
Efficient Graph Clustering Algorithms using Compressive Sensing

by

Daniel Mckenzie

(Under the direction of Ming-Jun Lai)

Abstract

Clustering graph-based data is a core problem in contemporary data science. In par-

ticular, as data sets grow in size and dimension, efficient algorithms are needed that can

go beyond the O(n2) run time of classical algorithms such as spectral clustering. In this

dissertation we propose a new paradigm that rephrases the problem of finding clusters in

graphs as a compressive sensing problem. This enables us to use fast algorithms originally

developed for sparse recovery (in particular, greedy algorithms such as Orthogonal Matching

Pursuit or Subspace Pursuit) for the clustering problem. We propose two new algorithms,

and several variations thereof, in this paradigm, which we deem “Cluster Pursuit” algo-

rithms. In particular, SingleClusterPursuit takes a small set of seed vertices and returns

a good cluster containing them in O(dmaxn log(n)) time, where dmax is the maximum vertex

degree of the graph, while DynamicClusterPursuit efficiently updates an existing cluster

in an evolving network. We further prove that SingleClusterPursuit is able to recover a

large fraction of a given cluster for graphs drawn from a well-known probabilistic model of

graphs with communities, namely the stochastic block model.

In an additional chapter, we study the related problem of turning Euclidean data into

graph data, so that graph-based clustering algorithms such as those discussed above can

be used. We analyze the use of power weighted shortest path distances to measure the dis-

tance between such data points, and show that this can lead to significant improvements in

classification accuracy on both real and synthetic data sets.

Index words: Spectral Graph Theory, Random Graph Theory, Compressive Sensing,
Semi-supervised Learning, Unsupervised Learning, Clustering, Path
Distances, Manifold Hypothesis

Efficient Graph Clustering Algorithms using Compressive Sensing

by

Daniel Mckenzie

B.Sc (hons), University of Cape Town, 2010

M.Sc, University of Cape Town, 2014

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2019

c© 2019

Daniel Mckenzie

All Rights Reserved

Efficient Graph Clustering Algorithms using Compressive Sensing

by

Daniel Mckenzie

Approved:

Major Professor: Ming-Jun Lai

Committee: Malcolm Adams

Juan Gutierrez

Alexander Petukhov

Qing Zhang

Electronic Version Approved:

Suzanne Barbour

Dean of the Graduate School

The University of Georgia

May 2019

Acknowledgments

Firstly I would like to thank my advisor, Ming-Jun Lai, for his guidance and for his uncanny

ability to suggest a way around a problem whenever I got stuck. I would not have been able

to finish this dissertation without his assistance (and indeed, as he was the one to suggest

using compressive sensing in graph clustering, arguably would not have started it.). Thanks

also to my committee for many useful discussions, and in particular Qing Zhang and Alex

Petukhov for teaching several graduate courses that really influenced the way I approach

mathematics.

Thanks to the Mathematics Department of the University of Georgia for providing a

supportive working environment (and a paycheck) for the last six years. In addition to my

advisor and committee, I’d like to thank Neil Lyall for many interesting conversations about

the profession of mathematics, Lisa Townsley for teaching me to teach and Laura Ackerley

for always genuinely caring. Thanks to my fellow graduate students, in particular Jason

Joseph, Andrew Maurer, Ernest Guico and Eric Perkerson, who over the years have become

friends and housemates, and from the start made me feel welcome in a new city. Thanks

also to my friends in South Africa, and in particular the Hobo Child crew, for a WhatsApp

group that never ceases to amuse.

A special thank you to my parents, Andrew and Judy, for our Sunday morning Skypes,

their constant support and, on at least one occasion, dropping everything to come visit when

the stress of graduate school became a bit too much. Thank you to my siblings—Carla and

Joel—for repeatedly reminding me that mathematics probably isn’t the most important

thing in the world. Thank you to my Athens family, and in particular Ross and Teresa,

iv

v

for being surrogate parents, for hosting me for numerous Thanksgivings, Christmases and

Fourth-of-July’s, and for teaching me a thing or two about the South.

Finally, thank you to my wonderful fiancée Amanda, for all that you’ve done for me. I

can honestly say that getting a PhD would not have been possible without your love and

support, your willingness to pick up the slack when dissertation writing consumed all of my

time and your unwavering belief in me. Thanks also for agreeing to move across the country

with me; I am beyond excited for our next adventure!

Table of Contents

Page

Acknowledgments . iv

Chapter

1 Introduction . 1

1.1 Overview of this Dissertation 1

1.2 Graphs . 1

1.3 Clustering Algorithms . 7

1.4 Compressive Sensing . 13

2 Semi-Supervised Cluster Pursuit . 19

2.1 Cluster Extraction as Compressive Sensing 19

2.2 Concentration in Random Graphs 22

2.3 Finding good supersets . 25

2.4 Extracting C1 from Ω . 30

2.5 Computational Complexity 41

2.6 Numerical Results . 43

3 Dynamic Cluster Pursuit . 58

3.1 Overview of Dynamic Clustering 59

3.2 Probabilistic Models of Dynamic Random Graphs 62

3.3 Dynamic cluster pursuit . 65

3.4 Experimental Results . 71

4 Shortest path distances for clustering Euclidean data 77

vi

vii

4.1 Power Weighted Shortest Path Distances 79

4.2 Prior Work . 82

4.3 Analysis of shortest path distances in the multi-manifold

setting . 84

4.4 A fast algorithm for computing K-nearest neighbors in

the p-WSPD . 90

4.5 Experimental Results . 96

Bibliography . 104

Chapter 1

Introduction

1.1 Overview of this Dissertation

The structure of this dissertation is as follows. In this Chapter (i.e. Chapter 1) we collect

some preliminary material, which is likely well-known to experts. In particular, we discuss

basic notions from random graph theory, spectral graph theory and compressive sensing.

We also survey the literature on various clustering problems for graphs, and highlight recent

progress made in the theory of clustering for the stochastic block model.

In Chapter 2 we introduce the idea of clustering as a compressive sensing problem, and

present the main algorithmic contribution of this work, namely the SingleClusterPursuit

algorithm. In Chapter 3 we present the DynamicClusterPursuit algorithm, which uses

similar ideas to track the evolution of a cluster in a network which is changing with time.

Finally, in Chapter 4 we discuss some work on the problem of creating an auxiliary graph,

G, from a Euclidean data set, X ⊂ RD so that graph-based clustering algorithms can be

used on G in order to cluster X .

1.2 Graphs

In this dissertation we shall mostly restrict our attention to simple and undirected graphs

G with vertex set V and edge set E. There are two exceptions to this: in Chapter 3 we

consider dynamic graphs while in §4.4 we briefly consider directed graphs. In all cases our

graphs will be finite, hence we shall identify the vertex set V with [n] := {1, . . . , n} and

1

2

denote an edge between vertices i and j as {i, j}. A shall denote the adjacency matrix of

G, defined as Aij = 1 if {i, j} ∈ E and Aij = 0 otherwise. We shall allow our graphs to

have non-negatively weighted edges, in which case Aij ≥ 0 will denote the weight of the edge

{i, j}. By convention, an edge weight of zero is the same as not having that particular edge.

By di we mean the degree of the i-th vertex, computed as di =
∑

j Aij. By vol(S), for any

S ⊂ V we mean the sum of degrees of all vertices in S, i.e. vol(S) =
∑

i∈S di. For quantities

such as di (and later λi and ri) that are indexed by i ∈ [n], let dmax := maxi di and similarly

dmin := mini di. Denote by D the diagonal matrix whose (i, i) entry is di.

Definition 1.2.1 (Laplacians of graphs). The normalized, random walk Laplacian is defined

as L = I −D−1A. We shall simply refer to it as the Laplacian. The normalized, symmetric

Laplacian is: Lsym := I −D−1/2AD−1/2. The unnormalized Laplacian, sometimes called the

combinatorial Laplacian, is Lcomb = D − A.

Also related is the random walk transition probability matrix P = AD−1, to be explored

further in Theorem 2.3.2. We note that the spectra of L, Lsym and P are related:

Lemma 1.2.2. For any matrix B with real eigenvalues let λi(B) denote the i-th smallest

eigenvalue, counted with multiplicity. Then λi(L) = λi(L
sym) and λn−i(P) = 1− λi(L)

Proof. Observe that L = D−1/2LsymD1/2, hence L and Lsym have the same spectrum. Simi-

larly P = D1/2 (I − Lsym)D−1/2 hence P and I −Lsym have the same spectrum. Thus if λ is

the i-th smallest eigenvalue of Lsym it is the i-th largest (and hence the (n− i)-th smallest)

eigenvalue of I − Lsym.

For any S ⊂ V , we denote by GS the induced sub-graph with vertices S and edges all

{i, j} ∈ E with i, j ∈ S. By AGS (resp. LGS and PGS) we shall mean the adjacency matrix

(resp. Laplacian or transition probability matrix) of the graph GS. Note that while AGS is

a submatrix of A, LGS and PGS are not submatrices of L and P (the factor of D−1 gets in

the way). Let us now give an admittedly vague definition of a cluster:

3

Definition 1.2.3. A cluster in a graph G is any subset of vertices C ⊂ V such that there

are many edges between vertices in C and few edges between C and V \ C.

Clusters are also frequently referred to as communities, particularly when the graph

in question is derived from a social network. We shall say that a partition of V , namely

C = {C1, . . . , Ck}, is a clustering of V if each Ca forms a cluster. We do not claim that there

is a unique clustering for any given graph. Throughout this dissertation we shall reserve

the letter “k” to denote the number of clusters in a graph and “n” for the number of vertices.

There are many measures of “goodness” of cluster. In Definition 1.2.4 we collect several

such measures. Before doing so, let us introduce the notation E(S1, S2) to denote the set of

all edges between two sets S1, S2 ⊂ V . If G is a weighted graph, E(S1, S2) will denote the

sum of the weights of all edges between S1 and S2: E(S1, S2) =
∑

i∈S1,j∈S2

{i,j}∈E

Aij.

Definition 1.2.4. Let C ⊂ V be a cluster of G:

1. The cut of C is defined as E(C, V \ C).

2. The ratio cut of C is defined as
E(C, V \ C)

|C||V \ C|

3. The normalized cut of C is defined as
E(C, V \ C)

vol(C)vol(V \ C)

4. The conductance of C is defined as
E(C, V \ C)

vol(C)

where for any finite set S, by |S| we mean its cardinality. There are also measures, for

example modularity, that refer to a baseline model of random graphs without clusters, such

as the Erdős - Rènyi model to be introduced in the next section. We remark that optimizing

different quantities selects different types of clusters. For example, minimizing ratio cut or

normalized cut yields balanced clusters, where |C| ∼ |V \ C| while minimizing conductance

yields smaller, tighter clusters. One can easily extend some of these measures to reflect the

goodness of a clustering, C:

4

Definition 1.2.5. Let C be a clustering of G:

1. The ratio cut of C is defined as
1

2

k∑
a=1

E(Ca, V \ Ca)
|Ca|

.

2. The normalized cut of C is defined as
1

2

k∑
a=1

E(Ca, V \ Ca)
vol(Ca)

.

1.2.1 Random Graphs

Before proceeding, it is useful to establish two probabilistic models of graphs. Technically, a

probabilistic model is a probability distribution, µ, on the set of all graphs on n vertices, with

respect to which graphs are sampled. As the graphs in question all have the same vertex

set, what µ really indicates is which edges to include. So, we shall follow the convention,

typical in the literature, of not specifying µ explicitly, but rather specifying the probability

of including each potential edge {i, j} in a graph drawn from a particular model.

Definition 1.2.6. We say G = (V,E) is drawn from the Erdős - Rènyi model on n vertices

with parameter p (written G ∼ ER(n, p)) if V = [n] and P[{i, j} ∈ E] = p for i, j ∈ V , with

all such probabilities being independent.

If G ∼ ER(n, p) we shall frequently abuse terminology slightly and refer to G as “an Erdős

- Rènyi graph”. Such graphs are extremely homogeneous in the sense that for any subset

S ⊂ V the number of edges between S and V \S is almost always close to its expected value,

p|S||V \ S|. As such, Erdős - Rènyi graphs are very unlikely to contain clusters. In order to

benchmark the performance of clustering algorithms (as well as to guide their development)

it is useful to have a probabilistic model of graphs with clusters.

Definition 1.2.7. Let n = (n1, . . . , nk) be a vector of positive integers, and let P be a

k × k symmetric matrix with Pab ∈ [0, 1] for all a, b. We say a graph G = (V,E) is drawn

from the Stochastic Block Model (written G ∼ SBM(n, P)) if there exists a partition V =

C1 ∪ C2 . . . ∪ Ck with |Ca| = na such that any vertices i ∈ Ca and j ∈ Cb are connected by

an edge with probability Pab, and all edges are inserted independently.

5

The first usage of the term “Stochastic Block Model” is usually attributed to Holland et

al. [49] although there are certainly earlier instances of researchers studying similar models

of graphs with planted clusters. For a thorough and modern overview, we recommend [2].

We remark that in [2] and elsewhere, a slightly more general definition is given where it

is only required that the expected value of |Ca| is na, but the above shall suffice for our

purposes. In §1.3.3 we discuss recent work characterizing the values of the parameters p and

q for which the clusters are recoverable given a single G ∼ SBM(n, P).

In the special case where all the na are equal, Paa = p for all a and Pab = q for all

a 6= b we say that G is drawn from the Symmetric Stochastic Block Model, and write G ∼

SSBM(n, k, p, q). In this case the clusters are all of size n0 := n/k.

Definition 1.2.8. For any two functions f(n) and g(n) we say that:

• f(n) = O(g(n)) if there exists constants C and K such that for all n ≥ K we have

f(n) ≤ Cg(n).

• f(n) = o(g(n)) if for every ε > 0 there exists a constant K such that for all n ≥ K we

have |f(n)| ≤ εg(n).

Alternatively, observe that f(n) = o(g(n)) if and only if the ratio f(n)/g(n) goes to zero

as n → ∞. In this dissertation we shall frequently use o(1) to denote a quantity that goes

to zero as n→∞. By O(1) we shall denote a quantity which is eventually bounded.

Definition 1.2.9. If a certain property holds for graphs drawn from any probabilistic model

of graph on n vertices with probability 1−o(1), we say that this property holds almost surely,

or a.s. 1

1Technically, what we mean here is that the property in question holds asymptotically almost
surely, or a.a.s. We adopt a slight abuse of terminology, common in the random graph theory
literature, in referring to this phenomenon without the word “asymptotically”.

6

Determining which properties hold almost surely is one of primary interest in the study

of random graphs. It frequently turns out that there is a “threshold phenomenon” whereby

if a parameter (for example, p in the Erdős - Rènyi model) is above a certain value then a

property holds almost surely, but if it is below this value then the property does not hold,

almost surely. For example, graphs drawn from ER(n, p) are connected, almost surely, if

p = c log(n)/n with c > 1 and have two or more components, almost surely, if c < 1. In

§2.2 we exploit such phenomena to ensure that the degrees and eigenvalues of Erdős - Rènyi

graphs are suitably concentrated near their expected value.

1.2.2 Spectral Graph Theory

Spectral graph theory refers to the study of a graph G via the eigenvalues and eigenvectors

of a matrix associated to G, typically the adjacency matrix A or one of the Laplacian

matrices described in Definition 1.2.1. A good reference is [24]. Of primary interest to us is

the following theorem:

Theorem 1.2.10. Let C1, . . . , Ck denote the connected components of a graph G. Then the

cluster indicator vectors 1C1 , . . . ,1Ck are all eigenvectors of L associated to the eigenvalue

0. Equivalently, 1C1 , . . . ,1Ck is a basis for the kernel of L.

Proof. See proposition 4 of [87].

To be clear, for any S ⊂ V = [n], the vector 1S ∈ Rn is defined as (1S)i = 1 if i ∈ S and

(1S)i = 0 otherwise. Eigenvectors of L are also of practical interest. In fact, finding them

is the key step in the popular spectral clustering family of algorithms (see [78, 73, 87]).

Theorem 1.2.10 is frequently used in the theoretical justification of the success of such

algorithms [73, 87].

Given a probabilistic model of graphs, such as the two introduced in §1.2.1, it is an

interesting question to determine the distribution of the eigenvalues of L for graphs drawn

7

from this model. Pursuing this question leads one quickly to deep questions on random

matrices and sums of almost independent random variables. We return to this problem in

§2.2.

1.3 Clustering Algorithms

We shall refer to the problem of partitioning the vertex set V of a graph into clusters

C1, . . . , Ck such that V = ∪aCa and Ca ∩ Cb = ∅ for all a 6= b as the partitional clustering

problem. We shall reserve the word “clustering” for a set of clusters C = {C1, . . . , Ck}

satisfying these two properties (i.e. they partition V). The theory of partitional clustering

is well developed, and there are many different algorithmic approaches to this problem. We

refer the reader to the comprehensive surveys [39, 70, 52] for an overview and historical

perspective. An obvious variation of this problem is to relax the condition that the clusters

be disjoint, i.e. to allow for overlapping clusters. The theory behind this is less developed,

and we refer the reader to [1] for further information.

Arguably the most well-known approach to partitional clustering is spectral clustering,

introduced by Fiedler [37] for the two-cluster case, and popularized for the k cluster case

by the papers of Shi and Malik [78], and Ng, Jordan and Weiss [73]. We refer the interested

reader also to the excellent survey article [87]. Pseudocode for the algorithm of [73] is pre-

sented as Algorithm 1, while pseudocode for the algorithm of [78] is presented as Algorithm 2.

Algorithm 1 Normalized Spectral Clustering according to [73], as presented in [87]

Input: Adjacency matrix A ∈ Rn×n, number of clusters k.
(1) Computed the (symmetric) normalized Laplacian Lsym ∈ Rn×n

(2) Find the k eigenvectors u1, . . . ,uk of Lsym corresponding to the k smallest eigenvalues.
(3) Let U ∈ Rn×k be the matrix with columns u1, . . . ,uk.
(4) Let T ∈ Rn×k be the matrix formed by scaling the rows of U to norm 1. Let ri ∈ Rk,
for i = 1, . . . , n denote the i-th row of T .
(5) Cluster the points {r1, . . . , rn} ⊂ Rk into k clusters B1, . . . , Bk using k-means.
Output: Clusters C1, . . . , Ck with Ca = {i : ri ∈ Ba}

8

Algorithm 2 Normalized Spectral Clustering according to [78], as presented in [87]

Input: Adjacency matrix A ∈ Rn×n, number of clusters k.
(1) Computed the (random-walk) normalized Laplacian L.
(2) Find the k eigenvectors u1, . . . ,uk of Lsym corresponding to the k smallest eigenvalues.
(3) Let U be the matrix with columns u1, . . . ,uk. Let ri ∈ Rk, for i = 1, . . . , n denote the
i-th row of U .
(4) Cluster the points {r1, . . . , rn} ⊂ Rk into k clusters B1, . . . , Bk using k-means.
Output: Clusters C1, . . . , Ck with Ca = {i : ri ∈ Ba}

We note that there has also been significant progress, on both the algorithmic and theo-

retical side, on the problem of turning Euclidean data X = {x1, . . . ,xn} ⊂ RD into graphical

data for the purpose of applying a graph-based clustering algorithm. We explore this issue

further in Chapter 4, but for now let us mention that in [73] it is recommended that from X

a weighted graph is formed with V = [n] and Aij = exp(−‖xi−xj‖2
2/σ

2) for a user specified

parameter σ.

1.3.1 Cluster Extraction

A more refined clustering problem, as compared to partitional clustering, is the problem

of finding a single cluster, C, given a few representative members, Γ ⊂ C, which we refer

to as seed vertices. This was first proposed in the computer science literature by Spielman

and Teng [80, 81] under the name local graph clustering. Their motivation was to extend

clustering techniques to graphs, G, that were too large for conventional partitional clustering

techniques, and as such they were interested in algorithms with complexity scaling at most

linearly in the number of vertices in G. Their proposed algorithm, Nibble, finds a cluster

C in time O(|C| log6(n)/φ4) (here φ is the conductance of C defined in Definition 1.2.4)

and is a motivating example of a diffusion based local clustering algorithm. Further example

of such algorithms include PageRank-Nibble [8] and heat kernel based approaches [25, 54]

which we discuss further in §2.3.

9

Another related line of inquiry, presented in the statistics literature, is the problem of

cluster extraction. This was motivated in [96] by the task of distinguishing a cluster, C,

in some graph G, from a background of vertices that do not belong in any cluster. This

was further developed in [89], where the algorithm ESSC is proposed. Note that in both the

aforementioned papers the emphasis is on finding significant clusters, i.e. subsets C ⊂ V

with a significant difference between in-cluster and out-of-cluster connectivity, and in par-

ticular ESSC will return the empty set if it determines that no such cluster exists. Moreover,

neither of the two approaches mentioned above requires a set of seed vertices. However, this

additional flexibility is gained at the cost of slower run time, and in practice we have found

both approaches to be unsuitable for large graphs.

A final family of approaches to this problem are the local spectral methods. These pursue

the idea, first expressed by Mahoney, Orecchia and Vishnoi [61], of finding a local analogue

of the second eigenvector of the Laplacian that is so important in spectral clustering. In the

work of Bindel, He, Hopcroft, Kloster, Li and Shi [46, 58, 59, 79] the approach is to first

subsample a graph Gs ⊂ G that has much fewer vertices than G but that is very likely to

contain the cluster C containing the seed vertices Γ, and then use spectral-type methods to

extract C from Gs.

For consistency, we shall refer to all algorithms mentioned in this section as cluster

extraction algorithms. We emphasize that any cluster extraction algorithm can, in principle,

be iterated to yield a clustering of the entire vertex set V . That is, if one proceeds by

removing all clusters previously found from G and then extracting the next one, one ends

up with a partition of V . On the other hand, not removing already-found clusters allows for

overlapping clusters. Thus cluster extraction generalizes both the partitional and overlapping

clustering problems.

10

1.3.2 Semi-Supervised Clustering

Yet another variant on the classical clustering problem is semi-supervised clustering. In this

set-up it is assumed that the cluster memberships of a small subset of the vertices of G are

known a priori. For consistency with §1.3.1 we shall denote these vertices (the “labeled data”

in the parlance of machine learning) as Γ = {Γ1, . . . ,Γk} where Γa ⊂ Ca. Clearly, one would

hope to be able to use this labeled data to achieve a more accurate clustering. Many such

algorithms take a variational approach, whereby a clustering C is sought which minimizes a

function of the form

E(C) = R(C) + F (C)

Here R(·) is a regularizing term, which penalizes partitions that are not smooth—that is,

partitions which place vertices i and j with high affinity (i.e. large value of Aij) into different

clusters. F (·) is a fidelity term which penalizes clusterings that divide a set of labelled data

Γa into multiple clusters. Various choices for the precise form of R and F are possible.

One family of variational semi-supervised clustering algorithms are the MBO-type

schemes [64, 65, 63, 51], where the regularizing term is a discrete analog of the Merriman,

Bence and Osher (MBO) energy that is used in approximating the mean curvature motion

of interfaces. Another example is the regional force algorithms introduced in [94].

1.3.3 Partitional Clustering Algorithms and the Stochastic Block Model

We have introduced a large number of algorithms for several variants of the clustering

problem, but we have not yet discussed how well they work. In order to make statements

about how likely a certain algorithm is to succeed, one needs a probabilistic model of graphs

with clusters, such as the stochastic block model introduced in §1.2.1. Following the con-

ventions established in the survey article of Abbe [2], we distinguish between three types of

recovery. Note that these refer to the partitional clustering problem.

11

Definition 1.3.1. LetA be a partitional clustering algorithm. For any inputG ∼ SBM(n, P)

let C# = (C1, . . . , Ck) denote the output. We say that:

1. A solves the exact recovery problem if P
[
C#
a = Ca for a = 1, . . . , k

]
= 1− o(1).

2. A solves the almost exact recovery problem if P

[∑k
a=1 |Ca \ C#

a |
n

= o(1)

]
= 1− o(1)

3. A solves the α-partial recovery problem if P

[∑k
a=1 |Ca \ C#

a |
n

≤ α

]
= 1−o(1) for some

α ∈ (0, 1).

In other words, almost exact recovery asks for the fraction of misclassified vertices to

go to zero, while α-partial recovery asks for the fraction of misclassified vertices to remain

bounded by α. Not all values of α are appropriate here—choosing α too high would mean

that even randomly assigning vertices to clusters would solve α-partial recovery. We refer

to [2] for further discussion on this. For future reference we define a version of almost exact

recovery suited to the cluster extraction problem:

Definition 1.3.2. Let A be a cluster extraction algorithm. For any input G ∼ SBM(n, P)

and Γ ⊂ Ca let C#
a denote the output of A. We say that A solves the almost exact cluster

extraction problem if P
[
|Ca4 C#

a |
|Ca|

= o(1)

]
= 1− o(1)

Here 4 denotes the symmetric difference, defined for any two sets A,B as A 4 B =

(A \B ∩ A) ∪ (B \ A ∩B).

Recently, there has been a flurry of activity in determining for which parameter values

the problems 1–3 in Definition 1.3.1 are solvable. An excellent overview of this work can be

found in [2]. One can summarize this line of research with the following theorems:

Theorem 1.3.3. Suppose that a > b ≥ 0, where a and b may depend on n. Almost exact

recovery is possible for SSBM(n, k, a/n, b/n) if and only if:

(a− b)2

k(a+ (k − 1)b)
→∞ as n→∞

12

This result was proved for the case k = 2 by Mossel, Neeman and Sly in [67] and

later extended by the same authors in [68] to arbitrary k. In between the publication of

these two papers, Abbe and Sandon [4] proved a slightly more general result on almost

exact recovery for the (not necessarily symmetric) stochastic block model. Both groups of

researchers provided new algorithms as part of their proof. The algorithm of Mossel, Neeman

and Sly has computational complexity O(n log2(n)) although by their own admission the

implied constant is very large, and they do not implement this algorithm. The algorithm of

Abbe and Sandon, called SphereComparison runs in time O(n1+o(1)) although the version

presented in [4] required a priori knowledge of the parameters k, a and b. A later version,

AgnosticSphereComparison, presented in [5], does not require such advanced knowledge

and also runs in time O(n1+o(1)).

