DEVELOPMENT OF A PROTOTYPE
SPATIOTEMPORAL GIS WITH XML PERSISTENCE
by
WILLIAM ERIK SHEPARD
(Under the Direction of E. LYNN USERY)
ABSTRACT
While there has been considerable research (Peuquet,1994, 2002, Langran, 1992,
Worboys, 1998, Usery, 2000) dedicated to developing a complete theory and data model for
spatiotemporal data, few of these initiatives have addressed the problem of persisting this data
model. It has been repeatedly shown that the relational database model is insufficient for
representing spatial and temporal data and is certainly insufficient for representing both types
of data simultaneously. Extended relational data models for these types of data suffer from
defects and particularly from the loss of clarity expressed in the data model. Object-oriented
database systems are better able to capture the semantics of the spatiotemporal model, but
have not gained widespread acceptance or use. The eXtensible Markup Language (XML) has
achieved near ubiquity and efforts to incorporate its use for persisting semi-structured data in
XML database systems have proceeded apace. This research examines the use of XML for
persistence of spatiotemporal data, develops a prototype GIS application with XML
persistence and compares it qualitatively to development of a GIS application with relational
persistence. The development process in this work shows that implementing the
spatiotemporal data model in XML is technically no more difficult than implementing it in a
relational model and that software performance for this limited application is comparable.

However, the XML data model is semantically much clearer than the analogous relational

model and allows for better comprehension when viewed without the use of specialized

software.

INDEX WORDS: Temporal GIS, Spatiotemporal, XML, Persistence

DEVELOPMENT OF A PROTOTYPE

SPATIOTEMPORAL GIS WITH XML PERSISTENCE

by

WILLIAM ERIK SHEPARD

B.S., The University of Georgia, 1995

M.S., The University of Georgia, 2000

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2003

© 2003
William Erik Shepard

All Rights Reserved

DEVELOPMENT OF A PROTOTYPE

SPATIOTEMPORAL GIS WITH XML PERSISTENCE

by

WILLIAM ERIK SHEPARD

Approved:
Major Professor: E. Lynn Usery
Committee: Suchendra M. Bhandarkar

Thomas W. Hodler
Vernon G. Meentemeyer
Clifton W. Pannell

Electronic Version Approved:
Maureen Grasso

Dean of the Graduate School
The University of Georgia
December 2003

DEDICATION

This dissertation is dedicated to my dad, the greatest man that | know, and to my mom

for the thankless task of just being a good mom.

Vi

ACKNOWLEDGEMENTS

| wish first to thank my major professor, Dr. E. Lynn Usery. Dr. Usery has been a
tremendous mentor and encouragement to me throughout my career in GIS, beginning as an
undergraduate and continuing through my Masters program and finally my Ph.D. program. Dr.
Usery’s belief in and respect for me has been a great motivation and the leadership that Dr.
Usery has given me on scholastic issues has helped me to grow not only as a practitioner of
GlIScience, but as a scholar as well. | wish also to thank the other members of my committee,
each of whom | also respect tremendously and who have helped me to grow professionally.
Dr. Thomas Hodler has taught me that there is more to geography than GIS and more to GIS
than data. Dr. Hodler has been especially helpful to me in writing both my Masters and Ph.D.
theses and has provided much valuable guidance. Dr. Suchendra Bhandarkar, from the
Department of Computer Science likewise has been a mentor to me on both my Masters and
Ph.D. theses and is a font of knowledge on all things digital; Dr. Bhandarkar has supported and
encouraged my often disconnected progression of ideas, never criticizing and always offering
guidance. Dr. Vernon Meentemeyer was the first professor | had in Geography, as an
undergraduate and even before | had seriously considered Geography as a profession and a
way of life. | credit Dr. Meentemeyer for initially opening my eyes to the discipline and seeing it
for the exciting and dynamic field that it is. Finally, but certainly not least, Dr. Clifton Pannell
has helped me understand that philosophy has its rightful place in the hierarchy of things. How
one thinks about something is at least as important as what one does with that thing; indeed it

often is the driver that helps us appreciate how and why we do what we do.

vii

| would be remiss in not also thanking my employer, Miner and Miner, Consulting
Engineers, Inc. for supporting me financially in this endeavor. Without their support,
completion of this work would not have been possible.

Finally, | must thank my wife, Julie, for her support, understanding and patience while |
completed this dissertation. More than anyone else, she has taught me what it is to yearn, to
strive and to achieve. Without her encouragement, this dissertation would not have been

possible.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...ttt ettt e e e ene e e e s e nne s vi
CHAPTER

1 INTRODUGTION ...ttt ettt rne e e e 1

2 LITERATURE REVIEWooiiiiiii e 13

3 METHODOLOGICAL DEVELOPMENTueiiiiiiiieeeeieeee e 49

4 PROTOTYPE DEVELOPMENTcoiiiiiiieiiieeee et 64

Data Developmentt 65

Software Development ... 92

5 RESULTS AND DISCUSSIONccoiciiiiiiiiieee e .99

(8] 0] o 18 15 PPPPPPPPPPP .99

Space ReqQUIrEMENTSuuuuuuuieiiiiiiiiiiiiiiiieeeeeeeeeeeeanees 100

Accurate Spatiotemporal Representationcccceeeeeeeeiieieeenenn. 101

Semantic Clarity.........oeeeii i 101

Ease of Software Development............ccoiiiiiiiiiieiicciiceeeeeeee, 103

6 CONCLUSIONS, ISSUES AND FUTURE DIRECTIONS 106

REFERENGES...... ettt e e e e e ennes 116

APPENDIGCESottt e s a e e e e e e e e e e 132

A PROGRAM LISTING FOR GETGEOMETRY.VBA........ccccceiiiieeennn. 132

B RELATIONAL SCHEMA ...ttt 137

C PROGRAM LISTING FOR MDB2XML.VBAccoceeaiieeeeieeeeenn. 141

D SCHEMA LISTING FOR CATALOG.XSD......ccceeiieiiieee e 154

viii

o =z Z

[9)

SCHEMA LISTING FOR CUSTOMER.XSDccociiiiireeeireeeeeeees 158

SCHEMA LISTING FOR LIGHT.XSD......ooeiiiiiiieeeeeieeee e 161
SCHEMA LISTING FOR METER.XSDcoviiiiieieiieeee e 165
SCHEMA LISTING FOR POLE.XSDcccccooiiiiiiiniiiene e 168
SCHEMA LISTING FOR PARCEL.XSD........ccccoiiiiiiiiincieeee s 171
SCHEMA LISTING FOR PRICONDUCTOR.XSD.........cccccccvveininnes 174
SCHEMA LISTING FOR RISER.XSD........coooiiiiiiiiiiiiie e 178
SCHEMA LISTING FOR SECCONDUCTOR.XSD.......cccccccueeernnnes 181
SCHEMA LISTING FOR SWITCH.XSD.....cccooccieeeeiiieeee e 185
SCHEMA LISTING FOR TRANSFORMER.XSD.......cccccceiiiirrernnes 188
PROGRAM LISTING FOR CHOOSER.FRMcccccoiiiiiiiiiieeenn. 192
PROGRAM LISTING FOR STARTUP.BASccocoiiiiiiniiee, 194
PROGRAM LISTING FOR RBROWSER.FRM..........ccccoiiiiiiieen, 196

PROGRAM LISTING FOR XBROWSER.FRM.........cccoociiiiiiiieen, 228

CHAPTER 1

INTRODUCTION

Representation of time in information systems in general, and geographic information
systems (GIS) in particular, has long been challenging. For many years, commercial GIS
software has been based on the georelational model, which is a spatial extension to the
relational database model. Extensive research, however, has readily demonstrated the
pervasive problem of representing time in relational systems; the added complexity of the
georelational model only complicates this problem. Furthermore, the Structured Query
Language (SQL), with which a user queries and updates a relational database, does not easily
support temporal extensions. Although there is a large body of research seeking to temporally
extend SQL, virtually all of them introduce significant design tradeoffs. These factors make the
relational model less than ideal for modeling spatiotemporal data.

Alternatives to the relational model have been proposed with varying degrees of
success. The object-oriented database has been commercially available for more than fifteen
years, yet it has seen limited market penetration compared to relational database systems
such as Oracle, Microsoft SQL Server and IBM DB/2 (although all three of these vendors
support object-relational extensions to some extent through Abstract Data Types, or ADTs).
One of the challenges to implementing an object-oriented database system is the lack of a
standard query language such as SQL for these systems. Most object-oriented database
systems provide for an Application Programming Interface (API) to directly access and

manipulate objects in the database as if they were instantiated objects in the calling program.

Although this has its benefits, it also requires that programmers accessing the database be
familiar with an object-oriented programming language and with object-oriented principles.
This is often not the case in industry; many programmers have made a career using simpler
tools such as Visual Basic or web programming languages and do not have the skills required
for interaction with a complex object-oriented system. Moreover, maintenance of an object-
oriented database system requires a database administrator with skills in administrating such a
database management system, also a difficult (and costly) proposition.

Occupying a middle ground between these extremes are programmers who have
familiarity and frequently work with an object-oriented programming language, but whose
organization has standardized on the better supported relational database system. This
scenario is not uncommon and may be seen (for example) in a large software development
environment, where the technical staff do extensive object-oriented programming, but the
business has implemented a relational database management system for its capability to
interface with various financial and customer information systems. In this case, the technical
staff may need to work with objects in the programming environment, but may need to
somehow serialize their objects to store them in the relational database. Although this is an
acceptable approach, it introduces a layer of complexity between the database and the
program and makes it challenging or even impossible to understand the data outside of the
context of the application that uses it.

Adoption of the eXtensible Markup Language (XML), however, has been tremendously
successful and XML is now largely ubiquitous throughout the Information Technology industry.
XML is similar to HTML (with which many people are familiar) in that it is tag-based. However,
where HTML has a relatively small set of predefined tags such as <BODY> or <TABLE> that
are limited to formatting tasks, XML is open-ended and supports (in fact requires) creation of

user specific tags such as <BOOK> or <TITLE> that are contextually significant to the

application. In fact, while HTML is designed only to support document formatting, XML is its
polar opposite - it only supports content organization and does not specify any of the
particulars of how to display the content. In fact, an XML document is largely self-describing;
that is, reading an XML document will provide information not only on the data that it contains,
but also on the structure of the data. Figure 1.1 lists a small XML fragment describing a book

catalog, which illustrates this self-describing principle.

<catalog>
<book>
<title>Huckleberry Finn</title>
<author>Mark Twain</author>
<timeperiod>19th Century America</timeperiod>
<language>English</language>
</book>
<book>
<title>Les Miserables</title>
<author>Vvictor Hugo</title>
<timeperiod>French Revolution</title>
<language>French</language>
</book>
</catalog>

Figure 1.1: Book Catalog XML Fragment.

This self-describing capability, in combination with the fact that the only tool required to
create and edit XML is a text editor, has made XML tremendously useful to the commercial
enterprise. In fact, XML has revolutionized the exchange of digital information. XML has
replaced a myriad of proprietary and vendor-specific formats and has supplanted the aging
X.400 standard as the mechanism for Electronic Data Interchange (EDI), which facilitates
electronic communication between disparate systems. The Simple Object Access Protocol
(SOAP), which is a standard for interoperability of web services supported by such vendors as
Microsoft, Oracle, Sun and IBM, is based on XML as well.

Of course, XML is a relatively new technology and as such is not without its own

problems and tradeoffs. While the XML 1.0 standard was ratified in December of 1998, the

World Wide Web Consortium (W3C) is still actively working on components of XML 2.0 and its
associated technologies today. Database research based on XML is, in particular, fledgling
and much of the current investigation simply involves efficient retrieval and update of XML
documents. Nevertheless, research has been promising and has made significant strides in
recent years. There are several available XML database systems that have overcome some of
these problems; two of the most advanced are the Tamino XML database and the eXist XML
database. Both are native XML databases; that is, the database represents data as XML
documents and resultsets to queries are given in terms of XML rather than in terms of the
tuples or relations returned by relational database systems. The major commercial relational
database vendors have hedged their bets as well and have adopted XML within the database.
These hybrid approaches store data in relational tables, but can transform the data into XML
for output, in contrast to the native XML approach. The benefit is that the underlying data can
take advantage of all of the technology present in relational systems such as indexing and
transactions, but at the disadvantage of the underlying representation potentially being nothing
like the resultant XML that is returned by the database.

Geographic information science has not ignored the potential of XML; indeed the
OpenGIS Consortium (OGC) is currently working on its second revision of the Geography
Markup Language (GML), which is a schema dialect of XML specifically targeting interchange
of spatial information. The second revision of GML also includes some capability for storage of
temporal and volumetric information. The key problem with GML lies in its target application.
GML is intended for the interchange of spatial information, not for its dynamic storage.
Although this is a subtle distinction, the difference lies in the static nature of interchange. In
one scenario, an initiating system will produce a static XML (or GML) file that is then passed to
a receiving computer system. The receiving system may then parse the data and act upon the

information in the GML file, and may even produce a reply that is also formatted as XML (or

GML). An example of this scenario can be found in a web-based GIS where the data to
populate the map are stored in a georelational database and are only converted to GML before
being sent to the web browser for display. In a second scenario, a GML file may be exported
from one geographic information system to be imported by a different geographic information
system. An example that illustrates this scenario would be to convert between two GIS
packages such as Idrisi and ERDAS Imagine. In this case, GML serves as the lingua franca
between the two packages and the data only reside in GML during the conversion process.
The GML becomes the medium of transport between the two disparate systems. In both
cases, the data are static. GML is optimized for static data, which is perfectly acceptable for
Online Analytic Processing (OLAP), but is entirely inappropriate for Online Transaction
Processing (OLTP), which is by its very nature dynamic. In any case, the temporal extensions
to GML are embryonic and are not fully developed, nor are they solidly grounded in temporal
information theory. These problems must be addressed before GML native GIS may join or
supplant georelational GIS.

The purpose of this dissertation is to develop an XML based model to persisting
spatiotemporal data that is solidly grounded in temporal information theory and cognitive
science and to apply that model to develop a prototype spatiotemporal GIS with XML
persistence. This research will show that an XML schema better describes the semi-structured
nature of temporal data in general, and spatiotemporal data in particular than does a relational
schema. Moreover, this research will also show that implementation of XML persistence for
spatiotemporal data is no more difficult than implementation of relational persistence for such
data while imparting increased descriptive power. This will be demonstrated by comparing the
development process for a prototype XML-based spatiotemporal GIS to the development
process for an analogous relational spatiotemporal GIS and by comparing the resultant data

repositories in relational and XML format. The fundamental spatiotemporal model adopted in

this work is based heavily on the work of Usery ef al. (2002) exploring temporal representation.
This work, however, is in sharp contrast to Usery ef a/. (2002) in that most of that work has
focused upon representation at the application level and not at the persistence level. This
research will also assess the state of the art in terms of database technology present in XML
databases and the implications for efficient and consistent access to spatiotemporal data.

The specific objectives of this research are:

1. Develop an XML based data structure for representing spatiotemporal data. The
usefulness of XML as a mechanism for efficiently persisting temporal data is postulated
based upon a variety of contributing factors. First, the most efficient database
structures are hierarchical, and indeed indexing data structures such as B+-Trees, R-
Trees or Quadtrees are often based upon these hierarchical structures. Second, set
theory dictates the unique existence of an object. However, many versions of an object
(as is the case with temporally extended features) require non-uniqueness of an object -
a so-called bag. XML supports these bags better than do relational models. Third,
cognitive category theory is based upon a hierarchical structure; and it has been shown
in the cognitive science literature that cognitive economy is achieved by traversing
multiple levels of a knowledge tree.

2. Develop a relational schema for a simple electric distribution GIS with temporal
attributes and design the queries that would be required in order to access records in
the database. This relational schema will contain structures such as poles, electric
devices such as transformers, electric conductor (power lines) and customer data.

3. Develop a fictional spatiotemporal GIS based upon the relational schema. This GIS
shall be capable of drawing the current state of the GIS at a particular time and viewing

the attributes of a feature at that time. The GIS shall also be capable of querying for

spatial or thematic attributes. The GIS will support a series of queries designed to
demonstrate some of the difficulties of dealing with temporal data.

4. Develop an XML based schema for the same simple electric distribution GIS with
temporal attributes and design the queries that would be required to access records in
the database.

5. Develop a prototype spatiotemporal GIS based on the XML schema with the same
target functionality as the relational spatiotemporal GIS. Compare and contrast the
complexity of the XML-based GIS software to the relational GIS software. Also
compare and contrast the two development processes and the resultant data

repositories.

Few commercial sectors have embraced geographic information systems to the extent
of the utility industry. Geospatial information technology has enabled utilities — including
electric, gas, water, wastewater, cable and fiber — to visualize the location of facilities and to
manage their assets in a meaningful way. Many utilities have miles of infrastructure whose
location is either unknown or is in question. As this infrastructure ages, it becomes critically
more important to be able to locate and determine characteristics about this infrastructure,
such as when it was constructed and what materials were used. To compensate for and
overcome this difficulty, utilities have been ready adopters of commercial geographic
information systems technology in the form of automated mapping and facilities management
(AM/FM) solutions. However, the incredible need for capabilities to store and manipulate
temporal information in a meaningful way is an as-yet unmet need.

In the electrical utility industry, the challenge of modeling and storage of asset data has
been met aggressively by geographic information systems vendors. Environmental Research

Institute, Inc. (ESRI), the makers of Arc/Info and the ArcGIS software system, have developed

in partnership with Fort Collins, Colorado based Miner and Miner, a standard GIS model for
electrical utility data. This model provides a standard starting point that is flexible enough to
be tailored to a specific business. ArcGIS provides capabilities for enterprise interoperability
and when paired with the Miner and Miner ArcFM software solution offers a powerful yet easy
to use geographic information system that is built on this model for both electric transmission
and electric distribution. GE Network Solutions, a key competitor to ESRI and Miner and
Miner, offers Smallworld GIS, which can also be tailored to the electric utility market. Yet
although temporal extensions to both ArcGIS and Smallworld can be found in the literature,
neither has yet to offer a commercially viable solution to the temporal problem.

Data models for electrical distribution and transmission define a standard set of spatial
asset features that the utility must maintain. Electric transmission consists of high voltage
conduction of electricity from a generation point, such as a hydroelectric, coal or nuclear
power generation plant to a substation or other distribution point on an electric utility network.
Although an electric utility may generate its own power, more frequently (and particularly in the
case of smaller cooperatives) power is purchased and the utility takes ownership of the power
at the substation. An electric transmission GIS model defines such features as high-voltage
conductor, poles and towers and electrical devices such as switches and transformers.

An electric distribution data model is suited to the utility that provides power to a
service area. Electric distribution typically models such features as structures, conductors and
devices. Often, electric distribution AM/FM/GIS solutions interface with customer information
and financial systems and will thus contain aspects of both of these in the data model as well.

Structures are non-electric equipment that supports electrical devices and conductors.
Structures may be underground or overhead, or may be located on the ground. Examples of
structures are poles, pads or values. Poles support overhead equipment and may be

constructed of wood, steel or concrete and are rated based upon the load that they may

support. This load will consist not only of the weight of the conductor and devices on the pole,
but also the forces due to wind, ice loading and angular pull at corners where the electric line
changes direction. Pads protect electrical equipment located on the ground, for example
transformers located near homes are typically mounted on concrete pads. Vaults may protect
underground devices in locations that have underground utilities. In addition to modeling
features purely for asset management, many electric distribution utilities will also apply the GIS
to solve problems of construction, and often interface with third party software packages that
provide engineering calculations for requirements to support loads. In these cases, the GIS
may also model features such as guy wires, which play an integral role in aiding the pole to
support the load that it must bear.

Conductors, put simply, conduct electricity over some distance. Although conductors
are typically wire or cable, they may also be a solid piece of some conducting metal, such as
copper or aluminum. Conductors may be modeled as overhead or underground features,
depending of course on whether the conductor is installed overhead on a pole or is buried
underground. Conductors are also often modeled in terms of primary or secondary levels of
voltage. Primary conductors (both overhead and underground) distribute electricity from a
source such as a substation throughout the electric network, at high voltages. Near the point
of delivery to the customer, primary voltage will be converted (or transformed) to a lower
voltage and carried the remainder of the way to the customer service point along a secondary
conductor that is either overhead or underground. Electric distribution models will often model
a conductor as a single linear feature, although in the real world it may be composed of
multiple actual wires; for example, electricity is often distributed in some combination of three
phases: A, B and C respectively. If a distribution conductor is carrying only a single phase of
electricity, for example A phase, it will consist of only a single conductor. If, however, the

conductor is carrying multiple phases of electricity — AB phase or ABC phase, it will consist of

10

two or three conductors respectively. The GIS will model both or all three conductors as a
single feature and may represent the distinction between the different actual conductors as
related records in a table.

In general, electric devices either control the distribution of electricity or protect the
network from faults. Transformers are the most familiar electric devices; these are the big
electric boxes near houses. Transformers convert or transform electricity from one voltage to a
different voltage. For example, a transformer located near a house may connect a primary and
secondary conductor and transform voltage from a higher primary level to a lower secondary
level before delivering it to the house. Voltage regulators may be placed throughout the
network to smooth out any artifacts in the electrical signal and provide a consistent voltage.
Protective network devices are not unlike the fuses or circuit breakers in the home, but on a
much larger scale. A distribution network will typically make use of fuses and circuit breakers
along the network to insulate and isolate the network from electrical surges due to equipment
malfunction or lightning. In the event of a surge, these protective devices will trip and open the
circuit so that electricity does not flow through them (much like a fuse or a circuit breaker).
Other types of protective devices may have more intelligence and may attempt after an initial
isolation to reestablish service once the danger has passed. Reclosers are electronic devices
that initially open the circuit, but then attempt to recluse the circuit a certain number of times
before failing. This assists the utility in providing better service quality to their customers while
still protecting their assets.

In the GIS developed for this dissertation, a simple data model is used consisting of
nine feature classes and one related table modeling structures, conductors, devices and
customer information. This simple model is based on a subset of the ArcFM Electric
Distribution data model developed by Miner and Miner (ESRI and Miner and Miner, 2001).

These ten classes are summarized in table 1.1. The prototype GIS for this research

11

demonstrates a typical application in a fictional set of scenarios by modeling the construction
of a new subdivision beginning with the zoning of parcels from a large undeveloped tract into
smaller single family residential parcels and ending with a nearly completed subdivision. In
addition to storing the representation of the network at different time periods as the subdivision
is constructed, the GIS also stores changes to features either through attribute update (to
simulate equipment upgrade) or through spatial adjustment (perhaps due to equipment
relocation or resurvey). Figure 1.2 maps the beginning and final states of the fictional

prototype data.

Table 1.1: Feature Classes for Electric Distribution GIS.

Feature Class

Description

Street Light

Street light, typically mounted on a pole

Meter

Customer meter location, point of service to a building

Transformer

Transforms primary electrical signal to secondary electrical
signal by lowering voltage. Transformers and conductors may
be any of A, B, C, AB, AC or ABC electrical phases.

Switch

Switches allow for power to be enabled or disabled to a section
of the network (called a feeder). A switch may be closed
(closing the circuit and allowing power to flow) or may be
opened (to interrupt the flow of power, for example to do

maintenance work safely).

Riser

Small segment of conductor that connects an above-ground
conductor to an underground conductor, typically attached to

the side of a pole.

Pole

Wood or metal structure that holds conductors, electric devices

such as transformers, protective devices, or street lights

Secondary

Conductor

Carries lower voltage power, typically to a meter location, but
can also be carried to one or more additional secondary
conductors. Tapped off from a primary conductor at

transformer.

Primary Conductor

Carries high voltage power from a substation.

Parcel Parcel polygons.
Related customer information to the parcel polygons and meter
Customer points. Customer information is stored in this related table for

normalization purposes.

12

13

CHAPTER 2

LITERATURE REVIEW

Geographic information science has focused upon methods for representing and
analyzing spatial data. While representation originally focused upon Cartesian coordinates, in
the tradition of cartography, spatial data representation has expanded in recent decades to
include three-dimensional data and spherical coordinate systems. There has also been an
evolution from the dualist approach to science with geography as the spatial science and
history as the temporal science and increasing recognition of the interdependence between
space and time. Indeed, this is precisely what General Relativity suggests (Einstein, 1920).
Representation of temporal data has proved particularly challenging as its incorporation
involves more than simply adding additional spatial dimensions. There have been numerous
approaches proposed to modeling of spatiotemporal data, focused mostly at the conceptual
level. While this research has advanced the state of knowledge, it has left a dearth of research
at the physical persistence level. This problem is compounded by the fact that spatial
database reseach and temporal database research have proceeded along largely independent
lines.

The relational model was developed by E. F. Codd (Codd, 1970) at IBM in order to
overcome the chief deficiency of the existing models of that time, the hierarchical and network
models. These models, while powerful, were highly implementation dependent. Not only did it
require that database users be intimately familiar with storage structures of the database, but

these structures could not be generalized to other database systems. Unlike these models, the

14

relational model exposes to the user a set of abstractions that the user can interact with and
hides the implementation details. Instead of writing path access routines that required this
familiarity with the underlying data structure, the user can instead access data by creating
expressions in SQL. This language also has its foundations in the work by Codd (Codd,
1971b).

The relational model is based extensively on mathematical set theory (Elmasri and
Navathe, 2000). Because of this basis, the operations defined in the relational model have
been proven to be complete and correct. The fundamental unit in the relational model is the
tuple (much like in set theory), which is simply the collection of attributes for a single record.
For example, the tuple {1, ‘Meadow Road’, 25, ‘City Road’} might be a tuple that represents a
record from a transportation database where the record number is 1, the road name is
Meadow Road, the road length is 25 and the road type is City Road. It should be noted that
the information about the meaning of this tuple is not embedded in the tuple; only the data for
the record itself is part of the tuple. In order to elucidate the meaning of this data, the
database catalog must queried and paired with the tuple. Common set theoretic operations
are possible on this tuple, for example the projection operation can be used to reduce the tuple
to a smaller tuple (the tuple above could be projected simply to {1, ‘Meadow Road’}. Likewise
the Cartesian product operation can be used to join together two sets of tuples (this is the
basis of table joins). In the relational model, tuples can not be nested. This leads to important
limitations with the model for representing certain types of data.

Tables are created by aggregating collections of like tuples; that is, all tuples in a table
must have the same set and ordering of tuples (although the tuples themselves may be in any
order, as may sets). The user interacts with these tables as rows and columns where rows are
tuples that are referred to as records and columns are attributes that are individual elements of

the tuple. Although not strictly part of the tuple, virtually all database systems also present the

15

schema to the user as well (as column headers) and obviate the need for the user to query the
catalog directly. Collections of tuples (tables) with a common attribute can be joined together,
using the Cartesian product operator, to form relations.

The SQL language is a non-procedural language that allows the user to specify queries
to the database in terms of these tables and relations. SQL is based on relational algebra,
which is itself and extension to set theory. Basic set theoretic operations are part of the SQL
language and can be used to formulate and refine queries. Combinations of operators allow
for creation of relations and returning of related tables and subsets of related tables. As with
the relational model, there is no provision in the current SQL standard (SQL-92) for creating
data structures beyond those provided by the model; thus, as with the model, the standard
SQL language makes no provision for user defined data structures, or abstract data types; in
particular, SQL does not support creation of nested tuples. Creation of such abstract data
types can only be accomplished through definition of a related table that encapsulates the
required nesting in the table.

The deficiencies of SQL and the relational model for persistence of spatial data have
been well-noted (Egenhofer, 1992). Because SQL-92 does not support nested tuples,
definition of spatial data structures has proven particularly challenging. Although such spatial
data structures can be accomplished with related tables, this approach is not elegant. At a
minimum, spatial data consists of a single {x,y} tuple pair to represent a point in Cartesian
space. Extrapolation of this single tuple to represent more complex geometries, such as lines
and polygons requires persistence of many {x, y} tuple pairs. Further extension of space into 3
dimensions requires a three-dimensional tuple, or triple {x, y ,z}. Incorporation of additional
spatial dimensions, including measured shape values can further extend into multidimensional
tuples such as {x, y, z, m}. In combination with such a multidimensional tuples, the

subsequent addition of attributes to a point feature would require a nested tuple of the form

16

{al1, a2, {x, y, z, m} } where a1 and a2 are attributes of the spatial feature; for linear or polygonal
features the situation is even more complex, requiring even further nested tuples of the form
{a1, a2, {{x1, y1, z1, m1}, {x2, y2, z2, m2}, ... }}. The incorporation of time into this miasma of
tuples further extends the problem, requiring tuples of the form {{tb1, td1, a1}, {tb2, td2, a2},
{{tb3, td3, {x1, y1, z1, m1}}, {tb4, td4, {x2, y2, z2, m2}}, ...}} where tbx and tdx are birth and
death times for the spatial or aspatial attribute.

The lack of spatial operators in the SQL language also limits the applicability of the
language for performing even simple spatial queries. There are no inherent capabilities for
spatial queries. For example, even common queries such as point-in-polygon or nearest
neighbor searches are hard to express in the SQL language. Although these operations can be
coded, they are inelegant at best.

Because of the deficiencies inherent in the core relational model, many database
vendors have adopted object-relational extensions for complex data (Larson, 1995). The
object-oriented database model is an evolution of the relational model that introduces the
ability to define a complex object with attributes and behavior within the context of a database
system, with the benefit that non-simple types of data can now be represented without the
need for a complex schema with many related tables (Atkinson, 1989). Object-relational
database systems are hybrid solutions that fall between relational and purely object-oriented
database systems (Stonebraker ef al., 1990). Such hybrid systems are built fundamentally
upon a relational core, but have the ability to be extended to incorporate some or all of these
object-oriented features. These object-relational hybrids allow for the creation of abstract data
types (ADTs) that allow the user to model the database in terms of business rules.

The chief drawback to object-oriented and object-relational database systems is the
lack of a codified standard. This lack of a standard has had wide implications for the adoption

of these technologies. Purely object-oriented systems have not seen wide adoption outside of

17

academia except in a few cases where the benefit gained from their adoption exceeds the
complexity of implementation and impact of abandoning of standard database approaches.
Likewise, database vendors have been left with the freedom to implement their own custom
relational extensions and query languages for object-relational hybrids. This has meant a wide
variety of vendor specific implementations for object-oriented and object-relational systems,
and hence an equally wide ranging set of approaches to technology that builds upon an
object-relational core (such as spatial and temporal extensions).

There are at present two proposed standards for query and management of object-
oriented and object-relational data. Although there are similiarties between these two
approaches, they differ fundamentally in their goals. These two standards are the Object
Query Language (OQL) and the third revision to standard SQL (SQL-3).

Stonebraker et al. (1990) suggested that SQL be extended to include object-oriented
concepts layered on top of SQL. This approach has been followed in the present SQL-3
working revision. Work on SQL-3 began in 1992, following the release of SQL-92; SQL-3 was
to be released in 1995, but to date is not complete. The SQL-3 language completely supports
the relational data model and is backwards compatible as well as supports object-oriented
features. Because of this, the standard at present is quite dense and numbers about 1200
pages. Because most database vendors have followed this approach anyway, but have done
so with custom extensions to SQL, there is a great deal of disagreement on the syntactical
structure of the language (Elmasri and Navathe, 2000).

Darwen and Date (1995) differed and asserted that the relational model itself should be
extended to include object-oriented features. They also asserted that SQL was dated and
should be abandoned completely in favor of a database language that supported this object-
oriented extension to the relational model. They maintained that the relational model could not

be extended within the constraints of the current SQL language. This difference is borne out in

18

the divergence between the SQL and the OQL language definitions. This philosophy appears
in the definition of the OQL language. OQL is much more terse and complete, but at the
expense of abandoning support for the relational model in favor of a purely object-oriented
approach. Defined by the ODMG standard (ODMG-93 was drafted in 1993 and revised to the
ODMG 2.0 standard in 1997) for interoperability between object-oriented database
managements systems, OQL is analogous to SQL in defining query capabilities.

ODMG also defines a set of language specific APIs for accessing an OODBMS from
such languages as C++, Java and Eiffel. Purely object-oriented database systems are more
often accessed through these APIs than through query languages. Because object-oriented
database systems interact chiefly with programming languages, they suffer from differences
between these programming languages. Although some facets of the language are purely
syntactic, there are other aspects that are more important — for example, C++ supports
multiple inheritance while Java does not. Likewise, languages such as Eiffel require an
interface-based approach to methods, while other programming languages support the use of
but do not require interfaces. This does complicate the use of object-oriented and object-
relational systems, and requires that the database user be familiar with the target language that
is accessing the database. Moreover, data access to such systems is highly interdependent
upon the data model and not easily generalized to different systems.

The most common approach in the literature to incorporating spatial and temporal
storage into the relational model has been to adopt such an object-relational approach and to
extend the the SQL language to explicitly codify spatial data structures and operations (Huang
and Lin, 1999, Herring et al., 1988). A recent paper by Voisard and David (2002) has presented
an excellent review of attempts to incorporate spatial data models in a relational framework.

In their paper, Voisard and David investigated the representational power of extended SQL

with abstract data type capabilities in comparison to an object-oriented database. The a priori

19

decision to not investigage standard SQL as part of this work further confirms the findings of
Egenhofer (1992) that SQL alone is insufficient to the task. In their work, the authors found that
the relational model suffered from insufficient data structures and the necessity to implement
geometric operations at a discrete lower level from the SQL abstractions (which obviates the
main value of SQL to separate database implementation from interface). In comparison, a
model based upon O,SQL (a predecessor of the OQL language) was much more expressive.

These findings support similar earlier work examining the applicability of object-oriented
models for spatial data management. Egenhofer and Frank (1989) developed concepts for
such an approach and examined in particular the issues of inheritance of features. The authors
found that geographic data modeling benefits greatly from the descriptive power of inheritance
and propogating common properties through a model. Worboys (1994) similarly investigated
object-oriented approaches to spatial data management from a higher conceptual level. His
findings confirmed that the explanatory power of an object-oriented model better fit the real-
world data that such a geographic information system seeks to represent. In particular, in both
of these works, the importance of operations and behavior on geographic features (and the
commonality between them, underscoring the value of an inheritance based system) was
elucidated.

While the previous works both focused on the operational aspects of the model,
particularly on map algorithms, several other authors have carried forth similar work from the
perspective of pure data modeling. Hadzilacos and Tryfona (1996) present a data model for
spatial features that is based on an extended-relational schema. This work is extended in
Hadzilacos and Tryfona (1997) and examines the extended-relational model (which bears great
similarity to object-oriented models). Their work focused upon the semantics of the data
model (and how such an extended-relational model could further clarify the semantics), but still

relied upon methods and operations for much of their descriptive power.

20

This has also been the approach of database vendors to solution of this problem. From
Oracle the Oracle Spatial Data Option provides an object-relational structure in which spatial
data can be stored, and an extension to the SQL language that incorporates capabilities to
perform spatial queries. It should be noted that such capabilities are often handled at much
lower levels in the database and not directly in the SQL language. The SQL construct that is
called for the spatial analytical operation may actually be coded at a low level in the database
in a native language like SQL or Java. Although its operation will be transparent to the user,
such an operation is not based upon set theory. This has also been the approach of ESRI in
the ArcSDE (spatial data engine) product. While such an approach is generally efficient, it is
not portable and commits the user to a particular product.

Temporal database systems built upon the relational model are fraught with similar
problems. Gregersen and Jensen (1999) provide a survey of attempts to extend the entity-
relationship model to encompass temporality. Although the entity-relation model has been
largely superseded in recent years by the Unified Modeling Language (UML) for abstraction,
these attempts yield a good insight into the design principles addressed by this research.
Most notable is the fact that all of the attempts required significant extensions to the underlying
approach in order to explicitly include temporality. Of the ten versions reviewed, Gregersen
and Jensen (1999) identify only two as being complete enough to be generally useful — the
TERM model (Temporal Entity-Relationship Model), which is one of the first versions
(Klopprogge and Lockeman, 1983) and the TERC+ model (Zimanyi, ef al., 1997). The
remaining eight temporally extended entity-relational models all suffer (in the opinion of the
authors) from either being too abstract or too incomplete.

The entity-relationship model is a high-level abstraction that can define the semantics
of the data model, but cannot define the physical persistence model. For implementation,

relational models are necessary. In fact, one of the reasons for the popularity of UML as a

21

successor to the entity-relationship model is the semantic expressiveness of the model while
still maintaining enough of the implementation details to make definition readily accomplished.

Snodgrass (1992) remains a definitive work on temporally extended relational models.
Snodgrass in particular identifies the duality of time (or bitemporality) between valid time and
transaction time and rightly identifies that each may have its own timescale. Each of these
temporal dimensions may be represented either by timestamping attribute values or by
timestamping entire tuples, with approaches to each approximately equally divided.
Timestamps may be accomplished either through a single time (a chronon, the smallest unit of
measure in the temporal database) or an interval with a start and end time. Also possible are
representations with more than one time to represent historical occurrences.

As with SQL for spatial queries, temporal queries are characteristically hard to describe
in SQL (Snodgrass, et al,, 1995). There have been a number of attempts to temporally extend
SQL in much the same way that spatial extensions to SQL have been developed. The TQUEL
(Snodgrass, 1987) and TSQL2 query languages (Snodgrass, et al., 1995) were both developed
with this goal in mind - as have a number of others (Navathe and Ahmed, 1989; Brusoni et a/.,
1999), but in neither case is syntactic expression of temporal queries elegant. The
concatenation of difficulties in both the spatial and temporal domains clearly demonstrates the
very real difficulty in constructing an extended query language based on SQL for
spatiotemporal data.

There have been some attempts to unify temporal and spatial database research in the
computer science literature as well. Price et al. (2000) examine the constructs needed by the
UML language to adequately model spatiotemporal data. They conclude that additional
constructs are needed, but that the extensibility of the language can support this need. Yazici
et al. (2001) examined the problem from the perspective of semantic modeling and also

focused heavily on conceptual modeling in UML. However, where Price ef al. focused on the

22

mechanics of the model, Yazici ef al. concentrated on high-level constructions. Such
approaches are typical of the attempts to unify the literature as it has been generally
recognized that the difficulties inherent in modeling spatial and temporal data discretely
multiply in combination and an object-oriented model is necessary in order to overcome these
obstacles.

Database systems based upon XML have provided a recent alternative to relational
database management systems that overcome some of the deficiencies of the model. XML
was originally conceived in 1998 as a markup language similar to HTML. Unlike HTML, which
is based upon a predefined and limited set of tags, the structure and tags of XML are
completely customizable. Moreover, HTML is designed as a markup language to control
presentation, while XML says nothing about the presentation of the data it contains, but only
formats the data in a meaningful and consistent way. The tag structure of XML facilitates
management of metadata, since the tags themselves become metadata about the data
contained in the tag. Because XML is plain text, it is also a lightweight standard that is easily
transporatable between heterogeneous systems, without binary encoding difficulties or
characterset conversions that are often necessary between ASCII based systems such as
UNIX or Windows and EBCDIC based systems such as VM or MVS. Furthermore, the
protocols for parsing and accessing XML documents, particularly the Document Object Model
(DOM) and the Simple API for XML (SAX) are standardized and have many implementations on
virtually every operating system platform. The extensibility of the language combined with its
portability have made the use of XML ubiquitous for formatting messages to integrate
disparate systems; hence XML has realized wide acceptance by the commercial sector. Many
modern software packages also support conversion from their native document format to an
XML formatted file. XML has become a digital Rosetta Stone, linking together disparate

processes and systems. XML underpins the modern internet economy and Web Services, the

23

current architecture for distributed computing, relies heavily on XML through standards such
as the SOAP.

Like object-oriented and object-relational database systems, XML databases can
persist semistructured data. Relational database systems excel at efficient storage and
management of structured data where all of the data conform rigorously to a specified schema.
Because these data are structured — the same attributes occur on each record — the table is a
good abstraction; tables present data to the user in terms of the same set of rows and columns
or records and attributes. In contrast, formats such as plain text store unstructured data. In
unstructured data, data may occur in any order, or no order, and may have any set (or no set)
of attributes. Typically, unstructured data cannot be easily queried. Between these two
extremes, semi-structured data usually has an overriding schema governing the macro
organization of the document, but in specific records of the document the degree to which the
schema is implemented may vary widely. While relational data models cannot efficiently work
with such semi-structured data, XML handles them quite well. Inherent functionality in the
XML language does facilitate querying of the semistructured data.

