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ABSTRACT

Large scale scientific applications can take a significant amount of time when run sequentially.
Parallelism is one way to reduce their execution time. Two key problems in efficiently running a
program in parallel on a distributed memory architecture are (1) scheduling the application and
(2) distributing the work so as to simultaneously minimize the time spent in communication and
in local processing on each node. The input to these programs can be very large, and they are
increasingly likely to run on a heterogeneous architecture—both situations make it likely that they
will need to access the disk while running, incurring I/O costs. Ignoring these costs can greatly
degrade performance because they are typically an order of magnitude more expensive than mes-
sage passing latencies or cache misses.

We determined using a simulator that I/O-awareness in gang scheduling can increase throughput
and reduce turnaround times of applications by as much as a factor of three. This result motivated
us to develop a runtime system that solves the data distribution problem for applications running
on a heterogeneous cluster of machines. This dissertation describes two components of this system
we implemented: (1) the search mechanism, and (2) the computational model it uses to evaluate
each candidate distribution. An exhaustive search is computationally intractable, so we simplified
the problem by assuming a monotonic relationship between a data distribution and the resulting
application execution time. Our search algorithm, which we callGBS, is optimal in solving this
simplified problem. We also developed a computation model called MHETA, which is used as
an evaluation function by the search algorithm. The model integrates an application’s structural
information and instrumented measurements to generate a predicted execution time given an input
distribution. In our experimental test bed consisting of four scientific applications on 17 emulated
architectures,GBS on average produces distributions within 5% of the optimal within one second
of running. We also show that MHETA is on average at least 97% accurate in its predictions,
indicating that theGBS algorithm (with MHETA) successfully finds effective data distributions for
a parallel application running on a heterogeneous cluster on the fly.

INDEX WORDS: Computation models, Data distributions, Scheduling, I/O Awareness,
Heterogeneous architectures
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CHAPTER 1

INTRODUCTION

Computer programs are a popular means to solve problems that involve complicated calculations.

Once created and checked for errors, these programs are generally much faster and more accurate

than attempting to do the computation manually. This is particularly true in the realm of scientific

computing. Scientists describe the inner workings of natural phenomena with complex theories,

which they can use to predict the results of experiments. Such theories consist of highly structured

and formally written algorithms and are thus relatively easy to encode into computer programs.

Without any regard to its efficiency, unfortunately, a naively designed scientific program can run for

a very long period of time. One popular technique to significantly reduce a program’s completion

time is parallelization, in which the computational work is divided and spread between many

processing units. By having all units work at the same time, they can process parts of the problem

simultaneously, and hence the application can finish faster. We calculate the speedup achieved

through parallelization as the ratio of the time taken to run the program sequentially over the

time taken when run in parallel. Ideally, we would like a perfect linear speedup, which means the

execution time decreases proportionally with the number of processors working on the program.

(i.e. with� units, the speedup is� , and the application finishes in��� of the sequential time).

This ideal is difficult to achieve in general, as there are a variety of problems one must solve to

create an efficient parallel application. Some problems are dependent on the structure of the target

architecture. At one end of the range is a single multi-processor machine with a single memory that

is shared between the processors. Lack of proper synchronization mechanisms in the program can

result in race conditions when two processors try to simultaneously manipulate the same variable.

Depending on the order in which the data is accessed, the result of the computation can differ,
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and the application can produce incorrect output. In addition, upgrading components of this large

system is often prohibitively expensive, and some features, such as the number of processors, are

difficult to change. At the other end of the spectrum is adistributed system, in which each machine

in a cluster (individually also referred to as a “node”) is a uniprocessor machine with its own

memory. Synchronization is typically implemented via message passing, so when two nodes need

to access the same variable, they must use explicit communication. Unlike in the multi-processor

machine, the amount of aggregate memory scales up as the number of nodes increase. One also can

replace, upgrade or add a single machine or component at a time, which is more cost effective than

having to upgrade the entire system. These structural characteristics impact how a programmer

transforms a sequential program into an equivalent and efficient parallel version. Some of the

issues involved to successfully create this parallel version are detailed in Section 1.1.

We assume that the programmer has adequately addressed the problems defined above and has

generated the most efficient parallel version of the scientific program. Once the program is ready

to execute, two important decisions are (1) the scheduling policy, and (2) the best assignment of

the work onto the architecture running the program. Previous work in these last two problems have

assumed that the costs to access backup store (theI/O costs) are negligible. However, these costs

are increasingly difficult to ignore, and this thesis addresses how the I/O costs impact decisions

for both when scheduling and distributing work. We started our investigation on the impact of I/O

costs on scheduling on a homogeneous cluster. This motivated our change in focus to examine the

inclusion of I/O costs when determining an efficient division of work, which will be explored in

more detail here. We describe some of the fundamental factors one must consider and the different

possible strategies for distributing work in Section 1.2. Section 1.3 presents a general description

of the interaction between these issues in more detail, followed by the outline of the dissertation in

Section 1.4.
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1.1 ISSUES INPARALLELIZING SEQUENTIAL PROGRAMS

The simplest implementation of a program is a consecutive sequence of instructions (in what is

referred to thesource code) to run on a single processor. When parallelizing the program, the pro-

grammer rewrites these instructions into an equivalent parallel version in two steps. The user first

divides the program into phases and identifies those that can execute in parallel. The programmer

then must insert functions to coordinate the execution of the phases to ensure that the output of the

application is the same as it would be if it were executed sequentially (i.e. is itcorrect). Some of

the issues involved at each of these steps are presented in more detail below.

Some phases, such as those that loop over elements of a multi-dimensional array, are conducive

to running in parallel—each processing unit is assigned a subset of the iterations. Other phases can

consist of loops with high dependencies between iterations—these cannot efficiently run in parallel

and so run sequentially. However, an efficient parallel version may exist for an algorithm that

initially seems difficult to parallelize, in which case the programmer could replace the original code

with the parallel implementation of the algorithm. Another important issue to address is granularity,

a measure of the number and size of the phases. An application that consists of many small phases

is generally too fine-grained, which is problematic because the overhead of coordinating them

starts to dominate execution time. Therefore, the goal is to make sure the phases will have enough

work so that the processing units spend an appreciable amount of time executing them before any

coordination occurs.

To ensure correctness, communication or synchronization functions are then inserted at the

beginning or end of each phase. The exact mechanism used depends on the target architecture. In a

shared memory multi-processor, each processor has access to a shared region of memory. Synchro-

nization is usually implemented using locks or semaphores for access to shared variables, but the

programmer still must insert barriers or other control mechanisms to properly prevent race condi-

tions. Our work assumes an alternative architecture, a distributed memory system, where each node

has its own memory. Synchronization in this case is usually done via explicit message passing, and
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because non-local data must be transferred this mechanism also incurs communication costs. The

Message Passing Interface (MPI) library is commonly used to implement communication prim-

itives (sends or receives), and well-defined communication patterns (for example, a reduction or

nearest neighbor communication). The programmer can perform this step by hand or rely on paral-

lelizing preprocessors to automatically insert the MPI function calls where necessary. Regardless

of how these functions were inserted, we assume applications have been parallelized to run on

distributed memory systems using the MPI mechanism for message passing.

1.2 DIVIDING THE WORK

In our work, the nature of a distributed memory architecture on which these applications run is

assumed to be unknown until just prior to runtime. As the parallel application executes, the run-

time system must be able to partition the work so that it runs efficiently. There are two main

approaches to solving this problem. The “task parallel” approach assumes there are several dis-

tinct phases (called tasks) that can run in parallel, and different ones are assigned to each node.

Each node thereby executes a different set of instructions on the data (possibly the same data)

and typically communicates after it finishes each task. The important concern in this case is how

to order the tasks on the nodes to satisfy their dependency constraints. We address an alternative

technique, called “data parallelism”, that decomposes the data domain. In these SPMD (Single

Program Multiple Data) applications, all the nodes perform the same set of instructions (phase) on

the data assigned to them. All nodes run the same phase simultaneously, so there are no ordering

constraints to consider as there are in task parallelism. However, all nodes typically participate in

a barrier or some other global synchronization function when they reach the end of the phase to

share information they need to proceed to the next phase.

Assuming that each node has no memory capacity problems, there are two complications

involved with distributing data of SPMD programs. Of lesser importance is that as the data is

divided between increasing number of nodes, the time taken to perform computation per node

decreases, but the communication overhead increases. The benefits of further parallelizing the
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application is offset by the higher communication costs at a certain point. An even more impor-

tant problem is the large synchronization cost resulting from a poor allocation of data. Taken to

an extreme, suppose a single machine is given all the work. The other nodes have essentially no

computation, so they reach the synchronization point very quickly. However, the execution time

of the program is determined by the completion of theslowest node. The completion time of the

program itself is slower in this case than if it ran on a single machine because of additional various

overheads inherent in parallel execution. A division of data must therefore aim to minimize the

maximum of communication and local computation costs of all the nodes simultaneously.

1.3 I/O COSTS ANDDATA ASSIGNMENT

Much of previous research on partitioning and allocating data of an SPMD application considers

only computation and communication costs. This simplification is possible due to two typical

assumptions:

1. These applications run on homogeneous clusters in which all nodes have similar character-

istics, such as processing power.

2. The nodes of the cluster have practically infinite memory capacities.

Indeed, these assumptions are valid for scientific programs running on expensive large scale archi-

tectures such as supercomputers with specialized hardware and large memory. However,heteroge-

neous clusters of machines are an increasingly popular alternative due to their cost-effectiveness.

They do not rely on expensive hardware, and nodes can easily be added without having to match the

configuration of those already on the cluster. A consequence of this shift is that both assumptions

are no longer valid. First, the memory sizes of these machines can vary widely, as older machines

with smaller memory capacities are networked together with more modern machines with larger

capacities. There is now a higher likelihood of a data distribution assigning more data to a node

than it can store in memory. Secondly, memory is relatively expensive and small as opposed to

secondary storage that is often several orders of magnitude larger and cheaper per byte. Therefore,
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large-scale scientific programs, such as those that model weather or analyze satellite images, typi-

cally work with very large datasets that can often exceed the total aggregate memory capacity of a

cluster. Even adding more machines will not overcome this problem; the accuracy of the applica-

tion output is constrained by the input data size, and it is always possible to raise the resolution to

get better results.

Given a data distribution in this computing environment, a node that cannot store the local

portion of the working data in memory must save it on disk (sometimes referred as the backup

store). The application is thenout-of-core, and the local dataset must be read from and written

to disk in pieces. Hardware optimizations such as write-back buffers allow a call to the write

function to return quickly, reducing the effective latency of that operation. Reading data from

the backup store is in contrast potentially very expensive because the application must wait for

the data to arrive from disk before it can proceed. Ignoring either cost usually results in poor

performance, as the speed of memory and processors continue to out-pace the progress of I/O

latency reduction. This large disparity is due to the fact that reading data from a magnetic disk

involves mechanical operations (movement of the reading arm and the platters in which the data

is stored) which are orders of magnitude slower than accessing memory. For this dissertation, a

local, single disk drive is assumed, but the backup store can be on a disk of a remote machine; the

latency has the potential to be even larger if one adds costs to transfer the data over a network. Our

target scientific applications repeat computation over several iterations, and the entire local dataset

must be read from and potentially written to disk at each iteration, multiplying the I/O costs.

The consideration of I/O in data distributions introduces an additional trade-off. Data distribu-

tions that minimize accesses to disk and avoid expensive latency costs are desirable. As the same

time, the computational power of the nodes in a heterogeneous cluster are non-uniform, requiring

a data distribution that also minimizes load imbalances. Any benefit from assigning more data to

a node with a faster CPU and small memory in order to balance the workload can be offset by the

penalty of accessing the disk, resulting in overall poor performance. This penalty is exaggerated

if the access speed of the disk is also very slow. We therefore extend the problem of distributing
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Figure 1.1:The general structure of the SHARED runtime system. Two components, the search mechanism
and the MHETA evaluation function, have already been implemented and are detailed in Chapters 4 and 5,
respectively. The instrumenting component is partially done by hand, and details for automating both this
process and program analysis by the pre-processor are described in Chapter 5.

data to minimize the maximum execution time of an out-of-core application running on a hetero-

geneous cluster. This time includes the costs to perform computation, communication,and disk

accesses of all the nodes; this is theout-of-core heterogeneous data distribution problem.

Our eventual goal is to develop a runtime system we call SHARED (System forHeterogeneous

ARchitectureEfficient Data distributions) shown in Figure 1.1 that automatically determines the

best distribution of data for large-scale scientific applications. Two main portions of this system, the

data distribution search mechanism and its evaluation function, have already been implemented.

We first note that an exhaustive search through all possible data distribution candidates is compu-

tationally intractable. Therefore, we developed a guided search heuristic we callGBS (Generalized

Binary Search) that starts from a random candidate which it then continually modifies until no more

improvement is possible. TheGBS algorithm is based on the assumption that there is a monotonic
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relationship between how much data and work are assigned to a node with the length of time it

will take to finish the work. We prove that this algorithm is optimal under these circumstances.

Secondly, we developed a computational model for parallel execution called MHETA (Model for

HETerogeneousArchitectures) that takes as input a data distribution and outputs a predicted exe-

cution time of the program. MHETA is used to evaluate distributions by both theGBS algorithm

as well as others we used to compare its performance. This model incorporates information about

the runtime environment, architecture properties, and application structure, ensuring its accuracy

at runtime. These two components enable our system to determine an effective data distribution on

the fly.

We determined through testing that MHETA is on average at least 97% accurate in predicting

the execution times of four applications running on a variety of emulated architectures. This indi-

cates that distributions found by search algorithms using MHETA (GBS included) are valid. Fur-

ther, we show that ourGBS algorithm outperforms other heuristics and is within 5% of the best

distribution we found1. It does not scale initially as well as a greedy search algorithm, but as the

number of nodes increases further,GBS outperforms the greedy search, which often becomes stuck

at a local optimum.

1.4 DISSERTATION STRUCTURE

This thesis is structured as follows. Chapter 2 details related research. We introduce a summary of

various important issues when scheduling parallel programs and the important of I/O awareness

in these schedulers in Chapter 3. Chapter 4 continues with analysis of the proposed MPI-based

runtime system to automatically solve the data distribution problem for heterogeneous architecture.

Chapter 5 describes the computational model used by this system, followed by performance results

for both these components in Chapter 6. We will conclude and describe some future directions in

Chapter 7.

1The method by which we establish the best distribution used for comparison is detailed in Chapter 6
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CHAPTER 2

RELATED WORK

A significant amount of research has been done that is related to the work described in this dis-

sertation. We divide it into four broad categories: modeling, data distribution, out-of-core parallel

programming, and non-dedicated and heterogeneous computing. This section discusses each of

these in turn and compares them to our work.

2.1 MODELING

Many of the research areas in modeling applications are summarized in a survey by [36]. One area

is concerned with modeling communication, either through shared memory or explicit message

passing. Another related area is in modeling the transfer of data through the memory hierarchy—

from cache to main memory to disk. These models are used to either (1) establish theoretical time

or space complexities, or to (2) produce performance metrics that enable researchers to compare

implementations of various parallel algorithms. Therefore, they often aid in the design of efficient

algorithms or prove their optimality.

2.1.1 MODELING COMMUNICATION

The Block Distributed Memory (BDM) [29] model, Bulk Synchronous Parallel (BSP) [55] model

and LogP [16] are three examples primarily used as a framework for designing and analyzing algo-

rithms. The BDM model takes as input the number of processors, the message size, the maximum

communication latency, and the rate a processor can inject a word onto the network. Using these

inputs, the authors aim to develop algorithms that maximize computation speedup while simulta-

neously minimizing communication costs. The BSP model usessupersteps, primarily consisting
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of computation (and possibly I/O) and limited communication. Once a node reaches the end of the

superstep after a uniform computation duration, it synchronizes with every other node. Program-

mers can use this model in designing algorithms, determining when to replicate versus distribute

data, and deciding the optimal hardware configuration for communication. LogP models parallel

programs using latency, overhead, gap, and number of processors. The computation in this model is

simplified and assumed to take unit time, but LogP does consider the fact that the network has finite

capacity (bandwidth). LogP was designed as a basis to develop fast, portable parallel algorithms.

Two of these models, LogP and BSP, have variants that address some of their shortcomings.

LogGP [4] is an extension of LogP that was developed to more realistically calculate the overhead

of long messages, which is typically subdivided and sent in pieces. Whereas LogP adds overhead to

sending each piece, LogGP adds only asingle overhead cost. Another parameter, G, is the amount

of time needed to load that part of the message into the network; thus, the communication cost

is the overhead plus G times the number of pieces in the message. The authors used LogGP to

design and analyze algorithms, such as all-to-all remap, FFT, and radix sort. Memory logP [11]

is another extension of LogP to include memory to memory communication through a distributed

shared memory buffer, and it is used to predict and analyze the latency of memory copy, pack

and unpack operations. Heterogeneous BSP (HBSP) [60], a variation of the BSP model, will be

discussed in more detail in Section 2.4.

2.1.2 MODELING THE MEMORY HIERARCHY

Vitter and Shriver [57] developed a realistic parallel block transfer model in which a contiguous

block of data is retrieved from multiple disks simultaneously. They used their model to try

designing sorting algorithms that minimize the number of disk accesses they require. The Hier-

archical Memory Model(HMM) [2] was used to investigate the theoretical complexity of solving

problems in a machine with a memory hierarchy, particularly with exploiting locality of reference.

One area of their investigation is the Least Recently Used (LRU) replacement strategy based

on recent memory access patterns (on-line LRU), which moves data from smaller but expensive
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memory to cheaper but much larger memory. The authors used HMM to show that on-line LRU is

as effective in maintaining spatial and temporal locality across levels of the memory hierarchy as

the best algorithm designed using trace information.

The Parallel Memory Hierarchy (PMH) model [5] is a generic model of parallel computation

that extends the memory hierarchy to multiple machines. The architecture is represented as a tree

where each vertex represents a component, such as a network component or a machine’s memory

or disk, and the leaves represent processors. The edges are the transfer paths of data from one

component to another. The PMH model includes equations for each edge to calculate latency costs

and also considers contention when data from many components must share resources. They pro-

vide an algorithm to design the tree most suited to the architecture, which can be combined with

measurements of specific behaviors to create an accurate model.

