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ABSTRACT 

 A “floor effect” arises when performance is as bad as possible in all conditions. It is also 

known as the lowest possible measure of an individual’s performance or achievement. The floor 

may serve as a proxy for how low an observation could actually go if not for the lower bound 

which restricts the performance to a certain point. The floor effect can also be an artifact of an 

interaction between the assessment and examinees, which causes individuals to reach the bottom 

of their capacity to answer test items correctly. Much work has been conducted on factors 

affecting student achievement and achievement growth trajectories, however, there is very little 

regarding how to model the growth trajectories of a floor effect. The censored-inflated model is 

unique and seemingly appropriate to be employed with these types of data since two growth 

models are simultaneously estimated. The first is a continuous growth model, and the second a 

model specific for floor effects. 

A simulation study was conducted to test model fit under various conditions. The study provides 

promising evidence that the censored-inflated model is best used for these highly specific data. 
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CHAPTER 1 

INTRODUCTION 

On June 10, 2008, the United States Department of Education (through Secretary of 

Education Spellings) granted permission to a total of 17 states to begin employing the use of 

growth modeling for the purposes of assessing Adequate Yearly Progress (AYP) in the school 

systems.  A panel of experts in the fields of academia, State and District Practitioners, and 

Education Organizations was composed to review petitions. The techniques used in these growth 

models vary in approaches, but most often those used by state departments of education have 

been within the family of Hierarchical Linear Models (HLM). The Value-Added (VA) model 

developed first in Tennessee, has been most popular and widely adopted by other states. 

Though the family of HLM  models (specifically the value added model), of data assessment are 

widely accepted and frequently utilized, the hierarchical linear modeling (HLM) family of 

models does not contain the kind of flexibility, measurement extension possibility, or control for 

measurement errors found with the Structural Equation Modeling (SEM framework). 

Regarding flexibility, Structural Equation Modeling is seen as a flexible and powerful analysis 

tool. For example, in the SEM framework of growth curve modeling, the assumptions for errors 

stemming from homoscedasticity and independence can be relaxed and analysis based on 

heteroscedastic and autocorrelated errors can be completed. Another strength of the SEM 

framework is the ability to disaggregate the effects into direct, indirect and specific indirect as 

well as calculate standard errors for each of these components simultaneously across all levels 

(Bollen, 1987).   
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For growth modeling using the SEM approach, parameters for the slope and intercept are 

estimated through the use of latent factors. In most computer programs, the maximum likelihood 

approach to parameter estimation is employed based on the fact that the ML method provides 

unbiased, consistent and efficient estimators of parameters. This method also assumes that the 

population is multivariate normal and that the sample used for the purposes of analysis is a direct 

reflection of that population. Due to the fact that standard errors can be very high in populations 

where students’ ability levels may be below the mean, it is most effective to use Structural 

Equation Modeling to analyze the data for the purposes of the study.  

For the purposes of this study, the population under investigation with regard to growth 

modeling is those who display what is referred to as “floor effects”.  According to Cohen (1995), 

a “floor effect” arises when performance is as bad as possible in all conditions. It is also known 

as the lowest possible measure of an individual’s performance or achievement. The floor may 

serve as a proxy for how low an observation could actually go if not for the lower bound which 

restricts the performance to a certain point. In the case of this discussion, this term is used to 

describe those individuals whose resulting test scores indicate that they have reached the bottom 

of their capability to answer test items correctly. Most often this phenomenon is observed in 

special needs student populations when for reasons often unknown to teachers, school 

administrators and policy makers, students display an inability to adequately respond to 

assessment items. 

Much work has been conducted on factors affecting student achievement and 

achievement growth trajectories. However, there is very little research regarding how to model 

the growth trajectories of students who are consistently low achievers. Essentially, students 

exhibiting a floor effect display different growth trajectories from those in the mainstream 



3 

 

population. With this in mind, combining the two groups when estimating growth model 

parameters will likely result in biased estimates for both of the groups. Methods of analysis that 

allow the floor effects to be modeled specifically are necessary to prevent such biases.   

The method of interest for the purpose of this study is the censored-inflated model 

(Muthen, 2003).  The censored-inflated model is unique and seemingly appropriate to be 

employed for floor effects data analysis because in this method, two models are simultaneously 

estimated. The first is based on the normal observations within the sample, while the second is a 

model that is specific for the individuals that display floor effects.  Though there is little research 

that has been conducted using the censored-inflated model, it is hypothesized that this model will 

provide more accurate parameter estimates for data with floor effects than will traditional growth 

curve models. Currently, floor effects data are often treated as missing observations, resulting in 

a loss of power due to loss of observations. In instances where these observations are simply 

included for omnibus analysis, the parameter estimates are negatively biased based on the 

extreme low values of the floor observations.   
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CHAPTER 2 

 SPECIAL EDUCATION, GROWTH MODELING, AND FLOOR EFFECTS  

Why Special Student Populations? 

Based on the fact that federal law mandates specific structures must be in place for 

students with learning disabilities, it is imperative that public school systems throughout the 

country  not only take the appropriate steps to ensure an adequate and equitable learning 

environment for students with special needs, but find appropriate methods for measuring their 

progress. Since Individualized Education Plans (IEPs) are legally binding educational contracts, 

these students cannot be ignored in classrooms and therefore, the way in which they learn (as 

measured through standardized assessments) is a matter which requires immediate attention.  

The presence of students with special needs in schools and their performance on standardized 

tests can ultimately affect measures of Adequate Yearly Progress (AYP) as mandated by the No 

Child Left Behind (NCLB) legislation.  

According to the federal legislation, 95% of the total population of a state school system 

must be included for the purposes of analysis in order to determine whether criteria for AYP 

were met. With the new permission granted by the Secretary of Education, growth models are 

being piloted in school systems around the country in order to display schools’ meeting criteria 

for AYP. As a result, it is necessary that educational researchers continue to engage in studies 

which increase the knowledge base regarding how to best model the growth patterns for this 

population of students. Currently, the states that have been granted permission to use growth 

models are: Alaska, Arizona, Arkansas, Delaware, District of Columbia, Florida, Hawaii, Iowa, 
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Minnesota, Missouri, Nevada, New Hampshire, New Mexico, North Carolina, Ohio, 

Pennsylvania and Tennessee, and the guidelines for state-level implementation of growth models 

are as follows: 

1. Ensure that all students are proficient by 2014 and set annual state goals to ensure that the 
achievement gap is closing for all groups of students;  

2. Set expectations for annual achievement based upon meeting grade-level proficiency and 
not upon student background or school characteristics;  

3. Hold schools accountable for student achievement in reading/language arts and 
mathematics;  

4. Ensure that all students in tested grades are included in the assessment and accountability 
system, hold schools and districts accountable for the performance of each student subgroup 
and include all schools and districts;  

5. Include assessments, in each of grades 3 through 8 and high school, in both 
reading/language arts and mathematics that have been operational for more than one year 
and have received approval through the NCLB standards and assessment review process for 
the 2005-06 school year. The assessment system must also produce comparable results from 
grade to grade and year to year;  

6. Track student progress as part of the state data system; and  
7. Include student participation rates and student achievement as separate academic indicators 

in the state accountability system.  

(http://www.ed.gov/news/pressreleases/2008/06/06102008.html) 

In the case of students who display floor effects, it can be assumed that the growth 

trajectories are of a non-traditional linear fashion, which may mean that the growth displayed is 

stagnant or flat at lower bounds observations.  This means that the growth models currently 

being employed under the assumption of a normally distributed population are inefficient to be 

used when students within the group display floor effects.  The modeling of such trajectories 

requires additional investigation into alternative methods for assessing growth other than the 

traditional linear models. 

Special Education in America 

The history of special education programs in the United States dates back as early as the 

1960s when many of the states in the country did have programs for special student populations 

http://www.ed.gov/news/pressreleases/2008/06/06102008.html�
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in place. However, the problem was that there were an almost identical number of states that did 

not possess such programs, and many students with disabilities were left without necessary 

services within an educational setting. In some states students with disabilities were not allowed 

to attend public school education. In 1965, the U.S. Congress passed the Elementary and 

Secondary Education Act (ESEA), and part of the funding of the first ESEA was given to states 

for special education services. This initial federal funding was in response to reports that found 

up to two-thirds of the nation's disabled children were not receiving "appropriate education."  

Two of the most significant court cases with respect to special education are the 

Pennsylvania Association of Retarded Children (PARC) vs. Commonwealth of Pennsylvania and 

the Mills vs. Board of Education. In 1971, a federal district court found that every mentally 

challenged child in Pennsylvania had a right to a public education and in the 1972 Mills vs. 

Board of Education of the District of Columbia case, the U.S. District Court found that a school 

district cannot exclude any exceptional children from public education, even if the school district 

has insufficient funds to provide such services. Based on the outcomes of these cases, the U.S. 

Congress amended the Elementary and Secondary Education Act (ESEA) in 1974 to require 

states to provide a "free and appropriate education to all children." The following year, the U.S. 

Congress passed the Education for All Handicapped Children's Act (EHA) of 1975, which 

provided additional federal funding for special education.  

This “Public Law 94-142, the Education for All Handicapped Children Act" was a law 

that for the first time gave opportunities to individuals, ages 3 to 21, for a free and appropriate 

education regardless of disabilities, and included procedural safeguards to protect the rights of 

students and their parents. It also included the opportunity to receive an education in the least 

restrictive environment, utilizing an individualized educational program for each child as 
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necessary, and provided for parental involvement in educational decisions related to their 

children with disabilities, and fair, accurate, and unbiased evaluations. This law also required 

that educators provide "due process procedural safeguards". As a result of Mills vs. Board of 

Education, laws that "clearly outlined due process procedures for labeling, placement, and 

exclusion" were created, and "Procedural safeguards to include right to appeal, right to access 

records, and written notice of all stages of the process" were also required (Chinn & Gollnick, 

2006). 

 This legislation has been amended through the years and is currently known as the 

Individuals with Disabilities Education Improvement Act (IDEIA 2004). According to this 

regulation, children ages three through nine who experience “developmental delays” or “health 

impairments” which impede or interfere with the learning process(es) of a student are included 

for the purposes of public (or if necessary private) school education. This legislation also 

mandates that each state “adopt specific criteria” which determine whether a child has special 

needs. IDEIA 2004 regulations require that teachers, specialists, school psychologists, or other 

psychologists diagnose the disability that would elicit services under the legislation. Since each 

state is at liberty to identify special needs students according to individual standards, there is no 

actual formalized definition of what conditions are considered as special needs, only suggestions 

and inclusions (such as Tourette’s syndrome). Additionally, there is no pre-specified age or 

grade level at which a learning disability is to be determined by school officials, but such 

assessments are recommended to be completed on an “as needed” basis.        

Due to the fact that the terminology of special education is considered to be ambiguous or 

state specific, it is necessary to operationalize the term for the purposes of this paper. In the 

instances where the term “special needs” or “special education” is used, the term will refer to 
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students who have been identified by the state of origin as learning disabled based on cognitive 

deficits in processing, or those with behavioral or emotional disabilities which impede learning, 

and as a result have been provided with an Individualized Education Plan for classroom 

accommodations and instructional modifications. It is important to note, that in most instances, 

though highly controversial, Limited English Proficient (LEP), students who are also known as 

English Speakers of Other Languages (ESOL) are not usually included in the IDEIA 2004 

legislation, and therefore in this paper will not be identified as special needs. The special needs 

population under investigation often possesses patterns of growth that are not linear in nature, or 

are linear with growth trajectories containing a slope of zero. In these cases, it is more 

appropriate to seek methods of growth modeling which best suit this type of growth.   

Linear Growth Modeling 

 According to the National Center for Education Statistics (NCES; 2002), the definition 

of a longitudinal study is one in which the same respondents are surveyed repeatedly over time.  

Longitudinal studies are multilevel or hierarchical in nature, based on the fact that time points at 

which the data were collected are nested within the individuals being used as the sample. For any 

type of statistical modeling, the term longitudinal refers to observations made over a specified 

period of time, which are then combined, often in a composite form, in order to observe 

differences among time points within the same dataset. Longitudinal data may provide useful 

information regarding specific trends in the data as well as give opportunities to directly pinpoint 

where in time changes occur. Work done by Bryk and Raudenbush (1987), Willett and Sayer 

(1994), and Muthén and Khoo (1998) has provided strong evidence for the hypothesis that 

growth modeling can be used as an important method when analyzing patterns of change-

especially as it relates to the field of education. The same researchers also agree that in order to 
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gain a more accurate measure of a respondent’s change or growth over time, it is necessary to 

observe more than one “snapshot” picture of the individual, and employ a more holistic 

approach, which takes into account the time factor and allows for multiple observations within a 

specified period. 

 Longitudinal data are inherently nested, and multilevel by nature (Byrk & Raudenbush, 

1987, 1992). Although cross-sectional analyses can be useful in answering some research 

questions, when a research question requires the observation and analysis of growth over time, 

the cross-sectional approach is not fitting because there are not multiple time points collected on 

each individual for the purposes of analysis. Cross-sectional analysis provides a snapshot of 

performance which may not be useful if interest is in change over time. Given these reasons, it is 

not surprising that a large portion of educational research conducted in, for or about public 

schools is conducted within a longitudinal framework. 

