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Abstract

Cocaine use is an important public health problem in the United States and

throughout the world. It is associated with many medical consequences and psy-

chosocial characteristics. Cognitive behavioral therapy (CBT) is an effective coun-

seling intervention for supporting cocaine-dependent individuals through recovery

and relapse prevention, or reducing their cocaine use by improving patient’s motiva-

tion and enabling them to recognize risky situations. Our motivating example from

the Self-reported Cocaine use with Urine test (SCU) data was based on a study of the

effect of Cognitive behavioral therapy (CBT) on cocaine dependence at the Primary

Care Center of Yale-New Haven Hospital. To evaluate the impact of adding CBT

to physician management on cocaine dependent patients receiving buprenorphone,

patients were randomly assigned to the treatment group and the control group. Col-

lected outcomes included self-reported daily drug uses and weekly urine test results.



To date, Generalized Estimating Equations (GEE) are considered to be a reasonable

approach to analyze the data with repeated measures binary outcomes. However,

due to the existence of report bias in self-reported daily drug use, a direct appli-

cation of GEE may not be valid for the SCU data. On the other hand, the less

frequently measured urine test is considered more accurate. Therefore, we proposed

Mean Corrected Generalized Estimating Equations (MCGEE) to estimate the treat-

ment effect in self-reported binary outcomes. The urine test is used to detect the

contamination and correct the model’s mean in the equation. We demonstrated that

the proposed approach yield consistent and asymptotically normally distributed es-

timators with unbiased contamination probability. However, we also noticed that

when the time period for cocaine to be cleared from urine increased, bias of the es-

timators of the MCGEE approach increased. Thus, we proposed to include a weight

function of the contamination probability into the MCGEE and build Mean Cor-

rected Weighted Generalized Estimating Equations (MCWGEE) to further control

the potential bias of the estimators. Additionally, we also investigated the impacts

of patients’ dropouts in the SCU data using MCWGEE with an extra weight from

the estimated probability of dropout at the time of attrition.

Index words: GEE, WGEE, Report bias, Cocaine use, Longitudinal Binary
Data
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Chapter 1

Introduction

Report bias is an important problem in survey research. It occurs when a respon-

dent’s answer in the survey differs from the true value for that respondent (Del Boca,

Noll 2000). Although there are various benefits of self-reported data, such as: effi-

ciency, convenience, adaptability, flexibility, and relatively low cost (Del Boca and

Noll 2000); many factors may influence the quality of self-reported data and cause

bias. Sources of report bias related to drug use include participant has difficulty un-

derstanding the questions; respondent has trouble recalling the information needed

to answer the questions; participant is not willing to report, social pressures, etc

(Johnson and Fendrich 2005). Report bias may reduce the precision of the estima-

tion of dependent variables and violate statistical inferences (Biemer and Trewin,

1997).

Our motivating example from the Self-reported Cocaine use with Urine test (SCU)
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data was based on a study of the effect of Cognitive behavioral therapy (CBT) on

cocaine dependence at the Primary Care Center of Yale-New Haven Hospital. To

evaluate the impact of adding CBT to physician management on cocaine dependent

patients receiving buprenorphone, patients were randomly assigned to the treatment

or the control group. Collected outcomes included self-reported daily drug use and

weekly urine test results. To date, Generalized Estimating Equations (GEE) are

considered to be a reasonable approach to analyze data with repeated measured out-

come. However, due to the existence of report bias in self-reported daily drug use, a

direct application of GEE may not be valid in the SCU data. On the other hand, the

less frequently measured urine test result was considered more accurate. Therefore,

we proposed adjusting the GEE model through the corrected marginal means based

on the detected report bias in the self-reported daily data using the urine test results.

The dissertation is organized as follows. In Chapter 2, we propose Mean Corrected

Generalized Estimating Equations (MCGEE) to estimate the treatment effect in self-

reported data. The urine test was used to detect the contamination and correct the

model’s mean in the equation. However, we also noticed that when the time period for

cocaine to be cleared from urine increased, the bias of MCGEE estimators increased.

Thus, we proposed including a weight function of the contamination probability to

construct Mean Corrected Weighted Generalized Estimating Equations (MCWGEE)

to further reduce the potential bias of the estimators, and described the approach in

Chapter 3. Additionally, we also investigated the impacts of patients’ dropouts in

the SCU data using MCWGEE with an extra weight from the estimated probability

2



of dropout at the time of attrition in Chapter 4.
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Chapter 2

Generalized Estimating Equations

Approach for Longitudinal Binary

Outcomes with Report Bias

2.1 Introduction

Cocaine use is an important public health problem in the United States and through-

out the world. It is associated with many medical consequences and psychosocial

characteristics, including increased risk of myocardial infarction, stroke, infectious

diseases, chronic stress and violence (Macdonald et al., 2008, Qureshi et al., 2001).

Despite its negative impact on health, there is no effective pharmacological therapy

specifically targeted for cocaine addiction (Sofuoglu and Kosten, 2006).
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Although no medications are currently available to treat cocaine addiction effectively,

one promising substitute for cocaine is buprenorphine, a partial mu-opioid agonist

at the mu-opioid receptor and kappa-opioid antagonist. Its efficacy has been noted

in some pharmacotherapy trials (Brown et al. 1991; Kamien et al. 1991). A recent

study showed that the combination of buprenorphine, naloxone, and naltrexone may

reduce cocaine use among subjects addicted to cocaine as well as past or current

opioid dependents (Ling et al. 2016). The cocaine use reduction with buprenorphine

randomized clinical trial, conducted by the National Institute on Drug Abuse Clini-

cal Trials Network, demonstrated that buprenorphine reduced cocaine use in adults

with cocaine dependence and opioid use disorders (Mooney et al. 2013).

Cognitive behavioral therapy (CBT) is an effective counseling intervention for drug

and alcohol use disorders which includes learning skills and strategies for regulating

effect, changing maladaptive thoughts, and learning new behavioral strategies (Mag-

ill and Ray 2009). It has proven to be effective in supporting cocaine-dependent

individuals through recovery and relapse prevention, or reducing their cocaine use

by improving patient’s motivation and enabling them to recognize risky situations

(Maude-Griffin et al., 1998, Gonzalez et al., 2006). Following therapy, the patient

learns to identify thoughts, feelings, and events that precede and follow each time

of cocaine use and to develop and rehearse coping skills (Beck et al., 1993). Maude-

Griffin et al. (1998) evaluated the efficacy of CBT among cocaine dependents in a

randomized clinical trial, and found a significant number of participants in CBT had

abstained from cocaine use. A meta-analysis examined 53 randomized controlled
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trials of CBT for adults diagnosed with alcohol or drug use disorders; showed that

CBT had produced a statistically significant treatment effect (Magill and Ray 2009).

Rawson et al. (2006) conducted a randomized clinical trial to compare contingency

management and CBT for stimulant-dependent individuals, and concluded that CBT

reduced drug use from baseline levels to all measures at follow-ups.

Our motivating data, Self-reported Cocaine use with Urine test (SCU), is based

on a study of the effect of CBT on cocaine dependence at the Primary Care Cen-

ter of Yale-New Haven Hospital. To evaluate the impact of adding CBT to physi-

cian management in cocaine dependent patients receiving buprenorphone, patients

were randomly assigned to the treatment group and control group, both receiving

buprenorphone that is stored in bottles. The control group receives physical manage-

ment (PM), a 15-20 minutes session by Internal Medicine physicians with experience

administering buprenorphone. The treatment group receives PM and CBT, which is

provided by trained clinicians. Collected outcomes include self-reported daily drug

use and weekly urine test results. A recent publication analyzed the data set using a

logistic regression model with the daily self-reported drug use as repeated outcomes,

and found no significant effect from the CBT intervention (Fiellin et al. 2013). How-

ever, their analysis was based on the self-reported outcomes without considering the

possibility of report bias.

Report bias, sometimes referred as measurement error, occurs when a respondent’s

answer in the survey differs from the true value of that respondent (Del Boca, Noll
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2000). It represents a major problem in the assessment of self-reported data, which

is commonly collected in clinical research of intervention on drug use. The benefits

of self-reported data are: efficiency, convenience, adaptability, flexibility, and rel-

atively low cost (Del Boca and Noll 2000). However, many factors may influence

self-reported data and cause bias. The sources of report bias related to drug use

may include: participant has difficulties in understanding the questions; respondent

has issues in recalling the information needed to answer the questions; participant is

not willing to report, social pressures, etc (Johnson and Fendrich 2005). Report bias

may reduce the precision of the parameters estimation and violate causal inferences

(Biemer and Trewin, 1997).

In studies of participants with drug use dependency, self-reported drug use outcomes

are subject to report bias. Urine test result is sometimes used as a surrogate marker,

as it is usually more accurate and reliable. However, the collection of a biological test

is more expensive and less convenient compared to self-report (Magura et al., 1987).

In practice, urine test is often collected less frequently than self-reported data. With

the limitations of self-reported data being its inaccuracy and of urine indicators being

its infrequency, it has been suggested to either combine these two measures as joint

outcomes, or use biological test results to correct the bias in self-reports to increase

their validity (Babor et al., 2000, Blattman et al. 2016, Wilcox et al. 2013).

Wilcox et al. (2013) examined the concordance between self-reported drug use data

and urine test results among adolescents and young adults with opioid dependence
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participating in a clinical trial. They used a generalized linear mixed model, and

concluded that the concordance between these two results was reasonably high.

The Kappa coefficient is often used as a measurement of the agreement between

self-reported data and biological test results. Babor et al. repeatedly collected self-

reported drinking outcomes and measured them on their biological indicators. Based

on the Kappa coefficient, the correspondence of these two measurements was 97.1%

at the baseline of the clinical trial and decreased to 84.7% at the 15-month follow-up

(Babor et al. 1997). Sherman and Bigelow (1992) reported similar findings, showing

that the agreement was high between the interviews and same day urine test results,

but the validity of self-reports dropped at the 4-week follow-up. Another study

compared urine test results and self-reported drug use from subjects of methadone

maintenance in Australia, and the calculated Kappa coefficient didn’t show any sig-

nificant differences between these two outcomes (Digiusto et al. 1996). Winhusen

et al. (2003) investigated the outcomes between self-reports and urine toxicology

in cocaine clinical trials, and reported the correlation was around 0.40. While the

reported concordance between the two outcomes is generally high, there are still sig-

nificant portions of self-reports that have non-negligible discrepancies, especially at

follow-ups in longitudinal studies.

When self-reports differ from urine test results, the cause of the discrepancy is usu-

ally due to a misunderstanding of the question or socially undesirability to answer.

To assess factors that may affect self-reported measurements among alcohol and drug

abuse patients by comparing blood and urine tests, there was a 97% agreement be-
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tween verbal report and laboratory data for alcohol and 93% between verbal report

and laboratory data for cocaine (Brown et al. 1992). Another study characterizing

patients of cocaine dependence as under-reporters and truthful reporters based on

their self-reports and urine test results, revealed that under-reporters attended more

study sessions and were more likely to complete the study, and there were also sig-

nificant differences in cocaine use patterns (Myrick et al. 2002). Babor et al. found

that alcoholics who showed discrepancy in self-reports and blood test tended to drink

more severely, and had more previous treatments and higher levels of cognitive im-

pairment (Babor et al. 1997). A review on the validity of self-reports of alcohol

consumption concluded that social context factors, respondent characteristics, and

task attributes may influence self-reports (Del Boca and Darkes, 2003).

Most drug addiction studies with repeatedly self-reported outcomes used Generalized

Estimating Equations (GEE) to analyze the data. Since its establishment in 1980s

by Liang and Zeger (1986), GEE has been widely used for analysis of longitudinal

data with repeated measurements. GEE is used to extend Generalized Linear Models

(GLM) to a hierarchical setting with dependent outcomes by specifying a working

correlation matrix (Fitzmaurice et al. 2009). Parameter estimators from GEE are

consistent if the marginal means of the outcomes are correctly specified, and such

consistency is retained even when the covariance structure is misspecified (Liang and

Zeger 1986).

There are a variety of common structures that may be appropriate to model the work-
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ing correlation matrix: independent, exchangeable, autoregressive, and unstructured.

However, GEE remains asymptotically unbiased under misspecification of the cor-

relation matrix, and provides consistent estimates (Liang and Zeger 1986). On the

other hand, as GEE is an estimating procedure that relies on quasi-likelihood theory;

the common properties of the likelihood approaches do not apply. As a result, the

usual goodness-of-fit statistics cannot be easily derived (Wedderburn 1974).

In clinical studies, we are often confronted with projects that require the collection

of longitudinal data with repeatedly measured binary outcomes. There are natural

correlations among observations from the same subjects. GEE has been widely used

to model such data. Umbricht et al. (2014) analyzed methadone effect on cocaine

dependents in a double-blind randomized trial. The repeated measures of binary out-

comes were analyzed using GEE with an autoregressive correlation structure, and

they concluded that there was no significant difference in cocaine abstinence between

the treatment group and the control group. GEE has also been used to examine the

socio-demographic and behavioral factors associated with illicit substance injection

in an observational cohort study; it suggested that several factors were significantly

related to drugs injection (Lioyd-Smith et al. 2010). Another study performed GEE

in a randomized clinical trial evaluating the effect of selective norepinephrine reup-

take inhibitor on the cocaine dependence. The GEE analysis of the patients’ urine

samples revealed no significant differences between the treatment and the control

groups (Walsh et al. 2012).
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In the SCU Data, the direct application of the GEE may not be valid due to the

potential report bias in self-reported daily drug use. Throughout the dissertation,

such report bias will also be referred as ”contamination”. The urine test result is

considered more accurate but is measured weekly, and the time period for cocaine to

be cleared from urine can be longer than one day. In our preliminary analysis, urine

results were used to detect report bias in the self-reported daily data. The results

showed that there was roughly 21.4% contamination in self-reported outcomes. Since

GEE can provide a consistent estimate if the marginal means of the outcomes are

correctly specified, we used the urine test result to detect the contamination, and

estimated the true marginal means of the self-reported results. This estimation was

used in GEE to correct the report bias in the self-reported data in estimating the

treatment effect.

The purpose of this chapter is to develop Mean Corrected Generalized Estimating

Equations (MCGEE) for longitudinal datasets with report bias in binary outcome.

The chapter is organized as follows. In section 2.2, we gave the notation and model

equations. Section 2.3 studied the asymptotic properties of the estimators from our

proposed approach. We further explored the bias of the estimators when data are

contaminated in section 2.4. The performance of MCGEE on finite sample data were

accessed through simulation studies in section 2.5. In section 2.6, we analyzed the

Self-reported Cocaine use and Urine test (SCU) data using our proposed methods.

Finally, the chapter is concluded with a discussion in section 2.7.
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2.2 Methods

Key variables collected from the SCU dataset included daily self-reported cocaine

use, weekly urine test results, and an indicator of treatment or control group status.

The purpose of our study is to assess the treatment effect of CBT on the self-reported

drug use outcomes.

2.2.1 True drug use

Let Yit denote the true drug use variable, and Xit be the covariate vectors for esti-

mation at times t = 1, ..., T for subjects i = 1, ..., N . For the ith subject at time t,

Yit = 1 if the subject uses the drug, Yit = 0 otherwise. The outcome Yit is a binary

response variable and its joint distribution is Bernoulli:

fy (yi | Xi) = pr (Yi1 = y1, ..., YiT = yT | Xi) = exp(yitηit − log(1 + exp(ηit))).

The marginal mean of the true drug use for the ith subject at a given time point t

is denoted by µit. Let β be a vector of the regression parameters, then

µit = E (Yit | Xi, β) = Pr (Yit = 1 | Xi, β) ,

and logit link function will be used

ηit = log
µit

1− µit
= xitβ.

12



Liang and Zeger(1986) have proposed GEE in the form

Uβ (β) =
N∑
i=1

T∑
t=1

D′itV
−1
it (Yit − µit) = 0,

where Dit = ∂µit/∂β and Vi is the covariance matrix of Yi, which can be decomposed

into the form A
1
2
i Ci(γ)A

1
2
i , where Ai is a matrix with the marginal variances on the

main diagonal and zeros elsewhere, γ is a vector which fully characterizes Ci(γ),

which serves as a working correlation matrix of the Yi’s.

After collecting µit in a vector µi = (µi1, ...µiT )′, and since we assumed ηi = log µi
1−µi =

xiβ,

Di = ∂µi/∂β =
eX

′
iβ

(1 + eX
′
iβ)2

Xi.

With Ai = diag(var(Yi1), ..., var(YiT )), var(Yit) = µit × (1− µit) = exitβ

(1+exitβ)2
, and

Di = ∂µi/∂β = AiXi.

Hence, we can write the GEE in the form:

Uβ (β) =
N∑
i=1

X ′iAi(A
1
2
i Ci(γ)A

1
2
i )−1 (Yi − µi) = 0.

Some common correlation structures for longitudinal data include: Exchangeable:

correlation of two different time points of a subject Yij, Yit(j 6= t) is γ, Autoregressive:

13



correlation of Yij, Yit(j 6= t) is γ|j−t|, and Unstructured: correlation of Yij, Yit(j 6= t)

is γjt.

If we assume the correlation matrix, Ci(γ), of Yi to be an Identity matrix, the

estimating equation can be simplified as:

Uβ (β) =
N∑
i=1

X ′iAi(A
1
2
i IA

1
2
i )−1 (Yi − µi)

=
N∑
i=1

X ′i (Yi − µi) = 0.

The GEE equation is reduced to the score equation from the likelihood approach.

The solution of this equation is the same as the maximum likelihood estimate (MLE)

of β.

Assuming that the marginal mean µi has been correctly modeled, the estimator β̂ is

normally distributed with the mean being equal to β and the covariance matrix:

V ar
(
β̂
)

= I−10 I1I
−1
0 ,

where

I0 =

(
N∑
i=1

D̂′iV̂
−1
i D̂i

)
,

and

I1 =

(
N∑
i=1

D̂′iV̂
−1
i ÂiV̂

−1
i D̂i

)
.
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The solution β̂ can be obtained by a Fisher’s scoring algorithm, which first gives an

initial guess for β̂0, and then updates β̂l in the lth iteration by taking:

β̂l+1 = β̂l −

(
N∑
i=1

D̂′iV̂
−1
i D̂i

)−1( N∑
i=1

D̂′iV̂
−1
i (Yi − µ̂i)

)
.

The form of the robust variance estimator (sandwich estimator) for β̂ is:

(
N∑
i=1

D̂′iV̂
−1
i D̂i

)−1( N∑
i=1

D̂′iV̂
−1
i ÂiV̂

−1
i D̂i

)(
N∑
i=1

D̂′iV̂
−1
i D̂i

)−1
.

This estimate is consistent even if Vi, the covariance matrix of Yi is misspecified.

The true drug use variable Yit cannot be observed in our study. In practice, self-

reported data is directly used to replace Yit. The discrepancy between the two may

cause a significantly biased estimation of β if we directly apply GEE. Since the

GEE only requires its marginal mean µi to be correctly specified to provide a con-

sistent estimate of β without the need of a correct working correlation Ci(γ), we

propose Mean Corrected Generalized Estimated Equations (MCGEE) by adjusting

the marginal mean of self reported outcomes based on the urine test result to esti-

mate the treatment effect.
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2.2.2 Self-reported drug use

Let Rit represent an indicator variable for outcome contamination at times t =

1, ..., T , for subjects i = 1, ..., N , suggesting whether self-reported data is the same

as true drug use. Set Rit = 1 if there exists contamination, i.e. self reported data

is not the same as true drug use data, otherwise Rit = 0. Let Zit denote the self

reported drug use, then

Zit = Yit (1−Rit) + (1− Yit)Rit.

To estimate µ∗it, the expected value of Zit, we assume that the true drug use vari-

able Yit and the indicate variable for contamination Rit are independent given the

covariate Xit. Then, µ∗it can be calculated as:

µ∗it = E(Zit|Xit, β)

= E(Yit|Xit, β)× E((1−Rit) |Xit, β) + E((1− Yit) |Xit, β)× E(Rit|Xit, β).

Since E(Yit|Xit, β) = µit,

µ∗it = E(Zit|Xit, β) = µit × E((1−Rit) |Xit, β) + (1− µit)× E(Rit|Xit, β)

= µit − 2µit × E(Rit|Xit, β) + E(Rit|Xit, β).

16



We assume that E(Rit|Xit, β) = pit, and pi = (pi1, ...piT )′. After collecting µ∗it in a

vector µ∗i = (µ∗i1, ...µ
∗
iT )′,

µ∗i = E(Zi|Xi, β),

where its tth element is:

µ∗it = µit − 2µit × pit + pit.

The MCGEE form of the self-reported data Zi is defined as:

U∗β (β) =
N∑
i=1

D∗′i V
∗−1
i (Zi − µ∗i ) = 0,

D∗i = ∂µ∗i /∂β = (1− 2pi)⊗
∂µi
∂β

= (1− 2pi)⊗ AiXi,

Ai = diag(var(Yi1), ..., var(YiT )), var(Yit) = µit× (1−µit) = exitβ

(1+exitβ)2
, and ⊗ means

only multiplying the rows of a vector to their corresponding rows of a matrix. In our

framework, we multiply the tth row of vector 1− 2pi to the same tth row of matrix

AiXi, i.e., (1− 2pi)⊗ AiXi = ((1− 2pi1)× ai1xi1, ..., (1− 2piT )× aiTxiT )′.

The matrix V ∗i is the covariance matrix of Zi, which can be decomposed into the

form A
∗ 1
2
i C

∗
i (γ)A

∗ 1
2
i , where A∗i is a matrix with the marginal variances on the main

17



diagonal and zeros elsewhere, i.e., A∗i = diag(var(Zi1), ..., var(ZiT )), and

var(Zit) = µ∗it(1− µ∗it)

= (µit − 2µitpit + pit)(1− µit + 2µitpit − pit)

= µit − 2µitpit + pit − µ2
it + 2µ2

itpit − pitµit + 2µ2
itpit − 4µ2

itp
2
it + 2µitp

2
it − µitpit

+ 2µitp
2
it − p2it

= (1− 2pit)
2µit(1− µit) + pit(1− pit)

= (1− 2pit)
2var(Yit) + pit(1− pit).

The parameter γ is a vector which fully characterizes C∗i (γ), the working correlation

matrix of the Zi’s.

Therefore, we can write the self-reported data’s MCGEE in the form:

U∗β (β) =
N∑
i=1

(1− 2pi)⊗X ′iAi(A
∗ 1
2
i C

∗
i (γ)A

∗ 1
2
i )−1 (Zi − (µi − 2µi ⊗ pi + pi)) = 0.

When the correlation matrix, C∗i (γ), of Zi takes the form of an Identity matrix, the

estimating equations are:

U∗β (β) =
N∑
i=1

(1− 2pi)⊗X ′iAiA∗−1i (Zi − (µi − 2µi ⊗ pi + pi))

=
N∑
i=1

(1− 2pi)⊗X ′iAi((1− 2pi)
2 ⊗ Ai + pi ⊗ (1− pi))−1 (Zi − (µi − 2µi ⊗ pi + pi))

= 0.
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Two approaches are considered to estimate the expected value of Rit. First, assume

each subject has one single E(Rit|Xit, β) at all time points, then the indicator variable

Rit follows a Bernoulli Distribution with contamination probability pi. Therefore,

E(Ri1) = ... = E(Rit) = pi, where i = 1, ..., N . And (p1, ..., pN)T is a vector of

contamination probability for subjects 1 to N .

