(R) =
∑

j

C
(i)
j Gj(R) =

∑

J

∑

j

C
(i)
j

GJ
ji

R
HJ

M,λj
(Θ,Φ), (2.102)

and asymptotically as

Gith(R) =
∑

J

∑

j

C
(i)
j

1

R

{

δjik
−1/2
i exp

[

−i(kiR− 1

2
Jπ)

]

−SJ
jik

−1/2
j exp

[

i(kjR− 1

2
Jπ)

]}

HJ
M,λj

(Θ,Φ). (2.103)
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Alternatively, the scattering amplitude fji(Θ,Φ) is defined by the asymptotic form of the

nuclear wave function:

Gith(R) = A
∑

j

[

δji exp (iki · R) + fji(Θ,Φ)
exp (ikjR)

R

]

, (2.104)

where ki is in a direction parallel to the direction of incidence, which we take to be the

z-axis. Because the expansion of incident plane waves in terms of spherical Bessel functions

jJ(kiR) is

exp (ikiz) =
∑

J

[(4π)(2J + 1)]1/2 iJjJ(kiR)HJ
0,λi

, (2.105)

Gith(R) can be rewritten as a linear combination of incoming spherical waves, exp (−ikiR)/R,

and outgoing spherical waves, exp (ikjR)/R. The coefficients for incoming waves are

Aδji
2ki

∑

J

[(4π)(2J + 1)]1/2 i2J+1HJ
0,λj

, (2.106)

and for outgoing waves are

iAδji

2
√

kikj

∑

J

[

[(4π)(2J + 1)]1/2
HJ

0,λj

]

+ Afji, (2.107)

where we use the fact of δji
1
ki

= δji
1√
kikj

. Comparing the coefficients of incoming and outgoing

spherical wave in Eqs. (2.103), (2.106), and (2.107), we find that the scattering amplitude is

independent of Φ and given by

fji(Θ) =
∑

J

i

2
√

kikj

[(4π)(2J + 1)]1/2
HJ

0,λj
(Θ,Φ) [δji − Sji] . (2.108)

Given the scattering amplitude, the corresponding differential cross section is given by (see

Appendix G)

dσji

dΩ
=
kj

ki

|fji(Θ)|2, (2.109)

and the integral cross section in term of the S-matrix is

σji =
π

k2
i

∑

J

(2J + 1)|δji − SJ
ji|2. (2.110)
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2.6 Infinite order sudden approximation

From the point of view of coupled equations, the study of collisions of neutral and ionic

atoms with molecules faces the problem of increased complexity. Compared to ion-atom

collisions, the degrees of freedom for a system of ion-molecule collisions increases due to

the addition of vibrational and rotational motion of the molecule. The rapid increase of

the number of channels of vibronic or ro-vibronic states leads to the treatment of coupled

scattering equations becoming a formidable task. Over the past four decades, progress has

been made in the development of approximate methods, which can be traced with the review

article of Tully [27], the book of Bernstein [15], the work of Kleyn et. al. [28] and Baer [29].

In order to reduce the complexity arising from the rotational and vibrational degrees

of freedom, the so-called infinite order sudden approximation (IOSA) provides a practical

approach to deal with coupled-channel calculations for vibronic transition processes. One

of the first quantal coupled-channel calculations using IOSA was reported by McGuire and

Bellum [30]. The IOSA approach is based on the energy sudden (ES) and centrifugal sudden

(CS) approximations. For the ES approximation, the spacings between the rotational levels

of the target molecule are neglected. This is equivalent to treating all of rotational levels as

degenerate. In other words, one replaces the various wave numbers with respect to the various

rotational levels by an effective wave number. Qualitatively, the criteria for the validity of

this approximation requires that the rotational periods of the target molecule are much larger

than a characteristic collision time of the projectile relative to the target center of mass. In

general, atom- or ion-molecule collisions with collision energies larger than 0.1 eV/u fulfill

the condition.

In the CS approximation, the relative radial velocity of the projectile needs to be much

faster than the velocity of its rotational motion around the molecule center of mass. Based

on this assumption, the CS approximation apparently would fail in the vicinity of a classical

turning point due to the lack of radial velocity at these points by definition. On the other
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Figure 2.2: Jacobi coordinates for a A-BC system.

hand, the approximation is more applicable for collisions with small projectile orbital angular

momentum of the projectile because of the small centrifugal barrier.

Within the framework of the MOCC method, the treatment of ion-molecule collisions is

carried out under the IOSA approach. It is appropriate to describe these collision systems

in Jacobi coordinates as follows: R is the vector pointing from the target molecule center of

mass to the projectile, r the vector representing the internal geometry of the target molecule,

and γ the angle between R and r (see Fig. 2.2). After removal of the center of mass motion,

the Hamiltonian for collisions of atom A with diatomic molecule BC is written as

H = − 1

2µR

∇2
R
− 1

2µr

∇2
r
− 1

2
∇2

s
+ V (R, r, s), (2.111)

where µR = MA(MB +MC)/(MA +MB +MC) and µr = MBMC/(MB +MC). V (R, r, s) rep-

resents nucleus-nucleus, nucleus-electron, and electron-electron Coulomb interactions. The

origin of electronic position vectors s is chosen to be the nuclear center of mass of the ABC

system. The mass polarization terms are neglected. It is worth mentioning that there will be

a summation over electronic kinetic energy operators if the system involves more than one



29

electron. The total wave function Ψ in terms of diabatic molecular orbitals ψ̄d
k(s

′, R, r, γ),

where s′ represents the electronic position vector in the body-fixed frame, can be expanded

as

Ψ =
∑

k,ν

ψ̄d
k(s

′, R, r, γ)Nk(R, r), (2.112)

where the nuclear wave function Nk(R, r) is given by the expansion of a complete basis set

ξkν(r) of the diatom:

Nk(R, r) =
∑

ν

Gkν(R)ξkν(r). (2.113)

The ξkν(r) are eigenfunctions of the equation

[

− 1

2µr
∇2

r
+ Ukk(R → ∞, r; γ)

]

ξkν(r) = Ekν ξkν(r), (2.114)

where γ is taken as a parameter, Ekν is an eigenvalue and Ukk, a diagonal element of the dia-

batic potential matrix which becomes the potential curve of the diatom BC as R approaches

the asymptotic limit. Ukk is, therefore, independent of γ as R → ∞. The orthonormal prop-

erty of ξkν(r) is given by

〈ξkν|ξk′ν′〉 = (1 − δkk′)
∫

drξkν(r)ξk′ν′(r) + δkk′δνν′ . (2.115)

Under the assumption of the ES approximation, the ξkν(r) can be expressed as

ξkν(r) =
χkν(r)

r
|jk, mjk

〉, (2.116)

where |jk, mjk
〉 represents a rotational wave function, with jk = 0 in practice, and χkν(r),

the vibrational wave function of the diatom, satisfies the equation

[

− 1

2µr

d2

dr2
+ Ukk(R→ ∞, r)

]

χkν(r) = Ekν χkν(r). (2.117)

Expanding Ukk by r with respect to it’s equilibrium position re, the eigenvalue Ekν has the

following relation with the vibrational excitation energy εkν:

Ekν = Ukk(R → ∞, r = re) + εkν. (2.118)
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Inserting the total wave function Ψ into the Schrödinger equation followed by projections on

ψ̄d
k(s

′, R, r, γ) and ξkν(r), we can obtain a set of coupled Schrödinger equations:

(

∇2
R

+ k2
iν

)

Giν(R) =2µR

∑

j 6=i

∑

ν′

〈χiν(r)|Uij(R, r, γ)|χjν′(r)〉Gjν′(R)

+
∑

j

∑

ν′

〈χiν(r)|Mij + Pij · ∇R|χjν′(r)〉Gjν′(R), (2.119)

where k2
iν is defined as

k2
iν = 2µR [E − 〈χiν|Uii(R, r, γ)|χiν〉] , (2.120)

while Mij and Pij are given as Eqs. (2.8) and (2.9) except replacing the adiabatic electronic

wave function by a diababtic one. The term

〈χiν(r)|Uii(R, r, γ)|χiν(r)〉, (2.121)

which is a integral of diabatic electronic potential energies Uii over vibrational wave functions,

is the so-called diabatic vibronic energy and E is the total energy of the system. We make

the approximation that the diabatic vibronic energies can be obtained by

〈χiν(r)|Uii(R, r, γ)|χiν(r)〉 = Uii(R, r = re, γ) + εiν. (2.122)

The vibrationally-resolved couplings (vibronic couplings) appearing in the right hand side of

Eq. (2.119) come mainly from two parts. One is the integral of the off-diagonal term Uij over

vibrational wave functions, where Uij is the diabatic electronic coupling resulting from the

interaction between molecular states of the same symmetry (λ = λ′). The other one is the

integral related to Mij and Pij over vibrational wave functions, while in the diabatic repre-

sentation only the electronic couplings connecting molecular states with different symmetry

(λ = λ′ ± 1) in the Mij and Pij remain.

Since within the framework of IOSA, the coupled equations are solved for each orientation

angle γ, the S-matrix, using the same approach described in Sec. 2.4, is extracted from

the asymptotic boundary condition and is parametrically dependent on γ. Therefore, the

major physical quantities, cross sections, for transitions driven by vibronic couplings are
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γ-dependent. This leads to vibrationally-resolved state-to-state cross section σkν′,iν(E, γ) for

transitions from the νth vibrational state of the ith electronic state to the ν ′th vibrational

state of the kth electronic state expressed in terms of S-matrix elements as

σkν′,iν(E, γ) =
πgiν

k2
iν

∑

J

(2J + 1)|SJ
kν′,iν(γ)|2, (2.123)

where kiν denotes the wave number for the A-BC center-of-mass motion of the initial

incoming channel and giν is the initial approach probability factor for the electronic state.

Given the state-to-state cross sections, we can sum over all final vibronic states to obtain

the vibrationally-resolved initial state-selective cross section

σiν(E, γ) =
∑

kν′

σkν′,iν(E, γ), (2.124)

or all initial vibronic states to give the vibrationally-resolved final state-selective cross section

σkν′(E, γ) =
∑

iν

σkν′,iν(E, γ). (2.125)

In LTE, the distribution of initial states for molecular targets depends on the molecular gas

temperature T . In order to take this effect into account, the population of initial vibrational

states for molecular targets is determined with a Boltzmann distribution. The total cross

section for a given temperature T and orientation angle γ is given by

σ(E, T, γ) =

∑

iν exp(−εiν/kbT )σiν(E, γ)
∑

iν exp(−εiν/kbT )
, (2.126)

where εiν are the excitation energies of the diatom and kb the Boltzmann constant.

The physical quantities independent of orientation angle are obtained following an inte-

gral over the orientation angle γ, which gives angle-averaged cross sections as [17]

σ(E, T ) =
1

2

∫ π

0
σ(E, T, γ) sin γdγ. (2.127)

It is easy to see from Eqs. (2.126) and (2.127) that angle-averaged total cross sections for a

given temperature T are independent of the order of taking a Boltzmann distribution and

integration over the orientation angle.



Chapter 3

Electron capture in collisions of N+ with H and H+ with N

As an application of ion-atom collisions, the quantal MOCC approach is applied to charge

transfer processes due to collisions of N+ with atomic hydrogen and H+ with atomic nitrogen.

The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and

rotational couplings obtained with the multireference single- and double-excitation configu-

ration interaction (MRD-CI) approach. Total and state-selective cross sections for the energy

range 0.1 meV/u - 1 keV/u are presented and compared with existing experimental and the-

oretical data. A large number of low-energy resonances are obtained for exoergic channels

and near the threshold of endoergic channels. Rate coefficients are also obtained and compar-

ison to previous calculations suggests nonadiabatic effects dominate for temperatures greater

than 20,000 K, but that the spin-orbit interaction plays a major role for lower temperatures

[31].

3.1 Introduction

In the electron capture process, electrons are transferred from one atomic system to another

during a collision. The importance of electron capture is not only in understanding of dynam-

ical mechanisms for atomic and molecular collisions, but also in practical applications. In

many environments of current research, such as planetary atmospheres and astrophysical

and laboratory plasmas, charge transfer can have a crucial influence. Because of the abun-

dance of ions in astronomical environments, charge transfer may be the dominant process in

establishing the ionization balance and may also influence spectral line emission. In addition,
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a deeper understanding of the electron capture process will also help in modeling the edge

region of tokamak fusion plasmas [32].

