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ABSTRACT 

 In recent years, a great deal of biomedical research has been focused on identifying 

biomarkers that can be used in settings of clinical research and practice to evaluate exposure, 

effect, or susceptibility of a patient to external stimuli. One such area of research has sought to 

discover and classify biomarkers that can be used to guide treatment selection in patients, 

especially those with different types of cancer. Despite various attempts, there remains a lack of 

consensus about how to best objectively select candidate genes that could inform medical 

decisions to maximize the treatment outcome for patients. The purpose of this study was to 

investigate two common statistical methods used for prediction, and to compare them under 

simulated circumstances to evaluate their internal and external validity in a real-world clinical 

setting. Overall, the lasso regression model displayed a greater robustness to various levels of 

simulated variation compared to the neural network. 
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CHAPTER 1 

INTRODUCTION/LITERATURE REVIEW 

 It has been known for a while that research into biomarker development has a strong 

impact on the effectiveness of newly designed drug therapies, making them more efficient and 

contributing to better outcomes (Taube et al., 2009). In addition to predicting the efficacy of 

treatment to improve clinical outcomes, biomarkers also have the capacity to decrease medical 

costs by specifically tailoring treatments to patients, which prevents wasted time and resources 

(Janes et al., 2015). Predictive biomarkers, also known as treatment selection markers, are factors 

that help clinical practitioners choose therapies that will maximize the positive health outcomes 

for their patients while minimizing risk of adverse effects (Janes et al., 2011). Despite the intense 

interest in discovering biomarkers related to cancer development and treatment, there are only a 

very limited number of clinically useful markers. Typically, early studies report that identified 

biomarkers are promising, but subsequent assessment yields inconclusive or contradictory 

results. This repeated discrepancy eventually led to the adoption of guidelines for the reporting 

of tumor marker studies to promote a standardized methodology for evaluating their usefulness 

(McShane et al., 2005). Simon also highlighted many obstacles that needed to be overcome to 

allow predictive biomarkers to achieve their potential in developing more effective treatments 

and tailoring them to specific subsets of patients that would most benefit from their use. One 

such limitation was the resistance to inter-disciplinary collaboration, while other hurdles 

included the need for innovation in the design and implementation of drug development and 

clinical studies (Simon, 2008).  
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Despite increased focus on developing biomarkers that predict treatment response and 

can therefore inform a patient’s treatment decisions, there has not been a corresponding 

expansion of statistical methodology to objectively evaluate them for accuracy (Janes et al., 

2014). A number of older statistical methods exist to gauge a predictive biomarker’s utility: 

assessing prognostic value, examining treatment effects in groups of patients with restricted 

biomarker values, and testing for interactions between a selected treatment and the biomarker 

values of the patients. These methods, however, are not sufficient because of their limited scope 

and generalizability (Janes et al. 2011). One well known model that employs predictive 

biomarkers to guide treatment selection is the Gail breast cancer prediction model, which 

identifies older women who may benefit from tamoxifen-based prevention strategies rather than 

be harmed by them. This type of model is often used to identify high-risk subsets of patients, and 

has typically been paired with a statistical measure of treatment effect to evaluate the impact of 

treating those subsets. Alternatively, other approaches have used data obtained from randomized 

clinical trials to model treatment effect on an outcome measure that includes positive and 

negative impacts (Janes et al., 2013). Furthermore, standard measures for diagnostic tests, such 

as sensitivity, specificity, and predictive value (positive and negative) have been proposed to 

assess the usefulness of predictive biomarkers, with some modification, but they still require a 

number of assumptions to be applicable and interpretable (Simon, 2015). 

Given the lack of consensus in the literature regarding standards of statistical 

methodology to evaluate the predictive accuracy of treatment selection biomarkers, this study 

will attempt to address that gap in current knowledge by suggesting and comparing two 

commonly used methods of prediction: lasso regression and artificial neural networks. These 

methods will be applied to simulated data and validated both internally and externally. Their 
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respective predictive accuracies will be compared under a variety of conditions to determine 

whether increased variation in theoretical samples consistently and differentially influences the 

performance of one model more than another. The results of these comparisons may then be used 

to provide insight and direction toward establishing a universally accepted methodology for 

evaluating prediction accuracy. 

