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recognition using dimension reduction methods in statistics. The two methods are
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CHAPTER 1 

INTRODUCTION 

 
Background 

 
During the past several years, numerous algorithms have been proposed for face 

recognition. While much progress has been made toward recognizing faces under small 

variations in lighting, facial expression and pose, reliable techniques for recognition 

under more extreme variations have proven elusive (Belhumeur et al., 1997).  

In this study, two face recognition algorithms which are insensitive to large 

variation in lighting direction and facial expression are developed using the dimension 

reduction methods in statistics. Note that lighting variability includes not only the light 

source intensity, but also direction and number of light sources.  

Our approach to face recognition exploits two observations: 

1) All of the images of a Lambertian surface, taken from a fixed viewpoint, but 

under varying illumination, lie in a 3D linear subspace of the high-dimensional image 

space (Belhumeur et al., 1997). 

2) Because of regions of shadowing, specularities, and facial expressions, the 

above observation does not exactly hold. In practice, certain regions of the face may 

exhibit deviation from the linear subspace, and, consequently, are less reliable for the 

purpose of recognition (Belhumeur et al., 1997). 

We make use of these observations by determining a linear projection of the input 

face images from the high-dimensional image space to a significantly lower dimensional 
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feature space which is insensitive both to variation in lighting direction and facial 

expression. Thus, optimal dimension reduction techniques are critical in such problems. 

We therefore import the dimension reduction concepts originally developed in statistics 

to the problem of face recognition. The two methods that we have developed are based on 

sliced inverse regression (SIR) (Li, 1991) and sliced average variance estimation (SAVE) 

(Cook and Weisberg, 1991) and termed as the “Sirface” method and the “Saveface” 

method, respectively. Both methods produce well separated classes in a low-dimensional 

subspace, even under severe variation in lighting and facial expression.  The subspace 

computed by the Sirface method is equivalent to the one obtained from the “Fisherface” 

method (Belhumeur et al., 1997); and the subspace computed by the “Savefaces” method 

is equivalent to the one obtained by Quadratic Discriminant Analysis (QDA) which is a 

classical technique in the statistical area of classification and discriminant analysis. Both 

the Sirface method and the Saveface methods produce the “optimal”' (smallest 

dimension) feature subspace and result in a lower error rate and also reduced 

computational expense. 

 

Organization of the thesis 

The next chapter consists of a literature review of feature extraction and 

discriminant analysis techniques in computer vision. The two traditional methods for 

feature extraction and discriminant analysis; i.e., principal component analysis (PCA) and 

linear discriminant analysis (LDA) will be discussed in detail. Chapters 3 and 4 are 

manuscripts describing with the Sirface method and the Saveface method respectively. 

The Fisherface method and the Sirface method are compared in Chapter 3 and the Sirface 
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method and the Saveface method are compared in Chapter 4. Chapter 5 summarizes the 

work and concludes the thesis. 
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CHAPTER 2 

RELATED WORK 

 
Feature extraction and discriminant analysis in computer vision 

Object recognition has long been a primary goal of computer vision, but it has 

turned out to be a very difficult endeavor (Turk, 2001). The novel techniques for data 

dimension reduction and discriminant analysis developed in our study have received 

some attention from statisticians but their application to problems in computer vision and 

pattern recognition have not been thoroughly investigated. Two practical problems in 

computer vision that could potentially benefit from these techniques include face 

recognition and hand gesture recognition. These problems are not only of academic 

interest within the research community in computer vision and pattern recognition but 

have significant practical applications as well. For example, the recognition of the human 

face under varying illumination conditions and camera viewpoints is not only a complex 

computer vision problem of considerable research interest but one with significant 

bearing on several application domains such as biometrics, multimedia, forensics, law 

enforcement, visual surveillance and content-based retrieval (Hallinan, et al., 1999). 

Similarly, vision-based hand gesture recognition has been used extensively in computer 

game navigation (Freeman, 1998), TV remote control (Freeman and Weissman, 1995), 

American Sign Language recognition (Starner et al., 1998), virtual navigation 

(Kadobayashi et al., 1998) and human-computer interaction (Pavlovic et al., 1997). 

Numerous algorithms have been reported in the recent research literature for face 
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recognition and gesture recognition; see surveys (Chellappa et al., 1995, Samil and 

Iyengar, 1992, Pavlovic et al., 1997). 

There are two broad paradigms to face recognition and hand gesture recognition: 

model-based and appearance-based. Model-based approaches approximate the space of 

all possible face and hand gesture instances by means of a parametric model such as 

deformable templates (Brunelli and Poggio, 1993, Hallinan, 1995, Yuille and Hallinan, 

1992) or by a collection of geometric features based on distance and angular 

measurements (Goldstein et al., 1971, Harmon et al., 1981, Harmon et al., 1978, 

Kaufman and Breeding, 1976, Wiscott et al., 1997). However, the biophysical 

complexity of the human anatomy, makes the formulation of an explicit and 

comprehensive parametric model a very challenging task. Consequently, most model-

based approaches make certain simplifying assumptions about illumination, occlusion, 

surface rigidity, surface reflectance properties, etc. in the interest of keeping the model 

analytically tractable by limiting the number of parameters in the model.  This limits the 

application of these models in many real-world situations where the underlying 

assumptions are often violated. Despite their economy of representation and invariance to 

illumination and viewpoint, model-based techniques are typically sensitive to errors in 

the feature extraction and measurement process (Cox et al., 1996). 

There has been a growing interest in using appearance-based methods for human 

face and hand gesture recognition. This class of methods treats the input images as 

patterns or vectors in high-dimensional image space.  The dimensionality of the image 

space is determined by the size of the input images i.e., if the images are of size N×N then 

the dimensionality of the image space is N2. A key observation in appearance-based 
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methods is that the images of feasible faces or hand gestures lie in a complex low-

dimensional subspace or eigenspace of the corresponding image space (Yang et al., 

2000). Thus, if the input images were projected onto this low-dimensional subspace, then 

the features important for recognition could be captured while avoiding the “curse of 

dimensionality”. A primary advantage of appearance-based methods is that it is not 

necessary to create explicit representations or models since the model is implicitly 

defined by the selection of sample images of the object. 

The Eigenface approach developed by Turk and Pentland (Turk and Pentland, 

1991a, 1991b) is based on the linear projection of the image space onto a low-

dimensional eigenspace using Principal Component Analysis (PCA) for dimensionality 

reduction. The underlying assumption is that the set of images can be modeled by a 

multi-variate Gaussian distribution in the high-dimensional image space which can then 

be approximated by a linear combination of a smaller set of eigenvectors (termed as 

eigenfaces) which are derived by diagonalizing the covariance matrix of the multi-variate 

Gaussian distribution (Murase and Nayar, 1995). The Eigenface approach shows that a 

large variation in facial appearance can be modeled by a low-dimensional linear 

approximation (Kirby and Sirovich, 1990). However, since PCA maximizes the total 

scatter across all image classes (i.e., all images of all faces) it retains unwanted variations 

due to lighting and facial expression. Thus, while PCA projections are optimal for 

reconstruction from a low-dimensional basis, they are not optimal from a class 

discriminatory standpoint. The PCA projections are also sensitive to the training images 

used to generate the eigenfaces. The features derived from the PCA are also referred to as 

 6



  

the most expressive features (MEFs) in the context of content-based image retrieval 

(Hwang and Weng, 2000, Swets and Weng, 1996,  Swets and Weng, 1999). 

Belhumuer et al.  (1997) have shown that the Fisher's Linear Discriminant 

Analysis (LDA) (Fisher, 1936) can produce well separated classes in a low-dimensional 

linear subspace even with significant variation in lighting and facial expression. Since 

LDA attempts to maximize the ratio of between-class scatter to within-class scatter, it 

was shown to outperform the PCA in terms of class discriminatory ability (Belhumeur et 

al., 1997). Martinez and Kak (2001), however, have cautioned that LDA outperforms 

PCA only when the training data set is large and representative enough.  For small 

training data sets PCA was shown to outperform LDA and exhibit lower sensitivity to the 

composition of the training data set compared to the latter (Martinez and Kak, 2001). 