In this work we investigate the reactions

N+(2p2 3P ) + H ↔ N(2p3 2Do) + H+ − 1.4372 eV, (3.1)

and

N+(2p2 3P ) + H ↔ N(2p3 4So) + H+ + 0.9467 eV, (3.2)

using the MOCC method. The theoretical method for the scattering calculations has been

described in Chapter 2 and has also been given in the literature [33, 34]. A brief description of

the electronic structure calculations is presented in Section 3.2. In Section 3.3 the adiabatic

potentials and nonadiabatic couplings of NH+ are discussed. The resulting cross sections and

rate coefficients including total and state-selective are given in Section 3.4 and compared

with the existing experimental data and previous calculations. Astrophysical implications

are given in Section 3.5. Section 3.6 gives a summary of this chapter. Atomic units are used

unless otherwise noted.

3.2 Electronic Structure Calculations

The ab initio adiabatic potentials and nonadiabatic couplings in the present work are

obtained from the MRD-CI method which has been detailed earlier in Buenker and coworker’s

publications [35, 36, 37]. Here only information relevant to the present calculation is speci-

fied. The atomic orbital basis sets for molecular calculations consist of contracted Gaussian

functions. The (8s2p) basis for the hydrogen atom is contracted in [5s2p] and augmented by

one s-, one p-, and one d-type diffuse function with exponents which are 0.0195, 0.042, and

1.1 respectively. For the nitrogen atom, the (15s10p2d) basis is contracted in [9s6p2d]. Eight

molecular states including five doublets and three quartets are considered for collisions of

the NH+ system. The finite difference technique [38, 39] has been applied to obtain radial
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couplings (matrix elements of ∂/∂R), while rotational couplings have been calculated by

employing appropriate pairs of CI eigenfunctions.

3.3 Potentials and Couplings

For the present calculations, adiabatic potentials for NH+ include eight molecular states

which are 1 4Σ−, 2 4Σ−, 1 4Π, 1 2Σ−, 2 2Σ−, 1 2Π, 2 2Π, and 1 2∆. Fig. 3.1 shows the adi-

abatic potentials as a function of internuclear distance R for R = 1 to 10 (a.u.). As inter-

nuclear distance approaches infinity, these eight molecular states will degenerate into three

separated-atom states which are N(2p3 4So) + H+, N+(2p2 3P ) + H, and N(2p3 2Do) + H+.

The corresponding relations are displayed in Table 3.1.

The interactions between different molecular states result from nonadiabatic radial and

rotational couplings. Radial coupling results from the interaction between molecular states of

the same symmetry (Λ=Λ′) while rotational coupling is due to interaction between molecular

states of different symmetry (Λ=Λ′±1), where Λ is the projection quantum number of the

electronic orbital angular momentum onto the internuclear axis. Nonadiabatic couplings as a

function of R are plotted in Fig. 3.2. The radial couplings include interactions of two quartet

Σ− states, two doublet Σ− states, and two doublet Π states, while the rotational couplings

comprise interactions of the quartet Π state with quartet Σ− states, and doublet Π states

with doublet Σ− and ∆ states.

Given adiabatic potentials and couplings, we transform them to a diabatic representation

by a unitary transformation [23] as described in Section 2.3. In Fig. 3.3, several diagonal

diabatic potentials are plotted and compared with the adiabatic potential energies. It is

clear that the adiabatic potential curves of the same symmetry don’t cross, but crossings

may occur in the diabatic representation. However, adiabatic and diabatic potential curves

will merge into identical asymptotical atomic energies at large R. In order to get reliable cross

sections near the threshold, we make an asymptotic fit to join the ab initio data smoothly
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Table 3.1: Comparison of asymptotic separated-atom energies between
the MRD-CI calculations and experiments for the eight molecular states
of NH+. These states are of symmetries 2, 4Σ−, 2, 4Π, and 2∆.

Asymptotic atomic state Mol. state This work Expt.
(eV) (eV)

N(2p3 4So) + H+ 1 4Σ− 0.0000 0.0000
N+(2p2 3P) + H 2 4Σ− 0.7143 0.9467

1 2Π 0.7180 –
1 4Π 0.7241 –
1 2Σ− 0.7258 –

N(2p3 2Do) + H+ 2 2Π 2.6407 2.3840
1 2∆ 2.6411 –
2 2Σ− 2.6435 –

to the long range form − α
2R4 , where α is the dipole polarizability. We adopted α = 4.50 for

H and α = 7.42 and 11.17 for N(2p3 4So) and N(2p3 2Do), respectively.

Several major off-diagonal diabatic couplings are illustrated in Fig. 3.4. The couplings

in Fig. 3.4(a) show the important interactions between the asymptotic atomic states of

N(2p3 4So) + H+ and N+(2p2 3P ) + H for the charge transfer process in the NH+ system,

while the couplings in Fig. 3.4(b) give us the important interactions between N+(2p2 3P )+H

and N(2p3 2Do) + H+. The related adiabatic labelings corresponding to a specific diabatic

coupling are indicated above the symbol in the figures.

3.4 Results and Discussion

3.4.1 Cross Sections

The state-selective cross sections for the electron capture process are evaluated by using

the molecular electronic structure and coupling data in Section 3.3, but with the potentials
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Figure 3.1: Adiabatic potentials for NH+ as a function of internuclear
distance R. The dotted curve corresponds to the asymptotic atomic
state of N(2p3 4So) + H+, solid curves to N+(2p2 3P ) + H, and dashed
curves to N(2p3 2Do) + H+.
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Figure 3.2: Nonadiabatic (a) radial and (b) rotational couplings for the
NH+ system as functions of internuclear distance R.
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Figure 3.3: Diagonal diabatic potential curves (solid lines) compared
to the adiabatic potential energies (dotted lines), (a) the quartet Σ−

states, (b) the doublet Σ− states, and (c) the doublet Π states.
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Figure 3.4: Off-diagonal diabatic potentials for the (a) quartet, and (b)
doublet states of the NH+ system as a function of internuclear distance
R.



40

shifted to match the experimental asymptotic energies as listed in Table 3.1. The contribu-

tions from the individual partial waves are summed as in Eq. (2.110) until a convergence of

the state-selective cross section is achieved. The total cross section then can be obtained from

the sum of state-selective cross sections. The results over the energy range from 0.1 meV/u

to 1 keV/u are illustrated in Fig. 3.5 for total cross sections and state-selective cross sections

of reactions (3.1) and (3.2), which are endoergic and exoergic respectively. In our calculation,

reaction (3.1) includes five channels, 1 2Σ−, 1 2Π, 2 2Σ−, 2 2Π, and 2 2∆, while there are

three channels including 1 4Σ−, 1 4Π, and 2 4Σ− in reaction (3.2). It is clear from the cross

sections that for the energy region between 10 and 500 eV/u capture into N(2p3 4So) is the

dominant path. As the collision energy approaches 1.53 eV/u, cross sections for capture

into the N(2p3 2Do) decrease rapidly to zero because of the approach of the N(2p3 2Do) +

H+ threshold. In addition, from the inset plot of Fig. 3.5, we find several orbiting resonances

[32] due to quasibound rovibrational states of the quasimolecule. Although these features

have been found and studied theoretically in different collision systems [40], there is still no

experimental verification. On the other hand, cross sections for capture into the N(2p3 4So)

display Langevin behavior [34] at the lowest energies. Later we will also see this behavior

exhibited in the rate coefficients (see Fig. 3.7) that tend to a constant in the corresponding

temperature range. Again referring to Fig. 3.5, the comparison of the total cross sections of

the present work to experimental results [41] shows the best agreement in the energy region

above 100 eV/u, but with significant discrepancies for lower energies. The discrepancies are

likely related to uncertainties in the incident ion beam and the neutral target. A signifi-

cant fraction of the incident beam may have included metastable N+ and doubly charged

molecular ions.

The cross sections for charge transfer processes in the collision of atomic nitrogen with

H+ are presented in Fig. 3.6. We find numerous orbiting resonances in the low energy region

for each process. For the collision of N(2p3 4So) with H+, comparisons with the calculations

of Kimura et al. [42] and Cabrera-Trujillo et al. [43] illustrate that the theoretical results, all
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obtained with different methods, are in good agreement except for the low energy portion

of the calculation of Kimura et al. In addition, we also display the experimental results of

Gilbody et al. [44] in Fig. 3.6, but for collisions of protons with N2; the concept of additivity

appears not to be valid for this collision system, at least for energies less than 1 keV/u.

For collisions of metastable N(2p3 2Do) with H+, we are unaware of experimental or other

theoretical data with which to compare our results.

3.4.2 Rate Coefficients

In Figs. 3.7-3.8 and Table 3.2, we present the rate coefficients for collisions of N+ with

atomic hydrogen and H+ with atomic nitrogen. The rate coefficients α(T ), where T is the

temperature, are determined by averaging over the cross section σ(E) with the Maxwellian

energy distribution,

α(T ) =
1√
πµ

(

2

kbT

)3/2 ∫ ∞

0
σ(E)E exp (−E/kbT )dE, (3.3)

where kb is the Boltzmann constant and µ is the reduced mass of the system.

In Fig. 3.7, because reaction (3.1) is endoergic, the rate coefficient drops abruptly to

zero as T approaches the threshold. On the contrary, the exoergic reaction (3.2), tends to a

constant. The rate coefficient also displays slight fluctuations due to the orbiting resonances

in the cross sections. For reaction (3.2), the results of Steigman et al. [45] are much larger

than all other calculations. Comparing our total rate coefficients to the calculations of Butler

and Dalgarno [46], we find their results are also larger below ∼20,000 K, but become smaller

than the current results above ∼20,000 K. The discrepancy is related to the consideration

of different coupling mechanisms in the calculations: spin-orbit between the 1 4Σ− and 1 2Π

states in the earlier work and nonadiabatic radial and rotational interactions in the current

study. Therefore an estimate of the total rate coefficients can be obtained by summing the

results from both mechanisms with spin-orbit coupling dominating below ∼20,000 K, and

radial/ rotational coupling the primary mechanism above ∼20,000 K.



42

Rate coefficients for the reverse of reactions (3.1) and (3.2) are presented in Fig. 3.8. For

the reverse of reaction (3.2), our results are smaller than the predictions of Kimura et al. and

Steigman et al. The former discrepancy is consistent with the observation (see Fig. 3.6) that

our cross sections are smaller than those of Kimura et al. for energies less than 100 eV/u. The

rate coefficients of Kingdon and Ferland [47] were obtained by applying detailed-balance to

the spin-orbit rate coefficients of Butler and Dalgarno. Again they are larger than the current

results for temperatures less than or approximately equal to 20,000 K. A reasonable estimate

of the total rate coefficient for the reverse of reaction (3.1) could be obtained by summing

the two results. Finally, no data exists for the metastable nitrogen reaction, the reverse of

process (3.2). The rate coefficient for the process is expected to approach a constant, but

apparently for temperatures less than ∼10 K.

3.5 Astrophysical Implications

Nitrogen is the sixth most cosmically abundant element and as such has been observed in a

variety of astrophysical and atmospheric environments. In particular, the role of the charge

exchange reaction (3.2) and its reverse in photoionized gas has been investigated recently.

Kingdon and Ferland [48] have studied the role of exothermic charge transfer reactions, such

as process (3.2), on the thermal equilibrium of photoionized nebulae. For a typical model of

a nova shell, they found that charge transfer could contribute up to ∼60 percent of the total

heating with most of the contribution coming from reaction (3.2). Therefore, the magnitude

of charge transfer heating is dependent on the value of the rate coefficients for this reaction.

In another example, a discrepancy has been known for many years between the observed and

predicted emission line ratios of N to N+ in narrow line region clouds of Seyfert 2 galaxies.

Oliva, Marconi, and Moorwood [49] have proposed through extensive modeling that if the

rate coefficients for reaction (3.2) and its reverse are reduced by a factor of ∼30, then the

discrepancy could be resolved. In both cases, the modeling was carried out with the spectral

synthesis code Cloudy [2] which incorporates the charge transfer rate coefficients of Butler
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Figure 3.5: Total and state-selective electron capture cross sections for
N+ +H → N+H+. The dashed and dotted line are state-selective cross
sections. The final states of N are indicated in the figure. Solid line and
× are total cross sections for the present work and the measurement of
Stebbings et al. [41].



44

Figure 3.6: Total cross sections for N(2p3 2Do) + H+ → N+(2p2 3P ) +
H (solid line) and N(2p3 4So) + H+ → N+(2p2 3P ) + H (non-solid line:
(a) Kimura et al. [42]; (b) Cabrera-Trujillo et al. [43]). The experimental
values of Gilbody et al. [44], indicated by ×, are for proton collisions
on N2.
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Figure 3.7: Rate coefficients for the collision of N+ with atomic
hydrogen as a function of temperature T . (a) and (b) refer to calcula-
tions of Steigman et al. [45] and Butler and Dalgarno [46], respectively.
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Figure 3.8: Rate coefficients for the collision of H+ with atomic nitrogen
as a function of temperature T . (a), (b), and (c) refer to calculations of
Kimura et al. [42], Steigman et al. [45], and Kingdon and Ferland [47],
respectively.
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Table 3.2: Rate coefficients for electron capture from collisions of (a):
N(2p3 2Do) and (b): N(2p3 4So) with H+, and for electron capture into (c):
N(2p3 4So) and (d): N(2p3 2Do) from N+(2p2 3P) + H. (e): total rate coeffi-
cients for reactions (c) and (d).