 For most statistical modeling of cross-sectional data, analysis is conducted based on the 

assumptions that: the data are normally distributed, there is independence of observations, 

homogeneity of the sample, and linearity of growth. However, for many longitudinal studies 

there may be violations of these assumptions. Work conducted by Chiu and Khoo (2005) 

discussed a number of problems in the data that may lead to violations of the assumptions of the 

dataset and may impact the outcome of the study. 

 One problem the authors consider is the violation of the independence assumption. 

Methods such as ordinary least squares are based on the assumption of independence between 

observations. In a longitudinal study, the sample is the same across time points, and observations 

made from subsequent years may be the direct effect of some variable from a previous time 

point. Additionally, there may be cohort effects within the data which have formed over time 
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(such as groups of students who have traveled together from classroom to classroom for 3 years) 

that impact the respondents’ answers and are unaccounted for by any cross-sectional analysis.  

According to Curran (2003), the way to rid the model of problems linked to time-

dependent data is to include the measures of time as fixed values in the analysis. He goes on to 

state that by doing this, it is then possible to disaggregate the level-1 (occasion) and level-2 

(person) covariance structures in a single “partitioned covariance matrix S” which will in turn be 

used as the unit of analysis when employing estimation procedures in a growth model using the 

structural equation modeling (SEM) framework. 

 A problem with multilevel modeling within a longitudinal study perhaps not 

encountered in cross-sectional studies is the fact that there can be a lack of stability of the effects 

of explanatory variables across time. Because the same sample is used over time, a condition 

known as group heterogeneity may occur where the effects of the explanatory variable(s) may 

have different effects on an individual level that emerge over time (Goodman, Ravlin & 

Schminke, 1987). The same effects may change over time within the entire group which is called 

nonstationarity (Dabbs & Ruback, 1987; Goodman et al., 1987). This is a violation of normal 

statistical assumptions that the explanatory variable has the same effect on the group of 

respondents across time. 

 Additionally, in a longitudinal study, the assumption of linearity in the growth may be 

violated, especially in special student populations where floor and ceiling effects may be 

observed. According to Cohen (1995), a “floor effect” arises when performance is as bad as 

possible in all conditions. Inversely, in the case of “ceiling effects”, these instances arise when 

performance is as good as possible in all conditions. In such situations, growth cannot be 
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measured linearly. In addition, students at the floor or ceiling are unaffected by explanatory 

variables due to a lack of variability. 

When confronted with the changing face and demographics of students within the public 

school system, it is imperative to be able to employ methods of analysis which not only are able 

to measure the nested effects of variables within the dataset, but to be able to accurately estimate 

individual student growth trajectories, which may not follow traditional patterns of growth.  With 

regard to longitudinal data, regular regression techniques cannot be applied as tools for analysis 

due to the violation of the assumption of independence within the observations. As a result, 

growth curve or mixed-effects models are employed and widely accepted for use based on the 

consideration of the joint probability density function for the repeated measures (Fitzmaurice, 

Laird, & Ware, 2004; Meredith & Tisak, 1990).  

 A method of analysis often preferred for use with longitudinal data is Structural 

Equation Modeling.  Within the family of modeling techniques known as Structural Equation 

Models is the latent growth model (LGM).Latent growth model is a type of structural equation 

model that is estimated using a mean structure. The analysis in an LGM usually requires three 

components which are :1) a continuous dependent variable measured on at least three different 

occasions, 2) scores that have the same units across time and are not standardized, and 3) data 

that are all time structured (Kline, 2005).Additionally, typical LGM estimation allows models to 

be fitted to raw data which may contain incomplete or unbalanced observations (Jennrich & 

Schluchter, 1986, McArdle & Hamagami, 1992, Mehta & West, 2000, Blozis, 2004).  Latent 

growth models are considered to be extremely flexible due to their ability to handle missing or 

unbalanced data which can occur when individuals within a specific sample are observed at 

different time points (an event that can occur often within longitudinal studies). 
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In a latent growth model which is based on linear change, the equation commonly is 

denoted: 

η0i =α0 +b0i  and  η1i =α1 +b1i       (1) 

Where i=individual, η0i = expected response when xti=0, η1i =expected change rate for 

the individual, and xti=the individual’s characteristic (such as age, grade or reading level) at time 

t, α0=population value when the individual characteristic xti=0, α1 = change rate. 

The random effects b0i and b1iindicate the individual’s deviations from the average 

coefficients. In the SEM framework of growth curve modeling, the assumptions for errors 

stemming from homoscedasticity and independence can be relaxed and analysis based on 

heteroscedastic and autocorrelated errors can be completed.  

The set of random coefficients is assumed to be normally distributed as 

 
                           ~ N       ,  
 (2) 
 

where the variances of the random intercept η0i and slope η1iare denoted by φ00 

and φ11, which indicate how much individuals differ on the change characteristics, while  

covariances represented by φ10display the linear relationship between the response level and the 

change rate. 

 Latent growth models have proven to be popular in various statistical analyses due to 

their “ease of application and interpretation” (Blozis, 2007). These models are much like the 

standard unrestricted factor analysis model in which the mean vector and covariance matrix of 

the manifest variables have imposed structures. In this model, the columns of the factor matrix 

define the general shape of the response trajectories over a specified period of time and can be 

pre-determined or some parameters can be left free for the purposes of estimation. With regard to 

η0i 

η1i 
α0 

α1 

 

φ00 
φ10φ11 
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leaving some parameters to be estimated, there may be some preference for this approach in that 

it allows for some flexibility in defining the mean curve when it cannot be specified in advance 

(Blozis, 2004). This is one method of obtaining a nonlinear growth trajectory since when 

estimating the random coefficients one may discover that these portions of the model can 

become nonlinear. 

The estimation of these models yields estimates of the fixed effects and of the variances 

of the random effects as well as the corresponding covariate effects at the second level. Also, in 

this model there is the possibility of estimating variances and covariances which relate to the 

time-specific errors at the first level of analysis (Blozis, 2007).  

When using a latent growth model based on linear change, the underlying assumption is 

that the changes in a behavior occur in a linear fashion and at a particular rate. Furthermore, the 

assumption is that responses across individuals are dependent on a common form of change 

although they may vary in their dependence on this commonality (Meredith & Tisak, 1984, 

1990).  In the case where a latent growth model contains a linear change value, the individual’s 

response can be described by a model that includes an intercept and a linear time effect which 

can be unique to the individual (Blozis, 2008). These individual-specific effects are called 

random coefficients and are assumed to be random deviates which vary about a corresponding 

population value.  

Though there is a component of individual-specific effects that are included in the linear 

change models, there is also the assumption that the change in the individuals has a common 

component. Because of this fact the linear model may not be appropriate for use with floor 

effects data. In the case of floor effects which are most often observed in special needs student 
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populations; there are major differences about the change that takes place or the way in which it 

occurs when compared to the change of the normal counterpart.  

Nonlinear Growth Models  

Nonlinear methods for modeling data are appropriate for usage with longitudinal data 

when it can be assumed that the response pattern of individuals is not linear or contain non-linear 

portions. When combining linear data with nonlinear (or floor effects) data, nonlinear growth 

trajectories are often discovered, as can be observed in Table 1. The table below is a comparison 

between a normal and floor effects dataset when using a regular linear regression model The 

table used was based on a simulated (from the Monte Carlo function in MPlus (Muthen, 2003) 

sample of N=250 at T=4 time points. The two groups used for comparison were comprised of the 

same number of observations, however with the floor effects data there were 14% of extreme 

lower bounds observations included for the purpose of analysis. 

Table 1: Comparison of the linear regression outcomes for normal and floor effects 
data 

Obtained Statistics 
Normal 
Data 

Floor Effects 
Data 

R 0.50 0.37 
R Square 0.25 0.14 
Adjusted R Square 0.24 0.13 
Sum of Squares 
Residual 2250.00 6635.03 
p-value 0.00 0.00 

 

The results displayed in the table indicate that in the case of the floor effects dataset, the 

adjusted R2 value is only 0.13 versus the 0.24 observed in the normal dataset. Of special 

importance to note is the sum of squares for the residuals between the two models. In the 

regression model used for the normal dataset, the sum of squares residual was 2250.00, while for 

the floor effects data the value obtained was 6635.03. This basic comparison provides evidence 
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for the assertion that traditional methods for data analysis are not appropriate when dealing with 

floor effects datasets. 

In cases where the data are so non-normal that the growth trajectories would be 

nonlinear, it is suitable to investigate alternative models for analysis. Models that should be 

explored could include: latent basis curve, quadratic, exponential, and multiphase models. 

Models for zero-inflated data, including the censored-inflated model, are then discussed. 

Latent Curve Models 

Latent curve models are models that allow individuals to observe how outcomes change 

over time based on time-variant and invariant features of independent variables (Kaplan, 2009). 

These models are effective not only for handling linear forms of change, but also some nonlinear 

forms including polynomial functions. Although polynomial functions are appropriate for 

modeling curvilinear patterns, many longitudinal data patterns in the area of education tend 

toward an asymptote, and polynomial models do not fit such patterns well. Since these types of 

models often do not provide an adequate fit for the data or match the theory that underlies the 

manifest behaviors (Francis, et al, 1996), polynomial models are often abandoned for the latent 

basis curve models. 

Latent Basis Curve Models 

With latent basis curve models, change trajectories are estimated from the data rather 

than fixing the parameters to some predetermined values that model a particular shape. By using 

the data to attempt to find the optimal shape, change is determined through the use of the vectors 

A0[t], and A1[t] for the intercept and slope coefficients, respectively, where the first and last 

latent basis coefficients for A1[t] are fixed to 0 and 1, respectively,  for the purposes of model 

identification and to establish the interpretation of the intercept when A1[t] =0.   This model may 
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be preferred to quadratic or polynomial models due to the fact that it is able to capture all of the 

nonlinear aspects of intraindividual change with the use of just a single vector (A1[t]) and a 

single intraindividual differences variable.    

Latent basis curve models require that individuals are measured according to the same 

time points, which somewhat limit their flexibility. Additionally, in this form of modeling, the 

responses of an individual are assumed to be a linear combination of sets of basis functions 

which are common to all members of the population as well as a set of weights that are unique to 

the individual composed of both the intercept and time effect (Blozis, 2008).   

Quadratic Growth Models 

    A quadratic growth model allows for a specific form of nonlinear change in an 

individual’s response over time. The model, which usually includes linear change as well as 

acceleration rates, is specified as 

 Yti=η0i + η1ixti + η2ix2
ti +εti       (3) 

where η0i  =expected response when time=1, η1i = change rate for the individual when 

xti=0, η2i =acceleration rate when xti=0, εti = error term. 

Between individuals, the random intercept, linear and quadratic time effects are assumed 

to be normally distributed as: 

  

                                    ~ N 

 (4) 

where the variances of the random coefficients φ11 , φ22 , and φ33, measure the degree of 

individual differences in each change feature, and covariances represent the linear relationships 

among them. The covariance between the intercept and linear time effect is denoted by φ21, and 

η0i 

η1i 

η2i 
 

α0 

α1 

α2 

 

φ11 
φ21φ22 
φ31φ32  φ33 
 



17 

 

φ31and φ32 are the covariances between the quadratic intercept and time effects. Quadratic models 

may be appropriate to employ as a standard way to introduce complexity in intraindividual 

change which displays interindividual differences. In these models, there are three aspects of 

intraindividual change included which are the intercept (A0[t]), the linear change (A1[t]), and 

quadratic change (A2[t]=A2[t]2). The assumption for this model is that at each time point, growth 

takes place at a fixed rate beginning with a linear baseline.  

Rindskopf (2003) states that one advantages of utilizing a quadratic model for modeling 

nonnormality within a dataset is that it results in a model that is most parsimonious. He makes 

this assertion based on the fact that the quadratic model requires a single curve and fewer 

parameters for estimation than a model such as the latent basis. He also suggests that in the case 

of nonnormal outcomes, a nonlinear transformation be made to essentially “normalize” the data 

in order to retain a simpler model.  

However, in the case of floor effects data, the group containing such observations may 

actually be obliterated (due to the treatment of these observations as missing if the actual 

obtained values for the observations is zero) and excluded from analysis. In the case of such data, 

there are differences between those with and without floor effects in the slopes and intercepts 

that may vary greatly from the normal distribution. Thus performing a nonlinear transformation 

to the data may suppress these group differences (Bauer & Curran, 2003 pg. 389). Bauer and 

Curran (2003) state that while parsimony may be the goal of most researchers when faced with 

model selection, the ultimate goal should be to find a model that proves to be the best fit based 

on the reality of the data.  
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Exponential Growth Models 

In the exponential growth model, certain portions of an individual’s change vector are 

estimated from the raw data (Ram & Grimm, 2007). The two vectors used to estimate the change 

are A0[t]= the latent intercept, and A1[t]=e[-α(t)] where the value of α is estimated from the data. 

The interindividual differences in intraindividual change are modeled through the use of random 

variables. In this model, the latent intercept describes the individual’s capacity to reach the limit 

of outcome variable “Y”. 