In our working dataset, urine samples are collected every k days, and the time pe-

riod for cocaine to be cleared from urine is h days (h ≤ k) (Figure 2.1). For the ith

patient, Uij denotes urine test results from subject i at the jth measurement, where

j = 1, ...,mi, mi is the number of urine measurements for subject i. We divide the

whole time period into multiple k−day blocks, and calculate the sum of self-reported

cocaine use over h days,
∑k×j

t=k×j−h+1 Zit, for j = 1, ...,mi. An indicator variable Iij

is defined as: Iij = 0 if
∑k×j

t=k×j−h+1 Zit = 0, otherwise Iij = 1.

The difference between each urine test result Uij and the indicator variable Iij is

calculated as: Fij = |Uij − Iij|, where i = 1, ..., N ; j = 1, ...,mi. We then use this

difference variable Fij to detect contamination, in which case Fij = 0 indicates that

we failed to detect any contamination, while Fij = 1 suggests a contamination de-

tection in the block.
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Figure 2.1: Data structure
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Naturally, the contamination probability pi can be estimated as:

p̂i =

∑m
j=1 Fij

mi

.

However, this estimate assumes that the contamination probability for the first k−h

days in each time block is the same as the last h days, which may not be true. More-

over, even if we successfully detect contamination in a block, it is still challenging

to determine the exact number and location of contaminations within the block. In

some scenarios, the contamination probability may be underestimated.

On the other hand, to estimate the contamination probability for each observation,

we assume that the contamination indicator Rit depends on some covariates and can

be modeled through logistic regression models.

As defined earlier, Rit = 1 if self-reported drug use is not the same as true drug use,

otherwise Rit = 0. Assume

log
Pr (Rit = 1|Xi, Bit, θ)

1− Pr (Rit = 1|Xi, Bit, θ)
= θ0 + θ1Xi + θ2Bit,

so

pit = E (Rit | Xi, Bit, θ) = Pr (Rit = 1|Xi, Bit, θ) =
eθ0+θ1Xi+θ2Bit

1 + eθ0+θ1Xi+θ2Bit
,
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where Xi denotes a vector of time independent covariates, Bit denotes a vector of

time dependent covariates, and θ represents a vector of the regression parameters.

To estimate the contamination probability using urine data, we fit a model using

the difference between the urine test result and the indicator variable Fij, which is

calculated in the previous approach, time independent covariates Xi, and a function

of time dependent covariates for h days B′ij.

log
Pr
(
Fij = 1|Xi, B

′
ij, θ

′)
1− Pr

(
Fij = 1|Xi, B′ij, θ

′
) = θ′0 + θ′1Xi + θ′2B

′
ij,

where i = 1, ..., N ; j = 1, ...,mi, mi is the number of urine measures for subject i,

and θ′0, θ
′
1, θ
′
2 are the regression parameters. Estimations of θ′0, θ

′
1, θ
′
2, i.e., θ̂′0, θ̂

′
1, θ̂
′
2

are used to model contamination probability p̂it = P̂ r(Rit = 1).

Hence, p̂it = P̂ r
(
Rit = 1|Xi, Bit, θ̂

′
)

is estimated by the following model:

log
P̂ r
(
Rit = 1|Xi, Bit, θ̂

′
)

1− P̂ r
(
Rit = 1|Xi, Bit, θ̂′

) = θ̂′0 + θ̂′1Xi + θ̂′2Bit,

p̂it =
eθ̂

′
0+θ̂

′
1Xi+θ̂

′
2Bit

1 + eθ̂
′
0+θ̂

′
1Xi+θ̂

′
2Bit

,

where i = 1, ..., N ; t = 1, ..., T .

If the mean model and the contamination probability for each observation are cor-
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rectly specified, this MCGEE method may provide a working estimate of regression

parameters under certain assumptions. However, challenges remain in an accurate

estimation of pit. In other words, the estimate of β may not be consistent when the

contamination probability is misspecified. In the next two sections, we address the

asymptotic normality of estimators from MCGEE under the true value of contamina-

tion probability, and examine the asymptotic bias of estimators based on the MCGEE

for self-reported data when the estimation of the contamination probability is biased.

2.3 Asymptotic Properties of the Estimators

For the true drug use data Yit, where i = 1, ..., N, t = 1, ..., T , the asymptotic prop-

erties have been derived by Liang and Zeger(1986). Denoting µ∗i = E(Zi|Xi, β) =

(µ∗i1, ...µ
∗
iT )′, the GEE for Yi are:

Uβ (β) =
N∑
i=1

D′iV
−1
i (Yi − µi) = 0,

where Di = ∂µi/∂β, and Vi is the covariance matrix of Yi. Vi can be decomposed

into the form A
1
2
i Ci(γ)A

1
2
i , where Ai is a matrix with the marginal variances on the

main diagonal and zeros elsewhere, γ is a vector which fully characterize Ci(γ), and

Ci(γ) is a working correlation matrix of Yi’s.

Under the assumption that the estimator for correlation parameter γ is
√
N con-

sistent given β, Liang and Zeger (1986) showed that
√
N(β̂ − β) is asymptotically
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normally distributed with mean zero and estimated variance matrix

(
N∑
i=1

D̂′iV̂
−1
i D̂i

)−1( N∑
i=1

D̂′iV̂
−1
i ÂiV̂

−1
i D̂i

)(
N∑
i=1

D̂′iV̂
−1
i D̂i

)−1
,

and the result does not depend on the choice of the correlation matrix Ci(γ).

In this section, we study the asymptotic properties of β̂, the solution of the MCGEE

of self-reported data, by proving its existence, its consistency and its asymptotic

normality as sample size N → ∞ and taking the time periods for each subject, T ,

to be bounded for all subjects. We build our study upon the seminal work of Liang

and Zeger (1986), and Yuan and Jennrich (1998). However, our research differs from

those two by considering an additional property in MCGEE, the contamination prob-

ability of self-reported binary outcomes.

The MCGEE form of the self-reported data Zi is:

UN (β) =
N∑
i=1

D∗′i V
∗−1
i (Zi − µ∗i )

=
N∑
i=1

(1− 2pi)⊗X ′iAi(A
∗ 1
2
i C

∗
i (γ)A

∗ 1
2
i )−1 (Zi − (µi − 2µi ⊗ pi + pi)) ,

where the correlation parameter γ and the contamination probabilities pi are as-

sumed to be known.
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Here we aim to show that the solution β̂N to UN(β) = 0 is consistent,

β̂N → β0,

almost surely for the true value β0, and β̂N is approximately normally distributed as

N →∞.

The Assumptions we need to prove the consistency and asymptotic normality of β̂N

are:

Assumption A. The subjects are independently sampled and there exists an upper

bound M <∞ such that the number of replicates mi < M for all subjects i = 1, 2, ....

Assumption B. There exists an upper bound b <∞ such that |Xi| < b for all subjects

i = 1, 2, ....

Assumption C. It is assumed that 1
N

N∑
i=1

XiX
′
i → B as N →∞, where B is a positive

definite matrix.

Assumption A ensures that data from a finite number of subjects and do not domi-

nate the parameter estimator. Assumption B ensures that the estimating functions

1
N
UN(β) and its first and higher-order derivatives with respect to beta are bounded.

Assumption C means that for sufficiently large N , 1
N
E( ∂

∂β′UN(β)) will be positive

definite, and there is no redundancy in the predictors.
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Define the matrices

I∗0 (β) = lim
N→∞

1

N

∂

∂β′
UN(β) = lim

N→∞

1

N

N∑
i=1

(D∗′i V
∗−1
i D∗i ),

and

I∗1 (β) = lim
N→∞

1

N

N∑
i=1

(D∗′i V
∗−1
i A∗iV

∗−1
i D∗i ).

The existence of these limits is ensured by Assumption B. Moreover, Assumption C

ensures that I∗0 (β) and I∗1 (β) are positive definite.

The following Theorem shows that the MCGEE is strongly consistent for β.

Theorem 1. Under Assumptions A-C, with probability one there exist zeros β̂N of

UN (β) = 0 such that β̂N → β0 as N →∞.

In the Appendix, we demonstrate that 1
N
UN (β0) → 0 a.s., as N → ∞, and that

1
N

∂
∂β′UN(β) converges uniformly to a non-stochastic limit which is nonsingular at β0.

The results then follow from Theorem 2 of Yuan and Jennrich (1997).

The following Theorem shows that the MCGEE estimator is approximately normally

distributed for large N .

Theorem 2. Under Assummptions A-C,
√
N
(
β̂ − β0

)
L−→N

(
0, I∗−10 (β0)I

∗
1 (β0)I

∗−1
0 (β0)

)
,

as N →∞.
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By Theorem 4 of Yuan and Jennrich (1998), it suffices to prove that

1√
N
UN (β0) L−→N (0, I∗1 (β0)) ,

as N →∞, which is proved in the appendix.

The variance-covariance estimator of β̂ can be estimated as:

Î∗0 =
N∑
i=1

(D̂∗′i V̂
∗−1
i D̂∗i ),

and

Î∗1 =
N∑
i=1

D̂∗′i V̂
∗−1
i Â∗i V̂

∗−1
i D̂∗i .

Therefore, the asymptotic properties of β̂ holds with the accurate estimation of the

contamination probability. These asymptotic properties also hold under consistent

estimates of the correlation parameter γ and contamination probabilities pi. How-

ever, if the estimation of this probability is misspecified, β̂ may not be asymptotically

unbiased. In the next section, we examine the asymptotic bias of β̂ from the MCGEE

approach for self-reported data when the estimation of the contamination probability

deviated from the true value.
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2.4 Bias of the Estimators with Report Bias

The main concern we have in estimating β from the MCGEE approach of self-

reported data is having biased estimation of the contamination probability pit. In

this section, we estimate the asymptotic bias of the MCGEE estimator β̂.

The MCGEE form of the self-reported data Zi is:

U∗β (β) =
N∑
i=1

D∗′i V
∗−1
i (Zi − µ∗i )

=
N∑
i=1

(1− 2pi)⊗X ′iAi(A
∗ 1
2
i C

∗
i (γ)A

∗ 1
2
i )−1 (Zi − (µi − 2µi ⊗ pi + pi)) .

From section 2.2, the contamination probability pi can be estimated using two meth-

ods.

One method is assuming each subject has one single E(Rit) for all time points, then

the contamination probability p̂i for the ith subject can be estimated as:

p̂i =

∑m
j=1 Fij

mi

,

where i = 1, ..., N ; j = 1, ...,mi, mi is the number of urine measures for subject i,

Fij is the difference between urine results and the indicator of the summation of

self-reported cocaine use of h days.

The other method is to assume that the contamination indicator Rit depends on
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some covariates and can be modeled through logistic regression models. p̂it can be

estimated as:

p̂it =
eθ̂

′
0+θ̂

′
1Xi+θ̂

′
2Bit

1 + eθ̂
′
0+θ̂

′
1Xi+θ̂

′
2Bit

,

where i = 1, ..., N ; t = 1, ..., T , Xi denotes a vector of time independent covariate;

Bit denotes a vector of time dependent covariate.

Assume the marginal mean of the true drug use for the ith subject is not equal to 0.5

for each time points, µi = (µi1, ...µiT )′ 6= (0.5, ..., 0.5)′, the contamination probability

is not equal to 0.5 for each time points, i.e., pi = (pi1, ...piT )′ 6= (0.5, ..., 0.5)′, and the

estimated contamination probability is also not equal to 0.5 for every time points,

p̂i = (pi1, ...piT )′ 6= (0.5, ..., 0.5)′.

If we replace pi by p̂i in the estimating equation, then Eβ0(U
∗
β(β)) may not be equal

to 0.

Eβ0(U
∗
β(β)) =

N∑
i=1

D∗′i V
∗−1
i (E(Zi)− µ∗i )

=
N∑
i=1

(1− 2p̂i)X
′
iAi(A

∗ 1
2
i C

∗
i (γ)A

∗ 1
2
i )−1(1− 2µi)(pi − p̂i).

The above equation only equals 0 when p̂i = pi, which means when the contamina-

tion probability has been correctly estimated, we can have unbiased estimators.
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From section 2.3, by Theorem 1 we have

Eβ0(U
∗
β(β)) =

N∑
i=1

D∗′i V
∗−1
i (E(Zi)− µ∗i ) = 0,

β̂N → β0,

as N →∞, where β0 is the true value.

However, with p̂i 6= pi, (E(Zi)− µ∗i ) 6= 0, there exists bias of β̂,

Eβ0(U
∗
β(β)) =

N∑
i=1

D∗′i V
∗−1
i (E(Zi)− µ∗i ) 6= 0.

Instead, we can only have

Eβ0(U
∗
β(β∗)) = 0,

β̂N → β∗,

as N →∞.

To estimate the asymptotic bias of β̂ is equivalent to calculate β∗ − β0. Intuitively,

when the difference between p̂i and pi increases, i.e., the difference between E(Zi)

and µ∗i increases, the bias of β̂ increases subsequently. Unfortunately, the above

equation does not have a closed form solution of β. Thus, we may borrow the idea
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from Rotnitzky and Wypij (1992), since for any fixed β, the estimating equation

is a function of (Zi, Ri, Xi). It has expectation given by the sum of all the possi-

ble situations times their respected probabilities. Then instead of solving β from

the above equations, we may simply consider an artificial sample comprised of one

observation for each possible combinations of (Zi, Ri, Xi), which weighted by their

specific probabilities.

2.5 Simulations

2.5.1 Data generation

Two groups (treatment and control) are considered in the data generation. In each

group, there are N/2 subjects whose outcomes are repeatedly measured at T time

points. True drug use data is generated as:

Pr (Yit = 1|Xi, β) = µit,

log
µit

1− µit
= Xiβ = β0 + β1Xi + σi,

for i = 1, ..., N , t = 1, ..., T , where Xi is the treatment indicator, Xi = 1 denotes

the individual in the treatment group, Xi = 0 denotes the individual in the control

group, σi is a random effect variable following a normal distribution with mean zero

and a common variance v = 0.04.

31



Urine data is generated based on the true drug use data. For the ith patient, we

use Uij to denote urine test result, where j = 1, ...,mi. mi is the number of urine

measurements for subject i. Based on the notation used previously, the self-reported

data can be written as:

Zit = Yit (1−Rit) + (1− Yit)Rit.

Contamination indicator Rit is generated using two methods. First, assuming each

subject has one single E(Rit) for all time points, Rit is generated by a relatively simple

contamination probability assumption, which is not model based. Assuming there

is p1 probability of contamination among all subjects at one or several time points,

and within these subjects, there is p2 probability that they report false drug use at

each time point. Each observation is independent. Thus, the overall contamination

probability p equals:

p = p1 × p2.

And it can be estimated as:

p̂ =

∑N
i=1

∑T
t=1Rit

N × T
.

For each contaminated subjects, the contamination probability at each time point
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can be estimated as:

p̂i =
1

T

T∑
t=1

Rit,

the probability of how many subjects have been contaminated has the estimated

form:

p̂1 =
1

N

N∑
i=1

Ii

(
T∑
t=1

Rit ≥ 1

)
,

where Ii is the indicator, Ii = 1 if
T∑
t=1

Rit ≥ 1; Ii = 0, otherwise.

Second, assuming the contamination indicator Rit depends on some covariates, it is

generated by a model based on time dependent covariates Bit and time independent

covariates Xi. For instance, Xi can be the treatment effect, Bit can be the buprenor-

phone bottle open data, σi is a random effect variable following a normal distribution

with mean zero and a common variance v = 0.04. In our simulation, we assume the

indicator variable Rit follows:

log
Pr (Rit = 1|Xi, Bit, θ)

1− Pr (Rit = 1|Xi, Bit, θ)
= θ0 + θ1Xi + θ2Bit + σi.

Bias of estimators corresponding to each generation method have been assessed un-

der several different scenarios of contamination probabilities, different time periods

for cocaine to be cleared from urine, and sample sizes.
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All data simulations and analysis are carried out using the R software, 1000 replica-

tions are performed for each run to obtain reliable results.

2.5.2 Simulation results

In this section, we analyze the bias and standard error of the estimators of the GEE

approach and the Mean Corrected GEE (MCGEE) approach for various situations

under simulation. We assume that urine samples are collected every 7 days (k = 7).

We generate N/2 subjects in the treatment and the control group respectively whose

outcomes are repeatedly measured at T time points. The true value for the intercept

β0 is 0.3, and the true value for the treatment effect β1 is 1.2.

First, we consider the case that Rit is generated by a relatively simple contami-

nation probability assumption. As we discussed earlier, the bias of the MCGEE

approach of self-reported data exist when the estimated contamination probabil-

ity is not the same as the true value (p̂ 6= p). Several combinations for different

sample size (N = 100, N = 400), time points for each individual’s measurement

(T = 70, T = 140), contamination probabilities (p1 = 0.4, 0.6; p2 = 0.4, 0.8), and

different time periods for cocaine to be cleared from urine (h = 1, h = 4) have been

studied.

Table 2.1 reports the parameters’ estimation, standard error, and the coverage prob-

ability of 95% confidence intervals of the GEE approach and the MCGEE approach
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for different combinations of sample size, time points, and contamination probability

under the assumption that the time period for cocaine to be cleared from urine is 1

day. In this situation, the difference of the estimated contamination probability and

the true contamination probability is relatively small. We can find out that when p1

is fixed, as p2 increases, both the intercept’s and the treatment effect’s bias of the

GEE approach increase. Similarly, when p2 is fixed, as p1 increases, both these two

estimators’ bias of the GEE approach increase. This pattern can be observed for

the MCGEE approach as well, but for each p1 and p2’s combination, the bias of the

MCGEE estimators are much lower than the bias of the GEE estimators. The dif-

ference of biases of these two approaches are highly dependent on the contamination

probability. When p1 = p2 = 0.4, the difference of parameters’ estimation of GEE

and MCGEE is relatively small. When p1 or p2 increases, this difference increases

significantly. When p1 = 0.6 and p2 = 0.8, the difference of parameters’ estimation

of GEE and MCGEE is large. The bias correction effect of the MCGEE approach

can be easily noticed under higher contamination probability. The results of the

coverage probability of 95% confidence intervals suggest similar findings. Table 2.1

also indicates that the standard error of parameters of both methods decrease as

sample size and time periods increase. The results of bias of the treatment estimator

of GEE and MCGEE approach are also presented in Figure 2.2.

After increasing the time period for cocaine to be cleared from urine to 4 days

(k = 7, h = 4), we observe that the bias of the parameter estimates of the MCGEE

approach are still lower than the GEE approach. However, the performances of the
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Table 2.1: Parameters’ estimation, standard error (S.E.), and the coverage proba-
bility of 95% CI (CP%) of the GEE approach, and the MCGEE approach (k=7,
h=1).

Effect N T p1 p2 GEE CP% MCGEE CP%
β0(S.E.) 100 70 0.4 0.4 0.200(0.04) 36.4 0.279(0.05) 94.0

0.8 0.111(0.05) 5.4 0.291(0.05) 94.6
0.6 0.4 0.153(0.04) 5.6 0.262(0.06) 91.8

0.8 0.010(0.05) 0.0 0.283(0.06) 94.2
140 0.4 0.4 0.202(0.03) 26.4 0.292(0.05) 94.6

0.8 0.107(0.04) 2.2 0.293(0.04) 94.6
0.6 0.4 0.152(0.03) 1.4 0.274(0.05) 92.4

0.8 0.016(0.05) 0.0 0.292(0.04) 95.0
400 70 0.4 0.4 0.202(0.02) 0.8 0.283(0.03) 90.4

0.8 0.105(0.02) 0.0 0.289(0.02) 92.0
0.6 0.4 0.153(0.02) 0.0 0.267(0.03) 82.6

0.8 0.012(0.02) 0.0 0.282(0.03) 89.8
140 0.4 0.4 0.200(0.02) 0.0 0.288(0.02) 91.2

0.8 0.106(0.02) 0.0 0.293(0.02) 92.2
0.6 0.4 0.154(0.02) 0.0 0.281(0.03) 89.0

0.8 0.012(0.02) 0.0 0.290(0.02) 92.3
β1(S.E.) 100 70 0.4 0.4 0.719(0.10) 0.2 1.129(0.09) 87.6

0.8 0.354(0.16) 0.0 1.135(0.08) 86.4
0.6 0.4 0.537(0.09) 0.0 1.062(0.11) 74.2

0.8 0.051(0.15) 0.0 1.099(0.09) 79.0
140 0.4 0.4 0.719(0.09) 0.0 1.162(0.07) 92.0

0.8 0.350(0.16) 0.0 1.161(0.07) 91.2
0.6 0.4 0.535(0.08) 0.0 1.131(0.09) 88.6

0.8 0.033(0.14) 0.0 1.141(0.07) 88.0
400 70 0.4 0.4 0.713(0.05) 0.0 1.128(0.05) 65.4

0.8 0.360(0.08) 0.0 1.137(0.04) 68.0
0.6 0.4 0.529(0.05) 0.0 1.055(0.06) 25.4

0.8 0.041(0.07) 0.0 1.099(0.04) 35.6
140 0.4 0.4 0.720(0.05) 0.0 1.162(0.04) 79.6

0.8 0.360(0.06) 0.0 1.164(0.03) 82.6
0.6 0.4 0.528(0.04) 0.0 1.126(0.04) 59.4

0.8 0.040(0.07) 0.0 1.141(0.04) 62.5
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Table 2.2: Parameters’ estimation standard error (S.E.), and the coverage probability
of 95% CI (CP%) of the GEE approach, and the MCGEE approach (k=7, h=4).

Effect N T p1 p2 GEE CP% MCGEE CP%
β0(S.E.) 100 70 0.4 0.4 0.199(0.04) 34.8 0.225(0.04) 58.4

0.8 0.109(0.05) 5.6 0.157(0.06) 26.2
0.6 0.4 0.155(0.04) 7.2 0.188(0.04) 30.0

0.8 0.010(0.05) 0.2 0.058(0.06) 2.2
140 0.4 0.4 0.201(0.03) 22.6 0.225(0.04) 47.6

0.8 0.105(0.04) 2.2 0.150(0.05) 13.0
0.6 0.4 0.153(0.03) 1.6 0.183(0.04) 10.2

0.8 0.014(0.04) 0.0 0.058(0.05) 0.6
400 70 0.4 0.4 0.201(0.02) 0.2 0.228(0.02) 8.6

0.8 0.108(0.03) 0.0 0.156(0.03) 0.0
0.6 0.4 0.154(0.02) 0.0 0.187(0.02) 0.0

0.8 0.010(0.03) 0.0 0.059(0.03) 0.0
140 0.4 0.4 0.201(0.02) 0.2 0.227(0.02) 4.6

0.8 0.107(0.02) 0.0 0.153(0.03) 0.0
0.6 0.4 0.153(0.01) 0.0 0.183(0.02) 0.0

0.8 0.013(0.02) 0.0 0.057(0.03) 0.0
β1(S.E.) 100 70 0.4 0.4 0.722(0.10) 0.8 0.756(0.10) 1.6

0.8 0.356(0.15) 0.0 0.746(0.16) 16.0
0.6 0.4 0.525(0.10) 0.0 0.552(0.10) 0.0

0.8 0.035(0.15) 0.0 0.401(0.19) 2.6
140 0.4 0.4 0.721(0.09) 0.4 0.759(0.09) 0.6

0.8 0.377(0.15) 0.0 0.782(0.15) 20.0
0.6 0.4 0.536(0.09) 0.0 0.566(0.09) 0.0

0.8 0.032(0.14) 0.0 0.406(0.19) 1.4
400 70 0.4 0.4 0.715(0.05) 0.0 0.750(0.05) 0.0

0.8 0.349(0.08) 0.0 0.743(0.08) 0.0
0.6 0.4 0.527(0.04) 0.0 0.554(0.05) 0.0

0.8 0.041(0.07) 0.0 0.412(0.09) 0.0
140 0.4 0.4 0.717(0.04) 0.0 0.755(0.05) 0.0

0.8 0.355(0.07) 0.0 0.767(0.07) 0.0
0.6 0.4 0.530(0.04) 0.0 0.561(0.05) 0.0

0.8 0.041(0.07) 0.0 0.419(0.09) 0.0
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Figure 2.2: Bias of β1 of GEE and MCGEE when h = 1
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MCGEE approach on bias correction decline significantly (Table 2.2, Figure 2.3).