T (K)
Rate Coefficients α(T ) (cm3/s)

(a) (b) (c) (d) (e)
6 1.32(-14)a 1.08(-14) 1.08(-14)
8 1.73(-14) 1.12(-14) 1.12(-14)
10 2.20(-14) 1.13(-14) 1.13(-14)
20 4.09(-14) 1.09(-14) 1.09(-14)
40 5.82(-14) 9.36(-15) 9.36(-15)
60 7.31(-14) 8.21(-15) 8.21(-15)
80 8.68(-14) 7.42(-15) 7.42(-15)
100 9.60(-14) 6.90(-15) 6.90(-15)
200 1.47(-13) 5.83(-15) 5.83(-15)
400 2.33(-13) 5.64(-15) 5.64(-15)
600 3.20(-13) 1.88(-22) 6.00(-15) 6.00(-15)
800 3.72(-13) 2.05(-20) 6.55(-15) 1.44(-22) 6.55(-15)
1000 4.49(-13) 3.52(-19) 7.19(-15) 1.14(-20) 7.19(-15)
2000 5.89(-13) 1.40(-16) 1.12(-14) 6.13(-17) 1.13(-14)
4000 7.28(-13) 4.91(-15) 2.41(-14) 4.71(-15) 2.89(-14)
6000 8.08(-13) 2.24(-14) 4.31(-14) 2.02(-14) 6.35(-14)
8000 8.87(-13) 5.49(-14) 6.65(-14) 4.43(-14) 1.11(-13)
10000 9.84(-13) 1.06(-13) 9.62(-14) 7.39(-14) 1.70(-13)
20000 1.68(-12) 1.14(-12) 5.64(-13) 2.92(-13) 8.56(-13)
40000 4.64(-12) 1.24(-11) 4.65(-12) 1.31(-12) 5.96(-12)
60000 1.17(-11) 4.00(-11) 1.39(-11) 4.06(-12) 1.80(-11)
80000 2.46(-11) 8.59(-11) 2.87(-11) 9.37(-12) 3.81(-11)
100000 4.33(-11) 1.51(-10) 4.94(-11) 1.73(-11) 6.68(-11)
200000 2.18(-10) 7.50(-10) 2.40(-10) 9.63(-11) 3.37(-10)

aThe notation A(-B)=A × 10−B .
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and Dalgarno [46] for these two processes. Further, the relevant temperatures are between

∼9000 and 18,000 K. The current rate coefficients, due to radial and rotational coupling, are

significantly smaller than the spin-orbit results of Butler and Dalgarno, which were obtained

with an approximate spin-orbit coupling value. If this value proves to be overestimated, the

discrepancy in the Seyfert 2 galaxy line ratios would be resolved, but the role of charge

exchange heating would be reduced. A complete close-coupling calculation involving radial,

rotational, and spin-orbit coupling is needed which would be the first of its type that we are

aware of. Further, we are unaware of measurements in an energy regime where spin-orbit

coupling dominates.

3.6 Summary

We have investigated electron capture in collisions of N+ with H and H+ with N. Comparison

with the existing experimental data suggests that total cross sections from the quantum-

mechanical MOCC approach gives reasonable results. The discrepancies at low energy with

the measurements of Stebbings et al. may be due to considerable experimental uncertainties

in the knowledge of the reactant and product species. Further, comparison of the two state-

selective cross sections, reveals that N+(2p2 3P o) + H→ N(2p3 4So) + H+ dominates the total

cross section in the low energy regime. However, it becomes nearly equal to capture to the

excited state N(2p3 2Do) at higher energies. For the collision of N with H+, our calculation

is very similar to the theoretical results of Cabrera-Trujillo et al. and is in good agreement

with the calculation of Kimura et al. at the highest energies, but not for energies less than

100 eV/u. Total and state-selective measurements are needed for these collision systems.

Rate coefficients given by our calculations are smaller than those reported by Steigman

et al. and Kimura et al. Comparisons with the work of Butler and Dalgarno suggests that

radial and rotational coupling is the dominant mechanism for temperatures above ∼20,000

K, while spin-orbit coupling dominates at lower temperatures.



Chapter 4

Elastic and inelastic processes in collisions of Na(3s,3p) with He from

thermal energies to the ultracold

Elastic and inelastic low-energy collisions of sodium due to helium are investigated using the

quantum-mechanical close-coupling method with molecular wave functions. The calculations

adopt adiabatic potentials and nonadiabatic radial and rotational couplings obtained with

the MRD-CI approach. The potentials are fitted to long-range dispersion coefficients and

adjusted with a model interaction in the van der Waals well region. Collisional cross sections

for energies between 0.1 peV and 10 eV and rate coefficients as a function of temperature

between 10 µK and 10,000 K are obtained for elastic scattering, Na(3p → 3s) quenching,

and Na(3s→ 3p) excitation. The variation of the scattering lengths with reduced mass and

collision energy at ultracold temperatures for the 1 2Σ+ and 2 2Σ+ states are presented and

their relation to vibrational bound states are illustrated. The results are relevant to studies

of cold atom collisions between alkali and rare-gas pairs and, in the thermal regime, modeling

NLTE effects in Na D absorption lines in extrasolar planets and brown dwarfs.

4.1 Introduction

In 2001, Charbonneau et al. [50] made the first observation of an atmospheric constituent

in an extrasolar planet. In a transit observation, they detected sodium absorption in the

extrasolar giant plant (EGP) HD 209458b. However, the inferred absorption was only half

the expected value leading Barman et al. [51] to suggest that the electronic states of Na were

not in equilibrium. In order to explore the mechanism for the decrease in sodium absorption,

well-determined collisional cross section for interactions of Na with the main atmospheric
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constituents, H2 and He, are necessary. In particular, electronic excitation processes by neu-

tral species become dominant in cool atmospheric environments due to the small electron

abundance.

Although the electronic excitation process of ground state sodium atoms in collisions

with ground state helium has been investigated in a number of theoretical [52, 53, 54, 55]

and experimental [56, 57, 58] studies, the available data are all above 100 eV. The thermal

regime has been relatively unexplored except for studies on fine-structure branching fractions

in optical collisions [59] and collisional broadening of Na resonance lines [60]. To shed further

light on this problem, we apply the quantum-mechanical coupled-channel (CC) method,

which adopts a perturbed stationary state expansion of the molecular wave functions, to

this collision system with the ultimate aim of extending the cross section down to threshold

to provide data relevant for astrophysical modeling.

Collisions of alkali and rare-gas atoms are also of interest in the ultracold regime as

highlighted in the recent special issue on cold collisions and cold molecules [61]. In this work,

we explore the elastic scattering processes

Na(3s 2S) + He → Na(3s 2S) + He, (4.1)

Na(3p 2P o) + He → Na(3p 2P o) + He, (4.2)

and inelastic quenching and excitation

Na(3s 2S) + He ↔ Na(3p 2P o) + He, (4.3)

for energies between 0.1 peV and 10 eV. Total elastic cross sections are analyzed by partial-

wave contributions to illustrate the significance of small partial waves in the low-energy

regime. For Σ states, elastic cross sections are characterized by scattering lengths at the zero-

energy limit. In addition, the sign of the scattering length reflects features of the potential

curves. The sensitivity of the scattering length to the potential is investigated by varying the

reduced mass of the system. The dramatic variation of the scattering length due to bound

states produced by mass-scaled potentials is also illustrated.
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A description of the theoretical method was presented in Chapter 2 for scattering calcu-

lations and in Section 4.2 for the current molecular structure. In Section 4.3, the adiabatic

potentials and nonadiabatic couplings of Na-He are discussed. The resulting cross sections

and rate coefficients are given in Sections 4.4.1 and 4.4.2. The variation of the scattering

lengths with reduced mass and collision energy are displayed and discussed in Section 4.4.3.

Sections 4.5 and 4.6 discuss astrophysical implications and summarize this chapter, respec-

tively.

4.2 Electronic Structure Calculations

The ab initio adiabatic potentials and nonadiabatic couplings are obtained with the MRD-CI

method which has been detailed previously by Buenker and coworkers [35, 63, 37, 62, 63].

Here only descriptions relevant to the present calculation is specified. The basis functions

for the molecular calculations consist of contracted Gaussian-type functions which have the

form,

Nnr
n−1e−ζr2

Ylm(Ω), (4.4)

where Nn is the normalization constant and Ylm is a spherical harmonic. The (5s4p3d) basis

for the helium atom [64] is contracted to [4s4p2d] including one s-, one p-, and one d-type

diffuse functions with exponents which are 0.027, 0.023, and 0.020 respectively. For the

sodium atom [65], the (15s9p5d) basis is contracted to [9s7p5d] including one s-, one p-, and

one d-type diffuse functions with exponents which are 0.023, 0.021, and 0.018, respectively.

The finite difference technique [38, 39] has been applied to obtain radial couplings (matrix

elements of ∂/∂R), while rotational couplings have been calculated by employing appropriate

pairs of CI eigenfunctions. All couplings have been computed with the electronic coordinate

origin at the center of mass of the Na-He system.
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4.3 Potentials and Couplings

For low-energy collisions of Na(3s,3p) with He, the major effects and interactions for this

system are dominated by three molecular states, 1 2Σ+, 1 2Π, and 2 2Σ+, and three couplings

connecting them. For the present scattering calculations, adiabatic potentials for these states

are fitted to long-range dispersion coefficients and adjusted with a model interaction in the

van der Waals well region. We used ab initio data calculated with the MRD-CI method as

a function of internuclear distance R from 0.2 to 9.5 a.u. For R greater than 9.5 a.u., the

model potential proposed by Cvetko et al. [66],

U(R) =
C6

120

(

b

3

)6
(

ae−bR − χe−(2/3)bR − e−(1/3)bR
)

, bR ≤ 16.6, (4.5)

was used to join the van der Waals well region smoothly to the long-range part of the

potentials, while the long-range potential is described by

U(R) =
C6

120

(

b

3

)6

ae−bR − C6

R6
− C8

R8
− C10

R10
bR ≥ 16.6. (4.6)

The parameters adopted for each molecular state are listed in Table 4.1, where the C6

coefficients are taken from Zhu et al. [67] and the others are obtained by fitting to the ab

initio data. We also present in Table 4.1, the equilibrium separations rm and well depths ε

obtained from our fits. Compared to other theoretical predictions of the dispersion coefficients

[68, 69, 70], the C6, C8 and C10 that we utilize for the 1 2Σ+ state are in good agreement.

We are unaware of other determinations of C8 and C10 for the excited states. rm and ε for

the ground state are within 1% and 3%, respectively, of the values computed in Refs. [66]

and [69]. While similar parameters have not been previously reported for the 2 2Σ+, our rm

is within the uncertainty of the measurement of Havey, Frolking, and Wright [71] for the

1 2Π state. However, our well depth is 38% larger than the experimental value [71]. As the

internuclear distance approaches infinity, these three molecular states degenerate into two

separated-atom states which are Na(3s 2S) + He and Na(3p 2P o) + He as given in Table 4.2.

For couplings driving the transitions between different molecular states, there are two

nonadiabatic rotational couplings, which result from the interaction between molecular states
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Table 4.1: Parameters of long-range potentials for 1 2Σ+, 1 2Π, and 2 2Σ+ corre-
sponding to Eqs. (4.5) and (4.6). Also listed are the equilibrium distances rm and
well depths ε. All values are given in atomic units.

Molecular a b χ C6 C8 C10 rm ε
States
1 2Σ+ 4345.27 1.00 86.763 25.1 1328.00 95140.00 12.0 5.95(-6)b

1 2Π 517.81 1.71 65.408 43.4 598.04 10712.99 4.20 3.01(-3)
2 2Σ+ 8400.00 0.63 86.031 79.5 10656.51 1856973.87 21.5 5.82(-7)

bThe notation A(-B)=A × 10−B .

Table 4.2: Comparison of asymptotic separated-atom energies between the
MRD-CI calculations and experiment for the lowest three molecular states of
Na-He.
Separated-atom Experimental Theoretical Molecular United-atom

States Energiesc (eV) Energies (eV) States States
Na(3s 2S)+He 0.0 0.0 1 2Σ+ Al(3p 2P o)
Na(3p 2P o)+He 2.1037 2.0768 12Π Al(3p 2P o)

2.0868 22Σ+ Al(4s 2S)

cNIST Atomic Spectra Database,
http://physics.nist.gov/PhysRefData/ASD/index.html.

with different symmetry (Λ=Λ′±1), and one nonadiabatic radial coupling, which is due to

the interaction between molecular states with the same symmetry (Λ=Λ′).