The ready adoption of XML as a industry standard language has engendered a whole
research agenda for database systems based on XML. XML database research seeks to
extend XML beyond its file-based roots to incorporate database technologies such as
transaction management and query optimization. Chaudhri et a/. (2003) provide an excellent
introduction to the various current XML technologies and their application for database
management. XML is comprised of a number of subset standards defined by the World Wide
Web Consortium (W3C). Because many of these standards are still undergoing defition,
aspects of the language that are necessary for database implementation are not yet finished.

Nevertheless, XML database research has an active and aggressive agenda, and XML

24

database systems have shown promise to provide the ubiquity of SQL with the power of
object-oriented approaches.

Of the varied XML language definitions, several are of key interest for representing and
persisting data in a semi-structured XML format. The XML language itself, as already
described, consists of document structure and constituent data. The structure is comprised of
tags and attributes. A tag may be simple or may be complex; simple tags contain only data
while complex tags may contain nested tags or both tags and data. Attributes are attached to
the tag to provide additional metadata about the data stored inside the tag. Figure 2.1
presents a deliberately frivolous XML fragment designed to illustrate the structure of the

language with respect to tags, attributes and data.

<?xml version="1.0" encoding="UTF-8"7>
<xml_document>
<simple_tag>simpledata</simple_tag>
<simple_tag2 attributel="value">simpledata2</simple_tag2>
<comp1ex_ta? attribute2="value2">
<complex_tag2 attribute3="value3">
<simple_tag3>simpledata2</simple_tag3>
<simp1e_ta?4 attribute4="valued4">
simpledata3
</simple_tag4>
</complex_tag2>
</complex_tag>
</xm1_document>

Figure 2.1: XML Fragment.

The Data Type Definition (DTD) language was developed to facilitate creation of schema
documents for XML files. While the DTD was successful in providing these capabilities, it
suffered from several particular drawbacks. Among these, one of the most important was the
lack of capabilities to identify the data type. This is a critical need for database systems, which
have requirements to efficiently store and access data. Without a priori knowledge of the data

type of a particular attribute, it is difficult to develop efficient query capabilities. The XML

25

Schema Definition language (XSD) superseded the DTD language and incorporates many of
the missing components from DTD that are necessary for XML based persistence. The XSD
fragment listing in Figure 2.2 provides the schema necessary for the XML fragment in Figure
2.1 Figure 2.3 lists the XML fragment in Figure 2.1 with the necessary information to reference
the associated XSD file.

The eXtensible Stylesheet Language (XSL) enables formatting of XML documents that
XML itself does not. Like the HTML stylesheet language CSS (Cascading Stylesheets), XSL
applies rules to parts of an XML document to format it; as a consequence of these capabilities,
XSL can also transform a document from one form to another. XSL is made up of three subset
languages, two of which are described here.

The first subset language of XSL is the the XPath language, which has similar
capabilities to the UNIX regular expression syntax on which such tools as awk, sed and grep
are based. While not a true query language, XPath has the capability to perform complex
pattern matching in XML documents relatively quickly. XPath is a key component of XML data
storage as many other constituent languages in the XML family are based on it. Using XPath, a
single node (which is delimited by a tag) or a collection of nodes (each with their own tags) may
be retrieved from the document. XPath expressions may search for tag names or values (data)
or by attribute names and values. Table 2.1 lists several XPath expressions against the sample
XML fragment from figures 2.1 and 2.3 and the result sets that are returned by the expressions.
The XPath expressions listed in table 2.1 are not comprehensive, but do give an idea of the
syntax of the language.

The second subset language of XSL is the XSL Transformation language (XSLT). XSLT
uses XPath to query parts of the XML document and to transform them into a different form.
The most common example is the XHTML language , which is nothing more than an XSL

stylesheet applied to an XML file to produce an HTML web document suitable for publication.

26

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormbefault="qualified">
<xs:element name="complex_tag">
<xs:complexType>
<XS:sequence>
<xs:element ref="complex_tag2"/>
</Xs:sequence>
<xs:attribute name="attribute2" type="xs:string"
use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="complex_tag2">
<xs:complexType>
<XS:sequence>
<xs:element ref="simple_tag3"/>
<xs:element ref="simple_tag4"/>
</Xs:sequence>
<xs:attribute name="attribute3" type="xs:string"
use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="simple_tag" type="xs:string"/>
<xs:element name="simple_tag2">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="attributel"
type="xs:string" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="simple_tag3" type="xs:string"/>
<xs:element name="simple_tag4">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="attribute4"
type="xs:string" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="xml_document">
<xs:complexType>
<XS:sequence>
<xs:element ref="simple_tag"/>
<xs:element ref="simple_tag2"/>
<xs:element ref="complex_tag"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:schema>

Figure 2.2: XSD to Describe XML Fragment.

27

<?xml version="1.0" encoding="UTF-8"7>
<xml_document xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
XSi:noNamespaceSchemaLocation="XMLFragment.xsd">
<simple_tag>simpledata</simple_tag>
<simple_tag2 attributel="value">simpledata2</simple_tag2>
<complex_tag attribute2="value2">
<complex_tag2 attribute3="value3">
<simple_tag3>simpledata2</simple_tag3>
<simple_tag4 attributed4="valued4">
simpledata3
</simple_tag4>
</complex_tag2>
</complex_tag>
</xml_document>

Figure 2.3: XML Fragment with XSD Schema.

However, XSLT is much more powerful and can be used for a variety of other uses as
well. XSLT includes mathematical, string, conditional and loop operators so that
transformations may be quite complex. Another common use of XSLT might be to integrate
two disparate systems; unlike many earlier standards such as Electronic Interchange (EDI),
XML and XSL Transformations are quite facile at moving from one schema to another that is
completely different. Using mathematical operators, units of measure can even be converted
between XML documents (for example, miles might be converted to meters). All of this
happens transparently to and indepently of the user if such a stylesheet is applied to the XML
file. Figure 2.4 illustrates an XSL stylesheet and the XML fragment in figures 2.1 and 2.3
transformed using this stylesheet.

Several new standards and query languages are currently under finalization (Bonifati
and Lee, 2001). Query languages can be divided broadedly into two camps; the SQL/XML
standard is under development by the SQLX group, comprised primarily of relational database
vendors such as Oracle. The SQL/XML standard facilitates interoperability between a
relational database and XML; particularly for returning relational data from a SQL query as

XML. The XML-SQL languge (Pankowski, 2002) follows a similar approach.

Table 2.1: XPath Expressions and Result Sets.

Expression

Result Set

xml_document

Returns the complete XML

document from the root node.

xml_document/*

Returns each of the nodes
under the xml_document node:
simple_tag, simple_tag2 and

complex_tag?2

xml_document/simple_tag

Returns the simple_tag node

xml_document/simple_tag2[@attribute1="value”]

Returns all simple_tag2 nodes (if
there are more than one) with an
attribute1 that has a value of

“value”.

xml_document[simple_tag2/@attribute1="value”]

Returns an xml_document node
that has a simple_tag2 node
with an attribute named
attributel that has a value of

“value”.

28

In contrast, the XQuery language is designed specifically for use with XML documents.

XQuery is based on XPath expressions, but extends the language by adding “FLOWR”

constructs (pronounced flower). In addition to the capabilities already present in the XPath
language, XQuery adds constructs to iterate over a set (for), assign variables (let), specify
search criteria (where), set the result order (order by) and return a specific result set (return).

Using these constructs, XQuery can be as terse as SQL. Figure 2.5 illustrates a SQL clause

and a comparable XQuery clause for the book catalog listed in the previous chapter.

Shanmugasundaram et a/. (2001a) and

<?xml version="1.0" encoding="UTF-8"7>
<xsT:stylesheet version="1.0"
xmIns:xsl=http://www.w3.0rg/1999/XsL/Transform

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<xsl:template match="/">

<html>
<head />
<body>
<xs1:for-each select="xml_document">
<xsT:if test="position()=1">
<table border="1">
<thead><tr>
<td>simple_tag</td>
<td>simple_tag2</td>
<td>complex_tag</td>
</tr></thead>
<tbody>
</tbody>
</table>
</xs1:if>
</xs1:for-each>
</body>
</html>

</xs1:template>
</xsT:stylesheet>

File Edit View Faworites Tools Help

=10j x|

| &

OBack o I\;_;) i \ﬂ @ _;j|/:j search k?':‘n'\'(‘Fa\mrites @Media {ﬂ

o .
. T\
v W~ |‘33(i, 3
G~] ¢
DT e BT

address I@

j Go ‘Links Z2

|@ Dane

=
|simple_tag |simp1&_tag2 |c0mplex_tag
|c omplex_tag?
simpledata |sunpledata2 |simple_ta33 |simple_tag4
|simpledata3 |simpledata4
=

|7|7|7| j My Computer

4

Figure 2.4: XSL Stylesheet Fragment and Resulting Web Page.

30

SQL:

select author
from catalog)
where title = “Huckleberry Finn”

XQuery:

for $c in catalog _
where $c.title = “Huckleberry Finn”
return $c.author

Figure 2.5: Comparable SQL and XQuery Queries.

Shanmugasundaram et al. (2001b) provide a good summary of the XQuery language. Using
XQuery, discrete XML documents can even be joined together in the same way that relational
tables can be joined with SQL (based on a primary key — foreign key equality). This enables full
relational capabilities within the XML store.

The first XML database capabilities simply allowed for retrieval of standard relational
data as XML documents. Because many websites are driven by backend database systems,
this was a huge benefit for being able to retrieve data from the database in a language of the
internet. Following this capability for production as XML, database vendors began looking at
ways to incorporate XML into the fundamental layers of the database. These capabilities were
generally realized either by decomposing the tag-value pairs in the XML into relational data or
by storing the complete XML in a character large object (CLOB), which is analogous to the
binary large object (BLOB). Storing the XML wholesale, of course, meant that query of the
XML data was next to impossible. The very nature of XML as semistructured also precludes
simple decomposition to structured relational tables (Florescu and Kossman, 1999).

XML database systems come in many flavors, ranging from systems that can only store
XML files in BLOB form and thus do not support querying, to database systems that map XML
data to relational or object-relational structures (many database vendors currently offer this

level of support, including Oracle, Microsoft SQLServer, and IBM DB/2) to pure XML databases

31

such as Tamino (Schoning, 2001) , Lore (McHugh ef al,, 1997) and TIMBER (Jagadish ef al.,
2002).

XML has previously been used as the basis for representing spatial data (Smith et al.,
2001), temporal data (Marian et a/., 2001) and spatiotemporal data (Brinkhoff and Weitkdmper,
2001), although none have considered XML for these domains specifically from the aspect of
persistent semantic representation. XML also is the basis for the dialect GML, which has found
its way into a number of commercial geographic information systems. The newest revision of
GML (version 3.0) has some capabilities for assigning temporal attributes, and other
approaches have been devised as well (Zipf and Krlger, 2001). However, these capabilities
are still rudiumentary and specify only reference systems. Moreover, GML is designed for
interchange (as are many dialects of XML) , not for persistence of large volumes of data.

The representation of time in geographic information systems has long been a
challenge for geographic information science. The study of the representation of phenomena
that change with time has a long history of research from authors such as Peuquet (1994,
2002), Langran (1992), Worboys (1998) and others. A recent proposal by Usery et al.
(forthcoming), described initially in Usery (2000) seeks to unify much of the disparate work in
representing temporal geographic data in a holistic framework that incorporates raster, vector
and mathematical model forms.

Berry (1964) is a foundational work familiar to every student of geographic information
science. Although it does not treat temporal data, the geographic matrix that it describes has
been the basis for the georelational model that has completely dominated the industry. The
georelational model has been so pervasive in part because it dovetails so precisely into the
standard relational model. In the geographic matrix, a feature is composed of its attributes and
its location. The intersection of these attributes and locations forms the geographic matrix

(Figure 2.6).

32

Attribute 1 Attribte 2

{XIY}D[’ {xll:llllz} I_ Location 1
L Location 2

Figure 2.6: Geographic Matrix.

As with temporal database literature, early models for temporally extended spatial data
focused on extending the georelational model. The difficulty with this extension to the
georelational model (and theoretically to Berry’s matrix) is that a geographic phenomenon may
be variable in both attributes and location, but may still be the same feature (for example, a
glacier is continuously moving slightly and may have a variable depth depending on snow
melt). Berry’s matrix does not account for this condition, precisely because it was not
designed to deal with temporal conditions. In making space the fundamental identifier of a
geographic feature, Berry’s matrix ignores the fact that a geographic feature can change and
evolve over time, and that in fact location may even be a parametric function of time.

More recent approaches have looked beyond the georelational model and its
limitations. Wachowicz (1999) reviews object-oriented methods for spatiotemporal data
modeling and presents the Spatiotemporal Data Model (STDM). The STDM draws upon the
seminal work of Hagerstrand (1975) which developed the Time Geography framework. In Time
Geography (and by extension in the STDM), time and space are integrated into a single holistic
framework. Spatial and temporal dimensions are represented in terms of space-time paths in
which an entity follows a path as it evolves in its spatial position in time. While conceptually
powerful, Time Geography has been difficult to represent in traditional relational models.
Wachowicz argues persuasively that an object-oriented design better captures the semantics

of Time Geography and demonstrates its application in a SmallWorld GIS implementation.

33

A number of methods have been suggested to model time in spatial systems. These
can be divided into absolute and relative views in which time and space are either explicitly or
implicitly modeled and into space-dominant, time dominant or integrated space-time views, for
a total of six possible models. Langran (1989, 1992) terms these varied methods dimensional
dominance and presents a review of these. One of the salient conclusions that Langran
reaches is that for GIS a spatial dominant approach is beneficial, particularly when temporal
extensions are accomplished through attribute versioning (as opposed to tuple versioning).

The absolute-space viewpoint corresponds to the mechanism by which time is most
readily implemented in current geographic information systems. In the space-dominant view,
the distribution of space is principal, and the arrangement of that space over time is
secondary. The model then becomes a series of partial or complete snapshots for each of the
different times, arranged like layers in the GIS. This approach is most commonly taken in
attempts to apply commercial GIS to the problem of temporality, because commercial GIS
software supports these layers readily.

In contrast, the absolute-time viewpoint explicitly adds a dimension to represent time.
While this approach has been successful in carrying forth two-dimensional GIS past the so-
called 2 2 dimensional approach and into the third dimension, it has severe limitations in
modeling time. This is because time cannot be considered to be another spatial dimension,
because time has its own set of constraints.

The absolute space-time view converges the absolute-space and absolute-time views
into a holistic viewpoint. In the absolute space-time view, the mode of interest is not simply in
a geographic phenomenon’s positing or temporal existence, but rather the phenomenon’s
location in time. Change is shown along a timeline where location is an indexed function of

time; the important feature then is not location in time or space, but rather the process that

34

defines position in time and space. The TEMPEST system (Peuquet, 1994) was the first
geographic information system to merge the absolute-space and absolute-time views.

Each of these absolute models has a relative analogue. The relative-space viewpoint
de-emphasizes the absolute fixed position in space of a phenomenon and instead focuses
upon the relative positions of features in space. This is an important viewpoint for spatial
topological relationships. Likewise, the relative-time view de-emphasizes the absolute fixed
position of time of a phenomenon and instead focuses upon the relative positions of features in
time. In many cases, this relativity is that time is measured relative to some temporal order; for
example of days of the week, which are relative to the week as a whole. Relative space-time
emphasizes both the relationships of space and of time. An important fact to note about
relative space-time is that it may not — and probably will not — be definable in a Euclidean
geometry. Relative space-time reflects the relative position of objects in space and time, and
because of the interplay between the two aspects, the phenomenon of interest may be grossly
distorted. An overriding assumption of the relative space-time is that time and space cannot
exist independently; indeed, they are interdependent.

Tversky and Taylor (1998) and Block (1998) both examine the cognitive aspects of
temporality. Block describes a model of cognitive perception of temporality in which the
importance of the directionality of the temporal arrow is stressed. Block argues that our own
perception of the progress of time has dictated the direction that time takes. Block (1998)
further argues for a hierarchical structure in which newer memories are superimposed on older
memories also defines the directionality of the temporal arrow. Tversy and Taylor (1998) differ
and suggest that language is a fundamental descriptor of both spatial and temporal thinking.
According to the authors, these concepts are intrinsically cultural and thus attached to

language; only through language are such concepts expressed.

35

Frank (1998) presents a taxonomy of spatiotemporal representation divided into linear
and cyclical types; linear time is time that continues identifinitely while cyclical time is based on
recurring temporal structures such as days, weeks or months (for example, Friday at 5 PM is
payday is a cyclical temporal structure). Of these two types, each can be further subdivided
into discrete and continuous structures. Discrete structures typically serve as events
(something happened at a certain time) while continuous structures demarcate durations (e.g.
between two times). Based on this taxonomy of time, time can be linearly evolving, as is the
case with Time Geography and space/time lines, but this taxonomy also adequately describes
branching time in which multiple possible outcomes may be possible from a single event.
Branching time is a theoretical possibility, although not directly perceivable by us since the
directionality of the time arrow dictates that we can only withess a single possible outcome to
an event. Figure 2.7 illustrates this concept of branching time. Hazleton (1998) further
describes branching time but with the additional complexity of bi-directional branching time.
Whereas branching time implicitly asserts that multiple possible outcomes are possible from a
single event, bi-directional branching further supposes that multiple events may lead to the
same outcome. Figure 2.8 shows this bi-directional branching model.

A slightly different approach to understanding temporality is described in Christakos
(2000). In this work on spatiotemporal geostatistics, Christakos seeks to understand not the
modeling of spatiotemporal data, but the analysis. Christakos presents an excellent review of
spatiotemporal geometry and argues that instead of mapping space and time to a 4-
dimensional spatial structure (as is often done), that instead a metric should be derived in
similar fashion to the Minkowski p-metric where dimensionality is mapped to an alternative
structure. Christakos further suggests that accomplishing this will create a map between
physical space/time and spatiotemporal events in the map; from these spatiotemporal events

relationships can be constructed between events, as can more advanced constructs such as

>
past future
Figure 2.7: Branching time.
E—
EEEE——
4,/ —>
past future

Figure 2.8: Bi-Directional Branching time.

>

36

37

spatiotemporal lines and areas. A spatiotemporal line corresponds roughly to that of the Time
Geography of Hagerstrand, while spatiotemporal areas may serve as boundaries between
epochs. Christakos also suggests that such spatiotemporal maps may be based on non-
Euclidean geometries, an idea that occurs fairly often in the spatiotemporal literature.

Christakos et al. (2001) present an applied approach to modeling temporality based on
raster data. In this work, Christakos again focuses on analytical capabilities but with particular
applications to imagery and geostatistical surfaces such as those produced by Kriging. Yuan
(2001) also examines an application of spatiotemporal modeling, in this case to weather
analysis. Unlike Christakos, the model presented by Yuan is an integrated one with both raster
and vector properties.

Usery (forthcoming) presents a unified model that models not only temporality but also
multidimensional spatial features. In this model, a feature is modeled in terms of attributes and
relationships between attributes. Using an object-oriented approach, an attribute may be of
any of a number of complex types, all of which inherit from the attribute base class. Examples
of attributes may be spatial types such as points, lines, polygons, rasters or geospatial types
which are these types extended with their appropriate georeferencing information. Note that
both vector and raster data are represented. Higher dimensional types may also be attributes
(such as three-dimensional constructions) as may be both event and duration temporal values.
Mathematical models may also be attributes that attach to a particular feature to describe
complex processes such as a dispersing pollutant in water, which is characteristically difficult
to describe simply in terms of coordinates but is better described by a mathematical model
that predicts its dispersive pattern in time and space. Attributes may also be aggregations of
multiple attributes (for example, an attribute may have a spatial component and a temporal
component as aggregated attributes into a single, complex attribute). Relationships are

similarly described as the relation between attributes and may be 1-to-1, 1-to-many or many-

38

to-many. The advantage to this model is that it equally facilly describes both transaction and
valid times and offers methods for either discrete or continuous times. The model may be
defined cleanly using an object-oriented notation such as the Unified Modeling Language.
However, the inheritance scheme is inherently hierarchical and will be difficult to persist in a
relational database.

Geographic cognition has provided an important component to geographic
representation. Cognitive geography is a heavily researched area as well with a growing body
of literature that strives to understand ways in which the human mind deals with spatial data,
temporalities and relativities. The recognition of the role that cognition plays in basic
geographic understanding is driving research in a variety of disciplines and illustrating clearly
that geography is a human science as well as a physical science.

The University Consortium of Geographic Information Science has identified cognition
and geographic representation as long-term research challenges and there has been a
commensurate history of geographic information science research in these areas (Goodchild,
1992; Couclelis and Gale, 1996; Nyerges, 1991; Molenaar, 1991; Frank, 1998b; McMaster,
1991; Egenhofer et al., 1999; Mark, 1993). Peuquet in particular has been active in spatial data
models and the role that geographic cognition plays in their development (Peuquet, 1984;
Peuquet, 1988). The importance of image schematas and the interrelationship of geographic
information science to cognitive theory has been explored as well (Kuhn and Frank, 1991;
Frank and Raubal, 1998). Finally, the role of qualitative reasoning has been examined (Freska,
1991; Hernandez, 1993). The interplay of each of these apparently disparate research
questions has directed a general expansion in fundamental understanding of geographic
cognition and its role in representation.

An understanding of spatial and temporal cognition has also previously driven the

development of data structures based on such cognitive processes. Habel and Eschenbach

39

(1997) provides an excellent interdisciplinary review of spatial and temporal cognition from a
cognitive science perspective integrating the literatures of both cognitive psychology and
artificial intelligence. The authors make and substantiate the argument that the current
approach of cognitive semantics is one of metaphorical assignment. Temporality is often
thought of in terms of spatial properties; however, the authors argue that this approach is only
partly correct and leaves glaring holes in the application of certain types of linguistic operations
for one or the other of these domains. Instead there is an underlying structure from which
spatial and temporal structures are derived (analogously to inheritance in the object-oriented
literature) and that shared behavior is inherited from this shared source. Thus, although there
is similarity, spatial data structures and temporal data structures should be handled (and
modeled) fundamentally differently.

Feature-based approaches to GIS are semantically rich data structures that are
generally now regarded as the current state-of-the-art. Geographic data models in the past
have been based largely on associating attributes with geometry, while neglecting other
properties of the data. In particular, these previous approaches have neglected the semantics
of spatial data. Tang ef al. (1996) presents a feature-based model derived from object-oriented
methodologies for vector data while Usery (1996) presents a similar model for raster data. In
such feature-based approaches to modeling geographic features, the representation in the
database corresponds to real-world features rather than simply to stored geometry. This
model is more difficult to represent in relational database systems and may require multiple
tuples for the same feature (for multipart or multitemporal features), but is semantically superior
to previous approaches. Using extended relational models or object-oriented models,
composition may be applied to organize the feature as one complete unit in the database.

Virtually all modern geographic information systems represent data in this way.

40

Freska (1997) also addresses this issue of the structure of representation and argues
that while physics, mathematics and other “hard” sciences represent space and time as
fundamentally continuous and mapped over a four-dimensional space (R*), spatial and
temporal data structures fundamentally decompose into qualitative structures. It is, Freska
asserts, these qualitative structures that allow fundamental comparison operations to occur
naturally. Thus the similarities between the spatial and temporal domains are qualitative rather
than quantitative and semantic mappings between the two should be accomplished at this
qualitative level.

There is a great deal of research in the cognitive geography and cognitive psychology
literatures supporting hierarchical spatial reasoning. Hierarchical organization of the data
facilitates cognitive economy and minimization of a search space in order to retrieve data.
With hierarchical spatial reasoning, levels of detail are swapped in and out of working memory
in order to deal with the most appropriate amount of information. Bisseret and Montarnal
(1996) examines the dichotomy between network and hierarchy-based viewpoints. This work
found that in fact hierarchical reasoning was the predominant mechanism in wayfinding tasks.
The authors suggested that in cases where a starting point for a wayfinding task was imposed
a network viewpoint predominated but was still superseded at various points by a hierarchical
perspective. They concluded that network (or tour) viewpoints only prevail in cases where a
specific task structures the cognitive map and that the hierarchical view is the fundamental
spatial representation.

Rinck, ef al. (1997) examined response times for subjects in retrieval of spatial
information from memory and observed that retrieval was categorical rather than geometric.
Accessibility of information depended upon the number of intervening objects between a start
and end point rather than purely the distance between the objects. In some cases, Euclidean

distance was observed to be used secondarily when additional information was necessary.

41

This work further substantiates the hierarchical organization of data; if only geometric
information were relevant than accessibility times should linearly increase with distance along
the path, which was demonstrated not to be the case. Newcombe, ef a/. (1999), however,
disputes the nonmetric nature of spatial representation by arguing that systematic distortions
in representations can be explained through hierarchical categorization whereby there may be
uncertainty at each category but not a distortion and that distortion is only introduced at the
superset of hierarchies when differences in uncertainties are combined. While the operational
mechanism is unclear, it is clear that the brain most likely does not store spatial
representations in terms of physical Euclidean geometry.

Hierarchical spatial reasoning theories suggest that humans partition space into a
number of subspaces of varying resolution (Car and Frank, 1994, Papadias ef a/,, 1996, Car,
1998). Such subspaces collapse and expand as the level of detail required changes. Such
hierarchical patterns are evident throughout the current theories of human cognition (Anderson,
2000) and suggest that there is some merit to this. Hierarchical spatial reasoning also matches
well with the findings of Freundschuh and Egenhofer (1997) that there are six categories of
space — manipulable object space, non-manipulable object space, environmental space,
geographic space, panoramic space and map space - in their theory of naive geography,
which describes how people spontaneously think about space. Hierarchical spatial reasoning
does present some computational challenges (Papadias and Egenhofer, 1997), but also has a
number of benefits for organization of data and filtering appropriately to the level of detail
required for the particular task. Hierarchical spatial reasoning also offers a mechanism for
cognitive organization of spatial databases (Rajabifard ef a/, 2000) that expands well to fit with
both earlier (Usery, 1996) and contemporary (Mennis ef al., 2000) research into incorporating
such cognitive principles into spatial databases. Given the observation by Hirtle (1998) that

GIS could in fact serve as an analog for memory, it becomes clear that incorporating cognitive

42

principles — and in particular, hierarchical spatial reasoning which maps well to the human
methodology for navigation — is key to being able to replicate such cognitive navigation
capabilities in a machine system.

In Car et al. (2001), the authors examine organization of spatial data in terms of a
hierarchical graph structure with graphs and subgraphs. The authors presented tasks to both
humans and machines to assess the ability to perform wayfinding, but only allowed a subset of
spatial information to be accessed at any single time. Car ef a/. (2001) reported that
performance was better using this hierarchical organization than using non-hierarchical
structures and suggest that benefits increase as the number of nodes in the network increase,
particularly with regards to problem-solving.

Graham, et al. (2000) further substantiates the hierarchical nature of spatial
representation and its particular applications to problem solving. In this work, subjects were
presented with a traveling salesman problem (a Hamiltonian cycle in which each node in a
network must be visited once and in which the cycle must start and end on the same node).
The authors found that comparisons of typical artificial intelligence techniques did not suitably
model response times. A solution for the problem based upon a hierarchical structure instead
modeled well the performance times of the subjects, indicating the hierarchical nature of
problem solving as well as representation.

An interesting examination of the relationship between space and time was reported by
Boroditsky (2000). In this study, structuring of conceptualizations of time and space were
compared with the consideration that space was concrete while time was abstract. There
appears to be a mapping between space and time in effect, and the author reported that
spatial structures could in fact be used to think about temporal information. A remarkable
finding in this study, however, was that given enough consideration of a spatial representation,

it could actually be stored as a temporal representation, obviating the need for access to

43

spatial schemas. This finding could suggest a mapping from three dimensional space to a
single dimensional timeline as a method for cognitive efficiency and may explain why
wayfinding tasks and distances are sometimes structured in terms of time along a path.

Category theory relates to hierarchical spatial reasoning and has as one of its products
in geographic information science the feature-based model. Like hierarchical spatial
reasoning, category theory also has concerns with issues of cognitive economy. However,
where hierarchical spatial reasoning is more concerned with the implicit nesting and ordering of
spatial phenomena (such as nested political units like counties, states and countries), category
theory applies the hierarchical approach to the attribute aspect of the geographic feature. In
the cognitive literature, the notion of a prototype has been well studied (Rosch, 1978). A
prototype is the most general instance of a thing; for example, identification of a feature as a
table has a semantic value that exceeds identification of the feature as furniture, while
identification of that feature of a coffee table adds considerably less semantic value. In
category theory, the prototype level of representation is also the most cognitively efficient level
and is thus the starting point for a cognitive process. As more detailed knowledge is required,
the cognitive process can access continually expanding (or deeper) levels of representation
from the original, shallow representation. Thus, as in hierarchical spatial reasoning, category
theory is concerned with the cognitive economy of a particular representation. Usery (1996)
has explored the application of category theory to geographic information science.

The value of hierarchical approaches have long been appreciated by database
researchers. Such hierarchical methods are the foundation of database indexing techniques
that allow for efficient access to stored data. In the traditional database literature, hierarchical
tree database structures such as B-Trees and B*-Trees have been used to implement such
indexing (Elmasri and Navathe, 2000). There are a wide variety of tree structures, each with

different purposes and design goals; however, there are commonalities between them.

44

Generically speaking, every tree structure is a hierarchical representation that is a
specialization of a directed graph (Lewis and Denenberg, 1991). As with a directed graph, a
tree is comprised of nodes and edges, where each pair of nodes is connected to an edge and
the tail is at the node from which the edge originates while the head is at the node to which the
edge terminates. Each node has exactly one parent (ancestor), but may have many children
(descendants). Also, each tree has a single node as its root, or highest level. A node that has
no children is called a leaf node, and the distribution of leaf nodes is one of the defining
characteristics of the type of tree.

Two properties of trees that are of particular importance to the design of efficient
algorithms are the height of the tree and the depth of its nodes. The height of a node is
defined as the number of edges between the node and its farthest descendant; the depth of
the node describes the number of edges from the node to the root of the tree. The height of
the tree is the largest depth of the nodes of the tree. The height of the tree dictates the
maximum time required to search through the tree for a particular node; the greater the height
of the tree the longer the search that is required. Because of this, minimizing the height of the

tree is of primary interest in the design of tree structures. Figure 2.9 illustrates these concepts.

Nodes Height = 3

A
Depth =2
Depth =3

Figure 2.9: Tree Structure Terminology.

45

Spatial data structures are also based on tree structures and hierarchically organize
space. Application of spatial data structures allows for efficient searching of space by
recursively decomposing the space to be searched. Examples of spatial data structures may
be found in Lewis and Denenberg (1991) and Samet (1990a and 1990b); two examples are the
k-d tree which multidimensionally decomposes the dimensional domains and the Quadtree
which recursively tessellates space. The principal difference between the two is that in the
Quadtree, space is uniformly distributed while in the k-d tree, the dimensional domain is
uniformly distributed. Figures 2.10 and 2.11 illustrate these two fundamental spatial data

structures.

Figure 2.10: k-d Search Tree (k=2).

Figure 2.11: Quadtree.

46

Other examples of spatial data structures can be found in a long history of work. Of
these, the most widely applied are the R-Tree family of data structures. The R-Tree has been
in the literature for nearly twenty years (Guttman, 1984), while the R*-Tree (Sellis et a/., 1987)
and R’-Tree (Beckmann et a/., 1990) have been more recently developed. At with the k-d tree
structures, the R-Tree structures are designed analogously to tessellate the frequency
distribution of features in geometric space. The R-Tree class spatial data structures are the
most frequently spatial data structures in commercially available spatial database systems.

As with thematic and spatial indexing, various temporal indices have been proposed
that are based on hierarchical structures. It should be noted that these indices typically rely on
a database schema where versioning is at the tuple level and not at the attribute level — that is,
a change in a record requires a whole new row and not just an updated attribute. This is in
keeping with standard approaches to temporal relational models. Elmasri ef a/. (1993)
proposed one of the earliest of these, the Time Index, in which, indexing is done over the single
dimension of valid time ranges. The Time Index has the drawback that it is space inefficient,
so various other approaches have been proposed as well. The TP-Index (Shen, ef al., 1994) is
another early method for temporal indexing that instead maps the temporal range into two-
dimensional space and uses spatial indexing methods to accomplish searches. The authors,
however, note that while this method is more space efficient than the Time Index, it has the
drawback that it is biased toward certain types of queries; for non-preferred queries the TP-
Index provides near-worst case performance. An improvement over the TP-Index is the B*-
Tree based TP-Index, which performs ordering over the two-dimensional space and maps the
results into a B*-Tree (Goh, ef al., 1996). These temporal indices all have the property that
records in the database do not need to be in sorted temporal order, a requirement for indexing
valid time, which may have updates that are out of temporal sequence. There are several

proposed temporal indices that do require sorted order and thus are only useful for indexing

47

transaction time in the database; an example of these is the Time-Split B-Tree (Lomet and
Salzberg, 1993). Nascimento and Dunham offer one of the most recent approaches to
indexing valid time using the standard B*-Tree data structure (Nascimento and Dunham, 1999).
As with spatial data structures, the various proposed temporal data structures tessellate time
into evenly distributed temporal units (such as does the Quadtree for spatial indexing) or
tessellate time into even distributions in the frequency domain of the indexed valid time values
(analogously to the R-Tree data structure).

The corollary to considering spatial and temporal indices separately, of course, is to
consider a combined spatiotemporal index. A number of proposals for spatiotemporal indices
have been made to date (Theodoris ef al., 1998, Nascimento and Silva, 1998) that add time as
an additional dimension to an existing spatial index. Saltenis and Jensen (2002) argue that
such approaches are not ideal. According to the authors, the addition of time as a spatial
dimension does not take advantage of the distinct properties of time as they differ from space
and the combination of purely temporal and purely spatial indices is simply not effective. The
authors propose an extended R'-Tree, which is a spatial index, with two temporal dimensions
for valid time and transaction time (with the distinction that these new dimensions are temporal
in nature and not spatial as many multidimensional index structures are). This RS"-Tree
spatiotemporal index is one of the only such to support indexing over both valid time and
transaction time. As with the purely temporal indices, these spatiotemporal indices are also all
hierarchically based (and often based on extensions to existing spatial indices).

Persistence of spatiotemporal data requires a confluence of academic disciplines.
Geographic information science has expanded understanding of spatiotemporal
representation, particularly from a cognitive viewpoint, and has generated a wide range of
approaches to such representation. Database research in spatial, temporal and

semistructured data representation have also offered new and exciting ways to persist such

48

data in a database. The possibility for management of spatiotemporal data incommercial and

corporate geographic information systems has never been closer to realization.

49

CHAPTER 3

METHODOLOGICAL DEVELOPMENT

We begin by constructing a non-extended relational model for representing
spatiotemporal vector data and by identifying the desirable features for this model. The reason
that we chose a non-extended relational model over an extended model with all of its desirable
characteristics is to enable a like-as-like comparison between the relational model thus
constructed here and the XML-based model derived as part of this work. Extended relational
models with spatial constructs have a number of advantages that overcome the limitations of
the standard relational model including mechanisms for better descriptions of spatial data and
operations. However, as has been shown, similar attempts to engender the same benefits for
temporal data and for spatiotemporal data have not been as successful. This work will show
that not only can spatial constructs be represented in an XML model, but also temporal and
spatiotemporal constructs.

Based on the standard relational model, all data must be represented in terms of tuples
and relationships between tuples. Considering only spatial characteristics, we turn our
attention first to representing the simplest spatial primitive — the point — in terms of the
relational model. The point is the easiest to represent in the relational model because there is a
1-to-1 mapping between it and the geographic feature. A generalized relational model for
point data is presented in Figure 3.1. This model is similar to the georelational model
commonly used in geographic information systems but without the use of specialized spatial

structures for comparative purposes.

50

Point Feature

ATTRIBUTE 1
ATTRIBUTE 2

ATTRIBUTE n
X (or POINT_X)
Y (or POINT_Y)

Figure 3.1: Point Feature Schema.

For the point feature, each of the attributes is listed as attribute 1-n and may
correspond to any data about the point location depending on the domain of the
representation. By way of an example, the point feature might represent a sample location for
a soil analysis. Each of the attributes may in turn represent data about that location such as
the soil pH, potassium content, etc. Note that even at this simple representation, some
semantic difficulties are already present. The actual point location is divided into two distinct
attributes called x and y for the Cartesian coordinates of the point feature. There is
semantically no connection between these attributes (save for the understanding that the
professional geographer brings to the problem). An alternative that does more explicitly
represent the connection is to label these attributes as point_x and point_y to better indicate
that these two attributes are part of the greater whole. We grant that extended relational
models, particularly those based on an object-relational framework, have already
accomplished this connection through the use of abstract data types where the attribute may
be called point or shape and have two corresponding nested attributes x and y. However, in a
non-extended relational model such as we are considering here, this is not the case.

Representation of the next spatial primitive — the line — adds a layer of complexity to our

model. The line is composed of many points arranged in a linear fashion. Because there as a

51

1-to-1 correspondence between the line feature (for example a river) and its attributes (flow
rate, temperature, etc.) we wish to model the feature in the relational model in such a fashion.
However, the 1-to-many relationship between the feature and the vertices that comprise the
line renders this difficult to accomplish in a single table. If the maximum possible number of
vertices were known a priori, then attributes numbering that number of vertices for each of the
x and y coordinates could be accomplished. Alternatively, a single line attribute could be
defined with the contents of the line field containing a delimited list of attributes, for example of
the form x1,y1;...;X,¥n. The drawback to the first approach is the wasted space if the number of
actual vertices does not equal the projected number of vertices. The drawback to the second
approach of course is that the data itself now describes the structure of the data rather than
the schema of the model.

A third alternative to modeling such a 1-to-many relationship is through the use of a
related table to maintain the vertex data for the line. This semantically the most clear and is
the most space efficient of the designs presented thus far. In this approach, any summary
data about the line as a whole is maintained in a line feature relational table while individual
vertex information is stored in a related line vertex table. The relationship is maintained on the
basis of a unique identifier such as the feature id presented earlier. Note the lack of semantic
clarity imposed by storing summary shape features such as line length in the line feature table
while storing individual vertex information in the related table. Also required for such a related
schema is the use of a sequence attribute in the vertices table to indicate the relative ordering
of vertices since the relational model does not guarantee tuples are stored or returned in a
particular order. Figure 3.2 illustrates these three alternatives.

Modeling polygon features is similar to modeling linear features in that they are
collections of vertices as well. The principal difference between polygonal and linear features

is that polygonal features are closed, so that the last vertex is equal to the first vertex and the

Line Feature

ATTRIBUTE 1
ATTRIBUTE 2

ATTRIBUTE n
LENGTH

X1

Y1l

X2

Y2

X3

Line Feature

ATTRIBUTE 1
ATTRIBUTE 2

ATTRIBUTE n
LENGTH

VERTICES (X,Y;X,Y;X,Y;)

Line Feature

FEATURE_ID
ATTRIBUTE 1
ATTRIBUTE 2

ATTRIBUTE n
LENGTH

Line Vertices

L

FEATURE_ID
SEQUENCE
X

Y

Figure 3.2: Three Alternative Line Feature Schemas.

52

53

Feature

FEATURE_ID

ATTRIBUTE 1 vertices

ATTRIBUTE 2

; FEATURE_ID
SEQUENCE

. X

ATTRIBUTE n Y

LENGTH (WITH LINES)

PERIMETER (WITH POLYGONS)

AREA (WITH POLYGONS)

Figure 3.3: Generalized Feature Schema.

different summary shape variables (perimeter is equivalent to length but applies to areal
features and such areal features also have a computed area associated with them). The choice
of whether or not to explicitly include the final coordinate is a choice left to the data modeler.
Summary shape attributes are stored in the feature table much like the length attribute in the
line feature table.

More complex geometric shapes are possible by aggregating these primitives;
examples of these might include networked features as collections of linear features, regions
as collections of areal features or higher dimensional (three dimensional) features. These
complex features may be constructed through further related detail tables to the summary
tables and are not presented here in detail.