2.1.3 COMPARISON WITH OUR APPROACH

Our use of MHETA is orthogonal to the goals of models like LogP. We assume that the pro-

grammer designed the best possible implementation of the parallel application, possibly by using

these models described above. MHETA can then be used to determine an efficient data distribu-

tion for parallel applications during runtime. We require accurate measures of the costs to perform

computation, communication and I/O for MHETA, which involve measuring these components

during an instrumented run. The main focus of the distributed models is in the design of more effi-

cient communication, thus many models make simplifications of the computation involved. The

PMH model is the closest to the modeling approach we use, but unlike MHETA, it does not predict

execution times, and particular architectures, such as 2-dimensional meshes, cannot be accurately

modeled.

2.2 DATA DISTRIBUTION

There have been three primary approaches to data distribution: language annotations, compiler

analysis, and run-time adaptation. We discuss them in turn.

11



One way to distribute data is to provide language annotations and allow the programmer to

choose the distribution using application-specific knowledge. This is the approach taken by HPF

[25], which was motivated by many others’ work (e.g., [26]). In this approach, the programmer

annotates each array, stating whether it is distributed, its alignment, and its distribution pattern.

Compiler techniques to distribute (and possibly redistribute) data have also been studied exten-

sively (e.g., [6, 24, 45, 31, 43]). The basic idea behind compiler-based systems is to analyze the

source code to determine the communication pattern and then choose aBLOCK- or CYCLIC-based

distribution that balances the load. Approaches employing a run-time system, such as CHAOS [28],

AppLeS [7], SUIF-Adapt [38], and CRAUL [46] can use run-time information to find an efficient

data distribution. This is especially effective in cases where workload and communication charac-

teristics of a program change at run time.

2.2.1 COMPARISON WITH OUR APPROACH

The work described above addresses the data distribution problem, not the heterogeneous data

distribution problem; the latter problem allows processor speed, memory size, and I/O speed to

all differ. This requires a trade-off between balancing load, minimizing communication,and mini-

mizing I/O. Further, systems like AppLeS always avoid using a processor if its memory is relatively

small, even if that processor could perform useful work.

2.3 OUT-OF-CORE PARALLEL PROGRAMMING

Many researchers have studied out-of-core parallel applications, where data structures must pri-

marily reside on disk. A programmer can write these applications just as in-core ones, using the

virtual memory system with demand paging for all I/O. This approach has the advantage that the

user is not required to restructure an in-core application, but it is usually inefficient because the

operating system has only local information about memory access behavior. Therefore, (1) disk

reads typically incur full latency and (2) the page replacement strategy can often be suboptimal for

certain classes of applications. Users could alternatively manage I/O directly by inserting explicit
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read and write calls in their applications. Although the programmer can design file accesses with

program specific patterns in mind, the restructuring of an application is error prone. Even in per-

fectly transformed code, disk reads still typically incur full latency, and the transfer units could be

small, such as when columns are read from a matrix stored in row-major format.

Asynchronous I/O is a technique that can dramatically reduce the experienced latency of disk

reads, and progress of this area is discussed in Section 2.3.1. Collective I/O techniques (in Sec-

tion 2.3.2) aim to combine a series of small requests into a single large one to be handled efficiently

by the file system, ensuring large transfer units and also reducing latencies. User defined virtual

memory management, discussed in Section 2.3.3, allow the user to manage the virtual memory

to accommodate their application’s accesses patterns. Finally, work in generating efficient out-of-

core applications through a combination of compiler and runtime techniques is discussed in the

last section.

2.3.1 ASYNCHRONOUSI/O

One extensively studied technique to hide disk read latency is prefetching. The basic idea is to sep-

arate when a disk read is issued from when the data is actually accessed. Ideally, the latency can be

completely masked with overlapping computation by issuing the prefetches early enough. Issuing

prefetch calls too early, however, can result in unnecessary movement of data to and from backup

store as both (1) requested and (2) currently used data try to occupy memory simultaneously. This

situation is difficult for out-of-core applications because the datasets currently being processed

typically take up all of memory. Therefore, the system issuing prefetches needs information about

an application’s future access patterns, which can be determined either through compiler analysis,

past behavior, or speculative execution. Mowry et al. [39] use a memory model during static anal-

ysis to establish locality of accessed variables to insert non-binding prefetches and releases when

compiling an application. Agrawal et al. [3] designed a compiler that takes programs written in

Fortran-D and replaces explicit regular I/O calls with their asynchronous counterparts, even across

procedure boundaries. Others monitor access patterns in the operating system and use the results
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to prefetch data [33, 22, 61]. In [13], the authors use speculative execution while an application

is blocked waiting for data to arrive from a file read to generate hints for more effective future

prefetching. Finally, in [44], applications advise the OS of their future access patterns.

2.3.2 COLLECTIVE I/O

The server-directed I/O [47] and active buffering [35] in Panda, disk-directed I/O(DDIO) [32], and

two-phased I/O in PASSION [10, 53], are three areas of work oncollective I/O. All these areas of

research are on distributed systems divided into two set of nodes. One set of nodes perform pri-

marily computation, and the other set manage I/O. These two sets are called clients and servers in

Panda and compute processors (CP) and I/O processors (IOP) in research in DDIO and PASSION.

Any data that clients cannot store in local memory must be stored on disks on the servers. The

layout of the data on the servers disks can differ greatly from its distribution onto the clients, so a

client can have its required data stored in small non-contiguous pieces scattered onto many servers.

The client thus will send many small I/O requests for data that is actually accessed in a regular pat-

tern, often called thestride. Servers generally cannot perform any optimizations because they only

have local information about how data is accessed—high-level semantic information describing

the stride of reads or writes is lost. Therefore, servers tend to perform many small I/O operations

for data that can actually be done with a single large operation. The basic idea of collective I/O is

to introduce high-level interfaces by which this semantic information can be sent to the servers to

allow it to retrieve and write data efficiently.

In the Panda library, a single client and server pair is selected as the coordinators of a collective

I/O event. This client collects the read requests from the other clients into a schema detailing the

local layout of the data to client memories. It then sends these schemas to the coordinating server,

which shares this information to the other servers holding the pieces of data on their disks (called

subchunks). For read requests, each server efficiently retrieves all the data and then sends each

subchunk to the client that requires it.
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In DDIO, each IOP collects read/write requests from the CPs during collective communication

and determines the most efficient means to retrieve data from disk. The node responsible for the

data can (1) collect several requests of data from the same disk, (2) efficiently read this single

request and (3) send the results to the respective nodes. This indirection technique is most effective

when the requested data is in a regular but non-sequential pattern from within the compute node

and closely located items are located in different I/O nodes. This transformation also helps when

the in-memory data has a different layout than on-disk data. One example occurs when aCYCLIC

distribution is used in memory but aBLOCKdistribution is used on disk.

2.3.3 USER-MANAGED VIRTUAL MEMORY

Research in [12] and [15] focus on the fact that the popular Least Recently Used (LRU) page

replacement strategy is inadequate for a class of scientific applications with access patterns such

as streaming. A tool combining the MMUM (Memory Management in User Mode) library and the

MMUSSEL (Memory Management in USer SpacE Level) modules was created so the user can

define his own strategy that suits the application. An alternative is to use the Transparent Parallel

I/O Environment (TPIE) [56], which also hides the details of the I/O subsystem from the user.

It consists of a templated library to provide efficient, high-level coordination of data movement

between disk and memory. It uses the parallel block transfer model described in Section 2.1.2 in

order to determine the best algorithm to move the data.

2.3.4 COMPILER AND RUNTIME ANALYSIS

Compiling out-of-core codes is described in, for example, [52, 9]. One basic idea of this work

is to extend the data parallel model to out-of-core programs. Another key idea is tiling, an opti-

mization previously used to rewrite loops to keep data in cache as long as possible. One run-time

approach, called SMARTS, schedules work dynamically to help reduce disk accesses [54]. This

system employs a dataflow model to determine dependencies between various tasks to schedule

work when all of their predecessors have completed. By scheduling in a LIFO manner, data in the
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cache produced by a predecessor is likely to still remain when accessed again. Although the focus

of SMARTS was on the cache, the technique could also help out-of-core programs in which the

data being read is not streamed through.

2.3.5 COMPARISON WITH OUR APPROACH

Our work is orthogonal to techniques to improve out-of-core parallel programming. We start from

an efficient user program, which can be by hand or by the above techniques. We then seek a data

distribution that could potentially eliminate I/O altogether while balancing the load as much as

possible.

2.4 NON-DEDICATED AND HETEROGENEOUSCOMPUTING

Several researchers have studied various parallel computing problems on non-dedicated or hetero-

geneous clusters. Gang scheduling is a technique in which multiple parallel jobs execute concur-

rently in a non-dedicated environment, but a subset of the processors is given exclusively to a single

job at a time. Extensive research has investigated the benefits of gang versus other scheduling algo-

rithms, such as variable and dynamic partitioning [50]. The flexibility provided by the gang sched-

uler makes it a competitive scheduling strategy [17]. In fact, the Lawrence Livermore National

Laboratory have deployed gang scheduling onto several of its computing platforms with high suc-

cess [30]. A major challenge is to determine which applications should be gang scheduled. Both

message passing characteristics [49] and use of shared communication objects [19] were used to

detect gang candidacy. Nikolopoulos et al. [42] also manage the trade-off between paging and gang

scheduling on a multiprogrammed cluster.

There has also been work on compile and runtime libraries for running parallel applications on

heterogeneous clusters. The MPI [40] and PVM [51] libraries support message passing between

different architectures. To function on diverse architectures, such libraries must make sure, for

example, to handle potentially different byte orderings. Grid MPI is an extension of MPI that
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enables an MPI written program to use grid services [21]. There has also been work done in com-

piling for heterogeneous machines [59]. This involves, for example, developing an intermediate

form that permits arbitrary orderings of transformations. Finally, the HBSP model mentioned in

Section 2.1.1 calculates the duration to perform computation between nodes with differing com-

putational powers. The superstep duration is then calculated as the computation time taken by the

slowest node, the slowest communication between pairs of nodes, and the communication over-

head. This model can aid the user in designing an efficient parallel application that is compiled and

run on a heterogeneous cluster.

2.4.1 COMPARISON WITH OUR APPROACH

Gang scheduling is expensive to implement and is most often implemented on supercomputers.

Also, [42] involves modifying the OS. Our work is focused on the runtime system on clusters,

where gang scheduling is unlikely to be present. Message-passing libraries are complementary to

our work, and the HBSP model does not consider the impact of I/O as MHETA does.
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CHAPTER 3

I/O-AWARENESS INGANG SCHEDULING

We first investigate the benefit of including I/O costs in scheduling distributed applications. Scien-

tific applications running on a multiprogrammed environment often compete with other programs

for resources, such as time on the CPU and memory space. Schedulers for sequential programs

running on a single uni-processor machine primarily ensure that each program is allotted an equal

number of time slices (a period of time to execute on the CPU). Strategies such as round robin

are designed so that both large and small applications (jobs) get an opportunity to run and do

not starve; this policy increases throughput as smaller jobs finish faster. A distributed application

is divided into many pieces of executing instructions (processes) that run on multiple machines

(nodes) and often need to communicate with each other during their execution. Therefore, sched-

ulers for these jobs must also be able to coordinate how each process runs on its machine in the

underlying architecture. Gang or co-scheduling is one such strategy, which groups the processes of

an application into a gang and schedules them to run simultaneously. In doing so, it can increase

the likelihood that the recipient and sender of messages at a communication point are executing

at the same time, potentially greatly reducing the time a receiver of a message has to wait for the

message to arrive. An effective scheduling strategy is thus vitally important to minimize a large

scale scientific application’s execution time.

An important input for gang schedulers is how many nodes onto which to schedule a job. One

approach is to assume the job is broken into many processes and run the job on all the nodes. Unfor-

tunately, communication costs do not scale, and the speedup for data-parallel programs eventually

tails off as the number of nodes it uses increases beyond a certain point [48]. Applications with a

low degree of parallelism are particularly unable to efficiently utilize large number of the additional
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nodes given to them. When there are too few nodes, on the other hand, the data local to a node can

exceed its memory capacity, introducing I/O costs, which also adversely affects execution times.

In either case, a job will take longer to finish and use resources that could have been allocated to

another job, thereby increasing the completion time of both jobs.

The delay as a result of introducing I/O latencies is an order of magnitude greater than from

increasing communication costs. Therefore, there is a great benefit to scheduling a job on the min-

imal number of nodes required to ensure that its dataset is in core (called the critical number or

CN). Note that we are concerned with scheduling and not finding an efficient distribution of data.

Data distribution is discussed in Chapters 4—6. Here, we assume that the job’s data is divided into

CN equal pieces. The scheduler can assign the processes to CN nodes and eliminate I/O while

leaving nodes open for other programs to be scheduled, increasing throughput. We determined

through simulation that using an application’s CN would speed up its execution time by as much

as a factor of three when compared to gang-schedulers that assigned all the nodes to an applica-

tion. When we further modified the gang scheduler to schedule applications with smaller CN more

frequently, we see an even greater throughput and reduced time to completion because more appli-

cations finished faster. I/O-awareness via a job’s CN is therefore useful to bring jobs in core when

possible and use the processors they were assigned most efficiently.

Section 3.1 will present a brief overview of gang scheduling, followed by details on the simu-

lator used in Section 3.2. The last section will present results to show that the question of impact

of I/O is worthy of pursuit.

3.1 GANG SCHEDULING OVERVIEW

Gang scheduling is an algorithm that groups all processes of a data parallel program into a gang

and schedules them to run on the architecture simultaneously. Therefore, the user is presented with

the illusion of a dedicated environment, and the sender and recipient processes are more likely to

be executing when they reach a communication point. We assume that all these programs (jobs)

are gang scheduled. The first subsection will describe the features of the gang scheduler used in the
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simulator. This is followed by special properties of gang schedulers that reduce the effectiveness

of asynchronous I/O techniques.

3.1.1 THE GANG SCHEDULER INTERFACE

The gang scheduler interface in the simulator we designed uses a two dimensional array called

a trace matrix. Although other control structures, such as the Directed Hierarchical Control

(DHC)[18] have been investigated, the matrix approach was selected for its relative simplicity in

implementation. Each row corresponds to a time slice, and each column represents a processor. An

entry in location��� �� contains the ID of the process to run on processor�� when the scheduler

is pointing to row��. When that time slice expires at a “global time slice event”, the scheduler

preempts and suspends all the processes running in�� and schedules the processes in the entries

located in row����. There is overhead in a real system during this event when coordinating all the

processors, but the simulator does not measure this cost. The time slice duration is usually large

enough so that the effect of this overhead is lessened.

At any time, some rows are empty, while others contain one or more non-empty entries and

are considered valid. A “period” refers to the number of valid rows in the matrix. The rows are

processed round robin, and when the last valid row is reached, the scheduler returns to��. Jobs

with a predetermined number of processors are scheduled into the matrix in the first row that can

accommodate them. As the active jobs increase in number and occupy more rows in the matrix,

the size of the matrix also increases, and more time will elapse between successive time slices for

each job. Formerly valid rows may become empty as jobs finish, so the matrix is compacted at

every global time slice event to remove non-valid rows. For simplicity, the time slice duration is

kept constant for all the rows in the matrix.

3.1.2 UNIQUE IMPLICATIONS OF IGNORING I/O IN GANG SCHEDULERS

Gang scheduled processes cannot hide I/O latencies when accessing the disk because context

switches are not allowed in the middle of a time slice. CPU fragmentation [34] can result as the
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processors running the processes are forced to remain idle. Additionally, all processes are pre-

empted when switching from one row of the trace matrix to the next, so prefetching is difficult to

use. It is not possible in the general case to determine in advance if the process that issues such a

request is still running when the data arrives. If in fact a different process is scheduled on the node

instead, both the prefetched data from the previous process and data swapped in from disk for the

current process are now loaded into memory at the same time, resulting in thrashing.

The fact that I/O latency cannot be effectively masked in general reduces the amount of

progress jobs can achieve even when gang scheduling is used. The sender of a message during a

communication event may be performing I/O, so the recipients of the message must contend with

both the latency of the communication as well as the I/O of the sender. They will stay blocked

until the sender finishes its I/O and they receive the message. In the worst case, the time slice for

these processes may expire, and the sender will then only be able to send the message the next

time it is scheduled. This compounded latency experienced by this job will result with it staying in

the system longer and occupying rows in the trace matrix that could otherwise have been used by

another job. This situation increases the turnaround time of the other jobs.

3.2 IMPLEMENTATION

We created an I/O-aware gang scheduling simulator by modifying the Schark simulator [8],

described in Section 3.2.1. Extensions to the job description facility are described in Section 3.2.2.

The primary modifications we made are encapsulated in several modules, which will be described

in the last three subsections.

3.2.1 THE ORIGINAL SIMULATOR

The Schark simulator is written in Java and simulates the behavior of several jobs running on a

specified system. The model of computation used is probabilistic, so every feature of a job, such as

execution time and number and frequency of I/O events, are based on random distributions defined
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Figure 3.1:Picture of how a job is inserted into the trace matrix. The non-shaded regions of each row are
unused. The job requests 19 processors, and there are 13, 12, 24, and 20 processors available in the rows of
the trace matrix. The job is placed in the first row that has enough processors. In this case, it is the third row.

in a job description file. Supported distributions include uniform, hyper-Erlang, and normal. Mul-

tiple job types are allowed, and a mixture is generated when the simulator starts. The jobs are

described in ajob description file, which contains such information as I/O frequency and duration,

communication frequency, initial number of processes and the time they end. It supports several

kinds of interconnection networks, such as tori and meshes, the descriptions of which are included

in a separate description file. Schark uses a simple gang scheduler interface and uses bin packing

to schedule jobs into the trace matrix. The process IDs of a job are inserted into the first available

row in the trace matrix, as shown in Figure 3.1.

3.2.2 JOB DESCRIPTIONEXTENSIONS

The introduction of I/O costs in gang scheduled jobs motivated four additions to the job description

for ��. They are: the critical number (���), total sequential computation time (	 �
�), the number

of iterations involved in the computation (� �����
� ) and the percent of its computation that can be

performed in parallel (��). Given��
� , the initial number of processors allocated to the job, we can

calculate the total time�� spends working via the standard weighted average formula:

Total Computation (work) =

�
����� ��� � �����

�
� �

����

�
� 	 �

� (3.1)
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Unlike the original Schark simulator that assigned a random end time for a job, the end time now

occurs when its remaining computation time is reduced to zero.

