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ABSTRACT

Glycans are known to change in the earliest stage of cell development in complex living
organisms. Glycoproteins and glycolipids effect the abundance level of cell surface glycans.
Thus, the study of production and consumption of glycoproteins and glycolipids are impor-
tant. In this paper, we present the Glycomics Modeling pathway simulation environment
(GlyMpse), an ontology driven simulation model utilizing domain ontologies such as GlycO,
EnzyO and ReactO as well as modeling ontology DeMO (to generate simulation models of
biochemical pathways). The model provides insight to glycobiologists about the behavior of
glycan abundance level on cell surface over time. We also tested GlyMpse with N-Glycan
biosynthesis pathway to achieve steady state approximation with kinetic parameters gener-
ated by a genetic algorithm, as a starting point.
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CHAPTER 1

INRODUCTION

Computational systems biology includes both knowledge discovery and simulation-based
techniques. The knowledge discovery branch of computational systems biology processes
large quantities of experimential data in an effort to find patterns that are difficult to iden-
tify without the aid of computational tools, while the simulation-based branch makes use
computational modeling techniques to represent the characteristics of biological systems and
predict their behavior. The behaviors exhibited by an executable computer model can be
validated by comparing them with behaviors observed during experiments. Once computer
models have been validated, they can be used to make predictions about the behavior of
biological systems.

Biochemical pathways have traditionally been modeled as systems of ordinary differential
equations (ODEs). ODEs simulate the time-dependent properties of a pathway well, but
as pointed out by Reddy [58], simulation with ODEs relies on parameters produced by
experimental data which may be available for single reactions, but may not be available for
entire pathways. In the absence of complete data required for parameters in a system of
ODEs, many researchers have opted to use Petri Nets [51] for the simulation of pathways [2].
Petri Net models can represent the structure of pathways using an intuitive graph theoretic
approach, but standard (discrete) Petri Nets cannot represent the time-dependent properties
of a pathway that are necessary for quantitative analysis. The original Petri net is only able
to deal with discrete values, but in recent years hybrid Petri net (HPN) [55] and hybrid
Dynamic net (HDN) [56] models have been introduced in order to allow Petri net models to

handle continuous values, while retaining the properties associated with the original Petri net.



While the extensions introduced in HPNs and HDNs were significant, they were not sufficient
to allow for the accurate representation of biochemical pathway via Petri Net models. In an
effort to overcome the limitations of HPNs and HDNs, [57] introduced the hybrid functional
Petri net (HFPN). Using HFPNs modelers are able to represent the structure of pathways in
a intuitive manner and simultaneously use ODEs to represent the time-dependent properties
of pathways. The systems described in this paper make use of many of the concepts associated
with HFPNs in order to simulation biochemical pathways.

Within the field of computer science an ontology [51] is a formal, machine readable
description used to describe and categorize concepts and the relationships among concepts
within a particular knowledge domain. The domain of systems biology has seen the develop-
ment of the Glycomics Ontology (GlycO) [30], the Enzyme Ontology (EnzyQO), the reactions
ontology (ReactO) and a number of other ontologies such as Gene Ontology (GO) [62], the
Sequence Ontology (SO) [63], in recent years. Several ontologies such as the Discrete-event
Modeling Ontology (DeMO) [33] and Process Interaction Ontology for Discrete Event Sim-
ulation (PIMODES) [52], have also been developed within the domain of simulation and
modeling.

The systems described in this paper use ontologies within the domains of systems biology
and simulation and modeling to drive the creation of simulation models for biochemical
pathways. This is achieved using Ontology Driven Simulation (ODS) [35] where a tool maps
concepts from domain ontologies to concepts in the DeMO modeling ontology and then
creates instances of DeMO ontology classes to represent a simulation model. We illustrate
how ODS can be used to create simulation models of glycan pathways by mapping concepts
from the GlycO, EnzyO and ReactO ontologies to concepts in the DeMO modeling ontology
and then creating instances of DeMO ontology classes to represent a model. We also show
that once the ontology instances representing the model have been created, additional tools

can be used to translate the instances into an executable simulation model.



The remainder of this thesis is organized as follows: Chapter 2 discusses systems biology
and some of the strategies used in the simulation of biochemical pathways. Chapter 3 sum-
marizes related work. Chapter 4 describes how hybrid Petri nets have been used in the sim-
ulation of pathways. Chapter 5 introduces ontology driven simulation of pathways. Chapter
6 describes how elements of simulation models represented as ontology instances are trans-
lated into executable simulation models, and Chapter 7 presents some preliminary test results
generated by the simulation models described in this paper. Lastly, Chapter 8 discusses con-

clusions and opportunities for future work.