We maintain that of the three options in Figure 3.2, the third is the semantically clearest,
with the related vertex table. However, this creates a departure from the scheme devised to
maintain the point feature and prevents generalization. An alternative point structure might be
through the use also of a related table that contains its single vertex as well. This would allow
us to devise a more general relational structure for all spatial features whether 0, 1 or 2

dimensional. Figure 3.3 presents this general spatial representation. Note that the presence of

54

length, perimeter or area attributes is dependent upon the geometric type. We maintain that
this does not affect the clarity of the model as these can be treated as all other attributes
associated with the feature. In the case of modeling of points, there would be a 1-to-1
correspondence between the feature and its associated vertex.

Construction of relationships is straightforward here as it is in the general relational
model. Maintenance of primary key — foreign key pairs in the source and related table will
adequately maintain the relationship between features and additional data. The feature —
vertex relationship is one example where the feature identifier in the feature table serves as the
primary key while the feature identifier in the vertex table is the foreign key.

It can be argued that this exercise is not necessary; the current existence of extended
relational models that are more efficient and more semantically elegant renders it extraneous.
However, we have gone through this exercise because it does not require the use of
specialized software such as Oracle Spatial or ArcSDE and would be accessible to any
enterprise wishing to model such data. It also provides a better foundation for illustrating the
benefits of XML based persistence of the same data.

In this research we have taken liberties to ighore some facets of temporal data for the
sake of simplicity. For example, we treat only uni-temporal time — either valid or transaction
time, but in this work valid time. We will discuss implications for bi-temporality in the results
section of this work. We also do not consider the distinction between the various types of time
(linear, cyclical, discrete or continuous) and address only linear time with durations. We will
further address these distinctions as well in the results.

To extend our simple generalized spatial schema to incorporate valid time as durations,
we first add two fields to the model for a birth date and a retirement date, which we will refer to
as BORN and RETIRED, respectively. This corresponds to tuple-level versioning and is the

simplest to accomplish in a relational model. Attribute versioning cannot be easily

55

accomplished in a relational database design without the use of complex structures. The
disadvantage to tuple-level versioning is immediately obvious: every time an attribute is
updated, a new tuple with new BORN and RETIRED attributes must be generated. This is very
space-inefficient.

In order to properly model also the related vertices, each vertex must also have an
associated BORN and RETIRED attribute. This is necessary since geometric updates are
possible in our model, and if we did not attach temporal attributes we would not know which
vertex was associated with which time. This is a kind of attribute-level versioning since we can
update vertex values without needing additional tuples in the feature table (with the exception
of the fact that changes to vertices would change summary shape attributes such as length or
area). Figure 3.4 illustrates this revised schema incorporating temporality into our generalized
spatial model.

Figure 3.5 shows a simple polygon feature such as a parcel for purposes of dissecting
this model. This polygon feature has four vertices and an additional attribute in addition to

FEATURE_ID, BORN and RETIRED attributes. To this polygon feature are made two changes;

Feature

FEATURE_ID

ATTRIBUTE 1 vertices

ATTRIBUTE 2

) FEATURE_ID
SEQUENCE

. X

ATTRIBUTE n Y

LENGTH (WITH LINES) BORN

PERIMETER (WITH POLYGONS) RETIRED

AREA (WITH POLYGONS)

BORN

RFTTRFD

Figure 3.4: Generalized Spatiotemporal Schema.

56

the first is a spatial coordinate update while the second updates the aspatial attribute. We
examine the storage requirements in our relational model for persisting this feature and its
versions.

Note first that maintaining the versions of this feature requires three tuples; one for each
of the original state and two successive changes. Because each of these tuples has the same
the feature identifier (because they are the same feature), we cannot use simply the feature
identifier attribute as the primary key for the table. Instead, we have a complex primary key
consisting of FEATURE_ID, BORN and RETIRED attributes. Note also the space that is wasted
by duplicating attributes in successive tuples where only a subset of attributes changed. This
is the value of attribute-level versioning, but as stated previously, it is difficult to accomplish in
relational models without complex relationships. Because multiple tuples are required for this
single feature, semantic clarity is also sacrificed; requiring the user to make the association
that these are different versions of the same feature and to scrutinize each of the tuples to
discern the differences.

Note also that we have duplication in the vertex list as well. Even though we can
accomplish attribute-level versioning with individual vertices, the necessity to maintain the
sequence number requires that we regenerate the list for each iteration. Thus, although there
are only four vertices — and only two changed — we must regenerate the entire list. We cannot
be assured that a vertex has not been inserted into or removed from the list, changing the
relative placement of the vertex in the list. Also note that the valid times for the vertices are not
exactly the same as for the feature itself. In this case, the attribute update in the third state
updates the tuple but does not require a commensurate change in the vertex list. Therefore,
the relationship cannot be based solely upon the primary key established in the feature table of
FEATURE_ID, BORN and RETIRED because the BORN and RETIRED values may be different

in the related table. This problem only pertains to temporal relationships; simple relationships

{0,50}

{100,50}

{0,0}

{100,0}

{0,50} {60,50}

STATE 1:
FEATURE_ID: 1
BORN: 1/1/1999
RETIRED: 1/1/2000
VALUE: $30000
AREA: 5000
PERIMETER: 300

STATE 2:
FEATURE_ID: 1
BORN: 1/1/2000
RETIRED: 2/1/2000
VALUE: $30000

STATE 3:
FEATURE_ID: 1
BORN: 2/1/2000
RETIRED: 1/1/2001
VALUE: $20000
AREA: 3000
PERIMETER: 220

AREA: 3000
{0,00 {60,0} PERIMETER: 220

Feature Table
FEATURE_ID BORN RETIRED VALUE AREA PERIMETER
1 1/1/1999 1/1/2000 30000 5000 300
1 1/1/2000 2/1/2000 30000 3000 220
1 2/1/2000 1/1/2001 20000 3000 220

Vertex Table

FEATURE_ID BORN RETIRED X Y SEQUENCE
1 1/1/1999 1/1/2000 0 0 1
1 1/1/1999 1/1/2000 100 0 2
1 1/1/1999 1/1/2000 100 50 3
1 1/1/1999 1/1/2000 0 50 4
1 1/1/2000 1/1/2001 0 0 1
1 1/1/2000 1/1/2001 60 0 2
1 1/1/2000 1/1/2001 60 50 3
1 1/1/2000 1/1/2001 0 50 4

Figure 3.5: Temporal Evolution of Simple Parcel Polygon.

57

58

based on a simple primary — foreign key relationship are not affected by this. The net result,
however, is that relationships with temporal attributes are complicated and cannot be
accomplished simply through a join operation. Instead, this relationship must be accomplished
by first selecting the appropriate tuple from the source table and building a query from the
BORN and RETIRED attributes to query against the related table. We clearly have sacrificed
considerable semantic clarity here.

We have approached our development of the XML-based persistence model by
considering the multidimensional model of Usery ef al. (forthcoming). In this model, features
are comprised of attributes and relationships. Attributes may be simple or complex and
composed of primitives or other attributes; relationships may be between features or between
parts of features. We have not, however, wholesale adopted this model. Whereas the model
of Usery ef al. is space-time dominant, so that space and time have equal dimensional
dominance, our persistence model is space-dominant with attribute-level versioning (the
approach recommended by Langran, 1992 for GIS applications). Temporality is attached to
model attributes as components of the attribute. In terms of the language of XML, an attribute
corresponds to an element delimited by a pair of tags. Temporality is modeled by attributes on
the tag. Figure 3.6 depicts an example model attribute and the location of attached

temporality.

<cost born="1/1/1999” retired="1/1/2000">
30000

</cost>

Figure 3.6: XML Attribute with Temporality.

XML also supports the creation of nested attributes as we were unable to do with a

non-extended relational model, so that we can construct a shape feature that supports the full

59

semantics of the shape. Using the same mechanism for temporality, we can alternatively either
attach temporality to the entire shape feature or to individual components of the shape. We
have chosen to attach temporality to the entire shape since changes to components of the
shape will change the shape as a whole. We have modeled shape components as being
comprised of as 1 or more coordinates, each of which in turn has x and y values. Line shapes
have an additional length component while polygon shapes have additional perimeter and area
components. Although envelope values have not been discussed yet (or considered) in the
relational model, the XML shape also contains an envelope with minimum and maximum x and
y values. Figure 3.7 illustrates this complex shape structure by way of an example.

Features are constructed analogously to the multidimensional model of Usery ef al. by
aggregating collections of attributes (or tags) — be they simple attributes or complex attributes
such as shapes. XML does not prohibit multiple occurrences of a tag (or an attribute in our
language), so multiple tags with the same name but differing BORN and RETIRED dates allow
for attribute versioning. The XSD schema language allows the designer of the XML document
to manage whether single or multiple instances of a tag are allowed and how many are
allowed. Thus, although there is flexibility in multiple versions of a tag, the document designer
can still maintain control. The feature identifier is also treated as an attribute of the feature tag,
because it is not truly an attribute of the feature but rather is a meta-attribute. This attribute is
not part of the real-world feature, but is an implicit part of the database. For semantic reasons,
it is therefore not treated as an equal to the rest of the feature attributes.

Figure 3.8 illustrates the XML document to persist the parcel polygon of Figure 3.5 with
all of its versions. Figure 3.9 shows this XML fragment as viewed through a popular XML
editor, XMLSpy. XML editors further improve the clarity of the document by arranging it in a
familiar tabular format. Fragments of the XML document can be accessed by further opening

hierarchical links in the document. Even in text form, the relationship of various aspects of the

60

versions of the feature are clearer than in the relational design. In tabular form, the real

advantage is understood.

<shape born="1/1/1999” retired="1/1/2000">
<coordinate>
<x>0</x>
<y>0</y>
</coordinate>
<coordinate>
<x>100</x>
<y>0</y>
</coordinate>
<coordinate>
<x>100</x>
<y>50</y>
</coordinate>
<coordinate>
<x>0</x>
<y>50</y>
</coordinate>
<perimeter>300</perimeter>
<area>5000</area>
<envelope>
<xmin>0</xmin>
<ymin>0</ymin>
<xmax>100</xmax>
<ymax>50</ymax>
</envelope>
</shape>

Figure 3.7: XML Shape Structure.

At the present, relating to other tables is as difficult in XML as it is in relational design.
This is due to the immaturity of a standard that will ultimately simplify this process - the still-
incomplete XQuery specification for querying XML documents. The XQuery specification will
further advance the capabilities of the language for persistence in data stores and will allow for
query in a similar way to the SQL standard for relational databases. Moreover, XQuery
provides a way to link or relate together two XML fragments, a process that is at present still

difficult

<feature id="1">
<shape born="1/1/1999” retired="1/1/2000">
<coordinate>
<x>0</x>
<y>0</y>
</coordinate>
<coordinate>
<x>100</x>
<y>0</y>
</coordinate>
<coordinate>
<x>100</x>
<y>50</y>
</coordinate>
<coordinate>
<x>0</x>
<y>50</y>
</coordinate>
<perimeter>220</perimeter>
<area>3000</area>
<envelope>
<xmin>0</xmin>
<ymin>0</ymin>
<xmax>100</xmax>
<ymax>50</ymax>
</envelope>
</shape>
<shape born="1/1/2000" retired="1/1/2001">
<coordinate>
<x>0</x>
<y>0</y>
</coordinate>
<coordinate>
<x>60</x>
<y>0</y>
</coordinate>
<coordinate>
<x>60</x>
<y>50</y>
</coordinate>
<coordinate>
<x>0</x>
<y>50</y>
</coordinate>
<perimeter>300</perimeter>
<area>5000</area>
<envelope>
<xmin>0</xmin>
<ymin>0</ymin>
<xmax>60</xmax>
<ymax>50</ymax>
</envelope>
</shape>
<cost born="1/1/1999” retired="2/1/2000">30000</cost>
<cost born="2/1/2000" retired="1/1/2001">20000</cost>
</feature>

Figure 3.8: XML Representation of Simple Parcel Polygon.

61

62

1o
; File Edit Project #ML DTD/Schema Schemadesign #SL Authentic Corwert Wiew Browser Tools Window Help -5 X
DSl M S|t (b VYE Y (e ERRLER O BDEBE[EE eHE
X XML = |
4 feature
=id 1
« shape (2]
= born = retired {} coordinate {} perimeter {}area {}envelope
1 1M/M1999 1472000 > coordinate (4) 220 3000 > envelope
2 1M/2000 1452001 coordinate (4] 300 5000 > envelope
Ox Oy
10 a
2 B0 o
3 60 50
L 40 a0
& cost (2]
= born = retired |fAbc Text
111719398 24,2000 30000
i) L 2 2M/2000 MA52001 20000
-
[} v
" fih Untitiecit saml
SMLSPY ¥5 rel, 4 U] 4

Figure 3.9: XMLSpy View of Simple Parcel Polygon.

One other aspect of the XML language that is complete, but has not as yet found its
way into current Document Object Model implementations is the ability to compare dates using
the XPath language. At present, date comparisons are compared as strings — thus
“12/1/2000” is less than “2/1/2000”, even though it obviously it is not. The XPath version 2.0
language has addressed this, but at present most implementations are still based on XPath
1.0. In this research, this was overcome by instead representing the date in decreasing
hierarchy — year, month, date — so that instead, 20001201 is greater than 20000201 as it should
be. This is a temporary drawback that does indeed affect the clarity of the representation, but
one that is in the process of being corrected.

Because this persistence model does not use Time Geography as its basis, the
question of spatiotemporal geometry has not been addressed. In particular, the question of
analytical capabilities is not dealt with here. Examination the implication of XML based
persistence and development of analytical capabilities would require a more explicit treatment

of spatiotemporal geometry.

63

Even with the relative immaturity of the XML language and standards for persistence,
this persistence model provides a basic foundation for storage of spatiotemporal data in a
semantically meaningful way. As research and development improves, XML will continue to
advance as a viable platform for long-term storage of such spatiotemporal data without

sacrificing the clarity of the representation.

64

CHAPTER 4

PROTOTYPE DEVELOPMENT

The development of theory is fundamental to research and to the advancement of
knowledge. To place theory in a societal context, however, that theory must have some
application to that society. In this research, a prototype was developed to actualize the theory
that has been developed thus far and to demonstrate one potential application of this theory.

In the course of this work, two versions of a spatiotemporal GIS were designed and
implemented with an application to electric utility AM/FM. These GIS are functionally
equivalent and provide the same capabilities. The only difference between them is that the first
GIS is a prototype spatiotemporal GIS which relies on XML for persistence while the second
GIS is based on the industry standard relational model, constructed for purposes of
comparison. Both of these GIS were implemented using Visual Basic 6.0, a popular tool for
client/server software development.

While Visual Basic 6.0 does not have some of the more advanced language features
that are found in other industry programming languages such as C++ and Java, it does have
excellent support for interface with standard relational database systems ranging from
Microsoft Access on the low end to Oracle, SQL Server and DB/2 on the high end. In fact, the
most common use for Visual Basic is to apply rapid application development (RAD) techniques
to design user interface applications to database systems at a variety of scales ranging from

small workgroups to the enterprise level.

65

Microsoft has also recognized the value of the XML language to the developer and to
the enterprise, and has provided support for emerging XML standards. It is important to note,
however, that these standards are still emerging and are subsequent to revision. The Microsoft
XML (MSXML) extensions support version 1.0 of the XML language and XPATH specification.
At the time of this writing, development of the XPATH 2.0 specification together with the
XQuery query language are under development and will likely provide more streamlined ways
to accomplish the desired goal than are at present possible with the tools currently available.
For this reason, the methods presented here should be taken as a proof-of-concept and not as
an absolute technical recommendation.

The most important point to be taken from these two GIS is the construction of the
prototype spatiotemporal GIS with XML persistence and its comparison to a similarly
functioned GIS based on relational persistence in terms of development effort and syntactic
expressiveness. It should be pointed out also that this research was concerned with the
representation of these spatiotemporal data and not with the specifics of database
management. As such these GIS are only capable of displaying created data and do not
provide capabilities for updating the data, nor do they provide support for indexing, multiple
concurrent users or transactions. Such future directions for these items will be discussed in

the conclusion of this work.

Data Development

The first step to implementing these GIS was to develop the data that would be used to
populate them. For this work, data were developed in Arc/Info coverage format using Arc/Info
Workstation 8.3. An examination of the methodology used to develop these data clearly

elucidates the necessity for development of a syntactically elegant spatiotemporal data model.

66

Attempting to represent and manage fundamentally temporal data in the non-temporal
coverage model was difficult and confusing at best.

The AM/FM data model used in the course of this prototype has been greatly simplified
from what would be required by an actual utility implementing such a model. This was done
principally for the purpose of managing the requirements of this prototype. A typical electric
distribution data model defines approximately 25 — 40 feature classes to represent the utility’s
assets. For this prototype, nine feature classes and one object class were chosen. In the
language of ESRI ArcGIS, the distinction between a feature class and an object class is that a
feature class is composed of spatial features that can be mapped in the GIS while an object
class has only aspatial attributes that relate to features in a feature class. These ten classes
consist of three conductors (primary and secondary conductors and risers), one structure
(poles), four electric devices (switches, transformers, lights and meters) and two customer
information layers (spatial parcel polygons and aspatial customer information). Many of these
feature classes require further defined subtypes to more specifically describe them. For
example the primary conductor layer consists of overhead and underground primary features.
These data layers were described in the introduction to this work.

These data describe a simple model of electric distribution for a fictional area of
approximately one square mile. In this scenario, prototype data are first developed on January
1, 1994 and features that existed at that time are attributed with a birth date accordingly. One
of the features that existed at that time was a large undeveloped parcel of land. On January 1,
2002, development was hypothetically begun on that parcel to subdivide it into residential
parcels and to provide electric service to those parcels. As development and subdivision
proceeded in stages, the GIS was updated to reflect the changing current status until finally
completed. Figure 4.1 shows an animation with the initial and final states of the prototype

data. In addition, as certain maintenance activities were hypothetically performed or as

67

customer information changed, the GIS was updated to reflect these changes. The result is a
temporally attributed GIS for a period from January 1, 1994 to February 1, 2006 (the last date
of update in this hypothetical scenario).

These data were developed only as a fictional example and are not intended to
represent a real place on the Earth, nor should they be taken as such. As described
subsequently, these data (in particular the customer information) were populated randomly and
are not real data. The prototype data is not georeferenced and is not placed in a real-world
context; coordinate boundaries for the prototype data range from + 2400 feet along the x-axis
and * 2250 feet along the y-axis in the Cartesian plane. The extension of the dates in the
prototype data nearly three-years in the future from the time of writing should further illustrate
the fictional nature of these data.

As previously stated, data development was managed in Arc/Info coverages. For each
feature class and object class developed in this prototype, two date attributes were added to
the appropriate coverage or INFO table. These attributes, BORN and RETIRED described the
date that a particular record was created or deprecated. Although it might be desirable in a
true GIS to tag time as well as date on a feature, in this work only a date was tagged for
simplicity. In addition, each coverage or INFO table also was populated with a FEATURE_ID
attribute that uniquely tagged the feature across all temporal incarnations. Because a feature
could change with time, there might be multiple features in a single coverage with the same
FEATURE_ID but with different BORN and RETIRED attributes. These features would be
considered to be the same feature at different times. This will be described better
subsequently with an example.

For this prototype, eight scenarios were enumerated to be accomplished in the sample

data. These scenarios are represented in the source coverage data and as such had to be

68

identified before the actual data production began. These eight scenarios are identified as

follows:

1. Staged subdivision of a single large parcel over a 2 V2 year period. This would require
multiple revisions of the original parcel polygon during that time.

2. Staged construction of electric utility features over the same 2 %2 year period. This
would require only single revisions of these electric features, but with temporal
attributing for birth and (if appropriate) retirement dates.

3. Reconfiguration of a transformer that was installed with the wrong phase to the correct
phase required by the services drawing power from it. In this case, the feature is the
same feature, but with a revision to one of its aspatial attributes.

4. Movement of a light and pole per a customer request. In this case, the spatial location
of the light and pole features would be revised, as would the secondary conductor
providing power to the light feature. All three of these features would remain the same
feature but would have their spatial attributes revised.

5. Maintenance on a cut section of primary conductor feeding the entire subdivision.
Electric utilities often abandon underground features and install new ones when
replacement is necessary because of the cost involved in excavating the original
feature. In this example, a section of primary conductor is cut and is isolated from the
network and abandoned in place. A second section of conductor is installed offset
from the original section by a foot and is attached to the network to restore power to
the subdivision. This requires modifying the spatial attributes of the original section of
conductor (to shorten it and isolate it from the network) and installing a new conductor

feature with a birth date representing when it was installed.

69

6. Customer information change. In this scenario, five customers move over a two- year
period, requiring that the customer information table be updated. This illustrates how
related records would be updated in such a temporally aware system.

7. A faulty meter is replaced. This requires retirement of the original meter feature and
installation of a new meter feature and demonstrates how the temporally aware
relationship to the customer table behaves when the underlying feature related to the
table changes.

8. A customer gets married and changes her name. This requires an update to the

customer record but does not generate a new customer record.

Creation of the switch feature class was the simplest to accomplish; this sample data
consisted of only a single switch point feature that existed without revision. The schema for
the switch feature class is described in table 4.1. The evolution of the switch feature class is
animated in Figure 4.2 with the parcel polygons for reference. Also relatively simple to create
was the riser feature class. As with the switch, there were no revisions to these features and
were relatively few of them (only 2 riser features). The riser schema is described in Table 4.2
and evolution of the riser feature class is animated in Figure 4.3. All of the remaining features
classes required temporal revision and were more difficult to create.

The primary conductor coverage consisted of 170 features, with one feature having two
revisions and being replaced by a different feature, for a total of 171 features in the coverage.
A look at the specifics of the replaced conductor will illustrate how the temporal revision
attributes and feature identifier manage the lifetime of the feature. Figure 4.4 illustrates the

primary conductor feature class zoomed in around one end of the replaced conductor. In the

Table 4.1: Switch Feature Class Schema.

ATTRIBUTE

TYPE

DESCRIPTION

TYPE

CHARACTER

The type of switch, typically identifies
whether the switch is overhead or
underground and the design of the

switch such a load-break switch.

PHASE

CHARACTER

The operating phase of the switch.
Phase may be any of A, B, or C
phases for a single- phase switch,
AB, AC or BC for a two-phase switch

or ABC for a three-phase switch.

OPVOLTAGE

CHARACTER

The current operating voltage of the

switch.

NOMVOLTAGE

CHARACTER

Nominal voltage is the rated voltage
of the switch, operating voltage may
be less than or equal to the nominal

voltage.

BORN

DATE

Birth date of the specified revision of

the feature.

RETIRED

DATE

Retirement date of the specified

revision of the feature.

FEATURE_ID

LONG INTEGER

Unique feature identifier that tags a

feature across all revisions.

[SHAPE]

SHAPE

Not an explicit attribute of the
coverage, but integrated into the
coverage, represents the geometry of

the feature.

70

Table 4.2: Riser Feature Class Schema.

ATTRIBUTE TYPE DESCRIPTION
TYPE CHARACTER The type of riser.
PHASE CHARACTER Operating phase of the riser.
MATERIAL CHARACTER Construction material of the riser.
BORN DATE Birth date of the feature revision.
RETIRED DATE Retirement date of the revision.
FEATURE_ID LONG INTEGER | Unique feature identifier.
[SHAPE] SHAPE Geometry of the feature.

scenario, the conductor with the feature identifier 36 was cut and abandoned in place, then

71

replaced with the conductor with feature identifier 170. Feature 36 was born (in this database)

on January 1, 1994 and remained unaltered until it was cut on October 18, 2002. When it was

cut, maintenance crews disconnected it from the network and updated the GIS to reflect that

the feature had been changed. In the Arc/Info coverage that was used to populate the source

data for the GIS, this was represented as two distinct coverage features with different
geometry, but with the same FEATURE_ID value of 36 to identify them as the same feature.

Therefore, the original feature 36 had a BORN value of 1/1/1994 and a RETIRED value of

10/18/2002 to reflect the lifetime of that revision. The second feature 36 had a BORN value of

10/18/2002 and no RETIRED value to represent the lifetime of this second revision. In the

source data in Arc/Info, then, these are two distinct features. In the migrated data in both XML

and the relational database, these are two revisions to a single feature. The new conductor

with FEATURE_ID 170 was also installed and also has a BORN value of 10/18/2002 and no

RETIRED value.

72

Table 4.3 describes the schema for the primary conductor feature class. There are six
types of primary conductor features, for one, two and three phase overhead and underground

primary, respectively. Figure 4.5 animates the evolution of this feature class.

Original feature with FEATURE_ID 36
BORM: 1/1/1994
RETIRED: 10/18/2002

Mew Featurs with FEATURE_ID 170
BORMN: 10/18/2002
RETIRED: MULL {open ended)

Ravisad featurs with FEATURE ID 28
Abandonad in place
BORM: 10M118/2002

[} RETIRED: MULL (open ended)

Figure 4.4: Revision to Replace a Cut Primary Conductor.

Like the primary conductor features, the secondary conductor features were installed at
intervals, and like the primary conductor there is one instance of a multiple revision secondary
conductor. There are 508 secondary conductor features, each of which attach to the primary

conductor at a transformer feature and provide power to either a meter or a light feature (509

73

features in the coverage including the two revisions of one feature). The schema for the
secondary conductor is identical to the schema for the primary conductor, albeit with different
values. There are two types of secondary conductors, for secondary underground and service
underground; the distinction is that service underground provides service to a meter while
secondary underground supplies power to a light or other device. This schema is reviewed in

Table 4.4. Figure 4.6 animates the evolution of the secondary conductor feature class.

Table 4.3: Primary Conductor Feature Class Schema.

ATTRIBUTE TYPE DESCRIPTION
TYPE CHARACTER The type of conductor.
PHASE CHARACTER Operating phase of the conductor.
OPVOLTAGE CHARACTER Operating voltage of the conductor.
NOMVOLTAGE CHARACTER Nominal voltage of the conductor.

The material used by the conductor;
CONDMATERIAL CHARACTER utilities typically have stock materials

that are used for conductors.

Material used by the conductor

neutral wire; conductors must have a

NEUTMATERIAL CHARACTER
neutral wire that carries current back
to the source to close the circuit.
CONDSIZE CHARACTER Thickness of the conductor.
NEUTSIZE CHARACTER Thickness of the neutral wire.
BORN DATE Birth date of the feature revision.
RETIRED DATE Retirement date of the revision.
FEATURE_ID LONG INTEGER | Unique feature identifier.

[SHAPE] SHAPE Geometry of the feature.

74

Table 4.4: Secondary Conductor Feature Class Schema.

ATTRIBUTE TYPE DESCRIPTION
TYPE CHARACTER The type of conductor.
PHASE CHARACTER Operating phase of the conductor.
OPVOLTAGE CHARACTER Operating voltage of the conductor.
NOMVOLTAGE CHARACTER Nominal voltage of the conductor.
CONDMATERIAL CHARACTER The material used by the conductor.
NEUTMATERIAL CHARACTER Material used by the conductor

neutral wire.

CONDSIZE CHARACTER Thickness of the conductor.
NEUTSIZE CHARACTER Thickness of the neutral wire.
BORN DATE Birth date of the feature revision.
RETIRED DATE Retirement date of the revision.
FEATURE_ID LONG INTEGER | Unique feature identifier.
[SHAPE] SHAPE Geometry of the feature.

The feature in the secondary conductor feature class with multiple revisions represents
a customer request for a streetlight movement (presumably, paid for by the customer). Figure
4.7 illustrates the revisions to this secondary conductor feature along with the revisions of the
associated pole and light features. In this case, the streetlight, the pole and the secondary
conductor were all installed — the streetlight (feature 62) and pole (feature 69) on 1/21/2003 and
the secondary conductor (feature 361) to provide power to it later on 3/27/2003. When the
customer requested that the light be moved, revisions were created for each of these three
features, with the result that each of the secondary conductor, light and meter classes each
contain two features with the same feature identifier, but with different BORN and RETIRED

attributes to represent the different revisions of the features. Again, while the coverage will

75

contain two features, the resultant XML and relational models will contain a single feature with

multiple revisions.

BORN: 3/27/2003
RETIRED: 7/5/2003

Sacondary conductor with FEATURE_ID 361

Secondary conductor with FEATURE_ID 361

BORN: 7/5/2003
RETIRED: MULL

Light with FEATURE_ID &2
BORM: 1/21/2003
RETIRED: NULL

Pole with FEATURE_ID 69
BORNM 7/5/2003
RETIRED: MULL

Lightwith FEATURE_ID 62
BORN: 7/8/2003
RETIRED: MULL

Pole with FEATURE_ID 69
BORN: 7/6/2003
RETIRED: NULL

The transformer feature class consists of 57 features, and like the conductor feature
classes contains a single feature that has multiple revisions (for a total of 58 features in the
coverage). Also like the conductor feature classes, transformer features were installed
progressively. In this case, the transformer with FEATURE_ID 18 was incorrectly installed A

phase when it should have been installed as B phase. When the meters and secondary

Figure 4.7: Streetlight and Associated Features Movement.

conductor were installed, the problem was uncovered. Figure 4.8 animates the evolution of the

76

transformer feature class. Table 4.5 describes the schema for the transformer feature class.
All 57 transformer features are of type single phase underground.

The pole feature class consists of 79 features installed progressively, one with multiple
revisions (for a total of 80 features in the coverage). The multiple revision instance was
described earlier in with the secondary conductor feature class and is illustrated in Figure 4.7.
Table 4.6 describes the schema for the pole feature class. In this data, poles are either of type
wood power pole or non-wood street light pole. Figure 4.9 animates the evolution of the pole
feature class.

The light feature class consists of 63 features installed progressively, one with multiple
revisions (for a total of 64 features in the coverage). The multiple revision instance was
described earlier with the secondary conductor feature class and is illustrated in Figure 4.7.
Table 4.7 describes the schema for the light feature class. Figure 4.10 animates the evolution
of the light feature class.

The last two feature classes, meter and parcel, and the customer object class were the
most difficult to create. Because they are interrelated, they will be described together. The
basic configuration of the two feature classes and the object class is that, as with the other
feature classes, each contains a BORN and RETIRED attribute. The meter and parcel feature
classes each also have a defined FEATURE_ID attribute, while the customer class has a
defined CUSTOMER_ID attribute. The meter and parcel feature classes also contain the
CUSTOMER_ID attribute. Relationships between the meter feature class and customer object
class and between the parcel feature class and customer object class are maintained using a
standard primary key / foreign key relationship on the CUSTOMER_ID attribute.

Figure 4.11 animates the evolution of the meter feature class. Figure 4.12 animates the
evolution of the parcel layer through subdivision. Table 4.8 describes the schema for the meter

feature class. Table 4.9 describes the schema for the parcel feature class.

Table 4.5: Transformer Feature Class Schema.

ATTRIBUTE TYPE DESCRIPTION

TYPE CHARACTER The type of transformer.

PHASE CHARACTER Operating phase of the transformer.

RATEDKVA FLOAT The kilovolt load rating of the
transformer.
Configuration on the high side of the

HSCONFIG CHARACTER transformer (where the primary
conductor enters the transformer).
Configuration on the low side of the

LSCONFIG CHARACTER transformer (where the secondary
conductor leaves the transformer).

OPVOLTAGE CHARACTER Operating voltage of the conductor.

NOMVOLTAGE CHARACTER Nominal voltage of the conductor.
Low side voltage of the transformer,

LSVOLTAGE CHARACTER indicates the transformed voltage on
the low side of the transformer.

BORN DATE Birth date of the feature revision.

RETIRED DATE Retirement date of the revision.

FEATURE_ID LONG INTEGER | Unique feature identifier.

[SHAPE] SHAPE Geometry of the feature.

Table 4.6: Pole Feature Class Schema.
ATTRIBUTE TYPE DESCRIPTION

TYPE CHARACTER The type of pole.

GROUND CHARACTER Type of ground on the pole, if any.

BORN DATE Birth date of the feature revision.

RETIRED DATE Retirement date of the revision.

FEATURE_ID LONG INTEGER | Unique feature identifier.

[SHAPE] SHAPE Geometry of the feature.

77

Table 4.7: Light Feature Class Schema.

ATTRIBUTE TYPE DESCRIPTION

Source of light electricity, either
LIGHTFEED CHARACTER

overhead or underground.

Type of streetlight, for example city
STREETTYPE CHARACTER

streetlight.

The type of lamp, describes the
LAMPTYPE CHARACTER chemical reaction that produces the

light, for example sodium.

Light style, for example open or
LIGHTSTYLE CHARACTER

closed lamp.

Type of photocell used by the lamp,
PHOTOCELL CHARACTER

specific to the type of installation.

Specifies where the lamp is located,
LIGHTROLE CHARACTER

for example inside city street.
WATTAGE INTEGER Wattage rating of the light.
BORN DATE Birth date of the feature revision.
RETIRED DATE Retirement date of the revision.
FEATURE_ID LONG INTEGER | Unique feature identifier.
[SHAPE] SHAPE Geometry of the feature.

Table 4.8: Meter Feature Class Schema.
ATTRIBUTE TYPE DESCRIPTION

PHASE CHARACTER Phase of the meter.

Current rating in amperes for the
SVC_CURR_RATING | CHARACTER

meter.
BORN DATE Birth date of the feature revision.
RETIRED DATE Retirement date of the revision.
FEATURE_ID LONG INTEGER | Unique feature identifier.

Unique customer identifier; foreign
CUSTOMER_ID LONG INTEGER

key relating to the customer table.
[SHAPE] SHAPE Geometry of the feature.

78

79

Table 4.9: Parcel Feature Class Schema.

ATTRIBUTE TYPE DESCRIPTION
BORN DATE Birth date of the feature revision.
RETIRED DATE Retirement date of the revision.
FEATURE_ID LONG INTEGER | Unique feature identifier.
Unique customer identifier; foreign
CUSTOMER_ID LONG INTEGER | key that relates to the customer
table.
[SHAPE] SHAPE Geometry of the feature.

The customer objects correspond to meter and parcel features, thus as parcels and
meters were created and updated, appropriate customer records were created and updated as
well. Table 4.10 describes the schema for the customer object class, which was stored in an
INFO database table.

Customer data were fabricated using random data. Because there were 331 customer
records, 20 first names and 20 last names were randomly paired in such a way as to insure
uniqueness of the name combinations (for example John and Joe first names with Smith and
Black last names would generate John Smith, Joe Black, Joe Smith and John Black). Not all
name combinations were used, but all names generated were unique. Street addresses were
generated by assigning groups of parcels to street names and then numbering the parcels
successively in increments of 4 (for example, 101, 105, 109, etc.). BORN dates for purchase
of properties and creation of customer records were generated by adding a random duration
from 1 to 90 days after the meter was installed to simulate staggered purchases. In this way,
the customer data was similar to actual data that would be found in a corporate utility

AM/FM/GIS.

80

Table 4.10: Customer Object Class Schema.

ATTRIBUTE TYPE DESCRIPTION

Unique customer identifier; primary

CUSTOMER_ID LONG INTEGER | key that relates to the meter and
parcel tables.

NAME CHARACTER Customer name.

HOUSE_NUMBER INTEGER Customer house number.

STREET CHARACTER Customer street name.

CITY CHARACTER Customer city.

STATE CHARACTER Customer state.

ZIP_CODE INTEGER Customer zip code.

BORN DATE Birth date of the feature revision.

RETIRED DATE Retirement date of the revision.

To understand the steps required to create these feature classes, a review of the
temporal changes to the classes is necessary. In this scenario, the parcel features were
originally created on January 1, 1994 and first subdivided on January 7, 2002. At that time, the
geometry of the original large parcel (FEATURE_ID 1) was altered, thus generating an
additional record in the coverage (although still the same feature). On October 28, 2002, the
parcel polygon with FEATURE_ID 1 was again subdivided, again altering the geometry and
requiring an additional coverage feature. It should be noted that in practice these additional
parcel polygon coverage features were actually maintained in distinct polygon coverages due
to the complications that stored topology would introduce with overlapping or quasi-
overlapping features. Conceptually, however, these features can be considered as if in a single
polygon coverage. On September 15, 2003, the parcel polygon with FEATURE_ID 1 was again
subdivided, this time retiring the feature as it had been fully subdivided. There are 536 distinct

polygon features by the time that the large polygon is subdivided, with 3 additional

81

representations of the parcel polygon with FEATURE_ID 1 for a total 539 polygon coverage
records thus far in 4 distinct polygon coverages.

At this point, the parcels have been subdivided, but construction has not yet been
completed. There are, therefore, no associated customer records. Thus all parcel polygons
have a CUSTOMER_ID value of 0. Meters are installed on the parcels in stages and assigned a
BORN date as appropriate; however, the properties have not yet been purchased and so here
as well there are no associated customer records. All meter records thus far have a
CUSTOMER_ID value of 0. There are, at this point, a total of 331 distinct meter records.

As properties are purchased, customer records are generated and related to the
appropriate meter and parcel features. Because updating the CUSTOMER_ID value in the
meter or parcel feature is an attribute change, it requires that the current incarnation of the
feature be retired and a new feature generated with the update CUSTOMER_ID. In this
scenario, all properties constructed are sold eventually, generating 331 additional meter
records and 331 additional parcel records (presumably the remaining polygons either have no
data created for them or have not been sold). The additional parcel features are in a separate
coverage to avoid topology problems. There are now a total 662 meter records and 870 parcel
records in 5 distinct polygon coverages. This completes construction and initial purchase of
the properties.

In this sample data, three additional scenarios affect these three classes. In the first
scenario, a faulty meter (FEATURE_ID 172) must be replaced, generating a new meter record in
the coverage with FEATURE_ID 332. Because the customer did not change, in both cases the
CUSTOMER_ID remains the same — 490. In the second scenario, five homes are sold
(including the faulty meter with CUSTOMER_ID 490). For each sale, new CUSTOMER_ID
records must be created, and CUSTOMER_ID values must be updated in the parcel and meter

coverages. In the final scenario, a customer gets married and changes her name. For this, a

82

new customer record must be created with the same CUSTOMER_ID, while the old customer
record is retired. Meter and parcel records do not have to be retired, however, since the
CUSTOMER_ID attribute did not change.

For the first sale, the property with CUSTOMER_ID 762 is sold on August 1, 2005. This
causes customer record 762 to be retired on August 1, 2005 and a new record with
CUSTOMER_ID 1001 to be created on the same date. This requires the associated meter and
parcel records to be retired on this date and new records to be created with the updated
CUSTOMER_ID value. It should be remembered that this is only for purposes of creating and
staging data in the non-temporally aware Arc/Info. In the temporal GIS, these would all be
single features with multiple revisions. At the conclusion of this sale, there are 2 customer
records and 3 meter and parcel records respectively for this single property (one record for
before the first purchase, one record for the first purchase and one record for the second
purchase).

In the second sale, the property with the meter that had been replaced is sold
(CUSTOMER_ID 490) on November 15, 2004. Customer record 490 is retired on this date and
a new record with CUSTOMER_ID 1002 is born on this date. Meter and parcel records are
retired and born with new CUSTOMER_ID values as well. At the end of this sale, there are 2
customer records, 4 meter records and 3 parcel records for this property. The 3 parcel records
are for the same events as the first sale. The 4 meter records are for before the first sale, for
the first sale, for the replaced meter and for the second sale.

The third sale is like the first sale; the property with CUSTOMER_ID 217 is sold on
February 1, 2006. The original customer record is retired on August 1, 2004 and replaced with
CUSTOMER_ID 1003 and meter and parcel features are retired and replaced with updated
CUSTOMER_ID values as well. At the conclusion of this sale, there are again 2 customer

records and 3 meter and parcel records respectively. The fifth sale follows the same pattern as

83

the first and third sales; the customer record with CUSTOMER_ID 475 is retired and replaced
with a new customer record with CUSTOMER_ID 1005, again requiring retired and new meter
and parcel records respectively and again with a total of 2 customer records and 3 meter and
parcel records.