The main reason is the bias of the contamination probability estimation p̂ increases

as the time period for cocaine to be cleared from urine increases. For instance, even

if we detect a contamination in a certain time block, because of the extended period

of cocaine clearance from urine, it’s still difficult to locate the exact time point for

that contamination. When p2 is high, e.g., p2 = 0.8, which indicates that there is

80% contamination probability within each contaminated subject, the difference of
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Figure 2.3: Bias of β1 of GEE and MCGEE when h = 4
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parameters’ estimation between GEE and MCGEE is larger, as it’s easier to detect

the contamination and correct the marginal mean of the GEE approach.

Second, we consider the case that Rit is generated by a model based on the bottle

open data Bit and the treatment indicator Xi:

log
Pr (Rit = 1|Xi, Bit, θ)

1− Pr (Rit = 1|Xi, Bit, θ)
= θ0 + θ1Xi + θ2Bit + σi.
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Table 2.3: Parameter value for model based generation of Rit.
p̄ θ0 θ1 θ2

0.1 0.05 0.5 -8.0
0.3 0.8 4.5 -3.0
0.5 1.4 5.5 -2.0

Several contamination probabilities estimated by the true Rit have been evaluated.

The θ values we used to generate Rit for different mean of contamination probabili-

ties are in Table 2.3.

From Table 2.4, 2.5 and Figure 2.4, we observe that: 1. when contamination prob-

ability p increases, the bias of both the GEE estimators and MCGEE estimators

increase; 2. for each situation, the bias of the MCGEE estimators are much lower

than the bias of the GEE estimators; 3. when the time period for cocaine to be

cleared from urine increases from 1 day to 4 days, the bias of both the GEE and

MCGEE approaches increase; 4. the differences between the bias of the MCGEE

and the GEE estimators drop significantly when the time period for cocaine to be

cleared from urine increases; 5. when sample size N and time periods T increase,

the standard error of both the GEE and MCGEE estimators decreases.

Similar as the previous situation, when the time period for cocaine to be cleared

from urine increases from 1 day to 4 days, it’s difficult to estimate the true contam-

ination probability, hence the marginal mean of the GEE model. The performance

of the MCGEE approach significantly associates with the time period for cocaine to
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Table 2.4: Parameters’ estimation standard error (S.E.), and the coverage probability
of 95% CI (CP%) of the GEE approach, and the MCGEE approach (k=7, h=1).

Effect N T p̄ GEE CP(%) MCGEE CP(%)
β0(S.E.) 100 70 0.1 0.234(0.04) 65.4 0.293(0.04) 85.8

0.3 0.110(0.05) 3.2 0.293(0.04) 88.6
0.5 -0.008(0.04) 0.0 0.298(0.06) 90.2

140 0.1 0.229(0.04) 54.4 0.299(0.03) 82.6
0.3 0.102(0.04) 0.4 0.294(0.03) 84.0
0.5 -0.010(0.04) 0.0 0.296(0.04) 83.4

400 70 0.1 0.236(0.02) 18.4 0.299(0.02) 89.0
0.3 0.110(0.02) 0.0 0.298(0.02) 89.0
0.5 -0.007(0.02) 0.0 0.299(0.03) 89.6

140 0.1 0.225(0.02) 3.4 0.297(0.01) 78.0
0.3 0.106(0.02) 0.0 0.298(0.02) 84.4
0.5 -0.009(0.02) 0.0 0.297(0.02) 85.2

β1(S.E.) 100 70 0.1 0.865(0.10) 10.8 1.192(0.09) 95.4
0.3 0.366(0.15) 0.0 1.188(0.13) 91.6
0.5 -0.022(0.11) 0.0 1.162(0.10) 90.6

140 0.1 0.824(0.11) 6.2 1.187(0.08) 94.2
0.3 0.363(0.15) 0.0 1.192(0.10) 93.8
0.5 -0.023(0.10) 0.0 1.180(0.11) 76.8

400 70 0.1 0.865(0.05) 0.0 1.188(0.04) 94.8
0.3 0.364(0.07) 0.0 1.187(0.06) 88.2
0.5 -0.029(0.05) 0.0 1.178(0.05) 87.0

140 0.1 0.820(0.05) 0.0 1.190(0.05) 94.8
0.3 0.356(0.06) 0.0 1.189(0.04) 91.8
0.5 -0.027(0.05) 0.0 1.184(0.04) 78.6
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Table 2.5: Parameters’ estimation standard error (S.E.), and the coverage probability
of 95% CI (CP%) of the GEE approach, and the MCGEE approach(k=7, h=4).

Effect N T p̄ GEE CP(%) MCGEE CP(%)
β0(S.E.) 100 70 0.1 0.238(0.04) 68.0 0.274(0.04) 79.4

0.3 0.107(0.05) 2.6 0.177(0.04) 17.8
0.5 -0.005(0.04) 0.0 0.039(0.04) 0.0

140 0.1 0.226(0.03) 49.0 0.271(0.03) 67.8
0.3 0.110(0.04) 0.8 0.182(0.03) 6.8
0.5 -0.010(0.04) 0.0 0.034(0.03) 0.0

400 70 0.1 0.236(0.02) 19.2 0.273(0.02) 63.6
0.3 0.112(0.02) 0.0 0.183(0.02) 0.0
0.5 -0.007(0.02) 0.0 0.037(0.02) 0.0

140 0.1 0.224(0.02) 1.4 0.269(0.01) 37.8
0.3 0.106(0.02) 0.0 0.179(0.02) 0.0
0.5 -0.009(0.02) 0.0 0.036(0.02) 0.0

β1(S.E.) 100 70 0.1 0.863(0.10) 9.0 1.077(0.09) 80.4
0.3 0.379(0.15) 0.0 0.651(0.11) 0.2
0.5 -0.032(0.11) 0.0 0.120(0.10) 0.0

140 0.1 0.825(0.11) 6.0 1.075(0.09) 85.4
0.3 0.348(0.15) 0.0 0.637(0.08) 0.0
0.5 -0.031(0.10) 0.0 0.124(0.08) 0.0

400 70 0.1 0.866(0.05) 0.0 1.082(0.06) 39.6
0.3 0.368(0.08) 0.0 0.648(0.06) 0.0
0.5 -0.027(0.05) 0.0 0.122(0.04) 0.0

140 0.1 0.822(0.05) 0.0 1.079(0.04) 34.6
0.3 0.358(0.07) 0.0 0.643(0.04) 0.0
0.5 -0.030(0.05) 0.0 0.121(0.04) 0.0
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Figure 2.4: Bias of β1 of GEE and MCGEE
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be cleared from urine.

2.6 SCU Data

In the Self-reported Cocaine use and Urine test (SCU) data, there are a total of 140

patients, followed for a period of 5-6 months. All enrolled patients had met the cur-

rent DSM-IV diagnosis criteria for cocaine dependence (Argoff and McCleane 2009).
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After a 2-week induction and stabilization period, during which patients were treated

by nurses 3 times per week with 16 mg of buprenorphine daily, enrolled subjects

were randomly assigned to the treatment or the control group. Both groups received

buprenorphine, a substitute for cocaine use, which was stored in bottles. The special

MEMSCAP bottles can record the time when the bottle is opened. Buprenorphine

was instructed to be taken once per day. If the bottle was opened on a specific day,

the patient was regarded as adherent for that day.

The control group received physical management (PM), a 15-20 minutes session by

Internal Medicine physicians with experience as buprenorphine providers. Through-

out the study period, sessions occurred weekly for the first two weeks, every two

weeks for the next four weeks and then monthly. The treatment group received PM

plus cognitive behavioral therapy (CBT). CBT is a counseling intervention that has

demonstrated efficacy in treating a variety of psychiatric conditions and cocaine de-

pendences. CBT was provided by masters- and doctoral-level clinicians who were

trained with a manual adapted from a guidance for the use of CBT for cocaine de-

pendence (Carroll 1998). The main components of counseling focused on performing

a functional analysis of behavior, promoting behavioral activation, identifying and

coping with drug cravings, enhancing drug refusal skills and decision makings about

high risk situations, and improving problem solving skills (Fiellin et al. 2013).

The study’s major outcomes include (1) self-reported daily illicit drug uses which

were reported during the weekly PM sessions, and (2) weekly urine test results. Self-
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reported daily illicit drug uses variables include cocaine use, marijuana use, alcohol

use, bup use, and prescopioid/heroin/opium/other opiate use. Urine test variables

include cocaine, benzo, THC, and opiate/methadone/oxycontin. Overall, there are

five self-reported variables and four urine test variables. Our main interest in the

motivating example is the cocaine use, including the self-reported cocaine use and

the weekly urine test on cocaine. After statistical methods have been developed for

the SCU data on these two variables, they may also be extended to other substances’

uses.

As defined in the previous sections, let Zit denote the self-reported daily cocaine

use, Xi denote the treatment effect, with Xi = 1 indicating patient in the treatment

group. We conduct the GEE model (independent correlation matrix) using self-

reported data to simply replace true data with the logistic link:

log
Pr (Zit = 1|Xi, β)

1− Pr (Zit = 1|Xi, β)
= β0 + β1Xi.

Table 2.6: Results of GEE analysis of cocaine use
Estimate S.E. P-value

β0 -2.15 0.11 <0.0001
β1 0.23 0.16 0.15

The results of the GEE analysis is presented in Table 2.6. The p-value for effect of

treatment is 0.15, indicating that there is no significant treatment effect.

However, Zit is potentially contaminated, which may lead to bias. A further analysis
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comparing self-reported cocaine use and urine test results at each time point urine

was collected showed that the contamination probability is around 21.4% (Table 2.7).

Table 2.7: Results of self-reported cocaine use and urine test results
Urine test negative Urine test positive

Self-reported negative 1500 411
Self-reported positive 2 19

Table 2.8: Results of MCGEE approach of cocaine use (h=1)
Estimate S.E. P-value

β0 -2.71 0.11 <0.0001
β1 0.29 0.16 0.07

Thus, we use urine test results to estimate the contamination probability and the

mean of self-reported data. We then apply the MCGEE approach to estimate the

effect of CBT.

First, we assume the contamination indicator Rit does not depend on the MEMSCAP

bottle open data, and the time period for cocaine to be cleared from urine is 1 day

(h = 1). From the above table, we can clearly see that the estimation of treatment

effect has been increased, the p-value for the effect of treatment is 0.07. (Table 2.8).

We now consider the case when h = 4, from Table 2.9, the estimation of treatment

effect increases to 0.30 comparing with the situation where h = 1, and the p-value

drops to 0.03, indicating that there is a significant treatment effect.
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Table 2.9: Results of MCGEE approach of cocaine use (h=4)
Estimate S.E. P-value

β0 -2.47 0.10 <0.0001
β1 0.30 0.14 0.03

Second, we assume the contamination indicator Rit depends on the MEMSCAP bot-

tle open indicator. Tables 2.10 and 2.11 show the result for the situation h = 1, and

h = 4. The effects of treatment are similar for these two cases, and both p-values

are less than 0.05, suggesting these effects are statistically significant.

Table 2.10: Results of MCGEE approach of cocaine use (h=1)
Estimate S.E. P-value

β0 -2.31 0.09 <0.0001
β1 0.27 0.13 0.04

Table 2.11: Results of MCGEE approach of cocaine use (h=4)
Estimate S.E. P-value

β0 -2.38 0.09 <0.0001
β1 0.27 0.13 0.04

2.7 Discussion and Conclusion

In this chapter, we proposed the Mean Corrected GEE (MCGEE) approach for

analyzing the longitudinal binary self-reported outcomes with report bias. When

the marginal mean of the self-reported results Zit has been correctly specified, this
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MCGEE approach yields consistent estimates of the parameters. These estimates

are consistent whether or not the working correlation matrix is specified. Urine test

results are used to estimate the contamination probability and correct the marginal

means of the self-reported results. However, urine test is measured weekly, and the

time period for cocaine to be cleared from urine can be longer than one day. From

our study, we noticed that it is challenging to accurately estimate the contamination

probability when the time period for cocaine to be cleared from urine is as long as

4 days. Therefore, a limitation of our proposed approach is that consistency of the

estimators of the model parameters requires the correct estimation of the contami-

nation probability. In other words, estimators may not be asymptotically unbiased

when the contamination probability is misspecified, i.e., the marginal means have

not been correctly estimated.

Comparing the GEE approach, which simply replaced the true data Yit with self-

reported data Zit, with the MCGEE approach, we find that in every situation when

we combine different sample sizes, contamination probabilities, and the time periods

for cocaine to be cleared from urine, the bias of the MCGEE estimators are lower

than the bias of the GEE estimators. The bias of the parameters’ estimation of the

GEE approach increases as contamination probability increase for both contamina-

tion indicator assumptions. When the time period for cocaine to be cleared from

urine is 1 day (h = 1), we can successfully detect the contamination in the self-

reported data for most cases, the bias of the parameters’ estimation of the MCGEE

approach is relatively small, and the coverage probability of 95% CI of MCGEE is
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around 95%. And the bias of the parameters’ estimation of the MCGEE approach

remains similar when contamination probability increases. These findings suggest

that we can consistently detect contaminations in the binary response variable and

significantly decrease the bias of the estimates by the MCGEE approach when the

time period for cocaine to be cleared from urine is relatively short.

However, the difference between the bias of the MCGEE estimators and the GEE

estimators shrinks significantly when the time period for cocaine to be cleared from

urine increases from 1 day to 4 days. In other words, when h increases, the per-

formances of the MCGEE model decreases, and so does the coverage probability of

95% CI. Since it is more difficult to accurately estimate the contamination indicators

of each subject at each time point when h = 4, p2 might be underestimated. As a

result, p1 is subjected to underestimation as well if we fail to detect contaminations

for some subjects. In these scenarios, the marginal mean of the estimating equations

may not be correctly specified, and the bias of the parameters’ estimation of the

MCGEE approach increases significantly.

After applying this approach to the SCU data, we observe that the treatment ef-

fect has been significantly changed when we adjust the marginal mean of the model

by considering the contamination probability. It is anticipated that the bias of the

treatment effect have been reduced from the original method. The study also reveals

the feasibility of reducing the potential bias of the estimators through the detection

of the report bias in the self-reported data and subsequent correction of the marginal
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mean in the GEE model.

In conclusion, accurately modeling the repeated longitudinal binary outcomes with

report bias depends on several factors. The key factor is to correctly estimate the

contamination. The results of our study suggests that the proposed MCGEE ap-

proach performs well when the time period for cocaine to be cleared from urine is

relatively short, e.g., 1 day. After increasing this time period to 4 days, the bias of

the estimators of this approach increases, yet still outperforms the traditional GEE

approach.

2.8 Appendix

From section 2.3, UN (β) =
N∑
i=1

D∗′i V
∗−1
i (Zi − µ∗i ), define ψ(Zi; β) = D∗′i V

∗−1
i (Zi − µ∗i ).

The Assumptions we need to prove the consistency and asymptotic normality of β̂N

are:

Assumption A. The subjects are independently sampled and there exists an upper

bound M <∞ such that the number of replicates mi < M for all subjects i = 1, 2, ....

Assumption B. There exists an upper bound b <∞ such that |Xi| < b for all subjects

i = 1, 2, ....

Assumption C. It is assumed that 1
N

N∑
i=1

XiX
′
i → B as N →∞, where B is a positive
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definite matrix.

Define the matrices

I∗0 (β) = lim
N→∞

1

N

∂

∂β′
UN(β) = lim

N→∞

1

N

N∑
i=1

(D∗′i V
∗−1
i D∗i ),

and

I∗1 (β) = lim
N→∞

1

N

N∑
i=1

(D∗′i V
∗−1
i A∗iV

∗−1
i D∗i ).

The existence of these limits is ensured by Assumption B. Moreover, Assumption C

ensures that I∗0 (β) and I∗1 (β) are positive definite.

In order to prove the solution β̂N of UN (β) = 0 is consistent and asymptotic normally

distributed for large N , we need to show that:

1. 1
N
UN (β0)→ 0 a.s., as N →∞.

2. 1
N

∂
∂βT

UN (β) converge uniformly to a nonstochastic limit which is nonsingular at

β0.

3. With probability one, ψ(Zi; β) are twice continuously differentiable with respect

to β ∈ B, and | ∂2

∂βj∂βk
ψ(Zi; β)| <∞.

4. |ψ(Zi; β)| <∞, and 1√
N
UN (β0) L−→N (0, I∗1 (β0)).
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Since our proof based on some assumptions and theorems from Yuan and Jennrich

(1998), we verify their assumptions in our case in section 2.8.1, we prove the consis-

tency of MCGEE estimator in section 2.8.2, and we show the asymptotic normality

of MCGEE estimator in section 2.8.3.

2.8.1 Verifying the conditions

Yuan and Jennrich (1998) proved consistency and asymptotic normality of M esti-

mators based on the following conditions, which are:

1. 1
N
UN (β0)→ 0 a.s., as N →∞.

2. There exists a neighborhood M of β0 on which with probability one, all 1
N
UN (β)

are continuously differentiable and 1
N

∂
∂βT

UN (β) converge uniformly to a nonstochas-

tic limit which is nonsingular at β0.

3.

1√
N
UN (β0) L−→N (0, I∗1 (β0)) ,

as N →∞.

To prove that the MCGEE estimator is consistent and asymptotically normally dis-

tributed, we will demonstrate the conditions above are satisfied.

By Theorem 5 of Yuan and Jennrich (1998), to verify condition 1 of Juan and Jennrich
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(1998) it suffices to verify the condition 4 of Yuan and Jennrich (1998):

4. For each i, ψ(Zi; β0) has mean zero and variance-covariance matrix Ki, such that

1

N

N∑
i=1

Ki → K,

for some positive-definite matrix K.

For self-reported data Zi, since E(Zi) = µ∗i , then E(ψ(Zi; β0)) = 0, and

var(ψ(Zi; β0)) = D∗′i V
∗−1
i A∗iV

∗−1
i D∗i ,

D∗i = (1− 2pi)⊗ AiXi,

A∗i = diag(var(Zi1), ..., var(ZiT )),

var(Zit) = (1− 2pit)
2 eβ

′Xit

(1 + eβ′Xit)2
+ pit(1− pit),

then

A∗i = diag((1−2pi1)
2 eβ

′Xi1

(1 + eβ′Xi1)2
+pi1(1−pi1), ..., (1−2piT )2

eβ
′XiT

(1 + eβ′XiT )2
+piT (1−piT ))

Since |Xi| < b < ∞ for all i = 1, 2, ...by assumption, and the contamination proba-
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bility, 0 ≤ pit ≤ 1, then

0 ≤ (1− 2pi)
2 ≤ 1,

0 ≤ pit(1− pit) ≤
1

4
,

and

0 ≤ eβ
′Xit

(1 + eβ′Xit)2
≤ 1

4
.

Therefore,

D∗i = (1− 2pi)⊗ AiXi <∞,

0 ≤ var(Zit) = (1− 2pit)
2 eβ

′Xit

(1 + eβ′Xit)2
+ pit(1− pit) ≤

1

2
,

and

Vi = A
∗ 1
2
i C

∗
i (γ)A

∗ 1
2
i <∞.

Hence, the variance-covariance matrix Ki of ψ(β0) satifies

1

N

N∑
i=1

Ki → K,

for some positive-definite matrix K. Condition 1 of Juan and Jennrich (1998) has

been verified.

To verify condition 2 of Juan and Jennrich (1998) it suffices to verify the following

assumptions of Yuan and Jennrich (1998):
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6. With probability one, ψ(Zi; β) are twice continuously differentiable with respect

to β ∈ B.

7. For each β ∈ B,

1

N

N∑
i=1

E(
∂

∂βT
ψ(Zi; β))→ I∗0 (β),

where I∗0 (β) is nonsingular and with probability one

1

N

N∑
i=1

∂

∂βt
ψ(Zi; β)→ I∗0 (β),

as N →∞.

8. For each i,

| ∂2

∂βj∂βk
ψ(Zi; β)| ≤ S,

for some upper bound S <∞.

Yuan and Jennrich proved that under conditions 6, 7, and 8, condition 2 is satisfied.

To verify condition 6, we have

∂

∂β
ψ(Zi; β) =

∂

∂β
(D∗′i V

∗−1
i (Zi − µ∗i ))

= D∗′i V
∗−1
i D∗i + (

∂

∂β
D∗i )

′V ∗−1i (Zi − µ∗i ) +D∗′i (
∂

∂β
V ∗−1i )(Zi − µ∗i ).

Since E(Zi) = µ∗i , the last two terms in the expression above have expectation zero,
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so

E(
∂

∂β
ψ(Zi; β)) = D∗′i V

∗−1
i D∗i .

Moreover,

∂

∂β
D∗i = (1− 2pi)⊗ (

∂

∂β
Ai)Xi,

where Ai = diag(var(Yi1), ..., var(YiT )), and

∂

∂β
(var(Yit)) =

∂

∂β

eβ
′Xit

(1 + eβ′Xit)2

=
Xite

β′Xit(1− eβ′Xit)

(1 + eβ′Xit)3
,

∂

∂β
Ai = diag

(
Xi1e

β′Xi1(1− eβ′Xi1)

(1 + eβ′Xi1)3
, ...,

XiT e
β′XiT (1− eβ′XiT )

(1 + eβ′XiT )3

)
.

Since |Xi| < b <∞, 0 ≤ (1− 2pi) ≤ 1, 0 ≤ eβ
′Xit

(1+eβ
′Xit )2

≤ 1
4
, and 0 ≤ 1

1+eβ
′Xit
≤ 1,

∂

∂β
D∗i <∞.

And,

∂

∂β
V ∗−1i = −V ∗−1i (

∂

∂β
V ∗i )V ∗−1i ,
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∂

∂β
V ∗i = (

∂

∂β
A
∗ 1
2
i )Ci(γ)A

∗ 1
2
i + A

∗ 1
2
i Ci(γ)(

∂

∂β
A
∗ 1
2
i ).