CHAPTER 2

PROBLEM DEFINITION AND SOLUTION STRATEGIES

2.1 STRUCTURE AND PROCESSES IN A CELL

The living cell is a biological unit surrounded by a lipid membrane. A cell can be distin-
guished from smaller biological units (such as virus particles) in that a cell contains all
the components required for its replication. Diverse biological processes such as growth,
metabolism, stimulus response and replication are carried out by cells, which are categorizes
either as prokaryotic (without nuclei) or eukaryotic (with nuclei). Prokaryotic cells are rela-
tively small in size and typically have a rigid cell wall. Eukaryotic cells, which are typically
larger than prokaryotic cells, are divided into sub cellular compartments (called organelles),
which include nuclei, mitochondria, Golgi, and endoplasmic reticulum (ER). Each organelle
has a characteristic cellular function. For example proteins destined for export from the cell

are usually synthesized at the surface of the ER.

2.2 BIOCHEMICAL PATHWAYS

The complex interactions of biomolecules within the cell are often conceptually orga-
nized as networks called biochemical pathways, which include metabolic pathways, signal-

transduction pathways and gene regulatory pathways.

2.2.1 METABOLIC PATHWAYS

A metabolic pathway is an ordered sequence of biochemical (usually enzyme-catalyzed) reac-

tions in which precursor molecules are converted into product molecules. These reactants and



products are called metabolites. Metabolism is responsible for the synthesis and degrada-
tion of the molecules that are structural or functional components of cells. Energetics plays
a central role in metabolism, which is responsible for the generation, interconversion and
utilization of cellular fuels, which include monosaccharides, polysaccharides and nucleotides.
Metabolism consists of catabolism (biochemical degradation) and anabolism (biochemical
synthesis). Catabolism is the breakdown of complex molecules (carbohydrates, proteins and
lipids) into simpler molecules (ammonia, urea and carbon dioxide), often supplying energy
for other cellular processes, including anabolism, which is the formation of complex molecules

(polysaccharides, glycolipids and proteins) from simpler precursors.

2.2.2 SIGNALING PATHWAYS

Signal-Transduction pathways are also known as information processing pathways. These
pathways allow cells to perceive, process, and respond to outside information. Half of the
protein families encoded by the human genome are primarily involved in information pro-
cessing. Signalling molecules often encode information by interconversion between activated
and deactivated states that differentially interact with the cellular machinery, thereby mod-

ulating various cellular processes such as overall metabolism and gene expression.

2.2.3 GENE REGULATION PATHWAYS

As genes are expressed, they produce RNA and ultimately proteins. Some of these RNA and
protein products then bind to promoter sites of other genes, effecting the level at which they

express themselves, thus setting a regulatory network or pathway.

2.3 GLYCAN BIOSYNTHETIC PATHWAYS

Carbohydrates (i.e., simple sugars, oligosaccharides and polysaccharides) play diverse roles
in the living cell. Most of the energy harvested from sunlight is stored by synthesis of simple

sugars from water and carbon dioxide. In the long-term, this energy is usually stored in



the form of polysaccharides, which are subsequently broken down when energy is required
by the organism. Oligosaccharides and polysaccharides are collectively referred to as gly-
cans. Glycoproteins and glycolipids, respectively formed by covalently linking glycans with
proteins and lipids, have important roles in molecular recognition and signal transduction.
Ultimately, the abundance of each complex glycan in the cell is controlled by regulating the
rates of individual reactions within the metabolic network responsible for its biosynthesis.
The reaction rates are controlled by varing the abundances of the enzymes that catalyze these
reactions and the substrates that take part in these reactions. Analysis of the pathways
responsible for glycan biosynthesis involves the detection and quantitation of the glycans
themselves and the enzymes that catalyze the reactions. The abundance of each enzyme can
be estimated to some extent by quantifying the rate at which the gene encoding the enzyme
is transcribed (i.e., transcriptomics) or by quantifying the enzyme itself (i.e., proteomics).
The GlycO and ReactO ontologies embody knowledge regarding glycan structures and the
metabolic pathways leading to glycan biosynthesis, providing a context for interpretation of
glycomics data (i.e, identity and abundance of each glycan in the cell or tissue). Knowledge
regarding the enzymes that catalyzes these biosynthetic reactions is contained in the EnzyO
ontology. Together these ontologies constitute a robust collection of information required for
the description of pathways leading to glycan biosynthesis.

Simulation of the glycan biosynthesis process would be much more robust if it integrates
experimental glycomics, transcriptomics and proteomics data. The glycomics group at the
University of Georgia (http://glycomics.ccrc.uga.edu) has developed the infrastructure to
collect transcriptomic, proteomic and glycomic data. For example, gene expression can be
quantified by analysis of mRNA abundances in the cell or tissue by qRT-PCR (quantitative
Real Time Polymerase Chain Reaction). Although the abundance levels of cell surface glycans
and the enzymes involved in their synthesis can be viewed in the context of GlycO, quanti-
tative relationships between these abundances is highly complex, and meaningful models for

the biosynthesis requires simulation of this dynamic process. Such models have the potential
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Figure 2.1: Conversion of gene to mRNA to protein

to shed light on the effects of altering gene expression on glycan structure and abundance,
which then leads to changes in diverse cellular processes such as cell growth and differentia-
tion and the progression of disease.