In the fourth sale (CUSTOMER_ID 342), suppose that the seller could not sell
immediately and so disconnected power from the property while trying to sell. In this case, the
customer record is retired on April 30, 2005, and the associated meter and parcel records are
retired as well. New meter and parcel records are born with a CUSTOMER_ID value of 0, since
there is at this point no associated customer record. When the property is finally sold on July
10, 2005, these parcel and meter records are then retired and replaced with new records with
an updated CUSTOMER_ID value of 1004 and a new customer record with the same
CUSTOMERL_ID is generated. At the end of this financial transaction, there are 2 customer
records and 4 meter and parcel records, respectively (one record for before the first sale, one
record for the first sale, one record for transferal out of the original owner’s name and one
record for the second sale). Recall that parcel polygons at different times are maintained in
separate coverages. For those still counting, the result is a total of 669 meter records at
various times to represent 332 distinct meter features, a total of 336 customer records and a
total of 876 parcel polygon records in 7 parcel polygon coverages to represent 537 distinct
parcel features.

While the creation, retirement and management of these features may seem
complicated, these are real-world issues that would affect any utility implementing a
spatiotemporal AM/FM/GIS, and may be on the simple side of modeling problems. To further
clarify the creation and retirement of features in this scenario, Figures 4.13 — 4.18 illustrate the

processes for each of the five sales, the meter replacement and the customer name change.

84

PARCEL
FEATURE_ID | CUSTOMER_ID BORN RETIRED
170 0 1/7/2002 7/22/2002
170 762 7/22/2002 8/1/2005 | g—— Original Sale
170 1001 8/1/2005 <€— Second Sale
CUSTOMER
CUSTOMER_ID BORN RETIRED
> 762 7/22/2002 8/1/2005
> 1001 8/1/2005
METER
FEATURE_ID | CUSTOMER_ID BORN RETIRED
289 0 5/2/2002 7/22/2002
T 289 762 7/22/2002 8/1/2005 | @ oyiginal Sale
— 289 1001 8/1/2005 <€— Second Sale
Figure 4.13: Records for First Property Sale.
PARCEL
FEATURE_ID | CUSTOMER_ID BORN RETIRED
380 0 10/28/2002 | 9/7/2003
380 217 9/7/2003 11/15/2004 | —— Original Sale
| 380 1002 11/15/2004 <€— Second Sale
CUSTOMER
CUSTOMER_ID BORN RETIRED
E 490 9/7/2003 11/15/2004
B 1002 11/15/2004
METER
FEATURE_ID | CUSTOMER_ID BORN RETIRED
172 0 7/30/2003 9/7/2003
172 490 9/7/2003 2/4/2004 |€— Original Sale
332 490 2/4/2004 11/15/2004 | ¢—— Meter Replacement
L | 332 1002 11/15/2004 <€—— Second Sale

Figure 4.14: Records for Second Property Sale and Meter Replacement.

PARCEL
FEATURE_ID | CUSTOMER_ID BORN RETIRED
248 0 10/28/2002 10/5/2003
248 217 10/5/2003 2/1/2006 | €— Original Sale
248 1003 2/1/2006 — Second Sale
CUSTOMER
CUSTOMER_ID BORN RETIRED
> 217 10/5/2003 2/1/2006
> 1003 2/1/2006
METER
FEATURE_ID | CUSTOMER_ID BORN RETIRED
52 0 8/12/2003 10/5/2003
52 217 10/5/2003 2/1/2006 <+ Original Sale
52 1003 2/1/2006 <«4—— Second Sale

Figure 4.15: Records for Third Property Sale.

PARCEL
FEATURE_ID | CUSTOMER_ID BORN RETIRED
363 0 10/28/2002 | 7/10/2003
363 342 7/10/2003 | 4/30/2005 |<€— Original Sale
363 0 4/30/2005 | 7/10/2005 |-¢—— Account Closed
363 1004 7/10/2005 €—— Second Sale
CUSTOMER
CUSTOMER_ID BORN RETIRED
t 342 7/10/2003 | 4/30/2005
< 1004 4/30/2005
METER
FEATURE_ID | CUSTOMER_ID BORN RETIRED
108 0 6/3/2003 7/10/2003
108 342 7/10/2003 | 4/30/2005 |<¢—— Original Sale
108 0 4/30/2005 | 7/10/2005 |.g—— Account Closed
108 1004 7/10/2005 <€—— Second Sale

Figure 4.16: Records for Fourth Property Sale.

85

PARCEL
FEATURE_ID | CUSTOMER_ID BORN RETIRED
248 0 10/28/2002 | 4/10/2003
248 475 4/10/2003 8/1/2004 | g—— Original Sale
248 1005 8/1/2004 «€—— Second Sale
CUSTOMER
CUSTOMER_ID BORN RETIRED
> 475 4/10/2003 8/1/2004
> 1005 8/1/2004
METER
FEATURE_ID | CUSTOMER_ID BORN RETIRED
164 0 5/5/2003 8/1/2004
| 164 475 4/10/2003 5/5/2003 |€—— Original Sale
L 164 1005 8/1/2004 @—— Second Sale
Figure 4.17: Records for Fifth Property Sale.
PARCEL
FEATURE_ID | CUSTOMER_ID BORN RETIRED
259 0 10/28/2002 | 5/26/2003
259 513 5/26/2003 & Original Sale
CUSTOMER
CUSTOMER_ID BORN RETIRED
_t 513 5/26/2003 | 12/14/2003
k 513 12/14/2003 «€— Name Changs
METER
FEATURE_ID | CUSTOMER_ID BORN RETIRED
. 180 0 5/7/2003 5/26/2003
- 180 513 5/26/2003 & Original Sale

Figure 4.18: Records for Customer Name Change.

86

87

These figures clearly show the complicated relationships that would be required to support this
relational model.

Conversion to the relational data model was accomplished in two steps. First, the
coverages and customer INFO table developed thus far were imported into a personal
geodatabase format. The geodatabase format is the ESRI solution for storing spatial data in
standard relational database systems. The personal geodatabase is based upon the Microsoft
Access database, while enterprise geodatabases may be built in Oracle, SQL Server, DB/2 or
other commercial relational database systems. Attribute data are stored directly in appropriate
columns. However, shape data are stored in a proprietary binary ESRI format and cannot be
directly read by applications that do not make use of the ESRI data structures.

Once the coverages and INFO table had been imported to personal geodatabase
format, all of the data were then located in appropriate Microsoft Access tables, and in fact in
ESRI geodatabases tables in the Microsoft Access database. Creation of the geodatabase
also requires a large number of metadata tables that are not directly usable by the end user.
Finally, the shape data were stored in a binary column.

In order to move the shape data from the binary ESRI format into a readable format for
non-ESRI client applications (such as the GIS developed in course of this work), a Visual Basic
for Applications (VBA) macro was created in ESRI ArcMap.

VBA is integrated into ArcMap and is a subset of the Visual Basic language. ArcMap
VBA macros may be developed to interact with GIS data through the object-oriented
ArcObijects library. This library allows (among other things) for a feature class to be iterated
over with attributes extracted. This VBA macro looped through each of the feature classes in
the geodatabase to extract the vertices, area, length, perimeter and bounding box (as
appropriate for line and polygon feature classes) for each feature in the feature class.

Bounding boxes were not extracted for point features as points are 0-dimensional and hence

88

maximum and minimum X, y coordinates are exactly equal to the x, y coordinates of the point
itself. Also extracted were the feature id and the BORN and RETIRED attributes. The VBA
macro used to extract the shape data is listed in Appendix A.
Because there is a one-to-many relationship between features and their vertices for linear and
areal feature classes, vertices were stored in a related table name as featureclass_Shape (for
example, the vertex data for the Light table would be stored in the related Light_Shape table.
Each vertex record stores the feature id, BORN and RETIRED attributes (since there may be
more than one shape revision for a given feature), the vertex order number (that is, the first
vertex has a vertex order of 1, the second has a vertex order of 2 and so forth). Although this
is a somewhat complicated scheme, with a multipart key based upon feature id, BORN and
RETIRED values, the alternative to store these vertices directly in the appropriate table would
have required storage in a concatenated string formatted such as “X1,y1;X2,Y2;X3,Y3; . . .;Xn,Yn;
This would have required more resources from the GIS, as it had to iteratively extract the
vertices from the string. Bounding box vertices are also stored in this Shape table, with vertex
order values of -2 for bounding box minimum coordinates and —1 for bounding box maximum
coordinates. Although this obfuscates the model by storing two semantically different data
cases in the same table, this was done to avoid the need (and overhead) of constructing a third
table to hold bounding box vertices. An alternative could also have been to store these
bounding box coordinates in four columns in the feature class table (as are the area, light and
perimeter attributes), but this was decided against because the bounding box coordinates are
vertices and this model retained more (albeit imperfect) semantic consistency.

The final steps involved in conversion to the relational database were to combine
discreet parcel tables and cleanup of the personal geodatabase to effectively reduce it to a
simple Access database. Because the parcels had to be represented in distinct coverages for

distinct times, the seven tables imported from the seven parcel coverages had to be combined

89

into a single parcel table. To clean up the geodatabase and revert it to a simple database,
extra metadata tables were dropped since the GIS is not ESRI based. Any columns brought
over as legacy from the original coverage were also dropped as well (for example original
object id values from the coverage). Finally, the binary shape field was dropped.

To store metadata about the model, such as feature class, object and relationship
definitions, and symbology, a series of catalog tables were also created and populated. These
were Catalog_FeatureClass, Catalog_ObjectClass, Catalog_Relationship, Catalog_BoundBox
and Catalog_Symbology; their applications can be readily discerned from their names. The
final relational schema is diagrammed using the Entity-Relational model in appendix B.

Conversion of the XML data was more straightforward. Because the extraction of data
from the proprietary ESRI coverage had already been undertaken in the conversion to the
relational database, this database was used as the basis for populating the XML schema. The
only task required to accomplish this then was to map from the relational schema to the XML
schema. Although this was conceptually simple, in practice it illustrated well the potential
pitfalls of such relational -to-XML mappings and the challenges faced by those who persist
XML data in relational databases. The most straightforward way to accomplish this mapping
was through the use of a Visual Basic script, which essentially opened a cursor into each of the
feature classes and object class (and related shape tables) and populated an instance of the
Microsoft Document Object Model (DOM) for XML; this DOM object in turn was used to persist
the final XML. The Visual Basic script used to accomplish this mapping is listed in Appendix C.
While this was satisfactory for converting the feature and object classes, it proved unwieldy for
converting the catalog tables. For this reason, and because there was little data in the catalog
tables, the catalog was converted manually.

Once the XML data had been populated into one of eleven XML files (one for each of the

feature classes and one for the object class and catalog, respectively), XMLSpy 5.4 was used

90

to attempt to extract the schema definitions from the XML files. XML stores schema
information separately from the data using one of a number of mechanisms. For this work, the
schema definition language XSD was used. Although XMLSpy can generate XSD schema
definitions automatically from a specified XML file, the resulting XSD files thus generated were
too literal in representing the existing data in the system rather than the generalities of the data
as a whole. For example, the FEATURE_ID field might have a domain list that constrains its
values to those in the XML file (for example, 1 to 100), whereas it would be more desirable to
simply constrain this data to a particular data type (such as an integer). Because the XSD
generation was less than optimal, XSD files were created for each of the XML files manually.
These XSD files are used to validate the input XML file to insure that the data in it meets the
desired schema criteria. There is no universally accepted notation for diagramming XSD
schemas. Although the Unified Modeling Language (UML) is often adopted for modeling both
relational and XML schemas, it is not completely suited to describing the semistructured XML
file. The XSD schema file is self-describing and easily understood and often serves as its own

diagram. The XSD schema files are listed in Appendices D-N.

Software Development

The GIS software was developed once data development was completed. Although
there were two distinct GIS developed in the course of this work, both were developed in a
single Visual Basic project. Upon starting the GIS software, the user selects from a menu to
execute either the XML based version or the relational version of the GIS. Figure 4.19
illustrates this selection menu. Program listings for the selection menu and the startup basic
module governing the Visual Basic project are listed in appendices O and P respectively.

The GIS were developed cooperatively and are functionally identical, differing only in

their persistence model. The relational GIS uses a Microsoft Access database while the XML

4 Spatiotemporal Electric Wility AMFMIGIS Browser - Choose Browser Yersion) = |EI|£|

Spatiotemporal Electric Utility AM/FM/GIS Browser

Choose the browser version:

Figure 4.19: Selection menu to choose the GIS version.

91

92

version of the GIS uses XML files for persistence. Because both GIS are functionally identical,
they will be described together at an architectural level. Internal design differences between
the GIS to accommodate one or the other of the persistence models will be deferred to the
results and discussion section of this dissertation as these differences belie the fundamental
research question of this work. The relational version of the GIS is listed in appendix Q. The
XML version of the GIS is listed in appendix R.

Each GIS consists of a single form that is divided into a map area, a toolbar and two
tabs. Figure 4.20 illustrates the form layout of the GIS with the first tab active. Figure 4.21
illustrates the form layout of the GIS with the second tab active. As can be seen from Figure
4.21, the design version of the form does not have feature classes hard coded, but has
allocated up to nine feature class control locations where the drawing of the feature class can
be enabled or disabled. At the top of the form is the toolbar with five tools. The first of these
tools is the selection tool, which allows for selection of a single feature from the map. The
remaining tools are map extent tools to allow zooming in and out of the map, panning the map,
and resetting the map extent to the full extent of the data. Both the feature classes to be
loaded and the full extent of the data are stored in the catalog tables. At the bottom of this tab
is a calendar control that allows the user to set the current reference date for the system.
Using this date, the system can be set to have a different operational date to allow for viewing
and querying of data at any time in the life of the database. By default the reference date is set
to the current date.

Dominating most of the GIS is the map drawing area; in this area the map is drawn with
respect to the current map extent (set using the zoom and map extent tools). Finally, at the
bottom of the form is a status bar that provides system messages to the user as well as the

current map position and map scale.

4 Spatiotemporal Electric Wility AMFMAGIS Browser - X5D Schema

Feature Classes I Aftributes

v

Reference Date: I 17011994 vI

Figure 4.20: Form Design for GIS and GIS Table of Contents.

I4 Spatiotemporal Electric Utility AM/FM/GIS Browser - Relational Schema

Feature Classes T Attributes

Sample Mode
Sample Mode
Sample Made

Sample Mode

Selected Feature IDs

SelectedFeatures

S0L WHERE Clause

Select Tolerance

0o 20 10,0

Figure 4.21: Form Design for GIS and GIS Attributes and Query.

94

95

The remaining functionality is provided on the second tab, which is divided into four sets of
controls. The first control is a tree list that lists the attributes for the currently selected feature,
which may be chosen either by clicking on the map to select a single feature or through a user-
defined query. The second control is a listbox that lists all of the features selected through
either a spatial or attribute query; although multiple features may be listed in this box only one
set of attributes may be viewed at a time. The current set of attributes can be changed by
selecting a different feature id from this list. The third control allows a user to specify a query
in the supported query language of the system; for the relational version of the GIS this is a
SQL query and for the XML version this is an XPath query. In keeping the design as simple as
possible, this query definition box only allows the user to define the predicate of the query and
not the subject. For the SQL query, this corresponds to the WHERE clause, while for the
XPath query this corresponds to parameters between a pair of [] braces. The final control is a
slider that allows the user to adjust the tolerance of the spatial selection.

Functionally these GIS are quite simple and support only a limited range of tasks that
are typical of those that might be found in an online kiosk-style application. However,
internally a significant amount of design was required to seamlessly support the same

capabilities in both GIS. Figures 4.22 and 4.23 illustrate the running GIS with data loaded; note
that Figure 4.22 illustrates the table of contents for the XML version of the GIS with a feature

selected while Figure 4.23 illustrates the attributes of the same feature drawn from the
relational database. This shows clearly that the XML schema can support the same range of
functionality as the relational schema.The most involved aspect of the GIS development was
the accessing of related data. Because the relationship between the source table and the

related table could be many-to-many, depending upon the particular arrangement of records, a

SQL join was impractical. For this reason, the key value was extracted from the source table

and used to query the related table directly. These related records were then added to the

I4 Spatiotemporal Electric WRility AMFMAGIS Browser - X53D Schema

BB C

Feature Classes I Aftributes

V' street Light

o

V' teter

V' Transtormer
O

¥ Switch

&

' Riser

a0

M pale

v Secondary Conductor

v Primary Conductor

v Farcel

Reference Date: I 97472003 vI r

Click to zelect an festure of the specified feature type; right click to unselect selected features. | 1:26.4245 -G05.2224 5225571

Figure 4.22: Running GIS — XML Version.

I4 Spatiotemporal Electric WRility AMFMAGIS Browser - Relational $chema

y A A2 @

Feature Classes T Aftributes

El COORDINATE |
=
i 1..g37.477172851563
=
L. 554 BB0419921875
CUSTOMER_ID
L3785

PHASE

-Richard Cooper

=1 HOUSE_MUMBER b
114

[+ STREET

[1T ;I

Selected Feature IDs

SOL WHERE Clause

Select Tolerance 5.000
oo 5.0 100
*
Click to zelect an festure of the specified feature type; right click to unselect selected features. | 1:22.70955 -G37.5575, 554 9393

Figure 4.23: Running GIS - Relational Version.

97

98

attribute list along with the records from the source table. A similar method was used with the
related XML table due to some incomplete language features for relating XML tables. These

design considerations will be more thoroughly reviewed in the results and discussion.

99

CHAPTER 5

RESULTS AND DISCUSSION

There are several criteria that are explored here in order to qualitatively compare
development of the XML-based prototype spatiotemporal GIS to the relational spatiotemporal
GIS. These are the semantic clarity of the data store, ability to accurately represent
spatiotemporal data and ease of development in a standard development environment such as
Visual Basic. Also evaluated are the space requirements for persistence of the data and

ubiquity in industry.

Ubiquity

The question of ubiquity is by far the easiest to answer. The relational database model
has been in existence for more than thirty years and has certainly achieved ubiquity throughout
the information technology sector. However, research has shown that the relational model is
insufficient semantically and analytically for representation of spatial or temporal data. A
number of extended-relational models have been presented; of these, virtually none have been
readily accepted in the marketplace. The object-oriented database model clearly has both the
semantic and analytical capabilities to persist spatial, temporal and spatiotemporal data.
However, acceptance of the object-oriented database outside of a few specialized areas has
been limited, thus limiting the applicability for an object-oriented persistence scheme in general

industry.

100

By far the most commercially successful method for persisting spatial data has been
the object-relational hybrid, particularly from vendors such as ESRI and Oracle with the
ArcSDE and Oracle Spatial products. The object-relational hybrid has sufficient semantic
expressiveness to represent spatial data, and specialized spatial operators have been built into
these products to enable efficient and reliable access. There are no similar products for
temporal databases and certainly none for spatiotemporal databases. Thus, for current needs,
the object-relational approach is insufficient for persistence of this data and we must therefore
choose between object-oriented or relational models with the characteristics previously
discussed.

XML has achieved ubiquity in the marketplace as an efficient transport mechanism,
however it has not yet gained widespread acceptance for persistence. This is in the process of
changing, however, as the database industry embraces XML in the database — either through
the relational model as expressed by SQL/XML or through the native XML database as
expressed by XQuery. Although both standards are still incomplete, the appearance of XML in
the offerings of database vendors has already signified acceptance of this mechanism as an
important future development in the industry. The flexibility of XML to model virtually any
domain - including spatiotemporal data, as demonstrated in this research — means that XML
has great promise for representing spatial data, and advances in XML databases further

presuppose the same promise for persisting data.

Space Requirements

The question of space requirements for persisting XML data is dependent on the data
modeled. However, in this research, it was found that space requirements were less for for an
equivalent non-extended relational model. The relational data was stored in 24 tables in a

Microsoft Access database (which is comprised of a single disk MDB file). The space

101

requirements for the Microsoft Access database were 2.97 MB for this particular prototype. In
comparison, the XML data was stored in 11 XML disk files and 11 XSD disk files (for the
schema definition) that required 1.85 MB. The space requirements for persistence in either an

extended-relational model or an object-relational model were not explored.

Accurate Spatiotemporal Representation

In both the relational and the XML data models, the spatiotemporal data were
accurately represented and there was no loss of information resulting from either data model.
In the relational model, multiple tuples stored each version of the feature in the database. As
each tuple was written, the previous tuple was accurately marked as retired so that there was
no confusion as to which tuple existed at which time. In the XML model, versioned attributes
were used to achieve the same effect. Each attribute was marked with an appropriate
retirement date as a new attribute was added, so that existence of attributes was also

unambiguous. Thus, the accuracy of both representations was equal.

Semantic Clarity

Semantic clarity is harder to assess, and is admittedly subjective. However, in viewing
the final data in the relational database and the XML files (and particularly with the use of a tool
such as XMLSpy for tabular viewing of the XML files), we felt that semantic clarity was much
higher in the XML store than in the relational store.

The persistence of this spatiotemporal data in the relational schema required two tables
to the single table required by XML. This is addressed in an extended-relational model (at the
expense of ubiquity) and so cannot be held as a serious impediment. Nevertheless, in our non-
extended schema, we required two tables while in XML (without extensions), we were able to

model the spatial data as a subset part of the feature as it rightly is.

102

Also, in our non-extended relational model, characteristics of spatial data were
separated between the two tables, with summary information in the feature table and vertices
in the vertex table. This again is handled by extended-relational models at the expense of
ubiquity. It is also adequately handled by the XML model where spatial characteristics such as
area or length can be stored with the vertices.

The main area where the XML model proved to be much clearer semantically was in the
issue of temporality. In the relational model (and this would also be the case in an extended-
relational model for spatial data), storage of versions of a feature required multiple tuples and
required the user to make the logical association between these multiple versions and the
feature. Moreover, multiple versions of a feature are not multiple features, and yet the
semantics of the relational model treat equally different versions of features and different
features — both are represented by discrete tuples in the database. The relational model also
treats the temporal data implicitly as having the same structure as spatial and attribute data,
which is clearly counterindicated in the literature, by placing these attributes at the same
location in the schema as the rest of the attributes.

The XML model much clearly separates the features from their constituent versions by
storing features at the highest level in the hierarchy and versioning attributes within the context
of the hierarchy instead of at an equal level. A review of the attributes that changed at a
particular time is also clearer, as only the changed attribute has a new time assigned to it. In
the relational model, the entire tuple is versioned, which requires the user to scan the complete
tuple to determine the change made to it.

Finally, the feature identifier itself is more appropriately represented as a meta-attribute
of a feature by not placing it on equal footing with the actual feature’s attributes. The
combination of these factors makes the XML document much easier to view and understand

without the use of specialized software.

103

Ease of Software Development

Because a complete development process was undertaken for both database models,
this researcher is well able to make assertions regarding the facility with which client software
was developed for each of these data models. Most commercial software developers are
familiar with data access routines for relational database systems; one of the most popular of
these is the Open Database Connectivity standard (ODBC) found in Microsoft software and
operating systems. This standard is not unlike similar standards found in other languages,
such as JDBC for Java, but there are subtle differences.

In comparison, the Document Object Model (DOM) has emerged as one standard for
reading and writing XML files. Other similar standards are under development by the World
Wide Web Consortium (W3C). Because DOM and similar standards are maintained by an
independent party, the data access routines for XML documents is actually much simpler from
platform to platform; the DOM is similar in Visual Basic, Java and C++ and much less
dependent on vendor implementations. This is one immediate benefit of XML based
persistence.

The other question that must be addressed then is the comparison between a database
access methodology such as ODBC and XML access through DOM. We address this question
by comparing actual snippets of code from both versions of the GIS developed in this work.

The code snippet required to open a connection to an ODBC database, in this case
Access, is listed in Figure 5.1. The commensurate code snippet for XML access is listed in
Figure 5.2. The relational version requires that a SQL string be created, a connection object to
the database and a recordset object to hold the data. The SQL string is populated and
supplied to the recordset, which is opened. The XML code snippet instantiates an XML

document object and opens it. While this may seem like less lines, in reality the XQuery

specification will likely provide new access routines that are more similar to SQL access

routines than to current methods to open XML documents.

Dim conn As New ADODB.Connection

Dim rs As New ADODB.Recordset

Dim sqlString As String

conn.open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=DB.mdb"
Sq'IString = “SELECT * FROM TABLE”

rs.open sqlstring, Conn, adopenKeyset, adLockOptimistic

Figure 5.1: Code Snippet to Open an ODBC Connection.

Dim XMLDoc As New DOMDocument40
XMLDoc.Load “table.xml”

Figure 5.2: Code Snippet to Open an XML Document.

104

The data access routines are slightly different between SQL and XPath, but XPath is not

more complicated. Opening and querying data with SQL requires the use of a recordset

object, which can then be accessed through use of a cursor. Values can be accessed through

the cursor. Querying an XML document with XPath requires the use of an XML node object,

which also can be looped through. Thus the mechanism for both SQL and XPath, while

technically different are conceptually similar. Figures 5.3 and 5.4 illustrate the SQL and XPath

access routines respectively.

Dim rs As New ADODB.Recordset
rs.open “select * from table”, Conn, adOpenkKeyset, adLockOptimistic
rs.mMoveFirst
Do wWhile Not rs.EOF
Debug.Print rs("VvAL").value
rs.MoveNext
Loop
rs.Close

Figure 5.3: Code Snippet to Query a Relational Database.

Dim XMLDoc As New DOMDocument40
Dim XMLNode As IXMLDOMNode
XMLDoc.Load “table.xml”
For Each XMLNode In XMLDoc.selectNodes(“*/val”)
Debug.Print XMLNode.Text
Debug.Print XMLNode.Attributes.getNamedItem(“attribute”)
Next XMLNode

Figure 5.4: Code Snippet to Query an XML Document.

The remainder of the software functionality is virtually identical in both the SQL and
XPath versions; only the data access routines are different. The net result is that software
development, while not easier with XPath, is no more difficult. Software development is

comparable in both models.

105

106

CHAPTER 6

CONCLUSIONS, ISSUES AND FUTURE DIRECTIONS

The prototype XML-based spatiotemporal GIS developed in this work has shown that
development of an XML based spatiotemporal data store for is feasible and achievable using
current technology. Although there are still incomplete parts of the XML standard languages,
particularly the XQuery standard, development of an XML based store is still possible simply
using the built-in facilities of the language (particularly XPath). While some database
operations are convoluted (particularly with regards to linking tables), the semantics of the
store are certainly clearer when stored in XML than when stored in an equivalent relational
database. The sheer volume of work that has been dedicated to the various data models in
relational and extended-relational form belies the difficulty in conceptually clearly and
semantically accurately modeling such spatiotemporal data in such a structured data store.
The semi-structured and customizable nature of XML is better suited to the semi-structured
and gradually evolving data of the real-world as expressed in time and space.

To review the objectives of this dissertation, they are restated here:

1. Develop an XML based data structure for representing spatiotemporal data. The
usefulness of XML as a mechanism for efficiently persisting temporal data is postulated
based upon a variety of contributing factors. First, the most efficient database
structures are hierarchical, and indeed indexing data structures such as B+-Trees, R-

Trees or Quadtrees are often based upon these hierarchical structures. Second, set

107

theory dictates the unique existence of an object. However, many versions of an object
(as is the case with temporally extended features) require non-uniqueness of an object -
a so-called bag. XML supports these bags better than do relational models. Third,
cognitive category theory is based upon a hierarchical structure; and it has been shown
in the cognitive science literature that cognitive economy is achieved by traversing
multiple levels of a knowledge tree.

Develop a relational schema for a simple electric distribution GIS with temporal
attributes and design the queries that would be required in order to access records in
the database. This relational schema will contain structures such as poles, electric
devices such as transformers, electric conductor (power lines) and customer data.
Develop a fictional spatiotemporal GIS based upon the relational schema. This GIS
shall be capable of drawing the current state of the GIS at a particular time and viewing
the attributes of a feature at that time. The GIS shall also be capable of querying for
spatial or thematic attributes. The GIS will support a series of queries designed to
demonstrate some of the difficulties of dealing with temporal data.

Develop an XML based schema for the same simple electric distribution GIS with
temporal attributes and design the queries that would be required to access records in
the database.

Develop a prototype spatiotemporal GIS based on the XML schema with the same
target functionality as the relational spatiotemporal GIS. Compare and contrast the
complexity of the XML-based GIS software to the relational GIS software. Also
compare and contrast the two development processes and the resultant data

repositories.

108

With regards to the first objective, a sufficiently generic XML based data structure was
constructed to model several different data types including points, lines, polygons and non-
spatial object classes. Temporal attributes were organized as a sub-hierarchical level of each
object such that changes in state for any attribute (whether spatial or aspatial) generated a new
node in the hierarchy. Thus objects, attributes and temporality were chosen as the
fundamental hierarchical organization, with space treated as an attribute on equal par with
aspatial attributes.

The capability to store bags (for non-unique or repeating attributes) was particularly
important. Because of the selection of time as the fundamental node in the hierarchy, it was
guaranteed that attributes would be non-unique in each collection. Each attribute may occur
multiple times at discrete temporal locations, so for example a SHAPE attribute (to store the
spatial location) may exist multiple times on the same object node, with individual temporal
times. The capability to store not only tags (columns in the relational model) and data (rows in
the relational model), but attributes or metadata about the specific instance of that tag and
data provides the capability for better data definition that ultimately supports this property of
non-uniqueness. In actuality, the combination of all three — tags, data and attributes — are
themselves unique, but because elaboration is possible over the relational model of simple
rows and columns, data that are really unique — but cannot sufficiently be represented as
unique in the relational model — may be adequately modeled in XML.

Hierarchical spatial reasoning and category theory contributed to the substantive
development of this XML data structure. Many of the same factors that make efficient the
cognitive process also drive efficiency in terms of searching a hierarchically organized set of
data. Category theory shows that people fundamentally organize their world into a hierarchy of
objects. Although not explicit as part of the XML data structure, this organization is implicitly

present in the separation of object classes into discrete documents or tables. Because XML is

109

semi-structured, objects of different types may be stored as nodes of the same root — with
different schema. Initial prototyping of the data structure produced a model where all objects
were stored together and it was quickly obvious that each data type should be stored on a
separate node separately for semantic clarity and for efficient search access to the data, as
shown in Figure 6.1. Data types were divided into different documents because it limited the
amount of data that needed to be loaded in order to complete a search (only the poles, for
example). This is in reality the same strategy as dictated by cognitive economy — only data
needed for a particular cognitive process are loaded.

In terms of modeling temporality, two designs were considered. In the first design, birth
and retirement metadata are stored as attributes of the associated attribute tag. In the second
design, each attribute is modeled singularly as a node in the hierarchy with discrete revision
nodes under each attribute node. For this application, the first of these designs was selected
principally because it simplified the overall model and the path access statements to query the
model. However, the second design is equally valid and has the additional advantage that
temporal indexing would be more straightforward (although this was not an issue in this
prototype as indexing was not implemented). The benefit of XML is that either of these
designs is equally expressable in a schema. Figures 6.2 and 6.3 illustrate these two design

strategies for comparison.

<data>
<pole/>
<conductor/>
<switch/>
</data>

Figure 6.1: Node Organization of Data Types.

110

<feature id="1">
<attribute>
<revision born="031001" retired="031002">value</time>
<revision born="031002" retired="031003">value</time>
</attribute>
</feature>

Figure 6.2: Temporal Attributes as Nodes.

<feature id="1">
<attribute born="031001" retired="031002">value</attribute>
<attribute born="031002" retired="031003">value</attribute>
</feature>

Figure 6.3: Temporal Attributes as Tags.

The second through fifth objectives were all accomplished cooperatively because of the
interdependence among them. In order to address the second objective, the ArcGIS Electric
Distribution data model (ESRI and Miner and Miner, 2001) was used as the basis for
developing a simple schema for electric distribution. Although the ArcGIS Electric Distribution
data model contains approximately 40 feature and object classes, a subset of only 10 were
selected and individual attributes were chosen from within each of the selected feature and
object classes to limit the amount of data to be generated. Selection of attributes was limited
to the most important attributes for each type of feature, such as phase designation for electric
features or material for structure features. Addition of temporal attributes required extending
the table structure to include birth and retirement. However, the structure of the relational
schema made it necessary to utilize a complex key of FEATURE_ID, BORN and RETIRED and
required one-to-many type relationships to completely model the temporality. The queries
required to access this data were standard SQL queries and were defined when the
spatiotemporal GIS software was developed. The third objective was completed by
constructing the spatiotemporal GIS software in Visual Basic, using Microsoft Access as the

database server. Construction of the spatiotemporal GIS was straightforward and although the

111

queries were complex and would be semantically unclear to someone not familiar with the
schema, they were straightforward to define.

The fourth objective was completed by mapping the relational schema into the XML
model developed in the first objective. This was straightforward and done by exporting the
data from the relational schema in an XML form that fit the schema developed to match each
of the feature classes. As described previously, each feature class was stored in a separate
document, and for each a separate XSD schema was defined to allow for validation of the data
in the document as complete and correct and also to allow for use of the schema by the
software in a manner not unlike the schema catalog maintained by relational systems. The
resultant database of XML documents clearly illustrated the benefit of XML over relational
models for representing complex temporal data. Viewing of the XML database as compared to
viewing of the relational database was more natural and required much less interpretation on
the part of the observer because of the hierarchical organization of the data and elimination of
the need for one-to-many relationships. Development of the queries for this XML schema was
carried out for completion of the fifth and final objective and was found to not be simpler than
developing the SQL queries, but was not more difficult either. The semantic clarity of the
queries themselves was not greatly increased. However, development of the current
generation of XML query languages may improve this situation. Development of the prototype
XML-based spatiotemporal GIS required replacement of data access routines from the existing
relational spatiotemporal GIS and development of both versions proved to have about the
same level of complexity. Thus, development effort stayed relatively constant for both the
relational and the XML-based spatiotemporal GIS. However, viewing of the native form of the
data, without the GIS, clearly indicated the advantages of XML over relational models.

There are, of course, a number of issues that this work has not explored. The

immaturity of the XQuery language presents problems for complex relational models.

112

However, this standard is near final revision and this problem should be mitigated soon.
Understanding the implications of the XQuery language as it pertains to spatiotemporal data
will be key and will likely require as much investigation as has been devoted to this issue in the
relational database literature.

This work also has only explored valid time. Any actual XML-based spatiotemporal GIS
implementation would require capabilities to store both transaction time and valid time.
Extension into two discrete temporal axes would have complicated the design beyond the
desired ends for this research. Exploration of inclusion of these temporal domains is
necessary for a real-world implementation.

This research also did not explore the implications of a writable database. This
research was limited only to read-only access to the database. Of course, at the current time,
the XQuery language also does not define definition or manipulation capabilities and is itself
read-only; the current XML standard to write XML databases requires typically interaction
through an API such as DOM (Document Object Model) or SAX (Simple API for XML). This is a
deficiency in the XML language that has not yet matured.

This research also considered only a limited scope of spatial data. The work by Usery
et al. (forthcoming) has a much wider set of options for data representation. In particular, their
work also explores modeling of raster data, geospatial data (as distinct from spatial data by
incorporating projection information) and true mathematical formulae for better representation.
This work focused entirely on simple vector features. Persistence of true spatiotemporal data
will need to include these types of features. The purpose of this work was simply to show
proof of concept in development of an XML-based prototype.

The same problems that currently plague the relational model in terms of spatial (and
temporal) operators are still present in the current XML implementation. Standards such as

GML do mitigate some of these problems, but further operators will need to be defined. Unlike

113

the SQL language, however, there are more options for accessing XML data including XPath,
XQuery and XSLT. A combination of these will allow for more integrated development of
operators than is possible in SQL.

Finally, this research has not considered physical database issues. There is a whole
body of research aimed at the physical level of the database. Transaction management is
necessary in order to insure ACID properties in the database (atomicity, consistency, isolation
and durability) so that changes made — particularly in multi-user situations — are not dependent
upon the order of operations made by the user. Query optimization and indexing provide
improved performance over full scan of data and must also be considered for aspatial, spatial,
temporal and spatiotemporal indices. Memory management — both dynamic memory and disk
space — are also key. In this research, the entire table was loaded into memory and accessed
through the Document Object Model. In a real implementation, it would be more likely that
some part of the document would be dynamically loaded - this is key for very large data sets —
and dynamic memory would be paged in and out as required. Memory management would
allocate the paging space required in the database to load the data and would manage
whether such pages were clean or dirty (i.e. whether the data block had been written to since it
was loaded) and manage the commensurate commitment of dirty pages back to the database.
Current native XML database offerings have already explored some of these issues.

This research did successfully demonstrate that current capabilities in the XML
language would support persistence of spatiotemporal data for read-only access and would
support creation of a prototype spatiotemporal GIS. It has been shown that an apples-to-
apples comparison where the underlying relational database also did not have specialized data
structures or indexing provided comparable performance to an underlying XML data store (in
actuality, the XML was slightly — but inconsequentially — faster). Drawing was readily

accomplished, as was querying, and table joins were also accomplished - albeit in a less

114

semantically clear way than the rest of the operations. XML holds great promise for persisting
complex data such as that in the spatiotemporal model and is already ubiquitous in the
industry, unlike pure object-oriented databases.

There are a number of potential future directions for this work. First, each of the issues
expressed above must be explored before successful adoption of the model. Second, as the
GML (Geography Markup Language) matures, it is likely that the GIS community will see better
adoption of and support for XML in spatial databases. The inclusion of temporal units of
measure thus far forbears better support in later versions. It is thus conceivable that native
XML databases may support spatiotemporal data. Of course, GML is simply itself a dialect of
XML and thus the above issues equally apply to it as well.

The development of XML originally as an internet language has also endowed it with
certain capabilities because of that fact. The existence of the internet as a low-bandwidth
communication medium (with most people still connecting at or below 56 KBPS) has
stimulated investigation of efficient mediums of transport. Geospatial and spatiotemporal data
in particular have benefited from this because they are already large volume data sets. The
Standardized Vector Graphics (SVG) language is based on XML and SVG browsers that extend
current internet browsers are already available. SVG can be transmitted as plain-text and the
browser can handle the work of rendering the data. Using existing XML techniques such as
XSLT, an XML or GML document can be transformed to SVG and sent to the browser for
rendering. This holds great promise for internet-connected and mobile devices. It also takes
the burden of graphic implementation off the database and puts it in the browser. Current
research in the direction of SVG will also benefit such spatial and temporal data.

Of course, the benefits of spatiotemporal representation has implications far beyond
the limited application illustrated here for AM/FM/GIS. In the first case, AM/FM/GIS itself is

broader than presented here and includes additional types of utilities as well as other model

115

domains where management of facilities from a spatial perspective is beneficial. Obviously,
there are applications here. However, any aspect of geographic representation would benefit
from an ability to manage data not only spatially but also temporally. Geographic data change
with time, and as Einstein demonstrated space and time are inextricably intertwined.
Additional domains include disparate areas from demographics to emergency management;
from storage and analysis of satellite imagery (with an appropriately expanded study of such
persistence) to forestry. In short, any storage of spatial data would benefit from an ability to
store representations of that data as it changes with time for benefits from historical analysis to
predictive modeling. While the ability to model such data is key, the ability to store that data in
a long-term stable way is just as important in order to obviate the need to remodel data each
time. Relational data stores simply are not up to the task of modeling the semantic complexity
of spatiotemporal data.

The industry as a whole has seen a shift from modeling structured data in relational
systems to modeling unstructured or semistructured data. The adoption of XML has already
begun both in information science in general and in geographic information science in
particular. XML has moved into the database and the benefits of XML for modeling
spatiotemporal data in a semantically clear way far supersede any potential that the relational

model offers.

116

REFERENCES

Anderson, J. 2000. Cognitive Psychology and Its Implications, 5th Edition. Worth Publishers,

New York.

Atkinson, M., F. Banchilhon, D. DeWitt, K. Dittrich, D. Maier and S. Zdonik. 1989. The Object-

Oriented Database System Manifesto. ALTA/R Technical Report. 30(89).

Beckmann, N., H. Kriegel, R. Schneider and B. Seeger. 1990. The R’-Tree: An Efficient and
Robust Access Method for Points and Rectangles. Proceedings of the 1990 ACM

SIGMOD International Conference on the Management of Data. pp. 322-331.

Bernhardsen, T. 1992. Geographic Information Systems. Arendal, Norway: Viak IT.

Berry, B. 1964. Approaches To Regional Analysis: A Synthesis. Annals, Association of

American Geographers. 54:2-11.

Block, R. 1998. Psychological Time and the Processing of Spatial Information. In M. Egenhofer
and R. Golledge (eds) Spatial and Temporal Reasoning in Geographic Information

Systems, Oxford University Press, New York, pp. 119-130.