Swets and Weng (1996, 1999) have combined optimal linear projection 

techniques based on PCA and LDA with a tree structure based on quasi-Voronoi space 

tessellation to achieve logarithmic retrieval complexity for content-based access to image 

databases. The most expressive features (MEFs) and the most discriminative features 

(MDFs) are computed at each level in the tree using PCA and LDA respectively. The 

resulting tree structure is shown to result in a hierarchical discriminant analysis (HDA) of 

the input high-dimensional space. In more recent work, Hwang and Weng (2000) 

generalize the idea of hierarchical discriminant analysis to that of hierarchical 

discriminant regression in order to unify classification and regression problems. The 

technique entails hierarchical clustering in both, input space and output space to generate 

a hierarchical discriminant regression (HDR) tree which can be used for coarse-to-fine 

classification. A sample-size-dependent negative log-likelihood (NLL) based distance 
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measure is introduced to deal with small-sample applications, large-sample applications 

and unbalanced sample applications. The concepts of HDA and HDR have also been 

applied to the problem of appearance-based hand gesture recognition from intensity 

image sequences where the gestures are limited to the American Sign Language (Cui and 

Weng, 1999, 2000). A related appearance-based approach to recognition of human 

motion uses the concept of motion history images (MHIs) and motion energy images 

(MEIs) to generate temporal view-based templates of the underlying motion (Bobick and 

Davis, 2001). A recognition scheme based on invariant moments is used to match the 

templates to stored instances of views of known actions. However, no attempt is made to 

reduce the dimensionality of the templates using projection methods. 

In general, linear projection techniques such as LDA and PCA tend to perform 

poorly when cast shadows need to be taken into account or when the underlying surface 

deviates from the Lambertian assumption or has a non-constant albedo.  Belhumeur and 

Kriegman (1998) have shown that under the assumption of a Lambertian surface with no 

shadowing, the set of face images illuminated by a single point source constitutes a 3-D 

linear subspace in the high-dimensional image space. But when the effect of cast shadows 

are taken into account, the set of face images under the Lambertian surface assumption 

and illuminated with multiple point light sources, constitute a convex polyhedral cone in 

high-dimensional image space termed as the illumination cone (Georghiades et al., 1998). 

If the shadowing effects are small, the illumination cone is flat enough to be 

approximated by a linear subspace (Georghiades et al., 2000). The illumination cone 

method has been shown to be more robust to pose variation and variation in facial 
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expression when compared to linear projection methods (Georghiades et al., 2000) since 

the former is inherently generative. 

Neural networks have also been used successfully for face and gesture recognition 

within the appearance-based recognition paradigm (Li and Lu, 1999, Rowley et al., 

1998a, 1998b). Neural networks have been successfully applied to the problem of frontal 

face detection (Rowley et al., 1998a) and also of face detection under unknown rotation 

(Rowley, 1998b). However, it is not clear whether neural networks can handle face or 

gesture recognition with a large number of degrees of freedom. Both, the training process 

and the recognition process become computationally far more complex because the size 

of the training set and the net’s set of responses grow exponentially with the number of 

degrees of freedom.  

Hidden Markov Models (HMMs) have also shown success, especially in temporal 

gesture recognition (Starner et al., 1998) and speech recognition (Rabiner, 1989). The 

HMM is a doubly stochastic process consisting of a probabilistic network with hidden 

and observable states. The hidden states drive the model dynamics and the probabilistic 

transitions between the hidden states are governed by a state transition matrix. An HMM 

is characterized by a state transition matrix, the probabilities of observed states and the 

initial state distribution. The training process entails the association of a distinct 

HMM with each discernable gesture and involves updating the parameters of the HMM 

so that chosen HMM best describes the spatio-temporal characteristics of the chosen 

gesture. The training is usually achieved by optimizing a maximum likelihood measure 

defined over a set of training examples for a specific gesture associated with the HMM. 

For first-order HMMs, efficient training algorithms based on dynamic programming 
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(termed as the Viterbi algorithm) can be designed (Rabiner, 1989). Complex gestures, 

however, cannot be adequately modeled by a first-order HMMs and entail higher-order 

HMMs which do not share the computational efficiency of the first-order HMM. Another 

potential drawback of the HMM is that the distributions of the observed states is typically 

modeled as a mixture of Gaussians (MoGs) in the interest of computational efficiency of 

the training procedure. Relaxation of the MoG assumption typically renders the training 

procedure computationally overwhelming. Also, in the original HMM, the probabilities 

of observed states are assumed to be stationary (i.e., time invariant), an assumption which 

may hold over a short time duration but not over the entire temporal interval 

characterizing the gesture. Nonstationary HMMs have been used for speech recognition 

but have found limited application in gesture recognition. 

Support Vector Machines (SVMs) (Vapnik, 1998) whose foundations stem from 

statistical learning theory have been used with some success in pattern recognition in 

general and face recognition in particular. Intuitively, given a set of points (representing 

features) in high-dimensional space derived from two classes, a linear SVM determines a 

hyperplane leaving the largest possible fraction of points of a class on the same side of 

the hyperplane while maximizing the distance of either class from the hyperplane. This 

optimal separating hyperplane (OSH) is determined by a relatively small subset of points 

from the two classes termed as support vectors. The support vectors span a subspace of 

the original high-dimensional space and completely characterize the OSH. The support 

vectors, thus, condense all the information contained in the training set needed to classify 

the new data points. Computation of the OSH and the support vectors entails solving a 

constrained optimization problem using the method of Lagrangian multipliers. 
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Linear SVMs are best suited for cases where the underlying data set is linearly 

separable (Vapnik, 1998). Linear SVMs can be extended to non-linear SVMs where the 

notion of an OSH is generalized to that of an optimal separating hypersurface to handle 

cases that are not linearly separable (Vapnik, 1998). Non-linear SVMs however, come at 

a significant computational price since the training process needed to compute the 

optimal separating hypersurface is much more complex. SVMs in their canonical 

formulation are designed for binary classification. For more general n-ary classification 

(i.e., classification into n > 2 classes), an OSH needs to be computed for every pair of 

classes. Thus the space and time complexity of the SVM scales quadratically with n. An 

alternative would be to use a tournament scheme wherein the n OSHs separating each of 

the n classes from the remaining n -1 classes are computed. The test pattern is classified 

relative to the n OSHs and the final classification is done based on the outcome of the n 

classifications. Although linear in space and time complexity the tournament scheme has 

been reported to yield ambiguous classification (Cortes and Vapnik, 1995). SVMs have 

been applied to face recognition in conjunction with elastic graph matching (Tefas et al., 

2001) and to 3D object recognition (Pontil and Verri, 1998). 

Keren et al. (2001) describe a technique termed as antifaces for the detection of 

faces under a large class of linear transformations. The detection problem is solved by 

sequentially applying simple linear filters (detectors) which are designed to yield small 

results on the facial images and large results on random images. The detectors are 

designed such that their results are statistically uncorrelated resulting in a false alarm rate 

that diminishes exponentially with an increasing number of detectors. Although there is 

no formal learning procedure involved (as is common with other appearance-based 
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methods), computing the set of optimal detectors for large-size images is computationally 

complex. Moreover, the technique relies on a priori assumptions about the statistical 

distribution of the gray levels of random images which is key to circumventing the 

learning procedure and may not hold in certain cases. Moreover, the technique of 

antifaces is more suited for detection of faces rather than recognition of faces (Keren, 

2001). 

There is one important point worth noting about linear projection techniques such 

as PCA and LDA; there is no formal method for determining the minimum dimension of 

the projected subspace for optimal discriminant analysis or classification. In contrast, the 

techniques for feature extraction and discriminant analysis to be investigated are 

accompanied by a formal testing procedure to determine the minimum dimension of the 

projected subspace for optimal classification. Moreover, the proposed techniques could 

also be used as a preprocessor for some of the classification techniques described above 

such as SVMs, neural networks, HDR and HDA.  