In this model of growth it is assumed that Y will be reached simultaneously among all 

individuals in the sample. If there are any deviations from the exponential form of the model, 

those observations are simply treated as error. In the case of floor effects, there would be large 

decelerations from the outcome variable Y. Those lower boundary values would be treated as 

error when estimating model parameters and biases would be the result. 

Multiphase Models 

The multiphase model, also called “spline regression” (Ram & Grimm, 2007 page 311), 

is one in which two or more regression lines are connected to model multiple processes that may 

influence the intraindividual change over time. The multiphase models are created through a 

fixed number of time points that display the number of times at which certain aspects of growth 

are “turned on” and “off”. The model may include three phases: 1) A baseline phase, 2) a 

production or growth phase, and 3) a dissipation or decline phase. This model allows for the 

disaggregation of data and growth according to specific phases in order to adequately determine 

when growth occurs. In this model, the time points may be fixed to predetermined values in 

order to show that the change occurs at these specific times. With regard to growth curve 

modeling, the multiphase model is preferred for data which display multiple growth phases 
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occurring over time (Browne & Cudeck, 1993).  This model is often employed in biological 

studies where certain hormones or chemical markers are expected to “turn on” at various points 

in time. In these instances the model allows researchers to pinpoint actual growth that has taken 

place at the various phases within the period of time being observed. 

 Figure 1 is an example of graphs (Ram  & Grimm, 2007) displaying individual growth 

trajectories showing the differences in modeling using (A) linear, (B) quadratic, (C) latent basis, 

(D) exponential, and (E) multiphase growth curve models (in each of these models, the bold line 

is the predicted average, while the dashed lines are predicted individual trajectories). 
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Images included with permission from Ram and Grimm (2007) Using simple and complex growth models 
to articulate developmental change: Matching theory to method.  
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In the case where the data may contain extremely low values, the types of nonlinear 

models discussed above may not be appropriate to employ for data analysis. In the 

aforementioned methods of data analysis, there is an assumption of normality within the dataset, 

and the extreme nature of the floor effects is not truly considered.  Regarding floor effects, these 

data are denoted as “censored from below” meaning that the measured variable has some fraction 

of observations at the minimum. 

 Models for Zero-Inflated Data and Floor Effects 

The Poisson distribution is a discrete probability distribution which expresses the 

probability of a number of events occurring in a fixed period of time if they happen within a 

known average rate and independently of the time since the last event. This type of distribution 

focuses on certain random variables N that count the number of discrete occurrences that take 

place during a time-interval of given length. If the expected interval of these occurrences is λ 

then the probability that there are exactly k occurrences (k=0, 1, 2, …) is 

f(k;λ) = Pr (Y = k) = e-λiλy/k!                          (5)  

where e is the base of the natural logarithm, k is the number of occurrences of an event, k! is the 

factorial of k, λ is a positive real number equal to the expected number of occurrences that occur 

during the given time interval. 

In the literature pertaining to zero-inflated datasets the term is used when referencing 

datasets which contain a preponderance of zeros. This phenomenon most often occurs when 

dealing with counts data which appear as a probability mass that clusters at zero (Tooze, 

Grunwald, & Jones, 2002).  McCullagh and Nelder (1989) and Martin et al. (2005) described 

zero-inflated data as a unique case of overdispersion of zeros in which the variance is greater 

than it should be based on the shape and central tendency of a distribution.  
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As with floor effects, ordinary least squares (OLS) methods are not appropriate for 

analyzing these data. According to Min and Agresti (2004) zero-inflated data cause a linear 

model to display lack of fit due to the disproportionate amount of zeros. This type of dataset can 

arise from various reasons such as 1) true zeros which are a result of an absolute absence of a 

quantity, or 2) sampled zeros which are a result of errors in sampling. Due to the large amount of 

these zeros in the dataset, the observations cannot simply be deleted from the data which would 

results in a loss of power. In addition, it is often recommended that with nonnormal data, 

transformations be made to the extreme low observations. However, in the case of zero values 

the transformation would be useless since the natural logarithm of zero is not defined (Zhou 

&Tu, 1999).  Although it is possible to add small numbers (such as 0.001) to each zero 

observation in order to take the log of that number  in an attempt to create a nonlinear 

transformation of the data, the resulting parameter estimates and residuals will be biased and 

nonnormally distributed.   

The Hurdle Model 

 In order to attenuate the effects of such data, two types of counts models can often be 

employed. The Hurdle model was developed separately by Mullahy (1986) and King (1989). The 

two-part distribution for the random component is given by the transition stage g1 probability 

mass function: 

 Pr (yi= 0) = p                     (6) 

which models whether the response crosses the hurdle of zero. Assuming a Poisson distribution  

the random component for the event stage (which is the stage where the change or growth 

occurs) distribution is  
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Pr (yi = k) = 1-p/1-e-λi  e-λiλi
k/k! , k= 0,1,2 …                (7) 

The generalized linear models as a function of covariates are then 

log pi/1-pi =x1iB1 and log (λi) =x2iB2       (8) 

The maximum likelihood estimates are then derived using this notation (Min, 2003) 

  ℓ1(β) = ∑ [log P1(yi=0;β1, x1i)]+ ∑ [log (1-Pi(yi=0;β1x1i))]=∑x1i, β1-∑ log (1+ex1iβ1)           (9) 
 
  ℓ2(β) = ∑ [yix2iβ2-ex2iβ2-log(1-e –ex2iβ2)]-∑ log (y!)                                          (10) 
 

Due to the fact that the two models are functionally independent (since L1 is for the censored 

portion and L2 continuous portion), the likelihood functions can be maximized separately (Min 

& Agresti, 2004; Min, 2003; Cameron & Trivedi, 1998; Mullahy, 1986) and the total log 

likelihood estimate is  

   ℓ(β1,β2)=ℓ(β1) +ℓ(β2)         (11) 

The estimation for the negative binomial Hurdle models is usually performed through specialized 

maximum likelihood methods such as the Newton-Raphson algorithm. 

Zero-Inflated Poisson (ZIP) Model  

The zero-inflated Poisson (ZIP) model is one that can be used when zeros in a dataset are 

generated by chance and systematic factors (Min & Agresti, 2004). In this model the transition 

stage addresses the zero-inflated portion of the model while the event-stage addresses the 

continuous portion of the data (Jang, 2005).  

In the ZIP model the equation for the event stage is   

Pr (yi = k) = p/1-p  e-λiλi
k/k! , k= 0,1,2 …                    (12)  

However, for the transition stage the model varies greatly from the Hurdle model in that instead 

of Pr (yi= 0) = p, there is an inclusion of the probability of a nonzero which is multiplied by an 

exponentiated Poisson mean. As opposed to modeling an occurrence of zeros at the transition 
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stage, the ZIP model takes into account the probability that the actual counts have a Poisson 

distribution which allows two sources of zeros (which are zeros due to error and those which are 

true observations) into the analysis.  

  The equation for the event state is 

log (λi) =x2iB2       (13) 

and the equation for the transition stage is  

   log pi/1-pi =x1iB1      (14) 

  

Unlike the Hurdle model, the ZIP likelihood cannot be maximized separately for event 

and transition stages (because of violations of independence), and has been derived as (Lambert, 

1992). 

L=∑ log (eGiγ +-eBiβ + ∑(yiBiβ-eBiβ)-∑ log (1+eGiγ) - ∑ log (y!)    (15) 

 

   Where βB is the vector of coefficients and matrix scores of the means and variances for the 

event stage and γG is the vector of coefficients and matrix scores for the transition stage, where 

iterations are based on the EM or Newton-Raphson algorithms (Min, 2003; Lambert, 1992). 

Though sufficient for dealing for data with a preponderance of zeros, the count data 

analysis methods previously mentioned are not appropriate for floor effects for two reasons. The 

count data differ from the continuous observations used in the case of floor effects (particularly 

in an educational setting). In addition the preponderance of zeros in the datasets used for 

analyses with the aforementioned methods would be highly unlikely in educational data based on 

communication with officials from the following public school systems: New Jersey, Delaware, 

Florida, Hawaii, and Nevada that the typical dataset contains 0.01 to 15% zeros. If there was a 
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standardized testing dataset which included greater than 40% zeros, analysis would likely not 

continue as there would be an assumption of a problem with the data, the assessment used, or 

both.     

Another method commonly referenced for nonlinear continuous data with binomial 

outcomes is logistic regression (Cohen et al, 2003). This method is discussed here in relationship 

to the censored-inflated model based on the fact that the censored (from below) and normal parts 

of the data could also be considered binomial as Y=0 for censored values and Y=1 for 

noncensored.  

With binomial data, the form of the growth trajectory is more of an S-shaped curve than a 

linear function and therefore a nonlinear function should be imposed to allow the predicted 

probability for an individual i to have a nonlinear relationship with the actual predictor variable 

X. This nonlinear relationship is based on “odds”, which is the probability that an individual will 

score 0 versus that of an individual scoring a 1.  

 In order to model this nonlinear relationship, the logistic function is denoted as 

i=1/1+e-(B
1

X
i
+B

0
)=e(B

1
X

i
+B

0
)/1+e(B

1
X

i
+B

0
)                                                                                (16) 

Where (B1Xi+B0)  is the predicted score for a linear ordinary least squares regression 

which is transformed to the odds (nonlinear) function, and  i is the odds ratio for the predictor. 

Though logistic regression is often used as a preferred method for binomial data with censored 

values, it is not sufficient when attempting to model growth in a population in which censored 

and normal samples are combined. The resulting parameter values would be biased toward the 

lower bounds of the data.   

One method for dealing with floor effects in analysis that may commonly take place in 

current growth modeling methods would be the option of deleting observations displaying 
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extremely low values through a method such as listwise deletion. In this method of exclusion of 

observations, if a specific case contains a floor effect, the entire case would be deleted. Though 

this may appear to be a simple and possibly effective way to rid the dataset of floor effects, the 

clear disadvantage of this method is the fact that the result is a loss of data and shrinkage of the 

entire sample size. Additionally, in the case of floor effects as it relates to special education 

students, these individual observations cannot be eliminated from the dataset because at least 

95% of the students in the school system must be included in analysis. If there is a loss of data 

due to deletion, there could be a shrinkage that results in less than 95% of students being 

included in analysis, which is a violation of federal legislation. 

Another method sometimes employed as a way of dealing with floor effects would be to 

treat the low values as missing not at random (MNAR) based on the hypothesis that the low 

values or zeros in the dataset are due to the fact that the floor effect exists and data are therefore 

not missing at random. In those cases, one may opt to estimate the values of the zeros by using 

traditional EM algorithms or multiple imputation methods. Those imputed values may be biased 

due to the fact that the estimation methods used for these missing observations are based on the 

assumption that data are either missing completely at random (MCAR) or missing at random 

(MAR).    

Two-Part Model 

A study frequently referenced that serves as the precursor for the censored models of data 

analysis is that of Olsen and Schafer (2001). The researchers conducted studies with substance 

abuse data using a model they referred to as a “two-part random-effects model for 

semicontinuous longitudinal data”. In this model they employ the estimation of both a linear and 
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logistic model. The two part model includes random coefficients into both portions of their 

model.  

For the logistic part of the model, Yij is the semicontinuous response for person i=1,…m 

at time j=1…nj which  is recoded into two variables: 

Uij= 1 if Yij =0 , and 0 if Yij≠ 0 

and  

Vij= g(Yij) if Yij≠0 and irrelevant if Yij=0, 

where g is a simple increasing function (log) that will make Vij approximately Gaussian. 

In this design the responses are modeled by a pair of correlated random-effects models. One is 

for the logit probability of Uij=1 and one for the mean conditional response E(Vij|Uij =1). The 

logit for part one of the logistic model is: 

   ηi=Xiβ i+Zici        (17) 

Where πij=P(Uij=1), η is a vector with elements  ηij =log ( πij/1- πij), j=1,…,ni and 

 Xi(ni x qc) and Zj(ni x pc) are matrices of covariates that pertain to the fixed and random effects. 

Time measures may be included in Xi and possibly Zj, allowing slope and intercept to vary per 

subject. In this model, the β and c parameters are estimated.   

 In the linear part of the model, the equation is: 

Vi=X*
iγ + Z*

idi+εi*          (18) 

 

Where Vi = the vector of length ni* (the number of time points included in the analysis) which 

contains all relevant values for Vij for subject i with values that correspond to Uij=1. In this 

model, the residuals of the error term are assumed to be distributed as N(0, σ2 1) and  
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Xi*(ni* x qd) and Zi*(ni* x pd) are matrices of covariates, and the γ parameter is for the random 

event. In this portion of the model, the random coefficients from the two parts are assumed to be 

“jointly normal and possibly correlated” (page 732).     

         bi=   ci 
                 di ~ N 0, Ψ =       ΨccΨcd 
                                              ΨdcΨdd                                                                                     (19) 
 

 

In this model when an individual’s score is ni*=0, they have no impact on the estimation 

of parameters: γ, d, σ2, (conditional distributions based on priors obtained through Bayesian 

estimation),Ψdd, andΨcd.  Additionally, if Ψcd =0, the two parts of the model separate which 

makes the Uij and Vij values independent. If the separation does take place, the assumption of 

independence of the values indicates that occurrence or non-occurrence at one occasion has no 

influence on occurrence/non-occurrence at the next time point. 