A unitary transformation [23] is applied to transform the potentials and couplings into

a diabatic representation as described in Section 2.3. The adiabatic and diabatic potentials

are displayed in Fig. 4.1. The largest modification due to the unitary transformation is for

the 1 2Σ+ and 2 2Σ+ potentials. In Fig. 4.2, the nonadiabatic radial coupling, 1 2Σ+-2 2Σ+,
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and the corresponding diabatic potential coupling are displayed. Two rotational couplings are

presented in Fig. 4.3, where the coupling between states 2 2Σ+ and 1 2Π approach a constant

with increasing R. This will be seen to have a great influence on the collision dynamics of

the 2 2Σ+ state in the low-energy region.

4.4 Results and Discussion

4.4.1 Cross Sections

For the elastic scattering process (4.1), the molecular state 1 2Σ+ dominates the interaction

in the low-energy region. For the elastic scattering process (4.2), the collision cross sections

of 1 2Π and 2 2Σ+ are not only dominated by their individual potentials, but also affected by

the nonadiabatic couplings. The total and partial-wave elastic cross sections for the 1 2Σ+ are

displayed in Fig. 4.4. The s-wave (J = 0) contribution dominates at ultracold energies with

the cross section becoming constant for E < 10−8 eV. The peak of the total cross section

at 5 µeV results from the contribution of the partial wave, J = 1, while the J = 2 term is

responsible for the slight shoulder in the total cross section. The inset of Fig. 4.4 shows the

comparison of the present calculations to the theoretical prediction of Bottcher et al. [52] for

energies between 0.01 and 1 eV. The small discrepancy is a consequence of the difference in

adopted potentials where Ref. [52] used a model potential method with a Hartree-Fock core.

Fig. 4.5 illustrates the total cross sections and the variation with energy of the partial-

wave cross sections with J = 1 − 5 for elastic collisions in the 1 2Π state. For this state,

we made the approximation that the centrifugal potential is given in Hund’s case (b) by

V c = [J(J + 1) − Λ2]/(2µR2). The maximum of each partial-wave cross section is primarily

influenced by three factors. The partial-wave cross sections are proportional to the inverse

of the collision energy, at very low energy, and the total angular momentum. In addition,

the orbiting resonances increase the magnitude of partial-wave cross sections dramatically.

In Fig. 4.5, it is apparent that there is a resonance due to a quasi-bound state for J = 2.

As a result of this resonance, a sharp peak is observed in the total cross section. The cross
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Figure 4.1: Adiabatic (solid curves) and diabatic (dotted curves) poten-
tials for Na-He as functions of internuclear distance R. The adiabatic
and diabatic potentials for the 12Π state are indistinguishable.
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Figure 4.2: The nonadiabatic radial coupling (solid curve) and its cor-
responding off-diagonal diabatic potential coupling (dotted curve) for
Na-He as a function of internuclear distance R. The diabatic coupling
is magnified by a factor of 10.
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Figure 4.3: Nonadiabatic rotational couplings (solid curves) and their
corresponding off-diagonal diabatic couplings (dotted curves) for Na-He
as functions of internuclear distance R.



58

section drops abruptly at energies between 10−9 and 10−8 eV due to the centrifugal barriers,

which increase in height with increasing J . In the higher energy region, the contribution of

higher partial waves to the total cross section increases in importance with several hundreds

or thousands of partial waves contributing at each energy. Although the maximum of the

individual partial-wave cross sections gradually reduces, the sum of thousands of partial

waves (not shown) causes the large total cross section at high energy.

For elastic collisions in the 2 2Σ+ state, the total and the J = 0 − 5 partial-wave cross

sections are presented in Fig. 4.6. Because the contribution of the J = 0 partial wave is small

compared with other partial waves, the J = 0 term is displayed in the inset which illustrates

that J = 0 becomes prominent in the low-energy region with the total cross section reaching

a finite value in the zero-energy limit. Partial-wave analysis shows that the J = 2 term,

similar to that of the 1 2Π, has a resonance which results in the peak in the total cross

sections. The sensitivity of resonances to the potentials and couplings has been discussed by

Krems and Dalgarno [72]. We find that the resonances in the 2 2Σ+ cross section disappear

if we turn off the 1 2Π-2 2Σ+ coupling; meanwhile, the total cross sections of both the 1 2Π

and 2 2Σ+ will be diminished greatly at high energy. Therefore, the resonance in the cross

sections of the 2 2Σ+ state is due to a quasi-bound state supported by the 1 2Π potential,

which causes the effect through the 1 2Π-2 2Σ+ coupling.

The cross sections for inelastic collision processes (4.3), which include quenching and

excitation reactions, are displayed respectively in Fig. 4.7 and Fig. 4.8. The quenching process

from Na(3p) to Na(3s) due to collisions of He includes two de-excitation paths, 1 2Π to 1 2Σ+

and 2 2Σ+ to 1 2Σ+. Fig. 4.7 displays the total and state-to-state cross sections compared

to the state-to-state results neglecting the 1 2Π-2 2Σ+ coupling. For energies less than 1 eV,

quenching from 1 2Π to 1 2Σ+ is the dominant process. Several distinct orbiting resonances

appearing in the cross sections are due to quasi-bound states of the quasimolecule. It is worth

noting that both different quenching processes have the same resonance position. However,

the resonances at energies lower than 0.01 eV have mostly disappeared for the 2 2Σ+ to
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1 2Σ+ transition when the 1 2Π-2 2Σ+ coupling is set to zero, but they still appear in the

1 2Π to 1 2Σ+ quenching cross sections, though reduced in magnitude. This implies that

these resonances are due to quasi-bound states supported by the 1 2Π potential. In addition,

for energies less than 10−4 eV, the 2 2Σ+- 1 2Σ+ cross section obeys the Wigner threshold

law [73] (see thin dotted line in Fig. 4.7), when the 1 2Π-2 2Σ+ coupling is removed. The

broad resonance in the quenching cross sections near 10−8 eV and the main resonance in the

elastic cross sections of the 1 2Π and 2 2Σ+ states are close in energy as both are due to the

same quasi-bound state provided by the 1 2Π potential. The broad width of this resonance

indicates that the corresponding quasi-bound state has a short lifetime because its position

is near the top of the potential barrier. On the other hand, the resonance position is sensitive

to the couplings which will shift the position of the quasi-bound state. The magnitude of the

resonance near 10−8 eV becomes less pronounced when the 1 2Π-2 2Σ+ coupling is removed

(see thin dashed line in Fig. 4.7).

The excitation cross sections of Na(3s) to Na(3p) due to He collisions are given in Fig. 4.8.

The most significant contribution to total excitation cross sections is through the excitation

of molecular state 1 2Σ+ to 2 2Σ+ for energies larger than 2.8 eV. Because of the 2 2Σ+

threshold at 2.1 eV, the cross sections go to zero abruptly as the threshold is approached.

The inset details the orbiting resonances occurring near the threshold.

4.4.2 Rate coefficients

The rate coefficients α(T ), where T is the temperature, are determined by averaging over the

cross section σ(E) with the Maxwellian energy distribution, as given by Eq (3.3). In Fig. 4.9,

rate coefficients for elastic scattering processes, (4.1) and (4.2), are presented as functions of

temperatures between 1 µK and 100 K for each of the molecular states. The behavior of the

rate coefficients for the 1 2Σ+ state is proportional to T 1/2 because the elastic cross section

is constant as the collision energy approaches zero. Similarly, due to nearly constant cross

sections in the higher energy region for the 2 2Σ+ and 2 2Π states, the rate coefficients are
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Table 4.3: Fitting parameters of inelastic rate coefficients for Na(3s → 3p) excitation and
Na(3p → 3s) quenching due to collisions with He and H.

Na(3s → 3p) Na(3p → 3s)
He H He H

(4,000-10,000 K) (3,000-10,000 K) (10-10,000 K) (3,000-10,000 K)
a1 (cm3/s) 7.53(-12)d 9.567(-12) 4.80(-20) 1.175(-12)
b1 10.00 10.458 0.39 5.440
c1 (K) 723.44 1097.773 2000.00 3341.270
a2 (cm3/s) 1.55(-9) 2.469(-9) 1.80(-16) 2.108(-11)
b2 21.00 22.352 3.83 4.198
c2 (K) 551.40 674.551 3500.00 1279.273

dThe notation A(-B)=A × 10−B .

also approximately proportional to T 1/2. On the other hand, the sudden decline of the rate

coefficients at temperatures lower than 10−4 K for these two states indicates the influence

of the centrifugal barrier from the J = 1 term. Fig. 4.10 illustrates the variation of rate

coefficients with T from 10−6 to 104 K for inelastic collisions. The rate coefficients are larger

for the exoergic reaction, Na(3p 2P o)+He → Na(3s 2S)+He, than for the endoergic reaction,

Na(3s 2S)+He → Na(3p 2P o)+He, as expected. For convenience we have fitted the inelastic

rate coefficients to the relation

α(T ) =
∑

i

ai

(

T

10000

)bi

exp
(

−T
ci

)

. (4.7)

The fit coefficients are given in Table 4.3 and are valid for T < 10, 000 K.

4.4.3 Scattering Lengths and Ultracold Collisions

As the collisional energy achieves the regime of the zero-energy limit, the scattering length

can be used to characterize the scattering. In the present work of multi-channel scattering,

taking advantage of the complex scattering length formalism [75, 76] is an useful way to
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Figure 4.4: The total Na-He elastic cross section (solid curve) for the
1 2Σ+ state and its partial-wave cross sections for J=0-2 as functions
of collision energy. The inset shows the comparison of the total elastic
cross section to the results of Bottcher et al. [52] (line with x’s).
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Figure 4.5: The total Na-He elastic cross section (solid curve) for the
1 2Π state and its partial-wave cross sections for J=1-5.
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Figure 4.6: The total Na-He elastic cross section (solid curve) for the
2 2Σ+ state and its partial-wave cross sections for J=1-5. The inset
shows the zero-energy limit with the J = 0 contribution
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Figure 4.7: The total (solid curve) and state-to-state quenching cross
sections for Na-He. The thick dashed curve corresponds to the de-
excitation of molecular states from 1 2Π to 1 2Σ+ and thin dashed
curve corresponds to the same process, but without including the 1 2Π-
2 2Σ+ coupling. The thick dotted curves corresponds to 2 2Σ+ to 1 2Σ+

and thin dotted curve corresponds to the same process, but without
1 2Π-2 2Σ+ coupling.
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Figure 4.8: The total (solid curve) and state-to-state excitation cross
sections for Na-He. The dashed curve corresponds to the excitation of
molecular states from 1 2Σ+ to 1 2Π and dotted curves corresponds
to that from 1 2Σ+ to 2 2Σ+. The inset shows the energy region near
threshold
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Figure 4.9: Rate coefficients of elastic collision processes as functions
of temperature T for Na-He. The solid curve corresponds to the 1 2Σ+,
the dashed curve to the 1 2Π, and the dotted curve to the 2 2Σ+.
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Figure 4.10: Rate coefficients of inelastic collision processes,
Na(3p 2P o)+He → Na(3s 2S)+He (solid curve) and Na(3s 2S)+He →
Na(3p 2P o) + He (dashed curve), as functions of temperature T . The
inset displays the rate coefficients for the same Na-He processes com-
pared to those deduced for Na-H collisions from Belyaev et al. [74].
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incorporate the effect of inelastic collisions into the equivalent one-channel problem. The

complex scattering length is defined as

a = ar − iai. (4.8)

With the relations for the s-wave phase shift, δ0 = −ka, in the low-energy limit and the

S-matrix element,

SJ
αα = ei2δJ

α , (4.9)

we can obtain

Re(S0
αα) = e−2kαai

α cos(2kαa
r
α) (4.10)

and

Im(S0
αα) = −e−2kαai

α sin(2kαa
r
α), (4.11)

and the complex scattering length can be expressed in terms of the real part of the S-matrix

element, Re(S0
αα), and the imaginary part, Im(S0

αα), as

ar
α =

−1

2kα

tan−1

(

Im(S0
αα)

Re(S0
αα)

)

(4.12)

and

ai
α =

−1

4kα
ln{[Re(S0

αα)]2 + [Im(S0
αα)]2}. (4.13)

In the low-energy regime, s-wave scattering dominates. Therefore, for a specific entrance

channel α, the elastic and inelastic cross sections, σel
α and σin

α , can be reduced to (see also

Eq. (2.110))

σel
α =

π

k2
α

|1 − S0
αα|2 (4.14)

and

σin
α =

π

k2
α

∑

α<β

|S0
αβ|2 =

π

k2
α

(

1 − |S0
αα|2

)

. (4.15)

In the zero-energy limit, both cross sections have simple relations in terms of the complex

scattering length components

σel
α −→ 4π[(ar

α)2 + (ai
α)2] (4.16)
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and

σin
α −→ 4π

kα
ai

α. (4.17)

To illustrate the stability and convergence of the scattering lengths and also, to explore

the dependence of the scattering length on the potentials (see for example Jamieson and

Zygelman [77]), we present the real part of the scattering length as a function of collisional

energy and reduced mass for the 1 2Σ+ and 2 2Σ+ states (see Fig. 4.11 and Fig. 4.12). In

both cases, the scattering length reaches stable values for each reduced mass as the energy is

reduced down to 10−13 eV. The variation of the scattering length with reduced mass is seen

to be quite different for the two cases. According to Fig. 4.13 and Fig. 4.14, the scattering

lengths for both states change from positive to negative with increase of the reduced mass.