 

Two traditional methods for feature extraction and  

discriminant analysis: PCA and LDA 

Let X be the p×1 input vector, typically referred to as the predictor vector in 

statistical regression/classification and Y be the output, typically indicative of class. Y is 

referred to as the class indicator or categorical variable in statistical 

regression/classification. Let Y = 1, …, c. 
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I. Principal component analysis (PCA) 

Let ΣX = Var(X) be the covariance matrix of the predictor vector X. Let singular value 

decomposition be used to get the q eigenvectors corresponding to the q largest 

eigenvalues of ΣX i.e. λ1, …, λq,  where the eigenvalues are ordered in descending order 

of magnitude. These q eigenvectors form a q < p dimensional subspace. Typically, the 

rest of the p-q eigenvalues are close to zero. Further analysis is carried out in the reduced 

dimensional subspace spanned by ν1
TX, …, νq

TX. PCA ignores the existence of Y (the 

categorical variable).  PCA is also called the Karhunen-Loeve projection (Loeve, 1955). 

The following steps summarize the recognition process using PCA: 

1. Create Eigenspace 

1.a. Create the training data matrix (X): Each of the training images is stored in a 

vector of size p 

( )Ti
p

ii xxx ,,1 L= , ni ≤≤1  (n is the number of training images) 

The training images are then combined into a data matrix of size p× n. 

( )nxxxX ,,, 21 L=  

1.b. Compute the overall mean (µ): The overall mean image is a column vector such 

that each entry is the mean of all the corresponding pixels of the training images. 

T
p ),,,( 21 µµµµ L= , where ∑

=

=
n

i

i
jj x

n 1

1µ , pj ≤≤1  

1.c. Create the centered data matrix ( X~ ): Each of the training images must be 

centered. Subtracting the mean image from each of the training images centers the 

training images.  

µ−= ii xx~ , ni ≤≤1  
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Once the training images are centered, they are combined into a centered data matrix of 

size p× n. 

( )nxxxX ~,,~,~~ 21 L=  

1.d. Create the covariance matrix (Σ): The data matrix is multiplied by its transpose to 

create a covariance matrix. 

TXX ~~=Σ  

1.e. Compute the eigenvalues and eigenvectors of the covariance matrix: The 

eigenvalues )1,( pii ≤≤λ and corresponding eigenvectors )1,( pivi ≤≤  are computed for 

the covariance matrix. 

iii vv λ=Σ  

Order the eigenvalues λi’s from high to low. Keep only the eigenvectors associated with 

the non-zero eigenvalues.  

2. Project the training images 

Each of the centered training images ix~  is projected onto the eigenspace spanned by the 

retained eigenvectors (V). To project an image onto the eigenspace, calculate the dot 

product of the image with each of the ordered eigenvectors. 

iTi xVx ~ˆ =  

Therefore, the dot product of the image and the first eigenvector will be the first value in 

the new vector. The new vector of the projected image will contain as many values as the 

retained eigenvectors. 

3. Identify test images 

Each test image is first mean centered by subtracting the mean image, and is then 

projected into the same eigenspace. 
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µ−= ii yy~ , and 

iTi yVy ~ˆ =  

The projected test image is compared to every projected training image and the training 

image that is found to be closest to the test image is used to identify or classify the 

training image.  

II. Linear discriminant analysis (LDA) 

Let µi and Σi be the mean and covariance for class i. Define: 

and T
i

c

i iiB nS )()(
1

µµµµ −−=∑= ∑ ∑= ∈
−−=

c

i iX

T
ikikw

k
XXS

1
))(( µµ to be the between-class 

and within-class scatter matrices, respectively. We can assume that Sw is nonsingular, else 

use PCA to reduce its rank so that the reduced matrix is nonsingular. The goal of LDA is 

to find a matrix Γ = (γ1, …, γq) that maximizes the ratio 
γγ
γγ

W
T

B
T

S
S under the constraint 

ΓTSwΓ = I. When c=2, this technique is referred to as Fisher's linear discriminant analysis 

(LDA) (Fisher, 1936) whereas when c>2, it is called canonical covariate analysis 

(Mclachlan, 1992). Further analysis is carried out in the reduced subspace spanned by the 

columns of ΓT X. Typically, q < min (c-1, p). The following steps summarizes the 

recognition process: 

1. Compute the means: Compute the mean of the images in each class (µi) and the 

overall mean of all images (µ). 

2. Center the images in each class: Subtract the mean of each class from the images in 

that class. 

iii xxXXXx µ−=∈∈∀ ~,,  

 15



  

3. Center the class means: Subtract the overall mean from the class means. 

µµµ −= ii
~  

4. Calculate the within class scatter matrix: The within class scatter matrix measures 

the amount of scatter between items within the same class. For the ith class a scatter 

matrix (Si) is calculated as the sum of the covariance matrices of the centered images for 

that class.  

∑
∈

−−=
iXx

T
iii xxS ))(( µµ  

where µi is the mean of the training images in class i, The within class scatter matrix (Sw) 

is the sum of all the scatter matrices. 

∑
=

=
c

i
iw SS

1

 

5. Calculate the between class scatter matrix: The between class scatter matrix (SB) 

measures the amount of scatter between classes. It is calculated as the sum of the 

covariance matrices of the centered means of the classes, weighted by the number of 

images in each class. 

T
i

c

i iiB nS )()(
1

µµµµ −−=∑=
 

6. Solve the generalized eigenvalue problem: Solve for the generalized eigenvectors 

(V) and eigenvalues (Λ) of the within class and between class scatter matrices. 

SBV=ΛSWV 

7. Keep the first C-1 eigenvectors: Sort the eigenvectors by their associated eigenvalues 

from high to low and keep the first c-1 eigenvectors. These c-1 eigenvectors are the LDA 

basis vectors. 
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8. Project images onto eigenvectors: Project all the original (i.e. not centered) images 

onto the LDA basis vectors by calculating the dot product of the image with each of the 

LDA basis vectors. 

LDA is a well-known technique in classification and discriminant analysis. The 

optimal situation is encountered when X’s are normally distributed for each class i with 

equal covariance matrices i.e, Σi = Σ for i = 1, ..., c.  When it is not the case that all Σi = 

Σ, information that is critical for classification could be lost. Hence the fact that Σi could 

be different for distinct classes needs to be considered. 
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CHAPTER 3 

SIRFACE vs. FISHERFACE: RECOGNITION USING CLASS SPECIFIC 

LINEAR PROJECTION AND FIRST ORDER STATISTICS1

                                                 
1 Ling, Y., Yin, X., and Bhandarkar, S., To be submitted to Pattern Recognition 
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Abstract 

We develop a face recognition algorithm which is insensitive to large variation in 

lighting direction and facial expression using the dimension reduction methods in 

statistics. Taking a pattern classification approach, each pixel in an image is considered 

as a coordinate in a high-dimensional space. We linearly project the image into a 

subspace in a manner which discounts those regions of the face with large deviation, thus 

retains only those regions which are invariant to illumination and facial expression. Our 

projection method is based on Sliced Inverse Regression (SIR) (Li, 1991) and termed as 

the Sirface method. The Sirface method produces well separated classes in a low-

dimensional subspace, even under severe variation in lighting and facial expression. In 

the subspace sense, Sirface is equivalent to the Fisherface method (Belhumeur et al., 

1997) but produces the optimal (i.e. with the fewest dimensions) subspace under the 

Fisherface projection and hence results in lower error rate and reduced computational 

expense. 

 

Introduction 

During the past several years, numerous algorithms have been proposed for face 

recognition. While much progress has been made toward recognizing faces under small 

variations in lighting, facial expression and pose, reliable techniques for recognition 

under more extreme variations have proven elusive (Belhumeur et al., 1997).  

In this paper, we outline a new approach for face recognition, one that is 

insensitive to large variations in lighting and facial expressions. Note that lighting 
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variability includes not only light source intensity, but also directions and number of light 

sources.  

Our approach to face recognition exploits two observations: 

1) All of the images of a Lambertian surface, taken from a fixed viewpoint, but 

under varying illumination, lie in a 3D linear subspace of the high-dimensional image 

space (Belhumeur et al., 1997). 

2) Because of regions of shadowing, specularities, and changes in facial 

expressions, the above observation does not exactly hold. In practice, certain regions of 

the face may exhibit deviation from the linear subspace, and, consequently, are less 

reliable for the purpose of recognition (Belhumeur et al., 1997). 