Model for Ceiling Effects 

The semicontinuous variables studied by Olson and Schafer (2001) identify zero values 

in the dataset as real zeros. This is different from a zero that is truncated or left-censored, 

because the zeros are “valid self-representing data values, not proxies for negative or missing 

values” (page 730 Wang et al, 2008). This theoretical basis is not consistent with that underlying 

floor effects in that the zeros in the datasets are known to be proxies of some real value that 

cannot be obtained due to the floor.  Based on the fact that the lowest possible scores have been 

obtained by the individual, it is hypothesized that the low value is actually a proxy for the true 

score an individual could have earned if not “censored” (Wang et al, 2008). 

A search of the existing literature revealed few studies that directly addressed the 

estimation of growth models for data containing observations at the floor. However, given that 
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ceiling effects introduce essentially the same issues as floor effects, the literature on ceiling 

effects was also considered relevant. There are important similarities in the effects of floor and 

ceiling effects on parameter estimates and model fit.   For example, ignoring either floor or 

ceiling effects within the data and analyzing the data without paying special attention to these 

phenomena can result in using the wrong model for analysis and problems with biased parameter 

estimates (Wang et al, 2008).  In 2008, Wang et al, conducted a study which employed the Tobit 

model as a method for analyzing the data that displayed various levels of ceiling effects with 

categorical data. The Tobit model is a categorical model with nonnegative constraints, and was 

decided upon based on the fact that it is a semiparametric censored regression model. According 

to Chay and Powell (2001), a regression model is considered censored if the observations based 

on the dependent variable cut off outside of a “certain range within multiple endpoints of the 

range” (page 29). Whenever the data are censored, the effect of the regressors on the dependent 

variable is underestimated when OLS is used. To attenuate for the effects of such inconsistency 

in estimation, the Tobit model used by Wang et al. (2008) and is based on the equation: 

Y=   a   if x’β + ε<a, 

  b   if x’ β +ε>b,                                                                                           (20) 

 X’β + ε otherwise 

Where y=the observed dependent variable, x=a vector of observed explanatory variables, 

β= a vector of unknown regression coefficients, to be estimated, ε= an error term, and a and b= 

censoring endpoints. 

For the study conducted by Wang et al. (2008) datasets were simulated based on a sample 

size of N=200, over T=5 distinct time points where ceiling effects (also referenced as “right-

censored data”) were varied between 10-40% of the sample, and repeated 500 times. The data 
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were initially analyzed using a latent growth curve model. In the results both the mean vector 

and covariance matrix of the slope and intercept were underestimated. Because of the fact that 

the Maximum Likelihood Estimator (MLE) is based on fitting the sample mean and covariance 

matrix to the model, when these parameters were biased, the final results of the model were also 

biased with bias increasing proportionally to the amount of ceiling effect present in the data. 

When using the Tobit model to analyze ceiling effects, Wang et al.(2008) included only 

Bayesian methods to obtain estimates of parameters. The team used WinBUGS to specify prior 

distributions for the parameters and continued the analysis by fitting a Bayesian Tobit growth 

curve model to the ceiling data that were generated. According to the results obtained by the 

team, the Bayesian Tobit growth model recovered all of the parameters in the model with more 

accuracy than a traditional growth model.  

Wang et al. (2003) created data to fit a linear model. They then imposed ceiling 

thresholds at different points (13, 14, 15). Their hypothesis was that, with a higher ceiling, the 

linear model would fit more poorly and a quadratic model would be needed to fit the data. They 

found that the data without ceiling thresholds fit the linear model 95.4% of the time, but this 

percentage decreased as varied thresholds of ceiling effects (extreme high observations) were 

introduced into the simulation (Ceiling Threshold=15, linear model fit =34.2%: Ceiling 

Threshold=14, linear model fit=2.2%: Ceiling Threshold=13, linear model fit=0%). However, 

the results of the fitted Tobit model displayed identical proportions of correct model selection 

(based on what was previously known about population parameters from Bayesian estimation, 

called “Expected Recovery”) across ceiling thresholds as can be observed in Table 2. 
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Table 2: Comparison of Latent Growth and Tobit Model for Ceiling Effects Data   

 % Correct Selection  

Ceiling 
Threshold 

Latent 
Growth Tobit 

Expected 
Recovery  
Percentage 

   0 94.50%   25%   25% 
  15 34.20% 25%   25% 
  14 2.20% 50%   50% 
  13 0.00% 75%   75% 

 

 The results of the study are promising for investigating the impact of ceiling effects in 

longitudinal categorical data. The research team also implied that many of the same theoretical 

bases which exist for ceiling data are identical to those in floor effects research, and that future 

studies are needed in order to discover ways to adequately select models and recover necessary 

parameters. 

Censored-Inflated Model     

For the purposes of model estimation with a unique population such as those that display 

floor effects, it is imperative to be able to estimate two related growth models in order to attenuate 

the biases that may be present when estimating a single homogeneous growth model. Further 

investigation of probable models to employ in order to attempt to obtain accurate and unbiased 

model parameters when floor effects are present in longitudinal data, the structural equation 

model considered was the censored-inflated model. The censored-inflated model developed by 

Muthen (2003) is unique in that the “Censored” option allows researchers to determine which 

outcome variables will be censored as well as whether the censoring will take place from above 

(as in a ceiling effect) or below (as in a floor effect) the data. In this model, the censoring limit is 

determined by the data and, the residual variances of the outcome variables are estimated and not 

allowed to vary across time and the residuals are not correlated by default. In addition, the 

censored-inflated model was created with the assumption that the data used in analysis were 
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collected at the same time points and measured at equidistant occasions, so that time is not 

allowed to vary across participants.   

In the censored-inflated model, the similarity with the Olson and Schafer (2001) two-part 

model is that two different growth models are estimated simultaneously. The first model is 

created based on the continuous part of the outcome for individuals from the sample who can 

assume values of the censoring point and above; while the second model models the inflation 

part as the probability of an individual being able to assume any value other than the censoring 

point.   

Additionally, in this model parameterization for the continuous part of the model is based 

on the intercepts for all outcome variables being fixed at zero and means and variances, and 

covariances of the growth factors are estimated. In the censored portion of the model the 

intercepts of the outcome variable are held equal across all time points. The intercept for the 

growth factors is fixed at zero. The mean of the slope growth factor and variance of the intercept 

is estimated, but the variance of the slope is fixed to zero. The latter specification implies that all 

covariances involving the slope for the censored part of the model are also fixed to zero. The 

censored-inflated model is estimated as a censored regression model, using the same 

mathematical functions as the logistic portion of Olson and Schafer’s two-part model (2001), and 

uses the robust least squares estimator.  The robust least squares estimator (RLSE, also called the 

M-estimator) is often employed in instances when the data is heteroskedastic and it is 

hypothesized that least squares estimators (LSE) will not sufficiently obtain unbiased estimates 

due to the violation of the assumption of homoskedasticity. In addition, it is thought that the 

RLSE provides greater power than traditional LSE for these types of data (Stromberg, 2004). 
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The robust least squares estimator (RLSE) was introduced by Huber (1964) and is based on the 

linear equation 

 
             (21) 

 
   For the ith of n observations and the fitted model is 
 

 
                                                                            (22) 

The general M-estimator minimizes the objective function 
 

 
(23) 

 
 
where the function ρ gives the contribution of each residual to the objective function.  It is used  
 
when ρ is the following: 

 
 

 

The RLSE is not a popular method of obtaining estimates in regression analyses due to 

the fact that it is more computationally demanding to obtain these estimates and many statistical 

software packages do not include these estimates (Stromberg, 2004). 

In order to illustrate the usefulness of the censored-inflated model, a simple experiment 

was conducted using N=1000 observations over time points T=4 (Variable names Y11-Y14, 

with n=250 students per time) that compared the parameters of a traditional linear growth and 

quadratic models with those from the censored-inflated model with 24% of the observations 

censored. The results of the comparison are displayed in the table below (Table 3). 
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Table 3: Comparison of Parameter Estimates for Linear Growth, Quadratic and 
Censored-Inflated Model (continuous portion) 

Parameter  Linear Quadratic 
Censored-
Inflated 

ResidualY11 2.29(0.29) 2.27 (0.78) 1.44 (0.14) 
ResidualY12 5.99(0.39) 5.91 (0.39) 1.52 (0.10) 
ResidualY13 8.95(0.12) 8.98 (0.52) 1.64 (0.12) 
Residual Y14 11.31(0.75) 8.88 (1.56) 1.23 (0.21) 
Mean Slope 1.13 (0.04) 0.85 (0.12) 1.52 (0.03) 
Variance Intercept 1.09 (0.26) 1.84 (0.77) 1.64 (0.12) 
Variance Slope 0.36 (0.10) 1.76 (1.23) 0.33 (0.04) 
 Chi-square  21.55 NA NA 

 

The main difference that can be observed is in the residuals for all four time points. In the 

linear model, the residuals range in size, increasing over time until the final value of 11.31 is 

obtained at the fourth time point (Y14). The residual values for the same four time points in the 

censored-inflated model are relatively smaller than those of the comparison with the largest 

estimated value of 1.64. This can serve as evidence for support of the assertion that the censored-

inflated model does model growth more accurately (including observations at the floor) and can 

explain the growth more efficiently than a traditional linear growth model.        



35 

 

  

 

CHAPTER 3  

METHODOLOGY 

Practical Model Investigation 

In order to determine parameters appropriate for an analysis model, preliminary 

investigation of the generic framework for the censored-inflated model (Muthen, 2003) was 

conducted. The results of the investigation are in Table 4 below. The information within the 

body of the table is based on varying sample sizes (N=1000, N=5000 and N=10,000). At each 

simulation the number of integration points was manually changed from less than five to greater 

than eight in order to determine the minimum and maximum numbers needed for model 

convergence. The steps of manually manipulating parameters was continued with minimum and 

maximum percentage of observations at the “floor” of the dataset in order to also discover the 

optimum values for; number of integration points, residuals and standard errors (Table 4) .     

 

Table 4: Summary results from Mplus Censored-Inflated Simulations 

Sample 
Size 

Integration 
Points 

Floor 
Minimum 

Floor 
Maximum 

Residual Y11 
(Error) 

ResidualY12 
(Error) 

ResidualY13 
(Error) 

ResidualY14 
(Error) 

800 5 -1 -1.5 1.43(0.11) 1.54 (0.08) 1.64 (0.09) 1.18 (0.12) 
900 6 -1 -1.99 1.60 (-0.13) 1.58 (0.11 1.67 (0.12) 1.36 (0.19) 
1000 7 -1 -1.99 1.68 (0.14 1.63 (0.10) 1.62 (0.11 1.34 (0.18) 
1500 7 -1 -2.49 1.43 (0.11) 1.54 (0.08) 1.64 (0.09) 1.18 (0.12) 
2000 8 -1 -2.5 1.51 (0.17) 1.56 (0.11) 1.66 (0.13) 1.32 (0.19) 
8000 8+ -1 -2.5 1.42 (0.05) 1.53 (0.03) 1.62 (0.04) 1.23 (0.06) 
10000+ 8+ -1 -2.5 1.43 (0.04) 1.53 (0.03) 1.62 (0.04) 1.23 (0.05) 

 

As can be observed, the censored-inflated model works optimally when employed with 

large sample sizes. Smaller sample sizes require fewer integration points for model convergence, 

but error messages in output indicate that these models produce parameter estimates that are less 
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stable. In addition, the percentage of values at the floor of the dataset can be varied between 10 

and 35% (corresponding to floor minimum and maximum of -1 and -2.5) with higher 

convergence rates in larger sample sizes. There are distinct restrictions on how much variation 

(in percentage of floor effect) can take place in a small sample which is indicated by lack of 

model convergence with larger floor maxima. Finally, with larger samples more integration can 

be used. This is important because use of more integration points should result in more accurate 

estimates.      

Further investigation of the censored-inflated model with real and simulated data (based 

on real data parameters) was conducted. The data were taken from a dataset provided by a state 

school system which employs growth modeling for assessing longitudinal student achievement. 

The sample size was N=1,000 and included observations collected over three time points denoted 

as variables named y11-y13 and contained a floor effect of less than 1%. The first investigation 

was conducted in three steps by first employing a linear, then quadratic, and finally the censored-

inflated models to the data for analysis. The result of the residual variances (with error in 

parentheses) is located in table 5 below. 

Table 5: Residual Variances of the Linear and Censored-Inflated Models when used 
with real data at N=1000 and T=3 time points 

 
 
 
 

 
 
                              
                  * Standard error estimates not given by computer software used for the quadratic model  
 

 Table 5 displays the residual variances are smallest in the censored-inflated model with 

the data in its unaltered form, containing less that 1% of a floor effect. Of interest was the result 

of analysis based on data that contained a greater amount of observations at the lower bound of 

Model Time 1 Time 2 Time 3 
Linear 5217.84 3877.59 3166.75 
 (-14.02) (-19.76) (-9.89) 
Censored-Inflated 3749.02 3295.02 2686.94 
  (-222.78) (-168.21) (-242.69) 
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the dataset. The parameter estimates obtained from the censored-inflated analysis on the data in 

Table 5 were used to create a similar dataset through Monte Carlo simulation in Mplus 

(Appendix A) using a linear model. These simulated data were used in subsequent censored-

inflated model analyses in which varying levels of floor effects (5% and 10%) were inserted into 

the datasets. The residual variances resulting from analyses of data with no data at the floor, and 

with 5% and 10% of data at the floor are shown in Table 6. The values from the real dataset are 

shown in the first row.  