We calculate the total number of I/O events that process produces (� �	
� ) as a function of��

� ,

��� and� �����
� :

� �	
� �

���
��

� if ��
� � ����


���� �����
�

�
�
�

�
otherwise

(3.2)

If ��
� � ���, then the process performs only one I/O event, which is to initially bring in its

working set. Otherwise, we assume that the sequential job issues I/O events��� times during a

single iteration. The total number of I/O events is thus��� � �
�����
� , and the parallel version is

assumed to divide the I/O evenly amongst its� �
� processors. The total number of I/O events is

inversely proportional to� �
� , so as��

� increases, the number of I/O events drops until it reaches

one (when��
� � ���).

The time between I/O events	 �
�	��	 is calculated as the total sequential execution time divided

by the total number of I/O events issued in the sequential program:

	 �
�	��	 �

	 �
�

��� �� �����
�

(3.3)

Finally, nearest neighbor, scatter and gather communication patterns were implemented to model

three types of communication typically exhibited by distributed programs.

3.2.3 ALGORITHM OVERVIEW

Given��, the bin-packing assignment used by the original Schark simulator is simple and efficient.

However, it may result in poor turnaround time and throughput in the case� �
� 
 ��� as processes

start to incur I/O costs. Our goal is to design a polynomial-time algorithm that runs small jobs

more often in the trace matrix, while also attempting to satisfy I/O needs of a job to keep it in core.

By assigning�� more rows in the trace matrix when its critical number is less than the number of

processors in the system (��� 
 ��
�), it has more opportunities to run per iteration through the

trace matrix. Smaller jobs therefore finish faster, potentially condensing the trace matrix as rows

become empty, resulting in lower average turnaround time for every job in the system.
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At a high level, the algorithm finds� �
� rows in the trace matrix to place��. If the critical number

for �� is greater than��
�, it assigns�� onto one row. Otherwise,� �

� is calculated as the ratio of� �
�

and���.

� �
� �

��
� ���

������ if ��� � ��
�

� otherwise
(3.4)

Accordingly, we assign�� its critical number of processors unless that exceeds� �
�:

��
� �

��
�

��� if ��� � ��
�

��
� otherwise

(3.5)

It then finds� �
� rows in the trace matrix that can accommodate��.

We also take into account not only the entering job, but all the other jobs in the system. The

next section describes our algorithm in detail.

3.2.4 ALGORITHM DETAILS

This section formalizes the algorithm used to schedule jobs and is split into two portions. The

first focuses on the fitness of row and processor assignments of job�� in isolation, and the second

calculates the overall fitness of all the jobs. Those with lower fitness spend less time performing

computation, so their progress is slowed. Our ultimate goal is to select a configuration for� � that

results in the most system-wide progress to job completion. Although the description included

here is based on the features of a particular job, the times are actually measured at the level of its

processes. Once these numbers are known, they are integrated to model the execution behavior of

the job itself.

We first define our assumptions, followed by a description of several additional variables we

use in this function. The third subsection describes the function, and we conclude with the time

complexity analysis to compute the entire fitness function.
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ASSUMPTIONS ANDVARIABLE DEFINITIONS

We make a few assumptions to simplify the design of the fitness function. First,� �
� and� �

� are

write-once variables. If they are allowed to change, extensive detection is required. Our algorithm

is designed to schedule�� into multiple rows of the trace matrix, and there is no guarantee that a

particular process will be assigned to the same processor for each row. Therefore, a process will

likely need to migrate (i.e. move from one processor in one row to another processor in another

row). By assuming the architecture is homogeneous, the cost for migration can be calculated in

the same manner regardless of the direction of movement. Finally, communication costs are not

factored into the fitness function (but are in job execution), as they complicate the model but are

often dominated by I/O latency in out-of-core parallel programs.

There are several variables that need to be defined for this function, and they will also be

used in the remainder of the chapter. Four variables deal with times spent performing I/O, context

switches and migration. The value in	 

� is the amount of time required to load the next required

data elements from disk during asingle explicit I/O event. This value is a function of the size of the

data accessed. The variable	 �
� denotes the total amount of time job�� spends loading the working

set during one trace matrix iteration. Variables	 �
� denotes the total context switch time, and	 �

�

denotes the total migration time between different processors for�� on one trace matrix iteration.

A fifth variable,	 �, stores the duration of a time slice in the system.

There are five other variables to store various values of some of the characteristics of the system

or of ��. Three variables,��
�, ��

� , � �
� and have already been defined. The variable� �

� is the

number of rows in the trace matrix after�� is inserted. Finally,� �	
� stores the number of I/O

requests performed by�� per time slice. This value can be calculated by multiplying the I/O fre-

quency by	 �. For � jobs, there have to be� copies of each of these three variables. Table 3.1

summarizes these variables.
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Name Description
	 

� amount of time required to load the required data from disk during an

explicit I/O event.
	 �
� total amount of time per iteration of the trace matrix�� spends performing

explicit I/O
	 �
� total amount of time per iteration of the trace matrix�� spends in a

context switch.
	 �
� total time that�� spends migrating during a single iteration through the

trace matrix.
	 � duration of a time slice in the system.
��
� total number of processors in the system.

��
� number of processors alloted to this job.

� �
� number of time slices for��.

� �
� number of rows used in the trace matrix after the last job,�����, is inserted.

� �	
� number of I/O requests performed by this job per time slice.

Table 3.1: Variables Used in Implementation of the Fitness Function

PROGRESSMEASUREMENT

The optimum progress a job�� can make towards completion during a single iteration through the

trace matrix is:

	 �
� � �� �

� � 	
��

The actual progress is limited by time spent performing I/O, time spent context switching, and

time spent in migration. The last two factors are the result of assigning�� to multiple rows, and

our fitness function must include these. The first and most significant factor is	 �
�, the total amount

of time required to move data between disk and memory during a single iteration, which increases

with the number of disk accesses. This makes it vital to keep a job in core, if possible. In our

model, we assume that the processes of a job all have the same number of I/O requests. Hence,	 �
�

is equal to the product of (1) the number of I/O requests issued during a time slice, (2) the number
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of time slices allocated to��, and (3) the duration to retrieve the data:

	 �
� � � �	

� �� �
� � 	



�

The second factor is the cost associated with context switching the processes of�� when its

current time slice starts. When necessary, it consists of the duration to restore the state of a process

as well as loading its working set from swap. Suppose�� is assigned to only two rows in the trace

matrix (�� and���). A process scheduled on the��� processor has no context switch costs if it is

the only one running on that processor between�� and��� . Otherwise, the process incurs overhead

to restore its state and load its working set that had been swapped out when a process of a different

job ran on that processor. We calculate	 �
� as the average of all context switch costs incurred by all

of its processes during a single iteration through the trace matrix.

The third factor to reduce	 �
� is the cost, if any, for the processes of�� to migrate between

processors. This only occurs when a process runs on one processor in row�� and a different one

in ��� . If the processes stay on the same processors, this duration is reduced to zero. The value

of 	 �
� is also the average migration time over all of the processes in�� during one iteration in the

trace matrix.

The total amount of progress�� makes towards completion during one iteration through the

trace matrix is the optimum minus the three factors discussed above (time spent accessing the disk,

context switching, and migrating):

	 �
� � 	 �

� �
�
	 �
� � 	 �

� � 	 �
�

	

Intuitively, the relative progress of any job in the trace matrix depends on� �
� , which may

increase as a result of adding one or more rows to the end in order to fit��. We can calculate the

total amount of relative progress of all the jobs during one iteration of the trace matrix (	 

� ) as the

sum of the relative progress of all the jobs.

	

� �

�

� �
�

�
�

���

	 �
�
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TIME COMPLEXITY OF FITNESS FUNCTION

For each job�� the time complexities to evaluate the time all� jobs spend during explicit I/O,

context switch and migration are� ��� , � �� �
� ���

� ��
�
� � and � �� �

� ��
�
� � respectively. It is

clear that���	��������
�
� � � � �

� , so the time complexity to perform the fitness function (	� ) for

all � jobs is

	� � �

�
�

���

��	 �� ��� �� �� �
� ���

� ��
�
� � �� �� �

� ��
�
� �	

�
� �

�
� � �� �

��� ���
�

	
which is polynomially bound to the number of jobs in the system, the number of slices for� �, the

number of rows the matrix, and the number of processors for��.

3.2.5 MULTI -ROW SCHEDULING ALGORITHM

The next major modification involves generating the configurations for scheduling��; each is eval-

uated using the fitness function, and the best is chosen. The goal here is to maximize the overall

progress ofall the jobs for a single iteration based on the principle that this measure leads to best

average turnaround time.

The number of possible configurations to generate and evaluate its “fitness” is the same as an

��
� -combination of the set of processors in the system. The size of this set is� �

�, so the number of

configurations is “� �
� choose��

� ” with the following complexity [14]:

� ��

�

��
�

�
� �

��
�


��
� 
 � ��

�
� ���

� �


�
��
���

�
� � �� � � � ���

� ���
� � ��

��
� ��

�
� � �� � � ��

�

�
��
�

��
�

��
��
� � �

��
� � �

�
� � �

�
��
� ���

� � �

�

�

�

�
��
�

��
�

��
�
�

which is exponential in� �
� . It is computationally intractable to generate all possibilities (particu-

larly when��
� � ��

���), so we designed a pruned, polynomially-bound search algorithm to reduce
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the complexity. This algorithm generates an initial set of processors for a target row from the trace

matrix, and then selects processors from the other possible rows that match these as closely as

possible. We first describe the input to the algorithm, followed by details of the principles used to

guide the selection of processors and rows.

INPUT

The input to this algorithm is a condensed version of the trace matrix that has only the “useful”

rows—those that have� �
� processors free. (Any other rows cannot possibly be assigned.) This

information is generated by another function and is stored in a set of two vectors and two matrices,

one set for processor information and another for row information. The vectors
� and
� store the

number of processors that are free in the row corresponding to position
�
� and the number of rows

in which the��� processor occurs, respectively. The matrix�� stores the indexes of the processors

unused in these rows. The matrix�� stores the indexes of the rows the� �� processor is unused.

These two variables have back-mapping vectors�� and�� to refer to the row and processor

index corresponding to the positions in the first two vectors. Figure 3.2 shows an example of the

relationship between two rows in�� and the trace matrix.

GUIDING PROCESSORCHOICES

The first step involves generating a combination of processors for the target row (��) used later.

Intuitively, a processor free in many useful rows is likely to result in an efficient configuration

because migration occurs less frequently. Accordingly, we rank the processors in decreasing order

based on how many rows they occupy, which is stored in
�. If all processors are considered,

the algorithm is intractable. However, if only the first� �
� processors are then selected, there is no

allowance for variability, and a potentially good choice may be pruned prematurely. Let the vari-

able�, which we pass as an algorithm parameter, be the number of additional processors that are

included beyond the first� �
� processors. As� decreases, the value is reduced, and the complexity

on the number of combinations also decreases. However, a value that is too low may eliminate too
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Figure 3.2:Picture of the relationship between��, ��, �� and the trace matrix. The job�� needs 3
processors from two rows in the trace matrix. Only rows��� and��� contain enough processors, and the
rest are ignored. The processor indices��, �� and��� from ��� are stored in��

� and the indices��, ��,
��� and��� from��� in ��

�.��
� contains 3 because there were three processors from���, and��

� contains
the number of processors indices were used from���.

many potentially good combinations from consideration. Currently, we set� � �. The processors

not included in the top� �
� � � are removed from��. Note that removing a processor from��

�

may potentially result in
�
� 
 ��

� , whereupon that entire row is also removed from��.

Out of these� �
� � � possible processors, combinations of� �

� are selected for��. There are

� ����
� � ���� � � ����

� �
�� such combinations. The next task is to find� �

� � � rows from the

remaining “useful” rows with processors that closely match the combination of processors in� �

(to avoid excessive migration).

GUIDING PROCESSORMATCHES

The basic idea is that given a selection of processors for��, the combination of processors selected

from any other row in�� is matched as closely as possible to��. Due to the sorting and pruning

process described in the previous section, the value of� already limits how different the processors

can be between these two rows.

The algorithm starts with�� and performs an initial scan through the remaining rows in��.

For each row��, all the processors in it are compared with the processors in��. All the matches
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are saved in a vector�, and all the other processors are saved as alternatives in a vector�. If after

the comparison with��, �
�
� matching processors were found, this row and processor information

is saved as part of the configuration for��. Otherwise, the processors from� are combined with

the contents of� and saved as an alternative row.

If at the end of this scan there are� �
� rows with an exact match, the algorithm immediately

tests the configuration using the fitness function. Otherwise, there are� 
 � �
� such rows, and

the alternative rows generated during the initial scan are sorted in decreasing order based on how

many of their processors match with those in��. The best� �
� � � are selected and included

in the configuration. Then the complete configuration is tested using the fitness function. The

configuration with the best fitness measure is the one that the scheduler uses when scheduling

��.

This strategy enables very controlled migration because any task that migrates from its pro-

cessor in row�� to a different one in another row must return to its original processor when the

scheduler returns to��. The simulator was implemented such that any tasks that do not need to

migrate stay on the same processor. This decision limits overhead and makes the encoding more

elegant.

TIME COMPLEXITY FOR THE COMPLETE ALGORITHM

The target row�� is selected from�� at most� �
� times, each with� ��� �

� �
�� processor com-

binations. There are� ����
�� comparisons between each�� and at most� �

� other rows. Any

alternative rows are sorted in�
�
�� �

���
	

steps after all of the processor comparisons. At each

combination, the configuration is evaluated using the fitness function, so the time complexity of

the complete algorithm is:

�
�
� �
� � ���

� �
� �
�
�� �

� � ���
�� � �� �

���
	
� 	�

	
� �

�
�� �

��� � ���
� �

� � ���
� �� �

�� � 	�
	

This algorithm is therefore polynomially bound to the number of jobs in the system, the number of

rows in the trace matrix and the number of processors for�� and in the system.
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3.3 GANG SCHEDULING PERFORMANCE

We ran the modified Schark simulator on several mixtures of jobs to test the effectiveness of I/O

awareness on performance. The simulated architecture was a mesh with 128 nodes, and the hard

time limit was set to 80,000 simulated time units (STU), a sufficiently high number so that all

of the jobs finished. There were 100 jobs, where each had 200 STU of computation to finish,

and all of them were introduced at startup. (Separate tests with jobs arriving uniformly produced

largely similar results.) Each time slice had the duration of 20 STU. The jobs did not perform any

synchronization apart from the communication events. All of the jobs cycled through a pattern

of nearest-neighbor, gather and scatter types of communication. The duration to access the disk

was set to two STU. The value of� �����
� , the number of iterations the job cycles through, was

set to 100 for the first set of tests, but was modified later to simulate different I/O frequencies, as

will be described in Section 3.3.3. Our parameter settings were loosely based on our experience

implementing an out-of-core iterative PDE solver on an IBM SP2.

We produced and introduced a variety of jobs into the system by setting the values of two key

aspects over a uniform distribution: the percent of the job’s computation that can be performed in

parallel (��) and the job’s critical number (���). �� ranged over��
� ���, and the baseline���

was sampled over the range of��� � �
�� and rounded up to a power of 2. This range was modified

in later tests as will be described in Section 3.3.2. The time between communication events ranged

over����� ����. This was the amount of time the job spent in computation between communication

points. Table 3.2 summarizes this information.

The simulator was run in three stages to test the effectiveness of I/O awareness, and also how it

handled job mixtures in which the I/O frequency and critical number ranges varied. The first stage,

described in Section 3.3.1, kept the number of I/O requests and the critical number ranges constant

while the number of tasks for each job varied. This stage established the baseline results and basic

framework for the tests in the remaining stages. The second stage varied the critical number range,
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Field Name Values
Maximum Simulator Runtime 80,000 STU

Number of Nodes 128
Architecture Mesh

Job Interarrival Time 0 STU (At startup)
Number of Jobs 100

Required Computation Time 400 STU
Percent Parallel Unform Distribution over range (65,90)

Communication Pattern Nearest Neighbor, Gather, Scatter
Communication Frequency Uniform Distribution over range (0.2,0.3)

I/O Duration 2 STU
Critical Number Uniform Distribution over��� � �

�� (baseline)

Table 3.2: Common Field values of generated jobs. (Note: STU = Simulated Time Units)

and Section 3.3.2 describes the results from this change. The third stage only varied the number of

I/O requests generated by every job, and its results are discussed in the last section.

We include both the turnaround times and throughput in our results. The latter is measured via

the simulator run time because the number of jobs in the system is constant at 100, and all the jobs

are introduced at startup. In general, good turnaround time is correlated with good throughput,

but there are some cases where we were able to optimize for turnaround time and tolerate poorer

throughput.

3.3.1 BASELINE TEST

The basic structure of each set of tests measures performance in two respects. We examine the

impact of enabling versus disabling the multi-row scheduling mechanism we developed. When

disabled, the simulator is operating under what we call the “Schark” mode because the scheduling

algorithm is similar to bin packing used by the unmodified gang scheduling interface. Otherwise,

the simulator is in “Enhanced” mode. Note that if all 100 jobs are assigned all the processors, each

job will be assigned only one row of the trace matrix, so whether or not the multi-row algorithm
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is used does not impact the results. For a given run of the simulator, the mode is fixed in either

“Schark” or “Enhanced” mode.

We also measure the impact of the four different ways we calculate the number of processors,

��
� , each job�� entering the system gets.� �

� is computed using one of the methods below before

the job is actually scheduled.

1. “c-based”:��
� is set as detailed by Equation 3.5 in Section 3.2.3. We compare the impact of

the “c-based” method with the other three in the analysis.

2. “p-based”: an inherently conservative method intended to model the current state of gang

scheduling where the user estimates� �
� probably based on speedup, without considering

I/O costs.� �
� starts with the value 1 and is successively doubled. At each value of� �

� ,

the computation time for the job is calculated using Equation 3.1. Ideally, as the number

of processors is doubled, the speedup should also double. The speedup of 1.2 was selected

as the point at which the speedup was no longer large enough to justify the increase in

processors. When the speedup resulting from doubling� �
� drops below this threshold, the

value of��
� is set to be the number of processors this job had before this drop occurred. If

doubling� �
� reaches��

�, the job receives all processors.

3. “a-based”: set��
� to ��

�, the number of processors in the system, regardless of the job’s

critical number or I/O requirements. This method simulates the situation where greedy users

decide to use all the resources available. Note that this method does not consider the job’s

speedup behavior, so efficiency is ignored.