Theorem 1.3.4. Suppose that a > b ≥ 0, where a and b may depend on n. Exact recovery

for SSBM(n, k, a log(n)/n, b log(n)/n) is possible if and only if

1

k

(√
a−
√
b
)2

> 1

The k = 2 case of this Theorem is proved in [67] and also [3]. The case of k > 2 is covered

in [4], although again knowledge of the parameters k, a and b is required. This obstacle

is removed in [5], and the algorithm presented there has complexity O(n1+ε) for any fixed

ε > 0 (although the smaller the ε the less accurate the algorithm for smaller values of n).

Essentially, what Abbe and Sandon propose is a two-step algorithm where in the first step

AgnosticSphereComparison is used to find a good clustering of G with a small number

of vertices misclassified. A second algorithm, AgnosticDegreeProfiling then “cleans up”

this preliminary clustering. Although a single numerical experiment on a moderately sized

graph (∼ 1000 vertices) with this algorithm is alluded to in [5], to the best of the author’s

knowledge no extensive benchmarking of this approach has been done.

13

1.4 Compressive Sensing

We shall say that a vector x ∈ RN is sparse if it has few non-zero entries relative to its length.

We follow the convention of defining the “0 quasi-norm” as ‖x‖0 = |{xi : xi 6= 0}|. Motivated

by problems of signal acquisition (“sensing”) and compression for storage or transmission

arising in signal processing, it is frequently of interest to consider the problem:

argmin{‖x‖0 : x ∈ RN , Φx = y} (1.1)

Φ ∈ Rm×N is called the sensing matrix and typically m < N , making the linear system

Φx = y underdetermined. Key to the development of SingleClusterPursuit and

DynamicClusterPursuit will be considering the situation where m > N , but Φ has a

large kernel.

Problem (1.1) is NP-Hard [71] which means that, assuming P 6= NP, there does not exist

a polynomial time algorithm to solve it. Instead, one could consider the convex relaxation

of (1.1):

argmin{‖x‖1 : x ∈ RN , Φx = y} (1.2)

or the related problem:

argmin {‖Φx− y‖2 : ‖x‖0 ≤ s} (1.3)

The origin of the field of compressive sensing (also called compressed sensing, or com-

pressive/compressed sampling) was the realization that if Φ ∈ Rm×N is a random matrix

and y = Φx∗ with ‖x∗‖0 = s such that m = O(s log(N/s)) then both Problems 1.2 and 1.3

have a unique solution and moreover this solution coincides with the solution to (1.1), i.e.

x∗. The papers [18] and [35], both published in 2006, are generally credited as the first to

explicitly make this connection. Three main questions now arise:

1. Are there efficient and accurate algorithms for solving problems (1.2) and (1.3)?

2. From what probability distribution should one draw Φ?

14

3. Is this set-up robust to noise? That is, suppose one acquires a signal polluted with

some random noise: y = Φx∗+ e. If ‖e‖2 is small, can one guarantee that the solution

to (1.2) (resp. (1.3)) is close to x∗?

We address the first question in the next subsection, the second briefly in §1.4.2 and the

third in §1.4.3.

1.4.1 Algorithmic Approaches

As (1.2) is a convex problem, one may essentially use any convex optimization algorithm to

solve it, although some perform better than others. We refer to [41] for further discussion. In

Chapter 3 we shall use the `1 minimization algorithm described in [56] to solve (1.2). As in

the literature, we shall refer to problem (1.2) as basis pursuit. Algorithms for Problem (1.3)

may roughly be divided into two camps: thresholding algorithms (for example iterative hard

thresholding [14] and hard thresholding pursuit [40]) and greedy algorithms. We shall explore

greedy algorithms further in this section, but first we introduce two important concepts used

in the analysis of compressive sensing algorithms.

Definition 1.4.1. Denote the i-th column of Φ as ϕi ∈ Rm, so that Φ = [ϕ1, . . . , ϕN]. Define

the coherence of Φ, written µ(Φ), as:

µ(Φ) := max
i,j∈[N]
i 6=j

|〈ϕi, ϕj〉|
‖ϕi‖2‖ϕj‖2

Note that µ(Φ) ∈ [0, 1]. In many sources when coherence is defined it is assumed that

the columns ϕi are normalized, in which case dividing by ‖ϕi‖2‖ϕj‖2 is unnecessary.

Definition 1.4.2. The s Restricted Isometry Constant (s-RIC) of Φ ∈ Rm×N , written δs(Φ),

is defined to be the smallest value of δ > 0 such that, for all x ∈ Rn with ‖x‖0 ≤ s, we have:

(1− δ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ)‖x‖2
2.

If δs(Φ) < 1 we often say that Φ has the Restricted Isometry Property (RIP).

15

Most proofs of correctness of compressive sensing algorithms rely on the RIP. For example:

Theorem 1.4.3 (Cai and Zhang, 2013 [17]). Suppose that ‖x∗‖0 = s and that y = Φx∗.

Then x∗ is the unique solution to problem (1.2) with this data provided that δs(Φ) < 1/3.

Moreover this bound is sharp in the sense that there exist Φ ∈ Rm×N with δs(Φ) ≥ 1/3 and

s-sparse x∗ ∈ RN such that x∗ is not the unique solution to problem (1.2) with data Φ and

y = Φx∗.

The archetypal greedy algorithm is Orthogonal Matching Pursuit (OMP), also referred to

as the Orthogonal Greedy Algorithm, and analyzed comprehensively in [85]. This approach

builds up a candidate support set S# one index at a time by adding, on each iteration,

the index i such that the inner product of ϕi and the current residual is maximized. OMP is

presented formally as Algorithm 3. Note that if the sparsity of the target vector x∗ is known

then one may set ` = s, otherwise we recommend taking an overestimate. The attribution

of this algorithm is tricky, as it was discovered independently, and under many different

names, by many researchers working in several different fields (see chapter 3 of [41]). A more

refined greedy algorithm that we shall have use for later is SubspacePursuit, presented as

Algorithm 4 and introduced by Dai and Milenkovic in [33]. Instead of adding one new index

at the j-th iteration, SubspacePursuit considers a set of ` new indices and adds them to a

stored set of ` indices, S(j−1), to obtain an active set of 2` indices Ŝ(j). An optimal 2` sparse

approximation to y, namely u, with support contained in Ŝ(j) is then computed. Finally

the iteration is completed by defining S(j) to be the indices of the ` largest-in-magnitude

entries of u, and this is stored for the next iteration. The number of iterations, J , is a

user specified hyperparameter, but our analysis in Theorem 2.4.6 will show that O(log(N))

iterations suffices. As for OMP, ` is a sparsity parameter, to be set equal to the sparsity of

the target vector x∗ if this is known. In line (3) of the “for” loop of Algorithm 4, Ls(·) and

16

Hs(·) are thresholding operators:

Ls(v) := {i ∈ [n] : vi among s largest-in-magnitude entries in v}

Hs(v)i :=

 vi if i ∈ Ls(v)

0 otherwise

Algorithm 3 Orthogonal Matching Pursuit, or OMP, as presented in [41]

Inputs: measurement matrix Φ, measurement vector y and sparsity parameter `
Initialization: S(0) = ∅, x(0) = 0
for j = 1 to ` do

ij := argmax
i∈[N]

{∣∣Φ> (y − Φx(j−1)
)
i

∣∣}
S(j) = S(j−1) ∪ {ij}
x(j) = argmin

z∈RN

{
‖y − Φz‖2 : supp(z) ⊂ S(j)

}
end for
Output: The ` sparse vector x# = x(`)

Algorithm 4 SubspacePursuit, as presented in [33]

Inputs: measurement matrix Φ, measurement vector y, sparsity parameter ` and number of
iterations J .

Initialization:
(1) S(0) = Ls(Φ>y).
(2) x(0) = argminz∈RN{‖y − Φz‖2 : supp(x) ⊂ S(0)}
(3) r(0) = y − Φx(0)

for j = 1 : J do
(1) Ŝ(j) = S(j−1) ∪ L`

(
Φ>r(j−1)

)
(2) u = argmin

z∈RN
{‖y − Φz‖2 : supp(x) ⊂ Ŝ(j)}

(3) S(j) = L`(u) and x(j) = H`(u)
(4) r(j) = y − Φx(j)

end for

1.4.2 Matrices which satisfy the RIP

As should be clear from the previous subsection, good matrices for compressive sensing

are those that satisfy the RIP. As alluded to earlier, a significant advance in the develop-

ment of compressive sensing was the realization that random matrices satisfy the RIP, with

17

overwhelming probability. Specifically, we mention the following results of Baraniuk et al,

Mendelson et al and Candes et al. Recall that we say that a random variable X is subgaussian

if there exist constants σ and C such that P [|X| ≥ t] ≤ Ce−σt
2

for all t > 0. Example 1.4.4

presents two standard examples of subgaussian random variables.

Example 1.4.4. 1. If X takes the values +1 and −1 with equal probability we call X a

Rademacher random variable. Such an X is trivially subgaussian.

2. If X ∼ N (0, 1), i.e. the normal distribution, then X is subgaussian.

Theorem 1.4.5. Suppose that Φ ∈ Rm×N is such that Φ = 1√
m

Φ̃ with each entry Φ̃ij an

independent subgaussian random variable. For any δ ∈ (0, 1) there exist constants C1, C2

depending only on δ, such that for any s ≤ C1m log(N/s) Φ has δs(Φ) ≤ δ with probability

greater than 1− 2e−C2m.

Proof. The theorem as stated comes from [10] but was first proved by [62]. See also [18].

1.4.3 Analysis of Perturbations

One of the reasons for the remarkable usefulness of compressive sensing is its robustness to

error, both additive (i.e. in y) and multiplicative (i.e. in Φ). More precisely, suppose that a

signal ŷ = Φ̂x∗ is acquired, but that we do not know the sensing matrix Φ̂ precisely. Instead,

we have access only to Φ = Φ̂+M , for some small perturbation M . This models the scenario

where a sensing matrix Φ is designed, and then implemented in hardware (for example as

an MRI coil) where a certain amount of error becomes unavoidable. Suppose further that

there is a small amount of noise in the measurement process, so that the signal we actually

receive is y = ŷ +e. Can one hope to approximate a sparse vector x∗ from y well, given only

Φ? This question is answered in the affirmative by several authors, starting with the work

of [47]. For SubspacePursuit, we have the following result of Li [57]:

18

Theorem 1.4.6. Let x∗, y ŷ, Φ and Φ̂ be as above and suppose that ‖x∗‖0 ≤ s. For any

t ∈ [n], let δt := δt(Φ). Define the following constants:

εy := ‖e‖2/‖ŷ‖2 and εsΦ = ‖M‖(s)
2 /‖Φ̂‖(s)

2

where for any matrix B, ‖B‖(s)
2 := max{‖BS‖2 : S ⊂ [n] with |S| = s}. Define further:

ρ =

√
2δ2

3s(1 + δ2
3s)

1− δ2
3s

and τ =
(
√

2 + 2)δ3s√
1− δ2

3s

(1− δ3s)(1− ρ) +
2
√

2 + 1

(1− δ3s)(1− ρ)

Assume δ3s ≤ 0.4859 and let x(m) be the output of SubspacePursuit applied to problem (1.3)

after m iterations. Then:

‖x∗ − x(m)‖2

‖x∗‖2

≤ ρm + τ

√
1 + δs

1− εsΦ
(εsΦ + εy).

Proof. This is Corollary 1 in [57]. Note that our convention on hats is different to theirs.

More precisely our Φ is their Φ̂, hence our ρ is their ρ̂ and so on.

In fact, it is easy to obtain bounds on the quantity ‖B‖(s)
2 .

Lemma 1.4.7. For any symmetric matrix B and any 2 ≤ s ≤ n we have that λs−1(B) ≤

‖B‖(s)
2 ≤ λs(B), where λj(B) denotes the j-th smallest eigenvalue of B.

Proof. Observe that, for any matrix B,

‖B‖(s)
2 := max

S⊂[n]
|S|=s

‖BS‖2 = max
S⊂[n]
|S|=s

σmax(BS),

where σmax(BS) denotes the maximum singular value of BS. Because σmax(BS) = σs(BS),

by the interlacing theorem for singular values (cf. [83]) λs−1(B) ≤ σmax(BS) ≤ λs(B).

Also of interest is the following theorem of Herman and Strohmer which quantifies the

effect of perturbation on the RIC:

Theorem 1.4.8 ([47]). Suppose that Φ = Φ̂ + M . Let δ̂s and δs denote the s restricted

isometry constants of Φ̂ and Φ respectively. Then:

δs ≤ (1 + δ̂s) (1 + εsΦ)2 − 1.

Chapter 2

Semi-Supervised Cluster Pursuit

In this chapter we describe the first major contribution of this dissertation, namely an efficient

and provably accurate approach to cluster extraction which we call SingleClusterPursuit.

This work is contained in the paper [55], joint with Ming-Jun Lai. This chapter is laid out as

follows. In §2.1 we discuss the motivation for and derivation of SingleClusterPursuit. In

§2.2 we gather some results on concentration inequalities for degrees and eigenvalues of graphs

drawn from the stochastic block model. In §2.3 we present the first step of our algorithm and

analyze its probability of success on graphs drawn from the stochastic block model, using

results from §2.2. In §2.4 we present the second step of our algorithm and analyze its perfor-

mance and computational complexity. In particular, we prove that our algorithm solves the

almost exact cluster extraction problem (see Definition 1.3.2). Also in §2.4 are several tech-

nical results on the RIP of Laplacians of graphs drawn from the stochastic block model which

may be of independent interest. The computational complexity of SingleClusterPursuit

is shown to be O(dmax log(n)n), where dmax is the maximum vertex degree of G, in §2.5.

In §2.6 we show via extensive numerical experiments that our algorithm yields state-of-the-

art performance for cluster extraction in unweighted and weighted graphs by comparing it

to other recent cluster extraction algorithms. In §2.6.6 we describe an iterated version of

SingleClusterPursuit which may be used for the semi-supervised classification problem.

2.1 Cluster Extraction as Compressive Sensing

Recall the following result from §1.2.2:

19

20

Theorem 2.1.1. Let C1, . . . , Ck denote the connected components of a graph G. Then the

cluster indicator vectors 1C1 , . . . ,1Ck form a basis for the kernel of L.

Now suppose that G has clusters C1, . . . , Ck. By definition, clusters have few edges

between them, and so it is useful to write G as the union of two edge-disjoint subgraphs,

defined as follows: let Gin = (V,Ein) have only edges between vertices in the same cluster,

while Gout = (V,Eout) consist only of edges between vertices in different clusters. We empha-

size that this is a theoretical construction, as in practice we of course cannot ascertain

whether two vertices are in the same cluster without first solving the clustering problem,

which is precisely what we are trying to do. Denote by Ain and Lin (resp. Aout and Lout) the

adjacency matrix and Laplacian of Gin (resp. Gout). Similarly, din
i (resp. dout

i) shall denote the

degree of the vertex i in the graph Gin (resp. Gout). Note that C1, . . . , Ck are now the con-

nected components of Gin, and so Lin1Ca = 0 for all a ∈ [k]. Note further that ‖1Ca‖0 = |Ca|

which is typically much smaller than n. Hence we can think of 1Ca as a sparse solution to the

linear system Linx = 0 and hence one may consider using sparse recovery algorithms (See

§1.4.1) to solve for 1Ca . This näıve approach does not work, as x = 0 is trivially a solution.

However suppose one can find a superset of the cluster of interest: Ca ⊂ Ω ⊂ V . Then:

Theorem 2.1.2. Suppose that Ca ⊂ Ω ⊂ V and that GCa is connected. Suppose further that

Ca is the only cluster contained in Ω. Define yin = Lin1Ω =
∑

i∈Ω `
in
i and let na := |Ca|.

Then 1Ω\Ca is the unique solution to:

argmin
v∈Rn

{
‖Linv − yin‖2 : ‖v‖0 ≤ |Ω| − na and supp(v) ⊂ Ω

}
(2.1)

Proof. First observe that 1Ω\Ca is feasible for the problem (2.1). Moreover:

Lin1Ω\Ca − yin = Lin1Ω\Ca − Lin1Ω = Lin
(
1Ω\Ca − 1Ω

)
= −Lin1Ca = 0

21

Now, suppose that z ∈ Rn is any other vector also satisfying Linz− yin = 0. We shall show

that such z cannot be feasible for (2.1). Observe that:

Linz− yin = 0⇒ Lin (z− 1Ω) = 0

⇒z− 1Ω ∈ ker(Lin)

Because z − 1Ω ∈ ker(Lin), by Theorem 3.3.1, we have z − 1Ω =
∑k

b=1 αb1Cb . Suppose that

supp(z) ⊂ Ω whence supp(z − 1Ω) ⊂ Ω. By assumption, Ca is the only cluster contained

in Ω, hence z − 1Ω = αa1Ca thus z = 1Ω + αa1Ca . Because z 6= 1Ω\Ca we must have that

αa 6= −1. But then supp(z) = Ω and so ‖z‖0 = |Ω| > |Ω| − na.

It follows that given Ω, one can indeed find 1Ω\Ca by solving problem (2.1). One can

then recover Ω \ Ca as supp(1Ω\Ca) and hence Ca as Ω \ supp(1Ω\Ca). This leads to a novel

approach for cluster extraction, assuming one can address the following two questions:

1. Can one find a good superset Ω of Ca? Clearly the smaller Ω is, the sparser 1Ω\Ca is,

and hence the better the performance of sparse recovery algorithms on (2.1) will be.

2. If one replaces Lin and yin with L and y to obtain the perturbed problem:

argmin
v∈Rn

{‖Lv − y‖2 : ‖v‖0 ≤ |Ω| − na and supp(v) ⊂ Ω} (2.2)

will the solution v# obtained by solving (2.2) using a sparse recovery problem be a good

enough approximation to 1Ω\Ca? Specifically, is supp(v#) ≈ supp(1Ω\Ca) = Ω \ Ca?

We are able to solve both of these problems, and the resulting algorithm, SingleClusterPursuit

is presented as Algorithm 6, with an important sub-routine RandomWalkThresholding pre-

sented as Algorithm 5. Before continuing, let us establish the convention that we are always

trying to find C1, and that n1 := |C1|. In §2.3 we discuss RandomWalkThresholding further,

and show that if G ∼ SSBM(n, k, p, q) for suitable values of p and q, then it returns an Ω

such that the fraction of “missed vertices”, i.e. |C1 \ C1 ∩ Ω|/n1 goes to zero as n1 goes to

infinity.

22

Note that in practice one would not solve problem (2.2) directly. Instead, if L has columns

`1, . . . , `n define the submatrix LΩ := [`i1 , `i2 , . . . , `i|Ω|] where Ω = {i1, . . . , iΩ}. One can then

solve the reduced problem:

argmin
x∈R|Ω|

{‖LΩx− y‖2 : ‖x‖0 ≤ |Ω| − na} (2.3)

and, assuming one has kept track of the indices in Ω, easily infer supp(v#) from supp(x#)

where x# is the solution to (2.3). Henceforth we focus our attention on Problem (2.3), and

we shall abuse notation slightly, writing supp(x#) when we really mean supp(v#).

In §2.4 we discuss the trickier issue of extracting C1 from Ω. This involves a careful

analysis of sparse recovery under total perturbation, as discussed in §1.4.3. We prove that if

LΩ has sufficiently small restricted isometry constant then Single Cluster Pursuit does

indeed find a good approximation to 1Ω\C1 when solving (2.4). Note that this problem is

slightly different to Problem 2.3. We discuss the discrepency in §2.4. The operator L̃ referred

to in step (3) of Algorithm 5 is a thresholding operator, similar to L defined in §1.4.1, but

defined as:

L̃s(v) := {i ∈ [n] : vi among s largest entries in v}

Algorithm 5 RandomWalkThresholding

Input: Adjacency matrix A, a thresholding parameter ε ∈ (0, 1), seed vertices Γ ⊂ C1,n̂1 ≈
n1 and depth of random walk t.
(1) Compute P = AD−1 and let v(0) = (1/vol(Γ))D1Γ.
(2) Compute v(t) = P tv(0)

(3) Define Ω = L̃(1+ε)n̂1(v(t))
Output: Ω = Ω ∪ Γ

2.2 Concentration in Random Graphs

The proof of Theorems 2.3.2, 2.4.8 and 2.4.11 rely on two concentration phenomena in Erdős

- Rènyi graphs where by concentration we mean that a random variable is within a small

deviation of its expected value, with high probability. The first concerns the minimum and

23

Algorithm 6 SingleClusterPursuit

Input: Adjacency matrix A, a thresholding parameter ε ∈ (0, 1), seed vertices Γ ⊂ C1,n̂1 ≈
n1, depth of random walk t and rejection parameter R ∈ [0, 1).
(1) Let Ω = RandomWalkThresholding(A, ε,Γ, n̂1, t)
(2) Compute L = I −D−1A and y =

∑
i∈Ω `i.

(3) Let x(m) be the solution to

argmin{‖LΩx− y‖2 : ‖x‖0 ≤ 1.1εn̂1} (2.4)

obtained after m = O(log(n)) iterations of SubspacePursuit

(4) Let W# = {i : x
(m)
i > R}

Output: C#
1 = Ω \W#.

maximum degrees of an Erdős - Rènyi graph while the second concerns the eigenvalues of A

and L for such a graph.

Theorem 2.2.1 (see [15, 16]). Let G ∼ ER(n, q) with q = (b + o(1)) log(n)/n. There exist

a function η∆(b) satisfying 0 < η∆(b) < 1 and limb→∞ η∆(b) = 0 such that

dmax(G) = (1 + η∆(b))b log n+ o(1) ≤ 2b log(n) + o(1) a.s.

Theorem 2.2.2 (see [42], Theorem 3.4 (ii)). If G ∼ ER(n0, p) with p = ω log(n0)/n0 where

ω →∞, then dmin(G) = (1− o(1))ω log(n0) and dmax(G) = (1 + o(1))ω log(n0) a.s.

Theorem 2.2.3. Suppose that G ∼ ER(n0, p) with p = ω log(n0) where ω → ∞. Then we

have almost surely

1. λmax(A) ≤ (1 + o(1))ω log(n0)

2. λi(A) ≤ o(ω log(n0)) for λi < λmax

3. |λi(L)− 1| ≤
√

12
ω

= o(1) for all i > 1

24

Proof. Parts 1 and 2 are Theorem 3 in [28]. Relating their notation to ours, we have that

m = wmin = pn0 = ω log n0. Theorem 4 in [28] shows that

|λi(Lsym)− 1| ≤

√
6 log(2n0)

ω log(n0)

By Lemma 1.2.2 Lsym and L have the same spectrum. Because log(2n0) ≤ 2 log(n0) for

n0 ≥ 2 we obtain part 3.

2.2.1 Reducing from the SBM to the ER model

Let Gin and Gout be as in §2.1. If G ∼ SSBM(n, k, p, q) then Gin consists of k disjoint i.i.d

graphs, GCa ∼ ER(n0, p) where n0 := n/k. The graph Gout is not an Erdős - Rènyi graph,

as there is 0 probability of it containing an edge between two vertices in the same cluster

(because we have removed them). However, we can profitably think of Gout as a subgraph

of some G̃out ∼ ER(n, q). In particular, any upper bounds on the degrees of vertices in G̃out

are automatically bounds on the degrees in Gout. Thus, we have the following corollaries of

Theorems 2.2.2 and 2.2.1:

Corollary 2.2.4. If G ∼ SSBM(n, k, p, q) with q = b log(n)/n then doutmax(G) ≤ 2b log n+o(1)

a.s.

Proof. Consider Gout as a subgraph of G̃out ∼ ER(n, q) and apply Theorem 2.2.1

Corollary 2.2.5. If G ∼ SSBM(n, k, p, q) with k = O(1) and p = ω log(n0)/n0 where

ω →∞, then dinmin(G) = (1− o(1))ω log(n0) and dinmax(G) = (1 + o(1))ω log(n0) a.s.

Proof. If i ∈ Ca then din
i = di(GCa), where GCa ∼ ER(n0, p). Clearly:

din
max(G) = max

i
din
i = max

a
dmax(GCa)

By Theorem 2.2.2, dmax(Ga) = (1 + on0(1))ω log(n0) a.s. Note that the dmax(GCa) are i.i.d

random variables, and since we are taking a maximum over k = O(1) of them, it follows

that maxa dmax(GCa) ≤ (1+on0(1))ω log(n0) a.s. Moreover, as n0 = n/k, on0(1) = on(1). The

proof for din
min(G) is similar.

25

Corollary 2.2.6. Suppose that G ∼ SSBM(n, k, p, q) with p = ω log(n0)/n0 where ω → ∞,

q = b log(n)/n and k = O(1) and define ri := douti /dini for i ∈ [n]. Then rmax ≤ doutmax/d
in
min =

o(1) a.s.

