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Abstract

From one point of view, Matrix Factorization can be seen as the workhorse for modern

predictive big data analytics. It is a very important technique widely used in statistics,

including multiple regression. Parallelizing matrix factorization can increase the speed of

analytics. In the era of big data, the speedup often can be further magnified by the size

of the dataset. This paper discusses several common matrix factorization algorithms that

have been developed through the years, as well as their applications in multiple regression.

The paper also presents a novel parallel Householder QR Factorization algorithm. After

conducting several experiments on two different testing environments, substantial speedups

were obtained.
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Chapter 1

Introduction

In the era of big data, when increasing amounts of data are becoming readily available,

the ability to analyze the data in a reasonable amount of time becomes increasing impor-

tant as well. In recent decades, multi-core, hyperthreading computing hardware has become

relatively common, and this makes parallelization of many algorithms important for wide

distribution and usage. In the field of big data analytics, especially predictive analytics, one

important family of algorithms is matrix factorization. It includes LU Factorization, QR Fac-

torization, SVD Factorization, and many more. They are widely used in linear regressions,

dimension reductions, recommendation systems, among others. Therefore, parallelization of

matrix factorization algorithm could result in significant speedup of analytics.

The JVM ecosystem supports many languages and libraries that can be interoperate

as well as universally execute across platforms. JVM languages, including Closure, Groovy,

Java, Jython, JRuby, Kotlin and Scala, are currently the most popular language family. For

Big Data Analytics, several libraries provide underlying support for numerical linear algebra.

As an example, Parallel Colt [1] provides parallel implementations of key algorithms needed

for Big Data Analytics.

The ScalaTion Project is a system coded in Scala and supports Analytics, Simulation

and Optimization [2]. The linalgebra and analytics packages as well as their parallel

counterparts, linalgebra.par and analytics.par, provide several techniques, including

Inverse, Cholesky Factorization and QR Factorization that can be used for Multiple Linear

Regression. Parallel Colt, on the other hand, only has several factorization techniques, but

does not apply them to Linear Regression. Householder QR Factorization is available in
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both ScalaTion and Parallel Colt. However, the implementation in ScalaTion takes

less memory because vector-to-vector operations are used in ScalaTion, while matrix-to-

matrix operations are used in Parallel Colt. The goal of the current work is to provide efficient

parallel implementations to complement the existing serial ones in ScalaTion.

The paper is organized in the following manner: As background, chapter 2 introduces

LU, Cholesky, QR and SVD Factorizations. Chapter 3 discusses how to apply the mentioned

matrix factorization techniques to the widely used analytics technique of Multiple Regres-

sion. Chapter 4 discusses support for developing and issues concerning parallel factorization

algorithms/implementations. Other related work on parallel matrix factorization is given in

chapter 5. Explanations of the parallel implementations are given in chapter 6, while the

performance of the various implementations is presented in chapter 7. Finally, conclusions

and future work are given in chapter 8.
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Chapter 2

Matrix Factorization

Matrix Factorization, also known as Matrix Decomposition, is a technique to factor a single

matrix into a product of two or more matrices. While it is easy to have highly effective parallel

matrix multiplication, inverting or factoring a matrix in parallel can be more challenging [3].

ScalaTion contains several packages, traits, objects and classes supporting numerical linear

algebra. Effort is underway in a par subpackage to provide parallel versions of these (www.cs.

uga.edu/~jam/scalation_1.2/src/main/scala/scalation/linalgebra/par. In Scala-

Tion, switching from serial to parallel implementation is typically as easy as adding par to

the import statement. Previously, parallel versions of vectors and matrices have been devel-

oped. This project has focused in improving serial versions of factorization and developing

parallel versions. As part of the ScalaTion big data framework, support for interoperation

with a NoSQL database [4] as well as large out-of-core matrices is also provided.

2.1 LU Factorization

”L” and ”U” here refer to lower triangular matrix and upper triangular matrix, respec-

tively. Therefore, LU Factorization decomposes a matrix into a product of those two kinds

of matrices as follows:

A = LU (2.1)

where A is the matrix that being factored [3]. This factorization provides an easy (as well

as faster and more numerically stable) way to solve a system of equations.
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Ax = LUx = b

where the goal is to solve for x given a square matrix A and a vector b. Simply let y = Ux,

then Ly = b. First y can be solved by using forward substitution. Then solve for x by using

backward substitution [5, 6].