Lasso Regression 

 Lasso (or, as an acronym, LASSO), also referred to as regression with L1 regularization, 

stands for “least absolute shrinkage and selection operator,” and in the discipline of statistics, it 

is a type of regression analysis technique developed by Robert Tibshirani in the mid-1990s that 

enhances the prediction accuracy of general regression models by facilitating variable selection 

and regularization (Tibshirani, 1996). This is accomplished by altering the model fitting process 

to select only a subset of covariates for use in the final model instead of including all of them.  It 

was originally developed for use with least squares models, a simplified case, but was eventually 

extended to a larger array of models, such as generalized linear models, generalized estimating 

equations, and even Cox proportional hazard models.  

 Before the lasso was developed, the most common method for final variable selection 

was stepwise selection, but this was limited in its ability to improve prediction accuracy in cases 

where there were not a set of covariates with strong correlation to the outcome of interest. In 

fact, there are a number of scenarios where the stepwise process would lead to greater error in 

prediction. At the time, ridge regression was the ubiquitous procedure for increasing predictive 

accuracy, and it operated by shrinking regression coefficients to decrease the amount of 

overfitting present in the model. The lasso technique combined the strengths of these into a 

single process, which forces the sum of the absolute value of the regression coefficients to be 
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less than a predetermined value. This necessarily leads some coefficients to become zero in 

value, and excluding them from the resulting model. Mathematically, this means that the lasso 

process can be described by the following equation: 

     
 
    

 

 
      

 
   

    

 

   

                
 
 

 

   

   

In a sample of N observations, each of which have p covariates and a single outcome identified 

as yi, xi is defined as the covariate vector of the i
th

 observation. The objective of the lasso 

procedure is to solve the equation above, when t is a value representing the extent of 

regularization. 

 Since its original development, a number of extensions and variations have been derived 

for use in particular situations. A generalization known as the elastic net incorporates a 

secondary penalty similar to that found in ridge regression (Zou and Hastie, 2005). This addition 

has the effect of improving prediction performance when the number of predictors exceeds the 

sample size of a data set, as the lasso can only select a number of covariates equal to or less than 

the sample size. This would make the lasso a special case of the elastic net method. Likewise, a 

procedure called the adaptive lasso was developed which is not a special case of the elastic net 

(Zou, 2006), and it differs from the lasso in that it possesses a characteristic known as the oracle 

property. The oracle property describes a situation wherein the predictive model performs as well 

as if the true underlying model were given in advance. 

Neural Networks 

 Artificial neural networks (often simply “neural networks”) have been described as 

computing systems inspired by the biology of neural networks that comprise human and animal 

brains. These systems progressively improve their performance in prediction and classification 
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by “learning” from previous iterations of calculations and making adjustments. Neural networks 

are composed of a collection of units known as “neurons,” and each connection between them 

can transmit information. These connections, in turn, can have a weight assigned to them as the 

model converges to a solution, which can increase or decrease the extent to which a particular 

neuron affects the outcome. 

 In the 1990s, artificial neural networks first began being applied to questions of 

prediction and classification, which had traditionally been the domain of regression modeling 

(Warner & Misra, 1996). Specifically, neural networks represent a decision-making aid for 

clinicians, allowing for the processing of large quantities of interrelated data (Cross, Harrison, & 

Kennedy, 1995). In effect, neural networks behave similar to a nonparametric regression model, 

which allows for a more robust functionality (Warner & Misra, 1996). 