Table 6: Residual Variances of Continuous Portion of the Censored-Inflated Model 
at T=3 time points 

 
Data Type  Time 1  Time 2  Time 3 
Real Data 3749.01 3295.02 2686.94 
 (222.78) (168.21) (242.69) 
C-I with 5% floor effect 237.29 296.61 289.14 
 (50.49) (26.58) (75.35) 
Linear  with 5% floor  80595.34 48838.67 1146.04 
 (3991.15) (2388.42) (60.36) 
C-I with 10% floor effect 253.26 297.02 281.65 
 (39.96) (22.41) (94.74) 
Linear  with 10% floor  581.29 1343.44 1040.97 
 (64.85) (127.39) (214.73) 

 

Table 6 shows the results of what takes place when floor effects are introduced into the 

data, residual variances obtained from a censored-inflated model are smaller than those obtained 

from a linear model of the same data. In addition, standard errors decrease when employing the 

censored-inflated model with these data. However, note that when floor effects are not present, 

use of the censored-inflated model results in inflated estimated of residual variances (first row of 

Table 6). These basic analyses provided evidence for the hypothesis that the censored-inflated 

model is best when analyzing data that contain noticeable amounts of floor effects and should be 

further investigated using larger datasets. 
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Simulation Study 

 A simulation study was conducted to study the performance of the censored-inflated 

model across a variety of data conditions thought to be representative of those encountered in 

state or district assessment data. Parameters for the simulation study were derived using an actual 

raw dataset from a state assessment data source. The data for analysis as well as the model under 

investigation will be implemented via Mplus 5.0 (Muthen&Muthen, 2005). Mplus was selected 

because it currently is the only statistical software that can generate floor effects through the 

MONTECARLO command, while simultaneously employing the censored-inflated model for 

data analysis.  

 For the simulation study, there were three consecutive time points at which observations 

were analyzed, each representing a standard reading test score for a student grades 3,4,and 5. The 

decision to use three time points was made based on characteristics of state test datasets, for 

which three time points are typically the maximum that is available.  

The simulation focused on: specific sample sizes (1,000, 5,000 and 10,000 examinees), 

floor effect (thresholds of -1.0 (5%), -2.0 (10%), -3.0 (15%), and -4.0 (20%)), and the number of 

integration points needed for optimal model convergence at each level of floor effect (5, 6, and 

7). There will be four conditions of floor effect, three trials of integration points, and three 

sample sizes, resulting in 4x3x3=36 cells. One hundred replications were conducted per cell.  

After running the censored-inflated model and obtaining parameter estimates, the 

resulting data were read into SPSS version 15 to calculate the bias between the empirical and 

estimated values. 
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In order to analyze the data using the censored-inflated model, it was first necessary to 

determine which variables within the dataset are censored and which values accurately reflect the 

censoring limit of the data. After population parameters were specified, the model was indicated. 

Once analysis was terminated and the model converged, the information of interest was: means 

of the slopes and intercepts for the continuous portion of the model, mean of the slope for the 

censored-inflated portion of the model, variances of the slope and intercept for the continuous 

part of the model, variance of the intercept for the censored-inflated part of the model, and the 

residual variances. In addition, a special look was given to the standard error bias resulting from 

this model, since these are supposed to be lower when using the censored-inflated model. 

Finally, all fit indexes were discussed using descriptive statistics. 

The simulation study was used to evaluate the ability of the censored-inflated model to reduce 

the residual variances when empirically used with floor effects data analyses. The research 

questions are: 1) What effect do sample size, percentage of floor effect, and number of 

integration points have on bias in the parameter estimates and standard errors; and does a 

reduction in the number of integration points at each level of floor effect produce parameter 

effects identical to those replications in which a larger number of integration points is used?  2) 

Do parameter estimates obtained through the censored-inflated model display less bias than those 

obtained through traditional growth modeling?  
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                                                 CHAPTER 4 

RESULTS 

Censored-Inflated Model 

The censored-inflated model was used in a two-dimensional fashion. The first step of 

analysis was to create the data using the Mplus DATAGEN command. This was executed a total 

of thirty-six times, with each simulation producing a total of N=100 datasets. Within the datasets 

the amount of floor effect (from one to twenty percent [-1.0, -2.0,-3.0, and -4.0 in command 

codes]), the sample size (from one thousand to ten thousand), and the number of integration 

points (5, 6, and 7) were varied. After the data were generated, the Monte Carlo command was 

used to analyze the simulated data using the censored-inflated model. The code for this analysis 

is listed below: 

DATA: FILE =C:\Documents and Settings\TMCKINLEY.dat; 

         type = montecarlo; 

  VARIABLE: NAMES ARE Y11-Y13; 

        CENSORED ARE Y11-Y13 (bi); 

      ANALYSIS: INTEGRATION = 7; 

      MODEL: i s | y11@0 y12@1 y13@2; 

      ii si | y11#1@0 y12#1@1 y13#1@2; 

      [y11-y13@0]; 

      y11 * 289.42; 

      y12 * 301.32; 
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      y13 * 290.64; 

      [y11-y13@ -1.0] (1); 

      [i*297.234 s* -0.672 ii@0 si * -0.262]; 

      i*283.109; s*300.697; i with s*-176.777; 

      [ii @ 0]; 

      [si * -0.262]; 

      Si @ 0.000; 

      ii * 0.047 

      i with ii *-.155; 

      s with ii * .075; 

      Ii with si @ 0; 

      s with si @0; 

      i with si @0; 

     OUTPUT: TECH1  TECH9 

      SAVEDATA: results are C:\Documents and Settings\TMCKINLEY.res; 

 All of the parameter estimates obtained through the censored-inflated model were saved 

to results (“res”) files to be used for secondary analysis. Appendix A contains the output files 

that are a culmination of all parameter and standard error estimates used by the analysis. 

Findings from Secondary Analysis 

When compared with the empirical parameter estimates, and standard errors, the bias in 

those obtained from the censored-inflated model varied according to the different conditions: 

sample size, floor, number of integration points, and interactions between the three. A full 

factorial Analysis of Variance model was completed on values for each parameter and standard 



42 

 

error bias, taking into account the three conditions and their interactions in order to discover 

which had the greatest impact on bias.  Due to the large total sample size (N=3600) each 

parameter and standard error bias appeared to be significant when using only the p value as an 

indicator of statistical significance. Because of this, the partial eta squared statistic was included 

as an indicator of power. An effect size of 0.14 or greater based on Cohen’s medium effect size 

criteria (Cohen, 1973), was interpreted as meaningful using this estimator.        

Parameter Bias 

The following tables are of the results of parameter bias based on the obtained values 

from the censored-inflated compared with the empirical values. The percentage of bias within the 

parameter was calculated using the following formula:  

(Estimated value- Empirical value)/Empirical Value *100         (24) 

The empirical means for each parameter are listed above the table and the p- and partial eta 

squared values are included.  

Table 7: Nu (intercept for the censored-inflated part of the model) Parameter Bias 

Floor values of 1%, 5%, 10% and 20% 

Nu  (population values): -1.00, -2.00, -3.00, and -4.00)  
Model p value Partial η2   
Sample Size 0.00 0.40 * 
Integration Points 0.00 0.02  
Floor 0.00 0.32 * 

Sample Size * Integration Points 0.07 0.00  

Sample Size * Floor 0.00 0.57 * 

Integration Points * Floor 0.00 0.01  
Sample Size * Integration Points 
* Floor 0.90 0.00  

   * indicates an eta squared value greater than the .14 cutoff 

The information in Table 7 indicates the results of the Nu or floor parameter estimate (the 

intercept for the censored-inflated portion of the model). This was the floor condition which was 
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fixed four times at -1.0, -2.0, -3.0 and -4.0 to represent approximately 1%, 5%, 10% and 20% of 

a floor effect within the simulated data.  

When comparing the estimated Nu or floor parameter to the empirical value effect sizes 

larger than the .14 criterion value were obtained for two of the manipulated conditions (sample 

size, number of integration points) individually, and the interactions between them. At each level 

of floor effect and sample size, η2 values of greater than 0.14 were detected indicating that all 

sample sizes and percentage of floor effect have significant power on this parameter. There was 

no effect detected when observing the influence of the number of integration points used for 

model analysis.   

Table 8: Theta 1 (residual variance of Y11) Parameter Bias  

Theta 1  (population value: 289.42)   
Model p value Partial η2   
Sample Size 0.15 0.01  
Integration Points 0.00 0.14 * 
Floor 0.00 0.01  
Sample Size * 
Integration Points 0.63 0.00  
Sample Size * Floor 0.01 0.00  
Integration Points * 
Floor 0.00 0.01  
Sample Size * 
Integration Points * 
Floor 0.93 0.00   

            * indicates an eta squared value greater than the .14 cutoff 

With regard to the Theta 1 or residual variance for variable Y11 parameter, or the 

residual variance of Y11 there was an effect detected in the number of integration points used in 

analysis. As the number of integration points used for analysis increased from five to seven, the 

bias in this parameter decreased.  All of the other conditions failed to produce an effect on this 

parameter estimate, as can be observed in Table 8.    
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Table 9: Theta 2 (residual variance of Y12) Parameter Bias 

Theta 2  ( population value: 301.32)  
Model p value Partial η2 
Sample Size 0.91 0.00 
Integration Points 0.01 0.00 
Floor 0.58 0.00 
Sample Size * Integration 
Points 0.28 0.00 
Sample Size * Floor 0.56 0.00 

Integration Points * Floor 0.52 0.00 
Sample Size * Integration 
Points * Floor 0.58 0.00 

 

Table 9 displays the obtained results when calculating bias between the estimated and 

empirical mean of the Y12 residual variance. This table shows the resulting lack of effect of any 

of the 3 single conditions or interaction models on the parameter bias.   

Similarly to the Theta 1 or residual variance of Y11, the residual variance of Y13 Table 

10 shows little effect of any conditions with the exception of the number of integration points 

used for analysis (with large amounts of bias seen at five and six integration points, but none at 

seven). Sample size, percentage of floor effect and interactions with all conditions had little to no 

effect (when using the η2 value as an indicator of significance) on this parameter.   

Table 10: Theta 3 (residual variance of Y13) Parameter Bias 

Theta 3 (population value= 290.64)   
Model p value Partial η2   
Sample Size 0.01 0.00  
Integration Points 0.00 0.20 * 
Floor 0.00 0.01  
Sample Size * Integration 
Points 0.57 0.00  
Sample Size * Floor 0.09 0.00  

Integration Points * Floor 0.00 0.01  
Sample Size * Integration 
Points * Floor 0.98 0.00   

         * indicates an eta squared value greater than the .14 cutoff 
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Table 11: Alpha 1 (continuous intercept) Parameter Bias 

Alpha 1 (population value: 297.23)  
Model p value Partial η2 
Sample Size 0.05 0.00 
Integration Points 0.80 0.00 
Floor 0.91 0.00 
Sample Size * Integration 
Points 0.17 0.00 
Sample Size * Floor 0.97 0.00 

Integration Points * Floor 0.75 0.00 
Sample Size * Integration 
Points * Floor 0.75 0.00 

 Table 11 shows the results of the Alpha 1 or the intercept from the continuous portion of 

the censored-inflated model. The empirical and estimated parameter comparison indicated that 

none of the manipulated conditions had an influence on this value.  Table 11 is of special 

importance because this table contains some of the pre-specified information of interest 

mentioned in Chapter 3 of the paper. The intercept for the continuous portion of the censored-

inflated model was being investigated to see how this parameter behaved based on the varying 

conditions. According to the results, this parameter is not influenced in any way by the sample 

sizes, percentage of floor effect or number of integration points used to analyze the data when 

the censored-inflated model is used on the continuous data. 

Table 12: Alpha 2 (continuous slope) Parameter Bias  

Alpha 2 (Population value: -0.67)   
Model p value Partial η2   
Sample Size 0.00 0.86 * 
Integration Points 0.00 0.86 * 
Floor 0.00 0.90 * 
Sample Size * Integration 
Points 0.00 0.92 * 
Sample Size * Floor 0.00 0.95 * 

Integration Points * Floor 0.00 0.95 * 

Sample Size * Integration 
Points * Floor 0.00 0.97 * 

                                    * indicates an eta squared value greater than the .14 cutoff 

 Table 12 displays the results from the analysis of the bias within the Alpha 2, or slope for 

the continuous portion of the censored-inflated model. The table indicates that all manipulated 
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conditions produced large effect sizes, with the largest observed in the interaction between all 

three conditions.  The Alpha 2 parameter was another of interest as specified in Chapter 3. This 

table displays an omnibus effect on the mean of the continuous slope, which originates from all 

three conditions. The information obtained here serves as evidence that the slope of the 

continuous portion of the data is highly influenced by the sample size, percentage of floor effect 

present in the dataset,  number of integration points used to analyze the data as well as the 

interactions between all three.  For this parameter, all effect sizes were large when sample size, 

number of integration points and floor were varied. When observing these effects, the influence 

was linear, meaning that as sample size, number of integration points and percentage of floor 

effect increased, the effect increased as well. 