We make use of these observations by finding a linear projection of the faces 

from the high-dimensional image space to a significantly lower dimensional feature space 

which is insensitive to both variation in lighting direction and facial expression. Thus 

dimension reduction techniques are very useful in such problems. We then import the 

dimension reduction concepts originally developed in statistics to the problem of face 

recognition. Our method is based on sliced inverse regression (SIR Li, 1991) and for 

which we develop an algorithm called the Sirface method. The subspace computed by the 

Sirface method is equivalent to the one obtained from the Fisherface method (Belhumeur 

et al., 1997); hence it maximizes the ratio of between-class scatter to within-class scatter. 

But the Sirface method can further reduce the subspace dimension determined by the 

Fisherface method and result in a possible smaller dimensional subspace. This could 

lower both the error rate and computation expense. 
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While there are other methods such as correlation, the Eigenface method and 

linear subspace projection, the comparison among these methods along with the 

Fisherface method can be found in Belhumeur et al. (1997).  The Fisherface method was 

shown to be superior to correlation, the Eigenface method and linear subspace projection. 

Thus the main point of this paper is to compare the Sirface method to the Fisherface 

method. 

We should point out that Fisher’s linear discriminant analysis (LDA) is a classical 

technique, especially in the areas of classification and discriminant analysis in statistics. 

Sliced inverse regression (SIR) (Li, 1991), on the other hand, is a more recent technique 

in statistical regression. The connection between regression and discriminant analysis 

was established recently (Kent, 1991, Cook and Yin, 2000). Details about the Fisherface 

method and the Sirface methods are provided in the following sections. 

 

Methods 

The face recognition problem can be simply stated: Given a set of face images 

labeled with the person’s identity (the learning set) and an unlabeled set of face images 

from the same group of people (the test set), identify each person in the test images. 

 The standard procedure here is to use the learning set to establish some 

classification rules for the images and then apply these rules to classify the test set into 

the right image classes. Formally, let us consider a set of n sample images X1, ..., Xn 

taking values in a  p-dimensional image space, and assume that each image belongs to 

one of c classes 1,..., c. Thus we need to establish the rules based on the p-dimensional 

image space and classify the Xi’s to the right class. This is in fact a classification 
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problem. Since p is large, we would like to reduce the p dimensional image space to the 

smallest q dimensional image space, or more specifically find a p×q matrix B such that 

BTX is a new smaller q-dimensional subspace that retains all the classification 

information. This means that we will classify the images Xi into the same class regardless 

of whether or not we use the original p-dimensional image space or the reduced q-

dimensional feature subspace. That is, the subspace spanned by the columns of B is a 

central discriminant subspace (Cook and Yin, 2001). In addition, using the reduced q-

dimensional image space will have many advantages. For example, if q≤ 3, we can easily 

view the projected data. A reduced subspace will reduce the classification error rate and 

lower the computation expense. Although we have data in the original X-scale, 

equivalently we can always transform them into an equivalent Z-scale where 

)(2
1

∑−
−=

X
XXZ µ  

and ∑X and µX are the covariance matrix and mean vector of X. Here we assume that ∑X 

is nonsingular, otherwise we can first reduce the dimensionality of the original X using 

principal components analysis (PCA). The use of the Z-scale allows easy comparison of 

various dimensionality reduction techniques. 

In the next section, we examine the two pattern classification techniques for 

solving the face recognition problem. We approach this problem within the pattern 

classification paradigm, considering each of the pixel values in a sample image as a 

coordinate in a high-dimensional space (the image space). 
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The Fisherface Method 

Let µi and ∑i be the mean and covariance for class i. Define 
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Note that in the Z-scale, µ = 0. We can always assume that SW is nonsingular otherwise 

use PCA to reduce its rank so that the reduced dimensional subspace has nonsingular SW. 

Belhumeur et al. (1997) developed an algorithm called Fisherface to find a matrix 

),...,( 1 qγγ=Γ  that maximizes the following ratio: 

γγ
γγ

W
T

B
T

S
S  

under Γ . When c = 2, this technique is called Fisher’s discriminant analysis 

(FDA). When c > 2, it is called canonical covariate analysis (Mclachlan, 1992).  

ISW
T =Γ

The Fisherface method is a well-known technique in classification and 

discriminant analysis. The optimal situation is encountered when the X’s are normally 

distributed for each class i with the same covariances for all classes, i.e. ∑i = ∑ for i = 

1,...,c.  When not all ∑i = ∑, information needed for classification could be lost, hence the 

difference among ∑i needs to be considered. Since the Fisherface method is based on the 

assumption of normal distribution, in cases where the assumption is not satisfied, it could 

lose important classification information. 
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The Sirface Method 

Sliced inverse regression (SIR, Li 1991) was originally developed to reduce the data 

dimensionality in regression problems. Let (Yi, Xi) i = 1, ..., n be a sample, where Y is a 

response variable and X is a predictor vector. Li (1991) considered the inverse mean of 

E(X|Y) in the Z-scale, by forming the matrix: Var(E(Z|Y)). Singular value decomposition 

is used to find the minimum dimension of this matrix. We assuming that SW is 

nonsingular, otherwise we can first reduce its rank to make it nonsingular using PCA as 

in Belhumeur et al. (1997). Kent (1991) mentioned that SIR is equivalent to LDA when Y 

is a categorical variable. Cook and Yin (2001) further developed this connection. For a 

slightly different matrix whose columns span the same subspace as SIR, Geisser (1977) 

proved a similar result. 

In fact, for a categorical Y, the SIR matrix is BSIR S
n

M 1
= . For SIR, we only need 

to apply singular value decomposition to BS
n
1 , that is, we need to find its d (the reduced 

dimension) non-zero eigenvalues and their corresponding eigenvectors. We call this 

method the Sirface method. 

 

Comparison with The Fisherface Method 

In the Sirface method, the subspace spanned by the d non-zero eigenvectors is the same 

as the subspace spanned by the c-1 eigenvectors in the Fisherface method. Hence using 

these d vectors does not result in loss of information.  But the Fisherface method uses 

pre-specified m eigenvectors corresponding to the m largest eigenvalues. If m<d, then the 

Fisherface method may lose important classification information. If m>d, then the 
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Fisherface method uses redundant predictor vectors which may include noise. In the case 

of the Sirface method, there exists a formal method for determining the optimal 

dimensionality d of the reduced dimensional subspace based on input data. Thus the 

Sirfaces method is “optimal” in this sense.  

The Sirface method can result in dimensionality reduction beyond that possible 

with the Fisherface method. In the absence of any further information, the Fisherface 

method is constrained to choose c-1 (where c is the number of classes) as the 

dimensionality of the reduced subspace. Any further reduction is done via exhaustive 

search. The Sirface method, on the other hand, yields a reduced dimensionality of d 

which is often less than c-1. While LDA, in general, is not robust to non-normal data 

(Krzanowski 1977), the Sirface method can help to find outliers and hence is much more 

robust (Cook and Yin, 2001). 

 

Test for determining the optimal reduced dimension d 

Let  

Γ







Γ=

00
0D

M T
SIR  

where Γ is a p× p orthogonal matrix whose columns are the eigenvectors of 

M

pvv ,,1 L

v ,1 L

pv

SIR, and ΓT=(Γ1, Γ0), Γ1 is a p× d matrix whose columns are the eigenvectors of 

M

dv,

SIR, Γ0 is a p×(p-d) matrix whose columns are the eigenvectors of Mdv ,,1 L+ SIR. D is a 

d×d diagonal matrix whose elements dλλ ≥≥L1

dλ̂≥L

are the eigenvalues of MSIR. If d is 

known, we just use the estimate of the sample matrix , and use their λ̂1 ≥ SIRM̂
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corresponding eigenvectors . If d is unknown, an inference procedure about d is 

required. The relevant test statistic (Li, 1991) is  

dvv ˆ,,ˆ1 L

∑
+=

=Λ
p

dj
jd n

1

ˆˆ λ  

where ’s are the eigenvalues of the sample matrix . jλ̂ SIRM̂

Generally, the general asymptotic distribution for the SIR test statistic is a linear 

combination of independent chi-squared random variables each with one degree of 

freedom (Bura and Cook, 2001). For some special cases, such as normal predictors the 

test statistic has a central chi-square distribution (Li 1991, Cook 1998). The above result 

is a corollary of theorem 2 of Bura and Cook (2001). 

