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Introduction

The main goal of this thesis is to give an essentially self-contained treatment of the explicit computation of the

cohomology of local systems on modular curves and on Siegel modular threefolds, particularly in the case of square-

free parahoric level. Several applications are given: conjectural congruences for (Siegel) modular forms, conjectural

extensions of mixed motives appearing in the cohomology of Shimura varieties, and finally explicit computations

around arithmetic statistics for point counts on Abelian varieties over finite fields, the last of which is the main focus

of the first part of the thesis. The second part of the thesis, which comprises a majority of its length, is devoted to

these explicit computations of cohomology.

The number of new results in this thesis is somewhat modest relative to its length. To wit, a large portion of

the thesis is devoted to exposition around the methods used in the explicit computation of cohomology of local

systems on Shimura varieties, which are surely familiar to experts in this topic and which are generously scattered

throughout the present literature. That being said, there are a few reasons why we have gone to such lengths to

exposit this material:

• Although there is an extensive literature on the cohomology of Shimura varieties and the methods used

to compute this, most sources focus only on individual parts of these computations rather than giving a

comprehensive treatment of the topic: many sources focus on the intersection cohomology or the Eisenstein

cohomology alone, and many sources only consider the case of the trivial local system rather than more general

local systems. The main issue is that there are enough differences in notation and conventions between various

treatments that it is difficult to combine individual parts of the literature without substantial refactoring.

This seems to be a common theme: for example as Langlands-Ramakrishnan remark in their volume on the

zeta functions of Picard modular surfaces [75], to which many authors contributed:
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“We have, in our editorial capacity, forgone any attempt to impose absolute uniformity of notation

or definitions on the authors; it would have been beyond our powers of persuasion. The authors,

in additional to their particular goals also had this common topic in mind, and were by and large

consistent, but the reader is appraised that the effort of reconciling all signs and all possible variants

of the defining data is left to him, if his own purposes require it. The editors try occasionally

in this account to mediate between conflicting notations, but in no systematic way, nor do they

guarantee their interpretations are always correct, or that they have been completely successful in

keeping abreast of changes of notation in successive versions of texts”

In many ways, the same appologia apply to our own work, and there are surely some inconsistencies in

notation which remain at the time of writing. That being said, our purposes require exactly the reconciliation

which Langlands-Ramakrishnan are alluding to, and much of the expository work in this thesis is concerned

with these efforts.

• Despite the extensive literature on the cohomology of Shimura varieties, there are surprisingly few sources

which are concerned with complete and explicit computations. One reason for this is that there are some

disconnects between the utility of the cohomology of Shimura varieties to the broader goals of the Langlands

program, and the utility of such explicit computations to various applications in algebraic geometry. To the

extent that a large part of the Langlands program is concerned with the construction of Galois representations

attached to automorphic representations, computations involving the cohomology of non-compact Shimura

varieties are in many ways a needlessly complicated way to realize this correspondence: indeed, any Galois

representation which appears in the cohomology of non-compact Shimura varieties already appears in the

cohomology of compact Shimura varieties, where many technical difficulties involving Eisenstein cohomology

can be ignored. On the other hand, many applications to algebraic geometry require the consideration of

various moduli spaces which happen to be non-compact Shimura varieties, and many experts in algerbaic

geometry who would benefit from such explicit computations are not experts in the Langlands program, and

such computations are prohibitively difficult without a great deal of familiarity with certain aspects of the

Langlands program.

• Some of the existing literature pertaining to the cohomology of local systems on the moduli of principally

polarized Abelian surfacesA2 are in some ways slightly unsatisfactory, although the present writing could

hardly exist without them, and a great intellectual debt is owed to those who contributed to this literature.
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The main sources are Harder’s paper [55] treating the Eisenstein cohomology of local systems on A2 and

Petersen’s paper [96] on the cuspidal cohomology of local systems onA2 which relies heavily on Flicker’s book

[33] on automorphic representations for PGSp4. Harder’s paper does not adequately treat the case of Borel

Eisenstein cohomology (the hardest case in this computation!) and merely states the answer; we end up taking

a quite different approach compared to Harder’s paper, relying on the cohomology of the Franke-Schwermer

filtration rather than the cohomology of the boundary of the Borel-Serre compactification. Petersen’s paper is

quite satisfactory, but spends some amount of time remarking on various (arguably minor) typos in Flicker’s

book which would lead to false results if taken without modification. Moreover, the results of Flicker are

inadequate for the computations involving level structure considered in this thesis, and we instead rely on

more recent results of Gee-Taïbi [43] which provide the required endoscopic classification for automorphic

representations ofGSp4 possibly with nontrivial central character as conjectured by Arthur [6], as the results

of Flicker for automorphic representations of PGSp4 can only treat the case of trivial central character.

We should also mention the enormous intellectual debt that is owed to Rösner’s thesis [100] which more or less

completely treats the computations of intersection and cuspidal cohomology treated in this thesis. In particular,

many of the tables of representations appearing at the end of this thesis, particularly those related to representa-

tions of GSp4(Fq) and parahoric restrictions of depth 0 representations of GSp4(F ) are maybe a bit shamelessly

borrowed from Rösner’s thesis, if only for the sake of completeness of exposition. There are a few key differences:

• Rösner’s thesis is largely concerned with the example of the cohomology of local systems on the moduli of

principally polarized Abelian surfaces with full level2 structureA2[2], and does not analyze the contributions

to cohomology coming from Soudry lifts, as these do not appear in this example. Since we are concerned

with the cohomology of local systems on the moduli of principally polarized Abelian surfaces with full level

N structureA2[N ] forN square-free more generally, we are forced to analyze this remaining case in some

amount of detail.

• Rösner’s thesis makes no attempt to justify the Galois action on intersection cohomology, and makes no

mention of how the Langlands-Kottwitz method is used. Some of these details are treated in Weissauer’s book

on Siegel modular threefolds with particular focus on the case of Yoshida lifts, but much of the trace formula

computations there make use of CAP localization which discards the terms which intervene in the remaining

cases of Saito-Kurokawa lifts and Soudry lifts. Although we regrettably fall short of giving a comprehensive
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treatment of the necessary background required to apply the Langlands-Kottwitz method, a portion of the

relevant computations are included in this thesis.

• Rösner’s thesis makes the unfortunate choice of using different notations for representations of GSp4(Fq)

for q even and q odd, consistent with the differing notations between work of Enomoto [30] treating the

former and work of Shinoda [109] treating the latter. At the risk of introducing more differing notations into

the literature, we choose to use consistent notation for both of these situations, which we hope to clarify in

future writing expositing the Deligne-Lusztig theory used to establish these results in the first place.

Finally we should mention the work of Grbac-Gröbner [48] which informed many of the computations of Eisenstein

cohomology appearing in this thesis. Again there are a few key differences:

• The work of Grbac-Gröbner provides partial computations of the Eisenstein cohomology with coefficients

in highest weight representations for Sp4, over totally real number fields in general. By contrast, this thesis

is concerned with the same computation for GSp4, but only over Q. We still run into the same issues of

understanding certain connecting morphisms which obstruct complete computations as in work of Grbac-

Gröbner; nevertheless, these uncertainties are isolated to a much smaller range when working over Q, and in

many cases these issues are resolved by considerations of cohomological dimension for congruence subgroups

of Sp4(Q). As we will explain later, the computations of Euler characteristics are unaffected by these issues.

• The work of Grbac-Gröbner makes no mention of the Galois action on Eisenstein cohomology; after all, their

computation is for Sp4 and topological in nature, and these considerations are only relevant for GSp4 in the

setting of Shimura varieties. Again, we fall a bit short of giving a satisfactory treatment of the Galois action on

Eisenstein cohomology; one would have to expand the parabolic terms in the Arthur-Selberg trace formula

as work of Laumon [76] does in the case of the constant local system, and then explain the application of

the Langlands-Kottwitz method relating such parabolic terms for suitable test functions to the weighted

intersection cohomology of local systems as in work of Morel [87], which is beyond the scope of the present

thesis.

Having stated some of these caveats and comparisons to previous work, it is worth mentioning what is actually new:

• As mentioned above, we compute the Eisenstein cohomology of local systems on Siegel modular threefolds

under certain assumptions on the behavior of connecting morphisms. The main results are 4.3.12 (following

from 4.3.10), 4.3.21 (following from 4.3.19), and more notably 4.3.34 (following from 4.3.28).
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• We verify the conjectures of Bergström-Faber-van der Geer [14] on the Euler characteristics of local systems

onA2[2], and strengthen these conjectures to a complete determination of the cohomology of local systems

onA2[2], up to the caveats mentioned above. There is strong computational evidence that the expression

for the Euler characteristics of local systems onA2[2] appearing in this thesis are correct; surprisingly, almost

half the entries in the table of Euler characteristics appearing in work of Bergström-Faber-van der Geer differ

substantially from our results, but our results agree completely with the outputs of the computer program

these authors used to formulate these conjectures in the first place. Some of the discrepancies in their tables

contradict known results of Harder and Petersen on the cohomology of local systems on A2, and some

contradict results of Rösner on the cuspidal cohomology of local systems onA2[2]; by contrast the computer

program (kindly shared by Bergström) has a quite robust implementation, relying on direct computations

of point counts of genus 2 curves over finite fields. The main results are 4.6.5 (following from 4.6.1 and 4.6.4

which reproves results of Rösner) and 4.6.6, 4.6.7, 4.6.8 (under the same assumptions on the behavior of

connecting morphisms).

• We reprove a result of Hoffman-Weintraub [57] on the cohomology ofA2[3]: whereas the results of Hoffman-

Weintraub explore this computation using rather explicit algebraic geometry, their computation takes the

better part of a fourty page paper without much hope of generalizing to other local systems; by contrast, we

treat the same computation in only a few pages. The main results are 4.7.4, 4.7.5.

Much remains to be done, especially around an adequate treatment of the Langlands-Kottwitz method for inter-

section cohomology and its generalization to weighted intersection cohomology, and explicit computations around

the Arthur-Selberg trace formula and its stabilization required to execute this method.
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Organization A general map of the sections of the thesis, and relations between them, can be displayed as follows:

2.1.1, 2.3.1
Shimura Varieties

2.1.2
(g,K∞)

2.2, 2.3.3
Eisenstein

2.1.3, 2.1.4, 2.3.2
Cuspidal

2.3.4, 2.3.5
Langlands
Kottwitz

1.1
Point

Counts

3.1
Modular Curves

3.2
GL2(R)

3.3
Eisenstein

3.4
Cuspidal

3.5, 3.6
Examples

1.2
g=1

4.1
Siegel Threefolds

4.2
GSp4(R)

4.3
Eisenstein

4.4
Cuspidal

4.5, 4.6
Examples

1.3
g=2

5.1
Parahorics

5.2
GL2(F )
GSp4(F )

5.3
GL2(Fq)
GSp4(Fq)

5.4
Parahoric
restriction

1.4
g=3

The content of these sections is summarized as follows:

(i) Chapter 1 gives a gentler introduction to the problem of explicit computations of the cohomology of local

systems on Shimura varieties by focusing on the example of the moduli stacksAg of principally polarized

Abelian varieties of dimension g, which are Siegel modular varieties of the simplest possible level. Results

on the cohomology of local systems onA1 andA2, as well as conjectures of Bergström-Faber-van der Geer

on the cohomology of local systems onA3 are reviewed in detail, and in each case we apply these results and

conjectures to explicit computations around arithmetic statistics for point counts on Abelian varieties over

finite fields.

(ii) Chapter 2 reviews and develops the main setup used in the discussion of the cohomology of local systems

on Shimura varieties. Roughly speaking the computation of the cohomology of local systems on Shimura

varieties breaks up into two main steps: the intersection and cuspidal cohomology, and the Eisenstein co-

homology. In each of these cases one can consider the computation in the setting of singular or de Rham

cohomology, or in the setting of ℓ-adic cohomology.

• Section 2.1 discusses the basic setup around Shimura varieties and the intersection cohomology of their

minimal compactifications. In 2.1.1 we recall some basic definitions around Shimura varieties, their

Hecke correspondences, and the local systems they carry. In 2.1.2 we recall the definition of (g,K∞)-

cohomology and clarify some subtleties around central characters and component groups, and then

explain how the de Rham cohomology of Shimura varieties can be computed as (g,K∞)-cohomology

(albeit intractably). Moving towards a more tractable strategy, in 2.1.3 we recall the definition of L2-
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cohomology and then explain how the L2-cohomology (respectively the cuspidal cohomology) of

Shimura varieties is related to the (g,K∞)-cohomology of the automorphic discrete spectrum L2
disc

(respectively the automorphic cuspidal spectrum L2
cusp) In 2.1.4 we recall the definition of intersec-

tion cohomology, and then recall Zucker’s conjecture which relates L2-cohomology to intersection

cohomology.

• Section 2.2 discusses the basic setup around the Eisenstein cohomology of Shimura varieties as the

(g,K∞)-cohomology of a slightly larger space of automorphic forms. In 2.2.1 we recall further results

around automorphic forms and their decomposition according to cuspidal support, as well as review-

ing necessary results on automorphic Eisenstein series. In 2.2.2 we recall the definition of the Franke-

Schwermer filtration on spaces of automorphic forms defined in terms of residues and derivatives of au-

tomorphic Eisenstein series, and explain how the associated spectral sequence in (g,K∞)-cohomology

computes the cohomology of local systems on Shimura varieties.

• Section 2.3 reinterprets the above constructions in the ℓ-adic setting, and sketches how the Galois

action on the ℓ-adic cohomology of Shimura varieties is computed by the Langlands-Kottwitz method.

In 2.3.1 we fix some assumptions on the existence of integral models of Shimura varieties and their

minimal compactifications compatible with the previously constructed Hecke correspondences and

local systems. In 2.3.2 we quickly recall the definition of ℓ-adic intersection cohomology and explain

the compatibility with the previous construction of L2-cohomology. In 2.3.3 we discuss the more

subtle definition of ℓ-adic perverse sheaves carrying weight filtrations and the associated weighted t-

structure, explain how the associated spectral sequence in weighted ℓ-adic cohomology computes the ℓ-

adic cohomology of local systems on Shimura varieties, and explain the compatibility with the previous

construction of Eisenstein cohomology. In 2.3.4 we explain some of the details around the Langlands-

Kottwitz method the stabilization of Arthur’s trace formula. In 2.3.5 we review Arthur’s conjectures

on the decomposition of the automorphic discrete spectrumL2
disc in terms of global A-parameters and

explicit multiplicity formulas.

(iii) Chapter 3 applies the setup from the second chapter to the case of modular curves. The main purpose of

including this chapter is to provide a much more example of the general theory developed in the second

chapter as a warmup before considering a much more complicated example in the next chapter.
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• Section 3.1 discusses the basic setup around modular curves as Shimura varieties and their correspond-

ing moduli problems, and addresses the construction of the local systems whose cohomology we are

interested in.

• Section 3.2 collects results on discrete series representations of SL2(R) and GL2(R), including the

computation of (g,K∞)-cohomology.

• Section 3.3 considers the Eisenstein cohomology of local systems on modular curves. In 3.3.1 we review

and reprove results on the locations of poles of automorphic Eisenstein series for GL2. In 3.3.2 we

execute the relevant computations of (g,K∞)-cohomology, and explain what assumptions are made

on the behavior of connecting morphisms which are not addressed in the present thesis.

• Section 3.4 considers the cuspidal cohomology of local systems on modular curves. We sketch how the

Langlands-Kottwitz method is used to compute the relevant Galois representations.

• Section 3.5 quickly reproves the example of the cohomology of local systems on A1 in terms of the

above results. We then remark on mod ℓ congruences for SL2(Z) cusp forms and explain how this

relates to the previously constructed ℓ-adic Galois representations.

• Section 3.6 explains a further example of the cohomology of local systems on A1[2] in terms of the

above results, this time making use of parahoric restriction for GL2(Q2).

(iv) The fourth chapter applies the setup from the second chapter to the case of Siegel modular threefolds. This

is the main computational content of the thesis.

• Section 4.1 discusses the basic setup around Siegel modular threefolds as Shimura varieties and their

corresponding moduli problems, and addresses the construction of the local systems whose cohomology

we are interested in.

• Section 4.2 collects results on representations of Sp4(R) and GSp4(R), and summarizes results on

their (g,K∞)-cohomology, which are used heavily in later sections.

• Section 4.3 considers the Eisenstein cohomology of local systems on modular curves. In 4.3.1 we review

and reprove results on the locations of poles of automorphic Eisenstein series for GSp4. We then

execute the relevant computations of (g,K∞)-cohomology, where the main computation involves

three main cases, one for each standard parabolic Q-subgroup of GSp4. In 4.3.2 we treat the case of

the Siegel parabolic subgroup, in 4.3.3 we treat the case of the Klingen parabolic subgroup, and in 4.3.5
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we treat the case of the Borel parabolic subgroup. In all of these cases we explain what assumptions are

made on the behavior of connecting morphisms which are not addressed in the present thesis.

• Section 4.4 considers the cuspidal cohomology of local systems on modular curves. In 4.4.1 we review

the structure of the relevant Arthur parameters for GSp4. In 4.4.2 we sketch some of the background

needed to apply the Langlands-Kottwitz method for GSp4, namely the choice of test functions and

the basic shape of the trace formula and endoscopic character identities which appear. In 4.4.3 we

review some definitions and results around local and global theta lifts which are used to construct the

relevant packets of representations for GSp4. We then execute the relevant computations of (g,K∞)-

cohomology and applications of the Langlands-Kottwitz method, where the main computation in-

volves six main cases, one for each type of A-parameter for GSp4. In 4.4.4 we treat the case of general

type A-parameters, in 4.4.5 we treat the case of endoscopic A-parameters and their parahoric restric-

tions, in 4.4.6 we treat the case of Siegel-CAP A-parameters and their parahoric restrictions. In 4.4.7

we treat the case of Klingen-CAP A-parameters, although we do not analyze their parahoric restric-

tion in as much detail. In 4.4.8 we analyze the case of Borel-CAP A-parameters and explain why they

cannot contribute to cohomology. Finally in 4.4.9 we treat the simplest case of 1-dimensional type

A-parameters.

• Setion 4.5 quickly reproves the example of the cohomology of local systems onA2 in terms of the above

results. We then recall Harder’s conjectures on mod ℓ congruences for Sp4(Z) Siegel cusp forms and

explain how this relates to the previously constructed ℓ-adic Galois representations.

• Section 4.6 explains new results on the cohomology of local systems onA2[2].

• Section 4.7 reproves some known results on the cohomology ofA2[3].

(v) The fifth chapter is an appendix which collects results from representation theory which are used in the third

and especially the fourth chapters.

• Section 5.1 recalls definitions around Bruhat-Tits theory and parahoric subgroups. In 5.1.1 we quickly

summarize the standard parahoric subgroups for GL2 which are assumed in section 3.1, and in 5.1.2 we

quickly summarize the standard parahoric subgroups for GSp4(F ) which are assumed in section 4.1.

• Section 5.2 quickly summarizes some results about representations of relevant p-adic groups. In 5.2.1

we summarize the classification of non-supercuspidal representations of GL2(F ) along with their L-
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factors and ϵ factors. In 5.2.2 we summarize the classification of non-supercuspidal representations of

GSp4(F ) along with their L-factors and ϵ factors.

• Section 5.3 summarizes some results about representations of relevant finite groups. In 5.3.1 we sum-

marize the classification of representations of GL2(Fq) and related groups. In 5.3.2 we summarize the

classification of representations ofGSp4(Fq) (treating the cases of characteristic p > 2 and characteris-

tic p = 2 separately but with uniform notation), in particular listing the various parabolic restrictions.

• Section 5.4 summarizes some results about depth 0 parahoric restrictions of relevant groups. In 5.4.1

we summarize the depth 0 parahoric restriction of representations of GL2(F ). In 5.4.2 we summarize

the depth 0 parahoric restriction of representations of GSp4(F ).
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Chapter 1

Arithmetic Statistics

Introduction

Let [Ag(Fq)] be the set of isomorphism classes of principally polarized Abelian varieties of dimension g over Fq .

The cardinality #[Ag(Fq)] is finite; of course, for each [A, λ] ∈ [Ag(Fq)] the cardinality #A(Fq) is finite, and is

constant in its isogeny class. One would like to understand how the point counts of principally polarized Abelian

varieties over Fq distribute.

Experience informs us that such point counting problems are better behaved when weighted by the number of

automorphisms. To that end letAg(Fq) be the groupoid of principally polarized Abelian varieties of dimension g

over Fq . Consider the groupoid cardinality

#Ag(Fq) =
∑

[A,λ]∈[Ag(Fq)]

1

#AutFq(A, λ)

For example, one has (classically for g = 1, by Lee-Weintraub [78, Corollary 5.2.3] for g = 2 and by Hain [53,

Theorem 1] for g = 3):

#A1(Fq) = q

#A2(Fq) = q3 + q2

#A3(Fq) = q6 + q5 + q4 + q3 + 1
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Consider the natural probability measure µAg(Fq) on [Ag(Fq)] such that [A, λ] ∈ [Ag(Fq)] has mass weighted by

the number of automorphisms:

µAg(Fq)([A, λ]) =
1

#Ag(Fq)#AutFq(A, λ)

On the discrete probability space ([Ag(Fq)], 2[Ag(Fq)], µAg(Fq)) consider the random variable#Ag(Fq) : [Ag(Fq)]→

Z assigning to [A, λ] ∈ [Ag(Fq)] the point count #A(Fq). Our goal is to understand, among other things, the

expected values E(#Ag(Fq)), and more generally the higher moments E(#Ag(Fq)n) with respect to the natural

probability measure µAg(Fq).

For example, one has the expected values (classically for g = 1, by Lee [79, Corollary 1.4] for g = 2, and by

1.4.6 for g = 3):

E(#A1(Fq)) = q + 1

E(#A2(Fq)) = q2 + q + 1− 1

q3 + q2

E(#A3(Fq)) = q3 + q2 + q + 1− q2 + q

q6 + q5 + q4 + q3 + 1

and one has the expected values (classically for g = 1, by Lee [79, Corollary 1.5] for g = 2, and by 1.4.6 for g = 3):

E(#A1(Fq)2) = q2 + 3q + 1− 1

q

E(#A2(Fq)2) = q4 + 3q3 + 6q2 + 3q − 5q2 + 5q + 3

q3 + q2

E(#A3(Fq)2) = q6 + 3q5 + 6q4 + 10q3 + 6q2 + 2q − 2− 8q5 + 14q4 + 12q3 + 7q2 − 2q − 7

q6 + q5 + q4 + q3 + 1

Many more expected values are computed and displayed in 1.2.4, 1.3.4, and 1.4.7 later in the paper.

The above expected values are obtained by applying the Grothendieck-Lefschetz trace formula to the ℓ-adic

cohomology of the universal family of principally polarized Abelian varieties in order to produce the required point

counts over finite fields. LetAg be the moduli of principally polarized Abelian varieties of dimension g and let
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π : Xg → Ag be the universal family of Abelian varieties overAg . Consider the n-fold fiber product:

πn : X×n
g := Xg ×Ag . . .×Ag Xg︸ ︷︷ ︸

n

→ Ag

Then the expected value E(#Ag(Fq)n) is related to the groupoid cardinality #X×n
g (Fq):

E(#Ag(Fq)n) =
#X×n

g (Fq)
#Ag(Fq)

In order to compute the groupoid cardinalities #X×n
g (Fq) it is enough to compute the compactly supported Euler

characteristic ec(X×n
g ,Qℓ) :=

∑
i≥0(−1)iH i

c(X×n
g ,Qℓ) as an element of the Grothendieck group of ℓ-adic

Galois representations, in which case by applying the Grothendieck-Lefschetz trace formula we have:

#X×n
g (Fq) = tr(Frobq|ec(X×n

g ,Qℓ)) :=
∑
i≥0

(−1)itr(Frobq|H i
c(X×n

g ,Qℓ))

Note that sinceX×n
g is the complement of a normal crossings divisor of a smooth proper Deligne-Mumford stack

over Z (see [31, Chapter VI, Theorem 1.1]), the ℓ-adic étale cohomologyH i(X×n
g,Q ,Qℓ) is unramified for all primes

p ̸= ℓ (so that the action of Frobp is well-defined) and is isomorphic to the ℓ-adic étale cohomologyH i(X×n
g,Fp

,Qℓ)

as a representation ofGal(Fp/Fp), with the action ofGal(Qp/Qp) ⊆ Gal(Q/Q) factoring through the surjection

Gal(Qp/Qp) → Gal(Fp/Fp). Consequently we will use the cohomology over Q and the cohomology over Fp

somewhat interchangeably, dropping either of these fields from the subscript whenever stating results which are

true for both of these situations, as we have done above.

The computation requires three results: the first result 1.1.7, due to Deligne, involves the degeneration of the

Leray spectal sequence computingH∗(X×n
g ,Qℓ) in terms of the cohomology of the ℓ-adic local systemsRjπn∗Qℓ on

Ag , the second result 1.1.9 expresses the local systemsRjπn∗Qℓ in terms of the local systemsVλ onAg corresponding

to the irreducible representation of Sp2g of highest weight λ, and the third result (1.2.1 for g = 1 due to Eichler-

Shimura, 1.3.1 for g = 2 due to Lee-Weintraub and Petersen, and 1.4.1 for g = 3 due to Hain and Bergström-Faber-

van der Geer) computes the cohomology of ℓ-adic cohomology of the local systems Vλ onAg . These results about

the cohomology of local systems relies on the work of many people and results of the Langlands program as input.
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Indeed, the expected values displayed so far might give the impression that the compactly supported Euler char-

acteristics ec(X×n
g ,Qℓ) are Tate type, so that the point counts #X×n

g (Fq) are polynomial in q. This is not true

in general: the compactly supported Euler characteristics ec(X×n
g ,Qℓ) in general involve ℓ-adic Galois representa-

tions attached to vector-valued Siegel modular forms for Sp2g(Z), so that the point counts #X×n
g (Fq) in general

involve traces of Hecke operators on spaces of vector-valued Siegel modular forms. The relation between traces of

Frobenius and traces of Hecke operators is ultimately obtained by the Langlands-Kottwitz method by comparing

the Grothendieck-Lefschetz trace formula to the stabilization of the Arthur-Selberg trace formula [70]; while this

strategy is overly sophisticated in the case g = 1, it is the strategy used in the work of Petersen [96] in the case g = 2

and by unpublished work of Taïbi [112] in the case g ≥ 3.

Summary of Results For g = 1, 2 we know enough about the cohomology of local systems onAg to compute

H i(X×n
g ,Qℓ) as an ℓ-adic Galois representation (up to semisimplification). In the case g = 1 a classical result of

Eichler-Shimura (see for example [15, Theorem 2.3]) implies the following result:

Theorem. 1.2.3 The cohomology H i(X×n
1 ,Qℓ) is Tate type for all i and all 1 ≤ n ≤ 9. The cohomology

H i(X×10
1 ,Qℓ) is Tate type for all i ̸= 11, whereas for i = 11 we have

H11(X×10
1 ,Qℓ) = SΓ(1)[12] + L11 + 99L10 + 1925L9 + 12375L8 + 29700L7

where SΓ(1)[12] is the 2-dimensional ℓ-adic Galois representation attached to the weight 12 cusp form ∆ ∈

S12(Γ(1)). In particular the compactly supported Euler characteristic ec(X×n
1 ,Qℓ) is not Tate type if n ≥ 10.

In the case g = 2 results of Lee-Weintraub [78, Corollary 5.2.3] and Petersen [96, Theorem 2.1] imply following

result:

Theorem. 1.3.3 The cohomology H i(X×n
2 ,Qℓ) is Tate type for all i and all 1 ≤ n ≤ 6. The cohomology

H i(X×7
2 ,Qℓ) is Tate type for all i ̸= 17, whereas for i = 17 we have

H17(X×7
2 ,Qℓ) = SΓ(1)[18] + L17 + 1176L15 + 63700L13 + 6860L12 + 321048L11 + 294440L10 + L9
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where SΓ(1)[18] is the 2-dimensional ℓ-adic Galois representation attached to the weight 18 cusp form f18 =

∆E6 ∈ S18(Γ(1)). In particular the compactly supported Euler characteristic ec(X×n
2 ,Qℓ) is not Tate type if

n ≥ 7.

The cohomology groups H i(X×n
1 ,Qℓ) for 1 ≤ n ≤ 10 and H i(X×n

2 ,Qℓ) for 1 ≤ n ≤ 7 are displayed in

the tables 1 and 2 at the end of the paper. The Euler characteristics ec(X×n
1 ,Qℓ) for 1 ≤ n ≤ 10 and ec(X×n

2 ,Qℓ)

for 1 ≤ n ≤ 7 are displayed along with these theorems later in the paper.

In the case g = 3 there are precise conjectures of Bergström-Faber-van der Geer [15, Conjecture 7.1] about

the compactly supported Euler characteristics of local systems onA3 as an element of the Grothendieck group of

ℓ-adic Galois representations. These conjectures are now known at least for small highest weight λ using dimension

formulas for spaces of vector-valued Siegel modular forms for Sp6(Z) obtained by Taïbi [113]. These conjectures,

along with a result of Hain [53, Theorem 1] implies the following result:

Theorem. 1.4.6 Assume conjectures 1.4.1 and 1.4.2. Then the Euler characteristic ec(X×n
3 ,Qℓ) is Tate type for all

1 ≤ n ≤ 5. The compactly supported Euler characteristic ec(X×6
3 ,Qℓ) is given by:

ec(X×6
3 ,Qℓ) = (L6 + 21L5 + 120L4 + 280L3 + 309L2 + 161L+ 32)SΓ(1)[0, 10]

+ L24 + 22L23 + 253L22 + 2024L21 + 11362L20 + 46613L19

+ 146665L18 + 364262L17 + 720246L16 + 1084698L15 + 1036149L14 + 38201L13

− 1876517L12 − 3672164L11 − 4024657L10 − 2554079L9 + 101830L8 + 2028655L7

+ 2921857L6 + 2536864L5 + 1553198L4 + 687157L3 + 215631L2 + 45035L+ 4930

where SΓ(1)[0, 10] = SΓ(1)[18] + L9 + L8 is the 4-dimensional ℓ-adic Galois representation attached to the

Saito-Kurokawa lift χ10 ∈ S0,10(Γ(1)) of the weight 18 cusp form f18 = ∆E6 ∈ S18(Γ(1)). In particular the

compactly supported Euler characteristic ec(X×n
3 ,Qℓ) is not Tate type if n ≥ 6.

The Euler characteristics ec(X×n
3 ,Qℓ) for 1 ≤ n ≤ 6 are displayed along with these theorems later in the

paper. In view of arguments by Bergström-Faber [12], using the classification results of Chevevier-Taïbi [26], these

computations are unconditional for 1 ≤ n ≤ 5 on the basis of point counts, and are only conditional on the Euler

characteristic ec(A3,V6,6,6) = SΓ(1)[0, 10]− L9 − L8 + 1 in the case n = 6.

15



We have continued these computations until reaching the first modular contributions: in the case g = 1 the con-

tribution is through the discriminant cusp form ∆ ∈ S12(Γ(1)) which contributes the irreducible 2-dimensional

ℓ-adic Galois representation SΓ(1)[12], and in the case g = 2 and g = 3 the contributions are through the Saito-

Kurokawa lift χ10 ∈ S0,10(Γ(1)) which contributes the irreducible 2-dimensonal ℓ-adic Galois representation

SΓ(1)[18]. One can continue further, where for g = 2, in the case n = 11 we have contributions from the vector-

valued Siegel modular forms χ6,8 ∈ S6,8(Γ(1)) and χ4,10 ∈ S4,10(Γ(1)) of general type (see [116, Section 25] for

the relevant dimensions), which contribute the irreducible 4-dimensional ℓ-adic Galois representations SΓ(1)[6, 8]

and SΓ(1)[4, 10] (see [120, Theorem I, Theorem II]). For g = 3, in the case n = 9 we have a contribution from

an 8-dimensional ℓ-adic Galois representation SΓ(1)[3, 3, 7] which decomposes into a 1-dimensional ℓ-adic Galois

representation of Tate type and an irreducible 7-dimensional ℓ-adic Galois representation (see [15, Example 9.1]),

which is explained by a functorial lift from the exceptional group G2 predicted by [49]. This is to say that if one

continues a bit further, one encounters more complicated ℓ-adic Galois representations in cohomology governing

these arithmetic statistics. We end up using each of these contributions to deduce that ec(X×n
g ,Qℓ) is not Tate

type above a certain range.

Relation to Other Work Much work has been done regarding the cohomology of local systems onMg,n and

its compactification (see [95] for a survey, and for example [11], [12], [13], [16], [21], [23], [22], [45], [81]), and likewise

forAg and its compactifications (see [61] for a survey, and for example [15] [25], [50], [51], [53], [59], [60], [78], [96]).

The method we have used to investigate arithmetic statistics for varieties over finite fields is hardly new: it is

explained very clearly by Lee [79] in the case g = 2, where the computations of H i(X2,Qℓ) and H i(X×2
2 ,Qℓ)

appear. The computations in the case g = 3 are new, but use the same method. The theme of identifying in which

range modular contributions appear in the cohomology of fiber powers of the universal Abelian variety represents

a departure from this previous work.

The work of Achter-Altuǧ-Garcia-Gordon [1] takes a rather different approach to the study arithmetic statis-

tics for principally polarized Abelian varieties over Fq , starting from a theorem of Kottwitz relating masses of

isogeny classes to volumes of tori and twisted orbital integrals, and then relating these to a product of local factors

νv([A, λ],Fq) over all places v of Q. By contrast, almost every result we have used about the Galois action on the

ℓ-adic cohomology of local systems onAg relies on the Langlands-Kottwitz method relating traces of Frobenius

to traces of Hecke operators, starting from the same theorem of Kottwitz and ultimately relating this to the stabi-
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lization of the Arthur-Selberg trace formula. It may be interesting to relate these two approaches, for instance by

reexamining the computations in this paper in terms of explicit computations of twisted orbital integrals.

1.1 Arithmetic Statistics and Cohomology of Moduli Stacks

We now explain the method we use to study point counts of Abelian varieties over finite fields in terms of the ℓ-adic

cohomology of their moduli stacks, following Lee [79].

1.1.1 Groupoid Cardinality

Recall that a groupoid is a category such that every morphism is an isomorphism. A thin groupoid is a groupoid

such that every morphism is an automorphism. Given a groupoidG we can produce a thin groupoid [G] by choosing

representatives for each isomorphism class in G. We can think of a thin groupoid as a set [G] of isomorphism classes

of objects along with the automorphism group AutG(X) for each objectX ∈ [G].

Let G be a groupoid and let [G] be a corresponding thin groupoid. Consider the groupoid cardinality

#G =
∑
X∈[G]

1

#AutG(X)

We say that G is tame if #G <∞. For G a discrete groupoid on a setX we have #G = #X . In general groupoid

cardinality behaves like an Euler characteristic:

Proposition 1.1.1. Groupoid cardinality satisfies, and is determined by, the following properties:

(i) For the trivial groupoid ∗with 1 object we have #∗ = 1.

(ii) For groupoids G and G′ with a homotopy equivalence G ≃ G′ we have #G = #G′.

(iii) For groupoids G and G′ we have #(G ⨿ G′) = #G +#G′.

(iv) For G′ → G a degree n cover of groupoids we have #G′ = n#G.

Example 1.1.2. LetG be a finite group and letBG be the groupoid with 1 object ∗with AutBG(∗) = G. Then

we have

#BG =
1

#G
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In general for a groupoidG we have a homotopy equivalenceG ≃
∐
X∈[G]BAutG(X), so we recover the definition

of groupoid cardinality

#G = #
∐
X∈[G]

BAutG(X) =
∑
X∈[G]

#BAutG(X) =
∑
X∈[G]

1

#AutG(X)

Example 1.1.3. (Class formula) LetX be a set and let G be a finite group acting on X . LetX//G be the action

groupoid with objects X and with morphisms HomX//G(x, y) = {g ∈ G|g(x) = y}. The projection X →

X//G is not a cover unlessG acts freely onX . Consider the coverX×EG→ (X×EG)//GwhereEG = G//G

withG acting on itself by conjugation, which is a degree #G cover of groupoids sinceG acts freely onX × EG.

We have homotopy equivalencesX × EG ≃ X and (X × EG)//G ≃ X//G, so it follows that

#X//G = #(X × EG)//G =
#(X × EG)

#G
=

#X

#G

Example 1.1.4. Let Fin be the groupoid of finite sets and bijections. Then we have

#Fin =
∑
n≥0

1

n!
= e

More generally let S be a finite set of cardinality #S = λ and let FinS be the groupoid of S-colored finite sets and

S-colored bijections. Then we have

#FinS =
∑
n≥0

λn

n!
= eλ

1.1.2 Moduli of Abelian Varieties

LetAg be the moduli stack of principally polarized Abelian varieties of dimension g which is a smooth Deligne-

Mumford stack of dimensiondim(Ag) = g(g+1)
2 overZ (and hence over anyFq by base change) and letAg(Fq) be

the groupoid of principally polarized Abelian varieties of dimension g over Fq . Let π : Xg → Ag be the universal
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family of Abelian varieties overAg . For n ≥ 1 consider the n-th fiber power of the universal family

πn : X×n
g := Xg ×Ag . . .×Ag Xg︸ ︷︷ ︸

n

→ Ag

which is a smooth Deligne-Mumford stack of dimension dim(X×n
g ) = g(g+1)

2 + ng over Z (and hence over any

Fq by base change). The fiber of πn : X×n
g → Ag over a point [A, λ] ∈ Ag is the product An, so the point

counts #X×n
g (Fq) encode the point counts #A(Fq)n averaged over their moduli and weighted by the number of

automorphisms.

By definition the expected value E(#Ag(Fq)) of the random variable #Ag(Fq) with respect the probability

measure µAg(Fq) defined in the introduction is given

E(#Ag(Fq)n) =
∑

[A,λ]∈[Ag(Fq)]

#A(Fq)n

#Ag(Fq)#AutFq(A, λ)

which are related to the groupoid cardinality #X×n
g (Fq) as follows:

Proposition 1.1.5. (Compare to [79, Lemma 6.8]) The expected value E(#Ag(Fq)n) is given by

E(#Ag(Fq)n) =
#X×n

g (Fq)
#Ag(Fq)

Proof. Let [A, λ] ∈ [Ag(Fq)] and consider the action ofAutFq(A, λ)onAn. Let [A(Fq)n] = A(Fq)n//AutFq(A, λ)

be the action groupoid. For x ∈ A(Fq)n let AutFq(A, λ;x) ⊆ AutFq(A, λ) be the subgroup stabilizing x, and

let AutFq(A, λ) · x be the AutFq(A, λ)-orbit of x. By the orbit-stabilizer theorem we have

∑
[x]∈[A(Fq)n]

1

#Aut(A, λ;x)
=

∑
[x]∈[A(Fq)n]

#(AutFq(A, λ) · x)
#AutFq(A, λ)

=
#A(Fq)n

#AutFq(A, λ)
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It follows that

E(#Ag(Fq)n) =
∑

[A,λ]∈[Ag(Fq)]

#A(Fq)n

#Ag(Fq)#AutFq(A, λ)

=
1

#Ag(Fq)
∑

[A,λ]∈[Ag(Fq)]

∑
[x]∈[A(Fq)n]

1

#AutFq(A, λ;x)

=
1

#Ag(Fq)
∑

[A,λ;x]∈[X×n
g (Fq)]

1

#AutFq(A, λ;x)
=

#X×n
g (Fq)

#Ag(Fq)

Finally, we will consider the moment generating function

M#Ag(Fq)(t) =
∑
n≥0

E(#Ag(Fq)n)
tn

n!
=
∑
n≥0

#X×n
g (Fq)

#Ag(Fq)
tn

n!

1.1.3 Grothendieck-Lefschetz Trace Formula

Now letX be a Deligne-Mumford stack of finite type over Fq , and fix a prime ℓ not dividing q. For V an étale Qℓ-

sheaf onX along with a choice of Zℓ-lattice V0 writeH i(X ,V) for the ℓ-adic étale cohomologyH i
et(XFq ,V) =

lim←−nH
i
et(XFq ,V0/ℓ

n)⊗Zℓ Qℓ and write ϕq : H i(X ,V) → H i(X ,V) for the arithmetic Frobenius. Similarly,

writeH i
c(X ,V) for the compactly supportedℓ-adic étale cohomologyH i

c,et(XFq ,V) = lim←−nH
i
c,et(XFq ,V0/ℓ

n)⊗Zℓ

Qℓ and write Frobq : H i(X ,V)→ H i(X ,V) for the geometric Frobenius.

When X is smooth and has constant dimension the groupoid cardinality #X (Fq) can be computed by a

Grothendieck-Lefschetz trace formula as the alternating sum of traces of arithmetic (geometric) Frobenius on the

(compactly supported) ℓ-adic cohomology ofX :

Proposition 1.1.6. LetX be a smooth Deligne-Mumford stack of finite type and constant dimension d over Fq .

Then we have

#X (Fq) = qd
∑
i≥0

(−1)itr(ϕq|H i(X ,Qℓ)) =
∑
i≥0

(−1)itr(Frobq|H i
c(X ,Qℓ))

Proof. The first equality follows by [8, Theorem 2.4.5], noting that the étale cohomology of Deligne-Mumford

stacks agrees with the smooth cohomology used in this theorem. The second equality follows by Poincare du-
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ality (see [122, Proposition 2.30] for the case of Deligne-Mumford stacks), noting that qdtr(ϕq|H i(X ,Qℓ)) =

tr(Frobq|H2d−i
c (X ,Qℓ)).

It follows that we have

E(#Ag(Fq)n) =
tr(Frobq|ec(X×n

g ,Qℓ))

tr(Frobq|ec(Ag,Qℓ))
:=

∑
i≥0(−1)itr(Frobq|H i

c(X×n
g ,Qℓ))∑

i≥0(−1)itr(Frobq|H i
c(Ag,Qℓ))

It remains to compute the Euler characteristics e(X×n
g ,Qℓ) :=

∑
i≥0(−1)iH i(X×n

g ,Qℓ), or Poincare dually

the compactly supported Euler characteristics ec(X×n
g ,Qℓ) :=

∑
i≥0(−1)iH i

c(X×n
g ,Qℓ), as elements of the

Grothendieck group of ℓ-adic Galois representations.

1.1.4 Leray Spectral Sequence

Now that we have related the momentsE(#Ag(Fq)n) to the cohomology ofX×n
g , we would like to compute the

cohomology ofX×n
g in terms of the cohomology of local systems onAg . We observe that the Leray spectral sequence

for the morphism πn : X×n
g → Ag degenerates at the E2-page, as it does for smooth projective morphisms of

schemes:

Proposition 1.1.7. (Compare to [79, Proposition 2.8]) We have a spectral sequence

Ei,j2 = H i(Ag,Rjπ∗Qℓ)⇒ H i+j(X×n
g ,Qℓ)

which degenerates at theE2-page, and we have a spectral sequence

Ei,j2 = H i
c(Ag,Rjπ∗Qℓ)⇒ H i+j

c (X×n
g ,Qℓ)

which degenerates at theE2-page.

Proof. LetN ≥ 3 and letAg[N ] be the moduli stack of principally polarized Abelian varieties of dimension g with

full level N structure, which is a smooth quasi-projective scheme over Z[ 1N ] (and hence over any Fq for q = pk

with p ∤ N by base change). Let π : Xg[N ]→ Ag[N ] be the universal family of Abelian varieties overAg[N ]. For
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n ≥ 1 consider the n-th fiber power of the universal family

πn : Xg[N ]×n = Xg[N ]×Ag . . .×Ag Xg[N ]︸ ︷︷ ︸
n

→ Ag[N ]

which is a smooth quasi-projective scheme overZ[ 1N ] (and hence over anyFq for q = pk with p ∤ N by base change).

Since πn : Xg[N ]×n → Ag[N ] is a smooth projective morphism, the Leray spectral sequence

Ei,j2 = H i(Ag[N ],Rjπn∗Qℓ)⇒ H i+j(Xg[N ]×n,Qℓ)

degenerates at theE2-page (see for example [? , Proposition 2.4] and [29, Theorem 4.1.1]), so we have an isomorphism

⊕
i+j=k

H i(Ag[N ],Rjπn∗Qℓ) ≃ Hk(Xg[N ]×n,Qℓ)

of ℓ-adic Galois representations up to semisimplification. Now by the Hochschild-Serre spectral sequence [82,

Theorem 2.20] for the Sp2g(Z/NZ)-quotientAg[N ]→ Ag we have

H i(Ag[N ],Rjπn∗Qℓ)
Sp2g(Z/NZ) ≃ H i(Ag,Rjπn∗Qℓ)

and by the Hochschild-Serre spectral sequence for theSp2g(Z/NZ)-quotientXg[N ]×n → X×n
g (withSp2g(Z/NZ)

acting diagonally) we have

⊕
i+j=k

H i(Ag[N ],Rjπn∗Qℓ)
Sp2g(Z/NZ) ≃ Hk(Xg[N ]×n,Qℓ)

Sp2g(Z/NZ) ≃ Hk(X×n
g ,Qℓ)

so by naturality of the Leray spectral sequence we can take Sp2g(Z/NZ)-invariants and it follows that the Leray

spectral sequence

Ei,j2 = H i(Ag,Rjπn∗Qℓ)⇒ H i+j(X×n
g ,Qℓ)

degenerates at the E2-page. The proof for the Leray spectral sequence for compactly supported cohomology is

similar, and follows by Poincare duality, noting that Rjπn! Qℓ ≃ Rjπn∗Qℓ since πn is proper.
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Corollary 1.1.8. We have

e(X×n
g ,Qℓ) =

∑
j≥0

(−1)je(Ag,Rjπn∗Qℓ)

and we have

ec(X×n
g ,Qℓ) =

∑
j≥0

(−1)jec(Ag,Rjπn∗Qℓ)

as an element of the Grothendieck group of ℓ-adic Galois representations.

1.1.5 Künneth Formula

We can make one further simplification by using the Künneth formula to express the ℓ-adic sheaves Rjπn∗Qℓ in

terms of the ℓ-adic sheaves Rjπ∗Qℓ:

Proposition 1.1.9. We have an isomorphism

Rjπn∗Qℓ ≃
⊕
λ⊢j

λ=(1j1 ...njn )

⊗
1≤i≤n

∧jiV

where V = R1π∗Qℓ is the ℓ-adic local system onAg whose fiber over [A, λ] ∈ Ag isH1(A,Qℓ) corresponding

to the standard representation of Sp2g .

Proof. By the Künneth formula (see [122, Corollary 2.20] for the case of Deligne-Mumford stacks) we have have an

isomorphism Rjπn∗Qℓ ≃
⊕

j1+j2=j
(Rj1πn−1

∗ Qℓ)⊗ (Rj2π∗Qℓ), so by induction on n it follows that

Rjπn∗Qℓ ≃
⊕
λ⊢j

λ=(1j1 ...njn )

⊗
1≤i≤n

Rjiπ∗Qℓ

Now the result follows since Rjπ∗Qℓ ≃ ∧jV is the ℓ-adic local sytem on Ag whose fiber over [A, λ] ∈ Ag is

Hj(A,Qℓ) ≃ ∧jH1(A,Qℓ).

For λ = (λ1 ≥ . . . ≥ λg ≥ 0) a highest weight for Sp2g let Vλ be the ℓ-adic local system onAg occurring in

Symλ1−λ2(V)⊗ . . .⊗ Symλg−1−λg(∧g−1V)⊗ Symλg(∧gV) corresponding to the irreducible highest weight
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representation Vλ of Sp2g . The tensor product of highest weight representations decomposes as a direct sum of

highest weight representations with multiplicities

Vλ ⊗ Vλ′ =
⊕
λ′′

mλ,λ′,λ′′Vλ′′

where the multiplicitiesmλ,λ′,λ′′ can be computed in terms of Littlewood-Richardson coefficients and the image of

the specialization morphism from the universal character ring (see [67, Theorem 3.1] and [68, Section 2.2], though

we will not use this description in later computations).

It follows that we have a decomposition

Rjπn∗Qℓ =
⊕
λ

Vλ( |λ|−j2 )⊕m
j,n
λ

where theVλ are irreducible ℓ-adic local systems onAg with multiplicitymj,n
λ ≥ 0, and where |λ| = λ1+ . . .+λg .

Then we have

ec(X×n
g ,Qℓ) =

∑
j≥0

(−1)j
∑
λ

mj,n
λ ec(Ag,Vλ)( |λ|−j2 ) =

∑
λ

fnλ (L)ec(Ag,Vλ)

as elements of the Grothendieck group of ℓ-adic Galois representations, where fnλ (L) =
∑

j≥0(−1)jm
j,n
λ L

j−|λ|
2

is a polynomial in the Lefschetz motive L = Qℓ(−1), in which case by applying the Grothendieck-Lefschetz trace

formula we obtain

E(#A(Fq)n) =
∑

λ tr(Frobq|fnλ (L)ec(Ag,Vλ))
tr(Frobq|ec(Ag,Qℓ))

=

∑
λ f

n
λ (q)tr(Frobq|ec(Ag,Vλ))
tr(Frobq|ec(Ag,Qℓ))

We have reduced the problem of computing the momentsE(#A(Fq)n) to the problem of computing the multiplic-

itiesmj,n
λ , and to the problem of computing the Euler characteristics ec(Ag,Vλ) as elements of the Grothendieck

group of ℓ-adic Galois representations. The first problem is straightforward, although it is perhaps not so easy to

produce clean expressions for these coefficients except for small g. The second problem is more difficult: explicit

computations are only known for g = 1 by results of Eichler-Shimura, for g = 2 by results of Lee-Weintraub [78]

and Petersen [96], and for g = 3 by results of Hain [53] and conjectures of Bergstrom̈-Faber-van der Geer [15]. We

will summarize these computations at the end of the paper.
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1.2 Arithmetic Statistics for Elliptic Curves

In this section we will summarize what is known about the cohomology of local systems onA1, and then use this

to deduce some results about arithmetic statistics for elliptic curves over finite fields.

1.2.1 Cohomology of Local Systems onA1

LetA1 be the moduli stack of elliptic curves, which is a smooth Deligne-Mumford stack of dimension 1 over Z.

Let π : X1 → A1 be the universal elliptic curve overA1 and let V = R1π∗Qℓ be the ℓ-adic local system onA1

corresponding to the standard representation of SL2. For λ ≥ 0 an integer let Vλ = Symλ(V) be the ℓ-adic

local system onA1 corresponding to the irreducible λ+ 1-dimensional representation of SL2. For λ odd we have

H∗(A1,Vλ) = 0 since−id ∈ SL2(Z) acts by multiplication by (−1)λ on the stalks of Vλ.

Let SΓ(1)[λ+ 2] =
⊕

f ρf be the ℓ-adic Galois representation corresponding to cusp forms of weight λ+ 2

for Γ(1) = SL2(Z): for each eigenform f ∈ Sλ+2(Γ(1)) we have a 2-dimensional ℓ-adic Galois representation

ρf , and we have

tr(Frobp|SΓ(1)[λ+ 2]) = tr(Tp|Sλ+2(Γ(1)))

for every prime p, which determinesSΓ(1)[λ+1] as an element of the Grothendieck group of ℓ-adic Galois represen-

tations. The ℓ-adic Galois representation ρf is irreducible as a representation of Gal(Q/Q) and of Gal(Fp/Fp).

By Deligne every eigenform f ∈ Sλ+2(Γ(1)) satisfies the Ramanujan conjecture: the roots of the characteristic

polynomial

1− λp(f)x+ p2(λ+1)x2

of the Frobenius ϕp acting on the ℓ-adic Galois representation ρf for ℓ ̸= p, have absolute value p−
λ+1
2 .

By work of Eichler-Shimura and Deligne we have the following:
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Proposition 1.2.1. [15, Theorem 2.3] For λ > 0 even the compactly supported cohomology H∗
c (A1,Vλ) is

concentrated in degree 1 where

H1
c (A1,Vλ) = SΓ(1)[λ+ 2]⊕ 1

Poincare dually, for λ > 0 even the cohomologyH∗(A1,Vλ) is concentrated in degree 1 where

H1(A1,Vλ) = SΓ(1)[λ+ 2]⊕ Lλ+1

In particular, for λ > 0 even we have

ec(A1,Vλ) = −SΓ(1)[λ+ 2]− 1

as an element of the Grothendieck group of ℓ-adic Galois representations. Poincare dually, for λ > 0 even we have

e(A1,Vλ) = −SΓ(1)[λ+ 2]− 1

as an element of the Grothendieck group of ℓ-adic Galois representations.

This remains true for λ = 0 if we set SΓ(1)[2] := −L− 1: the compactly supported cohomologyH∗
c (A1,Qℓ)

is concentrated in degree 2whereH2
c (A1,Qℓ) = L. Poincare dually, the cohomologyH∗(A1,Qℓ) is concentrated

in degree 0 whereH0(A1,Qℓ) = 1.

The identification of the action of Frobenius on ℓ-adic cohomology with the action of Hecke operators on

spaces of modular forms can be understood geometrically in the following way. Let T1(p) be the moduli stack of

degree p isogenies of elliptic curves over Z. We have the Hecke correspondence

T1(p)

A1 A1

π1 π2

The Hecke correspondence induces an endomorphism Tp of H1(A1,Vλ) which decomposes as Tp = Frobp +

Verp where Frobp is the Frobenius and Verp is the Verchiebung, and satisfies FrobpVerp = VerpFrobp = pλ+1

so that Verp = pλ+1ϕp and Tp = ϕ−1
p + pλ+1ϕp, where ϕp is the absolute Frobenius.
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On one hand the action of ϕp on the inner cohomology

H1
! (A1,Vλ) = im(H1

c (A1,Vλ)→ H1(A1,Vλ)) = SΓ(1)[λ+ 2]

is given as follows: the inner cohomologyH1
! (A1,Vλ) admits an inner product such that Fp and Vp are adjoint,

so we have

tr(ϕp|H1
! (A1,Vλ)) = p−λ−1tr(Verp|H1

! (A1,Vλ))

= p−λ−1 1
2(tr(Frobp|H

1
! (A1,Vλ)) + tr(Verp|H1

! (A1,Vλ)))

= p−λ−1 1
2tr(Tp|H

1
! (A1,Vλ))

= p−λ−1 1
2(tr(Tp|SΓ(1)[λ+ 2]) + tr(T p|SΓ(1)[λ+ 2]))

= p−λ−1tr(Tp|SΓ(1)[λ+ 2])

On the other hand the action of ϕp on the Eisenstein cohomology

H1
Eis(A1,Vλ) = coker(H1

c (A1,Vλ)→ H1(A1,Vλ)) = EΓ(1)[λ+ 2]

is given as follows: sinceEΓ(1)[λ+ 2] is 1-dimensional Tp and ϕp act by multiplication by scalars. We have Tp =

σλ+1(p) =
∑

d|p d
λ+1 = 1+ pλ+1 and Tp = ϕ−1

p + pλ+1ϕp so that ϕ−1
p + pλ+1ϕp = 1+ pλ+1 hence ϕp = 1

or ϕp = p−λ−1. But ϕp = 1 is excluded by considerations of weight, so we have

tr(ϕp|H1
Eis(A1,Vλ)) = p−λ−1

so that EΓ(1)[λ+ 2] = Lλ+1.

We will use the following values for the Euler characteristics ec(A1,Vλ), which are obtained by combining 1.2.1

with the vanishing of the spaces Sλ+2(Γ(1)) for all λ ≥ 0 with λ ≤ 9:
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λ ec(A1,Vλ)

0 L

2 −1

4 −1

λ ec(A1,Vλ)

6 −1

8 −1

10 −SΓ(1)[12]− 1

The space S12(Γ(1)) is spanned by the discriminant cusp form

∆ =
∑
n≥1

τ(n)qn = q − 24q2 + 252q3 − 1472q4 + . . .

which contributes an irreducible 2-dimensional ℓ-adic Galois representation SΓ(1)[12] toH1(A1,V10), with the

property that tr(Frobp|SΓ(1)[12]) = τ(p), which is not polynomial in p.

The Langlands correspondence predicts in this case that an irreducible 2-dimensional Galois representation

ρ : Gal(Q/Q)→ GL2(Qℓ) contributing to the cohomologyH∗(A1,Vλ) must come from a cuspidal automor-

phic representation π of PGL2(AQ) with π∞ a holomorphic discrete series representation. As the (sl2,U(1))-

cohomology of such discrete series representations is concentrated in middle degree 1 by [119], such a contribution

can only occur inH1(A1,Vλ).

1.2.2 Examples: Cohomology of X×n
1 through n = 10

In this section we computeH∗(X×n
1 ,Qℓ) for all n ≥ 0. The case n = 10 is the first case whereH∗(X×n

1 ,Qℓ) is

not of Tate type, owing to a contribution from the discriminant cusp form ∆ ∈ S12(Γ(1)).

We start by computing the local systems R∗πn∗Qℓ =
⊕

0≤j≤2nRjπn∗Qℓ up to n = 10. For this it suffices

to consider the local systems Rjπ∗Qℓ for 0 ≤ j ≤ n even with Tate twists omitted since Rjπn∗Qℓ is pure of

weight j (so the missing Tate twists can be inferred from the weights of the local systems Vλ) and R2n−jπn∗Qℓ ≃

Rjπn∗Qℓ(−n− j).
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Proposition 1.2.2. (i) The local system R∗π∗Qℓ is concentrated in degrees 0, . . . , 2 and given by

j Rjπ∗Qℓ

0 V0

(ii) The local system R∗π2∗Qℓ is concentrated in degrees 0, . . . , 4 and given by

j Rjπ2∗Qℓ

0 V0

2 V2 + 3V0

(iii) The local system R∗π3∗Qℓ is concentrated in degrees 0, . . . , 6 and given by

j Rjπ3∗Qℓ

0 V0

2 3V2 + 6V0

(iv) The local system R∗π4∗Qℓ is concentrated in degrees 0, . . . , 8 and given by

j Rjπ4∗Qℓ

0 V0

2 6V2 + 10V0

4 V4 + 15V2 + 20V0

(v) The local system R∗π5∗Qℓ is concentrated in degrees 0, . . . , 10 and given by

j Rjπ5∗Qℓ

0 V0

2 10V2 + 15V0

4 5V4 + 45V2 + 50V0

(vi) The local system R∗π6∗Qℓ is concentrated in degrees 0, . . . , 12 and given by

j Rjπ6∗Qℓ

0 V0

2 15V2 + 21V0

4 15V4 + 105V2 + 105V0

6 V6 + 35V4 + 189V2 + 175V0

(vii) The local system R∗π7∗Qℓ is concentrated in degrees 0, . . . , 14 and given by

j Rjπ7∗Qℓ

0 V0

2 21V2 + 28V0

4 35V4 + 210V2 + 196V0

6 7V6 + 140V4 + 588V2 + 490V0
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(viii) The local system R∗π8∗Qℓ is concentrated in degrees 0, . . . , 16 and given by

j Rjπ8∗Qℓ

0 V0

2 28V2 + 36V0

4 70V4 + 378V2 + 336V0

6 28V6 + 420V4 + 1512V2 + 1176V0

8 V8 + 63V6 + 720V4 + 2352V2 + 1764V0

(ix) The local system R∗π9∗Qℓ is concentrated in degrees 0, . . . , 18 and given by

j Rjπ9∗Qℓ

0 V0

2 36V2 + 45V0

4 126V4 + 630V2 + 540V0

6 84V6 + 1050V4 + 3402V2 + 2520V0

8 9V8 + 315V6 + 2700V4 + 7560V2 + 5292V0

(x) The local system R∗π10∗ Qℓ is concentrated in degrees 0, . . . , 20 and given by

j Rjπ10∗ Qℓ

0 V0

2 45V2 + 55V0

4 210V4 + 990V2 + 825V0

6 210V6 + 2310V4 + 6930V2 + 4950V0

8 45V8 + 1155V6 + 8250V4 + 20790V2 + 13860V0

10 V10 + 99V8 + 1925V6 + 12375V4 + 29700V2 + 19404V0

We now explain the entries of the table ofH i(X×n
1 ,Qℓ) for 1 ≤ n ≤ 10. We consider the spectral sequence

Ei,j2 = H i(A1,Rjπn∗Qℓ)⇒ H i+j(X×n
1 ,Qℓ).

(i) We have a contribution toH0 fromH0(A1,V0) = 1. It follows that theE2-page is given

2 L 0

0 1 0

0 1

(ii) We have a contribution toH1 fromH1(A1,V2) = L3. It follows that theE2-page is given

4 L2 0

2 3L L3

0 1 0

0 1
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(iii) We the same contributions as before. It follows that theE2-page is given

6 L3 0

4 6L2 3L4

2 6L 3L3

0 1 0

0 1

(iv) We have a contribution toH1 fromH1(A1,V4) = L5. It follows that theE2-page is given

8 L4 0

6 10L3 6L5

4 20L2 L5 + 15L4

2 10L 6L3

0 1 0

0 1

(v) We the same contributions as before. It follows that theE2-page is given

10 L5 0

8 15L4 10L6

6 50L3 5L6 + 45L5

4 50L2 5L5 + 45L4

2 15L 10L3

0 1 0

0 1

(vi) We have a contribution toH1 fromH1(A1,V6) = L7. It follows that theE2-page is given

12 L6 0

10 21L5 15L7

8 105L4 15L7 + 105L6

6 175L3 L7 + 35L6 + 189L5

4 105L2 15L5 + 105L4

2 21L 15L3

0 1 0

0 1
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(vii) We the same contributions as before. It follows that theE2-page is given

14 L7 0

12 28L6 21L8

10 196L5 35L8 + 210L7

8 490L4 7L8 + 140L7 + 588L6

6 490L3 7L7 + 140L6 + 588L5

4 196L2 35L5 + 210L4

2 28L 21L3

0 1 0

0 1

(viii) We have a contribution toH1 fromH1(A1,V8) = L9. It follows that theE2-page is given

16 L8 0

14 36L7 28L9

12 336L6 70L9 + 378L8

10 1176L5 28L9 + 420L8 + 1512L7

8 1764L4 L9 + 63L8 + 720L7 + 2352L6

6 1176L3 28L7 + 420L6 + 1512L5

4 336L2 70L5 + 378L4

2 36L 28L3

0 1 0

0 1

(ix) We the same contributions as before. It follows that theE2-page is given

18 L9 0

16 45L8 36L10

14 540L7 126L10 + 630L9

12 2520L6 84L10 + 1050L9 + 3420L8

10 5292L5 9L10 + 315L9 + 2700L8 + 7560L7

8 5292L4 9L9 + 315L8 + 2700L7 + 7560L6

6 2520L3 84L7 + 1050L6 + 3420L5

4 540L2 126L5 + 630L4

2 45L 36L3

0 1 0

0 1
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(x) We have a contribution toH1 fromH1(A1,V10) = SΓ(1)[12] + L11. It follows that theE2-page is given

20 L10 0

18 55L9 45L11

16 825L8 210L11 + 990L10

14 4950L7 210L11 + 2310L10 + 6930L9

12 13860L6 45L11 + 1155L10 + 8250L9 + 20790L8

10 19404L5
SΓ(1)[12] + L11 + 99L10

+1925L9 + 12375L8 + 29700L7

8 13860L4 45L9 + 1155L8 + 8250L7 + 20790L6

6 4950L3 210L7 + 2310L6 + 6930L5

4 825L2 210L5 + 990L4

2 55L 45L3

0 1 0

0 1

TakingHk(X×n
1 ,Qℓ) =

⊕
i+j=kH

i(A1,Rjπn∗Qℓ) yields the result.

Theorem 1.2.3. The cohomologyH i(X×n
1 ,Qℓ) is Tate type for all i and all1 ≤ n ≤ 9. In this range the compactly

supported Euler characteristics are given by:

ec(X1,Qℓ) = L2 + L

ec(X×2
1 ,Qℓ) = L3 + 3L2 + L− 1

ec(X×3
1 ,Qℓ) = L4 + 6L3 + 6L2 − 2L− 3

ec(X×4
1 ,Qℓ) = L5 + 10L4 + 20L3 + 4L2 − 14L− 7

ec(X×5
1 ,Qℓ) = L6 + 15L5 + 50L4 + 40L3 − 30L2 − 49L− 15

ec(X×6
1 ,Qℓ) = L7 + 21L6 + 105L5 + 160L4 − 183L2 − 139L− 31

ec(X×7
1 ,Qℓ) = L8 + 28L7 + 196L6 + 469L5 + 280L4 − 427L3 − 700L2 − 356L− 63

ec(X×8
1 ,Qℓ) = L9 + 36L8 + 336L7 + 1148L6 + 1386L5 − 406L4 − 2436L3 − 2224L2 − 860L− 127

ec(X×9
1 ,Qℓ) = L10 + 45L9 + 540L8 + 2484L7 + 4662L6 + 1764L5 − 6090L4 − 9804L3 − 6372L2 − 2003L− 255

The cohomologyH i(X×10
1 ,Qℓ) is Tate type for all i ̸= 11, whereas for i = 11 we have

H11(X×10
1 ,Qℓ) = SΓ(1)[12] + L11 + 99L10 + 1925L9 + 12375L8 + 29700L7
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where SΓ(1)[12] is the 2-dimensional Galois representation attached to the weight 12 cusp form ∆ ∈ S12(Γ(1)).

In this case the compactly supported Euler characteristic is given by:

ec(X×10
1 ,Qℓ) = −SΓ(1)[12]

+ L11 + 55L10 + 825L9 + 4905L8 + 12870L7 + 12264L6

− 9240L5 − 33210L4 − 33495L3 − 17095L2 − 4553L− 511

In particular the compactly supported Euler characteristic ec(X×n
1 ,Qℓ) is not Tate type if n ≥ 10.

Proof. Follows by combining 1.1.7 and 1.1.9 with 1.2.1. In this case the multiplicitiesmj,n
λ are easily computed using

the fact that

Vλ1 ⊗ Vλ2 = Vλ1+λ2 ⊕ Vλ1+λ2−2 ⊕ . . .⊕ V|λ1−λ2|

To argue that ec(X×n
1 ,Qℓ) is not Tate type if n ≥ 10 note thatH11(X×10

1 ,Qℓ) (which is not Tate type, owing to

the irreducible 2-dimensional contribution SΓ(1)[12] toH1(A1,V10)) appears as a summand inH11(X×n
1 ,Qℓ)

for all n ≥ 10 by the Künneth formula. This contribution cannot be cancelled in the Euler characteristic: since

the contribution occurs inH i(X×n
1 ,Qℓ) for i odd, any contribution leading to cancellation would have to occur

inH i(X×n
1 ,Qℓ) for i even. SinceH∗(A1,Vλ) = 0 for λ > 0 odd, any contribution toH i(X×n

1 ,Qℓ) for i even

would have to come from a contribution toH0(A1,Vλ) (sinceH2(A1,Vλ) = 0 for all λ ≥ 0), but there are no

irreducible 2-dimensional contributions in this case: the only irreducible 2-dimensional contributions come from

the contribution SΓ(1)[λ+ 2] toH1(A1,Vλ).

1.2.3 Point Counts for Elliptic Curves

We now consider the point counts and consequences for arithmetic statistics which come from the above computa-

tions.

Since ec(A1,Qℓ) = L we have

#A1(Fq) = q
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Since ec(X1,Qℓ) = L2 + L we have

#X1(Fq) = q2 + q

It follows that we have the expected value

E(#A1(Fq)) =
q2 + q

q
= q + 1

ForE an elliptic curve the Weil conjectures yield

#E(Fq) = q + aq
1
2 + 1

where a is a sum of 2 roots of unity. In particular we have

|#E(Fq)− (q + 1)| ≤ 2q
1
2

On the other hand by the Honda-Tate correspondence for elliptic curves there exists an elliptic curve E over Fq

with #E(Fq) = q + 1 corresponding to the case a = 0. In particular we have

min
[E]∈[A1(Fq)]

#E(Fq) = q + 1

Comparing this to the computation of the expected value E(#A(Fq)) yields

lim
q→∞

|E(#A1(Fq))− min
[E]∈[A1(Fq)]

#E(Fq)| = 0

Since ec(X×2
1 ,Qℓ) = L3 + 3L2 + L− 1 we have

#X×2
1 (Fq) = q3 + 3q2 + q − 1
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It follows that we have the expected value

E(#A1(Fq)2) =
q3 + 3q2 + q − 1

q
= q2 + 3q + 1− 1

q

and we have the variance

Var(#A1(Fq)) = E(#A1(Fq)2)− E(#A1(Fq))2 = q − 1

q

We can continue in this way to obtain the first 9 terms of the moment generating function:

Corollary 1.2.4. The first 9 terms of the moment generating functionM#A1(Fq)(t) are rational functions in q:

1 + (q + 1)t

+ (q2 + 3q + 1− 1
q )
t2

2!

+ (q3 + 6q2 + 6q − 2− 3
q )
t3

3!

+ (q4 + 10q3 + 20q2 + 4q − 14− 7
q )
t4

4!

+ (q5 + 15q4 + 50q3 + 40q2 − 30q − 49− 15
q )

t5

5!

+ (q6 + 21q5 + 105q4 + 160q3 − 183q − 139− 31
q )

t6

6!

+ (q7 + 28q6 + 196q5 + 469q4 + 280q3 − 427q2 − 700q − 356− 63
q )

t7

7!

+ (q8 + 36q7 + 336q6 + 1148q5 + 1386q4 − 406q3 − 2436q2 − 2224q − 860− 127
q ) t

8

8!

+ (q9 + 45q8 + 540q7 + 2484q6 + 4662q5 + 1764q4 − 6090q3 − 9804q2 − 6372q − 2003− 255
q ) t

9

9!

1.3 Arithmetic Statistics for Abelian Surfaces

In this section we will summarize what is known about the cohomology of local systems onA2, and then use this

to deduce some results about arithmetic statistics for principally polarized Abelian surfaces over finite fields.

The moduli of curves of genus 2 curves and the moduli of principally polarized Abelian surfaces are quite

similar. The Torelli morphism τ :M2 ↪→ A2 is an open immersion, and we have a stratification

A2 = τ(M2)⨿ Sym2(A1)
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In other words, every principally polarized Abelian surface is either the Jacobian of a genus 2 (hyperelliptic) curve,

or a product of elliptic curves. Consequently, the point counts in this situation can be reduced to point counts on

curves of genus≤ 2, and one can use results about the cohomology of local systems onM2 to study arithmetic

statistics for genus 2 curves over finite fields in the same way that we do for principally polarized Abelian surfaces

over finite fields. We have chosen not to investigate this direction.

1.3.1 Cohomology of Local Systems onA2

LetA2 be the moduli stack of principally polarized Abelian surfaces, which is a smooth Deligne-Mumford stack

of dimension 3 over Z. Let π : X2 → A2 be the universal Abelian surface over A2 and let V = R1π∗Qℓ be

the ℓ-adic local system onA2 corresponding to the standard representation of Sp4. For λ = (λ1 ≥ λ2 ≥ 0) a

dominant integral highest weight for Sp4 let Vλ be the ℓ-adic local system onA2 corresponding to the irreducible

representation of Sp4 of highest weight λ, occurring in Symλ1−λ2(V)⊗ Symλ2(∧2V). For λ1 + λ2 odd we have

H∗(A2,Vλ) = 0 since−id ∈ Sp4(Z) acts by multiplication by (−1)λ1+λ2 on the stalks of Vλ1,λ2 .

LetSΓ(1)[λ1−λ2, λ2+3] =
⊕

f ρf be the ℓ-adic Galois representation corresponding to vector-valued Siegel

cusp forms of weight (λ1−λ2, λ2+3) for Γ(1) = Sp4(Z): for each eigenform f ∈ Sλ1−λ2,λ2+3(Γ(1)) we have

a 4-dimensional ℓ-adic Galois representation ρf , and we have

tr(Frobp|SΓ(1)[λ1 − λ2, λ2 + 3]) = tr(Tp|Sλ1−λ2,λ2+3(Γ(1)))

for every prime p, which determines SΓ(1)[λ1 − λ2, λ2 + 3] as an element of the Grothendieck group of ℓ-adic

Galois representations.

As a representation of Gal(Q/Q) the ℓ-adic Galois representation ρF need not be irreducible: it is reducible

for instance when F ∈ S0,k(Γ(1)) is the Saito-Kurokawa lift of a cusp form f ∈ S2k−2(Γ(1)) (see [116, Theorem

21.1] for a description of the Saito-Kurokawa lift), in which case ρF ≃ ρf +Lk−1+Lk−2 up to semisimplification.

On the other hand if F ∈ Sλ1−λ2,λ2+3(Γ(1)) is a vector-valued Siegel modular form of general type, the ℓ-adic

Galois representation ρF is irreducible as a representation of Gal(Q/Q) and of Gal(Fp/Fp) (see [120, Theorem I,

Theorem II]). Write SgenΓ(1)[λ1 − λ2, λ2 + 3] for the ℓ-adic Galois representation corresponding to vector-valued

Siegel cusp forms of general type.
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Let SRam
Γ(1) [λ1 − λ2, λ2 + 3] = GrWλ1+λ2+3SΓ(1)[λ1 − λ2, λ2 + 3] be the ℓ-adic Galois representation

corresponding to Siegel cusp forms satisfying the generalized Ramanujan conjecture, that is those cusp forms

f ∈ Sλ1−λ2,λ2+3(Γ(1)) such that the roots of the characteristic polynomial

1− λp(f)x+ (pλ1,p2(f) + (p3 + p)λ2,p2(f))x
2 − λp(f)pλ1+λ2+3x3 + p2(λ1+λ2+3)x4

of the Frobenius ϕp acting on the ℓ-adic Galois representation ρf for ℓ ̸= p, have absolute value p−
λ1+λ2+3

2 . By

Weissauer, [120, Theorem II], the Siegel cusp forms not satisfying the generalized Ramanujan conjecture are exactly

the Saito-Kurokawa lifts.

Now we have a decomposition

SRam
Γ(1) [λ1 − λ2, λ2 + 3] = SgenΓ(1)[λ1 − λ2, λ2 + 3]⊕ SliftΓ(1)[λ1 − λ2, λ2 + 3]

where SliftΓ(1)[λ1 − λ2, λ2 + 3] is given

SliftΓ(1)[λ1 − λ2, λ2 + 3] =


SΓ(1)[λ1 + λ2 + 4] λ1 = λ2

0 otherwise

In particular we have SRam
Γ(1) [λ1 − λ2, λ2 + 3] = SgenΓ(1)[λ1 − λ2, λ2 + 3] except in the case λ1 = λ2 even where

SRam
Γ(1) [λ1−λ2, λ2+3] is obtained by removing two summands of Tate type from SΓ(1)[λ1−λ2, λ2+3] for each

eigenform f ∈ Sλ1+λ2+4(Γ(1)).

We also have contributions from non-holomorphic Yoshida lifts: we have a decomposition

H3
! (A2,Vλ1,λ2) = SRam

Γ(1) [λ1 − λ2, λ2 + 3]⊕H3
endo(A2,Vλ1,λ2)

whereH3
endo(A2,Vλ1,λ2) is given

H3
endo(A2,Vλ1,λ2) = sΓ(1)[λ1 + λ2 + 4]SΓ(1)[λ1 − λ2 + 2]Lλ2+1

where sΓ(1)[k] is the dimension of the space of cusp forms of weight k for Γ(1) = SL2(Z).
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For an integer k ≥ 2 let sΓ(1)[k] be the dimension of the space of cusp forms of weight k for Γ(1) = SL2(Z).

Let sΓ(1)[k]L( 1
2
)=0 be the dimension of the subspace of cusp forms of weight k forΓ(1) = SL2(Z) with vanishing

central L-value L(f, k2 ) = 0. Let sΓ(1)[k]L( 1
2
)̸=0 be the dimension of the subspace of cusp forms of weight k

for Γ(1) = SL2(Z) with nonvanishing central L-value L(f, k2 ) ̸= 0. Note that by the functional equation,

ords= k
2
L(f, s) is odd for k ≡ 2 mod 4 (in which case we have sΓ(1)[k]L( 1

2
)=0 = sΓ(1)[k]) and is even for k ≡ 0

mod 4 (in which case we have 0 ≤ sΓ(1)[k]L( 1
2
) ̸=0 ≤ sΓ(1)[k]). By Maeda’s conjecture (which is special to the

case of level 1), for k ≡ 0 mod 4 we should have sΓ(1)[k]L( 1
2
)=0 = 0.

By work of Petersen, using work of Harder [55] and Flicker [33] as input, we have the following:

Proposition 1.3.1. [96, Theorem 2.1] For λ1 ≥ λ2 ≥ 0 with λ1 + λ2 > 0 even the compactly supported

cohomologyH∗
c (A2,Vλ1,λ2) is concentrated in degrees 2, 3, 4, and given up to semisimplification by

H2
c (A2,Vλ1,λ2) = SΓ(1)[λ2 + 2] + sΓ(1)[λ1 − λ2 + 2]

+


s′Γ(1)[λ1 + λ2 + 4]Lλ2+1 λ1 = λ2 even

0 otherwise
+


1 λ1 > λ2 > 0;λ1, λ2 even

0 otherwise

H3
c (A2,Vλ1,λ2) = SgenΓ(1)[λ1 − λ2, λ2 + 3] +


SΓ(1)[λ1 + λ2 + 4] λ1 = λ2 odd

0 otherwise

+ sΓ(1)[λ1 + λ2 + 4]SΓ(1)[λ1 − λ2 + 2]Lλ2+1 + SΓ(1)[λ1 + 3]

+


s′Γ(1)[λ1 + λ2 + 4]Lλ2+1 λ1 = λ2 even

sΓ(1)[λ1 + λ2 + 4]Lλ2+1 otherwise
+


1 λ1 = λ2 odd

0 otherwise
+


L λ2 = 0

0 otherwise

H4
c (A2,Vλ1,λ2) =


sΓ(1)[λ1 + λ2 + 4]Lλ2+2 λ1 = λ2 even

0 otherwise
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Poincare dually, for λ1 ≥ λ2 ≥ 0 with λ1 + λ2 > 0 even the cohomologyH∗(A2,Vλ1,λ2) is concentrated

in degrees 2, 3, 4, and given up to semisimplification by

H2(A2,Vλ1,λ2) =


sΓ(1)[λ1 + λ2 + 4]Lλ1+1 λ1 = λ2 even

0 otherwise

H3(A2,Vλ1,λ2) = SgenΓ(1)[λ1 − λ2, λ2 + 3] +


SΓ(1)[λ1 + λ2 + 4] λ1 = λ2 odd

0 otherwise

+ sΓ(1)[λ1 + λ2 + 4]SΓ(1)[λ1 − λ2 + 2]Lλ2+1 + SΓ(1)[λ1 + 3]Lλ2+1

+


s′Γ(1)[λ1 + λ2 + 4]Lλ1+2 λ1 = λ2 even

sΓ(1)[λ1 + λ2 + 4]Lλ1+2 otherwise
+


Lλ1+λ2+3 λ1 = λ2 odd

0 otherwise
+


Lλ1+λ2+2 λ2 = 0

0 otherwise

H4(A2,Vλ1,λ2) = SΓ(1)[λ2 + 2]Lλ1+2 + sΓ(1)[λ1 − λ2 + 2]Lλ1+λ2+3

+


s′Γ(1)[λ1 + λ2 + 4]Lλ1+2 λ1 = λ2 even

0 otherwise
+


Lλ1+λ2+3 λ1 > λ2 > 0;λ1, λ2 even

0 otherwise

Note that the above formulas simplify greatly assuming Maeda’s conjecture.

We will use the following values for the cohomology groupsH i(A2,Vλ1,λ2) which are obtained by combining

1.3.1 with the vanishing of the spaces Sλ1−λ2,λ2+3(Γ(1)) for all λ1 ≥ λ2 ≥ 0 with λ1, λ2 ≤ 7 except for λ1 =

λ2 = 7:
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(λ1, λ2) H2(A2,Vλ1,λ2) H3(A2,Vλ1,λ2) H4(A2,Vλ1,λ2)

(2, 0) L4

(1, 1) L5

(4, 0) L6

(3, 1)

(2, 2)

(6, 0) L8

(5, 1)

(4, 2) L9

(3, 3) L9

(7, 1) L9

(6, 2) L8 L11

(5, 3) L7

(4, 4) L5

(7, 3)

(6, 4) L13

(5, 5) L13

(7, 5) L9

(6, 6) L7

(7, 7) SΓ(1)[18] + L17 + L9

In particular, setting SΓ(1)[2] := −L− 1 and sΓ(1)[2] := −1, for λ1 ≥ λ2 ≥ 0 with λ1 + λ2 > 0 even we have

ec(A2,Vλ1,λ2) = −SΓ(1)[λ1 − λ2, λ2 + 3] + ec,extr(A2,Vλ1,λ2)

as an element of the Grothendieck group of ℓ-adic Galois representations, where ec,extr(A2,Vλ1,λ2) is given

ec,extr(A2,Vλ1,λ2) = −sΓ(1)[λ1 + λ2 + 4]SΓ(1)[λ1 − λ2 + 2]Lλ2+1

+ sΓ(1)[λ1 − λ2 + 2]− sΓ(1)[λ1 + λ2 + 4]Lλ2+1

+


SΓ(1)[λ2 + 2] + 1 λ1 even

−SΓ(1)[λ1 + 3] λ1 odd
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Poincare dually, for λ1 ≥ λ2 ≥ 0 with λ1 + λ2 > 0 even we have

e(A2,Vλ1,λ2) = −SΓ(1)[λ1 − λ2, λ2 + 3] + ec,extr(A2,Vλ1,λ2)

as an element of the Grothendieck group of ℓ-adic Galois representations, where eextr(A2,Vλ1,λ2) is given

eextr(A2,Vλ1,λ2) = −sΓ(1)[λ1 + λ2 + 4]SΓ(1)[λ1 − λ2 + 2]Lλ2+1

+ sΓ(1)[λ1 − λ2 + 2]Lλ1+λ2+3 − sΓ(1)[λ1 + λ2 + 4]Lλ1+2

+


SΓ(1)[λ2 + 2]Lλ1+2 + Lλ1+λ2+3 λ1 even

−SΓ(1)[λ1 + 3]Lλ2+1 λ1 odd

This remains true for (λ1, λ2) = (0, 0) if we set SΓ(1)[0, 3] := −L3 − L2 − L − 1: by [78, Corollary 5.2.3]

the compactly supported cohomologyH∗
c (A2,Qℓ) is concentrated in degrees 4 and 6 whereH4

c (A2,Qℓ) = L2

and H6
c (A2,Qℓ) = L3, in particular ec(A2,Qℓ) = L3 + L2. Poincare dually, the cohomology H∗(A2,Qℓ) is

concentrated in degrees 0 and 2 whereH0(A2,Qℓ) = 1 andH2(A2,Qℓ) = L, in particular e(A2,Qℓ) = L+1.

We will use the following values for the Euler characteristics ec(A2,Vλ1,λ2), which are obtained by combining

1.3.1 with the vanishing of the spaces Sλ1−λ2,λ2+3(Γ(1)) for all λ1 ≥ λ2 ≥ 0 with λ1, λ2 ≤ 7 except for λ1 =

λ2 = 7:

(λ1, λ2) ec(A2,Vλ1,λ2)

(0, 0) L3 + L2

(2, 0) −L

(1, 1) −1

(4, 0) −L

(3, 1) 0

(2, 2) 0

(6, 0) −L

(5, 1) 0

(4, 2) 1

(3, 3) −1

(λ1, λ2) ec(A2,Vλ1,λ2)

(7, 1) −L2

(6, 2) −L3 + 1

(5, 3) −L4

(4, 4) L6

(7, 3) 0

(6, 4) 1

(5, 5) −1

(7, 5) −L6

(6, 6) L8

(7, 7) −SΓ(1)[18]− L8 − 1
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The space S0,10(Γ(1)) is spanned by the Igusa cusp form (see [94]):

χ10 = (q−1 − 2 + q)q1q2 − (2q−2 + 16q−1 − 36 + 16q + 2q2)(q21q2 + q1q
2
2)

+ (q−3 + 36q−2 + 99q−1 − 272 + 99q + 36q2 + q3)(q31q2 + q1q
3
2)

+ (4q−3 + 72q−2 + 252q−1 − 656 + 252q + 72q2 + 4q3)q21q
2
2 + . . .

which is a Saito-Kurokawa lift of the weight 18 cusp form f18 = ∆E6 ∈ S18(Γ(1)) and contributes an irre-

ducible 2-dimensional ℓ-adic Galois representation SΓ(1)[18] to H3
c (A2,V7,7) (see for example [96, 4.3.5]) with

the property that tr(Frobp|SΓ(1)[18]) = λp(f18) (the eigenvalue of the Hecke operator Tp on f18), which

is not polynomial in p; the remaining summands L9 and L8 of the 4-dimensional ℓ-adic Galois representation

SΓ(1)[0, 10] = SΓ(1)[18] + L9 + L8 do not contribute toH3(A2,V7,7).

We will use another contribution which does not appear in the above table but which was mentioned in the

introduction. The space S6,8(Γ(1)) is spanned by the vector-valued cusp form (see [27, Section 8])

χ6,8 =


0
0

q−1−2+q
2(q−q−1)

q−1−2+q
0
0

 q1q2 +


0
0

−2(q−2+8q−1−18+8q+q2)

8(q−2+4q−1−4q−q2)
−2(7q−2−4q−1−6−4q+7q2)

12(q−2−2q−1+2q−q2)
−4(q−2−4q−1+6−4q+q2)

 q1q
2
2

+


−4(q−2−4q−1+6−4q+q2)

12(q−2−2q−1+2q−q2)
−2(7q−2−4q−1−6−4q+7q2)

8(q−2+4q−1−4q−q2)
−2(q−2+8q−1−18+8q+q2)

0
0

 q21q2 +


16(q−3−9q−1+16−9q+q3)

−72(q−3−3q−1+3q−q3)
128(q−3−2+q3)

−144(q−3+5q−1−5q−q3)
128(q−3−2+q3)

−72(q−3−3q−1+3q−q3)
16(q−3−9q−1+16−9q+q3)

 q21q
2
2 + . . .

which is of general type and contributes an irreducible4-dimensional Galois representationSΓ(1)[6, 8] toH3
c (A2,V11,5)

(see for example [96, 4.3.1]) with the property that tr(Frobp|SΓ(1)[6, 8]) = λp(χ6,8) (the eigenvalue of the Hecke

operator Tp acting on χ6,8) which is not polynomial in p.

The Langlands correspondence predicts in this case that an irreducible 4-dimensional Galois representation

ρ : Gal(Q/Q) → GL4(Qℓ) (which is the composition of a Spin5 Galois representation ρ′ : Gal(Q/Q) →

Spin5(Qℓ) = P̂GSp4 with the 4-dimensional spin representation spin : Spin5(Qℓ) → GL4(Qℓ)) contribut-

ing to the cohomology H∗(A2,Vλ) must come from a packet of cuspidal automorphic representations π of

PGSp4(AQ) with π∞ varying over all members of a discrete series L-packet. As the (sp4,U(2))-cohomology
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of such discrete series representations is concentrated in middle degree 3 by [119], such a contribution can only

occur inH3(A2,Vλ).

1.3.2 Examples: Cohomology of X×n
2 through n = 7

In this section we compute H∗(X×n
2 ,Qℓ) up to n = 7. The case n = 7 is the first case where H∗(X×n

2 ,Qℓ) is

not of Tate type, owing to a contribution from the Saito-Kurokawa lift χ10 ∈ S0,10(Γ(1)). In the case n = 11 we

have contributions from the vector-valued Siegel modular forms χ6,8 ∈ S6,8(Γ(1)) and χ4,10 ∈ S4,10(Γ(1)) of

general type, though we have no reason do these computations explicitly in this range.

We start by computing the local systems R∗πn∗Qℓ =
⊕

0≤j≤4nRjπn∗Qℓ up to n = 7. For this it suffices

to consider the local systems Rjπ∗Qℓ for 0 ≤ j ≤ 2n even with Tate twists omitted since Rjπn∗Qℓ is pure of

weight j (so the missing Tate twists can be inferred from the weights of the local systems Vλ) and R4n−jπn∗Qℓ ≃

Rjπn∗Qℓ(−2n− j).

We used SAGE (the source code for this is commented out above this line in the source code for this document)

to compute the following:

Proposition 1.3.2. (i) The local system R∗π∗Qℓ is concentrated in degrees 0, . . . , 4 and given by

j Rjπ∗Qℓ

0 V0,0

2 V0,0 + V1,1

(ii) The local system R∗π2∗Qℓ is concentrated in degrees 0, . . . , 8 and given by

j Rjπ2∗Qℓ

0 V0,0

2 3V0,0 + 3V1,1 + V2,0

4 6V0,0 + 4V1,1 + 3V2,0 + V2,2

(iii) The local system R∗π3∗Qℓ is concentrated in degrees 0, . . . , 12 and given by

j Rjπ3∗Qℓ

0 V0,0

2 6V0,0 + 6V1,1 + 3V2,0

4 21V0,0 + 21V1,1 + 18V2,0 + 6V2,2 + 3V3,1

6 28V0,0 + 36V1,1 + 28V2,0 + 9V2,2 + 8V3,1 + V3,3
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(iv) The local system R∗π4∗Qℓ is concentrated in degrees 0, . . . , 16 and given by

j Rjπ4∗Qℓ

0 V0,0

2 10V0,0 + 10V1,1 + 6V2,0

4 55V0,0 + 65V1,1 + 60V2,0 + 20V2,2 + 15V3,1 + V4,0

6 136V0,0 + 200V1,1 + 190V2,0 + 74V2,2 + 80V3,1 + 10V3,3

+10V4,0 + 6V4,2

8 190V0,0 + 275V1,1 + 280V2,0 + 120V2,2 + 125V3,1 + 16V3,3

+20V4,0 + 15V4,2 + V4,4

(v) The local system R∗π5∗Qℓ is concentrated in degrees 0, . . . , 20 and given by

j Rjπ5∗Qℓ

0 V0,0

2 15V0,0 + 15V1,1 + 10V2,0

4 120V0,0 + 155V1,1 + 150V2,0 + 50V2,2 + 45V3,1 + 5V4,0

6 470V0,0 + 750V1,1 + 780V2,0 + 330V2,2 + 395V3,1 + 50V3,3

+75V4,0 + 45V4,2 + 5V5,1

8 1065V0,0 + 1800V1,1 + 2000V2,0 + 960V2,2 + 1200V3,1 + 190V3,3

+285V4,0 + 225V4,2 + 15V4,4 + 40V5,1 + 10V5,3

10 1377V0,0 + 2425V1,1 + 2700V2,0 + 1324V2,2 + 1725V3,1 + 300V3,3

+425V4,0 + 351V4,2 + 25V4,4 + 75V5,1 + 24V5,3 + V5,5

(vi) The local system R∗π6∗Qℓ is concentrated in degrees 0, . . . , 24 and given by

j Rjπ6∗Qℓ

0 V0,0

2 21V0,0 + 21V1,1 + 15V2,0

4 231V0,0 + 315V1,1 + 315V2,0 + 105V2,2 + 105V3,1 + 15V4,0

6 1309V0,0 + 2205V1,1 + 2415V2,0 + 1071V2,2 + 1365V3,1 + 175V3,3

+315V4,0 + 189V4,2 + 35V5,1 + V6,0

8 4389V0,0 + 8085V1,1 + 9465V2,0 + 4851V2,2 + 6615V3,1 + 1155V3,3

+1890V4,0 + 1539V4,2 + 105V4,4 + 420V5,1 + 105V5,3 + 21V6,0 + 15V6,2

10 8877V0,0 + 17325V1,1 + 20790V2,0 + 11319V2,2 + 16170V3,1 + 3255V3,3

+5040V4,0 + 4536V4,2 + 405V4,4 + 1470V5,1 + 504V5,3 + 21V5,5

+105V6,0 + 105V6,2 + 15V6,4

12 11242V0,0 + 22176V1,1 + 26950V2,0 + 14994V2,2 + 21560V3,1 + 4480V3,3

+6930V4,0 + 6426V4,2 + 630V4,4 + 2156V5,1 + 784V5,3 + 36V5,5

+175V6,0 + 189V6,2 + 35V6,4 + V6,6
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(vii) The local system R∗π7∗Qℓ is concentrated in degrees 0, . . . , 28 and given by

j Rjπ7∗Qℓ

0 V0,0

2 28V0,0 + 28V1,1 + 21V2,0

4 406V0,0 + 574V1,1 + 588V2,0 + 196V2,2 + 210V3,1 + 35V4,0

6 3136V0,0 + 5488V1,1 + 6216V2,0 + 2842V2,2 + 3780V3,1 + 490V3,3

+980V4,0 + 588V4,2 + 140V5,1 + 7V6,0

8 14602V0,0 + 28420V1,1 + 34440V2,0 + 18424V2,2 + 26460V3,1 + 4900V3,3

+8435V4,0 + 7014V4,2 + 490V4,4 + 2345V5,1 + 588V5,3

+196V6,0 + 140V6,2 + 7V7,1

10 42448V0,0 + 88480V1,1 + 110985V2,0 + 64288V2,2 + 97020V3,1 + 21280V3,3

+34300V4,0 + 32340V4,2 + 3220V4,4 + 12740V5,1 + 4557V5,3 + 196V5,5

+1456V6,0 + 1470V6,2 + 210V6,4 + 112V7,1 + 35V7,3

12 79849V0,0 + 172018V1,1 + 220276V2,0 + 133084V2,2 + 205310V3,1 + 48580V3,3

+76636V4,0 + 76566V4,2 + 8890V4,4 + 32438V5,1 + 13132V5,3 + 763V5,5

+4312V6,0 + 4872V6,2 + 980V6,4 + 28V6,6 + 490V7,1 + 224V7,3 + 21V7,5

14 98296V0,0 + 214424V1,1 + 275968V2,0 + 168756V2,2 + 262640V3,1 + 63700V3,3

+99568V4,0 + 101136V4,2 + 12200V4,4 + 43904V5,1 + 18424V5,3 + 1176V5,5

+6076V6,0 + 7056V6,2 + 1520V6,4 + 49V6,6 + 784V7,1 + 392V7,3 + 48V7,5 + V7,7

We now explain the entries of the table of H i(X×n
2 ,Qℓ) for 1 ≤ n ≤ 7. We consider the spectral sequence

Ei,j2 = H i(A2,Rjπn∗Qℓ)⇒ H i+j(X×n
2 ,Qℓ).

(i) We have contributions to H0 and H2 from H0(A2,V0,0) = 1 and H2(A2,V0,0) = L and to H3 from

H3(A2,V1,1) = L5. It follows that theE2-page is given

4 L2 0 L3 0

2 L 0 L2 L5

0 1 0 L 0

0 1 2 3

(ii) We have contributions to H3 from H3(A2,V1,1) = L5 and H3(A2,V2,0) = L4. It follows that the

E2-page is given

8 L4 0 L5 0

6 3L3 0 3L4 3L7 + L6

4 6L2 0 6L3 4L6 + 3L5

2 3L 0 3L2 3L5 + L4

0 1 0 L 0

0 1 2 3
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(iii) We have contributions toH3 fromH3(A2,V3,3) = L9. It follows that theE2-page is given

12 L6 0 L7 0

10 6L5 0 6L6 6L9 + 3L8

8 21L4 0 21L5 21L8 + 18L7

6 28L3 0 28L4 L9 + 36L7 + 28L6

4 21L2 0 21L3 21L6 + 18L5

2 6L 0 6L2 6L5 + 3L4

0 1 0 L 0

0 1 2 3

(iv) We have contributions toH2 fromH2(A2,V4,4) = L5, toH3 fromH3(A2,V4,0) = L6, and toH4 from

H4(A2,V4,2) = L9. It follows that theE2-page is given

16 L8 0 L9 0 0

14 10L7 0 10L8 10L11 + 6L10 0

12 55L6 0 55L7 66L10 + 60L9 0

10 136L5 0 136L6 10L11 + 210L9 + 190L8 6L11

8 190L4 0 191L5 16L10 + 295L8 + 280L7 15L10

6 136L3 0 136L4 10L9 + 210L7 + 190L6 6L9

4 55L2 0 55L3 66L6 + 60L5 0

2 10L 0 10L2 10L5 + 6L4 0

0 1 0 L 0 0

0 1 2 3 4

(v) We have contributions to H3 from H3
c (A2,V5,3) = L7 and H3

c (A2,V5,5) = L13. It follows that the

E2-page is given

20 L10 0 L11 0 0

18 15L9 0 15L10 15L13 + 10L12 0

16 120L8 0 120L9 160L12 + 150L11 0

14 470L7 0 470L8 50L13 + 825L11 + 780L10 45L13

12 1065L6 0 1080L7 190L12 + 2085L10 + 2010L9 225L12

10 1377L5 0 1402L6 L13 + 300L11 + 2850L9 + 2724L8 351L11

8 1065L4 0 1080L5 190L10 + 2085L8 + 2010L7 225L10

6 470L3 0 470L4 50L9 + 825L7 + 780L6 45L9

4 120L2 0 120L3 160L6 + 150L5 0

2 15L 0 15L2 15L5 + 10L4 0

0 1 0 L 0 0

0 1 2 3 4
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(vi) We have contributions toH2 fromH2(A2,V6,6) = L7, toH3 fromH3(A2,V6,0) = L8 andH3(A2,V6,2) =

L8, and toH4 fromH4(A2,V6,2) = L11 andH4(A2,V6,4) = L13. It follows that theE2-page is given

24 L12 0 L13 0 0

22 21L11 0 21L12 21L15 + 15L14 0

20 231L10 0 231L11 330L14 + 315L13 0

18 1309L9 0 1309L10 175L15 + L14 + 2520L13 + 2415L12 189L15

16 4389L8 0 4494L9 1155L14 + 21L13 + 9990L12 + 9570L11 15L15 + 1539L14

14 8877L7 0 9282L8 21L15 + 3255L13 + 105L12 + 22470L11 + 21294L10 15L15 + 105L14 + 4536L13

12 11242L6 0 11873L7 36L14 + 4480L12 + 175L11 + 29295L10 + 27734L9 35L14 + 189L13 + 6426L12

10 8877L5 0 9282L6 21L13 + 3255L11 + 105L10 + 22470L9 + 21294L8 15L13 + 105L12 + 4536L11

8 4389L4 0 4494L5 1155L10 + 21L9 + 9990L8 + 9570L7 15L11 + 1539L10

6 1309L3 0 1309L4 175L9 + L8 + 2520L7 + 2415L6 189L9

4 231L2 0 231L3 330L6 + 315L5 0

2 21L 0 21L2 21L5 + 15L4 0

0 1 0 L 0 0

0 1 2 3 4

(vii) We have contributions to H3 from H3(A2,V7,1) = L9, H3(A2,V7,5) = L9, and H3(A2,V7,7) =

SΓ(1)[18] + L17 + L9. It follows that theE2-page is given

28 L14 0 L15 0 0

26 28L13 0 28L14 28L17 + 21L16 0

24 406L12 0 406L13 609L16 + 588L15 0

22 3136L11 0 3136L12 490L17 + 7L16 + 6468L15 + 6216L14 588L17

20 14602L10 0 15092L11 4900L16 + 203L15 + 36995L14 + 35028L13 140L17 + 7014L16

18 42448L9 0 45668L10 196L17 + 21280L15 + 1568L14 + 124250L13 + 115542L12 210L17 + 1470L16 + 32340L15

16 79849L8 0 88767L9 763L16 + 48580L14 + 4802L13 + 253526L12 + 233429L11 980L16 + 4872L15 + 76566L14

14 98296L7 0 110545L8
SΓ(1)[18] + L17 + 1176L15 + 63700L13

+6860L12 + 321048L11 + 294440L10 + L9
1520L15 + 7056L14 + 101136L13

12 79849L6 0 88767L7 763L14 + 48580L12 + 4802L11 + 253526L10 + 233429L9 980L14 + 4872L13 + 76566L12

10 42448L5 0 45668L6 196L13 + 21280L11 + 1568L10 + 124250L9 + 115542L8 210L13 + 1470L12 + 32340L11

8 14602L4 0 15092L5 4900L10 + 203L9 + 36995L8 + 35028L7 140L11 + 7014L10

6 3136L3 0 3136L4 490L9 + 7L8 + 6468L7 + 6216L6 588L9

4 406L2 0 406L3 609L6 + 588L5 0

2 28L 0 28L2 28L5 + 21L4 0

0 1 0 L 0 0

0 1 2 3 4
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TakingHk(X×n
2 ,Qℓ) =

⊕
i+j=kH

i(A2,Rjπn∗Qℓ) yields the result.

Theorem 1.3.3. The cohomologyH i(X×n
2 ,Qℓ) is Tate type for all i and all 1 ≤ n ≤ 6. In this range the compactly

supported Euler characteristics are given:

ec(X2,Qℓ) = L5 + 2L4 + 2L3 + L2 − 1

ec(X×2
2 ,Qℓ) = L7 + 4L6 + 9L5 + 9L4 + 3L3 − 5L2 − 5L− 3

ec(X×3
2 ,Qℓ) = L9 + 7L8 + 27L7 + 49L6 + 46L5 + 3L4 − 42L3 − 53L2 − 24L− 7

ec(X×4
2 ,Qℓ) = L11 + 11L10 + 65L9 + 191L8 + 320L7 + 257L6

− 65L5 − 425L4 − 474L3 − 273L2 − 73L− 14

ec(X×5
2 ,Qℓ) = L13 + 16L12 + 135L11 + 590L10 + 1525L9 + 2292L8 + 1527L7

− 1285L6 − 4219L5 − 4730L4 − 2814L3 − 923L2 − 135L− 21

ec(X×6
2 ,Qℓ) = L15 + 22L14 + 252L13 + 1540L12 + 5683L11 + 13035L10 + 17779L9 + 8660L8

− 17614L7 − 44408L6 − 48770L5 − 30667L4 − 10437L3 − 1391L2 + 142L+ 2

The cohomologyH i(X×7
2 ,Qℓ) is Tate type for all i ̸= 17, whereas for i = 17 we have

H17(X×7
2 ,Qℓ) = SΓ(1)[18] + L17 + 1176L15 + 63700L13 + 6860L12 + 321048L11 + 294440L10 + L9

where SΓ(1)[18] is the 2-dimensional ℓ-adic Galois representation attached to the weight 18 cusp form f18 =

∆E6 ∈ S18(Γ(1)). In this case the compactly supported Euler characteristic is given:

ec(X×7
2 ,Qℓ) = −SΓ(1)[18]

+ L17 + 29L16 + 434L15 + 3542L14 + 17717L13 + 56924L12 + 118692L11 + 145567L10 + 37850L9

− 226570L8 − 487150L7 − 529851L6 − 342930L5 − 121324L4 − 9491L3 + 9018L2 + 3164L+ 223

In particular the compactly supported Euler characteristic ec(X×n
2 ,Qℓ) is not Tate type if n ≥ 7.

Proof. Follows by combining 1.1.7 and 1.1.9 with 1.3.1. In this case we computed the multiplicitiesmj,n
λ with a SAGE

program (available on request).
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To argue that ec(X×n
2 ,Qℓ) is not Tate type ifn ≥ 7 note thatH17(X×7

2 ,Qℓ) (which is not Tate type, owing to

the irreducible 2-dimensional contribution SΓ(1)[18] toH3(A2,V7,7)) appears as a summand inH17(X×n
2 ,Qℓ)

for all n ≥ 7 by the Künneth formula. This contribution cannot be cancelled in the Euler characteristic, at least for

7 ≤ n ≤ 15: since the contribution occurs in H i(X×n
2 ,Qℓ) for i odd, any contribution leading to cancellation

would have to occur inH i(X×n
2 ,Qℓ) for i even. SinceH∗(A2,Vλ1,λ2) = 0 forλ1+λ2 > 0odd, any contribution

to H i(X×n
2 ,Qℓ) for i even would have to come from a contribution to Hj(A2,Vλ1,λ2) for j = 0, 2, 4 (since

H6(A2,Vλ1,λ2) = 0 for all λ1 ≥ λ2 ≥ 0). The only irreducible 2-dimensional contributions that occur in

this way come from the contribution SΓ(1)[λ2 + 2]Lλ1+2 toH4(A2,Vλ1,λ2) (Poincare dual to the contribution

SΓ(1)[λ2 + 2] toH2
c (A2,Vλ1,λ2) in [96, Theorem 2.1]), which would require λ2 = 16 for cancellation.

Now note thatH19(X×11
2 ,Qℓ) (which is not Tate type, owing to the irreducible 4-dimensional contribution

SΓ(1)[6, 8] toH3(A2,V11,5)) appears as a summand inH19(X×n
2 ,Qℓ) for all n ≥ 11 by the Künneth formula.

This contribution cannot be cancelled in the Euler characteristic: by the same reasoning as above any contribution

leading to cancellation would have to come from a contribution toHj(A2,Vλ1,λ2) for j = 0, 2, 4, but there are

no irreducible 4-dimensional contributions in this case: the only irreducible 4-dimensional contributions come

from the contribution SgenΓ(1)[λ1 − λ2, λ2 + 3] toH3(A2,Vλ1,λ2) (Poincare dual to the contribution SgenΓ(1)[λ1 −

λ2, λ2 + 3] toH3
c (A2,Vλ1,λ2) in [96, Theorem 2.1]).

Note that the contribution SΓ(1)[0, 10] should always persist, but we cannot argue this without estimates on

the multiplicitiesmj,n
λ .

1.3.3 Point Counts for Abelian Surfaces

We now consider the point counts and consequences for arithmetic statistics which come from the above computa-

tions.

Since ec(A2,Qℓ) = L3 + L2 we have

#A2(Fq) = q3 + q2

Since ec(X2,Qℓ) = L5 + 2L4 + 2L3 + L2 − 1 we have

#X2(Fq) = q5 + 2q4 + 2q3 + q2 − 1
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It follows that we have the expected value

E(#A2(Fq)) =
q5 + 2q4 + 2q3 + q2 − 1

q3 + q2

= q2 + q + 1− 1

q3 + q2

ForA a principally polarized Abelian surface the Weil conjectures yield

#A(Fq) = q2 + a3q
3
2 + a2q + a1q

1
2 + 1

where ai is a sum of ni roots of unity for ni = 4, 6, 4 for i = 1, 2, 3 respectively. In particular we have

|#A(Fq)− (q2 + 1)| ≤ 4q
3
2 + 6q2 + 4q

1
2

On the other hand by the Honda-Tate correspondence for Abelian surfaces there exists a simple Abelian surfaceA

over Fq with #A(Fq) = q2 + q + 1, corresponding to the case a3 = a1 = 0. In particular we have

min
[A,λ]∈[A2(Fq)]

#A(Fq) = q2 + q + 1

Comparing this to the computation of the expected value E(#A2(Fq)) yields

lim
q→∞

|E(#A2(Fq))− min
[A,λ]∈[A2(Fq)]

#A(Fq)| = 0

Since ec(X×2
2 ,Qℓ) = L7 + 4L6 + 9L5 + 9L4 + 3L3 − 5L2 − 5L− 3 we have

#X×2
2 (Fq) = q7 + 4q6 + 9q5 + 9q4 + 3q3 − 5q2 − 5q − 3

It follows that we have the expected value

E(#A2(Fq)2) =
q7 + 4q6 + 9q5 + 9q4 + 3q3 − 5q2 − 5q − 3

q3 + q2

= q4 + 3q3 + 6q2 + 3q − 5q2 + 5q + 3

q3 + q2
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and we have the variance

Var(#A2(Fq)) = E(#A2(Fq)2)− E(#A2(Fq))2

= q3 + 3q2 + q − 1− 3q5 + 6q4 + 4q3 + q2 + 1

(q3 + q2)2

We can continue in this way to obtain the first 6 terms of the moment generating function:

Corollary 1.3.4. The first 6 terms of the moment generating functionM#A2(Fq)(t) are rational functions in q:

1 + (q2 + q + 1− 1

q3 + q2
)t

+ (q4 + 3q3 + 6q2 + 3q − 5q2 + 5q + 3

q3 + q2
)
t2

2!

+ (
q6 + 6q5 + 21q4 + 28q3

+18q2 − 15q − 27
− 26q2 + 24q + 7

q3 + q2
)
t3

3!

+ (
q8 + 10q7 + 55q6 + 136q5 + 184q4

+73q3 − 138q2 − 287q − 187
− 86q2 + 73q + 14

q3 + q2
)
t4

4!

+ (
q10 + 15q9 + 120q8 + 470q7 + 1055q6 + 1237q5

+290q4 − 1575q3 − 2644q2 − 2086q − 728
− 195q2 + 135q + 21

q3 + q2
)
t5

5!

+ (
q12 + 21q11 + 231q10 + 1309q9 + 4374q8 + 8661q7 + 9118q6

−458q5 − 17156q4 − 27252q3 − 21518q2 − 9149q − 1288
− 103q2 − 142q − 2

q3 + q2
)
t6

6!

1.4 Arithmetic Statistics for Abelian Threefolds

In this section we will summarize what is known and conjectured about the cohomology of local systems onA3,

and then use this to deduce some results about arithmetic statistics for principally polarized Abelian threefolds over

finite fields.

The Torelli morphism τ :M3 → A3 has degree 2 and is ramified along the hyperelliptic locusH3 ⊆ M3,

and we have a stratification

A3 = τ(M3 −H3)⨿ τ(H3)⨿ (τ(M2)×A1)⨿ Sym3(A1)
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In other words, every principally polarized Abelian threefold is either the Jacobian of a genus 3 (either plane quartic

or hyperelliptic) curve, or a product of the Jacobian of a genus 2 curve and an elliptic curve, or a product of elliptic

curves. Consequently, the point counts in this situation can be reduced to point counts on curves of genus≤ 3,

and one can use results about the cohomology of local systems onM3 to study arithmetic statistics for genus 2

curves over finite fields in the same way that we do for principally polarized Abelian surfaces over finite fields. We

have chosen not to investigate this direction, but we mention it especially because this strategy of point counts on

curves of genus≤ 3 was what originally led to the conjectures of Bergström-Faber-van der Geer which we use in

this section.

1.4.1 Cohomology of Local Systems onA3

LetA3 be the moduli stack of principally polarized Abelian threefolds, which is a smooth Deligne-Mumford stack

of dimension 6 over Z. Let π : X3 → A3 be the universal Abelian threefold overA3 and let V = R1π∗Qℓ be the

ℓ-adic local system onA3 corresponding to the standard representation of Sp6. For λ = (λ1 ≥ λ2 ≥ λ3 ≥ 0) a

dominant integral highest weight for Sp6 let Vλ be the ℓ-adic local system onA3 corresponding to the irreducible

representation of Sp6 of highest weight λ, occurring in Symλ1−λ2(V)⊗ Symλ2−λ3(∧2V)⊗ Symλ3(∧3V). For

λ1 + λ2 + λ3 odd we have H∗(A3,Vλ) = 0 since−id ∈ Sp6(Z) acts by multiplication by (−1)λ1+λ2+λ3 on

the stalks of Vλ1,λ2,λ3 .

Let SΓ(1)[λ1 − λ2, λ2 − λ3, λ3 + 4] =
⊕

f ρf be the ℓ-adic Galois representation corresponding to vector-

valued Siegel cusp forms of weight (λ1 − λ2, λ2 − λ3, λ3 + 4) for Γ(1) = Sp6(Z): for each eigenform f ∈

Sλ1−λ2,λ2−λ3,λ3+4(Γ(1)) we have an 8-dimensional ℓ-adic Galois representation ρf , and we have

tr(Frobp|SΓ(1)[λ1 − λ2, λ2 − λ3, λ3 + 4]) = tr(Tp|Sλ1−λ2,λ2−λ3,λ3+4(Γ(1)))

for every prime p, which determines SΓ(1)[λ1 − λ2, λ2 − λ3, λ3 + 4] as an element of the Grothendieck group of

ℓ-adic Galois representations.

As a representation of Gal(Q/Q) the ℓ-adic Galois representation ρF need not be irreducible, for example if

F is one of the lifts predicted by [15, Conjecture 7.7]. On the other hand if F ∈ Sλ1−λ2,λ2−λ3,λ3+4(Γ(1)) is a

vector-valued Siegel modular form of general type, the ℓ-adic Galois representation ρF is predicted to be irreducible
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as a representation ofGal(Q/Q) and of Gal(Fp/Fp). Write SgenΓ(1)[λ1−λ2, λ2−λ3, λ3+4] for the ℓ-adic Galois

representation corresponding to vector-valued Siegel cusp forms of general type.

Let SRam
Γ(1) [λ1− λ2, λ2− λ3, λ3 +4] = GrWλ1+λ2+λ3+4SΓ(1)[λ1− λ2, λ2− λ3, λ3 +4] be the ℓ-adic Galois

representation corresponding to Siegel cusp forms satisfying the generalized Ramanujan conjecture, that is those

cusp forms f ∈ Sλ1−λ2,λ2−λ3,λ3+4(Γ(1)) such that the roots of the characteristic polynomial of the Frobenius

ϕp acting on the ℓ-adic Galois representation ρf for ℓ ̸= p, have absolute value p−
λ1+λ2+λ3+4

2 .

By [15, Conjecture 7.7] one predicts the following lifts. For eigenformsf ∈ Sλ2+3(Γ(1)), g ∈ Sλ1+λ3+5(Γ(1)),

andh ∈ Sλ1−λ3+3(Γ(1)) there should exist an eigenformF ∈ Sλ1−λ2,λ2−λ3,λ3+4(Γ(1))with spinor L-function

L(F, s) = L(f ⊗ g, s)L(f ⊗ h, s− λ3 − 1)

For λ1 = λ2 and for eigenforms f ∈ Sλ3+2(Γ(1)) and g ∈ S2λ1+6(Γ(1)) there should exist an eigenform

F ∈ S0,λ2−λ3,λ3+4(Γ(1)) with spinor L-function

L(F, s) = L(f, s− λ1 − 2)L(f, s− λ1 − 3)L(f ⊗ g, s)

For λ2 = λ3 and for eigenforms f ∈ Sλ1+4(Γ(1)) and g ∈ S2λ2+4(Γ(1)) there should exist an eigenform

F ∈ Sλ1−λ2,0,λ3+4(Γ(1)) with spinor L-function

L(F, s) = L(f, s− λ2 − 1)L(f, s− λ2 − 2)L(f ⊗ g, s)

For example for ∆ ∈ S12(Γ(1)) and f20 = ∆E2
4 ∈ S20(Γ(1)) we have the Miyawaki lift χ12 ∈ S0,0,12(Γ(1))

with spinor L-functionL(χ12, s) = L(∆, s− 9)L(∆, s− 10)L(∆⊗ f20, s).

Now by [15, Conjecture 7.11] we should have a decomposition

SRam
Γ(1) [λ1 − λ2, λ2 − λ3, λ3 + 4] ≃ SgenΓ(1)[λ1 − λ2, λ2 − λ3, λ3 + 4]⊕ SliftΓ(1)[λ1 − λ2, λ2 − λ3, λ3 + 4]
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where SliftΓ(1)[λ1 − λ2, λ2 − λ3, λ3 + 4] is given

SliftΓ(1)[λ1 − λ2, λ2 − λ3, λ3 + 4] ≃ sΓ(1)[λ1 − λ3 + 3]SΓ(1)[λ2 + 3]⊗ SΓ(1)[λ1 + λ3 + 5]

⊕


SΓ(1)[λ3 + 2]⊗ SΓ(1)[2λ1 + 6] λ1 = λ2 and λ3 > 0

0 otherwise

⊕


SΓ(1)[λ1 + 4]⊗ SΓ(1)[2λ2 + 4] λ2 = λ3

0 otherwise

We also have contributions from non-holomorphic endoscopic lifts: we should have a decomposition

H6
! (A3,Vλ1,λ2,λ3) = SRam

Γ(1) [λ1 − λ2, λ2 − λ3, λ3 + 4]⊕H6
endo(A3,Vλ1,λ2,λ3)

whereH6
endo(A3,Vλ1,λ2,λ3) is given

H3
endo(A3,Vλ1,λ2,λ3) = sΓ(1)[λ2 + λ3 + 4]SΓ(1)[λ1 + 4]⊗ SΓ(1)[λ2 − λ3 + 2]Lλ3+1

⊕ sΓ(1)[λ1 − λ3 + 3]SΓ(1)[λ2 + 3]⊗ SΓ(1)[λ1 + λ3 + 5]

⊕ sΓ(1)[λ1 + λ2 + 6]SΓ(1)[λ3 + 2]⊗ SΓ(1)[λ1 − λ2 + 2]Lλ2+2

By work of Bergström-Faber-van der Geer, one conjectures the following:

Conjecture 1.4.1. [15, Conjecture 7.1] For λ1 ≥ λ2 ≥ λ3 ≥ 0 with λ1 + λ2 + λ3 > 0 even we have

ec(A3,Vλ1,λ2,λ3) = SΓ(1)[λ1 − λ2, λ2 − λ3, λ3 + 4] + ec,extr(A3,Vλ1,λ2,λ3)

as an element of the Grothendieck group of ℓ-adic Galois representations, where ec,extr(A3,Vλ1,λ2,λ3) is given by

ec,extr(A3,Vλ1,λ2,λ3) = −ec(A2,Vλ1+1,λ2+1)− ec,extr(A2,Vλ1+1,λ2+1)⊗ SΓ(1)[λ3 + 2]

+ ec(A2,Vλ1+1,λ3) + ec,extr(A2,Vλ1+1,λ3)⊗ SΓ(1)[λ2 + 3]

− ec(A2,Vλ2,λ3)− ec,extr(A2,Vλ2,λ3)⊗ SΓ(1)[λ1 + 4]
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Poincare dually, for λ1 ≥ λ2 ≥ λ3 ≥ 0 with λ1 + λ2 + λ3 > 0 even we have

e(A3,Vλ1,λ2,λ3) = SΓ(1)[λ1 − λ2, λ2 − λ3, λ3 + 4] + eextr(A3,Vλ1,λ2,λ3)

as an element of the Grothendieck group of ℓ-adic Galois representations, where eextr(A3,Vλ1,λ2,λ3) is given by

eextr(A3,Vλ1,λ2,λ3) = −e(A2,Vλ1+1,λ2+1)Lλ3+1 − eextr(A2,Vλ1+1,λ2+1)⊗ SΓ(1)[λ3 + 2]

+ e(A2,Vλ1+1,λ3)L
λ2+2 + eextr(A2,Vλ1+1,λ3)⊗ SΓ(1)[λ2 + 3]

− e(A2,Vλ2,λ3)L
λ1+3 − eextr(A2,Vλ2,λ3)⊗ SΓ(1)[λ1 + 4]

This remains true for (λ1, λ2, λ3) = (0, 0, 0) if we set SΓ(1)[0, 0, 4] := L6 + L5 + L4 + 2L3 + L2 + L + 1:

by [53, Theorem 1] the compactly supported cohomologyH∗
c (A3,Qℓ) is concentrated in degrees 6, 8, 10, and 12

whereH12
c (A3,Qℓ) = L6,H10

c (A3,Qℓ) = L5,H8
c (A3,Qℓ) = L4, andH6

c (A3,Qℓ) = L3 + 1, in particular

ec(A3,Qℓ) = L6 +L5 +L4 +L3 + 1. Poincare dually, the cohomologyH∗(A3,Qℓ) is concentrated in degrees

0, 2, 4, 6 and given by H0(A3,Qℓ) = 1, H2(A3,Qℓ) = L, H4(A3,Qℓ) = L2, andH6(A3,Qℓ) = L6 + L3,

in particular e(A3,Q) = L6 + L3 + L2 + L+ 1.