However, for the 1 2Σ+ state, the scattering length has singularities near reduced masses of

2 and 16.5 u, at ∼7.5 u for the 2 2Σ+ state.

The sign and the singularities of the scattering length are strongly related to the char-

acter of the potential. The sign depends on many factors including whether the potential is

dominated by an attractive or repulsive interaction and whether bound states are supported

[22]. Single-channel binding energies of bound vibrational states with J = 0 for different

reduced masses, which are shown in Fig. 4.15 and Fig. 4.16, indicate that zero-energy reso-

nances exist at ∼2 and ∼16.5 u for the 1 2Σ+ state and at ∼7.5 u for the 2 2Σ+ state. They

are consistent with the reduced masses for which singularities are found in the scattering

lengths. In the case of 23Na-4He with reduced mass of 3.41 u, it is capable of producing one

s-wave bound state near the 1 2Σ+ dissociation limit such that the sign of the scattering

length is positive (37.3 a0). On the other hand, it is impossible to support a bound state in

the 2 2Σ+ potential for a reduced mass less than ∼8 u. Therefore, the scattering length is

negative for the 2 2Σ+ state of Na-He. The reason its value is close to zero (−0.686 a0) is due

to the strong repulsive interaction of 2 2Σ+ potential. The repulsive portion of the potential

gives a positive contribution to the scattering length which reduces the negative contribu-

tion due to the bound-state-less attractive well. With decrease in reduced mass, which is
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Figure 4.11: The Na-He scattering length as a function of reduced mass
and collision energy for the 1 2Σ+ (J = 0).
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Figure 4.12: The Na-He scattering length as a function of reduced mass
and collision energy for the 2 2Σ+ (J = 0).
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equivalent to reducing the depth of the van der Waals well since the effective potential is

2µV (R)/h̄2, the scattering length becomes positive for the 2 2Σ+ state. It illustrates that

repulsive interaction overcomes the attractive interaction to turn the scattering length from

negative to positive values.

Finally, we comment that because of the large energy gap between the molecular states

correlating to the Na(3s) and Na(3p) the imaginary part of the scattering length ai for the

2 2Σ+ state is negligibly small. We defer presenting results of the 1 2Π scattering length

to a future work because such a calculation will require inclusion of coupling of the fine

structure terms correlating with the Na(3p), which may also have an influence on the 2 2Σ+

for energies less than ∼10−3 eV. The accumulation of the dependence of the scattering length

on the potential and fine-structure-coupling effects suggest that the magnitude and sign of

the 2 2Σ+ scattering length is uncertain. On the other hand, Fig. 4.13 illustrates that the

positive value of the ground state scattering length is robust and that its magnitude is

unlikely to varying by more than a factor of two. Therefore, ultracold collisions of ground

state Na and He will be dominated by repulsive interactions.

4.5 Astrophysical Implications

The Na D line is observed in absorption in a variety of astrophysical sources and in emission

when sufficiently energetic electrons are available to populate the 3p levels. In the former

case, the density in most objects, e.g. stellar atmospheres, is large enough to ensure that the

electronic levels are in LTE.

While the indirect observation of atomic Na in the atmosphere of the transiting EGP

HD 209458b was a ground-breaking achievement [50], the observed difference in the transit

depth in and out of the region of the Na D line was only about half that expected from model

predictions [78, 79, 80]. A number of possibilities to explain this discrepancy was suggested

by Charbonneau et al. [50] and later expanded on by Fortney et al. [81]. They considered the

following scenarios: depletion of Na into molecules and or condensates, subsolar metallicity
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Figure 4.13: The variation of the Na-He scattering length for the 1 2Σ+

with reduced mass (E = 10−13 eV). The dotted lines indicate the values
of scattering length and reduced mass for the 23Na-4He system.
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Figure 4.14: The variation of the Na-He scattering length for the 2 2Σ+

with reduced mass (E = 10−13 eV). The dotted lines indicate the values
of scattering length and reduced mass for the 23Na-4He system.
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Figure 4.15: The variation of the Na-He binding energies for the 1 2Σ+

with reduced mass. The solid circle curve corresponds to bound states
of v = 0 and J = 0. The open circle curve corresponds to bound states
of v = 1 and J = 0. The star indicates the result for the 23Na-4He
reduced mass.
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Figure 4.16: The variation of the Na-He binding energies for the 2 2Σ+

with different reduced mass for bound states of v = 0 and J = 0.
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(though its companion star is of solar metallicity), NLTE Na photoionization due to the

companion’s ultraviolet (UV) flux, and cloud opacity. Using a parameterized description of

the cloud’s vertical distribution and base, Fortney et al. were able to reproduce the observa-

tions as cloud opacity tends to reduce the strength of line absorption features. However, the

physics of cloud formation is still in its infancy and a complete, robust description requires

a treatment of gravitational settling of the condensate grains which is not yet available.

Barman et al. [51] proposed another possibility for which, in principle, the physics is well

known: Na is in NLTE. This explanation has a number of attractive features: exotic processes

do not need to be imposed and Na (and other species) is likely to be in NLTE. This is the

case due to the low effective temperature of the planet (∼1500 K), which results in low

electron abundances (∼10−8), and the strong, non-Planckian UV radiation from the primary

which is only 0.045 AU away. The lack of electrons means that the Na level populations

can only be thermalized by collisions with H2, He, or H which are expected to have smaller

collisional cross sections. Unfortunately, the difficulty in performing NLTE calculations is

the lack of collisional rate coefficients for the dominant atmospheric constituent H2. In their

model, Barman et al. [51] used electron excitation rate coefficients as a substitute for H2 rate

coefficients and found significant departures in the 3s and 3p level populations from LTE.

This resulted in a reversal in the core of the Na D absorption lines which would appear as a

reduced line depth in low resolution.

In the current work, we have obtained rate coefficients for collisional excitation and

deexcitation of Na due to He as shown in Fig. 4.10. The rate coefficients are very small for

temperatures less than 104 K and the process will therefore be very inefficient at thermalizing

the Na level populations. In the inset to Fig. 4.10, the Na-He rate coefficients are compared

to the same transitions for collisions due to H which were computed from the cross sections

of Belyaev et al. [74]. Fit coefficients for Na-H collisions are given in Table 4.3. While the

Na-H rate coefficients are 4-5 orders of magnitude larger, atomic hydrogen will mostly be

tied-up in H2 in an EGP, so that the relative efficiently of the Na-H to Na-He processes will
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be significantly smaller than the ratio of the rate coefficients. The excitation rate coefficients

for collisions due to H2 are currently unknown, but their magnitude might be expected to be

intermediate between the H and He perturber values. As the rate coefficients for all neutral

perturbers are smaller than those due to electron impact, the significant departure from LTE

obtained by Barman et al. would appear to be a robust result and a valid interpretation for

a inferred reduced Na abundance in HD 209458b.

4.6 Summary

Elastic and inelastic collisions of Na(3s,3p) with He have been investigated using the

quantum-mechanical CC approach. The major results include total cross sections, partial-

wave cross sections, and rate coefficients for elastic scattering for processes (4.1) and (4.2);

total cross sections, state-to-state cross sections, and rate coefficients for the quenching

and excitation processes (4.3); and the scattering length as a function of reduced mass and

collision energy for 1 2Σ+ and 2 2Σ+ states.

The comparison of our results to the theoretical prediction of Bottcher et al. shows good

agreement for the elastic cross sections of the 1 2Σ+ state. In the ultracold region, the elastic

total cross sections of 1 2Σ+ and 2 2Σ+ states are determined solely by s-wave scattering.

Through partial-wave analysis, the orbiting resonances due to quasi-bound states resulting in

sharp peaks imposed upon total cross sections are illustrated. The quenching cross sections

are dominated mostly by the de-excitation from 1 2Π to 1 2Σ+, while the excitation from

the 1 2Σ+ to 2 2Σ+ has the main contribution for the excitation cross sections for energies

larger than 2.8 eV. The comparison with results without the 1 2Π-1 2Σ+ rotational coupling

illustrates that this coupling has significant influence on both elastic and inelastic cross

sections and resonances. The scattering lengths are sensitive to the reduced mass. In other

words, a change in the potential could cause dramatic variation of the scattering length

which is primarily controlled by the location of a zero-energy resonance. The large positive

value for the 1 2Σ+ state of the Na-He system reveals that there is a bound state supported
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by the 1 2Σ+ potential, while the scattering length of small negative value close to zero for

the 2 2Σ+ state manifests that, based on the lack of a bound state for the 2 2Σ+ potential,

the attractive part of potential slightly overcomes the repulsive part of the potential.

Finally, the small rate coefficients obtained for inelastic collisions of Na with He

strengthens the argument made by Barman et al. [51] that the sodium electronic level

populations are out of equilibrium in the atmosphere of the extrasolar giant planet HD

209458b.



Chapter 5

Vibrationally-resolved Charge Transfer for Proton Collisions with CO

and H Collisions with CO+

In this chapter, ion-molecule collisions are illustrated by an application of a quantal MOCC

method utilizing the IOSA [82] to electron capture processes for proton collisions with carbon

monoxide, and reverse processes for collision energies between 0.5 and 1000 eV/u. The poten-

tial surfaces and couplings, computed with the MRD-CI method for a range of H+-CO

orientation angles and C-O separations, are adopted in the scattering calculations. Results

including vibrationally-resolved and orientation-angle-dependent cross sections are presented

for a range of CO and CO+ vibrational levels. Comparison with experiment is made where

possible and the relevance of the reaction in astrophysics and atmospheric physics is dis-

cussed.

5.1 Introduction

Electron capture processes are well known to be of great interest in many fields of study and

are relevant to planetary atmospheres, the interstellar medium, and controlled-thermonuclear

fusion. In particular, many investigations are focused on collisions of protons with atoms

or molecules, since the major constituent of the solar wind are protons. For example, the

interaction of the solar wind with the atmospheres of planets or comets plays a crucial role

in understanding X-ray emission from these objects and the interface between the solar wind

and their atmospheres. X-ray emission from charge exchange also has the potential to provide

information on the composition of the atmospheres and the solar wind.
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For the specific case of electron capture by protons in collisions with CO, numerous

measurements have been carried out over the past five decades [44, 83, 84, 85, 86, 87], but

the number of theoretical studies [88, 89, 90] are sparse. The effect of molecular orientation,

the so-called steric effect, for proton-CO collisions was discussed in the theoretical work of

Kimura et al. [88] and Kumar et al. [90]. In Kimura et al., a quantal MOCC calculation was

performed which considered three orientation angles (γ = 0◦, 90◦, and 180◦) of the target

molecule. However, CO was held fixed at its equilibrium distance re = 2.1 a0 throughout

the collision; the so-called “electronic approximation” (EA). Kumar et al. also performed a

EA calculation, but with a time-dependent wave-packet propagation (TDWP) method. In

a preliminary investigation [89], Stancil relaxed this restriction and considered vibrational

motion of CO. This allowed for the computation of vibrationally-resolved cross sections

within the IOSA [15, 16, 17], which has been discussed in Section 2.6, and demonstrates that

an EA calculation is inappropriate for collision energies less than ∼100 eV/u.

Extending the earlier investigation [89], the present work includes a significant enhance-

ment in the CO and CO+ vibrational bases in order to provide more accurate and more

extensive information on vibrationally-resolved electron capture. The collision process con-

sidered in this work is

H+ + CO(X 1Σ+, ν) ↔ H + CO+(X 2Σ+, ν ′), (5.1)

which is endoergic by 0.416 eV for ν = ν ′ = 0 in the forward direction.