Proof. First of all, it is clear that for any i, dout
i /din

i ≤ dout
max/d

in
min. From Corollaries 2.2.4 and

2.2.5 we have:

dout
max

din
min

≤ 2b log n+ o(1)

(1− o(1))ω log(n0)
=

2b log n+ o(1)

(1− o(1))ω(log(n)− log(k))
as n = kn0

=
2b+ o(1)

(1− o(1))ω(1− o(1))
= o(1) since k = O(1) and ω →∞

2.3 Finding good supersets

In Algorithm 5 we presented an algorithm for finding an Ω ⊂ V such that Ω is relatively

small (|Ω| = (1 + ε)n1 for a user specified parameter ε) but that captures almost all of C1.

It will be useful to introduce a name for such sets:

Definition 2.3.1. Let C1 ⊂ V be a cluster of G of size |C1| = n1 and let ε ∈ (0, 1). If Ω ⊂ V

is such that |Ω| = (1 + ε)n1, |C1 \ C1 ∩ Ω| = o(n1) and Ca 6⊂ Ω for a = 2, . . . , k then we say

that Ω is an ε-good superset for C1.

Intuitively, Algorithm 5 works as follows. We start a random walk on the seed vertices,

Γ, and run it for t steps where t is a user specified parameter. We then rank the vertices

by the probability of being visited by this random walk, and return the (1 + ε)n̂1 vertices

with largest such probabilities. Here n̂1 is a third user specified parameter, and represents

an estimate of the size of the cluster of interest.

RandomWalkThresholding has many similarities with diffusion based local clustering

methods such as Nibble [80, 81], PageRank-Nibble [8], the approaches suggested by Chung

and collaborators [25, 26, 29] and the Heat Kernel method of Kloster and Gleich [54]. There

26

is, however, a key difference. All of the aforementioned algorithms attempt to directly find a

good cluster. Hence they all proceed by running a diffusive process (either a random walk or

heat flow) starting at Γ and ranking the vertices by the probability of being visited by this

process. They then perform a sweep cut (see [25] for a definition) and return the set Ω which

optimizes some measure of goodness-of-cluster, typically conductance. As a result, they have

a tendency to return small, tight clusters whose size does not scale with the size of the graph.

Our approach however is intended to be used as step one in a two-step clustering algo-

rithm. As such, the focus of Algorithm 5 is not returning a good cluster, but returning an

Ω which contains a cluster of interest. The cluster of interest, C1, is then extracted from Ω

by the next step of the algorithm (see 6). We note that the two-step approaches of Bindel,

He, Hopcroft, Kloster, Li and Shi such as LEMON, LOSP and LBSA [46, 58, 59, 79] bear some

resemblance to ours. However, the method we propose to extract C1 from Ω is distinct from

their methods. In addition, we analyze the likelihood of Ω containing the cluster of interest

given that G is drawn from a particular probabilistic model (we consider the stochastic block

model), something which is absent in the aforementioned papers. Specifically, we prove the

following theorem:

Theorem 2.3.2. Suppose that G ∼ SSBM(n, k, p, q) with parameters p = ω log(n0)/n0 and

q = b log(n)/n where ω → ∞ and b is a fixed constant. Fix the depth of the random walk

t ≥ 1 and suppose that Γ ⊂ C1 with |Γ| = gn1/ω
t−1 for any constant g ∈ (0, 1). Let Ω be

the output of Algorithm 5 given inputs any fixed ε ∈ (0, 1), seed vertices Γ, depth of random

walk t and n̂1 = n1. Then Ω is an ε-good superset for C1 almost surely.

Proof. Recall the definition of ε-good superset (Definition 2.3.1). By construction, |Ω| =

(1 + ε)n1 thus we need to verify that |C1 \ Ω ∩ C1| = o(n1). Observe that because

n1 = |C1| = |C2| = . . . = |Ck| for G ∼ SSBM(n, k, p, q), from this it will also follow

that Ca 6⊂ Ω for a = 2, . . . , k.

27

Let U = C1 \ (C1 ∩ Ω) denote the “missed” indices, and W = Ω \ (C1 ∩ Ω) denote

the “bad” indices (i.e. vertices in Ω that are not in C1). Let |U | = un1, in which case

|W | = (ε+ u)n1. We prove that u = o(1).

By definition, Ω is the set of the (1 + ε)n1 largest entries in v(t) := (1/vol(Γ))P tD1Γ.

Because U is not in Ω, but W is, we must have v
(t)
i ≤ v

(t)
j for every i ∈ U and j ∈ W . We

sum first over j ∈ W and then sum over i ∈ U to obtain:

v
(t)
i ≤ v

(t)
j ⇒ (ε+ u)n1v

(t)
i ≤

∑
j∈W

v
(t)
j ⇒ (ε+ u)n1

∑
i∈U

v
(t)
i ≤ un1

∑
j∈W

v
(t)
j .

It follows that: ∑
i∈U

v
(t)
i ≤

u

ε+ u

∑
j∈W

v
(t)
j ≤

∑
j∈W

v
(t)
j . (2.5)

Looking ahead, we shall show that if inequality (2.5) holds then u = o(1).

We first show that the term on the left-hand side of inequality 2.5, i.e. the sum over

the vertices in C1 that were missed by Ω, is necessarily quite large. We do this by relating

P to P in, the random walk transition matrix for the graph Gin. Note that Gin is a disjoint

union of graphs GCa ∼ ER(n0, p) hence this reduces the problem to a question in Erdős -

Rènyi graphs. For every i ∈ [n], define qi := din
i /di. Observe that 1/di = qi/d

in
i and thus

D−1 = D−1
in Q where Q is the diagonal matrix with (i, i)-th entry qi. Now:

P = AD−1 =
(
Ain + Aout

)
D−1 = Ain

(
D−1

in Q
)

+ AoutD−1 = P inQ+ AoutD−1

Observe that P , P inQ and AoutD−1 all have non-negative entries. It follows that for any

non-negative vector x:

1. Px and P inQx are also non-negative.

2. Px ≥ P inQx, where the inequality should be interpreted componentwise.

One can extend the second point by iterated multiplication:

P tx ≥
(
P inQ

)t
x ≥ qtmin

(
P in
)t

x

28

and again the inequality should be interpreted componentwise. Now:∑
i∈U

v
(t)
i = 〈1U ,v(t)〉 =

1

vol(Γ)
〈1U , P tD1Γ〉 ≥

1

vol(Γ)
〈1U , qtmin

(
P in
)t
D1Γ〉

=
qtmin

vol(Γ)
〈1U ,

(
P in
)t
Din1Γ〉 (2.6)

Observe that, because U,Γ ⊂ C1, we may replace P in and Din in the above inner product

with PGC1
and DGC1

without changing its value.

Our goal now is to bound the quantity 〈1U ,
(
PGC1

)t
DGC1

1Γ〉. One can rearrange the

iterated matrix product slightly:(
PGC1

)t
=
(
AGC1

D−1
GC1

)t
= AGC1

D−1
GC1

AGC1
D−1
GC1

. . . AGC1
D−1
GC1

= D
1/2
GC1

(
D
−1/2
GC1

AGC1
D
−1/2
GC1

)(
D
−1/2
GC1

AGC1
D
−1/2
GC1

)
. . .
(
D
−1/2
GC1

AGC1
D
−1/2
GC1

)
D
−1/2
GC1

= D
1/2
GC1

(
D
−1/2
GC1

AGC1
D
−1/2
GC1

)t
D
−1/2
GC1

Chung and Graham refer to the matrix D
−1/2
GC1

AGC1
D
−1/2
GC1

as MGC1
in [27]. Rearranging

slightly:

〈1U ,
(
P in
)t
D1Γ〉 = 〈1U ,

(
D

1/2
GC1

M t
GC1

D
−1/2
GC1

)
D1Γ〉 = 〈D1/2

GC1
1U ,M

t
GC1

D
1/2
GC1

1Γ〉

In [27], Lemma 2, bounds on this inner product are provided 1 in terms of the second

largest eigenvalue of MGC1
. Because MGC1

= I − Lsym
GC1

it follows that the second largest

eigenvalue of MGC1
is 1−λ2, where λ2 is the second smallest eigenvalue of Lsym

GC1
, equivalently

LGC1
(see Lemma 1.2.2). Using the aforementioned result of [27]:∣∣∣∣〈D1/2

GC1
1U ,M

t
GC1

D
1/2
GC1

1Γ〉 −
vol(U)vol(Γ)

vol(GC1)

∣∣∣∣ ≤ (1− λ2)t
√

vol(U)vol(Γ)

Returning to (2.6):

∑
i∈U

v
(t)
i ≥ qtmin

(
vol(U)

vol(GC1)
− (1− λ2)t

√
vol(U)

vol(Γ)

)
(2.7)

1In the aforementioned paper they consider a slightly different model of graph, namely graphs
with a given degree sequence. However the proof of Lemma 2 goes through in our case without
issue

29

We now consider the right hand side of (2.5), i.e. the sum over W . It is convenient to

decompose v(t) as v(t) = v
(t)
C1

+ v
(t)
V \C1

where v
(t)
C1

is supported on C1 and v
(t)
V \C1

is supported

on the complement of C1. Because W ⊂ V \ C1 we have that:∑
j∈W

v
(t)
j ≤

∑
j∈V \C1

|v(t)
j | = ‖v

(t)
V \C1
‖1

Thus it remains to bound ‖v(t)
V \C1
‖1, which represents the probability of a random walk

starting at Γ ⊂ C1 being outside of C1 at the t-th step. Observe that:

v
(t)
V \C1

= AinD−1v
(t−1)
V \C1

+
(
AoutD−1v(t−1)

)
V \C1

where
(
AoutD−1v(t−1)

)
V \C1

denotes the part of vector AoutD−1v(t−1) supported on V \ C1.

Clearly: ∥∥∥(AoutD−1v(t−1)
)
V \C1

∥∥∥
1
≤
∥∥AoutD−1v(t−1)

∥∥
1

and so:

‖v(t)
V \C1
‖1 ≤ ‖AinD−1v

(t−1)
V \C1
‖1+‖AoutD−1v(t−1)‖1 ≤ ‖AinD−1‖1‖v(t−1)

V \C1
‖1+‖AoutD−1‖1‖v(t−1)‖1

Moreover: ‖AinD−1‖1 = maxj
∑

i

Ain
ij

dj
= maxj

din
j

dj
≤ 1 and similarly ‖AoutD−1‖1 =

maxj
dout
i

di
≤ maxj

dout
i

din
i
≤ rmax. Thus:

‖v(t)
V \C1
‖1 ≤ 1‖v(t−1)

V \C1
‖1 + rmax‖v(t−1)‖1.

Because ‖v(0)
V \C1
‖1 = 0, ‖v(0)‖1 = 1 and ‖v(t)

C1
‖1 ≤ ‖v(0)

C1
‖1 for any t ≥ 0 we obtain:∑

j∈W

v
(t)
j ≤ ‖v

(t)
V \C1
‖1 ≤ trmax (2.8)

Now let us put this all together. Returning to (2.5) with (2.7) and (2.8) in hand:

qtmin

(
vol(U)

vol(GC1)
− (1− λ2)t

√
vol(U)

vol(Γ)

)
≤ trmax (2.9)

We now use the fact that G ∼ SSBM(n, k, p, q) as well as the assumptions on the parameters

p, q and k and on the seed set Γ. Note that the following claims all hold almost surely. In

particular 1− λ2 ≤
√

12/ω from Theorem 2.2.3 and rmax = o(1) from Corollary 2.2.6 while:

qmin = min
i

din
i

din
i + dout

i

= min
i

1

1 + dout
i /din

i

≥ 1

1 + rmax

= 1− o(1)

30

where the final equality also follows from Corollary 2.2.6. Additionally, as n0 = n
k
,

vol(U) ≥ dmin|U | ≥ din
min|U | = (1− o(1))ω (log(n)− log(k)) |U | = (1− o(1))ω log(n)un1

(2.10)

where the second equality follows from Corollary 2.2.5 and the final equality comes from

our definition that |U | = un1. Similarly vol(U) ≤ (1 + o(1))ω log(n)un1 and vol(GC1) ≤

(1 + o(1))ω log(n)n1 while:

vol(Γ) ≥ (1− o(1))ω log(n)|Γ| = (1− o(1))ω log(n)
(gn1

ωt−1

)
=

(1− o(1)) log(n)n1

ωt−2

Substituting this all into (2.9):

(1− o(t))

(
(1− o(1))ω log(n)un1

(1 + o(1))ω log(n)n1

−
√

12t

ωt

√
(1 + o(1))ω log(n)un1

(1− o(1)) log(n)n1/ωt−2

)
≤ o(t)

whence:

u ≤ o(t) + o(1) +

√
12t

ω1/2

√
u

as long as t is constant with respect to n1, o(t) = o(1) and
√

12t/ω1/2 = o(1) too, thus this

inequality can hold only if u = o(1), which proves the theorem.

Remark 2.3.3. The proof of Theorem 2.3.2 illustrates the tension between the size of the

seed set, Γ, and the depth of the random walk, t. In practice we have found that taking t

between 3 and 10 works well, even when g ≈ 0.01 (see §2.6).

2.4 Extracting C1 from Ω

As outlined in §2.1, our initial goal was to analyze the solution to:

argmin
x∈R|Ω|

{‖LΩx− y‖2 : ‖x‖0 ≤ |Ω| − n1} (2.11)

by relating it to the solution of

argmin
x∈R|Ω|

{
‖Lin

Ωx− yin‖2 : ‖x‖0 ≤ |Ω| − n1

}
(2.12)

31

under the assumption that C1 ⊂ Ω. However Theorem 2.3.2 only guarantees that Ω contains

a fraction 1− o(1) of C1, thus we are forced to change our approach slightly. In section 2.4.1

we show that if the call to RandomWalkThresholding in step 1 of SingleClusterPursuit

(Algorithm 6) returns an ε-good superset for C1, then Steps 2–4 find a C#
1 satisfying |C14

C#
1 |/|C1|/n1 = o(1). Our analysis applies to any probabilistic model of graphs with clusters,

Gn, such that the Laplacians of G ∼ Gn satisfy an RIP condition, which we describe shortly.

In §2.4.2 we verify that the symmetric stochastic block model satisfies these assumptions,

almost surely. From here it is a short step to showing that SingleClusterPursuit solves

the almost exact recovery problem, which we present as Theorem 2.4.12.

2.4.1 Extraction guarantees given the RIP for L

Let L be the Laplacian of a graph2 with clusters, G, and let Lin be as in §2.1. Let Ω be

an ε-good subset for C1, such as those found by RandomWalkThresholding. Suppose further

that L and Lin satisfy the following three properties:

1. For any γ ∈ (0, 1) we have that δγn1(Lin
Ω) ≤ γ + o(1).

2. Letting M := L− Lin, we have that ‖MΩ‖2 = o(1)

3. There exist constants κ and C such that σκ(L
in
Ω) ≥ C > 0

Recall that by σκ(L
in
Ω) we mean the κ smallest singular value of Lin

Ω .

Remark 2.4.1. We are abusing notation slightly by writing δγn1 . Technically we mean δbγn1c

as the quantity γn1 might not be an integer. We maintain the convention that whenever

a non-integral quantity is used where an integer is required, the floor of that quantity is

intended.

2In order to use the asymptotic notation o(·) and O(·), we should assume rather that Ln are the
Laplacians of some family of graphs {Gn}∞n=1. In order to reduce the notational burden, we shall
carry this assumption implicitly.

32

We note that ‖L‖2 ≤ 2 = O(1) for the Laplacian of any graph, thus property 2 is not

unreasonable. As mentioned above, we are no longer assuming that C1 ⊂ Ω, hence the best

that we can hope for is that if x# is the solution to (2.11) then supp(x#) ≈ Ω \ C1 ∩ Ω. To

prove this, we shall regard problem (2.11) as a perturbation of a sparse recovery problem for

which the solution is 1Ω\C1∩Ω and then appeal to results in totally perturbed compressive

sensing outlined in §1.4.3. This means revising our original goal, as 1Ω\C1∩Ω is not the solution

to Problem (2.12).

Lemma 2.4.2. Let Ω be an ε-good superset for C1. Then 1Ω\C1∩Ω is the unique solution to:

argmin
x∈R|Ω|

{
‖Lin

Ω x−
(
yin + zin

)
‖2 subject to: ‖x‖0 ≤ 1.1εn1

}
(2.13)

for n1 large enough, where zin := Lin1C1\Ω∩C1.

Proof. The proof is essentially the same as the proof of Theorem 2.1.2. As in that proof, we

observe that 1Ω\C1∩Ω is feasible for problem (2.13) because ‖1Ω\C1∩Ω‖0 = |Ω| − |C1 ∩ Ω| =

(1+ε)n1− (1−o(1))n1 = (ε+o(1))n1 and by taking n1 to be large enough we may guarantee

that the o(1) term is smaller than 0.1ε (the choice of 1.1ε is essentially arbitrary. We could

pick any multiple of ε greater than 1 here). Next we observe that:

Lin
Ω1Ω\C1∩Ω −

(
yin + zin

)
= Lin1Ω\C1∩Ω − Lin1Ω − Lin1C1\Ω∩C1 = −Lin (1C1) = 0

Finally, suppose another u also satisfies Lin
Ωu−

(
yin + zin

)
= 0. Then:

0 = Lin
Ωu− Lin1Ω − Lin1C1\Ω∩C1 = Lin

(
u− 1Ω − 1C1\Ω∩C1

)
= Lin (u− 1Ω∪C1)

Thus u−1Ω∪C1 ∈ ker(Lin) and supp(u−1Ω∪C1) ⊂ Ω∪C1. Again by Theorem 3.3.1, we have

that u − 1Ω∪C1 =
∑k

a=1 αa1Ca and so u = 1Ω∪C1 +
∑k

a=1 αa1Ca . By assumption C1 is the

only cluster contained in Ω∪C1 so αa = 0 for a ≥ 2 thus u = 1Ω∪C1 +α11C1 As for Theorem

2.1.2, because u 6= 1Ω\C1∩Ω we cannot have α1 = −1. But then supp(u) = Ω ∪ C1 and so u

is not feasible as ‖u‖0 ≥ |Ω| = (1 + ε)n1 > 1.1εn1

33

We can now profitably regard problem (2.11) as a perturbation of problem (2.13). Let

us quantify this. Define e = y −
(
yin + zin

)
=
(
y − yin

)
− zin and recall that M = L− Lin.

Recall from §1.4.3, and in particular Theorem 1.4.6, that the two key parameters in perturbed

compressed sensing are

εy =
‖e‖2

‖yin + zin‖2

and εsL =
‖MΩ‖(s)

2

‖Lin
Ω‖

(s)
2

Theorem 2.4.3. Assume that L satisfies the three properties at the beginning of this section

for an ε-good superset Ω. Then εy = o(1) and εγn1

L = o(1) for any γ ∈ (0, 1).

Proof. From the proof of Lemma 2.4.2 we have yin + zin = Lin1Ω\(C1∩Ω) and ‖1Ω\(C1∩Ω)‖0 =

|Ω \ (C1 ∩ Ω)| = (ε + o(1))n1 ≤ 1.1εn1 for large enough n1. Using the assumption on the

restricted isometry constant of Lin we have:

‖yin + zin‖2
2 = ‖Lin1Ω\(C1∩Ω)‖2

2 ≥
(
1− δ1.1εn1(Lin

Ω)
)
‖1Ω\(C1∩Ω)‖2

2

≥ (1.1ε− o(1)) |Ω \ (C1 ∩ Ω)| ≥ (1.1ε− o(1)) εn1

Thus ‖yin +zin‖2 ≥
√

(ε(1.1ε− o(1))
√
n1. On the other hand, ‖e‖2 ≤ ‖y−yin‖2 +‖zin‖2

and:

‖y − yin‖2 = ‖LΩ1Ω − Lin
Ω1Ω‖2 = ‖MΩ1Ω‖2 ≤ ‖MΩ‖2‖1Ω‖2 ≤ o(1)

√
(1 + ε)n1

while:

‖zin‖2 = ‖Lin1C1\Ω∩C1‖2 ≤ ‖Lin‖2‖1C1\Ω∩C1‖2 ≤ 2
√
|C1 \ Ω ∩ C1| = 2o(1)

√
n1

Thus:

εy =
‖e‖2

‖yin + zin‖2

≤
o(1)

(√
(1 + ε) + 2

)√
n1√

(ε(1.1ε− o(1))
√
n1

= o(1)

as ε is a constant, i.e. independent of n1. The bound on εγn1

L is easier. By Lemma 1.4.7 and

Property 3:

‖Lin
Ω‖

(γn1)
2 ≥ σγn1−1

(
Lin

Ω

)
≥ σκ

(
Lin

Ω

)
≥ C > 0

34

for n1 ≥ (κ + 1)/γ. By Property 2 and Lemma 1.4.7 ‖MΩ‖(γn1)
2 ≤ ‖MΩ‖2 = o(1). It follows

that:

εγn1

L =
‖MΩ‖(γn1)

2

‖Lin
Ω‖

(γn1)
2

=
o(1)

C
= o(1)

We also bound the restricted isometry constant of L:

Lemma 2.4.4. Assuming Properties 1–3 from the beginning of this section, δγn1(LΩ) ≤

γ + o(1) for any γ ∈ (0, 1).

Proof. From Theorem 1.4.8 we have that:

δγn1(LΩ) ≤ (1 + δγn1(Lin))(1 + εγn1

Φ)2 − 1

≤ (1 + γ + o(1)) (1 + o(1))2 − 1

= 1 + γ + o(1)− 1 = γ + o(1)

where the value of δγn1(Lin) comes from Property 2 while the value of εγn1

Φ comes from

Theorem 2.4.3.

Finally, there are two auxiliary quantities, namely ρ and τ , which appear in the statement

of Theorem 1.4.6. For any s, given a bound on δ3s(L), computing bounds for ρ and τ is purely

computational, and hence we omit the details

Lemma 2.4.5. Suppose that δ3s(L) ≤ 0.45, and let ρ and τ be as defined in Theorem 1.4.6.

Then ρ ≤ 0.8751 and τ ≤ 55.8490.

Proof. Follows from direct computation.

We are now able to prove the theorem advertised at the beginning of this section.

Theorem 2.4.6. Let C#
1 denotes the output of SingleClusterPursuit, given parame-

ters ε ∈ (0, 0.13], n̂1 = n1, R = 0.5 and Γ such that the superset Ω found in Step 1 of

SingleClusterPursuit is ε-good. Suppose that L and Lin satisfy the three Properties listed

at the beginning of this section. Then |C14 C#
1 |/n1 = o(1)

35

Proof. For notational convenience, let s = b1.1εn1c. Recall that x(m) is the solution obtained

by m = O(log(n)) iterations of SubspacePursuit on Problem 2.4, which we are regarding

as a perturbation of Problem 2.13. Because ε ≤ 0.13 we have that s ≤ 0.145n1 and so by

Lemma 2.4.4 δs(LΩ) ≤ 0.145n1 + o(1) < 0.15 for n1 large enough. Similarly δ3s(LΩ) ≤ 0.45,

again for n1 large enough. It follows from Lemma 2.4.5 that ρ ≤ 0.8751 and τ ≤ 55.8490.

We now appeal to Theorem 1.4.6 to obtain:

‖1Ω\(C1∩Ω) − x(m)‖2

‖1Ω\(C1∩Ω)‖2

≤ ρm + τ

√
1 + δs

1− εsΦ
(εsΦ + εy)

The second term on the right-hand side is o(1). As long as m ≥ logρ(1/n) = O(log(n)), we

obtain that ρm = 1/n = o(1) too. Thus:

‖1Ω\(C1∩Ω) − x(m)‖2

‖1Ω\(C1∩Ω)‖2

≤ o(1)⇒ ‖1Ω\(C1∩Ω) − x(m)‖2 ≤ o
(
‖1Ω\(C1∩Ω)‖2

)
as established in the proof of Lemma 2.4.2, |Ω \ (C1 ∩ Ω)| = (ε + o(1))n1 and so

‖1Ω\(C1∩Ω)‖2 =
√

(ε+ o(1))n1. It follows that ‖1Ω\(C1∩Ω) − x(m)‖2 = o(
√
n1).

By definition (see step (4) of Algorithm 6) W# = {i : x
(m)
i > 0.5}. It will follow from

Lemma 2.4.7 that |W# 4 (Ω \ (Ω ∩ C1)) | = o(n1). As C#
1 = Ω \ W#, it will follow that

|C#
1 4 Ω ∩ C1| = o(n1). Accounting for U := C1 \ Ω ∩ C1, we have that

|C#4 C1| = |C#4 (Ω ∩ C1)|+ |U | = o(n1) + o(n1) = o(n1)

whence it follows that |C#4 C1|/n1 = o(1) as desired.

Lemma 2.4.7. Let T ⊂ [n] and v ∈ Rn. Define W1 = {i : vi > 0.5} ⊂ [n]. If ‖1T−v‖2 ≤ D

then |T 4W1| ≤ 4D2.

Proof. Define W2 = [n] \ W1 and write v = vW1 + vW2 where vWi
denotes the part of v

supported on Wi. Write:

‖1T − v‖2 = ‖1T∩W1 − (vW1)T∩W1‖2 + ‖(vW1)W1\T‖2 + ‖1T\W1 − vW2‖2

36

Now ‖(vW1)W1\T‖2 ≥ 0.25|W1 \ T | and ‖1T\W1 − vW2‖2 ≥ 0.25|T \W1|. It follows that:

0.25|T 4W1| = 0.25 (|T \W1|+ |W1 \ T |) ≤ ‖(vW1)W1\T‖2 + ‖1T\W1 − vW2‖2 ≤ ‖1T − v‖2

Hence |T 4W1| ≤ 4D2.

2.4.2 RIP for the stochastic block model

In this section we establish that if L is the Laplacian of some G ∼ SSBM(n, k, p, q) with our

standing assumptions on p, q, and k, then L satisfies the three assumptions at the beginning

of §2.4.1 almost surely.