4. “cP-based”: a hybrid of the other methods. First,� �
� is computed using the “p-based” com-

putation. If after this step� �
� 
 ���, �

�
� 
 ��

�. This can model the situation where both

greedy and conservative users have submitted their jobs into the system.

The results show that for a specific critical number and I/O frequency range, the simulator

that ran in Enhanced mode and used the “c-based” method of task computation had the best
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overall turnaround time. The “p-based” method underestimated a job’s critical number, which

resulted in many jobs that issued many I/O requests. The jobs that had their� �
� calculated by

the “c-based” method issued on average only one I/O request because their critical number was

at most� �
�. Therefore, the jobs in the latter case suffered the 2 STU penalty only once, so the

average turnaround time when in Schark mode is a factor of 5.2 faster than the latter case in which

the jobs incurred the penalty multiple times. Further, the Enhanced mode allowed for smaller jobs

to finish faster, so in this mode the “c-based” method is slightly faster, 5.4 times better than the

“p-based” method. The “c-based” method is 31% faster than the “a-based” method in Schark mode

and 42% faster when in Enhanced mode. This result is due to the fact that in the latter case there

were more jobs that were allocated more than their critical number of processors and were unable

to efficiently use them. The results of using the “c-based” method is 25% faster in Schark mode

and 30% faster when in Enhanced mode when compared to the results of the “cP-based” method.

This result is expected because some of the jobs did manage to get their critical number of pro-

cessors, while others were assigned too many. The “c-based” method also establishes the lower

bound of� �
� , so the scheduler could pack the jobs more tightly into the matrix than either the

“cP-based” or “a-based” methods while keeping them in core. A more compact usually results in

a faster turnaround time because the time to proceed through one iteration of the matrix is faster.

Table 3.3 summarizes these results.

3.3.2 CHANGING THE CRITICAL NUMBER RANGE

The second stage ran the simulator with three different ranges for���: ��� ���
�
��, ��� �

�
�� and

��� ���
��. As in the baseline test, both Schark and Enhanced mode was used and� �

� was varied.

The results show that the “c-based” method with the simulator in Enhanced mode produced the

fastest turnaround for when the critical number range was both halved and doubled.

When the critical number range was halved, the “c-based” is a factor of 4.2 and 3.9 better

than the “p-based” method in Schark and Enhanced modes, respectively. These improvements are

less pronounced than in the baseline tests because the “p-based” method produced smaller values
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I/O mode TCM ATT End Time
Schark p-based 15912 40007
Schark a-based 4455 5912
Schark cP-based 4109 5513
Schark c-based 3074 4302
Enhanced p-based 14132 22666
Enhanced cP-based 3706 5532
Enhanced c-based 2597 4792

Table 3.3: Results in average turnaround time (ATT) and end times of various task compute
methods (TCM) from baseline tests in STUs.

for ��
� , which was closer to���. Hence, more jobs were actually given their critical number

of processors. The “c-based” method was, however, 2.4 and 2.5 times better than the “a-based”

method when the simulator was in Schark mode and Enhanced mode, respectively. This result

is due to the fact that every job’s critical number was at most half of� �
�, so assigning all the

processors to them created inefficiencies that were even more pronounced than in the baseline test.

Comparing “c-based” with “cP-based” methods also results in a more pronounced improvement

in average turnaround time for the same reason. Decreasing the critical number for the jobs in

the system therefore can increase in general the effectiveness of the I/O-aware scheduler because

allocating a job’s critical number of processors to it can result in a more efficient execution and

faster turnaround times.

When the range for the critical number extended to twice the number of processors in the

system, the results show that the simulator with the “c-based” processor computation method fared

only about a 4% and 9% better than the “a-based” method in Schark and Enhanced modes. The

improvement “c-based” method has over the “cP-based” method was 3% in Schark and 7% in

Enhanced mode. These results, which are worse than the baseline case, is due to the fact that

the critical numbers were so high that the “cP-based” method was more accurate in estimating

���. The “c-based” method still more than halved the average turnaround time compared to the
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CN Range I/O Mode TCM ATT End Time
Half Schark p-based 8007 20464
Half Schark a-based 4455 5912
Half Schark cP-based 4036 5260
Half Schark c-based 1864 2682
Half Enhanced p-based 6976 12072
Half Enhanced cP-based 3416 5392
Half Enhanced c-based 1752 3642

Twice Schark p-based 31708 79124
Twice Schark a-based 13305 24170
Twice Schark cP-based 13179 23908
Twice Schark c-based 12726 23388
Twice Enhanced p-based 28021 43877
Twice Enhanced cP-based 13033 23990
Twice Enhanced c-based 12123 23608

Table 3.4: Results in average turnaround time (ATT) and end times of various task compute
methods (TCM) from varying the Critical Number Ranges in STUs.

“p-based” method when the simulator was in Enhanced mode, which suggests that the penalty for

issuing an I/O request is greater than the lack of speedup. The drop was even more dramatic when

in Schark mode, which is likely due to the fact that employing the Enhanced mode reduced the

average turnaround time for the “p-based” method. These results indicate that changing the job

mixture such that an increased number of jobs had critical numbers larger than the number of pro-

cessors in the system reduces the effectiveness of I/O awareness because more jobs will be given

all the processors in the system regardless of whether the “a-based”, “c-based”, or “cP-based”

methods are used. However, I/O-aware schedulers still outperform those that use a “p-based” algo-

rithm because there is an increase in the number of I/O events that are underestimated. Table 3.4

summarizes these results.
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3.3.3 CHANGING THE FREQUENCY OFI/O

The simulator was run again but with first halving, then doubling, the I/O frequency while keeping

the range of critical numbers at��� � �
��. The first tests halved the value of� �����

� for each job, which

halved the I/O frequency using the equation in Section 3.2.2. The simulator in Enhanced mode with

the “c-based” method again results in the fastest turnaround time, but it is only 2.7 times faster than

the “p-based” approach in either Schark or Enhanced mode. This result is expected because the

total number of I/O requests was halved, so the total penalty incurred was also reduced. It is 31%

and 64% better than the “a-based” method and 25% and 30% better than “cP-based” method for the

simulator in Schark mode and Enhanced mode respectively. Both sets of results are primarily based

on the effect of speedup because the jobs in all these cases issued only one I/O request. However,

the scheduler was still able to determine the lower bound on the value of� �
� and hence was able

to assign fewer than� �
� processors to some jobs. This could enable it to compact the trace matrix

and shorten the elapsed time between points at which the jobs were scheduled, thereby reducing

turnaround time for the former set of results.

As expected, doubling the I/O frequency, by doubling� �����
� , in the second set of tests

enhanced the benefits of I/O awareness when comparing the “c-based” and “p-based” methods.

The “c-based” method was 10.12 and 10.64 times faster than the “p-based” method when the sim-

ulator was in Schark and Enhanced mode, respectively. This is due to the significant number of I/O

requests issued by the jobs that did not receive the critical number of processors. The turnaround

times for the “a-based” and “cP-based” methods are very similar to their times in the first set of

tests in which the file frequency was halved.��� � ��
� for all jobs, so they are in core. Changing

the I/O frequency does not affect jobs that only issue one I/O request. The ratio of improvement

between these two methods and “c-based” is thus about the same. The results are summarized in

Table 3.5.

38



I/O Factor I/O Mode TCM ATT End Time
Half Schark p-based 8277 20484
Half Schark a-based 4455 5912
Half Schark cP-based 4109 5515
Half Schark c-based 3079 4317
Half Enhanced p-based 7177 12066
Half Enhanced cP-based 3705 5532
Half Enhanced c-based 2603 4812

Double Schark p-based 31191 79152
Double Schark a-based 4455 5912
Double Schark cP-based 4089 5493
Double Schark c-based 3082 4338
Double Enhanced p-based 27597 43878
Double Enhanced cP-based 3706 5532
Double Enhanced c-based 2597 4792

Table 3.5: Results in average turnaround time (ATT) and end times of various task compute
methods (TCM) from varying the I/O frequencies in STU.

3.4 CONCLUSION

I/O awareness in gang schedulers can result in an enormous improvement in turnaround time

for jobs in a system when compared to systems that ignore the I/O requirements of its job mix.

Enhancing the scheduler with an algorithm to schedule jobs that span multiple rows based on the

relationship between its critical number and the total number of processors in the system can fur-

ther increase the likelihood that they will be able to finish faster. We have used a simulated gang

scheduler that verified that such results are possible for a variety of jobs introduced into a system.
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CHAPTER 4

I/O COSTS INSEARCHING FOR ADATA DISTRIBUTION

The previous chapter has shown the impact of I/O in scheduling out-of-core applications on a

homogeneous cluster. This chapter changes the focus to its impact on a different problem—finding

a data distribution that minimizes application execution time. Previous research on this problem

primarily focused on balancing the load of in-core applications running on a homogeneous cluster.

My research extends this problem to includeheterogeneous architectures (a cluster of machines

with differing characteristics), which increases the likelihood that applications are out of core—

and hence I/O occurs. For a runtime system to solve the out-of-core data distribution problem,

two important components are necessary. The system first requires a mechanism that searches

through possible distributions, which will be described in this chapter. This search algorithm uses a

computational model that accurately evaluates each candidate distribution, which will be described

in Chapter 5.

The solution to the data distribution problem must be found at runtime, so an alternative to

the computationally intractable brute-force search must be used. The search space can be greatly

reduced by assuming distributions along a single dimension, but the search space complexity is still

exponential, as shown in Section 4.1. We designed two algorithms that finish in a polynomially-

bound number of steps given monotonicity between a data distribution and the application exe-

cution time. The first, called Generalized Binary Search (GBS), is based on binary search and is

optimal under the monotonicity assumption but relatively slow. The second is based on greedy

search (GS), which is faster thanGBS, but can get stuck in a local optimum. Section 4.2 formalizes

the problem and proves the optimality of theGBS algorithm. Section 4.3 details two other search

heuristics, a genetic algorithm (GA) and simulated annealing (SA), that we later use to compare
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Figure 4.1:The composition of the heterogeneous architecture emulated for our experiments. Note that
the memory capacities, I/O speeds, and processor speeds between any two machines can differ, represented
by different sized boxes in the figure. The sizes of the boxes in the figure for memory and CPUs represent
relative storage capacity and CPU power.

the performance ofGBS andGS. (The relative performance of all four algorithms are detailed in

Chapter 6.)

4.1 PROBLEM COMPLEXITY

Figure 4.1 displays a typical heterogeneous cluster consisting of� nodes, numbered� to � � �.

We assume that each node has a local disk and any communication is achieved through message

passing over the network. The relative CPU power of each node is based on its processor speed; i.e.,

the relative rate at which it can process elements in the dataset. The nodes have differing amounts

of available physical memory and I/O latencies to read and write data from local disk. Note we
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assume a commodity cluster, as opposed to a much more costly RAID system or global disk used

by all the processors.

The data distribution problem for such a cluster is strictly harder than the homogeneous, in-

core data distribution problem—which is itself NP-complete [23]. Our runtime system currently

seeks a distribution in only one dimension, but even this problem is computationally intractable, as

shown by the following theorem.

Theorem 1. Suppose that � is the size of the dimension distributed on � processors. Consider a

lattice of all non-negative coordinates in � -dimensional space. The exhaustive algorithm of trying

all points in � -space whose sum is � will be order of magnitude ����.

Proof. By induction. In the base case with 2 dimensions (when� � �) we have exactly� � �

points��� ��� ��� � � ��� � � � � ��� ��, each of whose components sum to�. Assume the induction

hypothesis for� dimensions and consider� � � dimensions. For each first coordinate value��

(whose value is between 0 and�), the sum of the other� coordinates must be� � ��. By the

inductive hypothesis, the number of such points is the order of magnitude of������
���, which is

less than or equal to����. If we sum this over�� from 0 to�, the result is an order of magnitude

� �� � ������, which is order of magnitude�� .

Clearly, exhaustive testing is not feasible, given that� is large, and we want� to be able to

scale up to large values.

4.2 PROBLEM FORMALIZATION

Assume a heterogeneous cluster as shown in Figure 4.1. Let� be the set of vectors with� compo-

nents, where each component is a nonnegative integer (i.e.,�� � �). Our problem is for all vectors

� � � , to determine an algorithm for approximating the solution of

���
�

���	
�

�������� � � � � ������� � � � � �������������

where

������ � ������ � ������ � �������
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subject to the components of� totals to�:
���

���

�� � �� �� � � �

Functions������, ������, and������ represent the computation, I/O, and communication time on the

��� node, respectively. Function������ � ����, where all�� � �. Function������ is a step function

that has steps��, ���, ���, � � �, of size���, ���, ���, � � �, each positive. (The steps begin at���

because if any reads from disk are required for a given array, there must be at leasttwo accesses to

disk. If only one read is necessary, it can be performed once at the start of execution, and the appli-

cation is in core.) Clearly������ and������ are both monotonically non-decreasing functions, while

������ is more complicated because communication involves not just send or receive overheads (as

in the LogP model[16]). The nodes also block when a node executes a blocking receive—or a

wait operation, if receive is asynchronous—before the arrival of the desired data. The MHETA

model (see Section 5.3) can predict both (1) how long each node spends executing without consid-

ering blocked time and (2) the total execution time on all the nodes with blocking. We assume for

our GBS andGS search algorithms that������ consists only of communication overhead (��), thus

making it and������ monotonically non-decreasing functions. In support of this assumption, we

note that for the communication patterns we support (nearest-neighbor and reduction), communi-

cation is mostly uniform between nodes. This means that if the computation and I/O are balanced

between nodes, a near-optimal distribution can be found.

We now present a theorem and lemma that are later used to show that theGBS algorithm is

optimal:

Theorem 2. Let � and �� be any two vectors in � space. Then,

��	
�

�������� � ���
�
�����

�

���

Proof. By contradiction. Suppose it is not true and��	��������� 
 ���������
�

���. Then for each���

component������ 
 ����
�

�� because������ 
 ��	��������� 
 ���������
�

��� 
 ����
�

��. However,

each�� is monotonically non-decreasing, and as
�

�� �
�

��� � �, at least one�� � ���, so

������ � ����
�

��.
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We can reason that the solution for a vector� is thus bounded by the maximum and minimum

� -values:

Lemma 1. For a given vector �, let � � ��	��������� and � � ������������. Then

� � �������	���������� �� .

Proof. Clearly� � � . If �������	���������� 
 � � � , then certainly the�� where the min-

imum occurs would have all components
 �. In particular, due to monotonicity, all� �� � �� with

at least one
. But
�

��� �
�

�� � �, so this is impossible.

Observation 1. Given Æ � � (not necessarily small), if we can find an � � � , where
�

�� � �

with � �� 
 Æ, then we have approximated the min max to within Æ.

Note that this observation enables us to bound the optimal solutionboth from aboveand below.

4.3 THE SEARCH ALGORITHMS

This section presents the different search algorithms we implemented to find an effective data dis-

tribution: a generalized binary search (GBS) and greedy search (GS) algorithms we designed, a

genetic algorithm (GA), and simulated annealing (SA). Note that each requires an evaluation func-

tion for each candidate data distribution, and we chose the application’s execution time as a result

of that distribution as a measure of its “desirability”. To actually run the application to determine its

execution time is impractical, as these algorithms must search throughmany distributions at run-

time. We therefore use MHETA to estimate its execution times, which is described in Section 5.3.

4.3.1 GENERALIZED BINARY SEARCH

TheGBS algorithm exploits the monotonicity of the evaluation function� , that is, with the simpli-

fied������. From a randomly chosen vector� � � , we improve the application completion time by

continuously reducing the largest value of������ over�� � �. Note that
�

�� � �, so decreasing

�� to lower������ increases in the value of a different coordinate�� and raises������ because the
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1: Randomly choose an� � � where where
�

�� � �.
2: Sort the components of���� into decreasing order and relabel the indices.
3: Let � � � � �.
4: while � � � do
5: if ����� � �� 
 ������ then
6: Bisect the interval (��� ��) and increase (decrease)�� (��) by that amount.
7: while ������ � ������ do
8: Set�� � ��� � �����.
9: Bisect the interval (��� ��) and increase (decrease)�� (��) by that amount.

10: end while
11: Sort the components of���� into decreasing order and relabel the indices.
12: Let � � � � �.
13: else
14: Set� � � � �.
15: end if
16: end while

Figure 4.2: The Generalized Binary Search Pseudocode.

function� is monotonic. We will now prove that the algorithm finishes in a finite number of steps

and that the modified terminal vector is optimal over all row-based distributions. The algorithm is

shown in Figure 4.2.

Theorem 3. The (outer) while loop of the GBS algorithm must terminate.

Proof. Trivially, if ����� � �� � �����) for all � � � � � � � � �, the loop ends in� � � steps.

Otherwise, whenever����� � �� 
 ������, �� and�� are modified such that the completion

time either (1) improves or (2) does not change. In the former case, the improvement is at least

equal to the minimum of������ � ������ and��. The new largest component is either the first or

the��� component, depending on how much the first component decreased. Either way, in at most

� steps, the improvement in completion time is equal to the minimum of the slopes of the linear

components. Clearly this rules out the possibility of an infinite loop, or else the completion time

could be improved to zero in a finite number of steps.
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In the latter case, the first and��� components (and possibly other components) are equal.

Hence, one possibility is that the first component will be reduced, and then the second, and so on,

until eventually there will be a reduction in the overall completion time. This reduces to the above

case. If there is never a reduction, the optimal value will be achieved in� steps.

The algorithm described above is polynomial. Suppose the original maximum is� and each

reduction is�, where� � �������. After� iterations of the outermost while loop, the improvement

must be at least�. It would take time����� �� � (assuming a worst case sort of� �) to reach zero.

Thus, this is an efficient algorithm.

Theorem 4. The modified terminal vector is optimal.

Proof. By contradiction. The output of the algorithm is a vector� such that when sorted,������ is

the maximum. Assume a vector � � exists where
�

 � � � and the completion time is superior

to that with�. When is sorted, clearly � must be one unit smaller than��.
�

 � � �, so there

must be a component of , say �, that is at least one unit larger than��, the corresponding compo-

nent of�. However, the corresponding value��� �) must then exceed the value of the maximal first

component of�, ������, so�� � cannot be minimal.