 In terms of structure, neural network models are collections of interconnected elements 

termed “neurons.” These neurons receive input, change their state (a process known as 

“activation”), and produce a resulting output. The neurons are interconnected in a “network” 

arrangement such that some neurons’ outputs become inputs for others, forming a directed, 

weighted graph. The weighting of the individual connections can change based on prespecified 

conditions, allowing the network to improve its predictive performance in a process known as 

“learning.” Typically, the neurons are classified into distinct conceptual layers. The input layer is 

typically composed on the predictors of a data set, which serve as the starting point for the 

network computation. Then, there is a hidden layer composed of neurons which receive the 

outputs from the input layer neurons, each with its own weight. There may be more than one 

hidden layer in a neural network depending on the complexity of the data being analyzed, with 

the second and subsequent hidden layers taking the output of the previous layer as inputs. The 
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final hidden layer consolidates its neurons’ outputs toward an output layer, which is typically a 

single neuron (corresponding to a single response variable), though there may be more in certain 

cases. It is a common rule of thumb, though not a necessity that the number of hidden layer 

neurons be between the number of input layer neurons and the number of output layer neurons. 

Figure 1 below is a representation of typical neural network with ten input neurons, a single 

hidden layer composed of one neuron, and a single output neuron. 

 

Figure 1 – A Typical Neural Network as Used in This Study 
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CHAPTER 2 

METHODS 

 There were two main procedures that were used to maximize the extent to which the 

simulations were informative: internal and external validation. Both are described in greater 

detail in the subsequent sections, but in summary, internal validation was conducted by 

simulating variation from person to person, while external validation was conducted by 

simulating variation between different labs that may be involved in collecting and preparing 

biomarker samples. All simulations were run using R, a programming language used primarily 

for statistical computing. The glmnet package (ver. 2.0-13) was used to compute the lasso 

regression model, and the neuralnet package (ver. 1.33) was used to produce the neural network 

model. 

Internal Validation 

  The first step in this procedure was to use the MASS package to generate the random data 

to be used in the simulation. To simplify computation (and therefore produce adequate results in 

a time-efficient manner), 100 sample data points were generated from a multivariate normal 

distribution, 50 from a group deemed “Class 1” and 50 from a group deemed “Class 2.” Class 1 

data points were created using a mean vector of ten dimensions, where the first element was set 

equal to 1, and all other elements held equal to 0. Class 2 data points were generated in similar 

fashion, but with the first element set equal to -1. The covariance matrix used for both classes of 

data was the identity matrix. These 50 observations from each class were then merged into a 

single data set of 100 total observations. Additionally, a set of 100 binary responses were also 
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generated for the data, with values being either 0 or 1, and this was to serve as a classifier for the 

observations, simulating a yes/no or positive/negative outcome. 

 Following the generation of the simulation data, a k-fold cross-validation procedure was 

implemented via the glmnet package, which returned an array of lambda values. Using the 

minimum lambda value, a generalized linear model was fit via a penalized maximum likelihood 

model using the lasso penalty. At this point, a validation set was generated with 1000 

observations, 500 representing Class 1 data points and 500 data points of Class 2. The lasso 

regression model was then used to predict the responses of the validation set. The results, 

recorded in a 2x2 table, were then used to calculate the predictive accuracy of the model (i.e., the 

number of responses the model correctly predicted divided by the total sample size of 1000). 

This entire process was then repeated with different values in the mean vector to gauge how the 

predictive accuracy changed with simulated data with increased and decreased differences in 

means between the two classes. 

 The same generated data from the first step of the procedure used to validate the lasso 

was also used to validate a neural network model. This data was converted into a data frame 

format, and the predictors and response were assigned labels for simplicity. These labels were 

then used to establish a regression equation to be used in training the neural network, and the 

network model was fit using a single hidden layer of one neuron. This was done for 

computational efficiency and to make it maximally comparable to the lasso regression model, as 

more hidden neurons would have increased computation time with little to no payoff in increased 

predictive accuracy for the simplified simulated data. Likewise, having a single hidden layer 

neuron causes the mathematical characteristics of a neural network to approximate a linear 

regression model, as all of the predictors are used to predict a single response. The prespecified 
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algorithm used to calculate the neural network employed resilient backpropagation with weight 

backtracking. 