GlycoBrowser [43] is an ontologically driven glycan structure building and pathway
browser tool. This tool also renders the glycan abundance level and transcriptome expression
levels as small bar graphs beneath each glycan and enzyme, respectively as shown in figure
3 1. Glycan-protein interaction data collected until now is not sufficiently used for modeling
pathways. The main goal of GlyMpse is to model glycan pathways from GlycO, EnzyO and
ReactO ontologies. The model will provide insight to glycobiologists about the behavior of
glycan abundance level on cell surfaces over time. GlyMpse models provide a means to ana-
lyze glycan-enzyme (proteins) interactions using existing information from GlycO, EnzyO
and ReactO as a starting point. Data flow from domain ontologies to simulation engine is

depicted in Figure 1.1.

!This figure is generated using GlycoBrowser [43]
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Figure 2.2: Pathway fragment with corresponding abundace level graphs

2.4 SYSTEM BIOLOGY APPROACH

The study of systems biology was started by Mihajlo Mesarovic in 1966 with publication of his
research paper ”Systems Theory and Biology.” [44]. However, high quality, high throughput
data only became available in 1990’s, which also saw significant increase in computing power.
With the completion of the Human Genome Project in 2000, systems biology evolved as an
important research area in many research institutes. Progress in molecular biology induced
a considerable degree of interest in system biology, especially since high-throughput exper-
imental measurements provides complete data sets on cell performance and gains in depth
information on the underlying molecular level cellular activities. The analysis of data gen-
erated by mathematical and simulation modeling is becoming increasingly important. How
a system behaves over time under various conditions can be understood through metabolic
analysis. This analysis tracks time-varying changes in the state of the system depending on

the concentration of the biochemical factors involved. Due to the large number of parameters



and constraints in biological networks, software infrastructure is becoming an important com-
ponent for system biology. The concept of ontology (specification of conceptualization) is one
of the knowledge representation techniques from computer science used in bioinformatics.
Many research groups are using ontologies as a software infrastructure to store biological
information. The Systems Biology Mark-up Language (SBML), along with CellML define a

standard for an XML-based computer readable models for exchange of data.

2.5 REACTION LAWS AND KINETICS

The rate of a reaction is often found to be proportional to the concentrations of the reac-
tants. For example if the rate of the reaction is proportional to the molar (moles per liter)

concentrations of two reactants E and S, in this we can write as
V = k[E][S] where V' is the rate of the reaction.

The coefficient k is called the rate constant for the reaction. The rate constant is indepen-
dent of the concentrations (depends on temperature). Formally, a rate a law is an equation
that expresses the rate of the reaction as a function of the concentrations of all reactants

present in the reaction:

V= f(E], [5])

The rate of a reaction depends on substrate and enzyme concentration. The Michaelis-
Menton kinetic equation relates velocity V' to the concentration of substrate [S] and the
two parameters V., and K,,. The following equation is used in our simulation to calculate

reaction rates:

— Vmaz'[s]
V= Km+[S]

Vinaz 18 the maximum velocity of the reaction and K, is the concentration of substrate
that leads to half the maximum velocity V},... The rate is most sensitive to substrate concen-

tration when [S] is less than K,. However, it is sensitive to [S] at every realistic concentration
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Figure 2.3: Michaelis-Menton rate equation graph

as shown in Figure 2.3. The rate no longer sensitive to [S] when [S] is infinite. Increase in sub-
strate concentration increases the rate of the reaction. The derivation of Michaelis-Menton

kinetics are discussed in Appendix A.

2.6 MODELING AND SIMULATION OF PATHWAYS

2.6.1 SYSTEM DIFFERENTIAL EQUATIONS

The rate equations are linear or non-linear ordinary differential equations (ODEs) with
concentration levels as variables. ODEs fail to generate accurate output if some of the key
parameters are unknown. ODEs are not suitable for animation or visualization and hard to
use with discrete events. Discrete events are needed to represent activities such as binding,
signaling and continuous values are needed to represent substrate concentrations, these two
are needed for simulations of cells at the molecular level, so Hybrid Petri Nets are a well

accepted approach.
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Complex Pathway Simulator (COPASI) [10, 11] and Biochemical Pathway Simulator
(BPS) [5] are examples of the simulation engines developed for biochemical pathways. These
simulation engines are limited by their need to have chemical kinetics input by the user.
The systems described in this paper differ from these simulation engines in that when a
pathway is selected its corresponding kinetics are retrieved from domain ontologies and
reactant concentrations from GlycoVault [64]. GlycoVault data include qRT-PCR data as
well as glycomics data. Petri Nets which provide structural definitions for the simulation of

pathways are not used in any of the previously mentioned simulation engines.

2.6.2 PETRINETS

A Petri Net is a formal description for modeling concurrent systems developed by Carl Adam
Petri [50] in 1960. A Petri Net is bipartite graph, with place and transition nodes. Figure 2.4
represents a simple Petri Net model with 6 places and 4 transitions. The formal definition
of Petri Net is as follows:

Petri Net is a 5 tuple, (P, T, F, W, My), where
P = {p1,p2, ..., pm}, finite set of places
T = {t1,ts, ..., t, }, finite set of transitions
FC(PxT)U(T x P), set of arcs
W:F — {1,2,..}, weighting function
M, : P — {0,1, ...}, initial marking

My defines the number of tokens per place.