Theorem 2.4.8. Suppose that G ∼ SSBM(n, k, p, q) with p = ω log(n0)/n0 with ω → ∞,

q = b log(n)/n and k = O(1). Then ‖M‖2 ≤ o(1).

Proof. Letting δij denote the Kronecker delta symbol, observe that

Lij := δij −
1

di
Aij = δij −

1

din
i + dout

i

(
Ain
ij + Aout

ij

)
.

Earlier we defined ri = dout
i /din

i . We now use the following easily verifiable one dimensional

version of the Woodbury formula:

1

din
i + dout

i

=
1

din
i

− 1

din
i

(
ri

ri + 1

)
Thus:

Lij = δij −
(

1

din
i

− 1

din
i

(
ri

ri + 1

))(
Ain
ij + Aout

ij

)
=

(
δij −

1

din
i

Ain
ij

)
− 1

din
i

Aout
ij +

1

din
i

(
ri

ri + 1

)(
Ain
ij + Aout

ij

)
= Lin

ij −
1

din
i

(
1− ri

ri + 1

)
Aout
ij +

1

din
i

(
ri

ri + 1

)
Ain
ij

= Lin
ij −

1

din
i

(
1

ri + 1

)
Aout
ij +

1

din
i

(
ri

ri + 1

)
Ain
ij .

37

That is, Mij = − 1
din
i

(
1

ri+1

)
Aout
ij + 1

din
i

(
ri
ri+1

)
Ain
ij . To bound the spectral norm we use Gersh-

gorin’s disks, noting that Mii = 0 for all i:

‖M‖2 = max
i
{|µi| : µi eigenvalue of M} ≤ max

i

∑
j

|Mij|

= max
i

1

din
i

(
1

ri + 1

)∑
j

Aout
ij +

1

din
i

(
ri

ri + 1

)∑
j

Ain
ij

= max
i

{
1

din
i

(
1

ri + 1

)
(dout
i) +

1

din
i

(
ri

ri + 1

)
(din
i)

}
= max

i

{(
ri

ri + 1

)
+

(
ri

ri + 1

)}
≤ 2rmax = o(1) a.s. by Corollary 2.2.6

Lemma 2.4.9. Let G be any connected graph on n0 vertices, and let s < n0. Let λi := λi(L)

denote the i-th smallest eigenvalue of L. Then:

δs(L) ≤ max{1− λ2
2

(
dmin

dmax

− dmax

dmin

s

n0

)
, 1− λ2

max}.

Proof. Recall that the s-Restricted Isometry Constant δs(L) is the smallest δ such that, for

any v with ‖v‖0 ≤ s and ‖v‖2 = 1:

(1− δ) ≤ ‖Lv‖2
2 ≤ (1 + δ).

We shall prove the theorem by showing that, for any such v, ‖Lv‖2 ≤ λmax and ‖Lv‖2 ≥

λ2
2

(
dmin

dmax
− dmax

dmin

s
n0

)
. The first bound is straightforward:

‖Lv‖2 ≤ ‖L‖2‖v‖2 = λmax(1) = λmax

The second bound requires some work. Recall that L = I − D−1A. This matrix is not

symmetric, but Lsym = I − D−1/2AD−1/2 is. By Lemma 1.2.2 L and Lsym have the same

eigenvalues. Let w1, . . . ,wn0 be an orthonormal eigenbasis for Lsym. These eigenvectors are

well studied (see, for example, [24]) and in particular w1 = 1√
vol(G)

D1/21 where 1 is the

all-ones vector. Observe that:

Lv = D−1/2
(
D1/2LD−1/2

)
D1/2v = D−1/2LsymD1/2v = D−1/2Lsymz,

38

where z := D1/2v. It follows that:

‖Lv‖2 = ‖D−1/2Lsymz‖2 ≥
1√
dmax

‖Lsymz‖2. (2.14)

Express z in terms of the orthonormal basis {w1, . . . ,wn}, namely z =
∑n0

i=1 αiwi. Then:

‖Lsymz‖2
2 = ‖

n0∑
i=1

αiλiwi‖2
2 = ‖

n0∑
i=2

αiλiwi‖2
2 ≥ λ2

2

(
n0∑
i=2

α2
i

)
and

∑n0

i=2 α
2
i = ‖z‖2

2 − α2
1. We now bound ‖z‖2 and α1.

‖z‖2
2 = ‖D1/2v‖2

2 ≥
(√

dmin

)2

‖v‖2
2 = dmin

while:

α1 = 〈z,w1〉 = 〈D1/2v,
1√

vol(G)
D1/21〉 =

1√
vol(G)

〈v, D1〉 ≤ dmax√
vol(G)

〈v,1〉.

We now use the assumptions on v. Specifically 〈v,1〉 ≤ ‖v‖1 ≤
√
s‖v‖2 =

√
s and so

α1 ≤ dmax

√
s√

vol(G)
≤ dmax

√
s√

dminn0

=
dmax√
dmin

√
s

√
n0

.

Returning to equation (2.14):

‖Lv‖2
2 ≥

1

dmax

‖Lsymz‖2
2 ≥

1

dmax

λ2
2

(
dmin −

d2
max

dmin

s

n0

)
= λ2

2

(
dmin

dmax

− dmax

dmin

s

n0

)
.

Lemma 2.4.10. Suppose that G ∼ ER(n0, p) with p = ω ln(n0)/n0 for some ω →∞. Then

δs(L) ≤ s/n0 + o(1) a.s.

Proof. This is a simple consequence of Lemma 2.4.9. If G is as in the hypothesis then

dmin = (1− o(1))n0p and dmax = (1 + o(1))n0p a.s. by Theorem 2.2.2. Moreover λ2 ≥ 1−o(1)

and λn0 ≤ 1 + o(1) a.s. by Theorem 2.2.3. Hence:

λ2
2

(
dmin

dmax

− dmax

dmin

s

n0

)
≥ (1− o(1))2

(
(1− o(1))n0p

(1 + o(1))n0p
− (1 + o(1))n0p

(1− o(1))n0p

s

n0

)
≥ (1− o(1))

(
1− o(1)

1 + o(1)
− 1 + o(1)

1− o(1)

s

n0

)
= (1− o(1))

(
1− o(1)− (1 + o(1))

s

n0

)
= 1

(
1− s

n0

− o(1)

)
− o(1) = 1− s

n0

− o(1) a.s.

39

Hence by Lemma 2.4.9, we have that

δt(L) ≤ max

{
1−

(
1− s

n0

− o(1)

)
, o(1)

}
=

s

n0

+ o(1) a.s.

Theorem 2.4.11. Suppose that G ∼ SSBM(n, k, p, q) with k = O(1) and p = ω log(n0)/n0.

Then for any γ ∈ (0, 1), we have that δγn0(Lin) ≤ γ + o(1) a.s.

Proof. Lin is the Laplacian of Gin, which is a disjoint union of k Erdős - Rènyi graphs.

It follows that Lin is block diagonal, with blocks LGC1
, . . . , LGCk , where each LGCa is the

Laplacian of an i.i.d graph Ga ∼ ER(n0, p) with p = ω log(n0)/n0.

By Lemma 2.4.10 δγn0(LGCa) ≤ γ+o(1) a.s. That is, P
[
δγn0(LGCa) ≤ γ + o(1)

]
= 1−o(1).

For a block diagonal matrix such as Lin, one can easily check that for any s ∈ [n0] we have

δs(L
in) = maxa δs(LGCa). Finally, observe that:

P
[
max
a
δγn0(LGCa) ≤ γ + o(1)

]
=

k∏
a=1

P
[
δs(LGCa) ≤ γ + o(1)

]
= (1− o(1))k

as the GCa are i.i.d. Because k = O(1), it follows that (1− o(1))k = 1− o(k) = 1− o(1), and

the lemma follows.

2.4.3 Almost Exact Recovery

Finally, we may conclude that SingleClusterPursuit solves the almost exact cluster extrac-

tion problem, presented as Definition 1.3.2.

Theorem 2.4.12. SingleClusterPursuit with parameters ε ∈ (0, 0.13], n̂1 = n1,

R = 0.5 and Γ with |Γ| = gn1/ω
t−1 solves the almost exact cluster extraction problem

for SSBM(n, k, p, q) with p = ω log(n0)/n0, q = b log(n)/n and k = O(1) where ω →∞.

40

Proof. By Theorem 2.3.2 step 1 of SingleClusterPursuit returns an ε-good subset given

these parameters, hence we may achieve the theorem using the machinery of §2.4.1, in

particular Theorem 2.4.6, by showing that the three properties listed at the beginning of

§2.4.1 are satisfied, almost surely.

By Theorem 2.4.11 Lin
Ω satisfy Property 1 of §2.4.1 almost surely. By Theorem 2.4.8

, ‖MΩ‖2 ≤ ‖M‖2 = o(1) hence Property 2 is satisfied almost surely. We now consider

Property 3. As in Theorem 2.4.11 Lin is block diagonal with blocks LGC1
, . . . LGCk where

each LGCa is the Laplacian of an i.i.d graph GCa ∼ ER(n0, p) with p = ω log(n0)/n0. The set

of eigenvalues of Lin is the union of the sets of eigenvalues of the LGCa . Because λ1(La) = 0

for a = 1, . . . , k, we know that Lin has the eigenvalue 0 with multiplicity k. Hence:

λk+1(Lin) =
k

min
a=1

λ2(La)

From Theorem 2.2.3 we have that P
[
λ2(LGCa) ≥ 1− o(1)

]
= 1−o(1) for all a ∈ [k]. Because

the GCa , are i.i.d:

P
[
λk+1(Lin) ≥ 1− o(1)

]
= P

[
k

min
a=1

λ2(La) ≥ 1− o(1)

]
=

k∏
a=1

P [λ2(La) ≥ 1− o(1)] = (1−o(1))k

As in the proof of Theorem 2.4.11, we have that (1 − o(1))k = 1 − o(1). Finally, by the

interlacing theorem for singular values (cf. [83]) we get that λk+1(Lin) ≤ σk+2

(
Lin

Ω

)
, thus

taking κ = k + 2 and C = 1/2, for example, we get that Property 3 holds almost surely as:

P
[
σk+2(Lin

Ω) ≥ 1− o(1)
]
≥ P

[
λk+1(Lin) ≥ 1− o(1)

]
= 1− o(1)

and for large enough n the o(1) term inside the brackets is less than 1/2.

Remark 2.4.13. 1. We have chosen to write p = ω log(n0)/n0 as we feel this makes

the presentation slightly clearer, but of course as n0 = n/k by redefining ω this is

equivalent to p = ω log(n)/n.

41

2. We emphasize that we place no restrictions on how slowly ω →∞.

3. The restriction to the symmetric block model is not essential. By wading through a

slightly larger sea of notation one can show that a theorem analogous to Theorem

2.4.12 holds for SBM(n, P) as long as the number of clusters, k = O(1) and p :=

mina Paa = ω log(n)/n while q := maxa6=b Pab = b log(n)/n.

2.5 Computational Complexity

In this section we bound the number of operations that SingleClusterPursuit requires.

We assume that Properties 1–3 at the beginning of §2.4 and we assume that A is stored as a

sparse matrix with dmax := maxi
∑

iAij � n. An observation that we will use repeatedly is

that multiplying a vector by such a sparse matrix (and observe that L and P are similarly

sparse) takes O(dmaxn) operations.

1. Running RandomWalkThresholding (step (1) of SingleClusterPursuit) takes

O ((tdmax + log(n))n) operations, because:

• Computing D and P require O(dmaxn) operations each. Computing v(0) requires

|Γ| operations.

• Computing v(t) requires t matrix-vector multiplies, each requiring O(dmaxn) oper-

ations. So this step requires O(tdmaxn) operations.

• The most expensive part of the thresholding step (step (3)) is sorting the entries

of v(t) ∈ Rn, which requires O(n log(n)) operations.

2. In step (2) of SingleClusterPursuit, we get L essentially for free, as L = I−P> and

we have already computed P . Observe that y =
∑
i∈Ω

`i = L1Ω hence this is another

sparse matrix-vector multiply, costing O(dmaxn).

42

3. The call to SubspacePursuit (see Algorithm 4) in step (3) costs m times the cost of

each iteration, which we now bound. The cost of the j-iteration is dominated by the

cost of solving the least squares problem:

argmin
z∈Rn

{
‖LΩz− y‖2 : supp(x) ⊂ Ŝj

}
.

Because of the support condition, and because |Ŝj| = 2s = 2εn̂1, this is equivalent to

the least squares problem:

argmin
z∈R2s

{
‖LŜjz− y‖2

}
(2.15)

We recommend using an iterative method, such as conjugate gradient (in our imple-

mentation we use MATLAB’s lsqr operation). Fortunately, as pointed out in [72],

the matrix in question, LŜj is extremely well conditioned. This is because δ2s(L) ≤

δ3s(L) ≤ 0.45 by assumption 1, and see the proof of Theorem 2.4.6. By [72], specifi-

cally Proposition 3.1 and the discussion of §5, this implies that the condition number

is small:

κ(L>
Ŝj
LŜj) :=

λmax(L>
Ŝj
LŜj)

λmin(L>
Ŝj
LŜj)

≤ 1 + δ2s

1− δ2s

≤ 2.64

The upshot of this is that it only requires a constant number of iterations of conjugate

gradient to approximate the solution to the least-squares problem 2.15 to within an

acceptable tolerance. Indeed, Corollary 5.3 of [72] argues that three iterations suffices.

We play it safe by performing ten iterations. The cost of each iteration of conjugate

gradient is equal to (a constant times) the cost of a sparse matrix vector multiply by LŜj

or L>
Ŝj

, which is O(dmaxn). Hence the total cost of step (3) of SingleClusterPursuit

is O(mdmaxn) = O(dmax log(n)n) because we are taking m = O(log(n)).

Adding this all up, we get that the number of operations required is O ((t+ log(n))dmaxn).

Because we take t, the depth of the random walk, to be constant with respect to n, the

asymptotic complexity of SingleClusterPursuit is O(dmax log(n)n). To make this more

concrete, observe that for the stochastic block model SSBM(n, k, p, q) with parameters as

in Theorem 2.4.12 we have that dmax ≤ din
max + dout

max ≤ (1 + o(1))ω log(n) + b log(n) + o(1)

43

by Corollaries 2.2.4 and 2.2.5. Because ω → ∞, for large enough n this certainly gives

dmax ≤ 2ω log(n). In the numerical experiments (§2.6.3) we take ω = log(n), thus we get

an asymptotic computational complexity of O(log3(n)n). In particular, we note that this is

faster than the SphereComparison algorithm of Abbe and Sandon (see [5] or §1.3.3), which

has complexity O(n1+o(1)) .

2.6 Numerical Results

2.6.1 Implementation of algorithms

All algorithms considered were run in MATLAB.

SingleClusterPursuit The implementation of SingleClusterPursuit used is available

as the function SCPMainRW. We set the parameters ε = 0.13, R = 0.5 and the depth of the

random walk t = 3. Unless otherwise indicated, n̂1 was set to be the true size of the cluster

of interest.

ESSC The algorithm we refer to as ESSC is technically the sub-routine referred to as

Community-Search on pg. 1863 of [89] and as Main.Search in the R package for ESSC

(available at http://jdwilson-statistics.com/publications/). We use a MATLAB

implementation of this algorithm written by the author. We compared the accuracy and

run time of our MATLAB version to that of the R version, and found them to be nearly

identical. We set the maximum number of iterations to 50 and the parameter α = 0.05. As

we found ESSC to run slowly on large data sets, we did not use it in all experiments.

LBSA We use the MATLAB implementation provided by the authors of [79], available at

https://github.com/PanShi2016/LBSA. The LBSA algorithm actually includes six distinct

methods; we use the heat kernel sampling with Lanczos method, denoted in [79] as hkLISA,

as experimental evidence presented in the aforementioned paper suggests that this variant

performs best. We also tried other methods (specifically Heat Kernel sampling with Power

http://jdwilson-statistics.com/publications/
https://github.com/PanShi2016/LBSA

44

method, and random walk sampling with power and Lanczos methods), but did not observe

any significant difference in performance on our data sets. We set the parameter which

governs the number of Lanczos iterations to take, namely k2, to be equal to 4 as suggested

in [79].

HKGrow We use the MATLAB implementation of this algorithm available at https:

//www.cs.purdue.edu/homes/dgleich/codes/hkgrow/. This implementation requires no

input parameters.

The size of the seed set Γ given to SSCP, LOSP++ and HKGrow is gn1, where g ∈ (0, 0.1)

and n1 is the true size of the cluster of interest. ESSC is seeded with the neighborhood of the

highest degree vertex in the cluster of interest, as done in [89].

2.6.2 Measures of cluster quality

When there exists a known, ground truth cluster C, we measure the accuracy of cluster

extraction using the Jaccard Index : Jac(C,C#) :=
∣∣C ∩ C#

∣∣ / ∣∣C ∪ C#
∣∣. The maximum

value of Jac(C,C#) is 1, and this occurs when C = C#. The Jaccard index has a minimum

value of 0, which is achieved when C and C# are disjoint. Note that the Jaccard index also

penalizes “trivial” cluster extraction algorithms, that is algorithms that return C# ≈ V ,

with a low score.

2.6.3 Synthetic Data Sets 1: The Stochastic Block Model

We consider graphs drawn from three different stochastic block models. Typical adjacency

matrices for graphs drawn from these three models are shown in Figure 2.1. In all cases we

focus on extracting the first cluster, C1, and in all cases we vary n1 from 200 to 600 (n scales

with n1) and take |Γ| = 0.02n1. We perform ten independent trials for each value of n1.

https://www.cs.purdue.edu/homes/dgleich/codes/hkgrow/
https://www.cs.purdue.edu/homes/dgleich/codes/hkgrow/

45

Figure 2.1: The adjacency matrices of typical graphs for each of the three benchmarks,
permuted to reveal the ground truth clusters. From left to right: Experiments 1–3

Experiment 1. We consider the symmetric stochastic block model with parameters as

in Theorem 2.4.12. That is, we draw G ∼ SSBM(n, k, p, q) with k = 10, n = 10n1, p =

2 log2(n)/n and q = log(n)/n.

Experiment 2. Here, we consider graphs G ∼ SBM(n, P2), where n = (n1, 10n1) and

P1 =

2 log2(n)/n log(n)/n

log(n)/n 2 log2(n)/n


Experiment 3. Finally, we draw graphs from SBM(n, P2) where again n = (n1, 10n1) bu

the connection probability matrix is given by:

P2 =

2 log2(n)/n log(n)/n

log(n)/n log(n)/n

 .
This models the problem of extracting a cluster from a weak background.

The results of these three experiments are presented in Figures 2.2, 2.3 and 2.4. As there

was a wide disparity in run times, we plot these using a logarithmic scale. To motivate further

the consistency of SingleClusterPursuit, we include a box plot for the Jaccard Indices.

46

Figure 2.2: Results from Experiment 1. From left to right: The Jaccard index as a function
of cluster size, the run time as a function of cluster size, and a box plot of the Jaccard indices
for SingleClusterPursuit.

Figure 2.3: Results from Experiment 2. From left to right: The Jaccard index as a function
of cluster size, the run time as a function of cluster size, and a box plot of the Jaccard indices
for SingleClusterPursuit.

Figure 2.4: Results from Experiment 3. From left to right: The Jaccard index as a function
of cluster size, the run time as a function of cluster size, and a box plot of the Jaccard indices
for SingleClusterPursuit.

47

2.6.4 Real Data sets 1: Social Networks

The facebook100 dataset consists of anonymized Facebook “friendship” networks at 100

American universities, and was first introduced and studied in [84]. It contains, for each

college or university, a graph whose vertices correspond to undergraduates with a Facebook

account at that institution. Edges connect students who were friends on Facebook the day (in

September 2005) the data was collected. Certain demographic markers (year of entry, gender,

residence, high school etc.) were also collected in an anonymized format. We focus on four

schools, California Institute of Technology (Caltech), Rice, University of California, Santa

Cruz (UCSC) and Smith College, identified by Traud et. al. ([84]) as being most strongly

clustered by residence. We treat the residence assignments as the ground truth clusters. We

note that there are always some students whose residential affiliation is unknown; we treat

these as background vertices. For each cluster, we run each algorithm ten times, each time

with a different set of uniformly randomly selected seed vertices. For SingleClusterPursuit,

HKGrow and LBSA the seed set consists of 5 randomly selected vertices. For ESSC, the seed

set is the neighborhood of a certain vertex in the ground truth cluster. We tried taking this

vertex to be the highest degree vertex in the cluster (as in [89]) as well as selecting this

vertex uniformly at random. Experimentally, we observed better results for the latter, so we

report these. We note that for the larger networks (i.e. Smith, Rice and UCSC) ESSC did

not converge within a reasonable amount of time. Important properties of the networks are

reported in 2.1, while results are presented in Figures 2.5, 2.7, 2.6 and 2.8.

Vertices Clusters Max cluster size Min cluster size Mean cluster size
Caltech 769 8 99 44 74.63
Smith 2970 36 113 12 70.17
Rice 4087 9 414 382 396

UCSC 8991 10 925 622 773.7

Table 2.1: Basic properties of the four social networks studied.

48

Figure 2.5: Results for Caltech Social Network: Jaccard index on left and run time on
right.Note that the run times are presented in a logarithmic scale.

Figure 2.6: Results for Smith Social Network: Jaccard index on left and run time on right.
Note that the run times are presented in a logarithmic scale.

Figure 2.7: Results for Rice Social Network: Jaccard index on left and run time on right.
Note that the run times are presented in a logarithmic scale.

49

Figure 2.8: Results for UCSB Social Network: Jaccard index on left and run time on right.
Note that the run times are presented in a logarithmic scale.

2.6.5 Real Data sets 2: Machine Learning Benchmarks

Of particular interest to us is extraction of clusters of linear size (i.e. n1 ∼ n/k) from the K-

Nearest Neigbor (K-NN) graphs that arise in Machine Learning. Typically, the data points

in such data sets are presented as real-valued vectors, for example, vectorized grayscale

images. So, let us first discuss how to turn such a data set X = {x1, . . . ,xn} ⊂ RD into a

graph G so that algorithms such as SingleClusterPursuit may be used.

Preprocessing Euclidean Data Given such an X , we construct a weighted graph on n

vertices with weighted adjacency matrix defined as: Aij = ϕ(‖xi − xj‖). Here ϕ is referred

to as a kernel function and should, at least, be non-negative, continuous at 0 with ϕ(0) = 1,

non-increasing on [0,∞) and sufficiently fast decaying (requiring sqϕ(s) = o(1) for all q > 0

is typical, see [9]). The kernel function usually depends on some user-specified parameters,

for example ϕσ(s) := exp(−s2/σ2) is a common choice [73]. Such an approach results in a

complete graph, but in dealing with large data sets a sparse graph is desired, due to memory

constraints. Thus, many researchers consider variants of K-NN graphs, defined loosely as

50

inserting an edge between i and j if and only if xi is amongst the K closest data points in

X to xj, or vice versa. Here we use the following variant of a K-NN graph that incorporates

the local scaling of Zelnik-Manor and Perona [95], which we first learned of from [51].

• Fix parameters r and K.

• For all i ∈ [n], define σi := ‖xi− x[r,i]‖, where x[r,i] denotes the r-th closest point in X

to xi. (If there is a tie, break it arbitrarily). Let NN(xi, K) ⊂ X denote the set of the

K closest points in X to xi. Again, one may break ties arbitrarily if they occur.

• Define Ã as: Ãij =

 exp (−‖xi − xj‖2/σiσj) if xj ∈ NN(xi, K)

0 otherwise

• Observe that Ã is not necessarily symmetric, as it may occur that xj ∈ NN(xi, K)

while xi /∈ NN(xj, K). So, symmetrize Ã to obtain A, the adjacency matrix of G. In

this dissertation we consider two symmetrizations:

Amult := Ã>Ã and Amax where (Amax)ij = max
{
Ãij, Ãji

}
Clearly Amax is sparser than Amult, although we observe that SingleClusterPursuit per-

forms slightly better when using Amult.

We consider two data sets, MNIST and OptDigits. For both data sets we consider both

Amax and Amult.

MNIST. This data set consists of n = 70 000 grayscale images of the handwritten digits

0–9, all of size 28× 28. We vectorize these images to obtain data points xi ∈ R784. There are

approximately 7 000 images of each digit.

OptDigits. Similar to MNIST, this data set also consists of images of handwritten digits

0–9, although now they are of size 8 × 8 which vectorize to give data points xi ∈ R64, and

there are only n = 5620 of them. As before, the clusters are balanced with approximately

51

Figure 2.9: Cluster extraction for MNIST with Amult as the adjacency matrix. Results aver-
aged over all 10 digits. From left to right: The Jaccard index as a function of cluster
size, the run time as a function of cluster size, and a box plot of the Jaccard indices for
SingleClusterPursuit.

560 images of each digit.

We vary the fraction of data points to be labeled from 0.5% to 2.5% in increments of

0.5%. For each sample fraction, g = 0.005, . . . , 0.025, we perform one experiment for each of

the 10 clusters in the respective data set. We choose g(n/10) data points from the cluster

uniformly at random and use this as Γ. The parameters for LBSA are as described in §2.6.1.

For SingleClusterPursuit we take ε = 0.13 and R = 0.7 in all experiments. For the

larger data set MNIST we take t = 3 while for OptDigits we take t = 10. Note that in all

experiments we do not use any a priori information about the sizes of the clusters. Instead,

we set the parameter n̂1 = n/10, which only encodes the assumption that we expect the

clusters to be more or less balanced.