As explained in [15, Section 8] this conjecture was made after extensive point counts for curves up to genus 3 over

finite fields. In particular by [15, Remark 8.2] the conjecture is true for all (λ1, λ2, λ3)withλ1+λ2+λ3 ≤ 6 on the

basis of these point counts sinceSλ1−λ2,λ2−λ3,λ3+4(Γ(1))has dimension 0 in these cases by [113]. By the arguments

in [12], using the classification results of [26], the conjecture is true for all (λ1, λ2, λ3) with λ1 + λ2 + λ3 ≤ 16

on the basis of these point counts. The conjecture is claimed to be proven unconditionally by unpublished work of

Taïbi [112].

We will use the following values for the Euler characteristics ec(A3,Vλ1,λ2,λ3), which are obtained by combin-

ing 1.4.1 with the vanishing Sλ1−λ2,λ2−λ3,λ3+4(Γ(1)) for all λ1 ≥ λ2 ≥ λ3 ≥ 0 with λ1, λ2, λ3 ≤ 6 obtained by

[113] (compare to the tables at the end of [15]):
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(λ1, λ2, λ3) ec(A3,Vλ1,λ2,λ3)

(0, 0, 0) L6 + L5 + L4 + L3 + 1

(2, 0, 0) −L3 − L2

(1, 1, 0) −L

(4, 0, 0) −L3 − L2

(3, 1, 0) 0

(2, 2, 0) 0

(2, 1, 1) 1

(6, 0, 0) −2L3 − L2

(5, 1, 0) −L4

(4, 2, 0) −L5 + L

(4, 1, 1) 1

(3, 3, 0) L7 − L

(3, 2, 1) 0

(2, 2, 2) 1

(6, 2, 0) L

(6, 1, 1) −L2 + 1

(5, 3, 0) 0

(5, 2, 1) 0

(4, 4, 0) 0

(4, 3, 1) 0

(4, 2, 2) L4

(3, 3, 2) −L6 + 1

(λ1, λ2, λ3) ec(A3,Vλ1,λ2,λ3)

(6, 4, 0) −L7 + L

(6, 3, 1) −L2

(6, 2, 2) 0

(5, 5, 0) L9 − L

(5, 4, 1) 0

(5, 3, 2) −L3

(4, 4, 2) 0

(4, 3, 3) −L4 + 1

(6, 6, 0) SΓ(1)[0, 10] + L10

(6, 5, 1) −L2

(6, 4, 2) L6 − 1

(6, 3, 3) 1

(5, 5, 2) −L8 − L3 + 1

(5, 4, 3) 0

(4, 4, 4) −L6 + 1

(6, 6, 2) SΓ(1)[0, 10]− L9 + L3

(6, 5, 3) L4

(6, 4, 4) 0

(5, 5, 4) −L8 + 1

(6, 6, 4) SΓ(1)[0, 10]− L9

(6, 5, 5) −L6 + 1

(6, 6, 6) SΓ(1)[0, 10]− L9 − L8 + 1

We will use another contribution which does not appear n the above table. For λ = (9, 6, 3) we have a contribu-

tion from an 8-dimensional Galois representation SΓ(1)[3, 3, 7] which decomposes into a 1-dimensional Galois

representation and an irreducible 7-dimensional Galois representation (see [15, Example 9.1]), which is explained by

a functorial lift from the exceptional group G2 predicted by [49].
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The Langlands correspondence predicts in this case that an irreducible 8-dimensional Galois representation

ρ : Gal(Q/Q) → GL8(Qℓ) (which is the composition of a Spin7 Galois representation ρ′ : Gal(Q/Q) →

Spin7(Qℓ) = P̂GSp6 with the 8-dimensional spin representation spin : Spin7(Qℓ) → GL8(Qℓ)) contribut-

ing to the cohomology H∗(A3,Vλ) must come from a packet of cuspidal automorphic representations π of

PGSp6(AQ) with π∞ varying over all members of a discrete series L-packet. As the (sp6,U(3))-cohomology of

such discrete series representations is concentrated in degree 3, such a contribution can only occur inH6(A3,Vλ).

As explained in [49], any ρ′ : Gal(Q/Q) → Spin7(Qℓ) factoring through the inclusion Ĝ2 = G2(Qℓ) ↪→

Spin7(Qℓ) = P̂GSp6 of the stabilizer of a non-isotropic vector in the 8-dimensional spin representation must

come from a packet of cuspidal automorphic representations π of G2(AQ) which lifts to a packet of cuspidal

automorphic representations π′ of PGSp6(AQ) with π′∞ varying over all but one member of a discrete series

L-packet, and again such a contribution can only occur in H6(A3,Vλ); the remaining 1-dimensional Tate-type

contribution comes from the cycle class of a Hilbert modular threefold in this Siegel modular 6-fold.

We record these predictions as the following conjecture:

Conjecture 1.4.2. Any irreducible ℓ-adic Galois representation of dimension 7 or 8 occurring inH∗(A3,Vλ) can

only occur inH6(A3,Vλ).

1.4.2 Examples: Euler Characteristics of X×n
3 through n = 6

In this section we compute ec(X×n
3 ,Qℓ) up to n = 6. The case n = 6 is the first case where ec(X×n

3 ,Qℓ) is not

of Tate type, again owing to a contribution from the Saito-Kurokawa lift χ10 ∈ S0,10(Γ(1)), but now in a much

more complicated way.

We start by computing the local systems R∗πn∗Qℓ =
⊕

0≤j≤6nRjπn∗Qℓ up to n = 6. For this it suffices

to consider the local systems Rjπ∗Qℓ for 0 ≤ j ≤ 3n even with Tate twists omitted since Rjπn∗Qℓ is pure of

weight j (so the missing Tate twists can be inferred from the weights of the local systems Vλ) and R6n−jπn∗Qℓ ≃

Rjπn∗Qℓ(−3n− j).

We used SAGE (the source code for this is commented out above this line in the source code for this document)

to compute the following:
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Proposition 1.4.3. (i) The local system R∗π∗Qℓ is concentrated in degrees 0, . . . , 6 and given by

j Rjπ∗Qℓ

0 V0,0,0

2 V0,0,0 + V1,1,0

(ii) The local system R∗π2∗Qℓ is concentrated in degrees 0, . . . , 12 and given by

j Rjπ2∗Qℓ

0 V0,0,0

2 3V0,0,0 + 3V1,1,0 + V2,0,0

4 6V0,0,0 + 9V1,1,0 + 3V2,0,0 + 3V2,1,1 + V2,2,0

6 10V0,0,0 + 11V1,1,0 + 6V2,0,0 + 4V2,1,1 + 3V2,2,0 + V2,2,2

(iii) The local system R∗π3∗Qℓ is concentrated in degrees 0, . . . , 18 and given by

j Rjπ3∗Qℓ

0 V0,0,0

2 6V0,0,0 + 6V1,1,0 + 3V2,0,0

4 21V0,0,0 + 36V1,1,0 + 18V2,0,0 + 15V2,1,1 + 6V2,2,0 + 3V3,1,0

6 56V0,0,0 + 98V1,1,0 + 63V2,0,0 + 55V2,1,1 + 36V2,2,0

+10V2,2,2 + 18V3,1,0 + 8V3,2,1 + V3,3,0

8 81V0,0,0 + 168V1,1,0 + 105V2,0,0 + 105V2,1,1 + 66V2,2,0

+18V2,2,2 + 42V3,1,0 + 24V3,2,1 + 6V3,3,0 + 3V3,3,2

(iv) The local system R∗π4∗Qℓ is concentrated in degrees 0, . . . , 24 and given by

j Rjπ4∗Qℓ

0 V0,0,0

2 10V0,0,0 + 10V1,1,0 + 6V2,0,0

4 55V0,0,0 + 100V1,1,0 + 60V2,0,0 + 45V2,1,1 + 20V2,2,0 + 15V3,1,0 + V4,0,0

6 220V0,0,0 + 466V1,1,0 + 330V2,0,0 + 310V2,1,1 + 200V2,2,0

+50V2,2,2 + 150V3,1,0 + 64V3,2,1 + 10V3,3,0 + 10V4,0,0 + 10V4,1,1 + 6V4,2,0

8 550V0,0,0 + 1360V1,1,0 + 1005V2,0,0 + 1075V2,1,1 + 740V2,2,0

+220V2,2,2 + 636V3,1,0 + 384V3,2,1 + 100V3,3,0 + 45V3,3,2

+55V4,0,0 + 65V4,1,1 + 60V4,2,0 + 20V4,2,2 + 15V4,3,1 + V4,4,0

10 946V0,0,0 + 2530V1,1,0 + 1910V2,0,0 + 2200V2,1,1 + 1550V2,2,0

+490V2,2,2 + 1410V3,1,0 + 960V3,2,1 + 280V3,3,0 + 150V3,3,2

+136V4,0,0 + 200V4,1,1 + 190V4,2,0 + 74V4,2,2 + 80V4,3,1 + 10V4,3,3 + 10V4,4,0 + 6V4,4,2

12 1155V0,0,0 + 3080V1,1,0 + 2387V2,0,0 + 2750V2,1,1 + 2000V2,2,0

+664V2,2,2 + 1815V3,1,0 + 1280V3,2,1 + 375V3,3,0 + 204V3,3,2

+190V4,0,0 + 275V4,1,1 + 280V4,2,0 + 120V4,2,2 + 125V4,3,1 + 16V4,3,3 + 20V4,4,0 + 15V4,4,2 + V4,4,4
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(v) The local system R∗π5∗Qℓ is concentrated in degrees 0, . . . , 30 and given by

j Rjπ5∗Qℓ

0 V0,0,0

2 15V0,0,0 + 15V1,1,0 + 10V2,0,0

4 120V0,0,0 + 225V1,1,0 + 150V2,0,0 + 105V2,1,1 + 50V2,2,0 + 45V3,1,0 + 5V4,0,0

6 680V0,0,0 + 1590V1,1,0 + 1200V2,0,0 + 1155V2,1,1 + 750V2,2,0 + 175V2,2,2

+675V3,1,0 + 280V3,2,1 + 50V3,3,0 + 75V4,0,0 + 70V4,1,1 + 45V4,2,0 + 5V5,1,0

8 2565V0,0,0 + 7050V1,1,0 + 5645V2,0,0 + 6300V2,1,1 + 4500V2,2,0 + 1365V2,2,2

+4455V3,1,0 + 2760V3,2,1 + 750V3,3,0 + 315V3,3,2

+600V4,0,0 + 735V4,1,1 + 675V4,2,0 + 210V4,2,2 + 175V4,3,1 + 15V4,4,0

+75V5,1,0 + 40V5,2,1 + 10V5,3,0

10 6777V0,0,0 + 20700V1,1,0 + 17125V2,0,0 + 21000V2,1,1 + 15625V2,2,0 + 5250V2,2,2

+16425V3,1,0 + 12000V3,2,1 + 3750V3,3,0 + 2025V3,3,2

+2476V4,0,0 + 3675V4,1,1 + 3650V4,2,0 + 1449V4,2,2 + 1575V4,3,1 + 175V4,3,3 + 225V4,4,0 + 126V4,4,2

+474V5,1,0 + 376V5,2,1 + 150V5,3,0 + 75V5,3,2 + 24V5,4,1 + V5,5,0

12 12965V0,0,0 + 41630V1,1,0 + 35430V2,0,0 + 45325V2,1,1 + 34875V2,2,0

+12530V2,2,2 + 37665V3,1,0 + 29920V3,2,1 + 9875V3,3,0 + 5805V3,3,2

+6165V4,0,0 + 9800V4,1,1 + 10290V4,2,0 + 4585V4,2,2 + 5250V4,3,1 + 735V4,3,3 + 925V4,4,0 + 675V4,4,2 + 35V4,4,4

+1510V5,1,0 + 1440V5,2,1 + 660V5,3,0 + 425V5,3,2 + 200V5,4,1 + 40V5,4,3 + 15V5,5,0 + 10V5,5,2

14 17775V0,0,0 + 58920V1,1,0 + 50550V2,0,0 + 66255V2,1,1 + 51450V2,2,0 + 18900V2,2,2

+56565V3,1,0 + 46560V3,2,1 + 15825V3,3,0 + 9675V3,3,2

+9555V4,0,0 + 15750V4,1,1 + 16800V4,2,0 + 7770V4,2,2 + 9170V4,3,1 + 1400V4,3,3 + 1695V4,4,0 + 1305V4,4,2 + 75V4,4,4

+2655V5,1,0 + 2720V5,2,1 + 1325V5,3,0 + 930V5,3,2 + 480V5,4,1 + 120V5,4,3 + 50V5,5,0 + 45V5,5,2 + 5V5,5,4
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(vi) The local system R∗π6∗Qℓ is concentrated in degrees 0, . . . , 36 and given by

q Rqπ6∗Qℓ

0 V0,0,0

2 21V0,0,0 + 21V1,1,0 + 15V2,0,0

4 231V0,0,0 + 441V1,1,0 + 315V2,0,0 + 210V2,1,1 + 105V2,2,0 + 105V3,1,0 + 15V4,0,0

6 1771V0,0,0 + 4389V1,1,0 + 3465V2,0,0 + 3360V2,1,1 + 2205V2,2,0 + 490V2,2,2

+2205V3,1,0 + 896V3,2,1 + 175V3,3,0 + 315V4,0,0 + 280V4,1,1 + 189V4,2,0 + 35V5,1,0 + V6,0,0

8 9339V0,0,0 + 27489V1,1,0 + 23100V2,0,0 + 26460V2,1,1 + 19305V2,2,0 + 5880V2,2,2

+20790V3,1,0 + 13056V3,2,1 + 3675V3,3,0 + 1470V3,3,2

+3465V4,0,0 + 4305V4,1,1 + 3969V4,2,0 + 1176V4,2,2 + 1050V4,3,1 + 105V4,4,0

+735V5,1,0 + 384V5,2,1 + 105V5,3,0 + 21V6,0,0 + 21V6,1,1 + 15V6,2,0

10 35112V0,0,0 + 116424V1,1,0 + 101640V2,0,0 + 129360V2,1,1 + 99330V2,2,0 + 34440V2,2,2

+113190V3,1,0 + 86016V3,2,1 + 28050V3,3,0 + 15120V3,3,2

+21021V4,0,0 + 31605V4,1,1 + 32109V4,2,0 + 12789V4,2,2 + 14175V4,3,1 + 1470V4,3,3 + 2205V4,4,0 + 1176V4,4,2

+6699V5,1,0 + 5376V5,2,1 + 2205V5,3,0 + 1050V5,3,2 + 384V5,4,1 + 21V5,5,0

+231V6,0,0 + 315V6,1,1 + 315V6,2,0 + 105V6,2,2 + 105V6,3,1 + 15V6,4,0

12 97097V0,0,0 + 346577V1,1,0 + 311850V2,0,0 + 421960V2,1,1 + 336105V2,2,0 + 126280V2,2,2

+396396V3,1,0 + 335104V3,2,1 + 117425V3,3,0 + 71190V3,3,2

+79821V4,0,0 + 132055V4,1,1 + 142065V4,2,0 + 64729V4,2,2 + 77175V4,3,1 + 11025V4,3,3 + 14630V4,4,0 + 10521V4,4,2 + 490V4,4,4

+32879V5,1,0 + 32256V5,2,1 + 15345V5,3,0 + 9800V5,3,2 + 4864V5,4,1 + 896V5,4,3 + 441V5,5,0 + 280V5,5,2

+1309V6,0,0 + 2205V6,1,1 + 2415V6,2,0 + 1071V6,2,2 + 1365V6,3,1 + 175V6,3,3 + 315V6,4,0 + 189V6,4,2 + 35V6,5,1 + V6,6,0

14 198627V0,0,0 + 745437V1,1,0 + 683025V2,0,0 + 960960V2,1,1 + 781605V2,2,0 + 307230V2,2,2

+944181V3,1,0 + 849024V3,2,1 + 310695V3,3,0 + 200640V3,3,2

+200151V4,0,0 + 349755V4,1,1 + 388080V4,2,0 + 189189V4,2,2 + 234465V4,3,1 + 38325V4,3,3 + 48510V4,4,0 + 38661V4,4,2 + 2415V4,4,4

+96789V5,1,0 + 105216V5,2,1 + 53970V5,3,0 + 38760V5,3,2 + 21504V5,4,1 + 5376V5,4,3 + 2541V5,5,0 + 2205V5,5,2 + 210V5,5,4

+4389V6,0,0 + 8085V6,1,1 + 9465V6,2,0 + 4851V6,2,2 + 6615V6,3,1 + 1155V6,3,3

+1890V6,4,0 + 1539V6,4,2 + 105V6,4,4 + 420V6,5,1 + 105V6,5,3 + 21V6,6,0 + 15V6,6,2

16 304122V0,0,0 + 1174089V1,1,0 + 1086765V2,0,0 + 1562610V2,1,1 + 1285305V2,2,0 + 517440V2,2,2

+1573719V3,1,0 + 1462272V3,2,1 + 547470V3,3,0 + 364980V3,3,2

+343266V4,0,0 + 617925V4,1,1 + 696234V4,2,0 + 350889V4,2,2 + 443940V4,3,1 + 77385V4,3,3 + 95844V4,4,0 + 79926V4,4,2 + 5565V4,4,4

+181104V5,1,0 + 206976V5,2,1 + 110040V5,3,0 + 83160V5,3,2 + 48384V5,4,1 + 13440V5,4,3 + 6321V5,5,0 + 5985V5,5,2 + 735V5,5,4

+8877V6,0,0 + 17325V6,1,1 + 20790V6,2,0 + 11319V6,2,2 + 16170V6,3,1 + 3255V6,3,3

+5040V6,4,0 + 4536V6,4,2 + 405V6,4,4 + 1470V6,5,1 + 504V6,5,3 + 21V6,5,5 + 105V6,6,0 + 105V6,6,2 + 15V6,6,4

18 350714V0,0,0 + 1364454V1,1,0 + 1268190V2,0,0 + 1834560V2,1,1 + 1515780V2,2,0 + 615440V2,2,2

+1862784V3,1,0 + 1748992V3,2,1 + 659120V3,3,0 + 443520V3,3,2

+410454V4,0,0 + 744800V4,1,1 + 844074V4,2,0 + 430122V4,2,2 + 546840V4,3,1 + 97020V4,3,3 + 119854V4,4,0 + 101430V4,4,2 + 7370V4,4,4

+222376V5,1,0 + 258048V5,2,1 + 138600V5,3,0 + 106260V5,3,2 + 62720V5,4,1 + 17920V5,4,3 + 8379V5,5,0 + 8085V5,5,2 + 1035V5,5,4

+11242V6,0,0 + 22176V6,1,1 + 26950V6,2,0 + 14994V6,2,2 + 21560V6,3,1 + 4480V6,3,3

+6930V6,4,0 + 6426V6,4,2 + 630V6,4,4 + 2156V6,5,1 + 784V6,5,3 + 36V6,5,5 + 175V6,6,0 + 189V6,6,2 + 35V6,6,4 + V6,6,6
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Not enough is presently known about the individual cohomology groups of local systems onA3 to compute

the individual cohomology groups ofX×n
3 . To compute the individual cohomology groups ofX3 we only need to

know the individual cohomology groups of V0,0,0 and of V1,1,0. We know this in the first case by the earlier result

of Hain, and in the second case we have the following result of Hulek-Tommasi:

Proposition 1.4.4. [61, Lemma 35] The cohomologyH∗
c (A3,V1,1,0) is concentrated in degrees 5 (and possibly in

degrees 8 and 9) and given byH5
c (A3,V1,1,0) = L (and byH8

c (A3,V1,1,0) = H9
c (A3,V1,1,0) = εL4 for some

ε ∈ {0, 1}, presumably ε = 0).

The indeterminacy in the above lemma involves the only possibly nontrivial differenial in the Gysin long exact

sequence associated to the closed embeddingAred
3 ↪→ A3:

L5 = H8
c (Ared

3 ,V1,1,0)→ H9
c (M3,V1,1,0) = L5

but it seems difficult to analyze this differential directly. It may be possible to identify the contributionsH8
c (A3,V1,1,0) =

H9
c (A3,V1,1,0) = εL4 as contributions to compactly supported Eisenstein cohomology for one of the standard

parabolic subgroups of Sp6, and then compute the relevant Eisenstein cohomology groups, but this is far beyond

the scope of this paper. We will have to settle with the following theorem:

Theorem 1.4.5. The cohomologyH∗(X3,Qℓ) is concentrated in degrees 0, . . . , 12 and is given up to semisimpli-

fication by

k Hk(X3,Qℓ) k Hk(X3,Qℓ)

0 1 1 0

2 2L 3 0

4 3L2 5 εL4

6 L6 + εL4 + 4L3 7 εL5

8 L7 + εL5 + 3L4 9 L7

10 L8 + 2L5 11 L8

12 L9 + L6

for some ε ∈ {0, 1}, presumably ε = 0.
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Proof. We consider the spectral sequence Ep,q2 = Hp(A3,Rqπ∗Qℓ) ⇒ Hp+q(X3,Qℓ). We have contribu-

tions to H0, H2, H4, and H6 from H0(A3,V0,0,0) = 1, H2(A3,V0,0,0) = L, H4(A3,V0,0,0) = L2,

and H6(A3,V0,0,0) = L6 + L3, and we have contributions to H7 (and possibly to H3 and H4) given by

H7(A3,V1,1,0) = L7 (and by H3(A3,V1,1,0) = H4(A3,V1,1,0) = εL4 for some ε ∈ {0, 1}, presumably

ε = 0). It follows that theE2-page is given

6 L3 0 L4 0 L5 0 L9 + L6

4 L2 0 L3 εL5 εL5 + L4 0 L8 + L5 L8

2 L 0 L2 εL4 εL4 + L3 0 L7 + L4 L7

0 1 0 L 0 L2 0 L6 + L3

0 1 2 3 4 5 6 7

TakingHk(X3,Qℓ) =
⊕

p+q=kH
p(A3,Rqπ∗Qℓ) yields the result.

We cannot go much further with computations of individual cohomology groups, so we fall back to compactly

supported cohomology. We obtain the following result, which is unconditional for 1 ≤ n ≤ 5 on the basis of point

counts, and is only conditional on the Euler characteristic ec(A3,V6,6,6) = SΓ(1)[0, 10] − L9 − L8 + 1 in the

case n = 6 (but is very much conditional on the above predictions in the case n ≥ 9):

Theorem 1.4.6. Assume conjectures 1.4.1 and 1.4.2. Then the compactly supported Euler characteristicec(X×n
3 ,Qℓ)

is Tate type for all 1 ≤ n ≤ 5, and are given by:

ec(X3,Qℓ) = L9 + 2L8 + 3L7 + 4L6 + 3L5 + 2L4 + 2L3 + 1

ec(X×2
3 ,Qℓ) = L12 + 4L11 + 10L10 + 20L9 + 25L8 + 24L7 + 17L6 + L5 − 8L4 − 4L3 − L2 + 4L+ 5

ec(X×3
3 ,Qℓ) = L15 + 7L14 + 28L13 + 84L12 + 164L11 + 237L10 + 260L9

+ 164L8 − 21L7 − 171L6 − 212L5 − 107L4 + 47L3 + 99L2 + 75L+ 29

ec(X×4
3 ,Qℓ) = L18 + 11L17 + 66L16 + 286L15 + 835L14 + 1775L13 + 2906L12 + 3480L11 + 2476L10

− 415L9 − 3846L8 − 5322L7 − 3781L6 − 597L5 + 2146L4 + 2877L3 + 1887L2 + 757L+ 162

ec(X×5
3 ,Qℓ) = L21 + 16L20 + 136L19 + 816L18 + 3380L17 + 10182L16 + 23578L15

+ 42433L14 + 57157L13 + 47250L12 − 5213L11 − 84003L10 − 137082L9 − 124223L8

− 52325L7 + 33070L6 + 83756L5 + 83816L4 + 53066L3 + 22340L2 + 6134L+ 891
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The compactly supported Euler characteristic ec(X×6
3 ,Qℓ) is given by:

ec(X×6
3 ,Qℓ) = (L6 + 21L5 + 120L4 + 280L3 + 309L2 + 161L+ 32)SΓ(1)[0, 10]

+ L24 + 22L23 + 253L22 + 2024L21 + 11362L20 + 46613L19

+ 146665L18 + 364262L17 + 720246L16 + 1084698L15 + 1036149L14 + 38201L13

− 1876517L12 − 3672164L11 − 4024657L10 − 2554079L9 + 101830L8 + 2028655L7

+ 2921857L6 + 2536864L5 + 1553198L4 + 687157L3 + 215631L2 + 45035L+ 4930

where SΓ(1)[0, 10] = SΓ(1)[18] + L9 + L8 is the 4-dimensional ℓ-adic Galois representation attached to the

Saito-Kurokawa lift χ10 ∈ S0,10(Γ(1)) of the weight 18 cusp form f18 = ∆E6 ∈ S18(Γ(1)). In particular the

compactly supported Euler characteristic ec(X×n
3 ,Qℓ) is not Tate type if n ≥ 6.

Proof. Follows by combining 1.1.7 and 1.1.9 with 1.4.1. In this case we computed the multiplicitiesmj,n
λ with a SAGE

program (available on request).

To argue that ec(X×n
3 ,Qℓ) is not Tate type if n ≥ 6 note thatH24(X×9

3 ,Qℓ) (which is not Tate type, owing

to the 8-dimensional contribution SΓ(1)[3, 3, 7] toH6(A3,V9,6,3), which decomposes into a 1-dimensional con-

tribution and an irreducible 7-dimensional contribution) appears as a summand inH24(X×n
3 ,Qℓ) for all n ≥ 9

by the Künneth formula. This contribution cannot be cancelled in the Euler characteristic: since the contribution

occurs inH i(X×n
3 ,Qℓ) for i even, any contribution leading to cancellation would have to occur inH i(X×n

3 ,Qℓ)

for i odd. Since H∗(A3,Vλ1,λ2,λ3) = 0 for λ1 + λ2 + λ3 > 0 odd, any contribution to H i(X×n
3 ,Qℓ) for

i odd would have to come from a contribution to Hj(A3,Vλ1,λ2,λ3) for j = 1, 3, 5, 7, 9, 11, but there are no

irreducible 7-dimensional contributions in this case: the only irreducible 7-dimensional contributions come from

the contributions toH6(A3,Vλ1,λ2,λ3) predicted by [49]. The remaining cases n = 7, 8 are checked by running

the above computations further to see that the contribution SΓ(1)[0, 10] persists.

Alternatively, note thatH26(X×10
3 ,Qℓ) (which is not Tate type, owing to the irreducible 8-dimensional con-

tributions SΓ(1)[2, 2, 6] and SΓ(1)[4, 2, 8] to H6(A3,V10,8,2) and H6(A3,V10,6,4) respectively, see [15, Table 1,

Table 2]) appears as a summand in H26(X×n
3 ,Qℓ) for all n ≥ 10 by the Künneth formula. This contribution

cannot be cancelled in the Euler characteristic by the same argument as above: the only irreducible 8-dimensional

contributions come from the contribution Sgen[λ1−λ2, λ2−λ3, λ3+4] toH6(A3,Vλ1,λ2,λ3). The remaining
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cases n = 7, 8, 9 are checked by running the above computations further to see that the contribution SΓ(1)[0, 10]

persists. This makes the above argument a bit less conjectural by removing the dependence on the functorial lift

from G2. That being said, since the above computations are already conditional on [15, Conjecture 7.1], we do not

try to further justify the predictions of the Langlands correspondence which we have used in the above argument.

The contribution (L6+21L5+120L4+280L3+309L2+161L+32)SΓ(1)[0, 10] to ec(X×6
3 ,Qℓ) comes

from the following 4 contributions:

ec(A3,V6,6,6) + (15L2 + 35L+ 15)ec(A3,V6,6,4)

+ (15L4 + 105L3 + 189L2 + 105L+ 15)ec(A3,V6,6,2)

+ (L6 + 21L5 + 105L4 + 175L3 + 105L2 + 21L+ 1)ec(A3,V6,6,0)

which explains why the coefficients in the polynomial L6 + 21L5 + 120L4 + 280L3 + 309L2 + 161L+ 32 are

not symmetric: it arises as the sum of 4 polynomials with symmetric coefficients of different degrees. Note that the

contribution SΓ(1)[0, 10] should always persist, but we cannot argue this without estimates on the multiplicities

mj,n
λ .

1.4.3 Point Counts for Abelian Threefolds

We now consider the point counts and consequences for arithmetic statistics which come from the above computa-

tions.

Since ec(A3,Qℓ) = L6 + L5 + L4 + L3 + 1 we have

#A3(Fq) = q6 + q5 + q4 + q3 + 1

Since ec(X3,Qℓ) = L9 + 2L8 + 3L7 + 4L6 + 3L5 + 2L4 + 2L3 + 1 we have

#X3(Fq) = q9 + 2q8 + 3q7 + 4q6 + 3q5 + 2q4 + 2q3 + 1
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It follows that we have the expected value

E(#A3(Fq)) =
q9 + 2q8 + 3q7 + 4q6 + 3q5 + 2q4 + 2q3 + 1

q6 + q5 + q4 + q3 + 1

= q3 + q2 + q + 1− q2 + q

q6 + q5 + q4 + q3 + 1

ForA a principally polarized Abelian threefold the Weil conjectures yield

#A(Fq) = q3 + a5q
5
2 + a4q

2 + a3q
3
2 + a2q + a1q

1
2 + 1

where ai is a sum of ni roots of unity for ni = 6, 15, 20, 15, 6 for i = 1, 2, 3, 4, 5 respectively. In particular we

have

|#A(Fq)− (q3 + 1)| ≤ 6q
5
2 + 15q2 + 20q

3
2 + 15q + 6q

1
2

On the other hand by the Honda-Tate correspondence for Abelian threefolds there exists a simple Abelian threefold

A over Fq with #A(Fq) = q3 + q2 + q + 1, corresponding to the case a5 = a3 = a1 = 0. In particular we have

min
[A,λ]∈[A3(Fq)]

#A(Fq) = q3 + q2 + q + 1

Comparing this to the computation of the expected valueE(#A(Fq)) yields

lim
q→∞

|E(#A3(Fq))− min
[A,λ]∈[A3(Fq)]

#A(Fq)| = 0

Since ec(X×2
3 ,Qℓ) = L12+4L11+10L10+20L9+25L8+24L7+17L6+L5−8L4−4L3−L2+4L+5

we have

#X×2
3 (Fq) = q12 + 4q11 + 10q10 + 20q9 + 25q8 + 24q7 + 17q6 + q5 − 8q4 − 4q3 − q2 + 4q + 5
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It follows that we have the expected value

E(#A3(Fq)2) =
q12 + 4q11 + 10q10 + 20q9 + 25q8 + 24q7 + 17q6 + q5 − 8q4 − 4q3 − q2 + 4q + 5

q6 + q5 + q4 + q3 + 1

= q6 + 3q5 + 6q4 + 10q3 + 6q2 + 2q − 2− 8q5 + 14q4 + 12q3 + 7q2 − 2q − 7

q6 + q5 + q4 + q3 + 1

and we have the variance

Var(#A3(Fq)) = E(#A3(Fq)2)− E(#A3(Fq))2

= q5 + 3q4 + 6q3 + 3q2 − 3− 6q11 + 16q10 + 24q9 + 27q8 + 17q7 − 2q5 + 3q3 + 4q2 − 4q − 7

(q6 + q5 + q4 + q3 + 1)2

We can continue in this way to obtain the first 5 terms of the moment generating function:

Corollary 1.4.7. The first 5 terms of the moment generating functionM#A3(Fq)(t) are rational functions in q:

1 +(q3+q2+q+1+
−q2−q

q6+q5+q4+q3+1
)t

+(q6+3q5+6q4+10q3+6q2+2q−2+
−8q5−14q4−12q3−7q2+2q+7

q6+q5+q4+q3+1
)
t2

2!

+ ( q9+6q8+21q7+56q6+81q5

+79q4+43q3−45q2−119q−106
+ −23q5+39q4+110q3+144q2+194q+135

q6+q5+q4+q3+1
) t

3

3!

+ ( q
12+10q11+55q10+220q9+550q8+950q7+1185q6

+785q5−499q4−2106q3−2576q2−1091q+807
+ 1478q5+2929q4+4176q3+4463q2+1848q−645

q6+q5+q4+q3+1
) t

4

4!

+ ( q15+15q14+120q13+680q12+2565q11+6817q10+13515q9+19521q8

+17184q7−3650q6−40833q5−63521q4−42593q3+3203q2+33402q+42708
+ 45276q5+71227q4+52951q3+19137q2−27268q−41817

q6+q5+q4+q3+1
) t

5

5!
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Chapter 2

Cohomology of Shimura Varieties

In the previous chapter we have explained how to study arithmetic statistics for principally polarized Abelian varieties

over finite fields through knowledge of the Euler characteristics ec(Ag,Vλ), and ran these computations in the

range where these Euler characteristics are explicitly known. In all of these computations there is a range beyond

which the traces of Frobenius on the Euler characteristics ec(Ag,Vλ) is as complicated as possible, in the sense that

they involve traces of Hecke operators on vector-valued Siegel modular forms of general type for Sp2g(Z).

This leaves the following question: where does the knowledge of the Euler characteristics ec(Ag,Vλ) actually

come from? How is this relation between traces of Frobenius and traces of Hecke operators actually established?

How do these results generalize to higher level?

In this chaper we explain a general strategy for computing the cohomology of local systems on Shimura varieties

in a way which relates this to the spectral theory of automorphic forms. The method which ultimately relates the

traces of Frobenius on the ℓ-adic cohomology of a Shimura variety to the spectral theory of automorphic forms is

the Langlands-Kottwitz method. Regrettably, explaining the necessary background in order to apply this method

falls outside the scope of the present thesis; in particular, we have omitted the necessary work of analyzing terms in

the Arthur-Selberg trace formula and its stabilization, particularly forGSp4. Nevertheless, we will make an attempt

to remark on how this method is used, and outline some of the main computations in later chapters; a complete

treatment of these arguments for GSp4 will have to wait for future writing.

In the remaining chapters we apply this general strategy to the groups GL2 and GSp4. While the computation

for GL2 is relatively simple, the computation for GSp4 is quite involved (for example Flicker has written an entire

book on the computation for PGSp4 [33] and Weissauer has written an entire book on endoscopy for GSp4 [121]),
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our goal is to summarize the main points of how the Langlands-Kottwitz method is applied while blackboxing many

of the actual details from the representation theory of GSp4, especially the various cases of the fundamental lemma

and the endoscopic character identities which we need for the computation to work.

2.1 Intersection Cohomology of Shimura Varieties

We now describe a general procedure through which one can compute the intersection cohomology of local systems

on Shimura varieties in terms of (discrete spectrum) automorphic representations. The intersection cohomology

contains cuspidal cohomology, which one can compute in terms of cuspidal automorphic represetations. Up to

understanding the structure of the discrete and cuspidal automorphic spectra, this reduces the cuspidal part of the

computation to a problem of representation theory and the spectral theory of automorphic forms.

2.1.1 Shimura Varieties

We begin by recalling the definition of Shimura data, primarily following [97, Section 3] and [87, Section 1.1].

In general a Shimura variety should be a moduli space of certain Hodge structures; for example a Shimura variety

of Abelian type can be understood as a moduli space of Abelian motives overCwith certain Hodge classes and a level

structure, which should admit a canonical model over a number field F (see [28], [84], [83] for general discussion).

Recalling that R-Hodge structures are equivalently representations of Deligne’s torus S = ResC/RGm,C, one has

the following definition:

Definition 2.1.1. [97, 3.1] A Shimura datum is a triple (G,X, h) whereG is a connected reductive group over Q,

whereX is a transitiveG(R)-set, and where h : X → HomR(S, GR) is aG(R)-equivariant morphism (written

x 7→ hx), such that:

(i) For all x ∈ X , the Hodge structure on gC defined by Ad ◦ hx : S → GL(gC) has Hodge bidegrees in

{(−1, 1), (0, 0), (1,−1)}.

(ii) For all x ∈ X the automorphism Ad(hx(i)) ofGad
R is the Cartan involution.

(iii) For all x ∈ X every projection of hx onto a simple factor ofGad is trivial.

The reflex field of a Shimura datum (G,X, h) is the number field F which is the field of definition of the

conjugacy class of cocharacters hx ◦ µ0 : Gm,C → GC, where µ0 : Gm,C → SC is the cocharacter given by

z 7→ (z, 1).
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Let (G,X, h) be a Shimura datum. Let A∞
Q =

∏̂Zp
p Qp be the finite adele ring of Q and let AQ = A∞

Q × R

be the adele ring of Q. For Kfin ⊆ G(A∞
Q ) a compact open subgroup one has the Shimura variety SKfin

which

is a smooth quasiprojective stack (or a smooth quasiprojective variety if Kfin ⊆ G(A∞
Q ) is a neat compact open

subgroup) defined over the reflex field F . Fixing an embedding σ : F ↪→ C, the set of complex points is given by

the adelic double quotient

SKfin
(C) = G(Q) \X ×G(A∞

Q )/Kfin

Note thatX = G(R)/K ′
∞ is a Hermitian symmetric domain whereK ′

∞ = K∞AG(R)◦ whereK∞ ⊆ G(R) is a

maximal compact subgroup andAG(R)◦ is the connected component of the identity inAG(R)whereAG ⊆ Z(G)

is a maximal Q-split torus in the center ofG.

One has the Baily-Borel compactificationSBB
Kfin

which is a normal projective stack (or a normal projective variety

if Kfin ⊆ G(A∞
Q ) is a neat compact open subgroup) defined over the same reflex field F . Fixing an embedding

σ : F ↪→ C, the set of complex points is given by the adelic double quotient

S
BB
Kfin

(C) = G(Q) \X ×G(A∞
Q )/Kfin

whereX is a topological space with dense open embedding j : X ↪→ X such that theG(Q)-action onX extends

to a continuousG(Q)-action onX , with boundary components corresponding to maximal parabolic subgroups

ofG.

Hecke Correspondences Let g ∈ G(A∞
Q ), and letKfin,K

′
fin ⊆ G(A∞

Q ) be compact open subgroups such that

K ′
fin ⊆ gKfing

−1. We have a finite morphism Tg : SK′
fin
→ SKfin

(étale ifKfin is neat) given on complex points

by

G(Q) \X ×G(A∞
Q )/K ′

fin → G(Q) \X ×G(A∞
Q )/Kfin

G(Q)(x, g′K ′
fin) 7→ G(Q)(x, g′gKfin)

The finite morphism Tg : SK′
fin
→ SKfin

extends to a finite morphism T g : S
BB
K′

fin
→ S

BB
Kfin

.
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As a special case of this, let Kfin ⊆ G(A∞
Q ) be a compact open subgroup and for g ∈ G(A∞

Q ) let K ′
fin =

gKfing
−1 be the corresponding compact open subgroup. We have the Hecke correspondence

SKfin∩K′
fin

SKfin
SKfin

π′ π

where π : SKfin∩K′
fin
→ SKfin

is the canonical projection, and where π′ : SKfin∩K′
fin
→ SKfin

is the canonical

projection SKfin∩K′
fin
→ SK′

fin
followed by the morphism Tg : SK′

fin
→ SKfin

.

As we now explain, these correspondences can be used to construct an action of theKfin-spherical Hecke algebra

on the cohomology of local systems on SKfin
.

Definition 2.1.2. The Hecke algebra ofG(A∞
Q ) (with coefficients in a fieldE of characteristic 0) is the non-unital

E-algebra of compactly supported locally constant functions

HG(A∞
Q ) = C∞

c (G(A∞
Q ), E)

with multiplication given by the convolution product

(f1 ∗ f2)(g) =
∫
G(A∞

Q )
f1(h

−1g)f2(g)dh

ForKfin ⊆ G(A∞
Q ) a compact open subgroup theKfin-spherical Hecke algebra (with coefficients in a fieldE of

characteristic 0) is the unitalE-algebra of compactly supported locally constantKfin-biinvariant functions

HKfin
= C∞

c (Kfin \G(A∞
Q )/Kfin, E)

with multiplication given by convolution as above, and with unit eKfin
= vol(Kfin)

−11Kfin
the normalized indi-

cator function ofKfin inG(A∞
Q ).

Definition 2.1.3. We say that anE-linear representation V ofG(A∞
Q ) is smooth if V =

⋃
Kfin

V Kfin , where the

union is taken over compact open subgroupsKfin ⊆ G(A∞
Q ).

We say that an HG(A∞
Q )-module V is nondegenerate if for all v ∈ V there exists f ∈ HG(A∞

Q ) such that

f · v = v.
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A smooth E-linear representation V of G(A∞
Q ) can be regarded as aHG(A∞

Q )-module where f ∈ HG(A∞
Q )

acts on v ∈ V by

f · v =

∫
G(A∞

Q )
f(h)(h · v)dh

The resultingHG(A∞
Q )-module is nondegenerate and we obtain an equivalence of categories.

{ smoothE-linear representations ofG(A∞
Q )} ∼−→ {nondegenerateHG(A∞

Q )-modules}

For such a nondegenerateHG(A∞
Q )-module V the action of eKfin

is given by the projector V → V Kfin . The E-

subalgebraHKfin
ofHG(A∞

Q ) can be identified with eKfin
∗ HG(A∞

Q ) ∗ eKfin
, and is generated as anE-vector space

by the functions 1KfingKfin
for g ∈ G(A∞

Q ). In particular V Kfin can be regarded as anHKfin
-module.

Cohomology of Local Systems For Vλ ∈ Rep(G) a highest weight irreducible representation (defined over Q)

let Vλ be the corresponding local system of Q-vector spaces on SKfin
(C) given by the sheaf of local sections of the

morphism

G(Q) \ Vλ ×X ×G(A∞
Q )/Kfin → G(Q) \X ×G(A∞

Q )/Kfin

where γ ∈ G(Q) acts on Vλ × X × G(A∞
Q )/Kfin by (v, x, gKfin) 7→ (γ · v, γ · x, γgKfin). Note that this

definition make sense for locally symmetric spaces Γ \X attached to connected reductive groupsG over Q, even

when these are not Shimura varieties.

The cohomology H∗(SKfin
(C),Vλ) and the compactly supported cohomology H∗

c (SKfin
(C),Vλ) can be

regarded asHKfin
-modules in the following way. First, note that we have a natural action ofG(A∞

Q ) on the limit

S(C) = lim←−Kfin
SKfin

(C), which yields a natural action ofG(A∞
Q ) on

H i(S(C),Vλ) = lim−→
Kfin

H i(SKfin
(C),Vλ) H i

c(S(C),Vλ) = lim−→
Kfin

H i
c(SKfin

(C),Vλ)
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soH i(S(C),Vλ) andH i
c(S(C),Vλ) can be regarded as smoothQ-linear representations ofG(A∞

Q ), equivalently

as nondegenerateHG(A∞
Q )-modules. Now by the Hochschild-Serre spectral sequence we have natural isomorphisms

H∗(S(C),Vλ)Kfin = H∗(SKfin
(C),Vλ) H∗

c (S(C),Vλ)Kfin = H∗
c (SKfin

(C),Vλ)

soH∗(SKfin
(C),Vλ) andH∗

c (SKfin
(C),Vλ) can be regarded as nondegenerateHKfin

-modules.

Our first goal is to understand the cohomologyH∗(SKfin
(C),Vλ) or the compactly supported cohomology

H∗
c (SKfin

(C),Vλ) asHKfin
-modules. In this situation we are allowed to use certain transcendental methods, in

particular some of the structure of the cohomology can be understood in terms of the boundary of certain non-

algebraic compactifications of SKfin
(C).

One has the Borel-Serre compactification SBS
Kfin

which is a smooth manifold with corners, with boundary

components corresponding to parabolic subgroups ofG. One has a morphism S
BS
Kfin
→ S

BB
Kfin

(C) which collapses

many of the Borel-Serre boundary components into a given Baily-Borel boundary component. Let ∂SBS
Kfin

=

S
BS
Kfin
−SKfin

(C) be the boundary of the Borel-Serre compactification ofSKfin
(C) and let j : SKfin

(C) ↪→ S
BS
Kfin

and i : ∂SBS
Kfin

↪→ S
BS
Kfin

be the canonical inclusions. Then we have Rqj∗Vλ = 0 for all q > 0 and we have

H i(SKfin
(C),Vλ) = H i(S

BS
Kfin

, j∗Vλ). We writeH i(∂S
BS
Kfin

,Vλ) to denoteH i(∂S
BS
Kfin

, i∗j∗Vλ). We have the

compactly supported cohomology H i
c(SKfin

(C),Vλ) = H i(S
BS
Kfin

, j!Vλ). We have a short exact sequence of

sheaves

0→ j!Vλ → j∗Vλ → i∗j∗Vλ → 0

which yields anHKfin
-equivariant long exact sequence in (compactly supported) cohomology:

. . .→ H i−1(∂S
BS
Kfin

,Vλ)
δ−→ H i

c(SKfin
(C),Vλ)→ H i(SKfin

(C),Vλ)
res−−→ H i(∂S

BS
Kfin

,Vλ)→ . . .

Definition 2.1.4. Define the inner cohomology

H i
! (SKfin

(C),Vλ) = im(H i
c(SKfin

(C),Vλ)→ H i(SKfin
(C),Vλ))

= ker(H i(SKfin
(C),Vλ)

res−−→ H i(S
BS
Kfin

,Vλ))
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Define the Eisenstein cohomology

H i
Eis(SKfin

(C),Vλ) = coker(H i(SKfin
(C),Vλ)

res−−→ H i(∂S
BS
Kfin

,Vλ))

Define the compactly supported Eisenstein cohomology

H i
c,Eis(SKfin

(C),Vλ) = im(H i−1(∂S
BS
Kfin

,Vλ)
δ−→ H i

c(SKfin
(C),Vλ))

It follows that we have short exact sequences

0→ H i
! (SKfin

(C),Vλ)→ H i(SKfin
(C),Vλ)→ H i

Eis(SKfin
(C),Vλ)→ 0

0→ H i
c,Eis(SKfin

(C),Vλ)→ H i
c(SKfin

(C),Vλ)→ H i
! (SKfin

(C),Vλ)→ 0

which split the above long exact sequence in (compactly supported) cohomology into short exact sequences:

0 0

H i
! (SKfin

(C),Vλ)

H i−1(∂S
BS
Kfin

,Vλ) H i
c(SKfin

(C),Vλ) H i(SKfin
(C),Vλ) H i(∂S

BS
Kfin

,Vλ)

H i
c,Eis(SKfin

(C),Vλ) H i
Eis(SKfin

(C),Vλ)

0 0

i!

δi−1

δ

pc

res

res

Note that the inner cohomology, the compactly supported cohomology Eisenstein cohomology, and the Eisenstein

cohomology all makes sense algebraically: after all, the forget supports morphismH i
c(SKfin

,Vλ)→ H i(SKfin
,Vλ)

and hence its image and the above short exact sequences make sense algebraically. On the other hand, the relation

to the cohomology of the Borel-Serre boundary does not make sense algebraically.

2.1.2 (g, K∞)-Cohomology

One of the main tools which is used to compute the cohomology of local systems on Shimura varieties is (g,K∞)-

cohomology. After recalling the notions of (g,K∞)-modules and (g,K∞)-cohomology, including some crucial

clarifications about the role of central characters and component groups, we will explain how this can be used to

compute (compactly supported) de Rham cohomology.
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(g,K∞)-Modules Let g be the Lie algebra ofG(R) and let k be the Lie algebra of a maximal compact subgroup

K∞ ⊆ G(R). It is often useful to study the (often infinite-dimensional) representations of G(R) in terms of

(g,K∞)-modules, as studied by Harish-Chandra.

Definition 2.1.5. A (g,K∞)-module is a C-vector space V along with an action ρg : g → EndC(V ) (written

X 7→ (v 7→ X · v)) and a continuous action ρK∞ : K∞ → AutC(V ) (written k 7→ (v 7→ k · v)) such that:

(i) For every v ∈ V , for every k ∈ K∞, and for everyX ∈ g we have k · (X · v) = (Ad(k)X) · (k · v);

(ii) For every v ∈ V and for every Y ∈ k we have ( d
dt exp(tY ))|t=0 = Y · v

For a (g,K∞)-module V let V |K∞ be the corresponding representation ofK∞. Then by Peter-Weyl we have

a decomposition intoK∞-types

V |K∞ =
⊕
ϑ∈K̂∞

m(ϑ)ϑ

where the direct sum is taken over isomorphism classes of irreducible (finite-dimensional) representations ϑ of

the compact groupK∞. We say that V is admissible (a Harish-Chandra (g,K∞)-module) if for everyK∞-type

ϑ ∈ K̂∞ the multiplicitym(ϑ) in the above decomposition is finite. Equivalently, V is admissible ifK∞ · v spans

a finite-dimensional subspace of V for every v ∈ V . Put another way, if V (K∞) the subspace ofK∞-finite vectors

in V , then V is admissible if V = V (K∞).

Let Mod(g,K∞) be the Abelian category of admissible (g,K∞)-modules. For V1, V2 ∈ Mod(g,K∞) we

have the tensor product V1 ⊗ V2 ∈ Mod(g,K∞) whereX ∈ g acts on v1 ⊗ v2 ∈ V1 ⊗ V2 by the Leibniz rule

X · (v1 ⊗ v2) = (X · v1)⊗ v2 + v1 ⊗ (X · v2) and where k ∈ K∞ acts on v1 ⊗ v2 ∈ V1 ⊗ V2 by the diagonal

action k · (v1 ⊗ v2) = (k · v1)⊗ (k · v2).

(g,K∞)-Cohomology By [20, I.2.5] the category Mod(g,K∞) has enough injectives and projectives. One

can then define (g,K∞)-cohomology, which is essentially a combination of Lie algebra cohomology for g and

(continuous) group cohomology forK∞, which takes into account the compatible actions of g andK∞ on Harish-

Chandra (g,K∞)-modules.
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Definition 2.1.6. Let V be an admissible (g,K∞)-module. Define the (g,K∞)-cohomology of V as the Ext

group in Mod(g,K∞):

H i(g,K∞;V ) = Exti(g,K∞)(C, V )

where C ∈ Mod(g,K∞) is the trivial 1-dimensional (g,K∞-module. More explicitly, consider the complex

HomK∞(∧•(g/k), V ) =
(
0→ V

d−→ HomK∞(∧1(g/k), V )
d−→ HomK∞(∧2(g/k), V )

d−→ . . .
)

with differential HomK∞(∧p(g/k), V )
d−→ HomK∞(∧p+1(g/k), V ) given by

dω(X0, . . . , Xp) =
∑

0≤i≤p
(−1)iXiω(X0, . . . , X̂i, . . . , Xp)

+
∑

0≤i<j≤p
(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp)

Define the (g,K∞)-cohomologyH i(g,K∞;V ) = H i(HomK∞(∧•(g/k), V )).

The (g,K∞)-cohomology of an irreducible admissible (g,K∞)-module V is highly constrained by its central

character. For V an irreducible admissible (g,K∞)-module, the action of g on V extends to an action of the

universal enveloping algebra U(gC) on V , which restricts to an action of the centerZ(gC) of U(gC) on V . The

action ofZ(gC) on V respects theK∞-type decomposition V |K∞ =
⊕

ϑ∈K̂∞
m(ϑ)ϑ, and since V is irreducible

it follows by Schur’s lemma thatZ(gC) acts by scalars on V . We obtain a morphism ωV : Z(gC)→ C given for

z ∈ Z(gC) and v ∈ V by z · v = ωV (z)v, which is called the central character of V .

Lemma 2.1.7. (Compare to [55, Section 6.1.4], [19, Lemma 5.5]) (Wigner’s lemma) Let π∞ be an irreducible admis-

sible (g,K∞)-module and let Vλ ∈ Rep(G) be a finite-dimensional absolutely irreducible rational representation

with highest weight λ. Then H i(g,K∞;π∞ ⊗ Vλ) = 0 for every i ≥ 0 unless ωπ∞(z) = ωV ∨
λ
(z) for every

z ∈ Z(gC).

Proof. For I an injective (g,K∞)-module I ⊗ Vλ is also an injective (g,K∞)-module, so an injective resolution

I• of π∞ in Mod(g,K∞) yields an injective resolution I• ⊗ Vλ of π∞ ⊗ Vλ in Mod(g,K∞), and we obtain an
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isomorphism

H i(g,K∞;π∞ ⊗ Vλ) ≃ Exti(g,K∞)(V
∨
λ , π∞)

Every z ∈ Z(gC) induces an endomorphism ofVλ and hence induces an endomorphism z′ ofExti(g,K∞)(V
∨
λ , π∞)

by functoriality of Ext. Similarly every z ∈ Z(gC) induces an endomorphism of π∞ and hence induces an endo-

morphism z′′ of Exti(g,K∞)(V
∨
λ , π∞) by functoriality of Ext. Now we show that z′ = z′′ by induction on the

cohomological degree i ≥ 0.

For the base case i = 0 this is clear by the definition Ext0(g,K∞)(V
∨
λ , π∞) = Hom(g,K∞)(V

∨
λ , π∞): for every

z ∈ Z(gC), for every ϕ ∈ Hom(g,K∞)(V
∨
λ , π∞), and for every v ∈ Vλ we have z′ϕ(v) = ϕ(zv) = z′′ϕ(v).

For the induction step consider an embedding ofπ∞ into an injective (g,K∞)-module I ; by the corresponding

short exact sequence 0→ π∞ → I → I/π∞ → 0 we obtain an isomorphism

Exti−1
(g,K∞)(V

∨
λ , I/π∞) ≃ Exti(g,K∞)(V

∨
λ , π∞)

for every i ≥ 1. By the induction hypothesis we know that z′ = z′′ on Exti−1
(g,K∞)(V

∨
λ , I/π∞), so it follows that

z′ = z′′ on Exti(g,K∞)(V
∨
λ , π∞).

Now if ωπ∞ ̸= ωλ∨ then there exists z ∈ Z(gC) such that ωλ∨(z) = 0 and ωπ∞(z) = 1, which implies

z′ = 0 and z′′ = 1 on Exti(g,K∞)(V
∨
λ , π∞) for every i ≥ 0. But since z′ = z′′ this implies that the identity is

identically zero onExti(g,K∞)(V
∨
λ , π∞) for every i ≥ 0, that isH i(g,K∞;π∞⊗Vλ) ≃ Exti(g,K∞)(V

∨
λ , π∞) =

0 for every i ≥ 0. It follows thatH i(g,K∞;π∞ ⊗ Vλ) = 0 for every i ≥ 0 unless ωπ∞(z) = ωλ∨(z) for every

z ∈ Z(gC).

As illustrated by Wigner’s lemma, we will need to be a bit careful with matching of central characters in order

to obtain nontrivial (g,K∞)-cohomology. By Harish-Chandra [? ], for a given central character ω : Z(gC)→ C

there exists only finitely many isomorphism classes of irreducible admissible (g,K∞)-modules π∞ with central

character ωπ∞ = ω. In particular for a given highest weight λ there exists only finitely many isomorphism classes

of irreducible admissible (g,K∞)-modules π∞ such thatH i(g,K∞;π∞ ⊗ Vλ) ̸= 0 for some i ≥ 0.

By Vogan-Zuckerman [119] there is a complete classification of cohomological irreducible admissible (g,K∞)-

modules: one has an explicit family of irreducible admissible (g,K∞)-modulesAq(λ) such thatH i(g,K∞;Aq(λ)⊗
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Vλ) is nonzero for some i ≥ 0, and every cohomological irreducible admissible (g,K∞)-module is isomorphic to

someAq(λ). We will recall particular cases of this classification later.

Central Characters and Component Groups In general it is useful to extend the definition of (g,K∞)-

modules and their cohomology to situations whereK∞ ⊆ G(R) is not necessarily a maximal compact subgroup,

but rather compact modulo center. For simplicity of discussion we will consider the following situation which is

relevant to later computations: letG be a connected reductive group overQwith a specified character c : G→ Gm

with kernelG1 = ker(c) yielding an exact sequence

0→ G1 → G
c−→ Gm → 0

Assume that G splits over Q and that AG = Z(G) ≃ GL1 is a Q-split maximal torus in the center of G so that

AG(R) = R× andAG(R)◦ = R>0 with component groupAG(R)/AG(R)◦ = {±1}. Consider the subgroups

G1(R) = {g ∈ G(R)|c(g) = 1} and G±(R) = {g ∈ G(R)|c(g) = ±1} of G(R). Fix a maximal compact

subgroupK∞ ⊆ G1(R) and consider the subgroups

K±
∞ = {±1}K∞ ⊆ G±(R) ⊆ G(R) K>0

∞ = AG(R)◦K∞ ⊆ G(R) K ̸=0
∞ = AG(R)K∞ ⊆ G(R)

so thatK±
∞ is a maximal compact subgroup ofG±(R) and ofG(R), and we have the quotients

K±
∞/K∞ = K ̸=0

∞ /K>0
∞ = AG(R)/AG(R)◦ = {±1} K>0

∞ /K∞ = K ̸=0
∞ /K±

∞ = AG(R)◦ = R>0

Let g be the Lie algebra ofG(R) and let g1 = aG \ g be the Lie algebra ofG1(R) and ofG±(R). For g1 = aG \ g

the relevant groups areK∞ (regarded as a maximal compact subgroup ofG1(R)) andK±
∞ (regarded as a maximal

compact subgroup ofG±(R)). An (aG \ g,K∞)-module can be regarded as an (aG \ g,K±
∞)-module where the

action ofK∞ is extended trivially to an action ofK±
∞, and an (aG \ g,K±

∞)-module can be regarded as the data of

an (aG \ g,K∞)-module along with an action of the component groupK±
∞/K∞ = {±1}. By Hochschild-Serre

we have

H i(aG \ g,K±
∞;V ) = H i(aG \ g,K∞;V )K

±
∞/K∞
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For g the relevant group isK±
∞ (regarded as a maximal compact subgroup ofG(R)). A (g,K±

∞)-module can be

regarded as a (g,K ̸=0
∞ )-module where the action ofK±

∞ is extended trivially to an action ofK ̸=0
∞ , and a (g,K ̸=0

∞ )-

module can be regarded as the data of a (g,K±
∞)-module along with an action of the groupK ̸=0

∞ /K±
∞ = R>0. A

(g,K ̸=0
∞ )-module on which the groupK ̸=0

∞ /K±
∞ = R>0 acts nontrivially cannot have nontrivial cohomology by

Wigner’s lemma; otherwise we have

H i(g,K ̸=0
∞ ;V ) = H i(g,K±

∞;V ) = H i(aG \ g,K±
∞;V )

It is not so important that the group K∞ is a maximal compact subgroup, only that it is compact. A (g,K∞)-

module can be regarded as a (g,K±
∞)-module where the action ofK∞ is extended trivially to an action ofK±

∞, and

a (g,K±
∞)-module can be regarded as the data of a (g,K∞)-module along with an action of the groupK±

∞/K∞ =

{±1}. By Hochschild-Serre we have

H i(g,K±
∞;V ) = H i(g,K∞;V )K

±
∞/K∞ = H i(aG \ g,K∞;V )K

±
∞/K∞

Similarly a (g,K>0
∞ )-module can be regarded as a (g,K∞)-module where the action ofK∞ is extended trivially to

an action ofK>0
∞ , and a (g,K>0

∞ )-module can be regarded as the data of a (g,K∞)-module along with an action

of the group K ̸=0
∞ /K±

∞ = R>0. A (g,K>0
∞ )-module on which the group K>0

∞ /K∞ = R>0 acts nontrivially

cannot have nontrivial cohomology by Wigner’s lemma; otherwise we have

H i(g,K>0
∞ ;V ) = H i(g,K∞;V ) = H i(aG \ g,K∞;V )

One should keep in mind the example whereG = GSp2n and c : GSp2n → Gm is the similitude character so that

G1(R) = Sp2n(R) andG±(R) = Sp±2n(R) withK∞ ≃ U(n) (if n = 1 thenG = GL2 and c : GL2 → Gm

is the determinant character so thatG1(R) = SL2(R) andG±(R) = SL±
2 (R) withK∞ ≃ U(1) ≃ SO(2) and

K±
∞ ≃ O(2)).

De Rham Cohomology As a first application of (g,K∞)-cohomology to the cohomology of local systems on

Shimura varieties, we consider one way in which the (compactly supported) cohomology of local systems can be

computed in terms of (g,K∞)-cohomology, due to Borel.
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Let (G,X, h) be a Shimura datum, so thatX = AG(R)◦ \G(R)/K∞.

Definition 2.1.8. LetK∞ ⊆ G(A∞
Q ) be a neat compact open subgroup. ForV a local system ofC-vector spaces on

SKfin
(C) regarded as a C-vector bundle with flat connection (V,∇) on SKfin

(C), let Ω•(SKfin
(C),V) be the de

Rham complex where Ωi(SKfin
(C),V) = Γ(SKfin

(C),ΩiSKfin
(C) ⊗ V), with differentials induced by∇. Define

the de Rham cohomology

H i
dR(SKfin

(C),V) = H i(Ω•(SKfin
(C),V))

WhenKfin is not neat we fix a neat compact open subgroup K̃fin ⊆ Kfin of finite index and define the de Rham

cohomology

H i
dR(SKfin

(C),V) = H i(Ω•(S
K̃fin

(C),V))Kfin/K̃fin

By standard results in mixed Hodge theory the de Rham cohomologyH i
dR(SKfin

(C),V) is a finite-dimensional

C-vector space and the complex structure on SKfin
(C) yields a Hodge decomposition

H i
dR(SKfin

(C),V) =
⊕
p+q≥i

Hp,q(SKfin
(C),V)

Now the main observation is that the de Rham cohomology H i
dR(SKfin

(C),V) can be computed in terms of

(g,K ′
∞)-cohomology as follows. Recalling that SKfin

(C) = G(Q)AG(R)◦ \G(AQ)/KfinK∞, we consider the

(g,K ′
∞)-cohomology of the space of smooth functions onG(Q) \G(AQ) transforming in a particular way under

AG(R)◦. Let ω : AG(R)◦ → C× be a (quasi)character. Consider the C-vector space

C∞(G(Q) \G(AQ), ω) =

 smooth functions ϕ : G(Q) \G(AQ)→ C such that

ϕ(ag) = ω(a)ϕ(g) for every a ∈ AG(R)◦ and g ∈ G(AQ)


For a compact open subgroupKfin ⊆ G(A∞

Q ) letC∞(G(Q)\G(AQ)/Kfin, ω) be the subspace ofKfin-invariant

functions inC∞(G(Q) \G(AQ), ω), so that

C∞(G(Q) \G(AQ), ω) ≃ lim−→
Kfin

C∞(G(Q) \G(AQ)/Kfin, ω)
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where the colimit is taken over compact open subgroupsKfin ⊆ G(A∞
Q ). In particular, we can regardC∞(G(Q)\

G(AQ)/Kfin, ω) as anHKfin
× (g,K ′

∞)-module.

Now letVλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weightλ andAG(R)◦-

characterωλ : AG(R)◦ → C×. RegardingC∞(G(Q) \G(AQ)/Kfin, ω
−1
λ ) as anHKfin

× (g,K ′
∞)-module, we

can regardC∞(G(Q)\G(AQ)/Kfin, ω
−1
λ )⊗Vλ as anHKfin

×(g,K ′
∞)-module, or as anHKfin

×(aG \g,K∞)-

module since theAG(R)◦-characters ofC∞(G(Q)\G(AQ)/Kfin, ω
−1
λ ) andVλ are inverse so thataG acts trivially.

Then we have the following:

Theorem 2.1.9. (Borel) LetVλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ andAG(R)◦-character ωλ : AG(R)◦ → C×, and let Vλ be the corresponding local system of C-vector spaces

on SKfin
(C). We have an isomorphism of complexes ofHKfin

-modules

HomK′
∞(∧•(g/k′), C∞(G(Q) \G(AQ)/Kfin, ω

−1
λ )⊗ Vλ)

∼−→ Ω•(SKfin
(C),Vλ)

In particular we have an isomorphism ofHKfin
-modules

H i(SKfin
(C),Vλ) ≃ H i(g,K ′

∞;C∞(G(Q) \G(AQ)/Kfin, ω
−1
λ )⊗ Vλ)

To spell out the isomorphism described in the above theorem, recall that we have a canonical projectionG(R)→

AG(R)◦ \G(R)/K∞ = X . Let x ∈ X be the image of the identity id ∈ G(R). Then the differential yields an

identification TX,x
∼−→ g/k′. Consider an element

ω ∈ HomK′
∞(∧i(g/k′), C∞(G(Q) \G(AQ), ω

−1
λ )⊗ Vλ)

which can be evaluated on an element (X1, . . . , Xi) ∈ ∧i(g/k′) to yield an elementω(X0, . . . , Xi−1) ∈ C∞(G(Q)\

G(AQ), ω
−1
λ )⊗ Vλ. To produce the corresponding element

ωdR ∈ Ω•(SKfin
(C),Vλ)

choose a point (y, gfin) ∈ X ×G(A∞
Q ) and choose an element (g∞, gfin) ∈ G(R)×G(A∞

Q ) such that g∞x =

y. Consider an element (Y1, . . . , Yi) ∈ ∧iTX,y which is sent to the element (X1, . . . , Xi) ∈ ∧iTX,x by the
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differential of the left translation by g∞. Now if we define

ωdR(Y1, . . . , Yi)(y, gfin) = g−1
∞ (ω(X1, . . . , Xi)(g∞, gfin))

then one checks that the assignment ω 7→ ωdR yields the desired isomorphism of complexes ofHKfin
-modules.

Poincare dually, we have the following:

Theorem 2.1.10. (Borel) LetVλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ andAG(R)◦-character ωλ : AG(R)◦ → C×, and let Vλ be the corresponding local system of C-vector spaces

on SKfin
(C). We have an isomorphism of complexes ofHKfin

-modules

HomK′
∞(∧•(g/k′), C∞

c (G(Q) \G(AQ)/Kfin, ω
−1
λ )⊗ Vλ)

∼−→ Ω•
c(SKfin

(C),Vλ)

In particular we have an isomorphism ofHKfin
-modules

H i
c(SKfin

(C),Vλ) ≃ H i(g,K ′
∞;C∞

c (G(Q) \G(AQ)/Kfin, ω
−1
λ )⊗ Vλ)

The above isomorphisms are compatible with cup products and Poincare duality. Suppose that we have two

elements

ω ∈ HomK′
∞(∧•(g/k′), C∞(G(Q) \G(AQ)/Kfin, ω

−1
λ )⊗ Vλ)

ωc ∈ HomK′
∞(∧•(g/k′), C∞

c (G(Q) \G(AQ)/Kfin, ω
−1
λ∨ )⊗ Vλ∨)

representing classes [ω] ∈ H i(SKfin
(C),Vλ) and [ωc] ∈ Hd−i

c (SKfin
(C),Vλ) of complementary degree. Then

the cup product [ω]⌣ [ωc] is given by

[ω]⌣ [ωc] =

∫
SKfin

(C)
ω ∧ ωc

as an element ofHd
c (SKfin

(C),C).
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Note that all of the above statements remain true if (g,K ′
∞)-cohomology is replaced by (aG\g,K∞)-cohomology,

or if C∞(G(Q) \ G(AQ), ω
−1
λ ) is replaced by C∞(G(Q)AG(R)◦ \ G(AQ)) provided the highest weight λ is

normalized so that ωλ = 1.

2.1.3 Automorphic Representations and L2-Cohomology

Unfortunately, the spacesC∞(G(Q) \G(AQ)/Kfin, ω
−1
λ ) andC∞

c (G(Q) \G(AQ)/Kfin, ω
−1
λ ) are much too

large for the above theorem to be useful for explicit computations. The goal of the next few sections is to expain

how these spaces can be replaced by much more manageable spaces of automorphic forms which compute the same

cohomology.

Automorphic Representations LetG be a connected reductive group over Q, letK∞ ⊆ G(R) be a maximal

compact subgroup, and letAG(R)◦ be the connected component of the identity inAG(R) whereAG ⊆ Z(G) is

a maximal Q-split torus in the center ofG. Let g be the Lie algebra ofG(R), let aG be the Lie algebra ofAG(R),

and let k be the Lie algebra ofK∞. Recalling that the adelic quotientG(Q)AG(R)◦ \G(AQ) has finite volume,

one has the following definition:

Definition 2.1.11. Let ω : AG(R)◦ → C× be a (quasi)character. Fix a (normalized) Haar measure dg on the

adelic quotientG(Q)AG(R)◦ \G(AQ) and consider the Hilbert space

L2(G(Q) \G(AQ), ω) =



functions ϕ : G(Q) \G(AQ)→ C such that

ϕ(ag) = ω(a)ϕ(g) for every a ∈ AG(R)◦ and g ∈ G(AQ)

such that ϕω−1 : G(Q)AG(R)◦ \G(AQ)→ C is measurable

and such that
∫
G(Q)AG(R)◦\G(AQ)

|(ϕω−1)(g)|2dg <∞


/≃

of measurable square-integrable functions modulo almost-everywhere equality of functions. The Hilbert space

L2(G(Q) \ G(AQ), ω) is regarded as a representation of G(AQ) by the right regular representation R, where

g ∈ G(AQ) acts on functions ϕ ∈ L2(G(Q) \G(AQ), ω) by (R(g)ϕ)(x) = ϕ(xg).

An automorphic representation of G(AQ) with AG(R)◦-character ω is an (irreducible) representation π of

G(AQ) occurring in the right regular representationR ofG(AQ) onL2(G(Q) \G(AQ), ω).
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The right regular representation of G(AQ) on the Hilbert space L2(G(Q)AG(R)◦ \ G(AQ)) decomposes

into a discrete part and a continuous part

L2(G(Q) \G(AQ), ω) = L2
disc(G(Q) \G(AQ), ω)⊕ L2

cont(G(Q) \G(AQ), ω)

where L2
disc(G(Q) \ G(AQ), ω) is the closure of the direct sum of all irreducible closed subspaces occurring

in L2(G(Q) \ G(AQ), ω), which decomposes into a Hilbert direct sum of (irreducible) automorphic represen-

tations of G(AQ) with multiplicities, and where L2
cont(G(Q) \ G(AQ), ω) is the orthogonal complement of

L2
disc(G(Q) \ G(AQ), ω) in L2(G(Q) \ G(AQ), ω) with respect to the L2-inner product, which decomposes

into Hilbert direct sum of direct integrals of irreducible representations ofG(AQ) with multiplicities and is related

to automorphic Eisenstein series. Note that the word “occurs” in the above definition hides some subtleties in

view of this decomposition: for π occurring in the discrete part we mean that such a representation occurs as a

subquotient of the Hilbert direct sum decomposition into irreducible representations of G(AQ), whereas for π

occurring in the continuous part we mean that such a representation occurs in the sense of direct integrals.

By Flath [32] an (irreducible) automorphic representation π ofG(AQ) decomposes as a tensor product π =

πfin ⊗ π∞ where πfin is an irreducible smooth representation ofG(A∞
Q ) (equivalently a nondegenerateHG(A∞

Q )-

module), and where π∞ is regarded as an irreducible admissible (g,K∞)-module (after passing to subspaces of

K∞-finite vectors). Moreover, πfin decomposes as a restricted tensor product πfin =
⊗

p πp where πp is an

irreducible smooth representation ofG(Qp), which is canonically independent of the choice of smooth model of

G over Z[ 1N ] defining the restricted product decompositionG(A∞
Q ) =

∏̂G(Zp)
p G(Qp).

For a compact open subgroupKfin ⊆ G(A∞
Q )we can regard the Hilbert subspaceL2(G(Q)\G(AQ)/Kfin, ω)

ofKfin-invariant functions inL2(G(Q) \G(AQ), ω), as anHKfin
× (g,K∞)-module. The same is true for the

subspacesL2
disc(G(Q) \G(AQ)/Kfin, ω) andL2

cont(G(Q) \G(AQ)/Kfin, ω).

We say that an (irreducible) automorphic representationπ ofG(AQ)withAG(R)◦-characterω isKfin-spherical

if π occurs inL2(G(Q) \G(AQ)/Kfin, ω), that is πKfin
fin ̸= 0. Any (irreducible) automorphic representation π of

G(AQ) is Kfin-spherical for some (sufficiently small) compact open subgroup Kfin ⊆ G(A∞
Q ), noting that πfin

decomposes as a restricted tensor product πfin =
⊗

p πp where πp is Kp = G(Zp)-spherical (that is, πKpp ̸= 0)

for almost all primes p.
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If ω = 1 is trivial then we can simply consider the Hilbert space

L2(G(Q)AG(R)◦ \G(AQ)) =

measurable functions ϕ : G(Q)AG(R)◦ \G(AQ)→ C

such that
∫
G(Q)AG(R)◦\G(AQ)

|(ϕω−1)(g)|2dg <∞


/≃

of measurable square-integrable functions modulo almost-everywhere equality of functions. A unitary automorphic

representation ofG(AQ) is an (irreducible) representationπ ofG(AQ) occurring in the right regular representation

R ofG(AQ) onL2(G(Q)AG(R)◦ \G(AQ)).

The right regular representation of G(AQ) on the Hilbert space L2(G(Q)AG(R)◦ \ G(AQ)) decomposes

into a discrete part and a continuous part

L2(G(Q)AG(R)◦ \G(AQ)) = L2
disc(G(Q)AG(R)◦ \G(AQ))⊕ L2

cont(G(Q)AG(R)◦ \G(AQ))

whereL2
disc(G(Q)AG(R)◦ \G(AQ)) andL2

cont(G(Q)AG(R)◦ \G(AQ)) are as before. For a compact open sub-

groupKfin ⊆ G(A∞
Q ) we can regard the Hilbert subspace L2(G(Q)AG(R)◦ \G(AQ)/Kfin) ofKfin-invariant

functions inL2(G(Q)AG(R)◦ \G(AQ)/Kfin) as anHKfin
× (g,K∞)-module, or as anHKfin

× (aG \ g,K∞)-

module since aG acts trivially. The same is true for the subspaces L2
disc(G(Q)AG(R)◦ \ G(AQ)/Kfin) and

L2
cont(G(Q)AG(R)◦ \G(AQ)/Kfin) as before.

Note that since G(Q)AG(R)◦ \ G(AQ) has finite volume we have ω−1 ∈ L2(G(Q) \ G(AQ), ω); in par-

ticular if ϕ ∈ L2(G(Q) \ G(AQ), ω) then ϕω−1 ∈ L2(G(Q)AG(R)◦ \ G(AQ)), and if π is an automorphic

representation of G(AQ) with central character ω then its character twist π′ = πω−1 is a unitary automorphic

representation ofG(AQ).

L2-Cohomology We now consider the following situation. Let (G,X, h) be a Shimura datum so that G is a

connected reductive group over Q and X = AG(R)◦ \ G(R)/K∞ is a Hermitian symmetric domain where

K∞ ⊆ G(R) is a maximal compact subgroup andAG(R)◦ is the connected component of the identity inAG(R)

whereAG ⊆ Z(G) is a maximalQ-split torus in the center ofG. Let g be the Lie algebra ofG(R), let aG be the Lie

algebra ofAG(R), let k be the Lie algebra ofK∞, and let k′ = aG ⊕ k be the Lie algebra ofK ′
∞ = AG(R)◦K∞.

A choice of completeG(R)-invariant Riemannian metric onX induces a complete Riemannian metric with

negative curvature on SKfin
(C) whenKfin ⊆ G(A∞

Q ) is a neat compact open subgroup.
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Definition 2.1.12. LetKfin ⊆ G(A∞
Q ) is a neat compact open subgroup. For V a local system of C-vector spaces

on SKfin
(C) let Ω•

L2(SKfin
(C),V) be the complex of C-vector spaces where ΩiL2(SKfin

(C),V) is the C-vector

space of square-integrable differential forms on SKfin
(C)

ΩiL2(SKfin
(C),V) = {ω ∈ Ωi(SKfin

(C),V) |
∫
SKfin

(C) ω ∧ ∗ω <∞ and
∫
SKfin

(C) dω ∧ ∗dω <∞}

with differentials induced by the de Rham differentials. Define theL2-cohomology

H i
L2(SKfin

(C),V) = H i(Ω•
L2(SKfin

(C),V))

When Kfin is not neat we fix a neat compact open subgroup K̃fin ⊆ Kfin of finite index and define the L2-

cohomology

H i
L2(SKfin

(C),V) = H i(Ω•
L2(SK̃fin

(C),V))Kfin/K̃fin

By Borel-Casselman the L2-cohomology H∗
L2(SKfin

(C),V) is a finite dimensional C-vector space and the

complex structure on SKfin
(C) yields a Hodge decomposition

H i
L2(SKfin

(C),V) =
⊕
p+q=i

Hp,q
L2 (SKfin

(C),V)

Now letVλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weightλ andAG(R)◦-

character ωλ : AG(R)◦ → C×. RegardingL2(G(Q) \G(AQ)/Kfin, ω
−1
λ ) as anHKfin

× (g,K ′
∞)-module, we

can regardL2(G(Q) \G(AQ)/Kfin, ω
−1
λ )⊗Vλ as anHKfin

× (g,K ′
∞)-module or as anHKfin

× (aG \ g,K∞)-

module since theAG(R)◦-characters ofL2(G(Q)\G(AQ)/Kfin, ω
−1
λ ) andVλ are inverse so that aG acts trivially.

Now we have the following absolutely crucial theorem:

Theorem 2.1.13. (Borel-Casselman) Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with

highest weight λ and AG(R)◦-character ωλ : AG(R)◦ → C×, and let Vλ be the corresponding local system of

C-vector spaces on SKfin
(C). We have an isomorphism of complexes ofHKfin

-modules

Ω•
L2(SKfin

(C),Vλ) ≃ HomK∞(∧•(g/k′), L2(G(Q) \G(AQ)/Kfin, ω
−1
λ )⊗ Vλ)
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In particular we have an isomorphism ofHKfin
-modules

H i
L2(SKfin

(C),Vλ) ≃ H i(g,K ′
∞;L2

disc(G(Q) \G(AQ)/Kfin, ω
−1
λ )⊗ Vλ)

Implicit in the above theorem is the statement that the continuous part does not contribute nontrivially to

(g,K ′
∞)-cohomology: for ω ∈ HomK′

∞(∧p(g/k′), L2(G(Q) \G(AQ)/Kfin, ω
−1)⊗ Vλ) consider the decom-

position ω = ωdisc + ωcont where

ωdisc ∈ HomK′
∞(∧p(g/k′), L2

disc(G(Q) \G(AQ)/Kfin, ω
−1
λ )⊗ Vλ)

ωcont ∈ HomK′
∞(∧p(g/k′), L2

cont(G(Q) \G(AQ)/Kfin, ω
−1
λ )⊗ Vλ)

Then by [19, Lemma 5.5] we have [ωcont] = 0. We record the above theorems in the following definition:

Definition 2.1.14. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight λ

andAG(R)◦-character ωλ : AG(R)◦ → C×. Define the discrete cohomology

H i
disc(SKfin

(C),Vλ) = H i(g,K ′
∞;L2

disc(G(Q) \G(AQ)/Kfin, ω
−1
λ )⊗ Vλ)

= H i(g,K ′
∞;L2

disc(G(Q) \G(AQ), ω
−1
λ )⊗ Vλ)Kfin

In view of the above theorem, we have an isomorphism ofHKfin
-modules

H i
L2(SKfin

(C),Vλ) ≃ H i
disc(SKfin

(C),Vλ)

the emphasis being thatH i
L2(SKfin

(C),Vλ) is “geometric” in nature, whereasH i
disc(SKfin

(C),Vλ) is “spectral”

in nature. The spectral nature is the following: recall that we have a Hilbert direct sum decomposition

L2
disc(G(Q)AG(R)◦ \G(AQ)) ≃

⊕
ω

⊕
π∈Πdisc(G(AQ),ω)

mdisc(π)π

where the first direct sum is taken over unitary central characters and where the second direct sum is taken over the

set of automorphic representations π ∈ Πdisc(G,ω) with central characterω, occurring inL2
disc(G(Q)AG(R)◦ \
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G(AQ)) with multiplicitymdisc(π). Then it follows that we have an isomorphism ofHKfin
-modules

H i
disc(SKfin

(C),Vλ) ≃
⊕
ω

⊕
π∈Πdisc(G(AQ),ω)

mdisc(π)π
Kfin
fin ⊗H

i(g,K ′
∞;π∞ ⊗ Vλ)

As we will also discuss later, L2
disc(G(Q) \ G(AQ), ω

−1
λ ) decomposes further into a cuspidal part and a residual

part

L2
disc(G(Q) \G(AQ), ω

−1
λ ) = L2

cusp(G(Q) \G(AQ), ω
−1
λ )⊕ L2

res(G(Q) \G(AQ), ω
−1
λ )

whereL2
cusp(G(Q) \G(AQ), ω

−1
λ ) decomposes into a Hilbert direct sum of (irreducible) cuspidal automorphic

representations ofG(AQ) with finite multiplicities, and whereL2
res(G(Q) \G(AQ), ω

−1
λ ) is the orthogonal com-

plement of L2
cusp(G(Q) \ G(AQ), ω

−1
λ )) in L2

disc(G(Q) \ G(AQ), ω
−1
λ ) with respect to the L2-inner product

and is related to residues of automorphic Eisenstein series. We record the following definition:

Definition 2.1.15. Define the cuspidal cohomology

H i
cusp(SKfin

(C),Vλ) = H i(g,K ′
∞;L2

cusp(G(Q) \G(AQ)/Kfin, ω
−1
λ )⊗ Vλ)

= H i(g,K ′
∞;L2

cusp(G(Q) \G(AQ), ω
−1
λ )⊗ Vλ)Kfin

Again we have a Hilbert direct sum decomposition

L2
cusp(G(Q)AG(R)◦ \G(AQ)) ≃

⊕
ω

⊕
π∈Πcusp(G(AQ),ω)

m(π)π

where the first direct sum is taken over unitary central characters and where the second direct sum is taken over the set

of automorphic representations π ∈ Πcusp(G,ω) with central character ω, occurring inL2
cusp(G(Q)AG(R)◦ \

G(AQ)) with multiplicitymcusp(π). Then it follows that we have an isomorphism ofHKfin
-modules

H i
disc(SKfin

(C),Vλ) ≃
⊕
ω

⊕
π∈Πdisc(G(AQ),ω)

mcusp(π)π
Kfin
fin ⊗H

i(g,K ′
∞;π∞ ⊗ Vλ)

For now we record the following useful theorem relating the discrete cohomology and the cuspidal cohomology to

(compactly supported) cohomology:
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Theorem 2.1.16. (Borel [18]) We have a canonical morphisms ofHKfin
-modules

H i
cusp(SKfin

(C),Vλ)→ H i
c(SKfin

(C),Vλ)→ H i
disc(SKfin

(C),Vλ)→ H i(SKfin
(C),Vλ)

The compositionH i
cusp(SKfin

(C),Vλ)→ H i
! (SKfin

(C),Vλ) is injective, and is an isomorphism forG = GL2

andG = GSp4.

Note that all of the above statements remain true if (g,K ′
∞)-cohomology is replaced by (aG\g,K∞)-cohomology,

or ifL2(G(Q) \G(AQ), ω
−1
λ ) is replaced byL2(G(Q)AG(R)◦ \G(AQ)) provided the highest weight λ is nor-

malized so that ωλ = 1.

When SKfin
(C) is compact (that is when Gder is Q-anisotropic) the theorem of Borel-Casselman reduces

to Matsushima’s formula, where the discussion simplifies dramatically. In this situation, the L2-cohomology

H i
L2(SKfin

(C),Vλ) agrees with both the cohomologyH i(SKfin
(C),Vλ) and the compactly supported cohomol-

ogyH i
c(SKfin

(C),Vλ). In general when SKfin
(C) is non-compact theL2-cohomology is not so directly related to

either of these, and instead is directly related to the intersection cohomology of the Baily-Borel compactification

S
BB
Kfin

(C).

2.1.4 Intersection Cohomology and Zucker’s Conjecture

As defined, neither theL2-cohomology nor the (g,K ′
∞)-cohomology of the automorphic discrete spectrum make

sense algebraically: they are analytic constructions which a priori have nothing to do with the algebraic structure on

SKfin
. On the other hand, the construction ofL2-cohomology is closely related to intersection cohomology, and

this is something which makes sense algebraically. Let us quickly recall this story.

Intersection Cohomology We refer specifically to [10, Section 2.1]. LetDb
c (S

BB
Kfin

(C),C) be the bounded de-

rived category of complexes ofC-vector spaces onSBB
Kfin

(C)which are constructible with respect to the stratification

by boundary components. Recall that a complexK• ∈ Db
c (S

BB
Kfin

(C),C) of C-vector spaces is perverse if:

• (Support) We have dimCsupp(H
k(i∗xK•)) ≤ −k for all k ∈ Z;

• (Cosupport) We have dimCsupp(H
k(i!xK•)) ≤ k for all k ∈ Z.

Let Perv(SBB
Kfin

(C),C) be the Abelian category of complex perverse sheaves onSBB
Kfin

(C), the heart of the perverse

t-structure onDb
c (S

BB
Kfin

(C),C).
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For V a local system of C-vector spaces on SKfin
(C) let V[d] ∈ Perv(SKfin

(C),C) be the corresponding

perverse sheaf of C-vector spaces. Let IC•(V) ∈ Db
c (S

BB
Kfin

(C),C) be the intersection cohomology complex

uniquely characterized by the following properties:

• (Support) We have dimCsupp(H
k(i∗xIC

•(V))) < d− k for all 0 ̸= k ∈ Z;

• (Cosupport) We have dimCsupp(H
k(i!xIC

•(V))) < k − d for all 2d ̸= k ∈ Z;

• (Stratification) ForU ⊆ SBB
Kfin

(C) a smooth dense open subvariety ofSBB
Kfin

(C), IC•(V)|U is quasi-isomorphic

to a constant sheaf onU .

In particular we have IC•(V)[d] ∈ Perv(S
BB
Kfin

,C). The open immersion j : SKfin
(C) ↪→ S

BB
Kfin

(C) induces the

perverse extension functors pj∗,
pj! : Perv(SKfin

(C),C) → Perv(S
BB
Kfin

(C),C) given by pj∗ = pH0Rj∗ and

pj! =
pH0Rj!. Since forK• ∈ Perv(SKfin

(C),C) we have pHk(j!K•) = 0 for all k > 0 and pHk(j!K•) = 0

for all k < 0 the natural transformation j! → j∗ induces a natural transformation pj! → pj∗ and the interme-

diate extension functor j!∗ : Perv(SKfin
(C),C) → Perv(S

BB
Kfin

(C),C) given forK• ∈ Perv(SKfin
(C),C) by

j!∗K• = im(pj!K• → pj∗K•). Then we have an isomorphism of perverse sheaves IC•(V)[d] ≃ j!∗(V[d])

Definition 2.1.17. Let Kfin ⊆ G(A∞
Q ) be a neat compact open subgroup. Let V be a local system of C-vector

spaces on SKfin
(C). Consider the intersection complex on SBB

Kfin
(C) given by the intermediate extension

IC•(V) = (j!∗(V[d]))[−d]

and define the intersection cohomology

IH i(SKfin
(C),V) = Hi(S

BB
Kfin

(C), IC•(V)) = Hi(S
BB
Kfin

(C), j!∗V)

WhenKfin is not neat we fix a neat compact open subgroup K̃fin ⊆ Kfin of finite index and define the intersection

cohomology

IH i(SKfin
(C),V) = Hi(S

BB
K̃fin

(C), IC•(V))Kfin/K̃fin
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When SKfin
is compact (that is whenGder is Q-anisotropic) the intersection cohomology IH i(SKfin

(C),Vλ)

agrees with both the cohomologyH i(SKfin
(C),Vλ) and the compactly supported cohomologyH i

c(SKfin
(C),Vλ),

but in general the relation between these is complicated.

Zucker’s Conjecture The miracle is that for Shimura varieties, the intersection cohomology of the Baily-Borel

compactification coincides with theL2-cohomology; this is the statement of Zucker’s conjecture, proved indepen-

dently by Looijenga and Saper-Stern:

Theorem 2.1.18. (Looijenga [80], Saper-Stern [102]) For V a local system of C-vector spaces on SKfin
(C) we have

an isomorphism ofHKfin
-modules

IH i(SKfin
(C),V) ≃ H i

L2(SKfin
(C),V)

To give some indication of how this result is proved, let Ω•
L2(V) be the complex of sheaves of C-vector spaces

on SBB
Kfin

(C) where ΩiL2(V) is the sheafification of the presheaf of C-vector spaces whose sections over an open

analytic subvarietyU ⊆ SBB
Kfin

(C) are given by square-integrable differential forms onU ∩ SKfin
(C)

ΩiL2(V)(U) = {ω ∈ Ωi(U ∩ SKfin
(C),V) |

∫
U∩SKfin

(C) ω ∧ ∗ω <∞ and
∫
U∩SKfin

(C) dω ∧ ∗dω <∞}

with differentials induced by the de Rham differentials.

The sheaves ΩiL2(V) are fine, so for Ω•
L2(S

BB
Kfin

(C),V) = H0(S
BB
Kfin

(C),Ω•
L2(V)) the complex of global

sections of Ω•
L2(V) the hypercohomology is given

Hi(S
BB
Kfin

(C),Ω•
L2(V)) ≃ H i(Ω•

L2(S
BB
Kfin

(C),V)) ≃ H i
L2(SKfin

(C),V)

By Looijenga Ω•
L2(V) is perverse and the restriction Ω•

L2(V)|SKfin
(C) is a fine resolution of the sheaf of sections

of V, so by Goresky-MacPherson’s characterization of intersection cohomology we have a quasi-isomorphism of

perverse sheaves Ω•
L2(V) ≃ IC•(V) on SBB

Kfin
(C) which induces the isomorphism ofHKfin

-modules which is

predicted by Zucker’s conjecture.
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It is worth pointing out that the relation between intersection cohomology andL2-cohomology is not a com-

pletely general phenomenon (indeed there are conterexamples outside the setting of Shimura varieties), and it is a

minor miracle that this relation holds in the setting of Shimura varieties.

2.2 Eisenstein Cohomology of Shimura Varieties

We have seen how the intersection cohomology and cuspidal cohomology of local systems on Shimura varieties can

be understood in terms of the discrete and cuspidal automorphic spectra, and when the Shimura variety is compact

this is the end of the story. When the Shimura variety is not compact, as is the case for the examples considered in

later chapters, the remaining Eisenstein cohomology is related to the continuous automorphic spectrum, albeit not

so directly: one cannot simply take the (g,K ′
∞)-cohomology the continuous automorphic spectrum, as theorems

of Borel-Casselman show that this is trivial. Nevertheless, the structure of the continuous automorphic spectrum as

described by automorphic Eisenstein series still plays a crucial role: the Franke-Schwermer filtration on certain spaces

of automorphic forms, defined in terms of cuspidal support and iterated residues of automorphic Eisenstein series,

gives rise to a spectral sequence in (g,K ′
∞)-cohomology which computes the relevant Eisenstein cohomology.

It is worth remarking that one could instead approach the problem of computing Eisenstein cohomology by

working directly with the boundary of the Borel-Serre compactification, which is the approach taken in work of

Harder. There are several reasons why we do not take this approach. First of all, while this approach is adequate

for the purposes of computing the cohomology of local systems topologically, it is somewhat awkward to justify

the resulting Galois action on Eisenstein cohomology in the ℓ-adic setting because of the non-algebraic nature of

the Borel-Serre compactification, although results of Pink allow one to do this rigorously. Perhaps more impor-

tantly, this approach to computing Eisenstein cohomology requires a detailed understanding of the restriction of

cohomology to the Borel-Serre boundary as well as related connecting homomorphisms. As we will see later, the

same problem arises when trying to understand certain connecting homomorphisms in the long exact sequence

in (g,K ′
∞)-cohomology associated to parts of the Franke-Schwermer filtration. In any event, more problems arise

when trying to compute Eisenstein cohomology using the Borel-Serre compactification especially in the case of

arbitrarily large level: while the behavior of boundary and connecting homomorphisms can be understood more

or less by hand in the case of small level, the number of boundary components grows rapidly as the level becomes

large, and it is hard to imagine one could handle such computations in general.
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2.2.1 Automorphic Forms and Cuspidal Support

In order to discuss automorphic Eisenstein series, we need to define the spaces of automorphic forms in which they

live.

Normalization of Measures LetG be a connected reductive group over Q and letAG be the maximal Q-split

torus in the center of G with Lie algebra aG with dual a∨G = X∗(G) ⊗Z R, where X∗(G) is the Z-module of

Q-rational characters ofG.

Consider the Harish-Chandra height functionHG : G(AQ)→ aG given by ⟨χ,HG(g)⟩ = | log(χ(g))| for

g ∈ G(AQ) and χ ∈ X∗(G), and let G(AQ)
1 = {g ∈ G(AQ)|HG(g) = 0} so that G(AQ) = G(AQ)

1 ×

AG(R)◦. Forπ an irreducible unitary representation ofG(AQ) and fors ∈ ia∨G the representationπ⊗e⟨s,HG(g)⟩ is

an irreducible unitary representation ofG(AQ), and the irreducible unitary representations ofG(AQ)
1 correspond

bijectively to ia∨G-orbits of irreducible unitary representations ofG(AQ) under this action.

Fix a minimal parabolicQ-subgroupP0 ofGwith Levi decompositionP0 =M0N0, and fix a maximal compact

subgroupK =
∏
vKv ofG(AQ) such thatKv ⊆ G(Qv) is hyperspecial for all but finitely many places v of Q

which is P0-good in the sense that we have a decompositionG(AQ) = P0(AQ)K .

For a standard parabolic Q-subgroup P of G with Levi decomposition P = MN and central subgroup

AP = AM with Lie algebra aP = aM with dual a∨P = a∨M = X∗(M)⊗Z R ≃ X∗(AP )⊗Z R, whereX∗(M)

is the Z-module of Q-rational characters ofM .

Consider the Harish-Chandra height function HP : G(AQ) → aP given by HP (nmk) = HM (m) for

n ∈ N(AQ), m ∈ M(AQ), and k ∈ K , and letM(AQ)
1 = {m ∈ M(AQ)|HP (m) = 0} so thatM(AQ) =

M(AQ)
1 ×AP (R)◦. Then we have a decomposition

G(AQ) = P (AQ)K =M(AQ)N(AQ)K =M(AQ)
1AP (R)◦N(AQ)K

Fix a Haar measure dg on G(AQ), a (left) Haar measure on P (AQ), a Haar measure dk on K normalized by∫
K dk = 1, a Haar measuredmonM(AQ), a (left) Haar measurednonN(AQ)normalized by

∫
N(Q)\N(AQ)

dn =
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1, and a Haar measure da onAP (R)◦, so that for f ∈ C∞
c (G(AQ)) we have

∫
G(AQ)

f(g)dg =

∫
K

∫
P (AQ)

f(pk)dpdk

=

∫
K

∫
M(AQ)

∫
N(AQ)

f(mnk)dndmdk

=

∫
K

∫
M(AQ)

∫
AP (R)◦

∫
N(AQ)

f(mank)dndadmdk

Fix a Haar measure dA on aP corresponding to the Haar measure da onAP (R)◦ under the exponential morphism,

and letds be the Haar measure on ia∨P dual todA so that forf ∈ C∞
c (aP )we have

∫
ia∨P

∫
aP
f(A)e−⟨s,A⟩dAds =

f(0).

For another standard parabolicQ-subgroupP ′ ofGwith Levi decompositionP ′ =M ′N ′, ifP ⊆ P ′ we have

Q-rational embeddingsAP ′ ⊆ AP ⊆M ⊆M ′. The restriction morphismX∗(M ′)→ X∗(M) is injective and

yields a linear injection a∨P ′ ↪→ a∨P and a linear surjection aP → aP ′ with kernel aP ′
P . The restriction morphism

X∗(AP )→ X∗(AP ′) is surjective and yields a linear surjection a∨P → a∨P ′ and a linear injection aP ′ ↪→ aP . The

corresponding split exact sequences yield decompositions aP = aP ′ ⊕ aP
′

P and a∨P = a∨P ′ ⊕ (aP
′

P )∨.

Let ΦP be the set of roots for (P,AP ) yielding the root space decomposition n =
⊕

α∈ΦP nα, and let ρP =

1
2

∑
α∈ΦP dim(nα)α ∈ (aGP )

∨. Let Φ+
P ⊆ ΦP be the subset of positive roots, regarded as a subsetX∗(AP ), or

regarded as a subset of a∨P = X∗(AP )⊗Z R contained in (aGP )
∨. Let (aGP )

∨+ be the corresponding open positive

Weyl chamber with closure (aGP )∨+.

Automorphic Forms As we have seen previously, the spacesC∞(G(Q)AG(R)◦\G(AQ)) of smooth functions

can be used to compute the de Rham cohomology of local systems on Shimura varieties in terms of (g,K ′
∞)-

cohomology, but these spaces are far too large to be useful for explicit computations. On the other hand the spaces

L2(G(Q)AG(R)◦ \G(AQ)) of square-integrable automorphic forms can be used to compute theL2-cohomology

and intersection cohomology of local systems on Shimura varieties in terms of (g,K ′
∞)-cohomology, but aside from

the case of compact Shimura varieties these spaces fall short of describing all of (compactly supported) cohomology.

However there are more general spaces of automorphic forms which are small enough to be described explicitly,

but which are large enough so as to describe the (compactly supported) cohomology of local systems on Shimura

vareities in terms of (g,K ′
∞)-cohomology. We consider the following notion of automorphic forms, which weakens
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the previously considered square-integrability condition while still requiring a certain uniform moderate growth

condition:

Definition 2.2.1. An automorphic form onG(AQ) is a smooth function ϕ : G(AQ)→ C such that:

(i) ϕ is leftG(Q)-invariant and leftAG(R)◦-invariant;

(ii) ϕ isZ∞-finite, that is ϕ is annihilated by an ideal of finite codimension in the centerZ(gC) of the universal

enveloping algebra U(gC);

(iii) ϕ is rightK-finite, that is the span of all rightK-translates ϕk(g) = ϕ(gk) for k ∈ K is finite-dimensional;

(iv) ϕ has uniform moderate growth, that is there exists r ∈ R>0 such that for all D ∈ U(gC) there exists a

constantCD ∈ R>0 such that |Dϕ(g)| ≤ CD||g||r for all g ∈ G(AQ).

Let A(G) = A(G(Q)AG(R)◦ \ G(AQ)) be the space of automorphic forms on G(AQ) regarded as a

G(A∞
Q )×(g,K∞)-module, which is the dense subspace of smoothK∞-finite vectors in the Hilbert spaceL2(G(Q)AG(R)◦\

G(AQ)).

ForJ an ideal of finite codimension inZ(gC) letAJ (G) = AJ (G(Q)AG(R)◦ \G(AQ)) be theG(A∞
Q )×

(g,K∞)-submodule ofA(G(Q)AG(R)◦ \G(AQ)) consisting of automorphic forms onG(AQ) annihilated by

J . Every automorphic form ϕ ∈ A(G(Q)AG(R)◦ \G(AQ)) belongs toAJ (G(Q)AG(R)◦ \G(AQ)) for some

idealJ of finite codimension inZ(gC) byZ∞-finiteness.

For λ ∈ h∨ a dominant highest weight and for Vλ the corresponding finite-dimensional irreducible representa-

tion ofG(C) of highest weight λ, letJλ be the annihilator of V ∨
λ which is an ideal of finite codimension inZ(gC).

LetAλ(G) = Aλ(G(Q)AG(R)◦\G(AQ))be theG(A∞
Q )×(g,K∞)-submodule ofA(G(Q)AG(R)◦\G(AQ))

consisting of automorphic forms onG(AQ) annihilated byJλ.

For (G,X, h) a Shimura datum, these spaces of automorphic forms are exactly those which contribute to the

cohomology of Vλ:

Theorem 2.2.2. (Franke) Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with high-

est weight λ with trivial AG(R)◦-character, and let Vλ be the corresponding local system of C-vector spaces on

SKfin
(C). We have an isomorphism of complexes ofHKfin

-modules

Ω•(SKfin
(C),Vλ) ≃ HomK∞(∧•(g/k′),Aλ(G(Q)AG(R)◦ \G(AQ)/Kfin)⊗ Vλ)
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In particular we have an isomorphism ofHKfin
-modules

H i(SKfin
(C),Vλ) ≃ H i(g,K ′

∞;Aλ(G(Q)AG(R)◦ \G(AQ)/Kfin)⊗ Vλ)

Cuspidal Support The spacesAλ(G(Q)AG(R)◦ \G(AQ)) are still much too large to be described all at once,

despite being a massive improvement over the spaces . The next step is to decompose the spacesAλ(G(Q)AG(R)◦\

G(AQ)) according to cuspidal support of automorphic forms.

Recall that the constant term of an automorphic form ϕ ∈ A(G(Q)AG(R)◦ \ G(AQ)) along a parabolic

Q-subgroup P ofGwith Levi decomposition P =MN is given for g ∈ G(AQ) by

ϕP (g) =

∫
N(Q)\N(AQ)

ϕ(ng)dn

taken with respect to a normalized Haar measuredn onN(AQ). Note that ifϕP = 0 for all parabolicQ-subgroups

P ofG then ϕ = 0.

Definition 2.2.3. We say that an automorphic form ϕ ∈ A(G(Q)AG(R)◦ \G(AQ)) is cuspidal if ϕP = 0 for

all proper parabolic Q-subgroups P ofG.

LetAcusp(G) = Acusp(G(Q)AG(R)◦ \ G(AQ)) be the space of cuspidal automorphic forms on G(AQ),

regarded as aG(A∞
Q )× (g,K∞)-module, which is the dense subspace of smoothK∞-finite vectors in the Hilbert

spaceL2
cusp(G(Q)AG(R)◦ \G(AQ)).

Definition 2.2.4. We say that ϕ ∈ A(G(Q)AG(R)◦ \G(AQ)) is negligible along a parabolic Q-subgroup P of

G with Levi quotient M if for all g ∈ G(AQ) the function ϕP (·g) : M(Q)AP (R)◦ \M(AQ) → C given by

m 7→ ϕP (mg) is orthogonal toAcusp(M(Q)AP (R)◦ \M(AQ)).

We say that two parabolic Q-subgroups P and P ′ of G are associate if the Levi quotients M and M ′ are

conjugate by an element ofG(Q). Let C be the set of associate classes of parabolic Q-subgroups ofG.

For [P ] ∈ C letAλ,[P ](G) = Aλ,[P ](G(Q)AG(R)◦ \ G(AQ)) be the G(A∞
Q ) × (g,K∞)-submodule of

Aλ(G(Q)AG(R)◦ \ G(AQ)) consisting of automorphic forms on G(AQ) with negligible constant term along

every parabolic Q-subgroup of G not in the associate class [P ]. By Langlands we obtain a decomposition of

Aλ(G(Q)AG(R)◦ \G(AQ)) according to parabolic support:
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Theorem 2.2.5. (Langlands) We have an isomorphism ofG(A∞
Q )× (g,K∞)-modules

Aλ(G(Q)AG(R)◦ \G(AQ)) ≃
⊕
[P ]∈C

Aλ,[P ](G(Q)AG(R)◦ \G(AQ))

For [P ] ∈ C let Φλ,[P ] be the set of associate classes of cuspidal automorphic representations of Levi quotients

of parabolics in [P ] with infinitesimal characters matching the infinitesimal character of V ∨
λ .

LetAλ,[P ],φ(G) = Aλ,[P ],φ(G(Q)AG(R)◦\G(AQ))be theG(A∞
Q )×(g,K∞)-submodule ofAλ,[P ](G) =

Aλ,[P ](G(Q)AG(R)◦\G(AQ)) spanned by all residues and derivatives of automorphic Eisenstein series with cusp-

idal supportφ evaluated at evaluated at points s0 in the closure of the positive Weyl chamber defined byP , which we

will describe in detail below. By Franke-Schwermer we obtain a finer decomposition ofAλ(G(Q)AG(R)◦\G(AQ))

according to cuspidal support:

Theorem 2.2.6. (Franke-Schwermer) We have an isomorphism ofG(A∞
Q )× (g,K∞)-modules

Aλ(G(Q)AG(R)◦ \G(AQ)) ≃
⊕
[P ]∈C

⊕
φ∈Φλ,[P ]

Aλ,[P ],φ(G(Q)AG(R)◦ \G(AQ))

The next step is to describe the spacesAλ,[P ],φ(G(Q)AG(R)◦ \G(AQ)) concretely in terms of automorphic

Eisenstein series.

Automorphic Eisenstein Series We begin by reviewing some results about automorphic Eisenstein series, with

definitions suited for the discussion of Paley-Wiener sections and Poincare series, whoseL2-inner product will be

used to analyze the spectral decomposition ofL2(G(Q)AG(R)◦ \G(AQ)).

Let P be a proper parabolic Q-subgroup of G with Levi decomposition P = MN . For a unitary cuspidal

automorphic representation π ofM(AQ) consider the π-isotypic subspaces

L2
cusp(M)π = L2

cusp(M(Q)AP (R)◦ \M(AQ))π ⊆ L2
cusp(M(Q)AP (R)◦ \M(AQ))

Acusp(M)π = Acusp(M(Q)AP (R)◦ \M(AQ))π ⊆ Acusp(M(Q)AP (R)◦ \M(AQ))
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For s ∈ (aGP )
∨
C let πs = e⟨HP (·),s+ρP ⟩π and consider the π-isotypic subspaces

L2(M)πs = e⟨HP (·),s+ρP ⟩L2(M)π

Acusp(M)πs = e⟨HP (·),s+ρP ⟩Acusp(M)π

We consider the normalized parabolic induction

L2
cusp(P \G)πs = I

G(AQ)
P (AQ)

(L2
cusp(M)πs) = Ind

G(AQ)
P (AQ)

(L2
cusp(M)πs+ρP )

regarded as aG(AQ)-module, which we can view as acting on the Hilbert space

L2
cusp(P \G)πs =


L2 functions ϕ : N(AQ)M(Q) \G(AQ)→ C such that

ϕ(ag) = e⟨HP (a),s+ρP ⟩ϕ(g) for all a ∈ AP (R)◦, g ∈ G(AQ)

and ϕ(·g) ∈ L2
cusp(M)πs for all g ∈ G(AQ)


by the right regular action where g ∈ G(AQ) acts on functions ϕs ∈ L2

cusp(P \ G)πs by (IGP (πs, g)ϕs)(x) =

ϕs(xg). We consider the normalizedK-finite parabolic induction

Acusp(P \G)πs = IKK∩P (AQ)
(Acusp(M)πs) = IndKK∩P (AQ)

(Acusp(M)πs+ρP )

regarded as aG(A∞
Q )× (g,K∞)-module, which we can view as acting on the space

Acusp(P \G)πs =


smoothK-finite functions ϕ : N(AQ)M(Q) \G(AQ)→ C such that

ϕ(ag) = e⟨HP (a),s+ρP ⟩ϕ(g) for all a ∈ AP (R)◦, g ∈ G(AQ)

and ϕ(·k) ∈ Acusp(M)πs for all k ∈ K


by the right regular action wheref ∈ H(K\G(AQ)/K) acts on functionsϕs ∈ Acusp(P\G)πs by (IGP (πs, f)ϕs)(g) =

(R(f)ϕs)(g).

Letting s ∈ (aGP )
∨
C vary we obtain an ind-C-vector bundleAcusp(P \G)π• → (aGP )

∨
C; for any finite set F of

K-types, the union
⋃
κ∈FAcusp(P \G)κπs of the κ-isotypic subspacesAcusp(P \G)κπs inAcusp(P \G)πs form

a C-vector bundleAcusp(P \G)Fπ• → (aGP )
∨
C of finite rank.
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Let WP,π be the space of Paley-Wiener sections for Acusp(P \ G)π• → (aGP )
∨
C, consisting of sections ϕ :

(aGP )
∨
C → Acusp(P \G)Fπ• for some finite set F ofK-types, whose Fourier transform, given for g ∈ G(AQ) with

g = namk for n ∈ N(AQ), a ∈ AP (R)◦,m ∈M(AQ)
1, k ∈ K by

ϕ̂(g) =

∫
s0+i(aGP )

∨
ϕs(g)ds =

∫
s0+i(aGP )

∨
ϕ(mk)e⟨HP (a),s+ρP ⟩ds

is smooth and compactly supported moduloAG(R)◦ in a ∈ AP (R)◦.

Definition 2.2.7. For ϕ ∈WP,π define the Poincare series θϕ given for g ∈ G(AQ) by

θϕ(g) =
∑

γ∈P (Q)\G(Q)

ϕ̂(γg) =
∑

γ∈P (Q)\G(Q)

∫
s0+i(aGP )

∨
ϕs(γg)ds

For ϕ ∈WP,π and s ∈ (aGP )
∨
C define the automorphic Eisenstein series EisGP (ϕs) given for g ∈ G(AQ).

EisGP (ϕs)(g) =
∑

γ∈P (Q)\G(Q)

ϕs(γg) =
∑

γ∈P (Q)\G(Q)

ϕ(γg)e⟨HP (γg),s+ρP ⟩

For ϕ ∈ WP,π the Poincare series θϕ(g) is absolutely convergent for every g ∈ G(AQ), and we have the

following:

Proposition 2.2.8. (Langlands [74, Lemma 4.1])

(i) For ϕ ∈ WP,π and s ∈ (aGP )
∨
C the automorphic Eisenstein series EisGP (ϕs)(g) converges absolutely and

uniformly on compact subsets of {s ∈ (aGP )
∨
C|ℜ(s) ∈ ρP + (aGP )

∨+}.

(ii) For ϕ ∈ WP,π and s ∈ (aGP )
∨
C such thatℜ(s) ∈ ρP + (aGP )

∨+ the automorphic Eisenstein series defines

an automorphic form EisGP (ϕs) ∈ A(G) where f ∈ H(K \G(AQ)/K) acts by

EisGP (IGP (πs, f)ϕs) = R(f)EisGP (ϕs)

(iii) For ϕ ∈WP,π and for s0 ∈ ρP + (aGP )
∨+ we have

θϕ =

∫
s0+i(aGP )

∨
EisGP (ϕs)ds
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Let WG = W (G,M0) be the Weyl group of G and for P a standard parabolic Q-subgroup of G with Levi

decomposition P = MN let WM = W (M,M0) be the Weyl group of M and let WM be the set of cosets

wWM ⊆ WG such that Mw is a standard Levi Q-subgroup of G. For such a coset let Pw = MwNw be the

corresponding standard parabolic Q-subgroup ofG. and consider the intertwining operatorM(w, πs) given for

ϕ ∈ Acusp(P \G)πs and g ∈ G(AQ) by

(M(w, πs)ϕ)(g) =

∫
(Nw(AQ)∩w̃N(AQ)w̃−1)\Nw(AQ)

ϕ(w̃−1ng)dn

where w̃ ∈ G(Q) is a representative ofw. Then by definition we have Eis(IGP (s, f)ϕs)(g) = R(f)EisGP (ϕs)(g)

andM(w, s)IGP (s, f) = IGP ′(ws, f)M(w, s).

Proposition 2.2.9. (Langlands, Moeglin-Waldspurger [85, II.1.6, II.1.7])

(i) s ∈ (aGP )
∨
C the intertwining operatorM(w, πs) converges absolutely and uniformly on compact subsets of

{s ∈ (aGP )
∨
C|ℜ(s) ∈ ρP + (aGP )

∨+}.

(ii) For s ∈ (aGP )
∨
C such thatℜ(s) ∈ ρP +(aGP )

∨+ the intertwining operator defines a morphism ofG(A∞
Q )×

(g,K∞)-modules

M(w, πs) : Acusp(P \G)πs → Acusp(P
w \G)πws

(iii) The constant term of EisGP (ϕs) along a standard parabolic Q-subgroup P ′ =M ′N ′ ofG is given in terms

of the intertwining operatorsM(w, πs) by

EisGP (ϕs)P ′ =
∑

w∈WG/WM

Mw⊆M ′

EisP
′

Pw(M(w, πs)ϕs)

where the partial Eisenstein series EisP ′
P (ϕs) is given for g ∈ G(AQ) by

EisP
′

P (ϕs)(g) =
∑

γ∈P (Q)\P ′(Q)

ϕs(γg) =
∑

γ∈P (Q)\P ′(Q)

ϕ(γg)e⟨HP (γg),s+ρP ⟩
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(iv) We have the adjoint operator M(w, πs)
∗ = M(w−1, πw−w(s)) such that for ϕ ∈ Acusp(P \ G)πs and

ϕ ∈ Acusp(P
w \G)πw−w(s)

we have the adjunction formula

⟨M(w, πs)ϕ, ϕ
′⟩ = ⟨ϕ,M(w−1, πw−w(s))ϕ

′⟩

where for ϕs ∈ A(P \G)πs and ϕ′−s ∈ A(P \G)π−s the pairing is given

⟨ϕs, ϕ′−s⟩ =
∫
K

∫
M(Q)\M(AQ)1

ϕs(mk)ϕ′−s(mk)dmdk

We will need the following expression for theL2-inner product of Poincare series:

Proposition 2.2.10. (Langlands, Moeglin-Waldspurger [85, II.2.1]) For ϕ ∈WP,π and ϕ′ ∈WP ′,π′ theL2-inner

product of the Poincare series θϕ, θϕ′ ∈ L2(G(Q)AG(R)◦ \G(AQ)) is given by

⟨θϕ, θϕ′⟩ =


∫
s0+i(aGP )

∨
A(ϕ, ϕ′)(πs)ds [P, π] = [P ′, π′]

0 otherwise

where s0 ∈ (aGP )
∨ is any point with α∨(s0 + ρP ) > 0 for every α ∈ Φ+

P , and where

A(ϕ, ϕ′)(πs) =
∑

w∈WG/WM

Mw=M ′

⟨M(w, πs)ϕs, ϕ
′
−w(s)⟩

So far we have only considered Eisenstein series and intertwining operators in the region of convergence {s ∈

(aGP )
∨
C|ℜ(s) ∈ ρP + (aGP )

∨+}. Now we recall the fundamental result of Langlands regarding the analytic contin-

uation and functonal equations of Eisenstein series:

Proposition 2.2.11. (Langlands, Moeglin-Waldspurger [85, IV.1]) Forϕ ∈WP,π the Eisenstein seriesEisGP (ϕs) and

the intertwining operatorM(w, πs) admit a meromorphic continuation to all s ∈ (aGP )
∨
C, where the automorphic

Eisenstein series defines an automorphic form EisGP (ϕs) ∈ A(G) where f ∈ H(K \G(AQ)/K) acts by

EisGP (IGP (πs, f)ϕs) = R(f)EisGP (ϕs)
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and the intertwining operator defines a morphism ofG(A∞
Q )× (g,K∞)-modules

M(w, πs) : Acusp(P \G)πs → Acusp(P
w \G)πws

whenever s ∈ (aGP )
∨
C is not a pole. Moreover we have the functional equations given as an identity of meromorphic

functions

EisGPw(M(w, πs)ϕs) = EisGP (ϕs) w ∈WM

M(w′, πws )M(w, πs) =M(w′w, πs) w ∈WM , w
′ ∈WMw

Poles of Automorphic Eisenstein Series We now want to understand the poles of such automorphic Eisenstein

series. We follow [69, Section 5.2] and refer to [73] for further discussion.