4.3.2 GREEDY SEARCH

The greedy search (GS) algorithm we implemented relies on the monotonicity of the evaluation

function � . It does not sort the elements of the vector� � � , but instead finds the elements of

� with the maximum and minimum� -values (i.e.�� and�� such that������ � ��	 ������ and

������ � ��� ������) during a single scan over all the elements. It then adjusts�� and ��, if

possible, to reduce������. This step will increase������ because
�

�� � �, but this still results

in an overall decrease in execution time. Once done, it repeats this process.

TheGS algorithm is fast because it quickly minimizes the maximum� -values of the elements

in the vector. However, it cannot be optimal as it does not perform a pairwise comparison of every

element with every other element. For example, suppose in vector� there is a third element��,

46



such that its� -value is smaller than������ but much larger than������ (i.e. ������ � ������ ��

������). Further, suppose�������� 
 ��������, but �������� � ��������. TheGS algorithm

will not compare the data in nodes! and", and thus will not detect that moving data from node!

to " would result in a better execution time.

4.3.3 GENETIC ALGORITHMS

Genetic algorithms (GAs) are a heuristic search approach based on the premise that, as described

in the theory of evolution, by combining parts of currently existing “good” solutions an even better

one can be generated. A set of candidate solutions that exist at a certain point in time is called a

“generation”. The search algorithm consists of iteratively producing new generations of candidate

solutions until either a limit to the number of generations is reached or the improvement of the

solutions from one generation to the next is below a threshold.

The algorithm starts with an initial population of# members generated at random. Each

member is evaluated using an objective function (MHETA in our case). The two members with the

highest values (the “parents”) are kept and the remaining#�� members are created by combining

portions of the solution of the parents. New candidates are created by selecting a “crossover” point

in which portions of one candidate are combined with the other. TheGA we implemented allows

for multiple (two or more) crossover points. Note as the number of crossover points increases,

the variety of generated candidates can also increase. Thus, the heuristic can examine and eval-

uate a larger search space. As new generations are created, however, an increasing number of the

population will become homogeneous, which corresponds to the algorithm “converging” onto a

solution.

Recall from the previous section that the data distribution problem has an additional constraint

on the possible solutions—namely, given a distribution# � ���� � � � ��	 over a dimension of

size�,
�

�� � �. A naive representation would place in�� the number of rows assigned to

the ��� processor. However, this approach easily causes problems during the crossover process. In

particular, theGA can generate solutions where
�

�� �� �, as shown on the top of Figure 4.3.
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Number
of rows

Last row
index

2 9 18

8 16 24 32 8 16 18 32

2 9 3232 24

2 7 9

8 8 8 8

14

8 8 9 14

2 7 88

37

25

SUM SUM

32

32

crossover
point

Generation i+1Generation i

Figure 4.3:Two different representations for solutions in genetic algorithms. The top figure shows where
each element in the vector stores the number of rows the nodes process, which is problematic after the
crossover function is applied. The bottom figure shows a different representation, where each element stores
the index of the last row the node for that index processes. This latter approach generally maintains the
constraint that all elements of the vector must sum to�. Any that are not valid are not included in the future
generation.

The values of the vector elements must now be resized to correct this problem, which can cause

unintentional perturbations in the entire vector. We used an alternative approach in which each

element stores the index of the last row assigned to a node. Shown at the bottom of Figure 4.3, this

representation removes the need for resizing the elements after performing the crossover operation.

However, we must now consider an ordering constraint (i.e.�� � �� � � � � �� ), and we drop any

generated solutions that do not satisfy this constraint. Note that with the exception of�� (which

already contains the number of rows assigned to the��� node) we can simply determine the number

of rows for the��� node as�� � ����.

One of the drawbacks of this approach is the susceptibility it has to the initial conditions, such

as the population size. With poorly selected initial conditions, theGA can converge onto a local
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optimum very quickly and then not improve because a majority of the population are that solution.

We implemented a common solution to counter this problem in which we introduce a “mutation”

factor. Given a certain probability set by the user, theGA randomly selects a portion of the solution

that is being generated and modifies it slightly. If this mutation results in a candidate with a higher

“fitness” than the majority of the other candidates in a generation, theGA can leave the local

optimum Note that if the mutation probability is too high, however, the behavior of theGA will

essentially become similar to that of a random search.

4.3.4 SIMULATED ANNEALING

Simulated annealing (SA) was first proposed by [37] as an algorithm to simulate the annealing

process. A thorough examination ofSA operations can be found in [20], and a brief summary is

given here. ASA is a generalization of a Monte Carlo method for examining the equations of state

and frozen states of n-body systems. The energy levels of the bodies shift randomly, where the

probability of changing from one state to another is determined by a function of the current and

new energy states ($ and$�, respectively), the temperature (	 ) and the Boltzmann’s constant (%�):

� �$� $�� 	 � � &� where' �
�$� $��

�%� � 	 �
(4.1)

Intuitively, the probability of an energy level decreasing is generally very high, but there is also a

non-zero chance that it may increase; this probability is greater with high temperature values. The

annealing process thus starts with the system state at a high temperature, where there are many

bodies will accept increased energy levels. The state is then gradually cooled, and the material

becomes increasingly ordered until it solidifies. The process can be thought of as an adiabatic

approach to find the lowest energy state, and therefore can be adapted to be a constraint based

optimization technique.

StandardSA algorithms are general purpose optimization techniques described by the pseu-

docode in Figure 4.4. We implemented a version that is tailored to the data distribution problem
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1: Create initial solution�
2: Initialize temperature	
3: while no changes in( ��� do
4: for �)*&�+ iterationsdo
5: Generate a random transition from� to � �

6: if ( ��� � ( ���� then
7: � 
 ��

8: else if&� � �"�,����� �� where' � 	� 	�
�� 	��


	�� � 


then
9: � 
 ��

10: end if
11: end for
12: Reduce	
13: end while

Figure 4.4:General pseudocode for theSA algorithm.

by modifying the transition function in Step 5 of the pseudocode. At each temperature, anSA ran-

domly changes the elements of the initial vector� to produce alternative vectors� �. Our version

instead produces� � using a greedy strategy similar to theGS algorithm. MHETA generates the F-

values for each�� element in isolation, and we find the element�� where������ � ��	 ������.

A random number of rows are then removed from�� and proportionally reassigned to the other

elements. This reassignment is such that nodes with smaller F-value receive more rows than those

with higher F-values. The conditional acceptance of this alternative vector is still the same—if

( �� �� 
 ( ���, � 
 � � with 100% probability, or if( �� �� � ( ���, � � will be accepted with the

probability from Equation 4.1. If the predicted execution time does not drop by�)*&�+ number of

iterations, then we create another initial start vector by (1) setting�� 
 �, and then (2) reassigning

the�� rows to the other vectors.

The primary disadvantages to using anSA, even one that is tailored to our particular problem,

are its sensitivity to (1) initial conditions and (2) cooling schedule. If the initial temperature of the

system is not high enough, the system will not start in a chaotic enough state. Either a low initial
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temperature or a cooling rate that is insufficiently slow may result in the system becoming trapped

in a local minimum energy state.
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CHAPTER 5

PREDICTING EXECUTION TIME USING COMPUTATIONAL MODELS

The GBS, GS, SA, andGA search algorithms described in the previous chapter require an appli-

cation’s execution time for each candidate data distribution. Actually running the application with

this distribution is accurate, yet highly impractical due to its long execution time, and these search

algorithms must evaluatemany distributions on the fly. Therefore, we designed and implemented a

computation model called MHETA (Model of HETerogeneous Architectures) to predict an appli-

cation’s execution time quickly and accurately. It is a system of equations that incorporates infor-

mation about the application structure and the behavior and costs of running it on the underlying

architecture. It can then input a data distribution and output a predicted execution time for the

application.

We first present the framework of our computation model in Section 5.1. The methods used

to extract application structure and the parameter values for MHETA are presented in Section 5.2

followed by development of MHETA in Section 5.3. We show MHETA’s accuracy in predicting

execution times in Section 6.2.

5.1 COMPUTATION MODEL FRAMEWORK

We use a computational model that is similar to BSP [55]. The programs we support are iterative

scientific applications. A data distribution that reduces the execution time per iteration will conse-

quently reduce the execution time for the entire program, so we focus on modeling the execution

of a single iteration.
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We define aparallel section as code between twocommunication events. Messages sent during

a communication event are assumed to be of uniform size to simplify the model design, but

MHETA can support differing sizes with more sophisticated instrumenting techniques.

A parallel section consists of a set of one or moretiles; pipelined applications have multiple

tiles per parallel section. A tile is further divided into one or morestages, which are bounded

explicitly by an outermost loop over a multidimensional array or implicitly by the end of a tile.

MHETA can support the case where iterations take a nonuniform amount of time; however, the

discussion here is only for those whose time is uniform, which covers many, if not most, appli-

cations1. We assume the applications make explicit calls to read and write from disk and are con-

structed so that data passes through memory as few times as possible. However, note that our

model uses stages to handle the case where there need be multiple disk reads and writes in a par-

allel section. Asynchronous I/O in the form of prefetching is done by unrolling the outermost loop.

Figure 5.1 illustrates an example of parallel sections and stages. The stages measure the duration to

perform the computation and I/O in a program, and a parallel section sums these before including

the communication cost. Any communication is assumed to involve possibly asynchronous sends

but synchronous receives, which may potentially be restrictive when applied to scientific applica-

tions that do in fact use asynchronous sends and receives.

We adopt the terminology for out-of-core applications from [9]. An application is considered

to bein core when all disk accesses for primary data sets are compulsory—this occurs when each

node has its primary data set in its local memory for the duration of the program (after compulsory

reads). We call the subset of the input and working data that is stored locally on a machine its Local

Array (LA). An application is necessarilyout of core if the dataset is larger than total aggregate

memory. It is also out of core if a particular data distribution results in at least one node whose

LA cannot fit into its memory. If either is the case, the LA is called the Out-of-Core Local Array

(OCLA), and the subset that fits into memory is called the In-Core Local Array (ICLA). A node

1Primarily, this simplifies the implementation, as the duration to perform computation per iteration would
otherwise be need to be collected for nonuniform iterations.
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while reduce_value < threshold {
 for i := 1 to n−1 {
   for j := 1 to n {

   }
 }

   for j := 1 to n {
     C[i] := g( B[i−1][j] )
   }
 }
 for i := 1 to n
   reduce_value := f( C[i] )

}

 for i := 2 to n {

     B[i][j] := f( A[i+1][j] )

STAGE
SECTION

  for i := 1 to numberOfBlocksRead

    if needed, read next block of data

    for j := start to end of this block−1 {

      for k := 1 to n

           B[i][j] != f( A[i+1][j] )

    }

    if necessary, write out results

  for i := 1 to numberOfBlocksRead

    if needed, read next block of data

    for j := start to end of this block 

      for k := 1 to n 

        C[i] := f( B[i][j] )

  EXCHANGE BOUNDARIES

DISTRIBUTE THE DATA

while not reduce_value < threshold

SECTION
STAGE

STAGE
CALCULATE LOCAL reduce_value from C

  GLOBAL REDUCTION on reduce_value

Figure 5.1:A sample conversion of a sequential program into a parallel one with sections and stages.

whose local array is too large needs to read and process the entire OCLA in ICLA-sized pieces.

An in-core application incurs a single disk read for each of its local arrays, whereas an out-of-core

application incurs multiple reads (and possibly writes) for each local array. Note that the problem

of determining which arrays are out of core is orthogonal to our research—we currently use a

simple heuristic and are primarily interested in creating a model that finds an effective partitioning

of data and computation to each node.

We assume that a one-dimensional data distribution is used, and the data is divided into

variable-sized blocks (calledGENBLOCKin HPF [25]); each node receives its block and stores it
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on its local disk. We use the owner computes [27] and Local Placement [9] rules, in which nodes

update data elements that reside in their local disk, but can reference other elements.

5.2 EXTRACTING MHETA COMPONENTS

MHETA requires knowledge of a program’s structure and runtime-specific information—such as

the costs to perform I/O, communication and computation—to calculate its execution time. Some

information is extracted via static analysis and microbenchmarks, while other information requires

an instrumented run of a single iteration of the application. We currently analyze the application

source code manually to determine its structure, such as the number and relationship between the

parallel sections, tiles, and stages as well as which variables they use. We store this information in

a file read by MHETA. Section 5.2.1 gives a general formalization of the process we used into an

algorithm that can be incorporated into a pre-processor to do this automatically.

Basic communication costs, such as send and receive overheads and latencies per byte to send

data from one node to another, are independent of runtime conditions, so we measure them using

microbenchmarks. These values are stored and referenced when needed. The instrumented run

outputs computation and I/O costs and the participants in communication at the beginning or end

of a parallel section. Section 5.2.2 details how we automated some of the measurement of the

costs of computation and I/O. Some discussion of extracting the identities of nodes (nIDs) during

a communication pattern follows in Section 5.2.3.

5.2.1 EXTRACTING APPLICATION STRUCTURE

The target applications that MHETA models are iterative. After initialization, the program loops

over the computation and communication multiple times, with a global reduction commonly at the

end of each iteration. We currently disregard program initialization because it is a small part of

the total execution time. We first describe how we determine a communication event that is used

to define the beginning and end of a parallel section. This is followed by the algorithm to detect
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a parallel section, and a stage in isolation, then with tiles included. This section ends with some

discussion of how to extract variable name information associated with a specific stage.

We assume that the application communicates via MPI. Acommunication event essentially

involves invocation of one or more MPI functions. These functions range from the most basic

involving a single sender and receiver (MPISend or MPIRecv), to implementations of more com-

plex but well-known communication patterns, such as MPIBcast for a broadcast operation. The

programmer can alternatively design and implement a nonstandard pattern, such as a shuffle, typi-

cally as a loop iterating through a series of send and receive function calls. This loop could further

be contained within its own function, which is called when the communication pattern defined in

the function is needed. The pre-processor can therefore define the boundaries of a communication

event by starting at an MPI function call and extending that definition outward until reaching one

of three conditions:


 Loop bounds - the communication event encapsulates instructions from the start to the end

of the loop.


 Function boundaries - the programmer created his own function for a specific communication

pattern used in the program, so the event includes the entire function definition.


 Neither of the first two conditions are met and it encounters statements that are not MPI

function calls - the communication event consists of a single function call.2

Figure 5.2 shows examples of communication events as defined above.

Given a clear definition of a communication event, we detail here how a pre-processor divides

an application without pipelined communication into parallel sections and stages. The determin-

istic finite automaton in Figure 5.3 shows the pre-processor’s states and transitions for this simple

case, which does not allow for nested loops and the stage is explicitly bound by the start and end of

loops. At the start of the main iterative loop, the initial state is Parallel Section with+&�*��� 
 �.

If a communication event is encountered while in this state, the current parallel section is over and

2This is common in nearest neighbor and pipelined communication.
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<computation code>

MPI_Bcast( <arguments> );

<computation code>

for i = 0 to num_neighbors {
  MPI_Send( <to neighbor[i]> );
}

    for i=0 to num_neighbors/2 {
my_comm_function( <args> ) {

}

        MPI_Send( <to neigbors[i*2] );
    }
     for i=0 to num_neighbors/2 {
       MPI_Recv( <from neighbors[i*2−1] );
    }

Single MPI FunctionMPI Functions in a loop User−defined Function

Figure 5.2:Examples of communication events.

another starts (+&�*���++ and+*"�&
 �). The pre-processor enters and exits the stage state when

it encounters the start and end of a loop in the soure code, respectively. The pre-processor then

returns to the Parallel Section state, when it can enter another stage and the+*"�& variable is incre-

mented. If a loop ending boundary is reached while in the Parallel Section state, the iterative loop

is over, and the pre-processor is done. The state diagram is considerably more complex for when

we allow nested loops inside stages and want to define tiles. These complications are detailed in

Appendix A, where we use the more powerful nondeterministic finite automaton state machine to

guide the pre-processor.

The pre-processor can further analyze the code of a stage to determine which variable is to be

used as the representative of the costs. There are two complications in this analysis:


 There are variables that are distributed and those that arereplicated. Stages with replicated

variables do not change their computation or I/O costs with differing data distributions,

whereas these costs can be drastically different for distributed variables.


 Some stages may not contain any I/O function calls or any loops at all, in which case a

suitable representative may not exist; which variable is selected is not important in this case

because the computation cost is constant.
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! loop_end

Stage

loop_end
! Commloop_start

loop_end

Comm

section++

Parallel
Section

loop_start

stage <− 0

section <− 0

stage++

Figure 5.3:A deterministic finite automaton showing the states and transitions for the instrumenting pre-
processor when analyzing an application to break into parallel sections and stages. Theitalic and bold
terms are statements (tokens) encountered in the source code.Courier and bold terms are actions for
internal variables.

In stages that have both distributed and replicated variables, preference should be given to the

distributed arrays because these are likely to be out of core and dominate computation and I/O

costs.

5.2.2 MEASURING RUNTIME COSTS

This section starts with details of how we measure synchronous and then asynchronous I/O costs.

The difficulty in measuring computation durations is discussed next, as this measurement requires

knowledge of when a stage begins and ends, and so is hard to detect in general. MHETA targets

applications that use explicit I/O, so these programs have explicit function calls to read and write

data. For programs that use MPI function calls to perform I/O, we use the MPI Jack tool [1], an

interface that exploits PMPI, the profiling layer of MPI. MPI Jack enables a user transparently to

intercept any MPI call and execute arbitrary code before and/or after an intercepted call. These are
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pre−hook

post−hook

(...implementation of
MPI_File_read...)(...implementation of

MPI_File_read...)

Get VID: index of variable to be read

start timer

Using MPI−Jack

stop timer

tile TID in parallel section SID

Get SID: current stage #
Get TID: current tile #
Get PID: current parallel section #

from parameter (i.e. <arr_name>)

record duration to read VID in stage SID,

Our Hook Functions

Without MPI−Jack

MPI_File_Read(arr_name, ...)

MPI_File_Read(arr_name, ...)

Figure 5.4: A graphical example of how MPI Jack is used to extract timing information for an
MPI File read call. Invoking a MPI Jack function essentially calls the pre and post hook functions before
calling the actual MPI function. On the left, these hook functions are undefined and no timing information
is recorded. The right implementation has code defined to extract the variable ID involved in the I/O and
timers to record the latency to read the array.

calledpre andpost hooks. An example of an MPI read operation is shown in Figure 5.4. The seek

overheads for reading and writing (�� and��) are the same regardless of the variable involved,

so they are measured and output as node-specific data. The corresponding latencies (	���� and

	����), in contrast, are specific to the variable�. The instrumenting code extracts the variable ID

from the function’s parameters to record the latencies with the corresponding variable. The runtime

system computes the latencies (���� and-���) for a single element of� and stores them and

overhead costs into a MHETA internal file.