The results for MNIST are presented in Figures 2.9 and 2.10 while the results for OptDigits

are presented in Figures 2.11 and 2.12. Note that for both data sets there is a significant gap

in Jaccard index between the best and worst results for any given sampling fraction. This is

due to the significant gap in difficulty between finding the clusters for “easy” digits, such as

0, and “hard” digits, such as 7.

52

Figure 2.10: Cluster extraction for MNIST with Amax as the adjacency matrix. Results aver-
aged over all 10 digits. From left to right: The Jaccard index as a function of cluster
size, the run time as a function of cluster size, and a box plot of the Jaccard indices for
SingleClusterPursuit.

Figure 2.11: Cluster extraction for OptDigits with Amax as the adjacency matrix. Results
averaged over all 10 digits. From left to right: The Jaccard index as a function of cluster
size, the run time as a function of cluster size, plotted in logarithmic scale, and a box plot
of the Jaccard indices for SingleClusterPursuit.

Figure 2.12: Cluster extraction for OptDigits with Amult as the adjacency matrix. Results
averaged over all 10 digits. From left to right: The Jaccard index as a function of cluster
size, the run time as a function of cluster size, and a box plot of the Jaccard indices for
SingleClusterPursuit.

53

2.6.6 Extension to Semi-Supervised Learning

Here we explore the use of an iterated SingleClusterPursuit, capable of finding all

clusters in a data set, on the MNIST data set. We call the precise algorithm we use

IteratedSingleClusterPursuit, and present it as Algorithm 7. Note that as input

IteratedSingleClusterPursuit requires a set of seed vertices Γa ⊂ Ca for each cluster.

We collate the sets into an array Γ = {Γ1, . . . ,Γk} and, following standard terminology

in the machine learning literature, refer to Γ as the labeled data. We collect the values

of n̂1 into a vector n̂. Note that there is an interesting flexibility in this approach which

manifests in the “Cleanup” steps of 7. Because SingleClusterPursuit is extractive, it

can happen that once one has extracted clusters Ctemp
1 , . . . Ctemp

k there are still vertices

which have not been assigned a cluster, denoted LeftOver in Algorithm 7. One can now

treat the extracted clusters Ctemp
1 , . . . Ctemp

k as labeled data, train a supervised classifier

on them, and use it to classify the remaining data points represented by LeftOver. In

IteratedSingleClusterPursuit as presented in 7 we use a simple nearest neighbors clas-

sifier, although certainly more sophisticated approaches are possible.

In our numerical experiment with MNIST we draw the same number of labeled examples,

randomly and uniformly, from each cluster: |Γa| = g|Ca|. As before we vary the sampling

fraction g in increments of 0.005 from 0.005 to 0.025. We set the cluster sizes to their

exact values, that is n̂ = (n1, n2, . . . , nk). We use the same Amult as described above as the

adjacency matrix. The results displayed in Table 2.2 are averaged over 20 independent trials.

In Table 2.3 we compare our results with other state-of-the-art results for Semi-Supervised

clustering on MNIST.

2.6.7 Verifying the Asymptotic Bound on Run Time

In §2.5 we claim that the run time of SingleClusterPursuit is O(dmax log(n)n) and argued

further that when G ∼ SSBM(n, k, p, q), with parameters p = log2(n)/n and q = b log(n)/n

54

Amount of Labeled Data Accuracy
0.5% 95.29%
1% 97.03%

1.5% 97.37%
2% 97.49%

2.5% 97.57%

Table 2.2: Accuracy of classification (defined as #{ images correctly classified}/n) using
IteratedSingleClusterPursuit

.

Method Labelled Accuracy
TSVM [31] 1000 95.62%
TVRF [94] 600 96.7%

Deep Generative Model [53] 1000 97.13%
IteratedSingleClusterPursuit 1050 97.37%

Multi-Class MBO with Auction Dynamics [51] 700 97.43%
IteratedSingleClusterPursuit 1400 97.49%

Ladder Networks [76] 1000 99.16%

Table 2.3: Comparing IteratedClusterPursuit to other, state-of-the-art, semi-supervised
methods on MNIST. We remark that the Ladder Network approach requires a full two
hours of training on a GPU. In constrast, IteratedSingleClusterPursuit runs in under
20 seconds, although it does require ∼ 20 minutes to create the adjacency matrix A from
the raw image data.

55

Algorithm 7 IteratedSingleClusterPursuit

Input: Adjacency matrix A, parameters ε, R ∈ (0, 1) and depth of random walk t. Labeled
data Γ. Vector of approximate cluster sizes, n̂.
Initialization: N = n = size(A, 1)
for a = 1 : k − 1 do

Ctemp
a = SingleClusterPursuit(A, ε,Γ(a), n̂(a), t, R)

NewInds = [n] \ Ctemp
a

A = A(NewInds, NewInds)
n = |NewInds|

end for
Ωfinal = [N] \ (C1 ∪ C2 ∪ . . . ∪ Ck−1)
Find Ctemp

k using Ωfinal and steps (2)–(4) of SingleClusterPursuit.
Cleanup: Let LeftOver = [N] \ (C1 ∪ . . . ∪ Ck)
For all a ∈ [k] and i ∈ LeftOver define Score(a, i) =

∑
j∈Ca∪N (i) Aij

Let Cnew
b = {i ∈ LeftOver : argmaxa∈[k]Score(a, i) = b}

Output: for a ∈ [k] let C#
a = Ctemp

a ∪ Cnew
a

for some constant b, that this reduces to O(log3(n)n). Here we verify that this is the case.

We draw graphs from SSBM(n, k, p, q), with p and q as indicated above, for n varying from

5 000 to 25 000, in increments of 500. For each value of n, we compute the average run time

of SingleClusterPursuit over ten independent trials. We then plot the logarithm of the

average run time, as a function of n in Figure 2.13. Section §2.5 predicts that the logarithm

of the run time should be equal to log(n) + 3 log(log(n)) + log(C) for some constant C. In

Figure 2.13 we thus plot the predicted run time, T = log(n)+3 log(log(n))−15.99, where the

constant was determined by fitting to the data. As can be seen, there is excellent agreement

between the theoretical prediction and experimental result.

2.6.8 Analysis of Experimental Results

SingleClusterPursuit performs better than the other algorithms considered for every real

data set considered, and is also the best algorithm for the “cluster extraction from a weak

background” problem of Synthetic Data Experiment 3. Although SingleClusterPursuit is

56

Figure 2.13: Comparing theoretical versus experimental run times

57

outperformed by HKGrow in most synthetic cases where there are well-defined, well-separated

clusters, i.e. Experiments 1 and 2, we argue that such data sets are not very realistic. It

is interesting to note that SingleClusterPursuit performs equally well on very different

kinds of data—for example social networks and K-NN graphs. Finally we note that the run

time of SingleClusterPursuit is low, and grows slowly with n as predicted by §2.5. Based

on all of the above, it appears that SingleClusterPursuit is an excellent general purpose

cluster extraction algorithm.

Chapter 3

Dynamic Cluster Pursuit

The discussion thus far has tacitly assumed that our networks of interest are static, i.e. they

do not change with time. This is not always a realistic assumption, and indeed many real

world networks do evolve as time progresses. Consider the example of an email network,

where users are represented by vertices which are connected if the users concerned exchanged

emails within a given time period (say a week). Hence every week provides a new static

graph whose edges may be markedly different from the previous week’s. We shall represent

such dynamic graphs as a sequence of ordinary, static, graphs: G =
{
G(1), . . . , G(T)

}
and

refer to the G(t) as “snapshots.” For conceptual clarity, we shall restrict to the case where

all the G(t) all have the same vertex set, namely V , although this is not essential.

Consider again the example of email correspondence described above. It is reasonable

to assume that each G(t) has clusters C
(t)
1 ∪ . . . ∪ C

(t)
k corresponding to people who work

together, are in the same friendship circle and so on. Certainly these clusters will change

with time, for example as people change jobs or move city, but we expect few vertices to

change clusters between adjacenct snapshots. We emphasize that there are two temporal

processes going on here. Between snapshots there is an essentially random reconfiguration of

the edges between existing vertices, while over the longer term there is the more meaningful

process of vertices transitioning between clusters. The problem of tracking these evolving

clusters is called the “dynamic clustering” problem.

58

59

We considered a more refined variant of this problem, where one is interesting in tracking

the evolution of a single cluster, C
(t)
a , over time. In analogy with earlier work, we term this

the “dynamic cluster extraction” problem. Clearly, any algorithm that solves this problem

can be iterated to track all k clusters. However if one is only interested in a certain cluster,

then using a dynamic cluster extraction algorithm is preferable is it does not use unnecessary

computational resources. In §3.3 we will present a novel algorithm that solves this problem.

Before that, we briefly review the literature on dynamic clustering (§3.1) and discuss various

probabilistic models of dynamic graphs with clusters that generalize the stochastic block

model (§3.2). Numerical experiments are presented in §3.4.

3.1 Overview of Dynamic Clustering

To the best of the author’s knowledge, the first paper to consider the idea of dynamic

clustering was [20]. Since then, interest in this problem has grown steadily, as documented in

the survey articles [6] (2014), [45] (2016) and [77] (2018). In particular, over 50 approaches

to dynamic clustering are documented in [77] (although we remark that no approaches to

dynamic cluster extraction are presented). Note that dynamic clustering can mean different

things to different authors. Some authors assume that one first has access to all snapshots

{G(1), . . . , G(T)} and then tries to determine a sequence of clusterings {C(1), . . . ,C(T)}. We

refer to such approaches as “offline” methods. On the other hand, one could try to find

clusterings in an “online” manner, whereby in finding the t-th clustering, C(t), one only

has access to {G(1), . . . , G(t)} and {C(1), . . . ,C(t−1)}. Our focus in this chapter is on online

methods.

In an attempt to categorize the disparate approaches to dynamic clustering, Rossetti and

Cazabet introduced a taxonomy of dynamic clustering approaches in [77]. We follow their

60

lead in surveying the literature, and use their terminology to describe the three main families

of dynamic clustering algorithms.

3.1.1 Instant Optimal methods

Arguably the simplest approach to dynamic clustering, instant optimal methods apply a

static clustering algorithm to each snapshot, G(t), to find a clustering C(t), and then use a

set-matching procedure to identify these static communities across time steps. The primary

drawback of such approaches is that the communities found in this manner tend to vary

wildly. Indeed, even for static networks it is widely accepted that there is no unique “correct”

decomposition of the vertices into communities (cf. [77]). Moreover, many common static

clustering algorithms (for example Spectral Clustering, or GenLouvain [34]) incorporate some

kind of randomization, and hence may find different clusterings on different runs, even on the

same graph. It follows that even if there is little change from G(t) to G(t+1), the clusterings

found by a static clustering algorithm may be significantly different, and hence there may

be little interpretability in dynamic clusters formed by identifying such static clusters across

snapshots.

3.1.2 Temporal Trade Off methods

These algorithms seek to “update” the clustering found in G(t−1) to a new clustering for G(t).

It is usually assumed that a clustering for G(1) is given, or is found using a static clustering

method. The updating can take a variety of forms, for example one approach is to “warm-

start” a static clustering algorithm on G(t), such as GenLouvain [34], with C(t−1), thus making

it likely that the C(t) found will be close to C(t−1). Another set of approaches, referred to

in [77] as “Informed Community Detection by Multi-Objective Optimization”, seeks to find

C(t) by balancing the competing goals of finding a clustering which fits the current snapshot

and finding a clustering which is not too dissimilar to that found for the previous snapshot.

Loosely speaking, such methods use a measure of (static) cluster quality F (C, G(t)), such

61

as normalized cut (see Definition 1.2.5) and add a regularizing term H(C, G(t−1)) which

penalizes potential clusterings of G(t) that deviate too much from recent history. One then

finds an optimal clustering of G(t), namely C(t), as:

C(t) = argmin
(
F (C, G(t)) + αH(C, G(t−1))

)
Two such regularizing terms are suggested in [22]. The first, which they call HPCQ for

Preserving Cluster Quality penalizes C if it is also not a decent clustering for G(t−1). That

is, HPCQ(C) = F (C, G(t−1)) where F is the same static measure of cluster quality as before.

The second penalizes C if the constituent clusters of C, namely C1, . . . , Ck, differ from

C
(t−1)
1 , . . . , C

(t−1)
k . They term this function HPCM for Preserving Cluster Membership and

define it using the chi-squared statistic:

HPCM(C, C(t−1)) = −
k∑
a=1

k∑
b=1

∣∣∣C(t−1)
a ∩ Cb

∣∣∣∣∣∣C(t−1)
a

∣∣∣ |Cb| (3.1)

In both cases the parameter α needs to be specified by the user.

Another important sub-category of Temporal Trade Off methods are the so-called

“Informed Community Detection by Network Smoothing” approaches. Emblematic of such

approaches is the AFFECT paradigm, introduced in [92]. In this paper, the authors suppose

that at each time step the adjacency matrix can be decomposed as A(t) = Ψ(t) + N (t)

where Ψ(t) is an unknown, “true” weighted adjacency matrix while N (t) is a matrix of

zero-mean Gaussian noise. If Ψ(t) were known, the authors argue that performing any static

clustering on Ψ(t) instead of A(t) would result in optimal results. Of course Ψ(t) is not

known, hence the authors suggest using an estimator Ψ̂(t) instead. If one only had access

to a single snapshot G(t) then Ψ̂(t) = A(t) would be the best estimate of Ψ(t) we could hope

for, but as we have access to prior snapshots the authors propose an estimator of the form

Ψ̂(t) = α(t)Ψ̂(t−1) + (1 − α(t))A(t) where the parameter α(t) is called the forgetting factor

and the authors describe a way to determine it from the data {A(1), . . . , A(t)}. Finally, the

62

authors of [22] present two efficient algorithms, based on the normalized spectral clustering

of Shi and Malik (cf. [78] or Algorithm 2), for approximately solving Problem (3.1) for

the cases H = HPCQ and H = HPCM, which we deem EvolSpec-PCQ and EvolSpec-PCM

respectively.

Our proposed algorithm for dynamic cluster extraction, DynamicClusterPursuit, is most

similar to to Temporal Trade Off approaches to dynamic clustering.

3.1.3 Cross-Time Community Discovery methods

Methods in this category differ from the previous two in that they are all offline approaches.

That is, they require as input all T snapshots, and then perform the clustering in a single

process. Thus, a key distinguishing feature of such approaches is how they aggregate the

snapshots G(1), . . . , G(T). We mention the multislice approach of Mucha, Porter and collabo-

rators which stitches the snapshots together into a single network by connecting each node in

one snapshot to itself in every other snapshot. One can vary the weight of these “interslice”

edges, which allows one to place more or less importance on historical trends. A multislice

version of modularity is then defined (see [69] for the definition) and a clustering which

maximizes this modularity is then sought. We refer the reader to the report [69] for further

details. As the focus in this chapter is on online dynamic clustering, we shall have little more

to say about this category of approaches in the sequel.

3.2 Probabilistic Models of Dynamic Random Graphs

We remind the reader of the definition of the Stochastic Block Model, as introduced in §1.2.1.

We alter the notation slightly so as to emphasize the role of the clustering C.

Definition 3.2.1. Let C = {C1, . . . , Ck} denote a partition of the vertex set V and let

P ∈ Rk×k be a non-negative matrix. We say that G is drawn from the stochastic block

63

model SBM(C, P) (and write G ∼ SBM(C, P)) if, for every pair of vertices i, j with i ∈ Ca

and j ∈ Cb the edge {i, j} is inserted independently with probability Pab.

There exist several extensions of the Stochastic Block Model to the setting of dynamic

graphs, all under the name ‘Dynamic Stochastic Block Model’ (see [93, 75, 91, 48]). Here we

shall use the model introduced by Yang et al in [93].

Definition 3.2.2. Fix an initial clustering C(1), the number of time steps T , a connection

probability matrix P and a cluster-switching probability matrix Q, which is required to be

doubly stochastic. We say that the sequence of snapshots G = {G(1), . . . , G(T)} is drawn

from the Dynamic Stochastic Block Model DSBM(C(1), P,Q, T) if:

1. G(1) ∼ SBM(C(1), P).

2. For each 2 ≤ t ≤ T and every 1 ≤ a ≤ b ≤ k vertex i ∈ C(t−1)
a is placed in C

(t)
b with

probability Qab. Then G(t) ∼ SBM(C(t), P).

In [75, 91] models are proposed where the connection probability matrix P is allowed to

change in time, while in [90, 48] a dynamic model is explored that allows for mixed cluster

membership at each time step. Models which allow for the vertex set V to change are also

possible. In analogy with the symmetric stochastic block model introduced in §1.2.1, we

define:

Definition 3.2.3. If G ∼ DSBM(C(1), P,Q, T) with Paa = p for all a ∈ [k] and Pab = q

for all a 6= b, and Qaa = 1 − ε for all a ∈ [k] while Qab = ε/(k − 1) for a 6= b and

|C(1)
1 | = |C(1)

2 | = . . . = |C(1)
k | = n/k we say that G is drawn from the Symmetric Dynamic

Stochastic Block Model, and write G ∼ SDSBM(n, k, p, q, ε, T)

This is essentially the model considered in [43]. Note that the cluster switching probabil-

ities in Definition 3.2.3 are chosen so that the sizes of the clusters remain relatively stable.

In fact:

64

Theorem 3.2.4. Let G ∼ SDSBM(n, k, p, q, ε, T). Then for each a n
(t)
a := |C(t)

a | is a random

variable with E
[
n

(t)
a

]
= n/k.

Proof. By the law of iterated expectation:

E
[
n(t)
a

∣∣n(1)
a

]
= E

[
E
[
n(t)
a

∣∣n(2)
a , n(1)

a

]∣∣n(1)
a

]
= E

[
E
[
E
[
n(t)
a

∣∣n(3)
a , n(2)

a , n(1)
a

]∣∣n(2)
a , n(1)

a

]∣∣n(1)
a

]
= . . . = E

[
E
[
. . .E

[
n(t)
a

∣∣n(t−1)
a , . . . , n(1)

a

]∣∣. . .]∣∣n(1)
a

]
To unpack this, observe that for any s:

E
[
n(s)
a

∣∣n(s−1)
a , . . . , n(1)

a

]
= E

[
n(s)
a

∣∣n(s−1)
a

]
= (1−ε)n(s−1)

a +
ε

k − 1
(n−n(s−1)

a) =
εn

k − 1
+(1− kε

k − 1
)n(s−1)

a

(3.2)

It follows that:

E
[
n(t)
a

∣∣n(1)
a

]
= E

[
. . .E

[
εn

k − 1
+ (1− kε

k − 1
)n(t−1)

a

∣∣∣∣n(t−1)
a

]
. . .

∣∣∣∣n(1)
a

]
= E

[
. . .E

[
εn

k − 1
+ (1− kε

k − 1
)

(
εn

k − 1
+ (1− kε

k − 1
)n(t−2)

a

)∣∣∣∣n(t−2)
a

]
. . .

∣∣∣∣n(1)
a

]
= E

[
. . .E

[(
1 + (1− kε

k − 1
) + (1− kε

k − 1
)2

)
εn

k − 1
+ (1− kε

k − 1
)2n(t−2)

a

∣∣∣∣n(t−2)
a

]
. . .

∣∣∣∣n(1)
a

]
Continuing in this fashion we observe a geometric sequence developing. So:

E
[
n(t)
a

∣∣n(1)
a

]
=

εn

k − 1

t−1∑
j=0

(
1− kε

k − 1

)j
+

(
1− kε

k − 1

)t−1

n(1)
a

=
εn

k − 1

1−
(
1− kε

k−1

)t−1

kε
k−1

+

(
1− kε

k − 1

)t−1
n

k

=
n

k

(
1−

(
1− kε

k − 1

)t−1
)

+
n

k

(
1− kε

k − 1

)t−1

=
n

k

However tail bounds on the cluster sizes |C(t)
a | seem surprisingly hard to prove. In order

to analyze the probability of success of the DCP-Thresh algorithm in §3.3.2, we introduce

a further simplification that guarantees that the cluster sizes are constant (i.e. not just

constant in expectation):

65

Definition 3.2.5. We say that G is drawn from the Constrained Dynamic Stochastic Block

Model CDSBM(n, k, p, q, ε, T) if

1. C(1) is such that |C(1)
a | = n/k for all a ∈ [k].

2. G(1) ∼ SSBM(C(1), p, q).

3. For each 2 ≤ t ≤ T and all a, b ∈ [k] with a 6= b precisely ε|C(t−1)
a |/(k − 1) vertices are

selected uniformly at random from C
(t−1)
a to be moved to C

(t)
b . The vertices in C

(t−1)
a

which are not selected in this manner are also placed in C
(t)
a

Remark 3.2.6. The upshot of this rather convoluted construction is that the cluster sizes

are constant: |C(t)
a | = n/k for all t. Moreover, for every t, and every a, |C+

a | = |C−a | = εn/k.

It is also of interest to have a model of weighted dynamic graph. Several approaches use

Dynamic Gaussian Mixture Models, for example [19]. We mention also the model of Xu,

Kliger and Hero [91] alluded to in §3.1.2, where the adjacency matrix A is modeled by a

block-constant matrix Ψ(t) plus a zero mean Gaussian “noise” matrix N (t).

3.3 Dynamic cluster pursuit

In this section we present three algorithms for the dynamic cluster extraction problem.

Without loss of generality, we shall assume that the cluster of interest is C
(t)
1 . At a

high level, our algorithms work by approximating the cluster change indicator vector:

1δC1 = 1
C

(t)
1
− 1

C
(t−1)
1

. If we denote C+
1 = C

(t)
1 \ C

(t−1)
1 and C−1 = C

(t−1)
1 \ C(t)

1 then equiva-

lently 1δC1 = 1C+
1
− 1C−1 . We recall the following theorem from §1.2.2:

Theorem 3.3.1. Let C1, . . . , Ck denote the connected components of a graph G. Then the

cluster indicator vectors 1C1 , . . . ,1Ck form a basis for the kernel of L.

As in the analysis of SingleClusterPursuit, we decompose each G(t) into an edge-

disjoint union of subgraphs Gin,(t) and Gout,(t) where V in,(t) = V out,(t) = V (t) but Ein,(t)

66

contains only the edges in E(t) between vertices in the same cluster while Eout,(t) contains

only edges between vertices in different clusters. We may further write L(t) = Lin,(t) + M (t).

If G has well-defined clusters we may assume that ‖M (t)‖2 is small relative to ‖Lin,(t)‖2. As

in the development of SingleClusterPursuit, we observe that:

Remark 3.3.2. If C
(t)
1 , . . . , C

(t)
k are the clusters of G(t), then they are the connected com-

ponents of Gin,(t). In particular Lin,(t)1
C

(t)
1

= 0 for all t.

Now write 1
C

(t)
1

= 1
C

(t−1)
1

+ 1δC1 . From Remark 3.3.2 it follows that:

Lin,(t)
(
1
C

(t−1)
1

+ 1δC1

)
= 0⇒ Lin,(t)1δC1 = −Lin,(t)1

C
(t−1)
1

(3.3)

For future use, define yin,(t) = −Lin,(t)1
C

(t−1)
1

and and y(t) := −L(t)1
C

(t−1)
1

= yin,(t) +

e(t) where e(t) := −M (t)1
C

(t−1)
1

. From (3.3) it follows that, in principle, one might recover

1δC1 by solving the linear system Lin,(t)x = yin,(t) but of course knowing Lin,(t) and yin,(t)

presupposes that one knows C
(t)
1 , . . . , C

(t)
k , which is what we are trying to find. However, as

was the case for SingleClusterPursuit, we shall show that L(t)x = −y(t) is a sufficiently

good proxy and all three variants of Dynamic Cluster Pursuit that we will present work by

solving this linear system. The simplest of the three, DCP-Thresh approximates the signed

support of 1δC1 by considering only the values of y(t). DCP-Thresh is also the only variant

for which we are currently able to provide theoretical guarantees (see Theorem 3.3.3) but

numerical experiment reveals it to be the least robust to noise. On the other hand DCP-OMP is

experimentally the most robust to noise, but requires an estimate of the number of vertices

switching to and from C1 at the t-th time step. The final variant, DSCP-BP does not require

any user specified parameters, but is slower and less accurate than DCP-OMP (although still

more accurate than DSCP-Thresh).

67

3.3.1 DCP-Thresh

Let us first analyze a deceptively simple approach to determining 1δC1 . Observe that if

i ∈ C(t−1)
1 then:

y
(t)
i = −1 +

1

d
(t)
i

∑
j∈C(t−1)

1

A
(t)
ij = −1 +

1

d
(t)
i

∑
j∈C(t)

1

A
(t)
ij −

∑
j∈C+

1

A
(t)
ij +

∑
j∈C−1

A
(t)
ij


if in fact i ∈ C(t−1)

1 ∩ C(t)
1 then

∑
j∈C(t)

1

A
(t)
ij = d

in,(t)
i and of course

∑
j∈C+

1

A
(t)
ij ≤ |C+

1 |. Recalling

the definition r
(t)
i = d

out,(t)
i /d

in,(t)
i ≥ d

out,(t)
i /d

(t)
i we get that:

− r(t)
i −

|C+
1 |

d
(t)
i

≤ y
(t)
i ≤ 0 (3.4)

(the upper bound follows trivially as
∑

j∈C(t−1)
1

A
(t)
ij ≤ d

(t)
i).