Forw ∈WG
0 /W

M
0 such thatMw ⊆M ′ consider the adjoint representation ρw : LM → GL(n̂/(w−1(n̂)∩

n̂)) and the associated automorphic L-function and ϵ-function

Λ(s, π, ρw) = Λ(s, ρw ◦ φπ) ϵ(s, π, ρw) = ϵ(s, ρw ◦ φπ)

where φπ : LQ → LM is the Langlands parameter for π. We use the notation Λ to emphasize that these are

completed L-functions which include Archimedean factors. Consider the Langlands normalization factor

r(w, πs) =
Λ(0, πs, ρw)

Λ(1, πs, ρw)ϵ(0, πs, ρw)

Suppose for simplicity of discussion thatmcusp(π) = 1 so thatAcusp(M) ≃ π. Consider the restricted tensor

product decomposition π =
⊗

v πv and fix an associated isomorphism

Φπ : Acusp(P \G)π
∼−→
⊗
v

IG(Qv)
P (Qv) (πv)

For s ∈ (aGP )
∨
C we obtain an associated isomorphism

Φπs : Acusp(P \G)πs
∼−→
⊗
v

IG(Qv)
P (Qv) (πv,s)
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Consider the local intertwining operatorM(w, πv,s) given for ϕv ∈ IG(Qv)
P (Qv) (πv,s) and g ∈ G(Qv) by

M(w̃, πv,s)ϕv(g) =

∫
(Nw(Qv)∩w̃N(Qv)w̃−1)\Nw(Qv)

ϕv(w̃
−1ng)dn

where w̃ ∈ G(Q) is a representative forw. Now we have a commutative diagram

Acusp(P \G)πs Acusp(P
w \G)πws

⊗
v I

G(Qv)
P (Qv) (πv,s)

⊗
v I

G(Qv)
P (Qv) (π

w
v,s)

M(w,πs)

Φπs Φπws⊗
vM(w̃,πv,s)

Fixing a nontrivial character ψ =
⊗

v ψv : Q \ AQ → C× we have an Euler product decomposition

r(w, πs) =
∏
v

r(w, πv,s, ψv) r(w, πv,s, ψv) =
L(0, πv,s, ρw)

L(1, πv,s, ρw)ϵ(0, πv,s, ρw, ψv)

By [69, Proposition 5.2] (especially by [108, Theorem 7.9] in the case whereπv is tempered) the normalized local inter-

twining operatorN(w̃, πv,s, ψv) = r(w, πv,s, ψv)
−1M(w̃, πv,s) is holomorphic on {s ∈ (aGP )

∨
C|α∨(ℜ(s)) ≥

0 for all α ∈ Φ+
P −w−1Φ+

Pw}. For all but finitely many non-Archimedean places v ofQ there exists aKv-spherical

vector ϕsphπv,s ∈ I
G(Qv)
P (Qv) (πv,s) such thatN(w̃, πv,s, ψv)ϕ

sph
πv,s = ϕsphπwv,s

where ψv is order 0.

For ϕ ∈ WP,π we may assume that Φπs(ϕs) =
⊗

v ϕv,s with ϕv,s ∈ IG(Qv)
P (Qv) (πv,s). Let S be a finite set of

places of Q such that ϕv,s = ϕsphπv,s so thatN(w̃, πv,s, ψv)ϕ
sph
πv,s = ϕsphπwv,s

where ψv is order 0 for all v ̸∈ S. Then

we have

M(w, πs)ϕs = Φ−1
πws

(⊗
v∈S

r(w, πv,s, ψv)N(w̃, πv,s, ψv)ϕv,s ⊗
⊗
v ̸∈S

r(w, πv,s, ψv)ϕ
sph
πwv,s

)
= r(w, πs)Φ

−1
πws

(⊗
v∈S

N(w̃, πv,s, ψv)ϕv,s ⊗
⊗
v ̸∈S

ϕsphπwπv,s

)
= r(w, πs)N(w, πs)ϕs

whereN(w, πs) is the normalized intertwiner

N(w, πs)ϕs = Φ−1
πws

(⊗
v∈S

N(w̃, πv,s, ψv)ϕv,s ⊗
⊗
v ̸∈S

ϕsphπwπv,s

)
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Since
⊗

v∈S N(w̃, πv,s, ψv) is holomorphic on {s ∈ (aGP )
∨
C|α∨(ℜ(s)) ≥ 0 for all α ∈ Φ+

P − w−1Φ+
Pw} it

follows that the poles ofM(w, πs) are exactly the poles of r(w, πs) in this region.

By Shahidi’s nonvanishing theorem [107, Theorem 5.1] the denominator of r(w, πs) does not vanish in this

region, so the poles of r(w, πs) are exactly the poles of the numerator of r(w, πs) in this region. This is precisely

what we will use to analyze the poles of the intertwining operators, and hence the poles of the automorphic Eisenstein

series by the constant term formula.

Example 2.2.12. (Gindikin-Karpelevich [73]) Let P0 = M0N0 be a minimal parabolic Q-subgroup of G. Let

χ =
⊗

v χv : M0(AQ) → C× be a unitary character. For ϕ ∈ WP0,χ and s ∈ (aGP0
)∨C consider the Eisenstein

series given for g ∈ G(AQ) by

EisGP0
(ϕs)(g) =

∑
γ∈P0(Q)\G(Q)

ϕs(γg) =
∑

γ∈P0(Q)\G(Q)

ϕ(γg)e⟨HP0 (γg),s+ρP0 ⟩

Forw ∈ WG consider the intertwining operatorM(w,χs) =
⊗

vM(w̃, χv,s) given for ϕ =
⊗

v ϕv ∈ WP0,χ

and g ∈ G(AQ) by

(M(w,χs)ϕs)(g) =

∫
(Nw

0 (AQ)∩w̃N0(AQ)w̃−1)\Nw
0 (AQ)

ϕs(w̃
−1ng)dn

whereM(w̃, χs) is the local intertwining operator given for gv ∈ G(Qv) by

(M(w̃, χv,s)ϕv,s)(gv) =

∫
(Nw

0 (Qv)∩w̃N0(Qv)w̃−1)\Nw
0 (Qv)

ϕv,s(w̃
−1nvgv)dnv

Let ψ =
⊗

v ψv : Q \ AQ → C× be an additive Hecke character. Let S be a finite set of places of Q including

∞ such that for all v ̸∈ S the characters χv and ψv are unramified, and ϕv,s = ϕsphv,s is the unique Kv-spherical

function normalized by ϕsphv,s (ev) = 1. By Gindikin-Karpelevich, for all v ̸∈ S we have

M(w̃, χv,s)ϕ
sph
v,s =

∏
α∈Φ+

G

w(α)∈Φ−
G

Λ(⟨s, α∨⟩, χv ◦ α∨)

Λ(⟨s, α∨⟩+ 1, χv ◦ α∨)
ϕsphv,ws
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Consider the Langlands normalization factor r(w,χs) =
∏
v r(w̃, χv,s, ψv) given by

r(w,χs) =
∏
α∈Φ+

G

w(α)∈Φ−
G

Λ(⟨s, α∨⟩, χ ◦ α∨)

Λ(⟨s, α∨⟩+ 1, χ ◦ α∨)ϵ(⟨s, α∨⟩, χ ◦ α∨)

where r(w̃, χv,s, ψv) is the local Langlands normalization factor given by

r(w̃, χv,s, ψv) =
∏
α∈Φ+

G

w(α)∈Φ−
G

L(⟨s, α∨⟩, χv ◦ α∨)

L(⟨s, α∨⟩+ 1, χv ◦ α∨)ϵ(⟨s, α∨⟩, χv ◦ α∨, ψv)

We will use these formulas extensively in later sections.

2.2.2 Franke-Schwermer Filtration

We now recall the notion of associate classes of cuspidal automorphic representations which gives rise to the decom-

position ofAλ(G(Q)AG(R)◦ \G(AQ)) according to cuspidal support, and which leads to the definition of the

Franke-Schwermer filtration.

Definition 2.2.13. Let [P ] ∈ C be an associate class of parabolic Q-subgroups of G. An associate class φ =

{φP }P∈[P ] of cuspidal automorphic representations of Levi quotients of parabolics in [P ] with infinitesimal char-

acters annihilated byJλ consists of, for each P ∈ [P ] with Levi quotientM , a finite set φP of cuspidal automor-

phic representations π of M(AQ) with central character ωπ : AP (AQ) → C× trivial on AP (Q) occurring in

L2
cusp(M(Q) \M(AQ), ωπ) satisfying:

• ForP, P ′ ∈ [P ], forπ ∈ φP , and for g ∈ G(Q) such that Int(g)M ′ =M , we haveπ′ = Int(g)∗π ∈ φP ′ .

• Forφ′ = {φ′
P }P∈[P ] satisfying the above condition such thatφ′

P ⊆ φP for allP ∈ [P ], we haveφ′
P = φP

for all P ∈ [P ].

• For ξφ the W (h, gC)-orbit in h∨ containing the W (h,mC)-orbit ξπ in h∨ of the infinitesimal charcter of

π∞ for π ∈ φP and P ∈ [P ] (which is independent of π ∈ φP and P ∈ [P ] by the above condition), we

have that ξφ is annihilated byJλ.

For an associate class [P ] ∈ C letΦλ,[P ] be the set of associate classes of cuspidal automorphic representations of

Levi quotients of parabolics in [P ]with infinitesimal characters annihilated byJλ. ForP ∈ [P ]with Levi quotient
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M a cuspidal automorphic representation π of M(AQ) with central character ωπ : AP (AQ) → C× trivial on

AP (Q) occurring inL2
cusp(M(Q) \M(AQ), ωπ) determines a unique associate class φ = {φP }P∈[P ] ∈ Φλ,[P ]

by the above properties.

For [P ] ∈ C and forφ = {φP }P∈[P ] ∈ Φλ,[P ] letAλ,[P ],φ(G) = Aλ,[P ],φ(G(Q)AG(R)◦ \G(AQ)) be the

G(A∞
Q )× (g,K∞)-submodule ofAλ,[P ](G(Q)AG(R)◦ \G(AQ)) given by

Aλ,[P ],φ(G) =

 functions ϕ ∈ Aλ,[P ](G(Q)AG(R)◦ \G(AQ)) with constant term

ϕP ∈
⊕

π∈φP L
2
cusp(M(Q) \M(AQ), ωπ)π ⊗ Sym((aGP )

∨
C) for all P ∈ [P ]


where L2

cusp(M(Q) \M(AQ), ωπ)π is the π-isotypic subspace of L2
cusp(M(Q) \M(AQ), ωπ) for P ∈ [P ]

with Levi quotientM , and where L2
cusp(M(Q) \M(AQ), ωπ)π ⊗ Sym((aGP )

∨
C) is identified with the space of

functions ϕ : M(Q) \ M(AQ) → C represented by finite sums ϕ(g) =
∑

i ϕi(g)pi(HP (g)) where pi is a

polynomial function on aGP,C and ϕi ∈ L2
cusp(M(Q) \M(AQ), ωπ)π .

We now describe these G(A∞
Q ) × (g,K∞)-modules concretely in terms of automorphic Eisenstein series.

Let P be a proper parabolic Q-subgroup of G with Levi decomposition P = MN , let π be a cuspidal auto-

morphic representation ofM(AQ) with central character ωπ : AP (AQ) → C× trivial on AP (Q), occurring in

L2
disc(M(Q)\M(AQ), ωπ). Letdωπ ∈ (aGP )

∨ be the differential of the restriction ofωπ toAP (R)◦/AG(R)◦ and

consider the unitarization π′ = e−⟨HP (·),dωπ⟩π occurring inL2
disc(M(Q)AP (R)◦ \M(AQ)). For s ∈ a∨P,C con-

sider the normalized parabolic induction IG(AQ)
P (AQ)

(π′, s)mdisc(π
′) = Ind

G(AQ)
P (AQ)

(e⟨HP (·),s+ρP ⟩π′)mdisc(π
′) regarded

as aG(A∞
Q )× (g,K ′

∞)-module acting on the Hilbert space

WP,π′ =

 smoothK-finite functions ϕ :M(Q)N(AQ)AP (R)◦ \G(AQ)→ C

such that ϕ(·g) ∈ L2
cusp(M(Q)AP (R)◦ \M(AQ))π′ for all g ∈ G(AQ)


whereL2

disc(M(Q)AP (R)◦ \M(AQ))π′ is the π′-isotypic subspace ofL2
disc(M(Q)AP (R)◦ \M(AQ)).

For ϕ ∈WP,π′ and s ∈ a∨P,C recall the automorphic Eisenstein series EisGP (ϕs) given for g ∈ G(AQ) by

EisGP (ϕs)(g) =
∑

γ∈P (Q)\G(Q)

ϕs(γg) =
∑

γ∈P (Q)\G(Q)

ϕ(γg)e⟨HP (γg),s+ρP ⟩
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which admits an analytic continuation to a meromorphic function in s ∈ a∨P,C with poles along root hyperplanes.

There exists a polynomial function h0 on a∨P such that for all ϕ ∈WP,π′ the function h0(s)EisGP (ϕs) is holomor-

phic in a neighborhood of s0 = dωπ ∈ (aGP )
∨. After choosing Cartesian coordinates z1(s), . . . , zr(s) on a∨P we

have the Taylor expansion

h0(s)Eis
G
P (ϕs) =

∑
i1,...,ir≥0

ai1,...,ir(ϕ)z1(s− s0)i1 . . . zr(s− s0)ir

ThenAλ,[P ],φ(G) = Aλ,[P ],φ(G(Q)AG(R)◦ \ G(AQ)) is equivalently the G(A∞
Q ) × (g,K∞)-submodule of

Aλ,[P ](G(Q)AG(R)◦\G(AQ)) spanned by the Taylor coefficients ai1,...,ir(ϕ) for i1, . . . , ir ≥ 0 andϕ ∈WP,π′ ;

this does not depend on the choice of the polynomial function h0 on a∨P , and by the functional equations for

EisGP (ϕs) this does not depend on the choice of P ∈ [P ] and π ∈ φP . In other words this is spanned by all

residues and derivatives of automorphic Eisenstein series with cuspidal support φ evaluated at points s0 in the

closure of the positive Weyl chamber defined by P .

To give some idea of this equivalence let P ′ be another parabolic Q-subgroup ofGwith Levi decomposition

P ′ =M ′N ′ and consider the constant term EisGP (ϕ, s)P ′ given for g ∈ G(AQ) by

EisGP (ϕs)P ′(g) =

∫
N ′(Q)\N ′(AQ)

EisGP (ϕs)(ng)dg

Then EisGP (ϕs) has a pole at s = s0 precisely if there exists a parabolic Q-subgroupP ′ ofG such that the constant

term EisGP (ϕs)P ′ has a pole at s = s0. By Langlands the constant term is given for g ∈ G(AQ) by

EisGP (ϕs)P ′(g) =
∑

w∈W (aP ,aP ′ )

(M(w, s)ϕ)(g)e⟨HP ′ (g),ws+ρP ′ ⟩

and it follows that D(h0(s)Eis(ϕ, s))|s=s0 ∈ Aλ,[P ],φ(G). For the converse, one needs to show that any func-

tion f ∈ Aλ,[P ],φ(G), that is any function f ∈ Aλ,[P ](G(Q)AG(R)◦ \ G(AQ)) with constant term fP ∈⊕
π∈φP L

2
cusp(M(Q) \M(AQ), ωπ)π ⊗ Sym((aGP )

∨
C) for all P ∈ [P ], can be written as a linear combination

of residues and derivatives of automorphic Eisenstein series with cuspidal support φ evaluated at points s0 in the

closure of the positive Weyl chamber defined by P .
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The symmetric algebra Sym((aGP )
∨
C) =

⊕
n≥0 Sym

n((aGP )
∨
C) on (aGP )

∨
C is regarded as aP (A∞

Q )× (p,KP
∞)-

module as follows. Regarding Sym((aGP )
∨
C) as the algebra of polynomial functions on aGP,C, an elementX ∈ aGP,C

acts onP ∈ Sym((aGP )
∨
C)by translation, which defines the structure of aP (A∞

Q )×(p,KP
∞)-module withP (A∞

Q )

acting trivially.

Regarding Sym((aGP )
∨
C) as the algebra of polynomial differential operators on (aGP )

∨
C, the tensor product

WP,π0 ⊗ Sym((aGP )
∨
C) is regarded as a G(A∞

Q ) × (g,K∞)-module as follows. Let S be the space of functions

f(g, s) on G(AQ) × (aGP )
∨
C which are smooth and compactly supported in g ∈ G(AQ) and which are holo-

morphic in s ∈ (aGP )
∨
C, and let D(S) be the space of distributions on S which are compactly supported in

s ∈ (aGP )
∨
C. The tensor product WP,π′ ⊗ Sym((aGP )

∨
C) is regarded as a subspace of D(S) where the simple

tensor ϕ⊗D ∈WP,π′ ⊗ Sym((aGP )
∨
C) is identified with the distribution given for f ∈ S by

(ϕ⊗D)(f) = D
(∫

G(AQ)
ϕ(g)f(g, ·)dg

)

where an elementg ∈ G(A∞
Q ) acts by (g(ϕ⊗D))(x, s) = (e⟨HP (xg)−HP (x),s⟩(ϕ⊗D))(xg, s), where an element

X ∈ g acts by (X(ϕ⊗D))(g, s) = ((Xϕ)⊗D)(g, s) + (⟨XHP (g), s⟩(ϕ⊗D))(g, s), and where an element

k ∈ K∞ acts by (k(ϕ⊗D))(g, s) = (ϕ⊗D)(gk, s). The expressions for these actions can be written as finite

sums of simple tensors inWP,π′ ⊗ Sym((aGP )
∨
C), and hence define the structure of aG(A∞

Q )× (g,K∞)-module.

Now the above construction yields surjective morphism ofG(A∞
Q )× (g,K∞)-modules

Eλ,[P ],φ :WP,π′ ⊗ Sym((aGP )
∨
C)→ Aλ,[P ],φ(G)

ϕ⊗D 7→ D(h0(s)Eis
G
P (ϕs))|s=s0

which does not depend on the choice of the polynomial function h0 on a∨P , recalling that for all ϕ ∈ WP,π′

the function h0(s)EisGP (ϕs) is holomorphic in a neighborhood of s0 = dωπ ∈ (aGP )
∨. If for all ϕ ∈ WP,π′ the

functionEisGP (ϕs) is holomorphic at s0 = dωπ ∈ (aGP )
∨, then we can takeh0 = 1 and we obtain an isomoprhism

ofG(A∞
Q )× (g,K∞)-modules

Eλ,[P ],φ :WP,π′ ⊗ Sym((aGP )
∨
C)

∼−→ Aλ,[P ],φ(G)

ϕ⊗D 7→ D(EisGP (ϕs))|s=s0
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Now we have an isomorphism ofG(A∞
Q )× (g,K∞)-modules

WP,π′ ⊗ Sym((aGP )
∨
C) ≃ I

G(AQ)
P (AQ)

(π′ ⊗ Sym((aGP )
∨
C), dωπ)

mdisc(π
′)

so the above construction realizes the normalized parabolic induction IG(AQ)
P (AQ)

(π′ ⊗ Sym((aGP )
∨
C), dωπ)

mdisc(π
′)

inAλ,[P ],φ(G). This leads to the definition of the Franke-Schwermer filtration onAλ,[P ],φ(G).

LetMλ,[P ],φ(G) be the set of tuples (P ′, π′, ν, s0) such that:

• P ′ ∈ [P ] is a standard parabolic Q-subgroup of G (with Levi quotient M ′) containing a parabolic Q-

subgroup P ∈ [P ];

• π′ ∈ Πdisc(M
′(AQ)) is a unitary discrete spectrum automorphic representation ofM ′(AQ) (occurring in

L2
disc(M

′(Q)AP ′(R)◦ \M ′(AQ))with multiplicitymdisc(π
′)) which is the iterated residue at ν ∈ (aP

′
P )∨C

of Eisenstein series attached to π ∈ φP ;

• s0 ∈ a∨P ′,C is a point withℜ(s0) ∈ (aGP ′)∨+ such that e⟨HP ′ (·),s0⟩π′ has cuspidal support inφ; in particular

s0 + ν + ξφ is annihilated byJλ.

LetMm
λ,[P ],φ(G) be the set of tuples (P ′, π′, ν, s0) where P ′ has relative rank m. We regardMm

λ,[P ],φ(G) as a

groupoid with objects (P ′, π′, ν, s0) and morphisms (P ′
1, π

′
1, s1) → (P ′

2, π
′
2, s2) corresponding to w ∈ WP ′

1

such that w(M ′
1) = M ′

2 and w(π′1) = π′2 and w(s1) = s2 (the ν ∈ (aP
′

P )∨C is in some sense redundant

information, but we include it as part of the definition). We have a functor

Mm
λ,[P ],φ(G)→ Mod(G(A∞

Q )× (g,K∞))

(P ′, π′, ν, s0) 7→ I
G(AQ)
P ′(AQ)

(π′ ⊗ Sym((aGP ′)∨C), s0)
mdisc(π

′)

LetSλ,[P ],φ = {ι(s0) ∈ a∨P0
|(P ′, π′, ν, s0) ∈Mλ,[P ],φ(G)}be the finite subset ofa∨P0

defined by the embedding

ι : (aGP ′)∨ ↪→ a∨P0
, the support of the s0 ∈ a∨P ′,C in the indexing setMλ,[P ],φ(G).

Choose a functionTλ,[P ],φ : Sλ,[P ],φ → Z such thatTλ,[P ],φ(s1) > Tλ,[P ],φ(s2) if s1 ≻ s2, that is if s1 ̸= s2

and s1 − s2 ∈ a∨−P0
. Now we have the following absolutely crucial theorem:
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Theorem 2.2.14. (Franke-Schwermer [35, Theorem 14], [? , Theorem 4]) We have a finite decreasing filtration of

G(A∞
Q )× (g,K∞)-modules

. . . ⊆ Ai+1
λ,[P ],φ(G) ⊆ A

i
λ,[P ],φ(G) ⊆ . . . ⊆ Aλ,[P ],φ(G)

such that we have an isomorphism ofG(A∞
Q )× (g,K∞)-modules

Aiλ,[P ],φ(G)/A
i+1
λ,[P ],φ(G) ≃

⊕
0≤j≤rank(P )

lim−→
(P ′,π′,ν,s0)∈Mj

λ,[P ],φ
(G)

Tλ,[P ],φ(ι(s0))=i

IG(AQ)
P ′(AQ)

(π′ ⊗ Sym((aGP ′)∨C), s0)
mdisc(π

′)

where the colimit is taken over the full subcategory ofMm
λ,[P ],φ(G)defined byTλ,[P ],φ. Different choices ofTλ,[P ],φ

give rise to different filtrations either with the same quotients or with consecutive quotients replaced by their direct

sum. We can choose Tλ,[P ],φ so that the length of the filtration is minimal.

Example 2.2.15. We describe the Franke-Schwermer filtration for maximal parabolics, following [47]. Let P1

be a standard maximal proper parabolic Q-subgroup of G with Levi decomposition P1 = M1N1. We have a

unique simple root α1 ∈ ΦG which is not a root in ΦM1 , and the space (aGP1
)∨C is 1-dimensional with basis β1 =

⟨ρP1 , α
∨
1 ⟩−1ρP1 with open positive Weyl chamber (aGP1

)∨+C = {sβ1 ∈ (aGP1
)∨C|ℜ(s) > 0}. Let w0 ∈ WM1 be

the unique nontrivial element and let P2 = Pw0
1 be the conjugate of P1 with Levi decomposition P2 = M2N2;

if P1 is self-associate we have [P1] = {P1}, otherwise [P1] = {P1, P2}. We have a unique simple root α2 ∈ ΦG

which is not a root in ΦM2 , and the space (aGP2
)∨C is 1-dimensional with basis β2 = ⟨ρP2 , α

∨
2 ⟩−1ρP2 with open

positive Weyl chamber (aGP2
)∨+C = {sβ2 ∈ (aGP2

)∨C|ℜ(s) > 0}.

Letπ1 be a cuspidal automorphic representation ofM1(AQ) and consider the unitarizationπ′1 = e−⟨HP1 (·),s0β1⟩π1

where s0 ∈ R. Let π2 = πw0
1 be the conjugate of π1 and consider the unitarization π′2 = e−⟨HP2 (·),s0β2⟩π2.

For ϕ ∈ WP1,π′
1

and sβ1 ∈ (aGP1
)∨C consider the Eisenstein series EisGP1

(ϕsβ1) which has a finite number of

simple poles in the real interval {sβ1 ∈ (aGP1
)∨|0 < s ≤ ⟨ρP1 , α

∨
1 ⟩} and all other poles in the region {sβ1 ∈

(aGP1
)∨C|ℜ(s) < 0}. Consider the space of residual Eisenstein series

Lλ,[P1],φ(G) = {Ress=s0Eis
G
P1
(ϕsβ1)|f ∈WP1,π′

1
}
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ThenLλ,[P1],φ(G) is aG(A∞
Q )×(g,K∞)-submodule ofAλ,[P1],φ(G)which is nontrivial precisely if the Eisenstein

seriesEisGP1
(ϕsβ1) has a pole at s = s0. By Langlands the automorphic forms inLλ,[P1],φ(G) are square-integrable.

Now by [47, Theorem 3.1] we have a decreasing filtration ofG(A∞
Q )× (g,K∞)-modules

0 ⊆ Lλ,[P1],φ(G) ⊆ Aλ,[P1],φ(G)

where the quotientAλ,[P1],φ(G)/Lλ,[P1],φ(G) is nontrivial, and we have an isomorphism ofG(A∞
Q )× (g,K∞)-

modules

Aλ,[P1],φ(G)/Lλ,[P1],φ(G) ≃


(IG(AQ)
P1(AQ)

(π′1, 0)⊗ Sym((aGP1
)∨C))

+ s0 = 0 and P2 = P1 and π′2 ≃ π′1

IG(AQ)
P1(AQ)

(π′1, s0β1)⊗ Sym((aGP1
)∨C) otherwise

where (IG(AQ)
P1(AQ)

(π′1, 0)⊗Sym((aGP1
)∨C))

+ is the +1-eigenspace of the self-intertwining operatorM(w0, 0) acting

on IG(AQ)
P1(AQ)

(π′1, 0)⊗ Sym((aGP1
)∨C).

To see this, note that we have (G,Lλ,[P1],φ(G), 0) ∈ Mλ,[P1],φ(G) precisely if Lλ,[P1],φ(G) ̸= 0, and

we have (P1, π
′
1, s0β1) ∈ Mλ,[P1],φ(G), but we only have (P2, π

′
2,−s0β2) ∈ Mλ,[P1],φ(G) if s0 = 0 since

−s0β2 ̸∈ (aGP2
)∨+ if s0 > 0. We have the following four cases forMλ,[P1],φ(G):

Mλ,[P1],φ(G) =



{(G,Lλ,[P1],φ(G), 0), (P1, π
′
1, s0β1)} Lλ,[P1],φ(G) ̸= 0 so that s0 > 0 and P2 = P1 and π′2 ≃ π′1

{(P1, π
′
1, s0β1)} Lλ,[P1],φ(G) = 0 and s0 > 0

{(P1, π
′
1, 0)} s0 = 0 and P2 = P1 and π′2 ≃ π′1 so thatLλ,[P1],φ(G) = 0

{(P1, π
′
1, 0), (P2, π

′
2, 0)} s0 = 0 and P2 ̸= P1 or π′2 ̸≃ π′1 so thatLλ,[P1],φ(G) = 0

In the first and second cases the only morphisms inMλ,[P1],φ(G) are the identity, in the third case the only mor-

phisms inMλ,[P1],φ(G) are the identity andw0, and in the fourth case the only morphisms inMλ,[P1],φ(G) are

the identities andw0 andw−1
0 .

In the first case we haveSλ,[P1],φ = {0, s0β1}, in the second case we haveSλ,[P1],φ = {s0β1}, and in the third

and fourth cases we have Sλ,[P1],φ = {0}. Define Tλ,[P1],φ : Sλ,[P1],φ → Z such that Tλ,[P1],φ(s0β1) = 0 for

s0 > 0, such that Tλ,[P1],φ(0) = 1 in the first case, and such that Tλ,[P1],φ(0) = 0 in the third and fourth cases.
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In the first case the groupoidMλ,[P1],φ(G) is discrete and Tλ,[P1],φ has range {0, 1} so the Franke-Schwermer

filtration is given by

A1
λ,[P1],φ

(G) ≃Mλ,[P1],φ(G,Lλ,[P1],φ(G), 0) ≃ Lλ,[P1],φ(G)

A0
λ,[P1],φ

(G)/A1
λ,[P1],φ

(G) ≃Mλ,[P1],φ(P1, π
′
1, s0β1) ≃ I

G(AQ)
P1(AQ)

(π′1, s0β1)⊗ Sym((aGP1
)∨C)

In the second case the groupoidMλ,[P1],φ(G) is discrete and Tλ,[P1],φ has range {0} so the Franke-Schwermer

filtration is given by

A0
λ,[P1],φ

(G) ≃Mλ,[P1],φ(P, π
′
1, s0β1) ≃ I

G(AQ)
P1(AQ)

(π′1, s0β1)⊗ Sym((aGP1
)∨C)

In the third case the groupoidMλ,[P1],φ(G) has a nontrivial morphism w0 and Tλ,[P1],φ has range {0} so the

Franke-Schwermer filtration is given by the coequalizer

A0
λ,[P1],φ

(G) ≃Mλ,[P1],φ(P1, π
′
1, 0)/W ≃ (IG(AQ)

P1(AQ)
(π′1, 0)⊗ Sym((aGP1

)∨C))
+

where W is the G(A∞
Q ) × (g,K∞)-submodule ofMλ,[P1],φ(P1, π

′
1, 0) ≃ I

G(AQ)
P1(AQ)

(π′1, 0) ⊗ Sym((aGP1
)∨C)

generated by x − M(w0, 0)x for x ∈ Mλ,[P1],φ(P1, π
′
1, 0). Now by the functional equations for standard

intertwining operatorsM(w0, 0)
2 is the identity andW is the−1-eigenspace henceMλ,[P1],φ(P1, π

′
1, 0)/W ≃

(IG(AQ)
P1(AQ)

(π′1, 0)⊗ Sym((aGP1
)∨C))

+ is the +1-eigenspace.

In the fourth case the groupoidMλ,[P1],φ(G) has nontrivial morphismsw0 andw−1
0 and Tλ,[P1],φ has range

{0} so the Franke-Schwermer filtration is given by the coequalizer

A0
λ,[P1],φ

(G) ≃ (Mλ,[P1],φ(P1, π
′
1, 0)⊕Mλ,[P1],φ(P2, π

′
2, 0))/W ≃ I

G(AQ)
P1(AQ)

(π′1, 0)⊗ Sym((aGP1
)∨C)

whereW is theG(A∞
Q )× (g,K∞)-submodule of the direct sumMλ,[P1],φ(P1, π

′
1, 0)⊕Mλ,[P1],φ(P2, π

′
2, 0) ≃

(IG(AQ)
P1(AQ)

(π′1, s0β1) ⊗ Sym((aGP1
)∨C))

⊕2 generated by x − M(w0, 0)x for x ∈ Mλ,[P1],φ(P1, π
′
1, 0) hence

Mλ,[P1],φ(P1, π
′
1, 0) ≃ I

G(AQ)
P1(AQ)

(π′1, 0)⊗ Sym((aGP1
)∨C).
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Cohomology of Franke-Schwermer Filtration We now need to understand the cohomology of the induced

modules appearing in the successive quotients of the Franke filtration.

Let h be a Cartan subalgebra of gC contained in mC and choose an ordering on the roots of h in gC which

makes pC standard. LetW =W (h, gC) be the Weyl group of h in gC and consider the subset

WP = {w ∈W | w−1α > 0 for all α ∈ Φ+
M}

which is a set of representatives for the quotientW/WP . For ρ = 1
2

∑
α∈Φ+

G
α the half sum of positive roots and

for λ ∈ h∨ a dominant weight with highest weight gC-module Vλ consider the dot actionw · λ = w(λ+ ρ)− ρ

and the corresponding highest weight gC-module Vw·λ. By Kostant we have an isomorphism of mC-modules

Hk(n, Vλ) =
⊕
w∈WP

ℓ(w)=k

Vw·λ

Now we have the following crucial result of Borel-Wallach which we will use repeatedly in later sections:

Theorem 2.2.16. (Borel-Wallach [20, III Theorem 3.3]) Let λ ∈ h∨ be a dominant weight and let Vλ be the

corresponding irreducible gC-module of highest weight λ.

Suppose thatH∗(g,K ′
∞; IG(AQ)

P (AQ)
(π′ ⊗ Sym((aGP )

∨
C), s0)⊗ Vλ) ̸= 0. Then there exists a uniquew ∈ WP

yielding an isomorphism ofG(A∞
Q )-modules

Hk(g,K ′
∞; Ind

G(AQ)
P (AQ)

(π′ ⊗ Sym((aGP )
∨
C), s0)⊗ Vλ) ≃ I

G(A∞
Q )

P (A∞
Q ) (π

′
fin)⊗Hk−ℓ(w)(m,K ′P

∞ ;π′∞ ⊗ Vw·λ)

Theorem 2.2.17. Let λ ∈ h∨ be a dominant weight and let Vλ be the corresponding irreducible gC-module of

highest weight λ. We have a spectral sequence

Ep,q1 =
⊕
[P ]∈C

⊕
φ∈Φλ,[P ]

⊕
(P ′,π′,ν,s0)∈Mp

λ,[P ],φ
(G)

I
G(A∞

Q )

P (A∞
Q ) (π

′
fin)

Kfin ⊗Hp+q−ℓ(w)(g,K ′
∞;π′∞ ⊗ Vw·λ)

⇒ Hp+q(SKfin
(C),Vλ)

If λ is a regular highest weight, then the spectral sequence degenerates at theE1-page.
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Proof. We consider the spectral sequence for the Franke-Schwermer filtration:

Ep,q1 = Hp+q(g,K ′
∞;Apλ,[P ],φ(G)/A

p+1
λ,[P ],φ(G)⊗ Vλ)⇒ Hp+q(g,K ′

∞;Aλ,[P ],φ(G)⊗ Vλ)

By Franke theE1-page of this spectral sequence is given by

Ep,q1 ≃
⊕

(P ′,π′,ν,s0)∈Mp
λ,[P ],φ

(G)

Hp+q(g,K ′
∞; IG(AQ)

P ′(AQ)
(π′ ⊗ Sym((aGP ′)∨C), s0)⊗ Vλ)

≃
⊕

(P ′,π′,ν,s0)∈Mp
λ,[P ],φ

(G)

I
G(A∞

Q )

P (A∞
Q ) (π

′
fin)⊗Hp+q−ℓ(w)(g,K ′

∞;π′∞ ⊗ Vw·λ)

Then it follows that we have a spectral sequence

Ep,q1 =
⊕

(P ′,π′,ν,s0)∈Mp
λ,[P ],φ

(G)

I
G(A∞

Q )

P (A∞
Q ) (π

′
fin)⊗Hp+q−ℓ(w)(g,K ′

∞;π′∞ ⊗ Vw·λ)⇒ Hp+q(g,K ′
∞;Aλ,[P ],φ(G)⊗ Vλ)

Now by Franke-Schwermer we have an isomorphism ofG(A∞
Q )× (g,K∞)-modules

Aλ(G(Q)AG(R)◦ \G(AQ)) =
⊕
[P ]∈C

⊕
φ∈Φλ,[P ]

Aλ,[P ],φ(G(Q)AG(R)◦ \G(AQ))

Then it follows that we have a spectral sequence

Ep,q1 =
⊕
[P ]∈C

⊕
φ∈Φλ,[P ]

⊕
(P ′,π′,ν,s0)∈Mp

λ,[P ],φ
(G)

I
G(A∞

Q )

P (A∞
Q ) (π

′
fin)⊗Hp+q−ℓ(w)(g,K ′

∞;π′∞ ⊗ Vw·λ)

⇒ Hp+q(g,K ′
∞;Aλ(G)⊗ Vλ)

By Franke we have an isomorphism ofHKfin
-modules

H i(SKfin
(C),Vλ) ≃ H i(g,K ′

∞;Aλ(G(Q)AG(R)◦ \G(AQ)/Kfin)⊗ Vλ)

so the first claim follows by takingKfin-invariants in the above spectral sequence. If λ is a regular highest weight,

then the second claim follows by examination of the construction of the Franke-Schwermer filtration: in this case the

corresponding automorphic Eisenstein series are always holomorphic at the evaluation point s0 = dωπ ∈ (aGP )
∨,
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in particular the Franke-Schwermer filtration is trivial and the differentials in the above spectral sequence must all

vanish.

2.3 ℓ-adic Cohomology of Shimura Varieties

The main issue which remains to be addressed is how the Galois action on the ℓ-adic cohomology of local systems

on Shimura varieties is actually computed, and through what mechanism it can be related to the spectral theory of

automorphic forms.

The key insight due to Kottwitz is that one can express the trace of Frobenius on the compactly supported

ℓ-adic cohomology (or on the ℓ-adic intersection cohomology) in terms of volumes and (twisted) orbital integrals

for certain carefully chosen test functions, and that the resulting expression can be compared with the geometric

side of the Arthur-Selberg trace formula applied to these same test functions. By equating this with the spectral side

of the Arthur-Selberg trace formula, one obtains the desired expression for the traces of Frobenius in terms of the

Satake parameters of certain automorphic representations.

Two main difficulties arise. First, the Arthur-Selberg trace formula only involves volumes and orbital integrals,

but does not involve the twisted orbital integrals appearing in the formula of Kottwitz; one must apply a version of

the twisted fundamental lemma in order to express these twisted orbital integrals in terms of certain stable orbital

integrals. Second, only the stabilization of the Arthur-Selberg trace formula can be compared with the resulting

expression involving stable orbital integrals. These difficulties have largely been overcome by work of Kottwitz

(some of which remains unpublished, for example [70]), but it remains challenging to evaluate all the terms in

the Arthur-Selberg trace formula and its stabilization in order to apply this strategy to explicit examples with any

amount of specificity.

The later parts of this thesis attempt to execute some fragment of this strategy, with a great deal of blackboxing

involved. The main issue is one of exposition: most of the details of this strategy have presently been worked out for

the examples which appear later in the thesis, but a proper exposition of the necessary background and a detailed

execution of this strategy would nearly double the length of what is already a massive document. We hope to address

this properly in future writing. On the other hand, it would be negligent to completely omit certain remarks about

how the Langlands-Kottwitz method and the Arthur-Selberg trace formula is actually being used in the present

work, and so we will try to give an extremely brief sketch of this, with pointers to the relevant literature.
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2.3.1 Integral Models of Shimura Varieties

For (G,X, h) a Shimura datum and for Vλ ∈ Rep(G) an absolutely irreducible rational representation, the

corresponding local system of Qℓ-vector spaces Vλ ⊗Qℓ on SKfin
(C) is the inverse image of an ℓ-adic local system

Vλ on SKfin
. Although we will not recall the precise definition of these ℓ-adic local systems (which appears for

example in work of Pink [97]), we note that if SKfin
is a PEL Shimura variety (that is a moduli space of Abelian

varieties with specified polarization, endomorphism, and level structure) then these ℓ-adic local systems Vλ can

be constructed explicitly in terms of a basic ℓ-adic local system V = R1π∗Qℓ where π : UKfin
→ SKfin

is the

universal family of Abelian varieties, by the same construction of Schur functors used to construct the highest

weight irreducible representations Vλ in terms of basic representations V .

Let Σ be a finite set of primes of Q away from whichG is unramified (and away from whichKfin andK ′
fin are

unramified). By work of Kai-Wen Lan [72] on integral models of PEL Shimura varieties we may assume the following

conditions (see [87, Section 1.3] for a more precise set of conditions and discussion of integral canonical models).

There exists a smooth quasiprojective scheme SKfin
overOF [ 1Σ ] with generic fiber SKfin

, and there exists a normal

projective scheme SBB
Kfin

over OF [ 1Σ ] with generic fiber SBB
Kfin

and dense open embedding j : SKfin
↪→ SBB

Kfin
.

For g ∈ G(A∞
Q ) and for Kfin,K

′
fin ⊆ G(A∞

Q ) compact open subgroups such that K ′
fin ⊆ gKfing

−1 the finite

morphisms Tg and T g extend to these integral models. We have an ℓ-adic sheaf Vλ on SKfin
which is isomorphic

to the ℓ-adic sheaf Vλ on the generic fiber. Moreover the ℓ-adic sheaf Vλ on SKfin
is pure of the same weight as the

absolutely irreducible rational representation Vλ ∈ Rep(G).

We are then interested in the ℓ-adic cohomologyH∗(SKfin
,Vλ) or the compactly supported ℓ-adic cohomology

H∗
c (SKfin

,Vλ), meaning one of the following:

• For SKfin
over Fq (away from the finite set of bad primes Σ), the ℓ-adic cohomology H∗(SKfin,Fq ,Vλ) or

the compactly supported ℓ-adic cohomology H∗
c (SKfin,Fq ,Vλ), regarded as a Qℓ-linear representation of

HKfin
×Gal(Fq/Fq).

• For SKfin
over F , the ℓ-adic cohomologyH∗(SKfin,F

,Vλ) or the compactly supported ℓ-adic cohomology

H∗
c (SKfin,F

,Vλ), regarded as a Qℓ-linear representation ofHKfin
×Gal(F/F ).

The action ofHKfin
in either case is constructed in the same way as before, noting that the Hecke correspondences

are algebraic and extend to integral models by the above assumptions.
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Definition 2.3.1. Define the inner cohomology

H i
! (SKfin

,Vλ) = im(H i
c(SKfin

,Vλ)→ H i(SKfin
,Vλ))

Define the Eisenstein cohomology

H i
Eis(SKfin

,Vλ) = coker(H i
! (SKfin

,Vλ) ↪→ H i(SKfin
,Vλ))

Define the compactly supported Eisenstein cohomology

H i
c,Eis(SKfin

,Vλ) = ker(H i
c(SKfin

,Vλ) ↠ H i
! (SKfin

,Vλ))

It follows that we have short exact sequences

0→ H i
! (SKfin

,Vλ)→ H i(SKfin
,Vλ)→ H i

Eis(SKfin
,Vλ)→ 0

0→ H i
c,Eis(SKfin

,Vλ)→ H i
c(SKfin

,Vλ)→ H i
! (SKfin

,Vλ)→ 0

2.3.2 ℓ-adic Intersection Cohomology

The construction of intersection cohomology makes sense algebraically, in particular we can make sense of the ℓ-adic

intersection cohomology of SBB
Kfin,F

or of SBB
Kfin,Fq . We refer specifically to [10, Section 2.2] of [64, III.1] for the

basic definitions; they are essentially identical to the previous discussion of intersection cohomology.

LetE be a finite extension ofQℓ (or letE = Qℓ). WritingSKfin
to mean eitherSKfin,F

orSKfin,Fq and writing

SBB
Kfin

to mean eitherSBB
Kfin,F

orSBB
Kfin,Fq , letDb

c (S
BB
Kfin

, E) be the bounded derived category of complexes of ℓ-adic

sheaves which are constructible with respect to the stratification by boundary components. Let Perv(SBB
Kfin

, E) be

the Abelian category of complex perverse sheaves, the heart of the perverse t-structure onDb
c (S

BB
Kfin

, E).

ForV an ℓ-adic local system onSKfin
we can construct the ℓ-adic intersection complex IC•(V)[d] ∈ Perv(SBB

Kfin
, E)

exactly as before, in particular we have an isomorphism of ℓ-adic perverse sheaves IC•(V)[d] ≃ j!∗(V[d]) (see [64,

III.5] for further discussion).
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Definition 2.3.2. LetKfin ⊆ G(A∞
Q ) be a neat compact open subgroup. Let V be an ℓ-adic local system on SKfin

.

Consider the ℓ-adic intersection complex on SBB
Kfin

given by the intermediate extension

IC•(V) = (j!∗(V[d]))[−d]

and define the ℓ-adic intersection cohomology

IH i(SKfin
,V) = Hi(SBB

Kfin
, IC•(V))

When Kfin is not neat we fix a neat compact open subgroup K̃fin ⊆ Kfin of finite index and define the ℓ-adic

intersection cohomology

IH i(SKfin
,V) = Hi(SBB

K̃fin
, IC•(V))Kfin/K̃fin

Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight λ. Fixing an embed-

ding ι : Qℓ ↪→ C we have an isomorphism ofHKfin
-modules

IH i(SKfin
,Vλ)⊗ι C ≃ IH i(SKfin

(C),Vλ)

where Vλ is regarded as an ℓ-adic local system on the left and Vλ is regarded as a local system of C-vector spaces on

the right.

Writing Gal to mean either Gal(F/F ) or Gal(Fq/Fq), we obtain an action of HKfin
on IH i(SKfin

,Vλ)

which commutes with the action of Gal.

By Gabber’s purity theorem (see for example [64, Theorem 10.1, Corollary 10.2]) the eigenvalues of Frobenius

acting on IH i(SKfin
,Vλ) are algebraic integers whose conjugates all have the same absolute value pi/2. If the

alternating sum of traces of Frobenius is not too complicated (for example if there is no cancellation of individual

cohomology groups) then we can use purity along with the Hodge numbers coming from the Vogan-Zuckerman

classification to resolve the alternating sum of traces into traces on individual cohomology groups.
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2.3.3 Weighted ℓ-adic Cohomology

In general it is useful to speak of the weight filtration on ℓ-adic cohomology. Now there is a subtle problem: while

the objects of Perv(SBB
Kfin,Fq ,Qℓ) admit weight filtrations (defined in terms of Frobenius weights), the objects of

Perv(SBB
Kfin,F

,Qℓ) in general do not. We quickly summarize the strategy due to Morel [89] and Huber [58] which

resolves this issue, and then summarize some results of Morel [86] and Nair [92] which give an ℓ-adic interpretation

of Eisenstein cohomology in terms of weight truncations.

The first issue that arises is the following: for X an F -scheme and for E ∈ Shc(X,E) there need not exist

E ′ ∈ Shc(X , E) extending E forX anA-scheme flat and of finite type over a Z-subalgebraA ⊆ F integral and of

finite type over Z with F = Frac(A).

Example 2.3.3. Let F be a number field and let S be a finite set of primes of F including all primes of F over ℓ.

Let ΓF = Gal(F/F ) = πet1 (Spec(F ), η) be the absolute Galois group of F and let ΓF,S = Gal(FS/F ) =

πet1 (Spec(OF )− S, η) be the Galois group of the maximal extension of F unramified away from S. LetO×
F,S be

the group of S-units and let ClF,S be the S-class group of F . On one hand we have a short exact sequence

0→ O×
F,S ⊗Z Z/ℓnZ→ H1

cont(ΓF,S , µℓn)→ ClF,S [ℓ
n]→ 0

and since O×
F,S is finitely generated and ClF,S is finite by Dirichlet’s unit theorem, we have an isomorphism

H1
cont(ΓF,S ,Zℓ(1)) ≃ O×

F,S ⊗Z Zℓ.

On the other hand by Kummer theory we have an isomorphismH1
cont(ΓF ,Zℓ(1)) ≃ lim←−n F

×/F×ℓn . Since

F× ⊗Z Zℓ = lim−→S
O×
F,S ⊗Z Zℓ ⊊ lim←−n F

×/F×ℓn it follows that H1
cont(ΓF,S ,Qℓ(1)) ⊊ H1

cont(ΓF ,Qℓ(1)).

In particular, there exists a nontrivial extension E ∈ Ext1RepQℓ
(ΓF )

(Qℓ(0),Qℓ(1)) = H1
cont(ΓF ,Qℓ(1)) such

that everyE′ ∈ Ext1RepQℓ
(ΓF,S)

(Qℓ(0),Qℓ(1)) = H1
cont(ΓF,S ,Qℓ(1)) does not extendE for every S. In other

words, there exists E ∈ Shc(Spec(F ),Qℓ) such that every E ′ ∈ Shc(Spec(OF,S),Qℓ) does not extend E for

every S.

To resolve this issue, Morel uses the following notion of horizontal constructible sheaves, defined in work

of Huber. Let U be the partially ordered set of Z-subalgebras A ⊆ F integral and of finite type over Z with

F = Frac(A). ForA ∈ U we say that an A-scheme X is horizontal ifX is flat and of finite type overA. ForX

an F -scheme let U(X) be the category whose objects are triples (A,X , u) whereA ∈ U , whereX is a horizontal
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A-scheme, and where u : X
∼−→ X ⊗A F is an isomorphism of F -schemes, and whose morphisms are pairs

(ι, f) : (A,X , u) → (A′,X ′, u′) where ι : A ↪→ A′ is an inclusion and where f : X ′ → X ⊗A A′ is an open

embedding such that u′ = u ◦ f .

Note that we have a canonical isomorphism X
∼−→ lim−→(A,X ,u)∈U(X)

X ⊗A F , and that every morphism

(ι, f) : (A,X , u)→ (A′,X ′, u′) inU(X) induces an exact functor f∗ : Db
c (X , E)→ Db

c (X ′, E). Now Huber

and Morel define the following:

Definition 2.3.4. For X an F -scheme letDb
h(X,E) be the triangulated the category of bounded complexes of

sheaves ofE-modules onX with horizontal constructible cohomology sheaves, given by the 2-colimit

Db
h(X,E) = lim−→

(A,X ,u)∈U(X)

Db
c (X , E)

The triangulated categoryDb
h(X,E)has a canonical t-structure (D≤0,D≥0)with heartShh(X,E) the Abelian

category of horizontal constructible sheaves ofE-modules onX . The triangulated categoryDb
h(X,E) also has a

perverse t-structure (pD≤0, pD≥0) with heart Pervh(X,E) the Abelian category of horizontal perverse sheaves

ofE-modules onX .

IfA ∈ U , then the residue fields of closed points of Spec(A) are finite sinceA is a Z-algebra of finite type. We

exploit this to define (punctual) weights as follows. We say that E ∈ Shh(X,E) is punctually pure of weightw if

there exists (A,X , u) ∈ U(X) andE ′ ∈ Shc(X , E) extendingE such that for every closed pointx ofSpec(A) the

restriction E ′|Xx is punctually pure of weightw. We say that E ∈ Shh(X,E) is mixed if there exists an increasing

filtration w• on E such that the associated graded GrwnE = wnE/wn−1E is punctually pure of some weight for

every n ∈ Z.

Definition 2.3.5. For X an F -scheme let Db
m(X,E) be the full subcategory of Db

h(X,E) whose objects are

bounded complexes of sheaves ofE-modules onX with mixed horizontal constructible cohomology sheaves.

The triangulated categoryDb
m(X,E) has a canonical t-structure (D≤0,D≥0) inherited fromDb

h(X,E) with

heart Shm(X,E) the Abelian category of mixed horizontal constructible sheaves ofE-modules onX . The trian-

gulated categoryDb
m(X,E) also has a perverse t-structure (pD≤0, pD≥0) inherited from Db

h(X,E) with heart

Pervm(X,E) the Abelian category of mixed horizontal perverse sheaves ofE-modules onX .
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Definition 2.3.6. A weight filtration onK ∈ Pervm(X,E) is a separated exhaustive increasing filtrationW• on

K such that the associated graded GrWn K =WnK/Wn−1K is pure of weight n for every n ∈ Z.

Since the Abelian category Pervm(X,E) is Noetherian and Artinian, such a weight filtrationW• is automati-

cally finite. Since morphisms inPervm(X,E) are strictly compatible with weight filtrations, such a weight filtration

W• is automatically unique.

We now encounter the second issue: forX anF -scheme and forK ∈ Db
m(X,E) there need not exist a weight

filtrationW• onK in the above sense: a morphismK → K ′ inDb
m(X,E) whereK has weights≤ w andK ′ has

weights> w need not be trivial.

Example 2.3.7. LetF be a number field with r1 real places and r2 complex places, and letS be a finite set of primes

of F including all primes of F over ℓ. Let ΓF,S = Gal(FS/F ) = πet1 (Spec(OF ) − S, η) be the Galois group

of the maximal extension ofF unramified away fromS. Then for everyn ∈ Zwe havedimQℓH
1
cont(ΓF,S ,Qℓ(2n+

1)) ≥ r1+r2. In particular for everyn ∈ Z there exists a nontrivial extensionE ∈ Ext1RepQℓ
(ΓF,S)

(Qℓ(0),Qℓ(2n+

1)) = H1
cont(ΓF,S ,Qℓ(2n+ 1)) corresponding to a mixed ℓ-adic sheaf E ∈ Shm(Spec(OF,S),Qℓ) since Qℓ(0)

andQℓ(2n+1) are pure of weights 0 and−2(2n+1) respectively. But forn < 0 there does not exist a weight filtra-

tionW• on E sinceW0 would yield a splitting of the short exact sequence 0→ Qℓ(2n+ 1)→ E → Qℓ(0)→ 0.

To resolve this issue, Morel defines the following:

Definition 2.3.8. ForX an F -scheme let Pervmf(X,E) be the full subcategory of Pervm(X,E) whose objects

are mixed horizontal perverse sheaves ofE-modules onX admitting a weight filtration.

Morel shows that that the categoryPervmf(X,E) and its derived categoryDbPervmf(X,E) admit a four func-

tors formalism: given a morphism of F -schemes f : X → Y one has functors Rf∗,Rf! : DbPervmf(X,E)→

DbPervmf(Y,E) and f∗, f ! : DbPervmf(Y,E) → DbPervmf(X,E). Given an F -scheme X over a number

field F with embedding F ↪→ C we have a forgetful functor Pervmf(X,E) → Perv(X(C), E) which factors

through Perv(X,E).

As the objects of Pervmf(X,E) carry weight filtrations, one can define certain weight truncation functors and

a weighted t-structure. For every objectK ∈ Pervmf(X,E) and for every integer a ∈ Z we have a canonical short

exact sequence

0→W≤aK → K →W≥a+1K → 0
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whereW≤a ∈ Pervmf(X,E) is the maximal subobject ofK with weights≤ a and whereW≥a+1K ∈ Pervmf(X,E)

is the maximal quotient ofK with weights≥ a + 1. Since morphisms in Pervmf(X,E) are strictly compatible

with weight filtrations we obtain functors W≤a,W≥a+1 : Pervmf(X,E) → Pervmf(X,E) which extend to

functorsW≤a,W≥a+1 : DbPervmf(X,E)→ DbPervmf(X,E). The triangulated categoryDbPervmf(X,E)

has a weighted t-structure (WD≤a,WD≥a+1) with trivial heart.

We refer to [86] and [89] for the construction and properties of this weighted t-structure in the case of mixed

ℓ-adic complexes, and refer to [92, Section 2] for further discussion especially in the case of mixed Hodge modules.

We now apply these weight truncation functors in the setting of Shimura varieties, following [86] and [92].

Proposition 2.3.9. [92, Proposition 2.4.2] Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation

with highest weight λ, and let Vλ be the corresponding ℓ-adic local system on SKfin
. Suppose that Vλ is pure of

weightw and that SKfin
has dimension d.

(i) If a ≤ d then Hi(SBB
Kfin

,W≥a+wRj!Vλ[d]) has weights≤ i+ d+ w.

(ii) If a ≥ d then Hi(SBB
Kfin

,W≤a+wRj∗Vλ[d]) has weights≥ i+ d+ w.

(iii) We have an isomorphism Hi(SBB
Kfin

,W≤d+wW≥d+wRj∗Vλ) ≃ IH i(SKfin
,Vλ).

Theorem 2.3.10. [86, Section 3] LetVλ ∈ Rep(G)be an absolutely irreducible rational representation with highest

weight λ, and let Vλ be the corresponding ℓ-adic local system on SKfin
. Suppose that Vλ is pure of weightw and

that SKfin
has dimension d. We have a second-quadrant spectral sequence

Ep,q1 = Hp+q(SBB
Kfin

,W≤d+w−pW≥d+w−pRj∗Vλ)⇒ Hp+q(SKfin
,Vλ)

with p = 0 column given by E0,q
1 = IHq(SKfin

,Vλ) = Hq(SBB
Kfin

, IC•(Vλ)). If λ is a regular highest weight,

then the spectral sequence degenerates at theE1-page.

While the entries Hp+q(SBB
Kfin

,W≤d+w−pW≥d+w−pRj∗Vλ) of the above spectral sequence are all pure, the

cohomologyH i(SKfin
,Vλ) is in general mixed. Nair [92, Theorem 1.1] uses the above spectral sequence to show

that the pure subquotients ofH i(SKfin
,Vλ) are all subquotients of the intersection cohomology IHj(X,V) =

Hj(X
BB
, IC•(V)) of minimal compactifications XBB of strata X in the minimal compactification SBB

Kfin
of

SKfin
. In particular, the discrepancy between the cohomology H i(SKfin

,Vλ) and the intersection cohomology
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IH i(SKfin
,Vλ) = Hi(SBB

Kfin
, IC•(Vλ)) can be understood in terms of the intersection cohomology of boundary

components.

Now we have two ways to compute the cohomology of local systems on Shimura varieties: we can compute

H i(SKfin
(C),Vλ) in terms of the (g,K ′

∞)-cohmologyH i(g,K ′
∞;Aλ(G)⊗ Vλ) using Eisenstein cohomology,

and we can computeH i(SKfin
,Vλ) in terms of weight truncations as above. Nair shows that these two strategies

are related:

Theorem 2.3.11. [92, Theorem 1.2, Theorem 1.3] LetVλ ∈ Rep(G) be an absolutely irreducible rational representa-

tion with highest weight λ and let Vλ be the corresponding ℓ-adic local system on SKfin
, or the corresponding local

system of C-vector spaces on SKfin
(C). Fix an embedding ι : Qℓ ↪→ C. There exists a finite decreasing filtration of

G(A∞
Q )× (g,K∞)-modules

. . . ⊆ Ai+1
λ (G) ⊆ Aiλ(G) ⊆ . . . ⊆ Aλ(G)

such that the associated second-quadrant spectral sequence

Ep,q1 = Hp+q(g,K ′
∞;Apλ(G)/A

p+1
λ (G)⊗ Vλ)⇒ Hp+q(g,K ′

∞;Aλ(G)⊗ Vλ) ≃ Hp+q(SKfin
(C),Vλ)

is isomorphic to the spectral sequence

Ep,q1 = Hp+q(SBB
Kfin

,W≤d+w−pW≥d+w−pRj∗Vλ)⊗ι C⇒ Hp+q(SKfin
,Vλ)⊗ι C ≃ Hp+q(SKfin

(C),Vλ)

with p = 0 column given byE0,q
1 = Hq(g,K ′

∞;L2
λ(G)⊗ Vλ). If λ is a regular highest weight, then the spectral

sequence degenerates at theE1-page.

2.3.4 The Langlands-Kottwitz Method

The Arthur-Selberg Trace Formula It should be emphasized that the property of being automorphic is ex-

tremely rigid: if one were to arbitrarily choose an irreducible admissible representationπv ofG(Qv) for each place v

ofQ, the corresponding representationπ =
⊗

v πv ofG(AQ) is almost never automorphic. In more explicit terms,

suppose thatG is a connected quasisplit reductive group over Q so that we have a minimal parabolic Q-subgroup

P0 ofG with Levi decomposition P0 = M0N0 whereM0 is a maximal torus which splits over a finite extension
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F/Q. If π =
⊗

v πv is automorphic, then π is unramified outside a finite set S of primes, meaning Gp splits

over an unramified extension F℘/Qp and the trivial 1-dimensional representation ofGp occurs in πp|Kp for some

compact open subgroup Kp ⊆ G(Qp) for all primes p ̸∈ S. By the Satake isomorphism such an unramified

representation πp ofG(Qp) occurs as the unique irreducibleKp-unramified subquotient π(χp) of the normalized

parabolic induction IG(Qp)
P0(Qp)(χp) = Ind

G(Qp)
B(Qp)(δ

1/2
P0(Qp)χp) of an unramified character χp : M0(Qp) → C×,

meaning χp is trivial on M0(Qp) ∩Kp. Let cp(π) = c(πp) be the corresponding semisimple conjugacy class in

the local L-group LGp = Ĝ ⋊ Gal(F℘/Qp); the action of Gal(F℘/Qp) on the complex dual group Ĝ factors

through the inertia subgroup I ⊆ Gal(F℘/Qp), and the conjugacy class projects to the Frobenius element Frobp

in Gal(F℘/Qp)/I . Let cS(π) = {cp(π)|p ̸∈ S} be the corresponding family of semisimple conjugacy classes in

the L-groupLG = Ĝ⋊Gal(F/Q), the Satake parameters ofπ. This is a family of diagonal matrices, that is a family

of tuples of complex numbers, and it is this data which is extremelt rigid: if one were to arbitrarily choose a family

of diagonal matrices cS = {cp}p ̸∈S , such a family almost never arises as the Satake parameters of an automorphic

representation ofG(AQ). The families of tuples of complex numbers that arise in this way are of great arithmetic

significance, for instance they are the numerical source of the traces of Frobenius on the cohomology of Shimura

varieties.

The automorphic spectrumL2(G(Q)AG(R)◦ \G(AQ)) is an incredibly delicate object, and from the outset

it is not clear how one would go about understanding its structure. At present, the only way this can really be

done is through the use of the Arthur-Selberg trace formula. To say anything meaningful about this would require

enormous digression: it is immensely difficult to write the trace formula in a way that even makes sense, not least

because its naïve expression involves divergent terms and operators which are not obviously trace class. In the case

of compact quotients one does not encounter so many issues, and it is worth quickly recalling this situation:

Example 2.3.12. LetG be a connected reductive group over Q which is Q-anisotropic so thatG(Q) \G(AQ) has

finite volume. ThenL2(G(Q)\G(AQ)) = L2
disc(G(Q)\G(AQ)) and we have a Hilbert direct sum decomposition

L2(G(Q) \G(AQ)) ≃
⊕

π∈Π(G(AQ))

m(π)π
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taken over admissible unitary representations π ofG(AQ) with finite multiplicites. For f ∈ C∞
c (G(AQ)) a test

function the operatorR(f) onL2(G(Q) \G(AQ)) is trace class, and we are interested in the trace

tr(R(f)) =
∑

π∈Π(G(AQ))

m(π)tr(π(f))

which is the spectral side of the trace formula. To relate this to something more geometric, we write

(R(f)ϕ)(x) =

∫
G(AQ)

f(x)ϕ(gx)dx =

∫
G(AQ)

f(g−1x)ϕ(x)dx =

∫
G(Q)\G(AQ)

∑
γ∈G(Q)

f(g−1γx)ϕ(γx)

=

∫
G(Q)\G(AQ)

( ∑
γ∈G(Q)

f(g−1γx)
)
ϕ(x)dx

so the operator R(f) is an integral operator defined by the kernel Kf (g, x) =
∑

γ∈G(Q) f(g
−1γx). Now one

shows thatKf (g, x) is continuous hence square-integrable, and thatR(f) is of trace class. Now we have

tr(R(f)) =

∫
G(Q)\G(AQ)

Kf (x, x)dx =

∫
G(Q)\G(AQ)

∑
γ∈G(Q)

f(x−1γx)dx

=

∫
G(Q)\G(AQ)

∑
[γ]∈[G(Q)]

∑
δ∈G(Q)γ\G(Q)

f(x−1δ−1γδx)dx =
∑

[γ]∈[G(Q)]

∫
G(Q)γ\G(AQ)

f(x−1γx)dx

=
∑

[γ]∈[G(Q)]

vol(G(Q)γ \G(AQ)γ)

∫
G(AQ)γ\G(AQ)

f(x−1γx)dx

so the trace tr(R(f)) can be written as a sum over conjugacy classes [γ] ∈ [G(Q)] of Tamagawa numbers τ(Gγ) =

vol(G(Q)γ \G(AQ)γ) and orbital integrals Oγ(f) =
∫
G(AQ)γ\G(AQ)

f(x−1γx)dx, which is the geometric side

of the trace formula. Equating these two expressions yields the trace formula

Jgeom(f) =
∑

[γ]∈[G(Q)]

τ(Gγ)Oγ(f) =
∑

π∈Π(G(AQ))

m(π)tr(π(f)) = Jspec(f)

More generally, forG a connected reductive group over Q, the regular elliptic part of Arthur’s trace formula

provides an equality of distributions on G(AQ): for a test function f ∈ C∞
c (AG(R)◦ \ G(AQ)) we have an
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equality

Jgeom(f) = Jspec(f)

where the geometric side Jgeom(f) is expressed in terms of orbital integrals, and the spectral side Jspec(f) is ex-

pressed in terms the spectral content of the automorphic spectrumL2(G(Q)AG(R)◦ \G(AQ)).

Still more generally, Arthur’s invariant trace formula provides an equality of distributions onG(AQ): for a test

function f ∈ C∞
c (AG(R)◦ \G(AQ)) we have an equality

Igeom(f) = Jgeom(f) +
(

supplemental
geometric terms

)
= Jspec(f) +

(
supplemental
spectral terms

)
= Ispec(f)

Loosely speaking, Arthur’s invariant trace formula provides an equality of distributions onG(AQ)

Igeom(f) =
∑
M

#WM

#WG

∑
[γ]∈[M(Q)]

aM (γ)IM (γ, f) =
∑
M

#WM

#WG

∫
Π(M(AQ))

aM (π)IM (π, f)dπ = Ispec(f)

The geometric side is a sum over a finite set of Levi Q-subgroupsM ofG and a sum over conjugacy classes [γ] ∈

[M(Q)], with aM (γ) related to the Tamagawa number τ(Mγ) = vol(M(Q)γ \M(AQ)γ) and with IM (γ, f)

related to the orbital integral Oγ(f) =
∫
M(AQ)γ\M(AQ)

f(x−1γx)dx. The spectral side is a sum over a finite

set of Levi Q-subgroupsM ofG and an integral over irreducible unitary representations π ∈ Π(M(AQ)), with

aM (π) related to the multiplicity of π in L2(M(Q)AM (R)◦ \M(AQ)) and with IM (π, f) related to the trace

tr(π(f)) =
∫
M(AQ)

f(x)π(x)dx. We refer to [7, Section 19, Section 21, Section 23], as well as [3], [4] for further

discussion.

In order to write the spectral side of the trace formula in a usable way, one needs to understand global results on

the automorphic discrete spectrum and endoscopy for the groupG. However these results are themselves proved

using the trace formula, the analysis of which begins on the geometric side which is expressed in terms of volumes

and orbital integrals, as the spectral side begins life as a black box. During this process, one must consider not just

regular elliptic terms, but all supplemental terms on both the geometric and spectral side of the trace formula: one

cannot easily separate the regular elliptic terms from the supplemental terms on the spectral side prior to establishing

structural results about the automorphic discrete spectrum ofG.
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Endoscopy and Stabilization A further complication is the stabilization of the trace formula itself. Indeed,

let TFG = TFGreg,ell + (supplemental terms) be the distribution of Arthur’s invariant trace formula. Then the

distribution TFG, although invariant, is not stable: on the geometric side, the orbital integrals behave well under

conjugacy but may not behave well under stable conjugacy; on the spectral side, the multiplicities of automor-

phic representations may behave irregularly. The main obstruction to stability comes from the theory theory of

endoscopy.

To explain this issue in more detail, we review some background around local endoscopy, which will be es-

pecially useful for later applications. Let F be a local field of characteristic 0. Let G be a quasisplit connected

reductive group over F with root datum Φ(G) = (X∗(M0),Φ, X∗(M0),Φ) and dual root datum Φ∨(G) =

(X∗(M0),Φ
∨, X∗(M0),Φ

∨). An L-datum forG is a tuple (Ĝ, ρG, ηG) where Ĝ is a connected reductive group

overCwith root datumΦ(Ĝ) = (X∗(M̂0),Φ
∨, X∗(M̂0),Φ), whereρG : Gal(F/F )→ Aut(Ĝ) is an L-action,

and where ηG : Φ∨(G)
∼−→ Φ(Ĝ) is a Gal(F/F )-equivariant bijection of root data. An L-datum forG defines

an L-group LG = Ĝ ⋊WF whereWF acts by ρG : WF → Aut(Ĝ) through the quotientWF → Gal(F/F )

such that ρG :WF → Aut(Ĝ) is a splitting of the exact sequence 0→ Ĝ→ LG→WF → 0.

Definition 2.3.13. A standard endoscopic datum forG is a tuple (H,H, s, η) where:

• H is a quasisplit reductive group over F with L-datum (Ĥ, ρH , ηH);

• H = Ĥ ⋊WF is a split extension of Ĥ byWF such that the splitting ρH : WF → Aut(Ĥ) of the exact

sequence 0→ Ĥ → H→WF → 0 coincides with ρH :WF → Aut(Ĥ);

• s ∈ Ĝ is a semisimple element;

• η : H → LG is an L-homomorphism such thatη0 = η|
Ĥ

: Ĥ
∼−→ Z

Ĝ
(s)◦ defines an isomorphism between

Ĥ and the connected component of the Ĝ-centralizer of s and Inn(s) ◦ η ≃ a⊗ η where a :WF → Z(Ĝ)

is a trivial 1-cocycle and (a⊗ η)(h) = a(w)η(h) for every h ∈ H with imagew ∈WF .

The trivial endoscopic datum is the tuple (G, LG, 1, id). We will be particularly interested in the so called

elliptic endoscopic data:

Definition 2.3.14. A standard endoscopic datum (H,H, s, η) for G is called elliptic if η(Z(Ĥ)Gal(F/F ))◦ ⊆

Z(Ĝ), that is if ξ(H) is not contained in a proper parabolic F -subgroup of LG.

There is a natural notion of equivalence classes of standard endoscopic data; let E(G) be the set of equivalence

classes of standard elliptic endoscopic data forG. We will often write elliptic endoscopic data in the form (H, s, η0)
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where H and s are as above, and η0 : Ĥ → Ĝ is a morphism which is later extended to an L-homomorphism

η : LH → LG. Indeed the groupH in the above definition plays the role of the group LH .

Definition 2.3.15. A semisimple elementγH ∈ H(F ) is called strongly regular if theH(F )-centralizerH(F )γH =

ZH(F )(γH) of γH is a torus.

We have a canonical Gal(F/F )-invariant morphism AH/G from the set of semisimple conjugacy classes of

H(F ) and the set of semisimple conjugacy classes ofG(F ).

Definition 2.3.16. A semisimple elementγH ∈ H(F ) is called stronglyG-regular if the image of its conjugacy class

underAH/G consists of strongly regular elements inG(F ). Two strongly regular semisimple elements γH , γ′H ∈

H(F ) are called stably conjugate if they are conjugate inH(F ).

The stable conjugacy class of a strongly regular semisimple element γH ∈ H(F ) is a disjoint union of finitely

manyH(F )-conjugacy classes. A stronglyG-regular semisimple element γH ∈ H(F ) is called an image of γG ∈

G(F ) if γG ∈ AH/G(Inn(γH)), that is if γG ∈ G(F ) is a strongly regular semisimple element in the image of the

H(F )-conjugacy class of γH underAH/G.

On the geometric side of the trace formula, the failure of stability involves the irregular behavior of orbital

integrals over stable conjugacy classes. In the context of local endoscopy, the main problem is the comparison of

orbital integrals onG with stable orbital integrals on elliptic endoscopic groupsH ofG. For fH ∈ C∞
c (H(F ))

and for γH ∈ H(F ) we consider the orbital integral

OγH (f
H) =

∫
H(F )γH \H(F )

f(h−1δh)dh

of the test function fH over the conjugacy class of γH . We consider the stable orbital integral

SOγH (f
H) =

∑
γ′H∼γH

Oγ′H
(fH)

where the sum is taken over a set of representatives for the stable conjugacy class of γH .

For a strongly G-regular semisimple element γH ∈ H(F ) and a strongly regular semisimple element γG ∈

G(F ) we consider the Langlands-Shelstad transfer factor ∆(γH , γG) ∈ C which depends only on the stable

conjugacy class of γH and the conjugacy class of γG, nonzero only if γH is an image of γG. Up to subtle issues
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of signs and the normalization of the transfer factors ∆(γH , γG), we say that a pair of test functions (fG, fH) ∈

C∞
c (G(F ))× C∞

c (H(F )) satisfies the matching condition for standard endoscopy if

SOγH (f
H) =

∑
γG

∆(γH , γG)OγG(f
G)

for every strongly G-regular semisimple element γH ∈ H(F ) where the sum is taken over representatives γG ∈

G(F ) for theG(F )-conjugacy classes of strongly regular semisimple elements.

By the fundamental lemma for standard endoscopy, for everyfG ∈ C∞
c (G(F )) there existsfH ∈ C∞

c (H(F ))

such that (fG, fH) ∈ C∞
c (G(F ))× C∞

c (H(F )) satisfies the matching condition for standard endoscopy. We

say fH is a transfer of fG.

On the spectral side of the trace formula, the failure of stability involves the irregular behavior of multiplicites

of certain representations which are endoscopic lifts.

The endoscopic lift of a stably invariant distribution ΘH : C∞
c (H(F ))→ C is the stably invariant distribu-

tion ΘG : C∞
c (G(F )) → C given by ΘG(fG) = ΘH(fH) where (fG, fH) ∈ C∞

c (G(F )) × C∞
c (H(F ))

satisfies the matching condition for standard endoscopy so that fH is a transfer of fG. For an irreducible admissi-

ble representation πH of H(F ) with stably invariant distribution ΘH
πH

: C∞
c (H(F )) → C the endoscopic lift

ΘG
πH

: C∞
c (G(F ))→ C can be writtenΘG

πH
=
∑

πm(πH , π)ΘG
π where the sum is taken over irreducible admis-

sible representations π ofG(F ) with stably invariant distribution ΘG
π : C∞

c (G(F )) → C where them(πH , π)

are finite multiplicities with only finitely many nonzero. The endoscopic lift defines a morphism of Grothendieck

groups r : K0(H(F ))→ K0(G(F )) such that for an irreducible admissible representation πH ofH(F ) we have

ΘG
πH

= ΘG
r(πH)

. The irreducible admissible representations π ofG(F ) with occurring in the endoscopic lift form

the local L-packet Π(πH) = {π ∈ Irr(G(F ))|m(πH , π) ̸= 0}.

In the global situation, the orbital integrals over members of a stable conjugacy classes are unstable: they are in

general not constant over members of the stable conjugacy class. Likewise, the multiplicities of members of a global

L-packet Π(πH) = {π =
⊗

v πv|πv ∈ Π(πHv )} are unstable: they are in general not constant over members of

the global L-packet.
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Definition 2.3.17. For (H, s, η0) ∈ E(G) an elliptic endoscopic datum fix an L-homomorphism η : LH → LG

extending η0 : Ĥ → Ĝ. Define the constant

ι(G,H) =
τ(G)/τ(H)

#Λ(H, s, η)

where Λ(H, s, η) = Aut(H, s, η)/Had(Q).

By Kottwitz one has the following result on the stabilization of the trace formula:

Theorem 2.3.18. (Kottwitz) LetG be a connected reductive group over Q and let fG ∈ C∞
c (AG(R)◦ \G(AQ))

be a test function. Suppose that fG∞ ∈ C∞
c (AG(R)◦ \ G(R)) is stable cuspidal, and suppose that for every

elliptic endoscopic datum (H, s, η0) ∈ E(G) there exists a transfer fH : C∞
c (AH(R)◦ \ H(AQ)) of fG ∈

C∞
c (AG(R)◦ \G(AQ)) satisfying the matching condition for standard endoscopy. Then we have an equality

TFG(fG) =
∑

(H,s,η0)∈E(G)

ι(G,H)STFH(fH)

where STFH is a stable distribution onH(AQ).

In general one proves that STFH is a stable distribution rather indirectly by proving the stabilization identities

for all supplemental terms before they can be deduced for the remaining regular elliptic terms, since one cannot

work with these regular elliptic terms directly prior to establishing results about endoscopy forG. The test functions

which are relevant to the application of the Langlands-Kottwitz method will turn out to satisfy the condition that

fG∞ ∈ C∞
c (AG(R)◦ \G(R)) is stable cuspidal, so this assumption is not restrictive for our purposes. We refer to

[7, Section 27, Section 29] for further discussion of the stable trace formula.

The Langlands-Kottwitz Method We consider the following situation, following [87, Section 1.5] and [70]. Let

(G,X, h) be a Shimura datum with reflex fieldF , and assume thatG is not an orthogonal group. Let g ∈ G(A∞
Q ),

and letKfin,K
′
fin ⊆ G(A∞

Q )be compact open subgroups such thatK ′
fin ⊆ gKfing

−1. Suppose thatKfin andK ′
fin

are unramified at p, that isKfin = KpKp whereKp ⊆ G(Ap,∞Q ) is a compact open subgroup andKp = G(Zp),

and similarly forK ′
fin. Let Φ : SKfin,Fq → SKfin,Fq be the absolute Frobenius. For j ≥ 1 and for Vλ ∈ Rep(G)
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consider the cohomological correspondence

uj : (Φ
jTg)

∗Vλ → T !
1Vλ

with support in (ΦjTg, T1). We would like to compute the trace of this cohomological correspondence in terms

which can eventually be compared to the Arthur-Selberg trace formula, that is in terms of twisted orbital integrals

at p and orbital integrals away from p and∞.

Away from p and∞we have the following. Recall that the centralizer ofγ inG(Ap,∞Q ) is given byG(Ap,∞Q )γ =

{x ∈ G(Ap,∞Q )|xγ = γx}. We say that γ′ is G(Ap,∞Q )-conjugate to γ if there exists x ∈ G(Ap,∞Q ) such that

γ′ = x−1γx. Consider the test function

fp,∞ =
1

vol(K ′p)
1gKp ∈ C∞

c (G(Ap,∞Z ) \G(Ap,∞Q )/G(Ap,∞Z ))

and consider the orbital integral

Oγ(f
p,∞) =

∫
G(Ap,∞Q )γ\G(Ap,∞Q )

fp,∞(g−1γg)dg

of the test function fp,∞ over the conjugacy class of γ. This is the orbital integral which will appear in the Kottwitz

fixed point formula, although later we will want more flexibility with the choice of test function: for example we

will want to choose fp,∞ ∈ C∞
c (G(Ap,∞Z ) \ G(Ap,∞Q )/G(Ap,∞Z )) which project onto prescribed packets of

automorphic representations in order to isolate the contributions of these packets to intersection cohomology.

Atpwe have the following. Fix an embeddingF ↪→ Qp which determines a place℘ ofF overp. For j ≥ 1 letL

be the unramified extension of degree j = [L : F℘] ofF℘ inQp, let r = [L : Qp], letϖL be a uniformizer ofL and

let σ ∈ Gal(Qur
p /Qp) be the element lifting the arithmetic Frobenius Frobp ∈ Gal(Fp/Fp). Let δ ∈ G(L) and

consider the normN : G(L)→ G(Qp) given byNδ = δσ(δ) . . . σr−1(δ) ∈ G(L). Recall that the σ-centralizer

of δ inG(L) is given byG(L)σδ = {x ∈ G(L)|xδ = δσ(x)}. We say that δ′ is σ-conjugate to δ inG(L) if there

exists x ∈ G(L) such that δ′ = x−1δσ(x).

By definition of the reflex field F the conjugacy class of cocharacters hx ◦ µ0 : Gm,C → GC for x ∈ X is

defined over F . Choose a cocharacter µ in this conjugacy class which factors through a maximal split torus ofG
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overOL and consider the test function

ϕj = 1G(OL)µ(ϖ−1
L )G(OL) ∈ C

∞
c (G(OL) \G(L)/G(OL))

and consider the twisted orbital integral

TOσ
δ (ϕj) =

∫
G(L)σδ \G(L)

ϕj(g
−1δσ(g))dg

of the test function ϕj over the σ-conjugacy class of δ. This is the twisted orbital integral which will appear in the

Kottwitz fixed point formula.

Consider the set of triples (γ0; γ, δ) ∈ G(Q) × G(Ap,∞Q ) × G(L) such that γ0 is semisimple and elliptic

in G(R) (that is there exists an elliptic maximal torus T of GR such that γ0 ∈ T (R)), such that for every place

v ̸= p,∞ of Q the local component γv of γ at v isG(Qv)-conjugate to γ0, such thatNδ isG(Qp)-conjugate to

γ0, and such that the image of the σ-conjugacy class of δ under the morphismB(GQp)→ X∗(Z(Ĝ)Gal(Qp/Qp))

is the restriction of−µ toZ(Ĝ)Gal(Qp/Qp).

We say that two triples (γ0; γ, δ) and (γ′0; γ
′, δ′) are equivalent if γ0 isG(Q)-conjugate to γ′0, if γ isG(Ap,∞Q )-

conjugate to γ′, and if δ isσ-conjugate to δ′ inG(L). For such a triple (γ0; γ, δ), Kottwitz defines a groupK(I0/Q)

and an elementα(γ0; γ, δ) ∈ Hom(K(I0/Q),C×) which depends only on the equivalence class of (γ0; γ, δ). For

every place v ̸= p,∞ of Q let I(v) be the centralizer of γv in GQv (so that I(v)(Qv) = G(Qv)γ) which is an

inner form of I0 over Qv since γv is G(Qv)-conjugate to γ0. Let I(p) be the σ-centralizer of δ in GL (so that

I(p)(Qp) = G(L)σδ ) which is an inner form of I0 over Qp sinceNδ isG(Qp)-conjugate to γ0. Kottwitz defines

I(∞) which is an inner form of I0 over R such thatAG(R) \ I(∞)(R) is anisotropic and A \ I(∞)(R) is finite.

Kottwitz shows that if α(γ0; γ, δ) = 1 then there exists an inner form I of I0 over Q such that for every place v of

Q we have an isomorphism IQv ≃ I(v).

LetCG,j be the set of equivalence classes of triples (γ0; γ, δ) such thatα(γ0; γ, δ) = 1. For (γ0; γ, δ) ∈ CG,j

define the constant

c(γ0; γ, δ) = vol(I(Q) \ I(Ap,∞Q ))|ker(ker1(Q, I0)→ ker1(Q, G))|
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We have chosen Haar measures onG(Ap,∞Q ),G(Qp), andG(L) normalized so that vol(Kp) = 1, vol(G(Zp)) =

1, andvol(G(OL)) = 1, and consider the Haar measures on I(Ap,∞Q ) and I(Qp)normalized so thatvol(Kp) ∈ Q

andvol(Kp) ∈ Q for every compact open subgroupKp ⊆ I(Ap,∞Q ) andKp ⊆ I(Qp), and use the inner twistings

to transport these measures toG(Ap,∞Q )γ andG(L)σδ . Now the theorem of Kottwitz asserts the following:

Proposition 2.3.19. (Kottwitz fixed point formula, [70, 3.1]) For j ≥ 1 and for Vλ ∈ Rep(G) let T (j, g) be

the sum over the set of fixed points in SK′
fin
(Fq) of the correspondence (ΦjTg, T1) of the naïve local terms of the

cohomological correspondence uj : (ΦjTg)∗Vλ → T !
1Vλ onH∗

c (SKfin,Fq ,Vλ). Then we have

T (j, g) =
∑

(γ0;γ,δ)∈CG,j

c(γ0; γ, δ)Oγ(f
p,∞)TOσ

δ (ϕj)tr(Vλ(γ0))

For some idea of this equality, note that vol(I(Q) \ I(A∞
Q ))Oγ(f

p)TOσ
δ (ϕj) is the number of fixed points

of the correspondence fpFrobj℘ isogenous to a given polarized virtual Abelian variety (A, λ, ι), since giving an

object (A′, λ′, ι′, η′) with an isogeny to (A, λ, ι) amounts to giving a lattice inH1(AFq ,A
p,∞
Q ) and a lattice in the

isocrystal associated toA satisfying certain conditions, and the orbital integralsOγ(f
p) and twisted orbital integrals

TOσ
δ (ϕj) count such lattices.

Now by Deligne’s conjecture, which is a theorem of Pink in the present situation [? ], the fixed points of

the correspondence (ΦjTg, T1) are all isolated fixed points, and the trace of the cohomological correspondence

uj : (ΦjTg)
∗Vλ → T !

1Vλ on H∗
c (SKfin,Fq ,Vλ) is the sum over these fixed points of the naïve local terms. We

obtain the following:

Proposition 2.3.20. For j ≫ 0 sufficiently large and for Vλ ∈ Rep(G) the trace of the cohomological correspon-

dence uj : (ΦjTg)∗Vλ → T !
1Vλ onH∗

c (SKfin,Fq ,Vλ) is given by

tr(uj |H∗
c (SKfin,Fq ,Vλ)) = T (j, g)

If g = 1 andKfin = K ′
fin then this is true for all j ≥ 1.

Since we have not carefully defined everything, it is perhaps helpful to consider a special case of the above result

where we can at least define everything more carefully, which hopefully adds some clarity to the situation.

Example 2.3.21. [1, Section 2] For j ≥ 1 and q = pj a prime power let [A, λ] ∈ Ag(Fq) be a principally

polarized Abelian variety of dimension g overFq . Consider the isogeny groupoid I([A, λ],Fq) with underlying set
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of objects given by the isogeny class I([A, λ],Fq) = {[A′, λ′] ∈ Ag(Fq)|A′ isogenous toA} and with the same

automorphism groups as the groupoidAg(Fq). Consider the groupoid cardinality

#I([A, λ],Fq) =
∑

[A′,λ′]∈[I([A,λ],Fq)]

1

#AutFq(A
′, λ′)

Let fA/Fq(t) ∈ Z[t] be the characteristic polynomial of Frobenius onA of degree 2g.

For each prime ℓ ̸= p the ℓ-adic cohomology H1(AFq ,Zℓ) is a free Zℓ-module of rank 2g with symplectic

pairing ⟨·, ·⟩λ induced by the polarization. The Frobenius endomorphism ϕA/Fq induces an element γA/Fq ,ℓ ∈

GSp(H1(AFq ,Zℓ), ⟨·, ·⟩λ) ≃ GSp2g(Zℓ) defined up to conjugacy. We have an equality of characteristic polyno-

mials fγA/Fq,ℓ(t) = fA/Fq(t).

For the prime ℓ = p the crystalline cohomologyH1
cris(A,Qq) is a free Qq-module of rank 2g with symplectic

pairing ⟨·, ·⟩λ induced by the polarization, with integral structure H1
cris(A,Zq) and σ-linear endomorphism F .

The Frobenius endomorphism ϕA/Fq induces the endomorphism F j of H1
cris(A,Qq) and induces an element

δA/Fq ∈ GSp(H1
cris(A,Qq), ⟨·, ·⟩λ) ≃ GSp2g(Qq) with multiplier sim(δA/Fq) = p defined up to σ-conjugacy.

LetG = GSp2g and let T = T[A,λ] represent the automorphism group of [A, λ] in the Q-isogeny category of

Abelian varieties over Fq . Explicitly, for the Rosati involution a 7→ a† on End(A)⊗Z Q we have

T[A,λ](R) = {α ∈ (End(A)⊗Z R)
×|αα† ∈ R×}

By Tate’s theorem, for each prime ℓ ̸= pwe have that T[A,λ](Qℓ) = G(Qℓ)γA/Fq,ℓ is the centralizer of γA/Fq ,ℓ in

G(Qℓ), and for the prime ℓ = pwe have that T[A,λ](Qq) = G(Qp)
σ
δA/Fq

is the σ-centralizer of δA/Fq inG(Qq).

We can rephrase this in terms of twisted orbital integrals at p and orbital integrals away from p and∞. Away

from p and∞ consider the test function

fp,∞ = 1G(Ap,∞Q ) ∈ C∞
c (G(Ap,∞Z ) \G(Ap,∞Q )/G(Ap,∞Z ))

and consider the orbital integral

OγA/Fq
(fp,∞) =

∫
G(Ap,∞Q )γA/Fq

\G(Ap,∞Q )
1G(Ap,∞Z )(g

−1γA/Fqg)dg

134



of the test function fp,∞ over the conjugacy class of γA/Fq = (γA/Fq ,ℓ)ℓ̸=p. At p consider the test function

ϕj = 1G(Zq)diag(p,...,p,1,...,1)G(Zq) ∈ C
∞
c (G(Zq) \G(Qq)/G(Zq))

and consider the twisted orbital integral

TOσ
δA/Fq

(ϕj) =

∫
G(Qq)σδA/Fq

\G(Qq)
1G(Zq)diag(p,...,p,1,...,1)G(Zq)(g

−1δX/Fqσ(g))dg

of the test function ϕj over the σ-conjugacy class of δA/Fq . We have chosen Haar measures onG(Ap,∞Q ),G(Qp),

G(Qq) normalized so that vol(G(Ap,∞Z )) = 1, vol(G(Zp)) = 1, and vol(G(Zq)) = 1. Now the theorem of

Kottwitz asserts the following: the groupoid cardinality of I([A, λ],Fq) is given by

#I([A, λ],Fq) = vol(T[A,λ](Q) \ T[A,λ](A∞
Q ))OγA/Fq

(fp,∞)TOσ
δA/Fq

(ϕj)

Using Honda-Tate theory we have an element γA/Fq ,0 ∈ G(Q) defined up toG(Q)-conjugacy such that γA/Fq ,0

and γA/Fq ,ℓ are conjugate in G(Qℓ) for each prime ℓ ̸= p and such that γA/Fq ,0 and NδA/Fq are conjugate in

G(Qq) where N : G(Qq) → G(Qq) is given by N(g) = gσ(g) . . . σe−1(g). By adjusting δA/Fq in its twisted

conjugacy class we may assume thatNδA/Fq ∈ G(Qp) ⊆ G(Qq). In particular we can replace γA/Fq by the global

object γA/Fq ,0. This γ0 = γA/Fq ,0 ∈ G(Q) and these γ = γA/Fq ∈ G(A
p,∞
Q ) and δ = δA/Fq ∈ G(Qq) define

triples (γ0; γ, δ) which are precisely those which are indexed in the Kottwitz fixed point formula.

Comparison with the Stable Trace Formula We would now like to compare the Kottwitz fixed point formula

to the stabilization of Arthur’s trace formula. On one hand the Kottwitz fixed point formula is an expression

involving orbital integrals away from p and twisted orbital integrals at p:

T (j, g) =
∑

(γ0;γ,δ)∈CG,j

c(γ0; γ, δ)Oγ(f
p,∞)TOσ

δ (ϕj)tr(Vλ(γ0))
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On the other hand the stabilization of the regular elliptic part of Arthur’s trace formula is an expression involving

stable orbital integrals

∑
(H,s,η0)∈E(G)

ι(G,H)STFHreg,ell(f
H) =

∑
(H,s,η0)∈E(G)

ι(G,H)τ(H)
∑
γH

SOγH (f
H)

where the test functions fH are transfers of a test function fG such that fG∞ is stable cuspidal.

In order to make this comparison, one needs two versions of the fundamental lemma, following [87, Section

5.3]. Let G be a connected reductive group over Q. For (H, s, η0) ∈ E(G) an elliptic endoscopic datum fix an

L-homomorphism η : LH → LG extending η0 : Ĥ → Ĝ.

The fundamental lemma states that for every finite placepofQwhereG andH are unramified, ifη is unramified

at p and if b : C∞
c (G(Zp) \G(Qp)/G(Zp))→ C∞

c (H(Zp) \H(Qp)/H(Zp)) is the morphism of local Hecke

algebras induced by η, then for every fGp ∈ C∞
c (G(Zp)\G(Qp)/G(Zp)) and for every semisimple (G,H)-regular

γH ∈ H(Qp) we have

SOγH (b(f
G
p )) =

∑
γ

∆p(γH , γ)e(Gγ)Oγ(f
G
p )

where the sum is taken over the set of conjugacy classes γ inG(Qv) which are images of γH (if γH has no image in

G(Qv)we haveSOγH (b(f
G
p )) = 0), whereGγ is the centralizer ofγ inG, and where e(Gγ) is a certain sign defined

by Kottwitz. We say that fHp = b(fGp ) ∈ C∞
c (H(Zp) \H(Qp)/H(Zp)) is a transfer of fGp . The fundamental

lemma can also be stated in the same way for the Archimedean place of Q, where it is a theorem of Shelstad.

The twisted fundamental lemma states that for every finite place p of Q whereG andH are unramified, if η is

unramified at p and if b : C∞
c (G(OL) \G(L)/G(OL))→ C∞

c (H(Zp) \H(Qp)/H(Zp)) is the morphism of

local Hecke algebras induced by η whereL is the unramified extension of degree j ≥ 1 ofE℘ in Qp, then for every

ϕGj ∈ C∞
c (G(OL) \G(L)/G(OL)) and for every semisimple (G,H)-regular γH ∈ H(Qv) we have

SOγH (b(ϕ
G
j )) =

∑
δ

⟨αp(γ0; δ), s⟩∆p(γH , γ0)e(G
σ
δ )TO

σ
δ (ϕj)
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where the sum is taken over the set of σ-conjugacy classes δ inG(L) such thatNδ isG(Qp)-conjugate to an image

γ0 ∈ G(Qp) of γH , and where Gσδ is the σ-centralizer of δ in ResL/QpGL, and where αp(γ0; δ) is defined by

Kottwitz. We say that ϕHj = b(ϕGj ) ∈ C∞
c (H(Zp) \H(Qp)/H(Zp)) is a transfer of ϕGj .

Proposition 2.3.22. (Kottwitz stabilization, [70, 7.2]) For j ≥ 1 and forVλ ∈ Rep(G) letT (j, g) be the sum over

the set of fixed points in SK′
fin
(Fq) of the correspondence (ΦjTg, T1) of the naïve local terms of the cohomological

correspondence uj : (ΦjTg)∗Vλ → T !
1Vλ onH∗

c (SKfin,Fq ,Vλ). Then we have

T (j, g) =
∑

(H,s,η0)∈E(G)

ι(G,H)STFHreg,ell(f
H)

where the test functions fH = fp,∞H ϕHj f
H
∞ (depending on j) are given as follows:

• Away fromp and∞, letfp,∞H = bH(fp,∞G ) ∈ C∞
c (H(Ap,∞Q ))be a transfer offp,∞ = fp,∞G ∈ C∞

c (G(Ap,∞Q ));

• At p, let ϕHj = bHj (ϕ
G
j ) ∈ C∞

c (H(Qp)) be a twisted transfer of ϕj = ϕGj ∈ C∞
c (G(L));

• At∞, we define the test function

fH∞ = (−1)d⟨µ0, s⟩
∑

φH∈ΦH(φ)

det(ω∗(φH))fφH

where d = dim(SKfin
) is the dimension of the Shimura variety, where µ0 : Gm,C → GC is the minescule

cocharacter determined by the Shimura datum, whereΦH(φ) is the set of elliptic L-parametersφH :WR →
LH such that η ◦ φH : WR → LG is equivalent to the elliptic L-parameter φ : WR → LG defined

by Vλ, where Ω∗ is a certain subset of the Weyl group of G yielding a bijection ΦH(φ)
∼−→ Ω∗ given by

φH 7→ ω∗(φH), and where forφH ∈ ΦH(φ)we define the average of pseudo-coefficients of representations

in the L-packet Π(φH):

fφH =
1

#Π(φH)

∑
π∈Π(φH)

fπ

Ultimately, one has the following stabilization of the Kottwitz fixed point formula, relating it to the regular

elliptic part of the stable trace formula:
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Theorem 2.3.23. For j ≫ 0 sufficiently large and forVλ ∈ Rep(G) the trace of the cohomological correspondence

uj : (Φ
jTg)

∗Vλ → T !
1Vλ onH∗

c (SKfin,Fq ,Vλ) is given by

tr(uj |H∗
c (SKfin,Fq ,Vλ)) =

∑
(H,s,η0)∈E(G)

ι(G,H)STFHreg,ell(f
H)

If g = 1 andKfin = K ′
fin then this is true for all j ≥ 1.

A more complicated version of the Kottwitz fixed point formula and its stabilization exists for intersection

cohomology, following [87, Section 6.3]. The additional difficulty lies in the fact that in considering the naïve local

terms of the cohomological correspondence uj : (ΦjTg)
∗IC•(Vλ) → T !

1IC
•(Vλ) on IH∗(SKfin,Fq ,Vλ) one

must consider not only the the fixed points in SK′
fin
(Fq) (where one uses the Kottwitz fixed point formula and its

stabilization, corresponding to the regular elliptic terms of the stable trace formula), but also the fixed points in the

boundary strata of SBB
K′

fin
(Fq) (where one essentially combines the Kottwitz fixed point formula for Levi quotients

with the topological trace formula of Goresky-Kottwitz-MacPherson by parabolic induction, corresponding to the

supplementary terms of the stable trace formula; this is explained in [87, Section 1.7]):

Theorem 2.3.24. For j ≫ 0 sufficiently large and forVλ ∈ Rep(G) the trace of the cohomological correspondence

uj : (Φ
jT g)

∗IC•(Vλ)→ T
!
1IC

•(Vλ) on IH∗(SKfin,Fq ,Vλ) is given by

tr(uj |IH∗(SKfin,Fq ,Vλ)) =
∑

(H,s,η0)∈E(G)

ι(G,H)STFH(fH)

If g = 1 andKfin = K ′
fin then this is true for all j ≥ 1.

The upshot of the above discussion is the following. For Vλ ∈ Rep(G) define elementsH∗
c,λ and IH∗

λ of the

Grothendieck group of ℓ-adic representations ofHKfin
×Gal(F/F ) by the alternating sums

H∗
c,λ =

∑
i≥0

(−1)i[H i
c(SKfin,F

,Vλ)]

IH∗
λ =

∑
i≥0

(−1)i[IH i(SKfin,F
,Vλ)]
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Then for all j ≥ 1 we have

tr(uj |H∗
c (SKfin,Fq ,Vλ)) = tr(Frobj℘f

∞|H∗
c,λ)

tr(uj |IH∗(SKfin,Fq ,Vλ)) = tr(Frobj℘f
∞|IH∗

λ)

where Frob℘ ∈ Gal(F/F ) is a lift of the geometric Frobenius at ℘ a prime of F over p, and where f∞ =

1
vol(Kfin)

1KfingKfin
. In particular for j ≫ 0 sufficiently large and for every f∞ ∈ HKfin

with factorization f∞ =

fp,∞1G(Zp) we have

tr(Frobj℘f
∞|H∗

c,λ) =
∑

(H,s,η0)∈E(G)

ι(G,H)STFHreg,ell(f
H)

tr(Frobj℘f
∞|IH∗

λ) =
∑

(H,s,η0)∈E(G)

ι(G,H)STFH(fH)

In many ways the intersection cohomology is simpler than the compactly supported cohomology: although both can

be written in terms of each other modulo boundary contributions, the decomposition of intersection cohomology

according to Arthur’s conjectures is much simpler than the decomposition of compactly supported cohomology

according to the Franke-Schwermer decomposition of larger spaces of automorphic forms. On the other hand, the

trace of Frobneius on compactly supported cohomology will ultimately be expressed in terms of the regular elliptic

part of the stable trace formula, whereas the expression for the trace of Frobenius on intersection cohomology will

also involve supplemental terms of the stable trace formula.

Finally, it should be emphasized that the results of Kottwitz have since been greatly generalized. First, the original

results of Kottwitz apply only to certain Shimura varieties of PEL type, and excludes certain kinds of reductive groups

(they apply to certain groups of types A and C, but not to certain orthogonal groups of type D). After all, the main

content involves expressing the relevant point counts over finite fields in group theoretic terms, and for Shimura

varieties with moduli interpretations in terms of Abelian varieties with additional structure as for PEL Shimura

varieties, this can be done using Honda-Tate theory. More recently, work of Kisin has extended these results to the

case of Abelian type Shimura vareities. Second, the original results of Kottwitz apply only to those primes where

the Shimura variety has good reduction, which amounts to the assumption thatKfin andK ′
fin are unramified at p.

Of course, one also wants to understand what happens at the primes where the Shimura variety has bad reduction,

for example one would like to compute the complete Hasse-Weil zeta function of the Shimura variety rather than

139



just the partial Hasse-Weil zeta function. To do this, one is required to construct more general test functions which

compute the relevant point counts over finite fields in the case of bad reduction. Work of Haines-Richarz [54]

achieves exactly this in the case of parahoric level structure, which is particularly relevant to the examples considered

later in this thesis. We hope to explore this in future writing.

2.3.5 Arthur’s Conjectures

Informed by the phenomenon of endoscopy, Arthur has formulated conjectures which give a description of the

decomposition of the automorphic discrete spectrum L2
disc(G(Q)AG(R)◦ \ G(AQ)) along with precise multi-

plicity formulas. We quickly review some of the content of these conjectures in the case whenG is a connected split

reductive group over Q for simplicity of discussion, following [39, Section 4].

It is helpful to state Arthur’s conjectures with the help of the conjectural global L-group:

Conjecture 2.3.25. There exists a topological groupLQ, the global L-group ofQ, satisfying the following properties:

(i) The connected component L0
Q of the identity in LQ is a compact topological group, and the component

group π0(LQ) = LQ/L
0
Q ofLQ is isomorphic to the global Weil groupWQ yielding an exact sequence of

topological groups

0→ L0
Q → LQ →WQ → 0

(ii) For every place v of Q we have a natural conjugacy class of embeddingsLQv ↪→ LQ whereLQv is the local

L-group of Qv given by

LQv =


WR v =∞

WDQp v = p

where WQv is the local Weil group of Qv and where WDQv = WQv × SU2(C) is the local Weil-Deligne

group ofWQv .
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(iii) There exists a natural bijection (the global Langlands correspondence)


isomorphism classes of

irreducible representations

ϕ : LQ → GLn(C)


∼−→

 cuspidal automorphic

representations π of GLn(AQ)


which, for every place v of Q, is compatible with the natural bijection (the local Langlands correspondence)


isomorphism classes of

irreducible representations

ϕ : LQv → GLn(C)


∼−→


equivalence classes of

irreducible admissible

representations πv of GLn(Qv)


The local Langlands correspondence in the above should be taken to be the local Langlands correspondence

constructed by Langlands for v =∞ and by Harris-Taylor for v = p. The global Langlands correspondence in the

above, like the local Langlands correspondence it should be compatible with, should be characterized by various

standard compatibilities between L-factors and ϵ-factors, compatibility with class field theory, and so on. More

generally, one should have the following:

Conjecture 2.3.26. LetG be a connected split reductive group over Q. There exists a natural morphism

 Ĝ− conjugacy classes of

global L-parameters ϕ : LQ → Ĝ

→


equivalence classes of

irreducible automorphic

representations π ofG(AQ)


which, for every place v of Q, is compatible with the natural morphism (the local Langlands correspondence)

 Ĝ− conjugacy classes of

local L-parameters ϕ : LQv → Ĝ

→


equivalence classes of

irreducible admissible

representations πv ofG(Qv)


The local Langlands correspondence in the above should be taken to be the local Langlands correspondence

constructed by Langlands for v =∞ and more recently by Fargues-Scholze for v = p. Again the global Langlands
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correspondence in the above, like the local Langlands correspondence it should be compatible with, should be

characterized by various standard compatibilities betweenL-factors and ϵ-factors.

Now letG be a connected split reductive group over Q. Arthur’s conjectures describe a decomposition

L2
disc(G(Q)AG(R)◦ \G(AQ)) ≃

⊕
ω

⊕
ψ∈Ψdisc(G,ω)

Aψ

where eachAψ is a near-equivalence class of discrete spectrum automorphic representations ofG(AQ), where the

first direct sum is taken over unitary Hecke characters ω : Q× \ A×
Q → C×, and the second direct sum is taken

over a set Ψdisc(G,ω) of equivalence classes of global A-parameters ψ : LQ × SL2(C)→ Ĝwhich are admissible

(so that ψ(LQ) is bounded in Ĝ) and discrete (so that the centralizer group Sψ = Z
Ĝ
(ψ)/Z(Ĝ) is finite); these

are formal unorderd isobaric sums ψ = ⊞i µi ⊠ νdi where πi is an ω-self dual unitary cuspidal automorphic

representation of GLni(AQ) and νdi is the irreducible representation of SL2(C) of dimension di. The usage of

the conjectural globalL-groupLQ can be avoided as follows: for each ψ ∈ Ψdisc(G,ω) one can define a complex

reductive groupLψ and an A-parameter ψ : Lψ × SL2(C)→ Ĝ, so that all mentions of the globalL-groupLQ

and its irreducible representations are replaced by the groupsLψ and cuspidal automorphic representations.

For each place v of Q the global A-parameter ψ : LQ × SL2(C) → Ĝ gives rise to a local A-parameter

ψv : LQv × SL2(C)→ Ĝwith component group Sψv = π0(ZĜ(ψv)/Z(Ĝ)). For each character ηv ∈ S∨
ψv

we

have a unitarizable finite length representation πηv ofG(Qv) which defines the local L-packet

Π(ψv) = {πηv |ηv ∈ S∨
ψv}

of admissible representations ofG(Qv). For almost all places v of Q, the representation π+v corresponding to the

trivial character of Sψv is the irreducible unramified representation with Satake parameter c(ψv) = ψv(Frobv ×

diag(q
1/2
v , q

−1/2
v )). The local L-packets define the global A-packet

Π(ψ) = {π =
⊗
v

πv|πv ∈ Π(ψv), πv = π+v for almost all places v of Q}

of near-equivalent representations ofG(AQ) indexed by the characters of the compact group Sψ =
∏
v Sψv . For

η =
⊗

v ηv ∈ S∨ψ we define πη =
⊗

v πηv , then since ηv = 1Sψv for almost all places v of Q we have πη ∈ Π(ψ).

142



The multiplicity of πη involves a quadratic character ϵψ ∈ S∨
ψ attached to ψ in the following way. Consider

the adjoint action of Sψ × LQ × SL2(C) on ĝ defined by ψ and decompose this into a direct sum of irreducible

representations of the form ηi⊗ ρi⊗ νdi . Note
⊕

i ηi⊗ ρi⊗ νdi is an orthogonal representation since the adjoint

representation admits a nondegenerate invariant symmetric bilinear form. We consider the set Tψ of those direct

summands ηi⊗ρi⊗νni which are orthogonal, where di is even so that νdi is symplectic, and where ρi is symplectic

with ϵ(12 , ρi) = −1. These conditions imply ηi is orthogonal so thatdet(ηi) ∈ S∨
ψ is a quadratic character. Define

the quadratic character

ϵψ =
∏

ηi⊗ρi⊗νdi∈Tψ

det(ηi)

Now for η ∈ S∨ψ a character consider the canonical morphism Sψ → Sψ and the corresponding character η ∈ S∨
ψ .

Define the multiplicity

mη =
1

#Sψ

∑
s∈Sψ

ϵψ(s)η(s)

Then Arthur conjectures that the near-equivalence classAψ is given

Aψ ≃
⊕
η

mηπη

We can write this in the following way: forψ ∈ Ψdisc(G,ω) we have a morphism Π(ψ)→ S∨ψ sending π ∈ Π(ψ)

to a character ⟨·, π⟩ ∈ S∨ψ ; consider the canonical morphism Sψ → Sψ and the corresponding character ⟨·, π⟩ ∈

S∨
ψ . Writing mdisc(π) = mη for the multiplicity of π = πη ∈ Π(ψ) corresponding to a character η ∈ S∨ψ , we

obtain a decomposition

L2
disc(G(Q)AG(R)◦ \G(AQ)) ≃

⊕
ω

⊕
ψ∈Ψdisc(G,ω)

⊕
π∈Π(ψ)
⟨·,π⟩=ϵψ

mdisc(π)π

As a consequence we note the following decompositions of intersection and cuspidal cohomology. Let (G,X, h)

be a Shimura datum and let Kfin ⊆ G(A∞
Q ) be a compact open subgroup. Then we have an isomorphism of
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HKfin
-modules

H i
disc(SKfin

(C),Vλ) =
⊕
ω

⊕
ψ∈Ψdisc(G(AQ),ω)

⊕
π∈Π(ψ)
⟨·,π⟩=ϵψ

mdisc(π)π
Kfin
fin ⊗H

i(g,K ′
∞;π∞ ⊗ Vλ)

In particular, the problem of computingL2-cohomology is reduced to the problem of understanding the structure

of L2
disc(G(Q)AG(R)◦ \ G(AQ)) as described by Arthur’s conjectures, and the problem of determining which

unitary (g,K ′
∞)-modules Aq(λ) are the Archimedean components of which automorphic representations of

G(AQ).

In the ℓ-adic setting, we have an isomorphism ofHKfin
×Gal-modules

IH i(SKfin
,Vλ) =

⊕
ω

⊕
ψ∈Ψdisc(G(AQ),ω)

⊕
π∈Π(ψ)
⟨·,π⟩=ϵψ

mdisc(π)π
Kfin
fin ⊠ ρπ

and it is precisely the Langlands-Kottwitz method which allows us to determine the ℓ-adic Galois representations

ρπ appearing in this decomposition.
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Chapter 3

Cohomology of Modular Curves

3.1 Classical and Adelic Modular Curves

Shimura Datum Let G = GL2 be the general linear group over Q. We have the determinant character det :

G→ Gm whose kernelG1 = SL2 is the special linear group, the derived group ofG.

Consider the maximal torus T ofG given by

T = {diag(t1, t2)|t1, t2 ∈ GL1}

= {diag(t1, t/t1)|t1, t ∈ GL1} ≃ GL1 ×GL1

Since G is already Q-split, T ≃ GL1 × GL1 is a Q-split maximal torus and AG = Z(G) ≃ GL1 is a Q-split

maximal torus in the center ofG. In particular,AG(R)◦ ≃ R>0. In this case the Langlands dual group is simply

Ĝ = GL2(C).

We now consider the Hermitian locally symmetric space associated toG = GL2, and the associated Shimura

datum. Consider the element

I0 =
(

0 1
−1 0

)
∈ SL2(R)

The centralizerK∞ of I0 in SL2(R) is a connected component of a maximal compact subgroup of SL2(R), and

is isomorphic to SO(2) ≃ U(1). The centralizer K ′
∞ of I0 in GL2(R) is connected but not compact, and is

isomorphic to SO(2)R>0 ≃ U(1)R>0. The corresponding symmetric spaceX = X+ ⨿X− = G(R)/K ′
∞ =
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AG(R)◦ \G(R)/K∞ is a Hermitian symmetric domain and is identified with the space of 1-dimensional linear

subspaces of R2 on which the skew-symmetric bilinear form (v1, v2) 7→ v⊤1 adiag(i, i)v2 is positive or negative

definite, which is identified with the double half space

H± = H⨿ H = {τ ∈ C|ℑ(τ) ̸= 0}

Let x0 ∈ X be the subspace generated by the standard basis vector e2 ∈ R2. Then G(R) acts transitively on X .

Consider theG(R)-equivariant morphism h : X → HomR(S, GR) determined by

h0 = h(x0) = (z 7→ diag(z, 1))

Then (G,X, h) is a Shimura datum in the sense of Deligne and Pink.

Shimura Varieties and Connected Components LetKfin ⊆ G(A∞
Q ) be a compact open subgroup. LetSKfin

be the corresponding Shimura variety which is a smooth quasiprojective variety overQ ifKfin is neat, and considered

as a stack otherwise, with complex points given by

SKfin
(C) = G(Q) \ H± ×G(A∞

Q )/Kfin

The Shimura varietySKfin
is connected but in general not geometrically connected: the set of connected components

of SKfin
(C) is given by

π0(SKfin
(C)) = G(Q) \ π0(X)×G(A∞

Q )/Kfin

≃ Q>0 \GL1(A∞
Q )/det(Kfin)

≃ Ẑ×/det(Kfin)

where the first isomorphism is given by the determinant and bySL2(A∞
Q ) = SL2(Q)Kfin by strong approximation,

and the second isomorphism is given by the decomposition GL1(A∞
Q ) = Q>0Ẑ× which induces a decomposition

GL2(A∞
Q ) =

∐
a∈Ẑ×/det(Kfin)

GL+
2 (Q)diag(1, a)Kfin
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For a ∈ Ẑ×/det(Kfin) consider the morphism H → SKfin
(C) sending z ∈ H to the point represented by

(z, diag(1, a)), then we obtain an embedding of classical modular curves Γa \ H ↪→ SKfin
(C) where

Γa = diag(1, a)Kfindiag(1, a
−1) ∩GL+

2 (Q)

In particular SKfin
(C) is a disjoint union of classical modular curves Γa \ H.

Moduli Problems and Level Structures The Shimura variety SKfin
is defined over Q (in fact over Z[ 1N ] for

Kfin =
∏
p|N Kp ×

∏
p∤N GL2(Zp)) by the moduli functor

SKfin
: SchZ[ 1

N
] → Set

S 7→

Tuples (E, η) whereE/S is an elliptic curve

and η is aKfin-level structure


/≃

where the Kfin-level structure is a Kfin-conjugacy class of isomorphism η : (A∞
Q )2

∼−→ H1(E(C),A∞
Q ), and

(E1, η1) ≃ (E2, η2) are equivalent precisely if there exists an isogeny ϕ : E1 → E2 such that ϕ∗ ◦ η1 = η2. The

moduli functorSKfin
: SchZ[ 1

N
] → Grpd is defined similarly. Each connected component ofSKfin

is defined over

Qab (in fact over Z[ 1N , µN ]) and the induced action of Gal(Qab/Q) = Ẑ× on the set of geometric connected

components π0(SKfin
) = Ẑ×/det(Kfin) is given by the usual multiplication in Ẑ× by class field theory.

We now collect some running examples of moduli problems and level structures for modular curves, following

[62].

Example 3.1.1. Let Γ(N) denote the inverse image of the identity under the reduction morphism SL2(Z) →

SL2(Z/NZ):

Γ(N) = {γ ∈ SL2(Z)|γ ≡
(
1 0
0 1

)
mod N}
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The corresponding quotient Γ(N) \ H of the upper half plane H is the classical modular curve of full levelN over

C. LetK(N) denote the inverse image of the identity under the reduction morphism GL2(Ẑ)→ GL2(Z/NZ):

K(N) =
∏
p|N

K +
p ×

∏
p∤N

GL2(Zp) = {γ ∈ GL2(Ẑ)|γ ≡
(
1 0
0 1

)
mod N}

LetK ′(N) be the following modified congruence subgroup:

K ′(N) = {γ ∈ GL2(Ẑ)|γ ≡
(
1 0
0 ∗
)

mod N}

AΓ(N)-structure on an elliptic curveE/S (in the sense of Katz-Mazur [62, Section 3.1]) is a group homomorphism

ϕ : (Z/NZ)2 → E[N ](S) which is a generator ofE[N ] in the sense that we have an equality of effective Cartier

divisors

E[N ] =
∑

a1,a2∈Z/NZ

[ϕ(a1, a2)]

The points x1 = ϕ(1, 0) and x2 = ϕ(0, 1) of E[N ](S) are the corresponding Drinfeld basis. When N is

invertible on S a Γ(N)-structure on an elliptic curveE/S is equivalently a pair of linearly independent generators

x1, x2 ∈ E[N ](S).

The groupK(N) = {γ ∈ GL2(Ẑ)|γ ≡
(
1 0
0 1

)
mod N} corresponds to the moduli problem

SK(N) : SchZ[ 1
N
] → Set

S 7→


Tuples (E, x1, x2) whereE/S is an elliptic curve

x1, x2 ∈ E[N ](S) are points of exact orderN

such thatE[N ] is generated by x1 and x2


/≃

which is representable by a scheme forN ≥ 3 (and representable by a Deligne-Mumford stack forN = 1, 2, where

the moduli functor SK(N) : SchZ[ 1
N
] → Grpd is defined similarly).

Recall that we have the Weil pairing eN : E[N ]×E[N ]→ µN , and the points x1, x2 ∈ E[N ](S) determine

an element ζ = eN (x1, x2) ∈ µN (S), and hence a morphism e : SK(N) → µN . The moduli space SK(N) is

connected but not geometrically connected: its geometric connected components are the fibers ofe : SK(N) → µN
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after base change to Z[ 1N , µN ]. Fixing a primitiveN -th root of unity ζ ∈ µN (Z[ 1N , µN ]), for a ∈ (Z/NZ)× we

have the moduli problem

SK(N),a : SchZ[ 1
N
,µN ] → Set

S 7→



Tuples (E, x1, x2) whereE/S is an elliptic curve

x1, x2 ∈ E[N ](S) are points of exact orderN

such thatE[N ] is generated by x1 and x2

and eN (x1, x2) = ζa


/≃

which is representable by a scheme forN ≥ 3 (and representable by a Deligne-Mumford stack forN = 1, 2, where

the moduli functor SK(N),a : SchZ[ 1
N
,µN ] → Grpd is defined similarly). In particular we have

SK(N)(C) =
∐

a∈(Z/NZ)×
SK(N),a(C) SK(N),a(C) = Γ(N)a \ H

The groupK ′(N) = {γ ∈ GL2(Ẑ)|γ ≡
(
1 0
0 ∗
)

mod N} corresponds to the moduli problem

SK′(N) : SchZ[ 1
N
] → Set

S 7→



Tuples (E, ϕ, x) whereE/S is an elliptic curve

ϕ : E → E′ is a cyclicN -isogeny over S and

x ∈ E[N ](S) is a point of exact orderN

such thatE[N ] is generated by x and ker(ϕ)


/≃

which is representable by a scheme forN ≥ 3 (and representable by a Deligne-Mumford stack forN = 1, 2 where

the moduli functor SK′(N) : SchZ[ 1
N
] → Grpd is defined similarly). The moduli space SK′(N) is geometrically

connected, in particular we have

SK′(N)(C) = Γ(N) \ H
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Example 3.1.2. Let Γ1(N) denote the inverse image of the unipotent subgroup under the reduction morphism

SL2(Z)→ SL2(Z/NZ):

Γ1(N) = {γ ∈ SL2(Z)|γ ≡
(
1 ∗
0 1

)
mod N}

The corresponding quotient Γ1(N) \ H of the upper half plane H is the classical modular curve of level Γ1(N)

over C. LetK1(N) denote the subgroup

K1(N) = {γ ∈ GL2(Ẑ)|γ ≡
(
1 ∗
0 ∗
)

mod N}

A Γ1(N)-structure on an elliptic curve E/S (in the sense of Katz-Mazur [62, Section 3.2]) is a group homomor-

phism ϕ : Z/NZ→ E[N ](S) such that the effective Cartier divisor

∑
a∈Z/NZ

[ϕ(a)]

is a subgroup scheme ofE. The point x = ϕ(1) ofE[N ](S) is the corresponding point of exact orderN . When

N is invertible on S a Γ1(N)-structure on an elliptic curve E/S is equivalently a point x ∈ E[N ](S) of exact

orderN .