Corollary 1: If Z|Y is normally distributed, then Λ  has an asymptotic chi-squared 

distribution with (p-d)(c-d-1) degrees of freedom. 

d
ˆ

Another choice is a permutation test which was first suggested by Cook and Weisberg 

(1991) and further developed by Cook and Yin (2001). We believe that this test is much 

more robust as demonstrated by Cook and Yin (2001), Yin (2000) and Yin and Cook 

(2002). When the predictors are normal, both the tests are in agreement; otherwise, the 

permutation test can recover the optimal reduced dimension but not the asymptotic test. 

Let U = [uj] denote the p×p matrix of eigenvectors uj of the kernel matrix M. 

Consider testing the hypothesis that d ≤ m versus d > m.  Partition U = (U1, U2) where U1 

is p×m.  The following proposition (Cook and Yin, 2001) provides a basis for 

constructing the permutation tests and for inference on d: 
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Proposition 1: Let U be constructed as indicated previously. 

(i) If (Y, U1
T Z) ||  (independent of) U2

T Z then m ≥ d. 

(ii) Assume that U1
T Z || U2

T Z.  Then m = d if and only if (Y, U1
T Z) || U2

T Z. 

(iii) Assume that U1
T Z || U2

T Z|Y.  If U2
T Z || Y, then m ≥ d. 

Part (i) of this proposition may be the most important in practice because it 

requires no conditions.  It says that if (Y, U1
T Z) is independent of U2

T Z (i.e., 

) then we can discard the last p - m principal 

predictors U

)(),(),,( 2121 ZUfZUYfZUZUYf TTTT ⋅=

2
T Z without any loss of information on classification. We propose to test that 

possibility by comparing the observed test statistic Λ  to its permutation distribution 

under the null hypothesis.  This involves essentially re-computing for each of a 

selected number of random permutations of the elements of the sample version of U

m
ˆ

mΛ̂

2
T Z, 

and then comparing the observed value to its permutation distribution to obtain the P-

values vm, m = 0, …, p-1. 

If vm is large and non-significant then the subspace spanned by U1 (denoted as 

S(U1) ) provides an upper bound on d. The smallest inferred upper bound is the one with 

the first non-significant P-value in the sequence v0, …, vp-1. 

Application of Proposition 1(i) to test the hypothesis that d≤ m in practice 

involves the following general steps: 

1. Compute the sample kernel matrix M̂

(=

for SIR and form the matrices of its 

eigenvectors U and U . )ˆ,...,ˆ(ˆ
11 muu= )ˆ,...,ˆˆ

12 pm uu +

2. Construct the vectors of sample principal predictors V and V , 

i=1,…,n. 

i
T

i zU ˆˆˆ
11 = i

T
i zU ˆˆˆ

22 =
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3. Randomly permute the indices i of the V ’s to obtain the permuted set V . i2̂
*

2̂i

4. Construct the test statistic Λ  based on the original data Y*ˆ
m i, V  along with the    

permuted data V , i=1, … , n. 

*
1̂i

*
2̂i

After repeating steps 3 and 4 a number of times, the P-value vm is just the fraction of  

that exceeds Λ . Repeating steps 1−4 for m=0, … , p-1 gives the required series of P-

values.  We found this simple test to be quite useful in practice. 

*ˆ
mΛ

m
ˆ

The theory behind the test computed under Proposition 1(i) guarantees only an 

upper bound on d so it is possible that we will end with more predictors than needed. 

Hence, additional assumptions are needed to eliminate that possibility. Proposition 1 (ii) 

requires that U1
T Z and U2

T Z be marginally independent, when Z is normally distributed. 

Using the test procedure sketched previously, the condition of Proposition 1(ii) allows us 

to infer directly about d rather than to infer about an upper bound. 

A first approach to some discriminant analysis problems may involve the 

assumption that the conditional distribution of Z|Y is normal.  It may be reasonable in 

such cases to base a permutation test on the conditional independence statement in 

Proposition 1(iii) rather than on marginal independence U1
T Z || U2

T Z as in Proposition 

1(ii).  Assuming U1
T Z || U2

T Z|Y, U2
T Z || Y implies m ≥ d.  Thus, failure to reject U2

T Z 

|| Y by using a Permutation test allows us to infer that the principal predictors U2
T Z can 

be discarded. The permutation algorithm sketched above can be adapted to test U2
T Z || Y. 

 

The algorithm for the Sirface method 

The following steps summarize the recognition process using the Sirface method: 

1. Create the training data matrix (X): Each of the training images is stored in a vector 

 31



  

of size p 

( )Ti
p

ii xxx ,,1 L= , ni ≤≤1  (n is the number of training images) 

The training images are then combined into a data matrix of size p× n. 

( )nxxxX ,,, 21 L=  

2. Compute the overall mean (µ): The overall mean image is a column vector such that 

each entry is the mean of all the corresponding pixels of the training images. 

T
p ),,,( 21 µµµµ L= , where ∑

=

=
n

i

i
jj x

n 1

1µ , pj ≤≤1  

3. Create the centered data matrix ( X~ ): Each of the training images must be centered. 

Subtracting the mean image from each of the training images centers the training images.  

µ−= ii xx~ , ni ≤≤1  

Once the training images are centered, they are combined into a centered data matrix of 

size p× n. 

( )nxxxX ~,,~,~~ 21 L=  

4. Create the covariance matrix (Σ): The data matrix is multiplied by its transpose to 

create a covariance matrix. 

TXX
n

~~1
=Σ  

5. Compute the eigenvalues and eigenvectors of the covariance matrix: The 

eigenvalues )1,( pii ≤≤λ (ordered from high to low) and corresponding eigenvectors 

 are computed for the covariance matrix. )1,( pivi ≤≤

iii vv λ=Σ  
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6. Compute Z-scale images (Z): If Σ is nonsingular, then XZ T ~
2
1

ΓΛ= − . Otherwise, find 

the number of positive eigenvalues (k) and 

XZ T
kk

~
2
1

ΓΛ= −  

Where , 


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


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0

01

O ),( 1 kk vv K=Γ  

7. Compute the Sir matrix (MSIR) in Z-scale 

BSIR S
n

M 1
=  

Where SB is the between scatter given by matrix T
i

c

i iiB nS µµ∑ =
=

1
, and µi is the mean 

for class i in Z-scale. 

8. Test for the optimal reduced dimension of the subspace (d): 

8.a Compute the eigenvalues ( )1, kii ≤≤λ (ordered from high to low) and corresponding 

eigenvectors  for the Sir matrix. )1,( kivi ≤≤

8.b Compute the test statistics 

∑
+=

=
k

di
inT

1
λ  

T is asymptotic chi-squared distribution with (k-d)(c-d-1) degree of freedom. 

8.c Compute p-value for d: If the computed p-value is greater than 5%, then we conclude 

that the reduced dimension is d. 

9. Project the training images onto the reduced subspace: each of the training images 

in Z-scale is projected onto the reduced subspace. 
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10. Identify the test images: each test image is first transformed into Z-scale and then 

projected into the reduced subspace. The projected test image is compared to every 

projected training image and the training image that is found to be closest to the test 

image is used to identify the test image. 

 

Experimental results 

Because of the specific hypotheses that we want to test about the relative 

performance of the considered algorithms, many of the standard databases were 

inappropriate (Belhumeur et al., 1997). In this study, we use a database from Yale 

University called The Yale Face Database B (Georghiades et al., 2001). The database 

contains 5760 single light source images of 10 subjects, each seen under 576 viewing 

conditions (9 poses x 64 illumination conditions) (Figure 3.1). For every subject in a 

particular pose, an image with ambient (background) illumination was also captured. The 

images in the database were captured using a special-purpose illumination rig. This rig is 

fitted with 64 computer-controlled strobes. The 64 images of a subject in a particular 

pose were acquired at camera frame rate (30 frames/second) in about 2 seconds, so there 

is only small change in head pose and facial expression for those 64 (+1 ambient) images. 

The image with ambient illumination was captured without a strobe going off. 