 Once the neural network was fit, a plot was produced to visualize the connectivity of the 

nodes and to visually inspect the weights of the respective outputs. As with the lasso, an 

independent validation set of 1000 observations was then generated, and the neural network was 

evaluated for predictive accuracy based on correct and incorrect predictions in a 2x2 table of 

results. This process was repeated as before with differing values of positive and negative means 

to determine how the predictive accuracy of the neural network changed as the difference in the 

means increased in magnitude. 

 The resulting predictive accuracies of both the lasso regression and the neural network 

procedures were compiled and tabulated, and those percentages were plotted as accuracy curves. 

Comparisons between the two models were then made numerically and by visual inspection of 

the plotted graphic. This procedure is summarized in the algorithm below: 

Simulation Algorithm for Internal Validation in R 

1. Load MASS package in R. 

2. Generate 50 sample data points from a multivariate normal (MVN) distribution with 

mean vector and identity covariance. The mean vector contains 10 elements, the first 

being prespecified for the simulation and the other 9 being set equal to 0. 

3. Generate another 50 sample data points from a MVN distribution with mean vector and 

identity covariance. The mean vector contains 10 elements, the first being prespecified 

for the simulation as a negative of the previous step and the other 9 being set equal to 0 as 

before. 

4. Merge the simulated data points into a 100-observation array. 

5. Create a binary response variable to be a classifier. 

6. Load the glmnet package and perform a cross-validation procedure to produce a vector of 

lambda values. Choose the lowest value to use. 

7. Fit a lasso regression model using the chosen lambda value. 

8.  Create a validation set by repeating steps 2-4 above, and increasing the number of data 

points in each group from 50 to 500. There will be 1000 total observations in the 

validation set. 



 

10 

9. Use the predict() function in the glmnet package to predict the response variable for each 

observation. 

10. Tabulate the results of the prediction procedure, and determine accuracy by dividing correctly 

classified results by 1000. 

11. Repeat steps 1-10 with a different prespecified mean vector in the data generation step. 

12. Using the data generated in steps 2-4, merge the data set with the simulated binary response 

values into a data frame. 

13. Load the neuralnet package and train a network using the newly created data frame. 

14. Create a regression equation to be used to by the neural network. 

15. Fit and plot the neural network. 

16. Use the compute() function to predict the response variable for each observation. 

17. Tabulate the results of the prediction as in step 9. 

18. Repeat steps 12-17 with each new set of data points with prespecified mean vector values. 

External Validation 

 Additional steps were taken to externally validate the models under analysis using 

generated data points. The aforementioned internal validation procedures were implemented to 

simulate real-world context of predictive biomarkers, albeit in a highly simplified form. External 

validation procedures take that a step farther by simulating variation that would be anticipated by 

having different study sites or laboratories process data independently of one another. Thus, the 

internal validation procedure can be regarded as equivalent to a special case of external 

validation where the amount of variation across sites is set equal to 0. In order to model this for 

the lasso regression and neural network procedures, a certain amount of noise was artificially 

added to the validation sets generated by the computer software. Thus, instead of just merging 

two randomly generated 500-observation datasets and applying each model as before, now there 

would be 10 different sets to merge, composed of five “laboratories” each with positive and 

negative mean values. Moreover, each of the “laboratories” would have a randomly generated 

variability based on a multivariate normal distribution and a prespecified between-laboratory 

variance (called “tau-squared”). All of this would add a layer of complexity to predicting 

responses, and as a result of the increased variability, the process was looped to produce 10 
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iterations of each model’s predictions, all of which were averaged to yield a mean accuracy for 

the model. This validation setup can be represented mathematically by the following pair of 

formulas: 

For class 1, laboratory i, person j, 

                , where zi and zj are both multivariate normal with mean 0 and identity 

covariance, all independent. 

For class 2, laboratory i, person j, 

                 , where zi and zj are both multivariate normal with mean 0 and identity 

covariance, all independent. 

These formulas indicate that external validation took into account variability arising from both 

the laboratory setting and the intrinsic variation from person to person, while internal validation 

only incorporated the latter, as tau-squared was set to 0 in that instance. 