Table 13: Alpha 3 (censored-inflated slope) Parameter Bias  

 

 

 

 

 

 

The results of the bias between the empirical and estimated mean of the Alpha 3, or slope 

for the censored-inflated part of the model display that, like the Alpha 1 parameter, none of the 

conditions had effects on this value. The mean of the slope from the censored-inflated portion of 

the model was also of interest as specified in the previous chapter, as it was important to know 

how this parameter would behave when introduced to the varying conditions.  The results 

indicate that the mean of the slope for the censored-inflated data is not influenced by the floor, 

sample size of number of integration points used to analyze the data.  

Alpha 3 (population value: -0.26)  
Model p value Partial η2 
Sample Size 0.33 0.00 
Integration Points 0.54 0.00 
Floor 0.33 0.00 
Sample Size * Integration 
Points 0.04 0.00 
Sample Size * Floor 0.20 0.00 

Integration Points * Floor 0.68 0.00 
Sample Size * Integration 
Points * Floor 0.98 0.00 
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Table 14: Psi 1 (variance of the continuous intercept) Parameter Bias  

Psi 1 Bias (population value: 283.11)   
Model p value Partial η2   
Sample Size 0.84 0.00  
Integration Points 0.37 0.15 * 
Floor 0.33 0.01  
Sample Size * Integration 
Points 0.11 0.00  
Sample Size * Floor 0.12 0.00  

Integration Points * Floor 0.63 0.01  
Sample Size * Integration 
Points * Floor 0.79 0.00   

                                         * indicates an eta squared value greater than the .14 cutoff 

 The Psi 1 or variance of the continuous intercept, parameter shown in Table 14 is the bias 

in the variance of the intercept for the continuous part of the censored-inflated model.  The 

variance of the intercept from the continuous portion of the model is another parameter of 

interest because nothing was known about the behavior of this parameter under various 

conditions.  With this parameter, only the number of integration points used to analyze the data 

had a substantial effect on the parameter bias. Again, with this parameter, the smaller numbers of 

integration points than those suggested in Muthen’s example (seven) produced larger amounts of 

bias.   

 

 

 

 

 

 

 

Table 15: Cov 1 (covariance of the continuous slope and intercept) Parameter Bias  

Cov 1  (population value: -177.77)   
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Model p value Partial η2   
Sample Size 0.45 0.00  
Integration Points 0.00 0.14 * 
Floor 0.00 0.02  
Sample Size * Integration 
Points 0.59 0.00  
Sample Size * Floor 0.02 0.01  

Integration Points * Floor 0.00 0.01  

Sample Size * Integration 
Points * Floor 0.59 0.00   

                            * indicates an eta squared value greater than the .14 cutoff 

The information obtained regarding the Psi 2 or the covariance of the continuous slope 

and intercept parameter, displayed that under all conditions only the number of integration points 

had an effect on this parameter estimate. The amount of bias decreased as the number of 

integration points increased.  Sample size and percentage of floor did not matter when using the 

censored-inflated model on the data.   

Table 16: Psi 2 (variance of the continuous slope) Parameter Bias  

 

 

 

 

 
   

                                
                            * indicates an eta squared value greater than the .14 cutoff 

 

In comparison with the Psi 2 parameter, the Psi 3 or variance of the continuous slope 

displays much of the same pattern. Like the covariance of the slope and intercept for the 

continuous portion of the data, this bias on this parameter is primarily impacted by the actual 

number of integration points used to analyze the data, with a decrease in bias as the number 

increased.  

Psi 2 (population value: 0.69)   
Model p value Partial η2   
Sample Size 0.46 0.00  
Integration Points 0.00 0.20 * 
Floor 0.00 0.03  
Sample Size * Integration 
Points 0.65 0.00  
Sample Size * Floor 0.00 0.01  
Integration Points * Floor 0.00 0.01  
Sample Size * Integration 
Points * Floor 0.78 0.00   
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Because the two covariance parameters shown in Tables 17 and 18 were not designated 

as particular parameters of interest, they will be discussed together as opposed to individually. 

For these two parameters, no design factor reached the .14 criterion level. Finally, the variance of 

the censored-inflated intercept bias displayed an effect size greater than the .14 criterion related 

to the percentage of floor effect; bias decreased as the percentage of floor effect increased from 

five to seven. 

 
Table 17: Cov 2 (covariance of the continuous intercept with censored-inflated 

intercept) Parameter Bias  
 

Cov 2 (parameter mean: -0.15)   
Model p value Partial η2  
Sample Size 0.02 0.00  
Integration Points 0.03 0.00  
Floor 0.59 0.00  
Sample Size * Integration 
Points 0.07 0.00  
Sample Size * Floor 0.17 0.00  
Integration Points * Floor 0.30 0.00  
Sample Size * Integration 
Points * Floor 0.27 0.00  

 

Table 18: Cov 3 (covariance of the continuous slope with the censored-inflated 
intercept) Parameter Bias  

 
Cov 3 (parameter mean: 0.07)  
Model p value Partial η2 
Sample Size 0.05 0.00 
Integration Points 0.12 0.00 
Floor 0.45 0.00 
Sample Size * Integration 
Points 0.19 0.00 
Sample Size * Floor 0.01 0.00 

Integration Points * Floor 0.26 0.00 
Sample Size * Integration 
Points * Floor 0.55 0.00 

 
 

Table 19: Psi 3 (variance of the censored-inflated intercept) Parameter Bias  
Psi 3 (parameter mean: 0.04)   
Model p value Partial η2   
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                                 * indicates an eta squared value greater than the .14 cutoff 
 

For the variance of the censored-inflated intercept, there was only one condition that 

influenced this parameter, and that was the percentage of observations displaying a floor effect. 

As the floor effect increased, the variance of the censored-inflated intercept increased.   

 
Standard Error Bias 
 
The standard errors were all of concern in this study, because the first research question 

specifically addresses how sample size and percentage of floor effect impact these. The tables 

below (20-32) contain data regarding the standard error bias of all aforementioned parameters, 

again using the partial η2 value of 0.14 or greater as an indicator of statistical significance. 

Standard error bias was calculated as 

(Estimated Std Dev- Empirical Std Dev)/ Empirical Std Dev *100                               (25)                                                                             

Below is a series of tables and graphs that display the individual effects on standard error 

bias according to the manipulated variables of percentage of floor effect, sample size, and 

number of integration points used for analysis. 

The first test done was a multiple analysis of variance (MANOVA) test to see if there 

were any significant effects on the standard error biases of the manipulated conditions. For the 

Sample Size 0.00 0.03  
Integration Points 0.00 0.05  
Floor 0.00 0.20 * 
Sample Size * Integration 
Points 0.00 0.00  
Sample Size * Floor 0.00 0.02  

Integration Points * Floor 0.00 0.02  
Sample Size * Integration 
Points * Floor 0.05 0.01   
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omnibus MANOVA, all conditions and their interactions exceeded values of .14 for eta-squared. 

The follow-up univariate values are shown in Table 20 below. 

Table 20: Parameter Standard Error Bias   
 

Source 
Dependent 
Variable F Sig. Partial Eta Squared 

N SEbiasnu 1.66 .19 .00 

SEbiastheta1 2784.05 .00 .61* 

SEbiastheta2 372.95 .00 .17* 

SEbiastheta3 1059.57 .00 .37* 

SEbiasalpha1 3624.96 .00 .67* 

SEbiasalpha2 516.24 .00 .23* 

SEbiasalpha3 2018.56 .00 .53* 

SEbiaspsi1 1397.90 .00 .44* 

SEbiascov1 1023.22 .00 .36* 

SEbiaspsi2 66.56 .00 .04 

SEbiascov2 15.43 .00 .01 

SEbiascov3 107.87 .00 .06 

SEbiaspsi3 2.74 .07 .00 
INT SEbiasnu .05 .95 .00 

SEbiastheta1 11189.68 .00 .86* 
SEbiastheta2 798.71 .00 .31* 
SEbiastheta3 21945.30 .00 .93* 
SEbiasalpha1 9847.29 .00 .85* 
SEbiasalpha2 1363.08 .00 .43* 
SEbiasalpha3 342.07 .00 .16* 
SEbiaspsi1 16872.27 .00 .90* 
SEbiascov1 10320.47 .00 .85* 
SEbiaspsi2 17495.85 .00 .91* 
SEbiascov2 16.06 .00 .01 
SEbiascov3 475.58 .00 .21* 
SEbiaspsi3 .08 .93 .00 
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Floor SEbiasnu 1.60 .19 .00 
SEbiastheta1 145.45 .00 .11 
SEbiastheta2 324.37 .00 .21* 
SEbiastheta3 92.35 .00 .07 
SEbiasalpha1 365.53 .00 .24* 
SEbiasalpha2 2426.58 .00 .67* 
SEbiasalpha3 126.16 .00 .10 
SEbiaspsi1 465.72 .00 .28* 
SEbiascov1 401.11 .00 .25* 
SEbiaspsi2 51.99 .00 .04 
SEbiascov2 90.32 .00 .07 
SEbiascov3 315.07 .00 .21* 
SEbiaspsi3 1.16 .32 .00 

N * INT SEbiasnu 1.53 .19 .00 
SEbiastheta1 665.17 .00 .43* 
SEbiastheta2 237.52 .00 .21* 
SEbiastheta3 471.24 .00 .35* 
SEbiasalpha1 6084.57 .00 .87* 
SEbiasalpha2 3164.24 .00 .78* 
SEbiasalpha3 907.61 .00 .51* 
SEbiaspsi1 930.53 .00 .51* 
SEbiascov1 713.90 .00 .45* 
SEbiaspsi2 1464.88 .00 .62* 
SEbiascov2 11.12 .00 .01 
SEbiascov3 173.75 .00 .16* 
SEbiaspsi3 .94 .44 .00 

N * Floor SEbiasnu 1.61 .14 .00 
SEbiastheta1 564.35 .00 .48* 
SEbiastheta2 264.57 .00 .31* 
SEbiastheta3 86.79 .00 .13 
SEbiasalpha1 3703.33 .00 .86* 
SEbiasalpha2 3237.51 .00 .85* 
SEbiasalpha3 537.79 .00 .48* 
SEbiaspsi1 417.29 .00 .43* 
SEbiascov1 168.06 .00 .22* 
SEbiaspsi2 115.52 .00 .16* 
SEbiascov2 112.71 .00 .16* 
SEbiascov3 182.71 .00 .24* 
SEbiaspsi3 1.37 .22 .00 
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INT * Floor SEbiasnu 1.30 .25 .00 
SEbiastheta1 608.24 .00 .51* 
SEbiastheta2 365.91 .00 .38* 
SEbiastheta3 312.61 .00 .35* 
SEbiasalpha1 1364.66 .00 .70* 
SEbiasalpha2 2468.55 .00 .81* 
SEbiasalpha3 594.97 .00 .50* 
SEbiaspsi1 283.57 .00 .32* 
SEbiascov1 134.92 .00 .19* 
SEbiaspsi2 179.94 .00 .23* 
SEbiascov2 136.42 .00 .19* 
SEbiascov3 431.90 .00 .42* 
SEbiaspsi3 1.49 .17 .00 

N * INT * Floor SEbiasnu 1.09 .36 .00 
SEbiastheta1 139.74 .00 .32* 
SEbiastheta2 267.63 .00 .47* 
SEbiastheta3 100.28 .00 .25* 
SEbiasalpha1 1555.96 .00 .84* 
SEbiasalpha2 1577.70 .00 .84* 
SEbiasalpha3 422.57 .00 .59* 
SEbiaspsi1 231.21 .00 .44* 
SEbiascov1 270.76 .00 .48* 
SEbiaspsi2 388.52 .00 .57* 
SEbiascov2 91.57 .00 .24* 
SEbiascov3 288.70 .00 .49* 
SEbiaspsi3 .81 .64 .00 

                                                         *indicates an eta squared value greater than the .14 cutoff 
                                                                            

As can be seen from the table, all parameter standard errors with the exceptions of the 

censored-inflated thresholds (Nu) and the variance of the censored-inflated intercept (Psi3) were 

affected by the manipulated conditions at levels greater than the .14 criterion. Figures 1 through 

11 display the results of the individual standard error bias by manipulated conditions tests. 
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Figure 2: Graph of manipulated variable interaction on Standard Error bias for Theta 1 (residual 
variance of Y11)  

 

 
 
 

For the standard error of the residual variance of Y11, there was substantial negative bias 

with five integration points for most levels of floor and sample size. At this number of 

integration points, standard error bias increased unexpectedly with sample size. With six or 

seven integration points, bias was close to zero under most conditions, and generally decreased 

with larger sample size and larger floor values. With seven integration points, however, there 

was a tendency for bias to increase slightly at the middle sample size of 5000. 
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Figure 3: Graph of manipulated variable interaction on standard error bias for Theta 2 (residual 
variance for Y12)  

         

Figure three shows the bias in the standard error of the Y12 residual variance. Overall, 

standard error bias for this parameter was minimal under all conditions. The use of five integration 

points resulted in the most standard error bias for this parameter. However, with seven integration 

points at floor condition of one and four, positive bias of up to 10 was found. With six integration 

points, bias generally decreased with sample size, as would be expected. 
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Figure 4: Graph of manipulated variable interaction on standard error bias for Theta 3 (residual 
variance for Y13)  