Places are represented by circles and transitions are represented by rectangular boxes.
These places and transitions are connected by directed arcs. A Transition can have both
input places (with arcs connecting from places to the transition) and output places (with
arcs connecting from the transition to places). Generally, arcs are labeled with weights which
represent the minimum tokens required by input places to enable the transition. When

a transition is fired it will take tokens from each input place equal to the weight of the
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Figure 2.4: Simple Petri Net

Petri Net Type

Description

Timed

A timed duration is associated
with transitions and places

Colored

Each token can have its own
color, gives more descriptive
power

Hierarchical

A place can represent another
Petri Net

Stochastic

Probability distribution delays
are associated with places and
transitions

Hybrid

Places can hold integers and real
values

Table 2.1: Classification Of Petri Nets

12

corresponding input arc and create new tokens equals to the weight of the corresponding

output arc. To model a metabolic pathway using Petri Nets, we need to take into account

both the substrate degradation as well as creation. Therefore, the notion of consumption

and production of resources is achieved in Petri Nets. To model biochemical pathways, it is

important to understand how timing concepts are handled by Petri Nets. A firing delay is

associated with each transition which specifies the time duration for which this particular

transition is enabled. Table 2.1 explains classification of Petri Nets:
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2.6.3 ADVANTAGES OF PETRI NETS

Petri Nets provide an intuitive graphical approach for modeling biochemical pathways. Since
a Petri net is also represented as a network with nodes and edges, mapping the compo-
nents of a biochemical pathway to a Petri net is somewhat intuitive. When modeling a
biochemical network using a Petri net, the amount of a biological molecule/object is repre-
sented as a place. The transitions represent the reactions/interactions between the biological
molecules/objects, and places are connected to transitions by arcs. Petri Nets are well suited
for modeling the logical relationship between components in biochemical pathways. The
hybrid modeling methodology most often used for biochemical pathway simulation is the
Hybrid Functional Petri Net (HFPN) [57]. The HFPN retains the advantages of the Petri
Net, but also allows the continuous features of a biochemical pathway to be accurately rep-
resented. Besides these advantages, graphical patterns of pathways can be modeled with

HFPN which can be easily understood by a biologist without any mathematical equations.

2.7 QUANTITATIVE ANALYSIS

The Petri Nets outlined above have recently been applied to quantitative analyses in many
areas of systems biology. An extension of the Hybrid Petri Net has been used in the repre-
sentation and simulation of gene regulatory networks and signal transduction pathways [7].
Simulation software packages based on Petri Nets allow the user to study the time evolution
of concentrations of substrates within the system based on the Michaelis-Menton kinetic
equations.

These applications are good illustrations of the suitability of Petri Nets for the quantita-
tive analysis of complex biological systems. It seems likely that they will prove useful in the
future as bioinformaticians develop more integrated representations for biological networks

and also when more pathway related data is collected from experiments.
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2.8 RELATED WORK

General Pathway Simulator (GEPASI ) [10, 11] simulates the steady-state and time-course
behavior of reactions. In this tool, users supplies input to the program with information
about the stoichiometric structure of the pathway, kinetics of each reaction, volumes of the
compartments and initial concentration of all chemical species. GEPASI then builds the
differential equations that are required by the system and solves them.

Similarly, E-Cell [14] is a software environment where user can even define functions of
proteins, protein-protein interactions, protein-DNA interactions, regulation of gene expres-
sion and other features of cellular metabolism, as a set of reaction rules. In these reaction rules
a system of differential equations is implicitly defined. E-Cell then solves these differential
equations to simulate the model behavior. The simulator KINSOLVER [15] solves chem-
ical reaction networks based on mass balance kinetics. This tool uses five standard methods
(Euler, Modified Euler, Runge Kutta (RK), Adaptive RK-Fehlberg, and LSODES).

Biochemical Pathway Simulator (BPS) [5] is based on programmed cell death (apop-
tosis) and growth factor activated kinase (MAPK) in a biochemical network. Cell Illustrator
is a commercial software tool that allows users to model, simulate and visualize biological
pathways using Cell System Markup Language (CSML). ScrumPy [45] is another analysis
tool for metabolic models. This software package has user interface developed in Python. A
Discrete-Event Simulator of Metabolic Networks (DiMSim) [47] models a pathway as bipar-
tite graph with reactions and reactants. DiMsim also supports Michaelis-Menten kinetics.
Cell Hlustrator [46] is a software tool supporting Cell System Markup Language (CSML).
The design of this software is based on Petri Nets. Standard XML formats like SBML and

CellML can also be converted to CSML using this software.



CHAPTER 3

SIMULATION USING HYBRID PETRINETS

3.1 HYBRID PETRINETS IN SIMULATION

Hoestadt and Thelen (1998) extended the ideas introduced in Reddy, Liebman, and
Mavorououniotis (1993) by using the Hybrid Petri net/Hybrid Dynamic net model (HPN/HDN)
to model both qualitative and quantitative features of biochemical pathways. The HPN /HDN
model was further extended by Matsuno [57] to create the HFPN. The formal definition of
HFPN is as follows:

HFPN is a 6 tuple, (P, T, h, Pre, Post, M), where
P ={p1,p2, ..., pm }, finite set of places.