Five experiments are constructed using Yale Face Database B to test the 

Fisherface method and the Sirface method. For all experiments, classification was 

performed using a nearest neighbor classifier. The results tabulated in Table 1 have 

shown that, whereas in the case of the Fisherface method, a reduced dimensionality of c-1 

(where c is the number of classes), is adequate, the Sirface method is capable of 

 34
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Figure 3.1: Original (captured) images of a single individual from the Yale Face Database 
B, showing the variability due to illumination and pose. The images have been divided 
into four subsets (1 through 4 from top to bottom) according to the angle the light source 
direction makes with the camera axis. Every pair of columns shows the images of a 
particular pose (1 through 9 from left to right) (from Georghiades et al., 2001) 
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Table 3.1. Comparison of the Sirface and Fisherface methods on the Yale Face 
Database B 

Dataset Nclass Nimage/class Ntrain Ntest dFisher dSir εFisher εSir 
1 20 5 100 140 19 9 5.0% 5.0% 
2 20 5 100 120 19 9 7.5% 7.5% 
3 20 3 60 140 19 6 20.0% 21.4% 
4 10 5 50 70 9 5 4.3% 4.3% 
5 10 7 70 70 9 7 1.5% 1.5% 

Nclass: number of classes, Nimage/class: number of training images in each class, Ntrain: number 
of training images, Ntest: number of test images, dFisher: reduced dimensionality resulting from the 
Fisherface method, dSir: reduced dimensionality resulting from the Sirface method, εFisher: 
classification error of the Fisherface method, εSir: classification error of the Sirface method 

 

determining a reduced dimensionality much lower than c-1 without the need for 

exhaustive search and without compromising the classification accuracy. Also, the 

Sirface method is able to achieve over a 90% classification accuracy with as low as 5 

training images per class (Table 1, Dataset 1, 2, 4, and 5). The classification accuracy of 

the Sirface method drops to 78.6% only when the number of training images per class is 

reduced to 3 (Table 1 Dataset 3). Generally, the classification accuracy decreases for both 

methods as the sample size of the training images decreases. 

 

Conclusion 

In this paper we proposed a novel technique for data dimensionality reduction in 

the context of appearance-based face recognition. This technique is based on Sliced 

inverse regression (SIR) and is termed as the “Sirface” method. Initial experiments on the 

Yale Face Database B show that the Sirface method can yield classification accuracy 

comparable to the well-known Fisherface method while resulting in dimensionality 

reduction beyond that possible with the Fisherface method. Whereas in the Fisherface 

method, the optimum reduced dimensionality can be determined only via exhaustive 
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search, the Sirface method has a formal technique for determining the optimum reduced 

dimensionality. Further testing of the Sirface method on a wider set of human faces is 

currently in progress. 
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CHAPTER 4 

SAVEFACE: RECOGNITION USING CLASS SPECIFIC 

LINEAR PROJECTION AND SECOND ORDER STATISTICS1

                                                 
1 Ling, Y., Yin, X., and Bhandarkar, S., to be submitted to Pattern Recognition 
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Abstract 

Using the dimension reduction methods in statistics, we develop a face 

recognition algorithm which is insensitive to large variation in lighting direction and 

facial expression. Taking a pattern classification approach, we consider each pixel in an 

image as a coordinate in a high-dimensional space and linearly project the image into a 

subspace in a manner which discounts those regions of the face with large deviation. Our 

projection method is based on Sliced Average Variance Estimation (SAVE) (Cook and 

Weisberg 1991) and termed as the Saveface method. It produces well-separated classes in 

a low-dimensional subspace, even under severe variation in lighting and facial 

expression. In the subspace sense, the Saveface method is more comprehensive than the 

Fisherface method (Belhumeur et al., 1997) and the Sirface method. It produces the 

optimal (i.e., with the fewest dimension) subspace for the quadratic discriminant analysis 

(QDA) and hence results in a lower error rate and reduces computational expense. 

 

Introduction 

During the past several years, numerous algorithms have been proposed for face 

recognition. While much progress has been made toward recognizing faces under small 

variations in lighting, facial expression and pose, reliable techniques for recognition 

under more extreme variations have proven elusive (Belhumeur et al., 1997). 

In this paper, we outline a new approach for face recognition, one that is 

insensitive to large variations in lighting and facial expressions. Note that lighting 

variability includes not only light source intensity, but also direction and number of light 

sources.  
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Our approach to face recognition exploits two observations: 

1) All of the images of a Lambertian surface, taken from a fixed viewpoint, but 

under varying illumination, lie in a 3D linear subspace of the high-dimensional input 

image space (Belhumeur et al., 1997). 

2) Because of regions of shadowing, specularities, and variation in facial 

expression, the above observation does not exactly hold. In practice, certain regions of 

the face may exhibit deviation from the linear subspace, and, consequently, are less 

reliable for the purpose of recognition (Belhumeur et al., 1997). 

We exploit these observations by finding a linear projection of the faces from the 

high-dimensional image space to a significantly lower dimensional feature space which 

in insensitive both to variation in lighting direction and facial expression. Thus, 

dimension reduction techniques are very useful in such problems. We then import the 

data dimension reduction concepts originally developed in statistics to the problem of 

face recognition. Our approach to face recognition is based on sliced average variance 

estimation (SAVE) (Cook and weisberg, 1991) for which we develop an algorithm called 

the Saveface method. The reduced-dimensional subspace computed by the Saveface 

method is equivalent to the subspace obtained via quadratic discriminant analysis (QDA) 

which is a classical technique, especially in the area of classification and discriminant 

analysis in statistics. Sliced average variance estimation, on the other hand, is a fairly 

new technique in statistical regression. The connection between SAVE and QDA has 

been established recently (Cook and Yin, 2001). 

There are other methods for face recognition such as correlation, Eigenface and 

linear subspace projection. A comparison among these methods along with the Fisherface 
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method can be found in Belhumeur et al. (1997).  The Fisherface method was shown to 

be superior to the correlation, Eigenface and linear subspace projection methods. An 

improved version of the Fisherface method is the Sirface method. Thus the main point of 

this paper is to compare the Saveface method to the Sirface method. Details about this 

method will be presented in the next several sections. 

 

Method 

The face recognition problem can be simply stated: Given a set of face images 

labeled with the person’s identity (the learning set) and an unlabeled set of face images 

from the same group of people (the test set), identify each person in the test images.  

The procedure here is to use the learning set to establish some classification rules 

for the training set images and then applies these rules to classify the test set images to 

the right images. Formally, let us consider a set of n sample images (X1, ..., Xn) taking 

values in a p-dimensional image space, and assume that each image belongs to one of c 

classes ( 1, ..., c). Thus we need to establish the rules based on the p-dimensional image 

space and classify the Xi’s in to the right class. This is in fact a classification problem. 

Since p is large, we’d like to reduce the p dimensional image space to smallest q-

dimensional feature space. More specifically, we attempt to find a p × q matrix B so that 

BTX is a new smaller q-dimensional subspace that retains all the classification 

information. This means that we will classify the Xi into the same class regardless of 

whether or not we use the original p-dimensional image space or the reduced q-

dimensional image subspace. In other words, the subspace spanned by the columns of B 

is a central discriminant subspace (Cook and Yin 2001). In addition, using the reduced q-
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dimensional image space will have many advantages. For example, if q ≤ 3, we can view 

the sampled data. A reduced dimensional subspace will reduce the error rate and reduce 

the computational expense. Although we have data in the original X-scale space, 

equivalently we can always transform the data into a Z-scale space, where 

∑−
−= 2

1

)(
X xXZ µ  

and Σx and µx are the covariance matrix and mean vector of X. Here we assume Σx is 

nonsingular, otherwise we can reduce the original X using principal components analysis 

(PCA) first. The use Z-scale permits easy comparison of the various dimensionality 

reduction techniques. 

In the next section, we examine the Saveface method for solving the face 

recognition problem. We approach this problem within the pattern classification 

paradigm, considering each of the pixel values in a sample image as a point in a high-

dimensional space (i.e., the image space). 

 

The Saveface method 

Sliced Average Variance Estimation (SAVE, Cook and Weisberg, 1991) was originally 

developed for dimensionality reduction in statistical regression problems. Let (Yi, Xi) i=1, 

..., n be a sample, where Y is a response variable and X is a predictor vector. Cook and 

Weisberg (1991) considered the following matrix in the Z-scale: . Then by 

using singular value decomposition one can find the minimum dimension of this matrix, 

by identifying the eigenvectors whose corresponding eigenvalues are nonzero. We term 

this method the Saveface method. 