As was the case with the internal validation procedures, the external validation process 

was repeated numerous times using various combinations of means and tau-squared, to produce 

comprehensive results for numerous scenarios. Each combination of prespecified parameters was 

tabulated and plotted for each model, and comparisons were made on the basis on accuracy 

percentages and visual inspection of the accuracy curves. As with internal validation, external 

validation can be summarized in the following algorithm: 

Simulation Algorithm for External Validation in R 

1. Load MASS package in R. 

2. Generate 50 sample data points from a multivariate normal (MVN) distribution with 

mean vector and identity covariance. The mean vector contains 10 elements, the first 

being prespecified for the simulation and the other 9 being set equal to 0. 

3. Generate another 50 sample data points from a MVN distribution with mean vector and 

identity covariance. The mean vector contains 10 elements, the first being prespecified 
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for the simulation as a negative of the previous step and the other 9 being set equal to 0 as 

before. 

4. Merge the simulated data points into a 100-observation array. 

5. Create a binary response variable to be a classifier. 

6. Load the glmnet package and perform a cross-validation procedure to produce a vector of 

lambda values. Choose the lowest value to use. 

7. Fit a lasso regression model using the chosen lambda value. 

8.  Create a validation set by repeating steps 2-4 above, but instead of just generating 2 

groups of data points, 10 groups will be created to represent 5 study sites, each with it’s 

own 2 groups. Also, this is where inter-site variability is introduced via specifying a value 

of tau-squared to incorporate into the randomly generated MVN data. 

9. Use the predict() function in the glmnet package to predict the response variable for each 

observation. 

10. Tabulate the results of the prediction procedure, and determine accuracy by dividing correctly 

classified results by 1000. 

11. Repeat steps 1-10 10 times and take the mean accuracy value. 

12. Repeat steps 1-11 with a different prespecified mean vector in the data generation step. 

13. Using the data generated in steps 2-4, merge the data set with the simulated binary response 

values into a data frame. 

14. Load the neuralnet package and train a network using the newly created data frame. 

15. Create a regression equation to be used to by the neural network. 

16. Fit and plot the neural network. 

17. Use the compute() function to predict the response variable for each observation. 

18. Tabulate the results of the prediction as in step 9. 

19. Repeat steps 14-18 10 times and take the mean accuracy value. 

20. Repeat steps 14-19with each new set of data points with prespecified mean vector values.  
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CHAPTER 3 

RESULTS/DISCUSSION 

Internal Validation 

The results of the internal validation procedure are shown in Table 1 and Figure 2. 

Table 1 - Comparison of Model Accuracy: 
Internal Validation Procedure 

Mean 
(+/-) 

Difference Lasso Accuracy Neural Network Accuracy 

0.25 0.50 56.4% 57.4% 

0.50 1.00 62.2% 60.8% 

0.75 1.50 77.4% 66.9% 

1.00 2.00 84.6% 76.2% 

2.00 4.00 96.7% 93.9% 

3.00 6.00 99.9% 99.2% 

4.00 8.00 100.0% 100.0% 
 

 

Figure 2 – Plot of Accuracy Curves for Lasso Regression and Neural Network 

Under Various Differences in Mean 
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Both the lasso regression model and the neural network appear to increase in predictive accuracy 

as the differences in mean become larger. This is to be expected, as the more spread apart the 

means of the two groups become, the more easily distinguishable they become from one another, 

allowing for a more accurate classification. By contrast, groups where the respective means are 

closer together are less easily classified, so each model’s accuracy is lower in that scenario. 

Based on the percentages in Table 1, and the corresponding plot in Figure 2, the lasso model 

and neural network have similar accuracy at the extreme ends of the tested mean values. When 

the difference in group means is only 0.5, the lasso regression produces an accurate classification 

56.4% of the time compared to the 57.4% accuracy of the neural network. Likewise, when the 

difference in mean values is increased to 8.0, both models achieve a 100% accuracy. The main 

difference to be found in the performance of the respective models is the fact that the lasso has a 

slightly more rapid rise in accuracy across the range of simulated values, which gives it the edge 

over the neural network. This result is also to be expected based on the conceptual basis for each 

model. Despite the inclusion of ten predictor variables, only the first one is informative with 

respect to the response variable. The lasso procedure is more efficient at removing predictors that 

are not highly related to the outcome of interest, forcing their regression coefficients to take on a 

value of 0. In comparison, the neural network maintains all ten predictor variables, even while 

nine of them are non-informative regarding the outcome of interest. By leaving them in the 

model, the accuracy is reduced while the network recalculates the weight each input variable 

should be given to optimize the output. 