2.2 Cholesky Factorization

Cholesky Factorization is a special case of LU Factorization [7] used when A is a positive

definite, symmetric matrix, the result of which can be written as

A = LLt (2.2)

where L is a lower triangular matrix with positive diagonal elements.

2.3 QR Factorization

QR Factorization is one of the most widely used matrix decomposition methods. Given an

m-by-n matrix A, it can be factored into

A = QR (2.3)

where Q is orthogonal (i.e, has orthogonal columns) and R is upper triangular. Assume

m ≥ n in this paper unless noted otherwise. Most QR algorithms work on columns of Am×n,

Am×n = [a1, a2, . . . , an] (2.4)

where aj is the jth column vector in A.
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2.3.1 MGS QR Factorization

One type of factorization algorithm is the Gram-Schmidt orthogonalization, either Classical

Gram-Schmidt (CGS) or the more numerically stable Modified Gram-Schmidt (MGS). CGS

computes the length of the orthogonal projections of a vector onto certain directions and

subtracts them from the original vector. In this way, the new vector will be orthogonal to all

the previously calculated vectors. However, [8] argues that the vectors may not have truly

orthogonal due to rounding errors. To reduce this problem [8], MGS stores the 2-norm of a1

in R and normalizes a1, denoted as q1. For the rest of the column vectors, subtract their

own projections onto q1.


R11 =

∥∥∥∥a1

∥∥∥∥ , q1 = a1/R11

R1j = q t
1aj, aj

(1) = aj − q1R1j

where j goes from 2 to n. By doing the subtraction, q1 will be orthogonal to the rest columns.

Then compute the 2-norm of and normalize vector a2
(1), denoted as q2 As with the first step,

for column vectors a3
(1), a4

(1) . . . an
(1) subtract their projections onto q2.

Therefore, when 1 ≤ j < k − 1 and 2 ≤ k ≤ n,


Rkk =

∥∥∥∥ak
(k−1)

∥∥∥∥ , qk = ak/Rkk

Rkj = q t
k aj

(k−1), aj
(k) = aj

(k−1) − qkRkj

The orthogonal Q matrix and the updated parts of the origianl A matrix can be written into

one single matrix when doing the calculations.

2.3.2 Householder QR Factorization

A Householder QR Factorization avoids numerical instability by reflecting a vector onto a

direction (represented by a unit vector, e.g., e0 = [1, 0, . . . , 0]t, rather than projecting (which

loses accuracy near orthogonality). The reflected vector will have the same length as the

original.
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Householder QR Factorization can factor a full n rank matrix Am×n into Q and R.

The following formulas and corresponding code (synced to start indices at 0) represent a

simple and straightforward way to implement Householder QR Factorization and are based

on the following classnotes [9]. Before factoring matrix A, a method is needed to compute a

Householder vector v from a vector x.

α = sign(x0)
∥∥∥x∥∥∥ and v = x + αe0

In ScalaTion these become

def houseV (x: VectorD): VectorD = {

val α = signum (x(0)) * x.norm

x + (0, α)

} // houseV

Column by column the A matrix can be turned into upper triangular (i.e., R) by performing

Householder reflections to zero A below the main diagonal. In the simple implementation,

this is done by computing a Householder matrix H from the Householder vector v. See

chapter 6 for a more efficient way to do this.

d =
2

vtv
and H = I − dvvt

In ScalaTion these become

def hReflect (v: VectorD) = {

val d = 2.0 / v.normSq

eye(v.dim) - outer (v, v) * d

} // hReflect
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For each column j in A, compute

v = houseV(A(j : m, j))

H = hReflect(v)

A = HA(j : m, j : n)

In ScalaTion these become
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def factor () {

for (j ← 0 until n)

val v = houseV (a.col (j, j))

val h = hReflect (v)

a.times ip pre (h, j)

// for

} // factor

If the full matrix Q is needed, it is simply the product of the Householder matrices. Several

algorithms, such as multiple regression, do not need to fully materialize the Q matrix.