Bisseret, A. and C. Montarnal. 1996. Linearization in Spatial Descriptions: Tour or Hierarchical

Structures? Current Psychology of Cognition. 15(5): 487-512.

117

Brinkhoff, T. and J. Weitk&mper. 2001. Continuous Queries within an Architecture for Querying

XML-Represented Moving Objects. Lecture Notes in Computer Science.

A. Bonifati and D. Lee. 2001. Technical Survey of XML Schema and Query Languages.

Technical report, UCLA Computer Science Department.

Boroditsky, L. 2000. Metaphoric Structuring: Understanding Time Through Spatial Metaphors.

Cognition. 75(1): 1-28.

Brusoni, V., L. Console, P. Terenziani and B. Pernici. 1999. Qualitative and Quantitative
Temporal Constraints and Relational Databases: Theory, Architecture and Applications.

IEEE Transactions in Knowledge and Data Engineering. 11(6): 948-968.

Burrough, P. 1986. Principles of Geographical Information Systems for Land Resources

Assessment. New York, NY: Oxford University Press.

Darwen, H. and C. Date. 1995. The Third Manifesto. SIGMOD Record. 24(1):39-49.

Car, A. and A. Frank. 1994. General Principles of Hierarchical Spatial Reasoning - The Case of
Wayfinding. In: Advances in GIS Research, Proceedings of the 6th Symposium. 2:

646-664.

Car, A. (1998). Hierarchical Spatial Reasoning: a GeoComputation Method. The 3rd
International Conference on GeoComputation, University of Bristol, United Kingdom.

GeoComputation CD-ROM.

118

Car, A., G. Taylor and C. Brunsdon. 2001. An Analysis of the Performance of a Hierarchical

Wayfinding Computational Model Using Synthetic Graphs. 25(1): 69-88.

Chaudhri, A., A. Rashid and R. Zicari (eds.). 2003. XML Data Management: Native XML and

XML-Enabled Database Systems. Addison-Wesley, New York, New York.

Christakos, G. 2000. Modern Spatiotemporal Geostatistics. Oxford University Press, New York,

New York.

Christakos, G., P. Bogaert and M. Serre. 2001. 7emporal GIS: Advanced Functions for Field-

Based Applications. Springer-Verlag, New York, New York.

Codd, E. 1970. A Relational Model for Large Shared Databanks. Communications of the ACM.

13(6): 377-390.

Codd, E. 1971a. Normalized Data Base Structure: A Brief Tutorial. /BM Research Report

RJI35.

Codd, E. 1971b. Data Base Sublanguage Founded on the Relational Calculus. /BM Research

Report RJ909.

Coppock, J. and D. Rhind. 1995. The History of GIS in Geographical Information Systems —
Principles and Applications, in D. Maguire, M. Goodchild and D. Rhind (ed.). New York:

21-43.

119

Couclelis, H. and N. Gale. 1986. Space and Spaces. Geografiska Annaler. 68B-1, pp. 1-12.

Egenhofer, M. and A. Frank. 1989. Object-Oriented Modeling in GIS: Inheritance and

Propogration. Proceedings of Auto-Carto 9, pp. 588-598.

Egenhofer, M. 1992. Why Not SQL! /nternational Journal of Geographic Information Systems.

6(2): 71-85.

Egenhofer, M., D. Peugeut, J. Glasgow, O. Gunther and J. Herring. 1999. Progress in
Computational Methods for Representing Geographical Concepts. /nternational

Journal of Geographical Information Science. 13(8): 775-796.

Einstein, A. 1920. Relativity: The Special and General Theory. Henry Holt, New York,

New York.

Elmasri, R., G. Wuu and V. Kouramajian. 1993. The Time Index and the Monotonic B*-Tree.
In: 7Temporal Databases (Tansel, Clifford, Gadia, Jojodia, Segev and Snodgrass (eds),

pp. 433-456. The Benjamin Cummings Publishing, New York.

Elmasri, R. and B. Navathe. 2000. Fundamentals of Database Systems, 3rd Edition. Addison-

Wesley, Reading, Massachusetts.

ESRI and Miner and Miner. 2001. Electric Distribution: ArcGIS Data Models. ESRI, Redlands,

California.

120

Florescu, D. and D. Kossman. 1999. A Performance Evaluation of Alternative Mapping
Schemes for Storing XML Data in a Relational Database. Rapport de Recherche,

Techreport 3680, INRIA.

Frank, A. 1998a. Different Types of “Times” in GIS. In M. Egenhofer and R. Golledge (eds)
Spatial and Temporal Reasoning in Geographic Information Systems, Oxford University

Press, New York, pp. 40-62.

Frank, A. 1998b. Formal Models for Cognition — Taxonomy of Spatial Location Description
and Frames of Reference. In K. Wender (ed.) Spatial Cognition. Springer-Verlag, Berlin,

pp. 293-312.

Frank, A. and M. Raubal. 1998. Formal Specification of Image Schemata - A Step Towards
Interoperability in Geographic Information Systems. Spatial Cognition and Computation.

1(1): 67-101.

Freska, C. 1991. Qualitative Spatial Reasoning. In D. Mark and A. Frank (eds.), Cognitive and
Linguistic Aspects of Geographic Space. Kluwer Academic Publishers, Netherlands, pp.

361-372.

Freska, C. 1997. Spatial and Temporal Structures in Cognitive Processes. In C. Freska,
M. Jantzen and R. Valk (eds). Foundations of Computer Science. Potential — Theory —

Cognition. Berlin: Springer-Verlag, pp. 379-387.

121

Freundschuh, S. and M. Egenhofer. 1997. Human Conceptions of Space: Implications

for GIS. Transactions in GIS. 2(4):361-375.

Friedman, J., J. Bentley, and R. Finkel. 1977. An Algorithm for Finding Best Matches in
Logarithmic Expected Time. ACM Transactions on Mathematical Software. 3(3): 209-

226.

Goh, C., H. Lu, B. Ooi and K. Tan. 1996. Indexing Temporal Data Using Existing B*-Trees. Data

and Knowledge Engineering. 18: 147-165.

Goodchild, M. 1992. Geographical Information Science. /International Journal of Geographical

Information Systems. 6(1): 31-45.

Graham, S., A. Joshi and Z. Pizlo. 2000. The Traveling Salesman Problem: A Hierarchical

Model. Memory and Cognition. 28(7): 1191-1204.

Gregerson, H. and C. Jensen. 1999. Temporal Entity-Relationship Models — A Survey. /EEE

Transactions in Knowledge and Data Engineering. 11(3): 464-497.

Guttman, A. 1984. R-Trees: A Dynamic Index Structure for Spatial Searching. 7ransactions of

the ACM. pp. 47-57.

Habel, C. and C. Eschenbach. 1997. Abstract Structures in Spatial Cognition. In C. Freska,
M. Jantzen and R. Valk (eds). Foundations of Computer Science. Potential — Theory —

Cognition. Berlin: Springer-Verlag, pp. 369-378.

122

Hadzilacos, T. and N. Tryfona. 1996. Logical Data Modeling for Geographic Applications.

International Journal of Geographical Information Systems. 10(2): 179-203.

Hadzilacos, T. and N. Tryfona. 1997. An Extended Entity-Relationship Model for Geographic
Applications. SIGMOD Record (ACM Special Interest Group on Management of Data)

26(3): 24-29.

Hagerstrand, T. 1975. Space, Time and Human Conditions. In Karlgvist, A., Lunqvist, L. and
Snickars, F. (eds.) Dynamic Allocation of Urban Space. Farnborough,: Saxon House,

pp. 3 - 14.

Hazelton, N. 1998. Some Operational Requirements for a Multi-Temporal 4-D GIS. In
M. Egenhofer and R. Golledge (eds) Spatial and Temporal Reasoning in Geographic

Information Systems, Oxford University Press, New York, pp. 63-73.

Hernandez, D. 1993. Maintaining Qualitative Spatial Knowledge. In A. Frank and | Compari
(eds.) Spatial Information Theory. A Theoretical Basis for GIS, European Conference,

COSIT ’93, Mariana Marina, Elba Island, Italy. Springer-Verlag, Berlin, pp. 36-53.

Herring, J., R. Larsen and J. Shivakumar. 1988. Extensions to the SQL Query Language to
Support Spatial Analysis in a Topological Database. G/S/L/S ‘88, Proceedings of the

Third International Conference. pp. 741-750.

123

Hirtle, S. 1998. The Cognitive Atlas: Using GIS as a Metaphor for Memory. In: Spatial and
Temporal Reasoning in Geographic Information Systems (M. Egenhofer and

R. Golledge, eds.), pp.263-272. Oxford University Press, New York.

Huang, B. and H. Lin. 1999. Design of a Query Language for Accessing Spatial Analysis

in the Web Environment. Geol/nformatica 3(2): 165-183.

Jagadish, H., S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nierman, S. Paparizos,
J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C.Yu. 2002. TIMBER: A native

XML database. VLDB Journal. 11(4): 274-291.

Klopprogge, M. and P. Lockeman. 1983. Modeling Information Preserving Databases:
Consequences of the Concept of Time. In Proceedings of the 9th International

Conference on Very Large Databases, pp. 399-416.

Kuhn, W. and A. Frank. 1991. A Formalization of Metaphors and Image-Schemas in User
Interfaces. In D. Mark and A. Frank (eds.) Cognitive and Linguistic Aspects of

Geographic Space, Kluwer Academic Publishers, Netherlands, pp. 419-434.

Langran, G. 1989. A Review of Temporal Database Research and its use in GIS Applications.

International Journal of Geographic Information Systems. 3(3): 215-232.

Langran, G. 1992. 7ime in Geographic Information Systems. Taylor and Francis, New York,

New York.

124

Larson, J. 1995. Database Directions: From Relational to Distributed, Multimedia and Object-

Oriented Database Systems. Prentice Hall, Upper Saddle River, NJ. 261 pp.

Lewis, H. and L. Denenberg. 1991. Data Structures and Their Algorithms. Harper Collins

Publishers. New York, NY. 509 pp.

Lomet, D. and B. Salzberg. 1993. Transaction Time Databases. 7emporal Databases. Theory,

Design and Implementation. pp. 388-417.

Marian, A., Abiteboul, S., Cobena, G., Mignet, L. 2001. Change-Centric Management of
Versions in an XML Warehouse. In: Proceedings of 27th International Conference on

Very Large Data Bases, pp. 581 —590.

Mark, D. 1993. Toward a Theoretical Framework for Geographic Entity Types. In A. Frank and |
Compari (eds.) Spatial Inforrmation Theory: A Theoretical Basis for GIS, European

Conference, COSIT ’93, Mariana Marina, Elba Island, Italy. Springer-Verlag, Berlin, pp.
270-283.

McHugh, J., S. Abiteboul, R. Goldman, D. Quass, and J. Widom. 1997. Lore: A Database

Management System for Semistructured Data. SIGMOD Record, 26(3):54-66.

McMaster, R. 1991. Conceptual Frameworks for Geographical Knowledge. In B. Buttenfield
and R. McMaster (eds.) Map Generalization: Making Decisions for Knowledge

Representation (London: Longman Scientific Publications), pp. 21-39.

125

Mennis, J., D. Peuquet and L. Qian. 2000. A Conceptual Framework for Incorporating Cognitive
Principles into Geographical Database Presentation. /nfernational Journal of

Geographical Information Science. 14(6):501-520.

Molenaar, M. 1991. Status and Problems of Geographical Information Systems: The Necessity
of a Geoinformation theory. /SPRS Journal of Photogrammetry and Remote Sensing.

46: 85-103.

Nascimento, M. and M. Dunham. 1999. Indexing Valid Time Databases Via B*-Trees. /EEE

Transactions on Knowledge and Data Engineering. 11(6): 929-947.

Navathe, S. and R. Ahmed. 1989. A Temporal Relational Model and Query Language.

Information Sciences. 49(1-3): 147-175.

Newcombe, N., J. Huttenlocher, E. Sandberg, E. Lie, and S. Johnson. 1999. What Do
Misestimations and Asymmetries in Spatial Judgement Indicate About Spatial
Representation? Journal of Experimental Psychology: Learning, Memory, & Cognition.

25(4): 986-996.

Nyerges, T. 1991. Representing Geographical Meaning. In B. Buttenfield and R. McMaster
(eds). Map Generalization: Making Decisions for Knowledge Representation (London:

Longman Scientific Publications), pp. 59-85.

Peuquet, D. 1984. A Conceptual Framework and Comparison of Spatial Data Models.

Cartographica. 21(4): 66-113.

126

Peuquet, D. 1988. Representations of Geographic Space: Toward a Conceptual Synthesis.

Annals of the Association of American Geographers. 78(3): 375-394.

Peuquet, D. 1994. It’'s About Time: A Conceptual Framework for the Representation of
Temporal Dynamics in Geographic Information Systems. Annals of the Association of

American Geographers. 84(3): 441-461.

Peuquet. 2002. Representations of Space and Time. Guilford Press, New York, New York.

Rajabifard, A., F. Escobar and I. Escobar. 2000. Hierarchical Spatial Reasoning Applied to

Spatial Data Infrastructures. Carfography. 29(2): 41-50.

Rinck, M., A. Haehnel, G. Bower, Glowalla and Ulrich. 1997. The Metrics of Spatial Situation
Models. Journal of Experimental Psychology: Learning, Memory, & Cognition. 23(3):

622-637.

Pankowski, T. 2002. XML-SQL: An XML Query Language Based on SQL and Path Tables.

Lecture Notes in Computer Science. 2490: 184-2009.

Papadias, D., M. Egenhofer and J. Sharma. 1996. Hierarchical Reasoning About Direction
Relations. In: Fourth ACM Workshop on Advances in Geographic Information Systems.

105-112.

Papidas, D. and M. Egenhofer. 1997. Algorithms for Hierarchical Spatial Reasoning.

Geolnformatica. 1(3): 251-273.

127

Price, R., N. Tryfona and C. Jensen. 2000. Extended Spatiotemporal UML: Motivations,

Requirements, and Constructs. Journal of Database Management. 11(4): 13-27.

Rosch, E. 1978. Principles of Categorization. In E. Rosch and B. Lloyd (eds), Cognition and

Categorization (New York: Halstead Press) 27-48.

Saltenis, S. and C. Jensen 2002. R-tree Based Indexing of General Spatio-Temporal Data. 7he

VLDB Journal. 11(1): 1-16.

Samet, H. 1990a. The Design and Analysis of Spatial Data Structures. Addison-Wesley,

Reading, MA. 491 pp.

Samet, H. 1990b. Applications of Spatial Data Structures. Addison-Wesley, Reading, MA.

499 pp.

Schoning, H. 2001. Tamino - A DBMS designed for XML. In Proceedings of the 17th

International Conference on Data Engineering, pp. 149-154.

Sellis, T., N. Roussopoulus and C. Faloutsos. 1987. The R+-Tree: A Dynamic Index for
Multi-Dimensional Objects. Proceedings of the 13" VLDB Conference.

pp. 507- 518.

Shanmugasundaram, J., J. Kiernan, R. Krishnamurthy, E. Viglas, J. Naughton, and I. Tatarinov.
2001a. A General Technique for Querying XML Documents Using a Relational Database

System. S/IGMOD RECORD, 30(3): 20-26.

128

Shanmugasundaram, J., J. Kiernan, E. Shekita, C. Fan, and J. Funderburk. 2001b. Querying

XML Views of Relational Data. In Proceedings of VLDB, pp. 261-270, Rome, lItaly.

Shen, H., B. Ooi, and H. Lu. 1994. The TP-index: A Dynamic and Efficient Indexing Mechanism
for Temporal Databases. Proceedings of the 10" IEEE International Conference on Data

Engineering. pp. 274-281.

Smith, T. G. Janee, J. Frew and A. Coleman. 2001. The Alexandria Digital Earth Prototype
System. /n Proceedings of the First ACM+IEEE Joint Conference on Digital Libraries,

Roanoke, VA. pp. 118-119.

Snodgrass, R. 1987. The Temporal Query Language Tquel. ACM Transactions on Database

Systems. 12(2): 247-298.

Snodgrass, R. 1992. Temporal Databases. 7Theories and Methods of Spatiotemporal Reasoning

in Geographic Space (A. Frank, | Campari and U. Formanti, editors). pp. 22-64.

Snodgrass, R., I. Ahn, G. Ariav, D. Batory, J. Clifford, C. Dyreson, R. Elmasri, F. Grandi,
C. Jensen, W. Kafer, N. Kline, K. Kulkarni, T. Leung, N. Lorentzos, J. Roddick,
A. Segev, M. Soo and S. Sripada, 1995. The TSQL2 Temporal Query Language. Kluwer

Academic Publishers, 1995, 674 pp.

Stonebraker, M., L. Rowe, B. Lindsay, J. Gray, M. Carey, M. Brodie, P. Bernstein and D.

Beech. 1990. Third-Generation Database System Manifesto. SIGMOD Record. 19(3).

129

Tang, A., T, Adams, and E. Usery. 1996. A Spatial Data Model Design for Feature-Based
Geographical Information Systems. /nternational Journal of Geographical Information

Systems. 10(5): 643-659.

Theodoris, Y., T. Sellis, A. Papdopoulos and Y. Manolopoulos. 1998. Specifications for Efficient
Indexing in Spatiotemporal Databases. Proceedings 10th International Conference on

Scientific and Statistical Database Management (SSDBM 98). pp. 123-132.

Tversky, B. and H. Taylor. 1998. Acquiring Spatial and Temporal Knowledge from Language.
In M. Egenhofer and R. Golledge (eds) Spatial and Temporal Reasoning in Geographic

Information Systems, Oxford University Press, New York, pp. 155-166.

Usery, E. 1993. Category Theory and the Structure of Features in Geographic Information

Systems. Cartography and Geographic Information Systems. 20(1):5-12.

Usery, E. 1996. A Feature-Based Geographic Information System Model, Photogrammetric

Engineering and Remote Sensing. 62(7): 833-838.

Usery, E. 2000. Multidimensional Representation of Geographic Features. Proceedings,
XIXth International Society for Photogrammetry and Remote Sensing Congress,
Amsterdam, International Archives of Photogrammetry and Remote Sensing, Volume

XXX, Part B4/3, Commission 4, pp. 240-247.

Usery, E., G. Timson and M. Coletti. (forthcoming). Multidimensional Representation of

Geographic Features.

130

Voisard, A. and D. Benoit. 2002. A Database Perspective on Geospatial Data Modeling.

IEEE Transactions on Knowledge and Data Engineering. 14(2): 226-243.

Wachowicz, M. 1999. Object-Oriented Design for Temporal GIS. Taylor and Francis,

New York, New York.

Worboys, M. 1994. Object-Oriented Approaches to Geo-Referenced Information.

International Journal of Geographic Information Systems. 8(4): 385-399.

Worboys, M. 1998. A Generic Model for Spatio-Bitemporal Geographic Information. In
M. Egenhofer and R. Golledge (eds) Spatial and Temporal Reasoning in Geographic

Information Systems, Oxford University Press, New York, pp. 25-39.

Yazici, A. Q. Zhu, and N. Sun. 2001. Semantic Data Modeling of Spatiotemporal Database

Applications. /nternational Journal of Intelligent Systems. 16(7): 881-904.

Yuan, M. 2001. Representing Complex Geographic Phenomena with Both Object and
Field-Like Properties. Cartography and Geographic Information Science.

28(2):83-96.

Zimanyi, E., C. Parent, S. Spaccapietra, and A. Pirotte. 1997. TERC+ : A Temporal
Conceptual Model. In Proceedings of the International Symposium on Digital Media

Information Base, DMIB'97,Nara, Japan.

131

Zipf, A. and S. Kruger. 2001. TGML: Extending GML by Temporal Constructs. A Proposal for

a Spatiotemporal Framework in XML. ACM-GIS.

Option Explicit

APPENDIX A

PROGRAM LISTING FOR GETGEOMETRY.VBA

Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LTIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Script: GetGeometry

Description: Extracts the shape and other geometric properties
from the coverages and updates an
already-generated Microsoft Access database.

Require declaration of variables

132

133

variable declarations

Dim mxDoc As IMxDocument

Dim Map As IMap

Dim pFeatureClass As IFeatureClass
Dim INum As Integer

Dim coverName As String

Dim coverType As String

Dim Layer As IFeaturelLayer
Dim FCursor As IFeatureCursor
Dim Feature As IFeature

Dim FeaturePoint As IPoint
Dim FeaturePoints As IPointCollection
Dim p As Integer

Dim fid As Long

Dim born As Date

Dim retired As Date

Dim conn As ADODB.Connection
Dim expr As String

Dim pArea As IArea

Dim pLength As Double

Dim pCurve As ICurve

Dim pEnv As IEnvelope

Open the map document

Set mxDoc = Application.Document
Set Map = mxDoc.FocusMap

Open a connection to the database

Set conn = New ADODB.Connection
conn.open "Provider=Microsoft.Jet.OLEDB.4.0;" & "Data Source=" & " data.mdb"

Loop through each of the coverages in the map
For INum = 0 To (Map.LayerCount - 1)

Debug.Print coverName

Get the coverage name

coverName = Map.Layer (1Num) .Name

Get the coverage type

Select Case coverName

Case "parcell", "parcel2", "parcel3", "parcel4", "parcel3a", "parcel4a", "parcel4b"

Case "priconductor", "secconductor"
coverType = "Tine"
coverType = "polygon"
Case Else
coverType = "point"
End Select

' Extract the vertices

Set Layer = Map.Layer (1Num)

Set FCursor = Layer.Search(Nothing, False)
Set Feature = FCursor.NextFeature

while Not (Feature Is Nothing)

' Get the feature ID, born and retired values

fid = Feature.value(Feature.Fields.FindField("FEATURE_ID"))
born = Feature.value(Feature.Fields.FindField("BORN"))
retired = Feature.value(Feature.Fields.FindField("RETIRED"))

If (fid <> 0) Then
Select Case coverType
Case "polygon"
' Get the geometry

Set FeaturePoints = Feature.Shape

For p = 0 To (FeaturePoints.PointCount - 1)
expr = "INSERT INTO parcel_shape VALUES (" & fid & ",#" & born & "#,#" &
retired & "#," & cstr(p + 1) & "," & FeaturePoints.Point(p).X & ","
FeaturePoints.Point(p).Yy & ")"

conn.Execute expr
Next p
Set pArea = Feature.Shape
Set pCurve = Feature.Shape
pLength = pCurve.Length

' Get the envelope

Set pEnv = Feature.Extent

expr = "INSERT INTO parcel_shape VALUES (" & fid & ",#" & born & "#,#" & retired & _
"#,-1," & pEnv.XMin & "," & pEnv.YMin & ")"

134

135

conn.Execute expr

expr = "INSERT INTO parcel_shape VALUES (" & fid & ",#" & born & "#,#" & retired & _
"#,-2," & pEnv.XMax & "," & pEnv.YMax & '")"

conn.Execute expr

' Store in the access database

expr = "UPDATE parcel SET AREA = " & CStr(pArea.Area) & " WHERE FEATURE_ID = " & _
fid & " AND BORN = #" & born & "# AND RETIRED = #" & retired & "#"

conn.Execute expr

expr = "UPDATE parce1 SET PERIMETER = " & CStr(pLength) & " WHERE FEATURE_ID = " & _
fid & " AND BORN = #" & born & "# AND RETIRED = #" & retired & "#"

conn.Execute expr

Case "line"
' Get the geometry

Set FeaturePoints = Feature.Shape
For p = 0 To (FeaturePoints.PointCount - 1)
expr = "INSERT INTO " & coverName & "_shape VALUES (" & fid & ",#" & born & "#,#" _
& retired & "#," & cstr(p + 1) & "," & FeaturePoints.Point(p).X & "," & _
FeaturePoints.Point(p).Yy & ")"
conn.Execute expr
Next p
Set pCurve = Feature.Shape
pLength = pCurve.Length

' Get the envelope

Set pEnv = Feature.Extent

expr = "INSERT INTO " & coverName & "_shape VALUES (" & fid & ",#" & born & "#,#" _
& retired & "#,-1," & pEnv.XMin & "," & pEnv.YMin & ")"

conn.Execute expr

expr = "INSERT INTO " & coverName & "_shape VALUES (" & fid & ",#" & born & "#,#" _
& retired & "#,-2," & pEnv.XMax & "," & pEnv.YMax & ")"

conn.Execute expr

' Store in the access database
expr = "UPDATE " & coverName & " SET LENGTH = " & CStr(pLength) & _
" WHERE FEATURE_ID = " & fid & " AND BORN = #" & born & "# AND RETIRED = #" _

& retired & "#"
conn.Execute expr

Case "point"

136

' Get the geometry and store it in the database

Set FeaturePoint = Feature.Shape)
"INSERT INTO " & coverName & "_shape VALUES (" & fid & ",#" & born & "#,#" _

expr =
& retired & "#,1," & FeaturerPoint.X & "," & FeaturePoint.Y & ")"
conn.Execute expr
End Select
End If

' Iterate to the next feature in the cursor

Set Feature = FCursor.NextFeature

wend

Next TNum
' Close the access connection

conn.Close

APPENDIX B
RELATIONAL SCHEMA
Customer
Meter
PK,FK1,FK2 | CUSTOMER_ID
PK,FK1,FK2 | BORN PK | EEATURE_ID
PK,FK1,FK2 | RETIRED PK | BOBN
> PK | RETIRED 4—
NAME
HOUSE_NUMBER 1 CUSTOMER_ID
STREET PHASE
CITY SERVICE_CURRENT_RATING
STATE
ZIP_CODE
Meter_Shape
Parcel Shape PK,FK1,11 | FEEATURE_ID
Parcel —ohap PK FKA
PK | FEATURE_ID PK,FK1,11 | EEATURE_ID PK,FK1 RETIRED
PK | BORN PK,FK1 BORN
PK | RETIRED @—— PKFK1 | RETIRED X
PK VERTEX Y

1 CUSTOMER_ID X
AREA v
PERIMETER

137

i SecConductor
Riser Riser_Shape
PK
PK | EEATURE_ID PKFK1.I1 I R
Pk | REBED PK,FK1 | BORN PK | RETIRED
——PKFKi | RETIRED
TYPE » LENGTH
MATERIAL v TYPE
PHASE PHASE
OPERATING_VOLTAGE
NOMINAL_VOLTAGE
CONDUCTOR_MATERIAL
NEUTRAL_MATERIAL
CONDUCTOR_SIZE
PriConductor NEUTRAL_SIZE
PK | FEEATURE_ID PriConductor_Shape
PK | BORN
PK | RETIRED PK,FK1,11 | FEATURE_ID
PK,FK1 BORN
LENGTH 4— PK,FK1 RETIRED -
TYPE PK VERTEX SecConductor_Shape
PHASE
OPERATING_VOLTAGE X PK,FK1,I11 | EEATURE_ID
NOMINAL_VOLTAGE Y PK,FK1 BORN
CONDUCTOR_MATERIAL PK,FK1 RETIRED
NEUTRAL_MATERIAL PK VERTEX
CONDUCTOR_SIZE
NEUTRAL_SIZE é

Transformer_Shape

Transformer Switch
PK,FK1,I1 FEATURE_ID
PK | EEATURE_ID PK,FK1 BORN PK | FEATURE_ID
PK | BORN — PK,FK1 RETIRED PK | BOBN
PK | RETIRED PK | RETIRED
X
TYPE v TYPE
PHASE PHASE
RATEDKVA OPERATING_VOLTAGE
HIGH_SIDE_CONFIGURATION : NOMINAL_VOLTAGE
LOW_SIDE_CONFIGURATION Switch_Shape
OPERATING_VOLTAGE PK.FK1.1 FEATURE_ID
NOMINAL_VOLTAGE
LOW._SIDE_VOLTAGE PK,FK1 BORN ‘
> PK,FK1 RETIRED
X
Pol Y
o€ Light
PK | FEATURE_ID
Pk | BORN PK | FEATURE_ID
PK RETIRED Light_Shape PK BORN
S PK | RETIRED
. PK,FK1,I1 FEATURE_ID
GROUND PK,FK1 BORN 3 LIGHTFEED
PK_FK1 RETIRED STREETTYPE
LAMPTYPE
X LIGHTSTYLE
Y PHOTOCELL
Pole_Shape LIGHTROLE
WATTAGE
PK,FK1,11 FEATURE_ID
PK,FK1 BORN
PK,FK1 RETIRED
X
Y

Customer
Meter
PK,FK1,FK2 | CUSTOMER_ID
PK,FK1,FK2 | BORN PK | EEATURE_ID
PK,FK1,FK2 | RETIRED PK | BOBRN
| PK | RETIRED —
NAME
HOUSE_NUMBER 1 CUSTOMER_ID
STREET PHASE
CITY SERVICE_CURRENT_RATING
STATE
ZIP_CODE
Meter_Shape
Parcel Parcel_Shape iﬁ,imﬁ EEATURE_ID
PK | FEATURE_ID PK,FK1,11 | FEATURE_ID PK,FK1 | RETIRED
PK | BORN PK,FK1 | BORN
PK | RETIRED §———| PKFK1 | RETIRED X
PK VERTEX Y
1 CUSTOMER_ID
AREA X
PERIMETER Y

140

APPENDIX C

PROGRAM LISTING FOR MDB2XML.VBA

Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LTIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Script: MDB2XML)
Description: Converts the MS Access database into XML format.

Option Explicit ' Require declaration of variables

141

' variable declarations

Dim rs As ADODB.Recordset
Dim rs2 As ADODB.Recordset
Dim sqlString As String

Dim Tables As New Collection

Dim ccls As Integer
Dim f As Integer

Dim CurrentRecord As Long

Dim xTable As New DOMDocument40
Dim cNode As IXMLDOMNode

Dim fNode As IXMLDOMNode

Dim TNode As IXMLDOMNode

Dim cAtt As IXMLDOMAttribute
Dim DateUpdated As Boolean

Dim xmin As Double
Dim xmax As Double
Dim ymin As Double
Dim ymax As Double
Dim area As Double

Dim perimeter As Double

' Establish the connection to the access database

Set Conn = New ADODB.Connection

conn.open "Provider=Microsoft.Jet.OLEDB.4.0;" & "Data Source=" & App.Path & "\data\DB.mdb"
' Get the 1ist of feature classes and object classes to convert

sqlstring = "SELECT *

FROM CATALOG_OBJECTCLASS"

Set rs = New ADODB.Recordset

rs.open sqlstring, Conn, adopenKeyset, adLockOptimistic

rs.mMoveFrirst
Do While Not rs.EOF

Tables.Add rs("TABLE") .value

rs.MoveNext
Loop
rs.Close

sqlstring = "SELECT *

FROM CATALOG_FEATURECLASS"

Set rs = New ADODB.Recordset

rs.open sqlstring, Conn, adopenkKeyset, adLockOptimistic

rs.mMoveFrirst
Do While Not rs.EOF

Tables.Add rs("TABLE") .value

rs.MoveNext

142

Loop
rs.Close

Loop through each of the classes and create new XML and export

For ccls = 1 To Tables.Count

Create a new XML document

If (Tables.Item(ccls) <> “customer”) Then

Set xTable

Set cNode =

= New DOMDocument40

xTable.createElement (" featureclass")

xTabTle.appendchild cNode

Else
Set xTable

= New DOMDocument40

Set cNode = xTable.createElement("objectclass™)
xTabTle.appendcChild cNode

End If

Populate depending on the type of class

Select Case Tables.Item(ccls)
Case "Customer"

sqlSstring = "SELECT * FROM CUSTOMER ORDER BY CUSTOMER_ID, BORN, RETIRED"

Set rs = New ADODB.Recordset

rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic

rs.MoveFirst
CurrentRecord = 0
Do While Not rs.EOF
If (rs("CUSTOMER_ID").value > CurrentRecord) Then

End
For

CurrentRecord = rs("CUSTOMER_ID").value
Set fNode = xTable.createElement("object™)
xTable.lastChild.appendchild fNode

Set cAtt = xTable.createAttribute("id")
cAtt.value = CurrentRecord
fﬁode.Attributes.setNamedItem CAtt

I

f =0 To (rs.fields.Count - 1)

143

If (rs.fields.Item(f).Name <> "CUSTOMER_ID") And (rs.fields.Item(f).Name <> "BORN") _

And (rs.fields.Item(f).Name <> "RETIRED") Then
DateUpdated = False

For Each INode In fNode.selectNodes(LCase(rs.fields.Item(f).Name))
If (INode.Text = rs(rs.fields.Item(f).Name).value) Then
Set cAtt = TNode.Attributes.getNamedItem("retired")
cAtt.value = Format(rs("retired").value, "yyyymmdd")

DateUpdated = True

144

End If
Next TNode
If (Not DateUpdated) Then
Set cNode = xTable.createElement(LCase(rs.fields.Item(f).Name))
cNode.Text = rs(rs.fields.Item(f).Name).value
Set cAtt = xTable.createAttribute("born")
cAtt.value = Format(rs("born").value, "yyyymmdd")
cNode.Attributes.setNamedItem cAtt
Set cAtt = xTable.createAttribute("retired")
cAtt.value = Format(rs("retired").value, "yyyymmdd")
cNode.Attributes.setNamedItem cAtt
fNode.appendChild cNode
End If
End If
Next f
rs.MoveNext
Loop
xTable.save App.Path & "\data\" & Tables.Item(ccls) & ".xml"
Case "Meter"
sqlString = "SELECT * FROM " & Tables.Item(ccls) & _
" ORDER BY FEATURE_ID, BORN, RETIRED, CUSTOMER_ID"
Set rs = New ADODB.Recordset
rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
rs.MoveFirst
CurrentRecord = 0
Do While Not rs.EOF
If (rs("FEATURE_ID").value > currentRecord) Then
CurrentRecord = rs("FEATURE_ID") .value
Set fNode = xTable.createElement("feature")
xTable.lastChild.appendchild fNode
Set cAtt = xTable.createAttribute("id")
cAtt.value = CurrentRecord
fNode.Attributes.setNamedItem cAtt
sqlstring = "SELECT * FROM " & Tables.Item(ccls) & "_Shape WHERE FEATURE_ID = "
& CurrentRecord & " ORDER BY BORN, RETIRED"
Set rs2 = New ADODB.Recordset
rs2.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
rs2.MoveFirst
DateUpdated = False
Do While Not rs2.EOF
For Each TNode In fNode.selectNodes("shape™)
If (INode.TastcChild.firstchild.Text = rs2("X").value) And _
(INode.lastchild.lastchild.Text = rs2("Y").value) Then
Set cAtt = TNode.Attributes.getNamedIitem("retired")
cAtt.value = Format(rs2("retired").value, "yyyymmdd")
DateUpdated = True

145

End If
Next TNode
If (Not DateUpdated) Then
Set cNode = xTable.createElement("shape™)
Set cAtt = xTable.createAttribute("born")
cAtt.value = Format(rs2("born").value, "yyyymmdd")
cNode.Attributes.setNamedItem cAtt
Set cAtt = xTable.createAttribute("retired")
cAtt.value = Format(rs2("retired").value, "yyyymmdd")
cNode.Attributes.setNamedItem cAtt
Set TNode = xTable.createElement("coordinate")
cNode.appendcChild TNode
Set INode = xTable.createElement("x")
TNode.Text = rs2("X").value
cNode.TastChild.appendcChild INode
Set 1Node = xTable.createElement("y")
INode.Text = rs2("Y").value
cNode.TastChild.appendcChild 1Node
fNode.appendchild cNode
End If
rs2.MoveNext
Loop
rs2.close
End If
For f = 0 To (rs.fields.Count - 1)
If (rs.fields.Item(f).Name <> "FEATURE_ID") And (rs.fields.Item(f).Name <> "BORN") _
And (rs.fields.Item(f).Name <> "RETIRED") Then
DateUpdated = False
For Each INode In fNode.selectNodes(LCase(rs.fields.Item(f).Name))
If (INode.Text = rs(rs.fields.Item(f).Name).value) Then
Set cAtt = TNode.Attributes.getNamedIitem("retired")
cAtt.value = Format(rs("retired").value, "yyyymmdd")
DateUpdated = True
End If
Next TNode
If (Not DateUpdated) Then
Set cNode = xTable.createElement(LCase(rs.fields.Item(f).Name))
cNode.Text = rs(rs.fields.Item(f).Name).value
Set cAtt = xTable.createAttribute("born")
cAtt.value = Format(rs("born").value, "yyyymmdd™)
cNode.Attributes.setNamedItem cAtt
Set cAtt = xTable.createAttribute("retired")
cAtt.value = Format(rs("retired").value, "yyyymmdd")
cNode.Attributes.setNamedItem cAtt
fNode.appendChild cNode
End If

End If
Next f
rs.MoveNext
Loop
xTable.save App.Path & "\data\" & Tables.Item(ccls) & ".xml"
Case "switch", "Riser", "Light", "Pole", "Transformer"

sq'IStr'ing = "SELECT * FROM " & Tables.Item(ccls) & " ORDER BY FEATURE_ID, BORN, RETIRED"
Set rs = New ADODB.Recordset
rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
rs.MoveFirst
CurrentRecord = 0
Do While Not rs.EOF
If (rs("FEATURE_ID").value > currentRecord) Then
CurrentRecord = rs("FEATURE_ID").value
Set fNode = xTable.createElement("feature")
xTable.lastChild.appendChild fNode
Set cAtt = xTable.createAttribute("id")
cAtt.value = CurrentRecord
fNode.Attributes.setNamedItem cAtt
sqlstring = "SELECT * FROM " & Tables.Item(ccls) & "_Shape WHERE FEATURE_ID = "
& CurrentRecord & " ORDER BY BORN, RETIRED"
Set rs2 = New ADODB.Recordset
rs2.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
rs2.MoveFirst
DateUpdated = False
Do While Not rs2.EOF
For Each TNode In fNode.selectNodes("shape™)
If (INode.lastcChild.firstChild.Text = rs2("X").value) And _
(INode.lastchild.lastchild.Text = rs2("Y").value) Then
Set cAtt = INode.Attributes.getNamedItem("retired")
cAtt.value = Format(rs2("retired").value, "yyyymmdd™)
DateUpdated = True
End If
Next TNode
If (Not DateUpdated) Then
Set cNode = xTable.createElement("shape™)
Set cAtt = xTable.createAttribute("born")
cAtt.value = Format(rs2("born").value, "yyyymmdd")
cNode.Attributes.setNamedItem cAtt
Set cAtt = xTable.createAttribute("retired")
cAtt.value = Format(rs2("retired").value, "yyyymmdd")
cNode.Attributes.setNamedItem cAtt
Set INode = xTable.createElement("coordinate")
cNode.appendcChild TNode
Set TNode = xTable.createElement("x")
TNode.Text = rs2("X").value

146

147

cNode.TastcChild.appendchild 1Node
Set INode = xTable.createElement("y")
INode.Text = rs2("Y").value
cNode.TastcChild.appendchild I1Node
fNode.appendChild cNode
End If
rs2.MoveNext
Loop
rs2.close
End If
For f = 0 To (rs.fields.Count - 1)
If (rs.fields.Item(f).Name <> "FEATURE_ID") And (rs.fields.Item(f).Name <> "BORN") _
And (rs.fields.Item(f).Name <> "RETIRED") Then
DateUpdated = False
For Each INode In fNode.selectNodes(LCase(rs.fields.Item(f).Name))
If (INode.Text = rs(rs.fields.Item(f).Name).value) Then
Set cAtt = TNode.Attributes.getNamedItem("retired")
cAtt.value = Format(rs("retired").value, "yyyymmdd")
DateUpdated = True
End If
Next TNode
If (Not DateUpdated) Then
Set cNode = xTable.createElement(LCase(rs.fields.Item(f).Name))
cNode.Text = rs(rs.fields.Item(f).Name).value
Set cAtt = xTable.createAttribute("born")
cAtt.value = Format(rs("born").value, "yyyymmdd")
cNode.Attributes.setNamedItem cAtt
Set cAtt = xTable.createAttribute("retired")
cAtt.value = Format(rs("retired").value, "yyyymmdd™)
cNode.Attributes.setNamedItem cAtt
fNode.appendchild cNode

End If
End If
Next f
rs.MoveNext
Loop
xTable.save App.Path & "\data\" & Tables.Item(ccls) & ".xml"
Case "PricConductor™, "SecConductor"

sqlstring = "SELECT * FROM " & Tables.Item(ccls) & " ORDER BY FEATURE_ID, BORN, RETIRED"
Set rs = New ADODB.Recordset
rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
rs.MoveFirst
CurrentRecord = 0
Do While Not rs.EOF