External Validation 

 The results of the external validation procedures can be found in Tables 2-6 and Figures 

3-7, each of which corresponds to a particular value of tau-squared prespecified in the 
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simulation. For the tables and figures, the respective values of tau-squared are as follows: 0.01, 

0.10, 0.50, 1.0, and 2.0. Those values correspond to increasing variability in the validation set 

values, which in turn reflects the potential for variation between laboratories processing similar 

data. 

 

Table 2 - Comparison of Model Accuracy: 
External Validation Procedure, Tau-Squared = 0.01 

Mean 
(+/-) 

Difference Lasso Accuracy Neural Network Accuracy 

0.25 0.50 57.7% 52.4% 

0.50 1.00 60.1% 65.3% 

0.75 1.50 75.7% 67.2% 

1.00 2.00 83.1% 75.6% 

2.00 4.00 97.0% 96.2% 

3.00 6.00 99.7% 100.0% 

4.00 8.00 100.0% 100.0% 
 

 

Figure 3 – Plot of Accuracy Curves for Lasso Regression and Neural Network Under 

Various Differences in Mean, Tau-Squared = 0.01 
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A value of tau-squared equal to 0.01 represents comparatively low variability between 

separate study sites processing the same information, as shown in Table 2 and Figure 3. In the 

cases where the differences in means are relatively small, there is some equivocation between the 

models’ respective accuracies, with neither being consistently superior. While both models 

display an expected trend of increasing predictive accuracy corresponding to increasing distance 

between group means, there is no clear superior in this instance as there was in the internal 

validation step. The lasso does manage to outperform the neural network at differences in the 

group means of 0.75 to 1.0, but the neural network quickly matches and briefly outperforms the 

lasso as they both approach 100%. 

 

Table 3 - Comparison of Model Accuracy: 
External Validation Procedure, Tau-Squared = 0.10 

Mean 
(+/-) 

Difference Lasso Accuracy Neural Network Accuracy 

0.25 0.50 53.2% 53.3% 

0.50 1.00 67.0% 59.1% 

0.75 1.50 76.4% 68.8% 

1.00 2.00 83.4% 80.6% 

2.00 4.00 95.8% 95.9% 

3.00 6.00 99.6% 99.3% 

4.00 8.00 100.0% 100.0% 
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Figure 4 – Plot of Accuracy Curves for Lasso Regression and Neural Network Under 

Various Differences in Mean, Tau-Squared = 0.10 
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Table 4 - Comparison of Model Accuracy: 
External Validation Procedure, Tau-Squared = 0.50 

Mean 
(+/-) 

Difference Lasso Accuracy Neural Network Accuracy 

0.25 0.50 51.6% 53.2% 

0.50 1.00 65.2% 51.3% 

0.75 1.50 66.4% 65.2% 

1.00 2.00 78.7% 77.4% 

2.00 4.00 94.2% 92.8% 

3.00 6.00 99.6% 99.1% 

4.00 8.00 100.0% 99.9% 
 

 

Figure 5 – Plot of Accuracy Curves for Lasso Regression and Neural Network Under 

Various Differences in Mean, Tau-Squared = 0.50 
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power, the lasso experiences a moderate increase in accuracy, while the neural network displays 

a modest decrease. This is immediately followed by a situation where the neural net then 

increases its accuracy while the lasso regression model remains about the same. The net result is 

that the models each approach the other in terms of accuracy, and remain almost identical until 

they both achieve approximately 100%. 