The groupK1(N) = {γ ∈ GL2(Ẑ)|γ ≡
(
1 ∗
0 ∗
)

mod N} corresponds to the moduli problem

SK1(N) : SchZ[ 1
N
] → Set

S 7→

Tuples (E, x1, x2) whereE/S is an elliptic curve

x1 ∈ E[N ](S) is a point of exact orderN


/≃

which is representable by a scheme for N ≥ 4 (and representable by a Deligne-Mumford stack for N = 1, 2, 3,

where the moduli functor SK1(N) : SchZ[ 1
N
] → Grpd is defined similarly). A similar issue of connected com-

ponents exists as in the previous example, and a similar discussion applies to the inverse image of the unipotent
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subgroup under the reduction morphism GL2(Ẑ)→ GL2(Z/NZ):

K1(N) =
∏
p|N

I +
p ×

∏
p∤N

GL2(Zp) = {γ ∈ GL2(Ẑ)|γ ≡
(
1 ∗
0 1

)
mod N}

Example 3.1.3. LetΓ0(N)denote the inverse image of the Borel subgroup under the reduction morphismSL2(Z)→

SL2(Z/NZ):

Γ0(N) = {γ ∈ SL2(Z)|γ ≡
( ∗ ∗
0 ∗
)

mod N}

The corresponding quotient Γ0(N) \ H of the upper half plane H is the classical modular curve of level Γ0(N)

over C.

Let K0(N) denote the inverse image of the Borel subgroup under the reduction morphism GL2(Ẑ) →

GL2(Z/NZ):

K0(N) =
∏
p|N

Ip ×
∏
p∤N

GL2(Zp) = {γ ∈ GL2(Ẑ)|γ ≡
( ∗ ∗
0 ∗
)

mod N}

AΓ0(N)-structure on an elliptic curveE/S (in the sense of Katz-Mazur [62, Section 3.4]) is anN -isogenyϕ : E →

E′ which is cyclic in the sense that ker(ϕ) admits a generator (fppf locally on S). Equivalently, a Γ0(N)-structure

on an elliptic curveE/S is a finite flat subgroup schemeH ⊆ E[N ] which is locally free of rankN and which is

cyclic in the sense thatH admits a generator (fppf locally on S). WhenN is invertible on S a Γ0(N)-structure on

an elliptic curveE/S is a rankN finite flat subgroup schemeH ⊆ E[N ] (automatically locally free and cyclic, and

isotropic with respect to the Weil pairing).

The groupK0(N) = {γ ∈ GL2(Ẑ)|γ ≡
( ∗ ∗
0 ∗
)

mod N} corresponds to the moduli problem

SK0(N) : SchZ[ 1
N
] → Grpd

S 7→

 Tuples (E,H) whereE/S is an elliptic curve

H ⊆ E[N ] is a rankN finite flat subgroup scheme
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which is representable by a Deligne-Mumford stack. The moduli space SK0(N) is geometrically connected, in

particular we have

SK0(N)(C) = Γ0(N) \ H

LetA1[N ] = SK(N), letA1[Γ1(N)] = SK1(N), and letA1[Γ0(N)] = SK0(N) denote the moduli stacks

constructed in the above examples. In particular letA1 denote any of these in the caseN = 1: this is the moduli

stack of elliptic curves, corresponding to the hyperspecial maximal compact subgroupKfin = GL2(Ẑ).

Local Systems and Modular Forms We now recall the basic local systems on modular curves and their relation

to modular forms. Recall that we have the maximal torus T = {diag(t1, t/t1)|t1, t ∈ GL1} ≃ GL1 ×GL1. We

identify elements of the character lattice X∗(T ) with pairs of integers λ = (λ1; c) ∈ Z2 with c ≡ λ1 mod 2,

corresponding to the character

diag(t1, t/t1) 7→ tλ11 t
c−λ1

2

The (finite dimensional) absolutely irreducible rational representations of GL2 are parameterized by dominant

highest weights λ ∈ X∗(T )+ ⊆ X∗(T ). We identify elements of the subset X∗(T )+ with pairs of integers

λ = (λ1; c) ∈ Z2 with c ≡ λ1 mod 2 and λ1 ≥ 0. For λ ∈ X∗(T )+ let Vλ be the corresponding irreducible

representation of GL2. For λ = (λ1; c) ∈ X∗(T )+ let λ∨ = (λ1;−c) ∈ X∗(T )+ so that Vλ∨ = V ∨
λ is the

contragredient representation. Noting that the determinant character det : diag(t1, t/t1) 7→ t corresponds to

the highest weight λ = (0; 2), we have an isomorphism

Vλ
∼−→ V ∨

λ ⊗ det2c

For an integer λ1 ≥ 0 let Vλ1 be the irreducible representation of GL2 with highest weight λ = (λ1; 0), and

let Vλ1(det
λ1
2 ) be the irreducible representation of GL2 with highest weight λ = (λ1;λ1). Then we have an

isomorphism Vλ1(det
λ1
2 ) = Vλ1 ⊗ det

λ1
2 , in particular Vλ1 is self-dual.

Since the above Shimura varieties are moduli spaces of elliptic curves, we can consider local systems of geometric

origin coming from the cohomology of the universal family of elliptic curves.
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Let π : UKfin
(C) → SKfin

(C) be the universal family of elliptic curves which gives rise to a local system of

Q-vector spaces V = R1π∗Q of rank 2 on SKfin
(C) whose fiber over a point [E] ∈ SKfin

(C) is the singular

cohomologyH1(E(C),Q). For an integer λ1 ≥ 0 consider the local system of Q-vector spaces Vλ1 = Symλ1(V)

on SKfin
(C) whose fiber over a point [E] ∈ SKfin

(C) is the singular cohomology SymλH1(E(C),Q).

We are then interested in the cohomologyH∗(SKfin
(C),Vλ1)or the compactly supported cohomologyH∗

c (SKfin
(C),Vλ1)

as anHKfin
-module. In this case by Drinfeld-Manin we have isomorphisms ofHKfin

-modules

H i(SKfin
(C),Vλ1) = H i

! (SKfin
(C),Vλ1)⊕H i

Eis(SKfin
(C),Vλ1)

H i
c(SKfin

(C),Vλ1) = H i
! (SKfin

(C),Vλ1)⊕H i
c,Eis(SKfin

(C),Vλ1)

The inner cohomology H i
! (SKfin

(C),Vλ1) is identified with the cuspidal cohomology H i
cusp(SKfin

(C),Vλ1),

which will turn out to be concentrated in degree 1.

One can also consider the Hodge line bundle ω = π∗Ω
1
UKfin

/SKfin
on SKfin

(C) whose fiber over a point

[E] ∈ SKfin
(C) is the cohomology H0(E,Ω1

E). For an integer k ∈ Z let Vk = ω⊗k be the k-th tensor power

of the Hodge line bundle on SKfin
)C), which extends to the Baily-Borel compactification SBB

Kfin
(C) of SKfin

(C),

whose sections are modular forms of weight k:

Definition 3.1.4. Let Γ ⊆ SL2(Q) be a congruence subgroup. Consider the action of g =
(
a b
c d

)
∈ GL+

2 (R)

on τ ∈ H given by g · τ = (aτ + b)(cτ + d)−1, and consider the factor of automorphy j(g, τ) = cτ + d. For

an integer k ∈ Z consider the right action of GL+
2 (R) on the spaceC∞(H) of smooth C-valued functions on H

given by

(f |kg)(τ) = det(g)k/2j(g, τ)−kf(g · τ)

A modular form of weight k for Γ is a holomorphic function f : H→ C which is holomorphic at the cusps of Γ

such that f |kγ = f for all γ ∈ Γ.

A cusp form of weightk forΓ is a modular form of weightk forΓ vanishing at the cusps ofΓ, that is limt→∞(f |kg)(it) =

0 for all g ∈ SL2(Q).

LetMk(Γ) be the C-vector space of modular forms of weight k for Γ, and let Sk(Γ) be the C-vector subspace

of cusp forms of weight k for Γ.
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LetMk(Kfin) =
⊕

a∈Ẑ×/det(Kfin)
Mk(Γa) andSk(Kfin) =

⊕
a∈Ẑ×/det(Kfin)

Sk(Γa) be the corresponding

spaces of modular forms and cusp forms taking into account connected components. LettingD ⊆ S
BB
Kfin

be the

divisor of cusps in the Baily-Borel compactification of SKfin
, we have identifications

Mk(Kfin) = H0(SKfin
(C),Vk) Sk(Kfin) = H0(SKfin

(C),Vk(−D))

By Faltings-Chai [31] the cohomology groupsH i
c(SKfin

(C),Vλ) carry a Hodge filtration with

Gr0FH
i
c(SKfin

(C),Vλ1) = H i(S
BB
Kfin

(C),V−λ1(−D))

Grλ1+1
F H i

c(SKfin
(C),Vλ1) = H i−1(S

BB
Kfin

(C),Vλ1+2(−D))

In particular one finds cusp forms of weight λ1 + 2 inH1
c (SKfin

(C),Vλ1).

The same construction applies to the construction of ℓ-adic local systems on SKfin
. Writing SKfin

to mean

either SKfin,Q or SKfin,Fp as before, let π : UKfin
→ SKfin

be the universal family of elliptic curves and consider

the ℓ-adic local system V = R1π∗Qℓ of rank 2 on SKfin
whose fiber over a point [E] ∈ SKfin

is the ℓ-adic

cohomologyH1(E,Qℓ) (either over Q or over Fp), which is pure of weight 1. For an integer λ1 ≥ 0 consider the

ℓ-adic local system Vλ1 = Symλ1(V) on SKfin
whose fiber over a point [E] ∈ SKfin

is the ℓ-adic cohomology

SymλH1(E,Qℓ) (either over Q or over Fp), which is pure of weight λ1.

We are then interested in the ℓ-adicH∗(SKfin
,Vλ1)or the compactly supportedℓ-adic cohomologyH∗

c (SKfin
,Vλ1)

(either over Q or over Fp). In this case by Drinfeld-Manin we have isomorphisms ofHKfin
×Gal-modules

H i(SKfin
,Vλ1) = H i

! (SKfin
,Vλ1)⊕H i

Eis(SKfin
,Vλ1)

H i
c(SKfin

,Vλ1) = H i
! (SKfin

,Vλ1)⊕H i
c,Eis(SKfin

,Vλ1)

The inner cohomologyH i
! (SKfin

,Vλ1) is identified with the cuspidal cohomologyH i
cusp(SKfin

,Vλ1), which will

turn out to be concentrated in degree 1.

In both of the above situations, the local systems Vλ1 correspond to the irreducible representation Vλ1(det
λ1
2 )

ofGL2 with highest weightλ = (λ1;λ1). On the other hand when computing cuspidal cohomology or Eisenstein

cohomology in terms of (g,K ′
∞)-cohomology we will need to use the irreducible representation Vλ1 of GL2 with

highest weight λ = (λ1; 0), corresponding to the half Tate twisted local system Vλ1(−λ1
2 ). The discrepancy in-
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volving the determinant character accounts for the difference between the unitary normalization and cohomological

normalization of automorphic representations of GL2(AQ), and will account for the additional Tate twist which

appears in the later discussion of the Langlands-Kottwitz method. We will often use the abbreviated notation Vλ

and Vλ for either of these representations and local systems, being careful to disambiguate when their meaning is

not clear.

3.2 Induced Representations and Discrete Series for GL2(R)

We now recall some structural facts related to the group GL2(R), especially the construction of discrete series

representations and induced representations, and the Vogan-Zuckerman classification of irreducible admissible

representations of GL2(R) with nonzero (g,K ′
∞)-cohomology, which will be used throughout the rest of this

chapter.

Lie Algebras and Compact Subgroups Let g = gl2 be the Lie algebra ofG(R) = GL2(R), and let g1 = sl2

be the Lie algebra ofG1(R) = SL2(R).

LetK∞ be the maximal compact subgroup of SL2(R) given by

K∞ = {
(
a b
−b a

)
∈ SL2(R)}

We have an isomorphismK∞
∼−→ U(1) given by

(
a b
−b a

)
7→ a+ bi, that isK∞ ≃ SO(2). Let k be the Lie algebra

ofK∞, that is the Cartan subalgebra h corresponding to the compact torus

Tc = {
( cos(θ) sin(θ)
− sin(θ) cos(θ)

)
|θ ∈ R/2πZ}

Recall that the weights of sl2 are elements of the space h∨C = HomC(hC,C); an element λ ∈ h∨C is identified with

a complex number λ ∈ C. Let h∨ ⊆ h∨C be the subset where an element λ ∈ h∨ is identified with a real number

λ ∈ R2. We say thatλ ∈ h∨ is analytically integral ifλ is identified with an integerλ ∈ Z. Under this identification,

an integer k ∈ Z corresponds to the derivative of the character ψk of Tc given by

ψk :
( cos(θ) sin(θ)
− sin(θ) cos(θ)

)
7→ eikθ
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Every analytically integral weight λ ∈ h∨ with λ ≥ 0 corresponds to a K∞-type Vλ, that is an equivalence class

of irreducible representation of the compact group K∞ ≃ SO(2). Such a K∞-type Vλ has weights λ − j for

j ∈ {0, 1, . . . , λ} each with multiplicity 1; in particular Vλ has dimension λ+ 1 with highest weight λ.

Characters and Roots Recall that we have the maximal torus

T = {diag(t1, t2)|t1, t2 ∈ GL1}

which is identified with the Levi quotient of the Borel minimal parabolicQ-subgroupP0 of upper triangular matrices

inG = GL2.

We have the elementary characters ei : T → Gm given by

e1(diag(t1, t2)) = t1 e2(diag(t1, t2)) = t2

We have the elementary cocharacters fi : Gm → T given by

f1(t) = diag(t, 1) f2(t) = diag(1, t)

so that ei ◦ fj = δi,j . We have the character lattice X∗(T ) = Ze1 ⊕ Ze2 and we have the cocharacter lattice

X∗(T ) = Zf1 ⊕ Zf2. We have the roots±α = ±(e1 − e2) and we have the coroots±α∨ = ±(f1 − f2), and

we have the fundamental weight ω = 1
2(e1 − e2) =

1
2α defined by 2 ⟨ω,α⟩

⟨α,α⟩ = 1, which in this case coincides with

the half sum of positive roots ρP0 = 1
2α = ω.

For z1, z2 ∈ C consider the unramified character χz1,z2 :M0 → Gm given by

χz1,z2(diag(t1, t2)) = |t1|z1 |t2|z2

so that (χz1,z2 ◦ α∨)(t) = |t|z1−z2 = |t|s for s = z1 − z2. In other words χz1,z2 = νz1 ⊠ νz2 where ν = | · | is

the norm character.
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Recall that a∨P0
= a∨G ⊕ (aGP0

)∨ where

a∨P0
= {(z1, z2) ∈ R2} ≃ R2

a∨G = {(z1, z2) ∈ R2|z1 − z2 = 0} = {(s, s) ∈ R2} ≃ R

(aGP0
)∨ = {(z1, z2) ∈ R2|z1 + z2 = 0} = {(s,−s) ∈ R2} ≃ R

with s = z1 − z2 providing the coordinate for (aGP0
)∨.

s=1

(aGP0
)∨

a∨G ℜ(s1)ℜ(s2)

ω α

Remark 3.2.1. There is an another choice of convention for the above. Recall that we have the maximal torus

T = {diag(t1, t/t1)|t1, t ∈ GL1}

We have the elementary characters ei : T → Gm given by

e1(diag(t1, t/t1)) = t1 e0(diag(t1, t/t1)) = t

We have the elementary cocharacters fi : Gm → T given by

f1(t) = diag(t, 1/t) f0(t) = diag(1, t)

so that ei ◦ fj = δi,j . We have the character lattice X∗(T ) = Ze1 ⊕ Ze0 and we have the cocharacter lattice

X∗(T ) = Zf1 ⊕ Zf0. We have the roots±α = ±(2e1 − e0) and we have the coroots±α∨ = ±f1, and we have

the fundamental weight ω = 1
2(2e1 − e0) =

1
2α defined by 2 ⟨ω,α⟩

⟨α,α⟩ = 1, which in this case coincides with the half

sum of positive roots ρP0 = 1
2α = ω.
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Parabolic Induction In this case there is only one standard parabolic Q-subgroup of G = GL2 we need to

consider. We have the Borel parabolic Q-subgroup P0 =M0N0 of upper triangular matrices with Levi quotient

M0 = T a maximal torus and unipotent Q-subgroupN0 = U given by

P0 =
( ∗ ∗
0 ∗
)
∩G M0 =

( ∗ 0
0 ∗
)
∩G ≃ GL1 ×GL1 N0 =

(
1 ∗
0 1

)
∩G

Write M0 = {diag(t1, t2)|t1, t2 ∈ GL1}. For characters χ1, χ2 of GL1 we have a character π = χ1 ⊠ χ2 of

T ≃ GL1 ×GL1 given by

π(diag(t1, t2)) = χ1(t1)χ2(t2)

with central characterω = χ1χ2. If the central characterω is fixed we can writeχ2 = χ−1
1 ω so thatπ = χ1⊠χ

−1
1 ω.

We have the norm character δP0 of P0 whose restriction toM0 is given by

δP0(diag(t1, t2)) = |t1||t2|−1

For s ∈ C we have the unramified character

e⟨HP0 (·),s⟩(diag(t1, t2)) = |t1|s|t2|−s

Let π = χ1 ⊠ χ2 : M0(R) → C× be a (continuous) character regarded as a character of P0(R). Consider the

Borel parabolic induction

Ind
G(R)
P0(R)(π) =


smooth functions ϕ : GL2(R)→ C such that

ϕ(pg) = χ1(t1)χ2(t2)ϕ(g) for every g ∈ GL2(R)

and p ∈ P0(R) with p ≡ diag(t1, t2) ∈M0(R)


Recalling the norm character e⟨HP0 (·),s+ρP0 ⟩(diag(t1, t2)) = |t1|s+

1
2 |t2|−s−

1
2 we consider the family of normal-

ized Borel parabolic inductions

IG(R)
P0(R)(π, s) = Ind

G(R)
P0(R)(e

⟨HP0 (·),s+ρP0 ⟩π)
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In particular the norm character δ1/2P0(R) = e⟨HP0 (·),ρP0 ⟩ defines the normalized Borel parabolic induction

χ1 × χ2 = IG(R)
P0(R)(π) = Ind

G(R)
P0(R)(δ

1/2
P0(R)π)

LetW = {1, w0} be the corresponding Weyl group, wherew0 is a simple reflection. Each Weyl group element will

give rise to intertwining operators between the above Borel parabolic inductions.

Remark 3.2.2. For characters χ1, χ2 of GL1 we have a character π = χ1 ⊗ χ ofM0 ≃ GL1 ×GL1 given by

π(diag(t1, t/t1)) = χ1(t1)χ(t)

with central character ω = χ. In other words, π = χ1 ⊠ χ−1
1 χ in the notation of the previous convention. We

have the norm character δP0 of P0 whose restriction toM0 is given by

δP0(diag(t1, t/t1)) = |t1|2|t|−1

We will sometimes switch to using this convention in later sections, as it is closer to the convention used for GSp4.

The differing notations ⊠ and⊗ should hopefully clarify which of these two conventions is implicitly being used

when writing characters ofM0 ≃ GL1 ×GL1.

All such parabolic inductions are regarded as a representation of GL2(R) by the right translation action, or

regarded as an admissible (gl2,K∞)-module after passing to the subspace ofK∞-finite vectors (which we abusively

denote by the same notation). We can restrict these to representations of SL2(R), or to (sl2,K∞)-modules. The

K∞-type decompositions are given as follows.

Recalling that K∞ = {
( cos(θ) sin(θ)
− sin(θ) cos(θ)

)
|θ ∈ R/2πZ} and that KM0

∞ = K∞ ∩M0(R) is cyclic of order 2

generated by
(−1 0

0 −1

)
, we have that πc = π|Tc is determined by an integer modulo 2: we havem ∈ Z/2Z such

that πc(
(−1 0

0 −1

)
) = (−1)m. For k ∈ Z such that k ≡ m mod 2 let ψk ∈ Ind

G(R)
P0(R)(π) be the function given

by

ψk(
( cos(θ) sin(θ)
− sin(θ) cos(θ)

)
) = eikθ
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Then Ind
G(R)
P0(R)(π) admits aK∞-type decomposition

Ind
G(R)
P0(R)(π)|K∞ =

⊕
k∈Z

k≡m mod 2

Cψk

The finite dimensional representation Vλ admits aK∞-type decomposition

Vλ|K∞ =
⊕
k∈Z

−n≤k≤n
k≡n mod 2

Cψk

In particular for an analytically integral dominant weightλ ∈ h∨ we have an embeddingVλ ↪→ Ind
G(R)
P0(R)(λ

w0) and

Ind
G(R)
P0(R)(λ

w0) is reducible; the corresponding quotient leads to the construction of discrete series representations,

as we now recall.

Holomorphic Discrete Series The Harish-Chandra classification of discrete series representations of SL2(R)

and of GL2(R) is particularly simple, and we will recall the results directly.

For SL2(R) we have the following discrete series representations:

(i) (Holomorphic discrete series) For an integer λ1 ≥ 0 we have a corresponding analytically integral weight

λ1 ∈ h∨ and a corresponding analytically integral nonsingular weight λ1 + 1 ∈ h∨. Then we have the

holomorphic discrete series representation D+
λ1+1 = Dλ1+1 of SL2(R) with Harish-Chandra parameter

(infinitesimal character) λ1 + 1 and Blattner parameter (minimalK∞-type) Λ = λ1 + 2.

(ii) (Antiholomorphic discrete series) For an integer λ1 ≥ 0 we have a corresponding analytically integral weight

−λ1 ∈ h∨ and a corresponding analytically integral nonsingular weight −λ1 − 1 ∈ h∨. Then we have

the antiholomorphic discrete series representation D−
λ1+1 = D−λ1−1 of SL2(R) with Harish-Chandra

parameter (infinitesimal character)−λ1 − 1 and Blattner parameter (minimalK∞-type) Λ = −λ1 − 2.
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The (anti)holomorphic discrete series representationsD±
λ1+1 both occur as infinite-dimensional subrepresentations

of the normalized Borel parabolic induction

ISL2(R)
P0(R) (signλ1νλ1+1) = Ind

SL2(R)
P0(R) (signλ1νλ1+2) =


smooth functions ϕ : SL2(R)→ C such that

ϕ(pg) = signλ1(t)|t|λ1+2ϕ(g) for every g ∈ SL2(R)

and p ∈ P0(R) with p ≡ diag(t, 1/t) ∈M0(R)


We can regard such (anti)holomorphic discrete series as representations of SL2(R), or as (sl2,K∞)-modules after

passing to spaces ofK∞-finite vectors.

ForGL2(R) we have the following discrete series representations. For an integerλ1 ≥ 0 and a central character

ω : R× → C× with ω(−1) = (−1)λ1 we have the holomorphic discrete series representation Dλ1+1(ω) of

GL2(R) with Harish-Chandra parameter (infinitesimal character) λ1 + 1 and Blattner parameter (minimalK∞-

type) Λ = λ1 + 2, occurring as an infinite-dimensional subrepresentation of the normalized Borel parabolic

induction

IGL2(R)
P0(R) (χ1 ⊠ χ2) = Ind

GL2(R)
P0(R) (χ1ν

1
2 ⊠ χ2ν

− 1
2 ) =


smooth functions ϕ : GL2(R)→ C such that

ϕ(pg) = |t1/t2|
1
2χ1(t1)χ2(t2)ϕ(g) for every g ∈ GL2(R)

and p ∈ P0(R) with p ≡ diag(t1, t2) ∈M0(R)


where χ1, χ2 : R× → C× are (continuous) characters such that χ1χ2 = ω and χ1χ

−1
2 = signλ1νλ1+1. When

the central characterω is trivial we writeDλ1+1 for the corresponding holomorphic discrete series representation of

GL2(R). We can regard such discrete series as representations of GL2(R), or as (gl2,K∞)-modules after passing

to spaces ofK∞-finite vectors. Here we may choose to work withK∞ ≃ SO(2) as above (which is insensitive to

the central character ω), or withK ′
∞ = R>0K∞ (which is insensitive to the parity of the central character ω), or

withK ′′
∞ = R×K∞ (which is sensitive to the central character ω).

Restricting from GL2(R) to SL2(R) yields an isomorphism

Dλ1+1(ω)|SL2(R) = D
+
λ1+1 ⊕D

−
λ1+1

One also has the limit discrete series representations of SL2(R) (denotedD+
0 andD−

0 ) and of GL2(R) (denoted

D0(ω)), which we will not need.
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As the above discrete series representations occur as infinite-dimensional subrepresentation of the normalized

Borel parabolic induction, their construction can be understood in terms of local intertwining operators. Recall

the Weyl groupW = {1, w0}where the simple reflectionw0 ∈W is represented by w̃0 =
(

0 1
−1 0

)
∈W .

For ϕs ∈ Ind
G(R)
P0(R)(π

w0δsP0(R)) consider the local intertwining operator

M(w̃−1
0 , πw0

s ) : Ind
G(R)
P0(R)(π

w0δsP0(R))→ Ind
G(R)
P0(R)(πδ

1−s
P0(R))

(M(w̃−1
0 , πw0

s )ϕs)(g) =

∫
N0(R)

ϕs(w̃0ng)dn

which admits a meromorphic continuation to all s ∈ C. At those s0 ∈ C where the local intertwining operator

has a pole, there exists an integerm ≥ 0 yielding a nonzero regularized local intertwining operator

M reg(w−1
0 , πw0

s0 ) = (s− s0)mM(w−1
0 , πw0

s )|s=s0 : Ind
G(R)
P0(R)(π

w0ρs0P0
)→ Ind

G(R)
P0(R)(πρ

1−s0
P0

)

Likewise for ϕs ∈ Ind
G(R)
P0(R)(πδ

s
P0(R)) consider the local intertwining operator

M(w̃0, πs) : Ind
G(R)
P0(R)(πδ

s
P0(R))→ Ind

G(R)
P0(R)(π

w0δ1−sP0(R))

(M(w̃0, πs)ϕs)(g) =

∫
N0(R)

ϕs(w̃
−1
0 ng)dn

which admits a meromorphic continuation to all s ∈ C. At those s0 ∈ C where the local intertwining operator

has a pole, there exists an integerm ≥ 0 yielding a nonzero regularized local intertwining operator

M reg(w0, πs0) = (s− s0)mM(w0, πs)|s=s0 : Ind
G(R)
P0(R)(πρ

1−s0
P0

)→ Ind
G(R)
P0(R)(π

w0ρs0P0
)

The induced representation Ind
G(R)
P0(R)(π) is reducible if the intertwining operator M(w̃−1

0 , π) is not an isomor-

phism, which happens precisely if π = λ or π = λw0δP0(R) for some analytically integral dominant element

λ ∈ h∨.
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For an analytically integral dominant weight λ ∈ h∨ write λ = λ1ω + cdet with λ1 ∈ Z≥0 and c ∈ Z such

that λ1 ≡ c mod 2. Then we have two nonzero regularized local intertwining operators

M reg(w̃−1
0 , λw0) : Ind

G(R)
P0(R)(λ

w0)→ Ind
G(R)
P0(R)(λδP0(R))

M reg(w̃0, λδP0(R)) : Ind
G(R)
P0(R)(λδP0(R))→ Ind

G(R)
P0(R)(λ

w0)

In the first case we have ker(M reg(w̃−1
0 , λw0)) = Vλ which induces an isomorphism

Dλ1+1(det
c)

∼−→ Dλ1+1(det
c)∨ ⊗ det2c

In the second case we have ker(M reg(w̃0, λδP0(R))) = D∨
λ1+1 ⊗ det2c which induces an isomorphism

Vλ1(det
c) = Vλ

∼−→ V ∨
λ ⊗ det2c

In particular we have a short exact sequence of (gl2,K∞)-modules

0→ Vλ → Ind
G(R)
P0(R)(λ

w0)→ Dλ1+1(det
c)→ 0

Taking duals and tensoring with det2c we have a short exact sequence of (gl2,K∞)-modules

0→ Dλ1+1(det
c)∨ ⊗ det2c → Ind

G(R)
P0(R)(λ

w0)∨ ⊗ det2c → V ∨
λ ⊗ det2c → 0

Since IndG(R)
P0(R)(λ

w0)∨ ⊗ det2c ≃ Ind
G(R)
P0(R)(λδP0(R)), we obtain a short exact sequence of (gl2,K∞)-modules

0→ Dλ1+1(det
c)→ Ind

G(R)
P0(R)(λδP0(R))→ Vλ → 0

The (gl2,K∞)-moduleDλ1+1(det
c) admits a decomposition intoK∞-types

Dλ1+1(det
c)|K∞ =

⊕
k∈Z

k≥λ1+2
k≡λ1 mod 2

Cψk ⊕
⊕
k∈Z

k≤−λ1−2
k≡λ1 mod 2

Cψk
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Restricting toSL2(R)we have a decompositionDλ1+1(det
c)|SL2(R) = D

+
λ1+1⊕D

−
λ1+1 whereD+

λ1+1 andD−
λ1+1

admitK∞-type decompositions

D+
λ1+1 =

⊕
k∈Z

k≥λ1+2
k≡λ1 mod 2

Cψk D−
λ1+1 =

⊕
k∈Z

k≤−λ1−2
k≡λ1 mod 2

Cψk

Cohomology The nontrivial extension of (g,K ′
∞)-modules

0→ Vλ → Ind
G(R)
P0(R)(λ

w0)→ Dλ1+1(det
c)→ 0

determines a nontrivial class in Ext1(g,K′
∞)(Dλ1+1(det

c), Vλ) = H1(g,K ′
∞;Dλ1+1(det

c) ⊗ Vλ∨), and in-

deed this group is nontrivial. We will compute the (g,K ′
∞)-cohomology of Dλ+1 by computing the (g,K ′

∞)-

cohomology of the Borel parabolic induction Ind
G(R)
P0(R)(λ

w0) and by considering the corresponding long exact

sequence in (g,K ′
∞)-cohomology.

An element ω ∈ HomK′
∞(∧p(g/k′), IndG(R)

P0(R)(π) ⊗ Vλ) sends an element v1 ∧ . . . ∧ vp ∈ ∧p(g/k′) to an

element ω(v1 ∧ . . . ∧ vp) ∈ Ind
G(R)
P0(R)(π)⊗ Vλ such that ω(Ad(k)v1 ∧ . . . ∧ Ad(k)vp) = kω(v1 ∧ . . . ∧ vp)

for every k ∈ K ′
∞.

Write ω(v1 ∧ . . . ∧ vp) =
∑

i fi ⊗ gi where fi ∈ Ind
G(R)
P0(R)(π) and gi ∈ Vλ. Evaluating at the identity yields

an element ω(v1 ∧ . . .∧ vp)(id) =
∑

i fi(id)⊗ gi ∈ Cπ⊗ Vλ. ByK ′
∞-invariance we have that ω is determined

by this evaluation at the identity, and we obtain an isomorphism of complexes

HomK′
∞(∧•(g/k′), IndG(R)

P0(R)(π)⊗ Vλ)
∼−→ Hom

K
′M0∞

(∧•(g/k′), π ⊗ Vλ)

(v1 ∧ . . . ∧ vp 7→ ω(v1 ∧ . . . ∧ vp)) 7→ (v1 ∧ . . . ∧ vp 7→ ω(v1 ∧ . . . ∧ vp)(id))

Now by the direct sum decomposition gl2 = p0 ⊕ k′ = m0 ⊕ n0 ⊕ k′ we obtain an isomorphism of complexes

Hom
K

′M0∞
(∧•(g/k′), π ⊗ Vλ) = Tot(Hom

K
′M0∞

(∧•(m0/k
′),HomC(∧•(n0), Vλ)))
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Passing to (g,K ′
∞)-cohomology yields Delorme’s isomorphism

H i(g,K ′
∞; Ind

G(R)
P0(R)(π)⊗ Vλ) = H i(HomK′

∞(∧•(g/k′), IndG(R)
P0(R)(π)⊗ Vλ))

∼−→ H i(Tot(Hom
K

′M0∞
(∧•(m0/k

′),HomC(∧•(n0), Vλ)))) =
⊕
p+q=i

Hp(m0,K
′M0
∞ ;π ⊗Hq(n0, Vλ))

To computeHq(n0, Vλ) = Hq(HomC(∧•(n0), Vλ)) we appeal to Kostant’s theorem, which can be made explicit

as follows. Recall that n0 is generated byE+ =
(
0 1
0 0

)
and that Vλ admits a weight space decomposition

Vλ =
⊕
k∈Z
|k|≤n

k≡n mod 2

Cek

where the torusM1
0 = {diag(t, 1/t)} acts on ek by ρλ(diag(t, 1/t))(ek) = tkek, and where the Lie algebra n0

acts on ek by dρλ(E+)(ek) =
n−k
2 ek+2. Then we have an isomorphism of complexes

HomC(∧•(n0), Vλ) =
( ⊕

k∈Z
|k|≤n

k≡n mod 2

Cek
d−→

⊕
k∈Z
|k|≤n

k≡n mod 2

CE∨
+ ⊗ ek

)

with differential d(ek) = n−k
2 E∨

+ ⊗ ek+2. We obtain a direct sum of complexes

HomC(∧•(n0), Vλ) = H•(n0, Vλ)⊕ A•(n0, Vλ)

where A•(n0, Vλ) is acyclic and H•(n0, Vλ) is given by

H•(n0, Vλ) =
(
Cen

0−→ CE∨
+ ⊗ e−n

)
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Noting that the torusT = {diag(t1, t2)} acts onH0(n0, Vλ) = Cen by the characterλ and acts onH1(n0, Vλ) =

CE∨
+ ⊗ e−n by the characterw0 · λ = λw0 − 2ρP0 , we obtain an isomorphism

Hq(n0, Vλ) =
⊕
w∈W
ℓ(w)=q

Vw·λ =


Cen q = 0

CE∨
+ ⊗ e−n q = 1

0 otherwise

Now to compute Hp(m0,K
′M0
∞ ;π ⊗ Hq(n0, Vλ)) we only need to consider the horizontal differentials in the

double complex Hom
K

′M0∞
(∧•(m0/k

′),HomC(∧•(n0), Vλ)) = Hom
K

′M0∞
(∧•(m0/k

′), H•(n0, Vλ)):

1 Hom
K

′M0∞
(∧0(m0/k

′),Cπ ⊗H1(n0, Vλ))
d−→ Hom

K
′M0∞

(∧1(m0/k
′),Cπ ⊗H1(n0, Vλ))

↑0 ↑0

0 Hom
K

′M0∞
(∧0(m0/k

′),Cπ ⊗H0(n0, Vλ))
d−→ Hom

K
′M0∞

(∧1(m0/k
′),Cπ ⊗H0(n0, Vλ))

0 1

In the case q = 0 we consider the complex

(
Hom

K
′M0∞

(∧0(m0/k
′),HomC(∧0(n0), Vλ))→ Hom

K
′M0∞

(∧1(m0/k
′),HomC(∧0(n0), Vλ))

)

with differential given by multiplication by dπ(H) + dλ(H). The cohomology of this complex is trivial unless

ω−1
π = λ. In the case q = 1 we consider the complex

(
Hom

K
′M0∞

(∧0(m0/k
′),HomC(∧1(n0), Vλ))→ Hom

K
′M0∞

(∧1(m0/k
′),HomC(∧1(n0), Vλ))

)

with differential given by multiplication by dπ(H) + d(w0 · λ)(H). The cohomology of this complex is trivial

unless ω−1
π = w0 · λ.

Proposition 3.2.3. Let π = χ1 ⊠ χ2 be a character of M0(R). If there exists an element w ∈ W such that

ω−1
π = w · λ for some analytically integral dominant element λ ∈ h∨, then we have an isomorphism

H•(g,K ′
∞; Ind

G(R)
P0(R)(π)⊗ Vλ) ≃ H

ℓ(w)(n0, Vλ)⊗ ∧•(m0/k
′)∨

If no such elementw ∈W exists, then we haveH•(g,K ′
∞; Ind

G(R)
P0(R)(π)⊗ Vλ) = 0.
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Proposition 3.2.4. (i) For λ = λ1ω + cdet dominant, we have

H i(g,K ′
∞;Vλ ⊗ Vλ∨) = H i(g,K ′

∞;C) =


C i = 0, 2

0 otherwise

(ii) For λ = λ1ω + cdet dominant, we have

H i(g,K ′
∞;Dλ+1 ⊗ Vλ∨) =


C2 i = 1

0 otherwise

Proof. We have the following:

(i) By Wigner’s lemma we haveH i(g,K ′
∞;Vλ) = 0 unless n = 0, that is unless Vλ is 1-dimensional, in which

case by Clebsch-Gordon we have

H i(g,K ′
∞;Vλ) = H i(g,K ′

∞;C) =


C i = 0, 2

0 otherwise

The claim follows since for λ = λ1ω + cdet dominant Vλ ⊗ Vλ∨ has a single 1-dimensional summand.

(ii) We tensor the short exact sequence 0 → Vλ → Ind
G(R)
P0(R)(λ

w0) → Dλ+1 → 0 with Vλ∨ to obtain a short

exact sequence

0→ Vλ ⊗ Vλ∨ → Ind
G(R)
P0(R)(λ

w0)⊗ Vλ∨ → Dλ+1 ⊗ Vλ∨ → 0

and consider the corresponding long exact sequence in (g,K ′
∞)-cohomology

0→ H0(g,K ′
∞;Vλ ⊗ Vλ∨)︸ ︷︷ ︸
=C

→
(((((((((((((((

H0(g,K ′
∞; Ind

G(R)
P0(R)(λ

w0)⊗ Vλ∨)︸ ︷︷ ︸
=0

→ H0(g,K ′
∞;Dλ+1 ⊗ Vλ∨)

δ−→((((((((((
H1(g,K ′

∞;Vλ ⊗ Vλ∨)︸ ︷︷ ︸
=0

→ H1(g,K ′
∞; Ind

G(R)
P0(R)(λ

w0)⊗ Vλ∨)︸ ︷︷ ︸
=C

→ H1(g,K ′
∞;Dλ+1 ⊗ Vλ∨)

δ−→ H2(g,K ′
∞;Vλ ⊗ Vλ∨)︸ ︷︷ ︸
=C

→
(((((((((((((((

H2(g,K ′
∞; Ind

G(R)
P0(R)(λ

w0)⊗ Vλ∨)︸ ︷︷ ︸
=0

→ H2(g,K ′
∞;Dλ+1 ⊗ Vλ∨)→ 0
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so it follows thatH0(g,K ′
∞;Dλ+1 ⊗ Vλ∨) = H2(g,K ′

∞;Dλ+1 ⊗ Vλ∨) = 0 and we have a short exact

sequence

0→ H1(g,K ′
∞; Ind

G(R)
P0(R)(λ

w0)⊗ Vλ∨)︸ ︷︷ ︸
=C

→ H1(g,K ′
∞;Dλ+1 ⊗ Vλ∨)→ H2(g,K ′

∞;Vλ ⊗ Vλ∨)︸ ︷︷ ︸
=C

→ 0

so it follows thatH1(g,K ′
∞;Dλ ⊗ Vλ∨) ≃ C2.

Note that the second claim can be seen more directly: in this situation the (g,K ′
∞)-cohomology complex

HomK′
∞(∧•(g/k′),Dλ+1 ⊗ Vλ) simplifies to

HomK′
∞(∧•(g/k′),Dλ+1 ⊗ Vλ) =

(
0→ HomK′

∞(∧1(g/k′),Dλ+1 ⊗ Vλ)→ 0
)

and HomK′
∞(∧1(g/k′),Dλ+1 ⊗ Vλ) ≃ C2. Recalling that the corresponding (sl2,K∞)-moduleDλ+1 decom-

poses as a direct sumDλ+1 = D−
λ+1 ⊕D

+
λ+1, we have

H i(sl2,K∞;D±
λ ⊗ Vλ∨) =


C i = 1

0 otherwise

Vogan-Zuckerman Classification Having constructed the discrete series representations of GL2(R) and com-

puted their cohomology, we quickly recall how this is commensurate with the Vogan-Zuckerman classification of

irreducible admissible representations of GL2(R) with nonzero cohomology.

Let T 1
c be a maximal torus in the maximal compact subgroupK∞ ≃ U(1) ≃ SO(2) ofG1(R) = SL2(R) so

that the centralizer Tc of T 1
c is a maximal torus inG(R) = GL2(R). Let µ : Gm → T 1

c be a cocharacter defined

over R, let Zµ ⊆ G(R) be the corresponding centralizer, and let Qµ ⊆ G(C) be the corresponding parabolic

subgroup with Lie C-algebra q. Let λ ∈ X∗(TC) be a highest weight forG(C) which is det-self-dual, and suppose

that the highest weight λ is trivial on the semisimple part Z1
µ of Zµ ⊆ G(R), that is λ extends to a character

λ : Qµ → C×. We have two cases depending on µ, in each case obtaining a constraint on λ:

• (µ regular) We haveZµ =M0 andQµ = P0 with Lie C-algebra q = p0 andAq(λ) is a tempered (g,K ′
∞)-

module. The set of regular cocharactersX∗(T
1)0R is the complement of finitely many root hyperplanes and is

a disjoint union of connected components parameterized by the Weyl groupW . The representationsAq(λ)
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are locally constant in χ ∈ X∗(T
1)0R, and after choosing a basepoint [µ0] ∈ π0(X∗(T

1)0R) we obtain a

family of representations {Awµ0(λ)}w∈W which by Vogan-Zuckerman are pairwise non-isomorphic and

are the Harish-Chandra modules corresponding to discrete series representations ofG(R). Here we have no

constraint on λ and one possibility:

(i) Aq(λ) = Dλ+1 is the holomorphic discrete series representation (underlying holomorphic modular

forms of weightλ+2) whereH1(g,K ′
∞;Dλ+1⊗Vλ) is2-dimensional with Hodge numbers (λ+1, 0)

and (0, λ+ 1):

H1(g,K ′
∞;Dλ+1 ⊗ Vλ) =

H1(sl2,K∞;Dλ+1 ⊗ Vλ)

⊕H1(sl2,K∞;D−λ−1 ⊗ Vλ)
= C⊕ C

• (µ trivial) We have Zµ = G and Qµ = G with Lie C-algebra q = g. Here we must have λ = 0 and one

possibility:

(ii) Aq(0) = χ∞ ∈ {1, sign} is a character whereH0(g,K ′
∞;C) andH2(g,K ′

∞;C), are 1-dimensional

with Hodge numbers (0, 0) and (1, 1) respectively:

H0(g,K ′
∞;χ∞ ⊗ Vλ) = H0(sl2,K∞;χ∞ ⊗ Vλ) = C

H2(g,K ′
∞;χ∞ ⊗ Vλ) = H2(sl2,K∞;χ∞ ⊗ Vλ) = C

In particular, the irreducible admissible representations ofG(R) = GL2(R) with nonzero (g,K ′
∞)-cohomology

are either discrete series representations (with cohomology concentrated in middle degree), or 1-dimensional rep-

resentations (which are Langlands quotients associated to the minimal parabolic Q-subgroup of G) which have

cohomology as far from middle degree as possible.

Finally we summarize the constraints on the possible Hodge numbers appearing in intersection cohomology

provided by the above classification:

• (λ > 0) The only Hodge numbers appearing in IH i(SKfin
(C),Vλ) are given by

(λ+1,0) (0,λ+1). . .H1

• (λ = 0) The only Hodge numbers appearing in IH i(SKfin
(C),Vλ) are given by
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(0,0)

(1,0) (0,1)

(1,1)

H0

H1

H2

In particular for λ > 1 the cohomology must be concentrated in middle degree (and in this case intersection

cohomology, cuspidal cohomology, and inner cohomology will all agree), while for λ = 0 one simply finds the

expected Hodge diamond of a smooth projective curve.

3.3 Eisenstein Cohomology for GL2

The goal of this section is to compute the Eisenstein cohomology of local systems on modular curves. To that end,

we review the structure of automorphic Eisenstein series for GL2, and describe the Franke-Schwermer filtration

on spaces of automorphic forms for GL2 in terms of the poles of such automorphic Eisenstein series, and then

compute the relevant (g,K ′
∞)-cohomology.

3.3.1 Eisenstein Series for GL2

We review the spectral decomposition of L2(G(Q)AG(R)◦ \G(AQ)) forG = GL2: the continuous spectrum

L2
cont(G(Q)AG(R)◦ \G(AQ)) is described in terms of automorphic Eisenstein series, while the residual spectrum

L2
res(G(Q)AG(R)◦ \G(AQ)) is described in terms of the poles of such automorphic Eisenstein series.

Intertwining Operators and Normalization Factors To compute the Langlands normalization factor for the

minimal parabolic Q-subgroup we simply apply the Gindikin-Karepelevich formula:

Proposition 3.3.1. Let π : M0(Q)AP0(R)◦ \ M0(AQ) → C× be the character given by π = χ1 ⊠ χ2 for

unitary Hecke characters χ1, χ2 : Q×R>0 \A×
Q → C× withχ1χ2 = ω. For the simple reflectionw0 we have the

Langlands normalization factor

r(w0, πs) =
Λ(s, χ2

1ω
−1)

Λ(s+ 1, χ2
1ω

−1)ϵ(s, χ2
1ω

−1)
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Proof. Following the first convention, the coroot α∨ = f1 − f2 satisfies ⟨s, α∨⟩ = s1 − s2 = s and π ◦ α∨ =

χ1χ
−1
2 = χ2

1ω
−1, so by the Gindikin-Karepelevich formula we have

r(w0, πs) =
Λ(⟨s, α∨⟩, π ◦ α∨)

Λ(⟨s, α∨⟩+ 1, π ◦ α∨)ϵ(⟨s, α∨⟩, π ◦ α∨)

=
Λ(s1 − s2, χ1χ

−1
2 )

Λ(s1 − s2 + 1, χ1χ
−1
2 )ϵ(s1 − s2, χ1χ

−1
2 )

=
Λ(s, χ2

1ω
−1)

Λ(s+ 1, χ2
1ω

−1)ϵ(s, χ2
1ω

−1)

Now recall from the discussion of normalized intertwining operators that the poles ofM(w0, πs) in the region

ℜ(s) ≥ 0 are exactly the poles of the Langlands normalization factor r(w0, πs) in the same region. We obtain the

following:

Proposition 3.3.2. We have the following singularity ofM(w0, πs) intersecting the positive closed Weyl chamber

(aGP0
)∨+: for π = χ1 ⊠ χ2 = χ⊠ χ−1

1 ω, if χ1 = χ2 (that is if χ2
1 = ω) we have the singularity

Sω = χ1ν
1/2 ⊠ χ1ν

−1/2

Proof. In the region ℜ(s) ≥ 0 the Langlands normalization factor r(w0, πs) =
Λ(s,χ2

1ω
−1)

Λ(s+1,χ2
1ω

−1)ϵ(s,χ2
1ω

−1)
has a

pole precisely if the numerator Λ(s, χ2ω−1) has a pole, which can only happen if χ2
1 = ω in which case we have a

simple pole at s = 1, corresponding to the point (s1, s2) = (12 ,−
1
2).

Residues of Eisenstein Series and the Residual Spectrum for GL2 We now need to compute the residue of

the automorphic Eisenstein series EisGP0
(ϕs), taking into account the possible singularities intersecting the posi-

tive closed Weyl chamber (aGP0
)∨+. To that end we compute the L2-inner products of Poincare series by moving

contours to the unitary axis s ∈ i(aGP0
)∨:

Proposition 3.3.3. For ϕ ∈WP0,π and ϕ′ ∈
⊕

(P ′,π′)∈[P0,π]
WP ′,π′ theL2-inner product ⟨θϕ, θϕ′⟩ is given by

⟨θϕ, θϕ′⟩ =
∫
i(aGP0

)∨
A(ϕ, ϕ′)(πs)ds+ c⟨N(w0,Sχ)ϕ1, ϕ

′
1⟩

where c is a nonzero constant.
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Proof. Let ϕ ∈ WP0,π and ϕ′ ∈
⊕

(P ′,π′)∈[P0,π]
WP ′,π′ where π = χ1 ⊠ χ2 as before. Fixing s0 ∈ (aGP0

)∨

sufficiently positive we want to compute
∫
s0+i(aGP0

)∨ A(ϕ, ϕ
′)(πs)ds −

∫
i(aGP0

)∨ A(ϕ, ϕ
′)(πs)ds. To that end

we consider the contour integral limt→∞
∮
Ct
A(ϕ, ϕ′)(πs)ds, where the contour integrals at infinity vanish by

estimates on the intertwining operatorsM(w, πs) and by the rapid decay of ϕ and ϕ′ inℑ(s) since they are Paley-

Wiener. It follows by the residue theorem that

∫
s0+i(aGP0

)∨
A(ϕ, ϕ′)(πs)ds−

∫
i(aGP0

)∨
A(ϕ, ϕ′)(πs)ds = ResSχA(ϕ, ϕ

′)(πs)

Now recall that the Langlands normalization factor

r(w0, πs) =
Λ(s, χ2

1ω
−1)

Λ(s+ 1, χ2
1ω

−1)ϵ(s, χ2
1ω

−1)

has a pole at s = 1 if χ1 = χ2 where it is given

r(w0, πs) =
Z(s)

Z(s+ 1)

Then we have the residue

ResSχA(ϕ, ϕ
′)(πs) = Ress=1r(w0, πs)⟨N(w0,Sχ)ϕs, ϕ

′
s⟩

= Ress=1
Z(s)

Z(s+ 1)
⟨N(w0,Sχ)ϕs, ϕ

′
s⟩

= c⟨N(w0,Sχ)ϕ1, ϕ
′
1⟩

where c = Ress=1
Z(s)
Z(2) =

6
π , so it follows that theL2-inner product is given

⟨θϕ, θϕ′⟩ =
∫
s0+i(aGP0

)∨
A(ϕ, ϕ′)(πs)ds

=

∫
i(aGP0

)∨
A(ϕ, ϕ′)(πs)ds+ c⟨N(w0,Sχ)ϕ1, ϕ

′
1⟩

The same computation applies when Q is replaced by any number field F , in which case the nonzero constant

c instead involves Ress=1
ZF (s)
ZF (2)

. We obtain the following corollary:
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Corollary 3.3.4. The Eisenstein series and their residues forG = GL2 are given as follows: we have the Eisenstein

series

EisGP0
(IG(AQ)
P0(AQ)

(χ1ν
s ⊠ χ−1

1 ων−s)) s ∈ i(aGP0
)∨

and for χ2
1 = ω we have a pole at o = χ1ν

1/2 ⊠ χ1ν
−1/2 (that is at s = 0) with

⟨Ress=0Eis
G
P0
(IG(AQ)
P0(AQ)

(χ1ν
s ⊠ χ1ν

−s))⟩ ≃ χ1 ◦ det

It follows that we have a decomposition

L2(G(Q)AG(R)◦ \G(AQ)) = L2
disc(G(Q)AG(R)◦ \G(AQ))⊕ L2

cont(G(Q)AG(R)◦ \G(AQ))

where the continuous spectrum is given

L2
cont(G(Q)AG(R)◦ \G(AQ)) =

⊕
ω

⊕
χ1

∫ ⊕

i(aGP0
)∨
IG(AQ)
P0(AQ)

(χ1ν
s ⊠ χ−1

1 ων−s)ds

We have a further decomposition

L2
disc(G(Q)AG(R)◦ \G(AQ)) = L2

cusp(G(Q)AG(R)◦ \G(AQ))⊕ L2
res(G(Q)AG(R)◦ \G(AQ))

where the residual spectrum is given

L2
res(G(Q)AG(R)◦ \G(AQ)) =

⊕
ω

⊕
χ

χ2=ω

χ ◦ det

where the outer direct sum is taken over unitary Hecke characters ω : Q× \ A×
Q → C×, and the inner direct sum

is taken over Hecke characters χ : Q× \ A×
Q → C× with χ2 = ω.
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3.3.2 Eisenstein Cohomology for GL2

In this section we compute the Eisenstein cohomology as an HKfin
× Gal-module. First, we recall some facts

about the poles of Eisenstein series, and the evaluation points and infinitesimal characters which will enter into the

description of the Franke filtration for the Borel parabolic subgroup.

We begin by restating the results of the previous section on the location of poles of Eisenstein series:

Proposition 3.3.5. The automorphic Eisenstein series EisGP0
(ϕs) attached to a unitary cuspidal automorphic

representation π = χ1 ⊗ χ of M0(AQ) = GL1(AQ) × GL1(AQ) has a pole at s = ν ∈ (aGP0
)∨+ precisely

if ν = ρP0 and χ1 = 1 in which case we have a simple pole at s = 1 and the space spanned by the residues

Ress=1Eis
G
P1
(ϕs) is isomorphic to the 1-dimensional representation χ ◦ det.

We now record the following result on infinitesimal characters coming from the action of the Weyl group:

Proposition 3.3.6. LetVλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weightλ =

(λ1; 0) and letJλ be the ideal of finite codimension inZ(gC) annihilatingV ∨
λ . Letφ = {φP }P∈[P0] ∈ Φλ,[P0](G)

be the associate class of a unitary cuspidal automorphic representation π = χ1 ⊗ χ ∈ φP0 of M0(AQ) =

GL1(AQ) × GL1(AQ). Then the infinitesimal character ξ ∈ a∨⊥P ′ and the corresponding s0 ∈ a∨P ′ such that

s0 + ξ is annihilated byJλ are given by:

• For P ′ = P0 we have s0 in the Weyl orbit of λ+ ρP0 = (λ1 + 1; 0) and ξ = 0.

• For P ′ = Gwe have s0 = 0 and ξ is in the Weyl orbit of s+ ρP0 .

The Franke-Schwermer Filtration We now describe the structure of the Franke-Schwermer filtration. As

expected, the bottom piece is given by the Langlands quotient of normalized Borel parabolic induction, and the

top piece is given by normalized Borel parabolic induction.

Proposition 3.3.7. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1; 0). Let φ = {φP }P∈[P0] ∈ Φλ,[P0](G) be the associate class of a unitary cuspidal automorphic

representation π = χ1⊗χ ∈ φP0 ofM0(AQ) = GL1(AQ)×GL1(AQ). Then the Franke-Schwermer filtration

onAλ,[P0],φ(G) is given by

A1
λ,[P0],φ

(G) ⊆ A0
λ,[P0],φ

(G) = Aλ,[P0],φ(G)
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where A1
λ,[P0],φ

(G) is nontrivial precisely if λ1 = 0 and χ1 = 1, in which case we have an isomorphism of

G(A∞
Q )× (g,K∞)-modules

A1
λ,[P0],φ

(G) ≃ χ ◦ det

In any case have an isomorphism ofG(A∞
Q )× (g,K∞)-modules

A0
λ,[P0],φ

(G)/A1
λ,[P0],φ

(G) ≃ IG(AQ)
P0(AQ)

(χ1 ⊗ χ, λ1 + 1)⊗ Sym((aGP0
)∨C)

Proof. LetMλ,[P0],φ(G) be the set of tuples (P ′, π′, ν, s0) where P ′ ∈ [P0] is a standard parabolic Q-subgroup

ofGwith Levi decomposition P ′ =M ′N ′ containing an element of the associate class [P0], where π′ is a discrete

spectrum automorphic representation ofM ′(AQ) with cuspidal support π obtained as the residue at ν ∈ (aP
′

P0
)∨C

of the Eisenstein series attached to π ∈ φP0 , and where s0 ∈ a∨P ′,C is a point such thatℜ(s0) ∈ (aGP ′)∨+ is such

that s0 + ν + ξ is annihilated by Jλ. For m ∈ Z letMm
λ,[P0],φ

(G) be the subset of tuples (P ′, π′, ν, s0) such

that T (s0) = m, where T : a∨+P ′ → Z will be fixed at the end of the proof. Then we have an isomorphism of

G(A∞
Q )× (g,K ′

∞)-modules

Amλ,[P0],φ
(G)/Am+1

λ,[P0],φ
(G) ≃

⊕
(P ′,π′,ν,s0)∈Mm

λ,[P0],φ
(G)

IG(AQ)
P ′(AQ)

(π′, s0)⊗ Sym((aGP0
)∨C)

Now we have the following:

• For P ′ = P0 we have π′ = χ1 ⊠ χ hence ν = 0 ∈ (aP0
P0
)∨C = 0. By 3.3.6 such ν can only be obtained for

s0 = ±(λ1 + 1) and ξ = 0. It follows that

Mm
λ,[P0],φ

(G)P0 =


(P0, χ1 ⊗ χ, 0, s0)

if T (λ) = m and s0 = λ1 + 1 and ξ = 0

0 otherwise

• For P ′ = G since π′ is a residual representation of M0(AQ) = GL1(AQ) × GL1(AQ), by 3.3.5 we have

π′ = χ ◦ det hence χ1 = 1 and ξ = ρP0 . By 3.3.6 such ξ can only be obtained for λ1 = 0 and s0 = 0. It
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follows that

Mm
λ,[P0],φ

(G)G =


(G,χ ◦ det, ρP0 , (0, 0))

if T (0) = m and λ1 = 0 and χ1 = 1

0 otherwise

Now the result follows by taking the filtration defined by T (0) = 1 and T (λ+ 1) = 0.

Cohomology of Franke-Schwermer Filtration Recall that the Levi quotientM0(R) = GL1(R)×GL1(R)

admits a decompositionM0(R) =M ss
0 (R)×AP0(R)◦ whereM ss

0 (R) = {±1} × {±1} is semisimple with Lie

algebra mss
0 = 0 andAP0(R)◦ = R2

>0 is the connected component of the maximal central Q-split torusAP0 with

Lie algebra aP0 = R2. Recalling that K ′
∞ = AG(R)◦K∞ ≃ R>0SO(2), for K ′M0

∞ the image of K ′P0
∞ under

the canonical projection P0(R) → M0(R) we have K ′M0
∞ = R×, and for K ′Mss

0∞ the image of K ′P0
∞ under the

canonical projection P0(R)→M ss
0 (R) we haveK ′M0

∞ = {±1}.

Proposition 3.3.8. For ϵ1, ϵ ∈ {0, 1}we have

Hq(mss
0 ,K

′Mss
0∞ ;π∞ ⊗ (signϵ1 ⊗ signϵ)) ≃


C q = 0, π∞ ≃ signϵ1 ⊗ signϵ

0 otherwise

Proof. For G = SL2 recall that the Levi quotient M0(R) = GL1(R) admits a decomposition M0(R) =

M ss
0 (R) × AP0(R)◦ where M ss

0 (R) = {±1} is semisimple with Lie algebra mss
0 = 0 and AP0(R)◦ = R>0

is the connected component of the maximal central Q-split torus AP0 with Lie algebra aP0 = R. Recalling

that K∞ ≃ SO(2), for KM0
∞ the image of KP0

∞ under the canonical projection P0(R) → M0(R) we have

KM0
∞ = {±1}, and for KMss

0∞ the image of KP0
∞ under the canonical projection P0(R) → M ss

0 (R) we have

KM0
∞ = {±1}. For ϵ1 ∈ {0, 1}we have

Hq(mss
0 ,K

Mss
0∞ ;π∞ ⊗ signϵ1) ≃


C q = 0, π∞ ≃ signϵ1

0 otherwise

176



The result follows from this, noting that the (mss
0 ,K

′Mss
0∞ )-cohomology is independent of the character signϵ on

the second factor {±1} ofM ss
0 (R), as the factor R>0 ofK ′

∞ intersects this factor only at the identity.

Now there are two pieces of the Franke-Schwermer filtration whose (g,K ′
∞)-cohomology we need to com-

pute: we need to computeHq(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ) as well asHq(g,K ′

∞;A1
λ,[P0],φ

(G)) in the case where

A1
λ,[P0],φ

(G) is nontrivial.

Proposition 3.3.9. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1; 0). Let φ = {φP }P∈[P0] ∈ Φλ,[P0](G) be the associate class of a unitary cuspidal automorphic

representation π = χ1 ⊗ χ ∈ φP0 of M0(AQ) = GL1(AQ) × GL1(AQ). Then we have an isomorphism of

G(A∞
Q )-modules

Hq(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ) =


I
G(A∞

Q )

P0(A∞
Q )(πfin, λ1 + 1) q = 1, χ1,∞ = signλ1

0 otherwise

IfA1
λ,[P0],φ

(G) is nontrivial, that is precisely if λ1 = 0 and χ1 = 1, then we have an isomorphism of G(A∞
Q )-

modules

Hq(g,K ′
∞;A1

λ,[P0],φ
(G)⊗ Vλ) =


χfin ◦ det q = 0, 2

0 otherwise

Proof. For the first claim we have

Hq(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)

≃ Hq(g,K ′
∞; IG(AQ)

P1(AQ)
(π, s0)⊗ Sym((aGP0

)∨C)⊗ Vλ)

≃ Hq(g,K ′
∞; IG(R)

P0(R)(π∞, s0)⊗ Sym((aGP0
)∨C)⊗ Vλ)⊗ I

G(A∞
Q )

P0(A∞
Q )(πfin, s0)

By Borel-Wallach [20, III Theorem 3.3] there exists a unique w ∈ W such that π∞ ⊗ Cs0+ρP0 has nonzero

(m0,K
′M0
∞ )-cohomology with respect to Sym((aGP0

)∨C) ⊗ Vw·λ: we have w = w0 in the case s0 = λ1 + 1 and
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ξ = 0. Now recalling thatM0(R) =M ss
0 (R)×AP0(R)◦ and m0 = mss

0 ⊕ aP0 , by 3.3.8 we have

Hq(g,K ′
∞; IG(R)

P0(R)(π∞, λ1 + 1)⊗ Sym((aGP0
)∨C)⊗ Vλ)

≃ Hq−ℓ(w)(m0,K
′M0
∞ ;π∞ ⊗ Sym((aGP0

)∨C)⊗ Cλ+2ρP0
⊗ Vw·λ)

≃ Hq−ℓ(w)(mss
0 ,K

′Mss
0∞ ;π∞ ⊗ Vw·λ)

≃


C q = 1, χ1,∞ = signλ1

0 otherwise

For the second claim suppose thatA1
λ,[P0],φ

(G) is nontrivial, so that we are in the case λ = 0, ξ = 1, and there

exists a section ϕ of the normalized parabolic induction IG(AQ)
P0(AQ)

(π, s) such that the automorphic Eisenstein series

EisGP0
(ϕs) has pole at s = s0 = 0. Then we have

Hq(g,K ′
∞;A1

λ,[P0],φ
(G)⊗ Vλ)

≃ Hq(g,K ′
∞;χ ◦ det)

≃ Hq(g,K ′
∞;χ∞ ◦ det)⊗ χfin ◦ det

Now by Borel-Wallach the (g,K ′
∞)-cohomology of the 1-dimensional representation χ∞ ◦ det is given

Hq(g,K ′
∞;χ∞ ◦ sim) =


C q = 0, 2

0 otherwise

The result follows.

Eisenstein Cohomology Having computed the (g,K ′
∞)-cohomology of the pieces of the Franke-Schwermer

filtration, we are now in the position to compute Eisenstein cohomology. Up to indeterminacies regarding the

behavior of certain connecting morphisms in the case where A1
λ,[P0],φ

(G) is nontrivial, we have the following

result:
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Theorem 3.3.10. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1; 0). Let φ = {φP }P∈[P0] ∈ Φλ,[P0](G) be the associate class of a unitary cuspidal automorphic

representation π = χ1 ⊗ χ ∈ φP0 ofM0(AQ) = GL1(AQ)×GL1(AQ).

IfA1
λ,[P0],φ

(G) is trivial and if χ1,∞ = signλ1 then we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) ≃


I
G(A∞

Q )

P0(A∞
Q )(πfin, λ1 + 1) q = 1

0 otherwise

IfA1
λ,[P0],φ

(G) is nontrivial (λ1 = 0 and χ1 = 1), then (with assumption the 3.3.11 on connecting morphisms) we

have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P0],φ(G)) ≃


χfin ◦ det q = 0

K(χ) q = 1

0 otherwise

whereK(χ) is theG(A∞
Q )-module

K(χ) ≃ ker
(
I
G(A∞

Q )

P0(A∞
Q )(1⊗ χfin, 1)→ χfin ◦ det

)

Otherwise,H∗(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) = 0.

Proof. By definitionHq(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) = Hq(g,K ′

∞;A0
λ,[P0],φ

(G)⊗ Vλ), and ifA1
λ,[P0],φ

(G) is

trivial we clearly have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;A0

λ,[P0],φ
(G)⊗ Vλ) ≃ Hq(g,K ′

∞;
A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)
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If χ1,∞ = signλ1 then by 3.3.9 we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) ≃


Hq(g,K ′

∞;A0
λ,[P0],φ

(G)⊗ Vλ) q = 1

0 otherwise

≃


I
G(A∞

Q )

P0(A∞
Q )(πfin, λ1 + 1) q = 1

0 otherwise

If χ1,∞ ̸= signλ we haveH∗(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) = 0.

IfA1
λ,[P0],φ

(G) is nontrivial consider the short exact sequence ofG(A∞
Q )× (g,K∞)-modules

0→ A1
λ,[P0],φ

(G)→ A0
λ,[P0],φ

(G)→
A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
→ 0

which by 3.3.9 gives rise to a long exact sequence ofG(A∞
Q )-modules

0→ H0(g,K ′
∞;A1

λ,[P0],φ
(G))︸ ︷︷ ︸

≃χfin◦det

→ H0(g,K ′
∞;A0

λ,[P0],φ
(G))→

�����������

H0(g,K ′
∞;

A0
λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
)︸ ︷︷ ︸

=0

→
(((((((((((
H1(g,K ′

∞;A1
λ,[P0],φ

(G))︸ ︷︷ ︸
=0

→ H1(g,K ′
∞;A0

λ,[P0],φ
(G))→ H1(g,K ′

∞;
A0

λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
)︸ ︷︷ ︸

≃I
G(A∞Q )

P0(A∞Q )
(χ1,fin⊗χfin,λ1+1)

→ H2(g,K ′
∞;A1

λ,[P0],φ
(G))︸ ︷︷ ︸

≃χfin◦det

→ H2(g,K ′
∞;A0

λ,[P0],φ
(G))→

�����������

H2(g,K ′
∞;

A0
λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
)︸ ︷︷ ︸

=0

→ 0

Now we make the following assumption on connecting morphisms:

Assumption 3.3.11. IfA1
λ,[P0],φ

(G) is nontrivial as above, then connecting morphism

H1(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
)→ H2(g,K ′

∞;A1
λ,[P0],φ

(G))

is surjective, so the morphismH2(g,K ′
∞;A1

λ,[P0],φ
(G))→ H2(g,K ′

∞;A0
λ,[P0],φ

(G)) is zero.
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Granting this, it follows that we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;A0

λ,[P0],φ
(G)) ≃


Hq(g,K ′

∞;A1
λ,[P0],φ

(G)) q = 0

K(χ) q = 1

0 otherwise

≃


χfin ◦ det q = 0

K(χ) q = 1

0 otherwise

whereK(χ) is theG(A∞
Q )-module

K(χ) ≃ ker
(
H1(g,K ′

∞;
A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
)→ H2(g,K ′

∞;A1
λ,[P0],φ

(G))
)

≃ ker
(
I
G(A∞

Q )

P2(A∞
Q )(1⊗ χfin, 1)→ χfin ◦ det

)

The result follows.

The behavior of the connecting morphismH1(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
)→ H2(g,K ′

∞;A1
λ,[P0],φ

(G)) is subtle;

its behavior can be determined in this case by computing the behavior of certain modular symbols.

The HKfin
-modules in the above theorem will be paired with 1-dimensional Gal-modules. For an integer

n ∈ Z and for χ = χfin ⊗ χ∞ a (finite order) character of GL1(AQ) let Lnχ = ρχ(−n) be the 1-dimensional

ℓ-adic Gal-module attached to χ twisted by the n-th power of the ℓ-adic cyclotomic character, with

tr(Frobjp|Lnχ) = pnjc(χp)
j = pnjχ(p)j

Now we have the following result, which is conditional on the assumption 3.3.11 in the case λ1 = 0:

Theorem 3.3.12. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1; 0), and let Vλ be the corresponding ℓ-adic local system on SKfin
. Then (with the assumption 3.3.11 on

connecting morphisms in the case λ1 = 0) the Eisenstein cohomologyH∗
Eis(SKfin

,Vλ) is concentrated in degrees
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0, 1 and given as anHKfin
×Gal-module by

H0
Eis,[P0]

(SKfin
,Vλ) =


⊕
χ

(χfin ◦ det)Kfin ⊠ L0
χ λ1 = 0

0 otherwise

H1
Eis,[P0]

(SKfin
,Vλ) =



⊕
χ

K(χ)Kfin ⊠ L1
χ

⊕
⊕
χ1,χ
χ1 ̸=1
χ1,∞=1

I
G(A∞

Q )

P0(A∞
Q )(χ1,fin ⊗ χfin, 1)

Kfin ⊠ L1
χ1χ λ1 = 0

⊕
χ1,χ

χ1,∞=signλ1

I
G(A∞

Q )

P0(A∞
Q )(χ1,fin ⊗ χfin, λ1 + 1)Kfin ⊠ Lλ+1

χ1χ λ1 > 0

whereK(χ) is given by

K(χ) = ker
(
I
G(A∞

Q )

P0(A∞
Q )(1⊗ χfin, 1)→ χfin ◦ det

)

Proof. The result follows by taking the direct sum over associate classes of unitary (cuspidal) automorphic repre-

sentations π = χ1 ⊠ χ ofM0(AQ) = GL1(AQ)×GL1(AQ) of the contributions to 3.3.10. The Galois actions

can be obtained from the parabolic terms in the GL2 trace formula.

By Pink the Tate twists are given as follows. For λ = nω and d(λ) = n
2 the Galois action must be twisted by

Ld(λ)−⟨µ,w·λ⟩ where µ : GL1 → GL2 is the cocharacter given by t 7→ diag(t, 1). Since ω(diag(t, 1)) = t1/2 we

have ⟨µ,w · λ⟩ = nw

2 forw ∈W and we obtain the following Tate twists:

w nw ⟨µ,w · λ⟩ d(λ)− ⟨µ,w · λ⟩

1 n n 0

w0 −n− 2 −n− 1 n+ 1

Recalling that n is the integer λ1 ≥ 0, this gives the Tate twists in the theorem.

One can also state a Poincare dual version of the above theorem for compactly supported Eisenstein cohomology

by modifying the above Tate twists.
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3.4 Intersection and Cuspidal Cohomology for GL2

The goal of this section is to compute the intersetion and cuspidal cohomology of local systems on modular curves.

To that end, we briefely explain how the Langlands-Kottwitz method is used to justify the Galois action on ℓ-adic

cohomology, and then compute the relevant (g,K ′
∞)-cohomology.

Langlands-Kottwitz Method Although there are simpler ways to explain the Galois action on the cohomology

of modular curves, one method which generalizes nicely to higher dimensional Shimura varieties is the Langlands-

Kottwitz method.

First recall that forG = GL2 overQ, Arthur’s conjectures describe (rather trivially in this case) a decomposition

L2
disc(G(Q)AG(R)◦ \G(AQ)) ≃

⊕
ω

⊕
ψ∈Ψdisc(G,ω)

Aψ

where eachAψ is a near-equivalence class of discrete spectrum automorphic representations ofG(AQ), where the

first direct sum is taken over unitary Hecke characters ω : Q× \ A×
Q → C×, and the second direct sum is taken

over a set Ψdisc(G,ω) of equivalence classes of admissible discrete global A-parameters ψ : LQ × SL2(C)→ Ĝ;

these are formal unorderd isobaric sumsψ =⊞i µi⊠ νdi where µi is anω-self dual unitary cuspidal automorphic

representation of GLni(AQ) and νdi is the irreducible representation of SL2(C) of dimension di, and in this case

we require
∑

i nidi = 2. This gives two possible shapes of global A-parameters:

µ⊠ 1 χ⊠ ν2

Let Ψdisc,gen(G,ω) and Ψdisc,1dim(G,ω) be the corresponding sets of A-parameters. By strong multiplicity 1, for

every ψ ∈ Ψdisc(G,ω) the packet Π(ψ) = {π} has size 1 and its unique member has multiplicity m(π) = 1.

Moreover the member of this packet is simply the representation appearing in the A-parameter: for ψ = µ⊠ 1 ∈

Ψdisc,gen(G,ω) we have π = µ, for ψ = χ ⊠ ν2 ∈ Ψdisc,1dim(G,ω) we have π = χ ◦ det. We obtain a

decomposition

L2
disc(G(Q)AG(R)◦ \G(AQ)) ≃

⊕
ω

⊕
ψ∈Ψdisc,gen(G,ω)

(ψ=µ⊠1)

µ⊕
⊕
ω

⊕
ψ∈Ψdisc,1dim(G,ω)

(ψ=χ⊠1)

χ ◦ det =
⊕
π

π ⊕
⊕
χ

χ ◦ det
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In this case the global A-parameters see the difference between the cuspidal automorphic representations π and the

non-cuspidal 1-dimensional representations χ ◦ det. We obtain a decomposition

L2
cusp(G(Q)AG(R)◦ \G(AQ)) ≃

⊕
ω

⊕
ψ∈Ψdisc,gen(G,ω)

(ψ=µ⊠1)

µ =
⊕
π

π

LetKfin ⊆ G(A∞
Q ) be a compact open subgroup, and let p be a prime such thatKp = G(Zp) is hyperspecial, so

that SKfin
has good reduction at p. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with

highest weight λ = (λ1; 0), and let Vλ be the corresponding ℓ-adic local system on SKfin
. Consider the ℓ-adic

intersection cohomology

IH∗
λ =

∑
i≥0

(−1)i[IH i(SBB
Kfin,Fp ,Vλ)]

as an element of the Grothendieck group ofHKfin
×Gal(Fp/Fp)-modules. The Langlands-Kottwitz method in

this case says that for all j ≥ 1 one has an equality

tr(Frobjpf
G|IH∗

λ) = STFG(fG)

where fG ∈ C∞
c (G(AQ)) is a certain explicit test function.

In this case the Arthur-Selberg trace formula is already stable: we have STFG(fG) = TFG(fG). In view of

the above decomposition, the stable trace formula STFG(fG) takes the form

STFG(fG) =
∑
π

∏
v

tr(πv(f
G
v )) +

∑
χ

∏
v

tr(χv ◦ det(fGv ))

where π and χ are as in the description of the automorphic discrete spectrum, and where fG ∈ C∞
c (G(AQ)) is

a certain carefully chosen test function described by Kottwitz. Let us say a word about this test function, all too

briefly.

For πp an irreducible admissible representation of GL2(Qp) which is unramified, that is a subquotient of

the normalized parabolic induction χ1,p × χ2,p = IG(Qp)
P0(Qp)(χ1,p ⊠ χ2,p) for unramified characters χ1,p, χ2,p :

Q×
p → C×, corresponding to a conjugacy class c(πp) × Frobp in LGp = GL2(C) ⋊ ⟨Frobp⟩, write c(πp) =
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diag(c1(πp), c2(πp)) for the Satake parameters of πp where ci(πp) = χi,p(p) ∈ C×. Consider the test function

at p given by

fGp = 1K
pj
µ(p−1)K

pj
Kpj = GL2(Zpj ) ⊆ GL2(Qpj )

Then by Kottwitz we have the trace

tr(πp(f
G
p )) = p

1
2
j(c1(πp)

j + c2(πp)
j)

Away from p and∞, we can choose test functions fp,∞G ∈ C∞
c (Kp,∞ \ G(Ap,∞Q )/Kp,∞) which project onto

individual (packets of) representations {πfin} so as to isolate their contirbutions to cohomology. At∞, we choose

the test function fG∞ = −fDλ1+1
which is minus the pseudocoefficient of the discrete series representationsDλ1+1

ofG(R).

We should remark that the usual choice of ℓ-adic local systems on SKfin
constructed previously in terms of the

cohomology of the universal family of elliptic curves, involves the highest weight λ = (λ1;λ1). For these ℓ-adic

local systems, the above formulas for the trace of Frobenius should be multiplied by an additional factor of p
λ1
2
j ,

corresponding to a half Tate twist.

Intersection and Cuspidal Cohomology To state the result, we need to introduce the Hecke modules and

ℓ-adic Galois representations which appear.

For an integer k ≥ 2 let SKfin
[k] be theHKfin

×Gal-module attached to the space of cuspidal automorphic

representations π = πfin ⊗ π∞ of GL2(AQ) with πKfin
fin ̸= 0 and π∞ = Dk−1(det

k−1) a holomorphic discrete

series representation. We have a decomposition

SKfin
[k] =

⊕
π

πKfin
fin ⊠ ρπ

where ρπ is the irreducible 2-dimensional ℓ-adic Gal-module attached to π, with

tr(Frobjp|ρπ) = p
k−1
2
j(c1(πp)

j + c2(πp)
j)
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For an integer n ∈ Z and for χ = χfin ⊗ χ∞ a (finite order) character of GL1(AQ) let Lnχ = ρχ(−n) be the

1-dimensional ℓ-adic Gal-module attached to χ twisted by the n-th power of the ℓ-adic cyclotomic character, with

tr(Frobjp|Lnχ) = pnjc(χp)
j = pnjχ(p)j

Now we have the following result:

Theorem 3.4.1. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1; 0), and let Vλ be the corresponding ℓ-adic local system on SKfin
. The ℓ-adic intersection cohomology

IH∗(SKfin
,Vλ) is concentrated in degrees 0, 1, 2 and given as anHKfin

×Gal-module by

IH0(SKfin
,Vλ) =


⊕
χ

(χfin ◦ det)Kfin ⊠ L0
χ λ = 0

0 otherwise

IH1(SKfin
,Vλ) = SKfin

[λ+ 2] =
⊕
π

πKfin
fin ⊠ ρπ

IH2(SKfin
,Vλ) =


⊕
χ

(χfin ◦ det)Kfin ⊠ L1
χ λ = 0

0 otherwise

In particular the ℓ-adic cuspidal cohomologyH∗
cusp(SKfin

,Vλ) is concentrated in degree 1 and given as anHKfin
×

Gal-module by

H1
cusp(SKfin

,Vλ) = SKfin
[λ+ 2] =

⊕
π

πKfin
fin ⊠ ρπ

Proof. We have the following:

(i) For π = πfin ⊗ π∞ a cuspidal automorphic representation of G(AQ) with πKfin
fin ̸= 0 and with π∞ a

cohomological (g,K ′
∞)-module with central and infinitesimal characters determined by those of Vλ, we

must have that π∞ = Dλ1+1 is a holomorphic discrete series representation.
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Let fG∞ = −fDλ+1
be minus the pseudocoefficient of Dλ1+1 so that tr(π∞(fG∞)) = −1. Let fp,∞G ∈

C∞
c (Kp,∞ \G(Ap,∞Q )/Kp,∞) be a correspondence projecting onto {πfin}. By Kottwitz we have the trace

tr(Frobjp|IH∗
λ,{πfin}) = tr(π∞(fG∞))tr(πfin(f

p,∞
G ))p

λ1+1
2

j(c1(πp)
j + c2(πp)

j)

= −p
λ1+1

2
j(c1(πp)

j + c2(πp)
j)

hence IH∗
λ,{πfin} = πKfin

fin ⊠ ρπ as anHKfin
×Gal-module.

(ii) For π = πfin ⊗ π∞ a residual automorphic representation of G(AQ) with πKfin
fin ̸= 0 and with π∞ a

cohomological (g,K ′
∞)-module with central and infinitesimal characters determined by those of Vλ, we

must have that λ1 = 0 and π∞ ∈ {1, sign} is a 1-dimensional representation.

Let fG∞ = −fDλ+1
be minus the pseudocoefficient of Dλ+1 so that tr(π∞(fG∞)) = 1. Let fp,∞G ∈

C∞
c (Kp,∞ \G(Ap,∞Q )/Kp,∞) be a correspondence projecting onto {πfin}. By Kottwitz we have the trace

tr(Frobjp|IH∗
{πfin}) = tr(π∞(fG∞))tr(πfin(f

p,∞
G ))p

λ1+1
2

j(c(χp)
jp

1
2
j + c(χp)

jp−
1
2
j)

= p
λ1+1

2
j(c(χp)

jp
1
2
j + c(χp)

jp−
1
2
j)

hence IH∗
{πfin} = (χfin ◦ det)Kfin ⊠ (L0

χ ⊕ L1
χ) as anHKfin

×Gal-module.

By Gabber’s purity theorem the cuspidal contributions πKfin
fin ⊠ ρπ are concentrated in degree 1, while the residual

contributions (χfin ◦ det)Kfin ⊠ (L0
χ ⊕ L1

χ) are concentrated in degrees 0 and 2, with (χfin ◦ det)Kfin ⊠ L0
χ

concentrated in degree 0 and (χfin◦det)Kfin⊠L1
χ concentrated in degree 2. It follows that we have an isomorphism

ofHKfin
×Gal-modules

IH0(SKfin
,Vλ) =


⊕
χ

(χfin ◦ det)Kfin ⊠ L0
χ λ = 0

0 otherwise

IH1(SKfin
,Vλ) = SKfin

[λ+ 2] =
⊕
π

πKfin
fin ⊠ ρπ

IH2(SKfin
,Vλ) =


⊕
χ

(χfin ◦ det)Kfin ⊠ L1
χ λ = 0

0 otherwise
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and since the only cuspidal contributions are concentrated in degree 1 it follows that we have an isomorphism of

HKfin
×Gal-modulesH1

cusp(SKfin
,Vλ) = IH1(SKfin

,Vλ) and the result follows.

3.5 Example: Cohomology of Local Systems onA1

LetA1 be the moduli stack of elliptic curves. We revisit earlier results and compute the cohomologyH∗(A1,Vλ)

as a Gal-module.

Theorem 3.5.1. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight λ =

(λ1;λ1) with λ1 even, and let Vλ be the corresponding ℓ-adic local system on A1. The compactly supported

cohomologyH∗
c (A1,Vλ) is supported in degrees 1 and 2 and is given as a Gal-module by

H1
c (A1,Vλ) = SΓ(1)[λ1 + 2]

⊕


L0 λ1 > 0 even

0 otherwise

H2
c (A1,Vλ) =


L1 λ1 = 0

0 otherwise

Proof. Recall that we have H i
c(A1,Vλ) ≃ H i

cusp(A1,Vλ) ⊕ H i
c,Eis(A1,Vλ), and Poincare dually we have

H i(A1,Vλ) ≃ H i
cusp(A1,Vλ)⊕H i

Eis(A1,Vλ). The description of cuspidal cohomology follows immediately

from 3.4.1: the cuspidal cohomology is concentrated in degree 1 and given as a Gal-module by

H1
cusp(A1,Vλ) = SΓ(1)[λ1 + 2]
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The description of Eisenstein cohomology follows immediately from 3.3.12: the Eisenstein cohomology is concen-

trated in degrees 0 and 1 and given as a Gal-module by

H0
Eis(A1,Vλ) =


L0 λ = 0

0 otherwise

H1
Eis(A1,Vλ) =


Lλ+1 λ > 0 even

0 otherwise

The result follows by Poincare duality.

Congruences The 2-dimensional ℓ-adic Galois representations attached to automorphic representations for

GL2(AQ) of general type are irreducible. On the other hand, they need not remain irreducible after reduction

modulo a prime l. When this happens, we obtain congruences for the Hecke eigenvalues of such automorphic

representations. Such congruences, and the divisivility ofL-values which controls them, are well known. We recall

some results around these, particularly in the case of level 1.

Let f ∈ Sk(Γ(1)) be a cuspidal Hecke eigenform of weight k for Γ(1) = SL2(Z). let p be a prime, and

let (α0,p(f), αp,1(f)) ∈ C2 be the Satake parameters of f at p. For q = pn a power of p consider the Hecke

eigenvalues

λq(f) = αp,0(f)
n + (αp,0(f)αp,1(f))

n

Let Q(f) be the number field generated by the Hecke eigenvalues λp(f) for primes p.

Now one has certain congruences between the Hecke eigenvaluesλp(f) and the Hecke eigenvalues of Eisenstein

series modulo certain congruence primes dividing certain expressions involving L-values which are related to the

constant terms of Eisenstein series, so that these Eisenstein series behave as cusp forms modulo such congruence

primes.

The constant terms of Eisenstein series are related to the expression

ζ(λ1 + 1)

ζ(λ1 + 2)
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and we are interested the denominators of ζ(λ1+2)

(2πi)λ1+2 where we have divided by the Deligne period (2πi)k of Q(k)

in order to obtain an element of Q. Let Den( (2πi)
λ1+2

ζ(λ1+2) ) be the corresponding fractional ideal of Z. Then we have

the following:

Proposition 3.5.2. Let λ1 ≥ 0 be an integer. Suppose that ℓ > λ1 + 2 is a prime such that

ℓn | Den
((2πi)λ1+2

ζ(λ1 + 2)

)

Then there exists a normalized cuspidal Hecke eigenform f ∈ Sλ1+2(Γ(1)) of weight λ1 + 2 for Γ(1) = SL2(Z)

such that

λp(f) ≡ pλ1+1 + 1 mod ln

for every prime p and for every prime l of Q(f) above the prime ℓ of Q.

The first example of such a congruence was discovered by Ramanujan:

Example 3.5.3. Let λ1 = 10. In this case the prime ℓ = 691 divides ζ(12)
(2πi)12

= 691
2615348736000 . Then there exists a

normalized cuspidal Hecke eigenform f ∈ S12(Γ(1)) of weight 12 for Γ(1) = SL2(Z) such that

λp(f) ≡ p11 + 1 mod 691

for every prime p. Indeed f = ∆ is the discriminant cusp form

∆ = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn

and the congruence τ(p) ≡ p11 + 1 mod 691 for every prime p is Ramanujan’s congruence.

Such congruences, which are controlled by the divisibility of L-values, correspond to the reducibility of Ga-

lois representations modulo ℓ (up to semisimplification). The (conjectural) situation can be summarized by the

following diagram:
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Denominator

ordℓ(
ζ(k)
(2πi)k

) > 0

Congruence

λq(f) ≡ 1 + qk−1 mod l

Reducibility

ρssf = 1⊕ χk−1

Eisenstein series

Chebotarev density
Brauer-Nesbitt

Bloch-Kato

Deligne
Fontaine

3.6 Example: Cohomology of Local Systems onA1[2]

LetA1[2] be the moduli stack of elliptic curves with full level 2 structure. The group GL2(F2) ≃ SL2(F2) acts

onA1[2]. We compute the cohomologyH∗(A1[2],Vλ) as a GL2(F2)×Gal-module.

We have isomorphisms GL2(F2) ≃ SL2(F2) ≃ S3 so that the irreducible representations of GL2(F2) can be

labeled by partitions of 3. We have

Representation of GL2(F2) θ0 θ1 θ2

Representation of S3 V3 V13 V2,1

Dimension 1 1 2

in particular θ0 = 1GL2(F2) is the trivial representation, θ1 is the sign representation, and θ2 = StGL2(F2) is the

Steinberg representation.

The local components of cusp forms for Γ(2) are particularly simple. First, recall that we have a Hecke-

equivariant isomorphism

Sk(Γ(2)) ≃ Sk(Γ0(4)) ≃ Snew
k (Γ0(4))⊕ 2Snew

k (Γ0(2))⊕ 3Sk(Γ(1))

For f a cusp form of weight k ≥ 2 for Γ(2) let π =
⊗

v πv be the cuspidal automorphic representation of

GL2(AQ) generated by f . At the Archmedean place we have the local component π∞ = Dk−1 the holomorphic
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discrete series representation of GL2(R) with Harish-Chandra parameter k − 1 and trivial central character. At

the finite places p ̸= 2 we have the local component πp = χp × χ−1
p an unramified principal series representation

of GL2(Qp) for χp an unramified character of Q×
p with χ2

p ̸= | · |±1
p . At the place v = 2 the local component π2

is one of the following (see [100, Lemma 5.22]):

• The unramified principal series representation π2 = χ2 × χ−1
2 for χ2 an unramified character of Q×

2 with

χ2
2 ̸= | · |

±1
2 . This occurs precisely if f is a newform for Γ(1), in which case ϵ(12 , π2) = 1.

• The Steinberg representation π2 = StGL2(Q2). This occurs precisely if f is a newform for Γ0(2) with

Atkin-Lehner eigenvalue ϵ(12 , π2) = −1.

• The twisted Steinberg representationπ2 = ξStGL2(Q2) where ξ is the unique unramified quadratic character

of Q×
2 . This occurs precisely if f is a newform for Γ0(2) with Atkin-Lehner eigenvalue ϵ(12 , π2) = 1.

• The unique depth 0 supercuspidal representation π2 = θ of GL2(Q2) with trivial central character. This

occurs precisely if f is a newform for Γ0(4), in which case ϵ(12 , π2) = −1 (see [100, Lemma 5.21]).

Under the isomorphism GL2(F2) ≃ S3 the hyperspecial parahoric restriction of these local components is given

rK2(χ2 × χ−1
2 ) = V3 ⊕ V2,1, rK2(StGL2(Q2)) = rK2(ξStGL2(Q2)) = V2,1 (the standard representation), and

rK2(θ2) = V13 (the sign representation). In particular we have an isomorphism of GL2(F2)×Gal-modules

SΓ(2)[k] ≃ V13 ⊠ SnewΓ0(4)
[k]⊕ V2,1 ⊠ SnewΓ0(2)

[k]⊕ (V3 ⊕ V2,1)⊠ SΓ(1)[k]

Now we have the following:

Theorem 3.6.1. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight λ =

(λ1;λ1) with λ1 even, and let Vλ be the corresponding ℓ-adic local system onA1[2]. The compactly supported
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cohomologyH∗
c (A1[2],Vλ) is concentrated in degrees 1 and 2 and is given as a GL2(F2)×Gal-module by

H1
c (A1[2],Vλ) = V13 ⊠ SnewΓ0(4)

[λ1 + 2]⊕ V2,1 ⊠ SnewΓ0(2)
[λ1 + 2]⊕ (V3 ⊕ V2,1)⊠ SΓ(1)[λ1 + 2]

⊕


V2,1 ⊠ L0 λ1 = 0

(V3 ⊕ V2,1)⊠ L0 λ1 > 0 even

H2
c (A1[2],Vλ) =


V3 ⊠ L1 λ1 = 0

0 otherwise

In particular the compactly supported cohomologyH∗
c (A1[2],Vλ) is given as a Gal-module by

H1
c (A1[2],Vλ) = SnewΓ0(4)

[λ1 + 2]⊕ 2SnewΓ0(2)
[λ1 + 2]⊕ SΓ(1)[λ1 + 2]

⊕


2L0 λ1 = 0

3L0 λ1 > 0 even

H2
c (A1[2],Vλ) =


L1 λ1 = 0

0 otherwise

Proof. Recall that we have H i
c(A1[2],Vλ) ≃ H i

cusp(A1[2],Vλ) ⊕ H i
c,Eis(A1[2],Vλ), and Poincare dually we

haveH i(A1[2],Vλ) ≃ H i
cusp(A1[2],Vλ)⊕H i

Eis(A1[2],Vλ). The description of cuspidal cohomology follows

from 3.4.1 and from the above remarks on local components of cusp forms for Γ(2) and their parahoric restrictions.

The description of Eisenstein cohomology follows from 3.3.12 and from the following observations. Recall that for

Γ(2) we have precisely 3 Eisenstein series for weights k ≥ 4 even. We have precisely 2 Eisenstein series for weight

k = 2. For λ1 > 0 even the Eisenstein cohomology is concentrated in degree 1 and given as a GL2(F2) × Gal-

module by

H1
Eis(A1[2],Vλ) = I

G(A∞
Q )

P0(A∞
Q )(1⊠ 1, λ+ 1)K(2) = V3 ⊕ V2,1
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which has dimension 3 as expected. For λ1 = 0 the Eisenstein cohomology iss concentrated in degrees 0 and 1 and

given as a GL2(F2)×Gal-module by

H0
Eis(A1[2],Vλ) = (1 ◦ det)K(2) = V3

H1
Eis(A1[2],Vλ) = ker

(
I
G(A∞

Q )

P0(A∞
Q )(1⊠ 1, 1)→ 1 ◦ det

)K(2)
= V2,1

which have dimensions 1 and 2 as expected. The result follows by Poincare duality.
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Chapter 4

Cohomology of Siegel Modular

Threefolds

4.1 Classical and Adelic Siegel Modular Threefolds

Shimura Datum LetG = GSp4 be the reductive group of symplectic similitudes over Q:

G = {(g, c) ∈ GL4 ×GL1 | g⊤Jg = cJ} J =

(
1

1
−1

−1

)

We have the similitude character sim : G→ GL1 given by (g, c) 7→ cwhose kernelG1 = Sp4 is the symplectic

group, the derived group ofG.

Consider the maximal torus T ofG given by

T = {diag(t1, t2, t3, t4)|t1, t2, t3, t4 ∈ Gm, t1t4 = t2t3}

= {diag(t1, t2, t/t2, t/t1)|t1, t2, t ∈ Gm} ≃ GL1 ×GL1 ×GL1

Since G is already Q-split, T ≃ GL1 × GL1 ≃ GL1 is a Q-split maximal torus and AG = Z(G) ≃ GL1 is a

Q-split maximal torus in the center ofG. In particular,AG(R)◦ ≃ R>0. In this case we have the Langlands dual

group Ĝ = GSpin5(C) the spin similitude group, and an exceptional isomorphism GSpin5(C) ≃ GSp4(C).
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We now consider the locally symmetric space associated toG, and the associated Shimura datum. Consider the

element

I0 =

(
1

1
−1

−1

)
∈ Sp4(R)

The centralizer K∞ of I0 in G1(R) = Sp4(R) is the connected component of a maximal compact subgroup

of Sp4(R), and is isomorphic to SU(2). The centralizer K ′
∞ of I0 in G(R) = GSp4(R) is connected, and is

isomorphic to AG(R)◦K∞ = R>0U(2). The symmetric space X = X+ ⨿X− = G(R)/K ′
∞ = AG(R)◦ \

G(R)/K∞ is a Hermitian symmetric domain and is identified with the space of 2-dimensional linear subspaces of

R4 on which the skew-symmetric bilinear form (v1, v2) 7→ v⊤1 adiag(i, i, i, i)v2 is positive or negative definite,

which is identified with the Siegel double half space

H±
2 = H+

2 ⨿ H−
2 = {τ ∈ M2(C)|τ symmetric,ℑ(τ) positive or negative definite}

Let x0 ∈ X be the subspace generated by the standard basis vectors e3, e4 ∈ R4. ThenG(R) acts transitively on

X by the injection GSp4(R) ⊆ GL4(R). Consider the G(R)-equivariant morphism h : X → HomR(S, GR)

given by

h0 = h(x0) = (z 7→ diag(z, z, 1, 1))

Then (G,X, h) is a Shimura datum in the sense of Deligne and Pink.

Shimura Varieties and Connected Components LetKfin ⊆ G(A∞
Q ) be a compact open subgroup. LetSKfin

be the corresponding Shimura variety which is a quasiprojective variety over Q (smooth over Q ifKfin is neat, and

considered as a stack otherwise) with set of complex points given by

SKfin
(C) = G(Q) \ H±

2 ×G(A
∞
Q )/Kfin
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The Shimura varietySKfin
is connected but in general not geometrically connected: the set of connected components

of SKfin
(C) is given by

π0(SKfin
(C)) = GSp4(Q) \ {±1} ×GSp4(A∞

Q )/Kfin

≃ Q>0 \GL1(A∞
Q )/det(Kfin)

≃ Ẑ×/det(Kfin)

where the first isomorphism is given by the determinant and bySp4(A∞
Q ) = Sp4(Q)Kfin by strong approximation,

and the second isomorphism is given by the decomposition GL1(A∞
Q ) = Q>0Ẑ× which induces a decomposition

GSp4(A∞
Q ) =

∐
a∈Ẑ×/det(Kfin)

GSp+4 (Q)diag(1, a)Kfin

For a ∈ Ẑ×/det(Kfin) consider the morphism H2 → SKfin
(C) sending z ∈ H2 to the point represented by

(z, diag(1, 1, a, a)), then we obtain an embedding of classical Siegel modular threefolds Γa \ H2 ↪→ SKfin
(C)

where

Γa = diag(1, 1, a, a)Kfindiag(1, 1, a
−1, a−1) ∩GSp+4 (Q)

In particular SKfin
(C) is a disjoint union of classical Siegel modular threefolds Γa \ H2.

Moduli Problems and Level Structures The Shimura variety SKfin
is defined over Q (in fact over Z[ 1N ] for

Kfin =
∏
p|N Kp ×

∏
p∤N GSp4(Zp)) by the moduli functor

SKfin
: SchZ[ 1

N
] → Set

S 7→

Tuples (A, λ, η) whereA/S is an Abelian surface

λ is a polarization and η is aKfin-level structure


/≃

where the Kfin-level structure is a Kfin-conjugacy class of isomorphism η : (A∞
Q )4

∼−→ H1(A(C),A∞
Q ), and

(A1, λ1, η1) ≃ (A2, λ2, η2) are equivalent precisely if there exists an isogenyϕ : A1 → A2 such thatϕ∗ ◦η1 = η2.

The moduli functor SKfin
: SchZ[ 1

N
] → Grpd is defined similarly. Each connected component of SKfin

is defined
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overQab (in fact overZ[ 1N , µN ]), and the induced action ofGal(Qab/Q) = Ẑ× on the set of geometric connected

components π0(SKfin
) = Ẑ×/det(Kfin) is given by the usual multiplication in Ẑ× by class field theory.

We now collect some running examples of moduli problems and level structures for modular curves, following

[115].

Example 4.1.1. Let Γ(N) denote the inverse image of the identity under the reduction morphism Sp4(Z) →

Sp4(Z/NZ):

Γ(N) =

{
γ ∈ Sp4(Z)|γ ≡

(
1
1
1
1

)
≡ N

}

The corresponding quotientΓ(N)\H2 of the Siegel upper half plane H2 is the classical Siegel modular threefold of

full levelN overC. LetK(N) denote the inverse image of the identity under the reduction morphismGSp4(Ẑ)→

GSp4(Z/NZ):

K(N) =
∏
p|N

K +
p ×

∏
p∤N

GSp4(Zp) =
{
γ ∈ GSp4(Ẑ)|γ ≡

(
1
1
1
1

)
≡ N

}

The groupK(N) corresponds to the moduli problem

SK(N) : SchZ[ 1
N
] → Set

S 7→



Tuples (A, λ, x1, x2, x3, x4) whereA/S is an Abelian surface

λ is a principal polarization ofA/S and

x1, x2, x3, x4 ∈ A[N ](S) are points of exact orderN

such thatA[N ] is generated by x1, x2, x3, x4


/≃

which is representable by a scheme forN ≥ 3 (and representable by a Deligne-Mumford stack forN = 1, 2, where

the moduli functor SK(N) : SchZ[ 1
N
] → Grpd is defined similarly). A similar issue of connected components

exists as in the case of modular curves, and a similar discussion applies to the modified congruence subgroup

K ′(N) =

{
γ ∈ GSp4(Ẑ)|γ ≡

(
1
1
∗
∗

)
≡ N

}
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Example 4.1.2. Let ΓP1
0 (N) denote the inverse image of the Siegel parabolic subgroup under the reduction mor-

phism Sp4(Z)→ Sp4(Z/NZ):

ΓP1
0 (N) =

{
γ ∈ Sp4(Z)|γ ≡

( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

)
mod N

}

The corresponding quotient ΓP1
0 (N) \H2 of the Siegel upper half plane H2 is the classical Siegel modular threefold

of (Siegel) level Γ0(N) over C. LetKP1
0 (N) denote the inverse image of the Siegel parabolic subgroup under the

reduction morphism GSp4(Ẑ)→ GSp4(Z/NZ):

KP1
0 (N) =

∏
p|N

I P1
p ×

∏
p∤N

GSp4(Zp) =
{
γ ∈ GSp4(Ẑ)|γ ≡

( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

)
mod N

}

The groupKP1
0 (N) corresponds to the moduli problem

S
K
P1
0 (N)

: SchZ[ 1
N
] → Grpd

S 7→



Tuples (A, λ,H2) whereA/S is an Abelian surface

λ is a principal polarization ofA/S and

H2 ⊆ A[N ] is a rankN2 finite flat subgroup scheme

totally isotropic with respect to the λ-Weil pairing


which is representable by a Deligne-Mumford stack. The moduli space S

K
P1
0 (N)

(C) is geometrically connected, in

particular we have

S
K
P1
0 (N)

(C) = ΓP1
0 (N) \ H2

A similar discussion applies to the congruence subgroup

KP1
1 (N) =

∏
p|N

I P1+
p ×

∏
p∤N

GSp4(Zp) =
{
γ ∈ GSp4(Ẑ)|γ ≡

(
1 ∗ ∗
1 ∗ ∗
1
1

)
mod N

}
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or to the modified congruence subgroup

KP1
1 (N) =

{
γ ∈ GSp4(Ẑ)|γ ≡

(
1 ∗ ∗
1 ∗ ∗
∗
∗

)
mod N

}

where similar issues of connected components arise.

Example 4.1.3. Let ΓP2
0 (N) denote the inverse image of the Siegel parabolic subgroup under the reduction mor-

phism Sp4(Z)→ Sp4(Z/NZ):

ΓP1
0 (N) =

{
γ ∈ Sp4(Z)|γ ≡

( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗

)
mod N

}

The corresponding quotient ΓP2
0 (N) \H2 of the Siegel upper half plane H2 is the classical Siegel modular threefold

of (Klingen) level Γ0(N) over C. LetKP2
0 (N) denote the inverse image of the Siegel parabolic subgroup under the

reduction morphism GSp4(Ẑ)→ GSp4(Z/NZ):

KP2
0 (N) =

∏
p|N

I P2
p ×

∏
p∤N

GSp4(Zp) =
{
γ ∈ GSp4(Ẑ)|γ ≡

( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗

)
mod N

}

The groupKP2
0 (N) corresponds to the moduli problem

S
K
P2
0 (N)

: SchZ[ 1
N
] → Set

S 7→


Tuples (A, λ,H1) whereA/S is an Abelian surface

λ is a principal polarization ofA/S and

H1 ⊆ A[N ] is a rankN finite flat subgroup scheme


/≃

which is representable by a Deligne-Mumford stack. Note that such a finite flat subgroup schemeH1 ⊆ A[N ] is

automatically totally isotropic with respect to the λ-Weil pairing. The moduli space S
K
P2
0 (N)

(C) is geometrically

connected, in particular we have

S
K
P2
0 (N)

(C) = ΓP2
0 (N) \ H2
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A similar discussion applies to the congruence subgroup

KP2
1 (N) =

∏
p|N

I P2+
p ×

∏
p∤N

GSp4(Zp) =
{
γ ∈ GSp4(Ẑ)|γ ≡

(
1 ∗ ∗ ∗
1 ∗
1 ∗
1

)
mod N

}

or to the modified congruence subgroup

KP2
1 (N) =

{
γ ∈ GSp4(Ẑ)|γ ≡

(
1 ∗ ∗ ∗
1 ∗
∗ ∗
∗

)
mod N

}

where similar issues of connected components arise.

Example 4.1.4. Let ΓP0
0 (N) denote the inverse image of the Borel parabolic subgroup under the reduction mor-

phism Sp4(Z)→ Sp4(Z/NZ):

ΓP0
0 (N) =

{
γ ∈ Sp4(Z)|γ ≡

( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

)
mod N

}

The corresponding quotient ΓP0
0 (N) \H2 of the Siegel upper half plane H2 is the classical Siegel modular threefold

of (Borel) level Γ0(N) over C. LetKP0
0 (N) denote the inverse image of the Siegel parabolic subgroup under the

reduction morphism GSp4(Ẑ)→ GSp4(Z/NZ):

KP0
0 (N) =

∏
p|N

I P0
p ×

∏
p∤N

GSp4(Zp) =
{
γ ∈ GSp4(Ẑ)|γ ≡

( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

)
mod N

}

The groupKP0
0 (N) corresponds to the moduli problem

S
K
P0
0 (N)

: SchZ[ 1
N
] → Set

S 7→



Tuples (A, λ,H1) whereA/S is an Abelian surface

λ is a principal polarization ofA/S and

H2 ⊆ A[N ] is a rankN2 finite flat subgroup scheme

totally isotropic with respect to the λ-Weil pairing

H1 ⊆ H2 is a rankN finite flat subgroup scheme


/≃
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which is representable by a Deligne-Mumford stack. Note that such a finite flat subgroup schemeH1 ⊆ A[N ] is

automatically totally isotropic with respect to the λ-Weil pairing. The moduli space S
K
P0
0 (N)

(C) is geometrically

connected, in particular we have

S
K
P0
0 (N)

(C) = ΓP0
0 (N) \ H2

Note that we have canonical morphisms S
K
P0
0 (N)

→ S
K
Pi
0 (N)

for i = 1, 2 forgetting eitherH1 orH2. A similar

discussion applies to the congruence subgroup

KP0
1 (N) =

∏
p|N

I P0+
p ×

∏
p∤N

GSp4(Zp) =
{
γ ∈ GSp4(Ẑ)|γ ≡

(
1 ∗ ∗ ∗
1 ∗ ∗
1 ∗
1

)
mod N

}

or to the modified congruence subgroup

KP0
1 (N) =

{
γ ∈ GSp4(Ẑ)|γ ≡

(
1 ∗ ∗ ∗
1 ∗ ∗
∗ ∗
∗

)
mod N

}

where similar issues of connected components arise.

LetA2[N ] = SK(N), letA2[Γ
P
1 (N)] = SKP

1 (N), and letA2[Γ
P
0 (N)] = SK0(N) denote the moduli stacks

constructed in the above examples. In particular letA2 denote any of these in the caseN = 1: this is the moduli stack

of principally polarized Abelian surfaces, corresponding to the hyperspecial maximal compact subgroup Kfin =

GSp4(Ẑ).

Local Systems We now recall the basic local systems on Siegel modular threefolds and their relation to Siegel

modular forms. Recall that we have the maximal torus T = {diag(t1, t2, t/t2, t/t1)|t1, t2, t ∈ GL1} ≃ GL1 ×

GL1 × GL1. We identify elements of the character lattice X∗(T ) with triples of integers λ = (λ1, λ2; c) ∈ Z3

with c ≡ λ1 + λ2 mod 2, corresponding to the character

diag(t1, t2, t/t2, t/t1) 7→ tλ11 t
λ2
2 t

c−λ1−λ2
2

The (finite dimensional) absolutely irreducible rational representations of GSp4 are parameterized by dominant

highest weights λ ∈ X∗(T )+ ⊆ X∗(T ). We identify elements of the subset X∗(T )+ with triples of integers
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λ = (λ1, λ2; c) ∈ Z3 with c ≡ λ1 + λ2 mod 2 and λ1 ≥ λ2 ≥ 0. For λ ∈ X∗(T )+ let Vλ be the

corresponding irreducible representation of GSp4. For λ = (λ1, λ2; c) ∈ X∗(T )+ let λ∨ = (λ1, λ2;−c) ∈

X∗(T )+ so that Vλ∨ = V ∨
λ is the contragredient representation. Noting that the similitude character sim :

diag(t1, t2, t/t2, t/t1) 7→ t corresponds to the highest weight λ = (0, 0; 2), we have an isomorphism

Vλ
∼−→ V ∨

λ ⊗ sim2c

For integersλ1 ≥ λ2 ≥ 0 letVλ1,λ2 be the irreducible representation ofGSp4 with highest weightλ = (λ1, λ2; 0),

and let Vλ1,λ2(sim
λ1+λ2

2 ) be the irreducible representation of GSp4 with highest weight λ = (λ1, λ2;λ1 + λ2).

Then we have an isomorphism Vλ1,λ2(sim
λ1+λ2

2 ) = Vλ1,λ2 ⊗ sim
λ1+λ2

2 , in particular Vλ1,λ2 is self-dual.

Since the above Shimura varieties are moduli spaces of elliptic curves, we can consider local systems of geometric

origin coming from the cohomology of the universal family of elliptic curves.

Let π : UKfin
(C) → SKfin

(C) be the universal family of Abelian surfaces which gives rise to a local system

of Q-vector spaces V = R1π∗Q of rank 4 on SKfin
(C) whose fiber over a point [A] ∈ SKfin

(C) is the singular

cohomologyH1(A(C),Q). For integers λ1 ≥ λ2 ≥ 0 consider the local system of Q-vector spaces Vλ1,λ2 cut out

by Schur functors from Symλ1−λ2(V)⊗ Symλ2(∧2V) on SKfin
(C).

We are then interested in the cohomology H∗(SKfin
(C),Vλ1,λ2) or the compactly supported cohomology

H∗
c (SKfin

(C),Vλ1,λ2) as anHKfin
-module. We have short exact sequences ofHKfin

-modules

0→ H i
! (SKfin

(C),Vλ1,λ2)→ H i(SKfin
(C),Vλ1,λ2)→ H i

Eis(SKfin
(C),Vλ1,λ2)→ 0

0→ H i
c,Eis(SKfin

(C),Vλ1,λ2)→ H i
c(SKfin

(C),Vλ1,λ2)→ H i
! (SKfin

(C),Vλ1,λ2)→ 0

The inner cohomologyH i
! (SKfin

(C),Vλ) is identified with the cuspidal cohomologyH i
cusp(SKfin

(C),Vλ), which

will turn out to be concentrated in degrees 2, 3, 4.

One can also consider the Hodge vector bundle ω = π∗Ω
1
EKfin

/SKfin
on SKfin

whose fiber over a point [A] ∈

SKfin
is the cohomology H0(A,Ω1

A). For integers k1, k2 ∈ Z let Vk1,k2 be the vector bundle on SKfin
, which

extend to a toroidal compactification SΣKfin
of SKfin

, whose sections are vector-valued Siegel modular forms of

weight (k1, k2):
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Definition 4.1.5. Let Γ ⊆ Sp4(Q) be a congruence subgroup. Consider the action of g =
(
A B
C D

)
∈ GSp+4 (R)

on τ ∈ H2 given by g · τ = (Aτ +B)(Cτ +D)−1, and consider the factor of automorphy j(g, τ) = Cτ +D.

For integers k1, k2 ∈ Z let ρk1,k2 be the representation Symk1 ⊗ detk2 of GL2(C) and consider the right action

of GSp+4 (R) on the spaceC∞
k1
(H) of smooth Symk1(C2)-valued functions on H2 given by

(f |k1,k2g)(τ) = sim(g)k1/2+k2ρk1,k2(j(g, τ))f(g · τ)

A (vector-valued) Siegel modular form of weight (k1, k2) for Γ is a holomorphic function f : H2 → Symk1(C2)

such that f |k1,k2γ = f for all γ ∈ Γ.

A (vector-valued) Siegel cusp form of weight (k1, k2) for Γ is a (vector-valued) Siegel modular form of weight

(k1, k2) for Γ such that limt→∞(f |k1,k2g)
(
it 0
0 τ

)
= 0 for all τ ∈ H and all g ∈ Sp4(Q).

LetMk1,k2(Γ) be the C-vector space of (vector-valued) Siegel modular forms of weight (k1, k2) for Γ, and let

Sk1,k2(Γ) be the C-vector subspace of (vector-valued) Siegel cusp forms of weight (k1, k2) for Γ.

Let Mk1,k2(Kfin) =
⊕

a∈Ẑ×/det(Kfin)
Mk1,k2(Γa) and Sk1,k2(Kfin) =

⊕
a∈Ẑ×/det(Kfin)

Sk1,k2(Γa) be

the corresponding spaces of modular forms and cusp forms taking into account connected components. Letting

D ⊆ SΣKfin
be the divisor of cusps in a toroidal compactification of SKfin

, we have identifications

Mk1,k2(Kfin) = H0(SΣKfin
(C),Vk1,k2) Sk1,k2(Kfin) = H0(SΣKfin

(C),Vk1,k2(−D))

By Faltings-Chai [31] the cohomology groupsH i
c(SKfin

(C),Vλ1,λ2) carry a Hodge filtration with

Gr0FH
i
c(SKfin

(C),Vλ1,λ2) = H i(SΣKfin
(C),Vλ1−λ2,−λ1(−D))

Grλ2+1
F H i

c(SKfin
(C),Vλ1,λ2) = H i−1(SΣKfin

(C),Vλ1+λ2+2,−λ1(−D))

Grλ1+2
F H i

c(SKfin
(C),Vλ1,λ2) = H i−2(SΣKfin

(C),Vλ1+λ2+2,1−λ2(−D))

Grλ1+λ2+3
F H i

c(SKfin
(C),Vλ1,λ2) = H i−3(SΣKfin

(C),Vλ1−λ2,λ2+3(−D))

In particular one finds (vector-valued) Siegel cusp forms of weight (λ1 − λ2, λ2 + 3) inH i
c(SKfin

,Vλ1,λ2).

The same construction applies to the construction of ℓ-adic local systems onSKfin
. WritingSKfin

to mean either

SKfin,Q or SKfin,Fp as before, let π : UKfin
→ SKfin

be the universal family of Abelian surfaces and consider the
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ℓ-adic local system V = R1π∗Qℓ of rank 4 on SKfin
whose fiber over a point [E] ∈ SKfin

is the ℓ-adic cohomology

H1(A,Qℓ) (either over Q or over Fp), which is pure of weight 1. For integers λ1 ≥ λ2 ≥ 0 consider the ℓ-adic

local system Vλ1,λ2 cut out by Schur functors from Symλ1−λ2(V) ⊗ Symλ2(∧2V) on SKfin
, which is pure of

weight λ1 + λ2.

We are then interested in the ℓ-adicH∗(SKfin
,Vλ1,λ2)or the compactly supportedℓ-adic cohomologyH∗

c (SKfin
,Vλ1,λ2)

(either over Q or over Fp). We have short exact sequences ofHKfin
×Gal-modules

0→ H i
! (SKfin

,Vλ1,λ2)→ H i(SKfin
,Vλ1,λ2)→ H∗

Eis(SKfin
,Vλ1,λ2)→ 0

0→ H∗
c,Eis(SKfin

,Vλ1,λ2)→ H∗
c (SKfin

,Vλ1,λ2)→ H∗
! (SKfin

,Vλ1,λ2)→ 0

The inner cohomologyH i
! (SKfin

,Vλ1,λ2) is identified with the cuspidal cohomologyH i
cusp(SKfin

,Vλ1,λ2), which

will turn out to be concentrated in degrees 2, 3, 4.

In both of the above situations, the local systemsVλ1,λ2 correspond to the irreducible representationVλ1,λ2(det
λ1+λ2

2 )

ofGSp4 with highest weightλ = (λ1, λ2;λ1+λ2). On the other hand when computing cuspidal cohomology or

Eisenstein cohomology in terms of (g,K ′
∞)-cohomology we will need to use the irreducible representation we will

need to use the irreducible representation Vλ1,λ2 of GSp4 with highest weight λ = (λ1, λ2; 0), corresponding to

the half Tate twisted local systemVλ1,λ2(−λ1+λ2
2 ). The discrepancy involving the similitude character accounts for

the difference between the unitary normalization and cohomological normalization of automorphic representations

of GSp4(AQ), and will account for the additional Tate twist which appears in the later discussion of the Langlands-

Kottwitz method. We will often use the abbreviated notation Vλ and Vλ for either of these representations and

local systems, being careful to disambiguate when their meaning is not clear.

4.2 Discrete Series and Induced Representations for GSp4(R)

We recall some structural facts related to the groupGSp4(R), especially the construction of discrete series representa-

tions and induced representations, and the Vogan-Zuckerman classification of irreducible admissible representations

of GSp4(R) with nonzero (g,K ′
∞)-cohomology.
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Lie Algebras and Compact Subgroups Let g = gsp4 be the Lie algebra ofG(R) = GSp4(R):

gsp4 = {(G,C) ∈ gl4 × gl1 | JG+G⊤J = CJ}

We have the similitude character sim : gsp4 → gl1 given by (G,C) 7→ C whose kernel g1 = sp4 is the Lie algebra

ofG1(R) = Sp4(R).

LetK∞ be the maximal compact subgroup of Sp4(R) given by

K∞ = {
(
A B
−B A

)
∈ Sp4(R)}

We have an isomorphismK∞
∼−→ U(2) given by

(
A B
−B A

)
7→ A+Bi.

Let k be the Lie algebra ofK∞, and let h ⊆ k be the Cartan subalgebra corresponding to the compact torus

Tc =

{( cos(θ1) sin(θ1)
cos(θ2) sin(θ2)
− sin(θ2) cos(θ2)

− sin(θ1) cos(θ1)

)∣∣∣∣θ1, θ2 ∈ R/2πZ
}

Recall that the weights of sp4 are elements of the space h∨C = HomC(hC,C); an element λ ∈ h∨C is identified with

a pair of complex numbers (λ1, λ2) ∈ C2. Let h∨ ⊆ h∨C be the subset where an element λ ∈ h∨ is identified with

a pair of real numbers (λ1, λ2) ∈ R2. We say that λ ∈ h∨ is analytically integral if (λ1, λ2) ∈ Z2 is identified with

a pair of integers. Under this identification, a pair of integers (k1, k2) ∈ Z2 corresponds to the derivative of the

character ψk1,k2 of Tc given by

ψk1,k2 :

( cos(θ1) sin(θ1)
cos(θ2) sin(θ2)
− sin(θ2) cos(θ2)

− sin(θ1) cos(θ1)

)
7→ eik1θ1+ik2θ2

Every analytically integral weight λ = (λ1, λ2) ∈ h∨ with λ1 ≥ λ2 corresponds to aK∞-type Vλ = Vλ1,λ2 , that

is an equivalence class of irreducible representation of the compact groupK∞ ≃ U(2). Such aK∞-typeVλ1,λ2 has

weights (λ1− j, λ2 + j) for j ∈ {0, 1, . . . , λ1− λ2} each with multiplicity 1; in particular Vλ1,λ2 has dimension

λ1 − λ2 + 1 with highest weight (λ1, λ2).
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Characters and Roots Recall that we have the maximal torus

T = {diag(t1, t2, t/t2, t/t1)|t1, t2, t ∈ GL1}

which is identified with the Levi quotient of the Borel minimal parabolicQ-subgroupP0 of upper triangular matrices

inG = GSp4.