If (rs("FEATURE_ID").value > cCurrentRecord) Then

CurrentRecord = rs("FEATURE_ID").value

Set fNode = xTable.createElement("feature')
xTable.lastChild.appendchild fNode
Set cAtt = xTable.createAttribute("id")
cAtt.value = CurrentRecord
fNode.Attributes.setNamedItem cAtt

End If

sqlstring = "SELECT * FROM " & Tables.Item(ccls) & "_Shape WHERE FEATURE_ID
CurrentRecord & " AND BORN = #" & rs("BORN").value & "# AND RETIRED

rs("RETIRED").value & _

"# AND VERTEX < O ORDER BY FEATURE_ID, BORN, RETIRED, VERTEX"

Set rs2 = New ADODB.Recordset
rs2.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
rs2.MoveFirst
DateUpdated = False
Do While Not rs2.EOF
If (rs2("VERTEX").value = -2) Then
xmin = rs2("X").value
ymin = rs2("Y").value
ElseIf (rs2("VERTEX").value = -1) Then
xmax = rs2("x").value
ymax = rs2("y").value
End If
rs2.MoveNext
Loop
rs2.cClose
For Each TNode In fNode.selectNodes("shape™)

If (INode.selectSingleNode("boundbox/xmin").Text = xmin) And _

(INode.selectSingleNode("boundbox/ymin'").Text = ymin) And _
(INode.selectSingleNode("boundbox/xmax').Text = xmax) And _
(INode.selectSingleNode("boundbox/ymax").Text = ymax) Then

Set cAtt = TNode.Attributes.getNamedItem("retired")
cAtt.value = Format(rs("retired").value, "yyyymmdd")
DateUpdated = True
End If
Next TNode
If (Not DateUpdated) Then
Set cNode = xTable.createElement("shape')
Set cAtt = xTable.createAttribute("born™)
cAtt.value = Format(rs("born").value, "yyyymmdd")
cNode.Attributes.setNamedItem cAtt
Set cAtt = xTable.createAttribute("retired")
cAtt.value = Format(rs("retired").value, "yyyymmdd™)
cNode.Attributes.setNamedItem cAtt
Set INode = xTable.createElement("boundbox™)
cNode.appendcChild TNode
Set INode = xTable.createElement("xmin")

&

& _

148

149

INode.Text = xmin
cNode.TastChild.appendChild 1Node
Set INode = xTable.createElement("ymin™)
INode.Text = ymin
cNode.TastcChild.appendChild 1Node
Set INode = xTable.createElement("xmax")
INode.Text = xmax
cNode.TastChild.appendChild 1Node
Set INode = xTable.createElement("ymax")
INode.Text = ymax
cNode. TastcChild.appendChild INode
Set 1Node = xTable.createElement("length")
INode.Text = rs("LENGTH").value
cNode.appendChild TNode
sqlstring = "SELECT * FROM " & Tables.Item(ccls) & "_Shape WHERE FEATURE_ID = "
& currentRecord & " AND BORN = #" & rs("BORN").value & _
"# AND RETIRED = #" & rs("RETIRED").value & _
"# AND VERTEX > O ORDER BY FEATURE_ID, BORN, RETIRED, VERTEX"
Set rs2 = New ADODB.Recordset
rs2.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
rs2.MoveFirst
DateUpdated = False
Do wWhile Not rs2.EOF
Set INode = xTable.createElement("coordinate")
cNode.appendchild TNode
Set INode = xTable.createElement("x")
INode.Text = rs2("x").value
cNode.TastcChild.appendChild 1Node
Set INode = xTable.createElement("y")
INode.Text = rs2("y").value
cNode.TastcChild.appendChild 1Node
rs2.MoveNext
Loop
rs2.Close
fNode.appendchild cNode
End If
For f = 0 To (rs.fields.Count - 1)
If (rs.fields.Item(f).Name <> "FEATURE_ID") And (rs.fields.Item(f).Name <> "BORN") _
And (rs.fields.Item(f).Name <> "RETIRED") And (rs.fields.Item(f).Name <> "LENGTH") Then
DateUpdated = False
For Each TNode In fNode.selectNodes(LCase(rs.fields.Item(f).Name))
If (INode.Text = rs(rs.fields.Item(f).Name).value) Then
Set cAtt = TNode.Attributes.getNamedItem("retired")
cAtt.value = Format(rs("retired").value, "yyyymmdd")
DateUpdated = True
End If

Next TNode
If (Not DateUpdated) Then

Set cNode = xTable.createElement(LCase(rs.fields.Item(f).Name))

cNode.Text = rs(rs.fields.Item(f).Name).value
Set cAtt = xTable.createAttribute("born")
cAtt.value = Format(rs("born").value, "yyyymmdd")
cNode.Attributes.setNamedItem cAtt
Set cAtt = xTable.createAttribute("retired")
cAtt.value = Format(rs("retired").value, "yyyymmdd™)
cNode.Attributes.setNamedItem cAtt
fNode.appendChild cNode
End If
End If
Next f
rs.MoveNext
Loop
xTable.save App.Path & "\data\" & Tables.Item(ccls) & ".xml"
Case "Parcel"
sqlstring = "SELECT * FROM " & Tables.Item(ccls) & _
" ORDER BY FEATURE_ID, BORN, RETIRED, CUSTOMER_ID"
Set rs = New ADODB.Recordset
rs.open sqlstring, Conn, adOopenKeyset, adLockOptimistic
rs.MoveFirst
CurrentRecord = 0
Do While Not rs.EOF
If (rs("FEATURE_ID").value > currentRecord) Then
CurrentRecord = rs("FEATURE_ID").value
Set fNode = xTable.createElement("feature')
xTable.lastChild.appendchild fNode
Set cAtt = xTable.createAttribute("id")
cAtt.value = CurrentRecord
fNode.Attributes.setNamedItem cAtt
End If
perimeter = rs("PERIMETER").vValue
area = rs("AREA").value

sqlstring = "SELECT * FROM " & Tables. Item(cc1s) & "_Shape WHERE FEATURE_ID = "
& currentRecord & " AND BORN = #" & rs("BORN").value & "# AND RETIRED

& rs("RETIRED").value & _
"# AND VERTEX < O ORDER BY FEATURE_ID, BORN, RETIRED, VERTEX"
Set rs2 = New ADODB.Recordset
rs2.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
rs2.MoveFirst
DateUpdated = False
Do While Not rs2.EOF
If (rs2("VERTEX").value = -2) Then
xmin = rs2("X").value

#ll _

150

ymin = rs2("yY").value
ElseIf (rs2("VERTEX").value = -1) Then
xmax = rs2("x").value
ymax = rs2("y").value
End If
rs2.MoveNext
Loop
rs2.Close
For Each TNode In fNode.selectNodes("shape™)

If (INode.selectSingleNode("boundbox/xmin").Text = xmin) And _

(INode.selectSingleNode("boundbox/ymin').Text = ymin) And _

(INode.selectSingleNode("boundbox/xmax').Text = xmax) And _

(INode.selectSingleNode("boundbox/ymax") .Text = ymax) And _

(INode.selectSingleNode("perimeter").Text = perimeter) And _

(INode.selectSingleNode("area").Text = area) Then
Set cAtt = TNode.Attributes.getNamedItem("retired")
cAtt.value = Format(rs("retired").value, "yyyymmdd™")
DateUpdated = True

End If

Next TNode
If (Not DateUpdated) Then

Set cNode = xTable.createElement("shape")

Set cAtt = xTable.createAttribute("born™)

cAtt.value = Format(rs("born").value, "yyyymmdd")

cNode.Attributes.setNamedItem cAtt

Set cAtt = xTable.createAttribute("retired")

cAtt.value = Format(rs("retired").value, "yyyymmdd™)

cNode.Attributes.setNamedItem cAtt

Set 1Node = xTable.createElement("boundbox")

cNode.appendcChild TNode

Set 1Node = xTable.createElement("xmin")

INode.Text = xmin

cNode.TastChild.appendChild 1Node

Set 1Node = xTable.createElement("ymin")

INode.Text = ymin

cNode.TastcChild.appendChild INode

Set 1Node = xTable.createElement("xmax")

INode.Text = xmax

cNode.TastChild.appendChild INode

Set 1Node = xTable.createElement("ymax")

INode.Text = ymax

cNode.TastcChild.appendChild 1Node

Set 1Node = xTable.createElement("area")

INode.Text = area

cNode.appendcChild TNode

Set 1Node = xTable.createElement("perimeter")

151

End
For

INode.Text = perimeter
cNode.appendcChild TNode
sqlSstring = "SELECT * FROM " & Tables.Item(ccls) & "_Shape WHERE FEATURE_ID = " _
& CcurrentRecord & " AND BORN = #" & rs("BORN").value & _
"# AND RETIRED = #" & rs("RETIRED").value & _
"# AND VERTEX > O ORDER BY FEATURE_ID, BORN, RETIRED, VERTEX"
Set rs2 = New ADODB.Recordset
rs2.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
rs2.MoveFirst
DateUpdated = False
Do wWhiTle Not rs2.EOF
Set INode = xTable.createElement("coordinate")
cNode.appendchild TNode
Set INode = xTable.createElement("x")
INode.Text = rs2("x").value
cNode.lastcChild.appendChild 1Node
Set INode = xTable.createElement("y")
INode.Text = rs2("y").value
cNode.TastcChild.appendChild 1Node
rs2.MoveNext
Loop
rs2.Close
fﬁode.appendch11d cNode
I
f =0 To (rs.fields.Count - 1)

If (rs.fields.Item(f).Name <> "FEATURE_ID") And (rs.fields.Item(f).Name <> "BORN") _

And (rs.fields.Item(f).Name <> "RETIRED") And (rs.fields.Item(f).Name <> "AREA") _
And (rs.fields.Item(f).Name <> "PERIMETER") Then
DateUpdated = False
For Each INode In fNode.selectNodes(LCase(rs.fields.Item(f).Name))
If (INode.Text = rs(rs.fields.Item(f).Name).value) Then
Set cAtt = TNode.Attributes.getNamedItem("retired")
cAtt.value = Format(rs("retired").value, "yyyymmdd")
DateUpdated = True
End If
Next TNode
If (Not DateUpdated) Then
Set cNode = xTable.createElement(LCase(rs.fields.Item(f).Name))
cNode.Text = rs(rs.fields.Item(f).Name).value
Set cAtt = xTable.createAttribute("born")
cAtt.value = Format(rs("born").value, "yyyymmdd")
cNode.Attributes.setNamedItem cAtt
Set cAtt = xTable.createAttribute("retired")
cAtt.value = Format(rs("retired").value, "yyyymmdd™)
cNode.Attributes.setNamedItem cAtt
fNode.appendchild cNode

152

153

End If
End If

Next f

rs.MoveNext
Loop
xTable.save App.Path & "\data\" & Tables.Item(ccls) & ".xml"

End Select
Next ccls

conn.Close

APPENDIX D

SCHEMA LISTING FOR CATALOG.XSD

<l--
Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

-=>
<?xml version="1.0" encoding="UTF-8"7>

<xs:schema xmlIns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="catalog">
<xs:complexType>
<Xs:sequence>

<xs:element ref="boundbox" minoccurs="1" maxoccurs="1"/>

<xs:element ref="objectclass" minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="featureclass" minOccurs="1" maxoccurs="unbounded" />
<xs:element ref="relationship" minoccurs="0" maxoccurs="unbounded" />

</Xs:sequence>
</xs:complexType>

154

</xs:element>
<xs:element name="boundbox">
<xs:complexType>
<XS:sequence>
<xs:element ref="xmin" minOccurs="1" maxOccurs="1"/>
<xs:element ref="ymin" minoccurs="1" maxOccurs="1"/>
<Xs:element ref="xmax" minoccurs="1" maxOccurs="1"/>
<xs:element ref="ymax" minoccurs="1" maxOccurs="1"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="xmin" type="xs:short"/>
<xs:element name="ymin" type="xs:short"/>
<xs:element name=:xmax: type=:xs:short:/>
<xs:element name="ymax" type="xs:short"/>
<xs:element naTe=“obJectc1ass“>
<xs:complexType>
<XS:sequence>
<Xs:element ref="name" minoccurs="1" maxOccurs="1"/>
<xs:element ref="table" minoccurs="1" maxOoccurs="1"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="name" type="xs:string"/>
<xs:element name="table" type="xs:string"/>
<xs:element naTe="featurec1ass">
<xs:complexType>
<XS:sequence>
<xs:element ref="name" minOccurs="1" maxOccurs="1"/>
<xs:element ref="type" minoccurs="1" maxOoccurs="1"/>
<Xs:element ref="table" minoccurs="1" maxoccurs="1"/>
<xs:element ref="symbology" minOccurs="1" maxOccurs="1"/>
/ <xs:element ref="tocimage" minOccurs="1" maxoccurs="1"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="type">
<xs:simpleType>
<xs:restriction base="xs:string">
<Xs:enumeration value="Tine"/>
<xs:enumeration value="point"/>
<xs:enumeration value="polygon"/>
/ f/x%:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="symbology">

155

<xs:complexType>
<XS:sequence>
<xs:element ref="symbol" minOccurs="0" maxOccurs="1"/>
<Xs:element ref="size" minoccurs="1" maxOccurs="1"/>
<xs:element ref="color" minoccurs="1" maxOccurs="1"/>
</Xs:sequence>
</xs:complexType>

</xs:element>

<XS

:element name="symbol">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="circle"/>
<xs:enumeration value="rectangle"/>
</xs:restriction>
</xs:simpleType>

</xs:element>

<XS

:element name="size">

<xs:complexType mixed="true">
<XS:sequence>
<xs:element ref="height" minoccurs="0" maxoccurs="1"/>
<xs:element ref="width" minOccurs="0" maxoccurs="1"/>
</Xs:sequence>
</xs:complexType>

</xs:element>

<XS
<XS
<XS

:element name="height" type="xs:double"/>
:element name="width" type="xs:double"/>
:element name="color">

<xs:complexType>
<XS:sequence>
<xs:element ref="red" m1n0ccurs—"1" maxoccurs="1"/>
<Xs:element ref=" green minOccurs="1" maxoccurs="1"/>
<xs:element ref="blue" minoccurs="1" maxoccurs="1"/>
</Xs:sequence>
</xs:complexType>

</xs:element>

<XS
<XS
<XS
<XS
<XS

:element name="red" type="xs:short"/>
:element name="green" type="xs:short" />
:element name="blue" type—"xs:short"/>
:element name— toc1mage type—'xs:string"/>
:element name="relationship">

<xs:complexType>
<XS:sequence>
<Xs:element ref="source_featureclass" minoccurs="1" maxOccurs="1"/>
<xs:element ref="destination_objectclass"” minOoccurs="1" maxOccurs="1"/>
<xs:element ref="key_field" minOccurs="1" maxOccurs="1"/>
</Xs:sequence>

156

157

</xs:complexType>
</xs:element>
<xs:element name="source_featureclass" type="xs:string"/>
<xs:element name="destination_objectclass" type="xs:string"/>
<xs:element name="key_field" type="xs:string"/>
</Xs:schema>

APPENDIX E

SCHEMA LISTING FOR CUSTOMER.XSD

<!--
Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

-—>
<?xml version="1.0" encoding="UTF-8"7>

<xs:schema xmIns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="objectclass">
<xs:complexType>
<Xs:sequence>

<xs:element ref="object" minOccurs="1" maxOccurs="unbounded"/>

</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="object">

158

<xs:complexType>
<XS:sequen

<XS

<XS

<XS

<XS

<XS

<XS

</Xs:seque

ce>

:element
:element
:element
:element
:element
:element

nce>

159

ref="name" minoccurs="1" maxoccurs="unbounded" />
ref="house_number" minoccurs="1" maxoccurs="unbounded" />
ref="street" minOccurs="1" maxOccurs="unbounded" />
ref="city" minOccurs="1" maxOccurs="unbounded" />
ref="state" minoccurs="1" maxOccurs="unbounded" />
ref="zip_code" minoccurs="1" maxoccurs="unbounded"/>

<xs:attribute name="1id" type="xs:integer" use="required"/>

</xs:complexType
</xs:element>
<xs:element name='"name

<xs:complexType>

<xs:simpleContent>

>

||>

<xs:extension base="xs:string">

<xs:attribute name="born" type="xs:integer" use="required"/>

<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>

</xs:simpleContent>

</xs:complexType
</xs:element>

>

<xs:element name="house_number">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:short">

<xs:attribute name="born" type="xs:integer" use="required"/>

<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>

</xs:simpleContent>

</xs:complexType
</xs:element>
<xs:element name="stre

<xs:complexType>

<xs:simpleContent>

>

et'">

<xs:extension base="xs:string">

<xs:attribute name="born" type="xs:integer" use="required"/>

<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>

</xs:simpleContent>

</Xxs:complexType
</xs:element>

>

<xs:element name="city">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

160

<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="state">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="zip_code">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:short">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</Xs:schema>

161

APPENDIX F

SCHEMA LISTING FOR LIGHT.XSD

<!--
Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

-=>
<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmIns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="featureclass">
<xs:complexType>
<XSs:sequence>
<xs:element ref="feature" minoccurs="1" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="feature">

<xs:complexType>
<XS:sequence>
<xs:element ref="shape" minOccurs="0" maxoccurs="unbounded"/>
<xs:element ref="Tightfeed" minoccurs="0" maxOccurs="unbounded" />
<xs:element ref="streettype" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Tamptype" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Tightstyle" minoccurs="0" maxoccurs="unbounded"/>
<xs:element ref="photocell" minOccurs="0" maxOoccurs="unbounded"/>
<xs:element ref="lightrole" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="wattage" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="1id" type="xs:short" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="shape">
<xs:complexType>
<XS:sequence>
<xs:element ref="coordinate" minoccurs="1" maxoccurs="1"/>
</Xs:sequence>
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="coordinate">
<xs:complexType>
<xs:all>
<xs:element ref="x" minOccurs="1" maxOccurs="1"/>
<xs:element ref="y" minoccurs="1" maxOccurs="1"/>
</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="x" type="xs:double"/>
<xs:element name="y" type="xs:double"/>
<xs:element name="Tlightfeed">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>

<xs:attribute name="retired" type="xs:integer" use="required"/>

</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="streettype'>
<xs:complexType>
<xs:simpleContent>

162

<xs:extension base="xs:string">))
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>

</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="lamptype">
<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">]]
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>

</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="Tightstyle">
<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">))
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>

</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="photocell">
<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">))
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>

</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="Tightrole">
<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">]]
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>

</Xs:extension>
</xs:simpleContent>
</xs:complexType>

163

164

</xs:element>
<xs:element name="wattage">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:short">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</Xs:schema>

APPENDIX G

SCHEMA LISTING FOR METER.XSD

<!--

Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,

INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LTIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

-—>
<?xml version="1.0" encoding="UTF-8"7>

<xs:schema xmIns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="featureclass">
<xs:complexType>
<XS:sequence>

<xs:element ref="feature" minOccurs="1" maxOccurs="unbounded"/>

</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="feature">

165

166

<xs:complexType>
<XS:sequence>
<xs:element ref="shape" minoccurs="0" maxoccurs="unbounded"/>
<Xs:element ref="customer_id" minoccurs="0" maxOccurs="unbounded"/>
<xs:element ref="phase" minoccurs="0" maxoccurs="unbounded"/>
<xs:element ref="service_current_rating" minoccurs="0" maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="1id" type="xs:short" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="shape">
<xs:complexType>
<XS:sequence>
<xs:element ref="coordinate" minOccurs="1" maxoccurs="1"/>
</Xs:sequence>
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="coordinate">
<xs:complexType>
<xs:all>
<xs:element ref="x" minOccurs="1" maxOccurs="1"/>
<xs:element ref="y" minOccurs="1" maxOccurs="1"/>
</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="x" type="xs:double"/>
<xs:element name="y" type="xs:double"/>
<xs:element name="customer_id">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:integer">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="phase'">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>

167

</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="service_current_rating">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</Xs:schema>

APPENDIX H

SCHEMA LISTING FOR PARCEL.XSD

<!--

Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,

INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LTIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

-—>
<?xml version="1.0" encoding="UTF-8"7>

<xs:schema xmIns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="featureclass">
<xs:complexType>
<XS:sequence>

<xs:element ref="feature" minOccurs="1" maxOccurs="unbounded"/>

</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="feature">

168

<xs:complexType>
<XS:sequence>
<xs:element ref="shape" minoccurs="0" maxoccurs="unbounded"/>
<Xs:element ref="customer_id" minoccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="1id" type="xs:short" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="shape">
<xs:complexType>
<XS:sequence>
<xs:element ref="boundbox" minOccurs="1" maxOccurs="1"/>
<Xs:element ref="area" minoccurs="1" maxOoccurs="1"/>
<xs:element ref="perimeter" minOccurs="1" maxOccurs="1"/>
<xs:element ref="coordinate" minoccurs="1" maxoccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="boundbox">
<xs:complexType>
<XS:sequence>
<xs:element ref="xmin" minOccurs="1" maxOccurs="1"/>
<xs:element ref="ymin" minoccurs="1" maxOoccurs="1"/>
<xs:element ref="xmax" minOccurs="1" maxOccurs="1"/>
<xs:element ref="ymax" minoccurs="1" maxOccurs="1"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="xmin" type="xs:double"/>
<xs:element name="ymin" type="xs:double"/>
<xs:element name="xmax" type="xs:double"/>
<xs:element name="ymax" type="xs:double"/>
<xs:element name="area" type="xs:double"/>
<xs:element name="perimeter" type="xs:double"/>
<xs:element name="coordinate">
<xs:complexType>
<xs:all>
<xs:element ref="x" minOccurs="1" maxoccurs="1"/>
<xs:element ref="y" minOccurs="1" maxOccurs="1"/>
</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="x" type="xs:double"/>
<xs:element name="y" type="xs:double"/>

169

170

<xs:element name="customer_id">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:integer">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:schema>

APPENDIX |

SCHEMA LISTING FOR POLE.XSD

<l--
Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LTIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

-—>

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmIns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="featureclass">
<xs:complexType>
<XS:sequence>
<Xs:element ref="feature" minoccurs="1" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="feature">

171

<xs:complexType>
<XS:sequence>
<xs:element ref="shape" minoccurs="1" maxOccurs="unbounded"/>
<xs:element ref="type" minoccurs="0" maxOoccurs="unbounded"/>
<xs:element ref="ground" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="id" type="xs:short" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="shape'">
<xs:complexType>
<XS:sequence>
<Xs:element ref="coordinate" minoccurs="1" maxoccurs="1"/>
</Xs:sequence>
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="coordinate">
<xs:complexType>
<xs:all>
<xs:element ref="x" minOccurs="1" maxoccurs="1"/>
<xs:element ref="y" minOccurs="1" maxOccurs="1"/>
</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="x" type="xs:double"/>
<xs:element name="y" type="xs:double"/>
<xs:element name="type">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="ground">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>

172

173

</xs:complexType>
</xs:element>
</xs:schema>

APPENDIX J

SCHEMA LISTING FOR PRICONDUCTOR.XSD

<!--
Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

-—>
<?xml version="1.0" encoding="UTF-8"7>

<xs:schema xmIns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="featureclass">
<xs:complexType>
<XS:sequence>

<xs:element ref="feature" minOccurs="1" maxOccurs="unbounded"/>

</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="feature">

174

175

<xs:complexType>
<XS:sequence>
<xs:element ref="shape" minoccurs="0" maxoccurs="unbounded"/>
<xs:element ref="type" minoccurs="0" maxOoccurs="unbounded" />
<xs:element ref="phase" minoccurs="0" maxoccurs="unbounded"/>
<xs:element ref="operat1ng_vo1tage" minoccurs="0" maxoccurs="unbounded" />
<xs:element ref="nominal_voltage" minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="conductor_material”™ minoccurs="0" maxoccurs="unbounded"/>
<xs:element ref="neutral_material” minoccurs="0" maxOccurs="unbounded"/>
<Xs:element ref="conductor_size" minoccurs="0" maxOccurs="unbounded"/>
<xs:element ref="neutral_size" minOccurs="0" maxoccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="id" type="xs:short" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="shape'>
<xs:complexType>
<XS:sequence>
<xs:element ref="boundbox" minoccurs="1" maxoccurs="1"/>
<xs:element ref="length" minOccurs="1" maxoccurs="1"/>
<xs:element ref="coordinate" minoccurs="1" maxoccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="boundbox">
<xs:complexType>
<XS:sequence>
<xs:element ref="xmin" minOccurs="1" maxOccurs="1"/>
<xs:element ref="ymin" minoccurs="1" maxoccurs="1"/>
<xs:element ref="xmax" minOccurs="1" maxOccurs="1"/>
<xs:element ref="ymax" minoccurs="1" maxOccurs="1"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="xmin" type="xs:double"/>
<xs:element name="ymin" type="xs:double"/>
<xs:element name="xmax" type="xs:double"/>
<xs:element name="ymax" type="xs:double"/>
<xs:element name="length" type="xs:double"/>
<xs:element name="coordinate">
<xs:complexType>
<xs:all>
<xs:element ref="x" minOccurs="1" maxOccurs="1"/>
<xs:element ref="y" minoccurs="1" maxOccurs="1"/>

</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="x" type="xs:double"/
<xs:element name="y" type="xs:double"/
<xs:element name="type">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="
<xs:attribute
<xs:attribute
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="phase">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="
<xs:attribute
<xs:attribute
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="operating_voltage">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="
<xs:attribute
<xs:attribute
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="nominal_voltage">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="
<xs:attribute
<xs:attribute
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="conductor_material">

>
>

xs:string">))
name="born" type="xs:integer" use="required"/>
name="retired" type="xs:integer" use="required"/>

xs:string">))
name="born" type="xs:integer" use="required"/>
name="retired" type="xs:integer" use="required"/>

xs:string">))
name="born" type="xs:integer" use="required"/>
name="retired" type="xs:integer" use="required"/>

xs:string">))
name="born" type="xs:integer" use="required"/>
name="retired" type="xs:integer" use="required"/>

176

177

<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="neutral_material">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="conductor_size">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="neutral_size">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</Xs:schema>

178

APPENDIX K

SCHEMA LISTING FOR RISER.XSD

<!--
Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

-=>
<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmIns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="featureclass">
<xs:complexType>
<XSs:sequence>
<xs:element ref="feature" minoccurs="1" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="feature">

179

<xs:complexType>
<XS:sequence>
<xs:element ref="shape" minoccurs="1" maxOccurs="unbounded"/>
<xs:element ref="type" minoccurs="0" maxOoccurs="unbounded"/>
<xs:element ref="material" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="phase" minOccurs="0" maxoccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="1id" type="xs:short" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="shape">
<xs:complexType>
<XS:sequence>
<xs:element ref="coordinate" minOccurs="1" maxoccurs="1"/>
</Xs:sequence>
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="coordinate">
<xs:complexType>
<xs:all>
<xs:element ref="x" minOccurs="1" maxOccurs="1"/>
<xs:element ref="y" minOccurs="1" maxOccurs="1"/>
</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="x" type="xs:double"/>
<xs:element name="y" type="xs:double"/>
<xs:element name="type">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="material">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>

180

</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="phase'">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:schema>

APPENDIX L

SCHEMA LISTING FOR SECCONDUCTOR.XSD

<!--
Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

-—>
<?xml version="1.0" encoding="UTF-8"7>

<xs:schema xmIns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="featureclass">
<xs:complexType>
<XS:sequence>

<xs:element ref="feature" minOccurs="1" maxOccurs="unbounded"/>

</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="feature">

181

182

<xs:complexType>
<XS:sequence>
<xs:element ref="shape" minoccurs="0" maxoccurs="unbounded"/>
<xs:element ref="type" minoccurs="0" maxOoccurs="unbounded" />
<xs:element ref="phase" minoccurs="0" maxoccurs="unbounded"/>
<xs:element ref="operat1ng_vo1tage" minoccurs="0" maxoccurs="unbounded" />
<xs:element ref="nominal_voltage" minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="conductor_material”™ minoccurs="0" maxoccurs="unbounded"/>
<xs:element ref="neutral_material” minoccurs="0" maxOccurs="unbounded"/>
<Xs:element ref="conductor_size" minoccurs="0" maxOccurs="unbounded"/>
<xs:element ref="neutral_size" minOccurs="0" maxoccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="id" type="xs:short" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="shape'>
<xs:complexType>
<XS:sequence>
<xs:element ref="boundbox" minoccurs="1" maxoccurs="1"/>
<xs:element ref="length" minOccurs="1" maxoccurs="1"/>
<xs:element ref="coordinate" minoccurs="1" maxoccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="boundbox">
<xs:complexType>
<XS:sequence>
<xs:element ref="xmin" minOccurs="1" maxOccurs="1"/>
<xs:element ref="ymin" minoccurs="1" maxoccurs="1"/>
<xs:element ref="xmax" minOccurs="1" maxOccurs="1"/>
<xs:element ref="ymax" minoccurs="1" maxOccurs="1"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="xmin" type="xs:double"/>
<xs:element name="ymin" type="xs:double"/>
<xs:element name="xmax" type="xs:double"/>
<xs:element name="ymax" type="xs:double"/>
<xs:element name="length" type="xs:double"/>
<xs:element name="coordinate">
<xs:complexType>
<xs:all>
<xs:element ref="x" minOccurs="1" maxOccurs="1"/>
<xs:element ref="y" minoccurs="1" maxOccurs="1"/>

</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="x" type="xs:double"/
<xs:element name="y" type="xs:double"/
<xs:element name="type">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="
<xs:attribute
<xs:attribute
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="phase">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="
<xs:attribute
<xs:attribute
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="operating_voltage">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="
<xs:attribute
<xs:attribute
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="nominal_voltage">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="
<xs:attribute
<xs:attribute
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="conductor_material">

>
>

xs:string">))
name="born" type="xs:integer" use="required"/>
name="retired" type="xs:integer" use="required"/>

xs:string">))
name="born" type="xs:integer" use="required"/>
name="retired" type="xs:integer" use="required"/>

xs:string">))
name="born" type="xs:integer" use="required"/>
name="retired" type="xs:integer" use="required"/>

xs:string">))
name="born" type="xs:integer" use="required"/>
name="retired" type="xs:integer" use="required"/>

183

184

<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="neutral_material">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="conductor_size">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="neutral_size">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</Xs:schema>

APPENDIX M

SCHEMA LISTING FOR SWITCH.XSD

<!--

Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,

INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LTIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

-—>
<?xml version="1.0" encoding="UTF-8"7>

<xs:schema xmIns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="featureclass">
<xs:complexType>
<XS:sequence>

<xs:element ref="feature" minOccurs="1" maxOccurs="unbounded"/>

</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="feature">

185

<xs:complexType>
<Xs:sequence>
<xs:element ref="shape" minoccurs="0" maxoccurs="unbounded"/>
<xs:element ref="type" minoccurs="0" maxOoccurs="unbounded" />
<xs:element ref="phase" minoccurs="0" maxoccurs="unbounded"/>

<xs:element ref="operat1ng_vo1tage" minoccurs="0" maxoccurs="unbounded" />

<xs:element ref="nominal_voltage
</Xs:sequence>
<xs:attribute name="1id" type="xs:short" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="shape">
<xs:complexType>
<XS:sequence>
<xs:element ref="coordinate" minOccurs="1" maxoccurs="1"/>
</Xs:sequence>
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="coordinate">
<xs:complexType>
<xs:all>
<xs:element ref="x" minOccurs="1" maxOccurs="1"/>
<xs:element ref="y" minoccurs="1" maxOccurs="1"/>
</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="x" type="xs:double"/>
<xs:element name="y" type="xs:double"/>
<xs:element name="type">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="phase">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>

minOccurs="0" maxoccurs="unbounded" />

187

</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="operating_voltage">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="nominal_voltage">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</Xs:schema>

APPENDIX N

SCHEMA LISTING FOR TRANSFORMER.XSD

<!--
Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

-—>
<?xml version="1.0" encoding="UTF-8"7>

<xs:schema xmIns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="featureclass">
<xs:complexType>
<XS:sequence>

<xs:element ref="feature" minOccurs="1" maxOccurs="unbounded"/>

</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="feature">

188

<xs:complexType>
<XS:sequence>
<xs:element ref="shape" minoccurs="0" maxoccurs="unbounded"/>
<xs:element ref="type" minoccurs="0" maxOoccurs="unbounded" />
<xs:element ref="phase" minoccurs="0" maxoccurs="unbounded"/>
<xs:element ref="ratedkva" minoccurs="0" maxOccurs="unbounded"/>

<xs:element ref="high_side_configuration" minoccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Tow_side_configuration" minoccurs="0" maxOccurs="unbounded" />
<xs:element ref="operat1ng_vo1tage" minoccurs="0" maxoccurs="unbounded" />

" minoccurs="0" maxoccurs="unbounded"/>
<xs:element ref="Tow_side_voltage" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="nominal_voltage

</Xs:sequence>
<xs:attribute name="id" type="xs:short" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="shape'">
<xs:complexType>
<XS:sequence>
<Xs:element ref="coordinate" minoccurs="1" maxoccurs="1"/>
</Xs:sequence>
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="coordinate">
<xs:complexType>
<xs:all>
<xs:element ref="x" minOccurs="1" maxoccurs="1"/>
<xs:element ref="y" minOccurs="1" maxOccurs="1"/>
</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="x" type="xs:double"/>
<xs:element name="y" type="xs:double"/>
<xs:element name="type">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>

<xs:attribute name="retired" type="xs:integer" use="required"/>

</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="phase">
<xs:complexType>

189

<xs:simpleContent>]
<xs:extension base="xs:string">

<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>

</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="ratedkva">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:integer">

<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>

</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="high_side_configuration">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>

</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="Tlow_side_configuration">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>

</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="operating_voltage">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>

</Xs:extension>
</xs:simpleContent>

190

191

</xs:complexType>
</xs:element>
<xs:element name="nominal_voltage">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="Tow_side_voltage">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="born" type="xs:integer" use="required"/>
<xs:attribute name="retired" type="xs:integer" use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</Xs:schema>

Option Explicit

APPENDIX O

PROGRAM LISTING FOR CHOOSER.FRM

Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Form: Chooser

Description: Allows the user to choose the browser version and
sets and returns a status variable used by the main
subroutine.

Require declaration of variables

192

193

' variable declarations

Public ChosenBrowser As String

Public variable for the chosen
browser.

Subroutine: ChooseRelational_cClick

Description: Responds to the ChooseRelational button click event
and sets the chosen browser to relational.

Arguments: Nonhe

Return value: None

Private Sub cChooseRelational_click()

ChosenBrowser = "Relational"
Unload Me
End Sub
Subroutine: ChoosexML_C11ick

Description: Responds to the ChoosexML button click event
and sets the chosen browser to XML.

Arguments: Nonhe

Return value: None

Private Sub ChoosexMmL_Click()
ChosenBrowser = "XML"
Unload Me

End Sub

APPENDIX P

PROGRAM LISTING FOR STARTUP.BAS

Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Module: Startup

Description: Queries the user as to whether to run the XML based
version of the browser or the relational version of
the browser and runs the appropriate version.

Option Explicit ' Require declaration of variables

194

195

' Subroutine: Main)))
' Description: 1Initialize interface at application start.
' Arguments: None
' Return value: None
L}
Sub Main(Q)
Chooser.Show vbModal ' Display the chooser menu
If Chooser.ChosenBrowser = "Relational" Then
rerowser.Show vbModal ' Run the relational browser
ElseIf cChooser.ChosenBrowser = "XML" Then
x%rowser.show vbMmodal ' Run the XML browser
End I

End Sub

APPENDIX Q

PROGRAM LISTING FOR RBROWSER.FRM

Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Form: rBrowser) _)
Description: The main interface for the application, which
supports the following:

1. Drawing features from feature classes

2. Dynamically enabling / disabling drawing feature
classes

3. Set a reference date to be the "current
operational date" for operations in the system

196

4,

5.
6.

The
no u
are

Map extent controls (zoom in and out, pan, full
extent)

Select features graphically or through Xxpath query
View and edit attributes on a point or line

key feature of this application_is that there are
ser defined data structures; relational tables
the dynamic data structures for all operations.

Option Explicit

Require declaration of variables

' Import GDI functio
]

n for double buffered drawing

197

Private Declare Function BitBTt Lib "gdi32" (Byval hbDestDC As Long, Byval x As Long, Byval y As Long, Byval
nwidth As Long, Byval nHeight As Long, Byval hSrcDC As Long, Byval xSrc As Long, Byval ySrc As Long, Byval

dwRop As Long) As Lo

ng

' variable declarati
]

ons

Private ButtonTool A
Private Bound(4) As
Private ScaleFactor
Private SelectTolera
Private Click(2) As
Private BufferedMap

Private Conn As ADOD
Private CurrFC As In
Private Record As Lo

S String Current tool from the button bar
Single Map xmin,ymin,xmax,ymax
As Single Current map scale (1:SF)

Selection tolerance from 0-2'
Last click x and y coordinates
Temporary picturebox to hold
picture for double buffering
B.Connection Persistent connection to Access
teger Current feature class index

ng Current feature record number

nce As Single
Single
As PictureBox

Subroutine: Form_

Arguments: None

]
L}
' Description: 1Init
1
' Return value: None
L}

Load
ialize interface at application start

Private Sub Form_Loa

Dim Name As Stri
Dim sqlstring As
Dim rs As New AD
Dim i As Integer

dO

ng
String
ODB.Recordset

198

Set a reference to the PictureBox Maps for feature drawing
If Not (rBrowser Is Nothing) Then Set BufferedMap = Map
' Open a connection to the Access database

Set Conn = New ADODB.Connection
conn.open "Provider=Microsoft.Jet.OLEDB.4.0;" & "Data Source=" & App.Path & "\data\DB.mdb"

Load feature class names into the table of contents

sqlstring = "select * from Catalog_FeatureClass order by draworder"”
rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
For i = 1 To rs.RecordCount
DrawClass(i - 1).Tag = rs("NAME").value
DrawClass(i - 1).visible = True
ClassName(i - 1).Caption = rs("NAME").value
ClassName(i - 1).Tag = rs("TABLE").value
ClassName(i - 1).visible = True
ClassImage(i - 1).Picture LoadPicture("bitmaps\" & rs("TOCIMAGE").value)

ClassImage(i - 1).visible = True
rs.mMoveNext
Next i
ClassImage(0) .BorderSstyle = vbFixedSingle
rs.Close

' Set map extent

GetBounds Bound(1l), Bound(2), Bound(3), Bound(4)
ScaleFactor = Abs(Bound(1l) - Bound(3)) / Map.Scalewidth
DisplaysScale

' Set the initial tolerances and status variables
SelectTolerance = 5

SelectToleranceLabel.Caption = "5.000"

ButtonTool = "select"

' Set the classes tab to be active

Tabs.Tab = 0

Set the reference date to today's date

ReferenceDate.vValue = Now

Set the feature class and draw the map

ChangeFeatureClass 0

Return value: None

DrawFeatures
RefreshForm
End Sub
L}
' Subroutine: Form_unload))
' Description: Shutdown interface at application end
' Arguments: None
1
L}

Private Sub Form_uUnload(Cancel As Integer)
conn.Close
End Sub

]
' Subroutine: Toolbar_ButtonClick

' Description: Event handler for button clicks on the toolbar
' Arguments: 1. Toolbar button

: Return Vvalue: None

Private Sub Toolbar_ButtonClick(Byval Button As MSComctlLib.Button)

' Set the tool to be equal to the button's key (if appropriate)
' and operate on the button

Select Case Button.Key
Case "Select"
ButtonTool = Button.Key

Case "zoomIn" ' Toggle zooming in

If ButtonTool = Button.Key Then

ButtonTool = "None"
Else

ButtonTool = Button.Key
End If

Case "zoomout" ' Toggle zooming out

If ButtonTool = Button.Key Then

199

End

ButtonTool = "None"
Else
ButtonTool = Button.Key
End 1If
Case "Pan" ' Toggle panning
If ButtonTool = Button.Key Then
ButtonTool = "None"
Else
ButtonTool = Button.Key
End If
Case "FullExtent" ' Redraw the full map

GetBounds Bound(1l), Bound(2), Bound(3), Bound(4)
ScaleFactor = Abs(Bound(1l) - Bound(3)) / Map.Scalewidth
DisplayScale

DrawFeatures

DrawSelected

Select

' Update the form

RefreshForm

End Sub

Subroutine: DrawClass_Click o]
Description: Event handler for checkbox indicating whether or not

to draw the associated feature_class, redraws the
screen after enabling or disabling

Arguments: 1. position in the control array (0 based)
Return value: None

Private Sub DrawClass_Click(index As Integer)
DrawFeatures
DrawSelected
RefreshForm

End Sub

Subroutine: ClassImage_Click)
Description: Event handler for changing feature classes. Feature

200

classes can be changed either by clicking the image
or the name of the feature class. Redraws the screen
after changing feature classes (if a feature was
selected).