T = {t1,ts, ..., t, }, finite set of transitions.

h=PUT — {D,C}, every place or transition whether it is a discrete or continuous one.
Pre(P;,T}) is an arc from place P; to transition 7 which has weight of non-negative integer.
Post(P;,T;) is an arc from place P; to transition 7; which has weight of non-negative real
numer.

My defines the number of tokens per place.

The HPFN has discrete places and transitions, which can be used to model discrete
features of biochemical pathways, and it has continuous places and transitions which can
be used to model the continuous features of the pathways. The continuous places can hold
real numbers to represent concentrations of various entities (molecules, etc.) in the model
and continuous transitions that can fire continuously with their firing speed determined by a
function that uses the values from the continuous places. The HFPN also employs different

kinds of arcs listed below:

15
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1. Discrete Input Arc: directed from a discrete place to a discrete transition

2. Continuous Input Arc: directed from a continuous place to a continuous transition
3. Discrete Output Arc: directed from a discrete transition to a place of any kind

4. Continuous Output Arc: directed from a continuous transition to a continuous place

5. Test Input Arc: can be directed from a discrete place to a discrete transition or from

a continuous place to a continuous transition

A discrete transition will fire only if the place on the source end of the input arc contains
a value greater than the weight of the arc, and when the transition fires, content from the
source place is consumed. A discrete transition may also contain a delay time specified by
a non-negative integer. A continuous transition fires continuously at the speed specified by
its transaction function. The input arc of a continuous transition may also contain a weight
that determines whether the transition fires. Transitions that have test input arcs fire in the
same way as transitions that have normal input arcs, but the content of the source place of
a test input arc is not consumed when the transition fires.

From a schema of the pathway, systematically each reaction (with assumptions) is replace
with its hybrid Petri Net counterpart. Place nodes are usually used to represent biochemical
entities (compounds, enzymes, etc.) and transition nodes are used to represent reactions.
Enzymatic reactions are possible when sufficient enzyme is available, and have no impact
on the amount of enzyme although the current concentration of the enzyme will affect the
rate of reaction. Figure 3.1 shows a Petri Net model of enzyme reaction where Glycan A is

converted to Glycan B in presence of an active enzyme.

3.2 SIMULATION DATABASES AND ONTOLOGIES

Biological pathways are represented as a network of nodes representing some biological

molecules and connections between nodes representing reactions/transfers between them
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Figure 3.1: Enzyme catalyzed reaction

together with links to biological annotations. Pathway databases sucha as KEGG [22],
EcoCyc and MetaCyc [23], TRANSPATH [24], Biocyc [25] and Genome [26] uses these type of
representation. BRENDA [59] is relational database containing enzymatic and kinetic infor-
mation mainly extracted from literature. System for the Analysis of Biochemical Pathways
- Reaction Kinetics (SABIO-RK)[60] is another curated database holding kinetics informa-
tion. However, BRENDA and SABIO-RK do not have complete set of kinetics for enzymes
participating in glycan pathways. The biggest challenge for pathway simulation when using
methods like Michaelis-Menton is getting kinetic data. In these pathway databases, informa-
tion about Michaelis kinetics data is often not available. Thus, an important challenge is to
create an information system which holds kinetic information for pathway simulation. The
Reactions ontology (ReactO) has been developed with the idea of holding pathway kinetics.

The Glycomics ontology (GlycO) defines glycan structures and their synthesis from
biochemical pathways [29]. GlycO embodies knowledge regarding the structures, biosyn-
thesis, and biological functions of complex glycans. GlycO contains knowledge regarding
other aspects of glycobiology which includes functional and structural relationships between
different glycans. Graphical representation of GlycO knowledge can be accessed using Gly-
coBrowser [43]. The Enzyme ontology (EnzyO) describes enzymes that catalyzes reactions

in the pathways. Input to this simulation engine is based on GlycO, EnzyO and ReactO.



CHAPTER 4

ONTOLOGY DRIVEN SIMULATION OF PATHWAYS

4.1 DoOMAIN ONTOLOGIES

Ontologies [51] are formal descriptions used to describe and categorize concepts and the
relationships among concepts within a particular knowledge domain. They can be processed
by machines or read by domain experts. Ontologies may be used to share a common under-
standing of the structure of information, enable reuse of domain knowledge, make domain
assumptions explicit, separate domain knowledge from operational knowledge, and analyze
domain knowledge [53]. They allow researchers, domain experts, and software agents to share
a common understanding of the concepts and relationships of a domain. The past few years
have seen the publication of ontologies for a large number of domains. For example, in the
domain of biology the Glycomics ontology (GlycO) (in the biology domain) defines glycan
(carbohydrate) structures and the items in the biosynthetic pathways that create them [29],
and the Enzyme Ontology (EnzyO) models the structure and function of enzymes [28]. The
modeling and simulation community is beginning to see potential for using these ontologies
in the modeling process.