Note that given a data distribution for the instrumented execution, the size of� may in fact

be in core, and no I/O occurs. MHETA would thus effectively have a zero latency associated with

reading or writing this variable. This of course would be incorrect for distributions that assign

more of� to the node than it can store in memory, thereby causing I/O to occur. We ensure that

the correct latency values are measured during the instrumented run by forcingall nodes to perform

I/O for any potentially out-of-core variables.

59



Compute
Process

Disk

Overlapping
Computation

Effective
Latency

����

��������

����

��������������

������������������������������������

��������������������������������������������������

Case 1: Precise Prefetch Measurement

Read Latency

Overhead

WaitIssue Overlapping Computation

Read Latency + Overhead

Compute
Process

Disk

Overlapping
Computation

����

��������
������������������������������������������������������������������������
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Case 2: Imprecise Prefetch Measurement

Read Latency

Overhead

Issue

Read Latency? ?

Overlapping Computation

Wait

Figure 5.5:Problems when trying to instrument prefetching code. The top figure shows how instrumenting
prefetching can be precise and accessible from our wrapper functions. The overlapping computation is
timed from the end of the prefetch issue to the beginning of the wait function, and the disk read latency is
timed from the beginning of the issue to the end of the wait function. Unfortunately, as the bottom figure
demonstrates, if�! � ���	�, we cannot compute���	� correctly via timers in the wrapper functions.

Unlike synchronous I/O, asynchronous I/O allows overlap of computation and I/O costs, so

predicting the cost of prefetching requires a combination of	���� and the duration of the overlap-

ping computation (	!). Figure 5.5 shows that	! is the time from the prefetch issue until the entry

to the wait function, and this duration can be measured using timers. The difficulty arises when

we try to measure the duration of	����. If 	! � 	����, 	���� is measured from the start of the

prefetch issue to when the wait function returns. Otherwise, there are no timers the runtime system

can use to determine when the I/O operations finish.

Our approach to solve this problem cleanly divides the operations by forcing (1) all prefetch

issues to be the same as asynchronous read and (2) wait functions to be no-ops, as shown in

Figure 5.6. This technique is simple to implement and accurately measures the durations of	! and
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Figure 5.6:Instrumenting prefetching by forcing issues to be blocking reads, and transforming “wait”
functions into no-ops.

	����. We assume only one iteration is instrumented (out of many), so the higher latencies experi-

enced using this technique are amortized over the remaining iterations that do standard prefetching.

Measuring the computation time for a stage (a separate duration from	!) is more complex to

automate than I/O; the computation boundaries are difficult to detect in the source code. However,

it is possible with help from a pre-processor that determines stage boundaries, though we have not

implemented such a pre-processor at this time. Only computation and I/O occur within a stage; by

measuring the duration of the stage, the computation duration can be calculated as the total time

for the stage minus time to perform I/O.

5.2.3 EXTRACTING COMMUNICATION PARTICIPANTS

Communication events involve sending and receiving messages to and from various nodes.

MHETA requires information about the sender and recipientnIDs. The node IDs are available

from the parameters of the MPI send and receive calls. Therefore, via the pre hooks in MPI Jack,

we can get this information, making this transparent to the programmer.

5.3 MHETA IMPLEMENTATION

We implemented MHETA as a series of equations for each parallel section and stage. Given values

for computation, I/O and communication costs specific to an application running on a particular
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architecture, MHETA calculates the total execution time of a single iteration of the application

given anarbitrary data distribution.

We begin by considering the execution of a single parallel section on one node, first with a

single stage and then multiple stages. We develop the costs of first synchronous and then asyn-

chronous I/O in a particular stage. Next, we consider the communication involved when the pro-

gram is first distributed between two nodes, followed by multiple nodes. Finally, we conclude with

the overall MHETA model—multiple parallel sections in a multi-node program.

5.3.1 SINGLE NODE AND PARALLEL SECTION

First, we describe how MHETA will generate the predicted time to perform only computation

and I/O in a single stage in a single parallel section. We already know the duration to perform

computation on the data given by a distributionÆ during the instrumented run of the program. For

each distribution in the set of candidate distributions,Æ � � �, predicting the new computation time

is relatively straightforward: it is the original time,	", multiplied by the ratio of the new amount

of work � � and the work assigned to it byÆ, which is� :

�	"�
� � 	" �

� �

�

Modeling the time taken to perform I/O is more complicated because we need to accurately

calculate the cost of disk accesses due to out-of-core arrays. MHETA currently uses a simple

heuristic to determine if an array is out of core forÆ �. This heuristic is based on the intuition that

arrays with smaller sizes or those that are accessed more frequently are preferred to be kept in

core. Once a variable� is determined to be out of core, MHETA calculates its ICLA (�#���) and

OCLA sizes (�
���). We can then compute the number of times the disk is accessed in this stage

for an out-of-core variable� by taking the ceiling of dividing its OCLA size by its ICLA size:

�$��� �

�
�
���

�#���

�
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Any time the node reads data from disk, there is a corresponding write to disk if the results

of the computation are stored, such as in our Jacobi application. For applications such as

Conjugant Gradient and Lanczos, the array is read-only, and no writes are performed.

The total time spent performingsynchronous I/O for an out-of-core array� in this stage,

	%���, is the time to perform the reads and writes of its ICLAs multiplied by the number of times

it is performed. These times include the overheads to prepare the reads (��) and writes (��) and

the respective latencies (	���� and	����):

	%��� � �$��� � ���� � 	����� � ��� � 	������ (5.1)

where	���� � ���� ��#��� and	���� � -��� ��#���. Note that if variable� is in core,

then	%��� � �, and if the array is read-only,�� � 	���� � �.

Equation 5.1 assumes that the full disk latency is incurred on every read; i.e.	���� is the time

to read�#���. Programmers and/or compilers, however, can insert asynchronous read requests

(prefetching) to hide some of this latency. Theeffective read latency,	����, is calculated in

MHETA as 	���� minus	!, the time the node spends computing between the prefetch issue

and when the data is needed. If the overlap computation is greater than or equal to the read latency,

	! � 	����, this latency has been effectively masked:	���� � �. We assume that the program

does not perform asynchronous writes because the latency can be masked by the operating system

using write-back buffers. Equation 5.1 becomes:

	%��� � �$��� � ���� ��! � 	����� � ��� � 	������ (5.2)

where	���� � ��	 ��� 	����� 	!�. One problem in using the asynchronous I/O facilities is that

extra overhead is incurred (�!) regardless of whether the prefetch was issued early enough to hide

the read latency. Prefetching can thus be more expensive than regular (synchronous) reads. How-

ever, note that when the application does not use prefetching, Formula 5.2 reduces to Formula 5.1

because	���� � 	���� and�! � �.

The above formula can be modified to take into account how typical pipelined asynchronous

programs can be rewritten (e.g. Morly [39]). A loop (see Figure 5.7) over ICLAs that involves
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  for i := 2 to last {
    Prefetch ICLA(i)
    Process ICLA(i−1)
    Wait for ICLA(i)
    if necessary, write ICLA(i−1)
  }

  }
    if necessary, write ICLA(i)
    Process ICLA(i)
    Read ICLA(i)

  for i := 1 to numberOfICLAs {

STAGE

  Read ICLA(1)

STAGE

  Process ICLA(last)
  if necessary, write ICLA(last)

Unrolled LoopOriginal Loop

Figure 5.7:A sample transformation of a loop over ICLAs to enable prefetching.

a read, followed by computation on that ICLA, and finally a write-back of the results to disk is

slightly unrolled. The stage boundary of course gets extended as necessary. The program can now

prefetch the ICLA for the� � ��� iteration while performing computation on the ICLA for the

��� iteration. The first ICLA read incurs the full latency, whereas the remaining�$��� � � read

latencies can be mitigated using prefetching. All overhead costs are incurred regardless of the loop

structure. The adjusted formula taking into account this type of prefetching program structures is:

	%��� � ��$��� � ��� ��! ��� � 	������ � 	���� � ���$���� �� � 	�����

The total amount of time spent in computation and I/O for this stage is therefore the time for

computation (	") plus the sum of all accesses to disk.	%��� is non-zero only when� is in ., the

set of out-of-core variables for the current data distribution.

	& � 	" �

�

��


	%���

�

Once the duration for the��� stage can be calculated and assuming a parallel section contains

�& stages, the time a node spends in the parallel section (	' ) performing computation and I/O is:

	' �

��

���

	&���
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Figure 5.8:A graphical description of a reduction. The top figure shows when node 1 is blocked waiting
for node 0 to send its message, and the bottom shows the situation when node 0 waits for node 1’s message,
and node 1 waits for node 0’s response.

5.3.2 EXTENSION TO TWO NODES

When considering multiple nodes, MHETA needs to include communication costs. Assume two

nodes,�� and��. The communication will be first broken into the components involved for point to

point communication, and they are then combined together in MHETA to calculate the time taken

to perform communication according to a specific pattern. Given a message/, the communication

cost is broken into three components:


 �
�
�/� - the overhead incurred when sending,


 	���� /� - the time�� spends when potentially waiting for a message, and


 �
�
�/� - the overhead when a node processes an incoming message.

An example of the relationship between these parts is shown in Figure 5.8.

The value�
�
�/� is a combination of two costs. There is always the fixed overhead (���/�) to

prepare and actually copy the message into a system buffer. Furthermore, for arrays from which
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the message is generated is out of core, the node needs to read it from disk (i.e./ � ., the set

of out-of-core variables); the same modeling is done here as described for I/O above. Therefore,

�
�
�/� is the sum of the fixed overhead plus the time to read the message of size�( from disk:

�
�
�/� � ���/� � ��� � ���(� if / � .�

We next compute the value of	���� /�. Nodes participating in non-pipelined applications gen-

erally start to blockafter performing their stages. Thus, the time�� spends waiting for message/

to arrive from�� is non-zero if it finishes its stages before/ arrives:

	���� /� � ��	

��
� 	' ��� ��

�
�/� � 	����/�� �	' ��� ��

�
�/��

�

��
� (5.3)

Note that Equation 5.3 is symmetric between�� and�� in this case, and we must now distinguish

	' between nodes because a node’s blocked time depends on the execution of the sending node. In

addition to costs for send overheads and time spent waiting for a message, both nodes spend time

�
�
�/� processing the incoming message.

Pipelined applications have the property that there are potentially many tiles in a parallel section

(i.e. the number of tiles,� �
 � �), and nodes start to waitbefore they execute the stages of each

tile. Figure 5.9 shows this dependency. We now expand	���� /� to distinguish between tiles.

Assuming that the pipeline starts from��, �� does not block at all:

	���� /� �� � � � � � � � � � ��
 � � (5.4)

However,�� blocks at the start of its� �� tile if / arrives any time after it has finished all� � �

previous tiles. The message/ is on route from�� after it completes all� tiles, each of which takes

time to process the stages plus the send overhead (	' ��� �� � �
�
�/�). For any given tile,�� first

blocks, incurs receive overhead and then spends	' ��� �� time in computation. Thus the wait time

for �� at the beginning of its� �� tile is the total time before/ is on route, plus transfer time over

the network, minus the total time for�� to have finished� � � tiles.

	���� /� �� �

�
�


���

	' ��� �� ��
�
�/�

�
�	����/��

�
���

���

	���� /� �� ��
�
�/� � 	' ��� ��

�
(5.5)
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Tile 0 Tile 1 Tile 2 Tile 3

Pipelined Communication Behavior

Node 0

Node 1

Node 2

Figure 5.9:The behavior of pipelined communication. The arrows represent the dependencies of each tile
on each node, and the number in each tile are the order at which the tile is processed. Note that the tiles of
node�� have horizontal dependencies;�� can process them one right after the other. The tiles for�� have
both vertical and horizontal dependencies; they depend on messages from�� and the tiles before it on the
same node.

Of course if	���� /� �� 
 �, �� does not block and	���� /� �� � �.

We next use the specific communication pattern to calculate the duration the nodes spend in

communication (denoted	����) as follows:


 Nearest Neighbor: If both nodes perform their sends before blocking, the total time in com-

munication is the sum of the send and receive overheads and the time spent waiting for the

message:

	���� � �
�
�/� � 	���� /� ��

�
�/� (5.6)


 Reduction: Given that�� is the master node that performs the reduction, it blocks until it has

received and processed the value to use in the reduction from��. It then computes the value

(in time	�, which is often negligible) and prepares and sends it to��, which ends its time

spent in communication:

	���� � 	���� /� ��
�
�/� � 	� ��

�
�/� (5.7)
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The time at which the message reaches�� takes into account when�� finishes its

parallel section and sends/, and the time taken to transmit/:

	)��� � 	' ��� � 	���� � 	����/� (5.8)

The other node,��, sends its value used in the reduction to�� and then waits for the result

of the reduction to return. This blocked time is the difference between	)��� and when��

finished its parallel section and composed and sent/: 	' �����
�
�/�. Once received,�� then

incurs overhead processing the result. The total communication time for�� is:

	���� � �
�
�/� � �	)���� �	' ��� ��

�
�/��� ��

�
�/� (5.9)


 Pipeline:�� has no receives and�� has no sends, so using the cost	���� /� �� from Equa-

tion 5.5 and	���� /� �� from Equation 5.4, the time spent in communication is:

	���� �

� �
�


���

�
�	���� /� �� �

��
� �

�
�/� if � �� �

�
�
�/� else

�
� (5.10)

The total execution time for node�� in a parallel section, (denoted	*���), is the time spend

performing all computation, I/O and communication:

	*��� � 	' ��� � 	����

5.3.3 EXTENSION TO MULTIPLE NODES

Measuring communication for multiple nodes differs depending on whether the pattern is non-

pipelined or pipelined. The latter kind of pattern has communication between at most two nodes,

but non-pipelined communication can involve more than two. For the sake of consistency, the

more complex non-pipelined communication is described first, followed by the simpler pipelined

communication.
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GENERALIZED REDUCTION AND NEAREST NEIGHBOR COMMUNICATION

When communication costs are expanded in non-pipelined applications to include� � sending to

and receiving from multiple nodes, we introduce four more variables. Let�
�
��� �� and�

�
��� �� be

the total number of messages�� generates and receives, and����� and����� be sets of recipients

and senders of its messages, respectively. In other words,�
�
��� �� is the number of recipients in

�����, and�
�
��� ��� is the number of nodes that�� has sent messages before and including a

specific node���, The values on these variables are determined at run time in our emulator and

input to MHETA. Equations 5.3, 5.6, 5.7 and 5.9 for non-pipelined applications are generalized

to include multiple senders and receivers, which are specified in the sets����� and�����. We

simplify the presentation of the more general equations by defining	���� ��� to be the time at

which�� has sent a message to��� and is computed as:

	���� ��� � 	' ��� ��
�
��� ��� ��

�
�/� (5.11)

The overhead to send messages is assumed to be the same regardless of who the recipient is for

this communication event. The node��� � �� � ����� that is the slowest to send a message to�� is

the only one that impacts the wait time, so Equation 5.3 is modified to:

	���� /� �

��
� ��	���
�	�
 �	����� �� � 	�����/�� 	���� ���� if difference � 0

� otherwise
(5.12)

Equation 5.6, which computes	 �
� for nearest neighbor communication, is extended to take into

account all senders and recipients for��. Note the value of	���� /� is now from Equation 5.12:

	 �
� � ��

�
��� �� ��

�
�/�� � 	���� /� � ��

�
��� �� ��

�
�/��

The reduction communication pattern costs for�� and�� � � �� � are extended from Equations

5.7 and 5.9.�� will block until it processes all the messages from the other nodes. After computing

the reduction value, it must send that value to all the nodes participating in the computation:

	 �
� � 	���� /� � ��

�
��� �� ��

�
�/�� � 	� � ��

�
��� �� ��

�
�/��
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�� will block until �� computes the reduction value and sends the value to all nodes up to and

including��. Equation 5.8, which computes the time at which�� receives a message from��, is

extended to allow recipient nodes before��:

	)��� � 	' ��� � 	���� /� � ��
�
��� �� ��

�
�/�� � 	� � ��

�
��� �� ��

�
�/�� � 	����/�

After / is transmitted over the network,�� must then process it:

	 �
� � �

�
�/� � �	)���� �	' ��� ��

�
�/��� ��

�
�/�

GENERALIZED PIPELINED COMMUNICATION

The node�� will only block waiting for a message from���� when performing pipelining. The

only change from Equation 5.5 is that at each tile, node���� can possibly block waiting for a

message from all nodes before it. Let	���� �� �� be the time that node���� has finished its� �� tile

and	���� � � �� be the time node�� finished its� � ��� tile. For each tile, a node must first wait

for the message from its upper neighbor, process the message, perform the computation on the tile,

and finally send its message to its lower neighbor. The time when a node is finished with a tile is

when it performed this sequence for all previous tiles. Therefore, we have the following values for

	���� �� �� and	���� � � ��:

	���� �� �� �

�
�


���

	���� �� /� �� ��
�
�/� � 	' ��� �� �� ��

�
�/�

�

	���� �� �� �

�
���

���

	���� /� �� ��
�
�/� � 	' ��� �� ��

�
�/�

�

Again,	���� /� �� is non-zero only if�� finishes its����� tile before the message from���� arrives:

	���� /� �� � ��	��� 	���� �� �� � 		���
���/�� 	���� � � ��	

Figure 5.10 shows this relationship between two arbitrary nodes. Note that the recurrence ends

with 	���� /� �� � � for all �.
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Figure 5.10:Blocked time for an arbitrary node�� to start its
�� tile. The message from���� arrives at
time����� �� 
� � �	���
���
�, and the node has finished its
 � ��� tile at time����� 
 � ��.

5.3.4 OVERALL MHETA M ODEL

The time at which each parallel section is ready to send its messages in non-pipelined applica-

tions depends on how long all previous parallel sections took, so Equation 5.11 is modified to

include these durations. To do this, three variables must be extended to specify that it is the� ��

parallel section on node�� under consideration: the variable that stores a parallel section duration,

	*��� ��, the variable that stores the duration for computation,	' ��� ��, and the send set����� ��.