We have the elementary characters ei : T → Gm given by

e1(diag(t1, t2, t/t2, t/t1)) = t1 e2(diag(t1, t2, t/t2, t/t1)) = t2 e0(diag(t1, t2, t/t2, t/t1)) = t

We have the elementary cocharacters fi : Gm → T given by

f1(t) = diag(t, 1, 1, 1/t) f2(t) = diag(1, t, 1/t, 1) f0(t) = diag(1, 1, t, t)

We have the character latticeX∗(T ) = Ze1 ⊕ Ze2 ⊕ Ze0 and we have the cocharacter lattice

X∗(T ) = Zf1 ⊕ Zf2 ⊕ Zf0. We have the roots

± (e1 − e2) ± (e1 + e2 − e0)

± (2e1 − e0) ± (2e2 − e0)

with simple roots α1 = e1 − e2 and α2 = 2e2 − e0, and we have the coroots

± (e1 − e2)∨ = ±(f1 − f2) ± (e1 + e2 − e0)∨ = ±(f1 + f2)

± (2e1 − e0)∨ = ±f1 ± (2e2 − e0) = ±f2

and we have the fundamental weightsω1 = e1− 1
2e0 andω2 = e1+ e2− e0 defined by 2 ⟨ωi,αj⟩

⟨αj ,αj⟩ = δi,j . We have

the half sum of positive roots ρP0 = 2e1 + e2 − 3
2e0.
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−2e1+e0

e2−e1

α2=2e2−e0
e1+e2−e0

2e1−e0

α1=e1−e2

2e2+e0

−e1−e2+e0

α2

α1+α2

2α1+α2

α1

ω1

ω2 ρ

For z1, z2, z ∈ C consider the unramified character χz1,z2,z : T → Gm given by

χz1,z2,z(diag(t1, t2, t/t2, t/t1)) = |t1|z1 |t2|z2 |t|z

so that (χz1,z2,z ◦α∨
1 )(t) = |t|z1−z2 and (χz1,z2,z ◦α∨

2 )(t) = |t|2z2−z . In other wordsχz1,z2,z = νz1⊗νz2⊗νz

where ν = | · | is the norm character.

Recall that a∨P0
= a∨G ⊕ (aGP0

)∨ where

a∨P0
= {(z1, z2, z) ∈ R3} ≃ R3

a∨G = {(z1, z2, z) ∈ R3|z1 − z2 = 0 and 2z2 − z = 0} ≃ R

(aGP0
)∨ = {(z1, z2, z) ∈ R3|z1 + z2 + 2z = 0} ≃ R2

with s1 = z1 − z2 and s2 = 2z2 − z providing coordinates for (aGP0
)∨C.

Parabolic Induction We consider the following standard parabolic Q-subgroups ofG = GSp4 and the corre-

sponding parabolic inductions:

• We have the Borel parabolic Q-subgroup P0 = M0N0 with Levi quotient M0 = T and unipotent Q-

subgroupN0 = U given by

P0 =

( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

)
∩G M0 =

( ∗
∗
∗
∗

)
∩G ≃ GL1 ×GL1 ×GL1 N0 =

(
1 ∗ ∗ ∗
1 ∗ ∗
1 ∗
1

)
∩G
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WriteM0 = {diag(t1, t2, t/t2, t/t1)|t1, t2, t ∈ GL1}. For charactersχ1, χ2, χofGL1 we have a character

π = χ1 ⊗ χ2 ⊗ χ ofM0 given by

π(diag(t1, t2, t/t2, t/t1)) = χ1(t1)χ2(t2)χ(t)

We have the norm character δP0 of P0 whose restriction toM0 is given by

δP0(diag(t1, t2, t/t2, t/t1)) = |t1|4|t2|2|t|−3

For (s1, s2) ∈ C2 we have the unramified character

e⟨HP0 (·),(s1,s2)⟩(diag(t1, t2, t/t2, t/t1)) = |t1|s1 |t2|s2 |t|−
s1+s2

2

Let π = χ1 ⊗ χ2 ⊗ χ : M0(R) → C× be a (continuous) character regarded as a character of P0(R).

Consider the Borel parabolic induction

Ind
G(R)
P0(R)(π) =


smooth functions ϕ : G(R)→ C such that

ϕ(pg) = χ1(t1)χ2(t2)χ(t)ϕ(g) for every g ∈ G(R)

and p ∈ P0(R) with p ≡ diag(t1, t2, t/t2, t/t1) ∈M0(R)


Recalling the character e⟨HP0 (·),(s1,s2)+ρP0 ⟩(diag(t1, t2, t/t2, t/t1)) = |t1|s1+2|t2|s2+1|t|−

s1+s2+3
2 we

consider the family of normalized Borel parabolic inductions

IG(R)
P0(R)(π, s) = Ind

G(R)
P0(R)(e

⟨HP0 (·),(s1,s2)+ρP0 ⟩π)

In particular the norm character δ1/2P0(R) = e⟨HP0 (·),ρP0 ⟩ defines the normalized Borel parabolic induction

χ1 × χ2 ⋊ χ = IG(R)
P0(R)(π) = Ind

G(R)
P0(R)(δ

1/2
P0(R)π)

Let W = {1, s1, s2, s12, s21, s121, s212, s1212}. Each Weyl group element will give rise to intertwining

operators between the above Borel parabolic inductions.
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• We have the Siegel parabolic Q-subgroup P1 =M1N1 with Levi quotientM1 and unipotent Q-subgroup

N1 given by

P1 =

( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

)
∩G M1 =

( ∗ ∗
∗ ∗

∗ ∗
∗ ∗

)
∩G ≃ GL2 ×GL1 N1 =

(
1 ∗ ∗
1 ∗ ∗
1
1

)
∩G

WriteM1 = {diag(A, tA⊤−1)|A ∈ GL2, t ∈ GL1}. For µ a representation of GL2 and for a character χ

of GL1 we have a representation π = µ⊗ χ ofM1 given by

π(diag(A, tA⊤−1)) = µ(A)χ(t)

We have the norm character δP1 of P1 whose restriction toM1 is given by

δP1(diag(A, tA
⊤−1)) = |det(A)|3|t|−3

For s ∈ C we have the unramified character

e⟨HP1 (·),s⟩(diag(A, tA⊤−1)) = |det(A)|s|t|−s

Let π = µ⊗ χ be an irreducible admissible representation ofM1(R) ≃ GL2(R)×GL1(R) on a Hilbert

space Hπ , regarded as an irreducible admissible representation of P1(R). Consider the Siegel parabolic

induction

Ind
G(R)
P1(R)(π) =


smooth functions ϕ : G(R)→ Hπ such that

ϕ(pg) = π(A)χ(t)ϕ(g) for every g ∈ G(R)

and p ∈ P1(R) with p ≡ diag(A, tA⊤−1) ∈M1(R)


Recalling the character e⟨HP1 (·),2+ρP1 ⟩(diag(A, tA⊤−1)) = |det(A)|s+

3
2 |t|−s−

3
2 we consider the family

of normalized Siegel parabolic inductions

IG(R)
P1(R)(π, s) = Ind

G(R)
P1(R)(e

⟨HP1 (·),s+ρP0 ⟩π)
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In particular the norm character δ1/2P1(R) = e⟨HP1 (·),ρP1 ⟩ defines the normalized Siegel parabolic induction

π ⋊ χ = IG(R)
P1(R)(π) = Ind

G(R)
P1(R)(δ

1/2
P1(R)π)

LetWP1 = {1, s1} and letWP1 = W/WP1 = {1, s2, s21, s212}. Each Weyl group element will give rise

to intertwining operators between the above Siegel parabolic inductions.

• We have the Klingen parabolic Q-subgroupP2 with Levi quotientM2 and unipotent Q-subgroupN2 given

by

P2 =

( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗

)
∩G M2 =

( ∗
∗ ∗
∗ ∗

∗

)
∩G ≃ GL1 ×GL2 N2 =

(
1 ∗ ∗ ∗
1 ∗
1 ∗
1

)
∩G

WriteM2 = {diag(t, A, t/det(A))|t ∈ GL1, A ∈ GL2}. For a character χ of GL1 and for µ a represen-

tation of GL2 we have a representation π = χ⊗ µ ofM2 ≃ GL1 ×GL2 given by

π(diag(t, A, t/det(A))) = χ(t)µ(A)

We have the norm character δP2 of P2 whose restriction toM2 is given by

δP2(diag(t, A, t/det(A))) = |t|4|det(A)|−2

For s ∈ C we have the unramified character

e⟨HP2 (·),s⟩(diag(t, A, t/det(A))) = |t|s|det(A)|−
s
2

Let π = χ⊗ µ be an irreducible admissible representation ofM2(R) ≃ GL1(R)×GL2(R) on a Hilbert

space Hπ , regarded as an irreducible admissible representation of P2(R). Consider the Klingen parabolic

induction

Ind
G(R)
P2(R)(π) =


smooth functions ϕ : G(R)→ Hπ such that

ϕ(pg) = χ(t)π(A)ϕ(g) for every g ∈ G(R)

and p ∈ P2(R) with p ≡ diag(t, A, t/det(A)) ∈M2(R)
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Recalling the character e⟨HP2 (·),2+ρP2 ⟩(diag(t, A, t/det(A))) = |t|s+2|det(A)|−
s
2
−1 we consider the

family of normalized Klingen parabolic inductions

IG(R)
P2(R)(π, s) = Ind

G(R)
P1(R)(e

⟨HP1 (·),s+ρP0 ⟩π)

In particular the norm character δ1/2P2(R) = e⟨HP2 (·),ρP2 ⟩ defines the normalized Klingen parabolic induction

π ⋊ χ = IG(R)
P2(R)(π) = Ind

G(R)
P2(R)(δ

1/2
P2(R)π)

LetWP2 = {1, s2} and letWP2 = W/WP2 = {1, s1, s12, s121}. Each Weil group element will give rise

to intertwining operators between the above Klingen parabolic inductions.

All such parabolic inductions are regarded as representations of GSp4(R) by the right translation action, or re-

garded as admissible (gsp4,K∞)-modules after passing to the subspace ofK∞-finite vectors (which we abusively

denote by the same notation). We can restrict these to representations of Sp4(R), or to (sp4,K∞)-modules. The

decomposition intoK∞-types for each of these parabolically induced representations appears for example in [90,

Lemma 6.1].

Langlands Quotients We will need to consider certain Langlands quotients with nontrivial (g,K ′
∞)-cohomology,

particularly those associated with the maximal parabolic Q-subgroups of GSp4.

We have the Langlands quotientπ(1)+∞ = L(ν1/2Dλ1+λ2+3⋊ν−1/2)which is the unique irreducible quotient

of the normalized Siegel parabolic induction ν1/2Dλ1+λ2+3 ⋊ ν−1/2:

ν1/2Dλ1+λ2+3 ⋊ ν−1/2 = IG(R)
P1(R)(Dλ1+λ2+3 ⊗ 1, 12) ↠ J

G(R)
P1(R)(Dλ1+λ2+3 ⊗ 1, 12) = π(1)+∞

We have the Langlands quotientπ(1)−∞ = L(ν1/2Dλ1+λ2+3⋊ν−1/2sign)which is the unique irreducible quotient

of the normalized Siegel parabolic induction ν1/2Dλ1+λ2+3 ⋊ ν−1/2sign:

ν1/2Dλ1+λ2+3 ⋊ ν−1/2sign = IG(R)
P1(R)(Dλ1+λ2+3 ⊗ sign, 12) ↠ J

G(R)
P1(R)(Dλ1+λ2+3 ⊗ sign, 12) = π(1)−∞

The Langlands quotients π(1)+∞ and π(1)−∞ are related by character twist: we have π(1)−∞ = π
(1)+
∞ ⊗ sign.
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We have the Langlands quotient π(2)∞ = L(νsign ⋊ ν−1/2DH
λ1+2) is the unique irreducible quotient of the

normalized Klingen parabolic induction νsign⋊ ν−1/2DH
λ1+2:

νsign⋊ ν−1/2DH
λ1+2 = I

G(R)
P2(R)(sign⊗D

H
λ1+2, 1) ↠ J

G(R)
P2(R)(sign⊗D

H
λ1+2, 1) = π(2)∞

The 1-dimensional representations ofGSp4(R) are also Langlands quotients associated with the minimal parabolic

Q-subgroup of GSp4.

Discrete Series Representations We recall the Harish-Chandra classification of discrete series representations

of Sp4(R) and of GSp4(R), following [104, Section 2.2].

Let Φ = {±α1,±α2,±(α1 + α2),±(2α1 + α2)} be the set of roots of sp4. Under the above identification

we have±α1 = ±(1,−1),±α2 = ±(0, 2),±(α1 + α2) = ±(1, 1),±(2α1 + α2) = ±(2, 0). Among these,

the roots±α1 are compact roots, while the remaining roots±α2,±(α1 + α2),±(2α1 + α2) are non-compact

roots.

LetW = {1, s1, s2, s12, s21, s121, s212, s1212 = s2121}be the Weyl group of this root system whose elements

are reflections along hyperplanes perpendicular to the roots. LetWK = {1, s1} be the compact Weyl group whose

elements are reflections along the hyperplane perpendicular to the compact roots±α1.

Recall that an element λ ∈ h∨ is nonsingular if ⟨λ, α⟩ ≠ 0 for every rootα ∈ Φ, that is λ is not contained in a

root hyperplane. Every nonsingular element λ ∈ h∨ determines a system of positive roots

Φ+
λ = {α ∈ ∆|⟨λ, α⟩ > 0}

and determines a half sum of positive roots

ρncλ =
1

2

∑
α∈Φ+

λnoncompact

α ρcλ =
1

2

∑
α∈Φ+

λcompact

α ρλ = ρncλ + ρcλ =
1

2

∑
α∈∈Φ+

λ

α

Up to the action of the compact Weyl groupWK we may consider the following four regions:

1

2
34
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In each of the four regions the values of ρncλ and ρcλ and their sum ρλ = ρncλ + ρcλ and difference ρncλ − ρcλ are given

by

# ρncλ ρcλ ρλ = ρncλ + ρcλ ρncλ − ρcλ

1 (32 ,
3
2) (12 ,−

1
2) (2, 1) (1, 2)

2 (32 ,−
1
2) (12 ,−

1
2) (2,−1) (1, 0)

3 (12 ,−
3
2) (12 ,−

1
2) (1,−2) (0,−1)

4 (−3
2 ,−

3
2) (12 ,−

1
2) (−1,−2) (−2,−1)

Now by Harish-Chandra we have the following:

Proposition 4.2.1. ([66, Theorem 9.20, Theorem 12.21]) Every analytically integral nonsingular weight λ ∈ h∨

determines a discrete series representationDλ of Sp4(R) with infinitesimal character λ, and every discrete series

representation of Sp4(R) is of this form. Two discrete series representationsDλ andDλ′ are equivalent precisely if

λ = wλ′ for somew ∈WK .

Note that every analytically integral weight λ = (λ1, λ2) ∈ h∨ with λ1 ≥ λ2 gives rise to an analytically

integral nonsingular weight λ+ ρλ ∈ h∨, and every analytically integral nonsingular weight is of this form. The

corresponding discrete series representationDλ+ρλ of Sp4(R) has Harish-Chandra parameterλ+ ρλ and Blattner

parameter Λ = λ + 2ρncλ , as Dλ has Harish-Chandra parameter λ and Blattner parameter Λ = λ + ρncλ − ρcλ.

Note that the Harish-Chandra parameter corresponds to the infinitesimal character, while the Blattner parameter

corresponds to the minimalK∞-type.

For Sp4(R) we have the following discrete series representations:

(i) (Holomorphic discrete series) For integers λ1 ≥ λ2 ≥ 0 we have a corresponding analytically integral

weight λ = (λ1, λ2) ∈ h∨ and a corresponding analytically integral nonsingular weight λ + ρλ = (λ1 +

2, λ2 + 1) ∈ h∨. Then we have the holomorphic discrete series representationDλ1+2,λ2+1 of Sp4(R) with

Harish-Chandra parameter (λ1 + 2, λ2 + 1) and Blattner parameter Λ = (λ1 + 3, λ2 + 3).

(ii) (Antiholomorphic discrete series) For integers λ1 ≥ λ2 ≥ 0 we have a corresponding analytically integral

weight λ = (−λ2,−λ1) ∈ h∨ and a corresponding analytically integral nonsingular weight λ + ρλ =

(−λ2−1,−λ1−2) ∈ h∨. Then we have the antiholomorphic discrete series representationD−λ2−1,−λ1−2

of Sp4(R) with Harish-Chandra parameter (−λ2 − 1,−λ1 − 2) and Blattner parameter Λ = (−λ2 −

3,−λ1 − 3).
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(iii) (Large generic discrete series) For integers λ1 ≥ λ2 ≥ 0 we have a corresponding analytically integral

weight λ = (λ1,−λ2) ∈ h∨ and a corresponding analytically integral nonsingular weight λ + ρλ =

(λ1 + 2,−λ2 − 1) ∈ h∨. Then we have the large generic discrete series representation Dλ1+2,−λ2−1 of

Sp4(R)with Harish-Chandra parameter (λ1+2,−λ2−1) and Blattner parameterΛ = (λ1+3,−λ2−1).

(iv) (Large generic discrete series) For integers λ1 ≥ λ2 ≥ 0 we have a corresponding analytically integral

weight λ = (λ2,−λ1) ∈ h∨ and a corresponding analytically integral nonsingular weight λ + ρλ =

(λ2 + 1,−λ1 − 2) ∈ h∨ Then we have the large generic discrete series representation Dλ2+1,−λ1−2 of

Sp4(R)with Harish-Chandra parameter (λ2+1,−λ1−2) and Blattner parameterΛ = (λ2+1,−λ1−3).

These discrete series representations all occur as infinite-dimensional subrepresentations normalized parabolic in-

ductions. We can regard such discrete as representations of Sp4(R), or as (sp4,K∞)-modules after passing to

spaces ofK∞-finite vectors.

For GSp4(R) we have the following discrete series representations:

(i) (Holomorphic discrete series) For integers λ1 ≥ λ2 ≥ 0 and a central character ω : R× → C× with

ω(−1) = (−1)λ1+λ2 we have the holomorphic discrete series representationDλ1+2,λ2+1(ω) of GSp4(R)

with Harish-Chandra parameter (λ1 + 2, λ2 + 1) and Blattner parameter Λ = (λ1 + 3, λ2 + 3).

(ii) (Large generic discrete series) For integers λ1 ≥ λ2 ≥ 0 and a central character ω : R× → C× with

ω(−1) = (−1)λ1+λ2 we have the large generic discrete series representationDλ1+2,−λ2−1(ω) of GSp4(R)

with Harish-Chandra parameter (λ1 + 2,−λ2 − 1) and Blattner parameter Λ = (λ1 + 3,−λ2 − 1).

When the central character ω is trivial we writeDλ1+2,λ2+1 andDλ1+2,−λ2−1 for the corresponding holomorphic

discrete series and large generic discrete series representations of GSp4(R). We can regard such discrete series as

representations of GSp4(R), or as (gsp4,K∞)-modules after passing to spaces ofK∞-finite vectors. Here we may

choose to work withK∞ ≃ U(2) as above (which is insensitive to the central characterω), or withK ′
∞ = R>0K∞

(which is insensitive to the parity of the central characterω), or withK ′′
∞ = R×K∞ (which is sensitive to the central

character ω).

For the holomorphic discrete series representationDλ1+2,λ2+1(ω), restricting fromGSp4(R) toSp4(R) yields

an isomorphism

Dλ1+2,λ2+1(ω)|Sp4(R) = Dλ1+2,λ2+1 ⊕D−λ2−1,−λ1−2
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We obtain the followingK∞-type regions, illustrated for λ1 = λ2 = 0 and λ1 = λ2 = 1:

For the large generic discrete series representationDλ1+2,−λ2−1(ω), restricting from GSp4(R) to Sp4(R) yields

an isomorphism

Dλ1+2,−λ2−1(ω)|Sp4(R) = Dλ1+2,−λ2−1 ⊕Dλ2+1,−λ1−2

We obtain the followingK∞-type regions, illustrated for λ1 = λ2 = 0 and λ1 = λ2 = 1:

One also has the limit discrete series representations of Sp4(R) and of GSp4(R), which we will not need; their

structure is recalled in [104, Section 2.3].

By Harish-Chandra the discrete series representations of Sp4(R) occur as infinite-dimensional subrepresen-

tations of normalized parabolic inductions. The construction of the above discrete series representations and

Langlands quotients from normalized parabolic inductions involves the analysis of intertwining operators between

families of normalized parabolic inductions. The relevant analysis of intertwining operators is given by [90, Lemma

7.2, Lemma 7.3]. A complete list of irreducible admissible (sp4,K∞)-modules appears in [90, Section 8], and the

composition series of such representations with integral infinitesimal characters appears in [90, Section 9, Section

10, Section 11].
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Vogan-Zuckerman Classification We quickly recall the Vogan-Zuckerman classification of irreducible admissi-

ble representations of GSp4(R) with nonzero cohomology.

Let T 1
c be a maximal torus in the maximal compact subgroupK∞ = U(2) ofG1(R) = Sp4(R) so that the

centralizer Tc of T 1
c is a maximal torus in G(R) = GSp4(R). Let µ : Gm → T 1

c be a cocharacter over R, let

Zµ ⊆ G(R) be the corresponding centralizer, and letQµ ⊆ G(C) be the corresponding parabolic subgroup with

LieC-algebra q. Letλ ∈ X∗(TC) be a highest weight forG(C)which is sim-self-dual, and suppose that the highest

weight λ is trivial on the semisimple part Z1
µ of Zµ ⊆ G(R), that is λ extends to a character λ : Qµ → C×. We

have four cases depending on µ, in each case obtaining a constraint on λ:

• (µ regular) We haveZµ =M0 andQµ = P0 with Lie C-algebra q = p0 andAq(λ) is a tempered (g,K ′
∞)-

module. The set of regular cocharactersX∗(T
1)0R is the complement of finitely many root hyperplanes and is

a disjoint union of connected components parameterized by the Weyl groupW . The representationsAq(λ)

are locally constant in χ ∈ X∗(T
1)0R, and after choosing a basepoint [µ0] ∈ π0(X∗(T

1)0R) we obtain a

family of representations {Awµ0(λ)}w∈WK\W which by Vogan-Zuckerman are pairwise non-isomorphic

and are the Harish-Chandra modules corresponding to discrete series representations of G(R). Here we

have no constraint on λ and one of two possibilities:

(i) Aq(λ) = πH∞ is the holomorphic discrete series representation

πH∞ = Dλ1+2,λ2+1

(underlying holomorphic vector-valued Siegel modular forms of weight (λ1 − λ2, λ2 + 3)) where

H3(g,K ′
∞;πH∞⊗Vλ) is 2-dimensional with Hodge numbers (λ1+λ2+3, 0) and (0, λ1+λ2+3):

H3(g,K ′
∞;πH∞ ⊗ Vλ) =

H3(sp4,K∞;Dλ1+2,λ2+1 ⊗ Vλ)

⊕H3(sp4,K∞;D−λ2−1,−λ1−2 ⊗ Vλ)
= C⊕ C

(ii) Ap(λ) = πW∞ is the large generic discrete series representation

πW∞ = Dλ1+2,−λ2−1
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(admitting a Whittaker model) whereH3(g,K ′
∞;πW∞ ⊗ Vλ) is 2-dimensional with Hodge numbers

(λ1 + 2, λ2 + 1) and (λ2 + 1, λ1 + 2):

H3(g,K ′
∞;πW∞ ⊗ Vλ) =

H3(sp4,K∞;Dλ1+2,−λ2−1 ⊗ Vλ)

⊕H3(sp4,K∞;Dλ2+1,−λ1−2 ⊗ Vλ)
= C⊕ C

• (µ singular, M1-regular) We have Zµ = M1 and Qµ = P1 with Lie C-algebra q = p1, and we must

have λ1 = λ2 so that Aq(λ) is a non-tempered (g,K ′
∞)-module. The set of singular but M1-regular

cocharacters X∗(T
1
M1

)0R is the complement of the trivial cocharacter and is a disjoint union of connected

components parameterized by the Weyl group WM1 = {1, s2}. The representations A1(λ) are locally

constant in µ ∈ X∗(T
1
M1

)0R, and after choosing a basepoint [µ0] ∈ π0(X∗(T
1
M1

)0R) we obtain a family of

representations {Awµ0(λ)}w∈WK\WM1
which by Vogan-Zuckerman are pairwise non-isomorphic and are

Harish-Chandra modules corresponding non-tempered Langlands quotients. Here we must have λ1 = λ2

and one possibility:

(iii) Aq(λ) = π
(1)±
∞ is a non-tempered Langlands quotient for the Siegel parabolic P1 (these are the repre-

sentations π2± in the notation of [114] and [96]):

π(1)+∞ = L(ν1/2Dλ1+λ2+3 ⋊ ν−1/2) π(1)−∞ = L(ν1/2Dλ1+λ2+3 ⋊ ν−1/2sign)

whereH2(g,K ′
∞;π

(1)±
∞ ⊗Vλ) andH4(g,K ′

∞;π
(1)±
∞ ⊗Vλ) are 1-dimensional with Hodge numbers

(λ1 + 1, λ2 + 1) and (λ1 + 2, λ2 + 2) respectively:

H2(g,K ′
∞;π(1)±∞ ⊗ Vλ) = C

H4(g,K ′
∞;π(1)±∞ ⊗ Vλ) = C

• (µ singular, M2-regular) We have Zµ = M2 and Qµ = P2 with Lie C-algebra q = p2, and we must have

λ2 = 0 so thatAq(λ) is a non-tempered (g,K ′
∞)-module. The set of singular butM2-regular cocharacters

X∗(T
1
M2

)0R is the complement of the trivial cocharacter and is a disjoint union of connected components

parameterized by the Weyl groupWM2 = {1, s1}. The representationsAq(λ) are locally constant in µ ∈

X∗(T
1
M2

)0R, and after choosing a basepoint [µ0] ∈ π0(X∗(T
1
M2

)0R) we obtain a family of representations
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{Awµ0(λ)}w∈WK\WM2
which by Vogan-Zuckerman are non-tempered Langlands quotients. Here we must

have λ2 = 0 and one possibility:

(iv) Ap(λ) = π
(2)
∞ is a non-tempered Langlands quotient for the Klingen parabolic P2 (this is the repre-

sentation π1 in the notation of [114] and [96]):

π(2)∞ = L(νsign⋊ ν−1/2DH
λ1+2)

whereH2(g,K ′
∞;π

(2)
∞ ⊗ Vλ) andH4(g,K ′

∞;π
(2)
∞ ⊗ Vλ) are 2-dimensional with Hodge numbers

(λ1 + 2, λ2) and (λ1, λ2 + 2), respectively (λ1 + 3, λ2 + 1) and (λ1 + 1, λ2 + 3):

H2(g,K ′
∞;π(2)∞ ⊗ Vλ) = C

H4(g,K ′
∞;π(2)∞ ⊗ Vλ) = C

• (µ trivial) We haveZµ = G andQµ = Gwith Lie C-algebra q = g. Here we must have λ1 = λ2 = 0 and

one possibility:

(v) Aq(0) = χ∞ ∈ {1, sign} is a character whereH0(g,K ′
∞;C),H2(g,K ′

∞;C),H4(g,K ′
∞;C), and

H6(g,K ′
∞;C) are 1-dimensional with Hodge numbers (0, 0), (1, 1), (2, 2), and (3, 3) respectively:

H0(g,K ′
∞;χ∞ ⊗ Vλ) = H0(sp4,K∞;χ∞ ⊗ Vλ) = C

H2(g,K ′
∞;χ∞ ⊗ Vλ) = H2(sp4,K∞;χ∞ ⊗ Vλ) = C

H4(g,K ′
∞;χ∞ ⊗ Vλ) = H4(sp4,K∞;χ∞ ⊗ Vλ) = C

H6(g,K ′
∞;χ∞ ⊗ Vλ) = H6(sp4,K∞;χ∞ ⊗ Vλ) = C

In particular, the irreducible admissible representations ofG(R) = GSp4(R) with nonzero (g,K ′
∞)-cohomology

are either discrete series representations (with cohomology concentrated in middle degree), or Langlands quotients

of parabolic inductions (with cohomology concentrated away from middle degree). The Langlands quotients with

cohomology closest to middle degree are associated with the maximal parabolic Q-subgroups of G, while the 1-

dimensional representations (which are Langlands quotients associated with the minimal parabolic Q-subgroup of

G) have cohomology as far from middle degree as possible.
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Finally we summarize the constraints on the possible Hodge numbers appearing in intersection cohomology

provided by the above classification:

• (λ1 > λ2 > 0) The only Hodge numbers appearing inH i(SKfin
,Vλ) are given by

(λ1+λ2+3,0) (λ1+2,λ2+1) (λ2+1,λ1+2) (0,λ1+λ2+3). . . . . . . . .H3

• (λ1 = λ2 > 0) The only Hodge numbers appearing inH i(SKfin
,Vλ) are given by

(λ1+1,λ1+1)

(2λ1+3,0) (λ1+2,λ1+1) (λ1+1,λ1+2) (0,2λ1+3)

(λ1+2,λ1+2)

. . . . . .

H2

H3

H4

• (λ1 > λ2 = 0) The only Hodge numbers appearing inH i(SKfin
,Vλ) are given by

(λ1+2,0) (0,λ1+2)

(λ1+3,0) (λ1+2,1) (1,λ1+2) (0,λ1+3)

(λ1+3,1) (1,λ1+3)

. . .

H2

H3

H4

• (λ1 = λ2 = 0) The only Hodge numbers appearing inH i(SKfin
,Vλ) are given by

(0,0)

(2,0) (1,1) (0,2)

(3,0) (2,1) (1,2) (0,3)

(3,1) (2,2) (1,3)

(3,3)

H0

H2

H3

H4

H6

In particular forλ1 > λ2 > 0 the intersection cohomology must be concentrated in middle degree, forλ1 = λ2 >

0 or λ1 > λ2 = 0 the intersection cohomology must be concentrated in degrees 2, 3, 4, and for λ = 0 one simply

finds the expected Hodge diamond of a smooth projective threefold. In each of these cases notice thatH1 andH5

must vanish.

4.3 Eisenstein Cohomology for GSp4

The goal of this section is to compute the Eisenstein cohomology of local systems on Siegel modular threefolds. To

that end, we review the structure of automorphic Eisenstein series for GSp4, and describe the Franke-Schwermer

filtration on spaces of automorphic forms for GSp4 in terms of the poles of such automorphic Eisenstein series,

and then compute the relevant (g,K ′
∞)-cohomology.
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4.3.1 Eisenstein Series for GSp4

In this section we will consider the spectral decomposition of L2(G(Q)AG(R)◦ \ G(AQ)) for G = GSp4:

the continuous spectrumL2
cont(G(Q)AG(R)◦ \G(AQ)) is described in terms of automorphic Eisenstein series,

while the residual spectrumL2
res(G(Q)AG(R)◦ \G(AQ)) is described in terms of the poles of such automorphic

Eisenstein series.

Intertwining Operators and Normalization Factors To compute the Langlands normalization factors for the

minimal parabolic Q-subgroup we simply apply the Gindikin-Karepelevich formula as we have for GL2, although

now the Weil group combinatorics is more involved. To compute the Langlands normalization factors for the

maximal parabolic Q-subgroups P1 and P2 it suffices to understand the adjoint action of LMi on Lni.

The main result is the following:

Proposition 4.3.1. (Compare to [69, Section 5.1]) We have the following Langlands normalization factors r(w, πs):

• (P = P1) For π = µ⊗ χ and for the reflectionw212 we have the normalization factor

r(w2, πs) =
Λ(s, µ)Λ(2s, ωµ)

Λ(s+ 1, µ)Λ(2s+ 1, ωµ)ϵ(s, µ)ϵ(2s, ωµ)

• (P = P2) For π = χ⊗ µ and for the reflectionw121 we have the normalization factor

r(w1, πs) =
Λ(s,Ad(µ)× χ)

Λ(s,Ad(µ)× χ)ϵ(s,Ad(µ)× χ)
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• (P = P0) For π = χ1 ⊗ χ2 ⊗ χ and simple reflectionswi corresponding to αi we have the normalization

factors

r(w1, πs) =
Λ(s1−s2,χ1χ

−1
2 )

Λ(s1−s2+1,χ1χ
−1
2 )ϵ(s1−s2,χ1χ

−1
2 )

r(w2, πs) =
Λ(s2,χ2)

Λ(s2+1,χ2)ϵ(s2,χ2)

r(w12, πs) =
Λ(s2,χ2)Λ(s1+s2,χ1χ2)

Λ(s2+1,χ2)Λ(s1+s2+1,χ1χ2)ϵ(s2,χ2)ϵ(s1+s2,χ1χ2)

r(w21, πs) =
Λ(s1−s2,χ1χ

−1
2 )Λ(s1,χ1)

Λ(s1−s2+1,χ1χ
−1
2 )Λ(s1+1,χ1)ϵ(s1−s2,χ1χ

−1
2 )ϵ(s1,χ1)

r(w121, πs) =
Λ(s1−s2,χ1χ

−1
2 )Λ(s1,χ1)Λ(s1+s2,χ1χ2)

Λ(s1−s2+1,χ1χ
−1
2 )Λ(s1+1,χ1)Λ(s1+s2+1,χ1χ2)ϵ(s1−s2,χ1χ

−1
2 )ϵ(s1,χ1)ϵ(s1+s2,χ1χ2)

r(w212, πs) =
Λ(s2,χ2)L(s1+s2,χ1χ2)Λ(s1,χ1)

Λ(s2+1,χ2)Λ(s1+s2+1,χ1χ2)Λ(s1,χ1)ϵ(s2,χ2)ϵ(s1+s2,χ1χ2)ϵ(s1,χ1)

r(w1212, πs) =
Λ(s2,χ2)Λ(s1+s2,χ1χ2)Λ(s1,χ1)Λ(s1−s2,χ1χ

−1
2 )

Λ(s2+1,χ2)L(s1+s2+1,χ1χ2)Λ(s1,χ1)L(s1−s2+1,χ1χ
−1
2 )ϵ(s2,χ2)ϵ(s1+s2,χ1χ2)ϵ(s1,χ1)ϵ(s1−s2,χ1χ

−1
2 )

Proof. We have the following:

• (P = P1) We have the Levi decomposition P1 = M1N1 where M1 = GL2 × GL1 and N1 is a length 2

unipotent algebraic group N ′
1 ⊆ N1 with N1/N

′
1 = V2 the standard representation and N ′

1 = det the

determinant representation, so the adjoint action of LM1 on Ln1 is given

Ln1 = R∨
1 ⊕R∨

2 = ρ2 ⊕ ∧2ρ2

where ρ2 is the standard representation of LM1 = GL2(C)×GL1(C).

V2

det

It follows that the Langlands normalizing factor is given

r(w212, πs) =
∏

1≤j≤2

Λ(js, π,R∨
j )

Λ(js+ 1, π,R∨
j )ϵ(js+ 1, π,R∨

j )
=

Λ(s, µ)Λ(2s, ωµ)

Λ(s+ 1, µ)Λ(2s+ 1, ωµ)ϵ(s, µ)ϵ(2s, ωµ)

• (P = P2) We have the Levi decomposition P2 = M2N2 where M2 = GL1 × GL2 and N2 is a length 1

unipotent algebraic group withN2 = Ad2(V2) = Sym2(V2)⊗ det−1 the adjoint square representation,

222



so the adjoint action of LM2 on Ln2 is given

Ln2 = R∨ = Ad2(ρ2)

where ρ2 is the standard representation of LM1 = GL2(C)×GL1(C).

Ad

It follows that the Langlands normalizing factor is given

r(w121, πs) =
Λ(s, π,R∨)

Λ(s+ 1, π,R∨)ϵ(s+ 1, π,R∨)
=

Λ(s,Ad(µ)× χ)
Λ(s,Ad(µ)× χ)ϵ(s,Ad(µ)× χ)

• (P = P0) Recall that by the Gindikin-Karpelevich formula we have

r(w, πs) =
∏
α∈Φ+

G

w(α)∈Φ−
G

Λ(⟨s, α∨⟩, π ◦ α∨)

Λ(⟨s, α∨⟩+ 1, π ◦ α∨)ϵ(⟨s, α∨⟩, π ◦ α∨)

The coroot α∨
1 = f1 − f2 satisfies ⟨s, α∨

1 ⟩ = s1 − s2 and π ◦ α∨
1 = χ1χ

−1
2 , and the only positive root

α ∈ Φ+
G such thatw1(α) ∈ Φ−

G is a negative root is α = α1, so we have

r(w1, πs) =
Λ(s1−s2,χ1χ

−1
2 )

Λ(s1−s2+1,χ1χ
−1
2 )ϵ(s1−s2,χ1χ

−1
2 )

The coroot α∨
2 = f2 satisfies ⟨s, α∨

2 ⟩ = s2 and π ◦ α∨
2 = χ2, and the only positive root α ∈ Φ+

G such that

w2(α) ∈ Φ−
G is a negative root is α = α2, so we have

r(w2, πs) =
Λ(s2,χ2)

Λ(s2+1,χ2)ϵ(s2,χ2)

Forw = si1 . . . siℓ a reduced expression of simple reflections we have the normalization factor

r(w, πs) =
∏

1≤j≤ℓ
r(wij , π

wij+1
...wiℓ

s )
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Since r(w1, π
w2
s ) = Λ(s1+s2,χ1χ2)

Λ(s1+s2+1,χ1χ2)ϵ(s1+s2,χ1χ2)
we have

r(w12, πs) = r(w2, πs)r(w1, π
w2
s )

= Λ(s2,χ2)Λ(s1+s2,χ1χ2)
Λ(s2+1,χ2)Λ(s1+s2+1,χ1χ2)ϵ(s2,χ2)ϵ(s1+s2,χ1χ2)

Since r(w2, π
w1
s ) = Λ(s1,χ1)

Λ(s1+1,χ1)ϵ(s1,χ1)
we have

r(w21, πs) = r(w1, πs)r(w2, π
w1
s )

=
Λ(s1−s2,χ1χ

−1
2 )Λ(s1,χ1)

Λ(s1−s2+1,χ1χ
−1
2 )Λ(s1+1,χ1)ϵ(s1−s2,χ1χ

−1
2 )ϵ(s1,χ1)

Since r(w1, π
w21
s ) = Λ(s1+s2,χ1χ2)

Λ(s1+s2+1,χ1χ2)ϵ(s1+s2,χ1χ2)
we have

r(w121, πs) = r(w1, πs)r(w2, π
w1
s )r(w1, π

w21
s )

=
Λ(s1−s2,χ1χ

−1
2 )Λ(s1,χ1)Λ(s1+s2,χ1χ2)

Λ(s1−s2+1,χ1χ
−1
2 )Λ(s1+1,χ1)Λ(s1+s2+1,χ1χ2)ϵ(s1−s2,χ1χ

−1
2 )ϵ(s1,χ1)ϵ(s1+s2,χ1χ2)

Since r(w2, π
w12
s ) = Λ(s1,χ1)

Λ(s1+1,χ1)ϵ(s1,χ1)
we have

r(w212, πs) = r(w2, πs)r(w1, π
w2
s )r(w2, π

w12
s )

= Λ(s2,χ2)Λ(s1+s2,χ1χ2)Λ(s1,χ1)
Λ(s2+1,χ2)Λ(s1+s2+1,χ1χ2)Λ(s1,χ1)ϵ(s2,χ2)ϵ(s1+s2,χ1χ2)ϵ(s1,χ1)

Since r(w1, π
w212
s ) =

Λ(s1−s2,χ1χ
−1
2 )

Λ(s1−s2+1,χ1χ
−1
2 )ϵ(s1−s2,χ1χ

−1
2 )

we have

r(w1212, πs) = r(w2, πs)r(w1, π
w2
s )r(w2, π

w12
s )r(w1, π

w212
s )

=
Λ(s2,χ2)Λ(s1+s2,χ1χ2)Λ(s1,χ1)Λ(s1−s2,χ1χ

−1
2 )

Λ(s2+1,χ2)Λ(s1+s2+1,χ1χ2)Λ(s1,χ1)Λ(s1−s2+1,χ1χ
−1
2 )ϵ(s2,χ2)ϵ(s1+s2,χ1χ2)ϵ(s1,χ1)ϵ(s1−s2,χ1χ

−1
2 )

Note that since r(w2, π
w121
s ) = L(s2,χ2)

L(s2+1,χ2)ϵ(s2,χ2)
we equivalently have

r(w2121, πs) = r(w1, πs)r(w2, π
w1
s )r(w1, π

w21
s )r(w2, π

w121
s )

=
Λ(s2,χ2)Λ(s1+s2,χ1χ2)Λ(s1,χ1)Λ(s1−s2,χ1χ

−1
2 )

Λ(s2+1,χ2)Λ(s1+s2+1,χ1χ2)Λ(s1,χ1)Λ(s1−s2+1,χ1χ
−1
2 )ϵ(s2,χ2)ϵ(s1+s2,χ1χ2)ϵ(s1,χ1)ϵ(s1−s2,χ1χ

−1
2 )

224



as expected.

Now recall from the discussion of normalized intertwining operators that the poles ofM(w, πs) intersecting

the positive closed Weyl chamber (aGP )∨+ are exactly the poles of the Langlands normalization factor r(w, πs) in

the same region. We obtain the following:

Proposition 4.3.2. (Compare to [69, Proposition 5.4]) We have the following singularities ofM(w, πs) intersect-

ing the positive closed Weyl chamber (aGP )∨+:

• (P = P1) For π = µ⊗χ, if µ is a cuspidal automorphic representation of GL2(AQ) with central character

ωµ = 1 and with nonvanishing central L-value Λ(12 , µ) ̸= 0, then we have the singularity

Sµ,χ = µν ⊗ χν−1

• (P = P2) For π = χ ⊗ µ, if µ = AIFQ(θ) is the automorphic induction of the unitary Hecke character

θ : F× \ A×
F → C× corresponding to a quadratic extension F/Q and χ = ωF/Q, then we have the

singularity

S(F/Q,θ) = ωF/Qν ⊗AIFQ(θ)ν−1/2

• (P = P0) For π = χ1 ⊗ χ2 ⊗ χwe have the following singularities:

(i) If χ1 = χ2 we have the singular hyperplane {s1 = 1 + s2} yielding the region

S1 = {(1 + s, s) ∈ (aGP0
)∨} = o1 + (aGP0

)∨1 o1 = (12 ,−
1
2)

(ii) If χ2 = 1 we have the singular hyperplane {s2 = 1} yielding the region

S2 = {(s, 1) ∈ (aGP0
)∨} = o2 + (aGP0

)∨2 o2 = (0, 1) (aGP0
)∨2 = {(s, 0) ∈ (aGP0

)∨}

(iii) If χ1 = χ−1
2 we have the singular hyperplane {s1 = 1− s2} yielding the region

S3 = {(1− s, s) ∈ (aGP0
)∨} = o3 + (aGP0

)∨3 o3 = (12 ,
1
2) (aGP0

)∨3 = {(s,−s) ∈ (aGP0
)∨}
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(iv) If χ1 = 1 we have the singular hyperplane {s1 = 1} yielding the region

S4 = {(1, s) ∈ (aGP0
)∨} = o4 + (aGP0

)∨4 o4 = (1, 0) (aGP0
)∨4 = {(0, s) ∈ (aGP0

)∨}

(v) If χ1 = χ2 = ωF/Q corresponding to a quadratic extension F/Q we have the singularity

SF/Q,χ = ωF/Qν ⊗ ωF/Q ⊗ χν−1/2

(vi) If χ1 = χ2 = 1 we have the singularity

Sχ = ν2 ⊗ ν ⊗ χν−3/2

Proof. • (P = P1) The L-function Λ(s, µ) is entire, and the L-function Λ(2s, ωµ) has a pole in the region

ℜ(s) ≥ 0 precisely if ωµ = 1 in which case Λ(2s, ωµ) = Z(2s) has a simple pole at s = 1
2 . This pole can

only be cancelled if Λ(12 , µ) = 0, whence the condition ωµ = 1 and Λ(12 , µ) ̸= 0.

• (P = P2) In the caseP = P2 we have the following. Ifµ⊗ω ̸= µ for any nontrivial unitary Hecke character

ω : Q× \ A×
Q → C× then by [44, Theorem 9.3] the adjoint L-function Λ(s,Ad2(µ) × χ) is entire. If

µ⊗ ωF/Q ≃ µ for some quadratic extension F/Q then µ = AIFQ(θ) is the automorphic induction of the

unitary Hecke character θ : F× \ A×
F → C× corresponding to F/Q and we have

Λ(s,Ad2(µ)× χ) = ΛF (s, θσ(θ)
−1χ(NmF/Q))Λ(s, ωF/Qχ)

Now the L-function Λ(s, ωF/Qχ) has a pole in the regionℜ(s) ≥ 0 precisely if χ = ωF/Q in which case

Λ(s, ωF/Qχ) = Z(s) has a simple pole at s = 1. In this case the L-function ΛF (s, θσ(θ)
−1χ(NmF/Q))

is entire in the region ℜ(s) ≥ 0, so the L-function Λ(s,Ad2(µ) × χ) has a pole in the region ℜ(s) ≥ 0

precisely if χ = ωF/Q in which case Λ(s,Ad2(µ)× ωF/Q) = ΛF (s, θσ(θ)
−1ωF/Q(NmF/Q))Z(s) has a

simple pole at s = 1.

On the other hand if the L-function Λ(s,Ad2(µ) × χ) has a pole in the region ℜ(s) ≥ 0 then µ =

AIFQ(θ) is the automorphic induction of the unitary Hecke character θ : F× \ A×
F → C× corresponding

to a quadratic extension F/Q and θσ(θ)−1 is a nontrivial quadratic character, and we have three distinct

226



automorphic induction data (F/Q, θ), (F ′/Q, θ′), (F ′′/Q, θ′′) so that µ = AIFQ(θ) = AIF ′
Q (θ′) =

AIF ′′
Q (θ′′) and we have

Λ(s,Ad2(µ)× χ) = Λ(s, ωF/Qχ)Λ(s, ωF ′/Qχ)L(s, ωF ′′/Qχ)

which has a simple pole at s = 1 precisely if χ ∈ {ωF/Q, ωF ′/Q, ωF ′′/Q}, whence the condition µ =

AIFQ(θ) and χ = ωF/Q.

• (P = P0) The normalization factor r(w1, πs) =
Λ(s1−s2,χ1χ

−1
2 )

Λ(s1−s2+1,χ1χ
−1
2 )ϵ(s1−s2,χ1χ

−1
2 )

(and hence the nor-

malization factors r(w21, πs), r(w121, πs), and r(w1212, πs)) have a pole along the singular hyperplane

{s1 = 1 + s2} precisely if χ1 = χ2.

The normalization factor r(w2, πs) =
Λ(s2,χ2)

Λ(s2+1,χ2)ϵ(s2,χ2)
(and hence the normalization factors r(w12, πs),

r(w212, πs), and r(w1212, πs)) have a pole along the singular hyperplane {s2 = 1} precisely if χ2 = 1.

The normalization factor r(w12, πs) =
Λ(s2,χ2)Λ(s1+s2,χ1χ2)

Λ(s2+1,χ2)Λ(s1+s2+1,χ1χ2)ϵ(s2,χ2)ϵ(s1+s2,χ1χ2)
(and hence the nor-

malization factors r(w121, πs) and r(w1212, πs)) have a pole along the singular hyperplane {s1 = 1− s2}

precisely if χ1 = χ−1
2 .

The normalization factor r(w21, πs) =
Λ(s1−s2,χ1χ

−1
2 )Λ(s1,χ1)

Λ(s1−s2+1,χ1χ
−1
2 )Λ(s1+1,χ1)ϵ(s1−s2,χ1χ

−1
2 )ϵ(s1,χ1)

(and hence the

normalization factors r(w212, πs) and r(w1212, πs)) have a pole along the singular hyperplane {s1 = 1}

precisely if χ1 = 1.

Residues of Eisenstein Series and the Residual Spectrum for GSp4 We now need to compute the residues of

the automorphic Eisenstein series EisGP (ϕs), taking into account the possible singularities intersecting the positive

closed Weyl chamber (aGP0
)∨+. Again there are three cases to consider, one for each standard parabolicQ-subgroup;

in each case we compute the L2-inner products of Poincare series by moving the contours to the unitary axis

s ∈ i(aGP )∨. For the two maximal parabolic Q-subgroupsP1 andP2 the computation is similar to the case of GL2:

we have only a single complex parameter s ∈ (aGPi)
∨ and we pick up a single residual term after the contour crosses

a simple pole. For the minimal parabolic Q-subgroup P0 the computation is more complicated: we now have two

complex parameters (s1, s2) ∈ (aGP0
)∨ and we pick up residual terms after the contour crosses poles at shifts of

root hyperplanes.
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To that end we quickly summarize the arguments given by Konno in [69, Section 6]; they are similar to argu-

ments given by Kim in [65] for the group Sp4, and to arguments developed by Langlands in [74] and by Moeglin-

Waldspurger in [85] more generally. Since G is (quasi)-split of Q-rank 2, the contour integrals at infinity vanish

without needing to introduce additional cutoff integrals as Langlands and Moeglin-Waldspurger do for more general

G; for this reason the estimates on intertwining operators explained by Konno are sufficient to guarantee that the

contour integrals at infinity vanish in order for this argument to work without introducing further complications.

The main contour shifting argument is summarized as follows:

Proposition 4.3.3. (Compare to [69, Proposition 6.1, Proposition 6.2]) Forϕ ∈WP,π andϕ′ ∈
⊕

(P ′,π′)∈[P,π]WP ′,π′

theL2-inner products ⟨θϕ, θϕ′⟩ are given as follows:

• (P = P1) For ϕ ∈WP1,π and ϕ′ ∈
⊕

(P ′,π′)∈[P1,π]
WP ′,π′ we have

⟨θϕ, θϕ′⟩ =
∫
i(aGP1

)∨
A(ϕ, ϕ′)(πs)ds+ c

Λ(12 , µ)

Λ(32 , µ)ϵ(
1
2 , µ)

⟨N(w212,Sµ,χ)ϕ1/2, ϕ
′
1/2⟩

where c = 1√
2
Ress=1

Z(s)
Z(2) =

3
√
2

π is a nonzero constant.

• (P = P2) For ϕ ∈WP2,π and ϕ′ ∈
⊕

(P ′,π′)∈[P2,π]
WP ′,π′ we have

⟨θϕ, θϕ′⟩ =
∫
i(aGP1

)∨
A(ϕ, ϕ′)(πs)ds+ c

ΛF (1, θσ(θ)
−1)

ΛF (2, θσ(θ)−1)ϵF (1, θσ(θ)−1)
⟨N(w121,S(F/Q,θ))ϕ1, ϕ

′
1⟩

where c = Ress=1
Z(s)
Z(2) =

6
π is a nonzero constant.

• (P = P0) For ϕ ∈WP0,π and ϕ′ ∈
⊕

(P ′,π′)∈[P0,π]
WP ′,π′ we have

⟨θϕ, θϕ′⟩ =
∫
i(aGP0

)∨
A(ϕ, ϕ′)(πs)ds+

∑
1≤j≤3

∫
oj+(aGP0

)∨j

ResSjA(ϕ, ϕ
′)(πs)ds

+ lim
ϵ→0

∫
o4+i(aGP0

)∨4

1

2

(
ResS4A(ϕ, ϕ

′)(πs+ϵ) + ResS4A(ϕ, ϕ
′)(πs−ϵ)

)
ds

+ c2⟨M(w2,S
w121

F/Q,χ)N(w1,S
w21

F/Q,χ)M(w2,S
w1

F/Q,χ)N(w1,SF/Q,χ)ϕ(1,0), ϕ
′
(1,0)⟩

+ c2⟨N(w2,S
w121
χ )M(w12,S

w1
χ )N(w1,Sχ)ϕρP0 , ϕ

′
ρP0
⟩

where c = Ress=1
Z(s)
Z(2) =

6
π is a nonzero constant.

Proof. We have the following:
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• (P = P1) Letϕ ∈WP1,π andϕ′ ∈
⊕

(P ′,π′)∈[P1,π]
WP ′,π′ whereπ = µ⊗χ as before. Fixing s0 ∈ (aGP1

)∨

sufficiently positive we want to compute
∫
s0+i(aGP1

)∨ A(ϕ, ϕ
′)(πs)ds−

∫
i(aGP1

)∨ A(ϕ, ϕ
′)(πs)ds. To that

end we consider the contour integral limt→∞
∮
Ct
A(ϕ, ϕ′)(πs)ds, and as explained by [69, Section 6.1] the

contour integrals at infinity vanish by estimates on the intertwining operatorsM(w, πs) and by the rapid

decay of ϕ and ϕ′ inℑ(s) since they are Paley-Wiener. It follows by the residue theorem that

∫
s0+i(aGP1

)∨
A(ϕ, ϕ′)(πs)ds−

∫
i(aGP1

)∨
A(ϕ, ϕ′)(πs)ds = ResSµ,χA(ϕ, ϕ

′)(πs)

Now recall that the Langlands normalization factor

r(w212, πs) =
Λ(s, µ)Λ(2s, ωµ)

Λ(s+ 1, µ)Λ(2s+ 1, ωµ)ϵ(s, µ)ϵ(2s, ωµ)

has a pole at s = 1
2 for µ a cuspidal automorphic representation of GL2(AQ) with central characterωµ = 1

and nonvanishing central L-value Λ(12 , µ) ̸= 0 where it is given

r(w212, πs) =
Λ(s, µ)Z(2s)

Λ(s+ 1, µ)Z(2s+ 1)ϵ(s, µ)

Then we have the residue

ResSµ,χA(ϕ, ϕ
′)(πs) = Ress= 1

2

(
⟨ϕs, ϕ′s⟩+ r(w212, πs)⟨N(w212,Sµ,χ)ϕs, ϕ

′
s⟩
)

= Ress= 1
2

Λ(s, µ)Z(2s)

Λ(s+ 1, µ)Z(2s+ 1)ϵ(s, µ)
⟨N(w212,Sµ,χ)ϕs, ϕ

′
s⟩

= c
Λ(12 , µ)

Λ(32 , µ)ϵ(
1
2 , µ)

⟨N(w212,Sµ,χ)ϕ1/2, ϕ
′
1/2⟩

where c = 1√
2
Ress=1

Z(s)
Z(2) =

3
√
2

π , so it follows that theL2-inner product is given

⟨θϕ, θϕ′⟩ =
∫
s0+i(aGP1

)∨
A(ϕ, ϕ′)(πs)ds

=

∫
i(aGP1

)∨
A(ϕ, ϕ′)(πs)ds+ c

Λ(12 , µ)

Λ(32 , µ)ϵ(
1
2 , µ)

⟨N(w212,Sµ,χ)ϕ1/2, ϕ
′
1/2⟩
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• (P = P2) Letϕ ∈WP2,π andϕ′ ∈
⊕

(P ′,π′)∈[P2,π]
WP ′,π′ whereπ = χ⊗µ as before. Fixing s0 ∈ (aGP2

)∨

sufficiently positive we want to compute
∫
s0+i(aGP2

)∨ A(ϕ, ϕ
′)(πs)ds−

∫
i(aGP2

)∨ A(ϕ, ϕ
′)(πs)ds. To that

end we consider the contour integral limt→∞
∮
Ct
A(ϕ, ϕ′)(πs)ds, and as explained by [69, Section 6.1] the

contour integrals at infinity vanishing by estimates on the intertwining operatorsM(w, πs) and by the rapid

decay of ϕ and ϕ′ inℑ(s) since they are Paley-Wiener. It follows by the residue theorem that

∫
s0+i(aGP2

)∨
A(ϕ, ϕ′)(πs)ds−

∫
i(aGP2

)∨
A(ϕ, ϕ′)(πs)ds = ResS(F/Q,θ)A(ϕ, ϕ

′)(πs)

Now recall that the Langlands normalization factor

r(w121, πs) =
Λ(s,Ad(µ)× χ)

Λ(s,Ad(µ)× χ)ϵ(s,Ad(µ)× χ)

has a pole at s = 1 for µ = AIFQ(θ) the automorphic induction of the unitary Hecke character θ :

F× \ A×
F → C× corresponding to a quadratic extension F/Q and χ = ωF/Q where it is given

r(w121, πs) =
ΛF (s, θσ(θ)

−1)Z(s)

ΛF (s+ 1, θσ(θ)−1)Z(s+ 1)ϵF (s, θσ(θ)−1)

Then we have the residue

ResS(F/Q,θ)A(ϕ, ϕ
′)(πs) = Ress=1r(w121, πs)⟨N(w121,S(F/Q,θ))ϕs, ϕ

′
s⟩

= Ress=1
ΛF (s, θσ(θ)

−1)Z(s)

ΛF (s+ 1, θσ(θ)−1)Z(s+ 1)ϵF (s, θσ(θ)−1)
⟨N(w121,S(F/Q,θ))ϕs, ϕ

′
s⟩

= c
ΛF (1, θσ(θ)

−1)

ΛF (2, θσ(θ)−1)ϵF (1, θσ(θ)−1)
⟨N(w121,S(F/Q,θ))ϕ1, ϕ

′
1⟩

where c = Ress=1
Z(s)
Z(2) =

6
π , so it follows that theL2-inner product is given

⟨θϕ, θϕ′⟩ =
∫
s0+i(aGP1

)∨
A(ϕ, ϕ′)(πs)ds

=

∫
i(aGP1

)∨
A(ϕ, ϕ′)(πs)ds+ c

ΛF (1, θσ(θ)
−1)

ΛF (2, θσ(θ)−1)ϵF (1, θσ(θ)−1)
⟨N(w121,S(F/Q,θ))ϕ1, ϕ

′
1⟩
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• Let ϕ ∈ WP0,π and ϕ′ ∈
⊕

(P ′,π′)∈[P0,π]
WP ′,π′ where π = χ1 ⊗ χ2 ⊗ χ as before. Fixing s0 ∈ (aGP0

)∨

sufficiently positive let γ be the straight path from s0 to 0 in (aGP0
)∨ and let t1, t2, t3, t4 ∈ (aGP0

)∨ be the

intersections of γ with the singularities S1,S2,S3,S4 respectively.

α2

α1

ℜ(S2)

ℜ(S4)
ℜ(S3)

ℜ(S1)

t3

t4

t2

t1

ρ
Sχ

o1

o2
o3

o4
SF/Q,χ

s0

We compute the difference
∫
s0+i(aGP0

)∨ A(ϕ, ϕ
′)(πs)ds−

∫
i(aGP0

)∨ A(ϕ, ϕ
′)(πs)ds as a (double) countour

integral limt→∞
∮
Ct
A(ϕ, ϕ′)(πs)dswith the contour integrals at infinity vanishing by standard estimates

on the intertwining operators M(w, πs) and by the rapid decay of ϕ and ϕ′ in ℑ(s) since they are Paley-

Wiener. It follows by the residue theorem that

∫
s0+i(aGP0

)∨
A(ϕ, ϕ′)(πs)ds−

∫
i(aGP0

)∨
A(ϕ, ϕ′)(πs)ds =

∑
1≤j≤4

∫
tj+i(aGP0

)∨j

ResSjA(ϕ, ϕ
′)(πs)

In order to obtain aG(AQ)-invariant expression we need to move the integration regions tj + i(aGP0
)∨j to

the integration regions oj + i(aGP0
)∨j along the planesℜ(Sj) = 0 (shown in red). This gives the following

contributions:

• Upon moving t1 to o1 we pick up the residues ResSχA(ϕ, ϕ′)(πs) and ResSF/Q,χA(ϕ, ϕ
′)(πs) and

the residue
∫
t1+i(aGP0

)∨1
ResS1A(ϕ, ϕ

′)(πs) becomes
∫
o1+i(aGP0

)∨1
ResS1A(ϕ, ϕ

′)(πs).

• Upon moving t2 too2 the residue
∫
t2+i(aGP0

)∨2
ResS2A(ϕ, ϕ

′)(πs)becomes
∫
o2+i(aGP0

)∨2
ResS2A(ϕ, ϕ

′)(πs).

• Upon moving t3 too3 the residue
∫
t3+i(aGP0

)∨3
ResS3A(ϕ, ϕ

′)(πs)becomes
∫
o3+i(aGP0

)∨3
ResS3A(ϕ, ϕ

′)(πs).
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• Upon moving t4 to o4 the residue
∫
t4+i(aGP0

)∨4
ResS4A(ϕ, ϕ

′)(πs) is replaced by the principal value

limϵ→0

∫
o4+i(aGP0

)∨4

1
2(ResS4A(ϕ, ϕ

′)(πs+ϵ) + ResS4A(ϕ, ϕ
′)(πs−ϵ))ds.

The same estimates of contour integrals apply and it follows by the residue theorem that

∫
s0+i(aGP0

)∨
A(ϕ, ϕ′)(πs)ds−

∫
i(aGP0

)∨
A(ϕ, ϕ′)(πs)ds

=
∑

1≤j≤3

∫
tj+i(aGP0

)∨j

ResSjA(ϕ, ϕ
′)(πs)

+ lim
ϵ→0

∫
o4+i(aGP0

)∨4

1

2

(
ResS4A(ϕ, ϕ

′)(πs+ϵ) + ResS4A(ϕ, ϕ
′)(πs−ϵ)

)
ds

+ResSF/Q,χA(ϕ, ϕ
′)(πs) + ResSχA(ϕ, ϕ

′)(πs)

Then we have the residue

ResSF/Q,χ
A(ϕ, ϕ′)(πs)

= Res(s1,s2)=(1,0)r(w1212,SF/Q,χ)⟨N(w1212,SF/Q,χ)ϕs, ϕ
′
s⟩

= Res(s1,s2)=(1,0)r(w1,S
w21
F/Q,χ)r(w1,SF/Q,χ)⟨M(w2,S

w121
F/Q,χ)N(w1,S

w21
F/Q,χ)M(w2,S

w1
F/Q,χ)N(w1,SF/Q,χ)ϕs, ϕ

′
s⟩

= Res(s1,s2)=(1,0)
Z(s1)

2

Z(s1 + 1)2
⟨M(w2,S

w121
F/Q,χ)N(w1,S

w21
F/Q,χ)M(w2,S

w1
F/Q,χ)N(w1,SF/Q,χ)ϕs, ϕ

′
s⟩

= c2⟨M(w2,S
w212
F/Q,χ)N(w1,S

w21
F/Q,χ)M(w2,S

w1
F/Q,χ)N(w1,SF/Q,χ)ϕ(1,0), ϕ

′
(1,0)⟩

and we have the residue

ResSχA(ϕ, ϕ
′)(πs)

= Res(s1,s2)=ρP0
r(w1212,Sχ)⟨N(w1212,Sχ)ϕs, ϕ

′
s⟩

= Res(s1,s2)=ρP0
r(w2,S

w121
χ )r(w1,Sχ)⟨N(w2,S

w121
χ )M(w12,S

w1
χ )N(w1,Sχ)ϕs, ϕ

′
s⟩

= Res(s1,s2)=ρP0

Z(s1 − s2)Z(s2)

Z(s1 − s2 + 1)Z(s2 + 1)
⟨N(w2,S

w121
χ )M(w12,S

w1
χ )N(w1,Sχ)ϕs, ϕ

′
s⟩

= c2⟨N(w2,S
w121
χ )M(w12,S

w1
χ )N(w1,Sχ)ϕρP0

, ϕ′
ρP0

⟩
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where c = Ress=1
Z(s)
Z(2) =

6
π , so it follows that theL2-inner product is given

⟨θϕ, θϕ′⟩ =
∫
s0+i(aGP0

)∨
A(ϕ, ϕ′)(πs)ds

=

∫
i(aGP0

)∨
A(ϕ, ϕ′)(πs)ds+

∑
1≤j≤3

∫
oj+i(aGP0

)∨j

ResSjA(ϕ, ϕ
′)(πs)ds

+ lim
ϵ→0

∫
o4+i(aGP0

)∨4

1

2

(
ResS4A(ϕ, ϕ

′)(πs+ϵ) + ResS4A(ϕ, ϕ
′)(πs−ϵ)

)
ds

+ c2⟨M(w2,S
w212

F/Q,χ)N(w1,S
w21

F/Q,χ)M(w2,S
w1

F/Q,χ)N(w1,SF/Q,χ)ϕ(1,0), ϕ
′
(1,0)⟩

+ c2⟨N(w2,S
w121
χ )M(w12,S

w1
χ )N(w1,Sχ)ϕρP0 , ϕ

′
ρP0
⟩

The same computation applies whenQ is replaced by any number fieldF (as in [69]), in which case the nonzero

constants c instead involve Ress=1ZF (s)/ZF (2). We obtain the following corollary:

Corollary 4.3.4. The Eisenstein series and their residues forG = GSp4 over Q are given as follows:

• At o = (0, 0) we have the cuspidal Eisenstein series

EisGP (I
G(AQ)
P1(AQ)

(πs)) s ∈ i(aGP )∨

• At o1 = χ1ν
1/2 ⊗ χ1ν

−1/2 ⊗ χ and o3 = χ1ν
1/2 ⊗ χ−1

1 ν1/2 ⊗ χ1χν
−1/2 we have the Siegel-Eisenstein

series

EisGP1
(IG(AQ)
P1(AQ)

(χ1ν
s ◦ det⊗ χν−s)) s ∈ i(aGP1

)∨

• At o2 = χ1 ⊗ ν ⊗ χν−1/2 and o4 = ν ⊗ χ1 ⊗ χν−1/2 we have the Klingen Eisenstein series

EisGP2
(IG(AQ)
P2(AQ)

(χ1ν
s ⊗ χν−s/2 ◦ det)) s ∈ i(aGP2

)∨

• At Sµ,χ = µν1/2 ⊗ χν−1/2 we have the Langlands quotient

J G(AQ)
P1(AQ)

(µν ⊗ χν−1)
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of the normalized parabolic induction IG(AQ)
P1(AQ)

(µν ⊗ χν−1).

• At S(F/Q,θ) = ωF/Qν ⊗ π(θ)ν−1/2 we have the Langlands quotient

J G(AQ)
P2(AQ)

(ωF/Qν ⊗ π(θ)ν−1/2)

of the normalized parabolic induction IG(AQ)
P2(AQ)

(ωF/Qν ⊗ π(θ)ν−1/2).

• At SF/Q,χ we have the Langlands quotient

J G(AQ)
P2(AQ)

(ωF/Qν ⊗ π(χ ◦NmF/Q)ν
−1/2)

of the normalized parabolic induction IG(AQ)
P0(AQ)

(ωF/Qν ⊗ ωF/Q ⊗ χν−1/2), or of the normalized parabolic

induction IG(AQ)
P1(AQ)

(ωF/Qν
1/2 ◦ det⊗ χν−1/2) (a degenerate principal series representation).

• At Sχ we have the 1-dimensional representation χ ◦ sim.

It follows that we have a decomposition

L2(G(Q)AG(R)◦ \G(AQ)) = L2
disc(G(Q)AG(R)◦G(AQ))⊕ L2

cont(G(Q)AG(R)◦ \G(AQ))

where the continuous spectrum is given

L2
cont(G(Q)AG(R)◦ \G(AQ)) =

⊕
[P,π]

∫
i(aGP )

∨
IG(AQ)
P (AQ)

(π, s)ds

⊕
⊕
χ1,χ

∫
i(aGP1

)∨
IG(AQ)
P1(AQ)

(χ1ν
s ◦ det⊗ χν−s)ds

⊕
⊕
χ1,χ

∫
i(aGP2

)∨
IG(AQ)
P2(AQ)

(χ1ν
s ⊗ χν−s/2 ◦ det)ds

where the first direct sum is taken over cuspidal pairs [M,π] whereM is the Levi quotient of a parabolic subgroup

P and where where π is a cuspidal automorphic representation ofM(AQ). We have a further decomposition

L2
disc(G(Q)AG(R)◦ \G(AQ)) = L2

cusp(G(Q)AG(R)◦ \G(AQ))⊕ L2
res(G(Q)AG(R)◦ \G(AQ))
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where the residual spectrum is given

L2
res(G(Q)AG(R)◦ \G(AQ)) =

⊕
µ,χ

ωµ=χ2=1

L( 1
2
,µ)̸=0

J G(AQ)
P1(AQ)

(µν ⊗ χν−1)

⊕
⊕

(F/Q,θ)

J G(AQ)
P2(AQ)

(ωF/Qν ⊗ π(θ)ν−1/2)

⊕
⊕
F/Q,χ

J G(AQ)
P2(AQ)

(ωF/Qν ⊗ π(χ ◦NmF/Q)ν
−1/2)

⊕
⊕
χ

χ ◦ sim

4.3.2 Siegel Eisenstein Cohomology

In this section we compute Siegel Eisenstein cohomology as aHKfin
× Gal-module. First, we recall some facts

about the poles of Siegel Eisenstein series, and the evaluation points and infinitesimal characters which will enter

into the description of the Franke filtration for the Siegel parabolic subgroup.

We begin by restating the results of the previous section on the locations of poles of Siegel Eisenstein series:

Proposition 4.3.5. (Compare to [48, Proposition 3.4]) The automorphic Eisenstein series EisGP1
(ϕs) attached to

a unitary cuspidal automorphic representation π = µ ⊗ χ of M1(AQ) = GL2(AQ) × GL1(AQ) has a pole at

s = ν ∈ a∨+P1
precisely if ν = (12 ,

1
2) and ωµ = 1 and Λ(12 , µ) ̸= 0, in which case we have a simple pole at s = 1

2

and the space spanned by the residues Ress= 1
2
EisGP1

(ϕs) is isomorphic to the Langlands quotientJ G(AQ)
P1(AQ)

(π, 12).

We now record the following result on infinitesimal characters coming from the action of the Weyl group:

Proposition 4.3.6. (Compare to [48, Lemma 3.5]) Let Vλ ∈ Rep(G) be an absolutely irreducible rational repre-

sentation with highest weight λ = (λ1, λ2; 0), and letJλ be the ideal of finite codimension inZ(gC) annihilating

V ∨
λ . Let φ = {φP }P∈[P1] ∈ Φλ,[P1](G) be the associate class of a unitary cuspidal automorphic representation

π = µ ⊗ χ ∈ φP1 of M1(AQ) = GL2(AQ) × GL1(AQ). Then the infinitesimal character ξ ∈ a∨⊥P1
and the

corresponding s0 ∈ a∨P1
such that s0 + ξ is annihilated by Jλ are given by s0 = ±(λ1+λ2+3

2 , λ1+λ2+3
2 ) and

ξ = (λ1−λ2+1
2 ,−λ1−λ2+1

2 ), or s0 = ±(λ1−λ2+1
2 , λ1−λ2+1

2 ) and ξ = (λ1+λ2+3
2 ,−λ1+λ2+3

2 ).
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The Franke-Schwermer Filtration We now describe the Franke filtration for the Siegel parabolic subgroup. As

expected, the bottom piece is given by the Langlands quotient of normalized Siegel parabolic induction, and the

top piece is given by normalized Siegel parabolic induction.

Proposition 4.3.7. (Compare to [48, Theorem 3.6]) Let Vλ ∈ Rep(G) be an absolutely irreducible rational repre-

sentation with highest weight λ = (λ1, λ2; 0), and letJλ be the ideal of finite codimension inZ(gC) annihilating

V ∨
λ . Let φ = {φP }P∈[P1] ∈ Φλ,[P1](G) be the associate class of a unitary cuspidal automorphic representation

π = µ ⊗ χ ∈ φP1 of M1(AQ) = GL2(AQ) × GL1(AQ) with infinitesimal character ξ ∈ a∨⊥P1
. Let s0 ∈ a∨P1

such that s0 + ξ is annihilated byJλ. Then the Franke-Schwermer filtration onAλ,[P1],φ(G) is given by

A2
λ,[P1],φ

(G) ⊆ A1
λ,[P1],φ

(G) = Aλ,[P1],φ(G)

whereA2
λ,[P1],φ

(G) is nontrivial precisely if λ1 = λ2, ξ = (λ1+λ2+3
2 ,−λ1+λ2+3

2 ), and there exists a section ϕ

of the normalized parabolic induction IG(AQ)
P1(AQ)

(π, s) such that the automorphic Eisenstein series EisGP1
(ϕs) has a

pole at s = s0 = (12 ,
1
2), in which case we have an isomorphism ofG(A∞

Q )× (g,K∞)-modules

A2
λ,[P1],φ

(G) ≃ J G(AQ)
P1(AQ)

(π, 12)

In any case we have an isomorphism ofG(A∞
Q )× (g,K∞)-modules

A1
λ,[P1],φ

(G)/A2
λ,[P1],φ

(G) ≃ IG(AQ)
P1(AQ)

(π, s0)⊗ Sym(a∨P1,C)

where s0 = (λ1+λ2+3
2 , λ1+λ2+3

2 ) in the case ξ = (λ1−λ2+1
2 ,−λ1−λ2+1

2 ), and s0 = (λ1−λ2+1
2 , λ1−λ2+1

2 ) in the

case ξ = (λ1+λ2+3
2 ,−λ1+λ2+3

2 ).

Proof. LetMλ,[P1],φ(G) be the set of tuples (P ′, π′, ν, s0) where P ′ ∈ [P1] is a standard parabolic Q-subgroup

ofGwith Levi decomposition P ′ =M ′N ′ containing an element of the associate class [P1], where π′ is a discrete

spectrum automorphic representation of M ′(AQ) with cuspidal support π obtained as the iterated residue at

ν ∈ (aP
′

P1
)∨C of the automorphic Eisenstein series attached to π ∈ φP1 , and where s0 ∈ a∨P ′,C is a point with

ℜ(s0) ∈ (aGP ′)∨+ such that s0 + ν + ξ is annihilated byJλ. Form ∈ Z letMm
λ,[P1],φ

(G) be the subset of tuples

(P ′, π′, ν, s0) such that T (s0) = m, where T : a∨+P ′ → Z is fixed at the end of the proof. Then we have an
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isomorphism ofG(A∞
Q )× (g,K∞)-modules

Amλ,[P1],φ
(G)/Am+1

λ,[P1],φ
(G) ≃

⊕
(P ′,π′,ν,s0)∈Mm

λ,[P1],φ
(G)

IG(AQ)
P ′(AQ)

(π′, s0)⊗ Sym((aGP ′)∨C)

Now we have the following:

• For P ′ = P1 we have π′ = µ ⊗ χ hence ν = (0, 0) ∈ (aP
′

P1
)∨C. By 4.3.6 such ν can only be obtained

for s0 = ±(λ1+λ2+3
2 , λ1+λ2+3

2 ) and ξ = (λ1−λ2+1
2 ,−λ1−λ2+1

2 ), or s0 = ±(λ1−λ2+1
2 , λ1−λ2+1

2 ) and

ξ = (λ1+λ2+3
2 ,−λ1+λ2+3

2 ). It follows that

Mm
λ,[P1],φ

(G)P1 =



(P1, µ⊗ χ, (0, 0), s0)

if T (λ) = m and s0 =


(λ1+λ2+3

2 , λ1+λ2+3
2 ) ξ = (λ1−λ2+1

2 ,−λ1−λ2+1
2 )

(λ1−λ2+1
2 , λ1−λ2+1

2 ) ξ = (λ1+λ2+3
2 ,−λ1+λ2+3

2 )

0 otherwise

• For P ′ = G since π′ is a residual representation of M1(AQ) = GL2(AQ) × GL1(AQ), by 4.3.5 we have

π′ ≃ J G(AQ)
P1(AQ)

(π, (12 ,
1
2)) hence ν = (12 ,

1
2) ∈ (aP

′
P1
)∨C. By 4.3.6 such ν can only be obtained for λ1 = λ2

and s = (λ1+λ2+3
2 ,−λ1+λ2+3

2 ). It follows that

Mm
λ,[P1],φ

(G)G =


(G,J G(AQ)

P1(AQ)
(π, (12 ,

1
2)), (

1
2 ,

1
2), (0, 0))

if T (0) = m and λ1 = λ2 and ωµ = 1 and Λ(µ, 12) ̸= 0

0 otherwise

The result follows by taking the filtration defined by T (0) = 2 and T (λ) = 1 for λ ̸= 0.

Cohomology of the Franke-Schwermer Filtration Recall that the Levi quotient M1(R) = GL2(R) ×

GL1(R) admits a decompositionM1(R) =M ss
1 (R)×AP1(R)◦ whereM ss

1 (R) = SL±
2 (R)×{±1} is semisimple

with Lie algebra mss
1 = sl2 andAP1(R)◦ = R2

>0 is the connected component of the maximal central Q-split torus

AP1 with Lie algebra aP1 = R2. Recalling thatK ′
∞ = R>0U(2), forK ′M1

∞ the image ofK ′
∞ ∩ P1(R) under the

canonical projection P1(R) → M1(R) we have K ′M1
∞ = R>0O(2), and for K ′Mss

1∞ the image of K ′
∞ ∩ P1(R)
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under the canonical projectionP1(R)→M ss
1 (R) we haveK ′Mss

1∞ = O(2). LetV ϵ = V ⊗ signϵ1 be the standard

2-dimensional representation of SL±
2 (R) with character signϵ1 and for k ≥ 0 let V ϵ1

k = Symk(V )⊗ signϵ1 be

the irreducible k + 1-dimensional representation of SL±
2 (R) with character signϵ1 . LetDk be the discrete series

representation of SL±
2 (R) with minimal O(2)-type k + 1.

Proposition 4.3.8. (Compare to [? , Lemma 4.1]) For ϵ1, ϵ ∈ {0, 1}we have

Hq(mss
1 ,K

′Mss
1∞ ;π∞ ⊗ (V ϵ1

0 ⊗ signϵ)) ≃



C


q = 0, π∞ ≃ V ϵ1

0 ⊗ signϵ
′

q = 1, π∞ ≃ D1 ⊗ signϵ
′

q = 2, π∞ ≃ V ϵ1+1
0 ⊗ signϵ

′

0 otherwise

and for k ≥ 1 we have

Hq(mss
1 ,K

′Mss
1∞ ;π∞ ⊗ (V ϵ1

k ⊗ signϵ)) ≃


C q = 1, π∞ ≃ Dk+1 ⊗ signϵ

′

0 otherwise

Proof. For G = Sp4 recall that the Levi quotient M1(R) = GL2(R) admits a decomposition M1(R) =

M ss
1 (R)×AP1(R)◦ whereM ss

1 (R) = SL±
2 (R)×{±1} is semisimple with Lie algebramss

1 = sl2 andAP1(R)◦ =

R>0 is the connected component of the maximal central Q-split torusAP1 with Lie algebra aP1 = R. Recalling

thatK∞ = U(2), forKM1
∞ the image ofK∞ ∩P1(R) under the canonical projectionP1(R)→M1(R) we have

KM1
∞ = O(2), and forK ′Mss

1∞ the image ofK∞ ∩ P1(R) under the canonical projection P1(R)→ M ss
1 (R) we

haveKMss
1∞ = O(2). By [48, Lemma 4.1] for ϵ1 ∈ {0, 1}we have

Hq(mss
1 ,K

Mss
1∞ ;π∞ ⊗ V ϵ1

0 ) ≃



C


q = 0, π∞ ≃ V ϵ1

0

q = 1, π∞ ≃ D1

q = 2, π∞ ≃ V ϵ1+1
0

0 otherwise

238



and for k ≥ 1 we have

Hq(mss
1 ,K

Mss
1∞ ;π∞ ⊗ V ϵ1

k ) ≃


C q = 1, π∞ ≃ Dk+1

0 otherwise

The result follows from this, noting that the (mss
1 ,K

′Mss
1∞ )-cohomology is independent of the character signϵ on

the factor {±1} ofM ss
1 (R), as the factor R>0 ofK ′

∞ intersects this factor only at the identity.

Note that Dk|SL2(R) ≃ D
+
k ⊕ D

−
k where D+

k is the holomorphic discrete series representation of SL2(R)

with minimal SO(2)-type k + 1 and D−
k is the antiholomorphic discrete series representation of SL2(R) with

maximal SO(2)-type−k − 1; the (sl2,O(2))-cohomology of this representation has dimension 1, whereas the

(sl2,SO(2))-cohomology of this representation has dimension 2, as we will see in the case of the Klingen parabolic

subgroup.

Now there are two pieces of the Franke-Schwermer filtration whose (g,K ′
∞)-cohomology we need to compute:

we need to computeHq(g,K ′
∞;

A1
λ,[P1],φ

(G)

A1
λ,[P1],φ

(G)
⊗ Vλ) as well asHq(g,K ′

∞;A2
λ,[P1],φ

(G)⊗ Vλ) in the case where

A2
λ,[P1],φ

(G) is nontrivial.

Proposition 4.3.9. (Compare to [48, Proposition 4.2]) Let Vλ ∈ Rep(G) be an absolutely irreducible rational

representation with highest weight λ = (λ1, λ2; 0). Let φ = {φP }P∈[P1] ∈ Φλ,[P1](G) be the associate class of

a cuspidal automorphic representation π ⊗ χ ∈ φP1 of M1(AQ) = GL2(AQ) × GL1(AQ). Then we have an

isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;

A1
λ,[P1],φ

(G)

A2
λ,[P1],φ

(G)
⊗ Vλ) ≃


I
G(A∞

Q )

P1(A∞
Q )(πfin,

λ1−λ2+1
2 ) q = 3, µ∞ = Dλ1+λ2+3

I
G(A∞

Q )

P1(A∞
Q )(πfin,

λ1+λ2+3
2 ) q = 4, µ∞ = Dλ1−λ2+1

0 otherwise
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IfA2
λ,[P1],φ

(G) is nontrivial, that is precisely if λ1 = λ2 and µ∞ = Dλ1+λ2+3 with ωµ = 1 and Λ(12 , µ) ̸= 0,

then we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;A2

λ,[P1],φ
(G)⊗ Vλ) ≃


J
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2) q = 2, 4

0 otherwise

Proof. For the first claim we have

Hq(g,K ′
∞;

A1
λ,[P1],φ

(G)

A2
λ,[P1],φ

(G)
⊗ Vλ)

≃ Hq(g,K ′
∞; IG(AQ)

P1(AQ)
(π, s0)⊗ Sym((aGP1

)∨C)⊗ Vλ)

≃ Hq(g,K ′
∞; IG(R)

P1(R)(π∞, s0)⊗ Sym((aGP1
)∨C)⊗ Vλ)⊗ I

G(A∞
Q )

P1(A∞
Q )(πfin, s0)

By Borel-Wallach [20, III Theorem 3.3] there exists a unique w ∈ WP1 such that π∞ ⊗ Cs0+ρP1 has nonzero

(m1,K
′M1
∞ )-cohomology with respect toSym((aGP1

)∨C)⊗Vw·λ: we havew = s21 in the cases0 = (λ1−λ2+1
2 , λ1−λ2+1

2 )

and ξ = (λ1+λ2+3
2 ,−λ1+λ2+3

2 ), and we have w = s212 in the case s0 = (λ1+λ2+3
2 , λ1+λ2+3

2 ) and ξ =

(λ1−λ2+1
2 ,−λ1−λ2+1

2 ). Now in both cases, recalling thatM1(R) =M ss
1 (R)×AP1(R)◦ and m1 = mss

1 ⊕ aP1 ,

by 4.3.8 we have

Hq(g,K ′
∞; IG(R)

P1(R)(π∞, s0)⊗ Sym((aGP1
)∨C)⊗ Vλ)

≃ Hq−ℓ(w)(m1,K
′M1
∞ ;π∞ ⊗ Sym((aGP1

)∨C)⊗ Cs0+ρP1 ⊗ Vw·λ)

≃ Hq−ℓ(w)(mss
1 ,K

′Mss
1∞ ;π∞ ⊗ Vw·λ)

≃


C q = 3, µ∞ = Dλ1+λ2+3

C q = 4, µ∞ = Dλ1−λ2+1

0 otherwise

For the second claim suppose thatA2
λ,[P1],φ

(G) is nontrivial, so that we are in the caseλ1 = λ2, ξ = (λ1+λ2+3
2 ,−λ1+λ2+3

2 ),

and there exists a section ϕ of the normalized parabolic induction IG(AQ)
P1(AQ)

(π, s) such that the automorphic Eisen-
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stein series EisGP1
(ϕs) has a pole at s = s0 = (12 ,

1
2). Then by 4.3.8 we have

Hq(g,K ′
∞;A2

λ,[P1],φ
(G)⊗ Vλ)

≃ Hq(g,K ′
∞;J G(AQ)

P1(AQ)
(π, 12)⊗ Vλ)

≃ Hq(g,K ′
∞;J G(R)

P1(R)(π∞,
1
2)⊗ Vλ)⊗ J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2)

Now by Borel-Wallach [20, VI Lemma 1.5, Theorem 1.7] the (g,K ′
∞)-cohomology of the Langlands quotient

J G(R)
P1(R)(π∞,

1
2) with respect to Vλ is given

Hq(g,K ′
∞;J G(R)

P1(R)(π∞,
1
2)⊗ Vλ) =


C q = 2, 4

0 otherwise

The result follows.

Siegel Eisenstein Cohomology Having computed the (g,K ′
∞)-cohomology of the pieces of the Franke-Schwermer

filtration, we are now in the position to compute Eisenstein cohomology. Up to indeterminacies regarding the be-

havior of certain connecting morphisms in the case whereA2
λ,[P1],φ

(G) is nontrivial, we have the following result:

Theorem 4.3.10. (Compare to [48, Theorem 5.1]) LetVλ ∈ Rep(G) be an absolutely irreducible rational represen-

tation with highest weightλ = (λ1, λ2; 0). Letφ = {φP }P∈[P1] ∈ Φλ,[P1](G) be the associate class of a cuspidal

automorphic representation π = µ⊗ χ ∈ φP1 ofM1(AQ) = GL2(AQ)×GL1(AQ).

IfA2
λ,[P1],φ

(G) is trivial then we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P1],φ(G)⊗ Vλ) ≃


I
G(A∞

Q )

P1(A∞
Q )(πfin,

λ1−λ2+1
2 ) q = 3, µ∞ = Dλ1+λ2+3

I
G(A∞

Q )

P1(A∞
Q )(πfin,

λ1+λ2+3
2 ) q = 4, µ∞ = Dλ1−λ2+1

0 otherwise
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IfA2
λ,[P1],φ

(G) is nontrivial, that is precisely if λ1 = λ2 and µ∞ = Dλ1+λ2+3 with ωµ = 1 and Λ(12 , µ) ̸= 0,

then (with the assumption 4.3.11 on connecting morphisms) we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P1],φ(G)⊗ Vλ) ≃


J
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2) q = 2

K3(µ, χ) q = 3

0 otherwise

whereK3(µ, χ) is theG(A∞
Q )-module

K3(µ, χ) ≃ ker
(
I
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2)→ J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2)
)

Proof. By definitionHq(g,K ′
∞;Aλ,[P1],φ(G)⊗ Vλ) = Hq(g,K ′

∞;A1
λ,[P1],φ

(G)⊗ Vλ), and ifA2
λ,[P1],φ

(G) is

trivial we clearly have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P1],φ(G)⊗ Vλ) ≃ H

q(g,K ′
∞;

A1
λ,[P1],φ

(G)

A2
λ,[P1],φ

(G)
⊗ Vλ)

It follows that we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P1],φ(G)⊗ Vλ) ≃


Hq(g,K ′

∞;A1
λ,[P1],φ

(G)⊗ Vλ) q = 3, 4

0 otherwise

≃


I
G(A∞

Q )

P1(A∞
Q )(πfin,

λ1−λ2+1
2 ) q = 3, µ∞ = Dλ1+λ2+3

I
G(A∞

Q )

P1(A∞
Q )(πfin,

λ1+λ2+3
2 ) q = 4, µ∞ = Dλ1−λ2+1

0 otherwise

IfA2
λ,[P1],φ

(G) is nontrivial consider short exact sequence ofG(A∞
Q )× (g,K ′

∞)-modules

0→ A2
λ,[P1],φ

(G)→ A1
λ,[P1],φ

(G)→
A1
λ,[P1],φ

(G)

A2
λ,[P1],φ

(G)
→ 0
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which gives rise to a long exact sequence ofG(A∞
Q )-modules

0→ H2(g,K ′
∞;A2

λ,[P1],φ
(G)⊗ Vλ)︸ ︷︷ ︸

≃J
G(A∞Q )

P1(A∞Q )
(πfin,

1
2 )

→ H2(g,K ′
∞;A1

λ,[P1],φ
(G)⊗ Vλ)→

(((((((((((((
H2(g,K ′

∞;
A1

λ,[P1],φ(G)

A2
λ,[P1],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

=0

→
(((((((((((((
H3(g,K ′

∞;A2
λ,[P1],φ

(G)⊗ Vλ)︸ ︷︷ ︸
=0

→ H3(g,K ′
∞;A1

λ,[P1],φ
(G)⊗ Vλ)→ H3(g,K ′

∞;
A1

λ,[P1],φ(G)

A2
λ,[P1],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

≃I
G(A∞Q )

P1(A∞Q )
(πfin,

1
2 )

→ H4(g,K ′
∞;A2

λ,[P1],φ
(G)⊗ Vλ)︸ ︷︷ ︸

≃J
G(A∞Q )

P1(A∞Q )
(πfin,

1
2 )

→ H4(g,K ′
∞;A1

λ,[P1],φ
(G)⊗ Vλ)→

(((((((((((((
H4(g,K ′

∞;
A1

λ,[P1],φ(G)

A2
λ,[P1],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

=0

→ 0

Now we make the following assumption on connecting morphisms:

Assumption 4.3.11. IfA2
λ,[P1],φ

(G) is nontrivial as above, then the connecting morphism

H3(g,K ′
∞;

A1
λ,[P1],φ

(G)

A2
λ,[P1],φ

(G)
⊗ Vλ)→ H4(g,K ′

∞;A2
λ,[P1],φ

(G)⊗ Vλ)

is surjective, so the morphismH4(g,K ′
∞;A2

λ,[P1],φ
(G)⊗ Vλ)→ H4(g,K ′

∞;A1
λ,[P1],φ

(G)⊗ Vλ) is zero.

Granting this, it follows that we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P1],φ(G)⊗ Vλ) ≃


H2(g,K ′

∞;A2
λ,[P1],φ

(G)⊗ Vλ) q = 2

K3(µ, χ) q = 3

0 otherwise

≃


J
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2) q = 2

K3(µ, χ) q = 3

0 otherwise

whereK3(µ, χ) is theG(A∞
Q )-module

K3(µ, χ) ≃ ker
(
H3(g,K ′

∞;
A1
λ,[P1],φ

(G)

A2
λ,[P1],φ

(G)
⊗ Vλ)→ H4(g,K ′

∞;A2
λ,[P1],φ

(G)⊗ Vλ)
)

≃ ker
(
I
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2)→ J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2)
)
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The result follows.

The behavior of the connecting morphismH3(g,K ′
∞;

A1
λ,[P1],φ

(G)

A2
λ,[P1],φ

(G)
⊗Vλ)→ H4(g,K ′

∞;A2
λ,[P1],φ

(G)⊗Vλ)

is subtle; its behavior can be determined in this case by computing the behavior of certain modular symbols.

The HKfin
-modules in the above theorem will be paired with 1-dimensional Gal-modules. For an integer

n ∈ Z and for χ = χfin ⊗ χ∞ a (finite order) character of GL1(AQ) let Lnχ = ρχ(−n) be the 1-dimensional

ℓ-adic Gal-module attached to χ twisted by the n-th power of the ℓ-adic cyclotomic character, with

tr(Frobjp|Lnχ) = pnjc(χp)
j = pnjχ(p)j

Now we have the following result, which is conditional on the assumption 4.3.11 in the case λ1 = λ2:

Theorem 4.3.12. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2), and let Vλ be the corresponding ℓ-adic local system on SKfin
. Then (with the assumption

4.3.11 on connecting morphisms in the case λ1 = λ2) the Siegel Eisenstein cohomology H∗
Eis,[P1]

(SKfin
,Vλ) is

concentrated in degrees 2, 3, 4 and given as anHKfin
×Gal-module by

H2
Eis,[P1]

(SKfin
,Vλ) =



⊕
π=µ⊗χ

µ∞=Dλ1+λ2+3

ωµ=χ2=1,Λ( 1
2
,µ)̸=0

J
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2)
Kfin ⊠ Lλ2+1

χ λ1 = λ2

0 otherwise

H3
Eis,[P1]

(SKfin
,Vλ) =



⊕
π=µ⊗χ

µ∞=Dλ1+λ2+3

ker
(
I
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2)→ J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2)
)Kfin

⊠ Lλ1+2
ωµχ λ1 = λ2

⊕
π=µ⊗χ

µ∞=Dλ1+λ2+3

I
G(A∞

Q )

P1(A∞
Q )(πfin,

λ1−λ2+1
2 )Kfin ⊠ Lλ1+2

ωµχ otherwise

H4
Eis,[P1]

(SKfin
,Vλ) =

⊕
π=µ⊗χ

µ∞=Dλ1−λ2+1

I
G(A∞

Q )

P1(A∞
Q )(πfin,

λ1+λ2+3
2 )Kfin ⊠ Lλ1+λ2+3

ωµχ

Proof. The result follows by taking the direct sum over associate classes of (unitary) cuspidal automorphic represen-

tations π = µ⊗ χ ofM1(AQ) = GL2(AQ)×GL1(AQ) of the contributions to 4.3.10. The Galois action can

be obtained from the Siegel parabolic terms in the GSp4 trace formula.
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Alternatively, by Pink the Tate twists are given as follows. Forλ = n1ω+n2ω2 and d(λ) = n1
2 +n2 the Galois

action must be twisted by Ld(λ)−⟨µ,w·λ⟩ where µ : GL1 → GSp4 is the cocharacter given by t 7→ diag(t, t, 1, 1).

Sinceω1(diag(t, t, 1, 1)) = t1/2 andω2(diag(t, t, 1, 1)) = twe have ⟨µ,w ·λ⟩ = nw1
2 +nw2 forw ∈W and we

obtain the following Tate twists:

w nw1 nw2 ⟨µ,w · λ⟩ d(λ)− ⟨µ,w · λ⟩

1 n1 n2
n1
2 + n2 0

s2 n1 + 2n2 + 2 −n2 − 2 n1
2 − 1 n2 + 1

s21 n1 + 2n2 + 2 −n1 − n2 − 3 −n1
2 − 2 n1 + n2 + 2

s212 n1 −n1 − n2 − 3 −n1
2 − n2 − 3 n1 + 2n2 + 3

Recalling that n1 = λ1 − λ2 and n2 = λ2, this gives the Tate twists in the theorem.

One can also state a Poincare dual version of the above theorem for compactly supported Siegel Eisenstein

cohomology by modifying the above Tate twists.

Example 4.3.13. LetKfin = G(Ẑ) so thatSKfin
= A2 is the moduli stack of principally polarized Abelian surfaces.

Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight λ = (λ1, λ2;λ1 + λ2)

with λ1 + λ2 even, and let Vλ be the corresponding ℓ-adic local system onA2.

For an integer k ≥ 2 let sΓ(1)[k] be the dimension of the space of cusp forms of weight k for Γ(1) = SL2(Z).

Let sΓ(1)[k]L( 1
2
)=0 be the dimension of the subspace of cusp forms of weight k forΓ(1) = SL2(Z) with vanishing

central L-value L(f, k2 ) = 0. Let sΓ(1)[k]L( 1
2
)̸=0 be the dimension of the subspace of cusp forms of weight k

for Γ(1) = SL2(Z) with nonvanishing central L-value L(f, k2 ) ̸= 0. Note that by the functional equation,

ords= k
2
L(f, s) is odd for k ≡ 2 mod 4 (in which case we have sΓ(1)[k]L( 1

2
)=0 = sΓ(1)[k]) and is even for k ≡ 0

mod 4 (in which case we have 0 ≤ sΓ(1)[k]L( 1
2
) ̸=0 ≤ sΓ(1)[k]). By Maeda’s conjecture (which is special to the

case of level 1), for k ≡ 0 mod 4 we should have sΓ(1)[k]L( 1
2
)=0 = 0.
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The Siegel Eisenstein cohomology is concentrated in degrees 2, 3, 4 and given by

H2
Eis,[P1]

(A2,Vλ) =


sΓ(1)[λ1 + λ2 + 4]L( 1

2
)̸=0L

λ1+1 λ1 = λ2 even

0 otherwise

H3
Eis,[P1]

(A2,Vλ) =


sΓ(1)[λ1 + λ2 + 4]L( 1

2
)=0L

λ1+2 λ1 = λ2 even

sΓ(1)[λ1 + λ2 + 4]Lλ1+2 otherwise

H4
Eis,[P1]

(A2,Vλ) = sΓ(1)[λ1 − λ2 + 2]Lλ1+λ2+3

4.3.3 Klingen Eisenstein Cohomology

In this section we compute Klingen Eisenstein cohomology as aHKfin
×Gal-module. First, we recall some facts

about the poles of Klingen Eisenstein series, and the evaluation points and infinitesimal characters which will enter

into the description of the Franke filtration for the Klingen parabolic subgroup.

We begin by restating the results of the previous section on the locations of poles of Siegel Eisenstein series:

Proposition 4.3.14. (Compare to [48, Proposition 3.4]) The automorphic Eisenstein series EisGP2
(ϕs) attached

to a unitary cuspidal automorphic representation π = χ ⊗ µ ofM2(AQ) = GL1(AQ) × GL2(AQ) has a pole

at s = ν ∈ a∨+P2
precisely if ν = (1, 0) and µ = AIFQ(θ) is the automorphic induction of the unitary Hecke

character θ : F× \ A×
F → C× corresponding to an imaginary quadratic extension F/Q, in which case we have

a simple pole at s = 1 and the space spanned by the residues Ress=1Eis
G
P2
(ϕs) is isomorphic to the Langlands

quotientJ G(AQ)
P2(AQ)

(π, 1).

We now record the following result on infinitesimal characters coming from the action of the Weyl group:

Proposition 4.3.15. (Compare to [48, Lemma 3.5]) Let Vλ ∈ Rep(G) be an absolutely irreducible rational repre-

sentation with highest weight λ = (λ1, λ2; 0), and letJλ be the ideal of finite codimension inZ(gC) annihilating

V ∨
λ . Let φ = {φP }P∈[P2] ∈ Φλ,[P2](G) be the associate class of a unitary cuspidal automorphic representation

π = χ ⊗ µ ∈ φP2 of M2(AQ) = GL1(AQ) × GL2(AQ). Then the infinitesimal character ξ ∈ a∨⊥P2
and the

corresponding s0 ∈ a∨P2
such that s0+ξ is annihilated byJλ are given by s0 = ±(λ1+2, 0) and ξ = (0, λ2+1),

or s0 = ±(λ2 + 1, 0) and ξ = (0, λ1 + 2).
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The Franke-Schwermer Filtration We now describe the Franke filtration for the Klingen parabolic subgroup.

As expected, the bottom piece is given by the Langlands quotient of normalized Klingen parabolic induction, and

the top piece is given by normalized Klingen parabolic induction.

Proposition 4.3.16. (Compare to [48, Theorem 3.6]) LetVλ ∈ Rep(G) be an absolutely irreducible rational repre-

sentation with highest weight λ = (λ1, λ2; 0), and letJλ be the ideal of finite codimension inZ(gC) annihilating

V ∨
λ . Let φ = {φP }P∈[P2] ∈ Φλ,[P2](G) be the associate class of a unitary cuspidal automorphic representation

π = χ ⊗ µ ∈ φP2 of M2(AQ) = GL1(AQ) × GL2(AQ) with infinitesimal character ξ ∈ a∨⊥P2
. Let s0 ∈ a∨P2

such that s0 + ξ is annihilated byJλ. Then the Franke-Schwermer filtration onAλ,[P2],φ(G) is given by

A2
λ,[P2],φ

(G) ⊆ A1
λ,[P2],φ

(G) = Aλ,[P2],φ(G)

whereA2
λ,[P2],φ

(G) is nontrivial precisely ifλ2 = 0, ξ = (0, λ1+2), and there exists a sectionϕ of the normalized

parabolic induction IG(AQ)
P2(AQ)

(π, s) such that the automorphic Eisenstein series EisGP2
(ϕs) has a pole at s = s0 =

(1, 0), in which case we have an isomorphism ofG(A∞
Q )× (g,K∞)-modules

A2
λ,[P2],φ

(G) ≃ J G(AQ)
P2(AQ)

(π, 1)

In any case we have an isomorphism ofG(A∞
Q )× (g,K∞)-modules

A1
λ,[P2],φ

(G)/A2
λ,[P2],φ

(G) ≃ IG(AQ)
P2(AQ)

(π, s0)⊗ Sym((aGP2
)∨C)

where s0 = (λ1 + 2, 0) in the case ξ = (0, λ2 + 1), and s0 = (λ2 + 1, 0) in the case ξ = (0, λ1 + 2).

Proof. LetMλ,[P2],φ(G) be the set of tuples (P ′, π′, ν, s) where P ′ ∈ [P2] is a standard parabolic Q-subgroup

ofGwith Levi decomposition P ′ =M ′N ′ containing an element of the associate class [P2], where π′ is a discrete

spectrum automorphic representation of M ′(AQ) with cuspidal support π obtained as the iterated residue at

ν ∈ (aP
′

P2
)∨C of the Eisenstein series attached to π ∈ ϕP2 , and where s0 ∈ a∨P ′,C is a point withℜ(s0) ∈ (aGP2

)∨+

such that s0 + ν + ξ is annihilated by Jλ. For m ∈ Z letMm
λ,[P2],φ

(G) be the subset of tuples (P ′, π′, ν, s0)

such that T (s0) = m, where T : a∨+P ′ → Z is fixed at the end of the proof. Then we have an isomorphism of
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G(A∞
Q )× (g,K∞)-modules

Amλ,[P2],φ
(G)/Am+1

λ,[P2],φ
(G) ≃

⊕
(P ′,π′,ν,s0)∈Mm

λ,[P2],φ
(G)

IG(AQ)
P ′(AQ)

(π′, s0)⊗ Sym((aGP ′)∨C)

Now we have the following:

• For P ′ = P2 we have π = χ ⊗ µ hence ν = (0, 0) ∈ (aP
′

P2
)∨C. By 4.3.15 such ν can only be obtained for

s0 = ±(λ1 + 2, 0) and ξ = (0, λ2 + 1), or s0 = ±(λ2 + 1, 0) and ξ = (0, λ1 + 2). It follows that

Mm
λ,[P2],φ

(G)P2 =



(P2, χ⊗ µ, (0, 0), s0)

if T (λ) = m and s0 =


(λ1 + 2, 0) ξ = (0, λ2 + 1)

(λ2 + 1, 0) ξ = (0, λ1 + 2)

0 otherwise

• For P ′ = G since π′ is a residual representation ofM2(AQ) ≃ GL1(AQ)×GL2(AQ), by 4.3.14 we have

π′ ≃ J G(AQ)
P2(AQ)

(π, (1, 0)) hence ν = (1, 0) ∈ (aP
′

P1
)∨C. By 4.3.15 such ν can only be obtained for λ2 = 0 and

s = (0, λ1 + 2). It follows that

Mm
λ,[P2],φ

(G)G =


(G,J G(AQ)

P2(AQ)
(π, (1, 0)), (1, 0), (0, 0))

if T (0) = m and λ2 = 0 and µ = AIFQ(θ)

0 otherwise

The result follows by taking the filtration defined by T (0) = 2 and T (λ) = 1 for λ ̸= 0.

Cohomology of the Franke-Schwermer Filtration Recall that the Levi quotient M2(R) = GL1(R) ×

GL2(R) admits a decompositionM2(R) =M ss
2 (R)×AP2(R)◦ whereM ss

2 (R) = {±1}× SL2(R)×{±1} is

semisimple with Lie algebramss
2 = sl2 andAP2(R)◦ = R2

>0 is the connected component of the maximal centralQ-

split torusAP2 with Lie algebra aP2 = R2. Recalling thatK ′
∞ = R>0U(2), forK ′M2

∞ the image ofK ′
∞ ∩ P2(R)

under the canonical projection P2(R) → M2(R) we have K ′M2
∞ = R>0SO(2), and for K ′Mss

2∞ the image of

K ′
∞∩P2(R) under the canonical projectionP2(R)→M ss

2 (R)we haveK ′Mss
2∞ = SO(2). LetV ϵ1 = V ⊗signϵ1

248



be the tensor product of the standard 2-dimensional representation of SL2(R) with the character signϵ1 and for

k ≥ 0 let V ϵ1
k = Symk(V )⊗ signϵ1 be the tensor product of the irreducible k + 1-dimensional representation

of SL2(R) with the character signϵ1 . LetDk = D+
k ⊕D

−
k be the direct sum of discrete series representations of

SL2(R) with minimal SO(2)-types k + 1 and−k − 1, that is the restriction of the holomorphic discrete series

representationDk of GL2(R) to SL2(R).

Proposition 4.3.17. (Compare to [? , Lemma 4.1]) For ϵ1, ϵ ∈ {0, 1}we have

Hq(mss
2 ,K

′Mss
2∞ ;π∞ ⊗ (V ϵ1

0 ⊗ signϵ)) ≃


C q = 0, 2, π∞ ≃ V ϵ1

0 ⊗ signϵ
′

C2 q = 1, π∞ ≃ D1 ⊗ signϵ
′

0 otherwise

and for k ≥ 1 we have

Hq(mss
2 ,K

′Mss
2∞ ;π∞ ⊗ (V ϵ1

k ⊗ signϵ)) ≃


C2 q = 1, π∞ ≃ Dk ⊗ signϵ

′

0 otherwise

Proof. ForG = Sp4 recall that the Levi quotientM2(R) = GL1(R)×SL2(R) admits a decompositionM2(R) =

M ss
2 (R)×AP2(R)◦ whereM ss

2 (R) = {±1}×SL2(R) is semisimple with Lie algebramss
2 = sl2 andAP2(R)◦ =

R>0 is the connected component of the maximal central Q-split torusAP2 with Lie algebra aP2 = R. Recalling

thatK∞ = U(2), forKM2
∞ the image ofK∞ ∩P2(R) under the canonical projectionP2(R)→M2(R) we have

KM2
∞ = SO(2), and forKMss

2∞ the image ofK∞ ∩ P2(R) under the canonical projection P2(R)→M ss
2 (R) we

haveKMss
2∞ = SO(2). By [48, Lemma 4.1], for ϵ1 ∈ {0, 1}we have

Hq(mss
2 ,K

Mss
2∞ ;π∞ ⊗ V ϵ1

0 ) ≃


C q = 0, 2, π∞ ≃ V ϵ1

0

C2 q = 1, π∞ ≃ D1

0 otherwise
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and for k ≥ 1 we have

Hq(mss
2 ,K

Mss
2∞ ;π∞ ⊗ V ϵ1

k ) ≃


C2 q = 1, π∞ ≃ Dk

0 otherwise

The result follows from this, noting that the (mss
2 ,K

′Mss
2∞ )-cohomology is independent of the character signϵ on

the factor {±1} ofM ss
2 (R), as the factor R>0 ofK ′

∞ intersects this factor only at the identity.

Now there are two pieces of the Franke-Schwermer filtration whose (g,K ′
∞)-cohomology we need to compute:

we need to computeHq(g,K ′
∞;

A1
λ,[P2],φ

(G)

A1
λ,[P2],φ

(G)
⊗ Vλ) as well asHq(g,K ′

∞;A2
λ,[P2],φ

(G)⊗ Vλ) in the case where

A2
λ,[P2],φ

(G) is nontrivial.

Proposition 4.3.18. (Compare to [48, Proposition 4.3]) Let Vλ ∈ Rep(G) be an absolutely irreducible rational

representation with highest weight λ = (λ1, λ2; 0). Letφ = {φP }P∈[P2] ∈ Φλ,[P2](G) be the associate class of a

unitary cuspidal automorphic representation π = χ ⊗ µ ∈ φP2 ofM2(AQ) = GL1(AQ) × GL2(AQ). Then

we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;

A1
λ,[P2],φ

(G)

A2
λ,[P2],φ

(G)
⊗ Vλ) ≃


C2 ⊗ I

G(A∞
Q )

P2(A∞
Q )(πfin, λ2 + 1) q = 3, µ∞ = Dλ1+2

C2 ⊗ I
G(A∞

Q )

P2(A∞
Q )(πfin, λ1 + 2) q = 4, µ∞ = Dλ2+1

0 otherwise

IfA2
λ,[P2],φ

(G) is nontrivial, that is precisely if λ2 = 0, µ∞ = Dλ1+2, and µ = AIFQ(θ) is the automorphic

induction of the unitary Hecke character θ : F× \A×
F → C× corresponding to an imaginary quadratic extension

F/Q, then we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;A2

λ,[P2],φ
(G)⊗ Vλ) ≃


C2 ⊗ J

G(A∞
Q )

P2(A∞
Q )(πfin, 1) q = 2, 4

0 otherwise
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Proof. For the first claim we have

Hq(g,K ′
∞;

A1
λ,[P2],φ

(G)

A2
λ,[P2],φ

(G)
⊗ Vλ)

≃ Hq(g,K ′
∞; IG(AQ)

P2(AQ)
(π, s0)⊗ Sym((aGP2

)∨C)⊗ Vλ)

≃ Hq(g,K ′
∞; IG(R)

P2(R)(π∞, s0)⊗ Sym((aGP2
)∨C)⊗ Vλ)⊗ I

G(A∞
Q )

P2(A∞
Q )(πfin, s0)

By Borel-Wallach [20, III Theorem 3.3] there exists a unique w ∈ WP2 such that π∞ ⊗ Cs0+ρP2 has nonzero

(m2,K
′M2
∞ )-cohomology with respect to Sym((aGP2

)∨C) ⊗ Vw·λ: we have w = s12 in the case s0 = (λ2 + 1, 0)

and ξ = (0, λ1 +2), and we havew = s121 in the case s0 = (λ1 +2, 0) and ξ = (0, λ2 +1). Now in both cases,

recalling thatM2(R) =M ss
2 (R)×AP2(R)◦ and m2 = mss

2 ⊕ aP2 , by 4.3.17 we have

Hq(g,K ′
∞; IG(R)

P2(R)(π∞, s0)⊗ Sym((aGP2
)∨C)⊗ Vλ)

≃ Hq−ℓ(w)(m2,K
′M2
∞ ;π∞ ⊗ Sym((aGP2

)∨C)⊗ Cs0+ρP2 ⊗ Vw·λ)

≃ Hq−ℓ(w)(mss
2 ,K

′Mss
2∞ ;π∞ ⊗ Vw·λ)

≃


C2 q = 3, µ∞ = Dλ1+2

C2 q = 4, µ∞ = Dλ2+1

0 otherwise

For the second claim suppose thatA2
λ,[P2],φ

(G) is nontrivial, so that we are in the caseλ2 = 0, ξ = (0, λ1+2), and

there exists a section ϕ of the normalized parabolic induction IG(AQ)
P2(AQ)

(π, s) such that the automorphic Eisenstein

series EisGP2
(ϕs) has a pole at s = s0 = (1, 0). Then by 4.3.17 we have

Hq(g,K ′
∞;A2

λ,[P2],φ
(G)⊗ Vλ)

≃ Hq(g,K ′
∞;J G(AQ)

P2(AQ)
(π, 1)⊗ Vλ)

≃ Hq(g,K ′
∞;J G(R)

P2(R)(π∞, 1)⊗ Vλ)⊗ J
G(A∞

Q )

P2(A∞
Q )(πfin, 1)
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Now by Borel-Wallach [20, VI Lemma 1.5, Theorem 1.7] the (g,K ′
∞)-cohomology of the Langlands quotient

J G(R)
P2(R)(π∞, 1) with respect to Vλ is given

Hq(g,K ′
∞;J G(R)

P2(R)(π∞, 1)⊗ Vλ) =


C2 q = 2, 4

0 otherwise

The result follows.

Klingen Eisenstein Cohomology Having computed the (g,K ′
∞)-cohomology of the pieces of the Franke-

Schwermer filtration, we are now in the position to compute Eisenstein cohomology. Up to indeterminacies re-

garding the behavior of certain connecting morphisms in the case whereA2
λ,[P2],φ

(G) is nontrivial, we have the

following result:

Theorem 4.3.19. (Compare to [48, Theorem 5.1]) Let Vλ ∈ Rep(G) be an absolutely irreducible rational rep-

resentation with highest weight λ = (λ1, λ2; 0). Let φ = {φP }P∈[P2] ∈ Φλ,[P2](G) be the associate class of a

unitary cuspidal automorphic representation π = χ⊗ µ ∈ φP2 ofM2(AQ) = GL1(AQ)×GL2(AQ).

IfA2
λ,[P2],φ

(G) is trivial then (with the assumption 4.3.20 on connecting morphisms) we have an isomorphism

ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P2],φ(G)⊗ Vλ) ≃


C2 ⊗ I

G(A∞
Q )

P2(A∞
Q )(πfin, λ2 + 1) q = 3, µ∞ = Dλ1+2

C2 ⊗ I
G(A∞

Q )

P2(A∞
Q )(πfin, λ1 + 2) q = 4, µ∞ = Dλ2+1

0 otherwise

IfA2
λ,[P2],φ

(G) is nontrivial, that is precisely if λ2 = 0 and µ = AIFQ(θ) is the automorphic induction of the

unitary Hecke character θ : F× \A×
F → C× corresponding to an imaginary quadratic extensionF/Q, then (with

assumptions on connecting morphisms) we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P2],φ(G)⊗ Vλ) ≃


C2 ⊗ J

G(A∞
Q )

P2(A∞
Q )(πfin, 1) q = 2

K3(χ, µ) q = 3

0 otherwise
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whereK3(χ, µ) is theG(A∞
Q )-module

K3(χ, µ) ≃ ker
(
C2 ⊗ I

G(A∞
Q )

P2(A∞
Q )(πfin, 1)→ C2 ⊗ J

G(A∞
Q )

P2(A∞
Q )(πfin, 1)

)

Proof. By definitionHq(g,K ′
∞;Aλ,[P2],φ(G)⊗ Vλ) = Hq(g,K ′

∞;A1
λ,[P2],φ

(G)⊗ Vλ), and ifA2
λ,[P2],φ

(G) is

trivial we clearly have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P2],φ(G)⊗ Vλ) ≃ H

q(g,K ′
∞;

A1
λ,[P2],φ

(G)

A2
λ,[P2],φ

(G)
⊗ Vλ)

It follows that we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P2],φ(G)⊗ Vλ) ≃


Hq(g,K ′

∞;A1
λ,[P2],φ

(G)⊗ Vλ) q = 3, 4

0 otherwise

≃


C2 ⊗ I

G(A∞
Q )

P2(A∞
Q )(πfin, λ2 + 1) q = 3, µ∞ = Dλ1+2

C2 ⊗ I
G(A∞

Q )

P2(A∞
Q )(πfin, λ1 + 2) q = 4, µ∞ = Dλ2+1

0 otherwise

IfA2
λ,[P2],φ

(G) is nontrivial consider short exact sequence ofG(A∞
Q )× (g,K ′

∞)-modules

0→ A2
λ,[P2],φ

(G)→ A1
λ,[P2],φ

(G)→
A1
λ,[P2],φ

(G)

A2
λ,[P2],φ

(G)
→ 0

which gives rise to a long exact sequence ofG(A∞
Q )-modules

0→ H2(g,K ′
∞;A2

λ,[P2],φ
(G)⊗ Vλ)︸ ︷︷ ︸

≃C2⊗J
G(A∞Q )

P2(A∞Q )
(πfin,1)

→ H2(g,K ′
∞;A1

λ,[P2],φ
(G)⊗ Vλ)→

(((((((((((((
H2(g,K ′

∞;
A1

λ,[P2],φ(G)

A2
λ,[P2],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

=0

→
(((((((((((((
H3(g,K ′

∞;A2
λ,[P2],φ

(G)⊗ Vλ)︸ ︷︷ ︸
=0

→ H3(g,K ′
∞;A1

λ,[P2],φ
(G)⊗ Vλ)→ H3(g,K ′

∞;
A1

λ,[P2],φ(G)

A2
λ,[P2],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

≃C2⊗I
G(A∞Q )

P2(A∞Q )
(πfin,1)

→ H4(g,K ′
∞;A2

λ,[P2],φ
(G)⊗ Vλ)︸ ︷︷ ︸

≃C2⊗J
G(A∞Q )

P2(A∞Q )
(πfin,1)

→ H4(g,K ′
∞;A1

λ,[P2],φ
(G)⊗ Vλ)→

(((((((((((((
H4(g,K ′

∞;
A1

λ,[P2],φ(G)

A2
λ,[P2],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

=0

→ 0
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Now we make the following assumption on connecting morphisms:

Assumption 4.3.20. IfA2
λ,[P2],φ

(G) is nontrivial, then the connecting morphism

H3(g,K ′
∞;

A1
λ,[P2],φ

(G)

A2
λ,[P2],φ

(G)
⊗ Vλ)→ H4(g,K ′

∞;A2
λ,[P2],φ

(G)⊗ Vλ)

is surjective, the morphismH4(g,K ′
∞;A2

λ,[P2],φ
(G)⊗ Vλ)→ H4(g,K ′

∞;A1
λ,[P2],φ

(G)⊗ Vλ) is zero.