The theoretical approach for the scattering calculation was given in Chapter 2 and par-

ticularly, in Section 2.6 for IOSA. The potentials and couplings in the adiabatic and diabatic

representation for three collision configurations are discussed in Section 5.2. The results of

state-to-state, state-selective, and angle-averaged total cross sections are illustrated in Sec-

tion 5.3 including the discussion and comparison with the existing experimental data and

previous calculations. Section 5.4 addresses the implications to astrophysics and atmospheric

physics from the current results, while Section 5.5 briefly gives the summary of the present

investigations.
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5.2 Electronic Structure Calculations

Ab initio calculations were performed for the potential surfaces and coupling matrix elements

of the HCO+ molecular ion. The calculations were carried out using the MRD-CI method

[35, 36, 37, 62, 63] with the cc-pVTZ basis for H, C, and O atoms of Dunning [65]. In

this work we consider three collision configurations defined in Fig. 5.1 with γ = 0◦, 90◦, and

180◦. For each γ, the adiabatic potentials and couplings as functions of the H-CO internuclear

distance R are computed with five different fixed C-O internuclear separations of r = 1.7,

1.9, 2.1, 2.3, and 2.5 a0, where 2.1 a0 is the equilibrium distance of the CO molecule. For

the collision energies computed in this work, we consider the two lowest electronic states

only, as the remaining excited states are more than 2.5 eV higher in energy and therefore

of secondary importance in the collision dynamics. The two lowest potentials, with CO at

its equilibrium geometry r = re, are shown in Fig. 5.2 and correspond to the asymptotes

H++CO(X 1Σ+) and H+CO+(X 2Σ+). For γ = 0◦ and 180◦, the X 1Σ+ and 2 1Σ+ states

were computed in the C2v subgroup of the C∞v point group, while for γ = 90◦, the 1 1A′ and

2 1A′ were calculated in the Cs point group [88]. The adiabatic potentials of these two states

as functions of R and various r are shown in Figs. 5.3, 5.4, and 5.5 for different orientation

angles. The nuclear radial coupling matrix elements, which connect these two states, are

displayed as functions of R and various r in Figs. 5.6, 5.7, and 5.8 for three different collision

geometries.

For convenience in the scattering calculations, we make a unitary transformation from

the adiabatic picture to a diabatic representation (see Section 2.3) for the electronic poten-

tials and couplings. The resulting diagonal terms of the electronic diabatic potentials are

adjusted to match the experimental asymptotic energies for ν = ν ′ = 0. The vibronic dia-

batic potential energies are then obtained by shifting the appropriate electronic energy by

the vibrational excitation energies as shown in Figs. 5.9, 5.10, and 5.11 (see Eq. (2.122)). The

vibronic diabatic couplings are obtained by averaging the electronic diabatic couplings over

the vibrational wave functions. The dominant vibronic couplings are shown in Figs. 5.12,
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Figure 5.1: Collisions of H+ with CO defined in Jacobi coordinates.

5.13, and 5.14 for transitions connecting the states ν with ν ′ = ν, and ν ± 1. The vibronic

couplings for larger |∆ν| are significantly smaller. The CO+ and CO ground state potentials,

used to generate the vibrational wave functions, where taken from Krupenie and Weissman

[91] and Borges et al. [92], respectively.

5.3 Results and Discussion

The charge exchange cross sections for collisions of H+ with CO and H with CO+ were

calculated for three orientations, i.e. γ = 0◦, 90◦, and 180◦, of the molecular target and

included eleven and nine vibrational channels for CO and CO+, respectively. Examples of

vibrationally-resolved state-to-state cross sections for H+-CO collisions for ν = 0 → ν ′ =

0 − 5 are illustrated in Fig. 5.15. The difference in the cross sections among three angles

becomes more conspicuous with increasing final vibrational excitation. For ν ′ ≥ 2, the angle-

averaged results are primarily determined by the behavior of the γ = 0◦ cross sections. In

Fig. 5.16, angle-averaged state-to-state cross sections for ν = 0 are given as a function of
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Figure 5.2: Adiabatic potential curves of H-CO+ as functions of R with
r = re.
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Figure 5.3: Adiabatic potential curves of H-CO+ as functions of R with
r = 1.7, 1.9, 2.1, 2.3, and 2.5 a0 for γ = 0◦.
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Figure 5.4: Adiabatic potential curves of H-CO+ as functions of R with
r = 1.7, 1.9, 2.1, 2.3, and 2.5 a0 for γ = 90◦.
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Figure 5.5: Adiabatic potential curves of H-CO+ as functions of R with
r = 1.7, 1.9, 2.1, 2.3, and 2.5 a0 for γ = 180◦.
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Figure 5.6: Nonadiabatic radial couplings of H-CO+ as functions of R
with r = 1.7, 1.9, 2.1, 2.3, and 2.5 a0 for γ = 0◦.
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Figure 5.7: Nonadiabatic radial couplings of H-CO+ as functions of R
with r = 1.7, 1.9, 2.1, 2.3, and 2.5 a0 for γ = 90◦.
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Figure 5.8: Nonadiabatic radial couplings of H-CO+ as functions of R
with r = 1.7, 1.9, 2.1, 2.3, and 2.5 a0 for γ = 180◦.
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Figure 5.9: Diabatic potentials of H-CO+ as functions of R for the
vibronic states of ν = 0 − 10 shifted from X 1Σ+ and ν ′ = 0 − 8 from
2 1Σ+ at γ = 0◦ with r = re.



92

Figure 5.10: Diabatic potentials of H-CO+ as functions of R for the
vibronic states of ν = 0 − 10 shifted from 1 1A′ and ν ′ = 0 − 8 from
2 1A′ at γ = 90◦ with r = re.
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Figure 5.11: Diabatic potentials of H-CO+ as functions of R for the
vibronic states of ν = 0 − 10 shifted from X 1Σ+ and ν ′ = 0 − 8 from
2 1Σ+ at γ = 180◦ with r = re.
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Figure 5.12: Vibronic couplings of H-CO+ for γ = 0◦ as functions of R
connecting states ν = 0 − 5 with states ν ′ = ν and ν ± 1.
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Figure 5.13: Vibronic couplings of H-CO+ for γ = 90◦ as functions of
R connecting states ν = 0 − 5 with states ν ′ = ν and ν ± 1.
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Figure 5.14: Vibronic couplings of H-CO+ for γ = 180◦ as functions of
R connecting states ν = 0 − 5 with states ν ′ = ν and ν ± 1.
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ν ′ for two collision energies. The ∆ν = 0 transition is shown to be the dominant process

which is a consequence of the dominance of the corresponding vibronic coupling. Further,

since the vibronic couplings diminish with increasing ν ′, the cross sections tend to decrease

as well. This behavior is directly related to the overlap of the initial CO and final CO+

vibrational wave functions which is nearly diagonal since the equilibrium separations of the

two molecules are very similar. This suggests that to a rough approximation, the so-called

centroid approximation (CA) where a purely electronic cross section is multiplied by Franck-

Condon-like ionization factors, is valid for this collision system for collision energies above

∼100 eV/u.

State-to-state cross sections for H+-CO collisions with three orientation angles and ν > 0

are shown in Figs. 5.17-5.19. In the high energy regime, the transition from the initial vibronic

state ν to a final vibronic state ν ′ = ν is the most dominant process, while in the low energy

limit, i.e. near the threshold, the most significant process is a transition to a final vibronic

state which is the nearest state in the asymptotic limit. Referring to the vibronic couplings

in Figs. 5.12-5.14, it is obviously illustrated that the most important coupling connects two

vibronic states of ν = ν ′. However, since the couplings are largest at short R and the final

vibronic potentials are repulsive (see Figs. 5.9-5.11), the peaks in the couplings are only

sampled for relatively large collisions energies. For example, in Fig. 5.18(a) the cross section

for ν = 1 → ν ′ = 1 increases with collision energy to become the dominant channel above 10

eV/u. For smaller collision energies, capture to ν ′ = 0 is the primary channel due to a smaller

energy gap. For ν = 2, similar trends are seen in Fig. 5.18(b) with the largest cross section to

ν ′ = 2 for energies larger than ∼10 eV/u and to ν ′ = 1 for smaller energies. Capture to ν ′ = 0

is also seen to be significant at low energies and will likely become the dominant channel for

energies below the ν ′ = 1 threshold since it is the only exoergic channel. Analogous behavior

is seen for other initial CO(ν) states. Angle-averaged state-to-state cross sections of H+-CO

collisions are shown in Figs. 5.20(a)-(d), which are dominated by collisions at γ = 0◦ for the
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same reasons as discussed in Fig. 5.15. The behavior of the different ν and ν ′ channels are

the same as presented above.

The initial state-selective cross sections (ν = 0 − 10), given by Eq. (2.124), for γ = 0◦,

90◦, and 180◦ collisions of H+ with CO are displayed respectively in Figs. 5.21, 5.22, and

5.23. According to the state-to-state cross sections, the convergence of initial state-selective

cross sections with respect to the present final states included is reliable except for ν = 8,

9, and 10, for which more vibronic states are likely needed. For low energies, the initial

state-selective cross sections increase with increasing ν. Because all final states are endoergic

for ν = 0 and 1 (see Figs. 5.9-5.11), the cross sections are expected to drop sharply due

to the threshold. For ν > 1, exoergic channels become available which result in the rise of

cross sections. For the higher energy region, i.e. energies larger than ∼70 eV/u for the case

of γ = 90◦, the cross sections increase with decreasing ν. For γ = 0◦ and 180◦ and energies

larger than ∼30 eV/u, the initial state-selective cross sections approach values of similar

magnitude. The angle-averaged initial state-selective cross sections are shown in Fig. 5.24,

which except for ν = 9 and 10, are weakly dependent on ν for energies greater than 50 eV/u.

Figs. 5.25-5.30 are similar to Fig. 5.16 and Figs 5.21-5.24, except for the reverse process of

H collisions with CO+(ν ′). Fig. 5.25 shows angle-averaged state-to-state cross sections which

have behaviors similar to H+-CO, except that exoergic channels are available for all initial

states. As discussed previously, ν ′ = ν transitions eventually become the most important

as long as the collision energy is large enough. A comparison of final CO vibrational cross

sections at relatively high (∼1 keV/u) and low (∼10 eV/u) collision energy is presented in

Fig. 5.26. Generally, a CA-type trend is evident except at low energy where the capture to

ν=0 and 1 are nearly equal. The latter is a result of competition between coupling strengths

and asymptotic energy gaps. Initial state-selective cross sections for γ = 0◦, 90◦, and 180◦

are shown respectively in Figs. 5.27-5.29. The dominant initial state for electron capture is

ν ′ = 0 in the high energy regime while the cross section decreases with increasing ν ′. For

the low energy region, capture from larger ν ′ becomes more important. In addition, because
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there are exoergic collision channels involved in the electron capture process for any initial

state ν ′, all cross sections are expected to rise as the energy approaches zero. In Fig. 5.30,

angle-averaged initial state-selective cross sections are presented which demonstrate some

dependence of orientation angle by the comparison with Figs. 5.27-5.29.

In Fig. 5.31, orientation-angle-dependent and orientation-angle-averaged total cross sec-

tions for single electron capture by protons with CO are displayed and compared with other

theoretical and experimental data. The calculations include a Boltzmann average of initial

vibrational states at 300 K using Eq. (2.126). The orientation effect of the target molecule

CO is elucidated through cross sections at the three specific angles. It’s obvious that γ = 0◦

has the largest cross section, compared to the other two angles for energies larger than ∼20

eV/u. The experimental results of Gao et al. [85], Kusakabe et al. [86], and Cadez et al. [87]

were primarily measured for energies near or larger than 1 keV/u. For smaller energies, we

are only aware of the measurements of Gilbody et al. [44] and Gustafsson et al. [83]. The

current orientation-angle-averaged total cross sections are in generally good agreement with

the other theoretical and experimental data. The discrepancies between the present IOSA

results and the previous EA calculation [89], which neglected vibrational motion, illustrate

the significant vibrational effect for the low energy regime. The current IOSA results are gen-

erally smaller than the measurements which may be due to the limited number of considered

orientation angles or missing contributions from higher excited states. The orientation-angle-

dependent and -averaged total cross sections for H-CO+ collisions are displayed in Fig. 5.32.

Comparing to Fig. 5.31, the results of H-CO+ collisions in the high-energy region have a

similar trend to H+-CO. Electron capture through collisions at γ = 0◦ are most significant,

while γ = 180◦ has less contribution. We are unaware of other theoretical or experimental

results in this collision energy range for this system.
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5.4 Astrophysical and Atmospheric Applications

CO is typically the second most abundant molecule, after molecular hydrogen, in a variety

of astrophysical objects including interstellar clouds. In comets, CO accounts for about 15%

of the gaseous material in the coma with the remainder due mostly to water. As a comet

travels through the solar system, it encounters the solar wind which is composed primarily of

protons with kinetic energies ranging from 0.2 to 3 keV/u. Collisions of CO with solar wind

protons is the dominant mechanism for producing CO+, which is observed in fluorescence in

comet tails [93], since solar photoionization is inefficient. As indicated in Fig. 5.15, CO+ is

predominately created in the ground vibrational state. Further, in the earlier study, it was

found that electron capture to electronically excited CO+ has a cross section more than two

orders of magnitude smaller than to the ground state [88]. Therefore, while charge transfer

creates CO+, the observed fluorescence is likely produced following electron-impact or solar

photon excitation. Charge exchange also results in a loss of protons, a process observed in

the coma of comet Halley, but previous models only considered proton charge exchange with

water [94].