Simulation models are used to simulate processes in a variety of domains. Traditionally,
during the development of a model, the simulation modeler has relied on the information pro-
vided to him/her by domain experts. Recently another source of domain knowledge, known as
the domain ontology, has become available. While domain ontologies cannot replace domain
experts, they are useful to simulation modelers because they provide formal methods for
describing the concepts, categorized, and relationships within a domain. An added advan-

tage of ontologies written in languages such as the Web Ontology Language (OWL) [54]
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is that they can be processed by machines. Domain ontologies can be of particular use to
simulation modelers because it is possible to use them to communicate domain information

to simulation and modeling tools with limited human intervention.

4.2 MODELING ONTOLOGIES

Efforts to integrate ontologies into modeling and simulation frameworks and to use them in
the development of formal methods for simulation and modeling have been undertaken by
several groups. Lacy [52] developed the Process Interaction Modeling Ontology for Discrete
Event Simulations (PIMODES) to focus specifically on the process interaction world view and
support the interchange of simulation models between commercial simulation packages. Ben-
jamin [31] presents an ontology driven framework for process oriented applications, including
process interaction simulations. The framework is an attempt to overcome the problem of
semantic inaccessibility where the semantic intentions of the application developers and the
semantic rules of the application are not available to other entities within an organization.
Turnitsa and Tolk [65] describe what is required for an ontology to be sufficiently complete
to serve as a reference for simulation interoperability and they also propose a method for
evaluating an ontology to determine it completeness.

The Discrete-event Model Ontology (DeMO) [32] is used as a foundational component
for the ontology driven simulation system described in this paper. DeMO attempts to pro-
vide a comprehensive ontology for discrete-event simulation with parts for state oriented,
activity oriented, event oriented, and process oriented models [33]. It was defined using the
Web Ontology Language (OWL). The principal component of DeMO, the DeModel class, is
divided into four subclasses, StateOrientedModel, ActivityOrientedModel, EventOriented-
Model, and ProcessOrientedModel which form the foundation for all of the modeling tech-
niques supported in DeMO. The systems described in this paper make use of Time Hybrid

Petri Nets to model and simulation biochemical pathways. DeMO’s TimedHybridPetriNet
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class, a subclass of ActivityOrientedModel, is used as the foundational component for repre-
senting and generating the executable Petri Net models of biochemical pathways described

in this paper.



CHAPTER 5

GLYMPSE

5.1 ARCHITECTURE

As shown in Figure 5.1, GlyMpse has four important components: domain ontologies,
ontology mapping tool (DeMO), simulation engine and animation engine. Initial input data
for this simulator is obtained from domain ontologies GlycO, EnzyO, ReactO and GlycoV-
ault which contains qRT-PCR and glycomics data (discussed in section 2). DeMO provides
a comprehensive ontology for simulation modeling based on domain ontologies. This DeMO
ontology also facilitates integration of retrieved information and supports code generation
for simulation engine. TimedHybridPetriNet class (discussed in section 4) in DeMO contains
information about places, transitions, arcs and their initial markings for a pathway model.
A Petri Net model is drawn by the animation engine based on the model in the simulation
engine. Any change in the concentration level of a substrate along with time is sent to

animation engine to display the corresponding changes in the animator.

HE=E

Figure 5.1: System Architecture
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5.2 IMPLEMENTATION

GlyMpse is a platform-independent environment developed in Java based on the JSIM [61]
simulation library. JSIM is a Java-based simulation and animation environment. The JSIM
library includes many Java classes to make developing simulation models easy. The principal
components of GlyMpse simulation environment are the PetriNet and Animator classes. The
PetriNet class provides a simulation engine for Hybrid Colored Petri Nets. This class also
contains subclasses DPlace, CPlace, DArc, CArc and Transition to represent components
of Petri Net discrete place, continuous place, discrete arc, continuous arc and transition
respectively. A pathway model is created by extending PetriNet class with pathway specific
places, arcs, transitions and kinetic parameters. Animator is an interface that specifies the
commands to create, destroy, move and scale components in an animated canvas. Besides

these classes, Graph class displays graphical results of substrate concentrations over time.

5.3 FIRING RULES

Simulation of a pathway model is driven by Petri Nets rules. PetriNetRules class is used to
define firing rules for the PetriNet class. These rules determine wheather a transition is ready
to fire or not. To determine the amount of substrate converted to product when a transition
is fired is defined by the Michaelis-Menton rate law and Runge Kutta differential equations
integrator. The fourth order Runge Kutta method does four function evaluations per step
to give a method with fourth order accuracy. The actual amount of substrate converted
into product in a specified time period is determined by the step size used in Runge Kutta
method. Calculations are made at the initial time, two at half the step size beyond the initial

time and at the final time as shown in the Figure 5.2.
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Figure 5.2: Ranga Kutta 4th order integral approximation

5.4 PARAMETER ESTIMATION

Enzymatic reaction kinetics plays vital role in biochemical pathway simulation. Since com-
plete data is not available from domain ontologies we developed a Genetic Algorithm (GA)
which approximates kinetic parameters. For the given concentration of source and sink
(product) in a period of time, GA estimates the parameters based on fitness function. In
this simulation, fitness is calculated based on how close the product concentration is with
GA Kkinetic parameters. A kinetics set, K, can be defined as the set of V,,,, and K,, values
of all enzymes particiapting in a model. Crossover and mutation are two basic operators of
GA. Mutation is a genetic operator that alters one ore more values in the initial kinetic set.
Crossover is a genetic operator that combines two values to produce a new kinetic value.