Granting this, it follows that we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P2],φ(G)⊗ Vλ) ≃


H2(g,K ′

∞;A2
λ,[P2],φ

(G)⊗ Vλ) q = 2

K3(χ, µ) q = 3

0 otherwise

≃


C2 ⊗ J

G(A∞
Q )

P2(A∞
Q )(πfin, 1) q = 2

K3(χ, µ) q = 3

0 otherwise

whereK3(χ, µ) is theG(A∞
Q )-module

K3(χ, µ) ≃ ker
(
H3(g,K ′

∞;
A1
λ,[P2],φ

(G)

A2
λ,[P2],φ

(G)
⊗ Vλ)→ H4(g,K ′

∞;A2
λ,[P2],φ

(G)⊗ Vλ)
)

≃ ker
(
C2 ⊗ I

G(A∞
Q )

P2(A∞
Q )(πfin, 1)→ C2 ⊗ J

G(A∞
Q )

P2(A∞
Q )(πfin, 1)

)

The result follows.

The behavior of the connecting morphismH3(g,K ′
∞;

A1
λ,[P2],φ

(G)

A2
λ,[P2],φ

(G)
⊗Vλ)→ H4(g,K ′

∞;A2
λ,[P2],φ

(G)⊗Vλ)

is again subtle; its behavior can be determined in this case by computing the behavior of certain modular symbols.

The factors of C2 will disappear in the following theorem, as theHKfin
-modules in the above theorem will be

paired with 2-dimensionalGal-modules. For an integern ∈ Z and forπ = χ⊗µ a cuspidal automorphic represen-

tation ofM2(AQ) = GL1(AQ)×GL2(AQ) where µ = µfin⊗µ∞ is a cuspidal automorphic representatioon of

GL2(AQ) with µ∞ = Dk−1(det
k−1) a holomorphic discrete series representation, let ρµLnχ = ρµ⊗ ρχ(−n) de-

note the 2-dimensional ℓ-adic Galois representation attached toµ, twisted by the 1-dimensional ℓ-adicGal-module
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attached to χ, twisted by the n-th power of the ℓ-adic cyclotomic character, with

tr(Frobjp|ρµLnχ) = p
k−1
2
j(c1(µp)

j + c2(µp)
j)pnjc(χp)

j = p(
k−1
2

+n)jχ(p)j(c1(µp)
j + c2(µp)

j)

Now we have the following result:

Theorem 4.3.21. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2), and let Vλ be the corresponding ℓ-adic local system on SKfin
. Then (with the assumption

4.3.20 on connecting morphisms in the case λ2 = 0) the Klingen Eisenstein cohomologyH∗
Eis,[P2]

(SKfin
,Vλ) is

concentrated in degrees 2, 3, 4 and given as anHKfin
×Gal-module by

H2
Eis,[P2]

(SKfin
,Vλ) =



⊕
π=χ⊗µ

µ∞=Dλ1+2

µ=AIFQ (θ)

J
G(A∞

Q )

P2(A∞
Q )(πfin, 1)

Kfin ⊠ ρµL0
χ λ2 = 0

0 otherwise

H3
Eis,[P2]

(SKfin
,Vλ) =



⊕
π=χ⊗µ

µ∞=Dλ1+2

ker
(
I
G(A∞

Q )

P2(A∞
Q )(πfin, 1)→ J

G(A∞
Q )

P2(A∞
Q )(πfin, 1)

)Kfin

⊠ ρµL1
χ λ2 = 0

⊕
π=χ⊗µ

µ∞=Dλ1+2

I
G(A∞

Q )

P2(A∞
Q )(πfin, λ2 + 1)Kfin ⊠ ρµLλ2+1

χ otherwise

H4
Eis,[P2]

(SKfin
,Vλ) =

⊕
π=χ⊗µ

µ∞=Dλ2+1

I
G(A∞

Q )

P2(A∞
Q )(πfin, λ1 + 2)Kfin ⊠ ρµLλ1+2

χ

Proof. The result follows by taking the direct sum over associate classes of unitary cuspidal automorphic represen-

tations π = χ ⊗ µ ofM2(AQ) = GL1(AQ) ×GL2(AQ) of the contributions to 4.3.19. The Galois action can

be obtained from the Klingen parabolic terms in the GSp4 trace formula.

By Pink the Tate twists are given as follows. For λ = n1ω1 + n2ω2 and d(λ) = n1
2 + n2 the Galois action

must be twisted by Ld(λ)−⟨µ,w·λ⟩ where µ : GL1 → GSp4 is the cocharacter given by t 7→ diag(t, t, 1, 1). Since

ω1(diag(t, t, 1, 1)) = t1/2 and ω2(diag(t, t, 1, 1)) = t we have ⟨µ,w · λ⟩ = nw1
2 + nw2 for w ∈ W and we

obtain the following Tate twists:
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w nw1 nw2 ⟨µ,w · λ⟩ d(λ)− ⟨µ,w · λ⟩

1 n1 n2
n1
2 + n2 0

s1 −n1 − 2 n1 + n2 + 1 n1
2 + n2 0

s12 −n1 − 2n2 − 4 n1 + n2 + 1 n1
2 − 1 n2 + 1

s121 −n1 − 2n2 − 4 n2 −n1
2 − 2 n1 + n2 + 2

Recalling that n1 = λ1 − λ2 and n2 = λ2, this gives the Tate twists in the theorem.

One can also state a Poincare dual version of the above theorem for compactly supported Eisenstein cohomology

by modifying the above Tate twists.

The automorphic representations of GL2(AQ) contributing to the irregular behavior of Klingen Eisenstein

cohomology are the automorphic inductions µ = AIFQ(θ) of the unitary Hecke character θ : F× \ A×
F → C×

corresponding to an imaginary quadratic extension F/Q, which classically correspond to CM cusp forms. Recall

that a cusp form f =
∑

n≥1 anq
n of weight k ≥ 1 and level N admits a self-twist by a nontrivial primitive

Dirichlet character ϵ if ap = ϵ(p)ap for all but finitely many primes p (this can only occur if ϵ is quadratic and

ap = 0 for all primes p ∤ N with χ(p) = −1). The character ϵ is then the Kronecker character ωF/Q = (D• ) of

a quadratic extension F = Q(
√
D); when F/Q is imaginary quadratic we say that f has CM by F , and when

F/Q is real quadratic we say that f has RM by F (this can only occur if k = 1 and the associated projective Galois

representation ρ : Gal(Q/Q)→ GL2(C) has dihedral image).

Such CM cusp forms can be constructed explicitly. Fixing a weight k ≥ 2, an imaginary quadratic extension

F/Q with Kronecker character ωF/Q, and a Hecke character θ : F× \ A×
F → C× of conductor f ⊆ OF , that is

a character θ : I(f)→ C× from the group of fractional ideals ofOF coprime to f (so that θ(αOF ) = αk−1 for

α ≡ 1 mod f), consider the Dirichlet character δ given by δ(n) = θ(nOF )/nk−1 for n ∈ Z coprime to f. Then

we obtain a CM cusp form of levelN = |D|N(f) and Nebentypus χ = ωF/Qδ given by

f =
∑
a

θ(a)qN(a) ∈ Sk(Γ0(N), χ)

where the sum is taken over integral ideals a ofOF coprime to f.
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Example 4.3.22. LetKfin = G(Ẑ) so thatSKfin
= A2 is the moduli stack of principally polarized Abelian surfaces.

Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight λ = (λ1, λ2;λ1 + λ2)

with λ1 + λ2 even, and let Vλ be the corresponding ℓ-adic local system onA2.

The compactly supported Klingen Eisenstein cohomology is concentrated in degrees 2 and 3 and given by

H3
Eis,[P2]

(A2,Vλ) = SΓ(1)[λ1 + 3]Lλ2+1

H4
Eis,[P2]

(A2,Vλ) = SΓ(1)[λ2 + 2]Lλ1+2

Indeed there are no CM cusp forms for Γ(1): the automorphic representations attached to cusp forms for Γ(1) are

everywhere unramified, but the automorphic induction of an algebraic Hecke character for an imaginary quadratic

extension F/Q cannot be everywhere unramified, since F/Q cannot be everywhere unramified.

4.3.4 Borel Eisenstein Cohomology

In this section we compute Borel Eisenstein cohomology as aHKfin
×Gal-module. First, we recall some facts about

the poles of Borel Eisenstein series, and the evaluation points and infinitesimal characters which will enter into the

description of the Franke filtration for the Borel parabolic subgroup.

We begin by restating the results of the previous section on the locations of poles of Siegel Eisenstein series:

Proposition 4.3.23. The spaceAλ,[P0],φ(G) contains no irreducible constituent of Πdisc(G(AQ)) unless λ = 0

and 1⊗ 1⊗ χ ∈ φP0 , in which case the only irreducible constituent of Πdisc(G(AQ)) belonging toAλ,[P0],φ(G)

is the 1-dimensional representation χ ◦ sim.

We now record the following result on infinitesimal characters coming from the action of the Weyl group:

Proposition 4.3.24. (Compare to [48, Lemma 3.1]) Let Vλ ∈ Rep(G) be an absolutely irreducible rational repre-

sentation with highest weight λ = (λ1, λ2; 0), and letJλ be the ideal of finite codimension inZ(gC) annihilating

V ∨
λ . Let φ = {φP }P∈[P0] ∈ Φλ,[P0](G) be the associate class of a unitary cuspidal automorphic representation

π = χ1 ⊗ χ2 ⊗ χ ∈ φP0 ofM0(AQ) = GL1(AQ)×GL1(AQ)×GL1(AQ). Then the infinitesimal character

ξ ∈ a∨⊥P ′ and the corresponding s0 ∈ a∨P ′ such that s0 + ξ is annihilated byJλ are given by:

• For P ′ = P0 we have s0 in the Weyl orbit of λ+ ρP0 and ξ = 0;
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• For P ′ = P1 we have either s0 = ±(λ1+λ2+3
2 , λ1+λ2+3

2 ) and ξ = (λ1−λ2+1
2 , λ1−λ2+1

2 ), or s0 =

±(λ1−λ2+1
2 , λ1−λ2+1

2 ) and ξ = (λ1+λ2+3
2 , λ1+λ2+3

2 );

• For P ′ = P2 we have either s0 = ±(λ1 + 2, 0) and ξ = (0, λ2 + 1), or s0 = ±(λ2 + 1, 0) and

ξ = (0, λ1 + 2);

• For P ′ = Gwe have s0 = 0 and ξ in the Weyl orbit of ρP0 .

The Franke-Schwermer Filtration We now describe the Franke filtration for the Borel parabolic subgroup. As

expected, the bottom piece is given by the Langlands quotient of normalized Borel parabolic induction, which is

a 1-dimensional representation, the middle pieces are given by normalized Siegel and Klingen parabolic induction,

and the top piece is given by normalized Borel parabolic induction.

Proposition 4.3.25. (Compare to [48, Theorem 3.3]) Let Vλ ∈ Rep(G) be an absolutely irreducible rational

representation with highest weight λ = (λ1, λ2; 0). Letφ = {φP }P∈[P0] ∈ Φλ,[P0](G) be the associate class of a

unitary cuspidal automorphic representation π = χ1⊗χ2⊗χ ∈ φP0 ofM0(AQ) = GL1(AQ)×GL1(AQ)×

GL1(AQ). The Franke-Schwermer filtration onAλ,[P0],φ(G) is given by

A2
λ,[P0],φ

(G) ⊆ A1
λ,[P0],φ

(G) ⊆ A0
λ,[P0],φ

(G) = Aλ,[P0],φ(G)

whereA2
λ,[P0],φ

(G) is nontrivial precisely ifλ1 = λ2 = 0 andχ1 = χ2 = 1, in which case we have an isomorphism

ofG(A∞
Q )× (g,K∞)-modules

A2
λ,[P0],φ

(G) ≃ χ ◦ sim

258



whereA1
λ,[P0],φ

(G) is nontrivial precisely if λ1 = λ2 and χ1 = χ2, or λ2 = 0 and χ2 = 1, in which case we have

an isomorphism ofG(A∞
Q )× (g,K∞)-modules

A1
λ,[P0],φ

(G)/A2
λ,[P0],φ

(G) ≃



IG(AQ)
P1(AQ)

(χ1 ◦ det⊗ χ, λ1 + 3
2)⊗ Sym((aGP1

)∨C)

if λ1 = λ2 and χ1 = χ2 but λ1 ̸= 0 or χ1 ̸= 1

IG(AQ)
P2(AQ)

(χ1 ⊗ χ ◦ det, λ1 + 2)⊗ Sym((aGP2
)∨C)

if λ2 = 0 and χ2 = 1 but λ1 ̸= 0 or χ1 ̸= 1

IG(AQ)
P1(AQ)

(1 ◦ det⊗ χ, 32)⊗ Sym((aGP1
)∨C)

⊕IG(AQ)
P2(AQ)

(1⊗ χ ◦ det, 2)⊗ Sym((aGP2
)∨C)

if λ1 = λ2 = 0 and χ1 = χ2 = 1

and whereA0
λ,[P0],φ

(G) is nontrivial and we have an isomorphism ofG(A∞
Q )× (g,K∞)-modules

A0
λ,[P0],φ

(G)/A1
λ,[P0],φ

(G) ≃ IG(AQ)
P0(AQ)

(χ1 ⊗ χ2 ⊗ χ, λ+ ρP0)⊗ Sym((aGP0
)∨C)

Proof. LetMλ,[P0],φ(G) be the set of tuples (P ′, π′, ν, s0) where P ′ ∈ [P0] is a standard parabolic Q-subgroup

ofGwith Levi decomposition P ′ =M ′N ′ containing an element of the associate class [P0], where π′ is a discrete

spectrum automorphic representation of M ′(AQ) with cuspidal support π obtained as the iterated residue at

ν ∈ (aP
′

P0
)∨C of the Eisenstein series attached to π ∈ φP0 , and where s0 ∈ a∨P ′,C is a point withℜ(s0) ∈ (aGP ′)∨+

such that s0 + ν is annihilated byJλ. Form ∈ Z letMm
λ,[P0],φ

(G) be the subset of tuples such that T (s0) = m,

whereT : a∨+P ′ → Z is fixed at the end of the proof. Then by Franke we have an isomorphism ofG(A∞
Q )×(g,K∞)-

modules

Amλ,[P0],φ
(G)/Am+1

λ,[P0],φ
(G) ≃

⊕
(P ′,π′,ν,s0)∈Mm

λ,[P0],φ
(G)

IG(AQ)
P ′(AQ)

(π′, s0)⊗ Sym((aGP ′)∨C)

Now we have the following:
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• For P ′ = P0 we have π = χ1 ⊗ χ2 ⊗ χ hence ν = (0, 0) ∈ (aP0
P0
)∨C = 0. By 4.3.24 such ν can only be

obtained for s0 = (λ1 + 2, λ2 + 1). It follows that

Mm
λ,[P0],φ

(G)P0 =


(P0, χ1 ⊗ χ2 ⊗ χ, (0, 0), (λ1 + 2, λ2 + 1))

if T (λ1 + 2, λ2 + 1) = m

0 otherwise

• For P ′ = P1 since π′ is a residual representation of M1(AQ) ≃ GL2(AQ) × GL1(AQ) we have π ≃

χ1 ◦ det ⊗ χ hence χ1 = χ2 and ξ = (12 ,−
1
2) ∈ (aP1

P0
)∨C. By 4.3.24 such ξ can only be obtained for

λ1 = λ2 and s0 = (λ1+λ2+3
2 , λ1+λ2+3

2 ). It follows that

Mm
λ,[P0],φ

(G)P1 =


(P1, χ1 ◦ det⊗ χ, (12 ,−

1
2), (λ1 +

3
2 , λ1 +

3
2))

if T (λ1 + 3
2 , λ1 +

3
2) = m and λ1 = λ2 and χ1 = χ2

0 otherwise

• For P ′ = P2 since π′ is a residual representation of M2(AQ) ≃ GL1(AQ) × GL2(AQ) we have π′ ≃

χ1 ⊗ χ ◦ det hence χ2 = 1 and ξ = (0, 1) ∈ (aP2
P0
)∨C. By 4.3.24 such ξ can only be obtained for λ2 = 0

and s0 = (λ1 + 2, 0). It follows that

Mm
λ,[P0],φ

(G)P2 =


(P2, χ1 ⊗ χ ◦ det, (0, 1), (λ1 + 2, 0))

if T (λ1 + 2, 0) = m and λ2 = 0 and χ2 = 1

0 otherwise

• For P ′ = G since π′ is a residual representation of the trivial group, by 4.3.23 we have π′ = χ ◦ sim hence

χ1 = χ2 = 1 and ξ = (2, 1). By 4.3.24 such ξ can only be obtained for λ1 = λ2 = 0 and s0 = (0, 0). It
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follows that

Mm
λ,[P0],φ

(G)G =


(G,χ ◦ sim, (2, 1), (0, 0))

if T (0, 0) = m and λ1 = λ2 = 0 and χ1 = χ2 = 1

0 otherwise

Now the result follows by taking the filtration defined byT (0, 0) = 2,T (λ1+λ2+3
2 , λ1+λ2+3

2 ) = T (λ1+2, 0) = 1,

and T (λ1 + 2, λ2 + 1) = 0.

Cohomology of Franke-Schwermer Filtration Recall that the Levi quotientM0(R) = GL1(R)×GL1(R)×

GL1(R) admits a decomposition M0(R) = M ss
0 (R) × AP0(R)◦ where M ss

0 (R) = {±1} × {±1} × {±1} is

semisimple with Lie algebra mss
0 = 0 andAP0(R)◦ = R3

>0 is the connected component of the maximal central Q-

split torusAP0 with Lie algebra aP0 = R3. Recalling thatK ′
∞ = R>0U(2), forK ′M0

∞ the image ofK ′
∞ ∩ P0(R)

under the canonical projection P0(R) → M0(R) we have K ′M0
∞ = ({±1} × {±1})R>0, and for K ′Mss

0∞ the

image ofK ′
∞ ∩ P0(R) under the canonical projection P0(R)→M ss

0 (R) we haveK ′Mss
0∞ = {±1} × {±1}.

Proposition 4.3.26. (Compare to [48, Lemma 4.1]) For ϵ1, ϵ2, ϵ ∈ {0, 1}we have

Hq(mss
0 ,K

′Mss
0∞ ;π∞ ⊗ (signϵ1 ⊗ signϵ2 ⊗ signϵ)) ≃


C q = 0, π∞ ≃ signϵ1 ⊗ signϵ2 ⊗ signϵ

′

0 otherwise

Proof. For G = Sp4 recall that the Levi quotient M0(R) = GL1(R) × GL1(R) admits a decomposition

M0(R) = M ss
0 (R) × AP0(R)◦ where M ss

0 (R) = {±1} × {±1} is semisimple with Lie algebra mss
0 = 0

and AP0(R)◦ = R2
>0 is the connected component of the maximal central Q-split torus AP0 with Lie algebra

aP0 = R2. Recalling that K∞ = U(2), for KM0
∞ the image of K∞ ∩ P0(R) under the canonical projection

P0(R)→M0(R) we haveKM0
∞ = {±1}×{±1}, and forKMss

0∞ the image ofK∞ ∩P0(R) under the canonical

projection P0(R)→M ss
0 (R) we haveKMss

0∞ = {±1} × {±1}. By [? , Lemma 4.1], for ϵ1, ϵ2 ∈ {0, 1}we have

Hq(mss
0 ,K

Mss
0∞ ;π∞ ⊗ (signϵ1 ⊗ signϵ2)) ≃


C q = 0, π∞ ≃ signϵ1 ⊗ signϵ2

0 otherwise
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The result follows from this, noting that the (mss
0 ,K

′Mss
0∞ )-cohomology is independent of the character signϵ on

the third factor {±1} ofM ss
0 (R), as the factor R>0 ofK ′

∞ intersects this factor only at the identity.

Now there are three pieces of the Franke-Schwermer filtration whose (g,K ′
∞)-cohomology we need to compute:

we need to computeHq(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ), we need to computeHq(g,K ′

∞;
A1
λ,[P0],φ

(G)

A2
λ,[P0],φ

(G)
⊗ Vλ) in the

case whereA1
λ,[P0],φ

(G) is nontrivial, and we need to computeHq(g,K ′
∞;A2

λ,[P0],φ
(G)⊗ Vλ) in the case where

A2
λ,[P0],φ

(G) is nontrivial.

Proposition 4.3.27. (Compare to [48, Proposition 4.4, Proposition 4.5, Proposition 4.6]) Let Vλ ∈ Rep(G) be

an absolutely irreducible rational representation with highest weight λ = (λ1, λ2; 0). Let φ = {φP }P∈[P0] ∈

Φλ,[P0](G) be the associate class of a unitary cuspidal automorphic representation π = χ1 ⊗ χ2 ⊗ χ ∈ φP0 of

M0(AQ) = GL1(AQ)×GL1(AQ)×GL1(AQ). Then we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ) =


I
G(A∞

Q )

P0(A∞
Q )(πfin, λ+ ρP0) q = 4, χ1,∞ ⊗ χ2,∞ = signλ1 ⊗ signλ2

0 otherwise

IfA1
λ,[P0],φ

(G) is nontrivial butA2
λ,[P0],φ

(G) is trivial we have the following cases:

• (λ1 = λ2 and χ1 = χ2 but λ2 > 0 or χ2 ̸= 1) We have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;

A1
λ,[P0],φ

(G)

A2
λ,[P0],φ

(G)
⊗ Vλ) =


I
G(A∞

Q )

P1(A∞
Q )(χ1,fin ◦ det⊗ χfin,

λ1+λ2+3
2 ) q = 3, χ1,∞ = signλ1+1

I
G(A∞

Q )

P1(A∞
Q )(χ1,fin ◦ det⊗ χfin,

λ1+λ2+3
2 ) q = 5, χ1,∞ = signλ1

0 otherwise

• (λ2 = 0 and χ2 = 1 but λ1 > 0 or χ1 ̸= 1) We have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;

A1
λ,[P0],φ

(G)

A2
λ,[P0],φ

(G)
⊗ Vλ) =


I
G(A∞

Q )

P2(A∞
Q )(χ1,fin ⊗ χfin ◦ det, λ1 + 2) q = 3, 5, χ1,∞ = signλ1

0 otherwise
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• (λ1 = λ2 = 0 and χ1 = χ2 = 1) We have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;

A1
λ,[P0],φ

(G)

A2
λ,[P0],φ

(G)
⊗ Vλ) =



I
G(A∞

Q )

P2(A∞
Q )(χ1,fin ⊗ χfin ◦ det, 2) q = 3

I
G(A∞

Q )

P1(A∞
Q )(χ1,fin ◦ det⊗ χfin,

3
2)

⊕I
G(A∞

Q )

P2(A∞
Q )(χ1,fin ⊗ χfin ◦ det, 2) q = 5

0 otherwise

IfA2
λ,[P0],φ

(G) is nontrivial we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;A2

λ,[P0],φ
(G)⊗ Vλ) =


χfin ◦ sim q = 0, 2, 4, 6

0 otherwise

Proof. For the first claim we have

Hq(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)

≃ Hq(g,K ′
∞; IG(AQ)

P1(AQ)
(π, s0)⊗ Sym((aGP0

)∨C)⊗ Vλ)

≃ Hq(g,K ′
∞; IG(R)

P0(R)(π∞, s0)⊗ Sym((aGP0
)∨C)⊗ Vλ)⊗ I

G(A∞
Q )

P0(A∞
Q )(πfin, s0)

By Borel-Wallach [20, III Theorem 3.3] there exists a unique w ∈ W such that π∞ ⊗ Cs0+ρP0 has nonzero

(m0,K
′M0
∞ )-cohomology with respect to Sym((aGP0

)∨C)⊗ Vw·λ: we havew = s1212 in the case s0 = λ+ ρP0 and

ξ = 0. Now recalling thatM0(R) =M ss
0 (R)×AP0(R)◦ and m0 = mss

0 ⊕ aP0 , by 4.3.26 we have

Hq(g,K ′
∞; IG(R)

P0(R)(π∞, λ+ ρP0)⊗ Sym((aGP0
)∨C)⊗ Vλ)

≃ Hq−ℓ(w)(m0,K
′M0
∞ ;π∞ ⊗ Sym((aGP0

)∨C)⊗ Cλ+2ρP0
⊗ Vw·λ)

≃ Hq−ℓ(w)(mss
0 ,K

′Mss
0∞ ;π∞ ⊗ Vw·λ)

≃


C q = 4, χ1,∞ ⊗ χ2,∞ = signλ1 ⊗ signλ2

0 otherwise
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For the second claim suppose thatA1
λ,[P0],φ

(G) is nontrivial butA2
λ,[P0],φ

(G) is trivial. Then we have the following

cases:

• (λ1 = λ2 and χ1 = χ2 but λ2 > 0 or χ2 ̸= 1) We have

Hq(g,K ′
∞;

A1
λ,[P0],φ

(G)

A2
λ,[P0],φ

(G)
⊗ Vλ)

≃ Hq(g,K ′
∞; IG(AQ)

P1(AQ)
(χ1 ◦ det⊗ χ, s0)⊗ Sym((aGP1

)∨C)⊗ Vλ)

≃ Hq(g,K ′
∞; IG(R)

P1(R)(χ1,∞ ◦ det⊗ χ∞, s0)⊗ Sym((aGP1
)∨C)⊗ Vλ)⊗ I

G(A∞
Q )

P1(A∞
Q )(χ1,fin ◦ det⊗ χfin, s0)

By Borel-Wallach [20, III Theorem 3.3] there exists a uniquew ∈WP1 such thatπ∞⊗Cs0+ρP1 has nonzero

(m1,K
′M1
∞ )-cohomology with respect toSym((aGP1

)∨C)⊗Vw·λ: we havew = s212 in the cases0 = λ1+λ2+3
2 .

Now recalling thatM1(R) =M ss
1 (R)×AP1(R)◦ and m1 = mss

1 ⊕ aP1 , by 4.3.8 we have

Hq(g,K ′
∞; IG(R)

P1(R)(χ1,∞ ◦ det⊗ χ∞,
λ1+λ2+3

2 )⊗ Sym((aGP1
)∨C)⊗ Vλ)

≃ Hq−ℓ(w)(m1,K
′M1
∞ ; (χ1,∞ ◦ det⊗ χ∞)⊗ Sym((aGP1

)∨C)⊗ Cλ1+λ2+3
2

+ρP1
⊗ Vw·λ)

≃ Hq−ℓ(w)(mss
1 ,K

′Mss
1∞ ; (χ1,∞ ◦ det⊗ χ∞)|Mss

1 (R) ⊗ Vw·λ)

≃


C q = 3, χ1,∞ = signλ1+1

C q = 5, χ1,∞ = signλ1

0 otherwise

• (λ2 = 0 and χ2 = 1 but λ1 > 0 or χ1 ̸= 1) We have

Hq(g,K ′
∞;

A1
λ,[P0],φ

(G)

A2
λ,[P0],φ

(G)
⊗ Vλ)

≃ Hq(g,K ′
∞; IG(AQ)

P2(AQ)
(χ1 ⊗ χ ◦ det, s0)⊗ Sym((aGP2

)∨C)⊗ Vλ)

≃ Hq(g,K ′
∞; IG(R)

P2(R)(χ1,∞ ⊗ χ∞ ◦ det, s0)⊗ Sym((aGP2
)∨C)⊗ Vλ)⊗ I

G(A∞
Q )

P2(A∞
Q )(χ1,fin ⊗ χfin ◦ det, s0)

By Borel-Wallach [20, III Theorem 3.3] there exists a uniquew ∈WP2 such thatπ∞⊗Cs0+ρP2 has nonzero

(m2,K
′M2
∞ )-cohomology with respect to Sym((aGP2

)∨C)⊗Vw·λ: we havew = s121 in the case s0 = λ1+2.
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Now recalling thatM2(R) =M ss
2 (R)×AP2(R)◦ and m2 = mss

2 ⊕ aP2 , by 4.3.17 we have

Hq(g,K ′
∞; IG(R)

P2(R)(χ1,∞ ⊗ χ∞ ◦ det, λ1 + 2)⊗ Sym((aGP2
)∨C)⊗ Vλ)

≃ Hq−ℓ(w)(m2,K
′M2
∞ ; (χ1,∞ ⊗ χ∞ ◦ det)⊗ Sym((aGP2

)∨C)⊗ Cλ1+2+ρP2
⊗ Vw·λ)

≃ Hq−ℓ(w)(mss
2 ,K

′Mss
2∞ ; (χ1,∞ ⊗ χ∞ ◦ det)|Mss

2 (R) ⊗ Vw·λ)

≃


C q = 3, 5, χ1,∞ = signλ1

0 otherwise

• (λ1 = λ2 = 0 andχ1 = χ2 = 1) In this case we have the direct sum of the contributions from the previous

two cases with χ1,∞ = signλ1 .

For the third claim suppose thatA2
λ,[P0],φ

(G) is nontrivial, so that we are in the case λ1 = λ2 = 0, ξ = (2, 1), and

there exists a section ϕ of the normalized parabolic induction IG(AQ)
P0(AQ)

(π, s) such that the automorphic Eisenstein

series EisGP0
(ϕs) has pole at s = s0 = (0, 0). Then we have

Hq(g,K ′
∞;A2

λ,[P0],φ
(G)⊗ Vλ)

≃ Hq(g,K ′
∞;χ ◦ sim)

≃ Hq(g,K ′
∞;χ∞ ◦ sim)⊗ χfin ◦ sim

Now by Borel-Wallach the (g,K ′
∞)-cohomology of the 1-dimensional representation χ∞ ◦ sim is given

Hq(g,K ′
∞;χ∞ ◦ sim) =


C q = 0, 2, 4, 6

0 otherwise

The result follows.

Borel Eisenstein Cohomology Having computed the (g,K ′
∞)-cohomology of the pieces of the Franke-Schwermer

filtration, we are now in the position to compute Eisenstein cohomology. Up to indeterminacies regarding the be-

havior of certain connecting morphisms in the case whereA1
λ,[P1],φ

(G) orA2
λ,[P1],φ

(G) is nontrivial, we have the

following result:
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Theorem 4.3.28. (Compare to [48, Theorem 5.4]) LetVλ ∈ Rep(G)be an absolutely irreducible rational represen-

tation with highest weight λ = (λ1, λ2; 0). Let φ = {φP }P∈[P0] ∈ Φλ,[P0](G) be the associate class of a unitary

cuspidal automorphic representationπ = χ1⊗χ2⊗χ ∈ φP0 ofM0(AQ) = GL1(AQ)×GL1(AQ)×GL1(AQ).

IfA1
λ,[P0],φ

(G) is trivial (λ1 > λ2 > 0) and ifχ1,∞⊗χ2,∞ = signλ1⊗ signλ2 then we have an isomorphism

ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) ≃


I
G(A∞

Q )

P0(A∞
Q )(πfin, λ+ ρP0) q = 4

0 otherwise

IfA1
λ,[P0],φ

(G) is nontrivial butA2
λ,[P0],φ

(G) is trivial we have the following cases:

• (λ1 = λ2 and χ1 = χ2 but λ2 > 0 or χ2 ̸= 1) If χ1,∞ = signλ1 then (with assumption 4.3.29 on

connecting morphisms) we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) ≃


K4

1(χ1, χ) q = 4

0 otherwise

whereK4
1(χ1, χ) is theG(A∞

Q )-module

K4
1(χ1, χ) ≃ ker

(
I
G(A∞

Q )

P0(A∞
Q )(πfin, λ+ ρP0)→ I

G(A∞
Q )

P1(A∞
Q )(χ1,fin ◦ det⊗ χfin,

λ1+λ2+3
2 )

)

If χ1,∞ = signλ1+1 then we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) ≃


I
G(A∞

Q )

P1(A∞
Q )(χ1,fin ◦ det⊗ χfin,

λ1+λ2+3
2 ) q = 3

0 otherwise
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• (λ2 = 0 andχ2 = 1 but λ1 > 0 orχ1 ̸= 1) Ifχ1,∞ = signλ1 then (with assumption 4.3.30 on connecting

morphisms) we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) ≃


I
G(A∞

Q )

P2(A∞
Q )(χ1,fin ⊗ χfin ◦ det, λ1 + 2) q = 3

K4
2(χ1, χ) q = 4

0 otherwise

whereK4
2(χ1, χ) is theG(A∞

Q )-module

K4
2(χ1, χ) ≃ ker

(
I
G(A∞

Q )

P0(A∞
Q )(πfin, λ+ ρP0)→ I

G(A∞
Q )

P2(A∞
Q )(χ1,fin ⊗ χfin ◦ det, λ1 + 2)

)

IfA2
λ,[P0],φ

(G) is nontrivial (λ1 = λ2 = 0 and χ1 = χ2 = 1) then (with assumptions 4.3.31, 4.3.32, 4.3.33 on

connecting morphisms) we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P0],φ(G)) ≃



χfin ◦ sim q = 0, 2

K3
0(χ) q = 3

K4
0(χ) q = 4

0 otherwise

whereK3
0(χ) is theG(A∞

Q )-module

K3
0(χ) ≃ ker

(
I
G(A∞

Q )

P2(A∞
Q )(1⊗ χfin ◦ det, 2)→ χfin ◦ sim

)

and whereK4
0(χ) is theG(A∞

Q )-module

K4
0(χ) ≃ ker

(
I
G(A∞

Q )

P0(A∞
Q )(πfin, λ+ ρP0)→ ker

(
I
G(A∞

Q )

P1(A∞
Q )(det⊗ χfin,

3
2)⊕ I

G(A∞
Q )

P2(A∞
Q )(1⊗ χfin ◦ det, 2)→ χfin ◦ sim

))

Otherwise,H∗(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) = 0.

267



Proof. By definitionHq(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) = Hq(g,K ′

∞;A0
λ,[P0],φ

(G)⊗ Vλ), and ifA1
λ,[P0],φ

(G) is

trivial we clearly have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;A0

λ,[P0],φ
(G)⊗ Vλ) ≃ Hq(g,K ′

∞;
A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)

If χ1,∞ ⊗ χ2,∞ = signλ1 ⊗ signλ2 then by 4.3.27 we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) ≃


Hq(g,K ′

∞;A0
λ,[P0],φ

(G)⊗ Vλ) q = 4

0 otherwise

≃


I
G(A∞

Q )

P0(A∞
Q )(πfin, λ+ ρP0) q = 4

0 otherwise

If χ1,∞ ⊗ χ2,∞ ̸= signλ1 ⊗ signλ2 we haveH∗(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) = 0.

IfA1
λ,[P0],φ

(G) is nontrivial butA2
λ,[P0],φ

(G) is trivial we clearly have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;A1

λ,[P0],φ
(G)⊗ Vλ) ≃ Hq(g,K ′

∞;
A1
λ,[P0],φ

(G)

A2
λ,[P0],φ

(G)
⊗ Vλ)

Consider the short exact sequence ofG(A∞
Q )× (g,K∞)-modules

0→ A1
λ,[P0],φ

(G)→ A0
λ,[P0],φ

(G)→
A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
→ 0

which gives rise to a long exact sequence ofG(A∞
Q )-modules

0→ H3(g,K ′
∞;A1

λ,[P0],φ
(G)⊗ Vλ)→ H3(g,K ′

∞;A0
λ,[P0],φ

(G)⊗ Vλ)→ H3(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)

→ H4(g,K ′
∞;A1

λ,[P0],φ
(G)⊗ Vλ)→ H4(g,K ′

∞;A0
λ,[P0],φ

(G)⊗ Vλ)→ H4(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)

→ H5(g,K ′
∞;A1

λ,[P0],φ
(G)⊗ Vλ)→ H5(g,K ′

∞;A0
λ,[P0],φ

(G)⊗ Vλ)→ H5(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)→ 0

vanishing outside degrees 3, 4, 5. Now we have the following cases:
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• (λ1 = λ2 and χ1 = χ2 but λ2 > 0 or χ2 ̸= 1) If χ1,∞ = signλ1 then by 4.3.27 we have a long exact

sequence ofG(A∞
Q )-modules

0→
(((((((((((((
H3(g,K ′

∞;A1
λ,[P0],φ

(G)⊗ Vλ)︸ ︷︷ ︸
=0

→ H3(g,K ′
∞;A0

λ,[P0],φ
(G)⊗ Vλ)→

(((((((((((((
H3(g,K ′

∞;
A0

λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

=0

→
(((((((((((((
H4(g,K ′

∞;A1
λ,[P0],φ

(G)⊗ Vλ)︸ ︷︷ ︸
=0

→ H4(g,K ′
∞;A0

λ,[P0],φ
(G)⊗ Vλ)→ H4(g,K ′

∞;
A0

λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

≃I
G(A∞Q )

P0(A∞Q )
(πfin,λ+ρP0

)

→ H5(g,K ′
∞;A1

λ,[P0],φ
(G)⊗ Vλ)︸ ︷︷ ︸

≃I
G(A∞Q )

P1(A∞Q )
(χ1,fin◦det⊗χfin,

λ1+λ2+3
2 )

→ H5(g,K ′
∞;A0

λ,[P0],φ
(G)⊗ Vλ)→

(((((((((((((
H5(g,K ′

∞;
A0

λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

=0

→ 0

Now we make the following assumption on connecting morphisms:

Assumption 4.3.29. IfA1
λ,[P0],φ

(G) is nontrivial butA2
λ,[P0],φ

(G) is trivial as above, then the connecting

morphism

H4(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)→ H5(g,K ′

∞;A0
λ,[P0],φ

(G)⊗ Vλ)

is surjective, so the morphismH5(g,K ′
∞;A1

λ,[P0],φ
(G)⊗ Vλ)→ H5(g,K ′

∞;A0
λ,[P0],φ

(G)⊗ Vλ) is zero.

Granting this, It follows that we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) ≃


K4

1(χ1, χ) q = 4

0 otherwise

whereK4
1(χ1, χ) is theG(A∞

Q )-module

K4
1(χ1, χ) ≃ ker

(
H4(g,K ′

∞;
A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)→ H5(g,K ′

∞;A1
λ,[P0],φ

(G)⊗ Vλ)
)

≃ ker
(
I
G(A∞

Q )

P0(A∞
Q )(πfin, λ+ ρP0)→ I

G(A∞
Q )

P1(A∞
Q )(χ1,fin ◦ det⊗ χfin,

λ1+λ2+3
2 )

)
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If χ1,∞ = signλ1+1 then by 4.3.27 we have a long exact sequence ofG(A∞
Q )-modules

0→ H3(g,K ′
∞;A1

λ,[P0],φ
(G)⊗ Vλ)︸ ︷︷ ︸

≃I
G(A∞Q )

P1(A∞Q )
(χ1,fin◦det⊗χfin,

λ1+λ2+3
2 )

→ H3(g,K ′
∞;A0

λ,[P0],φ
(G)⊗ Vλ)→

(((((((((((((
H3(g,K ′

∞;
A0

λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

=0

→
(((((((((((((
H4(g,K ′

∞;A1
λ,[P0],φ

(G)⊗ Vλ)︸ ︷︷ ︸
=0

→ H4(g,K ′
∞;A0

λ,[P0],φ
(G)⊗ Vλ)→

(((((((((((((
H4(g,K ′

∞;
A0

λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

=0

→
(((((((((((((
H5(g,K ′

∞;A1
λ,[P0],φ

(G)⊗ Vλ)︸ ︷︷ ︸
=0

→ H5(g,K ′
∞;A0

λ,[P0],φ
(G)⊗ Vλ)→

(((((((((((((
H5(g,K ′

∞;
A0

λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

=0

→ 0

It follows that we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) ≃


H3(g,K ′

∞;A1
λ,[P0],φ

(G)⊗ Vλ) q = 3

0 otherwise

≃


I
G(A∞

Q )

P1(A∞
Q )(χ1,fin ◦ det⊗ χfin,

λ1+λ2+3
2 ) q = 3

0 otherwise

• (λ2 = 0 andχ2 = 1 but λ1 > 0 orχ1 ̸= 1) Ifχ1,∞ = signλ1 then by 4.3.27 we have a long exact sequence

ofG(A∞
Q )-modules

0→ H3(g,K ′
∞;A1

λ,[P0],φ
(G)⊗ Vλ)︸ ︷︷ ︸

≃I
G(A∞Q )

P2(A∞Q )
(χ1,fin⊗χfin◦det,λ1+2)

→ H3(g,K ′
∞;A0

λ,[P0],φ
(G)⊗ Vλ)→

(((((((((((((
H3(g,K ′

∞;
A0

λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

=0

→
(((((((((((((
H4(g,K ′

∞;A1
λ,[P0],φ

(G)⊗ Vλ)︸ ︷︷ ︸
=0

→ H4(g,K ′
∞;A0

λ,[P0],φ
(G)⊗ Vλ)→ H4(g,K ′

∞;
A0

λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

≃I
G(A∞Q )

P0(A∞Q )
(πfin,λ+ρP0

)

→ H5(g,K ′
∞;A1

λ,[P0],φ
(G)⊗ Vλ)︸ ︷︷ ︸

≃I
G(A∞Q )

P2(A∞Q )
(χ1,fin⊗χfin◦det,λ1+2)

→ H5(g,K ′
∞;A0

λ,[P0],φ
(G)⊗ Vλ)→

(((((((((((((
H5(g,K ′

∞;
A0

λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)︸ ︷︷ ︸

=0

→ 0

Now we make the following assumption on connecting morphisms:
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Assumption 4.3.30. IfA1
λ,[P0],φ

(G) is nontrivial butA2
λ,[P0],φ

(G) is trivial as above, then the connecting

morphism

H4(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)→ H5(g,K ′

∞;A0
λ,[P0],φ

(G)⊗ Vλ)

is surjective, so the morphismH5(g,K ′
∞;A1

λ,[P0],φ
(G)⊗ Vλ)→ H5(g,K ′

∞;A0
λ,[P0],φ

(G)⊗ Vλ) is zero.

Granting this, it follows that we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) ≃


H3(g,K ′

∞;A1
λ,[P0],φ

(G)⊗ Vλ) q = 3

K4
2(χ1, χ) q = 4

0 otherwise

≃


I
G(A∞

Q )

P2(A∞
Q )(χ1,fin ⊗ χfin ◦ det, λ1 + 2) q = 3

K4
2(χ1, χ) q = 4

0 otherwise

whereK4
2(χ1, χ) is theG(A∞

Q )-module

K4
2(χ1, χ) ≃ ker

(
H4(g,K ′

∞;
A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
⊗ Vλ)→ H5(g,K ′

∞;A1
λ,[P0],φ

(G)⊗ Vλ)
)

≃ ker
(
I
G(A∞

Q )

P0(A∞
Q )(πfin, λ+ ρP0)→ I

G(A∞
Q )

P2(A∞
Q )(χ1,fin ⊗ χfin ◦ det, λ1 + 2)

)

If χ1,∞ ̸= signλ1 we haveH∗(g,K ′
∞;Aλ,[P0],φ(G)⊗ Vλ) = 0.

IfA2
λ,[P0],φ

(G) is nontrivial (λ1 = λ2 = 0 and χ1 = χ2 = 1) consider the short exact sequence of G(A∞
Q ) ×

(g,K∞)-modules

0→ A2
λ,[P0],φ

(G)→ A1
λ,[P0],φ

(G)→
A1
λ,[P0],φ

(G)

A2
λ,[P0],φ

(G)
→ 0
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which by 4.3.27 gives rise to a long exact sequence ofG(A∞
Q )-modules

0→ H0(g,K ′
∞;A2

λ,[P0],φ
(G))︸ ︷︷ ︸

≃χfin◦sim

→ H0(g,K ′
∞;A1

λ,[P0],φ
(G))→

�����������

H0(g,K ′
∞;

A1
λ,[P0],φ(G)

A2
λ,[P0],φ

(G)
)︸ ︷︷ ︸

=0

→
(((((((((((
H1(g,K ′

∞;A2
λ,[P0],φ

(G))︸ ︷︷ ︸
=0

→ H1(g,K ′
∞;A1

λ,[P0],φ
(G))→

�����������

H1(g,K ′
∞;

A1
λ,[P0],φ(G)

A2
λ,[P0],φ

(G)
)︸ ︷︷ ︸

=0

→ H2(g,K ′
∞;A2

λ,[P0],φ
(G))︸ ︷︷ ︸

≃χfin◦sim

→ H2(g,K ′
∞;A1

λ,[P0],φ
(G))→

�����������

H2(g,K ′
∞;

A1
λ,[P0],φ(G)

A2
λ,[P0],φ

(G)
)︸ ︷︷ ︸

=0

→
(((((((((((
H3(g,K ′

∞;A2
λ,[P0],φ

(G))︸ ︷︷ ︸
=0

→ H3(g,K ′
∞;A1

λ,[P0],φ
(G))→ H3(g,K ′

∞;
A1

λ,[P0],φ(G)

A2
λ,[P0],φ

(G)
)︸ ︷︷ ︸

≃I
G(A∞Q )

P2(A∞Q )
(χ1,fin⊗χfin◦det,2)

→ H4(g,K ′
∞;A2

λ,[P0],φ
(G))︸ ︷︷ ︸

≃χfin◦sim

→ H4(g,K ′
∞;A1

λ,[P0],φ
(G))→

�����������

H4(g,K ′
∞;

A1
λ,[P0],φ(G)

A2
λ,[P0],φ

(G)
)︸ ︷︷ ︸

=0

→
(((((((((((
H5(g,K ′

∞;A2
λ,[P0],φ

(G))︸ ︷︷ ︸
=0

→ H5(g,K ′
∞;A1

λ,[P0],φ
(G))→ H5(g,K ′

∞;
A1

λ,[P0],φ(G)

A2
λ,[P0],φ

(G)
)︸ ︷︷ ︸

≃I
G(A∞Q )

P1(A∞Q )
(χ1,fin◦det⊗χfin,

3
2 )

⊕I
G(A∞Q )

P2(A∞Q )
(χ1,fin⊗χfin◦det,2)

→ H6(g,K ′
∞;A2

λ,[P0],φ
(G))︸ ︷︷ ︸

≃χfin◦sim

→ H6(g,K ′
∞;A1

λ,[P0],φ
(G))→

�����������

H6(g,K ′
∞;

A1
λ,[P0],φ(G)

A2
λ,[P0],φ

(G)
)︸ ︷︷ ︸

=0

→ 0

Now we make the following assumptions on connecting morphisms:

Assumption 4.3.31. IfA2
λ,[P0],φ

(G) is nontrivial as above, then the connecting morphism

H3(g,K ′
∞;

A1
λ,[P0],φ

(G)

A2
λ,[P0],φ

(G)
)→ H4(g,K ′

∞;A2
λ,[P0],φ

(G))

is surjective, so the morphismH4(g,K ′
∞;A2

λ,[P0],φ
(G))→ H4(g,K ′

∞;A1
λ,[P0],φ

(G)) is zero.

Assumption 4.3.32. IfA2
λ,[P0],φ

(G) is nontrivial as above, then the connecting morphism

H5(g,K ′
∞;

A1
λ,[P0],φ

(G)

A2
λ,[P0],φ

(G)
)→ H6(g,K ′

∞;A2
λ,[P0],φ

(G))

is surjective, so the morphismH6(g,K ′
∞;A2

λ,[P0],φ
(G))→ H6(g,K ′

∞;A1
λ,[P0],φ

(G)) is zero.
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Granting these, it follows that we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;A1

λ,[P0],φ
(G)) ≃



Hq(g,K ′
∞;A2

λ,[P0],φ
(G)) q = 0, 2

K3(χ) q = 3

K5(χ) q = 5

0 otherwise

≃



χfin ◦ sim q = 0, 2

K3(χ) q = 3

K5(χ) q = 5

0 otherwise

whereK3(χ) is theG(A∞
Q )-module

K3(χ) ≃ ker
(
H3(g,K ′

∞;
A1
λ,[P0],φ

(G)

A2
λ,[P0],φ

(G)
)→ H4(g,K ′

∞;A1
λ,[P0],φ

(G))
)

≃ ker
(
I
G(A∞

Q )

P2(A∞
Q )(1⊗ χfin ◦ det, 2)→ χfin ◦ sim

)

and whereK5(χ) is theG(A∞
Q )-module

K5(χ) ≃ ker
(
H5(g,K ′

∞;
A1
λ,[P0],φ

(G)

A2
λ,[P0],φ

(G)
)→ H6(g,K ′

∞;A1
λ,[P0],φ

(G))
)

≃ ker
(
I
G(A∞

Q )

P1(A∞
Q )(det⊗ χfin,

3
2)⊕ I

G(A∞
Q )

P2(A∞
Q )(1⊗ χfin ◦ det, 2)→ χfin ◦ sim

)

Now consider the short exact sequence ofG(A∞
Q )× (g,K∞)-modules

0→ A1
λ,[P0],φ

(G)→ A0
λ,[P0],φ

(G)→
A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
→ 0
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which by 4.3.27 gives rise to a long exact sequence ofG(A∞
Q )-modules

0→ H0(g,K ′
∞;A1

λ,[P0],φ
(G))︸ ︷︷ ︸

≃χfin◦sim

→ H0(g,K ′
∞;A0

λ,[P0],φ
(G))→

�����������

H0(g,K ′
∞;

A0
λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
)︸ ︷︷ ︸

=0

→
(((((((((((
H1(g,K ′

∞;A1
λ,[P0],φ

(G))︸ ︷︷ ︸
=0

→ H1(g,K ′
∞;A0

λ,[P0],φ
(G))→

�����������

H1(g,K ′
∞;

A0
λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
)︸ ︷︷ ︸

=0

→ H2(g,K ′
∞;A1

λ,[P0],φ
(G))︸ ︷︷ ︸

≃χfin◦sim

→ H2(g,K ′
∞;A0

λ,[P0],φ
(G))→

�����������

H2(g,K ′
∞;

A0
λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
)︸ ︷︷ ︸

=0

→ H3(g,K ′
∞;A1

λ,[P0],φ
(G))︸ ︷︷ ︸

≃K3(χ)

→ H3(g,K ′
∞;A0

λ,[P0],φ
(G))→

�����������

H3(g,K ′
∞;

A0
λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
)︸ ︷︷ ︸

=0

→
(((((((((((
H4(g,K ′

∞;A1
λ,[P0],φ

(G))︸ ︷︷ ︸
=0

→ H4(g,K ′
∞;A0

λ,[P0],φ
(G))→ H4(g,K ′

∞;
A0

λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
)︸ ︷︷ ︸

≃I
G(A∞Q )

P0(A∞Q )
(πfin,λ+ρP0

)

→ H5(g,K ′
∞;A1

λ,[P0],φ
(G))︸ ︷︷ ︸

≃K5(χ)

→ H5(g,K ′
∞;A0

λ,[P0],φ
(G))→

�����������

H5(g,K ′
∞;

A0
λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
)︸ ︷︷ ︸

=0

→
(((((((((((
H6(g,K ′

∞;A1
λ,[P0],φ

(G))︸ ︷︷ ︸
=0

→ H6(g,K ′
∞;A0

λ,[P0],φ
(G))→

�����������

H6(g,K ′
∞;

A0
λ,[P0],φ(G)

A1
λ,[P0],φ

(G)
)︸ ︷︷ ︸

=0

→ 0

Now we make the following assumption on connecting morphisms:

Assumption 4.3.33. IfA2
λ,[P0],φ

(G) is nontrivial as above, then the connecting morphism

H4(g,K ′
∞;

A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
)→ H5(g,K ′

∞;A1
λ,[P0],φ

(G))

is surjective, so the morphismH5(g,K ′
∞;A1

λ,[P0],φ
(G))→ H5(g,K ′

∞;A0
λ,[P0],φ

(G)) is zero.
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Granting this, it follows that we have an isomorphism ofG(A∞
Q )-modules

Hq(g,K ′
∞;Aλ,[P0],φ(G)) ≃


Hq(g,K ′

∞;A1
λ,[P0],φ

(G)) q = 0, 2, 3

K4
0(χ) q = 4

0 otherwise

≃



χfin ◦ sim q = 0, 2

K3
0(χ) q = 3

K4
0(χ) q = 4

0 otherwise

whereK3
0(χ) is theG(A∞

Q )-module

K3
0(χ) ≃ K3(χ) ≃ ker

(
I
G(A∞

Q )

P2(A∞
Q )(1⊗ χfin ◦ det, 2)→ χfin ◦ sim

)

and whereK4
0(χ) is theG(A∞

Q )-module

K4
0(χ) ≃ ker

(
H4(g,K ′

∞;
A0
λ,[P0],φ

(G)

A1
λ,[P0],φ

(G)
)→ H5(g,K ′

∞;A1
λ,[P0],φ

(G))
)

≃ ker
(
I
G(A∞

Q )

P0(A∞
Q )(πfin, ρP0)→ K5(χ)

)
≃ ker

(
I
G(A∞

Q )

P0(A∞
Q )(πfin, ρP0)→ ker

(
I
G(A∞

Q )

P1(A∞
Q )(det⊗ χfin,

3
2)⊕ I

G(A∞
Q )

P2(A∞
Q )(1⊗ χfin ◦ det, 2)→ χfin ◦ sim

))

The result follows.

Note that three of the assumptions on connecting morphisms 4.3.29, 4.3.30, 4.3.33 are rather harmless: if any of

these three assumptions failed, then we would be able to conclude the nonvanishing of someH5(g,K ′
∞;A0

λ,[P0],φ
(G)⊗

Vλ), which contradicts known vanishing results forH5(SKfin
,Vλ). On the other hand two of the assumptions on

connecting morphisms 4.3.31, 4.3.32 are especially subtle.

The HKfin
-modules in the above theorem will be paired with 1-dimensional Gal-modules. For an integer

n ∈ Z and for χ = χfin ⊗ χ∞ a (finite order) character of GL1(AQ) let Lnχ = ρχ(−n) be the 1-dimensional
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ℓ-adic Gal-module attached to χ twisted by the n-th power of the ℓ-adic cyclotomic character, with

tr(Frobjp|Lnχ) = pnjc(χp)
j = pnjχ(p)j

Now we have the following result, which is conditional on the assumptions on connecting morphisms 4.3.31, 4.3.32

in the case λ1 = λ2 = 0:
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Theorem 4.3.34. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight λ =

(λ1, λ2;λ1+λ2), and letVλ be the corresponding ℓ-adic local system onSKfin
. Then (with the assumptions 4.3.31,

4.3.32 on connecting morphisms in the case λ1 = λ2 = 0) the Borel Eisenstein cohomologyH∗
Eis,[P0]

(SKfin
,Vλ)

is concentrated in degrees 0, 2, 3, 4 and given as anHKfin
×Gal-module by

H0
Eis,[P0](SKfin ,Vλ) =


⊕
χ

(χfin ◦ sim)Kfin ⊠ L0
χ λ1 = λ2 = 0

0 otherwise

H2
Eis,[P0](SKfin ,Vλ) =


⊕
χ

(χfin ◦ sim)Kfin ⊠ L1
χ λ1 = λ2 = 0

0 otherwise

H3
Eis,[P0](SKfin ,Vλ) =



⊕
χ

K3
0(χ)

Kfin ⊠ L2
χ

⊕
⊕
χ1,χ
χ1 ̸=1

χ1,∞=sign

IG(A∞
Q )

P1(A∞
Q )(χ1,fin ◦ det⊗ χfin,

3
2
)Kfin ⊠ L3

χ2
1χ

⊕
⊕
χ1,χ
χ1 ̸=1
χ1,∞=1

IG(A∞
Q )

P2(A∞
Q )(χ1,fin ⊗ χfin ◦ det, 2)Kfin ⊠ L2

χ1χ λ1 = λ2 = 0

⊕
χ1,χ

χ1,∞=signλ1+1

IG(A∞
Q )

P1(A∞
Q )(χ1,fin ◦ det⊗ χfin,

λ1+λ2+3
2

)Kfin ⊠ Lλ1+λ2+3

χ2
1χ

λ1 = λ2 > 0

⊕
χ1,χ

χ1,∞=signλ1

IG(A∞
Q )

P2(A∞
Q )(χ1,fin ⊗ χfin ◦ det, λ1 + 2)Kfin ⊠ Lλ1+2

χ1χ λ1 > λ2 = 0

0 λ1 > λ2 > 0

H4
Eis,[P0](SKfin ,Vλ) =



⊕
χ

K4
0(χ)

Kfin ⊠ L3
χ

⊕
⊕
χ1,χ
χ1 ̸=1
χ1,∞=1

K4
1(χ1, χ)

Kfin ⊠ L3
χ2
1χ

⊕
⊕
χ1,χ
χ1 ̸=1
χ1,∞=1

K4
2(χ1, χ)

Kfin ⊠ L3
χ1χ λ1 = λ2 = 0

⊕
χ1,χ

χ1,∞=signλ1

K4
1(χ1, χ)

Kfin ⊠ Lλ1+λ2+3

χ2
1χ

λ1 = λ2 > 0

⊕
χ1,χ

χ1,∞=signλ1

K4
2(χ1, χ)

Kfin ⊠ Lλ1+3
χ1χ λ1 > λ2 = 0

⊕
χ1,χ2,χ

χ1,∞=signλ1

χ2,∞=signλ2

IG(A∞
Q )

P0(A∞
Q )(χ1,fin ⊗ χ2,fin ⊗ χfin, λ+ ρP0)

Kfin ⊠ Lλ1+λ2+3
χ1χ2χ λ1 > λ2 > 0
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whereK3
0(χ),K4

0(χ),K4
1(χ1, χ), andK4

2(χ1, χ) are given by

K3
0(χ) = ker

(
IG(A∞

Q )

P2(A∞
Q )(1⊗ χfin ◦ det, 2) → χfin ◦ sim

)
K4

0(χ) = ker
(
IG(A∞

Q )

P0(A∞
Q )(1⊗ 1⊗ χfin, ρP0) → ker

(
IG(A∞

Q )

P1(A∞
Q )(det⊗ χfin,

3
2
)⊕ IG(A∞

Q )

P2(A∞
Q )(1⊗ χfin ◦ det, 2) → χfin ◦ sim

))
K4

1(χ1, χ) = ker
(
IG(A∞

Q )

P0(A∞
Q )(χ1,fin ⊗ χ1,fin ⊗ χfin, λ+ ρP0) → IG(A∞

Q )

P1(A∞
Q )(χ1,fin ◦ det⊗ χfin,

λ1+λ2+3
2

)
)

K4
2(χ1, χ) = ker

(
IG(A∞

Q )

P0(A∞
Q )(χ1,fin ⊗ χ1,fin ⊗ χfin, λ+ ρP0) → IG(A∞

Q )

P2(A∞
Q )(χ1,fin ⊗ χfin ◦ det, λ1 + 2)

)

Proof. The result follows by taking the direct sum over associate classes of unitary cuspidal automorphic represen-

tations π = χ⊗µ ofM0(AQ) = GL1(AQ)×GL1(AQ)×GL1(AQ) of the contributions to 4.3.28. The Galois

action can be obtained from the Borel parabolic terms in the GSp4 trace formula.

By Pink the Tate twists are given as follows. For λ = n1ω + n2ω2 and d(λ) = n1
2 + n2 the Galois action

must be twisted by Ld(λ)−⟨µ,w·λ⟩ where µ : GL1 → GSp4 is the cocharacter given by t 7→ diag(t, t, 1, 1). Since

ω1(diag(t, t, 1, 1)) = t1/2 and ω2(diag(t, t, 1, 1)) = t we have ⟨µ,w · λ⟩ = nw1
2 + nw2 for w ∈ W and we

obtain the following Tate twists:

w nw1 nw2 ⟨µ,w · λ⟩ d(λ)− ⟨µ,w · λ⟩

1 n1 n2
n1
2 + n2 0

s1 −n1 − 2 n1 + n2 + 1 n1
2 + n2 0

s2 n1 + 2n2 + 2 −n2 − 2 n1
2 − 1 n2 + 1

s12 −n1 − 2n2 − 4 n1 + n2 + 1 n1
2 − 1 n2 + 1

s21 n1 + 2n2 + 2 −n1 − n2 − 3 −n1
2 − 2 n1 + n2 + 2

s121 −n1 − 2n2 − 4 n2 −n1
2 − 2 n1 + n2 + 2

s212 n1 −n1 − n2 − 3 −n1
2 − n2 − 3 n1 + 2n2 + 3

s1212 −n1 − 2 −n2 − 2 −n1
2 − n2 − 3 n1 + 2n2 + 3

Recalling that n1 = λ1 − λ2 and n2 = λ2, this gives the Tate twists in the theorem.

Example 4.3.35. LetKfin = G(Ẑ) so thatSKfin
= A2 is the moduli stack of principally polarized Abelian surfaces.

Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight λ = (λ1, λ2;λ1 + λ2)

with λ1 + λ2 even, and let Vλ be the corresponding ℓ-adic local system onA2.
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The compactly supported Borel Eisenstein cohomology is concentrated in degrees 0, 2, 3, 4 and given by

H0
Eis,[P0]

(A2,Vλ) =


L0 λ1 = λ2 = 0

0 otherwise

H2
Eis,[P0]

(A2,Vλ) =


L1 λ1 = λ2 = 0

0 otherwise

H3
Eis,[P0]

(A2,Vλ) =


Lλ1+λ2+3 λ1 = λ2 > 0;λ1 odd

Lλ1+2 λ1 > λ2 = 0

0 otherwise

H4
Eis,[P0]

(A2,Vλ) =


Lλ1+λ2+3 λ1 > λ2 > 0;λ1 even

0 otherwise

4.4 Intersection and Cuspidal Cohomology for GSp4

The goal of this section is to compute the intersection and inner/cuspidal cohomology of local systems on Siegel mod-

ular threefolds. To that end, we review the structure of the automorphic discrete spectrum for GSp4 as described

by Arthur’s conjectures, and how the endoscopic and CAP packets can be constructed explicitly as theta lifts. We

then describe the internal structure of these packets, and in each case compute the relevant (g,K ′
∞)-cohomology,

and sketch how the Langlands Kottwitz method is used to compute the Galois action on each contribution.

4.4.1 Arthur Parameters for GSp4

ForG = GSp4 over Q, Arthur’s conjectures describe a decomposition

L2
disc(G(Q)AG(R)◦ \G(AQ)) ≃

⊕
ω

⊕
ψ∈Ψdisc(G,ω)

Aψ

where eachAψ is a near-equivalence class of discrete spectrum automorphic representations ofG(AQ), where the

first direct sum is taken over unitary Hecke characters ω : Q× \ A×
Q → C×, and the second direct sum is taken
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over a set Ψdisc(G,ω) of equivalence classes of admissible discrete global A-parameters ψ : LQ × SL2(C)→ Ĝ;

these are formal unorderd isobaric sumsψ =⊞i µi⊠ νdi where µi is anω-self dual unitary cuspidal automorphic

representation of GLni(AQ) and νdi is the irreducible representation of SL2(C) of dimension di, and in this case

we require
∑

i nidi = 4. This gives six possible shapes of global A-parameters:

µ⊠ 1 (µ1 ⊠ 1)⊞ (µ2 ⊠ 1) (µ⊠ 1)⊞ (χ⊠ ν2) µ⊠ ν2 (χ1 ⊠ ν2)⊞ (χ2 ⊠ ν2) χ⊠ ν4

By [43, Remark 6.1.8] (see also [6], [? ], [106]) the A-parameters for discrete spectrum automorphic representations

ofG(AQ) with central character ω are given as follows:

(i) (General Type) We have a set Ψdisc,gen(G,ω) of A-parameters of the form ψ = µ ⊠ 1 for µ a ω-self-dual

unitary cuspidal automorphic representation of GL4(AQ) of symplectic type, that is µ∨ ⊗ ω = µ and

LS(s,∧2(µ)⊗ω−1) has a pole at s = 1; these are of general type (stable and semisimple) with Sψ = 1 and

ϵψ = 1 with Satake parameters

c(ψ) = c(µ) = {diag(c1(µp), c2(µp), c3(µp), c4(µp))}p

For ω = 1 we haveLψ = Sp4(C) and the morphism ψ : Lψ × SL2(C)→ Sp4(C) is the projection onto

the first component.

(ii) (Yoshida Type) We have a set Ψdisc,endo(G,ω) of A-parameters of the form ψ = (µ1 ⊠ 1) ⊞ (µ2 ⊠ 1)

for µ1 and µ2 distinct unitary cuspidal automorphic representations of GL2(AQ) with central characters

ωµ1 = ωµ2 = ω; these are of Yoshida type (unstable and semisimple) with Sψ = Z/2Z and ϵψ = 1 with

Satake parameters

c(ψ) = c(µ1)⊕ c(µ2) = {diag(c1(µ1,p), c1(µ2,p), c2(µ2,p), c2(µ1,p))}p

For ω = 1 we haveLψ = SL2(C)× SL2(C) and the morphism ψ : Lψ × SL2(C)→ Sp4(C) is given

ψ(
(
a1 b1
c1 d1

)
,
(
a2 b2
c2 d2

)
; 1) =

(
a1 b1

a2 b2
c2 d2

c1 d1

)
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(iii) (Saito-Kurokawa Type) We have a set Ψdisc,[P1](G,ω) of Siegel CAP A-parameters of the form ψ = (µ⊠

1) ⊞ (χ ⊠ ν2) for µ a unitary cuspidal automorphic representation of GL2(AQ) with central character

ωµ = ω and χ : Q× \ A×
Q → C× a unitary Hecke character with χ2 = ω; these are of Saito-Kurokawa

type (unstable and mixed) with Sψ = Z/2Z and

ϵψ =


sign ε(12 , µ⊗ χ

−1) = −1

1 ε(12 , µ⊗ χ
−1) = 1

with Satake parameters

c(ψ) = (c(χ)⊗ c(ν2))⊕ c(µ) = {diag(c(χp)p
1
2 , c1(µp), c2(µp), c(χp)p

− 1
2 )}p

For ω = 1 we haveLψ = SL2(C)× {±1} and the morphism ψ : Lψ × SL2(C)→ Sp4(C) is given

ψ(
(
a b
c d

)
, t; 1) =

(
t
a b
c d

t

)
ψ(1, 1;

(
a b
c d

)
) =

(
a b
1
1

c d

)

(iv) (Soudry Type) We have a setΨdisc,[P2](G,ω) of Klingen CAP A-parameters of the formψ = µ⊠ν2 forµ an

ω-self dual unitary cuspidal automorphic representation ofGL2(AQ) of orthogonal type, that isµ∨⊗ω = µ

and LS(s, Sym2(µ) ⊗ ω−1) has a pole at s = 1, with central character ωµ/ω of order 2 so that µ is the

automorphic induction of a unitary Hecke character θ : F× \ A×
F → C× of a quadratic extension F/Q

corresponding to ωµω−1 such that θc ̸= θ and θ|Q×\A×
Q
= ω; these are of Soudry type (stable and mixed)

with Sψ = 1 and ϵψ = 1 with Satake parameters

c(ψ) = c(µ)⊗ c(ν2) = {diag(c1(µp)p
1
2 , c2(µp)p

1
2 , c1(µp)p

− 1
2 , c2(µp)p

− 1
2 )}p

For ω = 1 we have Lψ = O2(C) = {g ∈ GL2(C)|⊤g
(

1
1

)
g =

(
1

1

)
} and the morphism ψ :

Lψ × SL2(C)→ Sp4(C) is given

ψ(
(
a b
c d

)
, 1) =

(
a b
c d

a b
c d

)
ψ(1,

(
a b
c d

)
) =

(
a b
a b

c d
c d

)
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(v) (Howe-Piatetski-Shapiro Type) We have a set Ψdisc,[P0](G,ω) of Borel CAP A-parameters of the form ψ =

(χ1 ⊠ ν2)⊞ (χ2 ⊠ ν2) for χ1, χ2 : Q× \ A×
Q → C× unitary Hecke characters with χ2

1 = χ2
2 = ω; these

are unstable L-packets of Howe-Piatetski-Shapiro type with Sψ = Z/2Z, ϵψ = 1, with Satake parameters

c(ψ) = (c(χ1)⊗ c(ν2))⊕ (c(χ2)⊗ c(ν2))

= {diag(c(χ1,p)p
1
2 , c(χ2,p)p

1
2 , c(χ2,p)p

− 1
2 , c(χ1,p)p

− 1
2 )}p

For ω = 1 we haveLψ = {±1} × {±1} and the morphism ψ : Lψ × SL2(C)→ Sp4(C) is given

ψ(w; 1) = diag(ϕ1(w), ϕ2(w), ϕ2(w), ϕ1(w)) ψ(1, 1;
(
a b
c d

)
) =

(
a b
a b
c d

c d

)

(vi) (One-Dimensional Type) We have a set Ψdisc,1dim(G,ω) of A-parameters of the form ψ = χ ⊠ ν4 for

χ : Q× \ A×
Q → C× a unitary Hecke character with χ4 = ω; these are one-dimensional type with Sψ = 1

and ϵψ = 1 and Satake parameters

c(ψ) = c(χ)⊗ c(ν4) = {diag(c(χp)p
3
2 , c(χp)p

1
2 , c(χp)p

− 1
2 , c(χp)p

− 3
2 )}p

For ω = 1 we have Lψ = {±1} and the morphism ψ : Lψ × SL2(C) → Sp4(C) identifies {±1} with

the center of Sp4(C).

Note that for µ an ω-self dual unitary cuspidal automorphic representation of GL2(AQ), either ωµ = ω and

LS(s,∧2(µ) ⊗ ω−1) has a pole at s = 1, or µ is the automorphic induction of a unitary Hecke character θ :

F× \ A×
F → C× of a quadratic extension F/Q corresponding to ωµω−1 such that θc ̸= θ and θ|Q×\A×

Q
= ω

and LS(s, Sym2(µ) ⊗ ω−1) has a pole at s = 1 (see [43, Theorem 2.7.1]). The unitary cuspidal automorphic

representations of GL2(AQ) appearing in the A-parameters of Yoshida type and of Saito-Kurokawa type are of this

first type, while the unitary cuspidal automorphic representations of GL2(AQ) appearing in the the A-parameters

of Soudry type are of this second type.

The classification of such A-parameters, along with conjectures [43, Conjecture 2.4.2] on local A-packets in

terms of endoscopic transfer relations and conjectures [43, Conjecture 2.5.6] on global A-parameters and their

multiplicity formula, follows by work of Arthur [6] in the case ω = 1 (as well as in the case ω = χ2 by a twisting

argument, see [43, Theorem 2.6.1]), and follows by work of Gee-Taïbi [43] in general.
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We quickly recall the twisting argument. For µ an ω-self dual unitary cuspidal automorphic representation of

GLn(AQ) and forη : Q×\A×
Q → C× a unitary Hecke character withη2 = ω, the twistµ⊗η−1 := µ⊗(η◦det)−1

is self-dual. As the conjectures are compatible with these twists, they reduce to the caseω = 1where an automorphic

representation of GSp4(AQ) is the same as an automorphic representation of PGSp4(AQ) ≃ SO5(AQ).

Given an A-parameter ψ ∈ Ψdisc(G,ω) and a unitary Hecke character η : Q× \ A×
Q → C× we may consider

the character twist ψ ⊗ η as follows:

(i) For ψ = µ ⊠ 1 ∈ Ψdisc,gen(G,ω) we have ψ ⊗ η = (µ ⊗ η) ⊠ 1 ∈ Ψdisc,gen(G,ωη
4) with central

character ωµ⊗η = ωµη
4 = ωη4.

(ii) Forψ = (µ1 ⊠ 1)⊞ (µ2 ⊠ 1) ∈ Ψdisc,endo(G,ω) we haveψ⊗ η = ((µ1 ⊗ η)⊠ 1)⊞ ((µ2 ⊗ η)⊠ 1) ∈

Ψdisc,endo(G,ωη
2) with central character ωµi⊗η = ωµiη

2 = ωη2.

(iii) For ψ = (µ ⊠ 1) ⊞ (χ ⊠ ν2) ∈ Ψdisc,[P1](G,ω) we have ψ ⊗ η = ((µ ⊗ η) ⊠ 1) ⊞ (χη ⊠ ν2) ∈

Ψdisc,[P1](G,ωη
2) with central character ωµ⊗η = ωµη

2 = ωη2 and (χη)2 = χ2η2 = ωη2.

(iv) For ψ = µ ⊠ ν2 ∈ Ψdisc,[P2](G,ω) we have ψ ⊗ η = µ ⊗ η ⊠ ν2 ∈ Ψdisc,[P2](G,ωη
2) with central

character ωµ⊗η = ωµη
2 = ωη2.

(v) For ψ = (χ1 ⊠ ν2) ⊞ (χ2 ⊠ ν2) ∈ Ψdisc,[P0](G,ω) we have ψ ⊗ η = (χ1η ⊠ ν2) ⊞ (χ2η ⊠ ν2) ∈

Ψdisc,[P0](G,ωη
2) with central character (χiη)2 = χ2

i η
2 = ωη2.

(vi) For ψ = χ ⊠ ν4 ∈ Ψdisc,1dim(G,ω) we have ψ ⊗ η = χη ⊠ ν4 ∈ Ψdisc,1dim(G,ωη
4) with central

character (χη)4 = χ4η4 = ωη4.

In particular for ψ ∈ Ψdisc,?(G,ω) with ? ∈ {P1, P0, 1dim} we can always twist by a suitable unitary Hecke

character η : Q× \ A×
Q → C× to obtain ψ ⊗ η ∈ Ψdisc,?(G, 1), in which case we have the global A-packets

Π(ψ) = Π(ψ ⊗ η)⊗ η−1 = {π ⊗ (η ◦ sim)−1|π ∈ Π(ψ ⊗ η)}.

Among other things, this twisting argument means we will only need to analyze the Saito-Kurokawa packets

and the Howe-Piatetski-Shapiro packets in the case of trivial central character. Only the Yoshida packets and the

Soudry packets will need to be analyzed without the assumption of trivial central character.
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We obtain a decomposition

L2
disc(G(Q)AG(R)◦ \G(AQ)) ≃

⊕
ω

⊕
ψ∈Ψdisc,gen(G,ω)

(ψ=µ⊠1)

⊕
π∈Π(ψ)

π

⊕
⊕
ω

⊕
ψ∈Ψdisc,endo(G,ω)

(ψ=(µ1⊠1)⊞(µ2⊠1))

⊕
π∈Π(ψ)
⟨·,π⟩=1

π

⊕
⊕
ω

⊕
ψ∈Ψdisc,[P1]

(G,ω)

(ψ=(µ⊠1)⊞(χ⊠ν2))

⊕
π∈Π(ψ)

⟨·,π⟩=ϵ( 1
2
,µ⊗χ−1)

π

⊕
⊕
ω

⊕
ψ∈Ψdisc,[P2]

(G,ω)

(ψ=µ⊠ν2)

⊕
π∈Π(ψ)

π

⊕
⊕
ω

⊕
ψ∈Ψdisc,[P0]

(G,ω)

(ψ=(χ1⊠ν2)⊞(χ2⊠ν2))

⊕
π∈Π(ψ)
⟨·,π⟩=1

π

⊕
⊕
ω

⊕
ψ∈Ψ1dim(G,ω)

(ψ=χ⊠ν4)

χ ◦ sim

The group G = GSp4 over Q has a unique up to isomorphism proper elliptic endoscopic datum (H,H, s, ξ)

where H = GSO2,2 = GL2 × GL2/GL1 where the quotient is taken with respect to the diagonal embedding

GL1 ↪→ GL2 ×GL2 given by z 7→ (diag(z, z), diag(z−1, z−1)), whereH = Ĥ ×WF is defined by the split

L-datum (Ĥ, ρH , ηH) where Ĥ = (GL2(C) × GL2(C))0 = {(g1, g2) ∈ GL2(C) × GL2(C)|det(g1) =

det(g2)} and ρH = ηH = id, and where ξ : H → LG is the embedding of dual groups into the connected

centralizer of s = diag(1,−1,−1, 1):

ξ : (GL2(C)×GL2(C))0 → GSp4(C)
((

a1 b1
c1 d1

)
,
(
a2 b2
c2 d2

))
7→

(
a1 b1

a2 b2
c2 d2

c1 d1

)
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We have a decomposition

L2
disc(H(Q)AH(R)◦ \H(AQ)) ≃

⊕
ω

⊕
ψ∈Ψdisc,endo(G,ω)

(ψ=(µ1⊠1)⊞(µ2⊠1))

µ1 ⊠ µ2

⊕
⊕
ω

⊕
ψ∈Ψdisc,[P1]

(G,ω)

(ψ=(µ⊠1)⊕(χ⊠ν2))

µ⊠ (χ ◦ det)

⊕
⊕
ω

⊕
ψ∈Ψdisc,[P0]

(G,ω)

(ψ=(χ1⊠ν2)⊕(χ2⊠ν2))

(χ1 ◦ det)⊠ (χ2 ◦ det)

corresponding to the unstable terms in the decompositionL2
disc(G(Q)AG(R)◦ \G(AQ)).

Both of these decompositions will play a role in the application of the Langlands-Kottwitz method, as we now

discuss. In particular, it is the cancellation between terms in the stable trace formula for G and the stable trace

formula forH which is responsible for the irregular contributions to cohomology of Siegel threefolds.
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4.4.2 Langlands-Kottwitz Method

It remains to explain where the Galois action is coming from. In this case, the only reasonable method for establishing

this is through the Langlands-Kottwitz method. We largely follow [76, Section 5], which explains the computation

in the case λ1 = λ2 = 0.

LetKfin ⊆ G(A∞
Q ) be a compact open subgroup, and let p be a prime such thatKp = G(Zp) is hyperspecial,

so that SKfin
has good reduction at p. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with

highest weight λ = (λ1, λ2; 0), and let Vλ be the corresponding ℓ-adic local system on SKfin
. Consider the ℓ-adic

intersection cohomology

IH∗
λ =

∑
i≥0

(−1)i[IH i(SBB
Kfin,Fp ,Vλ)]

as an element of the Grothendieck group ofHKfin
×Gal(Fp/Fp)-modules. The Langlands-Kottwitz method in

this case says that for j ≫ 0 sufficiently large one has an equality

tr(Frobjpf
G|IH∗) = STFG(fG) + c(∆)ι(G,H)STFH(fH)

= STFG(fG)− 1

4
STFH(fH)

where fG ∈ C∞
c (G(AQ)) and fH ∈ C∞

c (H(AQ)) are certain explicit test functions (depending on j) satisfying

the matching conditions of standard endoscopy.

Remark 4.4.1. There are a few subtleties in the above which are noteworthy:

(i) The constant ι(G,H) = 1
4 amounts to a computation of Tamagawa numbers and automorphisms of the

endoscopic datum. Indeed, this follows from the definition ι(G,H) = τ(G)/τ(H)
|Λ(H,s,η)| and the following three

facts:

• We have τ(G) = 1: sinceG is connected andGder is simply connected we have

τ(G) =
#π0(Z(Ĝ))

Gal(Q/Q)

#ker1(Q, Z(Ĝ))
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and since Gal(Q/Q) acts trivially onZ(Ĝ) we have #π0(Z(Ĝ))Gal(Q/Q) = 1 and we have

#ker1(Q, Z(Ĝ)) = 1, so it follows that τ(G) = 1.

• We have τ(H) = 2: sinceH is connected butHder is not simply connected we cannot use the above

formula; instead since we have a short exact sequence 0→ GL1 → GL2 ×GL2 → H → 0 we have

τ(H)τ(GL1)

τ(GL2 ×GL2)
=

#coker(Hom(GL2 ×GL2,GL1)→ Hom(GL1,GL1))

#ker(ker1(Q,GL1)→ ker1(Q,GL2 ×GL2)

and by Hilbert 90 we have #coker(Hom(GL2 × GL2,GL1) → Hom(GL1,GL1)) = 2 and we

have #ker(ker1(Q,GL1)→ ker1(Q,GL2 ×GL2) = 1, so it follows that τ(H) = 2.

• We have Λ(H, s, η) = Aut(H, s, η)/Had(Q) = {1, ι}where ι exchanges the two factors ofHad.

(ii) The global constant c(∆) = −1 is more subtle, its computation amounts to understanding the normal-

ization of Langlands-Shelstad transfer factors, for which we use the conventions of Kottwitz: one has two

different Langlands-Shelstad transfer factors ∆ =
∏
v∆v and ∆A related by ∆A = c(∆)∆ for some

global constant c(∆) ∈ C×. In the present situation, by [76, Lemma 3.5] we have c(∆) = −1 using the

conventions of Kottwitz.

(iii) The Kottwitz fixed point formula tr(uj |H∗
c (SKfin,Fq ,Vλ)) = T (j, g) holds only for j ≫ 0 as it relates

to the trace formula. In general forG = GSp2g the “right” bound should be j ≥ g, which in the present

situation excludes only j = 1 from consideration. On the other hand, the identity for j ≫ 0 uniquely

determines the cohomology as an element of the Grothendieck group of ℓ-adic Galois representations.

The stabilization of the Arthur-Selberg trace formula is absolutely crucial in the present situation. As we will

see in later computations, it is precisely the appearance of the nontrivial elliptic endoscopic groupH = GSO2,2

of G = GSp4 which accounts for some Galois representations being smaller than the expected 4-dimensional

irreducible Galois representations attached to the contributions of general type. In view of the above description

of the automorphic discrete spectrum, the two terms STFG(fG) and STFH(fH) take the following form:
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Proposition 4.4.2. • ForG = GSp4 the stable trace formula STFG(fG) takes the form

STFG(fG) =
∑
ω

∑
ψ∈Ψdisc,gen(G,ω)

(ψ=µ⊠1)

∑
π∈Π(ψ)

∏
v

tr(πv(f
G
v ))

+
∑
ω

∑
ψ∈Ψdisc,endo(G,ω)

(ψ=(µ1⊠1)⊞(µ2⊠1))

∑
π∈Π(ψ)

∏
v

tr(πv(f
G
v ))

︸ ︷︷ ︸∏
v tr(π

+
v (fGv ))−tr(π−

v (fGv ))

+
∑
ω

∑
ψ∈Ψdisc,[P1]

(G,ω)

(ψ=(µ⊠1)⊞(χ⊠ν2))

∑
π∈Π(ψ)

ϵ(µ, χ)
∏
v

tr(πv(f
G
v ))

︸ ︷︷ ︸∏
v tr(π

+
v (fGv ))+tr(π−

v (fGv ))

+
∑
ω

∑
ψ∈Ψdisc,[P2]

(G,ω)

(ψ=µ⊠ν2)

∑
π∈Π(ψ)

∏
v

tr(πv(f
G
v ))

+
∑
ω

∑
ψ∈Ψdisc,[P0]

(G,ω)

(ψ=(χ1⊠ν2)⊞(χ2⊠ν2),χ=χ1⊠χ2)

∑
π∈Π(ψ)

ϵ(χ)
∏
v

tr(πv(f
G
v ))

+
∑
ω

∑
ψ∈Ψdisc,1dim(G,ω)

(ψ=χ⊠ν4)

∏
v

tr(χv ◦ sim(fGv ))

• ForH = GSO2,2 = (GL2 ×GL2)/GL1 the stable trace formula STFH(fH) takes the form

STFH(fH) = 2
∑
ω

∑
ψ∈Ψdisc,endo(G,ω)

(ψ=(µ1⊠1)⊞(µ2⊠1))

∑
π∈Π(ψ)

∏
v

tr(πv(f
H
v ))

︸ ︷︷ ︸∏
v tr(π

+
v (fGv ))+tr(π−

v (fGv ))

+ 2
∑
ω

∑
ψ∈Ψdisc,[P1]

(G,ω)

(ψ=(µ⊠1)⊞(χ⊠ν2))

∑
π∈Π(ψ)

∏
v

tr(πv(f
H
v ))

︸ ︷︷ ︸∏
v tr(π

×
v (fGv ))−tr(π−

v (fGv ))

+ 2
∑
ω

∑
ψ∈Ψdisc,[P0]

(G,ω)

(ψ=(χ1⊠ν2)⊞(χ2⊠ν2))

∏
v

tr(χv ◦ sim(fHv ))

In underbraces we have included, for the unstable packets, expressions for the traces in the first case, and ex-

pression for the traces after application of the fundamental lemma in the second case. These expressions come

from various endoscopic character identities, the details of which we do not mention here. The main point is that

fG ∈ C∞
c (G(AQ)) and fH ∈ C∞

c (H(AQ)) are certain carefully chosen test function described by Kottwitz
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which satisfy the matching condition of standard endoscopy defined by Langlands-Shelstad. Let us say a word about

these test function, all too briefly.

For πp an irreducible admissible representation of GSp4(Qp) which is unramified, that is a subquotient of

the normalized parabolic induction χ1,p × χ2,p ⋊ χp = IG(Qp)
P0(Qp)(χ1,p ⊗ χ2,p ⊗ χp) for unramified characters

χ1,p, χ2,p, χp : Q×
p → C× corresponding to a conjugacy class c(πp) × Frobp in LGp = GL2(C) ⋊ ⟨Frobp⟩,

write c1(πp) = χ1,p(p), c2(πp) = χ2,p(p), c3(πp) = χp(p)/χ2,p(p), and c4(πp) = χp(p)/χ1,p(p).

Let (H, s, η) be an elliptic endoscopic datum. The spherical function fHp ∈ HKH
p

is defined in terms of the

L-homomorphism LH → LG → LGpj where Gpj = ResQ
pj
/QpG and where LGpj = Ĝj ⋊ ⟨Frobp⟩. We

have a morphism η̃j :
LHp → LGpj given by t 7→ (t, . . . , t) and Frobp 7→ (s, . . . , s). The diagonal morphism

Gp → Gpj defines an L-homomorphism LGpj → LGp given by (t1, . . . , tj)×Frobip 7→ t1 . . . tj ×Frobip, and

defines an L-homomorphism ηj :
LHp → LGp given by t× Frobip 7→ tjsi × Frobip. We have a dual morphism

HK
pj
→ HKH

pj
and the function fHp ∈ HKH

pj
is defined by the relation tr(πp(η̃j(t))(ϕj)) = tr(πHp (t)(fHp ))

where πHp is defined by the L-homomorphism LHp → LGp and where ϕj = 1K
pj
µ(p−1)K

pj
as before. Then by

Kottwitz we have the trace

tr(πp(f
H
p )) = p

3
2
jtr(r−µ(s(c(πp)× Frobp)

j))

Proposition 4.4.3. For the trivial elliptic endoscopic datum (GSp4, diag(1, 1, 1, 1), id) we have the trace

tr(πp(f
G
p )) = p

3
2
j(c1(πp)

j + c2(πp)
j + c3(πp)

j + c4(πp)
j)

For the nontrivial elliptic endoscopic datum (H,diag(1,−1,−1, 1), id) we have the trace

tr(πp(f
H
p )) = p

3
2
j(c1(πp)

j − c2(πp)j − c3(πp)j + c4(πp)
j)

Away from p and∞, we can choose test functions fp,∞G ∈ C∞
c (Kp,∞ \ G(Ap,∞Q )/Kp,∞) which project

onto individual (packets of) representations {πfin} so as to isolate their contirbutions to cohomology, and fp,∞H ∈

C∞
c (Kp,∞

H \ H(Ap,∞Q )/Kp,∞
H ) is a transfer of fG (satisfying the required matching condition). At∞, the test

function fG∞ is essentially the average of pseudocoefficients of discrete series representations ofG(R) with central

and infinitesimal characters matching those of Vλ, and fH∞ is again transfer of fH (satisfying the required matching
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condition), expressed in terms of pseudocoefficients of discrete series representations ofH(R). We refer to [76] for

a more detailed discussion.

We should remark that the usual choice of ℓ-adic local systems on SKfin
constructed previously in terms of the

cohomology of the universal family of Abelian surfaces, involves the highest weight λ = (λ1, λ2;λ1 + λ2). For

these ℓ-adic local systems, the above formulas for the trace of Frobenius should be multiplied by an additional factor

of p
λ1+λ2

2
j , corresponding to a half Tate twist.

4.4.3 Theta Correspondence

It will turn out that the packets attached to A-parameters for GSp4(AQ) of Yoshida type, Saito-Kurokawa type,

Soudry type, and Howe-Piatetski-Shapiro type can all be constructed using various theta correspondences. In this

section we review some facts about these various theta correspondences which we will use in the next few sections.

In brief, we will employ the following theta lifts:

• The theta lift between Mp2 and SOV for dim(W ) = 2 and dim(V ) = 3, 5;

• The similitude theta lift between GSpW and GOV for dim(W ) = 4 and dim(V ) = 2, 4;

We will mainly focus on the case dim(V ) = 3 which is the Shimura lift studied by Waldspurger and recalled in [38],

and the case dim(V ) = 2 which is the similitude theta lift studied by Soudry [110]. We also refer to [39] and [41]

for relevant discussion around theta lifts. The goal is simply to recall the definitions of these lifts and to summarize

their basic properties without proof.

Local Shimura Correspondence We follow [38]. LetF be a local field of characteristic 0 and let (W, ⟨·, ·⟩) be a

symplecticF -vector space with symplectic group SpW . WhenF ̸= C the symplectic group SpW (F ) has a unique

two-fold central extension

0→ µ2(F )→ MpW (F )→ SpW (F )→ 0

We will only consider the case where dim(W ) = 2 so that SpW (F ) = SL2(F ) and MpW (F ) = Mp2(F ).

Let Irr(Mp2(F )) be the set of genuine irreducible representations of Mp2(F ) (those not factoring through an

irreducible representation of SL2(F )).
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Let (V, q) be 2m + 1-dimensional quadratic F -vector space of discriminant 1 with orthogonal groups OV

and SOV . We will mainly consider the case where dim(V ) = 3, 5. In the case dim(V ) = 3 there are exactly

two such quadratic spaces; let V + be the split 3-dimensional quadratic F -vector space, and let V − be the non-split

3-dimensional quadratic F -vector space. These can be constructed as follows: let D be a quaternion F -algebra

with norm form NmD and letD0 be theF -subalgebra of trace 0 elements inD. Then the 3-dimensional quadratic

F -vector space VD = (D0,−NmD) has discriminant 1 and is isomorphic to V + or V − depending on whether

D is split or non-split. Every π ∈ Irr(SOV (F )) admits two possible extensions π+, π− ∈ Irr(OV (F )) such that

−1 ∈ OV (F ) acts trivially on π+ and nontrivially on π−.

Since SOV −(F ) = PD× is compact every π ∈ Irr(SOV −(F )) is finite-dimensional. Recall that the local

Jacquet-Langlands correpsondence yields an injection

JL : Irr(SOV −(F )) ↪→ Irr(SOV +(F )) = Irr(PGL2(F ))

whose image is the subset of discrete series representations.

Let ψ : F → C be a nontrivial additive character and for a ∈ F× let ψa(x) = ψ(ax). For T̃ ⊆

Mp2(F ) the preimage of the diagonal torus T ⊆ SL2(F ) we have a genuine character χψ : T̃ → C× given by

(diag(a, a−1), ϵ) 7→ ϵγ(a, ψ)−1 whereγ(a, ψ) = γ(ψa)/γ(ψ) is the quotient of Weil indicesγ(ψa), γ(ψ) ∈ µ8.

Consider the oscillator representation ωψ of Mp2(F ) on the space S(F ) of Schwarz-Bruhat functions on F given

by

ωψ(
(
a 0
0 a−1

)
)ϕ(x) = |a|1/2χψ(a)ϕ(ax)

ωψ(
(
1 b
0 1

)
)ϕ(x) = ψ(bx2)ϕ(x)

ωψ(
(
0 −1
1 0

)
)ϕ(x) = γ(ψ)

∫
F
ψ(−2tx)ϕ(t)dt

where the integral is taken with respect to the measuredt onF which is Fourier self-dual with respect to the character

ψ2(x) = ψ(2x). The representation ωψ is reducible and decomposes as ωψ = ω+
ψ ⊕ ω

−
ψ where ω+

ψ is realized on

the subspace of even functions and ω−
ψ is realized on the subspace of odd functions.

For a ∈ F× let ψa : F → C be the nontrivial quadratic character given by ψa(x) = ψ(ax). Then every

nontrivial additive character of F is of this form, and we have ωψa1 ≃ ωψa2 precisely if a1/a2 ∈ F×2. For
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a ∈ F×/F×2 with associated quadratic character χ : F× → C× let ωψ,χ = ωψa so that ωψ,χ = ω+
ψ,χ ⊕ ω

−
ψ,χ

and define the local packet

Π̃ψ(χ) = {π̃+, π̃−}

where π̃+ = ω+
ψ,χ and where π̃− = ω−

ψ,χ.

Consider the Weil representationωV,W,ψ ofOV (F )×Mp2(F )on the spaceS(V )of Schwarz-Bruhat functions

on V given by

ωV,W,ψ(h, 1)ϕ(v) = ϕ(h−1x)

ωV,W,ψ(1,
(
a 0
0 a−1

)
)ϕ(v) = |a|dim(V )/2χψ(a)ϕ(av)

ωV,W,ψ(1,
(
1 b
0 1

)
)ϕ(v) = ψ(bq(v))ϕ(v)

ωV,W,ψ(1,
(
0 −1
1 0

)
)ϕ(v) = γ(ψ ◦ q)

∫
V
ψ(−⟨v, t⟩)ϕ(t)dt‘

where the integral is taken with respect to the measuredt onV which is Fourier self-dual with respect to the character

ψ(⟨·, ·⟩) on V × V where ⟨v1, v2⟩ = q(v1 + v2)− q(v1)− q(v2) is the symetric bilinear form associated to the

quadratic form q.

The Weil representation ωV,W,ψ of OV (F )×Mp2(F ) defines a theta correspondence between OV (F ) and

Mp2(F ) as follows. For π ∈ Irr(OV (F )) the maximal π-isotypic subrepresentation of ωV,W,ψ has the form

π ⊠ΘV,W,ψ(π) for some smooth representation ΘV,W,ψ(π) of Mp2(F ), the big theta lift of π. The big theta lift

ΘV,W,ψ(π) is finite length, hence admissible. LetθV,W,ψ(π)be the maximal semisimple quotient ofΘV,W,ψ(π), the

small theta lift of π. The small theta lift θV,W,ψ(π) is irreducible if ΘV,W,ψ(π) is nonzero, and the assignment π 7→

θV,W,ψ(π) is injective on its domain. By Kudla, ΘV,W,ψ(π) = θV,W,ψ(π) is irreducible or 0 for π supercuspidal,

and if ΘV,W,ψ(π1) = ΘV,W,ψ(π2) ̸= 0 for π1 and π2 supercuspidal, then π1 = π2.

Similarly for π̃ ∈ Irr(Mp2(F )) the maximal π̃-isotypic quotient representation of ωV,W,ψ has the form

ΘV,W,ψ(π̃) ⊠ π̃ for some smooth representation ΘV,W,ψ(π̃) of OV (F ), the big theta lift of π̃. Let θV,W,ψ(π̃)

be the maximal semisimple quotient of ΘV,W,ψ(π̃), the small theta lift of π̃. Similar statements regarding the ir-

reducibility of ΘV,W,ψ(π̃) and θV,W,ψ(π̃), the injectivity of the assignment π̃ 7→ θV,W,ψ(π̃), and its behavior on

supercuspidal representations hold in this case.
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In the case dim(V ) = 3 the local theta lift between Mp2(F ) and OV (F ) defines the local Shimura correspon-

dence, studied by Waldspurger. The main local theorems are as follows.

For π ∈ Irr(SOV (F )), we have ΘV,W,ψ(π
ϵ) ̸= 0 for exactly one extension πϵ ∈ Irr(OV (F )) determined by

the sign

ϵ = ϵ(V )ϵ(12 , π, ψ)

where ϵ(12 , π, ψ) is the standard local ϵ-factor of π defined by the doubling method. For this unique extension the

big theta liftΘV,W,ψ(π
ϵ) has a unique irreducible quotient representation θV,W,ψ(π), the small theta lift ofπ (note

that ΘV,W,ψ(π
ϵ) is irreducible unless π is 1-dimensional).

For π̃ ∈ Irr(Mp2(F )), we have ΘV,W,ψ(π̃) ̸= 0 for exactly one V determined by the sign

ϵ(V ) = zψ(π̃)ϵ(
1
2 , π̃, ψ)

where ϵ(12 , π̃, ψ) is the standard local ϵ-factor of π̃ defined by the doubling method. For this unique V the big

theta liftΘV,W,ψ(π̃) has a unique irreducible quotient representation θV,W,ψ(π̃), the small theta lift of π̃ (note that

ΘV,W,ψ(π̃) is irreducible unless π̃ ≃ ω+
ψ,χ).

The assignment π̃ 7→ θV,W,ψ(π̃) defines a bijection (the local Shimura correspondence)

Shψ : Irr(Mp2(F ))
∼−→ Irr(SOV +(F ))⨿ Irr(SOV −(F ))

which is compatible with standard local γ-factors,L-factors, and ϵ-factors.

Composing the local Shimura correspondence with the local Jacquet-Langlands correspondence defines a sur-

jection (the local Waldspurger correspondence)

Wdψ : Irr(Mp2(F ))→ Irr(SOV +(F )) = Irr(PGL2(F ))
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whose fibers have cardinality 1 or 2. For π ∈ Irr(PGL2(F )) define the local Waldspurger packet

Π̃ψ(π) = Wd−1
ψ (π) =


{π̃+, π̃−} π discrete series

{π̃+} otherwise

where π̃+ = θW,V +,ψ(π) and where π̃− = θW,V −,ψ(π
D) forπD the Jacquet-Langlands transfer ofπ toPD× ifπ

is in the discrete series, otherwise π̃− = 0. For a ∈ F×/F×2 with associated quadratic character χa : F× → C×,

we have Π̃ψ(π) = Π̃ψa(π ⊗ χa), so we obtain a canonical partition

Irr(Mp2(F )) =
∐

π∈Irr(PGL2(F ))

Π̃ψ(π)

into a disjoint union of finite subsets, whose labeling by elements of Irr(PGL2(F )) depends on ψ. For π̃ ∈

Π̃ψ(π) = Π̃ψa(π ⊗ χa) we have zψa(π̃) = zψ(π̃)χa(−1), and the labelings π̃ϵ and π̃ϵa of π̃ as an element of

Π̃ψ(π) and Π̃ψa(π ⊗ χa) are related by

ϵa(π̃)ϵ(π̃) = ϵ(12 , π ⊗ χa)ϵ(
1
2 , π)χa(−1)

In the case dim(V ) = 5 the local theta lift from Mp2(F ) to SO5(F ) ≃ PGSp4(F ) along with the local Wald-

spurger correspondence will be used in the construction of the Saito-Kurokawa lift and the Howe-Piatetski-Shapiro

lift.

Global Shimura Correspondence We continue to follow [38]. Let F be a number field and let (W, ⟨·, ·⟩) be a

symplecticF -vector space with symplectic group SpW . For v a place ofF consider the maximal compact subgroup

Kv = SpW (OFv) ⊆ MpW (Fv) and consider the restricted direct product

0→
⊕
v

µ2(Fv)→
∏̂
v

Kv

MpW (Fv)→ SpW (AF )→ 0
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LetZ0 = {(ϵv)v ∈
⊕

v µ2(Fv)|
∏
v ϵv = 1} and consider the quotient MpW (AF ) = (

∏̂
v

Kv
MpW (Fv))/Z0

which is a two-fold central extension

0→ µ2(F )→ MpW (AF )→ SLW (AF )→ 0

Again we will only consider the case where dim(W ) = 2 so that SpW (AF ) = SL2(AF ) and MpW (AF ) =

Mp2(AF ). Let Irr(Mp2(AF )) be the set of genuine irreducible representations of Mp2(AF ) (those not factoring

through an irreducible representation of SL2(AF )).

Let (V, q) be a 2m+1-dimensional quadraticF -vector space of discriminant1with orthogonal groupsOV and

SOV . We will mainly consider the case where dim(V ) = 3, 5. In the case dim(V ) = 3 these can be constructed as

follows: letD be a quaternionF -algebra with norm form NmD and letD0 be theF -subalgebra of trace 0 elements

in D. Then the 3-dimensional quadratic F -vector space VD = (D0,−NmD) has discriminant 1, and every 3-

dimensional quadraticF -vector space of discriminant 1 is obtained in this way. ForΣ a finite set of places ofF with

#Σ even let signΣ be the automorphic character of µ2(F ) \ µ2(AF ) given by

signΣ =
(⊗
v∈Σ

signµ2(Fv)

)
⊗
(⊗
v ̸∈Σ

1µ2(Fv)

)

If π is an automorphic representation of SOV (AF ) then π⊗ signΣ is an automorphic representation ofOV (AF ),

and every automorphic representation of OV (AF ) is obtained in this way.

Let ψ =
⊗

v ψv : F \ AF → C be a nontrivial additive character and consider the global oscillator rep-

resentation ωψ =
⊗

v ωψv of Mp2(AF ) on the space S(AF ) of adelic Schwarz-Bruhat functions on F . The

representation ωψ is highly reducible and decomposes as

ωψ =
⊕
Σ

ωΣ
ψ ωΣ

ψ =
(⊗
v∈Σ

ω−
ψv

)
⊗
(⊗
v ̸∈Σ

ω+
ψv

)

where the direct sum is taken over finite sets Σ of places of F . We have an Mp2(AF )-equivariant morphism θψ :

ωψ → A(Mp2(AF )) given by

θψ(ϕ)(g) =
∑
x∈F

ωψ(g)(ϕ)(x)

295



with kernelker(θψ) ≃
⊕

#Σ odd ω
Σ
ψ and with image im(θψ) ≃

⊕
#Σ even ω

Σ
ψ which is contained inL2

disc(SL2(F )\

Mp2(AF )) and constitutes a full near-equivalence class inL2
disc(SL2(F ) \Mp2(AF )). Moreover ωΣ

ψ is cuspidal

precisely if #Σ > 0.

For a ∈ F× let ψa : F \ AF → C be the nontrivial additive character given by ψa(x) = ψ(ax). Then every

nontrivial additive character of F \ AF is of this form, and we have ωψa1 ≃ ωψa2 precisely if a1/a2 ∈ F×2. For

a ∈ F×/F×2 with associated quadratic Hecke character χ : F× \ A×
F → C× define the global packet

Π̃ψ(χ) = {π̃ =
⊗
v

π̃v|π̃v ∈ Π̃ψv(χv), π̃v = π̃+v for almost all places v of F}

which is an infinite set. Consider the submodule

Θ =
∑

a∈F×/F×2

im(θψa) ⊆ L2
disc(SL2(F ) \Mp2(AF ))

Then an element π̃ ∈ Π̃ψ(χ) has discrete multiplicity m(π̃) = 1 precisely if ϵ(12 , π̃, ψ) = 1. That is, for

π̃ =
⊗

v π̃v ∈ Π̃ψ(χ) and for Σ the set of places v of F such that π̃v = π̃−v we have

m(π̃) =
1

2

(
1 + ϵ(12 , π̃, ψ)

)
=


1 #Σ even

0 otherwise

In particular we have a decomposition

Θ ≃
⊕
χ

⊕
π̃∈Π̃ψ(χ)
ϵ( 1

2
,π̃,ψ)=1

π̃ ≃
⊕
χ

⊕
#Σ even

ωΣ
ψ,χ

Consider the global Weil representationωV,W,ψ =
⊗

v ωVv ,Wv ,ψv ofOV (AF )×Mp2(AF )on the spaceS(V (AF ))

of adelic Schwarz-Bruhat functions on V (AF ). We have an OV (AF )×Mp2(AF )-equivariant morphism θV,W,ψ :

ωV,W,ψ → A(OV (AF )×Mp2(AF )) given by

θV,W,ψ(ϕ)(h, g) =
∑

x∈V (F )

ωV,W,ψ(h, g)(ϕ)(x)
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which is absolutely convergent. The functions in im(θV,W,ψ) can be used as integration kernels to lift automorphic

forms on OV (AF ) to automorphic forms on Mp2(AF ). For an automorphic form f ∈ A(OV (AF )) and an

adelic Schwarz-Bruhat function ϕ ∈ S(V (AF )) consider the automorphic form θV,W,ψ(ϕ, f) ∈ A(Mp2(AF ))

given by

θV,W,ψ(ϕ, f)(g) =

∫
OV (F )\OV (AF )

θV,W,ψ(ϕ)(h, g)f(h)dh

where the integral is taken with respect to the Tamagawa measure dh on OV (AF ), which converges if f ∈

Acusp(OV (AF )). For π =
⊗

v πv a cuspidal automorphic representation of OV (AF ) define the global theta

lift

ΘV,W,ψ(π) = ⟨θV,W,ψ(ϕ, f)|ϕ ∈ S(V (AF )), f ∈ π⟩ ⊆ A(Mp2(AF ))

The automorphic representationΘV,W,ψ(π), if nonzero, has a unique irreducible quotient isomorphic to
⊗

v θVv ,Wv ,ψv(πv).

In particular ifΘV,W,ψ(π) ⊆ Acusp(Mp2(AF )) is cuspidal then we have an isomorphismΘV,W,ψ(π) ≃
⊗

v θVv ,Wv ,ψv(πv).

Similarly the functions in im(θV,W,ψ) can also be used as integration kernels to lift automorphic forms on

Mp2(AF ) to automorphic forms on OV (AF ). For an automorphic form f ∈ A(Mp2(AF )) and an adelic

Schwarz-Bruhat function ϕ ∈ S(V (AF )) consider the automorphic form θV,W,ψ(ϕ, f) ∈ A(OV (AF )) given by

θV,W,ψ(ϕ, f)(g) =

∫
SL2(F )\Mp2(AF )

θV,W,ψ(ϕ)(h, g)f(g)dg

where the integral is taken with respect to the Tamagawa measure dg on Mp2(AF ), which converges if f ∈

Acusp(Mp2(AF )). For π̃ =
⊗

v π̃v a cuspidal automorphic representation of Mp2(AF ) define the global theta

lift

ΘV,W,ψ(π̃) = ⟨θV,W,ψ(ϕ, f)|ϕ ∈ S(V (AF )), f ∈ π̃⟩ ⊆ A(OV (AF ))

The automorphic representationΘV,W,ψ(π̃), if nonzero, has a unique irreducible quotient isomorphic to
⊗

v θVv ,Wv ,ψv(π̃v).

In particular ifΘV,W,ψ(π̃) ⊆ Acusp(OV (AF )) is cuspidal then we have an isomorphismΘV,W,ψ(π̃) ≃
⊗

v θVv ,Wv ,ψv(π̃v).
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In the case dim(V ) = 3 the global theta lift between Mp2(AF ) and OV (AF ) defines the local Shimura

correspondence, studied by Waldspurger. the main global theorems are as follows.

For π =
⊗

v πv a cuspidal automorphic representation of PGL2(AF ) define the global Waldspurger packet

Π̃ψ(π) = {π =
⊗
v

πv|πv ∈ Π̃ψv(µv), πv = π+v for almost all places v of F}

which is a finite set of cardinality 2#Sπ where Sπ is the finite set of places v of F such that πv is in the discrete

series. For a ∈ F×/F×2 with associated quadratic character χa : F× → C×, we have Π̃ψ(π) = Π̃ψa(π ⊗ χa).

Consider the submodule

Θπ =
∑

a∈F×/F×2

ΘV,W,ψa(π ⊗ χa) ⊆ L2
disc(SL2(F ) \Mp2(AF ))

which constitutes a full near-equivalence class in L2
disc(SL2(F ) \ Mp2(AF )): every irreducible summmand in

Θπ is isomorphic to an element of the global Waldspurger packet Π̃ψ(π), and an element π̃ ∈ Π̃ψ(π) has discrete

multiplicitym(π̃) = 1 precisely if ϵ(12 , π̃, ψ) = ϵ(12 , π). That is, for π̃ =
⊗

v π̃v ∈ Π̃ψ(χ) and for Σ the set of

places v of F such that π̃v = π̃−v we have

m(π̃) =
1

2

(
1 + ϵ(12 , π)ϵ(

1
2 , π̃, ψ)

)
=


1

#Σ even and ϵ(12 , π) = 1

#Σ odd and ϵ(12 , π) = −1

0 otherwise

In particular we have a decomposition

Θπ ≃
⊕
π

⊕
π̃∈Π̃ψ(π)

ϵ( 1
2
,π̃,ψ)=ϵ( 1

2
,π)

π̃

The main global theorem is that every irreducible cuspidal automorphic representation of Mp2(AF ) is contained

in some Θπ , so that we have a decomposition

L2
disc(SL2(F ) \Mp2(AF )) =

⊕
π

Θπ ⊕Θ
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where the first direct sum is taken over cuspidal automorphic representations π of PGL2(AF ) such thatL(12 , π⊗

χ) ̸= 0 for some quadratic Hecke character χ : F× \ A×
F → C×, equivalently such that ϵ(12 , π ⊗ χ) = 1 for

some quadratic Hecke character χ : F× \ A×
F → C×. In particular we have a decomposition

L2
disc(SL2(F ) \Mp2(AF )) =

⊕
π

⊕
π̃∈Π̃ψ(π)

ϵ( 1
2
,π̃,ψ)=ϵ( 1

2
,π)

π̃ ⊕
⊕
χ

⊕
π̃∈Π̃ψ(χ)
ϵ( 1

2
,π̃,ψ)=1

π̃

In the case dim(V ) = 5 the global theta lift from Mp2(AF ) to SO5(AF ) ≃ PGSp4(AF ) along with the global

Waldspurger correspondence will be used in the construction of the Saito-Kurokawa lift and the Howe-Piatetski-

Shapiro lift.

Local Similitude Theta Correspondence We follow [110] and [41]. Let F be a local field of characteristic 0

and let (W, ⟨·, ·⟩) be a symplectic F -vector space with symplectic group SpW and similitude group GSpW with

similitude character simW : GSpW → GL1. LetW = X⊕Y be a Witt decomposition and letPY ⊆ SpW be the

parabolic subgroup stabilizing the maximal isotropic subspace Y ⊆W with Levi decomposition PY =MYNY

with Levi quotient MY = GL(Y ) and unipotent radical NY = {n ∈ Hom(X,Y )|n⊤ = n} where n⊤ ∈

Hom(Y ∨, X∨) ≃ Hom(X,Y ). We will only consider the case where dim(W ) = 4 so that SpW (F ) = Sp4(F )

and GSpW (F ) = GSp4(F ), and PY = P1 ⊆ Sp4 is the Siegel parabolic subgroup with Levi decomposition

P1 =M1N1 with Levi quotientM1 = GL2 and unipotent radicalN1 = Msym
2 .

Let (V, q) be a 2m-dimensional quadraticF -vector space with orthogonal groupsOV and SOV and similitude

groupGOV with similitude character simV : GOV → GL1. We will mainly consider the case wheredim(V ) = 2

or dim(V ) = 4. In the case dim(V ) = 4 there are exactly two such quadratic spaces; let V + be the split 4-

dimensional quadratic F -vector space, and let V − be the non-split 4-dimensional quadratic F -vector space. These

can be constructed as follows: let D be a quaternion F -algebra with norm form NmD. Then the 4-dimensional

quadratic F -vector space VD = (D,NmD) is isomorphic to V + or V − depending on whetherD is split or non-

split.

Let ψ : F → C be a nontrivial additive character and consider the Weil representation ωV,W,ψ of OV (F )×

Sp4(F ) on the space S(V (F )2) of Schwarz-Bruhat functions on (V ⊗F X)(F ) = V (F )2, where P1(F ) ×
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OV (F ) acts by

ωV,W,ψ(h, 1)ϕ(x) = ϕ(h−1x) h ∈ OV (F )

ωV,W,ψ(1,m)ϕ(x) = χV (det(m))|det(m)|dim(V )/2ϕ(m−1x) m ∈M1(F )

ωV,W,ψ(1, n)ϕ(x) = ψ(⟨nx, x⟩)ϕ(x) n ∈ N1(F )

where χV is the quadratic character associated to disc(V ) ∈ F×/F×2 and ⟨·, ·⟩ is the induced symplectic form

onW ⊗F V . The Weyl group elementsw ∈ Sp4(F ) act by Fourier transform.

The Weil representationωV,W,ψ ofOV (F )×Sp4(F ) defines a theta correspondence betweenOV (F ) andSp4

as follows. Forπ ∈ Irr(OV (F )) the maximalπ-isotypic subrepresentation ofωV,W,ψ has the form π⊠ΘV,W,ψ(π)

for some smooth representation ΘV,W,ψ(π) ∈ Irr(Sp4(F )), the big theta lift of π. The big theta liftΘV,W,ψ(π) is

finite length, hence admissible. Let θV,W,ψ(π) be the maximal semisimple quotient of ΘV,W,ψ(π), the small theta

lift ofπ. By Howe’s conjecture (proved by Waldspurger whenF has residual characteristic p ̸= 2) the small theta lift

θV,W,ψ(π) is irreducible ifΘV,W,ψ(π) is nonzero, and the assignmentπ 7→ θV,W,ψ(π) is injective on its domain. By

Kudla, ΘV,W,ψ(π) = θV,W,ψ(π) is irreducible or 0 for π supercuspidal, and if ΘV,W,ψ(π1) = ΘV,W,ψ(π2) ̸= 0

for π1 and π2 supercuspidal, then π1 = π2.

We consider a similitude version of the above theta correspondence. Consider the subgroup GSp+4 = {g ∈

GSp4|simW (g) ∈ simV (GOV )} of GSp4; when simV is surjective (for example in the case dim(V ) = 4)

we have GSp+4 = GSp4. Consider the group R = GOV × GSp+4 and the subgroup R0 = {(g, h) ∈

R|simV (h)simW (g) = 1} of R. The Weil representation ωV,W,ψ of OV (F ) × Sp4(F ) extends to a repre-

sentation ω̃V,W,ψ ofR0(F ) given by

ω̃V,W,ψ(g, h)ϕ = |simV (h)|dim(V )/2ωψ(g1, 1)(ϕ ◦ h−1) h ∈ GOV (F ), g ∈ GSp+4 (F )

where g1 = gdiag(simW (g)−1, 1) ∈ Sp4(F ). The central elements (t, t−1) ∈ R0(F ) act by the quadratic

character χV (t)dim(V )/2. Consider the compact induction ω̃+
V,W,ψ = cInd

R(F )
R0(F )ω̃V,W,ψ which depends only on

the orbit of ψ under simV (GOV (F )) ⊆ F×; when simV is surjective this is independent of ψ and we simply

write ω̃V,W for the resulting representation ofR(F ) = GOV (F )×GSp4(F ).
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The extended Weil representation ω̃+
V,W,ψ ofR(F ) = GOV (F )×GSp+4 (F ) defines a similitude theta corre-

spondence between GOV (F ) and GSp+4 (F ) as follows. For π ∈ Irr(GOV (F )) the maximal π-isotypic subrepre-

sentation of ω̃+
V,W,ψ has the form π ⊠Θ+

V,W,ψ(π) for some smooth representation Θ+
V,W,ψ(π) ∈ Irr(GSp+4 (F )),

the big similitude theta lift of π. The big similitude theta lift Θ+
V,W,ψ(π) is finite length, hence admissible. Let

θ+V,W,ψ(π) be the maximal semisimple quotient of Θ+
V,W,ψ(π), the small similitide theta lift of π. By a similitude

extension of Howe’s conjecture (proved by Roberts when F has residual characteristic p ̸= 2 assuming Howe’s

conjecture for isometry groups) the small similitude theta lift θ+V,W,ψ(π) is irreducible whenever Θ+
V,W,ψ(π) is

nonzero, and the assignment π 7→ θ+V,W,ψ(π) is injective on its domain. By Gan-Takeda, Θ+
V,W,ψ(π) = θ+V,W,ψ(π)

is irreducible or 0 for π supercuspidal, and if Θ+
V,W,ψ(π1) = Θ+

V,W,ψ(π2) ̸= 0 for π1 and π2 supercuspidal, then

π1 = π2.

We can extend this from GSp+4 (F ) to GSp4(F ) by defining the big similitude theta lift ΘV,W,ψ(π) =

Ind
GSp4(F )

GSp+4 (F )
Θ+
V,W,ψ(π) and the small similitude theta lift θV,W,ψ(π) = Ind

GSp4(F )

GSp+4 (F )
θ+V,W,ψ(π).

In the case dim(V ) = 2 the local similitude theta lift from GOV (AF ) to GSp4(AF ) will be used in the

construction of the Soudry lift, while in the case dim(V ) = 4 the local similitude theta lift from GOV (AF ) to

GSp4(AF ) will be used in the construction of the Yoshida lift.

Global Similitude Theta Correspondence We continue to follow [110] and [41]. LetF be a number field and let

(W, ⟨·, ·⟩) be a symplecticF -vector space with symplectic group SpW and similitude group GSpW with similitude

character simW : GSpW → GL1. LetW = X ⊕ Y be a Witt decomposition. Again we will only consider the

case where dim(W ) = 4 so that SpW (AF ) = Sp4(AF ) and GSpW (AF ) = GSp4(AF ).

Let (V, q) be a 2m-dimensional quadratic F -vector space of discriminant 1 with orthogonal groups OV and

SOV and similitude group GOV with similitude character simV : GOV → GL1. Again we will mainly consider

the case where dim(V ) = 2 or dim(V ) = 4. In the latter case these can be constructed as follows: let D be a

quaternionF -algebra with norm form NmD. Then the 4-dimensional quadraticF -vector space VD = (D,NmD)

has discriminant 1, and every 4-dimensional quadratic F -vector space of discriminant 1 is obtained in this way.