2
| )( YZIE Σ−
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Let µi and Σi be the mean and covariance for class i where i=1, ..., c. If the 

response variable Y=1, ..., c, then the SAVE matrix is given by 

∑
=

Σ−=
c

i
in

n
SAVE IM i

1

2)(  

Cook and Yin (2001) developed the connection between SAVE and the classical 

quadratic discriminant analysis (QDA) in the subspace sense. Note that MSAVE itself does 

not need any normal distribution assumption on Z|Y. The subspace spanned by MSAVE is 

S(I - Σi, i = 1, …, c) (Cook and Critchley, 2000). Under normal distribution assumptions, 

Odell (1979), Decell, Odell and Coberly (1981), Tubbs, Coberly, and Young (1982), and 

Young and Odell (1984), Young, Marco, and Odell (1987) consider an equivalent 

subspace using different matrices. Based on Decell, Odell and Coberly (1981)’s results, 

Schott (1993) formulated a slightly different matrix under the normal distribution 

assumption, whose subspace is equivalent to the SAVE subspace. 

 

Comparison with the Sirface method 

Cook and Yin (2001) recently showed a direct link between SAVE and QDA which is a 

well-known technique in classification and discriminant analysis. The optimal situation 

for QDA is that the conditional variables Z|Y = i are normally distributed for each class i 

with different covariances. When Σi = Σ for i = 1, ..., c, the SAVE matrix reduces to the 

SIR matrix. When not all Σi = Σ, using the SIR matrix could result in loss of classification 

information, whereas the SAVE matrix captures all the classification information. On the 

other hand, SAVE is “optimal” for QDA, since it removes all the redundant directions. In 
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addition, in a manner similar to Sirface, Saveface only finds the smallest set of predictors 

while we still could choose different classifiers. 

Generally speaking, SIR captures all information in the first (inverse) moment and 

SAVE captures all information in the first two (inverse) moments. In other words, the 

Sirface method estimates the mean difference subspace while the Saveface method 

estimates the mean and covariance difference subspace. Since S(MSIR) ⊆ S(MSAVE), 

Saveface is more comprehensive. 

 

Test for determining the optimal reduced dimension d 

Let 

Γ







Γ=

00
0D

M T
SAVE  

Where Γ is a p× p orthogonal matrix whose columns are the eigenvectors v of 

M

pv,,1 L

d

SAVE, and ΓT=(Γ1, Γ0), Γ1 is a p× d matrix whose columns are the eigenvectors 

of Mdvv ,,1 L

d vv ,,1 L+

SAVE, Γ0 is a p×(p-d) matrix whose columns are the eigenvectors 

of Mp SAVE. D is a d×d diagonal matrix whose elements λλ ≥≥L1

dλ̂≥≥L

dv̂,L

are the 

eigenvalues of MSAVE. If d is known, we just use the estimate of the sample 

matrix , and use their corresponding eigenvectors v

λ̂1

v ,ˆ1SAVEM̂ ˆ = . If d is unknown, 

an inference procedure about d is required. The relevant test statistic (Li, 1991) is  

∑
+=

=Λ
p

dj
jd n

1

ˆˆ λ  

Where ’s are the eigenvalues of the sample matrix . jλ̂ SAVEM̂
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So far, there is no general asymptotic distribution for the SAVE test statistic. 

Cook and Lee (1999) developed a special asymptotic test for the binary classification 

problems where Y = 0,1. Here we use a permutation test which was used in the Sirface 

method as first suggested by Cook and Weisberg (1991) and further developed by Cook 

and Yin (2001). We believe that this test is quite robust as demonstrated by Cook and Yin 

(2001), and Yin and Cook (2002). When the predictors are normal, both the asymptotic 

test and the permutation test are in agreement, otherwise, permutation test can recover the 

optimal reduced dimension but not the asymptotic test. 

Let U = (uj) denote the p × p matrix of eigenvectors uj of the population kernel 

matrix M. Consider testing the hypothesis that d ≤ m versus d > m.  Partition U = (U1, U2) 

where U1 is p × m.  The following proposition (Cook and Yin 2001) provides a basis for 

constructing permutation tests and for inference on d: 

Proposition 1: Let U be constructed as indicated previously. 

(i) If (Y, U1
T Z) ||  (independent of) U2

T Z then m ≥ d. 

(ii) Assume that U1
T Z || U2

T Z.  Then m = d if and only if (Y, U1
T Z) || U2

T Z. 

(iii) Assume that U1
T Z || U2

T Z|Y.  If U2
T Z || Y, then m ≥ d. 

Part (i) of this proposition may be the most important in practice because it 

requires no conditions.  It says that if (Y, U1
T Z) is independent of U2

T Z (i.e., 

) then we can discard the last p - m principal 

predictors U

)(),(),,( 2121 ZUfZUYfZUZUYf TTTT ⋅=

2
T Z without any loss of information on classification. We propose to test that 

possibility by comparing the observed test statistic Λ  to its permutation distribution 

under the null hypothesis.  This involves essentially re-computing for each of a 

selected number of random permutations of the elements of the sample version of U

m
ˆ

mΛ̂

2
T Z, 
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and then comparing the observed value to its permutation distribution to obtain the P-

values vm, m = 0, …, p-1. 

If vm is large and non-significant then the subspace spanned by U1 (denoted as 

S(U1) ) provides an upper bound on d. The smallest inferred upper bound is the one with 

the first non-significant P-value in the sequence v0, …, vp-1. 

Application of Proposition 1(i) to test the hypothesis that d≤ m in practice 

involves the following general steps: 

5. Compute the sample kernel matrix M̂

(=

for SIR and form the matrices of its 

eigenvectors U and U . )ˆ,...,ˆ(ˆ
11 muu= )ˆ,...,ˆˆ

12 pm uu +

6. Construct the vectors of sample principal predictors V and V , 

i=1,…,n. 

i
T

i zU ˆˆˆ
11 = i

T
i zU ˆˆˆ

22 =

7. Randomly permute the indices i of the V ’s to obtain the permuted set V . i2̂
*

2̂i

8. Construct the test statistic Λ  based on the original data Y*ˆ
m i, V  along with the    

permuted data V , i=1, … , n. 

*
1̂i

*
2̂i

After repeating steps 3 and 4 a number of times, the P-value vm is just the fraction of  

that exceeds Λ . Repeating steps 1−4 for m=0, … , p-1 gives the required series of P-

values.  We found this simple test to be quite useful in practice. 

*ˆ
mΛ

m
ˆ

The theory behind the test computed under Proposition 1(i) guarantees only an 

upper bound on d so it is possible that we will end with more predictors than needed. 

Hence, additional assumptions are needed to eliminate that possibility. Proposition 1 (ii) 

requires that U1
T Z and U2

T Z be marginally independent, when Z is normally distributed. 
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Using the test procedure sketched previously, the condition of Proposition 1(ii) allows us 

to infer directly about d rather than to infer about an upper bound. 

A first approach to some discriminant analysis problems may involve the 

assumption that the conditional distribution of Z|Y is normal.  It may be reasonable in 

such cases to base a permutation test on the conditional independence statement in 

Proposition 1(iii) rather than on marginal independence U1
T Z || U2

T Z as in Proposition 

1(ii).  Assuming U1
T Z || U2

T Z|Y, and U2
T Z || Y implies m ≥ d.  Thus, failure to reject 

U2
T Z || Y by using a permutation test allows us to infer that the principal predictors U2

T 

Z can be discarded. The permutation algorithm sketched above can be adapted to test U2
T 

Z || Y. 

 

The algorithm for the Saveface method 

The following steps summarize the recognition process using the Sirface method: 

1. Create the training data matrix (X): Each of the training images is stored in a vector 

of size p 

( )Ti
p

ii xxx ,,1 L= , ni ≤≤1  (n is the number of training images) 

The training images are then combined into a data matrix of size p× n. 

( )nxxxX ,,, 21 L=  

2. Compute the overall mean (µ): The overall mean image is a column vector such that 

each entry is the mean of all the corresponding pixels of the training images. 

T
p ),,,( 21 µµµµ L= , where ∑

=

=
n

i

i
jj x

n 1

1µ , pj ≤≤1  
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3. Create the centered data matrix ( X~ ): Each of the training images must be centered. 