A∗i = diag(var(Zi1), ..., var(ZiT )), and

∂

∂β
(var(Zit)) =

∂

∂β

(
(1− 2pit)

2 eXitβ

(1 + eXitβ)2
+ pit(1− pit)

)
= (1− 2pit)

2Xite
Xitβ(1− eXitβ)

(1 + eXitβ)3
.

Then

∂

∂β
A
∗ 1
2
i = diag[

∂

∂β

√
(1− 2pi1)2

eβ′Xi1

(1 + eβ′Xi1)2
+ pi1(1− pi1), ...,

∂

∂β

√
(1− 2piT )2

eβ′XiT

(1 + eβ′XiT )2
+ piT (1− piT )]

=
1

2
diag[

(1− 2pi1)
2 Xi1e

β′Xi1

(1+eβ
′Xi1 )2

− 2 Xi1e
2β′Xi1

(1+eβ
′Xi1 )3√

(1− 2pi1)2
eβ

′Xi1

(1+eβ
′Xi1 )2

+ pi1(1− pi1)
, ...,

(1− 2piT )2 XiT e
β′XiT

(1+eβ
′XiT )2

− 2 XiT e
2β′XiT

(1+eβ
′XiT )3√

(1− 2piT )2 eβ
′XiT

(1+eβ
′XiT )2

+ piT (1− piT )
]

=
1

2
diag[

(1− 2pi1)
2µi1(1− µi1)(1− 2µi1)Xi1√

(1− 2pi1)2
eβ

′Xi1

(1+eβ
′Xi1 )2

+ pi1(1− pi1)
, ...,

(1− 2piT )2µiT (1− µiT )(1− 2µiT )XiT√
(1− 2piT )2 eβ

′XiT

(1+eβ
′XiT )2

+ piT (1− piT )
].

Therefore, ∂
∂β
A
∗ 1
2
i <∞, ∂

∂β
V ∗i <∞, ( ∂

∂β
D∗i )

′V ∗−1i (Zi−µ∗i ) +D∗′i ( ∂
∂β
V ∗−1i )(Zi−µ∗i ) <

∞, and
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1

N

N∑
i=1

∂

∂β
ψ(Zi; β) =

1

N

N∑
i=1

D∗i V
∗−1
i D∗i .

Taking the second derivative,

∂

∂β
(D∗i V

∗−1
i D∗i ) = (

∂

∂β
D∗′i )V ∗−1i D∗i +D∗′i (

∂

∂β
V ∗−1i )D∗i +D∗′i V

∗−1
i (

∂

∂β
D∗i ).

We also have

∂

∂β
D∗i = (1− 2pi)⊗ (

∂

∂β
Ai)Xi,

∂

∂β
Ai = diag

(
Xi1e

β′Xi1(1− eβ′Xi1)

(1 + eβ′Xi1)3
, ...,

XiT e
β′XiT (1− eβ′XiT )

(1 + eβ′XiT )3

)
.

Since |Xi| < b <∞, 0 ≤ (1− 2pi) ≤ 1, 0 ≤ eβ
′Xit

(1+eβ
′Xit )2

≤ 1
4
, and 0 ≤ 1

1+eβ
′Xit
≤ 1,

∂

∂β
D∗i <∞.

And

∂

∂β
V ∗−1i = −V ∗−1i (

∂

∂β
V ∗i )V ∗−1i ,

58



∂

∂β
V ∗i = (

∂

∂β
A
∗ 1
2
i )Ci(γ)A

∗ 1
2
i + A

∗ 1
2
i Ci(γ)(

∂

∂β
A
∗ 1
2
i ).

Then

∂

∂β
A
∗ 1
2
i = diag[

∂

∂β

√
(1− 2pi1)2

eβ′Xi1

(1 + eβ′Xi1)2
+ pi1(1− pi1), ...,

∂

∂β

√
(1− 2piT )2

eβ′XiT

(1 + eβ′XiT )2
+ piT (1− piT )]

=
1

2
diag[

(1− 2pi1)
2 Xi1e

β′Xi1

(1+eβ
′Xi1 )2

− 2 Xi1e
2β′Xi1

(1+eβ
′Xi1 )3√

(1− 2pi1)2
eβ

′Xi1

(1+eβ
′Xi1 )2

+ pi1(1− pi1)
, ...,

(1− 2piT )2 XiT e
β′XiT

(1+eβ
′XiT )2

− 2 XiT e
2β′XiT

(1+eβ
′XiT )3√

(1− 2piT )2 eβ
′XiT

(1+eβ
′XiT )2

+ piT (1− piT )
]

=
1

2
diag[

(1− 2pi1)
2µi1(1− µi1)(1− 2µi1)Xi1√

(1− 2pi1)2
eβ

′Xi1

(1+eβ
′Xi1 )2

+ pi1(1− pi1)
, ...,

(1− 2piT )2µiT (1− µiT )(1− 2µiT )XiT√
(1− 2piT )2 eβ

′XiT

(1+eβ
′XiT )2

+ piT (1− piT )
].

Therefore, ∂
∂β
A
∗ 1
2
i <∞, and ∂

∂β
V ∗i <∞. Condition 6 is verified.

To verify condition 7 of Juan and Jennrich (1998) , the derivative of ψ(Zi; β) with

respect to β is:

∂

∂β
ψ(Zi; β) =

∂

∂βt
(D∗′i V

∗−1
i (Zi − µ∗i ))

= D∗i V
∗−1
i D∗i + (

∂

∂β
D∗i )

′V ∗−1i (Zi − µ∗i ) +D∗′i (
∂

∂β
V ∗−1i )(Zi − µ∗i ).
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We already showed the following equations when we verifying condition 6,

E(
∂

∂β
ψ(Zi; β)) = D∗i V

∗−1
i D∗i .

1

N

N∑
i=1

∂

∂β
ψ(Zi; β) =

1

N

N∑
i=1

D∗i V
∗−1
i D∗i .

To complete verifying condition 7, we need to show that

1

N

N∑
i=1

∂

∂β
ψ(Zi; β)→ I∗0 (β).

almost surely as N →∞.

Since

1

N

N∑
i=1

D∗i V
∗−1
i D∗i =

1

N

N∑
i=1

((1− 2pi)⊗ AiX ′i)′V ∗−1i (1− 2pi)⊗ AiX ′i,

and (1 − 2pi), Vi, Ai are all bounded from previous proof. Then ((1 − 2pi) ⊗

Ai)
′V ∗−1i (1− 2pi)⊗ Ai is bounded below by a positive constant bi.

Let a denote any T × 1 vector, then

1

N
a′

N∑
i=1

Xi((1− 2pi)⊗ Ai)′V ∗−1i (1− 2pi)⊗ AiX ′ia ≥
1

N
bia
′
N∑
i=1

XiX
′
i > 0,
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by Assumption C, which is

1

N

N∑
i=1

XiX
′
i → B,

as N →∞, where B is a positive definite matrix.

Then,

∂

∂β
ψ(Zi; β) <∞,

1

N

N∑
i=1

∂

∂β
ψ(Zi; β)→ I∗0 (β),

almost surely as N →∞.

To verify condition 8 of Juan and Jennrich (1998), we already show that each term

of the second derivatives of ψ(Zi; β) with respect to β is bounded when we verify

condition 6 ( ∂
∂β
D∗i <∞, ∂

∂β
V ∗−1i <∞).

Hence,

∂2

∂β∂β
ψ(Zi; β) <∞.

In conclusion, condition 2 of Juan and Jennrich (1998) has been verified.

Liapounov’s Theorem and Cramer-Wald Theorem are used to verify condition 3 of
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Juan and Jennrich (1998),

1√
N
UN (β0) L−→N (0, I∗1 (β0)) ,

as N →∞.

As defined earlier,

UN (β0) =
N∑
i=1

ψ(Zi; β0) =
N∑
i=1

D∗′i V
∗−1
i (Zi − µ∗i ) .

Let a denote any T × 1 vector, to apply Liapounov’s Theorem, take

ri = a′D∗′i V
∗−1
i Zi.

Then the mean of ri is

mi = E(ri) = a′D∗′i V
∗−1
i µ∗i ,

and the variance of ri is

V ar(ri) = a′D∗′i V
∗−1
i A∗iV

∗−1
i D∗i a.

Define

c2n =
N∑
i=1

V ar(ri) =
N∑
i=1

a′D∗′i V
∗−1
i A∗iV

∗−1
i D∗i a = O(N),
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since

1

N

N∑
i=1

D∗′i V
∗−1
i A∗iV

∗−1
i D∗i → I∗1 ,

under condition 4.

Assume E(|Zi − µi|3) = µ∗3i <∞. Taking δ = 1, the third central moment is:

E(|ri −mi|3) = E(|a′D∗′i V ∗−1i (Zi − µ∗i )|3)

≤ (a′D∗′i V
∗−1
i )3E(|Zi − µ∗i |3)

= (a′D∗′i V
∗−1
i )3µ∗3i.

So
N∑
i=1

E(|ri −mi|3) = O(N),

since D∗i and V ∗i are bounded, which have been showed when verifying condition 4

of Yuan and Jennrich(1998).

Then

1

c3n

N∑
i=1

E(|ri −mi|3) =
O(N)

O(N
3
2 )

= O(N−1/2),

which converges to zero as N →∞. Therefore, the conditions of Liapounov’s theo-
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rem are satisfied, and

TN =

N∑
i=1

(ri −mi)

cn

=

N∑
i=1

a′D∗′i V
∗−1
i (Zi − µ∗i )√√√√ N∑

i=1

a′D∗′i V
∗−1
i A∗iV

∗−1
i D∗i a

L−→N (0, 1) ,

as N →∞.

By Slutsky’s Theorem,

1√
N

N∑
i=1

a′D∗′i V
∗−1
i (Zi − µ∗i )L−→N (0, a′I∗1 (β)a) .

By the Cramer-Wold Theorem,

1√
N

N∑
i=1

D∗′i V
∗−1
i (Zi − µ∗i )L−→N (0, I∗1 (β)) ,

where I∗1 (β) = lim
N→∞

1

N

N∑
i=1

(D∗′i V
∗−1
i A∗iV

∗−1
i D∗i ).
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Thus, condition 3 has been verified.

2.8.2 Proof of consistency

Theorem 1. Under Assumptions A-C, with probability one there exist zeros β̂N of

UN (β) = 0 such that β̂N → β0 as N →∞.

By condition 1 of Yuan and Jennrich (1998), 1
N
UN (β0) → 0 a.s., as N → ∞. And

by condition 2 of Yuan and Jennrich (1998), 1
N

∂
∂β′UN (β) is nonsingular at β0. Thus,

β0 is the unique zero of U (β) in a neighborhood M of β0.

Theorem 1 of Yuan and Jennrich (1998) states that under conditions 1 and 2, for

any δ > 0, there exists β̂N ∈ M(β0, δ) such that UN

(
β̂N

)
= 0 with probability 1,

for all N sufficiently large.

By Theorem 1, there exists a zero β̂N of UN (β) in M(β0, δ) for all N sufficiently

large. Let β∗ be any limit point of β̂N , then β∗ ∈ M(β0, δ). Let β̂Ni be any subse-

quence of β̂N , then β̂Ni → β∗. Thus, UNi

(
β̂Ni

)
→ U(β∗), and U(β∗) = 0.

Since β0 is the only zero of U (β) in a neighborhood M(β0, δ), then β∗ = β0. Since

this is true for all limit points of β̂N , β̂N → β0. Since conditions 1 and 2 hold with

probability one, β̂N → β0 with probability one.
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2.8.3 Proof of asymptotic normality

Theorem 2. Under Assummptions A-C,
√
N
(
β̂ − β0

)
L−→N

(
0, I∗−10 (β0)I

∗
1 (β0)I

∗−1
0 (β0)

)
,

as N →∞.

To prove Theorem 2, a Taylor series expansion of 1
N
UN

(
β̂N

)
= 1

N

N∑
i=1

D∗′i V
∗−1
i (Zi − µ∗i )

at β0 yields

UN

(
β̂N

)
= UN (β0) +

∂

∂β′
UN (β0)

(
β̂N − β0

)
= 0.

Setting the expression above, and rearranging the terms, we get

√
N
(
β̂N − β0

)
∼= −

(
1

N

∂

∂β′
UN (β0)

)−1
1√
N
UN (β0) .

To prove Theorem 1, we have already demonstrated that:

1

N

∂

∂β′
UN (β0)→ I∗0 (β0),

almost surely as N →∞.

Since we already show that when verifying condition 3 of Yuan and Jennrich (1998),

1√
N
UN (β0) L−→N (0, I∗1 (β0)) .

as N →∞.
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Then by Theorem 4 of Yuan and Jennrich (1998) and by slutsky’s Theorem,

√
N
(
β̂ − β0

)
L−→N

(
0, I∗−10 (β0)I

∗
1 (β0)I

∗−1
0 (β0)

)
,

as N →∞.

And Î∗0 and Î∗1 can be estimated as:

Î∗0 =
N∑
i=1

(D̂∗′i V̂
∗−1
i D̂∗i )

=
N∑
i=1

(1− 2pi)⊗X ′iÂi(Â
∗ 1
2
i Ĉ

∗
i (γ)Â

∗ 1
2
i )−1(1− 2pi)⊗ ÂiXi,

Î∗1 =
N∑
i=1

(D̂∗′i V̂
∗−1
i Â∗i V̂

∗−1
i D̂∗i )

=
N∑
i=1

(1− 2pi)⊗X ′iÂi(Â
∗ 1
2
i Ĉ

∗
i (γ)Â

∗ 1
2
i )−1Â∗i (Â

∗ 1
2
i Ĉ

∗
i (γ)Â

∗ 1
2
i )−1(1− 2pi)⊗ ÂiXi.
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Chapter 3

Weighted Generalized Estimating

Equations Approach for

Longitudinal Binary Outcomes

with Significant Report Bias

3.1 Introduction

In the previous Chapter, in order to correct the report bias in self-reported daily

drug use, we used the urine test results to detect the contamination, and estimated

the true marginal means of the self-reported binary outcomes. We proposed Mean

Corrected Generalized Estimating Equations (MCGEE) to apply the contamination

estimation to correct the marginal means in the GEE model of self-reported data.
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The bias of the estimators have significantly dropped in comparison to the General-

ized Estimating Equations (GEE). However, all these results rely on the validity of

the estimation of the contamination probability. When the time period for cocaine

to be cleared from urine increases, the accuracy of the estimation of contamination

probability decreases, and hence, the bias of the MCGEE model’s estimators increase.

Therefore we propose the following: include a weight function of the contamination

probability into the MCGEE approach and build a Mean Corrected Weighted Gen-

eralized Estimating Equations (MCWGEE) approach to further reduce the potential

bias of the estimators.

The Weighted Generalized Estimating Equations (WGEE) is an extension of the

GEE approach. WGEE is often used for analyzing incomplete longitudinal data,

and gives consistent estimations under Missing at Random (MAR) when the dropout

mechanism is correctly specified. It was first proposed by Robins et al. (1995), in the

form of the inverse probability weighted generalized estimating equation. In the ap-

proach named ”observation-specific weighted method”, each observation is weighted

by the inverse probability of being observed. In some scenarios, this approach can

be more efficient than the ”subject-specific weighted method” (Fitzmaurice et al.

1995), which assigns a single weight that applies to all the observations from each

time point of the same subject (O’Hara et al. 1999).

Under the assumption of MAR, if the mean model and the missing mechanism of

the model are correctly specified, the WGEE method provides a consistent estimate
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of regression parameters. Robins et al. (1995) has proposed WGEE of the form:

N∑
i=1

T∑
t=1

D′itV
−1
it Wit (Yit − µit) = 0,

where Dit, µit, and Vit have the same form as previously defined in Chapter 2.

Wit = diag (ritwit) is the weighted matrix, where rit = 1 if the outcome for subject

i is observed at time t; otherwise, rit = 0. As a result, the weight Wit is wit for an

observed visit and 0 for an unobserved visit.

Preisser et al. compared the WGEE and GEE approaches for repeated binary

outcomes with MAR using a simulation study, in which the WGEE provided a

smaller finite sample bias than the GEE. Moreover, the WGEE with observation-

specific weight provided more accurate estimates than the WGEE with subject-

specific weight (Preisser et al. 2002). Lipsitz et al. conducted another simulation

study for the analysis of a similar binary response outcome with missing data, and

concluded that the GEE model performed well under Missing Completely at Ran-

dom (MCAR), and underperformed under MAR. On the other hand, the bias of

the WGEE approach is negligible under MAR (Lipsitz et al. 2000). Other studies

compared the WGEE estimators and the weighted least squares estimators under

the MAR assumption through simulation, and suggested that the WGEE outper-

formed the weighted least squares estimators, and remained consistent under various

scenarios of missing data and sample size (Lin et al. 2006).
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There are two types of weights usually used in the WGEE weight assignment. First,

the observation-specific weight proposed by Preisser et al.(2002), can be obtained

through a logistic regression model. The weight can later be used in the WGEE

approach for parameter estimations. Under MAR missing mechanism, let Rit be

the indicator of observing the outcome at time t, and λit = P (Rit = 1|Ri(t−1) =

1, Xit, Yit, θ) be the probability of observing the outcome at time t for the ith indi-

vidual conditional on the individual being observed at the previous time point t− 1.

For the first time point, assume Ri1 = 1 and λi1 = 1.

Intuitively, λ̂it can be estimated by fitting a logistic model, logit(λit(θ)) = Zitθ, with

a vector of predictors, Zit, which may include indicator variables of visit, covariates,

and past response variables. wit is then defined as the inverse of the unconditional

probability of being observed at time t, which can be estimated by the conditional

probability,

ŵit =
(
λ̂i1 × ...× λ̂it

)−1
.

In this approach, an observation with a low probability of being observed will receive

a large weight.

Lipsitz et al. considered the aforementioned WGEE approach with the observation-

specific weight for handling missing response data. They concluded that this ap-

proach yielded less bias than the standard GEE approach or the multiple imputation

approach under MAR (Lipsitz et al. 2000). In another study that used the inverse

probability of the observation level WGEE model for data with non-ignorable non-
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responses, the simulation produced mostly unbiased estimates (Troxel et al. 1997).

Paik and Wang proposed an alternative observation level weighting approach for a

longitudinal study with data missing, where weight is a decreasing function of an ar-

tificially created observation indicator. Their work showed that the proposed method

yielded predominately unbiased and efficient results (Paik and Wang 2009). Further,

another study investigated a class of inverse intensity-of-visit process-weighted esti-

mators in marginal regression models for longitudinal responses that was observed

in continuous time, and showed that the consistency still holds (Lin et al. 2004).

The second one is the subject-specific weight, which is sometimes referred to as the

cluster-level weight. It assigns a single weight to each subject, i.e. all the observations

from the same subject receive the same weight. Under the MAR scenario, a subject’s

weight wi is the inverse of the probability of dropping out at the observed time of

dropout.

ŵ−1i =

(
m−1∏
t=2

λ̂it

)(
1− λ̂im

)I(m≤T )
,

where λit is obtained following the approach in the previous paragraph, m is the time

of drop-out, I is the indicator function (Fitzmaurice et al. 1995).

Huang and Leroux performed a study using the cluster-level WGEE with weights

determined by the size of the cluster as well as the subject’s characteristic within the

cluster. Their study yielded satisfactory results (Huang and Leroux 2011).
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O’Hara Hines et al. compared two different weighted approaches of the WGEE model

for joint continuous and categorical responses from clustered data with MAR missing

mechanisms. The subject-specific weight approach was less efficient and more sensi-

tive to influential observations (O’Hara Hines et al 1999). Preisser et al. reported a

similar finding, suggesting that the subject-specific weight approach was considered

less efficient than the observation-specific approach especially with minimal dropouts

(Preisser et al. 2002). One possible reason may be that some subjects with limited

information at the first few time points might have received smaller weight than they

should. Therefore, this approach yielded a larger bias when dropout was minimal.

Despite the fact that various studies have used the WGEE approach to model the

incomplete longitudinal data with dropouts under MAR assumption, rarely have any

applied this method to model data with contamination. One possible explanation is

that missing data can be easily documented, while contamination is more difficult

to detect. In the Self-reported Cocaine use and Urine test (SCU) data, urine test

results can be used to detect the contamination in self-reported outcomes, providing

guidance on assigning the weight subsequently used in the WGEE model.

As such, we explore an alternative approach, in which we borrow the framework

from the WGEE methods to estimate the treatment effect among adults with co-

caine dependence. In our approach, the ”contamination probability in self-reported

data” is not only used to adjust the marginal means of data with report bias, but

also to estimate the weight in the Mean Corrected WGEE model, i.e., the weight
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assignment and marginal means estimation are based on the information from self-

reported and urine binary data. In this chapter, we consider both observation-specific

weighted approach and subject-specific weighted approach, and compare their per-

formances with MCGEE approach through several different settings of sample sizes,

contamination probabilities, and the time period for cocaine to be cleared from urine.

This chapter is organized as follows. In section 3.2, we give the notation and model

equations. We study the asymptotic properties of the estimators from our proposed

MCWGEE approach in section 3.3. The bias of the estimators when data is contam-

inated is explored in section 3.4. The performance of the MCWGEE approach on

finite sample data is evaluated through simulation studies in section 3.5. In section

3.6, we analyze the SCU data using the MCWGEE methods. Finally, we provide the

discussion and conclusion in section 3.7.

3.2 Methods

3.2.1 Weighted generalized estimating equations

To correct bias resulting from the contamination in the self-reported measures, we

borrow the idea of the inverse probability weight from the WGEE approach. From

Chapter 2, Yit is the true drug use variable, and Xit is the covariate vectors for

estimation at times t = 1, ..., T for subjects i = 1, ..., N . Then, for the ith subject at

time t, Yit = 1 if the subject uses drug, Yit = 0 otherwise. Yit is a binary response
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variable and its marginal distribution is Bernoulli:

fy (yi | Xi) = pr (Yi1 = y1, ..., YiT = yT | Xi) = exp(yitηit − log(1 + exp(ηit))).

The marginal mean of the true drug use for the ith subject at a given time point t

is denoted by µit. Let β be a vector of the regression parameters, then

µit = E (Yit | Xi, β) = Pr (Yit = 1 | Xi, β) ,

and with a logit link we will have

ηit = log
µit

1− µit
= xitβ.

The GEE form of Yit is:

Uβ (β) =
N∑
i=1

T∑
t=1

D′itV
−1
it (Yit − µit) = 0,

where Dit = ∂µit/∂β, and Vi is the covariance matrix of Yi, which can be decom-

posed into the form A
1
2
i Ci(γ)A

1
2
i , where Ai is a matrix with the marginal variances on

the main diagonal and zeros elsewhere, γ is a vector which fully characterizes Ci(γ),

which serves as a working correlation matrix of Yi’s.

After forming µit to a vector, µi = E(Yi|Xi, β) = (µi1, ...µiT )′, and since we assumed
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ηi = log µi
1−µi = xiβ, then

Di = ∂µi/∂β =
exiβ

(1 + exiβ)2
Xi.

And Ai = diag(var(Yi1), ..., var(YiT )), var(Yit) = µit × (1− µit) = exitβ

(1+exitβ)2
, then Di

can be written as:

Di = ∂µi/∂β = AiXi.

Thus, we can write the GEE of the true drug use of the form:

Uβ (β) =
N∑
i=1

X ′iAi(A
1
2
i Ci(γ)A

1
2
i )−1 (Yi − µi) = 0.