2.3.3 Rank Revealing QR Factorization

Even though Householder QR Factorization is the most popular method employed in Multiple

Linear Regression, it can be only applied to the matrices with full column rank. Rank

Revealing QR (RRQR) can handle the situation when the matrix is rank deficient and

determine the rank of it [10].

This is actually a modified algorithm of the Householder QR Factorization. Before each

step of Householder vector calculation, compute the norm of each column. Then, interchange

the position of the column with the maximum norm and the first column in that step (kth

column in kth step). If there are more than one column having the largest norm, choose

the one with the smallest index. The rest of the procedure remains the same until the value

of the maximum norm becomes zero, at which point the algorithms terminates yielding the

rank and a factorization. In the end, RRQR gives one more matrix as the result of the

Factorization,

QtAΠ =

R11, R12

0, 0


8



where for r = rank(A), R11 is an r-by-r upper triangular, nonsingular matrix, R12 is an

r-by-(n-r) matrix, and Π is a permutation matrix.

2.3.4 Block Householder QR Factorization

The Block Householder QR Factorization technique basically uses the same algorithm as

the Householder QR Factorization [11]. Rather than operating column by column, adjacent

columns are grouped in blocks. Householder reflections are used to transform the first block

Ab1 into an upper triangular Rb1. These are then used to update the rest of blocks across

the matrix. The same procedure is then applied to transform the second block Ab2 into an

upper triangular Rb2. Iterating through all the blocks achieves the desired result. The WY

Representation for products of Householder Matrices [12] provides a means for reducing

space requirements.

2.4 SVD Factorization

Singular Value Decomposition (SVD) Factorization is an important matrix decomposition

algorithm in linear algebra. It is widely used in the area of signal processing and statistics

and may be used for regression as well.

Given an m-by-n matrix A, which can be a real or a complex matrix, A can be factored

into three matrices,

A = UΣV t

where U is an m-by-m orthogonal (unitary for complex) matrix, Σ is an m-by-n diagonal

matrix, which carries the singular values of matrix A on the diagonal, and V t is the transpose

of matrix V , which is an n-by-n orthogonal/unitary matrix.

ScalaTion provides three algorithms for SVD Factorization: (1) find the eigenvalues

and eigenvectors of AtA [13], (2) the Golub-Kahan-Reinsch Algorithm [14], and (3) trans-

lation of the LAPACK Fortran DBDSQR subroutine [15] that uses an implicit zero-shift
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QR algorithm. Each subsequent implementation is more robust, but also more complex.

Currently, some of the SVD implementations are still undergoing testing.
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Chapter 3

Application of Factorization in Regression

The Regression class in ScalaTion supports multiple linear regression. This is a technique

which can develop correspondence and relationships among all the features or attributes [16].

Often, there is only one response variable defined as y. The rest of the variables are called

explanatory x-variables upon which variable y linearly depends.

y = b · x + ε = b1x1 + b2x2 + · · ·+ bnxn + ε

where x1 = 1 and ε represents residuals or noise. A dataset or training set will provide m

occurrences for both y and x. Collecting all the response values yields an m-dimensional

response vector y, while collecting all the x values yields an m-by-n matrix X.



y1

y2
...

ym


=



x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n
...

...
...

. . .
...

xm1 xm2 xm3 . . . xmn


×



b1

b2
...

bn


+



ε1

ε2
...

εm


Defining the vector ε as the collection of ε′s, multiple linear regression models may be written

as follows [16].

y = Xb + ε

ScalaTion, provides generalizations of regression including General Linear Models as well

as Generalized Linear Models [4]. In order to solve for the coefficient/parameter vector b,

one minimizes a norm of the residuals
∥∥∥ε∥∥∥

k
. In general this requires optimization, but when
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k = 2, setting the gradient equal to zero, allows b to be found by solving a system of linear

equations. This involves either inversion of factorization.

3.1 Using Matrix Inversion

Matrix Inversion is the easiest way to understand among all the other solution methods for

multiple linear regression. To perform multiple linear regression, the most important step is

to minimizes the residuals. Assuming a 2-norm (or sum of squares), one may write.