Subtracting the mean image from each of the training images centers the training images.  

µ−= ii xx~ , ni ≤≤1  

Once the training images are centered, they are combined into a centered data matrix of 

size p× n. 

( )nxxxX ~,,~,~~ 21 L=  

4. Create the covariance matrix (Σ): The data matrix is multiplied by its transpose to 

create a covariance matrix. 

TXX
n

~~1
=Σ  

5. Compute the eigenvalues and eigenvectors of the covariance matrix: The 

eigenvalues )1,( pii ≤≤λ (ordered from high to low) and corresponding eigenvectors 

 are computed for the covariance matrix. )1,( pivi ≤≤

iii vv λ=Σ  

6. Compute Z-scale images (Z): If Σ is nonsingular, then XZ T ~
2
1

ΓΛ= − . Otherwise, find 

the number of positive eigenvalues (k) and 

XZ T
kk

~
2
1

ΓΛ= −  

Where , 















=Λ

k

k

λ

λ

0

01

O ),( 1 kk vv K=Γ  

7. Compute the Save matrix 

∑
=

Σ−=
c

i
in

n
SAVE IM i

1

2)(  
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where I is identity matrix of size k × k and Σi is covariance matrix (k × k) for class i in Z-

scale. 

8. Test for the optimal reduced dimension of the subspace (d): 

8.a Compute the eigenvalues ( )1, kii ≤≤λ (ordered from high to low) and corresponding 

eigenvectors  for the Save matrix. )1,( kivi ≤≤

8.b Test the reduced dimension and define the reduced feature subspace: a permutation 

test based on Cook and Yin (2001)’s proposition is constructed to infer the reduced 

dimension. 

9. Project the training images onto reduced subspace: each of the training images in 

Z-scale is projected onto the reduced subspace. 

10. Identify the test images: each test image is first transformed into the Z-scale and 

then projected onto the reduced subspace. The projected test image is compared to every 

projected training image and the training image that is found to be closest to the test 

image is used to identify the training image. 

 

Experimental results 

Since the Saveface method estimates both the mean and covariance difference 

subspace while the Sirface method only estimates the mean difference subspace, the 

assumption that the covariance matrices contain class-discriminantory information must 

be satisfied in the real face databases to show the improvement in the discriminatory 

capability of the Saveface method over the Sirface method. In other words, in such 

databases, the class-discriminatory information lies not only in the mean difference 

subspace but also in the covariance matrices. The Saveface method is able to recover the 
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Fig. 4.1. The face database for testing the Saveface and Sirface methods 

 
 

class-discriminantory information. However, LDA and the Sirface method can only come 

up with a reduced dimension that is not capable of separating the classes. In this study, a 

special face database is constructed based on this assumption. The database contains 68 

images of 3 facial expressions (angry, happy, and neutral) posed by a subject (Fig. 4.1).  

Three experiments are constructed using this face database to test the Saveface method 

and the Sirface method. For all experiments, classification was performed using a nearest 

neighbor classifier. The results tabulated in Table 4.1 and 4.2 have shown when the class-

discriminatory information is contained not only in the mean difference subspace but also 

in the covariance difference subspace, by using the Saveface method, a very high 

classification accuracy can be achieved with a relatively higher reduced dimension than 

that obtained using the Sirface method. In addition, the classification accuracy could drop 

drastically if the reduced dimension is smaller than the optimal reduced dimension. This 

is because some important classification information lies in the discarded dimensions. In 

these experiments, the reason that the reduced dimensions for the Sirface method are 

much smaller than those of the Saveface method is because the number of expressions 

(classes) is very small. 
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Table 4.1. Test results for the Saveface method 

Dataset Nclass Ntrain Ntest 
Positive 

eigenvalues 

Reduced 
dimen. 

Cumulative 
proportion of 
eigenvalues 

Classification 
Accuracy 

10 75.8% 64.2% 
11 83.2% 88.7% 1 3 15 53 14 
12 90.7% 100% 
14 73.0% 64% 
15 78.1% 91.5% 
16 83.2% 91.5% 

2 3 21 47 20 

17 88.4% 100% 
25 88.5% 65.8% 
26 92.0% 97.4% 3 3 30 38 29 
27 95.5% 100% 

 
 
Table 4.2. Test results for the Sirface method 

Dataset Nclass Ntrain Ntest 
Reduced 
dimen. 

Classification 
Accuracy 

1 3 15 53 2 85.1% 
2 3 21 47 2 83% 
3 3 30 38 2 78.9% 

 
 

 

Conclusion 

In this paper we proposed a novel technique for data dimensionality reduction in 

the context of appearance-based face recognition. This technique is based on Sliced 

Average Variance Estimate (SAVE) regression and termed as the Saveface method. The 

experimental results show that the Saveface method appears to be more powerful than the 

Sirface method and LDA method when the class-discriminantory information is 

contained not only in the mean difference subspace but also in the covariance difference 

subspace of the real face database. Further experiments for extending these results to 

other large real face databases are necessary and will be investigated to test and validate 

the performance of the Saveface method. 
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CHAPTER 5 

SUMMARY AND CONCLUSION 

Two novel moment-based methods which are insensitive to large variation in 

lighting direction and facial expression are developed for appearance-based face 

recognition using dimension reduction methods originally developed in statistics. The 

two methods are based on Sliced Inverse Regression (SIR) and Sliced Average Variance 

Estimate (SAVE) and termed as the Sirface method and the Saveface method, 

respectively. The Sirface method estimates the mean difference subspace while the 

Saveface method estimates the mean and covariance difference subspace. 

The Sirface method is compared to a traditional linear discriminant analysis 

(LDA) method termed as the Fisherface method in Chapter 3. Generally, LDA is optimal 

only under the assumption of normality with equal covariance matrices for each class. 

The dimension q of the reduced subspace under LDA satisfies the property q ≤ min(c-1, 

p). However, the optimum value d of q can be arrived at only by an exhaustive search 

over a range of q. On the other hand, the Sirface method is optimal over a larger class of 

distributions (including the normal distribution) and there exists a statistical testing 

procedure for determining the optimum dimensionality d of the reduced subspace. Since 

an exhaustive search for determining the optimum value of q is averted, the Sirface 

method is much faster and more robust than LDA. 

When the covariance matrices contain class-discriminatory information, LDA as 

well as the Sirface method will fail to capture all the necessary information even under 

the assumption of normality. One could resort to quadratic discriminant analysis (QDA) 
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which will capture the necessary second-order information. However, with many 

variables, QDA may not be a good choice since it is computationally very expensive. In 

contrast, the Saveface method discussed in Chapter 4 is a feature extraction technique 

that captures all the class-discriminatory information present in both the mean vectors 

and the covariance matrices regardless of the distribution of the underlying data. After the 

Saveface method computes the new predictors in reduced-dimensional space, it is not 

necessary to use a quadratic classifier and a simple classifier such as the nearest-neighbor 

classifier is sufficient. Thus the Saveface procedure captures more information than LDA 

and the Sirface method while avoiding the computational complexity of QDA. Besides, 

the Saveface method is optimal over a larger class of distributions including the normal 

distribution and also has an associated formal testing procedure which yields the 

optimum value d of the reduced subspace dimension q without having to resort to 

exhaustive search. 

Besides face recognition, the proposed Sirface and Saveface methods could be 

used for other appearance-based computer vision problems such as hand gesture 

recognition, which has been used extensively in computer game navigation, TV remote 

control, American Sign Language recognition, virtual navigation, and human-computer 

interaction. Compared to algorithms based on traditional approaches to feature extraction 

and discriminant analysis, the proposed Sirface and Saveface methods are 

computationally more efficient, more robust, capable of capturing more complex 

discriminatory information and thus capable of producing better quality solutions under 

more general conditions. In this study, experiments for the Sirface method and the 

Saveface method are performed on a single face database. Further experiments for 
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extending the results to other large face databases are necessary and will be addressed in 

our future study. For complicated data where the discriminatory information exists in 

moments beyond the second order, none of the methods mentioned in this thesis i.e., 

PCA, LDA, the Sirface method, and the Saveface method, is able to capture the 

discriminatory information. In order to capture the discriminatory information present in 

moments beyond the second order, other high-moment based methods, such as sliced 

average third-moments, would be a good direction to investigate. 
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