Let the variable Rit represent outcome contamination at times t = 1, ..., T , for sub-

jects i = 1, ..., N , suggesting whether self-reported data is the same as true drug use.

Rit = 1 if there is contamination, i.e. self reported data is not the same as true drug

use data, otherwise Rit = 0. Let Zit denote the self reported drug use, then

Zit = Yit (1−Rit) + (1− Yit)Rit.

The estimating equation derived from the inverse probability WGEE approach for
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self-reported data is:

Uβ (β) =
N∑
i=1

D′iV
−1
i Wi (Zi − µi) .

Compared with the equation from the GEE approach, Yi has been replaced by Zi,

Di = ∂µi/∂β, Vi is the covariance matrix of Yi, which equals A
1
2
i Ci(γ)A

1
2
i , and

Wi = diag( 1
wi1
, ..., 1

wiT
), where 1

wit
is the weight for the ith individual at the tth

time point. The weight is defined as the inverse of the contamination probability.

However, since the mean of self-reported data is not equal to the true marginal mean,

i.e.,

E(Zi) 6= µi,

the previous WGEE equation may not be equal to 0, and may not give unbiased

estimators. Therefore, we follow the approach discussed in Chapter 2, and propose

a Mean Corrected WGEE (MCWGEE) approach in section 3.2.2.

3.2.2 Mean corrected weighted generalized estimating equa-

tions

Following the notation in Chapter 2, the expected value of Zit is denoted by µ∗it, and

the expected value of the variable for contamination Rit is denoted by pit. And we

assume that the true drug use variable Yit and the variable for contamination Rit are

independent given Xit. Then, µ∗it can be calculated as:
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µ∗it = E(Zit|Xit, β) = E(Yit|Xit, β)× E((1−Rit) |Xit, β) + E((1− Yit) |Xit, β)× E(Rit|Xit, β)

= µit × E((1−Rit) |Xit, β) + (1− µit)× E(Rit|Xit, β)

= µit − 2µit × pit + pit.

After forming µ∗it to a vector, µ∗i = (µ∗i1, ...µ
∗
iT )′,

µ∗i = E(Zi|Xi, β),

the MCWGEE form of the self-reported data Zi can be written as:

U∗β (β) =
N∑
i=1

D∗′i V
∗−1
i Wi (Zi − µ∗i ) = 0.

And,

D∗i = ∂µ∗i /∂β = (1− 2pi)⊗
∂µi
∂β

= (1− 2pi)⊗
exiβ

(1 + exiβ)2
Xi

= (1− 2pi)⊗ AiXi,

where Ai = diag(var(Yi1), ..., var(YiT )), var(Yit) = µit × (1 − µit) = exitβ

(1+exitβ)2
. ⊗

means only multiply the tth row of vector 1 − 2pi by the same tth row of ma-

trix AiXi, i.e., (1 − 2pi) ⊗ AiXi = ((1 − 2pi1) × ai1xi1, ..., (1 − 2piT ) × aiTxiT )′.
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Wi = diag( 1
wi1
, ..., 1

wiT
), where 1

wit
is the weight for the ith individual at the tth time

point. V ∗i is the covariance matrix of Zi, which can be decomposed into the form

A
∗ 1
2
i C

∗
i (γ)A

∗ 1
2
i , in which A∗i is a matrix with marginal variances on the main diagonal

and zeros elsewhere, i.e., A∗i = diag(var(Zi1), ..., var(ZiT )), and

var(Zit) = µ∗it(1− µ∗it)

= (µit − 2µitpit + pit)(1− µit + 2µitpit − pit)

= µit − 2µitpit + pit − µ2
it + 2µ2

itpit − pitµit + 2µ2
itpit − 4µ2

itp
2
it + 2µitp

2
it − µitpit

+ 2µitp
2
it − p2it

= (1− 2pit)
2µit(1− µit) + pit(1− pit)

= (1− 2pit)
2var(Yit) + pit(1− pit).

γ is a vector which fully characterize C∗i (γ), which is a working correlation matrix

of Zi’s.

Hence, we can write the self-reported data’s MCWGEE of the form:

U∗β (β) =
N∑
i=1

(1− 2pi)⊗X ′iAi(A
∗ 1
2
i C

∗
i (γ)A

∗ 1
2
i )−1Wi (Zi − (µi − 2µi ⊗ pi + pi)) = 0.

If the mean model and the contamination probability for each observation are cor-

rectly specified, this MCWGEE method provides a working estimate of regression

parameters under certain assumptions. However, challenges remain in trying to ac-
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curately estimate the contamination probability pit. Through the exploration of

different weighting schemes, we aim to find accurately estimated wit that could re-

duce the bias of the parameter’s estimations and improve the consistency of the

MCWGEE approach.

3.2.3 Approaches for assigning weight in the MCWGEE ap-

proach

3.2.3.1 Subject specific weight

In our working framework, urines are collected every k days, and the time period for

cocaine to be cleared from urine is h days (h ≤ k) (Figure 2.1). We plan to divide

the whole time period into multiple k − day blocks, and calculate the summation

of self-reported cocaine use of h days,
∑k×j

t=k×j−h+1 Zit, for j = 1, ...,mi, mi is the

number of urine measures for subject i. An indicator variable Iij is defined as Iij = 0

if
∑k×j

t=k×j−h+1 Zit = 0, Iij = 1 otherwise.

The difference between each urine test result Uij and the indicator variable Iij is

Fij = |Uij − Iij|, where i = 1, ..., N ; j = 1, ...,mi. We then use Fij, the difference

variable to detect contamination, in which case Fij = 0 indicates that we fail to

detect contamination, while Fij = 1 suggests a contamination detection in the block.

Since the weight is defined as the inverse of the contamination probability, wit = pit,
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the subject specific weight is estimated as:

ŵi =

∑mi
j=1 Fij

mi

.

However, this approach assumes that the contamination probability for the first k−h

days in each time block is the same as the last h days, which may not be true. More-

over, even if we successfully detect contamination in a block, it is still challenging to

locate the exact timepoints of contamination within the block. In some scenarios,

the contamination probability may be underestimated.

3.2.3.2 Observation specific weight

We also consider a model based on the observation specific weight. In this approach,

in order to model the contamination probability, we assume that the contamination

indicator Rit depends on some covariates and can be modeled through logistic re-

gression models.

As defined earlier, Rit = 1 if self-reported drug use is not the same as true drug use,

otherwise Rit = 0. Assume

log
Pr (Rit = 1|Xi, Bit, θ)

1− Pr (Rit = 1|Xi, Bit, θ)
= θ0 + θ1Xi + θ2Bit,
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Pr (Rit = 1|Xi, Bit, θ) =
eθ0+θ1Xi+θ2Bit

1 + eθ0+θ1Xi+θ2Bit
,

where Xi denotes a vector of time independent covariates, Bit denotes a vector of

time dependent covariates, and θ represents a vector of the regression parameters.

To estimate the contamination probability using urine data, we fit a model using

the difference between urine test result and the indicator variable, Fij (which is

calculated in the last section), time independent covariates, Xi, and a function of

time dependent covariates for h days, B′ij:

log
Pr
(
Fij = 1|Xi, B

′
ij, θ

′)
1− Pr

(
Fij = 1|Xi, B′ij, θ

′
) = θ′0 + θ′1Xi + θ′2B

′
ij,

where i = 1, ..., N ; j = 1, ...,mi, mi is the number of urine measures for subject i,

and θ′0, θ
′
1, θ
′
2 are the regression parameters. Estimations of θ′0, θ

′
1, θ
′
2, i.e., θ̂′0, θ̂

′
1, θ̂
′
2

are used to model P̂ r(Rit = 1).

P̂ r
(
Rit = 1|Xi, Bit, θ̂

′
)

will be estimated by the following model,

log
P̂ r
(
Rit = 1|Xi, Bit, θ̂

′
)

1− P̂ r
(
Rit = 1|Xi, Bit, θ̂′

) = θ̂′0 + θ̂′1Xi + θ̂′2Bit,

where i = 1, ..., N ; t = 1, ..., T .
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And the observation specific weight is defined as:

ŵit = P̂ r
(
Rit = 1|Xi, Bit, θ̂

′
)

=
eθ̂

′
0+θ̂

′
1Xi+θ̂

′
2Bit

1 + eθ̂
′
0+θ̂

′
1Xi+θ̂

′
2Bit

,

where i = 1, ..., N ; t = 1, ..., T .

The estimation of the regression parameters may not be asymptotically unbiased

when the estimation of the weight, the contamination probability, is biased. In the

next section, we address the asymptotic normality of estimators from MCWGEE

approach under the true value of contamination probability. And in section 3.4, we

examine the asymptotic bias of estimators based on the MCWGEE approach for

self-reported data when the estimation of the contamination probability is biased.

3.3 Asymptotic Properties of the Estimators

Under the assumptions that model means and drop-out process (MAR) are correctly

specified, Robins et al. (1995) proposed that the WGEE yielded a consistent estimate

of β, and
√
N(β̂ − β) is asymptotically normally distributed with mean zero and

estimated variance matrix:

(
N∑
i=1

D̂′iV̂
−1
i ŴiD̂i

)−1( N∑
i=1

ĜiĜ
′
i

)(
N∑
i=1

D̂′iV̂
−1
i ŴiD̂i

)−1
,
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where

Ĝi = Ûi − (
N∑
i=1

ÛiŜ
′
i)(

N∑
i=1

ŜiŜ
′
i)Ŝi,

Ûi = D̂′iV̂
−1
i Ŵi (Zi − µ̂i) ,

and Si is the score component for the ith individual from the drop-out model. The

use of

(
N∑
i=1

ĜiĜ
′
i

)
instead of

(
N∑
i=1

D̂′iV̂
−1
i ÂiV̂

−1
i D̂i

)
from the GEE approach in

Chapter 2, adjusts for estimation of parameters in the drop-out model (Robins et al.

1995).

However, in our case, we use the WGEE model to correct report bias in the self-

reported binary outcomes by assigning a larger weight to the observation with a

smaller contamination probability, and a smaller weight to the observation with a

larger contamination probability. Since our focus is not on missing data and we

use a MCWGEE approach mainly to include the contamination probability into the

estimating equation, our study differs from Robins et al.’ work.

In this section, we study the asymptotic properties of β̂, the solution of the MCWGEE

of self-reported data by proving the existence, the weak consistency, and the asymp-

totic normality of the MCWGEE estimator β̂ as sample size N → ∞ and time

periods for each subject T is bounded for all subjects. Our study has been built

upon the framework of Yuan and Jennrich (1998) and results from Chapter 2.
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The MCWGEE form of the self-reported data Zi is:

UN (β) =
N∑
i=1

D∗′i V
∗−1
i Wi (Zi − µ∗i )

=
N∑
i=1

(1− 2pi)⊗X ′iAi(A
∗ 1
2
i C

∗
i (γ)A

∗ 1
2
i )−1Wi (Zi − (µi − 2µi ⊗ pi + pi)) ,

where the correlation parameter γ the contamination probabilities pi are assumed to

be known, and Wi = diag( 1
pi1
, ..., 1

piT
) is the weight matrix with weight defined as the

inverse of the contamination probability of the same time point.

Here we aim to show that the solution β̂N to UN(β) = 0 is consistent,

β̂N → β0,

almost surely for the true value β0, and β̂N is approximately normally distributed as

N →∞.

The Assumptions we need to prove the consistency and asymptotic normality of β̂N

are:

Assumption A. The subjects are independently sampled and there exists an upper

bound M <∞ such that the number of replicates mi < M for all subjects i = 1, 2, ....

Assumption B. There exists an upper bound b <∞ such that |Xi| < b for all subjects

i = 1, 2, ....

91



Assumption C. It is assumed that 1
N

N∑
i=1

XiX
′
i → B as N →∞, where B is a positive

definite matrix.

Assumption A ensures that data from a finite number of subjects and do not domi-

nate the parameter estimator. Assumption B ensures that the estimating functions

1
N
UN(β) and its first and higher-order derivatives with respect to beta are bounded.

Assumption C means that for sufficiently large N , 1
N
E( ∂

∂β′UN(β)) will be positive

definite, and there is no redundancy in the predictors.

Define the matrices

I∗0 (β) = lim
N→∞

1

N

∂

∂β′
UN(β) = lim

N→∞

1

N

N∑
i=1

(D∗′i V
∗−1
i WiD

∗
i ),

and

I∗1 (β) = lim
N→∞

1

N

N∑
i=1

(D∗′i V
∗−1
i WiA

∗
iWiV

∗−1
i D∗i ).

The existence of these limits is ensured by Assumption 2. Moreover, Assumption 3

ensures that I∗0 (β) and I∗1 (β) are positive definite.

The following Theorem shows that the MCWGEE is strongly consistent for β.

Theorem 1. Under Assumptions A-C, with probability one there exist zeros β̂N of

UN (β) = 0 such that β̂N → β0 as N →∞.
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In the Appendix, we demonstrate that 1
N
UN (β0) → 0 a.s., as N → ∞, and that

1
N

∂
∂β′UN(β) converges uniformly to a non-stochastic limit which is nonsingular at β0.

The results then follow from Theorem 2 of Yuan and Jennrich (1997).

The following Theorem shows that the MCWGEE estimator is approximately nor-

mally distributed for large N .

Theorem 2. Under Assummptions A-C,
√
N
(
β̂ − β0

)
L−→N

(
0, I∗−10 (β0)I

∗
1 (β0)I

∗−1
0 (β0)

)
,

as N →∞.

The above result is proved in the appendix. The variance-covariance estimator of β̂

can be estimated as:

Î∗0 =
N∑
i=1

(D̂∗′i V̂
∗−1
i WiD̂

∗
i ),

and

Î∗1 =
N∑
i=1

D̂∗′i V̂
∗−1
i WiÂ

∗
iWiV̂

∗−1
i D̂∗i .

Therefore, the asymptotic properties of β̂ holds with the accurate estimation of the

contamination probability. However, if the estimation of this probability is misspec-

ified, β̂ may not be asymptotically unbiased. In the next section, we explore the

asymptotic bias of β̂ from the MCWGEE approach for self-reported binary data

when the estimation of the contamination probability has deviated from the true
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value.

3.4 Bias of the Estimators with Report Bias

If the model means are correctly specified, then the MCGEE approach from chapter

2 may provide an unbiased estimation of β. However, when the time period for co-

caine to be cleared from urine increases, it is difficult to obtain accurate estimation

of the contamination probability, and the bias of the MCGEE model’s estimators

increase. Thus, to further reduce the potential bias of the estimators, we include a

weight which is the inverse of the contamination probability to the model equation

to compensate for the potential bias caused by contamination.

The MCWGEE form of the self-reported data Zi is:

U∗β (β) =
N∑
i=1

D∗′i V
∗−1
i Wi (Zi − µ∗i )

=
N∑
i=1

(1− 2pi)⊗X ′iAi(A
∗ 1
2
i C

∗
i (γ)A

∗ 1
2
i )−1Wi (Zi − (µi − 2µi ⊗ pi + pi)) .

Since the weight is defined as the inverse of the contamination probability at each

time point, the weight 1
pi

can be assigned using two methods, reference section 3.2.3.

One method is subject specific weight, i.e., a single weight has been assigned to each

subject, and all the observations from the same subject receive the same weight.
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From previous discussions, we estimated the contamination probability pi for the ith

subject using:

p̂i =

∑m
j=1 Fij

mi

,

where mi is the number of urine tests for subject i, Fij is the difference between urine

test results Uij and the indicator of the summation of self-reported binary outcomes

of h days Iij. The subject specific weight is defined as 1
p̂i

.

The other approach is observation specific weight, in which case, weight might be

different for each observation. We assume that the contamination indicator Rit de-

pends on some covariates and can be modeled through logistic regression models.

From section 3.2.3.2, p̂it = P̂ r
(
Rit = 1|Xi, Bit, θ̂

′
)

is estimated by the following

model,

log
P̂ r
(
Rit = 1|Xi, Bit, θ̂

′
)

1− P̂ r
(
Rit = 1|Xi, Bit, θ̂′

) = θ̂′0 + θ̂′1Xi + θ̂′2Bit,

so

p̂it =
eθ̂

′
0+θ̂

′
1Xi+θ̂

′
2Bit

1 + eθ̂
′
0+θ̂

′
1Xi+θ̂

′
2Bit

,

where i = 1, ..., N ; t = 1, ..., T ; Xi denotes a vector of time independent covariates;

Bit denotes a vector of time dependent covariates. The observation specific weight

is defined as 1
pit

.

Assume the marginal mean of the true drug use for the ith subject is not equal to 0.5
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for each time points, µi = (µi1, ...µiT )′ 6= (0.5, ..., 0.5)′, the contamination probability

is not equal to 0.5 for each time points, pi = (pi1, ...piT )′ 6= (0.5, ..., 0.5)′, and the

estimated contamination probability is also not equal to 0.5 for every time points,

p̂i = (pi1, ...piT )′ 6= (0.5, ..., 0.5)′.

If we replace pi by p̂i in the estimating equation, then Eβ0(U
∗
β(β)) may not be equal

to 0.

Eβ0(U
∗
β(β)) =

N∑
i=1

D∗′i V
∗−1
i Wi (E(Zi)− µ∗i )

=
N∑
i=1

(1− 2p̂i)X
′
iAi(A

∗ 1
2
i C

∗
i (γ)A

∗ 1
2
i )−1Wi(1− 2µi)(pi − p̂i).

The above equation is only guaranteed to equal 0 when p̂i = pi, i.e., when the contam-

ination probability has been correctly estimated, we can have unbiased estimators.

From section 3.3, we have

Eβ0(U
∗
β(β)) =

N∑
i=1

D∗′i V
∗−1
i Wi (E(Zi)− µ∗i ) = 0,

β̂N → β0,

as N →∞, where β0 is the true value.
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However, with p̂i 6= pi,

Eβ0(U
∗
β(β)) =

N∑
i=1

D∗′i V
∗−1
i Wi (E(Zi)− µ∗i ) 6= 0.

Instead,

Eβ0(U
∗
β(β∗)) = 0,

β̂N → β∗,

as N →∞.

To estimate the asymptotic bias of β̂ is equivalent to the difference of β∗− β0. From

Chapter 2, we observe that when the difference between p̂i and pi increases, the

difference between E(Zi) and µ∗i increases, and subsequently the bias of β̂ increases.

By adding the inverse of contamination probability as the weight function, the ob-

servations with higher contamination probability have lower weight in the equations.

Therefore, we can further reduce the bias of β̂ by assigning a lower weight to out-

comes with higher contamination probability.

Since the above equation does not have a closed form solution of β, we may also

borrow the idea from Rotnitzky and Wypij (1992): for any fixed β, the estimating

equation, a function of (Zi, Ri, Xi), has expectation given by the sum of all the pos-

sible situations times their respected probabilities. Then instead of solving for β in

the above equations, we can simply consider an artificial sample comprised of one
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observation for each possible combinations of Zi, Ri, and Xi, which are weighted by

their specific probabilities.

3.5 Simulations

3.5.1 Data generation

Two groups (Treatment and control) are considered in the data generation. In each

group, there are N/2 subjects whose outcomes are repeatedly measured at T time

points. True drug use data is generated as:

Pr (Yit = 1|Xi, β) = µit,

log
µit

1− µit
= Xiβ = β0 + β1Xi + σi,

for i = 1, ..., N , t = 1, ..., T , where Xi is the treatment indicator, Xi = 1 denotes

the individual is in a treatment group, Xi = 0 denotes the individual is in a control

group, and σi is a random effect variable following normal distribution with mean

zero and a common variance v = 0.04.

Urine data is generated based on the true drug use data, for the ith patient, we use

Uij to denote urine test result, where j = 1, ...,mi. mi is the number of urine tests

for subject i. Based on the notation used previously, the self-reported data can be
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written as:

Zit = Yit (1−Rit) + (1− Yit)Rit.

Contamination indicator Rit is generated using two methods to assess different weight

estimation using the MCWGEE approach.

To obtain the subject specific weight of the MCWGEE model, Rit is generated by a

relatively simple contamination probability assumption, which is not model based.

Assuming there is p1 probability of contamination among all subjects at one or several

time points, and within these subjects there is p2 probability that they report false

drug use at each time point. Each observation is independent. Thus, the overall

contamination probability p equals:

p = p1 × p2.

And it can be estimated as:

p̂ =

∑N
i=1

∑T
t=1Rit

N × T
.

For each contaminated subjects, the contamination probability at each time point

can be estimated as:

p̂i =
1

T

T∑
t=1

Rit,

the probability of how many subjects have been contaminated has the estimated
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form:

p̂1 =
1

N

N∑
i=1

Ii

(
T∑
t=1

Rit ≥ 1

)
,

where Ii is the indicator, Ii = 1 if
T∑
t=1

Rit ≥ 1; otherwise Ii = 0.

To estimate the effect of observation specific weight of the MCWGEE approach, Rit is

generated by a model based on time dependent covariates Bit and time independent

covariates Xi. Where Xi is the treatment effect, Bit is the Buprenorphone bottle

open data, σi is a random effect variable following normal distribution with mean

zero and a common variance v = 0.04. In our simulation, we assume the indicator

variable Rit follows:

log
Pr (Rit = 1|Xi, Bit, θ)

1− Pr (Rit = 1|Xi, Bit, θ)
= θ0 + θ1Xi + θ2Bit + σi.

Bias of estimators corresponding to each generation method have been assessed un-

der different conditions, such as: contamination probabilities, different time periods

for cocaine to be cleared from urine, study time periods, and sample sizes.

All data simulations and analysis are carried out using the R software, and 1000

replications are performed for each run to obtain reliable results.
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3.5.2 Simulation results

In this section, we compare the bias and standard error of the estimators of the

WGEE approach and the MCWGEE approach for various situations under simula-

tion. We assume that urines are collected every 7 days (k = 7). We generate N/2

subjects in the treatment and the control group, respectively, and whose outcomes

are repeatedly measured at T time points. The true value for the intercept β0 is 0.3,

and the true value for the treatment effect β1 is 1.2.

First, we consider the case where Rit is generated by a relatively simple contami-

nation probability assumption to obtain a subject specific weight. As we discussed

earlier, the bias of the MCWGEE approach of self-reported data exist when the

estimated contamination probability is not the same as the true value (p̂ 6= p).

Several combinations for different sample size (N = 100, N = 400), time periods

for each individual’s measurement (T = 70, T = 140), contamination probabilities

(p1 = 0.4, 0.6; p2 = 0.4, 0.8), and different time periods for cocaine to be cleared from

urine (h = 1, h = 4) have been considered.

Table 3.1 provides robust results with a small bias in the parameters’ estimation for

both WGEE and MCWGEE approach. The models performed well for each sample

size, time period, and contamination probability. And the bias of the MCWGEE

estimators are lower than the bias of the WGEE estimators. Compared with the

MCGEE approach presented in Chapter 2, the MCWGEE has a smaller bias and

higher coverage probability of 95% CI for each scenario. Moreover, the standard
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error of the parameters decreases as the sample size and time period increase. The

bias of β1 for MCGEE and MCWGEE are also presented in Figure 3.1.