∥∥∥ε∥∥∥2 =
∥∥∥y −Xb

∥∥∥2
∥∥∥ε∥∥∥2 = yty − 2btX ty + btX tXb

Taking the gradient with respect to b and setting it equal to 0 yields

X tXb−X ty = 0

Adding X ty to both sides yields the Normal Equations.

X tXb = X ty (3.1)

Solving for b gives the classical textbook solution [10].

b =
(
X tX

)−1
X ty

In ScalaTion, the code looks very similar to the math.

val b = (x.t * x).inverse * x.t * y

12



3.2 Using Cholesky Factorization

It is well-known that solving for the inverse of a large matrix can lead to rounding errors and

irregularities [17]. In order to deal with this problem, Cholesky Factorization can be used

when solving for b. Starting with the Normal Equations (equation 5),

X tXb = X ty

it can be shown that X tX is a positive definite, symmetric matrix. Letting A = X tX and

c = X ty, one obtains Ab = c. Now, matrix A can be factored using Cholesky Factorization.

LLtb = c

As introduced earlier, L is a lower triangular matrix, so letting z = Ltb yields the following.

Lz = c

First use forward substitution to solve for z and then use backward substitution to solve for

b.

As the Cholesky Factorization is applied on X tX rather than X, the rounding errors will

be squared [18]. The QR Factorization avoids this drawback.

3.3 Using QR Factorization

QR Factorization is usually considered more robust than Matrix Inversion and Cholesky Fac-

torization [10]. Similar to the Cholesky Factorization, QR begins with the Normal Equations,

X tXb = X ty. Now, matrix X may be factored into using QR Factorization.

(QR)t(QR)b = (QR)ty

By using the property of the transpose of the product of two matrices, one may obtain the

following.

13



Rt(QtQ)Rb = RtQty

Since Q is an orthogonal matrix, its transpose is the same as its inverse, so QtQ simplifies

to the identity matrix.

RtRb = RtQty

Then, multipling both sides of the equation by (Rt)
−1

yields

Rb = Qty

Since R is an upper triangular matrix, b can be easily solved for by using backward substi-

tution. Note, actual implementations may save time and space by avoiding complete com-

putation of Q or Qt, see chapter 6.

3.4 Using SVD Factorization

Applying SVD Factorization to regression is a little different from the two methods intro-

duced earlier when using them for regression. This time, start from the linear regression

model instead of the Normal Equations. Decomposing the matrix X using SVD Factoriza-

tion and introducing the result into the linear regression model yields,

y = UΣV tb + ε

Letting a = ΣV tb gives

y = Ua + ε

where a is a vector of m elements, and a has the same dimension as vector b. As with

the other solution techniques, the 2-norm or sum of squares of residuals still needs to be

minimized. By analogy,

14



a =
(
U tU

)−1
U ty

As mentioned earlier, the matrix U is an orthogonal/unitary matrix, so U tU = I.

a = U ty

from which a can be solved. Once a is known, multiplying a = ΣV tb by the inverse of ΣV t

yields,

b = V Σ−1a

where a is a vector and Σ−1 is a diagonal matrix where the diagonal elements are the

reciprocal of the those in Σ [19].
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Chapter 4

Support for Parallelism in Java and Scala

The central idea of parallel computing is to divide one problem into many sub-problems,

where each can be solved simultaneously. In order to do that with maximum efficiency,

the sub-problems should be independent of each other. Based on the analysis of all the

aforementioned matrix factorization methods, it can be shown that no matter which method

is applied, every step always requires the results from the previous step as inputs. Parallel

processing requires operating system, language and library support as highlighted in Table

I [20, 21]

Table 4.1: Support for Parallel Processing
Source Feature Description

Java Thread unit of concurrent/parallel execution
Java ForkJoinTask lighter weight thread-like entity
Java Thread-safe Collections allow safe access by multiple threads
Java Parallel Streams parallel execution on streams
Java Synchronization Semaphores, Locks, etc.
Scala Parallel Collections Collection class with methods that execute in parallel
Scala .par method returns a parallel version of a collection class
Scala Akka Actors parallelism via local or remote actors