On the other hand, if i ∈ C(t−1)
1 \C(t)

1 = C−1 then
∑
j∈C(t)

1

A
(t)
ij ≤ d

out,(t)
i and

∑
j∈C−1

A
(t)
ij ≤ |C−1 |

so:

− 1 ≤ y
(t)
i ≤ −1 + r

(t)
i +

|C−1 |
d

(t)
i

(3.5)

The point is that if i ∈ C−1 then y
(t)
i is close to −1, whereas y

(t)
i is close to 0 if there is no

change in the cluster membership of i, that is i ∈ C(t−1)
1 ∩ C(t)

1 . This holds assuming that

r
(t)
i , |C+

1 | and |C−1 | are sufficiently small. On the other hand, if i /∈ C(t−1)
1 then:

y
(t)
i =

1

d
(t)
i

∑
j∈C(t−1)

1

A
(t)
ij =

1

d
(t)
i

∑
j∈C(t)

1

A
(t)
ij −

∑
j∈C+

1

A
(t)
ij +

∑
j∈C−1

A
(t)
ij


So a similar calculation for i /∈ C(t−1)

1 gives that:

0 ≤ y
(t)
i ≤ r

(t)
i +

|C−1 |
d

(t)
i

if i /∈ C(t−1)
1 and i /∈ C(t)

1 (that is, i /∈ C(t−1)
1 ∪ C(t)

1) (3.6)

1− r(t)
i −

|C+
1 |

d
(t)
i

≤ y
(t)
i ≤ 1 if i ∈ C(t)

1 \ C
(t−1)
1 = C+

1 (3.7)

which means that again y
(t)
i ≈ 0 if there is no change in the cluster membership of i

whereas y
(t)
i ≈ 1 if i ∈ C+

1 . This leads us to Algorithm 8.

68

Algorithm 8 DSP-Thresh

Input: Adjacency matrix A(t) and cluster C(t−1).
(1) Compute L(t) and y(t) = −L(t)1

C
(t−1)
1

.

(2) Let C#,+ = {i ∈ [n] : y
(t)
i > 0.5} and C#,− = {i ∈ [n] : y

(t)
i < −0.5}

Output: C#,(t) :=
(
C(t−1) \ C#,−) ∪ C#,+

Using a threshold value of 0.5 in Algorithm 8 is not particularly vital—any other value

in (0, 1) could be used.

3.3.2 Analysis of DCP-Thresh

The Thresholding rule in Step 2 of 8 will succeed as long as y
(t)
i > 0.5 > y

(t)
j for all i ∈ C+

1

and j ∈ C(t)
1 ∩ C

(t−1)
1 and y

(t)
i < −0.5 < y

(t)
j for all i ∈ C−1 and j /∈ C(t)

1 ∪ C
(t−1)
1 . In simple

cases one can guarantee that this is the case.

Theorem 3.3.3. Let G ∼ CDSBM(n, k, p, q, ε, T) with parameters p = ω log(n0)/n0, q =

b log(n)/n, ε ≤ ω log(n0)/2n0 and k constant. Here ω is any function such that ω →∞ while

b is a constant. Assuming C
(t−1)
1 is known, Algorithm 8 returns C

#,(t)
1 = C

(t)
1 , for sufficiently

large n, with probability 1− o(1).

Proof. From equations (3.4), (3.5), (3.6) and (3.7) as well as the discussion above, we see

that the conditions for success are met if r
(t)
i + |C−1 |/d

(t)
i < 0.5 and r

(t)
i + |C+

1 |/d
(t)
i < 0.5 for

all i ∈ [n]. By construction, G(t) ∼ SSBM(n, k, p, q), hence by Corollary 2.2.6 of Chapter 2

r
(t)
max = o(1). By Corollary 2.2.5 of Chapter 2, d

(t)
min ≥ d

in,(t)
min ≥ (1 − o(1))ω log(n0) also with

probability 1 − o(1). By our definition of the constrained dynamic stochastic block model,

|C+
1 | = |C−1 | = εn0, thus:

max
{
r

(t)
i + |C−1 |/d

(t)
i , r

(t)
i + |C+

1 |/d
(t)
i

}
= r(t)

max +
εn0

d
(t)
min

= o(1) + (1 + o(1))
εn0

ω log(n0)

We may take the o(1) terms to be arbitrarily small, hence this quantity will be less than 0.5,

for large enough n, if ε <
ω log(n0)

2n0

.

The important thing to take away from Theorem 3.3.3 is that Algorithm 8 will work only

when ε is of the same order as p.

69

3.3.3 DSCP-OMP and DSCP-BP

We now present a more refined approach to approximating 1δC1 . As we are assuming not too

many vertices change cluster at each time step, 1δC1 is sparse. With yin,(t) := −Lin,(t)1
C

(t−1)
1

as before, we may set up two sparse recovery problems:

argmin
x∈Rn

‖x‖1 s.t. Lin,(t)x = yin,(t) (3.8)

or, if an upper bound ‖1δC1‖0 ≤ s is known:

argmin
x∈Rn

‖Lin,(t)x− yin,(t)‖2 s.t. ‖x‖0 ≤ s (3.9)

Of course in practice we do not have access to Lin,(t). But as in the development of

SingleClusterPursuit this suggests that we might be able to get away with using L(t) and

y(t) in place of Lin,(t) and yin,(t). That is, we consider the sparse approximation problems:

argmin
x∈Rn

‖x‖1 s.t. ‖L(t)x− y(t)‖2 ≤ ε (3.10)

and

argmin
x∈Rn

‖L(t)x− y(t)‖2 s.t. ‖x‖0 ≤ s (3.11)

Thus we propose the following approach to dynamic cluster extraction:

1. Solve Problem (3.10) using Basis Pursuit or (3.11) using OMP to obtain x#.

2. Let C#,+ = {i ∈ [n] : x#
i > 0} and C#,− = {i ∈ [n] : x#

i < 0}

3. Return C#,(t) :=
(
C(t−1) \ C#,−) ∪ C#,+

Step 2 above is not particularly robust. In particular, if we do not know exactly the

sparsity of 1δC1 (which is almost certainly the case in real life), then taking s to be an

overestimate of ‖1δC1‖0 we expect x# to have “noise” components that are close to zero,

and should be ignored. This suggests that one should pick a threshold ρ ∈ (0, 1) and replace

Step 2 with the rule:

C#,+ = {i ∈ [n] : x#
i > ρ} and C#,− = {i ∈ [n] : x#

i < −ρ} (3.12)

70

When OMP is used in Step 1 we have had more success in practice letting S = supp(x#), then

solving the following (box-constrained) integer least squares problem:

z# = argmin
x∈{−1,0,1}s

‖L(t)
S x− y(t)‖2 (3.13)

and then taking C#,+ = {i ∈ [n] : z#
i = 1} and C#,− = {i ∈ [n] : z#

i = −1}. We

formalize this discussion into two algorithms: Dynamic Cluster Pursuit with OMP (DCP-OMP)

and Dynamic Cluster Pursuit with Basis Pursuit (DCP-BP). Note that in the pseudocode for

DCP-OMP, one should use either Step (3.a) or Step (3.b).

Algorithm 9 DCP-OMP

Input: Adjacency matrix A(t) and cluster C(t−1). Parameter s and possibly parameter ρ.
(1) Compute L(t) and y(t).
(2) Solve (3.11) using OMP to obtain x#.
(3.a) Solve (3.13) to obtain z# and let C#,+ = {i ∈ [n] : z#

i = 1} and C#,− = {i ∈ [n] :
z#
i = −1}.

(3.b) Let C#,+ = {i ∈ [n] : x#
i > ρ} and C#,− = {i ∈ [n] : x#

i < −ρ}
Output: C#,(t) :=

(
C(t−1) \ C#,−) ∪ C#,+

Algorithm 10 DCP-BP

Input: Adjacency matrix A(t) and cluster C(t−1). Noise parameter η and threshold param-
eter ρ ∈ (0, 1).
Step 1 Compute L(t) and y(t).
Step 2 Solve (3.10) using Basis Pursuit to obtain x#.
Step 3 Let C#,+ = {i ∈ [n] : x#

i > ρ} and C#,− = {i ∈ [n] : x#
i < −ρ}

Output: C#,(t) :=
(
C(t−1) \ C#,−) ∪ C#,+

The theoretical analysis of Algorithms 9 and 10 is significantly more complicated than

the analysis of Algorithm 8. Essentially, the noise term e(t) is too large in the `2 norm to use

deterministic Compressive Sensing performance guarantees, and not Gaussian enough to use

probabilistic ones. However, both algorithms work excellently in the experimental setting,

as demonstrated in §3.4. We leave their analysis to future work.

71

3.4 Experimental Results

3.4.1 Implementation of Algorithms

All algorithms were implemented in MATLAB.

DCP-OMP was implemented as described in Algorithm 9. We use a standard implementa-

tion of OMP, available at: https://www.mathworks.com/matlabcentral/fileexchange/

32402-cosamp-and-omp-for-sparse-recovery. For smaller problems (that is, problems

with εn0 ≤ 100) we use using the MATLAB package MILES, available at https://www.cs.

mcgill.ca/~chang/MILES.php and see also [21], to solve the integer least squares problem

(3.13). For larger problems we used the thresholding approach, with ρ = 0.5. The value of

the parameter s is case-specific.

DCP-BP was implemented as described in Algorithm 10. We solved Problem (3.10) using

the `1 minimization algorithm of [56]. Again, we take ρ = 0.5.

AFFECT was implemented using the AFFECT MATLAB toolbox, available at: https://

herogroup.engin.umich.edu/affect-matlab-toolbox. There are no parameters for this

algorithm.

EvolSpec-PCQ and EvolSpec-PCM were implemented by the author, as described in [22],

and see also §3.1.2. For both algorithms we took the parameter α = 0.5.

3.4.2 Synthetic Data Sets

We first consider graphs drawn from the symmetric dynamic stochastic block model,

SDSBM(n, k, p, q, ε, T). We fix k = 10 and T = 10 but vary the parameters n, p, q and ε to

exhibit different phenomena.

https://www.mathworks.com/matlabcentral/fileexchange/32402-cosamp-and-omp-for-sparse-recovery
https://www.mathworks.com/matlabcentral/fileexchange/32402-cosamp-and-omp-for-sparse-recovery
https://www.cs.mcgill.ca/~chang/MILES.php
https://www.cs.mcgill.ca/~chang/MILES.php
https://herogroup.engin.umich.edu/affect-matlab-toolbox
https://herogroup.engin.umich.edu/affect-matlab-toolbox

72

Experiment 1 Experiment 2 Experiment 3 Experiment 4
DCP-OMP 2.61 1.78 10.53 2.61

DCP-Thresh 0.47 0.13 0.45 0.45
AFFECT 10.10 3.22 10.16 11.47

Spec-PCQ 16.41 2.73 16.29 15.73
Spec-PCM 13.16 2.42 12.86 12.27

Table 3.1: Run time for the various dynamic clustering algorithms, in seconds. Note that
this is total run time, i.e. time taken to process all ten snapshots.

Experiment 1. We set ε = 0.05, p = 2 log2(n)/n and q = log(n)/n. The values of p and q

are as in Experiment 1 on synthetic data in Chapter 2 (see §2.6.3).

Experiment 2. Here we increase ε to 0.2 and increase p slightly to 4 log2(n)/n. We keep

q = log(n)/n and all other parameters unchanged.

Experiment 3. We set n = 2000, keep p and q as in Experiment 1 but let ε = 0.25.

Experiment 4. For the final experiment we keep n = 2000 k = T = 10 and set ε = 0.05.

However, we set p = 20 log(n)/n and q = 2 log(n)/n which is below the threshold given in

Theorem 1.3.4, thus we could not expect any static clustering algorithm to perform well on

the snapshots G(t).

The Jaccard Indices for the various clusters found are displayed in Figure 3.1. The run

times are displayed in Table 3.1. Note that we did not use DCP-BP for this experiment as we

found it to be too slow.

73

Figure 3.1: Jaccard indices for the various cluster extraction algorithms, for each snapshot.
Averaged over ten independent trials.

74

3.4.3 Real Data Sets

We construct a new data set based on U.S senate voting records. We use data available at

https://voteview.com, and our study is inspired by similar constructions using the same

raw data in [69] and [88], although our approach is distinct from theirs.

We consider U.S. senate voting records from the 87th Congress (seated on January 3rd

1961) to the 115th Congress (which ran until January 2nd 2019). In the U.S. senate, each

state is assigned two seats, which are filled by the winner of a state-wide election held once

every six years. We assign one vertex to each seat, for a total of 100 vertices (note that

the 87th Congress was the first full congress with 50 states, which explains our choice of

time window). For each congress we construct a snapshot as follows. We first construct an

auxiliary matrix B(t) ∈ R100×100 which records the number of times two given senators voted

the same way. More precisely:

B
(t)
ij = number of votes on which Senators i and j both voted “yea” or both voted “nay”

For any i ∈ [100] define:

NN(i,K) := {j ∈ [n] : Bij amongst K-largest entries in i-th row of B}

We then construct A(t) as the adjacency matrix of a symmetric unweighted K-nearest neigh-

bors graph:

A
(t)
ij =

 1 if j ∈ NN(i,K) or i ∈ NN(j,K)

0

We emphasize again that each vertex in G is associated with a senate seat, not a senator.

Thus the individual associated to a vertex may change between snapshots. In particular,

we are interested in tracking the change in political affiliation of senate seats over time. For

example, in the 87th congress Southern senate seats (i.e. Georgia, Alabama, Mississippi and

so on) were solidly Democratic but by the 115th congress were in Republican hands. Thus,

https://voteview.com

75

Figure 3.2: Results of Dynamic Clustering on the “Senate” Data set

we specify as initial cluster of interest, C
(1)
1 , the set of all senate seats held by Democratic

senators, and track the evolution of this cluster. The results are shown in Figure 3.2.

3.4.4 Analysis

As can be seen from Figures 3.1 and 3.2, DSCP-OMP outperforms the other baseline methods

almost all of the time. We remark that it runs significantly faster too, particularly when the

number of clusters is larger than 2 (for example in the synthetic experiments). In Figure

3.2 the decline in accuracy from the 87th congress to the 97th congress is largely due to

76

a realigning of ideologies between the two major American political parties thus we argue

that this is more of a feature than a bug of DCP-OMP. In particular, the clusters returned

by DSCP-OMP in the 87th-97th congress excludes Southern Democrats, who voted against

their caucus on bills such as the Civil Rights Act of 1964 (88th Congress), and includes

Republicans who voted with the Democratic majority for such bills. Thus one can argue

that the cluster tracked by DSCP-OMP is more coherent ideologically than the cluster given

by party affiliation, which we are taking as ground-truth.

Chapter 4

Shortest path distances for clustering Euclidean data

In this chapter, we return to the problem of turning a data set in Euclidean space into a

graph that was first encountered in §2.6.5. Recall that there the goal was to turn X ⊂ RD

into a graph G so that a graph-based clustering algorithm such as SingleClusterPursuit

could be used to divide X into clusters X1, . . . ,Xk. Intuitively, the data points in the same

Xa should be more “similar” than data points in different clusters. Clearly, the notion of

similarity is context dependent. The approach taken in §2.6.5, which is typical of such

problems, was to construct the (weighted) adjacency matrix of G as Aij = ϕ(‖xi − xj‖)

where ϕ is a kernel function and ‖ · ‖ represents the Euclidean metric. Here we consider

replacing ‖ · ‖ with a more general distance function, d : RD × RD → R≥0. Ideally, one

would choose d such that points in the same cluster are close with respect to d, while points

in different clusters remain distant. Thus, the choice of distance function should reflect, in

some way, our assumptions about the data X and the notion of similarity we would like the

clusters to capture.

A common assumption, frequently referred to as the manifold hypothesis (see, for

example, [36]) posits that each Xa is sampled according to some probability distribution µa

supported on a latent data manifold Ma. It is usually assumed that the dimension of each

Ma is much lower than the ambient dimension D. Although it can be shown that taking d to

be the Euclidean distance can be successful [9] for such data, data-driven distance functions

have been increasingly favored [30, 13, 23, 60].

77

78

Here we consider taking d to be a power weighted shortest path distance. We shall show,

theoretically and experimentally, that such distances provide superior performance for spec-

tral clustering, assuming the manifold hypothesis. We also provide a novel fast algorithm (a

variation of Dijkstra’s shortest path algorithm) that finds the K nearest neighbors of any

xi ∈ X , with respect to the power weighted shortest path distance, in O(K2 log(n)) time.

This represents a significant improvement over existing approaches, and makes the use of

power weighted shortest path distances practical for large data sets. This chapter represents

joint work with Steve Damelin.

The rest of the chapter is laid out as follows. In §4.1 we define p weighted shortest

path distances (p-WSPD’s), and show that they can be thought of as interpolants between

the Euclidean distance and the Longest Leg Path Distance (LLPD). In §4.2 we survey the

existing literature on p-WSPD’s, and path-based distances in general. In §?? In §4.3 we

connect p-WSPD’s with the manifold hypothesis, and show that if Xa ⊂Ma for a = 1, . . . , k

where the Ma are low dimensional manifolds then the pairwise distance between any two

points in the same cluster goes to zero, while the distance between points in different clusters

remains bounded, as the number of data points tends to infinity. §4.4 discusses the problem of

determining, for any xi ∈ X , its K nearest neighbors in a p-WSPD and also presents our new

algorithm, while in §4.5 we present some numerical results. As the focus is on demonstrating

that using p-WSPD’s provide higher classification accuracy than the Euclidean metric (‖·‖),

we stick mainly to one graph clustering algorithm, namely spectral clustering, and compare

the performance of spectral clustering with ‖ · ‖ to that of spectral clustering with a p-

WSPD for a variety of power weightings p although in §4.5.3 we experiment with combining

p-WSPD’s with SingleClusterPursuit.

79

Figure 4.1: Three sample geodesics in the power weighted shortest path distance with p =
2, for the data set ‘Three Lines’ (see §4.5). Observe how the geodesics consist of many
small hops, instead of several large hops. The total lengths of the red and green paths are
significantly smaller than the length of the blue path.

4.1 Power Weighted Shortest Path Distances

For any distinct pair xα,xβ ∈ X let γ = xα → xi1 → . . .→ xim → xβ where xi1 , . . . ,xim ∈ X

denote a path from xα to xβ through X . We shall refer to the subpaths xij → xij+1
as “legs”

or “hops” of γ. Occasionally we shall use the shorthand γ = xα xβ. By convention we

shall declare xi0 = xα and xim+1 = xβ For any p ≥ 1 define the p-weighted length of γ to be:

L(p)(γ) :=

(
m∑
j=0

‖xij+1
− xij‖p

)1/p

(4.1)

We define the p-weighted path distance from xα to xβ through X to be the minimum length

over all such paths:

d
(p)
X (xα,xβ) := min

{
L(p)(γ) : γ a path from xα to xβ through X

}
(4.2)

If γ∗ is the path achieving the minimum in Equation (4.2) we shall call it a geodesic. We do

not place any upper bound on the number of vertices involved in paths under consideration—

in principle the minimizing path could traverse all other n− 2 data points in X . Note that

80

d
(p)
X will depend on the power weighting p and the data set X . As several authors [50, 23, 7]

have noted, the distance d
(p)
X is density-dependent, so that if xα and xβ are contained in a

region of high density (i.e. a cluster) the path distance d(p)(xα,xβ) will likely be shorter

than the Euclidean distance ‖xα − xβ‖ (as long as p > 1).

It can be useful to think of γ as a path in the complete graph on n vertices with edge

weights Aij = ‖xi − xj‖p. We shall refer to such a graph as a (power-weighted) distance

graph of X .

4.1.1 Longest-Leg Path Distance

Another common path-based distance, analyzed in connection with spectral clustering in

[38, 21, 60], is the longest-leg path distance (LLPD), which we shall denote as d
(∞)
X (the

choice of this notation should become clear shortly). It is defined as the minimum, over all

paths from xi to xj through X , of the maximum distance between consecutive points in the

path (i.e. legs). Before formally defining d
(∞)
X , define, for any path γ from xα to xβ through

X , the longest-leg length of γ as:

L(∞)(γ) = max
j=0,...,m

‖xij+1
− xij‖

again we are using the convention that xi0 = xα and xim+1 = xβ. Now, in analogy with (4.2):

d
(∞)
X (xi,xj) = min

{
L(∞)(γ) : γ a path from xα to xβ through X

}
(4.3)

4.1.2 Relationship between these distances

Lemma 4.1.1. For any fixed X , we have that lim
p→∞

d(p)(xα,xβ) = d(∞)(xα,xβ) for all xα,xβ ∈

X .

Proof. First observe that for any fixed path γ from xα to xβ we have that lim
p→∞

L(p)(γ) =

L(∞)(γ). To see this, let us suppose that ‖xij∗ − xij∗+1
‖ = max

j=0,...,m
‖xij+1

− xij‖. That is,

81

xij∗ → xij∗+1
is the longest leg in γ. Then for any p:

L(p)(γ) :=

(
m∑
j=0

‖xij+1
− xij‖p

)1/p

= ‖xij∗ − xij∗+1
‖

1 +
m∑
j=0
j 6=j∗

(‖xij+1
− xij‖

‖xij∗ − xij∗+1
‖

)p
1/p

≤ ‖xij∗ − xij∗+1
‖
(
m1/p

)
and as m1/p → 1, L(p)(γ) → ‖xij∗ − xij∗+1

‖ = max
j=0,...,m

‖xij+1
− xij‖ = L(∞)(γ). Because the

operation of taking a minimum is continuous, we get that:

lim
p→∞

d(p)(xα,xβ) = lim
p→∞

min
γ

{
L(p)(γ)

}
= min

γ

{
lim
p→∞

L(p)(γ)

}
= min

γ

{
L(∞)(γ)

}
= d(∞)(xα,xβ)

Lemma 4.1.2. For all xα,xβ ∈ X , d(1)(xα,xβ) = ‖xα − xβ‖

Proof. d(1) is defined as a minimum over all paths from xα to xβ through X , and in particular

the one hop path γα→β = xα → xβ is such a path. We claim it is the shortest such path as

for any other path γ = xα → xi1 → . . .→ xim → xβ by repeated applications of the triangle

inequality:

L(1)(γα→β) = ‖xα − xβ‖ = ‖xα −
m∑
j=1

(xij − xij)− xβ‖

≤
m∑
j=0

‖xij − xij+1
‖ = L(1)(γ)

Hence the d
(p)
X can be thought of as interpolating between Euclidean distance and longest-

leg path distance.

4.1.3 Computational Issues

The use of shortest path type distances for clustering has typically been hindered by

the high computational cost of computing shortest paths. Indeed, computing the shortest

82

path distance between all pairs xα,xβ using Dijkstra’s algorithm naively requires O(n3)

operations—clearly infeasible for large data sets. But, when one is using shortest paths in

conjunction with clustering this is inefficient, as we typically only use the distances between

xα and its K Nearest Neighbors. In §4.4 we introduce a modified version of Dijkstra’s

algorithm (Algorithm 12) that computes the K-nearest-neighbors of a given vertex in any

p-WSPD in O(K2 log(n)) operations, assuming that nearest neighbors queries, with respect

to the Euclidean distance, can be done efficiently which is the case when the Xa are sampled

from low dimensional manifolds. It follows that one can find the K nearest neighbors of all

xα ∈ X in O(K2n log(n)) operations, a more reasonable time.

4.2 Prior Work

The idea of using p-WSPD’s for clustering was proposed in [86], and further explored in

[74]. More generally, shortest path distances are a core part of ISOMAP [82], although we

emphasize that here not all paths through X are considered—first a K-Nearest Neighbors

graph G(K) is computed from X and only paths in this graph are admissible. We also mention

[7] for some cautionary results on using the shortest path distance on the unweighted K-NN

graph when the density with respect to which points are sampled is non-uniform. Finally,

several recent papers consider the use of LLPD for clustering, for example [60].

The works most similar to ours are [13] and [23]. In [13] p-WSPD’s are proposed for

semi-supervised learning, and a fast Dijkstra-style algorithm is provided. However their

set-up is fundamentally different to ours, as their focus is on finding, for every x ∈ X ,

its nearest neighbor, in a p-WSPD, in some set of labeled data points L. Moreover, they

only consider semi-supervised methods, specifically nearest-neighbor classification, and do

not provide any quantitative results on the asymptotic behaviour of the lengths of power

weighted shortest paths. In [23] the p-WSPD with p = 2 is studied, and some interesting

83

connections between this distance and the nearest-neighbor geodesic distance are discovered.

However, the applications of this distance to clustering is not explicitly explored.

On the computational side, we are unaware of any prior mention of Algorithm 12 in the

literature, although similar algorithms, which solve slightly different problems, are presented

in [44], [66] and [13]. As mentioned above, the algorithm presented in [13] is concerned with

finding, for all x ∈ X , the nearest neighbor of x with respect to a p-WSPD in a set of labeled

data L and has run time O(n log(n)). It does not seem possible to extend it to finding K

path nearest neighbors. The algorithm of [44] is formulated for any graph G = (V,E) (i.e.

not just graphs obtained from data sets X ⊂ RD) and as such is not well-adapted to the

problem at hand. In particular, it has run time O(K(n log(n) + |E|)). Because the distance

graph obtained from X is implicitly complete, |E| = O(n2) and this results in a run time

proportional to Kn2, which is infeasible for large data sets. Finally, the algorithm presented

in [66], although adapted to the situation of distance graphs of data sets, actually solves a

slightly different problem. Specifically they consider finding the K1 path nearest neighbors of

each x ∈ X in a K2 Euclidean nearest neighbors graph of X . As such, it is not clear whether

the set of path nearest neighbors produced by their algorithm are truly the p-WSPD nearest

neighbors in X . Finally we mention that our approach is “one at a time”, whereas the other

three algorithms mentioned are “all at once”. That is, our algorithm, given x ∈ X , finds

the K p-WSPD nearest neighbors x1, . . . ,xk ∈ X . This can then be iterated to find the

p-WSPD nearest neighbors of all points in X . In contrast, “all at once” algorithms directly

return the sets of K nearest neighbors for each x ∈ X . Thus it is possible our algorithm

will have applications in other scenarios where the p-WSPD nearest neighbors of only some

small subset of points of X are required.