The following algorithm has been developed for parameter estimation using GA:

1. Generate random kinetics set K

2. Run simulation with these kinetic
parameters, return product concentration

3. Calculate the fitness function with K

4. Apply mutation, crossover to K
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5. Repeat steps 2, 3 and 4 until desired
fitness values is reached

Even though this algorithm evolved from initial random kinetics, this GA can generate
pathway kinetics which gives the desired product concentration. This algorithm can get more
accurate results if at least some of the parameters (for N-Glycan biosynthesis pathway) are

known because based on known parameters, unknown parameters can be estimated.

5.5 MOoDEL EXECUTION

Simulation data is retrieved from domain ontologies (GlycO, EnzyO, ReactO and GlycoV-
ault). The DeMO ontology facilitates integration of retrieved information and supports code
generation for the simulation engine. Finally, a model is generated from the DeMO ontology
with all input parameters such as initial substrate concentrations and kinetic parameters
which are required for pathway simulation. When a simulation starts running, all the tran-
sitions are checked to see if are ready to fire based on the PetriNet rules and substrate
concentration levels. Once a transition is ready to fire it is placed in a time based priority
queue. A transition in the queue fires when the simulation clock reaches the transition firing
time. This process continues until all the transitions in the queue have fired or the simula-
tion stop time is reached. To determine the amount of substrate converted to product when
a transition fire is defined by the Michaelis Menton rate law and Runge Kutta differential
equations integrator (discussed in previous section).

A simulation model begins with the construction of a Petrt Net from a biological pathway.
Figure 5.4 ! shows the relationships of reactants, products, the reactions in N-Glycan biosyn-
thesis pathway. For simplicity, we will explain the construction of a model with participating
substrates, enzymes and kinetics within the context of the model depicted in Figure 5.5. This

is a fragmented N-Glycan biosynthesis pathway with 5 reactants, 4 enzymes. In this example

!This figure is from http://www.ccrc.uga.edu/ moremen /glycomics/
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2-GlecNAc,5-Mannose is converted to 2-GleNAc,9-Mannose,1-Glucose with a sequence of reac-
tions.
When a Petri Net model is generated the following algorithm is executed to simulate the

model:

while clock < simEndTime do
foreach Transition t do

if t has atleast minFluids then
| add to PriorityQueue pq

end
end

if pg # empty then
pull Transition t from pq

fire(Transition t);

clock = t firingTime

end

end
Algorithm 1: Petri Net pathway simulation algorithm

In this simulation process, concentrations of all the substrates are collected and written
to an Excel file. The time vs. concentration graph obtained from this graph is used for further
analysis of the pathway. Figure 5.3 shows a model generated with our animation engine. Each
substrate has a distinct color and when a user clicks on any place holding a substrate its
corresponding structure is displayed. The vertical bar in each place represents its substrate

concentration level. A clock is displayed to keep track of simulation time.
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CHAPTER 6

TESTING THE GLYMPSE SIMULATION ENGINE

To study the system behavior, we studied simulation of N-Glycan biosynthesis (part
of) pathway. The system considered five substrates: 2-GlcNAc-5-Mannose, 2-GlcNAc-6-
Mannose, 2-GlcNAc-7-Mannose, 2-GlcNAc-9-Mannose, and 2-GlcNAc-9-Mannose-1-Glucose
which are respectively catalyzed by the four enzymes: NM_145939, NM_133981, NM 145477,
NM_007108 (referenced by their RefSeq number). The parameters used in this test case are
listed in Table 6.1.

The detailed behavior of each place (substrate, enzyme or product) can be observed
during the simulation as the simulation of the system is done stepwise by following the
occurrence rule. In addition, modeling capability is provided as the system can be easily
modified by altering the kinetic parameters.

It also allows direct observation of the effects of the concentration changes on various
steps in the pathways. This is possible because whenever a transition is fired according to the

Petri Net rule during the simulation the changes in the concentrations of all molecules can

Enzyme | K, mﬁl Vinaz
NM_145939 4.1 1.3
NM_133981 1.3 1.18
NM_145477 1.9 2.15

NM_007108 1.2 1.18

Table 6.1: Michaelis-Menton kinetic constants
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be displayed in the corresponding places. These characteristics will be useful for the system
with uncertain kinetic parameters, which need to be estimated for the simulation.