Let ψ =
⊗

v ψv : F \AF → C be a nontrivial additive character and consider the global Weil representation

ωV,W,ψ =
⊗

Vv ,Wv ,ψv
of OV (AF ) × Sp4(AF ) on the space S(V (AF )2) of adelic Schwarz-Bruhat functions

on (V ⊗F X)(AF ) = V (AF )2. We have an OV (AF ) × Sp4(AF )-equivariant morphism θV,W,ψ : ωV,W,ψ →
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A(OV (AF )× Sp4(AF )) given by

θV,W,ψ(ϕ)(h, g) =
∑

x∈V (F )n

ωV,W,ψ(h, g)(ϕ)(x)

which is absolutely convergent. The functions in im(θV,W,ψ) can be used as integration kernels to lift automorphic

forms onOV (AF ) to automorphic forms on Sp4(AF ) as before. For an automorphic form f ∈ A(OV (AF )) and

an adelic Schwarz-Bruhat functionϕ ∈ S(V (AF )n) consider the automorphic formθV,W,ψ(ϕ, f) ∈ A(Sp4(AF ))

given by

θV,W,ψ(ϕ, f)(g) =

∫
OV (F )\OV (AF )

θV,W,ψ(ϕ)(h, g)f(h)dh

where the integral is taken with respect to the Tamagawa measure dh on OV (AF ), which converges if f ∈

Acusp(OV (AF )). For π =
⊗

v πv a cuspidal automorphic representation of OV (AF ) define the global theta

lift

ΘV,W,ψ(π) = ⟨θV,W,ψ(ϕ, f)|ϕ ∈ S(V (AF )n), f ∈ π⟩ ⊆ A(Sp4(AF ))

The automorphic representationΘV,W,ψ(π), if nonzero, has a unique irreducible quotient isomorphic to
⊗

v θVv ,Wv ,ψv(π).

In particular ifΘV,W,ψ(π) ⊆ Acusp(Sp4(AF )) is cuspidal then we have an isomorphismΘV,W,ψ(π) ≃
⊗

v θVv ,Wv ,ψv(πv).

We consider a similitude version of the above theta correspondence. Consider the global extended Weil repre-

sentation ω̃+
V,W,ψ =

⊗
v ω̃

+
Vv ,Wv ,ψv

ofR(AF ) = GOV (AF )×GSp+4 (AF ) on the space S(V (AF )2) of adelic

Schwarz-Bruhat functions on (V ⊗F X)(AF ) = V (AF )2; when simV is surjective this is independent of ψ and

we simply write ω̃V,W =
⊗

v ω̃Vv ,Wv for the resulting representation of R(AF ) = GOV (AF ) × GSp4(AF ).

We have a GOV (AF )×GSp+4 (AF )-equivariant morphism θV,W,ψ : ω̃+
V,W,ψ → A(GOV (AF )×GSp+4 (AF ))

given by

θV,W,ψ(ϕ)(h, g) =
∑

x∈V (F )n

ω̃+
V,W,ψ(h, g)(ϕ)(x)

which is absolutely convergent. The functions in im(θV,W,ψ) can be used as integration kernels to lift automorphic

forms onGOV (AF ) to automorphic forms onGSp+4 (AF ) as before. For an automorphic form f ∈ A(OV (AF ))
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and an adelic Schwarz-Bruhat functionϕ ∈ S(V (AF )n) consider the automorphic formθ+V,W,ψ(ϕ, f) ∈ A(GSp+4 (AF ))

given by

θ+V,W,ψ(ϕ, f)(g) =

∫
OV (F )\OV (AF )

θV,W,ψ(ϕ)(h1h, g)f(h1h)dh1

where h ∈ OV (AF ) is an element such that simV (h)simW (g) = 1 and where the integral is taken with respect

to the Tamagawa measure dh1 on OV (AF ), which converges if f ∈ Acusp(OV (AF )) and is independent of the

choice ofh ∈ OV (AF ). We can extend this to an automorphic form θV,W,ψ(ϕ, f) ∈ A(GSp4(AF )) by requiring

this to be left GSp4(F )-invariant and zero outside of GSp4(F )GSp+4 (AF ).

For π =
⊗

v πv a cuspidal automorphic representation of GOV (AF ) define the global similitude theta lift

Θ+
V,W,ψ(π) = ⟨θ

+
V,W,ψ(ϕ, f)|ϕ ∈ S(V (AF )2), f ∈ π⟩ ⊆ A(GSp+4 (AF ))

The automorphic representationΘ+
V,W,ψ(π), if nonzero, has a unique irreducible quotient isomorphic to

⊗
v θ

+
Vv ,Wv ,ψv

(πv).

In particular if Θ+
V,W,ψ(π) ⊆ Acusp(GSp+4 (AF )) is cuspidal then we have an isomorphism Θ+

V,W,ψ(π) ≃⊗
v θ

+
Vv ,Wv ,ψv

(πv). We can extend this from GSp+4 (AF ) to GSp4(AF ) by defining the global similitude theta lift

ΘV,W,ψ(π) = ⟨θV,W,ψ(ϕ, f)|ϕ ∈ S(V (AF )2), f ∈ π⟩ ⊆ A(GSp4(AF ))

The automorphic representationΘV,W,ψ(π), if nonzero, has a unique irreducible quotient isomorphic to
⊗

v θVv ,Wv ,ψv(πv).

In particular ifΘV,W,ψ(π) ⊆ Acusp(GSp4(AF )) is cuspidal then we have an isomorphismΘV,W,ψ(π) ≃
⊗

v θVv ,Wv ,ψv(πv).

In the case dim(V ) = 2 the global similitude theta lift from GOV (AF ) to GSp4(AF ) will be used in the

construction of the Soudry lift, while in the case dim(V ) = 4 the global similitude theta lift from GOV (AF ) to

GSp4(AF ) will be used in the construction of the Yoshida lift.

303



4.4.4 General Type Cohomology

Consider the general part of the automorphic discrete spectrum L2
disc,gen(G(Q)AG(R)◦ \ G(AQ)) which by

Arthur’s classification admits a spectral decomposition

L2
disc,gen(G(Q)AG(R)◦ \G(AQ)) ≃

⊕
ω

⊕
ψ∈Ψdisc,gen(G,ω)

(ψ=µ⊠1)

⊕
π∈Π(ψ)

π

The general partH∗
disc,gen(SKfin

(C),Vλ) of the intersection cohomologyH∗
disc(SKfin

(C),Vλ) admits a spectral

decomposition

H∗
disc,gen(SKfin

(C),Vλ) ≃
⊕
ω

⊕
ψ∈Ψdisc,gen(G,ω)

(ψ=µ⊠1)

⊕
π∈Π(ψ)

πKfin
fin ⊗H

∗(g,K ′
∞;πfin ⊗ Vλ)

as a representation ofHKfin
. Similarly, the general partH∗

disc,gen(SKfin
,Vλ) of the ℓ-adic intersection cohomology

H∗
disc(SKfin

,Vλ) admits a spectral decomposition

H∗
disc,gen(SKfin

,Vλ) ≃
⊕
ω

⊕
ψ∈Ψdisc,gen(G,ω)

(ψ=µ⊠1)

πKfin
fin ⊠ ρπ

as a representation ofHKfin
×Gal.

To determine the structure of the representationsH∗
disc,1dim(SKfin

,Vλ){πfin} = πKfin
fin ⊠ ρπ we use the trace

formula:

Theorem 4.4.4. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) and let Vλ be the corresponding ℓ-adic local system on SKfin
for a compact open subgroup

Kfin ⊆ G(A∞
Q ). Let ω : Q× \A×

Q → C× be a unitary Hecke character and letψ = µ⊠ 1 ∈ Ψdisc,gen(G,ω) be

an A-parameter of general type, whereµ is anω-self-dual unitary cuspidal automorphic representation ofGL4(AQ)

of symplectic type.
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If π ∈ Π(ψ) contributes nontrivially in the intersection cohomologyH∗
disc,gen(SKfin

,Vλ), then the contribu-

tion is given as a representation ofHKfin
×Gal by

H∗
disc,gen(SKfin

,Vλ){πfin} ≃ π
Kfin
fin ⊠ ρµ

Proof. Forψ = µ⊠1 ∈ Ψdisc,gen(G,ω) an A-parameter of general type and forπ ∈ Π(ψ) an automorphic repre-

sentation ofG(AQ) with πKfin
fin ̸= 0 and with π∞ a cohomological (g,K ′

∞)-module with central and infinitesimal

characters determined by those of Vλ, we have that π∞ ∈ {πW∞ , πH∞} is either the large generic discrete series rep-

resentation πW∞ = Dλ1+2,−λ2−1 which has nonzero (g,K ′
∞)-cohomology concentrated in degree 3 with Hodge

numbers (λ1+2, λ2+1) and (λ2+1, λ1+2), or the holomorphic discrete series representationπH∞ = Dλ1+2,λ2+1

which has nonzero (g,K ′
∞)-cohomology concentrated in degree 3 with Hodge numbers (λ1 + λ2 + 3, 0) and

(0, λ1 + λ2 + 3). Such a representation π has multiplicitym(π) = 1: the packet Π(ψ) is stable.

Choose a correspondence fp,∞G ∈ C∞
c (Kp \G(Ap,∞Q )/Kp) which is a projection onto the A-packet Π(ψfin).

Recall that the test function fG∞ satisfies tr(π+∞(fG∞)) = tr(π−∞(fG∞)) = −1
2 . Recall that the test function ϕGj

satisfies

tr(Π(ψp)(ϕ
G
j )) = p

3
2
j
(
c1(µp)

j + c2(µp)
j + c3(µp)

j + c4(µp)
j
)

Consider the test function fG = ϕGj f
p,∞
G fG∞. Now the contribution of the A-packetΠ(ψ) to STFG(fG) is given

by

∑
π∈Π(ψ)

m(π)tr(π∞(fG∞))tr(Π(ψfin)(f
p,∞
G ))p

3
2
j
(
c1(µp)

j + c2(µp)
j + c3(µp)

j + c4(µp)
j
)

= −p
3
2
j
(
c1(µp)

j + c2(µp)
j + c3(µp)

j + c4(µp)
j
)

By stability of the packet Π(ψ) and by matching, only the stable trace formula STFG(fG) forG contributes to
tr(Frobjp|H∗

disc,gen(SKfin
,Vλ){πfin}). It follows that we have the trace

tr(Frobjp|H∗
disc,gen(SKfin ,Vλ){πfin}) = p

λ1+λ2
2 STFG(fG) = −p

λ1+λ2+3
2

j
(
c1(µp)

j + c2(µp)
j + c3(µp)

j + c4(µp)
j
)
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which is the trace of Frobjp on ρµ whose contribution to H∗
disc,gen(SKfin

,Vλ) is concentrated in degree 3. It

follows that

H∗
disc,gen(SKfin

,Vλ){πfin} ≃ ρµ

as a representation ofHKfin
×Gal. The result follows.

Note that the Langlands correspondence predicts that ρµ is an irreducible 4-dimensional ℓ-adic Galois repre-

sentation attached to such a ω-self-dual unitary cuspidal automorphic representation µ of GL4(AQ), and we have

located this irreducible 4-dimensional Galois representation in the intersection cohomology of Siegel threefolds. As

we will see in the remaining cases, the ℓ-adic Galois representations appearing in the intersection cohomology of

Siegel threefolds will either be of dimension 2 or of dimension 1, and may be concentrated outside of middle degree

3.

4.4.5 Yoshida Lifts, Endoscopic Cohomology

In this section we determine the endoscopic contributions to ℓ-adic intersection cohomology and ℓ-adic inner

cohomology.

Yoshida Lifts We consider the Yoshida lift corresponding to A-parameters for GSp4(AQ) of the form ψ =

(µ1 ⊠ 1) ⊞ (µ2 ⊠ 1) for µ1 and µ2 unitary cuspidal automorphic representations of GL2(AQ) with central

charactersωµ1 = ωµ2 corresponding to the above embedding of dual groups which defines a global L-packet Π(ψ)

of automorphic representations π of GSp4(AQ) with an equality of L-functions and epsilon-factors

L(s, π) = L(s, µ1)L(s, µ2)

ϵ(s, π) = ϵ(s, µ1)ϵ(s, µ2)

Forµ1 =
⊗

v µ1,v andµ2 =
⊗

v µ2,v whereµ1,v andµ2,v are irreducible admissible representations ofGL2(Qv)

with central characters ωµ1,v = ωµ2,v we have Π(ψ) =
⊗

v Π(ψv) for local L-packets Π(ψv) corresponding

to the tempered local A-parameter ψv : LQv × SL2(C) → GSp4(C) given in terms of the local L-parameters
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φµ1,v =
( αµ1,v βµ1,v
γµ1,v δµ1,v

)
: LQv → GL2(C) and φµ2,v =

( αµ2,v βµ2,v
γµ2,v δµ2,v

)
: LQv → GL2(C) by

(w, 1) 7→

 αµ1,v (w) βµ1,v (w)

αµ2,v (w) βµ2,v (w)

γµ2,v (w) δµ2,v (w)

γµ1,v (w) δµ1,v (w)


which are fibered over the characters of the centralizer group Sψv = Sψv/S

0
ψv
Z given by

Sψv =


Z/2Z µ1,v and µ2,v discrete series

0 otherwise

In other words, we have Π(ψ) =
⊗

v Π(ψv) for local L-packets

Π(ψv) =


{π+v , π−v } µ1,v and µ2,v discrete series

{π+v } otherwise

The local L-packet Π(ψv) contains the unique unitary irreducible admissible representation π+v (the basepoint)

with local L-parameter φψv : LQv → GSp4(C) given byw 7→ ψ(w,diag(|w|1/2v , |w|−1/2
v )).

The global A-packet Π(ψ) = {π =
⊗
πv|πv ∈ Π(ψv), πv = π+v for almost all places v of Q} contains the

automorphic representation π+ =
⊗

v π
+
v as basepoint. By Arthur’s multiplicity formula the Yoshida packets are

unstable: for π ∈ Π(ψ) we havem(π) = 1 precisely if ϵ(12 , π) = 1. That is, for π =
⊗

v πv ∈ Π(ψ) and for Σ

the set of places v of Q such that πv is non-generic we have

m(π) = 1
2(1 + ϵ(12 , π)) =


1 #Σ even

0 #Σ odd

In particular Π(ψ) contains 1 discrete element if #Σ = 0 and contains 2#Σ−1 discrete elements otherwise.

Theta Lifts and Jacquet-Langlands We now explain how the above A-packets can be constructed by theta lifts

and the Jacquet-Langlands correspondence. For v a place of Q, for ωv : Q×
v → C× a smooth character, and for
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Dv a quaternion algebra over Qv recall that the local Jacquet-Langlands correspondence yields a bijection

 irreducible smooth representations

π′v ofD×
v with central character ωv

 ∼−→

 irreducible discrete series representations

πv of GL2(Qv) with central character ωv


which is compatible with twists: for χv : Q×

v → C× a smooth character, if JL(π′v) ≃ πv then we have an

isomorphism JL(π′v ⊗ (χv ◦Nm)) ≃ πv ⊗ (χv ◦ det). For ω : Q× \ A×
Q → C× a smooth character and forD

a quaternion algebra over Q ramified exactly at a finite set of places Σ of Q recall that the global Jacquet-Langlands

correspondence yields an injection

irreducible automorphic representations π′ of A×
D

with dimension > 1 and central character ω

 ↪→

irreducible cuspidal automorphic representations

π of GL2(AQ) with central character ω


which is compatible with twists: for χ : Q× \ A×

Q → C× a smooth character, if JL(π′) ≃ π then we have an

isomorphismJL(π′⊗(χ◦Nm)) ≃ π⊗(χ◦det). The global Jacquet-Langlands correspondence is compatible with

the local Jacquet-Langlands correspondence: JL(π′) ≃ π precisely if π′v ≃ πv for all places v ̸∈ Σ (whereD×
v ≃

GL2(Qv)) and JL(π′v) ≃ πv for all places v ∈ Σ. The image of the global Jacquet-Langlands correspondence

consists of those cuspidal automorphic representations π of GL2(AQ) such that πv is in the discrete series for all

places v ∈ Σ.

Let Σ be a finite set of places of Q with #Σ even and letD be the unique quaternion algebra over Q which is

non-split at every place v ∈ Σ and split at every place v ̸∈ Σ. We have a short exact sequence

0→ A×
Q → A×

D × A×
D → GSO(AD)→ 0

so that a cuspidal automorphic representation π′ of GSO(AD) can be written π′ = µ′1 ⊠ µ′2 where µ′1, µ′2

are cuspidal automorphic representations of A×
D with ωµ′1 = ωµ′2 . Now we have the global similitude theta

correspondence

θ
GSp4(AQ)
GSO(AD) : Irr(GSO(AD))→ Irr(G(AQ)) ∪ {0}
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which is given by the induction Ind
GO(AD)
GSO(AD) (which is either irreducible or has a unique irreducible constituent)

followed by the global similitude theta correspondence

θ
GSp4(AQ)
GO(AD) : Irr(GO(AD))→ Irr(G(AQ)) ∪ {0}

Now for µ1 and µ2 cuspidal automorphic representations of GL2(AQ) with central characters ωµ1 = ωµ2 let

S be the set of places v of Q such that µ1,v and µ2,v are both in the discrete series. For µ1 =
⊗

v µ1,v and

µ2 =
⊗

v µ2,v where µ1,v and µ2,v are irreducible admissible representations of GL2(Qv) with central characters

ωµ1,v = ωµ2,v and for Σ ⊆ S a finite set of places of Q with #Σ even letD be the unique quaternion algebra over

Q which is non-split at every place v ∈ Σ and split at every place v ∈ Σ. Let µD1 = (
⊗

v∈Σ µ
Dv
1,v)⊗ (

⊗
v ̸∈Σ µ1,v)

and µD2 = (
⊗

v∈Σ µ
Dv
2,v) ⊗ (

⊗
v ̸∈Σ µ2,v) be the irreducible automorphic representations of A×

D obtained from

µ1 and µ2 by the global Jacquet-Langlands correspondence, where µDv1,v and µDv2,v are the irreducible admissible

representations ofD×
v obtained from µ1,v and µ2,v by the local Jacquet-Langlands correspondence. Now by [120,

Theorem 5.2, Corollary 5.5], asΣ runs over the subsets ofS with#Σ even, the similitude theta lifts of the irreducible

automorphic representations µD1 ⊠ µD2 = (
⊗

v∈Σ µ
Dv
1,v ⊠ µDv2,v) ⊗ (

⊗
v ̸∈Σ µ1,v ⊠ µ2,v) from GSO(AD) to

GSp4(AQ) run through the discrete automorphic representations in the global A-packet Π(ψ) with parameter

ψ = (µ1 ⊠ 1) ⊞ (µ2 ⊠ 1). Write πΣ(µ1, µ2) = θ
GSp4(AQ)
GSO(AD) (µ1 ⊠ µ2) for the corresponding similitude theta

lift. These theta lifts are all distinct except for the equivalence πΣ(µ1, µ2) ≃ πΣ(µ2, µ1), and are cuspidal unless

µ1 ≃ µ2.

For v = p a finite place of Q the similitude theta lift produces irreducible admissible representations π±p of

GSp4(Qp) from the representationsµ1,p⊠µ2,p ofGSO2,2(Qp) ≃ GL2(Qp)×GL2(Qp)/GL1(Qp). The local

L-packets Π(ψp) for the local A-parameter ψp = (µ1,p ⊠ 1) ⊞ (µ2,p ⊠ 1) are given by Π(ψp) = {π+p , π−p }

when µ1,p and µ2,p are both in the discrete series, and otherwise by Π(ψp) = {π+p } where the π±p are defined as

follows. The unique generic member π+p of the local L-packet is given by the nonzero irreducible local similitude

theta lift π+p = θ
GSp4(Qp)
GSO2,2(Qp)(µ1,p ⊠ µ2,p). If µ1,p and µ2,p are both in the discrete series, let D be the non-split

quaternion algebra over Qp and let µD1,p and µD2,p be the irreducible admissible representations ofD× obtained by

the local Jacquet-Langlands correspondence. The unique non-generic member π−p of the local L-packet is given

by the nonzero irreducible local similitude theta lift π−p = θ
GSp4(Qp)
GSO(D) (µD1,p ⊠ µD2,p). These similitude theta lifts

have been computed (for instance in [? , Theorem 8.1, Theorem 8.2]). We obtain the following description for the
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members of the local L-packets Π(ψp) of Yoshida type, along with their corresponding epsilon-values (compare to

[? , Table 1, Table 2, Table 3]):

Type {µ1,p, µ2,p} Π±(µ1,p, µ2,p) ϵ

I {χ′
1,p × χ′

2,p, χ1,p × χ2,p} χ′
1,pχ

−1
1,p × χ′

2,pχ
−1
1,p ⋊ χ1,p 1

II a {χpStGL2(Qp), χ1,p × χ2,p} χpχ
−1
1,pStGL2(Qp) ⋊ χ1,p 1

V
a
{χpξStGL2(Qp), χpStGL2(Qp)}

δ([ξ, ξν]⋊ χpν
−1/2) 1

a* δ∗([ξ, ξν]⋊ χpν
−1/2) −1

VI
a

{χpStGL2(Qp), χpStGL2(Qp)}
τ(S, χpν

−1/2) 1

b τ(T, χpν
−1/2) −1

VIII
a

{µ1,p, µ2,p}, µ1,p = µ2,p
τ(S, µ1,p) 1

b τ(T, µ1,p) −1

{µ1,p, µ2,p}, µ1,p ̸= µ2,p
θ+(µ1,p, µ2,p) 1

θ−(µ1,p, µ2,p) −1

X {µ1,p, χ1,p × χ2,p} χ−1
1,pµ1,p ⋊ χ1,p 1

XI
a

{µ1,p, χpStGL2(Qp)}
δ(µ1,pν ⋊ χpν) 1

a* δ∗(µ1,pν ⋊ χpν) −1

For v =∞ the Archimedean place ofQ the similitude theta lift produces irreducible admissible representationsπ±∞

of GSp4(R) from the representations µ1,∞ ⊠ µ2,∞ of GSO2,2(R) ≃ GL2(R)×GL2(R)/GL1(R). The local

L-packets Π(ψ∞) for the local A-parameterψ∞ = (µ1,∞ ⊠ 1)⊞ (µ2,∞ ⊠ 1) are given by Π(ψ∞) = {π+∞, π−∞}

when µ1,∞ and µ2,∞ are both in the discrete series, and otherwise by Π(ψ∞) = {π+∞}where the π±∞ are defined

as follows. The unique generic member π+∞ of the local L-packet is given by the nonzero irreducible local similitude

theta liftπ+∞ = θ
GSp4(R)
GSO2,2(R)(µ1,∞⊠µ2,∞). Ifµ1,∞ andµ2,∞ are both holomorphic discrete series representations,

letH be the non-split quaternion algebra overR and letµH1,∞ andµH2,∞ be the irreducible admissible representations

of H× obtained by the local Jacquet-Langlands correspondence. The unique non-generic member π−∞ of the local

L-packet is given by the nonzero irreducible local similitude theta liftπ−∞ = θ
GSp4(R)
GSO(H) (µ

H
1,∞⊠µH2,∞). We obtain the

following description for the members of the local L-packetsΠ(ψ∞)of Yoshida type, along with their corresponding

epsilon-values:
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Type {µ1,∞, µ2,∞} π±(µ1,∞, µ2,∞) ϵ(π∞)

{χ′
1,∞ × χ′

2,p, χ1,p × χ2,p} χ′
1,pχ

−1
1,p × χ′

2,pχ
−1
1,p ⋊ χ1,p 1

{χ∞Dk, χ1,∞ × χ2,∞} χ∞χ
−1
1,∞Dk ⋊ χ1,∞ 1

(λ1 + 3,−λ2 − 1)
{χ∞Dλ1+λ2+3, χ∞Dλ1−λ2+1}

χ∞Dλ1+2,−λ2−1 1

(λ1 + 3, λ2 + 3) χ∞Dλ1+2,λ2+1 −1

Parahoric Restriction We now review results about the parahoric restriction of endoscopic lifts for GSp4,

following [100, Section 4.2]. Let χ1,p, χ2,p, χ
′
1,p, χ

′
2,p, χp : Q×

p → C× be at most tamely ramified characters

which restrict to nonzero characters χ1,p, χ2,p, χ
′
1,p, χ2,p, χp : F×

p → C× which we abusively denote by the same

notation. Let µ1,p, µ2,p be depth 0 supercuspidal representations of GL2(Qp) with the same central characters,

with hyperspecial parahoric restrictions πΛ1 , πΛ2 for characters Λ1,Λ2 : F×
p2
→ C× with Λ1|F×

p
= Λ2|F×

p
; such

a character Λi with Λi|F×
p

= 1 factors over a character ωΛi : F×
p [p + 1] → C× with Λi(x) = ωΛi(x

p−1).

Let ξu : Q×
p → C× be the nontrivial unramified quadratic character and for p > 2 let ξt : Q×

p → C× be

either one of the tamely ramified quadratic characters. For p = 2 let θ : F×
4 → C× be a primitive character,

let li ∈ Z/3Z such that θli = Λi, and let k± = 1
2(l1 ± l2). By [100, Theorem 4.7] the hyperspecial parahoric

restriction rKp(Π
+(µ1,p, µ2,p)) is given as follows (compare to [100, Table 4.2]):

Type {µ1,p, µ2,p} Π+(µ1,p, µ2,p) rK2(Π
+(µ1,2, µ2,2)) rKp(Π

+(µ1,p, µ2,p)) Dimension

I {χ′
1,p × χ′

2,p, χ1,p × χ2,p} χ′
1,pχ

−1
1,p × χ′

2,pχ
−1
1,p ⋊ χ1,p X1 X1(χ

′
1,p/χ1,p, χ

′
2,p/χ1,p, χ

′
1,p) (p+ 1)2(p2 + 1)

IIa {χpStGL2(Qp), χ1,p × χ2,p} χpχ
−1
1,pStGL2(Qp) ⋊ χ1,p χ4 χ4(χp/χ1,p, χ1,p) p(p+ 1)(p2 + 1)

Va
{χpξuStGL2(Qp), χpStGL2(Qp)} δ([ξu, ξuν]⋊ χpν

−1/2) θ4 ⊕ θ5 θ4(χp)⊕ θ5(χp) p4 + p(p2 + 1)/2

{χpξtStGL2(Qp), χpStGL2(Qp)} δ([ξt, ξtν]⋊ χpν
−1/2) τ3(χp) p2(p2 + 1)

VIa {χpStGL2(Qp), χpStGL2(Qp)} τ(S, χpν
−1/2) θ1 ⊕ θ5 θ1(χp)⊕ θ5(χp) p4 + p(p+ 1)2/2

VIIIa {πp, πp} τ(S, πp) χ8(l1) χ8(Λ1) p(p− 1)(p2 + 1)

{π1,p, π2,p}, π1,p ̸= π2,p θ+(π1,p, π2,p) X5(k+, k−) X5(Λ1, ωΛ2/Λ1
) (p− 1)2(p2 + 1)

X {χ1,pπp, χ1,p × χ2,p} χ−1
1,pπp ⋊ χ1,p X2(l1) X2(Λ1, χ1,p) p4 − 1

XIa {χpπp, χpStGL2(Qp)} δ(χ−1
p πpν

1/2 ⋊ χpν
−1/2) χ6(l1) χ6(ωΛ1 , χp) p(p− 1)(p2 + 1)

and the hyperspecial parahoric restriction rKp(Π
−(µ1,p, µ2,p)) is given as follows (compare to [100, Table 4.2]):
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Type {µ1,p, µ2,p} Π−(µ1,p, µ2,p) rK2(Π
−(µ1,2, µ2,2)) rKp(Π

−(µ1,p, µ2,p)) Dimension

Va*
{χpξuStGL2(Qp), χpStGL2(Qp)} δ∗([ξu, ξuν]⋊ χpν

−1/2) θ2 θ2(χp) p(p− 1)2/2

{χpξtStGL2(Qp), χpStGL2(Qp)} δ∗([ξt, ξtν]⋊ χpν
−1/2) 0 0

VIb {χpStGL2(Qp), χpStGL2(Qp)} τ(T, χpν
−1/2) θ3 θ3(χp) p(p2 + 1)/2

VIIIb {πp, πp} τ(T, πp) χ7(l1) χ7(Λ1) (p− 1)(p2 + 1)

{π1,p, π2,p}, π1,p ̸= π2,p θ−(π1,p, π2,p) 0 0 0

XIa* {χpπp, χpStGL2(Qp)} δ∗(χ−1
p πpν

1/2 ⋊ χpν
−1/2) 0 0 0

Let λ0 : F×
p → C× and Λ0 : F×

p2
→ C× be the nontrivial quadratic characters. For Λ : F×

p2
→ C× a character

with Λp+1 = 1GL1(Fp) let Λ′ : F×
p2
→ C× be a character such that Λ′p−1 = Λ. Let Λ′

0 : F×
p2
→ C× be a

character such that Λ′p−1
0 = Λ0. By [100, Theorem 4.11] the paramodular restriction r

K
P2
p

(Π+(µ1,p, µ2,p)) is

given as follows (compare to [100, Table 4.4]):

Type {µ1,p, µ2,p} Π+(µ1,p, µ2,p) r
K
P2
p

(Π+(µ1,p, µ2,p)) Dimension

I {χ′
1,p × χ′

2,p, χ1,p × χ2,p} χ′
1,pχ

−1
1,p × χ′

2,pχ
−1
1,p ⋊ χ1,p χ−1

1,p[χ1,p × χ′
1,p, χ1,p × χ′

2,p] + χ−1
1,p[χ1,p × χ′

2,p, χ1,p × χ′
1,p] 2(p+ 1)2

IIa {χpStGL2(Qp), χ1,p × χ2,p} χpχ
−1
1,pStGL2(Qp) ⋊ χ1,p χ−1

1,p[χ1,p × χp, χ1,p × χp] (p+ 1)2

Va
{χpξuStGL2(Qp), χpStGL2(Qp)} δ([ξu, ξuν]⋊ χpν

−1/2) χp[1GL2(Fp),StGL2(Fp)] + χp[StGL2(Fp), 1GL2(Fp)] 2p

{χpξtStGL2(Qp), χpStGL2(Qp)} δ([ξt, ξtν]⋊ χpν
−1/2) χp[1GL1(Fp) × λ0, 1GL1(Fp) × λ0]± (p+ 1)2/2

VIa {χpStGL2(Qp), χpStGL2(Qp)} τ(S, χpν
−1/2)

χp[1GL2(Fp),StGL2(Fp)] + χp[StGL2(Fp), 1GL2(Fp)]

+χp[StGL2(Fp),StGL2(Fp)]
2p

VIIIa {πp, πp} τ(S, πp) [πΛ1 , 1GL2(Fp)] + [1GL2(Fp), πΛ1 ] 2(p− 1)

{π1,p, π2,p}, π1,p ̸= π2,p θ+(π1,p, π2,p) 0 0

X {χ1,pπp, χ1,p × χ2,p} χ−1
1,pπp ⋊ χ1,p 0 0

XIa {χpπp, χpStGL2(Qp)} δ(χ−1
p πpν

1/2 ⋊ χpν
−1/2) 0 0

and the paramodular restriction r
K
P2
p

(Π−(µ1,p, µ2,p)) is given as follows (compare to [100, Table 4.4]):

Type {µ1,p, µ2,p} Π−(µ1,p, µ2,p) r
K
P2
p

(Π−(µ1,p, µ2,p)) Dimension

Va*
{χpξuStGL2(Qp), χpStGL2(Qp)} δ∗([ξu, ξuν]⋊ χpν

−1/2) 0 0

{χpξtStGL2(Qp), χpStGL2(Qp)} δ∗([ξt, ξtν]⋊ χpν
−1/2) χp[πΛ′

0
, πΛ′−1

0
]± (p− 1)2/2

VIb {χpStGL2(Qp), χpStGL2(Qp)} τ(T, χpν
−1/2) χp[StGL2(Fp),StGL2(Fp)] p2

VIIIb {πp, πp} τ(T, πp) [StGL2(Fp), πΛ1 ] + [πΛ1 , StGL2(Fp)] 2p(p− 1)

{π1,p, π2,p}, π1,p ̸= π2,p θ−(π1,p, π2,p) [πΛa , πΛb ] + [πΛb , πΛa ] 2(p− 1)2

XIa* {χpπp, χpStGL2(Qp)} δ∗(χ−1
p πpν

1/2 ⋊ χpν
−1/2) χp[πΛ′

1
, πΛ′−1

1
] (p− 1)2

where (Λa,Λb) is any pair of characters with ΛaΛb = Λ1 and ΛaΛ
p
b = Λ2, and where the sign is given by

ξt(p) = ±1.
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Endoscopic Cohomology Consider the endoscopic part of the automorphic discrete spectrum which by Arthur’s

classification admits a spectral decomposition

L2
disc,endo(G(Q)AG(R)◦ \G(AQ)) ≃

⊕
ω

⊕
ψ∈Ψdisc,endo(G,ω)

(ψ=(µ1⊠1)⊞(µ2⊠1))

⊕
π∈Π(ψ)
⟨·,π⟩=1

π

The endoscopic part H∗
disc,endo(SKfin

(C),Vλ) of the intersection cohomology H∗
disc(SKfin

(C),Vλ) admits a

spectral decomposition

H∗
disc,endo(SKfin

(C),Vλ) ≃
⊕
ω

⊕
ψ∈Ψdisc,endo(G,ω)

(ψ=(µ1⊠1)⊞(µ2⊠1))

⊕
π∈Π(ψ)
⟨·,π⟩=1

πKfin
fin ⊗H

∗(g,K ′
∞;π∞ ⊗ Vλ)

as a representation ofHKfin
. Similarly, the endoscopic partH∗

disc,endo(SKfin
,Vλ) of the ℓ-adic intersection coho-

mologyH∗
disc(SKfin

,Vλ) admits a spectral decomposition

H∗
disc,endo(SKfin

,Vλ) ≃
⊕
ω

⊕
ψ∈Ψdisc,endo(G,ω)

(ψ=(µ1⊠1)⊞(µ2⊠1))

⊕
π∈Π(ψ)
⟨·,π⟩=1

πKfin
fin ⊠ ρπ

as a representation ofHKfin
×Gal.

To determine the structure of the representationsH∗
disc,endo(SKfin

,Vλ){πfin} = πKfin ⊠ ρπ we use the trace

formula:

Proposition 4.4.5. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) and let Vλ be the corresponding ℓ-adic local system on SKfin
for a compact open subgroup

Kfin ⊆ G(A∞
Q ). Letψ = (µ1 ⊠ 1)⊞ (µ2 ⊠ 1) ∈ Ψdisc,endo(G,ω) be an A-parameter of Yoshida type, where µ1

and µ2 are unitary cuspidal automorphic representations of GL2(AQ) with central characters ωµ1 = ωµ2 = ω.

If π ∈ Π(ψ) contributes nontrivially in the intersection cohomologyH∗
disc,endo(SKfin

,Vλ), then the contri-

bution is given as a representation ofHKfin
×Gal by

H∗
disc,endo(SKfin

,Vλ){πfin} ≃


πKfin
fin ⊠ ρµ2Lλ2+1 π∞ ≃ πW∞

πKfin
fin ⊠ ρµ1 π∞ ≃ πH∞
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Proof. For ψ = (µ1 ⊠ 1)⊞ (µ2 ⊠ 1) ∈ Ψdisc,endo(G,ω) an A-parameter of Yoshida type and for π ∈ Π(ψ) an

automorphic representation ofG(AQ) lifted from the automorphic representationπH = µ1⊠µ2 ofH(AQ)with

πKfin
fin ̸= 0 and with π∞ a cohomological (g,K ′

∞)-module with central and infinitesimal characters determined

by those of Vλ, we have that π∞ ∈ {πW∞ , πH∞} is either the large generic discrete series representation πW∞ =

Dλ1+2,−λ2−1 which has nonzero (g,K ′
∞)-cohomology concentrated in degree 3 with Hodge numbers (λ1 +

2, λ2 + 1) and (λ2 + 1, λ1 + 2), or the holomorphic discrete series representation πH∞ = Dλ1+2,λ2+1 which has

nonzero (g,K ′
∞)-cohomology concentrated in degree3with Hodge numbers (λ1+λ2+3, 0) and (0, λ1+λ2+3).

Let π+∞ = πW∞ and let π−∞ = πH∞. Let π+p be the basepoint of the local A-packetΠ(ψp), and let π−p be the cuspidal

member of the local A-packet Π(ψp). Each component πv of π =
⊗

v πv has a sign

⟨πHv , πv⟩ =


1 πv = π+v

−1 πv = π−v

⟨πHfin, πfin⟩ =
∏
p

⟨µp, πp⟩

In terms of these signs, π has multiplicity

m(π) =
1

2

(
1 +

∏
v

⟨µv, πv⟩
)
=


1 ⟨πHfin, πfin⟩ = 1 and π∞ = π+∞

or ⟨πHfin, πfin⟩ = −1 and π∞ = π−∞

0 otherwise

Choose a correspondence fp,∞G ∈ C∞
c (Kp \ G(Ap,∞Q )/Kp) which is a projection onto the A-packet Π(ψfin),

and choose a matching correspondence fp,∞H which is a projection onto πHfin. Consider the sets

Π(ψfin)
+ = {π ∈ Π(ψfin)|⟨πHfin, πfin⟩ = 1}

Π(ψfin)
− = {π ∈ Π(ψfin)|⟨πHfin, πfin⟩ = −1}

By matching and endoscopic character identities we have

tr(πHfin(f
p,∞
H )) = tr(Π(πfin)

+(fp,∞G ))− tr(Π(πfin)
−(fp,∞G ))
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Recall that the test function fG∞ satisfies tr(π+∞(fG∞)) = tr(π−∞(fG∞)) = −1
2 , and the matching test function fH∞

satisfies tr(πH∞(fH∞)) = −1. Recall that the test function ϕGj satisfies

tr(Π(ψp)(ϕ
G
p )) = p

3
2
j
(
c1(µ1,p)

j + c1(µ2,p)
j + c2(µ2,p)

j + c2(µ1,p)
j
)

and the matching test function ϕHj satisfies

tr(πHp (ϕHj )) = p
3
2
j
(
c1(µ1,p)

j − c1(µ2,p)j − c2(µ2,p)j + c2(µ1,p)
j
)

Consider the test functions fG = ϕGj f
p,∞
G fG∞ and the matching test function fH = ϕHj f

p,∞
H fH∞ . Now the

contribution of the A-packet Π(ψ) to STFG(fG) is given by

∑
π∈Π(ψ)

m(π)tr(π∞(fG∞))tr(πfin(f
p,∞
G ))p

3
2
j
(
c1(µ1,p)

j + c1(µ2,p)
j + c2(µ2,p)

j + c2(µ1,p)
j
)

=
1

2

(
tr(π+

∞(fG∞)) + tr(π−
∞(fG∞))

)(
tr(Π(ψfin)

+(fp,∞G )) + tr(Π(ψfin)
−(fp,∞G ))

)
p

3
2
j
(
c1(µ1,p)

j + c1(µ2,p)
j + c2(µ2,p)

j + c2(µ1,p)
j
)

= −1

2

(
tr(Π(ψfin)

+(fp,∞G )) + tr(Π(ψfin)
−(fp,∞G ))

)
p

3
2
j
(
c1(µ1,p)

j + c1(µ2,p)
j + c2(µ2,p)

j + c2(µ1,p)
j
)

and the contribution of πH to STFH(fH) is given by

2m(πH)tr(πH∞(fH∞))tr(πHfin(f
p,∞
H ))p

3
2
j
(
c1(µ1,p)

j − c1(µ2,p)
j − c2(µ2,p)

j + c2(µ1,p)
j
)

= −2
(
tr(Π(ψfin)

+(fp,∞G ))− tr(Π(ψfin)
−(fp,∞G ))

)
p

3
2
j
(
c1(µ1,p)

j − c1(µ2,p)
j − c2(µ2,p)

j + c2(µ1,p)
j
)

Then we have the trace

tr(Frobjp|H∗
disc,endo(SKfin ,Vλ){πfin}) = p

λ1+λ2
2

(
STFG(fG)− 1

4
STFH(fH)

)
= −1

2

(
tr(Π(ψfin)

+(fp,∞G )) + tr(Π(ψfin)
−(fp,∞G ))

)
p

λ1+λ2+3
2

j
(
c1(µ1,p)

j + c1(µ2,p)
j + c2(µ2,p)

j + c2(µ1,p)
j
)

+
1

2

(
tr(Π(ψfin)

+(fp,∞G ))− tr(Π(ψfin)
−(fp,∞G ))

)
p

λ1+λ2+3
2

j
(
c1(µ1,p)

j − c1(µ2,p)
j − c2(µ2,p)

j + c2(µ1,p)
j
)

=
1

2
p

λ1+λ2+3
2

j
( −(c1(µ1,p)

j + c1(µ2,p)
j + c2(µ2,p)

j + c2(µ1,p)
j)

+⟨µfin, πfin⟩(c1(µ1,p)
j − c1(µ2,p)

j − c2(µ2,p)
j + c2(µ1,p)

j)

)

=


−p

λ1+λ2+3
2

j(c1(µ2,p)
j + c2(µ2,p)

j) ⟨πHfin, πfin⟩ = 1

−p
λ1+λ2+3

2
j(c1(µ1,p)

j + c2(µ1,p)
j) ⟨πHfin, πfin⟩ = −1

We can write−p
λ1+λ2+3

2
j(c1(µ2,p)

j + c2(µ2,p)
j) = −p(λ2+1)jp

λ1−λ2+1
2

j(c1(µ2,p)
j + c2(µ2,p)

j), which is the

trace of Frobjp on ρµ2Lλ2+1 whose contribution to H∗
disc,endo(SKfin

,Vλ) is concentrated in degree 3. Similarly

315



−p
λ1+λ2+3

2
j(c1(µ1,p)

j + c2(µ1,p)
j) is the trace of Frobjp on ρµ1 whose contribution toH∗

disc,endo(SKfin
,Vλ) is

concentrated in degree 3. It follows that

H∗
disc,endo(SKfin

,Vλ){πfin} ≃


πKfin
fin ⊠ ρµ2Lλ2+1 π∞ ≃ πW∞

πKfin
fin ⊠ ρµ1 π∞ ≃ πH∞

as a representation ofHKfin
×Gal. The result follows.

At this point we specialize the discussion to the case of square-free parahoric level structure.

Theorem 4.4.6. (compare to [100, Theorem 5.8]) Let S be a finite set of places of Q including∞, and let Sfin =

S − {∞}. LetKfin ⊆ G(A∞
Q ) be a compact open subgroup of the formKfin =

∏
p∈Sfin

Pp ×
∏
p ̸∈Sfin

G(Zp)

where Pp ⊆ G(Qp) is a standard parahoric subgroup. Let Vλ ∈ Rep(G) be an absolutely irreducible rational

representation with highest weight λ = (λ1, λ2;λ1 + λ2) and let Vλ be the corresponding ℓ-adic local system

on SKfin
. Then the endoscopic cohomology H∗

disc,endo(SKfin
,Vλ) is concentrated in degrees 3 and is given as a

representation of
∏
p∈Sfin

Pp/P+
p ×Gal by

H3
disc,endo(SKfin

,Vλ) ≃
⊕
ω

⊕
µ1,µ2

⊕
Σ⊆S

(
⊠
p∈Sfin

rPp(π
Σ(µ1,p, µ2,p))

)
⊠


ρµ2Lλ2+1 ∞ ̸∈ Σ

ρµ1 ∞ ∈ Σ

where the first direct sum is taken over unitary Hecke characters ω : Q× \ A×
Q → C× unramified outside S with

ω∞ ∈ {1, sign} and with ωp tamely ramified for every place p ∈ Sfin, where the second direct sum is taken over

unitary cuspidal automorphic representations µ1 and µ2 of GL2(AQ) with central character ωµ1 = ωµ2 = ω

unramified outsideS withµ1,∞ = Dλ1+λ2+3 andµ2,∞ = Dλ1−λ2+1 and withµ1,p andµ2,p of depth 0 for every

place p ∈ Sfin, and where the third direct sum is taken over subsets Σ ⊆ S such that (−1)#Σ = 1.

Proof. We have the spectral decomposition

H∗
disc,endo(SKfin

(C),Vλ) ≃
⊕
ω

⊕
ψ∈Ψdisc,endo(G,ω)

(ψ=(µ1⊠1)⊞(µ2⊠1))

⊕
π∈Π(ψ)
⟨·,π⟩=1

πKfin
fin ⊗H

∗(g,K ′
∞;π∞ ⊗ Vλ)
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where the first direct sum is taken over unitary Hecke characters ω : Q× \A×
Q → C×, and where the second direct

sum is taken over unitary cuspidal automorphic representations µ1 and µ2 of GL2(AQ) with central character

ωµ1 = ωµ2 = ω with µ1,∞ = Dλ1+λ2+3 and µ2,∞ = Dλ1−λ2+1. Equivalently, we have

H∗
disc,endo(SKfin

(C),Vλ) ≃
⊕
µ1,µ2

⊕
Σ⊆S

πΣ(µ1,fin, µ2,fin)
Kfin ⊗H∗(g,K ′

∞;πΣ(µ1,∞, µ2,∞)⊗ Vλ)

where the first direct sum is taken over unitary Hecke characters ω : Q× \ A×
Q → C×, where the second direct

sum is taken over unitary cuspidal automorphic representations µ1 and µ2 of GL2(AQ) with central character

ωµ1 = ωµ2 with µ1,∞ = Dλ1+λ2+3 and µ2,∞ = Dλ1−λ2+1, and where the third direct sum is taken over subsets

Σ ⊆ S such that (−1)#Σ = 1.

Now by Vogan-Zuckerman we have H∗(g,K ′
∞;πΣ(µ1,∞, µ2,∞) ⊗ Vλ) = 0 unless ω∞ ∈ {1, sign}.

Since Kfin =
∏
p∈Sfin

Pp ×
∏
p ̸∈Sfin

GSp4(Zp), we have πΣ(µ1,fin, µ2,fin)Kfin = 0 unless µ1 and µ2 are

unramified outside S (in particular ω is unramified outside S), in which case we have πΣ(µ1,fin, µ2,fin)Kfin ≃

⊠p∈Sfin
rPp(π

Σ(µ1,p, µ2,p)), and we have rPp(π
Σ(µ1,p, µ2,p)) = 0 unless µ1,p and µ2,p are of depth 0 (in

particular ωp is tamely ramified).

For the Galois action, we have a spectral decomposition

H∗
disc,endo(SKfin

,Vλ) ≃
⊕
µ1,µ2

⊕
Σ⊆S

(
⊠
p∈Sfin

rPp(π
Σ(µ1,p, µ2,p))

)
⊠ ρπΣ(µ1,µ2)

and by 4.4.5 the ℓ-adic Galois representation ρπΣ(µ1,µ2) is given by

ρπΣ(µ1,µ2) ≃


ρµ2Lλ2+1 πΣ(µ1,∞, µ2,∞) ≃ πW∞

ρµ1 πΣ(µ1,∞, µ2,∞) ≃ πH∞

By Gabber’s purity theorem, the Galois representations ρµ2Lλ2+1 and ρµ1 , which is pure of weight λ1 + λ2 +

3, are concentrated in degree 3 (we already knew this by Vogan-Zuckerman). The result follows, noting that

πΣ(µ1,∞, µ2,∞) ≃ πW∞ precisely if∞ ̸∈ Σ and πΣ(µ1,∞, µ2,∞) ≃ πH∞ precisely if∞ ∈ Σ.

Note that the endoscopic intersection cohomologyH∗
disc,endo(SKfin

,Vλ) is isomorphic to the endoscopic cus-

pidal cohomologyH∗
cusp,endo(SKfin

,Vλ): the Yoshida lift π = πΣ(µ1, µ2) is cuspidal unless µ1 ≃ µ2, which is
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already ruled out by the assumption µ1,∞ = Dλ1+λ2+3 andµ2,∞ = Dλ1−λ2+1. Note also that the endoscopic in-

ner cohomologyH∗
!,endo(SKfin

,Vλ) is isomorphic to the endoscopic cuspidal cohomologyH∗
cusp,endo(SKfin

,Vλ).

4.4.6 Saito-Kurokawa Lifts, Siegel-CAP Cohomology

Following [106, Section 3] and [105, Section 1] We review the Saito-Kurokawa lift.

Saito-Kurokawa Lift We consider the trivial central character Saito-Kurokawa lift corresponding to A-parameters

for GSp4(AQ) of the form ψ = (µ ⊠ ν1) ⊞ (χ ⊠ ν2) for µ a unitary cuspidal automorphic representation of

GL2(AQ) with trivial central character and for χ : Q× \ A×
Q → C× a quadratic Hecke character corresponding

to the embedding of dual groups

SL2(C)× {±1} → Sp4(C) (
(
a b
c d

)
, t) 7→

(
t
a b
c d

t

)

which defines a global A-packet Π(ψ) of automorphic representations π of GSp4(AQ) with an equality of L-

functions and epsilon-factors

L(s, π) = L(s, µ)L(s+ 1
2 , χ)L(s−

1
2 , χ)

ϵ(s, π) = ϵ(s, µ)ϵ(s+ 1
2 , χ)ϵ(s−

1
2 , χ)

For µ =
⊗

v µv where µv is an irreducible admissible representation of GL2(Qv) with trivial central character

and for χ =
⊗

v χv where χv : Q×
v → C× is a quadratic character we have Π(ψ) =

⊗
v Π(ψv) for local

L-packets Π(ψv) corresponding to the local A-parameter ψv : LQv × SL2(C) → Sp4(C) given in terms of the

local L-parameters φµv : LQv → SL2(C) and φχv : LQv → {±1} by

(w, 1) 7→ diag(φσv(w), φµv(w), φσv(w)) (1,
(
a b
c d

)
) 7→

(
a b
1
1

c d

)

which are fibered over the characters of the centralizer group Sψv = Sψv/S
0
ψv
Z given by

Sψv =


0 µv principal series

Z/2Z otherwise
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In other words, we have Π(ψ) =
⊗

v Π(ψv) for local L-packets

Π(ψv) =


{π+v } µv principal series

{π+v , π−v } otherwise

The local L-packetΠ(ψv) contains the unique unitary non-tempered non-generic irreducible admissible representa-

tionπ+v (the basepoint) with local L-parameterφψv : LQv → Sp(C) given byw 7→ ψ(w,diag(|w|1/2v , |w|−1/2
v )).

For v = p a finite place of Q the basepoint π+p is the Langlands quotient of the Siegel induced representation

σpµpν
1/2 ⋊ σpν

−1/2 where:

• π+p = χ1,pχp1GL2(Qp) ⋊ χ−1
1,p (type IIb) for µp = χ1,p × χ−1

1,p a principal series representation;

• π+p = L(χ1,pχpStGL2(Qp)ν
1/2 ⋊ χpν

−1/2) (type Vb) for µp = χ1,pStGL2(Qp) a twisted Steinberg repre-

sentation for a character χ1,p : Q×
p → C× distinct from χp;

• π+p = L(StGL2(Qp)ν
1/2⋊χpν

−1/2) (type VIc) forµp = χpStGL2(Qp) a twisted Steinberg representation;

• π+p = L(µpχpν
1/2 ⋊ χpν

−1/2) (type XIb) for µp supercuspidal.

For v =∞ the Archimedean place of Q the basepoint π+∞ is the Langlands quotient of the Siegel induced repre-

sentation σ∞µ∞ν1/2 ⋊ σ∞ν
−1/2 where:

• π+∞ = χ1,∞χ∞1GL2(R) ⋊ χ−1
1,∞ for µ∞ = χ1,∞ × χ−1

1,∞ a principal series representation;

• π+∞ = L(Dλ1+λ2+3ν
1/2 ⋊ χ∞ν

−1/2) for µ∞ = Dλ1+λ2+3 a holomorphic discrete series representation.

The global A-packet Π(ψ) = {π =
⊗

v πv|πv ∈ Π(ψv), πv = π+v for almost all places v of Q} contains the

automorphic representation π+ =
⊗

v π
+
v an isobaric constituent of the Siegel induced representation µχν1/2 ⋊

χν−1/2. By Arthur’s multiplicity formula the Saito-Kurokawa packets are unstable: forπ ∈ Π(ψ)we havem(π) =

1 precisely if ϵ(12 , π) = ϵ(12 , µ⊗ χ
−1). That is, for π =

⊗
v πv ∈ Π(ψ) and for Σ the set of places v of Q such

that πv is non-generic we have

m(π) =
1

2

(
1 + ϵ(12 , µ⊗ χ

−1)ϵ(12 , π)
)
=


1

#Σ even and ϵ(12 , µ⊗ χ
−1) = 1

#Σ odd and ϵ(12 , µ⊗ χ
−1) = −1

0 otherwise
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In particular Π(ψ) contains 1 discrete element if #Σ = 0 and contains 2#Σ−1 discrete elements otherwise.

Theta Lifts We now explain how the above A-packets can be constructed as theta lifts. Recall that for µ a

unitary cuspidal automorphic representation of GL2(AQ) with trivial central character we have the Waldspurger

packet Π̃(µ) of representations of Mp2(AQ) which are orthogonal to all global Weil representations π̃Sχ . For

µ =
⊗

v µv whereµv is an irreducible admissible representation ofGL2(Qv) with trivial central character we have

Π̃(µ) =
⊗

v Π̃(µv) for local Waldspurger packets

Π̃(µv) =


{µ̃+v } µv principal series

{µ̃+v , µ̃−v } otherwise

For µ̃v ∈ Π̃(µ) we have the local sign ϵ(µ̃v) ∈ {±1}, and in order for µ̃ =
⊗

v µ̃v with global sign ϵ(µ̃) =∏
v ϵ(µ̃v) to define an element of Π̃(µ)we must have ϵ(µ̃) = ϵ(12 , µ), otherwise µ̃ does not define a representation

of Mp2(AQ). Now we have the global theta correspondence

θ
PGSp4(AQ)
Mp2(AQ)

: Irr(Mp2(AQ))→ Irr(PGSp4(AQ)) ∪ {0}

Now by [106, Lemma 3.1], as µ̃ runs through the Waldspurger packet Π̃(µ), the theta lifts of µ̃ from Mp2(AQ)

to SO5(AQ) ≃ PGSp4(AQ) run through the discrete automorphic representations in the global A-packet Π(ψ)

with parameterψ = (µ⊠1)⊞(1⊠ν2). The general case is obtained by twisting: forω : Q×\A×
Q → C× a unitary

Hecke character, for µ a unitary cuspidal automorphic representation of GL2(AQ) with central characterωµ = ω,

and for χ : Q× \ A×
Q → C× a unitary Hecke character with χ2 = ω, as µ̃ runs through the Waldspurger packet

Π̃(µ⊗ χ−1), the twists by χ of the theta lifts of µ̃ from Mp2(AQ) to SO5(AQ) ≃ PGSp4(AQ) run through the

discrete automorphic representations in the global A-packet Π(ψ) with parameter ψ = (µ⊠ 1)⊞ (χ⊠ ν2).

For v = p a finite place of Q the theta lift produces irreducible admissible representations π±p of SO5(Qp) ≃

PGSp4(Qp) from the representations µ̃±p of Mp2(Qp) corresponding to µp. By [106, Lemma 3.1] the local L-

packets Π(ψp) for the local A-parameter ψp = (µp ⊠ 1) ⊞ (1 ⊠ ν2) are given by Π(ψp) = {π+p } when µp

is a principal series representation, and otherwise by Π(ψp) = {π+p , π−p } where π±p are the theta lifts of the

representations µ̃±p in the Waldspurger packet Π̃(µp). The general case is obtained by twisting: forωp : Q×
p → C×

a character, for µp an irreducible admissible representation of GL2(Qp) with central character ωµp = ωp, and
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for χp : Q×
p → C× a character with χ2

p = ωp, the local L-packets Π(ψp) for the local A-parameter ψp =

(µp ⊠ 1) ⊞ (χp ⊠ ν2) are given by Π(ψp) = {π+p } when µp ⊗ χ−1
p is a principal series representation, and

otherwise by Π(ψp) = {π+p , π−p } where π±p are twists by χp of the theta lifts of the representations µ̃±p in the

Waldspurger packet Π̃(µp ⊗ χ−1
p ). These theta lifts have been computed (for instance in [103, Table 2]). We obtain

the following description for the members of the local L-packets Π(ψp) of Saito-Kurokawa type, along with their

corresponding L-parameters and epsilon-values (compare to [106, Table 2]):

Type µp πp φp ϵ(πp)

II b χ1,p × χ−1
1,p χ1,pχp1GL2(Qp) ⋊ χ−1

1,p χ1,p ⊕ χ−1
1,p ⊕ χpφ1 1

V
a* χ1,pStGL2(Qp) δ∗([χ1,pχp, χ1,pχpν], χpν

−1/2) χ1,pφSt ⊕ χpφSt −1

b χ1,p ̸= χp L(χ1,pχpStGL2(Qp)ν
1/2 ⋊ χpν

−1/2) χ1,pφSt ⊕ χpφ1 1

VI
b

χpStGL2(Qp)
τ(T, χpν

−1/2) χpφSt ⊕ χpφSt −1

c L(StGL2(Qp)ν
1/2 ⋊ χpν

−1/2) χpφSt ⊕ χpφ1 1

XI
a*

Supercuspidal
δ∗(µpχpν

1/2 ⋊ χpν
−1/2) ϕ⊕ χpφSt −1

b L(µpχpν
1/2 ⋊ χpν

−1/2) ϕ⊕ χpφ1 1

whereφ1 is the L-parameter of the trivial representation 1GL2(Qp) ofGL2(Qp), whereφSt is the L-parameter of the

Steinberg representation StGL2(Qp) ofGL2(Qp), and whereϕ is the L-parameter of a supercuspidal representation

µp of GL2(Qp). The general case is obtained by twisting as above.

For v =∞ the Archimedean place of Q the theta lift produces irreducible admissible representations π±∞ of

SO5(R) ≃ PGSp4(R) from the representations µ̃±∞ of Mp2(R) corresponding to µ∞. By [106, Lemma 3.1] the

local L-packets Π(ψ∞) for the local A-parameter ψ∞ = (µ∞ ⊠ 1) ⊞ (1 ⊠ ν2) are given by Π(ψ∞) = {π+∞}

when µ∞ is a principal series representation, and otherwise by Π(ψ∞) = {π+∞, π−∞} where π±∞ are the theta

lifts of the representations µ̃±∞ in the Waldspurger packet Π̃(µ∞). The general case is obtained by twisting: for

ω∞ : R× → C× a character, for µ∞ an irreducible admissible representation of GL2(R) with central character

ωµ∞ = ω∞, and for χ∞ : R× → C× a character with χ2
∞ = ω∞, the local L-packets Π(ψ∞) for the local

A-parameter ψ∞ = (µ∞ ⊠ 1) ⊞ (χ∞ ⊠ ν2) are given by Π(ψ∞) = {π+∞} when µ∞ ⊗ χ−1
∞ is a principal

series representation, and otherwise by Π(ψ∞) = {π+∞, π−∞} where π±∞ are twists by χ∞ of the theta lifts of

the representations µ̃±∞ in the Waldspurger packet Π̃(µ∞ ⊗ χ−1
∞ ). These theta lifts have been computed (for
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instance in [103, Table 2]). We obtain the following description for the members of the local L-packets Π(ψ∞) of

Saito-Kurokawa type, along with their corresponding L-parameters and epsilon-values (compare to [106, Table 2]):

Type µ∞ π∞ φ∞ ϵ(π∞)

χ1,∞ × χ−1
1,∞ χ1,∞χ∞1GL2(R) ⋊ χ−1

1,∞ χ1,∞ ⊕ χ−1
1,∞ ⊕ χ∞φ1 1

(λ1 + 3, λ2 + 3)
Dλ1+λ2+3, λ1 = λ2 ≥ 0

Dλ1+2,λ2+1 φDλ1+λ2+3
⊕ χ∞φD1 −1

(λ1 + 2,−λ2 − 2) L(Dλ1+λ2+3ν
1/2 ⋊ χ∞ν

−1/2) φDλ1+λ2+3
⊕ χ∞φ1 1

where φ1 is the L-parameter of the trivial representation 1GL2(R) of GL2(R) and φDk is the L-parameter of the

discrete series representationDk of GL2(R) with minimal O(2)-type k + 1 and central character signk+1. The

general case is obtained by twisting as above.

The K∞-types in the table are obtained as follows. For χ∞ : R× → C× a quadratic character the repre-

sentation Dλ1+λ2+3ν
1/2 ⋊ χ∞ν

−1/2 has two irreducible constituents: Dλ1+2,−λ2−1 the large generic discrete

series representation of PGSp4(R) with minimalK∞-type (λ1 + 3,−λ2 − 1) occurring with multiplicity 1, and

L(Dλ1+λ2+3ν
1/2 ⋊ χ∞ν

−1/2) the Langlands quotient ofDλ1+λ2+3ν
1/2 ⋊ χ∞ν

−1/2 with minimalK∞-type

(−λ1−2,−λ2−2) occurring with multiplicity1. We obtain the followingK∞-type regions for the representations

in the above table, illustrated for λ1 = λ2 = 0 and λ1 = λ2 = 1:

Parahoric Restriction We now review results about parahoric restriction of Saito-Kurokawa lifts, following

[100, Section 5.3].

From now on we will parameterize Saito-Kurokawa lifts in the following way. Let µ be a cuspidal automorphic

representation ofGL2(AQ)with trivial central character. LetS be a finite set of places ofQ containing∞ such that

µv is spherical for allv ̸∈ S. LetΣ ⊆ S be a subset ofS and letµΣ be the non-cuspidal irreducible subquotient of the

parabolically induced representation ν1/2× ν−1/2 of GL2(AQ) such that µΣv is locally in the discrete series exactly
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at the places v ∈ Σ; we have µΣv = StGL2(Qv) for v ∈ Σ and µΣv = 1GL2(Qv) for v ̸∈ Σ, where StGL2(R) = D1.

We assume thatµv is in the discrete series for allv ∈ Σ. Then the Saito-Kurokawa lift yields an irreducible admissible

representation π = π(µ, µΣ) ofG(AQ) with trivial central character such thatL(s, πv) = L(s, µv)L(s, µ
Σ
v ) for

almost every place v of Q. In fact, we haveL(s, πv) = L(s, µv)L(s, µ
Σ
v ) and ϵ(s, πv) = ϵ(s, µv)ϵ(s, µ

Σ
v ) for all

places v of Q. This lift is local in the sense that πv = π(µv, µ
Σ
v ) depends only on µv and µΣv ; every local factor πv

is unitary and non-generic.

Letχp : Q×
p → C× be an at most tamely ramified character which restricts to a nonzero characterχp : F×

p →

C× which we abusely denote by the same notation. Let µp be a depth 0 supercuspidal representation of GL2(Qp),

with hyperspecial parahoric restriction πΛ for a character Λ : F×
p2
→ C×; such a character Λ with Λ|F×

p
= 1

factors over a character ωΛ : F×
p [p + 1] → C× with Λ(x) = ωΛ(x

p−1). Let χu : Q×
p → C× be the nontrivial

unramified quadratic character and for p > 2 let χt : Q×
p → C× be either one of the tamely ramified quadratic

characters. For p = 2 let θ : F×
4 → C× be a primitive character, and let l ∈ Z/3Z such that θl = Λ. By [100,

Theorem 5.2] the hyperspecial parahoric restriction rKp(π(µp, µ
Σ
p )) is given as follows (compare to [100, Table

5.1]):

Type µp µΣp πp(µp, µ
Σ
p ) rK2(π(µ2, µ

Σ
2 )) rKp(π(µp, µ

Σ
p )) Dimension

II b χp × χ−1
p 1GL2(Qp) χp1GL2(Qp) ⋊ χ−1

p χ3 χ3(χp, χ
−1
p ) (p+ 1)(p2 + 1)

V

a* ξuStGL2(Qp) StGL2(Qp) δ∗([ξu, ξuν], ν
−1/2) θ2 θ2(1)

1
2(p

2 − p)

ξtStGL2(Qp) StGL2(Qp) δ∗([ξt, ξtν], ν
−1/2) 0 0 0

b ξuStGL2(Qp) 1GL2(Qp) L(χpStGL2(Qp)ν
1/2 ⋊ ν−1/2) θ1 θ1(1)

1
2p(p+ 1)2

ξtStGL2(Qp) 1GL2(Qp) L(χpStGL2(Qp)ν
1/2 ⋊ ν−1/2) τ2(1) p(p2 + 1)

VI
b

StGL2(Qp)
StGL2(Qp) τ(T, ν−1/2) θ3 θ3(1)

1
2p(p

2 + 1)

c 1GL2(Qp) L(StGL2(Qp)ν
1/2 ⋊ ν−1/2) θ4 θ4(1)

1
2p(p

2 + 1)

XI
a*

Supercuspidal
StGL2(Qp) δ∗(µpν

1/2 ⋊ ν−1/2) 0 0 0

b 1GL2(Qp) L(µpν
1/2 ⋊ ν−1/2) χ5(l) χ5(ωΛ, 1) (p− 1)(p2 + 1)

Let λ0 : F×
p → C× and Λ0 : F×

p2
→ C× be the nontrivial quadratic characters. For Λ : F×

p2
→ C× a character

with Λp+1 = 1 let Λ′ : F×
p2
→ C× be a character such that Λ′p−1 = Λ. Let Λ′

0 : F×
p2
→ C× be a character

such that Λ′p−1
0 = Λ0. By [100, Theorem 5.2] the paramodular restriction r

K
P2
p

(π(µp, µ
Σ
p )) is given as follows

(compare to [100, Table 5.1]):
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Type µp µΣp πp(µp, µ
Σ
p ) r

K
P2
p

(π(µp, µ
Σ
p )) Dimension

II b χp × χ−1
p 1GL2(Qp) χp1GL2(Qp) ⋊ χ−1

p [1GL1(Fp) × χp, 1GL2(Fp) × χ−1
p ] (p+ 1)2

V

a* ξuStGL2(Qp) StGL2(Qp) δ∗([ξu, ξuν], ν
−1/2) 0 0

ξtStGL2(Qp) StGL2(Qp) δ∗([ξt, ξtν], ν
−1/2) [πΛ′

0
, πΛ′−1

0
]± (p− 1)2/2

b ξuStGL2(Qp) 1GL2(Qp) L(χpStGL2(Qp)ν
1/2 ⋊ ν−1/2) [1GL2(Fp), 1GL2(Fp)] + [StGL2(Fp),StGL2(Fp)] p2 + 1

ξtStGL2(Qp) 1GL2(Qp) L(χpStGL2(Qp)ν
1/2 ⋊ ν−1/2) [1GL1(Fp) × λ0, 1GL1(Fp) × λ0]∓ (p+ 1)2/2

VI
b

StGL2(Qp)
StGL2(Qp) τ(T, ν−1/2) [StGL2(Fp), StGL2(Fp)] p2

c 1GL2(Qp) L(StGL2(Qp)ν
1/2 ⋊ ν−1/2) [1GL2(Fp), 1GL2(Fp)] 1

XI
a*

Supercuspidal
StGL2(Qp) δ∗(µpν

1/2 ⋊ ν−1/2) [πΛ′ , πΛ′−1 ] (p− 1)2

b 1GL2(Qp) L(µpν
1/2 ⋊ ν−1/2) 0 0

where the sign is given by ξt(p) = ±1.

The general case is obtained by twisting as above. The parahoric restrictions rPp(π(µp, µ
Σ
p )) for Pp ⊆

GSp4(Qp) a standard parahoric subgroup are obtained from the hyperspecial parahoric restrictionsrKp(π(µp, µ
Σ
p ))

by parabolic restriction.

Siegel-CAP Cohomology Consider the Siegel-CAP part of the automorphic discrete spectrum which by Arthur’s

classification admits a spectral decomposition

L2
disc,[P1]

(G(Q)AG(R)◦ \G(AQ)) ≃
⊕
ω

⊕
ψ∈Ψdisc,[P1]

(G,ω)

(ψ=(µ⊠1)⊞(χ⊠ν2))

⊕
π∈Π(ψ)

⟨·,π⟩=ϵ( 1
2
,µ⊗χ−1)

π

The Siegel-CAP partH∗
disc,[P1]

(SKfin
(C),Vλ) of the intersection cohomologyH∗

disc(SKfin
(C),Vλ) admits a spec-

tral decomposition

H∗
disc,[P1]

(SKfin
(C),Vλ) ≃

⊕
ω

⊕
ψ∈Ψdisc,[P1]

(G,ω)

(ψ=(µ⊠1)⊞(χ⊠ν2))

⊕
π∈Π(ψ)

⟨·,π⟩=ϵ( 1
2
,µ⊗χ−1)

πKfin
fin ⊗H

∗(g,K ′
∞;π∞ ⊗ Vλ)

324



as a representation ofHKfin
. Similarly, the Siegel-CAP partH∗

disc,[P1]
(SKfin

,Vλ) of the ℓ-adic intersection coho-

mologyH∗
disc(SKfin

,Vλ) admits a spectral decomposition

H∗
disc,[P1]

(SKfin
,Vλ) ≃

⊕
ω

⊕
ψ∈Ψdisc,[P1]

(G,ω)

(ψ=(µ⊠1)⊞(χ⊠ν2))

⊕
π∈Π(ψ)

⟨·,π⟩=ϵ( 1
2
,µ⊗χ−1)

πKfin
fin ⊠ ρπ

as a representation ofHKfin
×Gal.

To determine the structure of the representationsH∗
disc,[P1]

(SKfin
,Vλ){πfin} = πKfin ⊠ ρπ we use the trace

formula:

Theorem 4.4.7. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) and let Vλ be the corresponding ℓ-adic local system on SKfin
for a compact open subgroup

Kfin ⊆ G(A∞
Q ). Let ψ = (µ ⊠ 1) ⊞ (χ ⊠ ν2) ∈ Ψdisc,[P1](G,ω) be an A-parameter of Saito-Kurokawa type,

where µ is a unitary cuspidal automorphic representation of GL2(AQ) with central character ωµ = ω and where

χ : Q× \ A×
Q → C× is a unitary Hecke character with χ2 = ω.

If π ∈ Π(ψ) contributes nontrivially in the intersection cohomology H∗
disc,[P1]

(SKfin
,Vλ), then the contri-

bution occurs only for λ1 = λ2 and is given as a representation ofHKfin
×Gal by

H∗
disc,[P1]

(SKfin
,Vλ){πfin} ≃


πKfin
fin ⊠ (Lλ2+1

χ ⊕ Lλ1+2
χ ) π∞ ≃ π(1)±∞

πKfin
fin ⊠ ρµ π∞ ≃ πH∞

Proof. Forψ = (µ⊠1)⊞(χ⊗ν2) ∈ Ψdisc,[P1](G,ω) an A-parameter of Saito-Kurokawa type and forπ ∈ Π(ψ)

an automorphic representation of G(AQ) lifted from the automorphic representation πH = µ ⊠ (χ ◦ det) of

H(AQ) with πKfin
fin ̸= 0 and with π∞ a cohomological (g,K ′

∞)-module with central and infinitesimal characters

determined by those of Vλ, we have that λ1 = λ2 and we have that π∞ ∈ {πH∞, π
(1)±
∞ } is either one of the

Langlands quotients π(1)+∞ = L(ν1/2Dλ1+λ2+3 ⋊ ν−1/2) or π(1)−∞ = L(ν1/2Dλ1+λ2+3 ⋊ ν−1/2sign) which

have nonzero (g,K ′
∞) concentrated in degrees 2 and 4with Hodge numbers (λ1+1, λ2+1) and (λ1+2, λ2+2),

or the holomorphic discrete series representation πH∞ = Dλ1+2,λ2+1 which has nonzero (g,K ′
∞)-cohomology

concentrated in degree 3with Hodge numbers (λ1+λ2+3, 0) and (0, λ1+λ2+3). Letπ×∞ = π
(1)+
∞ ifωµ∞ = 1

and π×∞ = π
(1)−
∞ if ωµ∞ = sign, and let π−∞ = πH∞. Let π×p be the basepoint of the local L-packet Π(ψp), and let
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π−p be the cuspidal member of the local L-packet Π(ψp). Each component πv of π =
⊗

v πv has a sign

⟨πHv , πv⟩ =


1 πv = π×v

−1 πv = π−v

⟨πHfin, πfin⟩ =
∏
p

⟨µp, πp⟩

In terms of these signs, π has multiplicity

m(π) =
1

2

(
1 + ϵ(12 , µ⊗ χ

−1)
∏
v

⟨πHv , πv⟩
)
=


1 ⟨πHfin, πfin⟩ = ϵ(12 , µ⊗ χ

−1) and π∞ = π×∞

or ⟨πHfin, πfin⟩ = −ϵ(
1
2 , µ⊗ χ

−1) and π∞ = π−∞

0 otherwise

Choose a correspondence fp,∞G ∈ C∞
c (Kp \ G(Ap,∞Q )/Kp) which is a projection onto the A-packet Π(ψfin),

and choose a matching correspondence fp,∞H which is a projection onto πHfin. Consider the sets

Π(ψfin)
× = {π ∈ Π(ψfin)|⟨πHfin, πfin⟩ = 1}

Π(ψfin)
− = {π ∈ Π(ψfin)|⟨πHfin, πfin⟩ = −1}

By matching and endoscopic character identities we have

tr(πHfin(f
p,∞
H )) = tr(Π(ψfin)

×(fp,∞G )) + tr(Π(ψfin)
−(fp,∞G ))

Recall that the test function fG∞ satisfies tr(π−∞(fG∞)) = −1
2 and tr(π×∞(fG∞)) = 1

2 , and the matching test

function fH∞ satisfies tr(πH∞(fH∞)) = −1. Recall that the test function ϕGj satisfies

tr(Π(ψp)(ϕ
G
p )) = p

3
2
j
(
c(χp)

jp
1
2
j + c1(µp)

j + c2(µp)
j + c(χp)

jp−
1
2
j
)

and the matching test function ϕHj satisfies

tr(πHp (ϕHj )) = p
3
2
j
(
c(χp)

jp
1
2
j − c1(µp)j − c2(µp)j + c(χp)

jp−
1
2
j
)
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Consider the test functions fG = ϕGj f
p,∞
G fG∞ and the matching test function fH = ϕHj f

p,∞
H fH∞ . Now the

contribution of the A-packet Π(ψ) to STFG(fG) is given by

∑
π∈Π(ψ)

m(π)tr(π∞(fG∞))tr(πfin(f
p,∞
G ))p

3
2
j
(
c(χp)

jp
1
2
j + c1(µp)

j + c2(µp)
j + c(χp)

jp−
1
2
j
)

=
ϵ(

1
2
,µ⊗χ−1)

2

(
tr(π×

∞(fG∞))− tr(π−
∞(fG∞))

)(
tr(Π(ψfin)

×(fp,∞G ))− tr(Π(ψfin)
−(fp,∞G ))

)
· p

3
2
j
(
c(χp)

jp
1
2
j + c1(µp)

j + c2(µp)
j + c(χp)

jp−
1
2
j
)

=
ϵ(

1
2
,µ⊗χ−1)

2

(
tr(Π(ψfin)

×(fp,∞G ))− tr(Π(ψfin)
−(fp,∞G ))

)
p

3
2
j
(
c(χp)

jp
1
2
j + c1(µp)

j + c2(µp)
j + c(χp)

jp−
1
2
j
)

and the contribution of πH to STFH(fH) is given by

2m(πH)tr(πH∞(fH∞))tr(πHfin(f
p,∞
H ))p

3
2
j
(
c(χp)

jp
1
2
j − c1(µp)

j − c2(µp)
j + c(χp)

jp−
1
2
j
)

= −2
(
tr(Π(ψfin)

×(fp,∞G )) + tr(Π(ψfin)
−(fp,∞G ))

)
p

3
2
j
(
c(χp)

jp
1
2
j − c1(µp)

j − c2(µp)
j + c(χp)

jp−
1
2
j
)

It follows that we have the trace

tr(Frobjp|H∗
disc,[P1](SKfin ,Vλ){πfin}) = p

λ1+λ2
2

(
STFG(fG)− 1

4
STFH(fH)

)
=

ϵ(
1
2
,µ⊗χ−1)

2

(
tr(Π(ψfin)

×(fp,∞G ))− tr(Π(ψfin)
−(fp,∞G ))

)
p

λ1+λ2+3
2

j
(
c(χp)

jp
1
2
j + c1(µp)

j + c2(µp)
j + c(χp)

jp−
1
2
j
)

+
1

2

(
tr(Π(ψfin)

×(fp,∞G )) + tr(Π(ψfin)
−(fp,∞G ))

)
p

λ1+λ2+3
2

j
(
c(χp)

jp
1
2
j − c1(µp)

j − c2(µp)
j + c(χp)

jp−
1
2
j
)

=
1

2
p

λ1+λ2+3
2

j
(ϵ( 1

2
, µ⊗ χ−1)(c(χp)

jp
1
2
j + c1(µp)

j + c2(µp)
j + c(χp)

jp−
1
2
j)

+⟨πHfin, πfin⟩(c(χp)jp
1
2
j − c1(µp)

j − c2(µp)
j + c(χp)

jp−
1
2
j)

)

=


p

λ1+λ2+3
2

j(c(χp)
jp

1
2
j + c(χp)

jp−
1
2
j) ⟨πHfin, πfin⟩ = ϵ( 1

2
, µ⊗ χ−1)

−p
λ1+λ2+3

2
j(c1(µp)

j + c2(µp)
j) ⟨πHfin, πfin⟩ = −ϵ( 1

2
, µ⊗ χ−1)

Since λ1 = λ2 we can write p
λ1+λ2+3

2
j(c(χp)

jp
1
2
j + c(χp)

jp−
1
2
j) = c(χp)

jp(λ1+2)j + c(χp)
jp(λ2+1)j ,

which is the trace of Frobjp on Lλ2+1
χ ⊕ Lλ1+2

χ whose contribution to H∗
disc,[P1]

(SKfin
,Vλ) is concentrated in

degrees 2 and 4. Similarly, −p
λ1+λ2+3

2
j(c1(µp)

j + c2(µp)
j) is the trace of Frobjp on ρµ whose contribution to

H∗
disc,[P1]

(SKfin
,Vλ) is concentrated in degree 3. It follows that

H∗
disc,[P1]

(SKfin
,Vλ){πfin} ≃


πKfin
fin ⊠ (Lλ2+1

χ ⊕ Lλ1+2
χ ) π∞ ≃ π(1)±∞

πKfin
fin ⊠ ρµ π∞ ≃ πH∞

as a representation ofHKfin
×Gal. The result follows.
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At this point we specialize the discussion to the case of square-free parahoric level structure.

Theorem 4.4.8. (compare to [100, Theorem 5.4]) Let S be a finite set of places of Q including∞, and let Sfin =

S − {∞}. LetKfin ⊆ G(A∞
Q ) be a compact open subgroup of the formKfin =

∏
p∈Sfin

Pp ×
∏
p ̸∈Sfin

G(Zp)

where Pp ⊆ G(Qp) is a standard parahoric subgroup. Let Vλ ∈ Rep(G) be an absolutely irreducible rational

representation with highest weight λ = (λ1, λ2;λ1 + λ2) and let Vλ be the corresponding ℓ-adic local system on

SKfin
. Assume that λ1 = λ2.

Then the Siegel-CAP intersection cohomologyH∗
disc,[P1]

(SKfin
,Vλ) is concentrated in degrees 2, 3, 4 and is

given as a representation of
∏
p∈Sfin

Pp/P+
p ×Gal by

H2
disc,[P1]

(SKfin
,Vλ) ≃

⊕
ω

⊕
µ

⊕
Σ⊆S
∞̸∈Σ

(
⊠
p∈Sfin

rPp(ωpπ(µp, µ
Σ
p ))
)
⊠ Lλ2+1

ω

H3
disc,[P1]

(SKfin
,Vλ) ≃

⊕
ω

⊕
µ

⊕
Σ⊆S
∞∈Σ

(
⊠
p∈Sfin

rPp(ωpπ(µp, µ
Σ
p ))
)
⊠ ρωµ

H4
disc,[P1]

(SKfin
,Vλ) ≃

⊕
ω

⊕
µ

⊕
Σ⊆S
∞̸∈Σ

(
⊠
p∈Sfin

rPp(ωpπ(µp, µ
Σ
p ))
)
⊠ Lλ1+2

ω

where the first direct sum is taken over unitary Hecke characters ω : Q× \ A×
Q → C× unramified outside S with

ω∞ ∈ {1, sign} and with ωp tamely ramified for every place p ∈ Sfin, where the second direct sum is taken over

unitary cuspidal automorphic representations µ of GL2(AQ) with trivial central character unramified outside S

with µ∞ = Dλ1+λ2+3 and with µp of depth 0 for every place p ∈ Sfin, and where the third direct sum is taken

over subsets Σ ⊆ S with µv a discrete series representation for every place v ∈ Σ such that (−1)#Σ = ϵ(12 , µ).

Proof. We have the spectral decomposition

H∗
disc,[P1]

(SKfin
(C),Vλ) ≃

⊕
ω

⊕
ψ∈Ψdisc,[P1]

(G,ω)

(ψ=(µ⊠1)⊞(χ⊠ν2))

⊕
π∈Π(ψ)

⟨·,π⟩=ϵ( 1
2
,µ⊗χ−1)

πKfin
fin ⊗H

∗(g,K ′
∞;π∞ ⊗ Vλ)

where the first direct sum is taken over unitary Hecke characters ω : Q× \A×
Q → C×, and where the second direct

sum is taken over unitary cuspidal automorphic representations µ of GL2(AQ) with central character ωµ = ω

with µ∞ = Dλ1+λ2+3, and over unitary Hecke characters χ : Q× \ A×
Q → C× with χ2 = ω. Twisting by χ−1,
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we may reduce to the case of trivial central character, in which case we have

H∗
disc,[P1]

(SKfin
(C),Vλ) ≃

⊕
ω

⊕
ψ∈Ψdisc,[P1]

(G,1)

(ψ=(µ⊠1)⊞(1⊠ν2))

⊕
π∈Π(ψ)

⟨·,π⟩=ϵ( 1
2
,µ)

(ωfinπfin)
Kfin ⊗H∗(g,K ′

∞;ω∞π∞ ⊗ Vλ)

where the first direct sum is taken over unitary Hecke characters ω : Q× \A×
Q → C×, and where the second direct

sum is taken over unitary cuspidal automorphic representations µ of GL2(AQ) with trivial central character with

µ∞ = Dλ1+λ2+3. Equivalently, we have

H∗
disc,[P1]

(SKfin
(C),Vλ) ≃

⊕
ω

⊕
µ

⊕
Σ⊆S

(ωfinπ(µfin, µ
Σ
fin))

Kfin ⊗H∗(g,K ′
∞;ω∞π(µ∞, µ

Σ
∞)⊗ Vλ)

where the first direct sum is taken over unitary Hecke charactersω : Q× \A×
Q → C×, where the second direct sum

is taken over unitary cuspidal automorphic representationsµ ofGL2(AQ)with trivial central character withµ∞ =

Dλ1+λ2+3, and where the third direct sum is taken over subsets Σ ⊆ S with µv a discrete series representation for

every place v ∈ Σ such that (−1)#Σ = ϵ(12 , µ).

Now by Vogan-Zuckerman we have H∗(g,K ′
∞;ω∞π(µ∞, µ

Σ
∞) ⊗ Vλ) = 0 unless ω∞ ∈ {1, sign}. Since

Kfin =
∏
p∈Sfin

Pp×
∏
p ̸∈Sfin

GSp4(Zp), we have (ωfinπ(µfin, µ
Σ
fin))

Kfin = 0unlessω andµ are unramified out-

sideS, in which case we have (ωfinπ(µfin, µ
Σ
fin))

Kfin ≃⊠p∈Sfin
rPp(ωpπ(µp, µ

Σ
p )), and we haverPp(ωpπ(µp, µ

Σ
p )) =

0 unless ωp is tamely ramified and µp is of depth 0.

For the Galois action, we have a spectral decomposition

H∗
disc,[P1]

(SKfin
,Vλ) ≃

⊕
ω

⊕
µ

⊕
Σ⊆S

(
⊠
p∈Sfin

rPp(ωpπ(µp, µ
Σ
p ))
)
⊠ ρωπ(µ,µΣ)

and by 4.4.7 the ℓ-adic Galois representation ρωπ(µ,µΣ) is given by

ρωπ(µ,µΣ) ≃


Lλ2+1
ω ⊕ Lλ1+2

ω π(µ∞, µ
Σ
∞) ≃ π(1)±∞

ρωµ π(µ∞, µ
Σ
∞) ≃ πH∞

By Gabber’s purity theorem, the Galois representationLλ2+1
ω , which is pure of weightλ1+λ2+2, is concentrated

in degree 2, and the Galois representation Lλ1+2
ω , which is pure of weight λ1 + λ2 + 4, is concentrated in degree 4.
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Similarly, the Galois representation ρωµ, which is pure of weightλ1+λ2+3, is concentrated in degree 3. The result

follows, noting that π(µ∞, µΣ∞) ≃ π(1)±∞ precisely if∞ ̸∈ Σ and π(µ∞, µΣ∞) ≃ πH∞ precisely if∞ ∈ Σ.

Theorem 4.4.9. LetS be a finite set of places ofQ including∞, and letSfin = S−{∞}. LetKfin ⊆ G(A∞
Q ) be

a compact open subgroup of the formKfin =
∏
p∈Sfin

Pp ×
∏
p̸∈Sfin

G(Zp) where Pp ⊆ G(Qp) is a standard

parahoric subgroup. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) and let Vλ be the corresponding ℓ-adic local system on SKfin
. Assume that λ1 = λ2.

Then the Siegel-CAP cuspidal cohomologyH∗
cusp,[P1]

(SKfin
,Vλ) is concentrated in degrees 2, 3, 4 and is given

as a representation of
∏
p∈Sfin

Pp/P+
p ×Gal(Q/Q) by

H2
cusp,[P1]

(SKfin
,Vλ) ≃

⊕
ω

⊕
µ

⊕
∅≠Σ⊆S
∞̸∈Σ

(
⊠
p∈Sfin

rPp(ωpπ(µp, µ
Σ
p ))
)
⊠ Lλ2+1

ω

⊕
⊕
ω

⊕
µ

L( 1
2
,µ)=0

(
⊠
p∈Sfin

rPp(ωpπ(µp, µ
∅
p))
)
⊠ Lλ2+1

ω

H3
cusp,[P1]

(SKfin
,Vλ) ≃

⊕
ω

⊕
µ

⊕
Σ⊆S
∞∈Σ

(
⊠
p∈Sfin

rPp(ωpπ(µp, µ
Σ
p ))
)
⊠ ρωµ

H4
cusp,[P1]

(SKfin
,Vλ) ≃

⊕
ω

⊕
µ

⊕
∅≠Σ⊆S
∞̸∈Σ

(
⊠
p∈Sfin

rPp(ωpπ(µp, µ
Σ
p ))
)
⊠ Lλ1+2

ω

⊕
⊕
ω

⊕
µ

L( 1
2
,µ)=0

(
⊠
p∈Sfin

rPp(ωpπ(µp, µ
∅
p))
)
⊠ Lλ1+2

ω

where the first direct sum is taken over unitary Hecke characters ω : Q× \ A×
Q → C× unramified outside S with

ω∞ ∈ {1, sign} and with ωp tamely ramified for every place p ∈ Sfin, where the second direct sum is taken over

unitary cuspidal automorphic representations µ of GL2(AQ) with trivial central character unramified outside S

with µ∞ = Dλ1+λ2+3 and with µp of depth 0 for every place p ∈ Sfin, and where the third direct sum is taken

over subsets Σ ⊆ S with µv a discrete series representation for every place v ∈ Σ such that (−1)#Σ = ϵ(12 , µ).

Proof. The result follows from 4.4.8 noting that the Saito-Kurokawa lift π = π(µ, µΣ) is cuspidal unless Σ = ∅

and L(12 , µ) ̸= 0, so the third direct sum is taken over nonempty subsets ∅ ̸= Σ ⊆ S as above, or in the case

Σ = ∅ the second direct sum is taken over unitary cuspidal automorphic representationsµ ofGL2(AQ)with trivial

central character as above withL(12 , µ) = 0.
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Note that the Siegel-CAP inner cohomologyH∗
!,P1

(SKfin
,Vλ) is isomorphic to the Siegel-CAP cuspidal coho-

mologyH∗
cusp,[P1]

(SKfin
,Vλ).

4.4.7 Soudry Lifts, Klingen-CAP Cohomology

We review the Soudry lift, following [106, Section 4] and [105, Section 1] specialized to the case F = Q.

Soudry Lifts We consider the trivial central character Soudry lift corresponding to the A-parameters forGSp4(AQ)

of the formψ = µ⊠ν2 forµ a self-dual unitary cuspidal automorphic representation ofGL2(AQ)with nontrivial

central character ωµ coming from the embedding of dual groups

O2(C)→ Sp4(C) A 7→ diag(A,A)

For such an A-parameter ψ we have a corresponding L-packet Π(ψ) = Π(µ) of automorphic representations of

GSp4(AQ) with an equality of L-functions

L(s,Π(µ)) = L(s+ 1
2 , µ)L(s−

1
2 , µ)

The central character ωµ of µ determines a quadratic extension F of Q and a quadratic Hecke character θ : F× \

A×
F → C× such that µ = AIFQ(θ) is the automorphic induction of θ from F to Q.

Forµ =
⊗

v µv whereµv is an irreducible admissible representation ofGL2(Qv)we haveΠ(µ) =
⊗

v Π(µv)

for local L-packets Π(ψv) = Π(µv) corresponding to the local A-parameter ψv : LQv × SL2(C) → Sp4(C)

given in terms of the L-parameter φµv : LQv → O2(C) by

(w, 1) 7→ diag(φµv(w), φµv(w)) (1,
(
a b
c d

)
) 7→

(
a b
a b

c d
c d

)

which are fibered over characters of the centralizer group Sψv = Sψv/S
0
ψv
Z given as follows: for θ =

⊗
v θv

where θv : F×
v → C× is a quadratic character, if v does not split in F and v is the unique place of F above v then

µv = Ind
GL1(Fv)
GL1(Qv)θv, and if v splits in F and v1, v2 are the places of F above v then θv := (θv1 , θv2) is a pair of
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characters θv1 , θv2 : F×
v → C× and µv = θv1 × θv2 is a principal series representation. Then we have

Sψv =


0 θv not Galois invariant

Z/2Z otherwise

In other words, we have Π(ψ) =
⊗

v Π(ψv) for local L-packets

Π(ψv) =


{π+v } θv not Galois invariant

{π+v , π−v } otherwise

The local L-packet Π(ψv) contains the unique unitary non-tempered non-generic irreducible admissible repre-

sentation π+v (the basepoint) with local L-parameter φψv : LQv → Sp4(C), w 7→ ψ(w,diag(ν1/2, ν−1/2)).

For v = p a finite place of Q the basepoint π+p is the Langlands quotient of the Klingen induced representation

ωµpν ⋊ µpν
−1/2 where:

• π+p = θp1θ
−1
p2 ⋊ θp21GL2(Qp) (type IIIb) for ωµp = 1 and θp = (θp1 , θp2) is not Galois invariant;

• π+p = L(ωµpν × ωµp ⋊ χpν
−1/2) (type Vd) for ωµp ̸= 1 and θp = χp ◦ NmFp/Qp for χp a quadratic

character of GL1(Qp) (equivalently µp = χp × ωµpχp);

• π+p = L(ν × 1GL1(Qp) ⋊ χpν
−1/2) (type VId) for ωµp = 1 and θp = (χp, χp) is Galois invariant

(equivalently µp = χp × χp);

• π+p = L(ωµpν ⋊ µpν
−1/2) (type IXb) for ωµp ̸= 1 and θp not Galois invariant (equivalently µp is super-

cuspidal).

For v = ∞ the Archimedean place of Q the basepoint π+∞ is the Langlands quotient of the Klingen induced

representation ωµ∞ν ⋊ µ∞ν
−1/2 where:

• π+∞ = θoo1θ
−1
oo2 ⋊ θoo21GL2(R) (minimal K∞-type (k + 1, 1)) for ωµ∞ = 1 and θoo = (θoo1 , θoo2) is not

Galois invariant;

• π+∞ = L(ωµ∞ν × ωµ∞ ⋊ χ∞ν
−1/2) (minimalK∞-type (1, 1)) for ωµ∞ ̸= 1 and θoo = χ∞ ◦NmFoo/R

for χ∞ a quadratic character of GL1(R);

• π+∞ = L(ν × 1GL1(R) ⋊ χ∞ν
−1/2) (minimal K∞-type (0, 0)) for ωµ∞ = 1 and θoo = (χoo1 , χoo2) is

Galois invariant;
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• π+∞ = L(ωµ∞ν ⋊D(k)ν−1/2) (minimalK∞-type (k + 1, 1)) for ωµ∞ ̸= 1 and θoo not Galois invariant.

The global A-packet Π(ψ) = {π =
⊗

v πv|πv ∈ Π(ψv), πv = π+v for almost all places v of Q} contains the

automorphic representation π+ =
⊗

v π
+
v an isobaric constituent of the Klingen induced representation ωµν ⋊

µν−1/2. By Arthur’s multiplicity formula the Soudry packets are always stable: for π ∈ Π(µ) we havem(π) = 1.

Theta Lifts We now explain how the above A-packets can be constructed by theta lifts. Consider the representa-

tions of GO2(AF ) parameterized as follows. For v a place of F over a place v of Q and θv the quadratic character

of GL1(F
×
v ) corresponding to Fv/Qv we have the local representation θ̃v = Ind

GO2(Fv)
GSO2(Fv)

θv of GO2(Fv), where

GSO2(Fv) ≃ GL1(Fv) and GO2(Fv) ≃ ⟨τv⟩⋉GSO2(Fv) where τv is the nontrivial element of Gal(Fv/Qv);

when θv is not Galois invariant we have that IndGO2(Fv)
GSO2(Fv)

θv = θ̃+v is an irreducible 2-dimensional representation

of GO2(Fv), and when θv is Galois invariant we have that IndGO2(Fv)
GSO2(Fv)

θv = θ̃+v ⊕ θ̃−v splits as a direct sum of

irreducible characters of GO2(Fv). Then for θ : F× \ A×
F → C× the quadratic Hecke character corresponding

to F/Q and for S a finite set of places v of F for which θv is Galois invariant with #S even we have the global

representation θ̃S =
⊗

v∈S θ̃
−
v ⊗

⊗
v ̸∈S θ̃

+
v .

For v = p a finite place of Q the theta lift produces an irreducible admissible representation πp from a local

representation θ̃p corresponding to µp. By conjugation of Soudry A-parameters to Howe-Piatetski-Shapiro A-

parameters the local L-packets Π(ψp) for the local A-parameterψp = µp ⊠ ν2 are given by Π(ψp) = {π+p }where

π+p is the theta lift of the local representation θ̃+p when θp is not Galois invariant (necessarily the basepoint), and by

Π(ψp) = {π+p , π−p } where π±p are the theta lifts of the local representations θ̃±p when θp is Galois invariant. We

obtain the following description for the members of the local L-packets Π(ψp) of Soudry type, along with their

corresponding L-parameters and epsilon-values (compare to [106, Table 3]):

Type ωµp θp πp φp ϵ(πp)

III b ωµp = 1 (θp1 , θp2), θp1 ̸= θp2 θp1θ
−1
p2 ⋊ θp21GL2(Qp) (θp1 ⊕ θp2)⊗ φ1 1

V
a*

ωµp ̸= 1 χp ◦NmFp/Qp

δ∗([ωµp , ωµpν]⋊ χpν
−1/2) (χp ⊕ χpωµp)⊗ φSt −1

d L(ωµpν × ωµp ⋊ χpν
−1/2) (χp ⊕ χpωµp)⊗ φ1 1

VI
c

ωµp = 1 (χp, χp)
L(StGL2(Qp)ν

1/2 ⋊ χpν
−1/2) χpφ1 ⊕ χpφSt −1

d L(ν × 1GL1(Qp) ⋊ χpν
−1/2) (χp ⊕ χp)⊗ φ1 1

IX b ωµp ̸= 1 Not Gal-invariant L(ωµpν ⋊ µpν
−1/2) ϕ⊗ φ1 1
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For v =∞ the Archimedean place of Q the theta lift produces an irreducible admissible representation π∞ from a

local representation θ̃oo corresponding to µ∞. By conjugation of Soudry A-parameters to Howe-Piatetski-Shapiro

A-parameters the local L-packets Π(ψ∞) for the local A-parameterψ∞ = µ∞ ⊠ ν2 are given by Π(ψ∞) = {π+∞}

where π+∞ is the theta lift of the local representation θ̃+oo when θoo is not Galois invariant (necessarily the basepoint),

and by Π(ψ∞) = {π+∞, π−∞} where π±∞ are the theta lifts of the local representations θ̃±oo when θoo is Galois

invariant. We obtain the following description for the members of the local L-packetsΠ(ψ∞) of Soudry type, along

with their corresponding L-parameters and epsilon-values (compare to [106, Table 3]):

Type ωµ∞ θoo π∞ φ∞ ϵ(π∞)

ωµ∞ = 1 (θoo1 , θoo2), θoo1 ̸= θoo2 θoo1θ
−1
oo2 ⋊ θoo21GL2(R) (θoo1 ⊕ θoo2)⊗ φ1 1

(2, 2)
ωµ∞ ̸= 1 χ∞ ◦NmFoo/R

DH
1,0 (χ∞ ⊕ χ∞ωµ∞)⊗ φD1 −1

(1, 1) L(ωµ∞ν × ωµ∞ ⋊ χ∞ν
−1/2) (χ∞ ⊕ χ∞ωµ∞)⊗ φ1 1

(0, 0)
ωµ∞ = 1 (χ∞, χ∞)

L(D1ν
1/2 ⋊ χ∞ν

−1/2) χ∞φ1 ⊕ χ∞φSt −1

(1,−1) L(ν × 1GL1(R) ⋊ χ∞ν
−1/2) (χ∞ ⊕ χ∞)⊗ φ1 1

(k + 1, 1) ωµ∞ ̸= 1 Not Gal-invariant L(ωµ∞ν ⋊Dkν−1/2) ϕ⊗ φ1 1

Klingen-CAP Cohomology Consider the Klingen-CAP part of the automorphic discrete spectrum which by

Arthur’s classification admits a spectral decomposition

L2
disc,[P2]

(G(Q)AG(R)◦ \G(AQ)) ≃
⊕
ω

⊕
ψ∈Ψdisc,[P2]

(G,ω)

(ψ=µ⊠ν2)

⊕
π∈Π(ψ)

π

The Klingen-CAP partH∗
disc,[P2]

(SKfin
(C),Vλ) of the intersection cohomologyH∗

disc(SKfin
(C),Vλ) admits a

spectral decomposition

H∗
disc,[P2]

(SKfin
(C),Vλ) ≃

⊕
ω

⊕
ψ∈Ψdisc,[P2]

(G,ω)

(ψ=µ⊠ν2)

⊕
π∈Π(ψ)

πKfin
fin ⊗H

∗(g,K ′
∞;π∞ ⊗ Vλ)
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as a representation of HKfin
. Similarly, the Klingen-CAP part H∗

disc,[P2]
(SKfin

,Vλ) of the ℓ-adic intersection

cohomologyH∗
disc(SKfin

,Vλ) admits a spectral decomposition

H∗
disc,[P2]

(SKfin
,Vλ) ≃

⊕
ω

⊕
ψ∈Ψdisc,[P2]

(G,ω)

(ψ=µ⊠ν2)

⊕
π∈Π(ψ)

πKfin
fin ⊠ ρπ

as a representation ofHKfin
×Gal.

To determine the structure of the representationsH∗
disc,[P2]

(SKfin
,Vλ){πfin} = πKfin ⊠ ρπ we use the trace

formula:

Theorem 4.4.10. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) and let Vλ be the corresponding ℓ-adic local system on SKfin
for a compact open subgroup

Kfin ⊆ G(A∞
Q ). Let ψ = µ ⊠ ν2 ∈ Ψdisc,[P2](G,ω) be an A-parameter of Soudry type, where µ is a unitary

cuspidal automorphic representation of GL2(AQ) with central character ωµ = ω.

If π ∈ Π(ψ) contributes nontrivially in the intersection cohomology H∗
disc,[P2]

(SKfin
,Vλ), then the contri-

bution occurs only for λ2 = 0 and is given as a representation ofHKfin
×Gal by

H∗
disc,[P2]

(SKfin
,Vλ){πfin} ≃ ρµ ⊕ ρµL

Proof. For ψ = µ ⊠ ν2 ∈ Ψdisc,[P2](G,ω) an A-parameter of Soudry type and for π ∈ Π(ψ) an automorphic

representation of G(AQ) lifted from the automorphic representation πH = (ωµ ◦ det) ⊠ µ of H(AQ) with

πKfin
fin ̸= 0 and with π∞ a cohomological (g,K ′

∞)-module with central and infinitesimal characters determined

by those of Vλ, we have that λ2 = 0 and π∞ = π
(2)
∞ is the Langlands quotient π(2)∞ = L(ωµ∞ν ⋊Dλ1+2ν

−1/2)

which has nonzero (g,K ′
∞) concentrated in degrees 2 and 4 with Hodge numbers (λ1 + 2, λ2) and (λ1, λ2 + 2),

respectively (λ1+3, λ2+1) and (λ1+1, λ2+3). Such a representation π has multiplicitym(π) = 1: the packet

Π(ψ) is stable.

Choose a correspondence fp,∞G ∈ C∞
c (Kp \G(Ap,∞Q )/Kp) which is a projection onto the A-packet Π(ψfin),

and choose a matching correspondence fp,∞H which is a projection onto πHfin. Recall that the test function fG∞

satisfies tr(π∞(fG∞)) = 1. Recall that the test function ϕGj satisfies

tr(Π(ψp)(ϕ
G
p )) = p

3
2
j
(
c1(µp)

jp
1
2
j + c2(µp)

jp
1
2
j + c1(µp)

jp−
1
2
j + c2(µp)

jp−
1
2
j
)
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Consider the test function fG = ϕGj f
p,∞
G fG∞ and the matching test function fH = ϕHj f

p,∞
H fH∞ . Now the

contribution of the A-packet Π(ψ) to STFG(fG) is given by

∑
π∈Π(ψ)

m(π)tr(π∞(fG∞))tr(Π(ψfin)(f
p,∞
G ))p

3
2
j
(
c1(µp)

jp
1
2
j + c2(µp)

jp
1
2
j + c1(µp)

jp−
1
2
j + c2(µp)

jp−
1
2
j
)

= p
3
2
j
(
c1(µp)

jp
1
2
j + c2(µp)

jp
1
2
j + c1(µp)

jp−
1
2
j + c2(µp)

jp−
1
2
j
)

By stability of the packet Π(ψ) and by matching, the contribution of πH to STFH(fH) vanishes. It follows that
we have the trace

tr(Frobjp|H∗
disc,[P2](SKfin ,Vλ){πfin}) = p

λ1+λ2
2 STFG(fG) = p

λ1+λ2+3
2

j
(
c1(µp)

jp
1
2
j + c2(µp)

jp
1
2
j + c1(µp)

jp−
1
2
j + c2(µp)

jp−
1
2
j
)

Since λ2 = 0 we can write

p
λ1+λ2+3

2
j(c1(µp)

jp
1
2
j + c2(µp)

jp
1
2
j + c1(µp)

jp−
1
2
j + c2(µp)

jp−
1
2
j)

= p
λ1+2

2 (c1(µp) + c2(µp)) + p
λ1+2

2
+1(c1(µp) + c2(µp))

which is the trace of Frobjp on ρµ ⊕ ρµL whose contribution toH∗
disc,[P2]

(SKfin
,Vλ) is concentrated in degrees 2

and 4. It follows that

H∗
disc,[P2]

(SKfin
,Vλ){πfin} ≃ ρµ ⊕ ρµL

as a representation ofHKfin
×Gal. The result follows.

4.4.8 Howe-Piatetski-Shapiro Lifts

We review the Howe-Piatetski-Shapiro lift, following [106, Section 2] and [105, Section 1] specialized to the case

F = Q; while this can be used to construct (holomorphic) Siegel modular forms of weights 1 and 2, none of these

contribute to the cohomology of local systems on Siegel modular threefolds. To that end we quickly review the

construction of the Howe-Piatetski-Shapiro packets in terms of theta lifts from Mp2(AQ) to PGSp4(AQ), where

the theta lift from Mp2(R) to PGSp4(R) provides the information relevant for applying the Vogan-Zuckerman

classification in order to rule out cohomological occurrence.
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Howe-Piatetski-Shapiro Lifts We consider the trivial central character Howe-Piatetski-Shapiro lift correspond-

ing to the A-parameters for GSp4(AQ) of the form ψ = (χ1 ⊠ ν2) ⊞ (χ2 ⊠ ν2) for distinct quadratic Hecke

characters χ1, χ2 : Q× \ A×
Q → C× coming from the embedding of dual groups

{±1} × {±1} → Sp4(C) (t1, t2) 7→ diag(t1, t2, t2, t1)

where for distinct quadratic Hecke characters χ1, χ2 : Q× \ A×
Q → C× we have an global A-packet Π(ψ) of

automorphic representations π of GSp4(AQ) with an equality of L-functions

L(s, π) = L(s+ 1
2 , χ1)L(s− 1

2 , χ1)L(s+
1
2 , χ2)L(s− 1

2 , χ2)

For χ1 =
⊗

v χ1,v and χ2 =
⊗

v χ2,v where χ1,v, χ2,v : Q×
v → C× are quadratic characters we have Π(π) =⊗

v Π(ψv) for local L-packets Π(ψv) corresponding to the local A-parameter ψv : LQv × SL2(C) → Sp4(C)

given by

(w, 1) 7→ diag(χ1,v(w), χ2,v(w), χ2,v(w), χ1,v(w)) (1,
(
a b
c d

)
) 7→

(
a b
a b
c d

c d

)

which are fibered over characters of the centralizer group Sψv = Sψv/S
0
ψv
Z = Z/2Z. In other words, we have

Π(ψ) =
⊗

v Π(ψv) for local L-packets Π(ψv) = {π+v , π−v }.

The local L-packet Π(ψv) contains the unique unitary non-tempered non-generic irreducible admissible repre-

sentationπ+v (the basepoint) with local L-parameterφv : LQv → Sp4(C) given byw 7→ ψv(w,diag(|w|1/2v , |w|−1/2
v )).

For v = p a finite place of Q the basepoint π+p is the Langlands quotient of the Borel induced representation

χ1,pχ2,pν × χ1,pχ2,p ⋊ χ2,pν
−1/2 where:

• π+p = L(χ1,pχ2,pν × χ1,pχ2,p ⋊ χ2,pν
−1/2) (type Vd) for χ1,p ̸= χ2,p;

• π+p = L(ν × 1GL1(Qp) ⋊ χ2,pν
−1/2) (type VId) for χ1,p = χ2,p.

For v = ∞ the Archimedean place of Q the basepoint π+∞ is the Langlands quotient of the Borel induced repre-

sentation χ1,∞χ2,∞ν × χ1,∞χ2,∞ ⋊ χ2,∞ν
−1/2 where:

• π+∞ = L(signν × sign⋊ ν1/2) (minimalK∞-type (1, 1)) for χ1,∞ ̸= χ2,∞;

• π+∞ = L(ν × 1GL1(R) ⋊ χ2,∞ν
−1/2) (minimalK∞-type (0, 0)) for χ1,∞ = χ2,∞.
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The global A-packet Π(ψ) = {π =
⊗

v πv|πv ∈ Π(ψv), πv = π+v for almost all places v of Q} contains the

automorphic representation π+ =
⊗

v π
+
v an isobaric constituent of the Borel induced representation χ1χ2ν ×

χ1χ2⋊χ2ν
−1/2. By Arthur’s multiplicity formula the Howe-Piatetski-Shapiro packets are unstable: forπ ∈ Π(ψ)

we have m(π) = 1 precisely if ϵ(π) = 1. That is, for π =
⊗

v πv ∈ Π(ψ) and for Σ the set of places v of Q

such that πv is non-generic we havem(π) = 1 precisely if #Σ is even. In particular Π(χ1, χ2) contains 1 discrete

element if #Σ = 0 and contains 2#Σ−1 discrete elements otherwise.

Theta Lifts We now explain how the above A-packets can be constructed by theta lifts. Consider the Weil

representations of Mp2(AQ) parameterized as follows. For v a place of Q and χv : Q×
v → C× a quadratic

character we have the local Weil representation π̃χv = π̃+χv ⊕ π̃
−
χv of Mp2(Qv) where π̃+χv is the even local Weil

representation and π̃−χv is the supercuspidal odd local Weil representation. Then forχ =
⊗

v χv : Q×\A×
Q → C×

a nontrivial quadratic Hecke character and for S a finite set of places of Q with #S even we have the global Weil

representation π̃Sχ =
⊗

v∈S π̃
−
χv ⊗

⊗
v ̸∈S π̃

+
χv . Now by [106, Lemma 2.1], asS runs through the set of places of Q

with #S even, the theta lifts of the global Weil representations π̃Sχ from Mp2(AQ) to SO5(AQ) ≃ PGSp4(AQ)

run through the discrete automorphic representations in the global A-packet Π(ψ) with parameter ψ = (χ ⊠

ν2)⊞ (1⊠ ν2). The general case is obtained by twisting: for ω : Q× \ A×
Q → C× a unitary Hecke character and

for χ1, χ2 : Q× \ A×
Q → C× unitary Hecke characters with χ2

1 = χ2
2 = ω, as S runs through the set of places

of Q with #S even, the twists by χ2 of the theta lifts of the global Weil repersentations π̃Sχ1/χ2
from Mp2(AQ)

to SO5(AQ) ≃ PGSp4(AQ) from run through the discrete automorphic representations in the global A-packet

Π(ψ) with parameter ψ = (χ1 ⊠ ν2)⊞ (χ2 ⊠ ν2).

For v = p a finite place of Q and for χp : Q×
p → C× a quadratic character the theta lift produces irreducible

admissible representations π±p of SO5(Qv) ≃ PGSp4(Qp) from the local Weil representations π̃±χp . We obtain

the following theta lifts (compare to [106, 17]):

Type π̃χp πp φp

V
a* π̃−χp δ∗([χp, χpν]⋊ ν1/2) χpφSt ⊕ φSt

d π̃+χp L(χpν × χp ⋊ ν−1/2) χpφ1 ⊕ φ1

VI
c π̃−1p L(StGL2(Qp)ν

1/2 ⋊ ν−1/2) φ1 ⊕ φSt

d π̃+1p L(ν × 1GL1(Qp) ⋊ ν−1/2) φ1 ⊕ φ1
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whereφ1 is the L-parameter of the trivial representation 1GL2(Qp) ofGL2(Qp) and whereφSt is the L-parameter of

the Steinberg representation StGL2(Qp) of GL2(Qp). By [106, Lemma 2.1] it follows that for a quadratic character

χp : Q×
p → C× the local L-packets Π(ψp) for the local A-parameter ψp = (χp ⊠ ν2) ⊞ (1 ⊠ ν2) are given

by Π(ψp) = {π+p , π−p } where π±p are the theta lifts of the local Weil representations π̃±χp . The general case is

obtained by twisting: for characters χ1,p, χ2,p : Q×
p → C× the local L-packets Π(ψp) for the local A-parameter

ψp = (χ1,p ⊗ ν2) ⊞ (χ2,p ⊠ ν2) are given by Π(ψp) = {π+p , π−p } where π±p are twists by χ2,p of the theta

lifts of the local Weil representations π̃±χ1,p/χ2,p
. We obtain the following description for the members of the local

L-packets Π(ψp) of Howe-Piatetski-Shapiro type, along with their corresponding L-parameters and epsilon-values

(compare to [106, Table 1]):

Type (χ1,p, χ2,p) πp φp ϵ(πp)

V
a*

χ1,p ̸= χ2,p

δ∗([χ1,pχ2,p, χ1,pχ2,pν]⋊ χ2,pν
−1/2) χ1,pφSt ⊕ χ2,pφSt −1

d L(χ1,pχ2,pν × χ1,pχ2,p ⋊ χ2,pν
−1/2) χ1,pφ1 ⊕ χ2,pφ1 1

VI
c

χ1,p = χ2,p

L(StGL2(Qp)ν
1/2 ⋊ χ2,pν

−1/2) χ1,pφ1 ⊕ χ2,pφSt −1

d L(ν × 1GL1(Qp) ⋊ χ2,pν
−1/2) χ1,pφ1 ⊕ χ2,pφ1 1

For v = ∞ the Archimedean place of Q and for χ∞ : R× → C× a quadratic charcter the theta lift produces

irreducible admissible representations π±∞ of SO5(R) ≃ PGSp4(R) from the local Weil representations π̃±χ∞ . We

obtain the following theta lifts:

Type π̃χ∞ π∞ φ∞

(2, 2) π̃−χ∞ DH
1,0 φD1 ⊕ φD1

(1, 1) π̃+χ∞ L(signν × sign⋊ ν−1/2) signφ1 ⊕ φ1

(1,−1) π̃−1∞ L(D1ν
1/2 ⋊ ν−1/2) φ1 ⊕ φD1

(0, 0) π̃+1∞ L(ν × 1GL1(R) ⋊ ν−1/2) φ1 ⊕ φ1

where φ1 is the L-parameter of the trivial representation 1GL2(R) of GL2(R) and φD1 is the L-parameter of the

discrete series representationD1 ofGL2(R)with minimalO(2)-type2 and trivial central character. By [106, Lemma

2.1] it follows that for a quadratic character χ∞ : R× → C× the local L-packets Π(ψ∞) for the local A-parameter

ψ∞ = (χ∞ ⊠ ν2) ⊞ (1 ⊠ ν2) are given by Π(ψ∞) = {π+∞, π−∞} where π±∞ are the theta lifts of the local

Weil representations π̃±χ∞ . The general case is obtained by twisting: for characters χ1,∞, χ2,∞ : R× → C×

the local L-packets Πψ∞ for the local A-parameter ψ∞ = (χ1,∞ ⊗ ν2) ⊞ (χ2,∞ ⊠ ν2) are given by Π(ψ∞) =
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{π+∞, π−∞}where π±∞ are twists by χ2,∞ of the theta lifts of the local Weil representations π̃±χ1,∞/χ2,∞
. We obtain

the following description for the members of the local L-packets Π(ψ∞) of Howe-Piatetski-Shapiro type, along

with their corresponding L-parameters and epsilon-values (compare to [106, Table 1]):

Type (χ1,∞, χ2,∞) π∞ φ∞ ϵ(π∞)

(2, 2)
χ1,∞ ̸= χ2,∞

DH
1,0 φD1 ⊕ φD1 −1

(1, 1) L(signν × sign⋊ ν−1/2) signφ1 ⊕ φ1 1

(1,−1)
χ1,∞ = χ2,∞

L(D1ν
1/2 ⋊ χ2,∞ν

−1/2) χ1,∞φ1 ⊕ φD1 −1

(0, 0) L(ν × 1GL1(R) ⋊ χ2,∞ν
−1/2) χ1,∞φ1 ⊕ χ2,∞φ1 1

TheK∞-types in the table are obtained as follows. For a quadratic character χ2,∞ : R× → C× the representation

signν × sign⋊ χ2,∞ν
−1/2 has four irreducible constituents: DW

1,0 the large generic limit discrete series represen-

tation of PGSp4(R) with minimal K∞-type (1,−1) occurring with multiplicity 1, L(D1ν
1/2 ⋊ χ2,∞ν

−1/2)

the non-tempered Langlands quotient ofD1ν
1/2 ⋊ χ2,∞ν

−1/2 with minimalK∞-type (1,−1) occurring with

multiplicity 2, andL(signν × sign⋊ χ2,∞ν
−1/2) the Langlands quotient of signν × sign⋊ χ2,∞ν

−1/2 with

minimalK∞-type (1, 1) occurring with multiplicity 1. For this last constituent theK∞-type (1, 1) is obtained by

subtracting theK∞-types of the other constituents from theK∞-types of the induced representation. We obtain

the followingK∞-type regions (compare to [106, 20]):

For a quadratic character χ2,∞ : R× → C× the representation ν × 1GL1(R) ⋊ χ2,∞ν
−1/2 has four irreducible

constituents:DH
1,0 the holomorphic limit discrete series representation ofPGSp4(R)with minimalK∞-type (2, 2)

occurring with multiplicity 1,DW
1,0 the large generic limit discrete series representation ofPGSp4(R)with minimal

K∞-type (1,−1) occurring with multiplicity 1,L(D1ν
1/2 ⋊ χ2,∞ν

−1/2) the non-tempered Langlands quotient

ofD1ν
1/2 ⋊ χ2,∞ν

−1/2 with minimal K∞-type (1,−1) occurring with multiplicity 1, and L(ν × 1GL1(R) ⋊

χ2,∞ν
−1/2) the Langlands quotient of ν × 1GL1(R) ⋊χ2,∞ν

−1/2 with minimal U(2)-type (0, 0) occurring with

multiplicity 1. For this last constituent theK∞-type (0, 0) is obtained by subtracting theK∞-types of the other
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constituents from the K∞-types of the induced representation. Note thatDH
1,0 is the representation underlying

holomorphic Siegel modular forms of weight 2. We obtain the followingK∞-type regions (compare to [106, 21]):

Borel-CAP Cohomology We finally explain how the above description of the (Archimedean) local L-packets

implies that Howe-Piatetski-Shapiro lifts do not contribute to the cohomology of local systems. Consider the Borel-

CAP part of the automorphic discrete spectrum which by Arthur’s classification admits a spectral decomposition

L2
disc,[P0]

(G(Q)AG(R)◦ \G(AQ)) =
⊕
ω

⊕
ψ∈Ψdisc,[P0]

(G,ω)

(ψ=(χ1⊠ν2)⊞(χ2⊠ν2))

⊕
π∈Π(ψ)
⟨·,π⟩=1

π

We will consider the Borel-CAP partIH∗
[P0]

(SKfin
,Vλ)of the intersection cohomologyIH∗(SKfin

,Vλ) = H∗(SKfin
, j!∗Vλ)

which by the above admits a spectral decomposition

H∗
disc,[P0]

(SKfin
,Vλ) =

⊕
ω

⊕
ψ∈Ψdisc,[P0]

(G,ω)

(ψ=(χ1⊠ν2)⊞(χ2⊠ν2))

⊕
π∈Π(ψ)
⟨·,π⟩=1

m(π)πKfin
fin ⊗H

∗(g,K ′
∞;π∞ ⊗ Vλ)

Theorem 4.4.11. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) and let Vλ be the corresponding ℓ-adic local system on SKfin
for a compact open subgroup

Kfin ⊆ G(A∞
Q ). Then the Borel-CAP cohomologyH∗

disc,[P0]
(SKfin

,Vλ) is trivial.