The time for the��� parallel section to send its messages is thus modified to:

	���� �
�� �� �

�
���

���

	*��� ��

�
� 	' ��� �� �

��

���

�
�
�/� � �� � ����� ��
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The total execution time for a single iteration on node�� (	����) is the sum of all its�*���

parallel sections:

	���� �

�		�


���

�	*����

5.3.5 TIME COMPLEXITY

The complexity of MHETA is based on the time to calculate the communication, computation,

and I/O costs. For a single node��, the calculation of communication is bound by the number

of parallel sections in the program (�*), the number of tiles in each of� �� parallel section (� �+�
 )

multiplied by the number of senders and receivers in each; this is at most the number of nodes

(�). Calculating computation time is bound by the total number of stages, whereas I/O costs are

bounded by both�& and the number of out-of-core arrays in each stage, which is at most the

number of arrays in the program (�,). The complexity is further increased by� because execution

times must be computed for all nodes. Thus, the total time complexity of MHETA is:

�

�
� �

��
�	

���

� �+�
 

�
� � �

�
�& ��,

���

The values of�*, � , �& and�, for a particular program will be constant, thus the time required

by MHETA to compute its prediction grows quadratically with the number of nodes in the system.
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CHAPTER 6

PERFORMANCE

This chapter discusses the performance of the two main components of the SHARED system

that we have implemented: the data distribution search heuristics proposed in Chapter 4 and the

MHETA model presented in Chapter 5. Section 6.1 describes the common setup for the experi-

ments, such as details of the underlying emulated architectures and the types of applications we

used. The effectiveness of the data distributions output by our system depends a great deal on

MHETA’s accuracy, and we detail in Section 6.2 our model’s performance. This will follow by a

discussion of the performance of each of the search algorithms in Section 6.3. General conclusions

about the performance of both components will be discussed in Section 6.4.

6.1 GENERAL EXPERIMENTAL SETUP

Our underlying architecture is a homogeneous cluster of eight Dell Quad servers running Solaris

2.8. We focus ondistributed memory architectures versus shared memory or a hybrid, so we only

make use of one processor per node. We emulate (1) a slower CPU by forcing the process to do

extra work, (2) a smaller main memory by forcing I/O earlier than would be necessary given the

actual main memory size, and (3) slower I/O by increasing the amount of data accessed by the I/O

routine. This configurable architecture is of a heterogeneous cluster as detailed in Chapter 4—the

nodes can have differing memory sizes, relative CPU powers and I/O latencies.

Two scientific benchmarks are common to both sets of experiments. The first, Jacobi iteration

(Jacobi), iteratively applies a five-point stencil operation on a dense matrix
 and writes the results

to an output matrix� until a satisfying criterion is reached. The matrix pointers are swapped after
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each iteration, so� � ��
�, for the ��� iteration and
 � ���� for the � � ��� iteration, where

� is the same stencil operation. The second, Conjugant Gradient (CG), was ported from the For-

tran implementation in the NAS benchmark suite, and it takes a sparse matrix
 and iteratively

produces an output vector� for a set number of iterations. The new vector� � is generated from

a combination of
 and� : � � � ��
� � �. We also implemented and used one full-scale appli-

cation, a Lanczos iterative method for solving a linear system
� � 0, where
 is a symmetric,

positive definite,� � � dense matrix, and� and0 are column vectors. We selected these appli-

cations because of their iterative nature. These programs were compiled with-02 , and for all

message passing we used LAM-MPI [41]. Jacobi has two parallel sections with one stage each

and computes over two potentially out-of-core arrays (much larger than the message size), so it

has a high computation to communication ratio. In contrast, CG has seven parallel sections and

only two involve computation over a large array; the remaining parallel sections have computation

over smaller vectors that are the same size as its messages. Thus, CG has a lower computation

to communication ratio, but a higher computation to I/O ratio than Jacobi because Jacobi reads

and writes the large arrays each iteration, whereas the array in CG is read-only. Lanczos has fif-

teen parallel sections, and fourteen involve computation over a potentially out-of-core array. These

same parallel sections have multiple stages, some of which involve many smaller in-core vectors.

The large amount of work performed between communication points results in a high computation

to communication ratio for Lanczos, and the fact that the large array is read-only results in a high

computation to I/O ratio. When testing MHETA’s accuracy, we (1) designed and implementing

another application that uses both pipelined and reduction communication patterns modeled on

RNA pseudoknots (RNA), and (2) enhanced the I/O capabilities of Jacobi to include prefetching

mechanisms.

We currently assume that a program’s structural information (the number of parallel sections

and stages as well as variable usage information) is available and input to MHETA. We instru-

mented our applications partially by hand and partially by using the MPI Jack interface. We per-

formed one instrumented iteration of each application, using aBLOCKdistribution (equal size
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strips assigned to each node) to measure computation time, communication overhead, and I/O

cost. During the search, MHETA combines these costs with a candidate data distribution, evalu-

ating its effectiveness. In our experiments we examine iterative scientific programs, so any absolute

improvement from an effective distribution will be multiplied by the number of remaining itera-

tions.

6.2 MEASURING MHETA ACCURACY

We performed detailed analysis of MHETA’s accuracy on the emulated heterogeneous architec-

ture and applications described Section 6.1. We also tested MHETA with a pipelining application

(RNA) similar to RNA pseudoknots, and on Jacobi with prefetching. MHETA is on average more

than 97% accurate in predicting execution times for all four programs and at least 98% accurate

when taking into account prefetching in Jacobi. Our measurements show that MHETA evaluates a

single distribution in about 5.4 ms. This efficiency is important because our SHARED system can

potentially search through many distributions and must make a decision on the fly, and we must to

keep the overhead as small as possible.

Section 6.2.1 describes the setup specific to these set of experiments, followed by comparison

analysis of MHETA’s prediction and actual run times in Section 6.2.2. Section 6.2.3 details some

of the limitations inherent to MHETA. We conclude MHETA’s analysis in this set of experiments

with some discussion of the variability of execution times for an application given different data

distributions in Section 6.2.4, to motivate testing our search algorithms in Section 6.3.

6.2.1 EXPERIMENTAL SETUP FORTESTING MHETA

Figure 6.1 shows the distributions we tested, which ranged in two dimensions: (1) how well the

load is balanced and (2) to what degree I/O costs are considered. The simplest distribution, “Block”

(Blk ), allocates data evenly across nodes without regard for I/O cost or load balance. A “Balanced”

distribution (Bal ) focuses on balancing the load on the nodes and ignores I/O costs. The “In-Core”

(I-C ) distribution in contrast ignores load and focuses on only minimizing I/O costs. The “In-Core
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Figure 6.1:The spectrum of data distributions that we tested.

and Balanced” (I-C/Bal ) distribution first maximizes the number of nodes that have exclusively

in-core datasets and then balances the load as much as possible. We start testing the performance

of MHETA with Blk and progressively generate distributions that move throughI-C , I-C/Bal ,

Bal , and back toBlk . For architectures when the relative CPU power of the nodes is identical,

a Blk distribution already balances the load, so we only vary the distribution betweenBlk and

I-C . A similar simplification is done when the computing environment has no nodes with memory

restrictions (so I/O is not a concern), where we vary the distribution only fromBlk to Bal . The

MHETA model extends to two-dimensional data distributions, but such distributions are problem-

atic for run-time data distribution systems because the search space increases greatly. Hence, we

focus on only one-dimensional distributions.

We emulated seventeen architecture configurations when testing MHETA’s performance for all

four applications, with Jacobi not performing any prefetching. For the experiments of Jacobi with

prefetching, we created twelve emulated computing environments. We tested MHETA’s accuracy

by running both the application and our model with identical distributions for 100, 10, 5 and 10

iterations for Jacobi, CG, Lanczos, and RNA respectively. The number of iterations was chosen to

obtain comparable execution times. We give a general summary of its accuracy in Section 6.2.2.

We then focus on four specific configurations as described in Table 6.1, where we vary the archi-

tecture between those where only the relative CPU power varies (DC, for “different CPUs”), those

where only the emulated disk speeds vary (IO, for “I/O-induced”), and those where both vary (HY,
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Name Description
DC Two nodes have a lower relative CPU power, while two other nodes have higher

relative CPU power. The rest are unchanged.
IO Half of the nodes have high I/O latency with small memories, but all nodes have

equal relative CPU powers.
HY1 Four nodes have varying relative CPU powers and the other four have low I/O

latencies and small memories.
HY2 Four nodes have varying relative CPU power and two nodes have high I/O

latencies. The other two have large memories.

Table 6.1:The configurations of the emulated architectures on which we tested MHETA.

for “hybrid configurations”). The two hybrid configurations (HY1 andHY2) highlight the trade-off

between balancing load and bringing the data in core. An algorithm searching for a data distribu-

tion betweenI-C andI-C/Bal can use MHETA to determine which point results in the lowest

execution time. A discussion of the model’s limitations follows in Section 6.2.3.

6.2.2 COMPARISON OFPREDICTED AND ACTUAL EXECUTION TIMES

Below, we first present the overall numbers averaged over all the different architectures we emu-

lated. Then, we discuss the four specific architectures described in Table 6.1.

OVERALL RESULTS

The results of comparing MHETA predicted execution times and the actual run times are shown

in Figure 6.2. These graphs show the maximum, average, and minimum percentage difference

between MHETA, where the percentage is computed as the absolute difference divided by the

minimum of each application’s predicted and actual execution times. The top left graph shows

that in all seventeen emulated architectures, MHETA is on average 98% accurate for all four pro-

grams without prefetching. The top right graph shows the accuracy of our model for Jacobi with

prefetching in a subset of twelve architectures, also at on average 98%. The bottom graphs show

the average best-case (RNA) and worst-case (CG) examples. When MHETA performs poorly, it is
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Figure 6.2:The minimum, average and maximum percentage difference between the predicted and actual
execution times for all applications, and then specifically Jacobi with prefetching, RNA, and then CG. We
added lines between the discrete data points for ease of readability.

in general due to three inherent limitations of our modeling approach, discussed in Section 6.2.3

below. However, even with unexpected results given these limitations, MHETA still is in general

very accurate. These results show that MHETA for use by algorithms that find efficient data distri-

butions.

SPECIFIC ARCHITECTURES

Figures 6.3 and 6.4 show results using configurationsDC, IO, HY1 andHY2. The graphs show both

predicted and actual execution times in seconds. We see in Figure 6.3 that MHETA performed very

well predicting execution times of all four applications in configurationDC, and when predicting
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Figure 6.3:Actual vs. predicted execution times for configurationsIO (top) andDC (bottom) for all four
applications. The left graphs show times for Jacobi and CG, while the right show times for Lanczos and
RNA. The best distributions in the set investigated for each are circled; where they match, there is only one
circle, and where they do not, the predicted time has a dashed circle.

Jacobi, Lanczos, and RNA execution times inIO. While our model slightly overestimated the

execution time for these applications right before theI-C distribution inDC, it correctly indicates

this effect diminishes as the distribution approachesI-C . This is due to the large computation times

offsetting the smaller I/O times. MHETA did not fare as well in configurationIO in predicting CG’s

execution time as shown by the two dashed circled points in the bottom left graph; however, note

the difference in execution time is only 10%. This inaccuracy is because we use a heuristic to

determine if a variable is out-of-core, and MHETA has difficulties with sparse arrays for CG, as

explained below. Finally, MHETA predicted all test applications accurately onHY1 andHY2 in

Figure 6.4.
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Figure 6.4:Actual versus predicted execution times for configurationsHY1 (top) andHY2 (bottom) running
Jacobi and CG (left) and Lanczos and RNA (right). The best data distribution is circled.

6.2.3 LIMITATIONS

When MHETA performs poorly, it is in general due to three inherent limitations of our modeling

approach. The first limitation is that we do not model the behavior of the memory-cache hier-

archy. Therefore, MHETA occasionally cannot predict when interactions with the cache and main

memory cause the computation time on a node to grow or shrink. If the instrumented run records

inflated or deflated computation times due to this factor, MHETA can consistently over-predict or

under-predict the application execution time. Applications with higher computation costs exag-

gerates this problem, whereas the effects of such computation changes are not as problematic in

applications where communication costs dominate execution.
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The second limitation in MHETA is that the heuristic to determine which variables are out

of core is not sophisticated, occasionally placing what should be an out-of-core variable in the

in-core variable set. MHETA calculates the time spent performing I/O as zero when this error

occurs, hence under-predicting execution time. As the data distribution shifts such that more nodes

become in core, the effect of this limitation decreases. The portion of the rightmost graph from

Blk to I-C distributions for MHETA shows that its accuracy for CG initially dropped from 95%

in the worst case to less than 88%. As the distributions get closer toI-C , this difference decreased

until MHETA returned to 95% accuracy, and its performance improves further as the distributions

we tested shifted toI-C/Bal . A similar drop in accuracy occurs for the same reason with Jacobi,

at the distribution right beforeI-C . Lanczos, with its higher computation to I/O ratio, minimally

exhibits this problem.

Finally, MHETA (along with most data distribution systems) lacks the ability to deal with

sparse datasets. Because there is not a simple correlation between number of rows and number of

elements per row, there are slight load imbalances in CG that our model did not predict. We have

found that despite these problems, MHETA is very effective in practice.

6.2.4 IMPORTANCE OFSELECTING DATA DISTRIBUTIONS

This section discusses the importance of choosing a data distribution on a heterogeneous cluster.

Figures 6.3 and 6.4 show that the difference between the best and worst distribution is almost

a factor of 4 (RNA onDC) and 3 (Lanczos onHY1). While on a simpler architecture such as

DC, it may be possible to determine which distribution is best statically (if one knew the relative

powers of each processor), in general this determination is nontrivial. For example, due to the low

I/O costs and relatively high load imbalances in configurationHY1, one would expect the best

data distribution to beBal . While this is the case for Lanczos, the best distribution for Jacobi

is instead betweenI-C/Bal andBal . Importantly, this distribution issignificantly better (28%)

thanBal . Furthermore, for different architectures that have varied I/O costs and load imbalances

on the nodes, it becomes harder to predict which distribution will be best—meaning that a “guess”
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may end up far from the best choice, which as stated above can result in a doubling or tripling

of execution time. MHETA is able to accurately predict execution times on average 98% of the

time, so it can be an effective tool to use when searching for effective distributions. The basic idea

is that any reasonable algorithm for choosing a data distribution on a heterogeneous cluster will

need as a building block the ability to accurately predict execution time for different distributions.

Section 6.3 describes different data distribution search algorithms that use MHETA during their

search process; (genetic algorithms, simulated annealing, generalized binary search, and greedy

search)

6.3 PERFORMANCE ANALYSIS OF THE SEARCH ALGORITHMS

We investigate the relative and overall effectiveness of the four search algorithms detailed in

Chapter 4—theGBS andGS algorithms that are specifically tailored to this problem and theGA

andSA algorithms that are more general in nature. First, we tested the algorithms on eight nodes,

emulating a variety of heterogeneous architectures as described in Section 6.1. We ran all four

algorithms for one second to keep the overhead of using the SHARED system tolerably low for

the user. Our results show that after running for this period of time, bothGBS andGS on average

produce a data distribution that is 13% better than eitherSA or GA. They also are within 5% of

the Best distribution (see below). The similarity ofGBS andGS’s performance is primarily due

to (1) their technique of directly reducing the component of a distribution that results in the max-

imum execution time and (2) their low calculation overheads. Secondly, we tested the scalability

of theGBS algorithm versusGS on Lanczos and Jacobi running on an simulated architecture of 16,

32, 64, and 128 nodes.GBS consistently produces better data distributions than theGS algorithm

for both applications running on architectures with up to 32 nodes. When the number of nodes

of the target architecture increases to 64 and 128, however,GS initially finds better distributions

because it scales better thanGBS. For each data distribution vector found,GS performs a single

scan through the elements to improve the distribution, whereas theGBS algorithm sorts them. For
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Lanczos running on 128 nodes,GBS is thus slower thanGS in finding a solution until 22 seconds

have elapsed; for Jacobi, this point is reached in 0.5 seconds.

Section 6.3.1 describes the setup specific to these sets of tests. Next, Section 6.3.2 gives com-

posite performance over all applications and several different heterogeneous architectures. Sec-

tion 6.3.3 contains an in-depth comparison of a single program on two specific architectures, fol-

lowed by an evaluation of the scalability of our optimalGBS algorithm versusGS in Section 6.3.4.

6.3.1 SETUP SPECIFIC IN TESTING SEARCH ALGORITHM PERFORMANCE

We intend to eventually use the best of our four algorithms in our SHARED system to make on-

the-fly changes in data distribution, so our algorithm will have to run within a short period of time,

as detailed in Sections 6.3.2 and 6.3.3. When we compared how quicklyGBS andGS produce

effective data distributions as the number of nodes in the parallel architecture increases, initial

tests show no further changes resulted after running for more than 30 seconds. Therefore, we ran

both algorithms for a maximum of 30 seconds in the tests detailed in Section 6.3.4.

Each of the four algorithms output the best data distribution they could find. We also have a

distribution we callBest, which is output by theGBS algorithm when it completes. Unfortunately,

there are two problems with this technique of calculatingBest. First, as the number of nodes in

the input distribution vector increases, theGBS algorithm takes longer to finish. This technique

may therefore take longer than suitable for a runtime data distribution system, but it serves as

a way to evaluate our algorithms. Secondly,GBS does not factor blocked communication time

into its search, as explained in Chapter 4, so it does not produce an optimal distribution when the

application spends a significant portion of its execution blocked waiting for messages.. In those

cases, theBest distribution (or some close approximation) is found by hand (described in more

detail in Section 6.3.3).

The GA’s effectiveness in avoiding local optima depends on correct initial conditions, which

are difficult to establisha priori—they are specific to the application and target architecture for

which we are searching for a distribution. After some initial tests, we determined that a population
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Name Description
DC Two nodes have a lower relative CPU power, while two other nodes have higher

relative CPU power. The rest are unchanged.
IO Half of the nodes have high I/O latency with small memories, but all nodes have

equal relative CPU powers.
HY1 Four nodes have varying relative CPU powers and the other four have low I/O

latencies and small memories.
HY2 Four nodes have varying relative CPU power and two nodes have high I/O

latencies. The other two have large memories.
HY3 Six nodes have varying relative CPU power and three nodes have varying

I/O latencies. Note that some nodes will have both a slow disk and low
CPU power.

Table 6.2:The configurations of five of the emulated architectures on which we tested the performance of
GBS, GS, GA andSA algorithms. Note that theHY3 configuration is new to these set of tests.

of 100 candidate solutions and a mutation probability of 5% help prevent it from converging to a

local optimum. All the algorithms started with a random data distribution (in the case of theGA,

it was 100 random starting points). Due to the high overhead of maintaining and creating large

populations, however, theGA still converges on a solution fairly slowly.