Arguments: 1. position in the control array (0 based)

Return value: None

Private Sub ClassImage_Click(index As Integer)
ChangeFeatureClass 1index
If (SelectedFeatures.ListCount > 0) Then
Clearselection
Else
RefreshForm
End If
End Sub

Subroutine: ClassName_CT1ick

Description: Event handler for changing feature classes. Feature
classes can be changed either by clicking the image
or the name of the feature class. Redraws the screen
after changing feature classes (if a feature was
selected).

Arguments: 1. position in the control array (0 based)

Return value: None

Private Sub ClassName_Click(index As Integer)
ChangeFeaturecClass index
If (SelectedFeatures.ListCount > 0) Then
Clearselection
Else
RefreshForm
End If
End Sub

]
' Subroutine: ReferencebDate_CloseUp

' Description: Event handler for changing the reference date, redraws
' the map and refreshes the form after setting the
! current record to nothing
' Arguments: None
: Return value: None

Private Sub_ReferenceDate_Closeup()
Clearselection
End Sub

201

Private

Subroutine:
Description:

Arguments:
Return Vvalue:

SelectedFeatures_cClick

Event handler for click on the selected feature IDs
list box, sets the current record, updates the
form with attributes and redraws the map

None
None

Sub selectedFeatures_Click()

Dim i As Integer

Dim rs As New ADODB.Recordset
Dim sqlString As String

Dim fieldName As String

Dim Keyvalue As Long

Dim TableName As String

Dim KeyName As String

If (SelectedFeatures.Text <> "") Then
Record = CLng(SelectedFeatures.Text)

Else

Check to see if a feature was selected before continuing

If (Record <> 0) Then
DrawFeatures

End If

Record = 0

Attributes.Nodes.Clear
DrawSelected
RefreshForm

Exit Sub
End If

KeyName =

sqlstring = "SELECT * FROM Catalog_Relationships WHERE source_featureclass = """ & _
ClassName(CurrfFC).Caption & """" o
rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic

Determine if a relationship exists and get the appropriate table and key fields

If (rs.RecordCount = 1) Then
rs.MoveFirst

TableName = rs("DESTINATION_OBJECTCLASS").value

KeyName
End If
rs.close

rs("KEY_FIELD") .value

202

sqlstring = "SELECT * FROM Catalog_ObjectClass WHERE name = """ & ClassName(CurrfFcC).Caption & """"

rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
If (rs.RecordCount = 1) Then
rs.mMoveFirst
TableName = rs("TABLE").value
End 1If
rs.Close

Loop through and place the attributes in the attribute tree Tist
Note that shapes must be handled separately from other
attributes because are complex typed. Points have a single
coordinate while 1lines have many coordinates and a bounding

box and length attribute

Place the coordinates in the attributes Tist

Attributes.Nodes.Clear

Attributes.Nodes.Add , , "SHAPE", "SHAPE")
If (GetClassType(ClassName(CurrFC).Caption) = "point") Then)
sqlstring = "SELECT * FROM " & ClassName(CurrFC).Tag & "_Shape WHERE feature_id = " & _

Record & " and born <= #" & ReferenceDate.value & "# and retired > #" & ReferenceDate.value & _

"# order by feature_id"
Else

sqlstring = "SELECT * FROM " & ClassName(CurrFC).Tag & "_Shape WHERE feature_id = " & Record _

& " and born <= #" & ReferenceDate.value & "# and retired > #" & ReferenceDate.value & _
"# and vertex > 0 order by feature_id, vertex"

End If
rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
i=0

rs.MoveFirst

Do While Not rs.EOF
i=1+1
Attributes.Nodes.Add "SHAPE", tvwChild, "COORDINATE " & CStr(i), "COORDINATE"
Attributes.Nodes.Add "COORDINATE " & cstr(i), tvwchild, "X " & cstr(i), "X"
Attributes.Nodes.Add "X " & cstr(i), tvwChild, , rs("X").value
Attributes.Nodes.Add "COORDINATE " & cstr(i), tvwchild, "y " & cstr(i), "Y"
Attributes.Nodes.Add "y " & cstr(i), tvwchild, , rs("Y").value
rs.mMoveNext

Loop

rs.close

Place the bounding box coordinates in the attributes Tist

If (GetClassType(ClassName(CurrFC).Caption) <> "point") Then
sqlstring = "SELECT * FROM " & ClassName(CurrFC).Tag & "_Shape WHERE feature_id = " & Record
" and born <= #" & ReferenceDate.value & "# and retired > #" & ReferencebDate.value & _

203

204

"# and vertex < 0 order by feature_id, vertex"
rs.open sqlstring, Conn, adoOpenkeyset, adLockOptimistic
rs.MoveFirst
Do While Not rs.EOF
If (rs("VERTEX").value = -2) Then
Attributes.Nodes.Add "SHAPE", tvwChild, "BOUNDBOX", '"BOUNDBOX"
Attributes.Nodes.Add "BOUNDBOX", tvwChild, "XMIN", "XMIN"

Attributes.Nodes.Add "XMIN", tvwcChild, , rs("X").value
Attributes.Nodes.Add "BOUNDBOX", tvwChild, "YMIN", "YMIN"
] Attributes.Nodes.Add "YMIN", tvwchild, , rs("Y").value
Else
Attributes.Nodes.Add "BOUNDBOX", tvwChild, "XMAX", "XMAX"
Attributes.Nodes.Add "xmax", tvwchild, , rs("X").value
Attributes.Nodes.Add "BOUNDBOX", tvwChild, "ymAx", "YmMAX"
Attributes.Nodes.Add "ymax", tvwchild, , rs("Y").value
End If
rs.MoveNext
Loop
rs.Close
End If

Place other spatial attributes in the attributes Tist

Keyvalue = 0
If (GetClassType(ClassName(CurrFC).Caption) <> "point") Then
sqlstring = "SELECT * FROM " & ClassName(CurrFC).Tag & " WHERE feature_id = " & Record & _
" and born <= #" & ReferenceDate.value & "# and retired > #" & ReferenceDate.value & _
"# order by feature_id"
rs.open sqlstring, Conn, adopenkeyset, adLockOptimistic
rs.MoveFirst

If (GetClassType(ClassName(CurrFC).Caption) = "Tine") Then
Attributes.Nodes.Add "SHAPE", tvwChild, "LENGTH", "LENGTH"
Attributes.Nodes.Add "LENGTH", tvwChild, , rs("LENGTH").value

Elself (GetClassType(ClassName(CurrFC).Caption) = "polygon") Then
Attributes.Nodes.Add "SHAPE", tvwChild, "AREA", "AREA"
Attributes.Nodes.Add "AREA", tvwcChild, , rs("AREA").value
Attributes.Nodes.Add "SHAPE", tvwChild, "PERIMETER", "PERIMETER"
Attributes.Nodes.Add "PERIMETER", tvwChild, , rs("PERIMETER").value

End If

rs.Close

End If

Place the rest of the attributes in the attributes Tist

sqlstring = "SELECT * FROM " & ClassName(CurrfFC).Tag & " WHERE feature_id = " & Record &
" and born <= #" & ReferenceDate.value & "# and retired > #" & ReferenceDate.value & _

205

"# order by feature_id"
rs.open sqlstring, Conn, adOpenkeyset, adLockOptimistic
rs.MoveFirst
For i = 0 To (rs.fields.Count - 1)
fieldName = rs.fields.Item(i).Name
If (fieldName <> "FEATURE_ID") And (fieldName <> "BORN") And (fieldName <> "RETIRED") And _
(fieldName <> "AREA") And (fieldName <> "PERIMETER") And (fieldName <> "LENGTH") Then

Attributes.Nodes.Add , , uCase(fieldName), uCase(fieldName)
g AEtributes.Nodes.Add ucCase(fieldName), tvwcChild, , rs(fieldName).value
End I

If (fieldName = KeyName) Then
Keyvalue = rs(fieldName).value
End If
Next i
rs.Close

Load any related data

If (Keyvalue <> 0) Then

Attributes.Nodes.Add , , "RELATED " & UCase(TableName) & " DATA", "RELATED " & _
_UCase(TableName) & " DATA"
sqlstring = "SELECT * FROM " & TableName & " WHERE " & KeyName & " = " & Keyvalue & _

and born <= #" & ReferenceDate.value & "# and retired > #" & ReferenceDate.value & _
"# order by " & KeyName
rs.open sqlstring, Conn, adOpenkeyset, adLockOptimistic
rs.mMoveFirst
For i = 0 To (rs.fields.Count - 1)
fieldName = rs.fields.Item(i).Name
If (fieldName <> KeyName) And (fieldName <> "BORN") And (fieldName <> "RETIRED") Then
Attributes.Nodes.Add "RELATED " & UCase(TableName) & " DATA", tvwChild, _
UCase(fieldName), uCase(fieldName)
g A}tributes.Nodes.Add UCase(fieldName), tvwChild, , rs(fieldName).value
End I
Next i
rs.Close
End If

Redraw the map and the form
DrawFeatures
DrawSelected
RefreshForm

End Sub

Subroutine:
Description:

Arguments:
Return Vvalue:

SQLQuery_KeyPress)
Event handler for the query string text box.

Pressing

enter will call select features with the specified

query string.
None
None

Private Sub sSQLQuery_KeyPress(KeyAscii As Integer)
If (KeyAscii = 13) Then

SelectFeatures SQLQuery.Text

End If
End Sub

Subroutine:
Description:

Arguments:
Return value:

SelectTolerancesSlider_sScroll

Responds to select tolerance slide event, sets the

selection tolerance and updates the form
None
None

Private Sub SelectToleranceSlider_Scroll()
SelectTolerance = SelectToleranceslider.value / 1000
g SegectTo1eranceLabe1.Caption = Format(SelectTolerance, "#0.000™)
End Su

Private Sub Map_MouseDown(Button As Integer, Shift As Integer, x As Single, y As Single)

Subroutine:
Description:

Arguments:

Return value:

Map_MouseDown

Handle the mouse down click event for selection and

map extent tools

1. Button (left or right mouse)
2. shift (true or false)

3. x click on map

4. y click on map

None

Dim x1 As Single
Dim yl As Single
Dim i As Integer

x1
yl

Set the coordinates and operate on the selected button.

Also

create a new point out of the coordinates to work with Tater.

TrxX(x)
Try(y)

206

DisplayPosition x1, yl
' Act on the appropriate button tool
Select Case ButtonTool
Case "Select"
' Search for features at the click point
If (Button = vbLeftButton) Then
SelectFeatures "", x1, yl
Else)
Clearselection
End If
Case '"zoomIn", "zoomout"
' Handle map extent tools. For moving points use the
" window Tocation rather than the map Tocation for
' smore accurate movement tracking

If Button = vbLeftButton Then)
ButtonTool = ButtonTool & "Active"

Click(1l) = x
Click(2) =y
End If
Exit Sub
End Select
End Sub
Subroutine: Map_MouseUp

Private Sub Map_MouseUp(Button As Integer, Shift As Integer, x As Single, y As Single)

Description: Handle mouse up event for selection and map extent

tools on the map

Arguments: 1. Button (Teft or right mouse)

2. shift (true or false)
3. x click on map
4. y click on map

Return value: None

Dim x1 As Single

207

Dim yl As Single
Dim cx As Single
Dim cy As Single
Dim dx As Single
Dim dy As Single

' Set the coordinates and operate on the selected button. Also
' create a new point out of the coordinates to work with Tater.

x1 TrxX(x)

yl = TrY(y)
DisplayPosition x1, yl

Act on the selected button tool
Select Case ButtonTool
Case "ZoomInActive"
If Button = vbLeftButton Then
If Abs(Click(l) - x) > Abs(Click(2) - y) Then

If (Click(1l) < x) Then
Bound(1) = Trx(cTlick(1l))
Bound(3) = x1
Else
Bound(1l) = x1
Bound(3) = Trx(click(1l))
End If
If (Click(2) > y) Then
] cy = TrY(Click(2) - (Abs(CTlick(2) -vy) / 2))
Else
cy = TrY(y - (Abs(y - Cclick(2)) / 2))
End If

ScaleFactor = Abs(Bound(1l) - Bound(3)) / Map.Scalewidth

Bound(2) = -cy - (Map.ScaleHeight * ScaleFactor / 2)
: Bound(4) = -cy + (Map.ScaleHeight * ScaleFactor / 2)
Else
If (Click(2) < y) Then
Bound(2) = -Try(click(2))
Bound(4) = -yl
Else
Bound(2) = -yl
Bound(4) = -Try(Click(2))
End If
If (Click(1l) > x) Then

208

209

] cx = TrX(Cclick(1l) - (Abs(Click(l) - x) / 2))
Else

cX = TrX(x - (Abs(x - Click(l)) / 2))
End If

ScaleFactor = Abs(Bound(2) - Bound(4)) / Map.ScaleHeight
Bound (1) cx - (Map.Scalewidth * ScaleFactor / 2)
Bound(3) cx + (Map.scalewidth * scaleFactor / 2)

End If

ButtonTool = "zoomIn"

DisplayScale

DrawFeatures

DrawSelected

RefreshForm

Exit Sub

End If
Case "zZoomOutActive"
If Button = vbLeftButton Then

If Abs(Click(1l) - x) > Abs(Click(2) - y) Then
: ScaleFactor = ScaleFactor * Map.Scalewidth / Abs(Click(1l) - x)
Else
End If
If (Click(2) > y) Then
: cy = TrY(Click(2) - (Abs(Click(2) - vy) / 2))
Else
cy = TrY(y - (Abs(y - Cclick(2)) / 2))
End If
If (C11ck(1) > X) Then
cx = TrX(Click(1l) - (Abs(Click(l) - x) / 2))

Else

cx = TrX(y - (Abs(x - Cclick(1)) / 2))
End If
Bound(1l) = cx - (Map.Scalewidth * ScaleFactor / 2)
Bound(3) = cx + (Map.Scalewidth * ScaleFactor / 2)
Bound(2) = -cy - (Map.ScaleHeight * ScaleFactor / 2)
Bound(4) = -cy + (Map.ScaleHeight * ScaleFactor / 2)
ButtonToo1 = "Zoomout"
DisplayScale
DrawFeatures
DrawSelected
RefreshForm

Exit Sub

End If

Case "Pan

If Button = vbLeftButton Then

dx =

dy =

Bound(1l) = Bound(l)
Bound(2) = Bound(2)
Bound(3) = Bound(3)
Bound(4) = Bound(4)
DisplayScale
DrawFeatures
DrawSelected
RefreshForm

End If
End Select
End Sub

+
+

x1 - ((Bound(1l) + Bound(3
yl + ((Bound(2) + Bound(4

))
))

/
/

2
2

)
)

Subroutine: Map_MouseMove

Arguments:
3. x click on map

4. y click on map
Return value: None

Description: Handles mouse move click event for map extent tools
1. Button (right or left mouse button)
2. shift (true or false)

Private Sub Map_MouseMove(Button As Integer, Shift As Integer, X As Single, y As Single)

Dim x1 As Single
Dim yl As Single

Set the coordinates

x1 TrxX(x)

yl = TrY(y)
DisplayPosition x1, yl

Operate on the appropriate button tool

210

If (Butto?Too1 = "ZoomInActive") or (ButtonTool = "ZoomOutActive") Then
Map.Cls
Map.ForeColor = RGB(50, 50, 50)
Map.Fillstyle = vbFSTransparent
Map.Line (Click(l), Click(2))-(x, y), , B

End If

End Sub
Subroutine: ChangeFeatureClass

Description: Sets the feature class, resets the record
and redraws the screen.

Arguments: 1. Table of contents index of feature class

Return value: None

Public Sub ChangeFeatureClass(index As Integer)

CurrrFC = index
Record = 0
RefreshForm

End Sub

Subroutine: RefreshForm _
Description: Updates the buttons, mouse pointers and table of
contents and refreshes the screen

Arguments: None

Return value: None

PubTic Sub RefreshrForm()

Dim Btn As Button
Dim i As Integer

Set all buttons unselected

For Each Btn In Toolbar.Buttons
Btn.value = tbruUnpressed
Next Btn

Process the tools selection

Select Case ButtonTool
Case "sSelect"
Toolbar.Buttons("sSelect").value = tbrPressed
DisplayMessage "Click to select an feature of the " & _

211

"specified feature type; right click to " & "unselect selected features."

Case '"zoomIn", "zZoomInActive"

Toolbar.Buttons("zoomIn").value = tbrPressed

DispTlayMessage "Click to zoom in around the click rectangle."
Case "zoomout", "zoomOutActive"

Toolbar.Buttons("zoomout").value = tbrPressed

DisplayMessage "Click to zoom out around the click rectangle."
Case "Pan", "PanActive"

Toolbar.Buttons("Pan").value = tbrPressed

DisplayMessage "Drag the map to pan."
End Select

Process the current feature class

For i = 0 To 8

If (CurrfFC = i) Then

. ClassImage(i) .Borderstyle = 1
Else
ClassImage(i) .Borderstyle = 0
End If
Next i

Update the mouse pointer

Select Case ButtonTool

Case "Select"
Map.MousePointer = vbDefault

Case "zoomIn", "ZoomInActive"
Map.MouseIcon = imlPointers.ListImages(l).Picture
Map.MousePointer = vbCustom

Case "zoomout", "ZoomOutActive"
Map.MouseIcon = imlPointers.ListImages(2).Picture
Map.MousePointer = vbCustom

Case "Pan", "PanActive"
Map.MouseIcon = imlPointers.ListImages(3).Picture
Map.MousePointer = vbCustom

End Select

Refresh the form

Me.Refresh

End Sub

Subroutine: DisplayMessage

212

' Description: Wwrites a specified message to the status bar
' Arguments: 1. Message string

' Return value: None

]

Public Sub DisplayMessage(Message As String)
UpdateStatusBar Message, 1

Return value: None

End Sub

]

' Subroutine: Displayscale

' Description: Writes the current scale factor to the status bar
' Arguments: None

]

]

Public Sub DisplayScale()
UpdateStatusBar "1:" & CcStr(ScaleFactor), 2

2. y coordinate in map units
Return value: None

End Sub

]

' Subroutine: DisplayPosition o

' Description: Wwrites the current position to the status bar
' Arguments: 1. x coordinate in map units

L}

L}

]

Public Sub DisplayPosition(x As Single, y As Single)
UpdateStatusBar x & ", " & vy, 3
End Sub

]
' Subroutine: UpdateStatusBar

' Description: Displays a user specified message in the specified
! status bar panel (1 - 3)

' Arguments: 1. User specified message

! 2. Status bar panel number

: Return value: None

Public Sub UpdateStatusBar(Message As String, Panel As Integer)
StatusBar.Panels.Item(Panel).Text = Message

End Sub

]

' Subroutine: ShowError))

' Description: Displays a dialog with an error message
' Arguments: 1. Error string

]

Return value: None

213

Public Sub ShowError(Error As String)

MsgBox "Error

End Sub

" & Error, vbokOnly + vbExclamation, "Error Message"

Subroutine:

Arguments:
Return value: None

]
]
' Description:
]
]
]

DrawFeatures
Draws features from the XML tables
None

Public Sub DrawFeatures()

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

' Set the hourglass since drawing takes a Tittle bit of time

" We set both the map and the form since we_don't which input came
! The mousepointer of the input handle will remain as

]

j As Integer

x0 As
y0 As
x1 As
yl As
X2 As
y2 As

Single
Single
Single
Single
Single
Single

sqlString As String

rs As

New ADODB.Recordset

Color As Long
Markerwidth As Single
MarkerHeight As Single
Linewidth As Integer
Symbol As String
ClassType As String
CurrentFeature As Long

from.
drawing commences

Map.MousePointer = vbHourglass
Me.MousePointer = vbHourglass

' Store the image in memory for more efficient drawing

Map.AutoRedraw = True

Check to see if all of the map has been initialized;

" if not then exit

If (SscaleFactor = 0) Then Exit Sub

214

215

' Clear the device
Map.Cls
" Loop through each of the feature classes
For j = 8 To 0 Step -1
If (DrawClass(j).value = 1) Then
' Get the symbology

ClassType = GetClassType(ClassName(j).Caption)
If (ClassType = "point") Then
Color = GetSymbolColor(ClassName(j) .Caption, ClassType)
Symbol = GetSymbolType(ClassName(j) .Caption)
If (Ssymbol = "circle™) Then
Markerwidth = GetSymbolwidth(ClassName(j) .Caption)
: MarkerHeight = GetSymbolHeight(ClassName(j).Caption)
Else
Markerwidth = GetSymbolwidth(ClassName(j) .Caption)
MarkerHeight = GetSymbolHeight(ClassName(j).Caption)
End If
Else
Color = GetSymbolColor(ClassName(j) .Caption, ClassType)
d Llnewidth = GetSymbolLinewidth(ClassName(j).Caption)
Ena I

' Redraw the features

If (ClassType "point") Then
sqlstring = "select * from " & ClassName(j).Tag & "_Shape where born <= #" & _
Referencebate.value & "# and retired > #" & ReferencebDate.value & _
"# order by feature_id"

Else
sqlstring = "select * from " & ClassName(j).Tag & "_Shape where born <= #" & _
ReferencebDate.value & "# and retired > #" & Referencebate.value & _
"# and vertex > 0 order by feature_id, vertex"
End 1If
rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
If (rs.RecordCount > 0) Then
rs.MoveFirst
If (ClassType <> "point") Then
CurrentFeature = rs("FEATURE_ID").value
x1 = rs("X").value

216

yl = rs("Y").value
x0 x1
y0 =yl

Do While Not rs.EOF
If (rs("FEATURE_ID").Value <> CurrentFeature) Then
If (ClassType = "polygon") Then

x2 = x0
y2 = y0
J D;awLine ClassName(j).Caption, x1, yl, x2, y2, Color, Linewidth
Ena I

CurrentFeature = rs("FEATURE_ID").value

x1 = rs("X").value
yl = rs("Y").value
x0 = x1
y0 =yl

Else
x2 = rs("X").value
y2 = rs("Y").value
DiawLige ClassName(j).cCaption, x1, yl, x2, y2, Color, Linewidth
x1l = X
yl = y2

End If

rs.MoveNext

Loop
Else

Do While Not rs.EOF
DrawPoint ClassName(j).Caption, rs("Xx").value, rs("Y").value, Color, _
Markerwidth, MarkerHeight, Symbol
rs.MoveNext

Loop
End If
End If
rs.Close
End If

Next j

' BitB1t the Map contents to Map and refresh the screen

BitB1t Map.hDC, 0, 0, Map.Scalewidth, Map.ScaleHeight, Bufferedmap, 0, 0, &HCC0020
Map.Refresh

Map.AutoRedraw = False

' Reset the mousepointer for the form

217

Me.MousePointer = vbDefault

Return value: None

End Sub

]

' Subroutine: DrawSelected

' Description: Draws the selected feature
' Arguments: None

]

]

PubTic Sub Drawselected()

Dim x0 As Single

Dim y0 As Single

Dim x1 As Single

Dim yl As Single

Dim x2 As Single

Dim y2 As Single

Dim Color As Long

Dim Markerwidth As Single
Dim MarkerHeight As Single
Dim Linewidth As Integer
Dim Symbol As String

Dim ClassType As String
Dim sqlSstring As String
Dim rs As New ADODB.Recordset

Get the symbology

ClassType = GetClassType(ClassName(CurrFC).Caption)
If (ClassType = "point") Then
Color = GetSymbolcColor(ClassName(CurrFC).Caption, ClassType)
Symbol = GetSymbolType(ClassName(CurrFC).Caption)
If (Ssymbol = "circle") Then
Markerwidth = GetSymbolwidth(ClassName(CurrFC).Caption)
. MarkerHeight = GetSymbolHeight(ClassName(CurrFC).Caption)
Else
Markerwidth = GetSymbolwidth(ClassName(CurrFC).Caption)
MarkerHeight = GetSymbolHeight(ClassName(CurrFC).Caption)
End If
Else
Color = GetSymbolcColor(ClassName(CurrFC).Caption, ClassType)
g L}newidth = GetSymbolLinewidth(CTassName(CurrFC).Caption)
End I

Draw the currently selected (or edited) feature

If (Record > 0) Then

End

End Sub

If (ClassType = "point") Then
sqlstring = "select * from " & ClassName(CurrfFC).Tag & "_Shape where feature_id
Record & " and born <= #" & ReferencebDate.value & "# and retired > #" & _
ReferenceDate.value & "# order by feature_id"

Else
sqlstring = "select * from " & ClassName(CurrFC).Tag & "_Shape where feature_id
Record & " and born <= #" & ReferenceDate.value & "# and retired > #" & _
J1f ReferenceDate.value & "# and vertex > 0 order by feature_id, vertex"
End I

rs.open sqlstring, Conn, adOpenkeyset, adLockOptimistic
rs.mMoveFirst)
If (ClassType <> "point") Then

x1 = rs("X").value
yl = rs("Y").value
x0 = x1

y0 = yl

Do while Not rs.EOF

x2 = rs("X").value
y2 = rs("Y").value
DrawLine ClassName(CurrfFcC).Caption, x1, yl, x2, y2, Color, Linewidth, True

x1 = x2
yl = y2
rs.MoveNext
Loop
If (ClassType = "polygon™) Then
x2 = x0
y2 = y0
d D;awLine ClassName(CurrFC) .Caption, x1, yl, x2, y2, Color, Linewidth, True
End I

Else
Do While Not rs.EOF
DrawPoint ClassName(CurrfFcC).Caption, rs("x").value, rs("Y").value, Color, _
Markerwidth, MarkerHeight, Symbol, True
rs.MoveNext
Loop
End If
rs.Close
If

Subroutine: DrawPoint)))
Description: Draws a feature point with the appropriate symbology.

218

Arguments:

Return Vvalue:

Draws a selected feature point in cyan.

1. Feature class name

2. x coordinate of the point

3. y coordinate of the point

4. optionally whether the point is currently selected
None

PubTic Sub DrawPoint(ClassName As String, x As Single, y As Single, Color As Long, width As Single,

Height As Single,

Set the color

If selected Then

Else

Bufferedmap.ForeColor = vbyellow
BufferedMap.FillColor = vbyellow
BufferedMap.ForeColor = vbBlack
Bufferedmap.FillColor = Color

End If

Draw the appropriate symbol

BufferedMmap.Fillstyle = vbFSSolid
If (GetSymbolType(ClassName) = "circle™) Then
Bufferedmap.Circle (UTrX(x), UTrY(y)), width

Else

BufferedMap.Line (UTrX(x) - width, UTry(y) - Height)-(UTrXx(x) + width,

End If

End Sub

Symbol As String, Optional Selected As Boolean = False)

Subroutine:
Description:

Arguments:

Return value:

DrawLine

Draws_a feature line segment with the appropriate

symbo1ogy Draws a selected feature Tine in cyan.

Feature class name

. first x coordinate of the 1line segment

. first y coordinate of the 1ine segment

Tast x coordinate of the line segment

Tast y coordinate of the line segment

. Ooptionally whether the feature that the line
segment is part of is currently selected

None

QU'IAUUNI—‘

Public Sub DrawLine(ClassName As String, x1 As Single, yl As Single,
Long, width As Integer, Optional Selected As Boolean = False)

UTry(y) + Height),

x2 As Single, y2 As Single,

B

219

color As

If selected

Else

Set the color

Then

Bufferedmap.ForeColor = vbyellow
Bufferedmap.FillColor = vbyellow
Bufferedmap.ForeColor = Color

Bufferedmap.Fillcolor

End If

BufferedMap
BufferedMap
Bufferedmap
BufferedMap

End Sub

Bufferedmap.ForecColor

Draw the appropriate symbol

.Fillstyle = vbFsSolid

.Drawwidth = width

.Line (UTrX(x1), UTrY(yl))-(UTrx(x2), UTrY(y2))
.Drawwidth = 1

Subroutine:
Description:
Arguments:
Return value:

TrXx

Converts an x coordinate from twips to map units
1. Twip x coordinate

Map units x value

Public Function

TrX = ((x /

End Function

TrX(x As Single) As Single
Map.Scalewidth) * (Bound(3) - Bound(1))) + Bound(1l)

Subroutine:
Description:
Arguments:
Return Vvalue:

Try

Converts a y coordinate from twips to map units
1. Twip y coordinate

Map units y value

PubTic Function

Try = -(((Cy

End Function

TrY(y As Single) As Single
/ Map.ScaleHeight) * (Bound(4) - Bound(2))) + Bound(2))

Subroutine:
Description:
Arguments:
Return value:

uTrXx

Converts an x coordinate from map units to twips
1. Map units x coordinate

Twip x value

220

221

PubTic Function UTrX(x As Single) As Single
UTrX = ((x - Bound(1)) / (Bound(3) - Bound(1))) * (Map.Scalewidth)
End Function

Subroutine: uTry
Arguments: 1. Map units y coordinate

]
]
' Description: Converts a y coordinate from map units to twips
]
]
]

Return value: Twip y value

Public Function UTrY(y As Single) As Single

uTry = ((-y - Bound(2)) / (Bound(4) - Bound(2))) * (Map.ScaleHeight)
End Function

Subroutine: GetBounds))
Description: Loads the boundaries of the map into memory
Arguments: 1. x minimum reference (set by subroutine)

2. y minimum reference (set by subroutine)

3. x maximum reference (set by subroutine)

4. y maximum reference (set by subroutine)
Return VvValue: None (reference values set)

Public Sub GetBounds(ByRef xmin As Single, ByRef ymin As Single, ByRef xmax As Single, _
ByRef ymax As Single)

Dim sqlstring As String
Dim rs As New ADODB.Recordset

sqlstring = "select * from Catalog_BoundBox" L
rs.open sqlstring, Conn, adOpenkeyset, adLockOptimistic
rs.MoveFirst

xmin = CSng(rs("XMIN").value)
ymin = CcSng(rs("YMIN").value)
xmax = CSng(rs("XMAX™) .value)
ymax = CSng(rs("YMAX").value)
rs.Close
End Sub
' Subroutine: GetClassType))
' Description: Returns the feature class type (point or Tine)
' Arguments: 1. Class name

Return Value: Feature class type

222

PubTic Function GetClassType(ClassName As String) As String

Dim rs As New ADODB.Recordset

Dim sq1Str1n9 As String

sqlstring = "select * from Catalog_FeatureClass where name = """ & ClassName & """"
rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic

rs.MoveFirst

GetClassType = rs("TYPE").value

rs.Close

End Function

Subroutine: GetSymbolColor)) o
Description: Returns the symbol color associate with the specified

feature class (Long from RGB())

Arguments: 1. Class name
Return value: Symbol color

Public Function GetSymbolColor(ClassName As String, ClassType As String) As Long

Dim rs As New ADODB.Recordset

Dim sq1Str1ng As String

sqlstring = "select * from Catalog_Symbology where featureclass = """ & ClassName & """"
rs.open sqlstring, Conn, adOpenkeyset, adLockOptimistic

rs.mMoveFirst

Gets¥mbo1CO1or = RGB(rs("COLOR_RED") .value, rs("COLOR_GREEN").value, rs("COLOR_BLUE").value)
rs.Cclose

End Function

Subroutine: GetSymbolType)) o
Description: Returns the symbol type associate with the specified

feature class (circle, rectangle, etc.)

Arguments: 1. Class name
Return Value: Symbol type

Public Function GetSymbolType(ClassName As String) As String

Dim rs As New ADODB.Recordset

Dim sqlSstring As String

sqlstring = "select * from Catalog_Symbology where featureclass = """ & ClassName & """"
rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic

rs.MoveFirst

GetSymbolType = rs("SYMBOL") .value

rs.Close

End Function

Subroutine: GetSymbolHeight

223

Description: Returns the symbol height associate with the specified
feature class (for rectangular markers)

Arguments: 1. Class name

Return value: Symbol height

PubTic Function GetSymbolHeight(ClassName As String) As Single
Dim rs As New ADODB.Recordset
Dim sqlString As String
sqlstring = "select * from Catalog_Symbology where featureclass = """ & ClassName & """"
rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
rs.MoveFirst
GetSymbolHeight = rs("SIZE_HEIGHT").value
rs.close
End Function

Subroutine: GetSymboTlwidth

Description: Returns the symbol width associate with the specified
feature class (for rectangular markers)

Arguments: 1. Class name

Return value: Symbol width

PubTic Function GetSymbolwidth(ClassName As String) As Single
Dim rs As New ADODB.Recordset
Dim sqlSstring As String
sqlstring = "select * from Catalog_Symbology where featureclass = """ & ClassName & """"
rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
rs.MoveFirst
GetSymbolwidth = rs("SIZE_WIDTH").value
rs.Close
End Function

Subroutine: GetSymbolLinewidth

Description: Returns the Tine width associate with the specified
feature class

Arguments: 1. Class name

Return value: Symbol width

PubTic Function GetSymbolLinewidth(ClassName As String) As Single
Dim rs As New ADODB.Recordset
Dim sq1Str1n9 As String
sqlstring = "select * from Catalog_Symbology where featureclass = """ & ClassName & """"
rs.open sqlstring, Conn, adOpenKeyset, adLockOptimistic
rs.MoveFirst
GetSymbolLinewidth = rs("SIZE_WIDTH").value

rs.Close
End Function

Subroutine:
Description:

Arguments:

SelectFeatures

Selects features based on either an XPath query or
on a selected location, filtered by temporal
existence. Adds a list of selected feature IDs to
the SelectedFeatures 1ist box.

1. Query string or "" if spatial select

2. optional x coordinate of Tlocation

3. optional y coordinate of Tocation

Return value: None

Public Sub

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

x0
y0
x1
yl
X2
y2

SelectFeatures(QueryString As String, Optional x As Vvariant, Optional y As variant)

As
As
As
As
As
As

Single
Single
Single
Single
Single
Single

1 As Single

r As Single

d(2) As Single

rs As New ADODB.Recordset
currentFeature As Long
LastFeature As Long
ClassType As String

Clear the selected feature IDs list

SelectedFeatures.Clear

If no x and y coordinates are specified, use the
SQL query expression, and check the date the
feature existed.

If (IsMissing(x) And IsMissing(y)) Then
If (QuerysString <> "") Then

QueryString = "SELECT * FROM " & ClassName(CurrFC).Tag & " WHERE " & QueryString
QueryString = QueryString & " and born <= #" & ReferenceDate.value & "# and retired > #" _

rs.open QueryString, Conn, adOpenKeyset, adLockOptimistic

& ReferenceDate.value & "#"

If (rs.RecordCount > 0) Then

rs.MmoveFirst

224

Do While Not rs.EOF
SelectedFeatures.AddIitem rs("FEATURE_ID").value
rs.mMoveNext
Loop
End If
rs.Close
Else
ShowError "No selection criteria specified.”
End If

' Otherwise do a spatial search by checking within the search
tolerance of the point clicked. Loop through each coordinate
and check to be sure it exists at that point in time.

Else

LastFeature = 0
ClassType = GetClassType(ClassName(CurrFC).Caption)
If (ClassType = "point") Then
QueryString = "SELECT * FROM " & ClassName(CurrFC).Tag & "_Shape WHERE born <= #" & _
: Referencebate.value & "# and retired > #" & Referencebate.value & "# order by feature_id"
Else
QueryString = "SELECT * FROM " & ClassName(CurrFC).Tag & "_Shape WHERE born <= #" & _
ReferenceDate.value & "# and retired > #" & Referencebate.value & _
"# and vertex > 0 order by feature_id, vertex"
End If
rs.open QueryString, Conn, adOpenKeyset, adLockOptimistic
rs.mMoveFirst
If (rs.RecordCount > 0) Then
If (ClassType <> "point™) Then
CurrentFeature = rs("FEATURE_ID").value

x1 = rs("X").value
yl = rs("Y").value
x0 = x1

y0 =yl

Do While Not rs.EOF

If (x >= (x1 - selectTolerance) And (x <= (x1 + SelectTolerance))) And _
(y >= (yl - selectTolerance) And (y <= (yl + SelectTolerance))) Then
If (CurrentFeature > LastFeature) Then
SelectedFeatures.AddItem CurrentFeature
LastFeature = CurrentFeature
End If
Else
If (rs("FEATURE_ID").value <> CurrentFeature) Then
If (C;assT%pe = "polygon") Then
X2 = X

225

226

y2 = y0
1 =5sqr((x2 - x1) A2 + (y2 - yl) A 2)
If (1 <> 0) Then
r=(Cyl-y)*(yl-y2)-&L-x)%* (x2-x1D)/1A2
If (r >= 0) And (r <= 1) Then
d(1) = x1 + r * (x2 - x1)
d(2) =yl + r * (y2_- yl)
If (x >= (d(1) - SelectTolerance) And _
(x <= (d(1) + selectTolerance))) And _
(y >= (d(2) - selectTolerance) And _
(y <= (d(2) + selectTolerance))) Then
If (CurrentFeature > LastFeature) Then
SelectedFeatures.AddItem CurrentFeature
LastFeature = CurrentFeature
End If
End If
End If
End If
End If
CurrentFeature = rs("FEATURE_ID").value

x1 = rs("X").value
yl = rs("Y").value
x0 = x1
y0 =yl

Else
x2 = rs("X").value
y2 = rs("Y").value

T =5sqr((x2 - x1) A2 + (y2 - y1) A 2)
If (1 <> 0) Then
r=Cyl-y)* (yl-y2)-xl-x)%* (x2-x1))/1A2
If (r >= 0) And (r <= 1) Then
d(1) = x1 + r * (x2 - x1)
d(2) =yl +r * (y2_ -yl
If (x >= (d(1) - selectTolerance) And (x <= (d(1) + SelectTolerance))) _
And (y >= (d(2) - selectTolerance) And (y <= (d(2) + SelectTolerance))) Then
If (CurrentFeature > LastFeature) Then
SelectedFeatures.AddItem CurrentFeature
LastFeature = CurrentFeature
End If
End If
End If
End If
x1 X2
yl y2
End If
End If

227

rs.MoveNext

Loop

Else

Do While Not rs.EOF
x1 = rs("X").value
yl = rs("Y").value
If (x >= (x1 - selectTolerance)) And (x <= (x1 + SelectTolerance)) And _
(y >= (yl - selectTolerance) And (y <= (yl + SelectTolerance))) Then

SelectedFeatures.AddIitem rs("FEATURE_ID").value

End If
rs.MoveNext
Loop
End If
rs.Close
End If

End If
' Set the selected feature to be the first item in the Tist

SelectedFeatures.Text = SelectedFeatures.List(0)

End Sub

]

' Subroutine: Clearselection _

' Description: Clears the selection and resets the interface
' Arguments: None

L}

L}

Return value: None

PubTic sub Clearselection()
Record = 0
SelectedFeatures.Clear
Attributes.Nodes.Clear
DrawFeatures
RefreshForm

End Sub

APPENDIX R

PROGRAM LISTING FOR XBROWSER.FRM

Copyright (c) 2003 Erik Shepard

Permission to use, copy, modify, distribute, and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related
documentation, and (ii) the name of Erik Shepard may not be used in
any advertising or publicity relating to the software without the
specific, prior written permission of Erik Shepard.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ERIK SHEPARD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR
NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Form: xBrowser) _)
Description: The main interface for the application, which
supports the following:

1. Drawing features from feature classes

2. Dynamically enabling / disabling drawing feature
classes

3. Set a reference date to be the "current
operational date" for operations in the system

228

4. Map extent controls (zoom in and out, pan, full
extent)

5. sSelect features graphically or through XPath query

6. View and edit attributes on a point or line

The key feature of this application is that there are
no user defined data_structures; XML is the dynamic
data structure for all operations.