Proof. Let ψ ∈ Ψdisc,[P0](G,ω) be an A-parameter of Howe-Piatetski-Shapiro type and let π =
⊗

v πv ∈

Π(ψ) be a member of the corresponding L-packet. Then π∞ can only be of the formL(signν × sign⋊ ν−1/2),

DH
1,0,L(ν × 1GL1(R) ⋊ χ∞ν

−1/2), orL(D1ν
1/2 ⋊ χ1ν

−1/2) with minimalK∞-types (1, 1), (2, 2), (0, 0), and

(1,−1) respectively, none of which are cohomological by the Vogan-Zuckerman classification forGSp4. The result

follows.
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Despite not contributing to cohomology, the Howe-Piatetski-Shapiro packets are still of some use to us: by

conjugation of Soudry A-parameters to Howe-Piatetski-Shapiro A-parameters, one can reduce the description of

Soudry packets to the description of Howe-Piatetski-Shapiro packets, at least in the case of trivial central character.

4.4.9 1-Dimensional Cohomology

There is one last case to consider, namely the A-parameters of 1-dimensional type, which contribute to intersection

cohomology, but never to cuspidal cohomology. There is little to review in this case; we jump straight to the proof.

Consider the 1-dimensional part of the automorphic discrete spectrum L2
disc,1dim(G(Q)AG(R)◦ \ G(AQ))

which by Arthur’s classification admits a spectral decomposition

L2
disc,1dim(G(Q)AG(R)◦ \G(AQ)) ≃

⊕
ω

⊕
ψ∈Ψdisc,1dim(G,ω)

(ψ=χ⊠ν4)

χ ◦ sim

The 1-dimensional partH∗
disc,1dim(SKfin

(C),Vλ) of the intersection cohomologyH∗
disc(SKfin

(C),Vλ) admits a

spectral decomposition

H∗
disc,1dim(SKfin

(C),Vλ) ≃
⊕
ω

⊕
ψ∈Ψdisc,1dim(G,ω)

(ψ=χ⊠ν4)

(χfin ◦ sim)Kfin ⊗H∗(g,K ′
∞;χ∞ ◦ sim⊗ Vλ)

as a representation of HKfin
. Similarly, the 1-dimensional part H∗

disc,1dim(SKfin
,Vλ) of the ℓ-adic intersection

cohomologyH∗
disc(SKfin

,Vλ) admits a spectral decomposition

H∗
disc,1dim(SKfin

,Vλ) ≃
⊕
ω

⊕
ψ∈Ψdisc,1dim(G,ω)

(ψ=χ⊠ν4)

(χfin ◦ sim)Kfin ⊠ ρχ◦sim

as a representation ofHKfin
×Gal.

To determine the structure of the representationsH∗
disc,1dim(SKfin

,Vλ){πfin} = (χfin ◦ sim)Kfin ⊠ ρχ◦sim

we use the trace formula:

Theorem 4.4.12. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) and let Vλ be the corresponding ℓ-adic local system on SKfin
for a compact open subgroup
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Kfin ⊆ G(A∞
Q ). Let ψ = χ ⊗ ν4 ∈ Ψdisc,1dim(G,ω) be an A-parameter of 1-dimensional type, where χ :

Q× \ A×
Q → C× is a unitary Hecke character with χ4 = ω.

If π ∈ Π(ψ) contributes nontrivially in the intersection cohomologyH∗
disc,gen(SKfin

,Vλ), then the contribu-

tion occurs only for λ1 = λ2 = 0 and is given as a representation ofHKfin
×Gal by

H∗
disc,gen(SKfin

,Vλ){πfin} ≃ (χfin ◦ sim)Kfin
fin ⊠ (L0

χ ⊕ L1
χ ⊕ L2

χ ⊕ L3
χ)

Proof. Forψ = χ⊗ν4 ∈ Ψdisc,1dim(G,ω) an A-parameter of 1-dimensional type and forπ ∈ Π(ψ) an automor-

phic representation ofG(AQ) with πKfin
fin ̸= 0 and with π∞ a cohomological (g,K ′

∞)-module with central and

infinitesimal characters determined by those of Vλ, we have that π∞ = χ∞ ◦ sim is a 1-dimensional representation

which has nonzero (g,K ′
∞)-cohomology concentrated in degrees 0, 2, 4, 6 with Hodge numbers (0, 0), (1, 1),

(2, 2), and (3, 3) respectively. Such a representation π has multiplicitym(π) = 1: the packet Π(ψ) is stable.

Choose a correspondence fp,∞G ∈ C∞
c (Kp \ G(Ap,∞Q )/Kp) which is a projection onto χfin ◦ sim. Recall

that the test function fG∞ satisfies tr(χ∞ ◦ sim(fG∞)) = 1. Recall that the test function ϕGj satisfies

tr(Π(ψp)(ϕ
G
j )) = p

3
2
j
(
c(χp)

jp
3
2
j + c(χp)

jp
1
2
j + c(χp)

jp−
1
2
j + c(χp)

jp−
3
2
j
)

Consider the test function fG = ϕGj f
p,∞
G fG∞. Now the contribution of the A-packetΠ(ψ) to STFG(fG) is given

by

∑
π∈Π(ψ)

m(π)tr(π∞(fG∞))tr(Π(ψfin)(f
p,∞
G ))p

3
2
j
(
c(χp)

jp
3
2
j + c(χp)

jp
1
2
j + c(χp)

jp−
1
2
j + c(χp)

jp−
3
2
j
)

= p
3
2
j
(
c(χp)

jp
3
2
j + c(χp)

jp
1
2
j + c(χp)

jp−
1
2
j + c(χp)

jp−
3
2
j
)

By stability of the packetΠ(ψ) and by matching, onlySTFG(fG) contributes to tr(Frobjp|H∗
disc,gen(SKfin

,Vλ){πfin}).
It follows that we have the trace

tr(Frobjp|H∗
disc,1dim(SKfin ,Vλ){πfin}) = STFG(fG)

= p
3
2
j
(
c(χp)

jp
3
2
j + c(χp)

jp
1
2
j + c(χp)

jp−
1
2
j + c(χp)

jp−
3
2
j
)
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which is the trace of Frobjp on L0
χ ⊕ L1

χ ⊕ L2
χ ⊕ L3

χ whose contribution toH∗
disc,gen(SKfin

,Vλ) is concentrated

in degrees 0, 2, 4, 6. It follows that

H∗
disc,1dim(SKfin

,Vλ){πfin} ≃ (χfin ◦ sim)Kfin ⊠ (L0
χ ⊕ L1

χ ⊕ L2
χ ⊕ L3

χ)

as a representation ofHKfin
×Gal. The result follows.

4.5 Example: Cohomology of Local Systems onA2

LetA2 be the moduli stack of principally polarized Abelian surfaces. We revisit earlier results and compute the

cohomologyH∗(A2,Vλ) as a Gal-module, reproving theorems of [55] and [96].

For the intersection cohomology and cuspidal cohomology we have the following:

Proposition 4.5.1. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) with λ1 + λ2 even, and let Vλ be the corresponding ℓ-adic local system on A2. The

intersection cohomologyH∗
disc(A2,Vλ) is concentrated in degrees 2, 3, 4 and given by

H0
disc(A2,Vλ) =


L0 λ1 = λ2 = 0

0 otherwise

H2
disc(A2,Vλ) =


sΓ(1)[λ1 + λ2 + 4]Lλ2+1 λ1 = λ2 even

0 otherwise
⊕


L1 λ1 = λ2 = 0

0 otherwise

H3
disc(A2,Vλ) = SgenΓ(1)[λ1 − λ2, λ2 + 3] +


SΓ(1)[λ1 + λ2 + 4] λ1 = λ2 odd

0 otherwise

+ sΓ(1)[λ1 + λ2 + 4]SΓ(1)[λ1 − λ2 + 2]Lλ2+1

H4
disc(A2,Vλ) =


sΓ(1)[λ1 + λ2 + 4]Lλ2+2 λ1 = λ2 even

0 otherwise
⊕


L2 λ1 = λ2 = 0

0 otherwise

H6
disc(A2,Vλ) =


L3 λ1 = λ2 = 0

0 otherwise

344



Similarly, the cuspidal cohomologyH∗
cusp(A2,Vλ) (equivalently the inner cohomologyH∗

! (A2,Vλ)) is concen-

trated in degrees 2, 3, 4 and given by

H2
cusp(A2,Vλ) =


sΓ(1)[λ1 + λ2 + 4]L( 1

2
)=0L

λ2+1 λ1 = λ2 even

0 otherwise

H3
cusp(A2,Vλ) = SgenΓ(1)[λ1 − λ2, λ2 + 3]⊕


SΓ(1)[λ1 + λ2 + 4] λ1 = λ2 odd

0 otherwise

⊕ sΓ(1)[λ1 + λ2 + 4]SΓ(1)[λ1 − λ2 + 2]Lλ2+1

H4
cusp(A2,Vλ) =


sΓ(1)[λ1 + λ2 + 4]L( 1

2
)=0L

λ2+2 λ1 = λ2 even

0 otherwise

Proof. For the intersection cohomology, we note the following. The Yoshida lifts with π∞ = πH∞ cannot occur for

reasons of parity in the multiplicity formulam(π) = 1
2(1 + ⟨µ∞, π∞⟩) (so only the Yoshida lifts with π∞ = πW∞

contribute, yielding the contribution sΓ(1)[λ1 + λ2 + 4]SΓ(1)[λ1 − λ2 + 2]Lλ2+1 in degree 3). The Saito-

Kurokawa lifts with π∞ = πH∞ can only occur for λ1 = λ2 odd (and contribute SΓ(1)[λ1 + λ2 + 4] in degree

3 in this case) and the Saito-Kurokawa lifts with π∞ = π
(1)+
∞ can only occur for λ1 = λ2 even (and contribute

sΓ(1)[λ1 + λ2 + 4]Lλ2+1 and sΓ(1)[λ1 + λ2 + 4]Lλ2+2 in degrees 2 and 4 in this case), in both cases this is for

reasons of parity in the multiplicity formula m(π) = 1
2(1 + (−1)λ1⟨µ∞, π∞⟩). The Soudry lifts cannot occur

since there are no CM cusp forms in level 1.

For the cuspidal cohomology we note the following. The general type contributions are always cuspidal. The

contributions from Yoshida lifts are cuspidal as soon asµ1 ̸= µ2 (which is automatic sinceλ1+λ2+4 > λ1−λ2+2

as soon asλ1 ≥ λ2 ≥ 0). The contributions from Saito-Kurokawa lifts are cuspidal as soon asL(12 , µ) = 0 (which

is automatic by the functional equation in the case λ1 = λ2 odd, and which explains the modification in degrees 2

and 4 in the case λ1 = λ2 even). The contributions from 1-dimensional representations are never cuspidal.

For the Eisenstein cohomology, we have the following:

Proposition 4.5.2. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) with λ1 + λ2 > 0 even, and let Vλ be the corresponding ℓ-adic local system onA2. The
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compactly supported Eisenstein cohomology is concentrated in degrees 2, 3, 4 and given by

H2
c,Eis(A2,Vλ) = SΓ(1)[λ2 + 2]

⊕ sΓ(1)[λ1 − λ2 + 2]L0

⊕


L0 λ1 > λ2 > 0;λ1, λ2 even

0 otherwise

H3
c,Eis(A2,Vλ) = SΓ(1)[λ1 + 3]

⊕


sΓ(1)[λ1 + λ2 + 4]L( 1

2
)=0L

λ2+1 λ1 = λ2 even

sΓ(1)[λ1 + λ2 + 4]Lλ2+1 otherwise

⊕


L0 λ1 = λ2 odd

0 otherwise
⊕


L1 λ2 = 0

0 otherwise

H4
c,Eis(A2,Vλ) =


sΓ(1)[λ1 + λ2 + 4]L( 1

2
)̸=0L

λ2+2 λ1 = λ2 even

0 otherwise
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Proof. We collect the results from 4.3.13, 4.3.22, 4.3.35. It follows that the Eisenstein cohomology is concentrated in

degrees 2, 3, 4 and given by

H2
Eis(A2,Vλ) =


sΓ(1)[λ1 + λ2 + 4]L( 1

2
)̸=0L

λ1+1 λ1 = λ2 even

0 otherwise

H3
Eis(A2,Vλ) = SΓ(1)[λ1 + 3]Lλ2+1

⊕


sΓ(1)[λ1 + λ2 + 4]L( 1

2
)=0L

λ1+2 λ1 = λ2 even

sΓ(1)[λ1 + λ2 + 4]Lλ1+2 otherwise

⊕


Lλ1+λ2+3 λ1 = λ2 odd

0 otherwise
⊕


Lλ1+λ2+2 λ2 = 0

0 otherwise

H4
Eis(A2,Vλ) = SΓ(1)[λ2 + 2]Lλ1+2

⊕ sΓ(1)[λ1 − λ2 + 2]Lλ1+λ2+3

⊕


Lλ1+λ2+3 λ1 > λ2 > 0;λ1, λ2 even

0 otherwise

The result follows by Poincare duality.

Collecting the above contributions yields the following:
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Theorem 4.5.3. [96, Theorem 2.1] Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with

highest weight λ = (λ1, λ2;λ1 +λ2) with λ1 +λ2 > 0 even, and let Vλ be the corresponding ℓ-adic local system

on A2. The compactly supported cohomology H∗
c (A2,Vλ) is concentrated in degrees 2, 3, 4, and given up to

semisimplification by

H2
c (A2,Vλ) = SΓ(1)[λ2 + 2] + sΓ(1)[λ1 − λ2 + 2]L0

+


sΓ(1)[λ1 + λ2 + 4]L( 1

2
)=0L

λ2+1 λ1 = λ2 even

0 otherwise
+


L0 λ1 > λ2 > 0;λ1, λ2 even

0 otherwise

H3
c (A2,Vλ) = SgenΓ(1)[λ1 − λ2, λ2 + 3] +


SΓ(1)[λ1 + λ2 + 4] λ1 = λ2 odd

0 otherwise

+ sΓ(1)[λ1 + λ2 + 4]SΓ(1)[λ1 − λ2 + 2]Lλ2+1 + SΓ(1)[λ1 + 3]

+


sΓ(1)[λ1 + λ2 + 4]L( 1

2
)=0L

λ2+1 λ1 = λ2 even

sΓ(1)[λ1 + λ2 + 4]Lλ2+1 otherwise
+


L0 λ1 = λ2 odd

0 otherwise
+


L1 λ2 = 0

0 otherwise

H4
c (A2,Vλ) =


sΓ(1)[λ1 + λ2 + 4]Lλ2+2 λ1 = λ2 even

0 otherwise

Proof. Recall that we have H i
c(A2,Vλ) ≃ H i

cusp(A2,Vλ) + H i
c,Eis(A2,Vλ) up to semisimplification, and

Poincare dually we have H i(A2,Vλ) ≃ H i
cusp(A2,Vλ) ⊕ H i

Eis(A2,Vλ) up to semisimplification. Combin-

ing 4.5.1 and 4.5.2 it follows that the cohomologyH∗(A2,Vλ) is concentrated in degrees 2, 3, 4, and given up to
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semisimplification by

H2(A2,Vλ) =


sΓ(1)[λ1 + λ2 + 4]Lλ1+1 λ1 = λ2 even

0 otherwise

H3(A2,Vλ) = SgenΓ(1)[λ1 − λ2, λ2 + 3] +


SΓ(1)[λ1 + λ2 + 4] λ1 = λ2 odd

0 otherwise

+ sΓ(1)[λ1 + λ2 + 4]SΓ(1)[λ1 − λ2 + 2]Lλ2+1 + SΓ(1)[λ1 + 3]Lλ2+1

+


sΓ(1)[λ1 + λ2 + 4]L( 1

2
)=0L

λ1+2 λ1 = λ2 even

sΓ(1)[λ1 + λ2 + 4]Lλ1+2 otherwise
+


Lλ1+λ2+3 λ1 = λ2 odd

0 otherwise
+


Lλ1+λ2+2 λ2 = 0

0 otherwise

H4(A2,Vλ) = SΓ(1)[λ2 + 2]Lλ1+2 + sΓ(1)[λ1 − λ2 + 2]Lλ1+λ2+3

+


sΓ(1)[λ1 + λ2 + 4]L( 1

2
)=0L

λ1+2 λ1 = λ2 even

0 otherwise
+


Lλ1+λ2+3 λ1 > λ2 > 0;λ1, λ2 even

0 otherwise

The result follows by Poincare duality.

Mixed Motives The above results for H∗(A2,Vλ) only hold up to semisimplification, and it is expected that

there are nontrivial extensions between contributions to cuspidal cohomology and Eisenstein cohomology. Recall

that we have short exact sequences

0→ H i
! (A2,Vλ)→ H i(A2,Vλ)→ H i

Eis(A2,Vλ)→ 0

0→ H i
c,Eis(A2,Vλ)→ H i

c(A2,Vλ)→ H i
! (A2,Vλ)→ 0

Suppose that λ1 = λ2 > 0 is odd. Then the Saito-Kurokawa lift yields a summand

SΓ(1)[λ1 + λ2 + 4] = H3
cusp,[P1]

⊆ H3
! (A2,Vλ)
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while the (compactly supported) Siegel Eisenstein cohomology yields summands

sΓ(1)[λ1 + λ2 + 4]Lλ1+2 = H3
Eis,[P1]

⊆ H3
Eis(A2,Vλ)

sΓ(1)[λ1 + λ2 + 4]Lλ2+1 = H3
c,Eis,[P1]

⊆ H3
c,Eis(A2,Vλ)

which give rise to extensions

0→ H3
cusp,[P1]

→ H3
[P1]
→ H3

Eis,[P1]
→ 0

0→ H3
c,Eis,[P1]

→ H3
c,[P1]

→ H3
cusp,[P1]

→ 0

regarded as extensions in the (conjectural) categoryMMQ of mixed motives over Q, with coefficients in Q.

Let f ∈ Sλ1+λ2+4(Γ(1)) be a normalized cuspidal Hecke eigenform, and let Q(f) be the number field gener-

ated by the Hecke eigenvalues of f . LetH3
cusp,[P1]

(f) ⊆ H3
cusp,[P1]

be the corresponding 2-dimensional summand

and letH3
Eis,[P1]

(f) ⊆ H3
Eis,[P1]

andH3
c,Eis,[P1]

(f) ⊆ H3
c,Eis,[P1]

be the corresponding 1-dimensional summands.

These should give rise to extensions

0→ H3
cusp,[P1]

(f)→ H3
[P1]

(f)→ H3
Eis,[P1]

(f)→ 0

0→ H3
c,Eis,[P1]

(f)→ H3
c,[P1]

(f)→ H3
cusp,[P1]

(f)→ 0

regarded as extensions in the (conjectural) categoryMMQ ⊗ Q(f) of mixed motives over Q, with coefficients

in Q(f). As motives, H3
cusp,[P1]

(f) = M(f) is the pure motive of weight λ1 + λ2 + 3 attached to f , while

H3
Eis,[P1]

(f) = Q(−λ1 − 2) andH3
c,Eis,[P1]

(f) = Q(−λ2 − 1) are Tate motives of weights λ1 + 2 and λ2 + 1

respectively. We consider the extension classes

[H3
[P1]

(f)] ∈ Ext1MMQ⊗Q(f)(Q(−λ1 − 2),M(f))

[H3
c,[P1]

(f)] ∈ Ext1MMQ⊗Q(f)(M(f),Q(−λ2 − 1))
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In the first case we have Ext1MMQ⊗Q(f)(Q(−λ1− 2),M(f)) ≃ Ext1MMQ⊗Q(f)(Q(0),M(f)(λ1 +2)) where

M(f)(λ1 + 2) is pure of weight−1. Then Beilinson’s conjectures predict that

dimQExt
1
MMQ⊗Q(f)(Q(0),M(f)(λ1 + 2)) = ords=λ1+2L(f, s)

In the second case we have Ext1MMQ⊗Q(f)(M(f),Q(−λ2 − 1)) ≃ Ext1MMQ⊗Q(f)(Q(0),M(f)∨(−λ2 − 1))

and sinceM(f)∨(−λ2 − 1) ≃M(f)(λ1 + 2) we obtain the same prediction, dual to the first case.

If L(f, λ1 + 2) = 0 then the expectation is that these extensions split as Beilinson’s conjectures predict that

dimQExt
1
MMQ⊗Q(f)(Q(0),M(f)(λ1 + 2)) = 0. The Manin-Drinfeld theorem holds in this case.

IfL(f, λ1+2) ̸= 0 then the situation is more interesting. The expectation is that these extensions do not split.

Beilinson’s conjectures predict that dimQExt
1
MMQ⊗Q(f)(Q(0),M(f)(λ1 + 2)) > 0.

Congruences As we have seen, the 4-dimensional ℓ-adic Galois representations attached to automorphic repre-

sentations for GSp4(AQ) are in general not irreducible: for Yoshida lifts, Saito-Kurokawa lifts, and Soudry lifts,

these decompose further into 1-dimensional and 2-dimensional ℓ-adic Galois representations, whose contributions

to cohomology behave irregularly and may be concentrated outside of middle degree.

The 4-dimensional ℓ-adic Galois representations attached to automorphic representations for GSp4(AQ) of

general type are irreducible. On the other hand, they need not remain irreducible after reduction modulo a prime l.

When this happens, we obtain congruences for the Hecke eigenvalues of such automorphic representations. Such

congruences, and the divisivility ofL-values which controls them, have been conjectured by Harder, and are closely

related to Eisenstein series. We recall these conjectures now, in the case of level 1.

Let f ∈ Sk(Γ(1)) be a cuspidal Hecke eigenform of weight k for Γ(1) = SL2(Z). let p be a prime, and

let (α0,p(f), αp,1(f)) ∈ C2 be the Satake parameters of f at p. For q = pn a power of p consider the Hecke

eigenvalues

λq(f) = αp,0(f)
n + (αp,0(f)αp,1(f))

n

LetF ∈ Sk1,k2(Γ(1)) be a cuspidal Hecke eigenform of weight (k1, k2) for Γ(1) = Sp4(Z), let p be a prime, and

let (α0,p(F ), αp,1(F ), αp,2(F )) ∈ C3 be the Satake parameters of f at p. For q = pn a power of p consider the
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Hecke eigenvalues

λq(F ) = αp,0(f)
n + (αp,0(f)αp,1(f))

n + (αp,0(f)αp,2(f))
n + (αp,0(f)αp,1(f)αp,2(f))

n

Harder predicts certain congruences between the Hecke eigenvalues λp(F ) and λp(f) modulo certain “large” con-

gruence primes dividing certain expressions involving L-values which are related to the constant terms of Siegel and

Klingen Eisenstein series, so that these Eisenstein series behave as cusp forms modulo such congruence primes.

Harder conjectures the existence of certain mod ℓ congruences between cuspidal Hecke eigenforms coming

from the Siegel Eisenstein contribution

sΓ(1)[λ1 + λ2 + 4]Lλ2+1 ⊆ H3
c,Eis(A2,Vλ)

Let f ∈ Sk(Γ(1)) be a cuspidal Hecke eigenform of weight k ≥ 2 for Γ(1) = SL2(Z) with Satake parameters

{(α0,p(f), αp,1(f))}p. We consider the completed L-function Λ(f, s) = L∞(f, s)L(f, s) where

L(f, s) =
∏
p

1

(1− αp,0(f)p−s)(1− αp,0(f)αp,1(f)p−s)

and where L∞(f, s) = ΓC(s) = (2π)−sΓ(s). The completed L-function Λ(f, s) admits an analytic continua-

tion in s ∈ C and satisfies the functional equation Λ(f, s) = (−1)
k
2Λ(f, k − s). We consider the critical values

Λ(f, s0) at integers k2 ≤ s0 ≤ k− 1 (which determine the remaining critical values at integers 0 ≤ s0 ≤ k
2 − 1 by

the functional equation). By Manin-Vishnik there exist periods ω±(f) ∈ C such that Λ(f, s0)/ω+(f) ∈ Q(f)

for k2 ≤ s0 ≤ k − 1 even and Λ(f, s0)/ω
−(f) ∈ Q(f) for k2 ≤ s0 ≤ k − 1 odd.

The constant terms of Siegel Eisenstein series attached to f are related to the expression

Λ(f, λ1 + 2)ζ(λ1 − λ2 + 1)

Λ(f, λ1 + 3)ζ(λ1 − λ2 + 2)

and we are interested in the denominators of Λ(f,λ1+3)
ω±(f)

where we have divided by Deligne period ω±(f) in order

to obtain an element of Q(f). Harder explains how to choose these periods ω±(f) so as to be well-defined up to

multiplication by a unit inO×
Q(f), rather than only up to multiplication by a unit in Q(f)×, so that this question
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makes sense. Let Den( ω±(f)
Λ(f,λ1+3)) be the corresponding fractional ideal of OQ(f). Then we have the following

conjecture:

Conjecture. (Harder) Let λ1 ≥ λ2 ≥ 0 be integers and let f ∈ Sλ1+λ2+4(Γ(1)) be a normalized cuspidal Hecke

eigenform of weight λ1 + λ2 + 4 for Γ(1) = SL2(Z). Suppose that l is a “large” prime of Q(f) such that

ln | Den
( ω±(f)

Λ(f, λ1 + 3)

)

Then there exists a normalized cuspidal Hecke eigenform F ∈ Sgen
λ1−λ2,λ2+3(Γ(1)) of weight (λ1 − λ2, λ2 + 3)

for Γ(1) = Sp4(Z) of general type such that

λp(F ) ≡ λp(f) + pλ1+2 + pλ2+1 mod ln

for every prime p.

The first example of such a congruence was discovered by Harder:

Example 4.5.4. (Harder) Let (λ1, λ2) = (11, 7). Letf ∈ S22(Γ(1))be the normalized cuspidal Hecke eigenform

of weight 22 for Γ(1) = SL2(Z). In this case the “large” prime ℓ = 41 divides Λ(f,14)

ω+
f

. Then there exists a

normalized cuspidal Hecke eigenform F ∈ S4,10(Γ(1)) of weight (4, 10) for Γ(1) = Sp4(Z) such that

λp(F ) ≡ λp(f) + p13 + p8 mod 41

for every prime p.

We should also have conjectural Eisenstein congruences coming from the Klingen Eisenstein contribution

SΓ(1)[λ1 + 3] ⊆ H3
c,Eis(A2,Vλ)

Let f ∈ Sk(Γ(1)) be a normalized cuspidal Hecke eigenform of weight k ≥ 2 for Γ(1) = SL2(Z) with Satake

parameters {(α0,p(f), αp,1(f))}p, and let Q(f) be the number field generated by the λp(f) for primes p. We

353



consider the completed L-function Λ(Sym2(f), s) = L∞(Sym2(f), s)L(Sym2(f), s) where

L(Sym2(f), s) =
∏
p

1

(1− αp,0(f)p−s)(1− αp,0(f)αp,1(f)p−s)(1− αp,0(f)αp,1(f)2p−s)

and whereL∞(Sym2(f), s) = π−
3
2
(s+k−1)Γ( s+k2 )Γ( s+2k−2

2 )Γ( s+2k−1
2 ).

The completed L-function Λ(Sym2(f), s) admits an analytic continuation in s ∈ C which is entire since f

is not CM, and satisfies the functional equation L(Sym2(f), s) = L(Sym2(f), 2k − 1 − s). We consider the

critical values Λ(Sym2(f), s0) for even integers k ≤ s0 ≤ 2k − 2 and for odd integers 1 ≤ s0 ≤ k − 1. By

Manin-Vishnik there exist periods ω±(Sym2(f)) ∈ C such that Λ(Sym2(f), s0)/ω
+(Sym2(f)) ∈ Q(f) for

k ≤ s0 ≤ 2k − 2 even and Λ(Sym2(f), s0)/ω
−(f) ∈ Q(f) for 1 ≤ s0 ≤ k − 1 odd.

The constant terms of Klingen Eisenstein series attached to f are related to the expression

Λ(Sym2(f), λ1 + λ2 + 3)

Λ(Sym2(f), λ1 + λ2 + 4)

and we are interested in the denominators of Λ(Sym2(f),λ1+λ2+4)

ω±(Sym2(f))
where we have divided by Deligne periodω±(Sym2(f))

in order to obtain an element of Q(f). Harder explains how to choose these periods ω±(Sym2(f)) so as to be

well-defined up to multiplication by a unit in O×
Q(f), rather than only up to multiplication by a unit in Q(f)×,

so that this question makes sense. Let Den( ω±(Sym2(f))

Λ(Sym2(f),λ1+λ2+4)
) be the corresponding fractional ideal ofOQ(f).

Then we have the following conjecture:

Conjecture. (Harder) Let λ1 ≥ λ2 ≥ 0 be integers and let f ∈ Sλ1+3(Γ(1)) be a normalized cuspidal Hecke

eigenform of weight λ1 + 3 for Γ(1) = SL2(Z). Suppose that l is a “large” prime in Q(f) such that

ln | Den
( ω±(Sym2(f))

Λ(Sym2(f), λ1 + λ2 + 4)

)

Then there exists a normalized cuspidal Hecke eigenform F ∈ Sgen
λ1−λ2,λ2+3(Γ(1)) of weight (λ1 − λ2, λ2 + 3)

for Γ(1) = Sp4(Z) of general type such that

λp(F ) ≡ λp(f)(pλ2+1 + 1) mod ln

for every prime p.
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The first example of such a congruence was discovered by Kurokawa:

Example 4.5.5. (Kurokawa) Let (λ1, λ2) = (17, 17). Let f ∈ S20(Γ(1)) be the normalized cuspidal Hecke

eigenform of weight 20 for Γ(1) = SL2(Z). In this case the “large” prime power ℓ = 712 divides Λ(Sym2(f),38)

ω+(Sym2(f))
.

Then there exists a normalized cuspidal Hecke eigenform F ∈ S0,20(Γ(1)) of weight (0, 20) for Γ(1) = Sp4(Z)

of general type such that

λp(F ) ≡ λp(f)(p18 + 1) mod 712

for every prime p.

Such congruences, which are controlled by the divisibility of L-values, correspond to the reducibility of Ga-

lois representations modulo ℓ (up to semisimplification). The (conjectural) situation can be summarized by the

following diagrams:

Denominator

ordl(
Λ(f,λ1+3)
ω±(f)

) > 0

Congruence

λp(F ) ≡ λp(f) + pλ1+2 + pλ2+1 mod l

Reducibility

ρssF = ρf ⊕ χλ1+2 ⊕ χλ2+1

Eisenstein series

Chebotarev density
Brauer-Nesbitt

Bloch-Kato

Deligne
Fontaine

Denominator

ordl(
Λ(Sym2(f),λ1+λ2+4)

ω±(Sym2(f))
) > 0

Congruence

λp(F ) ≡ λp(f)(pλ2+1 + 1) mod l

Reducibility

ρssF = ρf ⊗ (1⊕ χλ2+1)

Eisenstein series

Chebotarev density
Brauer-Nesbitt

Bloch-Kato

Deligne
Fontaine
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4.6 Example: Cohomology of Local Systems onA2[2]

Let A2[2] be the moduli stack of principally polarized Abelian surfaces with full level 2 structure. The group

GSp4(F2) acts onA2[2]. We compute the cohomologyH∗(A2[2],Vλ) as a representation of GSp4(F2)×Gal,

resolving conjectures of Bergstrom-Faber-van der Geer.

We have an isomorphism GSp4(F2) ≃ S6 so that the irreducible representations of GSp4(F2) can be labeled

by partitions of 6. We have

Representation of GSp4(F2) θ0 θ1 θ2 θ3 θ4 θ5 X4(1) χ5(1) χ6(1) χ7(1) χ8(1)

Representation of S6 V6 V4,2 V16 V23 V5,1 V3,2,1 V22,11 V32 V4,12 V2,14 V3,13

Dimension 1 9 1 5 5 16 9 5 10 5 10

In particular θ0 = 1GSp4(F2) is the trivial representation and θ5 = StGSp4(F2) is the Steinberg representation.

Recall thatGL2(F2) = SL2(F2) = S3 has three isomorphism classes of irreducible representations: the trivial

representation V3 = 1GL2(F2), the Steinberg representation V2,1 = StGL2(F2), and the sign representation V13

which is the unique cuspidal representation. We have the parabolically induced representations

Ind
GSp4(F2)
P1(F2)

(V13 ⊗ 1) = V32 ⊕ V4,12 Ind
GSp4(F2)
P2(F2)

(V2 ⊗ V14) = V2,14 ⊕ V3,13

Ind
GSp4(F2)
P1(F2)

(V2,1 ⊗ 1) = V4,2 ⊕ V5,1 ⊕ V3,2,1 Ind
GSp4(F2)
P2(F2)

(V2 ⊗ V22) = V4,2 ⊕ V23 ⊕ V3,2,1

Ind
GSp4(F2)
P1(F2)

(V3 ⊗ 1) = V6 ⊕ V4,2 ⊕ V23 Ind
GSp4(F2)
P2(F2)

(V2 ⊗ V4) = V6 ⊕ V4,2 ⊕ V5,1

We include a table of the dimensions sΓ(1)[k], s
new,+
Γ0(2)

[k], snew,−Γ0(2)
[k], and snewΓ0(4)

[k]; the entries in bold are those

with vanishing central L-value.

k 6 8 10 12 14 16 18 20 22 24

sΓ(1)[k] 0 0 0 1 0 1 1 1 1 2

snew,+Γ0(2)
[k] 0 1 0 0 1 1 0 1 1 1

snew,−Γ0(2)
[k] 0 0 1 0 1 0 1 1 1 0

snewΓ0(4)
[k] 1 0 1 1 1 1 2 1 2 2
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Theorem 4.6.1. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight λ =

(λ1, λ2;λ1 + λ2) with λ1 + λ2 even, and let Vλ be the corresponding ℓ-adic local system onA2[2]. The Siegel

inner cohomologyH3
!,[P1]

(A2[2],Vλ) is concentrated in degrees 2, 3, 4 and given as a GSp4(F2)×Gal-module

by

H2i
!,[P1]

(A2[2],Vλ) =



V32 ⊠ snewΓ0(4)
[λ1 + λ2 + 4]L( 1

2 )=0Lλ2+i

⊕V16 ⊠ snew,+
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+i

⊕V5,1 ⊠ snew,−
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+i λ1 = λ2 odd

V4,2 ⊠ snew,+
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+i

⊕V23 ⊠ snew,−
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+i

⊕(V6 ⊕ V4,2 ⊕ V23)⊠ sΓ(1)[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+i λ1 = λ2 even

H3
!,[P1]

(A2[2],Vλ) =



V4,2 ⊠ Snew,+
Γ0(2)

[λ1 + λ2 + 4]

⊕V23 ⊠ Snew,−
Γ0(2)

[λ1 + λ2 + 4]

⊕(V6 ⊕ V4,2 ⊕ V23)⊠ SΓ(1)[λ1 + λ2 + 4] λ1 = λ2 odd

V32 ⊠ SnewΓ0(4)
[λ1 + λ2 + 4]

⊕V16 ⊠ Snew,+
Γ0(2)

[λ1 + λ2 + 4]

⊕V5,1 ⊠ Snew,−
Γ0(2)

[λ1 + λ2 + 4] λ1 = λ2 even
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In particular the Siegel inner cohomologyH3
!,[P1]

(A2[2],Vλ) is given as a Gal-module by

H2i
!,[P1]

(A2[2],Vλ) =



5snewΓ0(4)
[λ1 + λ2 + 4]L( 1

2 )=0Lλ2+i

⊕snew,+
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+i

⊕5snew,−
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+i λ1 = λ2 odd

9snew,+
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+i

⊕5snew,−
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+i

⊕15sΓ(1)[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+i λ1 = λ2 even

H3
!,[P1]

(A2[2],Vλ) =



9Snew,+
Γ0(2)

[λ1 + λ2 + 4]

⊕5Snew,−
Γ0(2)

[λ1 + λ2 + 4]

⊕15SΓ(1)[λ1 + λ2 + 4] λ1 = λ2 odd

5SnewΓ0(4)
[λ1 + λ2 + 4]

⊕Snew,+
Γ0(2)

[λ1 + λ2 + 4]

⊕5Snew,−
Γ0(2)

[λ1 + λ2 + 4] λ1 = λ2 even

Proof. Let λ1 = λ2. Then by [100, Example 5.5] we have:

IH2i
[P1]

(A2[2],Vλ) =
⊕
µ


rK2(Π(µ2,StGL2(Q2)))⊠ Lλ2+i ϵ(12 , µ2) = −(−1)

λ1

rK2(Π(µ2, 1GL2(Q2)))⊠ Lλ2+i ϵ(12 , µ2) = (−1)λ1

IH3
[P1]

(A2[2],Vλ) =
⊕
µ


rK2(Π(µ2,StGL2(Q2)))⊠ ρµ ϵ(12 , µ2) = (−1)λ1

rK2(Π(µ2, 1GL2(Q2)))⊠ ρµ ϵ(12 , µ2) = −(−1)
λ1

where the direct sums are taken over cuspidal automorphic representations µ of GL2(AQ) with trivial central

character, with µ∞ = Dλ1+λ2+3, spherical outside p = 2, and depth 0 at p = 2, corresponding to a cusp form of

weight λ1 + λ2 + 4 for Γ(2). Now we have the following cases:
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Type µ2 µΣ2 Π(µ2, µ
Σ
2 ) rK2(Π(µ2, µ

Σ
2 )) Dimension

II b χ2 × χ−1
2 1GL2(Q2) χ21GL2(Q2) ⋊ χ−1

2 V6 ⊕ V4,2 ⊕ V23 15

V
a*

ξStGL2(Q2)

StGL2(Q2) δ∗([ξ, ξν], ν−1/2) V16 1

b 1GL2(Q2) L(ξStGL2(Q2)ν
1/2 ⋊ ν−1/2) V4,2 9

VI
b

StGL2(Q2)

StGL2(Q2) τ(T, ν−1/2) V23 5

c 1GL2(Q2) L(StGL2(Q2)ν
1/2 ⋊ ν−1/2) V5,1 5

XI
a*

Supercuspidal
StGL2(Q2) δ∗(µ2ν

1/2 ⋊ ν−1/2) 0 0

b 1GL2(Q2) L(µ2ν
1/2 ⋊ ν−1/2) V32 5

(i) ((µ2, µΣ2 ) = (χ2 × χ−1
2 , 1GL2(Q2))) A cuspidal newform f of weight λ1 + λ2 + 4 for Γ(1) yields the

representationΠ(µ2, µΣ2 ) = χ21GL2(Q2)⋊χ
−1
2 with hyperspecial parahoric restriction rK2(Π(µ2, µ

Σ
2 )) =

V6 + V4,2 + V23 of dimension 15, so the contribution toH3
!,[P1]

(A2[2],Vλ) is given:

(V6 + V4,2 + V23)⊠ SΓ(1)[λ1 + λ2 + 4] (λ1 = λ2 odd)

and the contribution toH2i
!,[P1]

(A2[2],Vλ) is given:

(V6 + V4,2 + V23)⊠ sΓ(1)[λ1 + λ2 + 4]L( 1
2
)=0L

λ2+i (λ1 = λ2 even)

(ii) ((µ2, µΣ2 ) = (ξStGL2(Q2), StGL2(Q2))) A cuspidal newform f of weightλ1+λ2+4 forΓ0(2)with Atkin-

Lehner eigenvalue ϵ(12 , µ2) = 1 yields the supercuspidal representation Π(µ2, µ
Σ
2 ) = δ∗([ξ, ξν], ν−1/2)

with hyperspecial parahoric restriction rK2(Π(µ2, µ
Σ
2 )) = V16 of dimension 1, so the contribution to

H3
!,[P1]

(A2[2],Vλ) is given:

V16 ⊠ Snew,+Γ0(2)
[λ1 + λ2 + 4] (λ1 = λ2 even)

and the contribution toH2i
!,[P1]

(A2[2],Vλ) is given:

V16 ⊠ snew,+Γ0(2)
[λ1 + λ2 + 4]L( 1

2
)=0L

λ2+i (λ1 = λ2 odd)
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(iii) ((µ2, µΣ2 ) = (ξStGL2(Q2), 1GL2(Q2))) A cuspidal newform f of weight λ1 + λ2 + 4 for Γ0(2) with Atkin-

Lehner eigenvalue ϵ(12 , µ2) = 1 yields the Langlands quotient Π(µ2, µΣ2 ) = L(ξStGL2(Q2)ν
1/2 ⋊ ν−1/2)

with hyperspecial parahoric restriction rK2(Π(µ2, µ
Σ
2 )) = V4,2 of dimension 9, so the contribution to

H3
!,[P1]

(A2[2],Vλ) is given:

V4,2 ⊠ Snew,+Γ0(2)
[λ1 + λ2 + 4] (λ1 = λ2 odd)

and the contribution toH2i
!,[P1]

(A2[2],Vλ) is given:

V4,2 ⊠ snew,+Γ0(2)
[λ1 + λ2 + 4]L( 1

2
)=0L

λ2+i (λ1 = λ2 even)

(iv) ((µ2, µΣ2 ) = (StGL2(Q2),StGL2(Q2))) A cuspidal newform f of weight λ1 + λ2 + 4 for Γ0(2) with Atkin-

Lehner eigenvalue ϵ(12 , µ2) = −1 yields the representation Π(µ2, µ
Σ
2 ) = τ(T, ν−1/2) with hyperspecial

parahoric restriction rK2(Π(µ2, µ
Σ
2 )) = V23 of dimension 5, so the contribution toH3

!,[P1]
(A2[2],Vλ) is

given:

V23 ⊠ Snew,−Γ0(2)
[λ1 + λ2 + 4] (λ1 = λ2 odd)

and the contribution toH2i
!,[P1]

(A2[2],Vλ) is given:

V23 ⊠ snew,−Γ0(2)
[λ1 + λ2 + 4]L( 1

2
)=0L

λ2+i (λ1 = λ2 even)

(v) ((µ2, µΣ2 ) = (StGL2(Q2), 1GL2(Q2))) A cuspidal newform f of weight λ1 + λ2 + 4 for Γ0(2) with Atkin-

Lehner eigenvalue ϵ(12 , µ2) = −1 yields the Langlands quotient Π(µ2, µΣ2 ) = L(StGL2(Q2)ν
1/2⋊ ν−1/2)

with hyperspecial parahoric restriction rK2(Π(µ2, µ
Σ
2 )) = V5,1 of dimension 5, so the contribution to

H3
!,[P1]

(A2[2],Vλ) is given:

V5,1 ⊠ Snew,−Γ0(2)
[λ1 + λ2 + 4] (λ1 = λ2 even)
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and the contribution toH2i
!,[P1]

(A2[2],Vλ) is given:

V5,1 ⊠ snew,−Γ0(2)
[λ1 + λ2 + 4]L( 1

2
)=0L

λ2+i (λ1 = λ2 odd)

(vi) ((µ2, µΣ2 ) = (θ2, 1GL2(Q2))) A cuspidal newform f of weight λ1 + λ2 + 4 for Γ0(4) yields the Langlands

quotientΠ(µ2, µΣ2 ) = L(µ2ν
1/2⋊ν−1/2)with hyperspecial parahoric restriction rK2(Π(µ2, µ

Σ
2 )) = V32

of dimension 5, so the contribution toH3
!,[P1]

(A2[2],Vλ) is given:

V32 ⊠ SnewΓ0(4)
[λ1 + λ2 + 4] (λ1 = λ2 even)

and the contribution toH2i
!,[P1]

(A2[2],Vλ) is given:

V32 ⊠ snewΓ0(4)
[λ1 + λ2 + 4]L( 1

2
)=0L

λ2+i (λ1 = λ2 odd)

The result follows by collecting all these contributions.

Proposition 4.6.2. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) with λ1 + λ2 even, and let Vλ be the corresponding ℓ-adic local system onA2[2]. The

contribution toH2,1
!,endo(A2[2],Vλ)⊕H1,2

!,endo(A2[2],Vλ) is given as a GSp4(F2)×Gal-module by


snewΓ0(4)

[λ1 + λ2 + 4]V3,13

⊕snewΓ0(2)
[λ1 + λ2 + 4]V4,12

⊕sΓ(1)[λ1 + λ2 + 4](V32 ⊕ V4,12)

⊠ SnewΓ0(4)
[λ1 − λ2 + 2]Lλ2+1

⊕


snewΓ0(4)

[λ1 + λ2 + 4]V4,12

⊕snew,±
Γ0(2)

[λ1 + λ2 + 4](V4,2 ⊕ V3,2,1)

⊕snew,∓
Γ0(2)

[λ1 + λ2 + 4(V5,1 ⊕ V3,2,1)

⊕sΓ(1)[λ1 + λ2 + 4](V4,2 ⊕ V5,1 ⊕ V3,2,1)


⊠ Snew,±

Γ0(2)
[λ1 − λ2 + 2]Lλ2+1

⊕


snewΓ0(4)

[λ1 + λ2 + 4](V32 ⊕ V4,12)

⊕snewΓ0(2)
[λ1 + λ2 + 4](V4,2 ⊕ V5,1 ⊕ V3,2,1)

⊕sΓ(1)[λ1 + λ2 + 4](V4,2 ⊕ V5,1 ⊕ V3,2,1 ⊕ V32 ⊕ V4,12)

⊠ SΓ(1)[λ1 − λ2 + 2]Lλ2+1
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In particular the contribution toH2,1
!,endo(A2[2],Vλ)⊕H1,2

!,endo(A2[2],Vλ) is given as Gal-module by

10snewΓ0(4)
[λ1 + λ2 + 4]⊕ 10snewΓ0(2)

[λ1 + λ2 + 4]

⊕15sΓ(1)[λ1 + λ2 + 4]

 SnewΓ0(4)
[λ1 − λ2 + 2]Lλ2+1

⊕

 10snewΓ0(4)
[λ1 + λ2 + 4]⊕ 25snew,±

Γ0(2)
[λ1 + λ2 + 4]

⊕21snew,∓
Γ0(2)

[λ1 + λ2 + 4]⊕ 30sΓ(1)[λ1 + λ2 + 4]

 Snew,±
Γ0(2)

[λ1 − λ2 + 2]Lλ2+1

⊕

15snewΓ0(4)
[λ1 + λ2 + 4]⊕ 30snewΓ0(2)

[λ1 + λ2 + 4]

⊕45sΓ(1)[λ1 + λ2 + 4]

 SΓ(1)[λ1 − λ2 + 2]Lλ2+1

Proof. The contribution toH2,1
!,endo(A2[2],Vλ)⊕H1,2

!,endo(A2[2],Vλ) is given

H2,1
!,endo(A2[2],Vλ)⊕H1,2

!,endo(A2[2],Vλ) ≃
⊕

π=(µ1,µ2)

rK2(Π
+(µ1, µ2))⊠ ρµ2Lλ2+1

taken over cuspidal automorphic representationsπ = (µ1, µ2)ofGL2(AQ)×GL2(AQ)withπ∞ = (Dλ1+λ2+3,Dλ1−λ2+1),

withπp spherical forp ̸= 2, and withπ2 of depth0, corresponding to modular formsf1 andf2 of weightsλ1+λ2+4

and λ1 − λ2 + 2 for Γ(2). Now we have the following cases:

(µ1,2, µ2,2) Π+(µ1,2, µ2,2) rK2(Π
+(µ1,2, µ2,2)) dim

(χ1,2 × χ2,2, χ
′
1,2 × χ′

2,2) χ′
1,2χ

−1
1,2 × χ′

2,2χ
−1
1,2 ⋊ χ1,2 V4,2 ⊕ V5,1 ⊕ V3,2,1 ⊕ V32 ⊕ V4,12 45

(χ1,2 × χ2,2, χ2StGL2(Q2)) L(χ2χ
−1
1,2StGL2(Q2) ⋊ χ1,2) V4,2 ⊕ V5,1 ⊕ V3,2,1 30

(χ1,2 × χ2,2, χ2π2) χ−1
2 π2 ⋊ χ2 V32 ⊕ V4,12 15

(χ2StGL2(Q2), χ2StGL2(Q2)) τ(S, ξν−1/2) V4,2 ⊕ V3,2,1 25

(χ2StGL2(Q2), χ2ξStGL2(Q2)) δ(ξStGL2(Q2)ν
1/2 ⋊ χ2ν

−1/2) V5,1 ⊕ V3,2,1 21

(χ2StGL2(Q2), χ2π2) δ(χ−1
2 π2ν

1/2 ⋊ χ2ν
−1/2) V4,12 10

(π2, π2) τ(S, π2) V3,13 10

(i) ((µ1,2, µ2,2) = (χ1,2 × χ2,2, χ
′
1,2 × χ′

2,2)) A cuspidal newform f1 of weight λ1 + λ2 + 4 for Γ(1) and a

cuspidal newform f2 of weightλ1−λ2+2 forΓ(1) yields the unramified representationΠ+(µ1,2, µ2,2) =

χ′
1,2χ

−1
1,2 × χ′

2,2χ
−1
1,2 ⋊ χ1,2 with hyperspecial parahoric restriction rK2(Π

+(µ1,2, µ2,2)) = V4,2 ⊕ V5,1 ⊕

V3,2,1⊕ V32 ⊕ V4,12 with dimension 45, so the contribution toH2,1
!,endo(A2[2],Vλ)⊕H1,2

!,endo(A2[2],Vλ)
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is given:

sΓ(1)[λ1 + λ2 + 4](V4,2 ⊕ V5,1 ⊕ V3,2,1 ⊕ V32 ⊕ V4,12)⊠ SΓ(1)[λ1 − λ2 + 2]Lλ2+1

(ii) ((µ1,2, µ2,2) = (χ1,2 × χ2,2, χ2StGL2(Q2))) A cuspidal newform f1 of weight λ1 + λ2 + 4 for Γ0(2) and

a cuspidal newform f2 of weight λ1 − λ2 + 2 for Γ(1), or a cuspidal newform f1 of weight λ1 − λ2 + 2

for Γ0(2) and a cuspidal newform f2 of weight λ1 + λ2 + 4 for Γ(1) yields the Langlands quotient

representation Π+(µ1,2, µ2,2) = L(χ2χ
−1
1,2StGL2(Q2) ⋊ χ1,2) with hyperspecial parahoric restriction

rK2(Π
+(µ1,2, µ2,2)) = V4,2⊕V5,1⊕V3,2,1 with dimension30, so the contribution toH2,1

!,endo(A2[2],Vλ)⊕

H1,2
!,endo(A2[2],Vλ) is given:

sΓ(1)[λ1 + λ2 + 4](V4,2 ⊕ V5,1 ⊕ V3,2,1)⊠ Snew,±Γ0(2)
[λ1 − λ2 + 2]Lλ2+1

⊕ snewΓ0(2)
[λ1 + λ2 + 4](V4,2 ⊕ V5,1 ⊕ V3,2,1)⊠ SΓ(1)[λ1 − λ2 + 2]Lλ2+1

(iii) ((µ1,2, µ2,2) = (χ1,2×χ2,2, χ2π2)) A cuspidal newform f1 of weightλ1+λ2+4 forΓ0(4) and a cuspidal

newform f2 of weightλ1−λ2+2 forΓ(1), or a cuspidal newform f1 of weightλ1−λ2+2 forΓ0(4) and a

cuspidal newform f2 of weightλ1+λ2+4 forΓ(1) yields the representationΠ+(µ1,2, µ2,2) = χ−1
2 π2⋊χ2

where π2 is supercuspidal of depth 0 with hyperspecial parahoric restriction rK2(Π
+(µ1,2, µ2,2)) = V32 ⊕

V4,12 with dimension 15, so the contribution toH2,1
!,endo(A2[2],Vλ)⊕H1,2

!,endo(A2[2],Vλ) is given:

sΓ(1)[λ1 + λ2 + 4](V32 ⊕ V4,12)⊠ SnewΓ0(4)
[λ1 − λ2 + 2]Lλ2+1

⊕ snewΓ0(4)
[λ1 + λ2 + 4](V32 ⊕ V4,12)⊠ SΓ(1)[λ1 − λ2 + 2]Lλ2+1

(iv) ((µ1,2, µ2,2) = (χ2StGL2(Q2), χ2StGL2(Q2))) A cuspidal newform f1 of weightλ1+λ2+4 forΓ0(2) and

a cuspidal newform f2 of weightλ1−λ2+2 forΓ0(2)with equal Atkin-Lehner eigenvalues yields the repre-

sentation Π+(µ1,2, µ2,2) = τ(S, ξν−1/2) with hyperspecial parahoric restriction rK2(Π
+(µ1,2, µ2,2)) =

V4,2⊕V3,2,1 with dimension 25, so the contribution toH2,1
!,endo(A2[2],Vλ)⊕H1,2

!,endo(A2[2],Vλ) is given:

snew,±Γ0(2)
[λ1 + λ2 + 4](V4,2 ⊕ V3,2,1)⊠ Snew,±Γ0(2)

[λ1 − λ2 + 2]Lλ2+1
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(v) ((µ1,2, µ2,2) = (χ2StGL2(Q2), χ2ξStGL2(Q2))) A cuspidal newform f1 of weight λ1 + λ2 + 4 for Γ0(2)

and a cuspidal newform f2 of weightλ1−λ2+2 forΓ0(2)with opposite Atkin-Lehner eigenvalues yields the

representation Π+(µ1,2, µ2,2) = δ(ξStGL2(Q2)ν
1/2 ⋊ χ2ν

−1/2) with hyperspecial parahoric restriction

rK2(Π
+(µ1,2, µ2,2)) = V5,1 ⊕ V3,2,1 with dimension 21, so the contribution to H2,1

!,endo(A2[2],Vλ) ⊕

H1,2
!,endo(A2[2],Vλ) is given:

snew,∓Γ0(2)
[λ1 + λ2 + 4](V5,1 ⊕ V3,2,1)⊠ Snew,±Γ0(2)

[λ1 − λ2 + 2]Lλ2+1

(vi) ((µ1,2, µ2,2) = (χ2StGL2(Q2), χ2π2)) A cuspidal newform f1 of weight λ1+λ2+4 for Γ0(4) and a cusp-

idal newform f2 of weightλ1−λ2+2 forΓ0(2), or a cuspidal newform f1 of weightλ1−λ2+2 forΓ0(4)

and a cuspidal newform f2 of weight λ1 + λ2 + 4 for Γ0(2) yields the representation Π+(µ1,2, µ2,2) =

δ(χ−1
2 π2ν

1/2 ⋊ χ2ν
−1/2) where π2 is supercuspidal of depth 0 with hyperspecial parahoric restriction

rK2(Π
+(µ1,2, µ2,2)) = V4,12 with dimension10, so the contribution toH2,1

!,endo(A2[2],Vλ)⊕H1,2
!,endo(A2[2],Vλ)

is given:

snewΓ0(2)
[λ1 + λ2 + 4]V4,12 ⊠ SnewΓ0(4)

[λ1 − λ2 + 2]Lλ2+1

⊕ snewΓ0(4)
[λ1 + λ2 + 4]V4,12 ⊠ SnewΓ0(2)

[λ1 − λ2 + 2]Lλ2+1

(vii) ((µ1,2, µ2,2) = (π2, π2)) A cuspidal newform f1 of weight λ1 + λ2 + 4 for Γ0(4) and a cuspidal newform

f2 of weight λ1− λ2 +2 for Γ0(4) yields the representation Π+(µ1,2, µ2,2) = τ(S, π2) where π2 is super-

cuspidal of depth 0 with hyperspecial parahoric restriction rK2(Π
+(µ1,2, µ2,2)) = V3,13 with dimension

10, so the contribution toH2,1
!,endo(A2[2],Vλ)⊕H1,2

!,endo(A2[2],Vλ) is given:

snewΓ0(4)
[λ1 + λ2 + 4]V3,13 ⊠ SnewΓ0(4)

[λ1 − λ2 + 2]Lλ2+1

The result follows by collecting all these contributions.

Proposition 4.6.3. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) with λ1 + λ2 even, and let Vλ be the corresponding ℓ-adic local system onA2[2]. The

364



contribution toH3,0
!,endo(A2[2],Vλ)⊕H0,3

!,endo(A2[2],Vλ) is given as a GSp4(F2)×Gal-module by

snewΓ0(4)
[λ1 − λ2 + 2]V2,14 ⊠ SnewΓ0(4)

[λ1 + λ2 + 4]

⊕ (snew,±Γ0(2)
[λ1 − λ2 + 2]V23 ⊕ s

new,∓
Γ0(2)

[λ1 − λ2 + 2]V16)⊠ Snew,±Γ0(2)
[λ1 + λ2 + 4]

In particular the contribution toH3,0
!,endo(A2[2],Vλ)⊕H0,3

!,endo(A2[2],Vλ) is given as a Gal-module by

5snewΓ0(4)
[λ1 − λ2 + 2]SnewΓ0(4)

[λ1 + λ2 + 4]

⊕ (5snew,±Γ0(2)
[λ1 − λ2 + 2]⊕ snew,∓Γ0(2)

[λ1 − λ2 + 2])Snew,±Γ0(2)
[λ1 + λ2 + 4]

Proof. The contribution toH3,0
!,endo(A2[2],Vλ)⊕H0,3

!,endo(A2[2],Vλ) is given

H3,0
!,endo(A2[2],Vλ)⊕H0,3

!,endo(A2[2],Vλ) ≃
⊕

π=(µ1,µ2)

rK2(Π
−(µ1, µ2))⊠ ρµ1

taken over cuspidal automorphic representationsπ = (µ1, µ2)ofGL2(AQ)×GL2(AQ)withπ∞ = (Dλ1+λ2+3,Dλ1−λ2+1),

withπp spherical forp ̸= 2, and withπ2 of depth0, corresponding to modular formsf1 andf2 of weightsλ1+λ2+4

and λ1 − λ2 + 2 for Γ(2). Now we have the following cases:

(µ1,2, µ2,2) Π−(µ1,2, µ2,2) rK2(Π
−(µ1,2, µ2,2)) dim

(χ2StGL2(Q2), χ2StGL2(Q2)) τ(T, χ2ν
−1/2) V23 5

(χ2StGL2(Q2), χ2ξStGL2(Q2)) supercuspidal V16 1

(χ2StGL2(Q2), χ2π2) supercuspidal 0 0

(π2, π2) τ(T, π2) V2,14 5

(π1,2, π2,2) π1,2 ̸= π2,2 supercuspidal 0 0

(i) ((µ1,2, µ2,2) = (χ2StGL2(Q2), χ2StGL2(Q2))) A cuspidal newform f1 of weightλ1−λ2+2 forΓ0(2) and a

cuspidal newform f2 of weightλ1+λ2+4 forΓ0(2)with equal Atkin-Lehner eigenvalues yields the represen-

tation Π−(µ1,2, µ2,2) = τ(T, χ2ν
−1/2) with hyperspecial parahoric restriction rK2(Π

−(µ1,2, µ2,2)) =

V23 with dimension 5, so the contribution toH3,0
!,endo(A2[2],Vλ)⊕H0,3

!,endo(A2[2],Vλ) is given:

snew,±Γ0(2)
[λ1 − λ2 + 2]V23 ⊠ Snew,±Γ0(2)

[λ1 + λ2 + 4]
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(ii) ((µ1,2, µ2,2) = (χ2StGL2(Q2), χ2ξStGL2(Q2))) A cuspidal newform f1 of weightλ1−λ2+2 forΓ0(2) and

a cuspidal newform f2 of weightλ1+λ2+4 forΓ0(2)with opposite Atkin-Lehner eigenvalues yields the a su-

percuspidal representation Π−(µ1,2, µ2,2) with hyperspecial parahoric restriction rK2(Π
−(µ1,2, µ2,2)) =

V16 with dimension 1, so the contribution toH3,0
!,endo(A2[2],Vλ)⊕H0,3

!,endo(A2[2],Vλ) is given:

snew,±Γ0(2)
[λ1 − λ2 + 2]V16 ⊠ Snew,±Γ0(2)

[λ1 + λ2 + 4]

(iii) ((µ1,2, µ2,2) = (π2, π2)) A cuspidal newform f1 of weight λ1 + λ2 + 4 for Γ0(4) and a cuspidal newform

f2 of weight λ1−λ2 +2 for Γ0(4) yields the representation Π−(µ1,2, µ2,2) = τ(T, π2) where π2 is super-

cuspidal of depth 0 with hyperspecial parahoric restriction rK2(Π
−(µ1,2, µ2,2)) = V2,14 with dimension

5, so the contribution toH2,1
!,endo(A2[2],Vλ)⊕H1,2

!,endo(A2[2],Vλ) is given:

snewΓ0(4)
[λ1 + λ2 + 4]V2,14 ⊠ SnewΓ0(4)

[λ1 − λ2 + 2]

The result follows by collecting all these contributions.
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Theorem 4.6.4. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) with λ1 + λ2 even, and let Vλ be the corresponding ℓ-adic local system onA2[2]. The

endoscopic inner cohomology H∗
!,endo(A2[2],Vλ) is concentrated in degree 3 and given as a GSp4(F2) × Gal-

module by

H3
!,endo(A2[2],Vλ) = snewΓ0(4)

[λ1 − λ2 + 2]V2,14 ⊠ SnewΓ0(4)
[λ1 + λ2 + 4]

⊕


snewΓ0(4)

[λ1 + λ2 + 4]V3,13

⊕snewΓ0(2)
[λ1 + λ2 + 4]V4,12

⊕sΓ(1)[λ1 + λ2 + 4](V32 ⊕ V4,12)

⊠ SnewΓ0(4)
[λ1 − λ2 + 2]Lλ2+1

⊕ (snew,±
Γ0(2)

[λ1 − λ2 + 2]V23 ⊕ snew,∓
Γ0(2)

[λ1 − λ2 + 2]V16)⊠ Snew,±
Γ0(2)

[λ1 + λ2 + 4]

⊕


snewΓ0(4)

[λ1 + λ2 + 4]V4,12

⊕snew,±
Γ0(2)

[λ1 + λ2 + 4](V4,2 ⊕ V3,2,1)

⊕snew,∓
Γ0(2)

[λ1 + λ2 + 4(V5,1 ⊕ V3,2,1)

⊕sΓ(1)[λ1 + λ2 + 4](V4,2 ⊕ V5,1 ⊕ V3,2,1)


⊠ Snew,±

Γ0(2)
[λ1 − λ2 + 2]Lλ2+1

⊕


snewΓ0(4)

[λ1 + λ2 + 4](V32 ⊕ V4,12)

⊕snewΓ0(2)
[λ1 + λ2 + 4](V4,2 ⊕ V5,1 ⊕ V3,2,1)

⊕sΓ(1)[λ1 + λ2 + 4](V4,2 ⊕ V5,1 ⊕ V3,2,1 ⊕ V32 ⊕ V4,12)

⊠ SΓ(1)[λ1 − λ2 + 2]Lλ2+1

In particular the endoscopic inner cohomologyH3
!,endo(A2[2],Vλ) is given as a Gal-module by

H3
!,endo(A2[2],Vλ) = 5snewΓ0(4)

[λ1 − λ2 + 2]SnewΓ0(4)
[λ1 + λ2 + 4]

⊕

10snewΓ0(4)
[λ1 + λ2 + 4]⊕ 10snewΓ0(2)

[λ1 + λ2 + 4]

⊕15sΓ(1)[λ1 + λ2 + 4]

 SnewΓ0(4)
[λ1 − λ2 + 2]Lλ2+1

⊕ (5snew,±
Γ0(2)

[λ1 − λ2 + 2]⊕ snew,∓
Γ0(2)

[λ1 − λ2 + 2])Snew,±
Γ0(2)

[λ1 + λ2 + 4]

⊕

 10snewΓ0(4)
[λ1 + λ2 + 4]⊕ 25snew,±

Γ0(2)
[λ1 + λ2 + 4]

⊕21snew,∓
Γ0(2)

[λ1 + λ2 + 4]⊕ 30sΓ(1)[λ1 + λ2 + 4]

 Snew,±
Γ0(2)

[λ1 − λ2 + 2]Lλ2+1

⊕

15snewΓ0(4)
[λ1 + λ2 + 4]⊕ 30snewΓ0(2)

[λ1 + λ2 + 4]

⊕45sΓ(1)[λ1 + λ2 + 4]

 SΓ(1)[λ1 − λ2 + 2]Lλ2+1

We summarize these contributions to inner cohomology as follows:
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Theorem 4.6.5. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight λ =

(λ1, λ2;λ1 + λ2) with λ1 + λ2 even, and let Vλ be the corresponding ℓ-adic local system onA2[2]. The inner

cohomologyH∗
! (A2[2],Vλ) is concentrated in degrees 2, 3, 4 and given as a GSp4(F2)×Gal-module by

H2i
! (A2[2],Vλ) =



V32⊠s
new
Γ0(4)

[λ1+λ2+4]
L( 12 )=0

Lλ2+i

⊕V16⊠s
new,+
Γ0(2)

[λ1+λ2+4]
L( 12 )=0

Lλ2+i⊕V5,1⊠snew,−Γ0(2)
[λ1+λ2+4]

L( 12 )=0
Lλ2+i

λ1 = λ2 odd

V4,2⊠s
new,+
Γ0(2)

[λ1+λ2+4]
L( 12 )=0

Lλ2+i⊕V23⊠s
new,−
Γ0(2)

[λ1+λ2+4]
L( 12 )=0

Lλ2+i

⊕(V6⊕V4,2⊕V23 )⊠sΓ(1)[λ1+λ2+4]
L( 12 )=0

Lλ2+i
λ1 = λ2 even

0 otherwise

H3
! (A2[2],Vλ) = SgenΓ(2)[λ1 − λ2, λ2 + 3]⊕



V4,2⊠Snew,+
Γ0(2)

[λ1+λ2+4]⊕V23⊠Snew,−
Γ0(2)

[λ1+λ2+4]

⊕(V6⊕V4,2⊕V23 )⊠SΓ(1)[λ1+λ2+4]
λ1 = λ2 odd

V32⊠Snew
Γ0(4)

[λ1+λ2+4]

⊕V16⊠Snew,+
Γ0(2)

[λ1+λ2+4]⊕V5,1⊠Snew,−
Γ0(2)

[λ1+λ2+4]
λ1 = λ2 even

0 otherwise

⊕ snewΓ0(4)
[λ1 − λ2 + 2]V2,14 ⊠ SnewΓ0(4)

[λ1 + λ2 + 4]

⊕

(
snew
Γ0(4)

[λ1+λ2+4]V3,13

⊕snew
Γ0(2)

[λ1+λ2+4]V4,12

⊕sΓ(1)[λ1+λ2+4](V32⊕V4,12 )

)
⊠ SnewΓ0(4)

[λ1 − λ2 + 2]Lλ2+1

⊕ (snew,±Γ0(2)
[λ1 − λ2 + 2]V23 ⊕ s

new,∓
Γ0(2)

[λ1 − λ2 + 2]V16)⊠ Snew,±Γ0(2)
[λ1 + λ2 + 4]

⊕


snew
Γ0(4)

[λ1+λ2+4]V4,12

⊕snew,±
Γ0(2)

[λ1+λ2+4](V4,2⊕V3,2,1)

⊕snew,∓
Γ0(2)

[λ1+λ2+4](V5,1⊕V3,2,1)
⊕sΓ(1)[λ1+λ2+4](V4,2⊕V5,1⊕V3,2,1)

⊠ Snew,±Γ0(2)
[λ1 − λ2 + 2]Lλ2+1

⊕

(
snew
Γ0(4)

[λ1+λ2+4](V32⊕V4,12 )
⊕snew

Γ0(2)
[λ1+λ2+4](V4,2⊕V5,1⊕V3,2,1)

⊕sΓ(1)[λ1+λ2+4](V4,2⊕V5,1⊕V3,2,1⊕V32⊕V4,12 )

)
⊠ SΓ(1)[λ1 − λ2 + 2]Lλ2+1
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In particular the inner cohomologyH∗
! (A2[2],Vλ) is given as a Gal-module by

H2i
! (A2[2],Vλ) =



5snew
Γ0(4)

[λ1+λ2+4]
L( 12 )=0

Lλ2+i

⊕snew,+
Γ0(2)

[λ1+λ2+4]
L( 12 )=0

Lλ2+i⊕5snew,−
Γ0(2)

[λ1+λ2+4]
L( 12 )=0

Lλ2+i
λ1 = λ2 odd

9snew,+
Γ0(2)

[λ1+λ2+4]
L( 12 )=0

Lλ2+1⊕5snew,−
Γ0(2)

[λ1+λ2+4]
L( 12 )=0

Lλ2+1

⊕15sΓ(1)[λ1+λ2+4]
L( 12 )=0

Lλ2+1 λ1 = λ2 even

0 otherwise

H3
! (A2[2],Vλ) = SgenΓ(2)[λ1 − λ2, λ2 + 3]⊕



9Snew,+
Γ0(2)

[λ1+λ2+4]⊕5Snew,−
Γ0(2)

[λ1+λ2+4]

⊕15SΓ(1)[λ1+λ2+4]
λ1 = λ2 odd

5Snew
Γ0(4)

[λ1+λ2+4]⊕Snew,+
Γ0(2)

[λ1+λ2+4]

⊕5Snew,−
Γ0(2)

[λ1+λ2+4]
λ1 = λ2 even

0 otherwise

⊕ 5snewΓ0(4)
[λ1 − λ2 + 2]SnewΓ0(4)

[λ1 + λ2 + 4]

⊕
(

10snew
Γ0(4)

[λ1+λ2+4]⊕10snew
Γ0(2)

[λ1+λ2+4]

⊕15sΓ(1)[λ1+λ2+4]

)
SnewΓ0(4)

[λ1 − λ2 + 2]Lλ2+1

⊕ (5snew,±Γ0(2)
[λ1 − λ2 + 2] + snew,∓Γ0(2)

[λ1 − λ2 + 2])Snew,±Γ0(2)
[λ1 + λ2 + 4]

⊕
(

10snew
Γ0(4)

[λ1+λ2+4]⊕25snew,±
Γ0(2)

[λ1+λ2+4]

⊕21snew,∓
Γ0(2)

[λ1+λ2+4]⊕30sΓ(1)[λ1+λ2+4]

)
Snew,±Γ0(2)

[λ1 − λ2 + 2]Lλ2+1

⊕
(

15snew
Γ0(4)

[λ1+λ2+4]⊕30snew
Γ0(2)

[λ1+λ2+4]

⊕45sΓ(1)[λ1+λ2+4]

)
SΓ(1)[λ1 − λ2 + 2]Lλ2+1

Proof. The result follows by combining 4.6.1 and 4.6.4.
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We have the following contributions toH∗
! (A2[2],Vλ) in the range 0 ≤ λ1 + λ2 ≤ 10:

(λ1, λ2) H2
! H3

! H4
!

(0, 0) 0 0 0

(2, 0) 0 0 0

(1, 1) 0 0 0

(4, 0) 0 10SnewΓ0(4)
[6]L 0

(3, 1) 0 0 0

(2, 2) 0 SnewΓ0(2)
[8] 0

(6, 0) 0 SnewΓ0(2)
[10] + 31SnewΓ0(2)

[8]L 0

(5, 1) 0 5SnewΓ0(4)
[10] + 20SnewΓ0(4)

[6]L2 0

(4, 2) 0 SgenΓ(2)[2, 5] 0

(3, 3) 0 5SnewΓ0(2)
[10] 0

(8, 0) 0 5SnewΓ0(4)
[12] + 25SnewΓ0(4)

[10]L+ 40SnewΓ0(2)
[10]L 0

(7, 1) 0 SgenΓ(2)[6, 4] + 40SnewΓ0(2)
[8]L2 0

(6, 2) 0 SgenΓ(2)[4, 5] + 5SnewΓ0(4)
[12] + 25SnewΓ0(4)

[6]L3 0

(5, 3) 0 SgenΓ(2)[2, 6] 0

(4, 4) 0 5SnewΓ0(4)
[12] 0

(10, 0) 0 SgenΓ(2)[8, 4] + 5SnewΓ0(4)
[14] + 30SnewΓ0(4)

[12]L+ 75SΓ(1)[12]L 0

(9, 1) 0 SgenΓ(2)[8, 4] + 5SnewΓ0(4)
[14] + 30SnewΓ0(4)

[10]L2 + Snew,+Γ0(2)
[14] + 5Snew,−Γ0(2)

[14] + 56SnewΓ0(2)
[10]L2 0

(8, 2) 0 SgenΓ(2)[6, 5] + 5Snew,+Γ0(2)
[14] + Snew,−Γ0(2)

[14] + 56SnewΓ0(2)
[8]L3 0

(7, 3) 0 SgenΓ(2)[4, 6] + 5SnewΓ0(4)
[14] + 30SnewΓ0(4)

[6]L4 0

(6, 4) 0 SgenΓ(2)[2, 7] 0

(5, 5) L6 SgenΓ(2)[0, 8] + 9Snew,+Γ0(2)
[14] + 5Snew,−Γ0(2)

[14] L7

The decomposition of the terms SgenΓ(2)[λ1 − λ2, λ2 + 3] is as follows:

SgenΓ(2)[6, 4] = SgenΓ(2)[6, 4]22,12 ⊕ SgenΓ(2)[6, 4]3,13

SgenΓ(2)[4, 5] = SgenΓ(2)[4, 5]22,12 ⊕ SgenΓ(2)[4, 5]3,13

SgenΓ(2)[2, 6] = SgenΓ(2)[2, 6]3,2,1 ⊕ SgenΓ(2)[2, 6]3,13

SgenΓ(2)[8, 4] = SgenΓ(2)[8, 4]3,2,1 ⊕ SgenΓ(2)[8, 4]22,12 ⊕ SgenΓ(2)[8, 4]3,13

SgenΓ(2)[6, 5] = SgenΓ(2)[6, 5]3,2,1 ⊕ SgenΓ(2)[6, 5]22,12 ⊕ SgenΓ(2)[6, 5]32 ⊕ SgenΓ(2)[6, 5]4,12 ⊕ SgenΓ(2)[6, 5]3,13

SgenΓ(2)[4, 6] = SgenΓ(2)[4, 6]4,2 ⊕ SgenΓ(2)[4, 6]23 ⊕ SgenΓ(2)[4, 6]3,2,1 ⊕ SgenΓ(2)[4, 6]22,12 ⊕ SgenΓ(2)[4, 6]3,13

SgenΓ(2)[2, 7] = SgenΓ(2)[2, 7]3,2,1 ⊕ SgenΓ(2)[2, 7]22,12 ⊕ SgenΓ(2)[2, 7]32 ⊕ SgenΓ(2)[2, 7]4,12

SgenΓ(2)[0, 8] = SgenΓ(2)[0, 8]4,2 ⊕ SgenΓ(2)[0, 8]23 ⊕ SgenΓ(2)[0, 8]3,13
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Theorem 4.6.6. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) with λ1 + λ2 even, and let Vλ be the corresponding ℓ-adic local system onA2[2]. The

compactly supported Siegel Eisenstein cohomology H∗
c,Eis,[P1]

(A2[2],Vλ) is concentrated in degrees 2, 3, 4 and

given as a GSp4(F2)×Gal-module by

H2
c,Eis,[P1]

(A2[2],Vλ) = (V32 ⊕ V4,12)⊠ snewΓ0(4)
[λ1 − λ2 + 2]

⊕ (V4,2 ⊕ V5,1 ⊕ V3,2,1)⊠ snewΓ0(2)
[λ1 − λ2 + 2]

⊕ (V6 ⊕ 2V4,2 ⊕ V23 ⊕ V5,1 ⊕ V3,2,1)⊠ sΓ(1)[λ1 − λ2 + 2]

H3
c,Eis,[P1]

(A2[2],Vλ) = V4,12 ⊠ snewΓ0(4)
[λ1 + λ2 + 4]Lλ2+1

⊕ V3,2,1 ⊠ snewΓ0(2)
[λ1 + λ2 + 4]Lλ2+1

⊕ (V4,2 ⊕ V5,1 ⊕ V3,2,1)⊠ sΓ(1)[λ1 + λ2 + 4]Lλ2+1

⊕



V32 ⊠ snewΓ0(4)
[λ1 + λ2 + 4]L( 1

2 )=0Lλ2+1

⊕V5,1 ⊠ snew,−
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+1 λ1 = λ2 odd

V32 ⊠ snewΓ0(4)
[λ1 + λ2 + 4]Lλ2+1

⊕V5,1 ⊠ snew,−
Γ0(2)

[λ1 + λ2 + 4]Lλ2+1 otherwise

⊕



V4,2 ⊠ snew,+
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+1

⊕(V6 ⊕ V4,2 ⊕ V23)⊠ sΓ(1)[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+1 λ1 = λ2 even

V4,2 ⊠ snew,+
Γ0(2)

[λ1 + λ2 + 4]Lλ2+1

⊕(V6 ⊕ V4,2 ⊕ V23)⊠ sΓ(1)[λ1 + λ2 + 4]Lλ2+1 otherwise

H4
c,Eis,[P1]

(A2[2],Vλ) =



V32 ⊠ snewΓ0(4)
[λ1 + λ2 + 4]L( 1

2 ) ̸=0Lλ2+2

⊕V5,1 ⊠ snew,−
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 ) ̸=0Lλ2+2 λ1 = λ2 odd

V4,2 ⊠ snew,+
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 ) ̸=0Lλ2+2

⊕(V6 ⊕ V4,2 ⊕ V23)⊠ sΓ(1)[λ1 + λ2 + 4]L( 1
2 ) ̸=0Lλ2+2 λ1 = λ2 even

0 otherwise
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In particular the compactly supported Siegel Eisenstein cohomology H∗
c,Eis,[P1]

(A2[2],Vλ) is given as a Gal-

module by

H2
c,Eis,[P1]

(A2[2],Vλ) = 15snewΓ0(4)
[λ1 − λ2 + 2]⊕ 30snewΓ0(2)

[λ1 − λ2 + 2]⊕ 45sΓ(1)[λ1 − λ2 + 2]

H3
c,Eis,[P1]

(A2[2],Vλ) = 10snewΓ0(4)
[λ1 + λ2 + 4]Lλ2+1 ⊕ 16snewΓ0(2)

[λ1 + λ2 + 4]Lλ2+1 ⊕ 30sΓ(1)[λ1 + λ2 + 4]Lλ2+1

⊕



5snewΓ0(4)
[λ1 + λ2 + 4]L( 1

2 )=0Lλ2+1

⊕5snew,−
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+1 λ1 = λ2 odd

5snewΓ0(4)
[λ1 + λ2 + 4]Lλ2+1

⊕5snew,−
Γ0(2)

[λ1 + λ2 + 4]Lλ2+1 otherwise

⊕



9snew,+
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+1

⊕15sΓ(1)[λ1 + λ2 + 4]L( 1
2 )=0Lλ2+1 λ1 = λ2 even

9snew,+
Γ0(2)

[λ1 + λ2 + 4]Lλ2+1

⊕15sΓ(1)[λ1 + λ2 + 4]Lλ2+1 otherwise

H4
c,Eis,[P1]

(A2[2],Vλ) =



5snewΓ0(4)
[λ1 + λ2 + 4]L( 1

2 )̸=0Lλ2+2

⊕5snew,−
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 ) ̸=0Lλ2+2 λ1 = λ2 odd

9snew,+
Γ0(2)

[λ1 + λ2 + 4]L( 1
2 ) ̸=0Lλ2+2

⊕15sΓ(1)[λ1 + λ2 + 4]L( 1
2 )̸=0Lλ2+2 λ1 = λ2 even

0 otherwise
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Proof. Taking χ = 1 everywhere in 4.3.12 we have

H2
Eis,[P1]

(A2[2],Vλ) =



⊕
π=µ⊗1

µ∞=Dλ1+λ2+3

L(µ, 1
2
)̸=0

rK2(J
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2))⊠ Lλ2+1 λ1 = λ2

0 otherwise

H3
Eis,[P1]

(A2[2],Vλ) =



⊕
π=µ⊗1

µ∞=Dλ1+λ2+3

rK2

(
ker
(
I
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2)→ J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2)
))

⊠ Lλ1+2 λ1 = λ2

⊕
π=µ⊗1

µ∞=Dλ1+λ2+3

rK2(I
G(A∞

Q )

P1(A∞
Q )(πfin,

λ1−λ2+1
2 ))⊠ Lλ1+2 otherwise

H4
Eis,[P1]

(A2[2],Vλ) =
⊕

π=µ⊗1
µ∞=Dλ1−λ2+1

rK2(I
G(A∞

Q )

P1(A∞
Q )(πfin,

λ1+λ2+3
2 ))⊠ Lλ1+λ2+3

It remains to compute parahoric restriction. Recalling that the local component of a newform for Γ(1) is the

unramified principal series representationµ2 = χ2×χ−1
2 with parahoric restriction rK2(χ2×χ−1

2 ) = V3⊕V2,1,

such a newform yields the parahoric restriction

rK2(I
G(A∞

Q )

P1(A∞
Q )(πfin)) ≃ Ind

G(F2)
P1(F2)

((V3 ⊕ V2,1)⊗ 1) = V6 ⊕ 2V4,2 ⊕ V23 ⊕ V5,1 ⊕ V3,2,1

and yields the kernel (comparing to 4.6.1)

rK2

(
ker
(
I
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2)→ J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2)
))

= ker
(
rK2(I

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2))→ rK2(J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2))
)

= ker(V6 ⊕ 2V4,2 ⊕ V23 ⊕ V5,1 ⊕ V3,2,1 → V4,2 ⊕ V5,1 ⊕ V3,2,1)

= V6 ⊕ V4,2 ⊕ V23

Recalling that the local component of a newform forΓ0(2) is the (twisted) Steinberg representationµ2 ∈ {StGL2(Q2), ξStGL2(Q2)}

with parahoric restriction rK2(StGL2(Q2)) = rK2(ξStGL2(Q2)) = V2,1, such a newform yields the parahoric re-
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striction

rK2(I
G(A∞

Q )

P1(A∞
Q )(πfin)) ≃ Ind

G(F2)
P1(F2)

(V2,1 ⊗ 1) = V4,2 ⊕ V5,1 ⊕ V3,2,1

and yields the kernel (comparing to 4.6.1)

rK2

(
ker
(
I
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2)→ J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2)
))

= ker
(
rK2(I

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2))→ rK2(J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2))
)

= ker(V4,2 ⊕ V5,1 ⊕ V3,2,1 → V3,2,1)

=


V4,2 µ2 = ξStGL2(Q2)

V5,1 µ2 = StGL2(Q2)

Recalling that the local component of a newform for Γ0(4) is the unique depth 0 supercuspidal representation

µ2 = θ2 with parahoric restriction rK2(θ2) = V13 , such a newform yields the parahoric restriction

rK2(I
G(A∞

Q )

P1(A∞
Q )(πfin)) ≃ Ind

G(F2)
P1(F2)

(V13 ⊗ 1) = V32 ⊕ V4,12

and yields the kernel (comparing to 4.6.1)

rK2

(
ker
(
I
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2)→ J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2)
))

= ker
(
rK2(I

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2))→ rK2(J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2))
)

= ker(V32 ⊕ V4,12 → V4,12) = V32

The result follows by Poincare duality.

Theorem 4.6.7. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) with λ1 + λ2 even, and let Vλ be the corresponding ℓ-adic local system onA2[2]. The

compactly supported Klingen Eisenstein cohomologyH∗
c,Eis,[P2]

(A2[2],Vλ) is concentrated in degrees 2, 3, 4 and
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given as a GSp4(F2)×Gal-module by

H2
c,Eis,[P2]

(A2[2],Vλ) = (V2,14 ⊕ V3,13)⊠ SnewΓ0(4)
[λ2 + 2]

⊕ (V4,2 ⊕ V23 ⊕ V3,2,1)⊠ SnewΓ0(2)
[λ2 + 2]

⊕ (V6 ⊕ 2V4,2 ⊕ V23 ⊕ V5,1 + V3,2,1)⊠ SΓ(1)[λ2 + 2]

H3
c,Eis,[P2]

(A2[2],Vλ) = (V2,14 ⊕ V3,13)⊠ SnewΓ0(4)
[λ1 + 3]

⊕ (V4,2 ⊕ V23 ⊕ V3,2,1)⊠ SnewΓ0(2)
[λ1 + 3]

⊕ (V6 ⊕ 2V4,2 ⊕ V23 ⊕ V5,1 + V3,2,1)⊠ SΓ(1)[λ1 + 3]

In particular the compactly supported Klingen Eisenstein cohomology H∗
c,Eis,[P2]

(A2[2],Vλ) is given as a Gal-

module by

H2
c,Eis,[P2]

(A2[2],Vλ) = 15SnewΓ0(4)
[λ2 + 2]⊕ 30SnewΓ0(2)

[λ2 + 2]⊕ 45SΓ(1)[λ2 + 2]

H3
c,Eis,[P2]

(A2[2],Vλ) = 15SnewΓ0(4)
[λ1 + 3]⊕ 30SnewΓ0(2)

[λ1 + 3]⊕ 45SΓ(1)[λ1 + 3]

Proof. Takingχ = 1 everywhere in 4.3.21 and recalling that there are no CM cusp forms with trivial central character

for Γ(2) we have

H2
c,Eis,[P2]

(A2[2],Vλ) =
⊕

π=1⊗µ
µ∞=Dλ2+1

rK2(I
G(A∞

Q )

P2(A∞
Q )(πfin, λ1 + 2))⊠ ρµ

H3
c,Eis,[P2]

(A2[2],Vλ) =
⊕

π=1⊗µ
µ∞=Dλ1+2

rK2(I
G(A∞

Q )

P2(A∞
Q )(πfin, λ2 + 1))⊠ ρµ

It remains to compute parahoric restriction. Recalling that the local component of a newform for Γ(1) is the

unramified principal series representationµ2 = χ2×χ−1
2 with parahoric restriction rK2(χ2×χ−1

2 ) = V3⊕V2,1,

such a newform yields the parahoric restriction

rK2(I
G(A∞

Q )

P2(A∞
Q )(πfin)) ≃ Ind

G(F2)
P2(F2)

(V2 ⊗ (V4 ⊕ V22)) = V6 ⊕ 2V4,2 ⊕ V23 ⊕ V5,1 ⊕ V3,2,1
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Recalling that the local component of a newform forΓ0(2) is the (twisted) Steinberg representationµ2 ∈ {StGL2(Q2), ξStGL2(Q2)}

with parahoric restriction rK2(StGL2(Q2)) = rK2(ξStGL2(Q2)) = V2,1, such a newform yields the parahoric re-

striction

rK2(I
G(A∞

Q )

P2(A∞
Q )(πfin)) ≃ Ind

G(F2)
P2(F2)

(V2 ⊗ V22) = V4,2 ⊕ V23 ⊕ V3,2,1

Recalling that the local component of a newform forΓ0(4) is unique depth 0 supercuspidal representationµ2 = θ2

with parahoric restriction rK2(θ2) = V13 , such a newform yields the parahoric restriction

rK2(I
G(A∞

Q )

P2(A∞
Q )(πfin)) ≃ Ind

G(F2)
P2(F2)

(V2 ⊗ V14) = V2,14 ⊕ V3,13

The result follows by Poincare duality.
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Theorem 4.6.8. Let Vλ ∈ Rep(G) be an absolutely irreducible rational representation with highest weight

λ = (λ1, λ2;λ1 + λ2) with λ1 + λ2 even, and let Vλ be the corresponding ℓ-adic local system onA2[2]. The

compactly supported Borel Eisenstein cohomologyH∗
c,Eis,[P0]

(A2[2],Vλ) is concentrated in degrees 2, 3, 4, 6 and

given as a GSp4(F2)×Gal-module by

H2
c,Eis,[P0]

(A2[2],Vλ) =



V3,2,1 ⊠ L0 λ1 = λ2 = 0

(V4,2 ⊕ V5,1 ⊕ V3,2,1)⊠ L0 λ1 = λ2 > 0;λ1 even

(V4,2 ⊕ V23 ⊕ V3,2,1)⊠ L0 λ1 > λ2 = 0

(V6 ⊕ 2V4,2 ⊕ V23 ⊕ V5,1 ⊕ V3,2,1)⊠ L0 λ1 > λ2 > 0;λ1, λ2 even

H3
c,Eis,[P0]

(A2[2],Vλ) =



(V4,2 ⊕ V5,1)⊠ L1 λ1 = λ2 = 0

(V6 ⊕ V4,2 ⊕ V23)⊠ L0 λ1 = λ2 > 0;λ1 odd

(V6 ⊕ V4,2 ⊕ V5,1)⊠ L1 λ1 > λ2 = 0

0 λ1 > λ2 > 0

H4
c,Eis,[P0]

(A2[2],Vλ) =


V6 ⊠ L2 λ1 = λ2 = 0

0 otherwise

H6
c,Eis,[P0]

(A2[2],Vλ) =


V6 ⊠ L3 λ1 = λ2 = 0

0 otherwise
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In particular the compactly supported Borel Eisenstein cohomology H∗
c,Eis,[P0]

(A2[2],Vλ) is given as a Gal-

module by

H2
c,Eis,[P0]

(A2[2],Vλ) =



16L0 λ1 = λ2 = 0

30L0 λ1 = λ2 > 0;λ1 even

30L0 λ1 > λ2 = 0

45L0 λ1 > λ2 > 0;λ1, λ2 even

H3
c,Eis,[P0]

(A2[2],Vλ) =



14L1 λ1 = λ2 = 0

15L0 λ1 = λ2 > 0;λ1 odd

15L1 λ1 > λ2 = 0

0 λ1 > λ2 > 0

H4
c,Eis,[P0]

(A2[2],Vλ) =


L2 λ1 = λ2 = 0

0 otherwise

H6
c,Eis,[P0]

(A2[2],Vλ) =


L3 λ1 = λ2 = 0

0 otherwise
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Proof. Taking χ1 = χ2 = χ = 1 everywhere in 4.3.34 we have

H0
Eis,[P0]

(A2[2],Vλ) =


rK2(sim)⊠ L0 λ1 = λ2 = 0

0 otherwise

H2
Eis,[P0]

(A2[2],Vλ) =


rK2(sim)⊠ L1 λ1 = λ2 = 0

0 otherwise

H3
Eis,[P0]

(A2[2],Vλ) =



rK2(K3
0(1))⊠ L2 λ1 = λ2 = 0

rK2(I
G(A∞

Q )

P1(A∞
Q )(det⊗ 1, λ1+λ2+3

2 ))⊠ Lλ1+λ2+3 λ1 = λ2 > 0;λ1 odd

rK2(I
G(A∞

Q )

P2(A∞
Q )(1⊗ det, λ1 + 2))⊠ Lλ1+2 λ1 > λ2 = 0

0 λ1 > λ2 > 0

H4
Eis,[P0]

(A2[2],Vλ) =



rK2(K4
0(1))⊠ L3 λ1 = λ2 = 0

rK2(K4
1(1, 1))⊠ Lλ1+λ2+3 λ1 = λ2 > 0;λ1 even

rK2(K4
2(1, 1))⊠ Lλ1+3 λ1 > λ2 = 0

rK2(I
G(A∞

Q )

P0(A∞
Q )(1⊗ 1⊗ 1, λ+ ρP0))⊠ Lλ1+λ2+3 λ1 > λ2 > 0;λ1, λ2 even

It remains to compute parahoric restriction. We have rK2(sim) = V6. For the induced representations we have

rK2(I
G(A∞

Q )

P0(A∞
Q )(1⊗ 1⊗ 1, λ+ ρP0)) = Ind

G(F2)
P0(F2)

(1⊗ 1⊗ 1) = V6 ⊕ 2V4,2 ⊕ V23 ⊕ V5,1 ⊕ V3,2,1

rK2(I
G(A∞

Q )

P1(A∞
Q )(det⊗ 1, λ1+λ2+3

2 )) = Ind
G(F2)
P1(F2)

(det⊗ 1) = V6 ⊕ V4,2 ⊕ V23

rK2(I
G(A∞

Q )

P2(A∞
Q )(1⊗ det, λ1 + 2)) = Ind

G(F2)
P1(F2)

(1⊗ det) = V6 ⊕ V4,2 ⊕ V5,1

ForK3
0(1) we have

rK2(K3
0(1)) = rK2

(
ker
(
I
G(A∞

Q )

P2(A∞
Q )(1⊗ det, 2)→ sim

))
= ker

(
rK2(I

G(A∞
Q )

P2(A∞
Q )(1⊗ det, 2))→ rK2(sim)

)
= ker(V6 ⊕ V4,2 ⊕ V5,1 → V6) = V4,2 ⊕ V5,1
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ForK4
0(1) we have

rK2(K
4
0(1)) = rK2

(
ker

(
IG(A∞

Q )

P0(A∞
Q )(1⊗ 1⊗ 1, ρP0) → ker

(
IG(A∞

Q )

P1(A∞
Q )(det⊗ 1, 3

2
)⊕ IG(A∞

Q )

P2(A∞
Q )(1⊗ det, 2) → sim

)))
= ker

(
rK2(I

G(A∞
Q )

P0(A∞
Q )(1⊗ 1⊗ 1, ρP0)) → ker

(
rK2(I

G(A∞
Q )

P1(A∞
Q )(det⊗ 1, 3

2
))⊕ rK2(I

G(A∞
Q )

P2(A∞
Q )(1⊗ det, 2)) → rK2(sim)

))
= ker

(
V6 ⊕ 2V4,2 ⊕ V23 ⊕ V5,1 ⊕ V3,2,1 → ker

(
(V6 ⊕ V4,2 ⊕ V23)⊕ (V6 ⊕ V4,2 ⊕ V5,1) → V6

))
= ker(V6 ⊕ 2V4,2 ⊕ V23 ⊕ V5,1 ⊕ V3,2,1 → V6 ⊕ 2V4,2 ⊕ V23 ⊕ V5,1) = V3,2,1

ForK4
1(1, 1) we have

rK2(K4
1(1, 1)) = rK2

(
ker
(
I
G(A∞

Q )

P0(A∞
Q )(1⊗ 1⊗ 1, λ+ ρP0)→ I

G(A∞
Q )

P1(A∞
Q )(det⊗ 1, λ1+λ2+3

2 )
))

= ker
(
rK2(I

G(A∞
Q )

P0(A∞
Q )(1⊗ 1⊗ 1, λ+ ρP0))→ rK2(I

G(A∞
Q )

P1(A∞
Q )(det⊗ 1, λ1+λ2+3

2 ))
)

= ker(V6 ⊕ 2V4,2 ⊕ V23 ⊕ V5,1 ⊕ V3,2,1 → V6 ⊕ V4,2 ⊕ V23) = V4,2 ⊕ V5,1 ⊕ V3,2,1

ForK4
2(1, 1) we have

rK2(K4
2(1, 1)) = rK2

(
ker
(
I
G(A∞

Q )

P0(A∞
Q )(1⊗ 1⊗ 1, λ+ ρP0)→ I

G(A∞
Q )

P2(A∞
Q )(1⊗ det, λ1 + 2)

))
= ker

(
rK2(I

G(A∞
Q )

P0(A∞
Q )(1⊗ 1⊗ 1, λ+ ρP0))→ rK2I

G(A∞
Q )

P2(A∞
Q )(1⊗ det, λ1 + 2))

)
= ker(V6 ⊕ 2V4,2 ⊕ V23 ⊕ V5,1 ⊕ V3,2,1 → V6 ⊕ V4,2 ⊕ V5,1) = V4,2 ⊕ V23 ⊕ V3,2,1

The result follows by Poincare duality.

We have the following contributions toH∗
c (A2[2],Vλ) in the range 0 ≤ λ1 + λ2 ≤ 8:

(λ1, λ2) H2
c H3

c H4
c H6

c

(0, 0) 16 14L L2 L3
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(λ1, λ2) H2
c H3

c H4
c

(2, 0) 30 30L 0

(1, 1) 0 10L2 + 15 5L3

(4, 0) 45 10SnewΓ0(4)
[6]L+ 45L 0

(3, 1) 0 30L2 + 15SnewΓ0(4)
[6] 0

(2, 2) 30 SnewΓ0(2)
[8] + 21L3 9L4

(6, 0) 60 SnewΓ0(2)
[10] + 31SnewΓ0(2)

[8]L+ 60L 0

(5, 1) 15 5SnewΓ0(4)
[10] + 20SnewΓ0(4)

[6]L2 + 30SnewΓ0(2)
[8] + 45L2 0

(4, 2) 45 SgenΓ(2)[2, 5] + 45L3 0

(3, 3) 0 15SnewΓ0(4)
[6] + 5SnewΓ0(2)

[10] + 35L4 + 15 10L5

(8, 0) 75 5SnewΓ0(4)
[12] + 25SnewΓ0(4)

[10]L+ 40SnewΓ0(2)
[10]L+ 75L 0

(7, 1) 30 SgenΓ(2)[6, 4] + 15SnewΓ0(4)
[10] + 30SnewΓ0(2)

[10] + 40SnewΓ0(2)
[8]L2 + 60L2 0

(6, 2) 60 SgenΓ(2)[4, 5] + 5SnewΓ0(4)
[12] + 25SnewΓ0(4)

[6]L3 + 60L3 0

(5, 3) 0 SgenΓ(2)[2, 6] + 30SnewΓ0(2)
[8] + 60L4 0

(4, 4) 15SnewΓ0(4)
[6] + 30 5SnewΓ0(4)

[12] + 45L5 15L6

We have the following contributions to ec(A2[2],Vλ) in the range 0 ≤ λ1 + λ2 ≤ 8:

(λ1, λ2) ec

(0, 0) L3 + L2 − 14L+ 16

(2, 0) −30L+ 30

(1, 1) 5L3 − 10L2 − 15

(4, 0) −10SnewΓ0(4)
[6]L− 45L+ 45

(3, 1) −15SnewΓ0(4)
[6]− 30L2

(2, 2) −SnewΓ0(2)
[8] + 9L4 − 21L3 + 30

(6, 0) −SnewΓ0(2)
[10]− 31SnewΓ0(2)

[8]L− 60L+ 60

(5, 1) −5SnewΓ0(4)
[10]− 20SnewΓ0(4)

[6]L2 − 30SnewΓ0(2)
[8]− 45L2 + 15

(4, 2) −SgenΓ(2)[2, 5]− 45L3 + 45

(3, 3) −15SnewΓ0(4)
[6]− 5SnewΓ0(2)

[10] + 10L5 − 35L4 − 15

(8, 0) −5SnewΓ0(4)
[12]− 25SnewΓ0(4)

[10]L− 40SnewΓ0(2)
[10]L− 75L+ 75

(7, 1) −SgenΓ(2)[6, 4]− 15SnewΓ0(4)
[10]− 40SnewΓ0(2)

[8]L2 − 30SnewΓ0(2)
[10]− 60L2 + 30

(6, 2) −SgenΓ(2)[4, 5]− 5SnewΓ0(4)
[12]− 25SnewΓ0(4)

[6]L3 − 60L3 + 60

(5, 3) −SgenΓ(2)[2, 6]− 30SnewΓ0(2)
[8]− 60L4

(4, 4) 15SnewΓ0(4)
[6]− 5SnewΓ0(4)

[12] + 15L6 − 45L5 + 30

We should remark on the discrepancies between the above table and the table appearing in [14, Section 10]: some

of the discrepancies in latter contradict known results of Harder [55] and Petersen [96] on the cohomology of local

systems onA2, and some contradict results of Rösner [100] on the cuspidal cohomology of local systems onA2[2].

On the other hand the entries in the above table perfectly match the outputs of the computer program (kindly

381



shared by Bergström) which relies on direct computations of point counts of genus 2 curves over finite fields. This

provides strong computational evidence for the correctness of the expression for the Euler characteristics of local

systems onA2[2].

4.7 Example: Cohomology ofA2[3]

Let A2[3] be the moduli stack of principally polarized Abelian surfaces with full level 3 structure. The group

GSp4(F3) acts onA2[3]. We will compute the cohomologyH∗(A2[2],Qℓ) as a GSp4(F3)×Gal-module, recov-

ering results of Hoffman-Weintraub.

Let us first recall the strategy employed by Lee-Weintraub. LetA2[N ]be the moduli stack of principally polarized

Abelian surfaces with full level N structure, which is the Shimura variety SK′(N) for the modified full level N

congruence subgroupK ′(N) ⊆ GSp4(A∞
Q ); in particular, it is connected. The same results can be deduced for

the Shimura variety SK(N) for the full level N congruence subgroup K(N) ⊆ GSp4(A∞
Q ) by taking character

twists.

LetA2[N ] be a toroidal compactification ofA2[N ]. We consider the Leray spectral sequence for the canonical

inclusion j : A2[N ] ↪→ A2[N ]

Ep,q2 = Hp(A2[N ],Rqj∗Qℓ)⇒ Hp+q(A2[N ],Qℓ)

which by Deligne degenerates atE3 withEp,q3 = GrWp+2qH
p+q(A2[N ],Qℓ). We have GrWi H

j(A2[N ],Qℓ) = 0

unless j ≤ i ≤ 2j, and GrWi H
i(A2[N ],Qℓ) = im(H i(A2[N ],Qℓ)→ H i(A2[N ],Qℓ)). We have

Hp(A2[N ],Rqj∗Qℓ) =
⊕

ℓ1<...<ℓq

Hp(D(ℓ1, . . . , ℓq), ϵ)

where ϵ = ∧qQEq is a 1-dimensional ℓ-adic local system where Eq is the sheaf of germs of the q hypersurfaces

intersectingD(ℓ1, . . . , ℓq). TheE2-page differentials dp,q2 : Ep,q2 → Ep+2,q−1 are given by

dp,q2 =
∑
i

(−1)idi∗ :
⊕

ℓ1<...<ℓq

Hp(D(ℓ1, . . . , ℓq), ϵ)→
⊕

ℓ1<...<ℓq−1

Hp+2(D(ℓ1, . . . , ℓq−1), ϵ)
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where di∗ : Hp(D(ℓ1, . . . , ℓq), ϵ) → Hp+2(D(ℓ1, . . . , ℓ̂i, . . . , ℓq), ϵ) is the Gysin morphism for the inclusion

di : D(ℓ1, . . . , ℓq) ↪→ D(ℓ1, . . . , ℓ̂i, . . . , ℓq). TheE2-page has the following terms:

3 E0,3
2

2 E0,2
2 E1,2

2 E2,2
2

1 E0,1
2 E1,1

2 E2,1
2 E3,1

2 E4,1
2

0 E0,0
2 E2,0

2 E3,0
2 E4,0

2 E6,0
2

E2 0 1 2 3 4 5 6

By [57, Lemma 5.2] the differential d0,12 : E0,1
2 =

⊕
ℓH

0(D(ℓ), ϵ) → H2(A2[N ],Q) = E2,0
2 is injective,

hence we have

H2(A2[N ],Q) = H2(A2[N ],Q)/
⊕
ℓ

H0(D(ℓ),Q)

The differentiald1,12 : E1,1
2 =

⊕
ℓH

1(D(ℓ), ϵ)→ H3(A2[N ],Q) = E3,0
2 is injective sinceGrW3 H

2(A2[N ],Qℓ) =

0, hence we have

GrW3 H
3(A2[N ],Q) = H3(A2[N ],Q)/

⊕
ℓ

H1(D(ℓ),Q)

The differential d1,22 : E1,2
2 =

⊕
ℓ1<ℓ2

H1(D(ℓ1, ℓ2), ϵ) →
⊕

ℓH
2(D(ℓ), ϵ) = E2,1

2 is an isomorphism since

GrW5 H
3(A2[N ],Qℓ) = 0 and GrW5 H

4(A2[N ],Qℓ) = 0. Define the complex

S• =
(
E0,2

2 → E2,1
2 → E4,0

2

)
=
( ⊕
ℓ1<ℓ2

H0(D(ℓ1, ℓ2), ϵ)→
⊕
ℓ

H2(D(ℓ), ϵ)→ H4(A2[N ],Q)
)

which is exact in S0 − E0,2
2 since GrW4 H

2(A2[N ],Qℓ) = 0. Define the complex

T • =
(
E0,3

2 → E2,2
2 → E4,1

2 → E6,0
2

)
=
( ⊕
ℓ1<ℓ2<ℓ3

H0(D(ℓ1, ℓ2, ℓ3), ϵ)→
⊕
ℓ1<ℓ2

H2(D(ℓ1, ℓ2), ϵ)→
⊕
ℓ

H4(D(ℓ), ϵ)→ H6(A2[N ],Q)
)
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which is exact in T 2 = E4,1
2 and T 3 = E6,0

2 since H5(A2[N ],Qℓ) = 0 and H5(A6[N ],Qℓ) = 0. Now the

E3-page has the following terms:

3 E0,3
3

2 E2,2
3

1 E2,1
3

0 E0,0
3 E2,0

3 E3,0
3 E4,0

3

E3 0 1 2 3 4

In particular, one obtains the following:

Proposition 4.7.1. [57, Theorem 5.3]

GrWi H
0(A2[N ],Qℓ) =


H0(A2[N ],Qℓ) = Qℓ i = 0

0 otherwise

GrWi H
2(A2[N ],Qℓ) =


H2(A2[N ],Qℓ)/

⊕
ℓH

0(D(ℓ),Qℓ) i = 3

0 otherwise

GrWi H
3(A2[N ],Qℓ) =



H3(A2[N ],Qℓ)/
⊕

ℓH
1(D(ℓ),Qℓ) i = 3

H1(S•) i = 4

H0(T •) i = 6

0 otherwise

GrWi H
4(A2[N ],Qℓ) =


H2(S•) i = 4

H1(T •) i = 6

0 otherwise

At this point the main problem is to analyze the complexes S• and T •, and how their cohomology decomposes

as GSp4(Fq)-modules.

We now specialize to the caseN = 3. The following representations of GSp4(F3) play a role:
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Representation of GSp4(F3) θ0 θ1 θ4 θ5 τ1 τ2 τ3 χ5 χ6

Dimension 1 24 15 81 10 30 90 20 60

In particular θ0 = 1GSp4(F3) is the trivial representatioon and θ5 = StGSp4(F3) is the Steinberg representation.

By [57, Proposition 6.2] which is obtained by analyzing the action of GSp4(F3) on boundary components of

the toroidal compactification, theE2-page has the following terms:

3 τ1 + τ2 + χ0τ2 + τ3

2 θ1 + θ4 + θ5 + τ2 + τ3 θ1 + θ4 + θ5 + τ2 + τ3

1 θ0 + θ1 + θ4 2θ0 + 3θ1 + 3θ4 + θ5 + τ2 + τ3 + χ5 + χ6 θ0 + θ1 + θ4

0 θ0 2θ0 + θ1 + θ4 + χ5 2θ0 + θ1 + θ4 + χ5 θ0

E2 0 2 4 6

By computing the cohomology of the complexes S• and T •, theE3 page has the following terms:

3 τ1 + χ0τ2

2 θ5

1 θ1 + θ4 + χ6

0 θ0 θ0 + χ5

E3 0 2

In particular, one obtains the following:

Theorem 4.7.2. (Hoffman-Weintraub, [57, Theorem 5.7, Theorem 6.1]) The cohomologyH∗(A2[3],Qℓ) is con-

centrated in degrees 0, 2, 3, 4, and given as a GSp4(F3)×Gal-module by

H0(A2[3],Qℓ) = θ0 ⊠ L0

H2(A2[3],Qℓ) = (θ0 ⊕ χ5)⊠ L1

H3(A2[3],Qℓ) = (θ1 ⊕ θ4 ⊕ χ6)⊠ L2 + (τ1 ⊕ χ0τ2)⊠ L3

H4(A2[3],Qℓ) = θ5 ⊠ L3
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In particular the cohomologyH∗(A2[3],Qℓ) is given as a Gal-module by

H0(A2[3],Qℓ) = L0

H2(A2[3],Qℓ) = 21L1

H3(A2[3],Qℓ) = 99L2 + 40L3

H4(A2[3],Qℓ) = 81L3

We now explain how the above can be quickly deduced from earlier results.

Theorem 4.7.3. The intersection cohomologyH∗
disc(A2[3],Qℓ) is concentrated in degrees 0, 2, 4, 6 and given as

a GSp4(F3)×Gal-module by

H0
disc(A2[3],Qℓ) = θ0 ⊠ L0

H2
disc(A2[3],Qℓ) = (θ0 + χ5)⊠ L1

H4
disc(A2[3],Qℓ) = (θ0 + χ5)⊠ L2

H6
disc(A2[3],Qℓ) = θ0 ⊠ L3

Proof. To compute intersection cohomology we only need to consider contributions from Siegel-CAP represen-

tations and 1-dimensional representations in this case. Recall that Snew
4 [Γ0(9)] is 1-dimensional, generated by

the cusp form f = η(3τ)8 = q
∏
n≥1(1 − q3n)8 = q − 8q4 + 20q7 + . . . which has CM by Q(

√
−3) and

hence has depth 0 supercuspidal local component µ3 = Ind
GL2(Q3)
Z(Q3)GL2(Z3)

θ corresponding to the admissible pair

(Q×
9 , θ) where Q9 = Q[s]/(s2 + 2s + 2) is an unramified quadratic extension and θ : Q×

9 → Q(i) is either

of the characters of Q×
9 trivial on Q×

3 given by s 7→ ±i and 3 7→ 9. Since ϵ(µ3, 12) = 1, a Saito-Kurokawa

lift contributing to IH3 has local component Π(µ3,StGL2(Q3)) = θ−(µ3,StGL2(Q3)) an anisotropic theta lift

with hyperspecial parahoric restriction rK3(Π(µ3,StGL2(Q3))) = 0, and a Saito-Kurokawa lift contributing to

IH2, IH4 has local component Π(µ3, 1GL2(Q3)) = L(µ3ν
1/2 ⋊ ν−1/2) with hyperspecial parahoric restriction

rK3(Π(µ3, 1GL2(Q3))) = χ5 an irreducible representation of dimension 20.

The cohomologyH∗(A2[3],Qℓ) then differs from the intersection cohomologyH∗
disc(A2[3],Qℓ) in degrees

2 and 4 by the GSp4(F3)-module
⊕

ℓH
0(D(ℓ),Qℓ) ≃ 1F×

3
⋊ 1GL2(F3) = θ0 + θ1 + θ4. It follows that the
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cohomologyH∗(A2[3],Qℓ) is concentrated in degrees 0, 2, 4, 6, and given as a GSp4(F3)×Gal-module by

H0(A2[3],Qℓ) = H0
disc(A2[3],Qℓ) = θ0 ⊠ L0

H2(A2[3],Qℓ) = H2
disc(A2[3],Qℓ) + 1F×

3
⋊ 1GL2(F3) = (2θ0 + θ1 + θ4 + χ5)⊠ L1

H4(A2[3],Qℓ) = H4
disc(A2[3],Qℓ) + 1F×

3
⋊ 1GL2(F3) = (2θ0 + θ1 + θ4 + χ5)⊠ L2

H6(A2[3],Qℓ) = H6
disc(A2[3],Qℓ) = θ0 ⊠ L3

which explains the first row of the spectral sequence.

Rather than analyzing the rest of the spectral sequence as done by Hoffman-Weintraub, we compute the coho-

mology directly. In this case the only contributions come from Siegel Eisenstein cohomology and Borel Eisenstein

cohomology.

Theorem 4.7.4. The Siegel Eisenstein cohomologyH∗
Eis,[P1]

(A2[3],Qℓ) is concentrated in degrees 2, 3 and given

as a GSp4(F3)×Gal-module by

H2
Eis,[P1]

(A2[3],Qℓ) = χ5 ⊠ L1

H3
Eis,[P1]

(A2[3],Qℓ) = χ6 ⊠ L2

In particular the Borel Eisenstein cohomologyH∗
Eis,[P0]

(A2[3],Qℓ) is given as a Gal-module by

H2
Eis,[P1]

(A2[3],Qℓ) = 20L1

H3
Eis,[P1]

(A2[3],Qℓ) = 60L2

Proof. Takingχ = 1 everywhere in 4.3.12 and noting thatL(µ, 12) ̸= 0 for the cuspidal automorphic representation

µ of GL2(AQ) generated by the newform f ∈ Snew
4 [Γ0(9)] considered previously, we have

H2
Eis,[P1]

(A2[3],Qℓ) = rK3(J
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2))⊠ L1

H3
Eis,[P1]

(A2[3],Vλ) = rK3

(
ker
(
I
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2)→ J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2)
))

⊠ L2
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It remains to compute parahoric restriction. Recalling that the local component of the newform f ∈ Snew
4 [Γ0(9)]

is a depth 0 supercuspidal representation µ3 = Ind
GL2(Q3)
Z(Q3)GL2(Z3)

θ, such a newform yields the parahoric restriction

rK3(I
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2)) = χ5 + χ6

and yields the kernel

rK3

(
ker
(
I
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2)→ J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2)
))

= ker
(
rK3(I

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2))→ rK3(J

G(A∞
Q )

P1(A∞
Q )(πfin,

1
2))
)

= ker(χ5 + χ6 → χ5) = χ6

Here we note that rK3(J
G(A∞

Q )

P1(A∞
Q )(πfin,

1
2)) ≃ χ5 is the same parahoric restriction appearing in the description of

the Siegel CAP part of intersection cohomology, and we are using πΛ ⋊ 1 ≃ χ5(Λ, 1) + χ6(Λ, 1) in the case

Λ = ωΛ ◦Nm2 by the tables in the appendix. The result follows.

Theorem 4.7.5. The Borel Eisenstein cohomologyH∗
Eis,[P0]

(A2[3],Qℓ) is concentrated in degrees 0, 2, 3, 4 and

given as a GSp4(F3)×Gal-module by

H0
Eis,[P0]

(A2[3],Qℓ) = θ0 ⊠ L0

H2
Eis,[P0]

(A2[3],Qℓ) = θ0 ⊠ L1

H3
Eis,[P0]

(A2[3],Qℓ) = (θ1 + θ4)⊠ L2 + (τ1 + χ0τ2)⊠ L3

H4
Eis,[P0]

(A2[3],Qℓ) = θ5 ⊠ L3

In particular the Borel Eisenstein cohomologyH∗
Eis,[P0]

(A2[3],Qℓ) is given as a Gal-module by

H0
Eis,[P0]

(A2[3],Qℓ) = L0

H2
Eis,[P0]

(A2[3],Qℓ) = L1

H3
Eis,[P0]

(A2[3],Qℓ) = 39L2 + 40L3

H4
Eis,[P0]

(A2[3],Qℓ) = 81L3
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Proof. Taking χ1 ∈ {1, χ0} and χ2 = χ = 1 everywhere in 4.3.34 we have

H0
Eis,[P0]

(A2[3],Qℓ) = rK3(sim)⊠ L0

H2
Eis,[P0]

(A2[3],Qℓ) = rK3(sim)⊠ L1

H3
Eis,[P0]

(A2[3],Qℓ) = rK3(K3
0(1))⊠ L2 ⊕ rK3(I

G(A∞
Q )

P1(A∞
Q )(χ0,fin ◦ det⊗ 1, 32))⊠ L3

H4
Eis,[P0]

(A2[3],Qℓ) = rK3(K4
0(1))⊠ L3

It remains to compute parahoric restriction. We have rK3(sim) = θ0. For the induced representations we have

rK3(I
G(A∞

Q )

P0(A∞
Q )(1⊗ 1⊗ 1, ρP0)) = Ind

G(F3)
P0(F3)

(1⊗ 1⊗ 1) = θ0 + 2θ1 + θ3 + θ4 + θ5

rK3(I
G(A∞

Q )

P1(A∞
Q )(det⊗ 1, 32)) = Ind

G(F3)
P0(F3)

(det⊗ 1) = θ0 + θ1 + θ3

rK3(I
G(A∞

Q )

P1(A∞
Q )(1⊗ det, 2)) = Ind

G(F3)
P0(F3)

(1⊗ det) = θ0 + θ1 + θ4

rK3(I
G(A∞

Q )

P1(A∞
Q )(χ0,fin ◦ det⊗ 1, 32)) = Ind

G(F3)
P0(F3)

(χ0 ◦ det⊗ 1) = τ1 + χ0τ2

ForK3
0(1) we have

rK3(K3
0(1)) = rK3

(
ker
(
I
G(A∞

Q )

P2(A∞
Q )(1⊗ det, 2)→ sim

))
= ker

(
rK3(I

G(A∞
Q )

P2(A∞
Q )(1⊗ det, 2))→ rK3(sim)

)
= ker(θ0 + θ1 + θ4 → θ0) = θ1 + θ4

ForK4
0(1) we have

rK3(K
4
0(1)) = rK3

(
ker

(
IG(A∞

Q )

P0(A∞
Q )(1⊗ 1⊗ 1, ρP0) → ker

(
IG(A∞

Q )

P1(A∞
Q )(det⊗ 1, 3

2
)⊕ IG(A∞

Q )

P2(A∞
Q )(1⊗ det, 2) → sim

)))
= ker

(
rK3(I

G(A∞
Q )

P0(A∞
Q )(1⊗ 1⊗ 1, ρP0)) → ker

(
rK3(I

G(A∞
Q )

P1(A∞
Q )(det⊗ 1, 3

2
))⊕ rK3(I

G(A∞
Q )

P2(A∞
Q )(1⊗ det, 2)) → rK3(sim)

))
= ker

(
θ0 + 2θ1 + θ3 + θ4 + θ5 → ker

(
(θ0 + θ1 + θ3)⊕ (θ0 + θ1 + θ4) → θ0

))
= ker(θ0 + 2θ1 + θ3 + θ4 + θ5 → θ0 + 2θ1 + θ3 + θ4) = θ5

The result follows.
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