We used 21 different emulated computing environments per application. A majority of these

emulated architectures are the same as when we tested MHETA’s accuracy, and out of the five we

examine in detail, four have already been detailed in Section 6.2.1. The additional architecture,

HY3, has six nodes with varying CPU power and three nodes with varying I/O latencies. Note that

some nodes have both a slow disk and low CPU power. Table 6.2 characterizes the five emulated

architectures we detail in the following sections. For completeness, we also have a set of architec-

tures that emulate a slower CPU on a random subset of nodes and a smaller memory on a random

(and possibly intersecting) subset of nodes. The intention is to mimic an arbitrary cluster.
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Figure 6.5:The percentage difference betweenGS, GA, SA, andGBS algorithms fromBest. Tests are run
over a set of five emulated architectures and the Jacobi, CG, and Lanczos applications.

6.3.2 OVERALL RESULTS

In this section, we present overall results for several different architectures and the three applica-

tions, Jacobi, CG, and Lanczos. We compare the execution time of the application given the best

distribution discovered byGBS, GA, SA, andGS with the time if the application is run with theBest

distribution. Figure 6.5 shows the percentage difference between these times over all architectures

listed in Table 6.2. We plot the result produced by each algorithm every 50 ms until one second

is reached. A 0% difference means an identical result toBest. SA performs at 40% ofBest at 50

ms, primarily due to the fact that during the melting process, the solution is in a very chaotic state.

However, it steadily improves, reaching within 19% ofBest at one second. A negative slope sug-

gests that further improvement is likely, as the cooling rate is sufficiently slow to prevent it from

getting “stuck” at a local minimum. TheGA is also within 39% ofBest by 50 ms. TheGA saves

its best candidates from one generation into another, but has a tendency to allow the population

to converge at a local minimum, which is offset by the mutation factor. At the end of one second,

bothSA andGA are 7% ofBest. Both GBS andGS are 0% ofBest by one second in general, but
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neither algorithm reachesBest for the CG application due to the fact that blocked time is a major

part of communication for this program.

6.3.3 DETAILED RESULTS

This section focuses on an in-depth comparison of performance of all algorithms on two specific

application/architecture pairings: Lanczos onDC and CG onHY2. For each pair, we investigate

three different results. We first show in detail how different each search algorithm is fromBest.

Second, we show the difference in predicted execution time (per iteration). Third, we show that

MHETA is accurate, which verifies that the best distributions found by these algorithms correspond

to effective distributions for the application actually running on the architecture.

The results are shown in Figure 6.6. The high computation to communication ratio for Lanczos

results in significant differences in execution time for different data distributions. As the top left

graph shows, at 200 ms, bothGS andGBS are at 0% ofBest and 78% better thanGA. The per-

formance of theGA further improves to 17% ofBest after 1 second.SA initially performs poorly

within 80% ofBest at 50 ms, but it quickly improves to within 20% ofBestby 150 ms. There is sub-

sequently only a gradual improvement in the solution as it starts from random points in the search

space. The execution time difference, shown in the top center graph, is small in an absolute sense

betweenGA (or SA) andGBS (or GS) (4 seconds); however, note that this is the difference foreach

iteration. In addition,GBS andGS are within 5% of the lower bound, which is the execution time

of the applicationwithout considering communication blocked time. Finally, our results verify our

approach to model the execution of these applications in searching for a data distribution. There

is a small negative difference between the predicted and actual execution times (shown in the top

rightmost graph).

Due to the low ratio of computation to communication in CG, changes in the data distribution

do not greatly effect execution time. After running the algorithms for 50 ms, none improve, as

shown in the bottom left graph. Of some interest is that nowSA outperformsGA by at least 35%.

In addition, this low ratio highlights the problem that ignoring communication blocked time can
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Figure 6.6:The performance of the heuristics on theDC configuration for Lanczos and theIO configuration
for CG. Note thatGBS andGS times overlap in the middle graphs. The predicted and actual execution times
are per iteration.

present toGBS andGS—both are at least 20% worse thanBest, which we found by hand. This

point is further highlighted in the bottom center graph. The lower bound is far less thanBest (1.7

seconds, or 50%), indicating that blocked communication time is a significant portion of the total

execution time. Again, the bottom right graph shows that the predicted execution times are close

in practice to the actual execution times.

6.3.4 SCALABILITY

We compare the performance ofGBS andGS over both Lanczos and Jacobi programs running

on a simulated architecture of 32, 64, and 128 nodes. We ignore theGA andSA algorithms, as
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Figure 6.7:The scalability performance of theGBS andGS algorithms for Jacobi and Lanczos.

they do not scale well at all. TheGA must successively generate new populations, which is a

very slow process at larger numbers of nodes, and the “cooling” of the search vector in theSA

algorithm also becomes very slow. The results of Lanczos and Jacobi are the left and right graphs

in Figure 6.7. At larger number of nodes, the drawback of theGS algorithm becomes evident; i.e.

because it does not do a pairwise examination of all values, it gets stuck in a local optima. TheGS

algorithm thus consistently performed worse thanGBS for both applications at 32 nodes, as shown

by the negative values in the graphs. At large numbers, however, the faster speed ofGS enables

it to initially outperformGBS. However, after 3 seconds for Lanczos and 300 ms for Jacobi, this

advantage again disappears, andGBS is the best algorithm for 64 nodes. After a period of time, the

GS algorithm again performs well—as theGBS algorithm slows down to find the optimal solution,

the greedy search proceeds to a better solution faster. This advantage quickly disappears again for

Jacobi (within a second), and much more gradually in Lanczos (22 seconds).

6.3.5 SUMMARY OF RESULTS

We draw the following conclusions from our results. First,GBS andGS are typically more effective

search algorithms in general for the out-of-core, heterogeneous data distribution problem than

SA or GA. In particular, with moderate to high computation to communication ratios, and small
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numbers of nodes,GBS andGS find distributions that are 1.5 three times faster thanGA or SA.

However, with low computation to communication ratios,SA andGA may be better, but not by

nearly as significant an amount. Second, as the number of nodes increases,GS and GBS scale

much better thanSA or GA. BetweenGS andGBS, the former is better for (at most) the first few

seconds, while the latter dominates from that point on. The proper algorithm to use depends on

how long the runtime system is willing to search for a data distribution.

6.4 GENERAL CONCLUSIONS

Our results show that our SHARED system should use theGBS algorithm with the MHETA eval-

uation function when producing effective data distributions. This conclusion is valid when the

communication blocked time is not a significant portion of an application’s total execution time

(its computation or I/O to communication ratio is high).

First, we determine that our MHETA model is a suitable and useful evaluation function for the

search algorithm in SHARED because it is at least 97% accurate in predicting execution times for

applications in our testbed. Second, we show that althoughGBS andGS are both significantly better

thanGA andSA in producing effective data distributions quickly for Jacobi and Lanczos,GBS does

not scale as well asGS. GBS consistently finds more effective distributions when there are fewer

than 64 elements in the distribution vector. When this vector size increases to 64 and larger, theGS

algorithm initially performs better because it takes less time to generate better distributions.GS can

get stuck in a local optima, however, whereas theGBS algorithm can eventually find the optimal

distribution given a reasonable amount of time. TheGBS algorithm is thus the best choice , as it is

comparable toGS when the size of the distribution vector is small and eventually out-performsGS

with larger vector sizes.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

I/O costs are an important factor for two reasons when scheduling or distributing data for scientific

applications. First, parallel applications are increasingly likely to run on a more cost effective

heterogeneous set of “off the shelf” machines that can have potentially limited memory capacities.

A data distribution onto this architecture has a higher probability of assigning more data to a node

that it can hold in its memory. Second, large scale scientific applications can easily increase their

working dataset size either by increasing resolution or accuracy requirements, again exceeding the

memory capacity of the underlying architecture. The assumption of infinite memory is therefore

less feasible given these factors, and mechanisms to assess the costs to access the disk must be

included in runtime systems for parallel applications.

After verifying through a gang scheduling simulator the importance of I/O-awareness in

scheduling, we formalized the out-of-core, heterogeneous data distribution problem. A brute force

search for the most effective distribution is computationally intractable, and there are two methods

to solve this problem adequately. The first is to simplify the problem; we assume monotonicity

between a data distribution and the resulting execution time of an application and ignore commu-

nication blocked time. TheGBS algorithm is optimal with this simplification and finds a solution

in polynomially bound time. The second is to employ a heuristic to find near-optimal data distri-

butions, such as simulated annealing (SA), genetic algorithms (GA) or greedy search (GS). Note

that GBS does not produce an optimal distribution if it either (1) does not run to completion or

(2) communication blocked time is a significant portion of an application’s execution time. When

the number of elements in the distribution vector is large,GBS takes longer to finish (as does all

the other algorithms), and it is less likely to produce the optimal distribution within the time limit.
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We studied the relative and absolute performance ofGBS versus these other three heuristics in

finding an effective data distribution within one second of execution. Suppose there are� nodes,

an initial distribution vector� � ���� � � � � ��	 and function������ � ������ � ������, where��

and�� return the duration for the��� node to perform computation and I/O, respectively. For each,

we compared the distributions output by all four algorithms to (1) the optimal distribution from

runningGBS to completion as well as (2) the lower bound on application execution time, which is

� ���������� ������.

Results show that in the majority of cases, theGS andGBS algorithms are very effective. When

running both of these for one second, they were on average within 2% of the best distribution for

four applications running on a variety of emulated architecture.GS andGBS are better than aGA

because they sample points in the search space quickly without the overhead of maintaining and

processing multiple candidates. They also do not rely on any initial conditions, whereas anSA’s

performance depends on the best cooling schedule, which is often difficult to determinea priori.

For the CG application, however,GBS is not as effective because CG spends a significant amount

of time in blocked communication. When comparing how wellGBS andGS scale to the number

of elements in the solution vector, we find thatGS is initially more effective thanGBS when the

number of nodes in the architecture is small. Unlike theGBS algorithm,GS does not perform any

sorting, so given equal amounts of time, it explores more points in the search space thanGBS and

finds better solutions quickly. However, theGBS algorithm is still comparable when the vector size

is small, and once the number of elements increases, theGS algorithm is likely to get stuck in a

local optimum, whereas theGBS algorithm proceeds to find the optimal distribution.

All the search algorithms require an evaluation function for each candidate distribution, and

we developed an accurate computation model called MHETA for this purpose. MHETA consists

of a system of equations that include the costs of computation, communication and I/O specific

to the application running on the target architecture in its prediction of its execution time. Our

model is implemented such that the equation structure is built from information, extracted by a

pre-processor, about the relationship between an application’s parallel sections, stages, tiles and
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Figure 7.1:The general structure of the SHARED runtime system. Thebold components are for future
work.

the variables they use. We target iterative applications, and the values for the parameters of these

equations is measured during an instrumented iteration run with an arbitrary distribution. Exper-

iments with Jacobi with and without prefetching, CG, Lanczos and RNA show MHETA predicts

their execution time with on average at least 96% accuracy. Therefore,GBS (along with MHETA)

will serve as a key component of a runtime system we are developing that can select an effective

distribution on the fly.

7.1 FUTURE WORK

For the short term, I will continue developing this runtime system, shown in Figure 7.1, by

enhancing certain components and adding others. I plan to enhance the evaluation function to

increase the types of architectures and communication patterns that this system can accommodate

when searching for an effective data distribution. For example, MHETA can easily be expanded
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to correctly calculate the costs to access remote disks. However, the system must then be able

to detect which I/O operation is invoked to use the correct equations. In addition, more research

is required to factor how network congestion can cause increased delays beyond what can be

predicted when accessing remote disks. MHETA can also be enhanced to calculate the costs of

performing more communication patterns, such as all-to-all, shuffle, and cascade message passing.

I intend to design and implement the component that automatically extracts application struc-

ture information, which is required by MHETA and is currently done by hand. A compiler has

access to the program source code, so it can view global relationships between instructions and

split the program into the parts that each equation in MHETA represents. My focus is on parallel

and distributed systems, so the algorithm I already formalized to perform this is relatively simple—

it does not perform any inter-procedural analysis, for example. I will further the design so that it

can perform more complex analysis.

With regard to broader issues, I plan to investigate other important aspects of parallel and dis-

tributed computing, such as scheduling, data redistribution, and task parallelism. I have already

shown through simulation that gang schedulers could benefit from knowledge of an application’s

I/O behavior, and I plan to examine how other coordinated kinds of scheduling could be designed

to minimize the impact of I/O costs on execution times. In environments where resources must be

shared, runtime systems such as Dyn-MPI [58] typicallyredistribute data. Building on the ideas I

contributed in [58], I would like to investigate how I/O costs can be integrated with these systems.

For example, they could use I/O costs in cost/benefit analysis to effectively determinewhen to per-

form the redistribution. Finally, certain phases of scientific programs could operate more efficiently

when their individual tasks run in parallel (task parallelism). The runtime system could thus use

I/O behavior information in determining whether to perform task versus data parallelism if both

are possible, and when to switch from one to the other.

This research is the first step in developing our SHARED system that automatically maps

work of a parallel application onto the underlying architecture that will minimize execution time.

Although we implemented several key components, various stages have yet to be completed. User
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still must analyze the application source code by hand and insert some instrumenting code to be

used by SHARED later, which is a tedious and error-prone process. In addition, they then must

manually run the application with the distribution found byGBS. With further work and enhance-

ments, our system will free the user of this burden. It will take a parallel scientific application

and automatically (1) analyze its structure, (2) measure costs specific to its execution during an

instrumented run, (3) construct an accurate model and (4) search for an effective data distribution.

It will then take the distribution output by the search algorithm and run the program with the new

data mapping based on that distribution. Our system correctly includes I/O costs, and is thereby

applicable in more situations than traditional approaches that assume infinite memory capacities

and are I/O oblivious.
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APPENDIX A

COMPLEX ANALYSIS OF SCIENTIFIC APPLICATIONS

The pre-processor that defines the parallel sections and stages in an application as described in

Chapter 5 operated under several simplifying assumptions. The states and transitions in the deter-

ministic finite automaton of Figure 5.3 sufficed for programs that (1) have stages explicitly defined

by loop bounds and (2) did not allow nested loops in a stage. Scientific programs are generally

more complex with complicated stages, and we first detail changes to the pre-processor that allows

it to correctly determine stages. We follow with further enhancements for the the correct detection

of tiles.

The transitions and states needed for this more complex analysis of parallel sections and stages

are in thenondeterministic finite automaton (NFA) shown in Figure A.1. To allow for a stage to

implicitly start with a parallel section, there is an additional transition from the Parallel Section

to Stage states taken when the current instruction is neither the start of a loop (loopstart) nor

a communication event (Comm). Encountering Comm while in a stage indicates the end of that

stage and the parallel section, so the�&�* variable is set to true during the transition out of the

Stage state. Once in the Parallel Section state, the transition to increment the+&�*��� variable is

taken immediately.

Nested loops within a stage are handled through the addition of two states. The Loop Start

and Loop End states are entered when the instructions indicating the start (loopstart) and end

(loop end) of a loop are encountered, respectively. (The$ transition from Loop Start to Stage is

given a condition when we expand the NFA to include tiles.) We use the variable�1��'+ to control

when the outermost loop of the stage finishes (i.e.�1��'+ � �). A stage that started implicitly with
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Loop
End

Start
Loop

! loop_end
! loop_start

#loops > 1

! Comm

Stage

loop_end

#loops < 1
stage++

loop_end

Comm

! (loop_start || Comm)

Comm || next

loop_start

section++
stage <− 0
next <− F

next <− T

ε

loop_start

#loops <− 0
Section
Parallel

loop_start

if( #loops < 1)
  stages++

#loops−−

#loops++

section <− 0

Figure A.1:A directed graph expands the diagram in Figure 5.3 to include nested loops and stages bound-
aries that are implicit with parallel sections. Theitalic and bold terms are statements (tokens) encountered
in the source code.Italicized terms are conditions that determine whether the transition occurs.Courier
and bold terms are actions for internal variables.

a parallel section can end and another one start when a loop is encountered, so the transition from

the Stage to Loop Start states have a conditional increment of the+*"�& variable.

The state diagram becomes even more complex when determining where tiles start and end

because a loop can now indicate the existence ofboth stages and tiles. However, stages can have

nested loops, whereas tiles cannot. This new NFA that distinguishes between stages and tiles is

shown in Figure A.2. There are three new states (Tile Start, Tile End, and Comm Event) and

multiple new transitions that are taken under specific conditions. A typical implementation of

pipelining involves a potential receive for boundary information, followed by computation over

local data, and ending with potentially sending data to another node. A tile is thus bounded by

the start and end of a receive-compute-send loop. The start of a tile is indicated by detection of
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Tile
End

Event
Comm

Parallel
Section

Tile
Start

Loop
End

Start
Loop

! (loop_start || Comm)

!tile && #loops < 1

!tile
tile

loop_start

!Comm

#loops > 0

tile && #loops = 0

Stage

loop_end

Comm

!tile && #loops = 0Comm

loop_end

Comm

loop_start

  stages++
if( #loops < 1)

#loops <− 0

#loops = 0

tile <− F

tile <− T
#loops <− 0

stage <− 0

#loops−−

#loops++

  stages++

Figure A.2:A directed graph expands the diagram in Figure A.1 to include identifying tiles. Several edges
have been removed for legibility, and unmarked edges indicate that the conditions for leaving a state has not
changed from the previous diagram.
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loop end followed immediately by Comm; otherwise, it enters the Stage state. In the Tile Start

state,�1��'+ 
 � to correctly detect nested loops in the stages in the tile, sets the variable*�1&

to true to control which transition is taken when in the Comm Event state, and sets the number of

stages to zero. If another Comm immediately follows, the tile is assumed to have no computation,

and because the variable*�1& is set to true, we proceed to the Tile End state. Alternatively, the pre-

processor enters the Stage state either by encountering loopstart (after which there could be nested

loops in a stage), or if a stage is implicitly as bounded by the tile itself. If Comm is encountered

while in a stage, either the pre-processor enters the Parallel Section or Tile End based on whether

*�1& is false or true, respectively. If Loop Start is encountered after a stage ends while within a tile,

the pre-processor enters the Loop Start state for another stage. A loopend encountered while at

the Tile End state returns the pre-processor back to the Parallel Section state.
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