 

 
 

In figure four, the graphs displays that negative bias in the standard error of the residual 

variance of the Y13 parameter is quite severe with five integration points. Standard error bias 

also increases with sample size for this parameter. With six or seven integration points, bias is 

very slight, hovering around zero. 
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Figure 5: Graph of manipulated variable interaction on standard error bias for Alpha 1 
(Continuous intercept) 

 
 For the mean bias of the standard error of the continuous intercept, bias was negligible under 

most combinations of conditions, but substantial negative bias was seen for conditions with five 

integration points at floors of two, three, and four and sample sizes of 10,000. 
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Figure 6: Graph of manipulated variable interaction on standard error bias for Alpha 2 
(Continuous slope) 
 

 
 
 

The mean bias of the standard error for the slope of the continuous part of the model,  

was minimal at floors of one or two, not exceeding 10% for any condition at this floor. At a floor 

of three or four, however, negative bias of up to 20% was noted for conditions combining five 

integration points and small sample sizes. Positive bias of up to 20% was evident with seven 

integration points, a floor of three, and a sample size of 5000. Conversely, a combination of 

seven integration points with a floor of four resulted in negative bias of about 15% at a sample 

size of 5000. 
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Figure 7: Graph of manipulated variable interaction on standard error bias for Alpha 3 
(Censored inflated slope) 
 

 
The bias for the slope of the censored inflated portion of the model, was greatest at five x 

integration points and a sample size of 5000. Other integration points displayed minimal bias 

values across floors and sample sizes. 
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Figure 8: Graph of manipulated variable interaction on standard error bias for Psi 1 
(Variance of the continuous intercept) 
 

 
 

Figure eight shows that mean bias in the variance of the continuous intercept is most 

severe with five integration points across all sample sizes. Though the six and seven integration 

point lines display variations in biases as the floors and sample sizes increase, the seven 

integration point line displays a mean bias of approximately zero across all sample sizes at the 

second floor.  
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Figure 9: Graph of manipulated variable interaction on standard error bias for Cov 1 
(Covariance of the continuous slope and intercept) 

 

 
 

The mean bias in the continuous slope/intercept covariance, is greatest in the five 

integration point line across floors and sample sizes with a linear effect displayed at the fourth 

floor according to increases in sample size. The six integration point line displays a decrease in 

bias as floors increase from one to four, with the mean bias value of approximately zero across 

all sample sizes at floor four. The seven integration point line shows the least amount of bias at 

floor three with a mean bias value of approximately zero across all sample sizes.  
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Figure 10: Graph of manipulated variable interaction on standard error bias for Psi 2 
(Variance of the continuous slope) 
 

 
 

The mean bias for the continuous slope variance in all four floors is greatest for the five 

integration point line regardless of sample size. The six integration point line is constant at zero 

in floor one, approaches zero with sample size of 10000 at floor two, fluctuates with sample size 

at floor three, and linearly increases with increases in sample size at floor four. The seven point 

line shows as increase in mean bias as the floor increases from one to four, with greatest bias 

displayed at floors three and four and sample sizes of 10000 and 5000 respectively.  
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Figure 11: Graph of manipulated variable interaction on standard error bias for Cov 2 
(Covariance of the censored inflated and continuous intercepts) 
 

 
These graphs display that the standard error bias of the covariance of the censored-

inflated and continuous intercepts was minimal at all conditions. The greatest amount of bias can 

be observed in the seven integration point line at floor one and five integration point line at floor 

five with increases in sample size. 
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Figure 12: Graph of manipulated variable interaction on standard error bias for Cov 3 
(Covariance of the censored inflated intercept and continuous slope) 

 

 
For the mean bias of the covariance of the continuous slope and censored-inflated 

intercept, most integration points displayed minimal values across sample sizes. The exception 

was the seven integration point line at the first floor and a sample size of 5000, where the 

greatest bias was detected-approximately 50.  
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A Comparison of Linear versus Censored-Inflated Models 

The second research question of this study was one that inquired about the differences in 

parameter estimate bias that might be discovered when comparing the linear and censored-

inflated models on identical datasets. It was hypothesized that the parameter bias obtained 

through the use of the censored-inflated model would be less than that from the results of the 

linear model. In order to test this hypothesis, the datasets created using the Mplus Monte Carlo 

command were analyzed in the same software using a linear model. The code for which is 

below: 

type=montecarlo; 

VARIABLE: NAMES ARE Y11-Y13; 

USEVARIABLES ARE ALL; 

MODEL: i s | y11@0 y12@1 y13@2; 

The saved results files were then exported to SPSS 15.0 in the same way as for the 

censored-inflated model.  Once exported into SPSS, descriptive statistics were obtained and 

displayed below in tables 21 and 22. Table 21 shows the results for the censored-inflated and 22 

is for the linear model. Though the censored-inflated had more initial parameters, in order to 

compare the parameter estimates in identical parameters, the datasets were matched according to 

the parameters that they had in common. 
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Table 21: Descriptive Statistics for the Parameters of the Censored-Inflated Model 
N=3600 

 

 

 

 

 

 

 

 

 

 

Table 22: Descriptive Statistics for the Parameter Estimates of the Linear Model 
N=3600 

 

 

 

 

 

 

 

 

 

 

 

Parameter Minimum Maximum Mean Standard Deviation 
Nu  -95.10 47.87 1.6727 17.77436   
Theta1  -53.96 44.71 -3.3896 8.98658  
Theta 2  -22.65 19.27 .1838 4.24444  
Theta 3  -55.05 53.15 -5.2381 12.14028  
Alpha 1  -.77 .91 .0020 .17872  
Alpha 2  -344.36 383.60 -.9329 71.43957  
Alpha 3  -217.38 181.69 .5824 30.97517  
Psi 1  -35.29 53.00 3.5124 9.45795  
Psi 2  -42.09 55.33 4.0422 10.69029  
Psi 3  -21.72 30.75 2.8033 6.61130  
Psi 4  -9547.75 9736.12 24.7724 1210.89295  
Psi 5  -13897.69 19693.91 30.9730 2136.09263  
Psi 6  -99.88 5369.69 281.4844 536.42696   

Parameter Minimum Maximum Mean Standard Deviation 
Nu  -2295580.90 -58256.72 -817397.1241 578490.75461   
Lambda 1  164.83 7611.06 2311.5934 1830.28881  
Lambda 2  66.66 7265.17 1863.5683 1593.81193  
Lambda 3  -52.54 1.58 -9.6932 11.18793  
Theta 1  -100.91 -93.15 -98.2062 1.64125  
Theta 2  -644.82 1056.23 3.6009 136.10842  
Theta 3  -786.23 270.36 -152.4121 81.63061  
Alpha  -340.41 585.86 -12.7344 73.96391  
Beta  -85.50 350.90 26.5958 111.14861  
Psi 1 -92.24 176.07 -28.1145 64.36247  
Psi 2 -749.77 -122.20 -281.6817 158.80413  
Psi 3 -89.00 3.07 -60.1278 24.94084   
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 When looking at the two tables, it appears that the parameter estimate biases are 

substantially larger in the linear model than in the censored-inflated. However, to confirm this 

suspicion a dependent samples t-test was conducted to further investigate the significance at each 

parameter bias according to group membership.  

Once the censored-inflated and linear datasets were combined, they were dummy-coded 

“1” for censored-inflated and “2” for linear and the parameter estimates that were common to the 

two analyses were compared. Common parameter estimates across the two models were the 

intercepts for the continuous variables (Nu; note that only one value is estimated as values for the 

three time points are constrained to be equal), the residual variances at each of the three time 

points (theta1-3), the intercepts and variances of the continuous slope and intercept, and the 

covariance of the continuous slope and intercept. The results from the descriptive statistics and 

dependent samples t-test are located in tables 23 thru 24.  

 

 
Table 23: Descriptive Statistics for the Bias Parameters of the Censored-Inflated 

Model N=3600 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Parameter Minimum Maximum Mean 
Std. 

Deviation 
Nu Bias -636.92 -104.90 -355.93 119.70 
Theta1 Bias -53.96 44.71 -3.39 8.95 
Theta2 Bias -22.65 19.27 .18 4.22 
Theta 3 Bias -55.05 53.15 -5.16 12.14 
Alpha 1 Bias  -.77 .91 .01 .19 
Alpha 2 Bias -344.36 383.60 -.56 71.09 
Psi 1 Bias -35.29 53.00 3.51 9.44 
Psi 2 Bias -322.40 -233.16 -274.84 11.23 
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Table 24: Descriptive Statistics for the Parameters of the Linear Model N=3600 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
There are apparent differences between the descriptive statistics obtained using the 

censored-inflated and linear models for analysis. To further investigate the differences between 

the means of these two types of analyses, a dependent samples t-test was performed.  

 
 

Table 25: Results of the Dependent Samples t-test N=7200 
 

 

 

 

 

 

                                                  *indicates significance at p<0.05 

 

When comparing the parameters that could be matched between the censored-inflated 

and linear models, all comparisons except the Theta 2 or the residual variance for variable Y12, 

displayed statistically significant results. This simple test provides support for the research 

question that asks if there is a difference in the parameter estimate bias obtained through using 

the censored-inflated instead of linear modeling for floor effects data. The results display that 

Parameter Minimum Maximum Mean Std. Deviation 
Nu Bias 58056.72 2295380.90 843281.92 590947.02 
Theta1Bias -100.93 -92.96 -98.09 1.717 
Theta 2 Bias -623.30 1010.56 -.21 130.37812 
Theta 3 Bias -811.44 283.97 -154.04 84.48 
Alpha Bias -335.08 570.64 -15.23 72.16 
Beta Bias -199537.05 -6511.85 -56370.31 48502.11 
Psi 1 Bias -92.24 176.07 -27.71 63.51 
Psi 2 Bias -749.77 -122.20 -282.63 156.68 

Parameter T p-value   
Nu Bias 60.23 .00 * 
Theta1 Bias -90.09 .00 * 
Theta2 Bias -0.02 .98  
Theta3 Bias -70.48 .00 * 
Alpha Bias -12.52 .00 * 
Beta Bias -53.88 .00 * 
Psi1Bias -21.40 .00 * 
Psi2 Bias  -212.82 .00 * 
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there is in fact a statistically significant difference between seven of the eight parameter biases 

obtained when using the two methods of data analysis. 

In order to further investigate the differences in means produced by the two methods of 

data analysis, a means comparison test was done in order to closely examine those produced by 

each method. Group one designated those observations analyzed with linear modeling, and group 

two was censored-inflated. 

Table 26: Results of the Mean Comparisons N=7200 
  

Group   NuBias Theta1Bias Theta2Bias Theta3Bias AlphaBias BetaBias Psi1Bias Psi2Bias 
1.00 Mean 843281.93 -98.09 -.21 -154.04 -15.23 -56370.31 -27.71 -282.63 
2.00 Mean -355.93 -3.39 .18 -5.16 .01 -.56 3.51 -274.84 

 

 The t-test in addition with means comparison analyses shows that the censored-inflated 

model consistently produced parameter estimates with less bias than those resulting from linear 

modeling.  
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CHAPTER 5 

                                                                      CONCLUSION 

 

In Chapter three, the research questions were: 1) What effect do sample size, percentage 

of floor effect, and number of integration points have on parameter estimate bias and standard 

error bias? 2) Do parameter estimates obtained through the censored-inflated model display less 

bias than those obtained through traditional growth modeling?  

Discussion 

Effects of Manipulated Variables on Standard Errors 

Through data generation using the Mplus Monte Carlo method, analysis with the 

censored-inflated and linear models the questions were answered. For the question regarding the 

effect of sample size and floor effect on parameter estimate bias and standard errors bias, tables 

27 and 28 provide checklists visual representations of the way in which the parameter estimates 

and standard errors were impacted by the manipulated factors. 
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Table 27: Results of Censored-Inflated Model Parameter Estimates by Manipulated 

Factors 

 indicates a η2 value of 0.14 or greater  

When observing the Nu or floor parameter the effects of the sample size, number of 

integration points and the interactions between all manipulated variables were detected at a 

greater than .14 cutoff. These effects were linear in nature meaning that as sample size and 

number of integration points increased, the bias decreased. The increase in the number of 

integration points had a decrease on the effect of the bias for the residual variance of the Y11, 

Y13, mean of the continuous slope, the variances of the continuous slope intercept, and the 

covariance of these two parameters. When increased, all of the manipulated conditions decreased 

the bias of the continuous slope. Finally, for the variance of the censored-inflated intercept, only 

the actual percentage of observations at the floor had an effect on this parameter. As the floor 

increased, the bias decreased. This served as evidence that the censored-inflated model is best to 

Parameter Estimate 
Sample 
Size (N) Floor (F) 

Number of 
Integration 
Points (INT) N*F N*INT F*INT N*F*INT 

Nu (floor)  NA     

Theta 1 (varianceof Y11) NA NA  NA NA NA NA 

Theta 2 (variance of Y12) NA NA NA NA NA NA NA 

Theta 3 (variance of Y13) NA NA  NA NA NA NA 

Alpha 1 (mean of cont. intercept) NA NA NA NA NA NA NA 

Alpha 2 (mean of cont. slope)       

Alpha 3 (mean of C-I slope) NA NA NA NA NA NA NA 

Psi 1 (variance of cont. intercept) NA NA  NA NA NA NA 
Cov 1 (covariance of cont. 
intercept and slope) NA NA  NA NA NA NA 

Psi 2 (variance of cont. slope) NA NA  NA NA NA NA 

Cov 2 (covariance of CI and cont. 
intercepts) NA NA NA NA NA NA NA 

Cov 3 (covariance of cont. slope 
with C-I intercept) NA NA NA NA NA NA NA 

Psi 3 (variance of CI intercept) NA  NA NA NA NA NA 



72 

 

be used specifically with floor effects data in that a datasets containing smaller floors (between 

one and five percent) may not need such a highly specialized model for analysis.  