The reverse process of H collisions with CO+ may play a role in the chemistry of diffuse

interstellar clouds. Federer et al. [84] measured the rate coefficient to be 40% of the Langevin

value for a collision energy of 0.06 eV. This energy is too low for IOSA to be applicable, but

if the trend indicated in Fig. 5.25(a) holds to low energies, the current results suggest that

the charge transfer reaction H+CO+ would produced CO in ν=1 and 2 even in very cold

environments.

5.5 Summary

Calculations for electron capture during proton collisions with CO and H collisions with

CO+ have been performed for energies between 0.45 eV/u and 1 keV/u using the molecular-

orbital coupled-channel approach with the infinite order sudden approximation. The adia-
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batic potential curves and nonadiabatic radial couplings were obtained with the MRD-CI

method. Taking into account the vibrational motion of the molecules, the vibrationally-

resolved state-to-state and state-selective cross sections were obtained. The cross section

variation with vibrational states is analyzed and the results of three collision orientations

with γ = 0◦, 90◦, and 180◦ manifestly elucidate the steric effect for H+-CO and H-CO+

collisions. The orientation-angle-averaged cross sections are in good agreement with experi-

ments and it is shown that the electronic approximation may not be reliable for energies less

than 100 eV/u. The large discrepancy between EA and IOSA calculations in the low-energy

regime also reflects the significant influence of molecular vibrational motion. More experi-

mental data for electron capture of protons with CO at energies less than 30 eV/u and for

H collisions with CO+ are needed.
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Figure 5.15: State-to-state cross sections for H+ + CO(ν = 0) → H +
CO+(ν ′ = 0− 5) with dashed lines for γ = 0◦, dotted lines for γ = 90◦,
dash-dotted lines for γ = 180◦, and solid lines for angle-averaged.
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Figure 5.16: Angle-averaged state-to-state cross sections of H+ +
CO(ν = 0) → H+CO+(ν ′ = 0−8) for 9.96 eV/u (circle-solid line) and
1001.50 eV/u (square-dashed line).
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Figure 5.17: State-to-state cross sections of H+ + CO(ν) → H +
CO+(ν ′ = 0 − 6) for γ = 0◦: (a) ν = 1, (b) ν = 2, (c) ν = 3, (d)
ν = 4.
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Figure 5.18: State-to-state cross sections of H+ + CO(ν) → H +
CO+(ν ′ = 0 − 6) for γ = 90◦: (a) ν = 1, (b) ν = 2, (c) ν = 3, (d)
ν = 4.
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Figure 5.19: State-to-state cross sections of H+ + CO(ν) → H +
CO+(ν ′ = 0 − 6) for γ = 180◦: (a) ν = 1, (b) ν = 2, (c) ν = 3,
(d) ν = 4.
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Figure 5.20: State-to-state cross sections of H+ + CO(ν) → H +
CO+(ν ′ = 0 − 6) for angle-averaged: (a) ν = 1, (b) ν = 2, (c) ν = 3,
(d) ν = 4.
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Figure 5.21: Initial state-selective cross sections of H+ collisions with
CO (γ = 0◦) for initial states of ν = 0 − 10.
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Figure 5.22: Initial state-selective cross sections of H+ collisions with
CO (γ = 90◦) for initial states of ν = 0 − 10.
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Figure 5.23: Initial state-selective cross sections of H+ collisions with
CO (γ = 180◦) for initial states of ν = 0 − 10.
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Figure 5.24: Angle-averaged initial state-selective cross sections of H+

collisions with CO for initial states of ν = 0 − 10.
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Figure 5.25: Angle-averaged state-to-state cross sections of H +
CO+(ν ′) → H+ + CO(ν = 0 − 6) for (a) ν ′ = 0, (b) ν ′ = 1, (c)
ν ′ = 2, (d) ν ′ = 3.
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Figure 5.26: Angle-averaged state-to-state cross sections of H +
CO+(ν ′ = 0) → H+ +CO(ν = 0−10) 10.06 eV/u (circle-solid line) and
at 1001.03 eV/u (square-dashed line).
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Figure 5.27: Initial state-selective cross sections of H collisions with
CO+ (γ = 0◦) for initial states of ν ′ = 0 − 8.
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Figure 5.28: Initial state-selective cross sections of H collisions with
CO+ (γ = 90◦) for initial states of ν ′ = 0 − 8.
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Figure 5.29: Initial state-selective cross sections of H collisions with
CO+ (γ = 180◦) for initial states of ν ′ = 0 − 8.
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Figure 5.30: Angle-averaged initial state-selective cross sections of H
collisions with CO+ for initial states of ν ′ = 0 − 8.
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Figure 5.31: Orientation-angle-averaged and -dependent total cross sec-
tions for the collisions of H+ with CO compared with previous theoret-
ical and experimental data.
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Figure 5.32: Orientation-angle-averaged and -dependent total cross sec-
tions for the collisions of H with CO+.



Chapter 6

Summary and future research

In this dissertation, I have focused on the MOCC method and appplied it to atom-ion, atom-

atom, and ion-molecule collisions. For ion collisions, the charge transfer process is known to

be crucial in many astrophyscial environments. My results for electron capture of N+ with

H provide the important adiabatic potential energies and couplings calculated by MRD-CI,

charge exchange cross sections, and rate coefficients, which could clarify the role played

by radial and rotational coupling compared to spin-orbit coupling and the influence of the

process in photoionized nebulae and Seyfert 2 galaxies.

Collisions of Na with He are important in the thermal regime for astrophysical implica-

tions, but also of interest in the ultracold and at cold temperatures for buffer gas cooling of

sodium. The potential curves and couplings provided by the MRD-CI method are presented.

The total elastic cross sections compared with partial-wave cross sections are shown to eluci-

date the dominant channels. Total and state-to-state quenching and excitation cross sections

are also given. Thermal rate coefficients for electronic excitation of Na were also obtained

and will be used for modeling NLTE effects on Na D absorption lines in extrasolar planets.

For ultralow temperatures, my results elucidate the strong relation between the scattering

length and the depth of the electronic potential well.

I performed calculations of vibrationally-resolved electron capture due to collisions of

protons with CO taking the collision system orientation angle into account for ion-molecule

collisions. Adiabatic potentials and couplings as functions of the H-CO separation with five

different C-O separations and three orientation angles are provided by the MRD-CI method.

The MOCC method was extended to treat molecular targets adopting the IOSA approach.
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Vibronic and steric effects for the process were studied and illustrated by the angle-averaged

and angle-dependent state-to-state and total cross sections. Because proton collisions with

CO is an important process in cometary atmospheres and protons are the dominant species

in the solar wind, the reaction may explain the loss of solar wind protons observed at comet

Halley.

For my future research, I propose to apply my experience with the close-coupling method

to perform computational studies of large molecules, including biomolecules, and solid-state

quantum computing devices, as well as to other collisional processes of astrophysical impor-

tance. To date, complex molecules have been translationally cooled by Stark deceleration

[95]. With the ability to isolate a biomolecule in the gas phase, the potential to realize cold

biomolecules by these or other techniques is expected soon. I therefore propose to study

nonadiabatic interactions in collisions of cold biomolecules (e.g., uracil, thymine) with var-

ious atoms and polar molecules (e.g. NH, OH) which can also be cooled. I will use standard

quantum chemistry packages to generate potential surfaces and model the nonadiabatic cou-

plings. Such computational studies will give insight into cold biomolecular dynamics and

motivate future measurements.

The use of helium nanodroplets [96] for precision vibrational and electronic spectroscopy

has seen significant activity in the past decade with a large number of molecules including C60

and organic polyaromatics, among others, being studied. However, compared to gas-phase

spectroscopy, the He superfluid environment does result in line shifts and line broadening

which can be modeled by considered the binary He-molecule interaction. So far, line shift and

broadening calculations have been limited to HF, CO, and OCS. I propose to perform such

calculations for large molecules and ultimately to address biomolecules such as uracil. The

scattering calculations will be performed by adapting the general scattering code MOLSCAT

[97]. He-molecule potential surfaces will also be calculated with standard quantum chemistry

packages.



122

In my current work on ion-molecule collisions, the IOSA method has been adopted which

neglects the internal rotational motion of the diatom. The method is therefore only valid

for translational energies much larger than the typical rotational energy spacing, ∼0.5 eV.

To extend the H+-CO studies to lower energies, I propose to incorporate the internal rota-

tional angular momentum, say with a coupled-states or full close-coupling approach, with

electronic nonadiabatic interactions. Then it would be possible to provide rate coefficients

at astrophysical temperatures and to probe the cold temperature regime relevant to Stark

deceleration techniques.
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Appendix A

The derivation of coupled-channel equations

Given the Hamiltonian in Eq. (2.1) and the total wave function Ψ in Eq. (2.2), the L.H.S.

of Eq. (2.5) is

HΨ(s,R) =

[

− 1

2µ
∇2

R
− 1

2
∇2

s
+ V

]

N
∑

j=1

ψj(s,R)Fj(R)

=
N
∑

j=1

(

− 1

2µ

)

∇R · [(∇Rψj(s,R))Fj(R) + ψj(s,R)(∇RFj(R))]

+
N
∑

j=1

{

−1

2

(

∇2
s
ψj(s,R)

)

Fj(R) + V ψj(s,R)Fj(R)
}

=
N
∑

j=1

{

− 1

2µ

(

∇2
R
ψj(s,R)

)

Fj(R) − 1

µ
∇Rψj(s,R) · ∇RFj(R)

− 1

2µ
ψj(s,R)∇2

R
Fj(R)

}

+
N
∑

j=1

[

−1

2
∇2

s
ψj(s,R) + V ψj(s,R)

]

Fj(R). (A.1)

Using the above expression with Eqs. (2.3) and (2.4), we obtain

∫

ψ∗
i (s,R)HΨ(s,R)ds =

N
∑

j=1

{

− 1

2µ

∫

ψ∗
i (s,R)

[

∇2
R
ψj(s,R)

]

dsFj(R)

− 1

µ

∫

[ψ∗
i (s,R)∇Rψj(s,R)] ds · ∇RFj(R)

− 1

2µ
δij∇2

R
Fj(R) + εj(R)δijFj(R)

}

=
N
∑

j=1

[

1

2µ
Mij(R)Fj(R) +

1

2µ
Pij(R) · ∇RFj(R)

]

− 1

2µ
∇2

R
Fi(R) + εi(R)Fi(R), (A.2)

where Mij(R) is defined in Eq. (2.8) and Pij(R) is defined in Eq. (2.9). On the other hand,

∫

ψ∗
i (s,R)EΨ(s,R)ds = EFi(R). (A.3)
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Given Eqs. (A.2) and (A.3), Eq. (2.6) leads to

[

∇2
R
− 2µ(εi(R) − E)

]

Fi(R) =
N
∑

j=1

[Mij(R) + Pij(R) · ∇R]Fj(R), (A.4)

which is Eq. (2.7).



Appendix B

The rotation matrix

The rotation matrix defining the transformation between the body-fixed frame (x′, y′, z′) and

the space-fixed frame (x, y, z) is composed of three rotations corresponding to the three Euler

angles α, β, and γ. Firstly, a rotation with the angle α about the z-axis brings the space-fixed

frame (x, y, z) to the frame (x1, y1, z1) (see Fig. (B.1)). This rotation can be represented by

a transformation using a rotation matrix R(α),

Rz(α) =

















cosα sinα 0

− sinα cosα 0

0 0 1

















. (B.1)

Secondly, a rotation with the angle β about the y1-axis brings the frame (x1, y1, z1) to the

frame (x2, y2, z2) (see Fig. (B.2)). This rotation is expressed by a transformation using a

rotation matrix R(β),

Ry1
(β) =

















cos β 0 − sin β

0 1 0

sin β 0 cos β

















. (B.2)

Thirdly, a rotation with the angle γ about z2-axis brings the frame (x2, y2, z2) to the body-

fixed frame (x′, y′, z′) (see Fig. (B.3)). This rotation is given by a transformation using a

rotation matrix R(γ),

Rz2
(γ) =

















cos γ sin γ 0

− sin γ cos γ 0

0 0 1

















. (B.3)
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Figure B.1: A rotation about the z-axis by an angle α

Figure B.2: A rotation about the y1-axis by an angle β
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Figure B.3: A rotation about the z2-axis by an angle γ

Therefore, a rotation matrix R(γ, β, α) for a transformation from the space-fixed to the

body-fixed frame is given as a product of these three rotations:

R(γ, β, α) = Rz2
(γ)Ry1

(β)Rz(α) =
















































cosα cos β cos γ sinα cos β cos γ − sin β cos γ

− sinα sin γ + cosα sin γ

− cosα cos β sin γ − sinα cos β sin γ sin β sin γ

− sinα cos γ + cosα cos γ

cosα sin β sinα sin β cos β

















































.
(B.4)

It is easily shown that for α = Φ, β = Θ, and γ = 0, Eq. (B.4) reduces to Eq. (2.11).