84

4.3 Analysis of shortest path distances in the multi-manifold setting

One of the most useful aspects of p-WSPD’s, when applied to clustering problems, is that

they tend to “squeeze” points in the same cluster together, while (hopefully) keeping points

in different clusters separated. Here we make this more precise. Specifically we show that for

any p > 1 if the data comes from the model described in §4.3.1 then:

• min
xα∈Xa,xβ∈Xb

d
(p)
X (xα,xβ) ≥ δ > 0 (see Lemma 4.3.1)

• max
a∈[k]

max
xα,xβ∈Xa

d
(p)
X (xα,xβ) → 0 (see Theorem 4.3.5). In fact, we can specify the rate at

which this quantity goes to zero.

Note that in this section it is sometimes necessary to enlarge our definition of p-WSPD

to allow for paths between x,y ∈ RD that are not necessarily in X (and points that are not

in X shall be denoted without a subscript). Thus d
(p)
X (x,y) is technically defined as, using

the notation of §4.1, d
(p)
X∪{x,y}(x,y).

4.3.1 Data Model

Let us be more precise about the sorts of data sets we are considering. We shall assume that

X can be partitioned into k clusters X = X1∪X2∪. . .∪Xk ⊂ RD which are a priori unknown.

We posit that for each Xa there is a smooth, compact, embedded manifold Ma ↪→ RD and

further that Xa is sampled fromMa according to a probability density function µa supported

onMa. We assume that µmin
a := min

x∈Ma

µa(x) > 0. We further assume that the data manifolds

are fairly well separated, that is:

dist(Ma,Mb) = min
x∈Ma,y∈Mb

‖x− y‖ ≥ δ > 0 for all, 1 ≤ a < b ≤ k (4.4)

For future use let us gather some results and notation relating to our data model. Let

|Xa| = na and let ga denote the restriction of the Euclidean metric to Ma. Note that

(Ma, ga) is now a compact Riemannian manifold. For any x,y ∈Ma let

dista(x,y) := inf
η

∫ 1

0

√
ga(η

′(t), η′(t))dt

85

denote the metric induced by ga, where the infimum is over all piecewise smooth curves

η : [0, 1]→Ma with η(0) = x and η(1) = y. Define the diameter ofMa to be the supremum

over all distances between points in Ma:

diam(Ma) := sup
x,y∈Ma

dista(x,y)

Since each Ma is compact this supremum is in fact a maximum and diam(Ma) is finite.

It is sometimes of interest to extend this model such that the density functions µa are

supported “near”, but not necessarily on, theMa. In [9] for example, this is done by allowing

µa to be supported on a tubular neighborhood of Ma, defined as:

B(Ma, τ) =

{
x ∈ RD : min

y∈Ma

‖x− y‖2 ≤ τ

}
.

for some parameter τ > 0. We leave the extension of our results to such models to future

work.

4.3.2 Paths between points in different clusters

Here we prove that power weighted path distances maintain a separation between points in

different clusters.

Lemma 4.3.1. Let ε2 denote the minimal distance between points in different clusters. That

is:

ε2 := min
a,b∈[k]
a6=b

min
xα∈Xa
xβ∈Xb

d
(p)
X (xα,xβ)

Then ε2 ≥ δ with δ as defined in (4.4).

Proof. For any xα ∈ Xa and xβ ∈ Xb let γ = {xi1 , . . . ,xim} be any path from xα to xβ

through X , where again we are using the convention that xi0 := xα and xim+1 = xβ. If

xα ∈ Xa and xβ ∈ Xb there must exist (at least one) j∗ ∈ [m] such that xij∗ ∈ Xa while

xij∗+1
∈ Xb. By the assumptions on the generative model, Xa ⊂Ma and Xb ⊂Mb and so:

86

‖xij∗+1
− xij∗‖

p ≥ (dist(Ma,Mb))
p = δp

thus:

L(p)(γ) :=

(
m∑
j=0

‖xij+1
− xij‖p

)1/p

≥
(
‖xij∗+1

− xij∗‖
p
)1/p ≥ δ.

Because this holds for all such γ:

d
(p)
X (xα,xβ) := min

γ

{
L(p)(γ)

}
≥ δ

and because this holds for all such xα and xβ:

min
xα∈Xa,xβ∈Xb

d
(p)
X (xα,xβ) ≥ δ

Finally, this holds for all a 6= b, yielding the lemma.

4.3.3 Asymptotic Limits of power weighted shortest paths

For all a ∈ [k], define d
(p)
Xa(xα,xβ) as the minimum p-weighted length of paths from xα to xβ

through Xa (i.e. we are excluding paths that may pass through points in X \ Xa). Because

Xa ⊂ X , it follows that d
(p)
X (xα,xβ) ≤ d

(p)
Xa(xα,xβ)1. In this section we address the asymptotic

behaviour of the power weighed shortest path distances d
(p)
Xa(xα,xβ). Here is where we make

critical use of the main theorem of [50], which we state as Theorem 4.3.2. Recall that µa is

the probability density function with respect to which Xa is sampled fromMa, and that by

assumption µmin
a := min

x∈Ma

µa(x) > 0. Define the following power-weighted geodesic distance

on Ma:

dist(p)
a (x,y) = inf

η

∫ 1

0

√
ga(η

′
t, η

′
t)

µa(ηt)p−1/da
dt (4.5)

where here the infimum is over all piecewise smooth paths η : [0, 1] → Ma with η(0) = x

and η(1) = y. As in §4.3.1, for the Riemannian manifold (Ma, ga) let dista(x,y) denotes the

1More generally the reader is invited to check that for any Y ⊂ X we have that d
(p)
X (xα,xβ) ≤

d
(p)
Y (xα,xβ).

87

geodesic distance from x to y on Ma with respect to ga.

In order to bound d
(p)
Xa(xα,xβ) we study an auxiliary shortest path distance d

(p)
Ma

(·, ·).

This distance will also be defined as a minimum over p-weighted path lengths, but instead

of measuring the length of the legs using the Euclidean distance ‖ · ‖, we measure them with

respect to the intrinsic metric dista(·, ·):

d
(p)
Ma

(x,y) := min
γ

(
m∑
j=0

dista(xij+1
,xij)

p

)1/p

(4.6)

where again the min is over all paths γ from x to y through Xa.

Theorem 4.3.2 (Theorem 1 in [50] 2). Let Ma be a compact Riemannian manifold, and

assume that Xa is drawn from Ma with probability distribution µa. Let na := |Xa|. For all

na, let rna := n
(1−p)/pda
a Then for any fixed ε > 0:

P

 max
x,y∈Ma

dista(x,y)≥rna

∣∣∣∣∣∣
(
d

(p)
Ma

(x,y)
)p

n
(1−p)/da
a dist(p)

a (x,y)
− C(da, p)

∣∣∣∣∣∣ > ε

 = ona(1) (4.7)

where C(da, p) is a constant depending only on da and p, but not on na. Note that the

dependency on ε is contained in the ona(1) term.

Corollary 4.3.3. With assumptions as in Theorem 4.3.2,

max
xα,xβ∈Xa

(
d

(p)
Ma

(xα,xβ)
)
≤ Can

(1−p)/pda
a

with probability 1− ona(1), where Ca is a constant depending on da, p, ε, µ
min
a and diam(Ma)

but not on na.

Proof. From Theorem 4.3.2 there are two cases to consider:

1. dista(xα,xβ) < rna = n
(1−p)/pda
a , or

2There is a slight notational discrepancy here. What is called d
(p)
X (xα,xβ) in [50] is our(

d
(p)
Ma

(xα,xβ)
)p

88

2. dista(xα,xβ) ≥ rna .

In the first case, the one leg path γα→β = xα → xβ is a path through Xa, hence:

d
(p)
Ma

(xα,xβ) ≤ (dista(xα,xβ)p)1/p < n(1−p)/pda
a

and so with probability 1

max
xα,xβ∈Xa

dista(xα,xβ)≤rna

d
(p)
Ma

(xα,xβ) ≤ n(1−p)/pda
a (4.8)

For the second case, recall that µmin
a := inf

x∈Ma

µa(x). By assumption (see §4.3.1) µmin
a > 0.

From the definition of dist(p)
a (x,y) (see (4.5))

dist(p)
a (x,y) ≤ 1

(µmin
a)(p−1)/da

inf
η

∫ 1

0

√
ga(η

′
t, η

′
t)dt =

1

(µmin
a)(p−1)/da

dista(x,y) (4.9)

BecauseMa is compact and embedded, its diameter (see §4.3.1) is finite, and dista(x,y) ≤

diam(Ma). Because Xa ⊂Ma:

max
xα,xβ∈Xa

dista(xα,xβ)≥rna

∣∣∣∣∣∣
(
d

(p)
Ma

(xα,xβ)
)p

n
(1−p)/da
a dist(p)

a (xα,xβ)
− C(da, p)

∣∣∣∣∣∣ ≤ max
x,y∈Ma

dista(x,y)≥rna

∣∣∣∣∣∣
(
d

(p)
Ma

(x,y)
)p

n
(1−p)/da
a dist(p)

a (x,y)
− C(da, p)

∣∣∣∣∣∣
Hence from Theorem 4.3.2 and Equation (4.9), with probability 1− ona(1):

max
xα,xβ∈Xa

dista(xα,xβ)≥rna

(
d

(p)
Ma

(xα,xβ)
)p
≤ (C(da, p) + ε)n

(1−p)/da
a diam(Ma)

(µmin
a)(p−1)/da

= Can
(1−p)/da
a

⇒ max
xα,xβ∈Xa

dista(xα,xβ)≥rna

d
(p)
Ma

(xα,xβ) ≤ C̃an
(1−p)/pda
a (4.10)

where now C̃a =

(
(C(da, p) + ε)diam(Ma)

(µmin
a)(p−1)/da

)1/p

. Combining equations (4.8) and (4.10)

and redefining Ca = max{C̃a, 1} proves the corollary.

Finally, we observe that the Euclidean path distance is always smaller then the intrinsic

path distance:

Lemma 4.3.4. For any x,y ∈Ma, and for all a ∈ [k], d
(p)
Xa(x,y) ≤ d

(p)
Ma

(x,y)

89

Proof. Observe that for any x,y ∈ Ma, ‖x − y‖ ≤ dista(x,y). It follows that for any path

γ = x→ xi1 → . . .→ xim → y through Xa:
m∑
j=0

‖xij+1
− xij‖p ≤

m∑
j=0

dista(xij+1
,xij)

p

and so: (
d

(p)
Xa(x,y)

)p
= min

γ

{
m∑
j=0

‖xij+1
− xij‖p

}

≤ min
γ

{
m∑
j=0

dista(xij+1
,xij)

p

}
=
(
d

(p)
Ma

(x,y)
)p

whence the result follows.

4.3.4 Main Result

Let us now return to considering the full distance function d
(p)
X (·, ·).

Theorem 4.3.5. Let nmin := mina |Xa| and dmax = maxa dim(Ma) and define ε1 to be the

maximal distance between points in the same cluster:

ε1 := max
a∈[k]

max
xα,xβ∈Xa

d
(p)
X (xα,xβ)

Then ε1 = O(n
(1−p)/pdmax

min) with probability approaching 1 as nmin →∞. In particular, for all

p > 1, ε1 → 0 almost surely.

Proof. For any a ∈ [k], Lemma 4.3.4 and Corollary 4.3.3 give us that:

max
xα,xβ∈Xa

d
(p)
X (xα,xβ) ≤ max

xα,xβ∈Xa
d

(p)
Xa(xα,xβ) ≤ max

xα,xβ∈Xa
d

(p)
Ma

(xα,xβ) ≤ Can
(1−p)/pda
a

with probability 1 − ona(1), where the first inequality follows from the fact that Xa ⊂ X .

Taking the maximum over all a ∈ [k] yields:

max
a∈[k]

max
xα,xβ∈Xa

d
(p)
X (xα,xβ) ≤ Cmaxn

(1−p)/pdmax

min

Where the constant Cmax now depends on the geometry of the Ma (in particular their

dimension and diameter) and the probability distributions µa (in particular the minimal

values of µa) but not on the number of points per cluster, na. Finally, observe that for p > 1

we indeed have that n
(1−p)/pdmax

min → 0 as nmin →∞

90

4.4 A fast algorithm for computing K-nearest neighbors in the p-WSPD

In this section we focus on the computational issue of determining, for any xα ∈ X , the K-

nearest neighbors of xα in the p-WSPD. We start with in a slightly more general situation,

thus let G = (V,E) be a weighted graph with weighted adjacency matrix A. We shall

require all weights to be positive. Occasionally, it will prove more convenient to not fix an

ordering of the vertices, in which case A(u, v) will represent the weight of the edge {u, v}

(and again A(u, v) = 0 if there is no such edge). By γ = u → w1 → . . . → wm → v

we shall mean the path from u to v in G through w1, . . . , wm. Here, this is only valid if

{u,w1}, . . . , {wi, wi+1}, . . . , {wm, v} are all edges in G. In analogy with §4.1 we maintain the

convention that for such a path γ, w0 = u and wm+1 = v. Define the length of γ as the sum

of all its edge weights:

L(γ) :=
m∑
i=0

A(wi, wi+1)

and similarly define the longest-leg length of γ as:

L(∞)(γ) =
m

max
i=0

A(wi, wi+1)

For any u, v ∈ V define the shortest path distance as:

dG(u, v) = min{L(γ) : γ a path from u to v}

and analogously define the longest-leg path distance as:

d
(∞)
G (u, v) = min{L∞(γ) : γ a path from u to v}

Let us relate this to the discussion in previous sections. For any set of data points X =

{x1, . . . ,xn} ⊂ RD and any power weighting p ≥ 1 one can form a complete weighted graph

G on n vertices (which we referred to in §4.1 as a p-weighted distance graph of X) with edge

weights Aij = ‖xi − xj‖p. Then:

dG(vi, vj) =
(
d

(p)
X (xi,xj)

)p

91

Definition 4.4.1. Let NK,G(v) denote the set of K nearest neighbors of v ∈ V . That is,

NK,G(v) = {w1, . . . , wK} with A(v, w1) ≤ A(v, w2) ≤ . . . ≤ A(v, wK) ≤ A(v, w) for all

w ∈ V \ {w1, . . . , wK}

Definition 4.4.2. For any graph G, define a directed K-Nearest Neighbors graph G(K) with

directed edges (u, v) if v ∈ NK,G(u).

In practice we do not compute the entire edge set of G(K), but rather just compute the

sets NK,G(u) as it becomes necessary.

Definition 4.4.3. Let N dG
K,G(v) denote the set of K nearest neighbors of v, with respect to

the path distance dG, in the graph G. That is, N dG
K,G(v) = {w1, . . . , wK} and dG(v, w1) ≤

dG(v, w2) ≤ . . . dG(v, wK) ≤ dG(v, w) for all w ∈ V \ N dG
K,G(v). By convention, we take v to

be in N dG
K,G(v) as dG(v, v) = 0.

We have not specified how to break ties in the definition of NK,G(v) or N dG
K,G(v). For the

results of this section to hold, any method will suffice, as long as we use the same method

in both cases. To simplify the exposition, we shall assume henceforth that all distances are

distinct.

Let us briefly review how Dijkstra’s algorithm works. The algorithm makes use of a

data structure called a min-priority queue. The following implementation is as in [32]. The

min-priority queue operations decreaseKey, insert and extractMin have their standard

definitions (see, for example Chpt. 6 of [32]). For any vertex s ∈ V and any subset W ⊂ V ,

we shall also use the shorthand makeQueue(W, s) to denote the process of initializing a min-

priority queue with key[s] = 0 and key[v] = +∞ for all v ∈ W \ s.

Note that once u is popped in step 4 of Algorithm 11, key[u] is the shortest path distance

from s to u. The key observation is the following:

Lemma 4.4.4. Suppose that all weights are non-negative: wij ≥ 0. If ui is the i-th vertex to

be removed from Q at step 11, then ui is the i-th closest vertex to s.

92

Algorithm 11 Dijkstra

1: Input: weighted graph G, source vertex s.
2: Initialize: Q← makeQueue(V, s). Empty list S.
3: while Q is non-empty do
4: u← extractMin(Q)
5: Append (u, key[u]) to S. . Once u is extracted key[u] is shortest path length from s.
6: for v ∈ N (u) do . N (u) is the set of all vertices adjacent to u
7: tempDist← key[u] + A(u, v)
8: if tempDist < key[v] then
9: key[v]← tempDist . Update the distance from s to v if path through u is

shorter
10: end if
11: end for
12: end while
13: Output: S

Proof. See, for example, the discussion in [32].

It follows that, if one is only interested in finding the K nearest neighbors of s in the

path distance dG, one need only iterate through the ‘while’ loop 3 → 12 K times. There is

a further inefficiency, which was also highlighted in [13]. The ‘for’ loop 6–10 iterates over all

neighbors of u. The graphs we are interested in are, implicitly, fully connected, hence this

for loop iterates over all n − 1 other vertices at each step. We fix this with the following

observation:

Lemma 4.4.5. For any graph G, let G(K) denote its K-Nearest-Neighbor graph (see Defini-

tion 4.4.2). Then:

N dG
K,G(v) = N d

G(K)

G(K),K
(v) for all v

Note that in the directed graph G(K), we consider only paths that traverse each edge in the

‘correct’ direction.

Concretely: the path-nearest-neighbors in G are the same as the path-nearest neighbors

in G(K), hence one can find N dG
K,G(v) by running a Dijkstra-style algorithm on G(K) instead

93

of G. As each vertex in G(K) has a small number of neighbors (i.e. K), this alleviates the

computational burden of the ‘for’ loop 6–10 highlighted above. Before proving this lemma,

let us explain why it may seem counterintuitive. If w ∈ N dG
K,G(v) there is a path γ from v to

w that is short (at least shorter than the shortest paths to all u /∈ N dG
K,G(v)). In forming G(K)

from G, one deletes a lot of edges. Thus it is not clear that γ is still a path in G(K) (some

of its edges may now be ‘missing’). Hence it would seem possible that w is now far away

from v in the shortest-path distance in G(K). The lemma asserts that this cannot be the case.

Proof. Since the sets N dG
K,G(v) and N d

G(K)

G(K),K
(v) have the same cardinality (i.e. K), to prove

equality it suffices to prove one containment. We shall show that N dG
K,G(v) ⊂ N d

G(K)

G(K),K
(v).

Consider any w ∈ N dG
K,G(v). Let γ∗ = v → u1 → . . .→ um → w be the shortest path from v

to w. That is, L(γ∗) = min{L(γ) : γ a path from v to w}.

We claim that γ∗ is a path in G(K). If this is not the case, then there is an edge {ui, ui+1}

that is in γ∗ but (ui, ui+1) is not an edge in G(K) (we again adopt the convention that

u0 := v and um+1 := w). By the construction of G(K) this implies that there are K vertices

x1, . . . , xK that are closer to ui than ui+1. (Note that the sets {u0, . . . , ui−1} and {x1, . . . , xK}

need not be disjoint). But then the paths γj = v → u1 → . . .→ ui → xj in G are all shorter

than the path v → u1 → . . . → ui+1 and hence shorter than γ∗, as all edge weights are

assumed positive. It follows that dG(v, xj) < dG(v, w) for j = 1, . . . , K, contradicting the

assumption that w ∈ N dG
K,G(v).

Now, we claim that w ∈ N d
G(K)

G(K),K
(v). If this were not the case, there would exists K other

vertices w1, . . . , wK that are closer in the shortest-path distance dG(K) to v than w. That is,

there would be paths γ1, . . . , γK from v to w1, . . . , wK respectively that are shorter than γ.

But every path in G(K) is also a path in G, hence w1, . . . , wK are also closer to v than w in

the shortest-path distance dG. This contradicts the assumption that w ∈ N dG
G,K(v).

94

There is a final, minor, inefficiency in Algorithm 11 that we can improve upon; Q is

initialized to contain all vertices V when it is actually only neccessary to initialize it to contain

the neighbors of s. Combining these three insights we arrive at Algorithm 12. Note that we

use DecreaseOrInsert as shorthand for the function that decreases key[v] to tempDist if

tempDist < key[v] and v ∈ Q, inserts v into Q with priority key[v] = tempDist if v /∈ Q

and does nothing if v ∈ Q but tempDist ≥ key[v]. In fact, this is equivalent to inserting a

copy of v into Q with priority key[v] = tempDist, hence DecreaseOrInsert has the same

computational complexity as insert (see also [66]). Note that in this implementation the

size of Q grows by one on every iteration of the inner for loop, 10–13.

Algorithm 12 Dijkstra-with-early-stopping

1: Input: Graph G, source vertex s.
2: Output: List S containing (v, dG(s, v)) for all v ∈ N dG

G,k(s).
3: Compute NK,G(s)
4: Initialize: Q← makeQueue(NK,G(s), s). Empty list S.
5: for i = 1:k do
6: u← extractMin(Q)
7: Append (u, key[u]) to S
8: Compute NK,G(u)
9: for v ∈ NK,G(u) do

10: tempDist← key[u] + A(u, v)
11: DecreaseOrInsert(v, tempDist)
12: end for
13: end for
14: Output: S

Theorem 4.4.6. For any s and any G with positive weights, Algorithm 12 is correct.

Proof. By only using NK,G(u) in step 8, Algorithm 12 is essentially running Dijkstra’s algo-

rithm on G(K). By Lemma 4.4.4, the first K elements to be popped off the queue in line 9

are indeed the K path-closest vertices to s in the graph G(K). That is, S contains (v, dG(s, v)

for all v ∈ N d
G(K)

G(K),K
(s). By lemma 4.4.5, N d

G(K)

G(K),K
(s) = N dG

G,K(s)

95

4.4.1 Analysis of complexity

Let us determine the computational complexity of Algorithm 12. We shall remain agnostic

for the moment about the precise implementation of the min-priority queue, and hence

shall use the symbols Tin, Tdk and Tem to denote the computational complexity of insert,

decreaseKey and extractMin respectively. As discussed above, the complexity of DecreaseOrInsert

is also Tin. Let TKnn denote the cost of a K-Nearest Neighbors query in G (i.e. the cost of

determining NK,G(u), as in line 8.)

Initializing the queue in line 4 requires K insertions, for a cost of KTin. Precisely K

extractMin operations are performed, for a total cost of KTem. DecreaseOrInsert is

performed K2 times, for a cost of K2Tin. Finally K + 1 K-Nearest Neighbor queries are per-

formed, for a cost of (K+1)TKnn. This gives a total cost of KTem+(K+K2)Tin+(K+1)TKnn.

If the min priority queue is implemented using a Fibonacci heap, insert and decreaseKey

both run in constant time (i.e. Tin, Tdk = O(1)) while for extractMin Tem = O(log(|Q|))

time. |Q| never exceeds K2 + K as at most one element is added to Q during every pass

through the inner for loop 9–12, which happens K2 times. Hence Tem = O(log(k)). The value

of TKnn depends on the specifics of G. If the graph has no additional structure, finding the

K nearest neighbors of any vertex v can be done with K-calls to the Select algorithm (cf.

Chpt. 9 of [32]) for a cost of O(Kn). However, if G is the (possible p-weighted) distance graph

of a data set X ⊂ RD which is drawn from a subset M⊂ RD of intrinsically low dimension

such as a manifold (which we are assuming), and stored in an efficient data structure such

as a k-d tree [11] or a cover tree [12] then one can complete a nearest neighbor query in

O(log(n)) time, hence one can find the K nearest neighbors in O(K log(n)) time. Putting

this all together, Algorithm 12 runs in O(K log(K) + (K+K2) +K2 log(n)) = O(K2 log(n))

time. Finding N dG
G,K(v) for all v ∈ V requires running Algorithm 12 n times, for a total cost

96

of O(K2n log(n)). We remark that the time required to initialize a k-d tree for X ⊂ RD with

|X | = n is O(Dn log(n)), which is of the same order of magnitude.

4.4.2 Extension to Longest-Leg Path Distance

A small modification to Algorithm 12 allows one to compute the K nearest neighbors in the

longest-leg-path distance, simply change the ‘+’ in line 10 to a ‘max’. This guarantees that

tempDist represents the longest-leg length of the path s→ . . .→ u→ v. For completeness,

we present this algorithm below as Algorithm 13. The proof of correctness is analogous to

Theorem 4.4.6, and we leave it to the interested reader.

Algorithm 13 Dijkstra-with-early-stopping for LLPD

1: Input: Graph G, source vertex s.

2: Output: List S containing (v, dG(s, v) for all v ∈ N d∞G
G,K(v).

3: Compute NK,G(s)
4: Initialize: Q← makeQueue(NK,G(s), s). Empty list S.
5: for i = 1:k do
6: u← extractMin(Q)
7: Append (u, key[u]) to S
8: Compute NK,G(u)
9: for v ∈ NG(K)(u) do

10: tempDist← max {key[u], A(u, v)}
11: DecreaseOrInsert(v, tempDist)
12: end for
13: end for
14: Output: S

4.5 Experimental Results

4.5.1 Comparing Clustering Accuracy

In this section we verify that using a p-WSPD in lieu of the Euclidean distance does indeed

result in more accurate clustering results, at a modest increase in run time. Specifically,

we compare ‖ · ‖ to d
(2)
X , d

(10)
X and d

(∞)
X . For each distance function we employ the same

methodology as in §2.6.5, which we now recall. For notational reasons it is convenient to

denote ‖ · ‖ as d(1) (which is correct by Lemma 4.1.2).