Figure 3.1: Bias of β1 of MCGEE and MCWGEE when h = 1
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After increasing the time period for cocaine to be cleared from urine from 1 day to

4 days (k=7, h=4), we observe that the bias for both models have increased when

compared to h = 1. The bias of parameter estimates of the MCWGEE approach is

still lower than that of the WGEE approach. Under multiple scenarios, their perfor-

mances on bias correction decline significantly because the probability to detect the

contamination measurement decreases as the time period for cocaine to be cleared
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Table 3.1: Parameters’ estimation, standard error (S.E.), and coverage probability
of 95% CI (CP%) of the Mean Corrected GEE approach, subject specific WGEE
approach, and the Mean Corrected subject specific WGEE approach (k=7, h=1).

Effect N T p1 p2 MCGEE CP% WGEE CP% MCWGEE CP%
β0(S.E.) 100 70 0.4 0.4 0.279(0.05) 94.0 0.289(0.06) 93.2 0.293(0.06) 95.2

0.8 0.291(0.05) 94.6 0.296(0.05) 92.4 0.299(0.06) 95.2
0.6 0.4 0.262(0.06) 91.8 0.282(0.07) 90.6 0.290(0.07) 95.0

0.8 0.283(0.06) 94.2 0.286(0.07) 88.4 0.296(0.08) 94.2
140 0.4 0.4 0.292(0.05) 94.6 0.293(0.04) 95.2 0.299(0.05) 94.6

0.8 0.293(0.04) 94.6 0.293(0.04) 91.6 0.297(0.05) 94.2
0.6 0.4 0.274(0.05) 92.4 0.281(0.05) 92.6 0.290(0.06) 95.0

0.8 0.292(0.04) 95.0 0.293(0.05) 93.4 0.302(0.06) 94.6
400 70 0.4 0.4 0.283(0.03) 90.4 0.293(0.02) 93.2 0.297(0.03) 94.8

0.8 0.289(0.02) 92.0 0.293(0.03) 93.6 0.297(0.03) 95.6
0.6 0.4 0.267(0.03) 82.6 0.287(0.03) 92.2 0.296(0.04) 94.6

0.8 0.282(0.03) 89.8 0.288(0.03) 93.4 0.297(0.03) 94.8
140 0.4 0.4 0.288(0.02) 91.2 0.291(0.02) 91.8 0.295(0.02) 94.2

0.8 0.293(0.02) 92.2 0.293(0.02) 92.0 0.297(0.02) 94.2
0.6 0.4 0.281(0.03) 89.0 0.289(0.02) 93.6 0.297(0.03) 95.4

0.8 0.290(0.02) 92.3 0.288(0.03) 94.0 0.297(0.03) 95.7
β1(S.E.) 100 70 0.4 0.4 1.129(0.09) 87.6 1.162(0.09) 92.6 1.186(0.09) 94.2

0.8 1.135(0.08) 86.4 1.163(0.08) 93.2 1.187(0.09) 94.2
0.6 0.4 1.062(0.11) 74.2 1.125(0.10) 89.4 1.175(0.11) 94.2

0.8 1.099(0.09) 79.0 1.144(0.10) 87.4 1.197(0.11) 95.4
140 0.4 0.4 1.162(0.07) 92.0 1.167(0.07) 93.2 1.191(0.07) 95.4

0.8 1.161(0.07) 91.2 1.164(0.07) 90.6 1.189(0.08) 94.4
0.6 0.4 1.131(0.09) 88.6 1.142(0.08) 89.0 1.195(0.09) 93.6

0.8 1.141(0.07) 88.0 1.133(0.08) 87.0 1.188(0.09) 95.2
400 70 0.4 0.4 1.128(0.05) 65.4 1.160(0.04) 84.6 1.184(0.04) 93.6

0.8 1.137(0.04) 68.0 1.166(0.04) 89.2 1.189(0.04) 94.2
0.6 0.4 1.055(0.06) 25.4 1.121(0.05) 65.8 1.171(0.06) 91.6

0.8 1.099(0.04) 35.6 1.140(0.05) 77.4 1.192(0.05) 95.6
140 0.4 0.4 1.162(0.04) 79.6 1.168(0.04) 86.4 1.191(0.03) 94.4

0.8 1.164(0.03) 82.6 1.167(0.04) 86.8 1.190(0.03) 93.4
0.6 0.4 1.126(0.04) 59.4 1.137(0.04) 68.0 1.188(0.04) 94.4

0.8 1.141(0.04) 62.5 1.139(0.04) 69.9 1.191(0.04) 95.7
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Table 3.2: Parameters’ estimation, standard error (S.E.), and coverage probability
of 95% CI (CP%) of the Mean Corrected GEE approach, subject specific WGEE
approach, and the Mean Corrected subject specific WGEE approach(k=7, h=4).

Effect N T p1 p2 MCGEE CP% WGEE CP% MCWGEE CP%
β0(S.E.) 100 70 0.4 0.4 0.225(0.04) 58.4 0.254(0.04) 84.4 0.256(0.05) 85.4

0.8 0.157(0.06) 26.2 0.227(0.05) 69.4 0.231(0.06) 76.6
0.6 0.4 0.188(0.04) 30.0 0.227(0.05) 65.2 0.230(0.05) 72.8

0.8 0.058(0.06) 2.2 0.165(0.05) 42.0 0.173(0.07) 53.8
140 0.4 0.4 0.225(0.04) 47.6 0.266(0.04) 86.2 0.270(0.04) 89.0

0.8 0.150(0.05) 13.0 0.254(0.04) 82.6 0.261(0.05) 87.8
0.6 0.4 0.183(0.04) 10.2 0.241(0.04) 69.2 0.247(0.05) 78.8

0.8 0.058(0.05) 0.6 0.218(0.05) 64.6 0.230(0.06) 78.0
400 70 0.4 0.4 0.228(0.02) 8.6 0.255(0.02) 51.4 0.257(0.02) 53.4

0.8 0.156(0.03) 0.0 0.228(0.02) 25.2 0.232(0.03) 30.4
0.6 0.4 0.187(0.02) 0.0 0.225(0.02) 13.8 0.229(0.03) 21.8

0.8 0.059(0.03) 0.0 0.164(0.02) 1.4 0.171(0.03) 1.8
140 0.4 0.4 0.227(0.02) 4.6 0.268(0.02) 65.4 0.272(0.02) 75.4

0.8 0.153(0.03) 0.0 0.258(0.02) 58.6 0.265(0.02) 70.4
0.6 0.4 0.183(0.02) 0.0 0.242(0.02) 27.2 0.248(0.02) 38.4

0.8 0.057(0.03) 0.0 0.216(0.02) 11.0 0.228(0.03) 23.6
β1(S.E.) 100 70 0.4 0.4 0.756(0.10) 1.6 0.788(0.10) 2.8 0.792(0.11) 3.0

0.8 0.746(0.16) 16.0 1.040(0.12) 79.0 1.085(0.13) 86.6
0.6 0.4 0.552(0.10) 0.0 0.579(0.10) 0.0 0.582(0.11) 0.0

0.8 0.401(0.19) 2.6 0.884(0.16) 51.8 0.959(0.19) 78.2
140 0.4 0.4 0.759(0.09) 0.6 0.844(0.10) 4.6 0.853(0.10) 7.4

0.8 0.782(0.15) 20.0 1.120(0.08) 83.8 1.175(0.08) 93.0
0.6 0.4 0.566(0.09) 0.0 0.648(0.10) 0.0 0.656(0.11) 0.0

0.8 0.406(0.19) 1.4 1.023(0.11) 63.8 1.137(0.10) 90.0
400 70 0.4 0.4 0.750(0.05) 0.0 0.782(0.05) 0.0 0.786(0.05) 0.0

0.8 0.743(0.08) 0.0 1.039(0.06) 24.0 1.082(0.06) 54.4
0.6 0.4 0.554(0.05) 0.0 0.579(0.04) 0.0 0.582(0.06) 0.0

0.8 0.412(0.09) 0.0 0.893(0.08) 2.6 0.965(0.09) 25.0
140 0.4 0.4 0.755(0.05) 0.0 0.840(0.05) 0.0 0.849(0.05) 0.0

0.8 0.767(0.07) 0.0 1.110(0.04) 37.4 1.165(0.04) 87.4
0.6 0.4 0.561(0.05) 0.0 0.640(0.05) 0.0 0.647(0.05) 0.0

0.8 0.419(0.09) 0.0 1.033(0.05) 8.0 1.142(0.05) 82.2
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Figure 3.2: Bias of β1 of MCGEE and MCWGEE when h = 4
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from urine increases. When p2 increases, MCWGEE approach results in less biased

results compared to the MCGEE model. One possible explanation may be that with

higher p2, it is easier to detect contamination, and subjects with detected contamina-

tions have been assigned to a relatively lower weight subsequently (Table 3.2, Figure

3.2).

Second, we consider the case where Rit is generated by a model based on the bottle
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Table 3.3: Parameter value for model based generation of Rit.
p̄ θ0 θ1 θ2

0.1 0.05 0.5 -8.0
0.3 0.8 4.5 -3.0
0.5 1.4 5.5 -2.0

open data Bit and the treatment indicatorXi to obtain an observation specific weight:

log
Pr (Rit = 1|Xi, Bit, θ)

1− Pr (Rit = 1|Xi, Bit, θ)
= θ0 + θ1Xi + θ2Bit + σi.

Several contamination probabilities estimated by the true Rit have been evaluated.

The θ values we used to generate Rit for different mean of contamination probabili-

ties are in Table 3.3.

Table 3.4 shows that the use of observation specific WGEE may result in biased

estimates when contamination probability is high (p̄ = 0.5). When contamination

probability is low (p̄ = 0.1), both methods provide less biased estimates. The bias

of observation specific WGEE approach increases as the contamination probability

increases. On the other hand, this bias remains relatively small for the observation

specific MCWGEE model regardless of the change in the contamination probability.

Moreover, the standard error of parameters for both models decreases as the sample

size and the time period for each subject increase.

After increasing the time period for cocaine to be cleared from urine from 1 day to 4
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Table 3.4: Parameters’ estimation, standard error (S.E.), and coverage probability
of 95% CI (CP%) of the MCGEE approach, observation specific WGEE approach,
and the MCWGEE approach (k=7, h=1).

Effect N T p̄ MCGEE CP% WGEE CP% MCWGEE CP%
β0(S.E.) 100 70 0.1 0.293(0.04) 85.8 0.294(0.05) 92.8 0.295(0.05) 92.8

0.3 0.293(0.04) 88.6 0.220(0.05) 54.0 0.296(0.04) 87.0
0.5 0.298(0.06) 90.2 0.032(0.07) 4.2 0.273(0.06) 67.6

140 0.1 0.299(0.03) 82.6 0.299(0.04) 95.6 0.300(0.05) 95.6
0.3 0.294(0.03) 84.0 0.213(0.04) 37.0 0.289(0.03) 87.8
0.5 0.296(0.04) 83.4 0.023(0.06) 3.4 0.259(0.04) 68.6

400 70 0.1 0.299(0.02) 89.0 0.298(0.02) 95.8 0.298(0.02) 96.0
0.3 0.298(0.02) 89.0 0.221(0.02) 4.6 0.299(0.02) 92.2
0.5 0.299(0.03) 89.6 0.036(0.03) 2.4 0.281(0.03) 70.4

140 0.1 0.297(0.01) 78.0 0.297(0.02) 93.4 0.297(0.02) 93.0
0.3 0.298(0.02) 84.4 0.220(0.02) 0.6 0.298(0.02) 88.4
0.5 0.297(0.02) 85.2 0.037(0.02) 2.6 0.278(0.02) 68.0

β1(S.E.) 100 70 0.1 1.192(0.09) 95.4 1.192(0.08) 94.6 1.193(0.07) 94.8
0.3 1.188(0.13) 91.6 0.788(0.07) 0.2 1.184(0.06) 84.6
0.5 1.162(0.10) 90.6 0.080(0.12) 2.8 1.037(0.09) 71.8

140 0.1 1.187(0.08) 94.2 1.185(0.06) 94.6 1.187(0.08) 94.6
0.3 1.192(0.10) 93.8 0.790(0.07) 0.4 1.185(0.06) 89.2
0.5 1.180(0.11) 76.8 0.127(0.11) 2.4 1.115(0.12) 72.6

400 70 0.1 1.188(0.04) 94.8 1.186(0.04) 92.0 1.188(0.05) 92.4
0.3 1.187(0.06) 88.2 0.796(0.04) 0.0 1.188(0.03) 80.6
0.5 1.178(0.05) 87.0 0.114(0.05) 0.2 1.111(0.05) 63.6

140 0.1 1.190(0.05) 94.8 1.188(0.03) 92.8 1.189(0.03) 93.8
0.3 1.189(0.04) 91.8 0.797(0.03) 0.0 1.191(0.04) 85.0
0.5 1.184(0.04) 78.6 0.123(0.05) 0.0 1.118(0.04) 74.4
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Table 3.5: Parameters’ estimation standard error (S.E.), and coverage probability of
95% CI (CP%) of the MCGEE approach, the observation specific WGEE approach,
and the MCWGEE approach (k=7, h=4).

Effect N T p̄ MCGEE CP% WGEE (%) MCWGEE (%)
β0(S.E.) 100 70 0.1 0.274(0.04) 79.4 0.298(0.05) 94.8 0.300(0.04) 94.8

0.3 0.177(0.04) 17.8 0.199(0.04) 35.0 0.221(0.06) 56.0
0.5 0.039(0.04) 0.0 0.047(0.04) 0.0 0.065(0.04) 0.0

140 0.1 0.271(0.03) 67.8 0.295(0.04) 94.2 0.297(0.03) 93.6
0.3 0.182(0.03) 6.8 0.198(0.04) 24.6 0.220(0.05) 41.2
0.5 0.034(0.03) 0.0 0.043(0.03) 0.0 0.061(0.03) 0.0

400 70 0.1 0.273(0.02) 63.6 0.298(0.02) 94.8 0.299(0.02) 94.0
0.3 0.183(0.02) 0.0 0.203(0.02) 0.8 0.224(0.03) 7.8
0.5 0.037(0.02) 0.0 0.050(0.02) 0.0 0.064(0.02) 0.0

140 0.1 0.269(0.01) 37.8 0.294(0.02) 93.6 0.296(0.01) 94.6
0.3 0.179(0.02) 0.0 0.197(0.02) 0.0 0.219(0.02) 0.8
0.5 0.036(0.02) 0.0 0.045(0.01) 0.0 0.063(0.02) 0.0

β1(S.E.) 100 70 0.1 1.077(0.09) 80.4 1.179(0.07) 92.4 1.190(0.08) 93.2
0.3 0.651(0.11) 0.2 0.713(0.08) 0.0 0.813(0.10) 0.0
0.5 0.120(0.10) 0.0 0.143(0.07) 0.0 0.205(0.08) 0.0

140 0.1 1.075(0.09) 85.4 1.180(0.06) 93.6 1.192(0.06) 94.2
0.3 0.637(0.08) 0.0 0.687(0.08) 0.0 0.791(0.07) 0.0
0.5 0.124(0.08) 0.0 0.145(0.07) 0.0 0.208(0.08) 0.0

400 70 0.1 1.082(0.06) 39.6 1.182(0.04) 89.6 1.193(0.03) 93.6
0.3 0.648(0.06) 0.0 0.716(0.04) 0.0 0.817(0.05) 0.0
0.5 0.122(0.04) 0.0 0.151(0.04) 0.0 0.215(0.04) 0.0

140 0.1 1.079(0.04) 34.6 1.181(0.03) 90.0 1.194(0.02) 94.0
0.3 0.643(0.04) 0.0 0.697(0.04) 0.0 0.799(0.04) 0.0
0.5 0.121(0.04) 0.0 0.148(0.03) 0.0 0.211(0.05) 0.0
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Figure 3.3: Bias of β1 of MCGEE and MCWGEE
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days (h = 4), both WGEE and MCWGEE perform poorly on bias correction when

contamination probability is high (p̄ = 0.5). Under lower contamination probability

(p̄ = 0.1), both of these methods report less biased estimators. In addition, the

bias of the MCWGEE estimators are lower than the WGEE estimators under each

situation (Table 3.5). From Figure 3.3, the bias of β1 of MCWGEE seems similar to

that of MCGEE when h = 1 and p̄ is relatively low, although both bias of these two

methods increase significantly when h = 4, the bias of MCWGEE is generally lower
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than MCGEE’s bias (Figure 3.3).

3.6 SCU Data

From Chapter 2, there are a total of 140 patients in the Self-reported Cocaine use and

Urine test (SCU) data, followed for a period of 5-6 months. After a 2-week induction

and stabilization period, during which patients were treated by nurses 3 times per

week with 16 mg buprenorphine daily, enrolled subjects were randomly assigned to

the treatment or the control group. Both groups received buprenorphine, a substi-

tute for cocaine use, which was stored in bottles. Buprenorphine was instructed to

be taken once per day. If the bottle was opened on a specific day, the patient was

regarded as adherent. The special MEMSCAP bottles can record the time when the

bottle is opened.

The control group received physical management (PM), a 15-20 minutes session by

Internal Medicine physicians with experiences as buprenorphine providers. Through-

out the study period, sessions occurred weekly for the first two weeks, every two

weeks for the next four weeks, and then monthly. The treatment group received

PM plus cognitive behavioral therapy (CBT). CBT is a counseling intervention that

has demonstrated efficacy in treating a variety of psychiatric conditions and cocaine

dependences. CBT was provided by masters- and doctoral-level clinicians who were

trained with a manual adapted from a guidance for the use of CBT for cocaine de-
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pendence (Carroll 1998). The main components of counseling focused on performing

a functional analysis of behavior, promoting behavioral activation, identifying and

coping with drug cravings, enhancing drug refusal skills and decision makings about

high risk situations, and improving problem solving skills (Fiellin et al. 2013).

The study’s major outcomes include (1) self-reported daily illicit drug uses which

were reported during the weekly PM sessions, and (2) weekly urine test results. Self-

reported daily illicit drug uses variables include: cocaine use, marijuana use, alcohol

use, bup use, and prescopioid/heroin/opium/other opiate use. Urine test variables

include: cocaine, benzo, THC, and opiate/methadone/oxycontin. Overall, there are

five self-reported variables and four urine test variables. Our main interest in the

motivating example is the cocaine use, including the self-reported cocaine use and the

weekly cocaine urine test. After statistical methods being developed for the illustra-

tive example on these variables, they may also be extended to other substances’ uses.

As defined in the previous sections, let Zit denote the self-reported daily cocaine use,

Xi denote the treatment effect, with Xi = 1 indicates patient in the treatment group.

We first conduct the subject specific WGEE model using self-reported data with the

logistic link:

log
Pr (Zit = 1|Xi, β)

1− Pr (Zit = 1|Xi, β)
= β0 + β1Xi.

We assume the contamination indicator Rit does not depend on the MEMSCAP

bottle open data, and the time period for cocaine to be cleared from urine is 1
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day (h = 1). We use urine test results to estimate the contamination probability,

and assign this subject specific weight as the inverse of the contamination probability.

Table 3.6: Results of subject specific WGEE of cocaine use (h=1)
Estimate S.E. P-value

β0 -2.41 0.11 <0.0001
β1 0.26 0.18 0.14

Table 3.6 indicates that the p-value for effect of treatment is 0.14, suggesting that

there is no significant treatment effect.

Table 3.7: Results of subject specific WGEE approach of cocaine use (h=4)
Estimate S.E. P-value

β0 -2.23 0.15 <0.0001
β1 0.28 0.21 0.19

After increasing the time period for cocaine to be cleared from urine to 4 days

(h = 4), the effect of treatment increases slightly, there is no significant change in

the treatment effect (Table 3.7).

Table 3.8: Results of subject specific MCWGEE approach of cocaine use (h=1)
Estimate S.E. P-value

β0 -3.16 0.11 <0.0001
β1 0.31 0.17 0.07

After using contamination probability to correct the mean of self-reported data, we

then apply the subject specific MCWGEE approach to estimate the effect of CBT.
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Table 3.9: Results of subject specific MCWGEE approach of cocaine use (h=4)
Estimate S.E. P-value

β0 -2.45 0.12 <0.0001
β1 0.35 0.18 0.05

Assuming the time period for cocaine to be cleared from urine is 1 day (h = 1), we

can clearly see that the estimation of treatment effect has increased, the p-value for

effect of treatment is 0.07 (Table 3.8). When h = 4, the effect of treatment also

increases, the p-value for this effect has decreased to 0.05 (Table 3.9).

Table 3.10: Results of observation specific WGEE approach of cocaine use (h=1)
Estimate S.E. P-value

β0 -2.14 0.11 <0.0001
β1 0.24 0.16 0.14

Table 3.11: Results of observation specific WGEE approach of cocaine use (h=4)
Estimate S.E. P-value

β0 -2.13 0.11 <0.0001
β1 0.25 0.16 0.13

Second, we consider the case where the contamination indicator Rit depends on the

MEMSCAP bottle open data, and build the observation specific weight as the in-

verse of the contamination probability at each time point. The effect of CBT hasn’t

changed much when compared to the subject specific WGEE (Table 3.10, Table 3.11).
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We then use contamination probability to correct the marginal mean of self-reported

data, and apply the subject specific MCWGEE model to estimate the effect of CBT.

Under both circumstances when h = 1 and h = 4, the estimation of treatment effect

increases, and the p-value for this effect has been decreases (Table 3.12, Table 3.13).

Table 3.12: Results of observation specific MCWGEE approach of cocaine use (h=1)
Estimate S.E. P-value

β0 -2.29 0.11 <0.0001
β1 0.28 0.15 0.06

Table 3.13: Results of observation specific MCWGEE approach of cocaine use (h=4)
Estimate S.E. P-value

β0 -2.34 0.10 <0.0001
β1 0.28 0.14 0.05

3.7 Discussion and Conclusion

In this chapter, we present the Mean Corrected subject specific WGEE approach and

the Mean Corrected observation specific WGEE approach to analyze longitudinal bi-

nary self-reported outcomes with report bias. From Chapter 2, when the marginal

mean of the self-reported results Zit has been correctly specified, the MCGEE ap-

proach yields consistent estimates of the parameters. However, these properties rely

on the validity of the estimation of the contamination probability. Estimators may

not be asymptotically unbiased when the contamination probability is misspecified,

i.e., the marginal means have not been correctly specified. Since it is more difficult
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to estimate the contamination probability when the time period for cocaine to be

cleared from urine is longer than one day, the bias of the estimators tends to increase

as the time period for cocaine to be cleared from urine increases. Thus, we add a

weight, which is the inverse of the contamination probability into the equation and

build a MCWGEE approach to further control the parameters’ bias.

Traditionally, WGEE approach is often used under the Missing at Random (MAR)

assumption for incomplete data with informative dropouts, and it models each sub-

ject’s measurements by the inverse probability that a subject has each measurement

observed. In our case, we use the MCWGEE approach to correct report bias in the

self-reported binary outcomes by assigning a larger weight to the observation with

a smaller contamination probability, and a smaller weight to the observation with

a larger contamination probability. Since our focus is not on missing data and we

use a MCWGEE approach mainly to include the contamination probability into the

estimating equations, our study differs from the original WGEE approach of Robins

et al (1995).

Comparing with the MCGEE approach in Chapter 2, we find that in most situations

with combinations for different sample size, contamination probabilities, and time

periods for cocaine to be cleared from urine, the bias of the MCWGEE estimators

are generally lower than that of the MCGEE estimators, the coverage probability of

95% CI is higher for the MCWGEE approach compared to the MCGEE approach.