The steady state approximation assumes that, after an intial induction period, an interval
during which the concentration of inrtermediates, rise from zero, and during the major part of
the reaction, the rates of change of concentrations of all reaction intermediates are negligibly

small. For example let:
S — Il — _[2 — P
be consecutive reactions with reaction constants k;1, ko, ky

L =[]

After passing the induction period, the rate of change of concentration of all reaction

intermediates will approach to zero.

dlI1]
dt

~ dllz]
~ (0 and df ~0

Figures 6.1 and 6.2 exactly depict the equilibrium state after a certain point of time.
Figure 6.1 is the result after running simulation for 800 milliseconds with source substrate
concentration kept at 20 %L"l Similarly, Figure 6.2 is the result after running simulation for
800 milliseconds with source substrate concentration kept at 40 % One can easily see that
the steady state is approached in both figures after induction period. The straight line shown
in both figures shows source substrate concentration which is kept constant. Intermediate

products are produced at high rate before induction period and then approach a steady

state. The product concentration increases through out the simulation running time.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

GlyMpse, ontology driven simulator using Hybrid Petri Nets, is particularly developed to
model pathways from domain ontologies GlycO, EnzyO and ReactO. Since complete data is
not available in domain ontologies, the simulation results have not not yet been validated. In
the near future, we are expecting more time based experimental results from the Glycomics
project (http://glycomics.ccre.uga.edu). Once these results are available, this software can
be used rigorously to model pathways from our domain ontologies.

Ontology driven simulation [31] allows simulation models to be stored at high-level and
translated on demand into executable models. The Discrete-event Modeling Ontology called
DeMO [32, 33] is able to represent many of the commonly used types of simulation models.
The Model types are classified into four basic types: state-oriented, event-oriented, process-
oriented and activity-oriented. Some hybrid models that include smooth transitions on con-
tinuous variables are also included.

We are currently applying Ontology Driven Simulation to the modeling of biochem-
ical pathways [34] involved in glycan biosynthesis. Our current work focuses on modeling
pathways using Hybrid Functional Petri Nets [35]. Transitions involving continuous places
utilize ordinary differential equations to determine the amount of substrate that is converted
into product by a reaction. Information is extracted from the following domain or appli-
cation ontologies (Glyco [glycans], Enzyo [enzymes] and Reacto [reactions|) to customize
and parameterize the Petri net models. The DeMO ontology facilitates integration of this

information and supports code generation for multiple simulation engines. In a similar vein,
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for multiscale modeling of human physiology, [36] developed an ontology to facilitate the

integration of multiple types of models.
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APPENDIX A

MICHAELIS-MENTON MECHANISM

The rate of a enzyme-catalyzed reaction in which a substrate S is converted into product P
is dependent on the concentration of enzyme E (though the enzyme undergo no net change)
48].

This (depicted in Figure A1) can be represented as the following equation:
E+S=FES—-FE+P k., ko, Ky

In the above equation E'S denotes an enzyme-substrate complex. Hence [ES]| can be

represented as

_ kalE][S]
[ES] =T,

[E] and [S] are the concentrations of the free enzyme and free substrate. if [E]y is the

total concentration of the enzyme then
[E] + [ES] = [Elo

Therefore,

ka([Elo—[ES]))[S
[S] = fallEl=lEs)iS

which rearranges to

__halBDl]
[ES] o k:g+kb+0ka[5}

it follows that the rate of the formation of product is
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Figure A.1: The basis of the Michaelis-Menten mechanism of enzyme action.
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Figure A.2: The variation of the effective rate constant k with substrate concentration
according to the Michaelis-Menten mechanism.

ar] _ — _ks[S]
o = klEo k= R

Here the Micaelis constant, K, is

k! +k
KMzi‘z]:—b

Based on the above equations, the rate at which substrate is converted to product varies
linearly with enzyme concentration. However, in more complicated manner with the concen-

tration of substrate in Figure A2.

When [S] >> K, the rate law reduces to
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This results means that under these conditions, the rate is constant. There is so much
[S] present that it remains effectively the same concentration even though products are

being formed. Moreover, the rate of formation of product is maximum, and ko[F], is called

maximum velocity.



APPENDIX B

GLYMPSE IMPLEMENTATION DETAILS

GlyMpse software is developed based on JSIM Library. JSIM is a simualtion library which
provied support for variety of model environments. The principal components of GlyMpse
simulation environment are the PetriNet and Animator classes.

The PetriNet class provides a simulation engine for Hybrid Colored Petri Nets. This class
also contains subclasses DPlace, CPlace, DArc, CArc and Transition to represent components
of Petri Net discrete place, continuous place, discrete arc, continuous arc and transition
respectively. When a transition in the priority queue is fire, deltaS which represents the
amount of substrate converted to product, is calculated using Michaelis rate equation and
Ranga Kutta differentail equation integrator.

A pathway model is created by extending PetriNet class with pathway specific places,
arcs, transitions and kinetic parameters. Animator is an interface that specifies the commands
to create, destroy, move and scale components in an animated canvas. Besides these classes,
Graph class displays graphical results of substrate concentrations over time.

After runnig a model using GlyMpse, an Excel file, a time vs. concentration and an
animator ouputs are generated. The spread-sheet file contains the time series concentration

of each substrate participating in the model. This data can be used for futher analysis.
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Figure B.1: GlyMpse implementation architecture
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