 
 

Table 28: Results of Censored-Inflated Model Standard Errors by Manipulated 
Factors 

 indicates a η2 value of 0.14 or greater  

The effect of the sample size on standard errors was detected for all parameters except 

the covariances of the continuous slope with the continuous intercept and with the censored-

inflated intercept, and the variance of the censored-inflated intercept. The effect of the 

percentage of floor effect on standard error was large for all standard errors bias except that for 

Parameter Estimate 
Sample 
Size (N) Floor (F) 

Number of 
Integration 
Points (INT) N*F N*INT F*INT N*F*INT 

Theta 1 (variance of 
Y11)  NA      
Theta 2 (variance of 
Y12)       
Theta 3 (variance of 
Y13)  NA     
Alpha 1 (mean of 
cont. intercept)       
Alpha 2 (mean of 
cont. slope)       
Alpha 3 (mean of C-I 
slope)  NA     
Psi 1 (variance of 
cont. intercept)       
Cov 1 (covariance of 
cont. intercept and 
slope)       

Psi 2 (variance of 
cont. slope) NA NA     
Cov 2 (covariance of 
CI and cont. 
intercepts) NA NA     

Cov 3 (covariance of 
cont. slope with C-I 
intercept) NA      

Psi 3 (variance of CI 
intercept) NA NA NA NA NA NA NA 
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Theta 1 (the residual variance for Y11), the covariance of the censored-inflated and continuous 

intercepts, and the variance of the censored-inflated intercept.   

The number of integration points used in analysis had an effect on all standard errors 

except those for the covariance of the censored-inflated intercept with the continuous intercept 

and the variance of the censored-inflated intercept.  

The interaction between the sample size and percentage of floor effect was significant on 

all except the Theta 3 (residual variance for Y13), and variance of the censored-inflated 

intercept.  

 The interaction between the sample size and number of integration points used in 

analysis displayed effects in a small number of standard error biases. Those that it did not affect 

were the covariance of the censored-inflated intercept with the continuous intercept and slope, 

and the variance of the censored-inflated intercept.  

The interaction between the percentage of floor effect and number of integration points 

used for analysis was greater than .14 in all except the variance of the censored-inflated 

intercept. 

 Finally, the interaction between all three manipulated conditions: sample size, number of 

integration points used for analysis and the percentage of floor effect has an effect size of greater 

that .14 on all standard errors except for the variance of the censored-inflated intercept.  

Censored-Inflated versus Linear Model Bias 

 The parameter estimate bias was smaller for the censored-inflated model as compared to 

the continuous linear model for all parameters common to the two models. This provides 

evidence for the assertion that if a floor effect of any level is present within a dataset, it is 

imperative to treat those data in a different manner than linear modeling allows for. 
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Effect of Number of Integration Points on Parameter Estimates 

 Based on the fact that so little was known about the censored-inflated model, it was 

important to try to explore as many aspects as possible in order to gain more insight on its 

workings. The recommended number of integration points provided by Muthen’s example was 7 

(Muthen, 2005). However, through preliminary experimentation as referenced in Chapter 3, it 

was determined that between five and seven would allow the model to converge without error or 

warning messages. With that information, the analyses were conducted at each of four levels of 

floor effect, varying the sample size and using between five and seven integration points for 

analysis.  

 The results section of this paper provides great detail about how the number of 

integration points, the sample size, percentage of observations at the floor and the interactions 

between the three effect the bias of the standard errors, however there is still room for 

experimentation with all of the parameters used here as well as others that can be inserted into 

the data by a future researcher. 

Practical Use 

 As shown by the results obtained through analyses, the censored-inflated model 

consistently produced smaller bias in parameter estimates and standard errors than linear growth 

modeling. This supports the assertion that the censored-inflated model would best be employed 

in situations where there are examinees who display floor effects, when attempting to truly 

capture the essence of their growth over time.  

 Since this method assumes that data are nonnormal, there is no treatment required of the 

data before analysis can take place.  



75 

 

However, caution should be used with this method when large floor effects are discovered as this 

could indicate a problem with the assessment as opposed to the examinees. In such instances if at 

all possible, the measure should be examined for construct relevance to make sure that it is not 

an incorrect fit for the examinees. This examination should include making sure that the ability 

level of the examinees matches that being assessed by the measure, and ensuring that the 

material being assessed by the measure has adequately been taught to the examinees beforehand.    

Caveats 

The censored-inflated model is a very promising model to be used specifically with data 

that contain greater than 1% of a floor effect. The results of the study have displayed evidence 

that floor effects data are unique in the make-up of the observations that reside in the lower 

bounds and should not be treated as normally distributed data with linear effects by using linear 

growth modeling analyses. 

The censored-inflated model however is a highly specialized and complicated model. 

There are many components of this model to maintain in order to ensure a successful analysis. In 

implementing Monte Carlo data to be used for further studies, there is a high level of precision 

required in order to obtain successful results. Background information obtained from some real 

dataset to be used as a model, such as all of the starting values for the various means, intercepts 

and slopes, and percentage of the floor within the dataset must be known a priori or the model 

will fail. 

In addition, the multiple parameters obtained through the model, may be more than 

necessary for such a small group of observations. If there is a small floor effect of one or five 

percent, this model may be a bit overbearing, in that favorable results could likely be obtained 

through more conventional growth modeling techniques.  
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Preliminary research results displayed in Chapter 3 showed that due to the complex 

nature of this model, it cannot be expected to produce successful results with small datasets 

(smaller than N=1000). It also showed that there are very specific parameters of the percentage 

of the floor effect that can be present in the data (those tested were between 1 and 20%), and the 

number of integration points that can be used for the model can converge varies between five and 

seven. Fewer integration points than five resulted in a failed model, and greater than seven 

resulted in a plateau effect. The same was observed when and a sample size of more than 10,000 

was used in the analyses.    

Implications for Future Research 

 Future studies may focus specifically on further investigation of the differences between 

the empirical and estimated parameters between the censored-inflated and linear models. This 

study only included three time points for analysis. A future study may include more time periods 

to observe more of a long term change in the floor effects dataset, and compare that volume of 

information between the censored-inflated and linear models.  

Also from the preliminary research, there was a point at which the sample size of greater 

than 10,000 actually did not result in any differences in parameters; however there could be 

fortification of this area. A future study could include more observations (perhaps at the same 

number of time points), and integration points to determine whether there is a plateau effect 

similar to the one observed and discussed in Chapter 3. 

Because so little is known about this model, there are many possibilities for research in 

the future. For instance, though there is some information known about the sample sizes and 

numbers of integration points that can be accommodated, there is still much to investigate as far 

as the actual percentage of floor effect that can be used with this model. From the preliminary 
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experimentation conducted it appears that the smallest percentage of floor effect that can be 

accommodated is one percent, and for the purpose of this study it was capped at 20, however, the 

true bounds of this variable are unknown. Depending on the purpose for using a floor effects 

model, a greater percentage of floor effect may be desired, and little to no information is 

available regarding the behavior of this model with a larger floor effect. 

It is hopeful that a greater amount of floor effect could in essence provide results 

comparable to the zero-inflated (ZIP) model that can be used for the over dispersion of lower 

bounds data.  
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 Appendix Table A: Mplus Data Generation Code 

MONTECARLO: 
      NAMES = y11-y13; 
      NOBSERVATIONS = 10000; 
      NREPS = 100; 
      SEED = 1471; 
      GENERATE = y11-y13 (cbi 0); 
      Censored are y11-y13 (bi); 
      REPSAVE = ALL; 
      SAVE = C:\Documents and Settings\TMCKINLEY\Desktop\datanew*.dat 
      MODEL POPULATION: 
      i s | y11@0 y12@1 y13@2; 
      ii si | y11#1@0 y12#1@1 y13#1@2; 
      [y11-y13@0]; 
      y11 * 289.42; 
      y12 * 301.32; 
      y13 * 290.64; 
      [y11#1 - y13#1 @ -1.0](1); 
      [i*297.234 s* -0.672 ii@0 si * -0.262]; 
      i*283.109; s*300.697; i with s*-176.777; 
      [ii @ 0]; 
      [si * -0.262]; 
      Si @ 0.000; 
      ii @ 0.047; 
      i with ii *-.155; 
      s with ii * .075; 
      Ii with si @ 0; 
      s with si @0; 
      i with si @0; 
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Appendix Table B: Mplus Censored-Inflated Model Code  

  MONTECARLO: 
      NAMES = y11-y13; 
      NOBSERVATIONS = 1000; 
      NREPS = 100; 
      SEED = 2343; 
      GENERATE = y11-y13 (cbi 0); 
      Censored are y11-y13 (bi); 
      REPSAVE = ALL; 
      SAVE = E:\Dissertation 1\data1i5n1*.DAT; 
      MODEL POPULATION: 
      i s | y11@0 y12@1 y13@2; 
      ii si | y11#1@1 y12#1@2 y13#1@3; 
      [y11-y13@0]; 
      y11 * 289.42; 
      y12 * 301.32; 
      y13 * 290.64; 
      [y11#1 - y13#1 * -1.0]; 
      [i*297.234 s* -0.672 ii@0 si * -0.262]; 
      i*283.109; s*300.697; i with s*-176.777; 
      [ii @ 0]; 
      [si * -0.262]; 
      Si @ 0.000; 
      ii @ 0.047 
      i with ii *-.155; 
      s with ii * .075; 
      Ii with si @ 0; 
      s with si @0; 
      i with si @0;
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Appendix Table C: Mplus Linear Model Code  

DATA:FILE IS C:\Documents and Settings\TMCKINLEY\Desktop\datanewlist.dat; 
type=montecarlo; 
VARIABLE: NAMES ARE Y11-Y13; 
USEVARIABLES ARE ALL; 
MODEL: i s | y11@0 y12@1 y13@2; 
SAVE:  results are E:\Dissertation 5\linear1i7n10.res; 
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Appendix Table D: SPSS Parameter Estimate Bias Syntax  

COMPUTE nubias1=(Nu-(-1))/-1*100.  
EXECUTE.  
COMPUTE Theta1bias=(Theta1-289.420)/289.42*100.  
EXECUTE. 
compute Theta2bias=(Theta2- 301.32)/ 301.32*100. 
EXECUTE . 
compute Theta3bias=(Theta3-290.64)/290.64*100. 
EXECUTE. 
compute Alpha1bias=(Alpha1-297.234)/297.234*100. 
EXECUTE. 
compute Alpha2bias=(Alpha1- -0.672)/-0.672*100. 
EXECUTE. 
compute Alpha3bias=(Alpha3- -0.262)/-0.292*100. 
EXECUTE. 
compute Psi1bias=(Psi1-283.109)/283.109*100. 
EXECUTE. 
compute Psi2bias=(Psi2--177.77)/-177.77*100. 
EXECUTE. 
compute Psi3bias=(Psi3-300.697)/300.697*100. 
EXECUTE. 
compute Cov1bias=(Cov1--.155)/-.155*100. 
EXECUTE. 
compute Cov2bias=(Cov2-0.075)/0.075*100. 
EXECUTE. 
compute Cov3bias=(Cov3-0.047)/0.047*100. 
EXECUTE. 
compute Stderror1bias=(Stderror1-0)/0*100. 
EXECUTE. 
compute Stderror2bias=(Stderror2-40.78)/40.78*100. 
EXECUTE. 
compute Stderror3bias=(Stderror3-21.25)/21.25*100. 
EXECUTE. 
compute Stderror4bias=(Stderror4-50.91)/50.91*100. 
EXECUTE. 
compute Stderror5bias=(Stderror5-0.8424)/0.8424*100. 
EXECUTE. 
compute Stderror6bias=(Stderror6-0.7740)/0.7740*100. 
EXECUTE. 
compute Stderror7bias=(Stderror7-0.0621)/0.0621*100. 
EXECUTE. 
compute Stderror8bias=(Stderror8-41.79)/41.79*100. 
EXECUTE. 
compute Stderror9bias=(Stderror9-27.90)/27.90*100. 
EXECUTE. 
compute Stderror10bias=(Stderror10-0.0853)/0.0853*100. 
EXECUTE. 
compute Stderror11bias=(Stderror11-1.603)/1.603*100. 
EXECUTE. 
compute Stderror12bias=(Stderror12-1.36)/1.36*100. 
EXECUTE. 
compute Stderror13bias=(Stderror13-0)/0*100. 
EXECUTE. 