MCWGEE performs better especially in the case when the time period for cocaine
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to be cleared from urine is 4 days, since it is difficult to detect the time and loca-

tion of contamination in each time block when time period for cocaine to be cleared

from urine increases. Under this circumstance, it is difficult to correctly specify the

marginal mean of the self-reported data in the estimating equation. The bias of the

estimates of the MCGEE approach increases when the time period for cocaine to be

cleared from urine increases. By adding an inverse of contamination probability as

a weight to the MCGEE approach, the data with higher contamination probability

yield a lower weight in the equation. Subsequently, by assigning a lower weight to

the observations with higher contamination probability, the bias of the estimates of

the MCWGEE approach decreases compared with the MCGEE approach.

Naturally, we can further reduce the bias of the estimators by assigning a lower

weight to outcomes with higher contamination probability. We explored an extreme

case in our preliminary analysis (results not included in the dissertation), which only

includes subjects without contaminations. In other words, we built a WGEE model

by assigning zero weight to the subjects with contamination. Based on our prelim-

inary simulation results, this approach provides less biased estimates. However, the

extreme approach may be considerably less efficient than the MCWGEE approach

when the contamination probability is large. In such case, only a small proportion of

the originally enrolled subjects are retained in the analysis and the statistical power

is greatly reduced.

We have shown that the asymptotic properties of parameters from the MCWGEE
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approach hold if the estimation of the contamination probability is accurate. How-

ever, it is more difficult to ensure the validity of this estimation when the time period

for cocaine to be cleared from urine increases. Our simulation results indicate similar

findings. When the time period for cocaine to be cleared from urine is 1 day (h = 1),

both MCGEE and MCWGEE approaches result in less biased estimation (Figure

3.1). When the time period increases to 4 days (h = 4), the bias for both approaches

increases.

Under the assumption that h = 4, for the subject specific MCWGEE approach, it

performs better with a higher contamination probability at each time point within

the contaminated subjects (p2). This is because with higher p2, it is easier to de-

tect the contamination and assign a relatively lower weight to the identified subject.

From Figure 3.2, we can observe that the bias of the estimates of treatment effect

decreases as p2 increases for MCWGEE approach. While the trend of the bias for

MCGEE approach seems different. The effect of weight adjustment is more appar-

ent when we have subjects with high frequencies of contamination in their responses.

Therefore, the bias of the estimators decrease as the contamination probability for

each subject increases for MCWGEE approach (Figure 3.2).

Under the assumption that contamination indicator depends on some covariates and

is modeled through a logistic regression model, both the observation specific WGEE

and observation specific MCWGEE provide satisfying results when the contamina-

tion probability is low (p̄ = 0.1). However, their performance on bias correction drop
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significantly when the contamination probability is high (p̄ = 0.5). Compared with

the MCGEE approach developed in Chapter 2, bias of the treatment estimator is

lower for the MCWGEE approach especially when h = 4. Bias of the parameters’

estimation of both MCGEE and MCWGEE approaches increases when the mean

of overall contamination probability increases (Figure 3.3). We further explore the

empirical evidence in our simulation scenarios of p1 and p2, and found that p2 ranges

from 0.2 to 0.8, while p1 increases as p̄ increases. Given this situation, future studies

exploring wider ranges of p2 is warranted.

After applying this MCWGEE approach to the SCU data, we notice that the esti-

mated treatment effect has increased and the bias of the treatment effect is likely

to be reduced when compared to the WGEE approach without mean correction. In

comparison to the results of the MCGEE approach in Chapter 2, these estimates

changed slightly. This finding reveals the feasibility of adding an inverse of contam-

ination probability as a weight to the MCGEE approach.

3.8 Appendix

From section 3.3, UN (β) =
N∑
i=1

D∗′i V
∗−1
i Wi (Zi − µ∗i ), define ψ(Zi; β) = D∗′i V

∗−1
i Wi (Zi − µ∗i ).

The Assumptions we need to prove the consistency and asymptotic normality of β̂N

are:

Assumption A. The subjects are independently sampled and there exists an upper
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bound M <∞ such that the number of replicates mi < M for all subjects i = 1, 2, ....

Assumption B. There exists an upper bound b <∞ such that |Xi| < b for all subjects

i = 1, 2, ....

Assumption C. It is assumed that 1
N

N∑
i=1

XiX
′
i → B as N →∞, where B is a positive

definite matrix.

Under Assumption B and Assumption C, we define positive definite matrix

I∗0 (β) = lim
N→∞

1

N

∂

∂β′
UN(β) = lim

N→∞

1

N

N∑
i=1

(D∗′i V
∗−1
i WiD

∗
i ),

and

I∗1 (β) = lim
N→∞

1

N

N∑
i=1

(D∗′i V
∗−1
i WiA

∗
iWiV

∗−1
i D∗i ).

In order to prove the solution β̂N of UN (β) = 0 is consistent and asymptotic normally

distributed for large N , we need to show that:

1. 1
N
UN (β0)→ 0 a.s., as N →∞.

2. 1
N

∂
∂βT

UN (β) converge uniformly to a nonstochastic limit which is nonsingular at

β0.
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3. With probability one, ψ(Zi; β) are twice continuously differentiable with respect

to β ∈ B, and | ∂2

∂βj∂βk
ψ(Zi; β)| <∞.

4. |ψ(Zi; β)| <∞, and 1√
N
UN (β0) L−→N (0, I∗1 (β0)).

Since our proof based on some assumptions and theorems from Yuan and Jennrich

(1998), we verify their assumptions in our case in section 3.8.1, we prove the consis-

tency of MCGEE estimator in section 3.8.2, and we show the asymptotic normality

of MCGEE estimator in section 3.8.3.

3.8.1 Verifying the conditions

The conditions from Yuan and Jennrich (1998) we need to prove the consistency and

asymptotic normality in Section 3.3 are:

1. UN (β0)→ 0 a.s., as N →∞.

2. There exists a neighborhood M of β0 on which with probability one, all UN (β)

are continuously differentiable and ∂
∂βT

UN (β) converge uniformly to a nonstochastic

limit which is nonsingular at β0.

3.
√
NUN (β0) L−→N (0, I∗1 (β0)) ,

as N →∞.
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We verify condition 4 to imply condition 1 by Theorem 5 of Yuan and Jennrich (1998).

4. For each i, ψ(Zi; β0) has mean zero and variance-covariance matrix Ki, such that

1

N

N∑
i=1

Ki → K.

for some positive-definite matrix K.

For self-reported data Zi, since E(Zi) = µ∗i , then E(ψ(Zi; β0)) = 0.

var(ψ(Zi; β0)) = D∗′i V
∗−1
i WiA

∗
iWiV

∗−1
i D∗i .

Since |xit| ≤ b < ∞ for all i = 1, 2, ... and t = 1, 2, ...T , by assumption, we also add

1
T

to the weight to ensure the weight is bounded, then

Wi = diag(
1

pi1
+

1

T
, ...,

1

piT
+

1

T
) <∞,

D∗i = (1− 2pi)⊗ AiXi <∞,

A∗i = diag(var(Zi1), ...var(ZiT )),
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var(Zit) = (1− 2pit)
2 exitβ

(1 + exitβ)2
+ pit(1− pit) <∞,

Vi = A
∗ 1
2
i C

∗
i (γ)A

∗ 1
2
i <∞.

Thus, the variance-covariance matrix Ki of ψ(β0) follows

1

N

N∑
i=1

Ki → K.

for some positive-definite matrix K. Condition 1 has been verified.

An equivalent approach to verify condition 2 is using the following conditions of Yuan

and Jennrich (1998):

6. With probability one, ψ(Zi; β) are twice continuously differentiable with respect

to β ∈ B.

7. For each β ∈ B,

1

N

N∑
i=1

E(
∂

∂βT
ψ(Zi; β))→ I∗0 (β),

where I∗0 (β) = lim
N→∞

1

N

∂

∂β′
UN(β) is nonsingular and with probability one

1

N

N∑
i=1

∂

∂βt
ψ(Zi; β)→ I∗0 (β),

as N →∞.
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8. For each i,

| ∂2

∂βj∂βk
ψ(Zi; β)| ≤ S,

for some upper bound S <∞.

Yuan and Jennrich proved that under conditions 6, 7, and 8, condition 2 is satisfied.

To verify condition 6, we have

∂

∂β
ψ(Zi; β) =

∂

∂β
(D∗′i V

∗−1
i Wi(Zi − µ∗i ))

= D∗′i V
∗−1
i WiD

∗
i + (

∂

∂β
D∗i )

′V ∗−1i Wi(Zi − µ∗i ) +D∗′i (
∂

∂β
V ∗−1i )Wi(Zi − µ∗i ).

Since E(Zi) = µ∗i , the last two terms in the expression above have expectation zero,

so

E(
∂

∂β
ψ(Zi; β)) = D∗′i V

∗−1
i WiD

∗
i .

Moreover,

∂

∂β
D∗i = (1− 2pi)⊗ (

∂

∂β
Ai)Xi,
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where Ai = diag(var(Yi1), ..., var(YiT )), and

∂

∂β
(var(Yit)) =

∂

∂β

eβ
′Xit

(1 + eβ′Xit)2

=
Xite

β′Xit(1− eβ′Xit)

(1 + eβ′Xit)3
,

∂

∂β
Ai = diag

(
Xi1e

β′Xi1(1− eβ′Xi1)

(1 + eβ′Xi1)3
, ...,

XiT e
β′XiT (1− eβ′XiT )

(1 + eβ′XiT )3

)
.

Since |Xi| < b <∞, 0 ≤ (1− 2pi) ≤ 1, 0 ≤ eβ
′Xit

(1+eβ
′Xit )2

≤ 1
4
, and 0 ≤ 1

1+eβ
′Xit
≤ 1,

∂

∂β
D∗i <∞.

And,

∂

∂β
V ∗−1i = −V ∗−1i (

∂

∂β
V ∗i )V ∗−1i ,

∂

∂β
V ∗i = (

∂

∂β
A
∗ 1
2
i )Ci(γ)A

∗ 1
2
i + A

∗ 1
2
i Ci(γ)(

∂

∂β
A
∗ 1
2
i ).

A∗i = diag(var(Zi1), ..., var(ZiT )), and

∂

∂β
(var(Zit)) =

∂

∂β

(
(1− 2pit)

2 eXitβ

(1 + eXitβ)2
+ pit(1− pit)

)
= (1− 2pit)

2Xite
Xitβ(1− eXitβ)

(1 + eXitβ)3
.
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Then

∂

∂β
A
∗ 1
2
i = diag[

∂

∂β

√
(1− 2pi1)2

eβ′Xi1

(1 + eβ′Xi1)2
+ pi1(1− pi1), ...,

∂

∂β

√
(1− 2piT )2

eβ′XiT

(1 + eβ′XiT )2
+ piT (1− piT )]

=
1

2
diag[

(1− 2pi1)
2 Xi1e

β′Xi1

(1+eβ
′Xi1 )2

− 2 Xi1e
2β′Xi1

(1+eβ
′Xi1 )3√

(1− 2pi1)2
eβ

′Xi1

(1+eβ
′Xi1 )2

+ pi1(1− pi1)
, ...,

(1− 2piT )2 XiT e
β′XiT

(1+eβ
′XiT )2

− 2 XiT e
2β′XiT

(1+eβ
′XiT )3√

(1− 2piT )2 eβ
′XiT

(1+eβ
′XiT )2

+ piT (1− piT )
]

=
1

2
diag[

(1− 2pi1)
2µi1(1− µi1)(1− 2µi1)Xi1√

(1− 2pi1)2
eβ

′Xi1

(1+eβ
′Xi1 )2

+ pi1(1− pi1)
, ...,

(1− 2piT )2µiT (1− µiT )(1− 2µiT )XiT√
(1− 2piT )2 eβ

′XiT

(1+eβ
′XiT )2

+ piT (1− piT )
].

Therefore, ∂
∂β
A
∗ 1
2
i <∞, ∂

∂β
V ∗i <∞, ( ∂

∂β
D∗i )

′V ∗−1i Wi(Zi − µ∗i ) +D∗′i ( ∂
∂β
V ∗−1i )Wi(Zi −

µ∗i ) <∞, and

1

N

N∑
i=1

∂

∂β
ψ(Zi; β) =

1

N

N∑
i=1

D∗i V
∗−1
i WiD

∗
i .

Taking the second derivative,
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∂

∂β
(D∗i V

∗−1
i WiD

∗
i ) = (

∂

∂β
D∗′i )V ∗−1i WiD

∗
i +D∗′i (

∂

∂β
V ∗−1i )WiD

∗
i +D∗′i V

∗−1
i Wi(

∂

∂β
D∗i ).

We also have

∂

∂β
D∗i = (1− 2pi)⊗ (

∂

∂β
Ai)Xi,

∂

∂β
Ai = diag

(
Xi1e

β′Xi1(1− eβ′Xi1)

(1 + eβ′Xi1)3
, ...,

XiT e
β′XiT (1− eβ′XiT )

(1 + eβ′XiT )3

)
.

Since |Xi| < b <∞, 0 ≤ (1− 2pi) ≤ 1, 0 ≤ eβ
′Xit

(1+eβ
′Xit )2

≤ 1
4
, and 0 ≤ 1

1+eβ
′Xit
≤ 1,

∂

∂β
D∗i <∞.

And

∂

∂β
V ∗−1i = −V ∗−1i (

∂

∂β
V ∗i )V ∗−1i ,

∂

∂β
V ∗i = (

∂

∂β
A
∗ 1
2
i )Ci(γ)A

∗ 1
2
i + A

∗ 1
2
i Ci(γ)(

∂

∂β
A
∗ 1
2
i ).
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Then

∂

∂β
A
∗ 1
2
i = diag[

∂

∂β

√
(1− 2pi1)2

eβ′Xi1

(1 + eβ′Xi1)2
+ pi1(1− pi1), ...,

∂

∂β

√
(1− 2piT )2

eβ′XiT

(1 + eβ′XiT )2
+ piT (1− piT )]

=
1

2
diag[

(1− 2pi1)
2 Xi1e

β′Xi1

(1+eβ
′Xi1 )2

− 2 Xi1e
2β′Xi1

(1+eβ
′Xi1 )3√

(1− 2pi1)2
eβ

′Xi1

(1+eβ
′Xi1 )2

+ pi1(1− pi1)
, ...,

(1− 2piT )2 XiT e
β′XiT

(1+eβ
′XiT )2

− 2 XiT e
2β′XiT

(1+eβ
′XiT )3√

(1− 2piT )2 eβ
′XiT

(1+eβ
′XiT )2

+ piT (1− piT )
]

=
1

2
diag[

(1− 2pi1)
2µi1(1− µi1)(1− 2µi1)Xi1√

(1− 2pi1)2
eβ

′Xi1

(1+eβ
′Xi1 )2

+ pi1(1− pi1)
, ...,

(1− 2piT )2µiT (1− µiT )(1− 2µiT )XiT√
(1− 2piT )2 eβ

′XiT

(1+eβ
′XiT )2

+ piT (1− piT )
].

Therefore, ∂
∂β
A
∗ 1
2
i <∞, and ∂

∂β
V ∗i <∞. Condition 6 is verified.

To verify condition 7 of Juan and Jennrich (1998) , the derivative of ψ(Zi; β) with

respect to β is:

∂

∂β
ψ(Zi; β) =

∂

∂βt
(D∗′i V

∗−1
i Wi(Zi − µ∗i ))

= D∗i V
∗−1
i WiD

∗
i + (

∂

∂β
D∗i )

′V ∗−1i Wi(Zi − µ∗i ) +D∗′i (
∂

∂β
V ∗−1i )Wi(Zi − µ∗i ).

We already showed the following equations when we verifying condition 6,
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E(
∂

∂β
ψ(Zi; β)) = D∗i V

∗−1
i WiD

∗
i .

1

N

N∑
i=1

∂

∂β
ψ(Zi; β) =

1

N

N∑
i=1

D∗i V
∗−1
i WiD

∗
i .

To complete verifying condition 7, we need to show that

1

N

N∑
i=1

∂

∂β
ψ(Zi; β)→ I∗0 (β).

almost surely as N →∞.

Since

1

N

N∑
i=1

D∗i V
∗−1
i D∗i =

1

N

N∑
i=1

((1− 2pi)⊗ AiX ′i)′V ∗−1i Wi(1− 2pi)⊗ AiX ′i,

and (1 − 2pi), Vi, Ai Wi are all bounded from previous proof. Then ((1 − 2pi) ⊗

Ai)
′V ∗−1i Wi(1− 2pi)⊗ Ai is bounded below by a positive constant bi.

Let a denote any T × 1 vector, then

1

N
a′

N∑
i=1

Xi((1− 2pi)⊗ Ai)′V ∗−1i Wi(1− 2pi)⊗ AiX ′ia ≥
1

N
bia
′
N∑
i=1

XiX
′
i > 0,
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by Assumption C, which is

1

N

N∑
i=1

XiX
′
i → B,

as N →∞, where B is a positive definite matrix.

Then,

∂

∂β
ψ(Zi; β) <∞,

1

N

N∑
i=1

∂

∂β
ψ(Zi; β)→ I∗0 (β),

almost surely as N →∞.

To verify condition 8 of Juan and Jennrich (1998), we already show that each term

of the second derivatives of ψ(Zi; β) with respect to β is bounded when we verify

condition 6 ( ∂
∂β
D∗i <∞, ∂

∂β
V ∗−1i <∞).

Hence,

∂2

∂β∂β
ψ(Zi; β) <∞.

In conclusion, condition 2 of Juan and Jennrich (1998) has been verified.
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Liapounov’s Theorem and Cramer-Wald Theorem are used to verify condition 3,

√
NUN (β0) L−→N (0, I∗1 (β0)) ,

as N →∞.

As defined earlier,

UN (β0) =
1

N

N∑
i=1

ψ(Zi; β0) =
1

N

N∑
i=1

D∗′i V
∗−1
i Wi (Zi − µ∗i ) .

Let a denote any T × 1 vector, to apply Liapounov’s Theorem, take

ri = a′D∗′i V
∗−1
i WiZi.

Then the mean of ri is

mi = E(ri) = a′D∗′i V
∗−1
i Wiµ

∗
i ,

and the variance of ri is

V ar(ri) = a′D∗′i V
∗−1
i WiA

∗
iWiV

∗−1
i D∗i a.

Define

c2n =
N∑
i=1

V ar(ri) =
N∑
i=1

a′D∗′i V
∗−1
i WiA

∗
iWiV

∗−1
i D∗i a = O(N),
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since

1

N

N∑
i=1

D∗′i V
∗−1
i WiA

∗
iWiV

∗−1
i D∗i → I∗1 ,

under condition 4.

Assume E(|Zi − µi|3) = µ∗3i <∞. Taking δ = 1, the third central moment is:

E(|ri −mi|3) = E(|a′D∗′i V ∗−1i Wi(Zi − µ∗i )|3)

≤ (a′D∗′i V
∗−1
i Wi)

3E(|Zi − µ∗i |3)

= (a′D∗′i V
∗−1
i Wi)

3µ∗3i.

So
N∑
i=1

E(|ri −mi|3) = O(N),

since D∗i , V
∗
i , and Wi are bounded, which have been showed when verifying condition

4.

Then

1

c3n

N∑
i=1

E(|ri −mi|3) =
O(N)

O(N
3
2 )

= O(N−1/2),

which converges to zero as N →∞. Therefore, the conditions of Liapounov’s theo-
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rem are satisfied, and

TN =

N∑
i=1

(ri −mi)

cn

=

N∑
i=1

a′D∗′i V
∗−1
i Wi(Zi − µ∗i )√√√√ N∑

i=1

a′D∗′i V
∗−1
i WiA

∗
iWiV

∗−1
i D∗i a

L−→N (0, 1) ,

as N →∞.

By Slutsky’s Theorem,

√
N

N∑
i=1

a′D∗′i V
∗−1
i Wi(Zi − µ∗i )L−→N (0, a′I∗1 (β)a) .

By the Cramer-Wold Theorem,

√
N

N∑
i=1

D∗′i V
∗−1
i Wi(Zi − µ∗i )L−→N (0, I∗1 (β)) ,

where I∗1 (β) = lim
N→∞

1

N

N∑
i=1

(D∗′i V
∗−1
i WiA

∗
iWiV

∗−1
i D∗i ).
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Thus, condition 3 has been verified.

3.8.2 Proof of consistency

Theorem 1. Under Assumptions A-C, with probability one there exist zeros β̂N of

UN (β) = 0 such that β̂N → β0 as N →∞.

To prove Theorem 1, let UN (β) denote a sequence for which conditions 1 and 2 sat-

isfied. By condition 1, UN (β0)→ 0 a.s., as N →∞. And by condition 2, ∂
∂βT

UN (β)

is nonsingular at β0. Thus, β0 is the unique zero of U (β) in a neighborhood M of β0.

Theorem 1 of Yuan and Jennrich (1998) states that under conditions 1 and 2, for

any δ > 0, there exists β̂N ∈ M(β0, δ) such that UN

(
β̂N

)
= 0 with probability 1,

for all N sufficiently large.

By Theorem 1, there exists a zero β̂N of UN (β) in M(β0, δ) for all N sufficiently

large. Let β∗ be any limit point of β̂N , then β∗ ∈ M(β0, δ). Let β̂Ni be any subse-

quence of β̂N , then β̂Ni → β∗. Thus, UNi

(
β̂Ni

)
→ U(β∗), and U(β∗) = 0.

Since β0 is the only zero of U (β) in a neighborhood M(β0, δ), then β∗ = β0. Since

this is true for all limit points of β̂N , β̂N → β0. Since conditions 1 and 2 hold with

probability one, β̂N → β0 with probability one.
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3.8.3 Proof of asymptotic normality

Theorem 2. Under Assummptions A-C,
√
N
(
β̂ − β0

)
L−→N

(
0, I∗−10 (β0)I

∗
1 (β0)I

∗−1
0 (β0)

)
,

as N →∞.

To prove Theorem 2, a Taylor series expansion of

1

N
UN

(
β̂N

)
=

1

N

N∑
i=1

D∗′i V
∗−1
i Wi (Zi − µ∗i )

at β0 yields

UN

(
β̂N

)
= UN (β0) +

∂

∂β′
UN (β0)

(
β̂N − β0

)
= 0.

Setting the expression above, and rearranging the terms, we get

√
N
(
β̂N − β0

)
∼= −

(
1

N

∂

∂β′
UN (β0)

)−1
1√
N
UN (β0) .

To prove Theorem 1, we have already demonstrated that:

1

N

∂

∂β′
UN (β0)→ I∗0 (β0),

almost surely as N →∞.

Since we already show that when verifying condition 3 of Yuan and Jennrich (1998),

134



1√
N
UN (β0) L−→N (0, I∗1 (β0)) .

as N →∞.

Then by Theorem 4 of Yuan and Jennrich (1998) and by slutsky’s Theorem,

√
N
(
β̂ − β0

)
L−→N

(
0, I∗−10 (β0)I

∗
1 (β0)I

∗−1
0 (β0)

)
,

as N →∞.