ScalaTion Coroutine lightweight non-parallel concurrent execution
ScalaTion Master-Worker master distributes work to parallel workers

As mentioned above, due to the dependencies between each step, it requires synchroniza-

tion when applying Householder QR Factorization on a matrix. In Java, Semaphore is a class

that controls the number of threads accessing a target object. A single column should be

treated as a target object, because either the Householder transformation or the calculation

of a Householder vector should be done independently. Furthermore, the calculation of a
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Householder vector should always be the first step when processing a column. A semaphore

can be used to limit access to a column to one thread at a time. However, when using

semaphores to achieve parallelism in this way, even though the Householder transformation

of the columns can execute simultaneously, the algorithm still needs to block the threads to

make sure that the Householder vector can be acquired correctly. This can lead to limited

speedup, due to threads waiting for others to complete.

However, even if no good results seem to come from parallelizing the Householder matrix

construction process, this does not mean that parallel algorithm is not suitable for the

Householder Factorization algorithm. It can be shown that in Householder Factorization, the

process of Householder transformation can be done column by column and there is no depen-

dency between each other, which means it can be efficiently parallelized. The main technique

will be well explained in chapter 6. In other words, even though parallelization of the global

process did not produce good results, parallelizing the process of constructing the House-

holder matrix and processing Householder transformations is still reasonable after obtaining

the Householder vectors. By applying the serial algorithm on the process of obtaining House-

holder vectors and parallelizing the rest, there is still considerable speedup.

Parallel collections in Scala provide a simple way to introduce parallelization into serial

code. Many of the standard Collection classes have parallel versions (e.g., Array, ParArray).

The key means for providing parallelism is via parallel versions of the foreach methods [21].

Since for comprehensions, call foreach, loops can be easily made to run in parallel. Consider

the following two lines of code (the second appears in the colHouse shown in chapter 6).

for (j ← k + 1 until n) ...

for (j ← (k + 1 until n).par) ...

The first line uses a Range (k + 1 until n) to set up a loop that is executed sequentially.

The Range collection class only stores the upper bound and the lower bound of the numeric

range, as well as the traversal step. The call to the .par in the second line of code converts

17



the Range into a ParRange, so the loop can be executed in parallel. When the foreach

method is invoked on a collection, subsets of elements will be assigned to different threads.

To improve efficiency and reduce overhead, various strategies such as thread pools, fork/join

framework and work stealing are utilized, see [21] for details.
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Chapter 5

Related Work

In this chapter, work on parallelization of matrix factorization is reviewed. More specifically,

it focuses on techniques to parallelize the Householder QR Factorization. As mentioned

above, simply parallelizing the global process of Householder QR Factorization is unlikely to

offer high speedups due to dependencies between each step.

The procedure of the Householder QR Factorization can be divided in to several tasks.

If these tasks have no dependencies, they can be run in parallel without any interference,

otherwise, they should be sheduled in order to minimize the wait times due to dependencies.

Typically, a task would correspond to a transformation of an entire column of the orig-

inal matrix, a transformation of a block of columns of the original matrix or making part

of a transformation parallel (see chapter 6). The first two parallelization techniques have

dependencies, while the third does not.

LAPACK [22]/PLASMA [23] provide parallel QR Factorization algorithms. Parallel Colt

[1] mentioned in chapter 1, is a parallel Java implementation of the Colt package [24]. It con-

sists a package called JPlasma, an Java interface of PLASMA, which provides parallel algo-

rithms for Matrix Factorization including Block Householder QR Factorization, LU Factor-

izaion and Cholesky Factorization. The way they make Block Householder QR Factorization

parallel is through the use of the parallel matrix operations, primarily matrix multiplication

and subtraction, e.g,

Ak = HkAk−1 = Ak−1 − (WY t)Ak−1

A good way of parallelizing Householder QR Factorization is introduced in [3]. The algo-

rithm improves upon the QR Factorization package in LAPACK. This algorithm divides the
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matrix into square blocks and operates on them as small tasks. Based on the dependen-

cies among those tasks, they can be dynamically scheduled according to the computational

resources. It can be shown that there are dependencies between each step of the algorithm.