97

• Fix parameters r = 10 and K = 15.

• For ξ = 1, 2, 10,∞, and for all i ∈ [n], define σ
(ξ)
i := d

(ξ)
X (xi,x[r,i]), where x[r,i] denotes

the r-th closest point in X to xi with respect to the distance d
(ξ)
X . Let NN(ξ)(xi, K) ⊂ X

denote the set of the K closest points in X to xi with respect to d
(ξ)
X .

• Define Ã(ξ) as: Ã
(ξ)
ij =

 exp
(
−d(ξ)
X (xi,xj)

2/σiσj

)
if xj ∈ NN (ξ)(xi, K)

0 otherwise

• Symmetrize by defining A
(ξ)
ij = max

{
Ã

(ξ)
ij , Ã

(ξ)
ji

}
For each A(ξ) we perform normalized spectral clustering as described in Ng, Jordan and

Weiss [73] using code freely available at https://www.mathworks.com/matlabcentral/

fileexchange/34412-fast-and-efficient-spectral-clustering and calculate the

accuracy by comparing the results of spectral clustering to the ground truth. We also

record the time taken to create each A(ξ) (the running times of spectral clustering with any

of the A(ξ) are all very similar).

Spectral Clustering for Synthetic Data Sets

We considered the three synthetic data sets described below. All results for synthetic data

were averaged over 100 independent trials.

Three Lines. We draw data uniformly from three horizontal line segments of length 5 in

the x-y plane, namely y = 0, y = 1 and y = 2. We draw 500 points from each line to create

three clusters. We then embed the data into R50 by appending zeros to the coordinates, and

add i.i.d. random Gaussian noise to each coordinate (with standard deviation σ = 0.14).

Three Moons. This data set is as described in [94] and elsewhere. It has three clusters,

generated by sampling points uniformly at random from the upper semi-circle of radius 1

centered at (0, 0), the lower semi-circle of radius 1.5 centered at (1.5, 0.4) and the upper

https://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-spectral-clustering
https://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-spectral-clustering

98

semi-circle of radius 1 centered at (3, 0). As for the Three Lines data set, we draw 500 data

points from each semi-circle, embed the data into R50 by appending zeros, and then add

Gaussian noise to each coordinate with standard deviation σ = 0.14.

Three Circles. Here we draw data points uniformly from three concentric circles, of radii

1, 2.25 and 3.5. We draw 222 points from the smallest circle, 500 points from the middle

circle and 778 points from the largest circle (the numbers are chosen so that the total number

of points is 1500). As before, we embed this data into R50 and add i.i.d Gaussian noise to

each component, this time with standard deviation of σ = 0.14.

Two dimensional projections of these data sets are shown in Figure 4.2, while results of

spectral clustering are shown in Table 4.1. In Table 4.2 we record the time taken to create

A(1), A(2), A(10) and A(∞) respectively.

Note that the cost of creating A(2), A(10) and A(∞) is dominated by the run time of

Algorithm 12. From §4.4.1, if T (n) denotes the run time of Algorithm 12 for a data set of size

n, we expect T (n) = C log(n)n and hence log(T (n)) = log(n)+log(log(n))+log(C). In Figure

4.3 we verify that the time required to create A(2) agrees with this asymptotic prediction by

plotting the logarithm of the time required to create A(2) for all three synthetic data sets

as the number of data points varies from n = 300 to n = 12 000 (we keep the parameters

K = 15 and r = 10 as before). We also plot the curve y = log(n) + log(log(n)) and observe

that this has the same shape as the plots of the run times.

Spectral Clustering for Real Data sets

We also considered three real data sets. We focus on a particular kind of data known to

satisfy the manifold hypothesis, namely handwritten digits.

99

A(1) A(2) A(10) A(∞)

3 Lines 67.53% 67.44% 92.41% 89.55%
3 Moons 94.60% 94.61% 96.12% 94.88%
3 Circles 52.36% 52.37% 69.91% 72.20%

Table 4.1: Classification accuracy of spectral clustering given K-NN adjacency matrices for
various distance functions. Note that A(1) represents using the Euclidean metric.

A(1) A(2) A(10) A(∞)

3 Lines 0.11 1.04 1.17 1.10
3 Moons 0.11 1.15 1.23 1.18
3 Circles 0.07 0.83 1.03 0.93

Table 4.2: Time taken to create the adjacency matrices, in seconds, for the three synthetic
data sets.

Figure 4.2: All three synthetic data sets, projected into R2. From left to right: Three Lines,
Three Moons and Three Circles.

Figure 4.3: The run time required to construct A(2), shown in logarithmic scale, for all three
synthetic data sets. This conforms closely to the expected run time of Algorithm 12, which
is O(kn log(n)).

100

A(1) A(2) A(10) A(∞)

OptDigits 91.19% 92.42% 89.89% 87.82%
USPS 65.58% 66.07% 75.41% 78.65%
MNIST 76.59% 75.85% 86.86% 85.80%

Table 4.3: Classification accuracy of spectral clustering given the K-NN adjacency matrices
constructed as described earlier, for the various distance functions. Again, note that A(1)

represents using the Euclidean metric.

A(1) A(2) A(10) A(∞)

OptDigits 3.47 7.23 7.66 7.68
USPS 47.62 62.03 58.49 59.68
MNIST 1325.64 1396.10 1404.02 1391.37

Table 4.4: Time taken to create the various adjacency matrices, in seconds.

OptDigits This data set consists of downsampled, 8 × 8 greyscale images of handwritten

digits 0−9. There are 150 images of zero, and approximately 550 images each of the remaining

digits, for a total of 5620 images.

USPS This data set consists of 16 × 16, greyscale images of the handwritten digits 0–9.

There are 1100 images per class for a total of 11 000 images.

MNIST This data set consists of 28× 28 greyscale images of the handwritten digits 0–9. We

combined the test and training sets to get a total of 70 000 images.

For all data sets, the only preprocessing that was performed was to turn the square arrays

into vectors. We averaged all results over five trials. The results are shown in Tables 4.3 and

4.4.

101

Figure 4.4: Varying p and recording the accuracy of spectral clustering on the Three Lines
data set, for three different values of the ambient dimension.

4.5.2 Varying the Power Weighting

From the analysis of §4.3 it would appear that taking p to be as large as possible always

results in the best clustering results. However, this is true only in an asymptotic sense.

For finite sample size the constants Ca, depending on the geometry of the Ma and the

distributions µa, may come into play. In Figure 4.4 we show the results of varying p from 1

to 20 for the three lines data set, this time with 300 points drawn from each cluster. We do

this for three values of the ambient dimension, D = 10, 50 and 100. As is clear, the optimal

value of p depends on the dimension3. In particular, observe that an intermediate value of p,

say p = 14, is optimal when the ambient dimension is 50 but that a smaller power weighting

(p = 2) is more appropriate when the ambient dimension is 10. When the ambient dimension

is 100, no power weighting performs well, which is likely because for such a large value of D

the noise drowns out any cluster structure.

3The observant reader will notice that we are only varying the ambient dimension, which
according to the analysis of §4.3 should have no effect. Recall however, that we are adding Gaus-
sian noise of the ambient dimension, which ‘thickens’ the data manifolds and makes their intrinsic
dimension weakly dependent on D.

102

A(1) A(2) A(10) A(∞)

0.1% 80.67% 80.55% 83.00% 87.85%
0.2% 90.25% 90.36% 88.28% 91.26%
0.3% 92.20% 92.21% 89.54% 91.82%
0.4% 93.15% 93.19% 90.62% 92.30%
0.5% 95.29% 93.42% 91.03% 92.49%

Table 4.5: Accuracy of using IteratedSingleClusterPursuit for semi-supervised classifi-
cation on MNIST. Using a p-WSPD in place of Euclidean distance results in more accurate
classification when the amount of labeled data is very small.

4.5.3 Combining p-WSPD’s with SingleClusterPursuit

We now reconsider the experiments of §2.6.6 where IteratedSingleClusterPursuit was

used for semi-supervised classification on the MNIST data set. In particular, we compare the

performance of IteratedSingleClusterPursuit using a Euclidean-distance-based K-NN

graph, namely A(1), to its performance using A(2), A(10) and A(∞). We consider the regime

where very little labeled data is available—we vary the percentage of labeled data from 0.1%

to 0.5% in increments of 0.1%. As in §2.6.6 we take R = 0.7, ε = 0.13 and t = 3. We draw Γa

uniformly at random from Ca, and for each a have |Γa| = dg|Ca|e where g varies from 0.001

to 0.005 in increments of 0.001 (in particular, for g = 0.001 we have |Γa| = 8 for all a). The

results are displayed in Table 4.5.

4.5.4 Discussion of Numerical Results

It is clear that using a p-WSPD instead of Euclidean distance increases the accuracy of

Spectral Clustering and SingleClusterPursuit on both real and synthetic data. This

agrees with the theory of §4.3, which shows that points in the same cluster are “squeezed”

together in a p-WSPD, while points in different clusters remain separated. Importantly,

the experiments of this section verify that using a p-WSPD instead of Euclidean distance

when building a K-NN graph results in a very modest increase in run time if Algorithm

103

12 is used. Indeed, on the largest data set, namely MNIST, the run times are practically the

same. Thus, we recommend that, whenever data science practitioners would use a Euclidean

K-NN graph on data that satisfies the manifold hypothesis, they consider using a p-WSPD

and Algorithm 12 instead.

A curious phenomenon which we observed in the numerical results is the interaction

between the power weighting, p, the ambient dimension D and the geometry of the data set

X . It seems as if the best value of p differs according to the specifics of the data. Tools to

estimate the “optimal” p given the data X would enable data scientists to get the most out

of the p-WSPD technology, but we leave this investigation to future work.

Bibliography

[1] Ameer Ahmed Abbasi and Mohamed Younis. A survey on clustering algorithms for

wireless sensor networks. Computer Communications, 30(14-15):2826–2841, 2007.

[2] Emmanuel Abbe. Community detection and stochastic block models: recent develop-

ments. The Journal of Machine Learning Research, 18(1):6446–6531, 2017.

[3] Emmanuel Abbe, Afonso S. Bandeira, Annina Bracher, and Amit Singer. Linear inverse

problems on Erdős-Rényi graphs: Information-theoretic limits and efficient recovery. In

2014 IEEE International Symposium on Information Theory, pages 1251–1255. IEEE,

2014.

[4] Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block

models: Fundamental limits and efficient algorithms for recovery. In 2015 IEEE 56th

Annual Symposium on Foundations of Computer Science, pages 670–688. IEEE, 2015.

[5] Emmanuel Abbe and Colin Sandon. Recovering communities in the general stochastic

block model without knowing the parameters. In Advances in neural information pro-

cessing systems, pages 676–684, 2015.

[6] Charu Aggarwal and Karthik Subbian. Evolutionary network analysis: A survey. ACM

Computing Surveys (CSUR), 47(1):10, 2014.

[7] Morteza Alamgir and Ulrike Von Luxburg. Shortest path distance in random k-nearest

neighbor graphs. arXiv preprint arXiv:1206.6381, 2012.

[8] Reid Andersen, Fan Chung, and Kevin Lang. Using pagerank to locally partition a

graph. Internet Mathematics, 4(1):35–64, 2007.

104

105

[9] Ery Arias-Castro. Clustering based on pairwise distances when the data is of mixed

dimensions. IEEE Transactions on Information Theory, 57(3):1692–1706, 2011.

[10] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A simple proof

of the restricted isometry property for random matrices. Constructive Approximation,

28(3):253–263, 2008.

[11] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9):509–517, 1975.

[12] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor.

In Proceedings of the 23rd international conference on Machine learning, pages 97–104.

ACM, 2006.

[13] Avleen S. Bijral, Nathan Ratliff, and Nathan Srebro. Semi-supervised learning with den-

sity based distances. In Proceedings of the Twenty-Seventh Conference on Uncertainty

in Artificial Intelligence, pages 43–50. AUAI Press, 2011.

[14] Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for compressed

sensing. Applied and computational harmonic analysis, 27(3):265–274, 2009.

[15] Béla Bollobás. Vertices of given degree in a random graph. Journal of Graph Theory,

6(2):147–155, 1982.

[16] Béla Bollobás. Random graphs. Number 73. Cambridge university press, 2001.

[17] T. Tony Cai and Anru Zhang. Sharp RIP bound for sparse signal and low-rank matrix

recovery. Applied and Computational Harmonic Analysis, 35(1):74–93, 2013.

[18] Emmanuel J. Candes, Justin Romberg, and Terrence Tao. Robust uncertainty princi-

ples: exact signal reconstruction from highly incomplete frequency information. IEEE

Transactions on Information Theory, 52(2):489–509, 2006.

106

[19] Avishy Carmi, François Septier, and Simon J. Godsill. The gaussian mixture MCMC

particle algorithm for dynamic cluster tracking. Automatica, 48(10):2454–2467, 2012.

[20] Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. Evolutionary clustering. In

Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 554–560. ACM, 2006.

[21] Hong Chang and Dit-Yan Yeung. Robust path-based spectral clustering. Pattern Recog-

nition, 41(1):191–203, 2008.

[22] Yun Chi, Xiaodan Song, Dengyong Zhou, Koji Hino, and Belle L. Tseng. Evolutionary

spectral clustering by incorporating temporal smoothness. In Proceedings of the 13th

ACM SIGKDD international conference on Knowledge discovery and data mining, pages

153–162. ACM, 2007.

[23] Timothy Chu, Gary Miller, and Donald Sheehy. Intrinsic metrics: Nearest neighbor and

edge squared distances. arXiv preprint arXiv:1709.07797, 2017.

[24] Fan Chung. Spectral graph theory (CBMS regional conference series in mathematics,

no. 92). 1996.

[25] Fan Chung. The heat kernel as the pagerank of a graph. Proceedings of the National

Academy of Sciences, 104(50):19735–19740, 2007.

[26] Fan Chung. Random walks and local cuts in graphs. Linear Algebra and its applications,

423(1):22–32, 2007.

[27] Fan Chung and Ron Graham. Quasi-random graphs with given degree sequences.

Random Structures & Algorithms, 32(1):1–19, 2008.

[28] Fan Chung and Mary Radcliffe. On the spectra of general random graphs. The Electronic

Journal of Combinatorics, 18(1):215, 2011.

107

[29] Fan Chung and Olivia Simpson. Computing heat kernel pagerank and a local clustering

algorithm. European Journal of Combinatorics, 68:96–119, 2018.

[30] Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational

Harmonic Analysis, 21(1):5–30, 2006.

[31] Ronan Collobert, Fabian Sinz, Jason Weston, and Léon Bottou. Large scale transductive

SVMs. Journal of Machine Learning Research, 7(Aug):1687–1712, 2006.

[32] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-

duction to algorithms. MIT press, 2009.

[33] Wei Dai and Olgica Milenkovic. Subspace pursuit for compressive sensing signal recon-

struction. IEEE transactions on Information Theory, 55(5):2230–2249, 2009.

[34] Pasquale De Meo, Emilio Ferrara, Giacomo Fiumara, and Alessandro Provetti. Gen-

eralized Louvain method for community detection in large networks. In 2011 11th

International Conference on Intelligent Systems Design and Applications, pages 88–93.

IEEE, 2011.

[35] David L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,

52(4):1289–1306, 2006.

[36] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold

hypothesis. Journal of the American Mathematical Society, 29(4):983–1049, 2016.

[37] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal,

23(2):298–305, 1973.

[38] Bernd Fischer and Joachim M. Buhmann. Path-based clustering for grouping of smooth

curves and texture segmentation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 25(4):513–518, 2003.

108

[39] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174,

2010.

[40] Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM

Journal on Numerical Analysis, 49(6):2543–2563, 2011.

[41] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive

Sensing. Springer Science & Business Media, 2013.

[42] Alan Frieze and Micha l Karoński. Introduction to random graphs. Cambridge University

Press, 2016.

[43] Amir Ghasemian, Pan Zhang, Aaron Clauset, Cristopher Moore, and Leto Peel.

Detectability thresholds and optimal algorithms for community structure in dynamic

networks. Physical Review X, 6(3):031005, 2016.

[44] Sariel Har-Peled. Computing the k nearest-neighbors for all vertices via Dijkstra. arXiv

preprint arXiv:1607.07818, 2016.

[45] Tanja Hartmann, Andrea Kappes, and Dorothea Wagner. Clustering evolving networks.

In Algorithm Engineering, pages 280–329. Springer, 2016.

[46] Kun He, Yiwei Sun, David Bindel, John Hopcroft, and Yixuan Li. Detecting overlapping

communities from local spectral subspaces. In 2015 IEEE International Conference on

Data Mining, pages 769–774. IEEE, 2015.

[47] Matthew A. Herman and Thomas Strohmer. General deviants: An analysis of pertur-

bations in compressed sensing. IEEE Journal of Selected Topics in Signal Processing,

4(2):342–349, 2010.

[48] Qirong Ho, Le Song, and Eric Xing. Evolving cluster mixed-membership blockmodel

for time-evolving networks. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics, pages 342–350, 2011.

109

[49] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic block-

models: First steps. Social networks, 5(2):109–137, 1983.

[50] Sung Jin Hwang, Steven B. Damelin, and Alfred O. Hero, III. Shortest path through

random points. The Annals of Applied Probability, 26(5):2791–2823, 2016.

[51] Matt Jacobs, Ekaterina Merkurjev, and Selim Esedoḡlu. Auction dynamics: A volume

constrained MBO scheme. Journal of Computational Physics, 354:288–310, 2018.

[52] Anil K. Jain. Data clustering: 50 years beyond K-means. Pattern recognition letters,

31(8):651–666, 2010.

[53] Durk P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-

supervised learning with deep generative models. In Advances in Neural Information

Processing Systems, pages 3581–3589, 2014.

[54] Kyle Kloster and David F. Gleich. Heat kernel based community detection. In Proceed-

ings of the 20th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 1386–1395. ACM, 2014.

[55] Ming-Jun Lai and Daniel Mckenzie. Semi-supervised cluster extraction via a compressive

sensing approach. arXiv preprint arXiv:1808.05780, 2018.

[56] Ming-Jun Lai and Paul Wenston. `1 spline methods for scattered data interpolation

and approximation. Advances in Computational Mathematics, 21(3-4):293–315, 2004.

[57] Haifeng Li. Improved analysis of SP and CoSaMP under total perturbations. EURASIP

Journal on Advances in Signal Processing, 2016(1):112, 2016.

[58] Yixuan Li, Kun He, David Bindel, and John E. Hopcroft. Uncovering the small com-

munity structure in large networks: A local spectral approach. In Proceedings of the

24th international conference on world wide web, pages 658–668, 2015.

110

[59] Yixuan Li, Kun He, Kyle Kloster, David Bindel, and John E. Hopcroft. Local spec-

tral clustering for overlapping community detection. ACM Transactions on Knowledge

Discovery from Data (TKDD), 12(2):17, 2018.

[60] Anna Little, Mauro Maggioni, and James M. Murphy. Path-based spectral clus-

tering: Guarantees, robustness to outliers, and fast algorithms. arXiv preprint

arXiv:1712.06206, 2017.

[61] Michael W. Mahoney, Lorenzo Orecchia, and Nisheeth K. Vishnoi. A local spectral

method for graphs: With applications to improving graph partitions and exploring data

graphs locally. Journal of Machine Learning Research, 13(Aug):2339–2365, 2012.

[62] Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann. Uniform uncer-

tainty principle for Bernoulli and subgaussian ensembles. Constructive Approximation,

28(3):277–289, 2008.

[63] Ekaterina Merkurjev, Andrea L. Bertozzi, and Fan Chung. A semi-supervised heat

kernel pagerank MBO algorithm for data classification. Technical report, University of

California, Los Angeles, 2016.

[64] Ekaterina Merkurjev, Tijana Kostic, and Andrea L. Bertozzi. An MBO scheme on

graphs for classification and image processing. SIAM Journal on Imaging Sciences,

6(4):1903–1930, 2013.

[65] Ekaterina Merkurjev, Justin Sunu, and Andrea L. Bertozzi. Graph MBO method for

multiclass segmentation of hyperspectral stand-off detection video. In 2014 IEEE Inter-

national Conference on Image Processing (ICIP), pages 689–693. IEEE, 2014.

[66] Amit Moscovich, Ariel Jaffe, and Nadler Boaz. Minimax-optimal semi-supervised regres-

sion on unknown manifolds. In Artificial Intelligence and Statistics, pages 933–942, 2017.

111

[67] Elchanan Mossel, Joe Neeman, and Allan Sly. Consistency thresholds for the planted

bisection model. In Proceedings of the forty-seventh annual ACM symposium on Theory

of computing, pages 69–75. ACM, 2015.

[68] Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold

conjecture. Combinatorica, 38(3):665–708, 2018.

[69] Peter J. Mucha, Thomas Richardson, Kevin Macon, Mason A. Porter, and Jukka-Pekka

Onnela. Community structure in time-dependent, multiscale, and multiplex networks.

Science, 328(5980):876–878, 2010.

[70] Maria C.V. Nascimento and Andre C.P.L.F. De Carvalho. Spectral methods for graph

clustering–a survey. European Journal of Operational Research, 211(2):221–231, 2011.

[71] Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM Journal

on Computing, 24(2):227–234, 1995.

[72] Deanna Needell and Joel A. Tropp. CoSaMP: Iterative signal recovery from incomplete

and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301–321,

2009.

[73] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and

an algorithm. In Advances in Neural Information Processing Systems, pages 849–856,

2002.

[74] Alon Orlitsky and Sajama. Estimating and computing density based distance metrics.

In Proceedings of the 22nd international conference on Machine Learning, pages 760–

767. ACM, 2005.

[75] Marianna Pensky and Teng Zhang. Spectral clustering in the dynamic stochastic block

model. Electronic Journal of Statistics, 13(1):678–709, 2019.

112

[76] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko.

Semi-supervised learning with ladder networks. In Advances in Neural Information

Processing Systems, pages 3546–3554, 2015.

[77] Giulio Rossetti and Rémy Cazabet. Community discovery in dynamic networks: a

survey. ACM Computing Surveys (CSUR), 51(2):35, 2018.

[78] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[79] Pan Shi, Kun He, David Bindel, and John E. Hopcroft. Locally-biased spectral approx-

imation for community detection. Knowledge-Based Systems, 164:459–472, 2019.

[80] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph

partitioning, graph sparsification, and solving linear systems. In Proceedings of the

STOC, volume 4, 2004.

[81] Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive

graphs and its application to nearly linear time graph partitioning. SIAM Journal on

Computing, 42(1):1–26, 2013.

[82] Joshua B. Tenenbaum, Vin De Silva, and John C. Langford. A global geometric frame-

work for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[83] Robert C. Thompson. Principal submatrices IX: Interlacing inequalities for singular

values of submatrices. Linear Algebra and its Applications, 5(1):1–12, 1972.

[84] Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. Social structure of facebook

networks. Physica A: Statistical Mechanics and its Applications, 391(16):4165–4180,

2012.

[85] Joel A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE

Transactions on Information Theory, 50(10):2231–2242, 2004.

113

[86] Pascal Vincent and Yoshua Bengio. Density-sensitive metrics and kernels. In Snowbird

Learning Workshop, 2003.

[87] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and Computing,

17(4):395–416, 2007.

[88] James D. Wilson, Nathaniel T. Stevens, and William H. Woodall. Modeling and

detecting change in temporal networks via a dynamic degree corrected stochastic block

model. arXiv preprint arXiv:1605.04049, 2016.

[89] James D. Wilson, Simi Wang, Peter J. Mucha, Shankar Bhamidi, Andrew B. Nobel,

et al. A testing based extraction algorithm for identifying significant communities in

networks. The Annals of Applied Statistics, 8(3):1853–1891, 2014.

[90] Eric P. Xing, Wenjie Fu, Le Song, et al. A state-space mixed membership blockmodel

for dynamic network tomography. The Annals of Applied Statistics, 4(2):535–566, 2010.

[91] Kevin S. Xu and Alfred O. Hero, III. Dynamic stochastic blockmodels for time-evolving

social networks. IEEE Journal of Selected Topics in Signal Processing, 8(4):552–562,

2014.

[92] Kevin S. Xu, Mark Kliger, and Alfred O. Hero, III. Adaptive evolutionary clustering.

Data Mining and Knowledge Discovery, 28(2):304–336, 2014.

[93] Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, and Rong Jin. Detecting commu-

nities and their evolutions in dynamic social networks–a Bayesian approach. Machine

Learning, 82(2):157–189, 2011.

[94] Ke Yin and Xue-Cheng Tai. An effective region force for some variational models for

learning and clustering. Journal of Scientific Computing, 74(1):175–196, 2018.

[95] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. In Advances in

neural information processing systems, pages 1601–1608, 2005.

114

[96] Yunpeng Zhao, Elizaveta Levina, and Ji Zhu. Community extraction for social networks.

Proceedings of the National Academy of Sciences, 108(18):7321–7326, 2011.

	Acknowledgments
	Introduction
	Overview of this Dissertation
	Graphs
	Clustering Algorithms
	Compressive Sensing

	Semi-Supervised Cluster Pursuit
	Cluster Extraction as Compressive Sensing
	Concentration in Random Graphs
	Finding good supersets
	Extracting C1 from
	Computational Complexity
	Numerical Results

	Dynamic Cluster Pursuit
	Overview of Dynamic Clustering
	Probabilistic Models of Dynamic Random Graphs
	Dynamic cluster pursuit
	Experimental Results

	Shortest path distances for clustering Euclidean data
	Power Weighted Shortest Path Distances
	Prior Work
	Analysis of shortest path distances in the multi-manifold setting
	A fast algorithm for computing K-nearest neighbors in the p-WSPD
	Experimental Results

	Bibliography