And Î∗0 and Î∗1 can be estimated as:

Î∗0 =
N∑
i=1

(D̂∗′i V̂
∗−1
i WiD̂

∗
i )

=
N∑
i=1

(1− 2pi)⊗X ′iÂi(Â
∗ 1
2
i Ĉ

∗
i (γ)Â

∗ 1
2
i )−1Wi(1− 2pi)⊗ ÂiXi,

Î∗1 =
N∑
i=1

(D̂∗′i V̂
∗−1
i WiÂ

∗
iWiV̂

∗−1
i D̂∗i )

=
N∑
i=1

(1− 2pi)⊗X ′iÂi(Â
∗ 1
2
i Ĉ

∗
i (γ)Â

∗ 1
2
i )−1WiÂ

∗
iWi(Â

∗ 1
2
i Ĉ

∗
i (γ)Â

∗ 1
2
i )−1(1− 2pi)⊗ ÂiXi.
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Chapter 4

Weighted Generalized Estimating

Equations Approach for

Longitudinal Binary Outcomes

with Drop-outs Missing at

Random

4.1 Introduction

Missing data are common in longitudinal studies. The cause of missing data may

be due to subjects dropping out of the study or subjects returning to the study

after being non-responsive for a while. A subject is called a drop-out when the re-
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sponse variable is observed for certain visits and is missing for all consequent visits

(Preisser et al. 2002). Previous research classified missing data mechanisms into

three categories (Schafer and Graham. 2002). (1) Missing completely at random

(MCAR)-where the probability of an observation missing does not depend on ob-

served or unobserved measurements; (2) missing at random (MAR)-where given the

observed data, the missing mechanism does not depend on the unobserved data; (3)

missing not at random (MNAR)-where a missing observation depends on the unob-

served data.

The Generalized Estimating Equations (GEE) estimators hold consistency if the

data is MCAR, yet it can be subject to bias when the data is MAR, depending on

the model’s accuracies (Fitzmaurice et al. 1995). Additionally, GEE is often biased

when applied to MNAR data, because the missing data is related to the unobserved

responses and involves assumptions that cannot be tested within the data (Rotnitzky

et al. 1998).

The Weighted Generalized Estimating Equations (WGEE) is an extension of the

GEE approach, with a weight added to the GEE. WGEE has been widely used for

analyzing incomplete longitudinal data, and gives consistent estimations under MAR

when the dropout mechanism is correctly specified. The weight in the WGEE, which

is estimated from some assumed dropout models, is usually defined as the inverse

probability of being observed.
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A recent study by Satty et al. (2015) compared the performance of three different

methods for analyzing incomplete longitudinal binary outcome due to MAR; the

methods were General Linear Mixed Models (GLMM), WGEE, and multiple im-

putation based on GEE (MIGEE). And they found that MIGEE performed better

in both small and large sample sizes. Preisser et al. (2000) compared WGEE ap-

proach to a likelihood-based method to analyze the smoking trends with incomplete

longitudinal binary response, the WGEE estimators perform better in large cluster

sizes. Another study by Preisser et al. (2002) compared the performance of WGEE

and GEE for longitudinal binary data with MAR drop-outs, and concluded that

WGEE resulted in a smaller sample bias than GEE when the drop-out model was

correctly specified. Chen et al. (2010) provided an approach to analyze longitudinal

response and covariate data that are MAR using inverse probability WGEE. Lip-

sitz et al. conducted another simulation study for the analysis of a similar binary

response dataset with missing, and concluded that the GEE model performed well

under MCAR, while the consistency of GEE may not hold under MAR. On the other

hand, the bias of the WGEE approach is negligible (Lipsitz et al. 2000). Other stud-

ies compared the WGEE estimators and the weighted least squares estimators under

MAR assumption with simulation, and suggested that the WGEE outperformed the

weighted least squares estimators, and remained consistent under various scenarios

of missing data and sample sizes (Lin et al. 2006).

The purpose of this Chapter is to apply the inverse probability WGEE to a longitu-

dinal dataset with MAR binary responses. The chapter is organized as follows. In
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section 4.2, we present notation and model equations. In Section 4.3, we analyze the

Self-reported Cocaine use and Urine test (SCU) data applying inverse probability

WGEE approach. We provide the discussion and conclusion in Section 4.4.

4.2 Methods

From previous chapter, let Yit denote the true drug use variable, and Xit be the

covariate vectors for estimation at times t = 1, ..., T for subjects i = 1, ..., N . Then,

for the ith subject at time t, Yit = 1 if the subject uses drug, Yit = 0 if the subject

does not use drug. Yit is a binary response variable and its marginal distribution is

Bernoulli:

fy (yi | Xi) = pr (Yi1 = y1, ..., YiT = yT | Xi) = exp(yitηit − log(1 + exp(ηit))).

The marginal mean of the drug use for the ith subject at a given time point t is

denoted by µit. Let β be a vector of the regression parameters, then

µit = E (Yit | Xit, β) = Pr (Yit = 1 | Xit, β) ,

logit link function will be used

ηit = log
µit

1− µit
= xitβ.

Liang and Zeger(1986) have proposed GEE of the form:
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Uβ (β) =
N∑
i=1

T∑
t=1

D′itV
−1
it (Yit − µit) = 0,

where Dit = ∂µit/∂β and Vi is the covariance matrix of Yi, which can be decomposed

into the form A
1
2
i Ci(γ)A

1
2
i , where Ai is a matrix with the marginal variances on the

main diagonal and zeros elsewhere, γ is a vector which fully characterize Ci(γ), and

Ci(γ) is a working correlation matrix of Yi’s.

After forming µit to a vector µi = (µi1, ...µiT )′, we can write the GEE of the form:

Uβ (β) =
N∑
i=1

D′iV
−1
i (Yi − µi) = 0.

This estimate of β is consistent, if the data is MCAR, even if Vi, the covariance

matrix of Yi is misspecified. However, under MAR, the GEE approach may yield

biased estimates.

On the other hand, the WGEE approach provides a consistent estimate of regres-

sion parameters under the assumption of MAR if the mean model and the missing

mechanism of the model are correctly specified. Robins et al. (1995) has proposed

WGEE of the form:

Uβ (β) =
N∑
i=1

D′iV
−1
i Hi (Yi − µi) = 0,

where Di = ∂µi/∂β and Vi = A
1
2
i Ci(γ)A

1
2
i is the covariance matrix of Yi, Hi =

diag (qi1hi1, ..., qithit) is the weighted matrix, where qit = 1 if the outcome for subject
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i is observed at time t; otherwise, qit = 0. As a result, the weight Hit is hit for an

observed visit and 0 for an unobserved visit.

From the method proposed by Preisser et al.(2002), an inverse probability weight

hit can be obtained through a logistic regression model. The weight can later

be used in the WGEE approach for parameter estimations. Under MAR miss-

ing mechanism, let Qit be the indicator for observing the outcome at time t, and

λit = P (Qit = 1|Qi(t−1) = 1, Xit, Yit, θ) be the probability of observing the out-

come at time t for the ith individual conditional on the individual being observed

at the previous time point t−1. For the first time point, assume Qi1 = 1 and λi1 = 1.

λ̂it can be estimated by fitting a logistic model, logit(λit(θ)) = Titθ, with a vector of

predictors, Tit, which may include indicator variables of visit, covariates, and past

response variables. After taking differentiation with respect to θ of the log partial

likelihood, we have the score equation of θ for the ith subject as:

Si(θ) =
T∑
t=1

Qi,t−1Tit(Qit − λit(θ)) = 0.

By solving the above score equation, we can obtain θ̂ and λ̂it.

The weight hit is then defined as the inverse of the unconditional probability of being

observed at time t, which can be estimated by the conditional probability,

ĥit =
(
λ̂i1 × ...× λ̂it

)−1
.
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In this approach, an observation with a low probability of being observed will receive

a large weight.

β̂ is estimated through an iterative algorithm from a modified Fisher scoring for β

by solving the WGEE. Given an initial guess of β̂0, update β̂p in the pth iteration

by taking:

β̂p+1 = β̂p −

(
N∑
i=1

D̂′iV̂
−1
i ĤiD̂i

)−1( N∑
i=1

D̂′iV̂
−1
i Ĥi (Yi − µ̂i)

)
.

Under correctly specified models for the marginal means and for the missing mecha-

nisms, WGEE provides a consistent estimate of β, which has an asymptotic normal

distribution. The form of the sandwich estimator for asymptotic variance of β̂ is:

(
N∑
i=1

D̂′iV̂
−1
i ĤiD̂i

)−1( N∑
i=1

ĜiĜ
′
i

)(
N∑
i=1

D̂′iV̂
−1
i ĤiD̂i

)−1
,

where Ĝi = Ûi− (
N∑
i=1

ÛiŜ
′
i)(

N∑
i=1

ŜiŜ
′
i)Ŝi, Ûi = D̂′iV̂

−1
i Ĥi(Yi− µ̂i) is the weighted equa-

tion, and Ŝi =
T∑
t=1

Qi,t−1Tit(Qit−λ̂it(θ̂)) is the score equation of θ̂ (Robins et al. 1995).

As stated in previous chapters, the self-reported data Zit may be contaminated and

deviated from the true data Yit. The equation of Zit is:
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Zit = Yit (1−Rit) + (1− Yit)Rit,

where Rit represents an indicate variable for outcome contamination at times t =

1, ..., T , for subjects i = 1, ..., N , indicating whether self-reported data is the same

as true drug use or not. Rit = 1 if there exists contamination, i.e. self reported data

is not the same as true drug use data, otherwise Rit = 0.

Following the methods proposed in Chapter 2, the MCGEE form of the self-reported

data Zi can be written as:

U∗β (β) =
N∑
i=1

D∗′i V
∗−1
i (Zi − µ∗i ) = 0,

where µ∗i = E(Zi|Xi, β) = (µ∗i1, ...µ
∗
iT )′ is the expected value of Zi, and the expected

value of indicate variable for contamination Ri is denoted by pi,

µ∗it = E(Zit|Xit, β) = E(Yit|Xit, β)× E((1−Rit)) + E((1− Yit))× E(Rit)

= µit − 2µit × pit + pit.
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And,

D∗i = ∂µ∗i /∂β = (1− 2pi)⊗
∂µi
∂β

= (1− 2pi)⊗
exiβ

(1 + exiβ)2
Xi

= (1− 2pi)⊗ AiXi,

where Ai = diag(var(Yi1), ..., var(YiT )), var(Yit) = µit × (1 − µit) = exitβ

(1+exitβ)2
. ⊗

means that only multiply the tth row of vector 1−2pi by the same tth row of matrix

AiXi, i.e., (1 − 2pi) ⊗ AiXi = ((1 − 2pi1) × ai1xi1, ..., (1 − 2piT ) × aiTxiT )′. V ∗i is

the covariance matrix of Zi, which can be decomposed into the form A
∗ 1
2
i C

∗
i (γ)A

∗ 1
2
i ,

where A∗i is a matrix with the marginal variances on the main diagonal and zeros

elsewhere, i.e., A∗i = diag(var(Zi1), ..., var(ZiT )), and

var(Zit) = µ∗it(1− µ∗it)

= (µit − 2µitpit + pit)(1− µit + 2µitpit − pit)

= µit − 2µitpit + pit − µ2
it + 2µ2

itpit − pitµit + 2µ2
itpit − 4µ2

itp
2
it + 2µitp

2
it − µitpit

+ 2µitp
2
it − p2it

= (1− 2pit)
2µit(1− µit) + pit(1− pit)

= (1− 2pit)
2var(Yit) + pit(1− pit).

γ is a vector which fully characterize C∗i (γ), and C∗i (γ) is a working correlation ma-

trix of Zi.
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After adding the inverse probability of drop-out as the weight for missing data, we

can write the model equation as:

U∗β (β) =
N∑
i=1

D∗′i V
∗−1
i Hi (Zi − µ∗i ) = 0.

where Hi = diag (qi1hi1, ..., qithit) is the weighted matrix, and qit = 1 if the outcome

for subject i is observed at time t; otherwise, qit = 0.

We also proposed a Mean Corrected WGEE approach to correct the report bias of Zit

in Chapter 3, which adds an inverse probability of contamination as the weight into

the MCGEE. To count the missing data under this approach, the model equation is:

U∗β (β) =
N∑
i=1

D∗′i V
∗−1
i H∗i (Zi − µ∗i ) = 0,

where H∗i = diag (qi1h
∗
i1, ..., qith

∗
it) is the weighted matrix, and qit = 1 if the outcome

for subject i is observed at time t; otherwise, qit = 0. h∗it can be estimated as:

ĥ∗it =
(
λ̂i1 × ...× λ̂it

)−1
× (p̂it)

−1,

where λit is the probability of observing the outcome at time t for the ith individual

conditional on the individual being observed at the previous time point t−1, and pit

is the contamination probability for subject i at time t. pit can be estimated using

the two methods proposed in Chapter 3.
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4.3 Results

4.3.1 Data description

In the Self-reported Cocaine use and Urine test (SCU) data, there are a total of 140

patients, followed for a period of 5-6 months. After a 2-week induction and stabiliza-

tion period, during which patients were treated by nurses 3 times per week with 16

mg buprenorphine daily, enrolled subjects were randomly assigned to the treatment

or the control group. Both groups received buprenorphine, a substitute for cocaine

use, which was stored in bottles. Buprenorphine was instructed to be taken once per

day. If the bottle was opened on a specific day, the patient was regarded as adherent.

The special MEMSCAP bottles can record the time when the bottle is opened.

The control group received physical management (PM), a 15-20 minutes session by

Internal Medicine physicians with experiences as buprenorphine providers. Through-

out the study period, sessions occurred weekly for the first two weeks, every two

weeks for the next four weeks and then monthly. The treatment group received PM

plus cognitive behavioral therapy (CBT). CBT is a counseling intervention that has

demonstrated efficacy in treating a variety of psychiatric conditions and cocaine de-

pendences. CBT was provided by masters- and doctoral-level clinicians who were

trained with a manual adapted from a guidance for the use of CBT for cocaine de-

pendence (Carroll 1998). The main components of counseling focused on performing

a functional analysis of behavior, promoting behavioral activation, identifying and

coping with drug cravings, enhancing drug refusal skills and decision makings about
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high risk situations, and improving problem solving skills (Fiellin et al. 2013).

The study’s major outcomes include (1) self-reported daily cocaine uses which were

reported during the weekly PM sessions, and (2) weekly urine cocaine test results.

Our main interest is to test the difference of the self-reported cocaine use between

treatment group and control group.

Some patients may be transferred for protective purposes. One of the criteria for

transfer is three consecutive weeks of positive urine tests for drug use (missing urine

screenings are counted as positive) after the buprenorphine dose increased to 24mg

daily. Patients may also be transferred for psychiatric or other medical problems, as

well as other continued drug use, such as Benzos. The transfer was a clinical decision

made by the patients’ primary clinicians in the study (Fiellin et al. 2013).

Dropout is another main issue for participants. There are various reasons for dropouts:

the patients may realize that the counseling isn’t working; they may feel guilty if they

are continuing to use; they may not like the therapist; or they may not like talking

about their problems. Among the 69 patients in the treatment group, 34 of them

dropped out or transfered from the study, while 36 out of 71 patients in the con-

trol group dropped out or transfered (Table 4.1). We assume missing data from the

transfers and the dropouts is MAR.

Analyses are performed using the R software.
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Table 4.1: Number of Completed and Dropout Patients for each group
Treatment Control Total

Completed 35 35 70
Dropouts or transfers 34 36 70

Total 69 71 140

4.3.2 Results

Table 4.2 shows the differences between the characteristics of present and absent

subjects at the end of the study. There are no observed differences of drop-out be-

tween the treatment and control group. For the percentage of self-reported cocaine

use days within the follow-up periods for each subject, the mean value is 10.9% for

people who are absent and 9.4% for people who are not. Subjects who dropped out

tend to have reported cocaine use on more days, but this difference is not consid-

ered significant (p-value=0.2925). The mean percentage of the Buprenorphine bottle

open days during the study periods for each absent subject at the end of the study

is 52.3% and for present subjects at the end of the study is 68.9%. Because this

difference is significant (p-value=0.0001), we can conclude that adherent patients

are less likely to drop out, suggesting that Buprenorphine bottle open data can be

used for missing prediction.

Prior to fitting the models, we first calculate the weights to be used in the WGEE
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Table 4.2: Comparison among characteristics of the study subjects present and ab-
sent at the end of the study

End of the Study
Total N = 140 Present N = 70 Absent N = 70 p-value

Group Treatment 69(49.3%) 35(50%) 34(48.6%) 1
Control 71(50.7%) 35(50%) 36(51.4%)

Cocaine use days% Mean (SD) 10.1%(8%) 9.4%(8%) 10.9%(9%) 0.2925
Bottle open days% Mean (SD) 60.6%(26%) 68.9%(25%) 52.3%(25%) 0.0001∗

approach by implementing a logistic regression model for the missing indicators.

The predictor of missing data only includes the percentage of Buprenorphine bottle

open days during the study period for each subject, since it has significant effect on

drop-outs. The model equation is:

log
Pr (λi = 1|Ti, θ)

1− Pr (λi = 1|Ti, θ)
= θ0 + θ1 × bottleopendays%.

Table 4.3: Results of missing indicator analysis
Estimate S.E. P-values

θ0 -1.60 0.49 0.001
θ1 2.62 0.73 0.0004

The missing weight can be estimated as the inverse of the conditional probability of

being observed, ĥi =
(
λ̂i

)−1
. The results are presented in Table 4.3.

Based on the approaches discussed in Chapter 2 and Chapter 3, we add these weights

to the MCGEE approach and the MCWGEE approach under several assumptions.

We conduct our analysis using these models with the logistic link:
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log
Pr (Zit = 1|Xi, β)

1− Pr (Zit = 1|Xi, β)
= β0 + β1Xi.

First, we assume the contamination probability does not depend on the MEMSCAP

bottle open data and is estimated using the first approach described in section 2.2.2.

After adding a missing weight to the MCGEE approach, the results are presented in

Table 4.4 and 4.5.

Table 4.4: Results of MCGEE of cocaine use under the MAR assumption (h=1)
Estimate S.E. P-value

β0 -2.72 0.13 <0.0001
β1 0.39 0.18 0.03

Table 4.5: Results of MCGEE of cocaine use under the MAR assumption (h=4)
Estimate S.E. P-value

β0 -2.43 0.17 <0.0001
β1 0.31 0.20 0.12

After adding the inverse probability of being observed to the subject specific MCWGEE

approach under the same assumption, results are shown in the following tables.

Table 4.6: Results of MCWGEE of cocaine use under the MAR assumption (h=1)
Estimate S.E. P-value

β0 -2.97 0.14 <0.0001
β1 0.33 0.19 0.08

153



Table 4.7: Results of MCWGEE of cocaine use under MAR assumption of missing
(h=4)

Estimate S.E. P-value
β0 -2.40 0.17 <0.0001
β1 0.37 0.18 0.04

The estimates of the CBT effect seem similar for MCGEE and MCWGEE under the

assumption that contamination indicator doesn’t depend on the bottle open data for

both h = 1 and h = 4 cases. And these estimates increase slightly when compared

to the results in Chapter 2 and Chapter 3.

Second, we assume the contamination indicator depends on the MEMSCAP bottle

open data, and then add the missing weight to the MCGEE and MCWGEE approach

under h = 1 and h = 4.

Table 4.8: Results of MCGEE of cocaine use under the MAR assumption (h=1)
Estimate S.E. P-value

β0 -2.21 0.12 <0.0001
β1 0.19 0.15 0.20

Table 4.9: Results of MCGEE of cocaine use under the MAR assumption (h=4)
Estimate S.E. P-value

β0 -2.29 0.11 <0.0001
β1 0.19 0.15 0.20

From Table 4.8 - 4.11, we observe that the estimators of the effect of CBT for all
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Table 4.10: Results of MCWGEE of cocaine use under the MAR assumption (h=1)
Estimate S.E. P-value

β0 -2.18 0.11 <0.0001
β1 0.20 0.15 0.18

Table 4.11: Results of MCWGEE of cocaine use under the MAR assumption (h=4)
Estimate S.E. P-value

β0 -2.24 0.11 <0.0001
β1 0.20 0.15 0.18

these methods are very similar, however, when compared with the results in Chapter

2 and 3, the estimators change more significantly after adding the inverse probability

of being observed as the weight.

4.4 Discussion and Conclusion

Previous studies have proposed WGEE approach with weight as the estimated prob-

ability of dropout at the time of attrition (Robins et al. 1995). This approach yielded

consistent estimates when the responses were MAR and the probability of dropout

had been correctly specified (Fitzmaurice et al. 1995). We applied this methods to-

gether with the mean corrected estimating equations to the SCU data to investigate

the impacts of patient’s protective transfers and dropouts.

The impact of MAR longitudinal binary outcome depends on the frequency of miss-
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ing data, and the association between the missing indicators and the binary response

variables (Chen et al. 2010). 50% of the patients dropped out or transferred at the

end of the study. We have shown that the percentage of Buprenorphine bottle open

days during the study periods has significant effect on drop-outs among several miss-

ing data indicators. We build a logistic regression model of this significant missing

indicator to estimate the conditional probability of being observed at the end of the

study, and estimate the missing weight as the inverse of this conditional probabil-

ity. Finally, we add the estimated missing weight to the MCGEE and MCWGEE

approach we have proposed in the previous chapters.

After applying this approach on the SCU data to address the issue of dropouts, we

find that the effects of CBT have all changed when compared to the previous models

under different circumstances. Under the assumption that contamination indicator

doesn’t depend on the bottle open data, these estimates seem to increase after adding

the missing weight. When the time period for cocaine to be cleared from urine is 1

day (h = 1), the estimate of CBT effect (β1) increases from 0.29 to 0.39 for MCGEE

approach, and increases from 0.31 to 0.33 for MCWGEE approach. After the time

period for cocaine to be cleared from urine is increased to 4 days (h = 4), the es-

timate of CBT effect (β1) increases from 0.30 to 0.31 for MCGEE approach, and

increases from 0.35 to 0.37 for MCWGEE approach.

However, under the assumption that contamination indicator depends on the bottle

open data [the contamination probability estimation is built on a model which in-
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cludes the MEMSCAP bottle open data], these estimates decrease after adding the

missing weight. Under the assumption that the time period for cocaine to be cleared

from urine is 1 day (h = 1), the estimate of CBT effect (β1) decreases from 0.27 to

0.19 for MCGEE approach, and decreases from 0.28 to 0.20 for MCWGEE approach.

Under the assumption that the time period for cocaine to be cleared from urine is 4

days (h = 4), the estimate of CBT effect (β1) decreases from 0.27 to 0.19 for MCGEE

approach, and decreases from 0.28 to 0.20 for MCWGEE approach. In our analysis,

assuming both the missing weight and the contamination depend on the bottle open

data resulted in more significant changes of the estimates of the treatment effect.

As a summary of the SCU data analysis, the results of MCGEE and MCWGEE

approach without missing weight are similar. After including the missing weight, we

find that for the first simple assumption, the estimation for contamination probabil-

ity and the missing weight are basically independent, since we primarily used bottle

open data to estimate the drop-out probability, and did not include this information

in detecting the contamination in the self-reported data. For the second model as-

sumption, both the estimation for contamination probability and the missing weight

depend mainly on the bottle open data. This could explain the significant differences

in the estimators.
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