 

Table 5 - Comparison of Model Accuracy: 
External Validation Procedure, Tau-Squared = 1.0 

Mean 
(+/-) 

Difference Lasso Accuracy Neural Network Accuracy 

0.25 0.50 49.6% 59.6% 

0.50 1.00 63.4% 66.0% 

0.75 1.50 72.5% 72.5% 

1.00 2.00 75.8% 77.5% 

2.00 4.00 90.1% 85.7% 

3.00 6.00 99.7% 99.5% 

4.00 8.00 99.8% 99.6% 
 

 

Figure 6 – Plot of Accuracy Curves for Lasso Regression and Neural Network Under 

Various Differences in Mean, Tau-Squared = 1.0 
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 The trend of the lasso regression and neural network having very similar accuracy curves 

is continued in Table 5 and Figure 6, which display the results of external validation when tau-

squared is set to 1.0. However, there is some variation to note, particularly at the lower end of the 

observed accuracies. The neural network seems to outperform the lasso in the instance of very 

close group means (59.6% vs. 49.6%). As the group means get farther and farther apart, making 

them more distinguishable, the two models seem to have similar ability to correctly predict the 

response based on the predictors. Based on the percentages and the corresponding plot of the 

accuracies, the two models seem to have a very similar performance at this level of variation. 

Also, interestingly, this is the first time where neither the lasso regression nor the neural network 

were not able to achieve a full 100% accuracy. 

 

Table 6 - Comparison of Model Accuracy: 
External Validation Procedure, Tau-Squared = 2.0 

Mean 
(+/-) 

Difference Lasso Accuracy Neural Network Accuracy 

0.25 0.50 46.3% 51.5% 

0.50 1.00 69.9% 73.3% 

0.75 1.50 61.9% 63.7% 

1.00 2.00 69.5% 64.9% 

2.00 4.00 81.5% 86.7% 

3.00 6.00 95.4% 82.8% 

4.00 8.00 99.7% 99.9% 
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Figure 7 – Plot of Accuracy Curves for Lasso Regression and Neural Network Under 

Various Differences in Mean, Tau-Squared = 2.0 

 

 

Table 6 and Figure 7 represent the maximum amount of variability which was simulated 

in this study (tau-squared = 2.0), which is 200 times the lowest level of variability simulated in 

the external validation procedure. Fittingly, this amount of random variation has produced the 

noisiest plot of the accuracy curves in that the curves do not simply increase monotonically as in 

previous iterations, but they increase and decrease at least once each (twice in the case of the 

neural network). Likewise, this round of simulation continues the trend that began when tau-

squared was set to 1.0 in that neither of the models was able to achieve 100% accuracy even with 

such a large difference in group means as 8.0. 

Overall, both models performed well at the task of prediction. Early on, the lasso held the 

advantage over neural network in yielding more accurate results, especially in the internal 

validation step. However, in the external validation steps, when variation was introduced into the 
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simulation, the neural network seemed to gain ground on the lasso in predictive accuracy, and 

debatably overtook it at the higher levels of variability. That would seem to indicate that the 

neural network is a more robust system overall, especially in real-world scenarios when 

biomarkers are multifactorial in nature, and some amount of variability is a given. The higher the 

dimension of the data, the more a neural network would seem to have an advantage over lasso 

regression. 
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CHAPTER 4 

CONCLUSIONS 

Limitations 

 There are a number of limitations to this study, not the least of which is the use of pre-

programmed simulated conditions as a proxy for actual clinical data. This study remains highly 

theoretical in its conclusions and observations due to the nature of the data that was generated for 

analysis. Likewise, only two models were being compared, and there remains myriad other 

statistical models that could be deployed toward the same purpose which were not included in 

this evaluation. Even within the lasso regression method, there are variations that could be of use 

in the case of prediction. 

Future Directions 

 Most immediately, these simulated experiments should be carried out with many more 

replications for each combination of parameters, in a Monte Carlo framework. This would give 

more robust values for prediction accuracy at each level of intrinsic and extrinsic variation 

programmed into the simulations. Once those simulations are concluded, however, the ultimate 

test of the predictive accuracy of either model will be to use them on real-world data in a clinical 

trial setting. This will translate theoretical mathematical results to practical application. 
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