The researchers of [3] found a DAG, in which the nodes are elementary tasks and the edges

represent the dependencies among them. The way of finding the DAG is using the technique

of “look ahead” which is presented in [25]. The DAG shows all the dependencies among tasks

and can be used to schedule the tasks “asynchronously and independently” [3].

According to the authors of [3], this algorithm can scale almost perfectly in multi-core

architectures by using this efficient dynamic scheduling technique, but it requires 25% more

floating-point operations than the serial algorithm. Compared to [3], the current paper uses

an unblocked means to achieve parallelism in Householder QR Factorization. Our experi-

mental results in Householder Factorization show that a Householder transformation can be

done column by column and there is no dependency among the columns, which means the

algorithm can be easily parallelized.

OptiML [26] is a domain-specific language (DSL) build on top of Scala for developing

machine learning (ML) algorithms and applications. Algorithms can be written in the

OptiML language in a straight forward, serial manner. OptiML then converts the code

into appropriate parallel and distributed C++, Scala, and CUDA code. Users are then

responsible for running the generated code on the appropriate hardware. For different

algorithms, datasets, and characteristics of the target hardware, it is hard to predit the

optimal parallel or distributed hardware to use. However, since OptiML is able to generate

code for a variety of hardware, users can test their algorithms on all available parallel and

distributed hardware platforms and obtain the optimal results from the most appropriate

hardware. The technique named ”lightweight modular staging” is used in OpitML to build

an intermediate representation (IR) between a program written in OptiML code and the

corresponding generated code. OptiML can also analyze and optimize this IR to generate a

portable, productive programming model with the best possible performance. Because this
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paper only focuses on Multiple Linear Regression, only the experimental results of Linear

Regression are presented. The authors of OptiML compare the OptiML application with

the corresponding code of MATLAB and C++. The results show that as the number of

cores increase, OptiML can get better results when comparing with MATLAB. Also, with

the optimization of OptiML, the OptiML version code can be nearly as fast as a “hand-

optimized, manually-parallelized” C++ code. Another big advantage of OptiML is that the

OptiML code is easy to write and understand. However, when compiling OptiML code, the

compiler errors reported are very technical, therefore hard to understand for average users.

The OptiML code is also very difficult to debug because users must dig through layers of

generated code in order to find the source of the run-time error.
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Chapter 6

Parallel Implementations

Except for SVD, which is still under development, the most complex and hardest to make

parallel was Householder QR Factorization. From chapter 2 where Householder Factorization

is discussed in detail, it can be shown that in order to obtain the correct Householder matrix

in each step, the procedure would always need to wait for the required matrix transforma-

tions to be completed in the previous step in order to extract the corresponding Householder

vectors. The Householder vectors must be extracted from left to right column wise. There-

fore, the primary dependency when constructing the Householder matrix is that the current

Householder matrix Qn would require a vector that has been transformed n− 1 times.

Unlike the other QR Factorization techniques, Householder QR Factorization results in

one single matrix at the end of the calculation. The R matrix can be easily obtained, because

it is stored in the upper-right part of the final matrix. If a Q is actually needed, one may use

the Householder vectors to create it. The Householder vectors are stored in the lower-left

part of the final matrix.

6.1 Improved Serial Implementation

Chapter 4 presented a simple Householder QR Factoriztion which utilizes high level matrix

operations. Although it is concise, it is not as efficient as the serial algorithm discussed in

this section that also serves as the basis for the parallel implementation. Greater efficiency

is achieved by replacing matrix operations such as the computation of the H matrix and its

multiplication times the A matrix.
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val v = houseV (a.col (j, j))

val h = hReflect (v)

a.times ip pre (h, j)

First, in the houseV method, the Householder vector u for x = A(j : m, j) is computed based

upon the formula given in the section two of paper [27]. Then, the method to compute the

Householder Reflection matrix and its multiplication by A are replaced by a simpler vector

operations.