Option Explicit

Require declaration of variables

: Import GDI function for double buffered drawing

229

Private Declare Function BitBTt Lib "gdi32" (Byval hbDestDC As Long, Byval x As Long, Byval y As Long, Byval
nwidth As Long, Byval nHeight As Long, Byval hSrcDC As Long, Byval xSrc As Long, Byval ySrc As Long, Byval
dwRop As Long) As Long

' variable declarations
]

Private ButtonTool As String
Private Bound(4) As Single
Private ScaleFactor As Single
Private SelectTolerance As Single
Private Click(2) As Single
Private BufferedMap As PictureBox

Private Catalog As DOMDocument40
Private Table As DOMDocument40

Private CurrFCName As String
Private Record As IXMLDOMNode

Current tool from the button bar
Map xmin,ymin,xmax,ymax

Current map scale (1:SF)
Selection tolerance from 0-2'
Last click x and y coordinates
Temporary picturebox to hold
picture for double buffering
Persistent copy of the catalog
for efficient access

Current feature class XML node
Current feature class name
Current feature record XML node

L}
' Subroutine:
' Description:
' Arguments:

: Return value:

Form_Load

Initialize interface at application start
None

None

Private Sub Form_Load()

Dim Name As IXMLDOMNode
Dim i As Integer

230

Set a reference to the PictureBox Maps for feature drawing
If Not (xBrowser Is Nothing) Then Set BufferedMap = Map
' Load the XML cCatalog

LoadCatalog

Load feature class names into the table of contents

i=0
For Each Name In Catalog.selectNodes('"catalog/featureclass/name")
DrawClass(i).Tag = Name.Text
DrawClass(i).visible = True
ClassName(i).Caption = Name.Text
ClassName(i).Tag = Catalog.selectSingleNode("catalog/featureclass[name = """ & _
Name.Text & """]/table").Text
ClassName(i).visible = True
Classimage(i).Picture = LoadPicture("bitmaps\" & _
Catalog.selectSingleNode("catalog/featureclass[name = """ & Name.Text & _
"""]/tocimage") .Text)
ClassImage(i).visible = True
i=1+1
Next Name
ClassImage(0) .BorderStyle = vbFixedSingle

Set map extent

GetBounds Bound(l), Bound(2), Bound(3), Bound(4)
ScaleFactor = Abs(Bound(1l) - Bound(3)) / Map.Scalewidth
DisplayScale

Set the initial tolerances and status variables

SelectTolerance = 5]
SelectToleranceLabel.Caption = "5.000"
ButtonTool = "Select"

Set the classes tab to be active
Tabs.Tab = 0
]

Set the reference date to today's date

ReferenceDate.value = Now

ChangeFeatureClass 0
DrawFeatures
RefreshForm

End Sub

Private Sub Toolbar_ButtonClick(Byval Button As MSComctTLib.Button)

Set the feature class and draw the map

Description:

Subroutine: Toolbar_ButtonClick
Event handler for button clicks on the toolbar
Arguments: 1. Toolbar button
Return value: None

and operate on the button
Select Case Button.Key
Case "Select"

ButtonTool = Button.Key

Case "zoomIn" ' Toggle zooming in
If ButtonTool = Button.Key Then
ButtonTool = "None"
Else
ButtonTool = Button.Key
End If
Case "zoomout" ' Toggle zooming out
If ButtonTool = Button.Key Then
ButtonTool = "None"
Else
ButtonTool = Button.Key
End If
Case "Pan" ' Toggle panning

If ButtonTool = Button.Key Then
ButtonTool = "None"
Else

Set the tool to be equal to the button's key (if appropriate)

231

ButtonTool = Button.Key

End If

Case "FulleExtent" ' Redraw the full map

GetBounds Bound(1l), Bound(2), Bound(3), Bound(4)
ScaleFactor = Abs(Bound(1l) - Bound(3)) / Map.Scalewidth
DisplayScale

DrawFeatures

DrawSelected

End Select

' Update the form

RefreshForm

End Sub

Subroutine:
Description:

Arguments:
Return Vvalue:

DrawClass_CT1ick

Event handler for checkbox indicating whether or not
to draw the associated feature class, redraws the
screen after enabling or disabling

1. Position in the control array (0 based)

None

Private Sub DrawClass_Click(index As Integer)

DrawFeatures
DrawSelected
RefreshForm

End Sub

Subroutine:
Description:

Arguments:
Return Vvalue:

ClassImage_CTl1ick

Event handler for changing feature classes. Feature
classes can be changed either by clicking the image
or the name of the feature class. Redraws the screen
after changing feature classes (if a feature was
selected).

1. Position in the control array (0 based)

None

Private Ssub ClassImage_Click(index As Integer)
ChangeFeatureClass index
If (SelectedFeatures.ListCount > 0) Then

232

233

Clearselection

Else
RefreshForm
End If
End Sub
Subroutine: ClassName_Cl1ick

Description: Event handler for changing feature classes. Feature
classes can be changed either by clicking the image
or the name of the feature class. Redraws the screen
after changing feature classes (if a feature was
selected).

Arguments: 1. position in the control array (0 based)

Return value: None

Private Sub ClassName_Click(index As Integer)
ChangeFeaturecClass 1index
If (SelectedFeatures.ListCount > 0) Then
Clearselection
Else
RefreshForm
End If
End Sub

Subroutine: Referencebate_CloseUp

Description: Event handler for changing the reference date, redraws
the map and refreshes the form after setting the
current record to nothing

Arguments: None

Return value: None

Private Sub Referencebate_CloseUp()

Clearselection
End Sub
Subroutine: SelectedFeatures_Click

]

]

' Description: Event handler for click on the selected feature IDs
! Tist box, sets the current record, updates the

' form with attributes and redraws the map

' Arguments: None

: Return value: None

Private Sub SelectedFeatures_Click()

234

Dim i As Integer

Dim AttributeNode As IXMLDOMNode
Dim ShapeNode As IXMLDOMNode

Dim CatalogNode As IXMLDOMNode
Dim RelatedTable As DOMDocument40
Dim RelatedNode As IXMLDOMNode
Dim OldrRecord As IXMLDOMNode

Dim RelatedObjectClass As String
Dim KeyField As String

Dim Keyvalue As String

Set a reference to the current record

Set OldRecord = Record
Set Record = Table.selectSingleNode("featureclass/feature[@id=""" & SelectedFeatures.Text & """]")

Check to see if a feature was selected before continuing

If (Record Is Nothing) Then
Attributes.Nodes.Clear
If (Not OldrRecord Is Nothing) Then
DrawFeatures
End If
DrawSelected
RefreshForm
Exit Sub
End If

' Loop through and place the attributes in the attribute tree Tist
' Note that shapes must be handled separately from other
' attributes because are complex typed. Points have a single
' coordinate while Tines have many coordinates and a bounding
' box and Tength attribute
Attributes.Nodes.Clear
For Each AttributeNode In Record.selectNodes("*[@born <= """ & RefDate & """ and @retired > """
& RefbDate & """]1")
If (AttributeNode.nodeName = "shape") Then
Attrgbutes.Nodes.Add , , "'SHAPE", "SHAPE"
1 =
For Each ShapeNode In AttributeNode.selectNodes("*")
If ($hap¢Nod§.nodeName = "coordinate") Then
i=1 +
Attributes.Nodes.Add "SHAPE", tvwChild, "COORDINATE " & CStr(i), "COORDINATE"
Attributes.Nodes.Add "COORDINATE " & cstr(i), tvwchild, "X " & cstr(i), "X"

El

se

Attributes.Nodes.Add "X " & cstr(i), tvwchild, , _
csng(ShapeNode.selectSingleNode("'x") .Text)

Attributes.Nodes.Add "COORDINATE " & cSstr(i), twvwChild, "y " & cstr(i), "Y"

Attributes.Nodes.Add "Y " & cstr(i), tvwchild, , _
csng(ShapeNode.selectSingleNode("y") .Text)
ElseIf (ShapeNode.nodeName = "boundbox") Then

Attributes.Nodes.Add "SHAPE", tvwChild, "BOUNDBOX", "BOUNDBOX"

Attributes.Nodes.Add "BOUNDBOX", tvwChild, "XMIN", "XMIN"

235

Attributes.Nodes.Add "XMIN", tvwChild, , CSng(ShapeNode.selectSingleNode("xmin").Text)

Attributes.Nodes.Add "BOUNDBOX", tvwChild, "YMIN", "YMIN"

Attributes.Nodes.Add "YMIN", tvwChild, , CSng(ShapeNode.selectSingleNode("ymin").Text)

Attributes.Nodes.Add "BOUNDBOX", tvwChild, "XmMAX", "XMAX"

Attributes.Nodes.Add "XMAX", tvwcChild, , CSng(ShapeNode.selectSingleNode("xmax") .Text)

Attributes.Nodes.Add "BOUNDBOX", tvwChild, "ymax", "yYMAX"

Attributes.Nodes.Add "yYmMAX", tvwChild, , CSng(ShapeNode.selectSingleNode("ymax") .Text)

Else

Attributes.Nodes.Add "SHAPE", tvwChild, uCase(ShapeNode.nodeName), _

UCase(ShapeNode.nodeName)
g AEtributes.Nodes.Add UCase(ShapeNode.nodeName), tvwChild,
End I
Next ShapeNode

Attributes.Nodes.Add , , uCase(AttributeNode.nodeName), UCase(AttributeNode.nodeName)

, ShapeNode.Text

g AEtributes.Nodes.Add UCase(AttributeNode.nodeName), tvwChild, , AttributeNode.Text
End I
Next AttributeNode

Because the XPointer/XLink standards are not yet final and not supported by the MSXML 4.0

' parser, we'll have to Tink our related table manually

Set CatalogNode = Catalog.selectSingleNode("catalog/relationship[source_featureclass = """ & _

CurrFCName & """1'")

If (Not CatalogNode 1Is Nothin%) Then

RelatedobjectClass = Cata
KeyField = CatalogNode.selectSingleNode("key_field") .Text

Attributes.Nodes.Add , , "RELATED " & UCase(RelatedObjectClass) & " DATA", "RELATED " & _

UCase(RelatedobjectClass) & " DATA"

ogNode.selectSingleNode("destination_objectclass").Text

Set RelatedTable = LoadClass(RelatedobjectClass, RelatedObjectClass & ".xml")

Keyvalue = Record.selectSingleNode(LCase(KeyField & "[@born <= """ & RefDate & _

""" and @retired > """ & RefDate & """]")).Text
Set RelatedNode = RelatedTable.selectSingleNode("objectclass/object[@id = """ & Keyvalue & """]")
For Each AttributeNode In RelatedNode.selectNodes("*[@born <= """ & RefDate & _

""" and @retired > """ & RefDate & """]")

1f (UCase(AttributeNode.nodeName) <> UCase(KeyField)) And _
(uCase(AttributeNode.nodeName) <> "BORN") And _
(uUcase(AttributeNode.nodeName) <> "RETIRED") Then

Attributes.Nodes.Add "RELATED " & UCase(RelatedObjectClass) & " DATA", tvwChild, _
_ UCase(AttributeNode.nodeName), UCase(AttributeNode.nodeName)
Attributes.Nodes.Add UCase(AttributeNode.nodeName), tvwcChild,

End If
Next AttributeNode
End If

Redraw the map and the form
DrawFeatures
DrawSelected
RefreshForm

End Sub

AttributeNode.Text

Subroutine: XPathQuery_KeyPress

enter will call select features with the specified
query string.

Arguments: None

Return value: None

Description: Event handler for the query string text box. Pressing

Private Sub XPathQuery_KeyPress(KeyAscii As Integer)
If (KeyAscii = 13) Then
SelectFeatures XPathQuery.Text
End If
End Sub

Subroutine: SelectToleranceslider_sScroll

Description: Responds to select tolerance slide event, sets the
selection tolerance and updates the form

Arguments: None

Return value: None

Private Sub SelectToleranceslider_scroll()
SelectTolerance = SelectToleranceSlider.value / 1000
g SegectTo1eranceLabe1.Caption = Format(SelectTolerance, "#0.000™)
End Su

Subroutine: Map_MouseDown

Description: Handle the mouse down click event for selection and
map extent tools

Arguments: 1. Button (left or right mouse)

236

237

2. Shift (true or false)
3. x click on map
4. y click on map

Return value: None

Private Sub Map_MouseDown(Button As Integer, Shift As Integer, x As Single, y As Single)

Dim x1 As Single
Dim yl As Single
Dim i As Integer
' Set the coordinates and operate on the selected button._ Also
create a new point out of the coordinates to work with Tater.

x1 = TrxX(x)
yl = TrY(y)
DisplayPosition x1, yl

Act on the appropriate button tool
Select Case ButtonTool

Case "sSelect"

Search for features at the click point

If (Button = vbLeftButton) Then
SelectFeatures "", x1, yl
Else
Clearselection
End If

Case '"zoomIn", "zoomout"

' Handle map extent tools. For moving points use the
window Tocation rather than the map Tocation for
smore accurate movement tracking

If Button = vbLeftButton Then
ButtonTool ButtonTool & "Active"
Click(1)
Click(2)

End If

Exit Sub

([|
< X 1

End Select

238

End Sub

Subroutine: Map_MouseUp
Description: Handle mouse up event for selection and map extent
tools on the map
Arguments: 1. Button (Teft or right mouse)
2. shift (true or false)
3. x click on map
4. y click on map
Return Vvalue: None

Private Sub Map_MouseUp(Button As Integer, Shift As Integer, x As Single, y As Single)
Dim x1 As Single
Dim yl As Single
Dim cx As Single
Dim cy As Single
Dim dx As Single
Dim dy As Single

' Set the coordinates and operate on the selected button. Also
' create a new point out of the coordinates to work with Tater.

x1 = TrxX(x)
yl = Trv(y)
DisplayPosition x1, yl
' Act on the selected button tool
Select Case ButtonTool
Case "ZoomInActive"
If Button = vbLeftButton Then

If Abs(Click(1l) - x) > Abs(Click(2) - y) Then

If (Click(1l) < x) Then
Bound(1l) = Trx(click(1l))
Bound(3) = x1

Else
Bound(1l) = x1
Bound(3) = Trx(click(l))

End If

If (Click(2) > y) Then

239

: cy = TrY(Click(2) - (Abs(Click(2) - y) / 2))
Else

cy = TrY(y - (Abs(y - Click(2)) / 2))
End If

ScaleFactor = Abs(Bound(1l) - Bound(3)) / Map.Scalewidth

Bound(2) = -cy - (Map.ScaleHeight * ScaleFactor / 2)
: Bound(4) = -cy + (Map.ScaleHeight * ScaleFactor / 2)
Else
If (Click(2) < y) Then
Bound(2) = -Try(click(2))
Bound(4) = -yl
Else
Bound(2) = -yl
Bound(4) = -Try(Click(2))
End If

If (Click(1l) > x) Then
: cx = TrX(Click(1l) - (Abs(click(l) - x) / 2))
Else
cx = TrX(x - (Abs(x - click(1)) / 2))
End If
ScaleFactor = Abs(Bound(2) - Bound(4)) / Map.ScaleHeight
Bound(1l) = cx - (Map.Scalewidth * ScaleFactor / 2)
Bound(3) = cx + (Map.Scalewidth * ScaleFactor / 2)
End If
ButtonTool = "ZoomIn"
DisplayScale
DrawFeatures
DrawSelected
RefreshForm
Exit Sub

End If
Case "ZoomOutActive"
If Button = vbLeftButton Then

If Abs(Click(1l) - x) > Abs(Click(2) - y) Then
] ScaleFactor = ScaleFactor * Map.Scalewidth / Abs(Click(1l) - x)
Else
End If
If (Click(2) > y) Then
: cy = TrY(Click(2) - (Abs(CTlick(2) - y) / 2))
Else
cy = TrY(y - (Abs(y - Cclick(2)) / 2))
End If

240

If (C11ck(l) > X) Then
: cx = TrX(Click(1) - (Abs(Click(l) - x) / 2))
Else

cx = TrX(y - (Abs(x - Cclick(1)) / 2))
End If
Bound (1) cx - (Map.Scalewidth * ScaleFactor / 2)
Bound(3) cx + (Map.Sscalewidth * ScaleFactor / 2)
Bound(2) -cy - (Map.ScaleHeight * ScaleFactor / 2)
Bound(4) = -cy + (Map.ScaleHeight * ScaleFactor / 2)
ButtonToo1 = "Zoomout"
DisplayScale
DrawFeatures
DrawSelected
RefreshForm
Exit Sub

End If

Case "Pan

If Button = vbLeftButton Then

dx = x1 - ((Bound(1) + Bound(3)) / 2)
dy = y1 + ((Bound(2) + Bound(4)) / 2)
Bound(1l) = Bound(l) + dx
Bound(2) = Bound(2) - dy
Bound(3) = Bound(3) + dx
Bound(4) = Bound(4) - dy
DisplayScale
DrawFeatures
DrawSelected
RefreshForm
End If
End Select
End Sub
' Subroutine: Map_MouseMove
' Description: Handles mouse move click event for map extent tools
: Arguments: 1. Button (right or Tleft mouse button)

2. shift (true or false)
3. x click on map

4. y click on map
Return value: None

Private Sub Map_MouseMove(Button As Integer, Shift As Integer, X As Single, y As Single)

Dim x1 As Single
Dim yl As Single

Set the coordinates

x1 = TrxX(x)
yl = TrY(y)
DisplayPosition x1, yl

Operate on the appropriate button tool

If (Butto?Too1 = "ZoomInActive'") Or (ButtonTool = "ZoomOutActive") Then
Map.Cls
Map.ForeColor = RGB(50, 50, 50)
Map.Fillstyle = vbFSTransparent
Map.Line (Click(l), Cclick(2))-(x, y), , B

End If

End Sub
Subroutine: ChangeFeaturecClass

Description: Loads a new feature class table, resets the record
and redraws the screen.

Arguments: 1. Table of contents index of feature class

Return value: None

Public Sub ChangeFeatureClass(index As Integer)
CurrFCName = ClassName(index).Caption
Set Table = LoadClass(CurrFCName, ClassName(index).Tag)
Set Record = Nothing
RefreshForm
End Sub

Subroutine: RefreshForm

Description: Updates the buttons, mouse pointers and table of
contents and refreshes the screen

Arguments: Nonhe

Return value: None

241

PubTic sub RefreshForm()

Djm Btn As Button
Dim i As Integer

Set all buttons unselected

For Each Btn In Toolbar.Buttons

Btn.value = tbruUnpressed

Next Btn

Process the tools selection

Select Case ButtonTool

Case "select"

Toolbar.Buttons("Select").value = tbrpPressed
DisplaymMessage "Click to select an feature of the " & _
"specified feature type; right click to " & "unselect selected features."

Case "zoomIn", "ZoomInActive"

Toolbar.Buttons("zoomIn").value = tbrPressed
DisplayMessage "Click to zoom in around the click rectangle."

Case "zoomout", "ZoomOutActive"

Toolbar.Buttons("zoomout").value = tbrPressed
DisplayMessage "Click to zoom out around the click rectangle."

Case "Pan", "PanActive"
Toolbar.Buttons("Pan").value = tbrPressed
DisplayMessage "Drag the map to pan."

End Select

Process the current feature class

For i = 0 To 8

If (CurrFCName = ClassName(i).Caption) Then
ClassIimage(i) .Borderstyle = 1

Else
ClassImage(i) .Borderstyle = 0

End If

Next i

Update the mouse pointer

Select Case ButtonTool

Case "select"
Map.MousePointer = vbDefault
Case "zoomIn", "zZoomInActive"

Map.MouseIcon = imlPointers.ListImages(l).Picture

242

243

Map.MousePointer = vbCustom

Case "zoomout", "ZoomOutActive"
Map.MouseIcon = imlPointers.ListImages(2).Picture
Map.MousePointer = vbCustom

Case "Pan", "PanActive"
Map.MouseIcon = imlPointers.ListImages(3).Picture
Map.MousePointer = vbCustom

End Select

' Refresh the form

Me.Refresh
End Sub
]
' Subroutine: DisplayMessage
' Description: Writes a specified message to the status bar
' Arguments: 1. Message string
L}
L}

Return value: None

Public Sub DisplayMessage(Message As String)
UpdateStatusBar Message, 1

End Sub

]

' Subroutine: Displayscale

' Description: Wwrites the current scale factor to the status bar
' Arguments: None

]

]

Return value: None

Public Sub DisplayScale()
UpdateStatusBar "1:" & CStr(ScaleFactor), 2

2. y coordinate in map units
Return value: None

End Sub

]

' Subroutine: DisplayPosition o

' Description: Writes the current position to the status bar
' Arguments: 1. x coordinate in map units

]

]

]

Public Sub DisplayPosition(x As Single, y As Single)
UpdateStatusBar x & ", " & vy, 3
End Sub

Subroutine: UpdateStatusBar

Description: Displays a user specified message in the specified
status bar panel (1 - 3)

Arguments: 1. User specified message
2. Status bar panel number

Return value: None

Public Sub UpdateStatusBar(Message As String, Panel As Integer)

StatusBar.Panels.Item(Panel).Text = Message

End Sub
Subroutine: ShowError) _
Description: Displays a dialog with an error message
Arguments: 1. Error string

Return value: None

Public Sub ShowError(Error As String)

MsgBox "Error : " & Error, vboKOnly + vbExclamation, "Error Message"
End Sub
L}
' Subroutine: DrawFeatures
' Description: Draws features from the XML tables
' Arguments: None
L}
]

Return value: None

Public Sub DrawFeatures()

Dim j As Integer

Dim x1 As Single

Dim yl As Single

Dim x2 As Single

Dim y2 As Single

Dim fc As DOMDocument40
Dim s As IXMLDOMNode

Dim cNode As IXMLDOMNode
Dim XPathString As String
Dim Color As Long

Dim Markerwidth As Single
Dim MarkerHeight As Single
Dim Linewidth As Integer
Dim Symbol As String

Set the hourglass since drawing takes a Tittle bit of time

244

' we set both the map and the form since we_don't which input came
" from. The mousepointer of the input handle will remain as
' drawing commences

Map.MousePointer = vbHourglass
Me.MousePointer = vbHourglass

' Store the image in memory for more efficient drawing
Map.AutoRedraw = True

' Check to see if all of the map has been initialized;
' if not then exit

If (ScaleFactor = 0) Then Exit Sub
' Clear the device
Map.Cls
" Loop through each of the feature classes
For j = 8 To 0 Step -1
If (prawClass(j).value = 1) Then
' Get the symbology
If (GetClassType(ClassName(j).Caption) = "point") Then
Color = GetSymbolColor(ClassName(j) .Caption)
Symbol = GetSymbolType(ClassName(j) .Caption)
If (Ssymbol = "circle") Then
Markerwidth = GetSymbolSize(ClassName(j) .Caption)
MarkerHeight = GetSymbolsSize(ClassName(j).Caption)

Else
Markerwidth = GetSymbolwidth(ClassName(j).Caption)

MarkerHeight = GetSymbolHeight(ClassName(j).Caption)

End If
Else
Ccolor = GetSymbolColor(ClassName(j) .Caption)
g L}newidth = GetSymbolSize(ClassName(j).Caption)
End I

' Redraw the features

XPathstring = "featureclass/feature/shape[@born <= """ & RefDate & _

245

246

""" and @retired > """ & RefDate & """]"
set fc = LoadClass(ClassName(j).Caption, ClassName(j).Tag, True)
If (GetClassType(ClassName(j).Caption) <> "point") Then
For Each s In fc.selectNodes(XPathString)
Set cNode = s.selectSingleNode("coordinate[1]")
If (Not cNode Is Nothing) Then
x1 = csng(cNode.selectSingleNode("x").Text)
yl = CcSng(cNode.selectSingleNode("y").Text)
For Each cNode In s.selectNodes("coordinate[position() > 1]1")
x2 = Ccsng(cNode.selectSingleNode("x").Text)
y2 = CSng(cNode.selectSingleNode("y").Text)
DrawLine ClassName(j).Caption, x1, yl, x2, y2, Color, Linewidth

x1l = x2
yl = y2
Next cNode
End If
Next s

Else
For Each s In fc.selectNodes(xPathString)])
DrawPoint ClassName(j).Caption, CSng(s.selectSingleNode("coordinate/x").Text), _

csng(s.selectSsingleNode("coordinate/y™) .Text), Color, Markerwidth
MarkerHeight, Symbol

Next s
End If

End If

Next j

BitB1t the Map contents to Map and refresh the screen

BitBlt Map.hbC, 0, 0, Map.Scalewidth, Map.ScaleHeight, Bufferedmap, 0, 0, &HCC0020
Map.Refresh

Map.AutoRedraw = False

Reset the mousepointer for the form

Me.MousePointer = vbDefault

End Sub

]

' Subroutine: DrawSelected

' Description: Draws the selected feature
' Arguments: None

]

]

Return value: None

247

PubTic Sub Drawselected()

Dim cNode As IXMLDOMNode
Dim sNode As IXMLDOMNode
Dim XPathString As String
Dim x1 As Single

Dim yl As Single

Dim x2 As Single

Dim y2 As Single

Dim Color As Long

Dim Markerwidth As Single
Dim MarkerHeight As Single
Dim Linewidth As Integer
Dim Symbol As String

Get the symbology

If (GetClassType(CurrFCName) = "point") Then
Ccolor = GetSymbolColor(CurrFCName)
Symbol = GetSymbolType(CurrFCName)
If (symbol = "circle") Then
Markerwidth = GetSymbolSize(CurrFCName)
: MarkerHeight = GetSymbolSize(CurrFCName)
Else
Markerwidth = GetSymbolwidth(CurrFCName)
MarkerHeight = GetSymbolHeight(CurrrFCName)
End If
Else
Color = GetSymbolColor(CurrFCName)
J Llnewidth = GetSymbolSize(CurrFCName)
End I

' Draw the currently selected (or edited) feature

If (Not Record Is Nothing) Then

XPathstring = "shapel[@born <= """ & RefDate & """ and @retired > """ & RefDate & """]"
Set sNode = Record.selectSingleNode(XPathString)
If (GetClassType(CurrFCName) = "Tline") Then

Set cNode = sNode.selectSingleNode("coordinate[1]")
If (Not cNode Is Nothing) Then
x1 = csng(cNode.selectSingleNode("x").Text)
yl = CcSng(cNode.selectSingleNode("y") .Text)
For Each cNode In sNode.selectNodes("coordinate[position() > 1]")
x2 = CSng(cNode.selectSingleNode("x").Text)
y2 = CSng(cNode.selectSingleNode("y") .Text)
DrawLine CurrFCName, x1, yl, x2, y2, Color, Linewidth, True

248

x1 X2
yl = y2
Next cNode
End If
Else
DrawPoint CurrFCName, CSng(sNode.selectSingleNode("coordinate/x").Text), _
csng(sNode.selectSingleNode("coordinate/y") .Text), Color, Markerwidth, MarkerHeight, _
Symbol, True
End If
End If

End Sub

Subroutine: DrawPoint
Description: Draws a feature point with the appropriate symbology.
Draws a selected feature point in cyan.
Arguments: 1. Feature class name
2. x coordinate of the point
3. y coordinate of the point
4. optionally whether the point is currently selected
Return value: None

Public Sub DrawPoint(ClassName As String, x_As Single, y As Single, Color As Long, width As Single, _
Height As Single, Symbol As String, Optional Selected As Boolean = False)

' Set the color

If Selected Then

Bufferedmap.ForeColor = vbyellow

Bufferedmap.FillColor = vbyellow
Else

BufferedMap.ForeColor = vbBlack

Bufferedmap.Fillcolor = Color

End If

Draw the appropriate symbol

BufferedMap.Fillstyle = vbFSSolid

If (Ssymbol = "circle") Then
] BufferedMap.Circle (UTrX(x), UTrY(y)), width
Else
g BgfferedMap.Line (UTrxX(x) - width, UTrY(y) - Height)-(UTrX(x) + width, uUTrYy(y) + Height), , B
End I

End Sub

249

Subroutine: DrawLine

Description: Draws a feature line segment with the appropriate
symbo1ogy Draws a selected feature Tine in cyan.

Feature class name

first x coordinate of the Tine segment

first y coordinate of the Tine segment

Tast x coordinate of the 1line segment

Tast y coordinate of the line segment

. Ooptionally whether the feature that the line

segment is part of is currently selected
Return value: None

Arguments:

QU'IAWNI—‘

PubTic Sub DrawLine(ClassName As String, x1 As Single, yl As Single, x2 As Single, y2 As Single,
Color As Long, width As Integer, Optional Selected As Boolean = False)

' Set the color

If Selected Then

Bufferedmap.ForeColor = vbyellow

Bufferedmap.FillColor = vbyellow
Else

Bufferedmap.ForeColor = Color

Bufferedmap.FillColor = BufferedMap.ForecColor

End If

Draw the appropriate symbol

Bufferedmap.Fillstyle = vbFSSolid

BufferedMap.Drawwidth = width

BufferedMap.Line (UTrX(x1), UTrY(yl))-(UTrXx(x2), UTrY(y2))
BufferedMap.Drawwidth = 1

End Sub

]

' Subroutine: Trx

' Description: Converts an x coordinate from twips to map units
' Arguments: 1. Twip x coordinate

]

]

Return value: Map units x value

PubTic Function TrX(x As Single) As Single
TrX = ((x / Map.Scalewidth) * (Bound(3) - Bound(1))) + Bound(1)
End Function

Subroutine: Try
Arguments: 1. Twip y coordinate

1
L}
: Description: Converts a y coordinate from twips to map units
' Return value: Map units y value

L}

PubTic Function TrY(y As Single) As Single
TrY = -(((y / Map.ScaleHeight) * (Bound(4) - Bound(2))) + Bound(2))
End Function

Subroutine: uTrx
Arguments: 1. Map units x coordinate

]
]
' Description: Converts an x coordinate from map units to twips
]
]
]

Return Vvalue: Twip x value

PubTic Function UTrX(x As Single) As Single
UTrxX = ((x - Bound(1)) / (Bound(3) - Bound(1l))) * (Map.Scalewidth)
End Function

]
' Subroutine: uTry

' Description: Converts a y coordinate from map units to twips
' Arguments: 1. Map units y coordinate

: Return value: Twip y value

Public Function UTrY(y As Single) As Single
utry = ((-y - Bound(2)) / (Bound(4) - Bound(2))) * (Map.ScaleHeight)
End Function

Subroutine: LoadCatalog
Arguments: None

]
]
: Description: Loads the catalog XML into memory for fast access.
' Return VvValue: None

]

PubTlic Sub LoadCatalog()
Set Catalog = New DOMDocument40
Catalog.validateOnParse = True
Catalog.Load "data\catalog.xml"
Catalog.setProperty "SelectionLanguage", "XPath"
If (Catalog.parseError.errorCode <> 0) Then
ShowError Catalog.parseError.reason
Unload Me
End If
End Sub

250

Subroutine: GetBounds))
Description: Loads the boundaries of the map into memory
Arguments: 1. x minimum reference (set by subroutine)

2. y minimum reference (set by subroutine)
3. x maximum reference (set by subroutine)
4. y maximum reference (set by subroutine)

Return value: None (reference values set)

Public Sub
ByRef ymax

Xmin
ymin
xmax
ymax

End Sub

Gethun?s§ByRef xmin As Single, ByRef ymin As Single, ByRef xmax As Single, _
As Single

csng(catalog.selectSsingleNode("catalog/boundbox/xmin") . Text)
csng(Catalog.selectsingleNode("catalog/boundbox/ymin").Text)
csng(Catalog.selectSsingleNode("catalog/boundbox/xmax") .Text)
csng(catalog.selectsingleNode("catalog/boundbox/ymax") .Text)

Subroutine: GetClassType

Arguments: 1. Class name
Return Value: Feature class type

]
]
: Description: Returns the feature class type (point or line)
]
]

PubTic Function GetClassType(ClassName As String) As String
Dim XPathString As String
XPathstring = "catalog/featureclass[name = """ & ClassName & """]/type"
GetClassType = Catalog.selectSingleNode(XPathstring) .Text

End Function

Subroutine: GetSymbolColor)) o
Description: Returns the symbol color associate with the specified

feature class (Long from RGB())

Arguments: 1. Class name
Return value: Symbol color

PubTic Function GetSymbolcColor(ClassName As String) As Long

Dim XPathString As String
XPathstring = "

catalog/featureclass[name=""" & ClassName & """]

XPathstring = XPathString & "/symbology/color"

GetSymbolColor = RGB(Catalog.selectSingleNode(XPathstring & "/red") .Text

Catalog.selectSingleNode(XPathstring & "/green").Text, _
Catalog.selectSingleNode(XPathString & "/blue™).Text)
End Function

251

252

Subroutine: GetSymbolType

Description: Returns the symbol type associate with the specified
feature class (circle, rectangle, etc.)

Arguments: 1. Class name

Return value: Symbol type

Public Function GetSymbolType(ClassName As String) As String
Dim XPathString As String
XPathstring = "catalog/featureclass[name=""" & ClassName & """]"
XPathstring = XPathString & "/symbology/symbol"
GetSymbolType = Catalog.selectSingleNode(XPathstring) .Text
End Function

Subroutine: GetSymbolsize

Description: Returns the symbol size associate with the specified
feature class (for circular markers)

Arguments: 1. Class name

Return Vvalue: Symbol size

Public Function GetSymbolSize(ClassName As String) As Single
Dim XPathString As String
XPathstring = "catalog/featureclass[name=""" & ClassName & """]"
XPathstring = XPathstring & "/symbology/size"
GetSymbolSize = CSng(Catalog.selectSingleNode(XPathString) .Text)
End Function

Subroutine: GetSymbolHeight

Description: Returns the symbol height associate with the specified
feature class (for rectangular markers)

Arguments: 1. Class name

Return value: Symbol height

Public Function GetSymbolHeight(ClassName As String) As Single
Dim XPathString As String
XPathstring = "catalog/featureclass[name=""" & ClassName & """]"
XPathstring = XPathString & "/symbology/size/height"
GetSymbolHeight = CcSng(Catalog.selectSingleNode(XPathString) .Text)
End Function

' Subroutine: GetSymbolwidth] _ _ o
' Description: Returns the symbol width associate with the specified
! feature class (for rectangular markers)

253

Arguments: 1. Class name
Return vValue: Symbol width

PubTic Function GetSymbolwidth(ClassName As String) As Single
Dim XPathString As String
XPathstring = "catalog/featureclass[name=""" & ClassName & """]
XPathstring = XPathstring & "/symbology/size/width"
GetSymbolwidth = CcSng(Catalog.selectSingleNode(XPathString).Text)
End Function

Subroutine: LoadClass)
Description: Loads the XML table for a feature or object class
Arguments: 1. Feature class name

2. Optional parameter to suppress validation (for
speeding up the drawing process
Return value: XML DOM Document for the XML table

Public Function LoadClass(ClassName As String, TableName As String, _
Ooptional Novalidate As Boolean = False) As DOMDocument40
Set LoadClass = New DOMDocument40
LoadClass.validateonParse = Not (Novalidate)
LoadClass.Load cstr("data\" & TableName)
LoadClass.setProperty "SelectionLanguage™, "XPath"
If (LoadClass.parseError.errorCode <> 0) Then
ShowError LoadClass.parseError.reason & " for featureclass " & ClassName & ".
Unload Me
End If
End Function

Return value: Feature ID

]

' Subroutine: CcurrentFeatureID

' Description: Returns the feature ID of the currently selected
! feature.

: Arguments: None

]

Public Function CurrentFeatureID() As Integer
If (Record Is Nothing) Then
CurrentFeatureID = 0
Else
CurrentFeatureID = CInt(Record.Attributes.getNamedItem("id").Text)
End If
End Function

254

Subroutine: SelectFeatures)
Description: Selects features based on either an XPath query or

Arguments: 1. Query string or

on a selected location, filtered by temporal
existence. Adds a list of selected feature IDs to
the SelectedFeatures 1ist box.

"" if spatial select

2. Optional x coordinate of location

3. optional y coordinate of Tocation

Return value: None

Public Sub SelectFeatures(QueryString As String, Optional x As variant, Optional y As variant)

Dim tRecord As IXMLDOMNode

Dim CoordinateNode As IXMLDOMNode
Dim x1 As Single

Dim yl As Single

Dim x2 As Single

Dim y2 As Sin?1e

Dim 1 As Single

Dim r As Single

Dim d(2) As Single

Clear the selected feature IDs 1ist

SelectedFeatures.Clear

If no x and y coordinates are specified, prompt the user
for an XPath query expression, and check the date the
feature existed.

If (IsMissing(x) And IsMissing(y)) Then

If (QueryString <> "") Then
Querystring = "featureclass/feature[" & QueryStrin
QueryString = QueryString & " and shape/@born <= """ & RefDate & """ and shape/@retired > """ _

& RefDate & """]"
For Each tRecord In Table.selectNodes(QueryString)
SelectedFeatures.AddItem tRecord.Attributes.getNamedIitem("id").Text
Next tRecord
Else
ShowError "No selection criteria specified."
End If

Otherwise do a spatial search by checking within the search
tolerance of the point clicked. Loop through each coordinate
and check to be sure it exists at that point in time.

255

Else
If (GetClassType(CurrFCName) = "line") Then
For Each tRecord In Table.selectNodes('"featureclass/feature[shape/@born <= """ & _
RefDate & """ and shape/@retired > """ & RefDate & """]")
Set CoordinateNode = tRecord.selectSingleNode("shape/coordinate[1]™)
x1 = csng(CoordinateNode.selectSingleNode("x").Text)
yl = cSng(CoordinateNode.selectSingleNode("y") .Text)
If (x >= (x1 - SelectTolerance) And (x <= (xl + SelectTolerance))) And _
(y >= (yl - selectTolerance) And (y <= (yl + SelectTolerance))) Then
: SelectedFeatures.AddItem tRecord.Attributes.getNamedItem("id").Text
Else
For Each CoordinateNode In tRecord.selectNodes("shape/coordinate[position() > 1]")
x2 = CSng(CoordinateNode.selectSingleNode("x™").Text)
y2 = CSng(CoordinateNode.selectSingleNode("y").Text)
If (x >= (x2 - SelectTolerance) And (x <= (x2 + SelectTolerance))) And _
(y >= (y2 - selectTolerance) And (y <= (y2 + SelectTolerance))) Then
SelectedFeatures.AddItem tRecord.Attributes.getNamedItem("id").Text
Exit For
End If
T =5sqr((x2 - x1) A2 + (y2 - yl) A 2)
If (1 <> 0) Then
Gyl - y) * (yl -y2) - (xL -x) * (x2 -x1)) / 1A2
If (r >= 0) And (r <= 1) Then
d(1) =x1 +r * (x2 - x1)
d(2) =yl +r * (y2 - yl)
If (x >= (d(1) - selectTolerance) And (x <= (d(1) + SelectTolerance))) And _
(y >= (d(2) - selectTolerance) And (y <= (d(2) + SelectTolerance))) Then
SelectedFeatures.AddItem tRecord.Attributes.getNamedItem("id").Text
Exit For
End If
End If
End If
x1l = x2
yl = y2
Next CoordinateNode
End If
Next tRecord
Else
For Each tRecord In Table.selectNodes('"featureclass/feature[shape/@born <= """ & _
RefDate & """ and shape/@retired > """ & RefDate & """]")

x1 = csng(tRecord.selectSingleNode("shape/coordinate/x") .Text)

yl = csng(tRecord.selectSingleNode("shape/coordinate/y") .Text)

If (x >= (x1 - SelectTolerance)) And (x <= (x1 + SelectTolerance)) And _

(y >= (yl - selectTolerance) And (y <= (yl + SelectTolerance))) Then
SelectedFeatures.AddItem tRecord.Attributes.getNamedItem("id").Text

256

End If
Next tRecord
End If
End If
' Set the selected feature to be the first item in the list

SelectedFeatures.Text = SelectedFeatures.List(0)

Return value: None

End Sub

1

' Subroutine: Clearselection _

' Description: Clears the selection and resets the interface
' Arguments: None

L}

L}

PubTic sub Clearselection()
Set Record = Nothing
SelectedFeatures.Clear
Attributes.Nodes.Clear
DrawFeatures
RefreshForm

End Sub

Subroutine: RefDate

Description: Formats the reference date as yyyymmdd because XPath
1.0 does not support date comparisons yet.

Arguments: None

Return value: Formatted Date

Public Function RefDate() As String
RefDate = Format(ReferenceDate.value, "yyyymmdd")
End Function