Appendix C

Electronic wave function derivatives in the BF frame

According to Eq. (2.10), the relationship between an electronic position vector in the body-

fixed frame (x′, y′, z′) and in the space-fixed frame (x, y, z) is given as

x′ =x cos Θ cos Φ + y cos Θ sin Φ − z sin Θ, (C.1a)

y′ = − x sin Φ + y cos Φ, (C.1b)

z′ =x sin Θ cosΦ + y sin Θ sin Φ + z cos Θ, (C.1c)

From Eq. (C.1), we can obtain

∂x′

∂R
=
∂y′

∂R
=
∂z′

∂R
= 0, (C.2a)

∂x′

∂Θ
= −x sin Θ cos Φ − y sin Θ sin Φ − z cos Θ

= −z′, (C.2b)

∂y′

∂Θ
= 0, (C.2c)

∂z′

∂Θ
= x cos Θ cos Φ + y cos Θ sin Φ − z sin Θ

= x′, (C.2d)

∂x′

∂Φ
= −x cos Θ sin Φ + y cos Θ cos Φ

= y′ cos Θ, (C.2e)

∂y′

∂Φ
= −x cos Φ − y sin Φ

= −x′ cos Θ − z′ sin Θ, (C.2f)

∂z′

∂Φ
= −x sin Θ sin Φ + y sin Θ cosΦ
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= y′ sin Θ. (C.2g)

With these derivatives, Eq. (2.17) gives the following relations:

∂

∂R
=

∂′

∂R
, (C.3a)

∂

∂Θ
=

∂′

∂Θ
− z′

∂

∂x′
+ x′

∂

∂z′

=
∂′

∂Θ
− iL̄y, (C.3b)

∂

∂Φ
=

∂′

∂Φ
+ y′ cos Θ

∂

∂x′
+ (−x′ cos Θ − z′ sin Θ)

∂

∂y′
+ y′ sin Θ

∂

∂z′

=
∂′

∂Φ
+ cos Θ

(

−x′ ∂
∂y′

+ y′
∂

∂x′

)

+ sin Θ

(

y′
∂

∂z′
− z′

∂

∂y′

)

=
∂′

∂Φ
− i cos ΘL̄z + i sin ΘL̄x, (C.3c)

where L̄x, L̄y, and L̄z are defined as

L̄x = −i
(

y′
∂

∂z′
− z′

∂

∂y′

)

, (C.4a)

L̄y = −i
(

z′
∂

∂x′
− x′

∂

∂z′

)

, (C.4b)

L̄z = −i
(

x′
∂

∂y′
− y′

∂

∂x′

)

. (C.4c)

Similarily, the angular momentum (L̄x,L̄y,L̄z) in the body-fixed frame is related to its

components (Lx,Ly,Lz) in the space-fixed frame by

L̄x = Lx cos Θ cos Φ + Ly cos Θ sin Φ − Lz sin Θ, (C.5a)

L̄y = −Lx sin Φ + Ly cos Φ, (C.5b)

L̄z = Lx sin Θ cos Φ + Ly sin Θ sin Φ + Lz cos Θ. (C.5c)

The reverse relationship is given as

Lx = L̄x cos Θ cosΦ − L̄y sin Φ + L̄z sin Θ cos Φ, (C.6a)

Ly = L̄x cos Θ sinΦ + L̄y cos Φ + L̄z sin Θ sin Φ, (C.6b)

Lz = −L̄x sin Θ + L̄z cos Θ. (C.6c)



Appendix D

Angular momentum in spherical polar coordinates

Taking advantage of the transformation between Cartesian coordinates and spherical polar

coordinates,

R =
(

x2 + y2 + z2
)1/2

, (D.1a)

cos Θ =
z

(x2 + y2 + z2)1/2
, (D.1b)

tanΦ =
y

x
, (D.1c)

we can transform the angular momentum in Cartesian coordinates,

Nx = − i

(

y
∂

∂z
− z

∂

∂y

)

, (D.2a)

Ny = − i

(

z
∂

∂x
− x

∂

∂z

)

, (D.2b)

Nz = − i

(

x
∂

∂y
− y

∂

∂x

)

, (D.2c)

(D.2d)

into spherical polar coordinates,

Nx =i

(

sin Φ
∂

∂Θ
+ cot Θ cos Φ

∂

∂Φ

)

, (D.3a)

Ny =i

(

− cos Φ
∂

∂Θ
+ cot Θ sin Φ

∂

∂Φ

)

, (D.3b)

Nz = − i
∂

∂Φ
. (D.3c)

(D.3d)
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Appendix E

Total angular momentum

The total angular momentum J is defined as

J = N + L, (E.1)

where N is total nuclear orbital angular momentum and L is total electronic orbital angular

momentum. In the space-fixed frame, the operators of components of N can be expressed in

spherical polar coordinates (see Appendix D) as

Nx = i

(

sin Φ
∂

∂Θ
+ cot Θ cos Φ

∂

∂Φ

)

, (E.2)

Ny = i

(

− cos Φ
∂

∂Θ
+ cot Θ sin Φ

∂

∂Φ

)

, (E.3)

and

Nz = −i ∂
∂Φ

. (E.4)

From the above expressions, it follows that

N± ≡ Nx ± iNy

= exp±(iΦ)

(

± ∂

∂Θ
+ i cot Θ

∂

∂Φ

)

. (E.5)

According to Eq. (E.1),

Jz = Nz + Lz

= −i ∂
∂Φ

+ Lz. (E.6)
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Because

−i ∂
∂Φ

= −i ∂
′

∂Φ
− cos ΘL̄z + sin ΘL̄x, (E.7)

from Eq. (C.3c) and

Lz = − sin ΘL̄x + cos ΘL̄z, (E.8)

from Eq. (C.6c) we can immediately prove that

Jz = −i ∂
′

∂Φ
. (E.9)

On the other hand, the expression for J+ is given as

J+ ≡ Jx + iJy

= Nx + iNy + Lx + iLy

= N+ + Lx + iLy

= exp (iΦ)

(

∂

∂Θ
+ i cot Θ

∂

∂Φ

)

+ Lx + iLy. (E.10)

Substituting Eqs. (C.3b) and (C.3c) for ∂
∂Θ

and ∂
∂Φ

, and replacing Lx and Ly by their body-

fixed representations (see Eq. (C.6)), we can obtain

J+ = exp (iΦ)

(

∂′

∂Θ
+ i cot Θ

∂′

∂Φ

)

+ exp (iΦ)
L̄z

sin Θ
. (E.11)

Similarly, the expression of J− is given as

J− ≡ Jx − iJy

= N− + Lx − iLy

= exp (−iΦ)

(

− ∂

∂Θ
+ i cotΘ

∂

∂Φ

)

+ Lx − iLy. (E.12)

Following the same procedure as Eq. (E.11) leads to

J− = exp (−iΦ)

(

− ∂′

∂Θ
+ i cot Θ

∂′

∂Φ

)

+ exp (−iΦ)
L̄z

sin Θ
. (E.13)
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From Eqs. (E.11) and (E.13), we can obtain

J+J− = − ∂′2

∂Θ2
− cotΘ

∂′

∂Θ
− 1

sin2 Θ

(

cos Θ
∂′

∂Φ
− iL̄z

)2

− i
∂′

∂Φ
. (E.14)

Because the total angular momentum J can be written in the form

J2 = J+J− − Jz + J2
z , (E.15)

applying Eqs. (E.14) and (E.9) to Eq. (E.15), the expression for J2 is given by

J2 = − ∂′2

∂Θ2
− cot Θ

∂′

∂Θ
− 1

sin2 Θ

(

∂′

∂Φ
− i cos ΘL̄z

)2

+ L̄2
z. (E.16)



Appendix F

The raising and lowering operator

The relations of a raising J+ or lowering J− operator acting on a total angular momentum

state HJ
M,λ(Θ,Φ) are given by

J±HJ
M,λ(Θ,Φ) =

√

(J ±M + 1)(J ∓M)HJ
M±1,λ(Θ,Φ). (F.1)

Substituting Eqs. (2.63) and (2.64) for J+ and J−, this leads to

exp (±iΦ)

(

± ∂

∂Θ
+ i cotΘ

∂

∂Φ
+

λ

sin Θ

)

HJ
M,λ(Θ,Φ)

=
√

(J ±M + 1)(J ∓M)HJ
M±1,λ(Θ,Φ). (F.2)

Because of Eq. (2.73), Eq. (F.2) can be written as

exp (±iΦ)

(

± ∂

∂Θ
+
λ−M cos Θ

sin Θ

)

dJ
M,λ(Θ) exp (iMΦ)

= −
√

(J ±M + 1)(J ∓M)dJ
M±1,λ(Θ) exp [i(M ± 1)Φ], (F.3)

or

(

± ∂

∂Θ
+
λ−M cos Θ

sin Θ

)

dJ
M,λ(Θ) = −

√

(J ±M + 1)(J ∓M)dJ
M±1,λ(Θ). (F.4)

Let β = −Θ, we obtain

(

∓ ∂

∂β
− λ−M cos β

sin β

)

dJ
M,λ(−β) = −

√

(J ±M + 1)(J ∓M)dJ
M±1,λ(−β). (F.5)

Since dJ
M,λ(−β) = dJ

λ,M(β) (see Eq. (2.80)), it is easy to obtain

(

∓ ∂

∂β
− λ−M cos β

sin β

)

dJ
λ,M(β) = −

√

(J ±M + 1)(J ∓M)dJ
λ,M±1(β). (F.6)
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By an exchange of λ and M , Eq. (F.6) becomes

(

∓ ∂

∂β
− M − λ cos β

sin β

)

dJ
M,λ(β) = −

√

(J ± λ+ 1)(J ∓ λ)dJ
M,λ±1(β). (F.7)

Finally, let β = Θ to

(

∓ ∂

∂Θ
− M − λ cosΘ

sin Θ

)

dJ
M,λ(Θ) = −

√

(J ± λ + 1)(J ∓ λ)dJ
M,λ±1(Θ). (F.8)

Eq. (F.8) is equivalent to

[

∓ ∂

∂Θ
+

i

sin Θ

∂

∂Φ
+ λ cotΘ

]

dJ
M,λ(Θ) exp (iMΦ)

= −
√

(J ± λ+ 1)(J ∓ λ)dJ
M,λ±1(Θ) exp (iMΦ), (F.9)

or

[

∓ ∂

∂Θ
+

i

sin Θ

∂

∂Φ
+ λ cotΘ

]

HJ
M,λ(Θ,Φ)

=
√

(J ± λ+ 1)(J ∓ λ)HJ
M,λ±1(Θ,Φ). (F.10)



Appendix G

The differential cross section

The differential cross section dσ
dΩ

is defined by the ratio of the number of particles scattered

into dΩ per unit time and the number of incident particles crossing unit area per unit time,

i.e.

∂σ

∂Ω
dΩ =

(jscatt · R̂)R2dΩ

(jincid · ẑ)
, (G.1)

where dΩ is a differential solid-angle element, ẑ the incident direction, jscatt the scattered

probability flux, and jincid the incident probability flux.

For a transition from the incident channel i into the open channel j with k2
j > 0, the

asymptotic channel wave function (see Eq. (2.104)) for the incident channel is

Gi(R) = A exp (ikiz), (G.2)

and for the scattered channel is

Gj(R) =
A

R
fji(Θ,Φ) exp (ikjR). (G.3)

By the definition of the probability flux

j =
1

µ
Im(G∗(R)∇G(R)), (G.4)

where µ is the reduced mass of the scattering system, we obtain

jscatt · R̂ =
1

µ
Im

(

G∗
j(R)

∂

∂R
Gj(R)

)

,

=
A2

µ
Im

(

ikj

R2
|fji(Θ,Φ)|2

)

,

=
A2kj

µR2
|fji(Θ,Φ)|2, (G.5)
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and

jincid · ẑ =
1

µ
Im

(

G∗
i (R)

∂

∂z
Gi(R)

)

,

=
A2

µ
ki. (G.6)

Therefore, Eq. (G.1) leads to

∂σji

∂Ω
dΩ =

kj

ki

|fji(Θ,Φ)|2dΩ, (G.7)

or

dσji

dΩ
=
kj

ki
|fji(Θ,Φ)|2. (G.8)