6.2 Making the Serial Algorithm Parallel

As mentioned in chapter 4, the Householder transformation can be efficiently parallelized

after obtaining the Householder vector. The process of forming the Householder Matrix and

subsequently using it for Householder transformation can be done by vector-to-vector oper-

ations rather than matrix-to-matrix operations. This procedure can be treated as updating

the original matrix column by column, which can be done in parallel. The function below

is used to obtain the Householder vector for column k, and is needed for the Householder

transformation of the whole matrix.

def colHouse (k: Int) {

var xnorm = aa.col(k, k).norm

if (xnorm != 0.0) {

if (aa(k, k) < 0.0) xnorm = -xnorm

for (i ← k until m) aa(i, k) /= xnorm

aa(k, k) += 1.0

} // if

r(k, k) = -xnorm
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for (j ← (k + 1 until n).par) transformAA (j, k)

} // colHouse

The kth step of the Householder QR Factorization starts by computing the Householder

vector for kth column, which is used in the Householder transformation, Ak = QkAk−1.

The first part of the colHouse method sets rkk = −sign(akk)
∥∥∥ak:m,k

∥∥∥ and calculates the

kth column of Ak−1 by dividing the portion of the column below akk by −rkk and then

incrementing akk. The second part of the colHouse method contains a loop that repeatedly

calls the transformAA method, which transforms the jth column of Ak−1 based on the kth

Householder vector. Each of columns can be computed in parallel because there are no

dependencies between them.

JAMA [28] uses a more memory efficient approach by transforming the matrix column by

column. Instead of computing the Householder matrix H, this procedure directly calculates

the transformed vector Hc. The colHouse method implemented in ScalaTion uses the

same idea. Method colHouse first computes the non-unit Householder vector, and method

transformAA replaces every c with corresponding Hc based on the code above in parallel.

As discussed in chapter 4, parallelizing the Householder transformation is the main parallel

portion of this algorithm. Another important feature of the implementation is that it requires

substantially less memory.

Besides parallelism, there are also several ways to further improve the performance. The

MatrixD class in ScalaTion manipulates numeric matrices with elements of type Double.

Accessing an element, e.g., mat(i, j) is a two step process of using the row index i to get

the ith row, which is a one dimensional array, and then using the column index j to get the

jth element in this array. If code iterates over the column index with i fixed, then it is up

to twice as fast to maintain a reference to the row and only use single level indexing. This

is done as much as possible in ScalaTion while still maintaining the high-level abstraction

of a matrix (e.g., some packages simply reduce everything to a single dimensional array with

mn elements). Although less convenient, the same can be done on a column basis.
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Another means is to take full advantage of the caches. Typically the caches are roughly

an order of magnitude faster than main memory, so if algorithms maximize their locality

of reference (e.g., access row-wise if matrices are stored row-by-row), the code may run

substantially faster. If an algorithm processes columns and the matrix is stored row-by-row,

it may be beneficial to transpose the matrix first.
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Chapter 7

Performance Results

The tests are done by using different numbers of instances in order to see the trend of the

speedup with the growth of the matrix. The test datasets are all simulated because much of

the real data that can be found on the Internet either are too small or not of full rank. The

sizes of datasets are 10000*300, 20000*600, 30000*900, 40000*1200 and 50000*1500. Since

in realistic situations, the number of instances is usually much larger than the number of

attributes, the simulated matrices are all tall and thin.

The Zcluster is provided by Georgia Advanced Computing Resource Center. The oper-

ating system on the Zcluster is 64-bit Red Hat Enterprise Linux 5. Any particular test was

run a single compute node on an Intel X5650 2.67Hz limited to 12 cores and 48 GB of

memory. The test result are shown in figure 7.1. The x-axis indicates the size of the matrix

and the y-axis indicates the running time in millisecond (ms).

Figure 7.1: Regression using QR Factorization on Zcluster

Figure 7.1 indicates the running time of Linear Regression in Apache Commons, Parallel

Colt and ScalaTion on matrices of increasing sizes. It shows Linear Regression in Apache
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Commons and the serial Regression in ScalaTion seem to have similar performance. While

for relatively small matrices, Apache Regression is almost the same with that of ScalaTion,

but as the size of the matrix increases, the ScalaTion serial Regression performs better.

The parallel implementation of Regression in ScalaTion and Parallel Colt is much faster

than the other techniques. As the size of the matrix grows, the Parallel Colt performs slightly

better than that of ScalaTion.

Table 7.1: Memory Usage
10K*300 20K*600 30K*900 40K*1200 50K*1500

Par. Colt 1.2% 2.7% 5.4% 9.8% 15.7%
ScalaTion 1.0% 2.1% 4.4% 8.4% 13.1%

Even though the Regression in Parallel Colt is little faster than the parallel Regression in

ScalaTion, the memory usage of Parallel Colt is higher. Table 7.1 shows that the memory

usage of Parallel Colt is always 20% higher than that of ScalaTion when doing Multiple

Linear Regression using QR Factorization. This test was conducted on a interactive node of

Zcluster with 48 cores and 128G memory on an AMD Opteron(tm) processor 6174.

Figure 7.2: Regression using Cholesky Factorization on Zcluster

Figures 7.2 and 7.3 compare the performance between Apache Commons and ScalaTion

when doing Multiple Regression using Cholesky Factorization and the Inverse Technique on

different sizes of matrices. Since Regression in Apache Commons uses QR Factorization, we

use the package to do the key steps on Regression for the Cholesky Factorization and Inverse
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Figure 7.3: Regression using Inverse Technique on Zcluster

techniques that start with X tX. This produces a positive definite, symmetric n-by-n square

matrix. Then we implement the rest of Multiple Regression including solving for the coeffi-

cients. The test matrices are all the same as the matrices used in Multiple Regression using

Householder QR Factorization. These two figures show that the performance of Regression

using parallel Cholesky and parallel Inverse [29] are much better than ScalaTion’s serial

or Apache Commons implementations.

To further test the performance of the parallel algorithm, several scalability tests are also

performed. We are using the matrix of size 10000*300 to test the running time on different

numbers of threads, such as, 2 threads, 4 threads, 6 threads, 8 threads, 10 threads and 12

threads. We also calculated the speed ups of each number of threads compared with the

serial algorithm.

Figure 7.4 shows the scalability testing result of Householder QR Factorization. The

x-axis indicates different numbers of threads. The left y-axis indicates the running time

in millisecond(ms) and the right y-axis indicates the speed up compared with the serial

algorithm. As Zcluster is often saturated, the nodes typically have a load around 8 with 12

cores. However, we can still observe the trend that as the number of threads increases, the

speed up goes up and the the running time goes down.
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Figure 7.4: Scalability of QR Factorization on Zcluster

Figure 7.5, Figure 7.6 and Figure 7.7 show the scalability testing results of Regression

Using Householder QR Factorization, Cholesky Factorization and Inverse Technique respec-

tively. They all achieved a inreasing trend of speed up as the number of threads increases.

Figure 7.5: Scalability of Regression using QR on Zcluster
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Figure 7.6: Scalability of Regression using Cholesky on Zcluster

Figure 7.7: Scalability of Regression using Inverse on Zcluster
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Chapter 8

Conclusions and Future Work

There are many forms of Regression used in Big Data Analytics with solution techniques

ranging from Matrix Factorization for Least Squares to sophisticated optimization algo-

rithms used to minimize “minus log-likelihoods”. ScalaTion provides both and now is in

the process of parallelizing its serial algorithms. The first step is parallelizing the Matrix Fac-

torization algorithms and applying them to the problem of Multiple Linear Regression. A

novel algorithm for parallel Matrix Factorization was developed and applied to the problem

of Multiple Linear Regression. Based on the testing environments, speedup factors up to five

were obtained by this algorithm.

For future work, the plan is to test the algorithms on systems with more cores and

lighter loads, which should be more indicative of the true potential of the algorithms. QR

Factorization algorithms based on Given rotations will be considered given their potential for

parallelism. The plan also calls for testing the newly developed parallel algorithm against the

already developed, but not widely used parallel block-oriented Householder QR Factoriza-

tion. Beyond this, for cases were these algorithms may fail, serial and parallel implementation

for RRQR, SVD and even stochastic gradient will be tested for performance and robustness.
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