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Abstract

Symbolic data records are becoming a more powerful instrument to deal with large size data

sets. Interval-valued data are a special type of symbolic data, for which each observation

is a vector of intervals. The typical K-means methods for interval-valued data suppose the

data separate to spherical clusters. It usually cannot converge to the correct clusters if the

data are not clustering spherically. We propose a K-regressions based clustering method for

interval-valued data to recover a more complicated data structure. Assuming the response

and predictor variables follow K different linear relationships, the data are initially split

into K groups randomly. Then, we apply the new developed “symbolic variation” least

squares to estimate the parameters of the K symbolic regressions. A data point is then

relocated to its closest group in terms of its symbolic distance to the regression lines. This

two-step dynamic clustering algorithm continues until the clusters are stable. Further, we

introduce an orthogonal regression clustering algorithm (ORCA) for interval-value data to

avoid specifying a response variable. Two orthogonal regression methods are proposed: the

simple orthogonal regression method and the general orthogonal regression method. We

utilize four different methods to determine the optimal number of clusters. Simulation study



is conducted to investigate the performance of the ORCA algorithm. We use the Iris data

(Fisher, 1936) to test the effectiveness of the ORCA algorithm.

Index words: Symbolic data analysis, Cluster analysis, Interval-valued data, Linear
regression, Orthogonal regression, Measurement error model
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Chapter 1

Introduction

Traditionally, statistical analysis deals with classical data where the values of a random

variables are numbers or multiple levels. The values of symbolic data, in contrast, can be

a list of numbers, a combination of numbers and factors, an interval, a histogram, or a

distribution. Symbolic data usually come from two circumstances: the data are collected

by a symbolic format, e.g., daily temperature for a particular city is [low temperature, high

temperature]; or a large sized classical data set is aggregated into a symbolic format, e.g.,

the credit card transactions in a month for the accounts within a certain range of credit score

can be aggregated as a histogram. More details about different types of symbolic data and

their definitions can be found in Chapter 2. Billard and Diday (2006a) has given numerous

examples about symbolic data and its applications. Nowadays, with the exponential growth

of data size in all different areas, approaches that can extract information from large sized

data sets are becoming more and more important. Since large sized classical data sets can be

aggregated into a workable size of symbolic data, symbolic data become a promising method

to deal with large sized data. Furthermore, the classical way of dealing with symbolic data,

e.g., using only the interval center points for linear regression of interval-valued data, is not

appropriate and misleading. Using symbolic methods to handle symbolic data is necessary.
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This dissertation mainly focus on proposing approaches to cluster symbolic data, specifi-

cally for interval-valued data, by linear regression models. The clustering methodologies for

spherical data structure with interval-value data have been well developed by Chavent and

Lechevallier (2002), de Souza and de Carvalho (2004), de Souza et al. (2004), de Carvalho

et al. (2006a,b), de Carvalho and Lechevallier (2009), where the algorithm proposed all adapt

the K-means clustering algorithm for classical data. When observations in each cluster of a

data set are clustering around a linear regression line, the clustering algorithm for spherical

data structure can fail. In other words, when two or more variables in each cluster of a

data set are highly correlated so that they follow a linear regression model, the clustering

algorithm such as K-means algorithm does not work well. To recover a linear regression line

based clusters for classical data is called the cluster-wise regression, a method that is well

developed in multiple articles such as Späth (1979, 1981, 1982), DeSarbo and Cron (1988),

Wedel and Kistemaker (1989), Zhang (2003), Van Aelst et al. (2006), Garćıa-Escudero et al.

(2009), etc. However, the methodology of cluster-wise regression for symbolic data has not

been studied. It is necessary to develop algorithms that can recover the clusters that are

clustering around linear regression lines for interval-valued data.

The rest of this dissertation is organized as follows: Chapter 2 reviews the concept of sym-

bolic data, the fundamental statistical definitions of interval-valued data, cluster-wise linear

regression for classical data, previous studies about cluster analysis for symbolic data, the

likelihood function and maximum likelihood estimation for symbolic data. In Chapter 3, we

apply the symbolic variance method (Xu, 2010) and propose a K-regression algorithm to im-

plement a cluster-wise regression for interval-valued data. We conduct simulation studies to

compare the clustering results between the K-means based algorithm and the K-regressions

algorithm we proposed. The performance of the K-regressions algorithm is also investigated

through several simulated data sets. We propose two orthogonal regression methods for

interval-valued data in Chapter 4: one applies the principal component analysis methodol-
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ogy and the other adapts the measurement error model. The orthogonal regression methods

are applied in a proposed algorithm, the orthogonal regression clustering algorithm, that is

used to recover the clusters that are clustering around linear regressions lines. We apply four

methods to determine the optimal number of clusters. Six different interval-valued data sets

are simulated to study the performance of the orthogonal regression clustering algorithm

and the performance of different approaches that determine the optimal number of clusters.

The performance of the algorithm is also examined by a real data, the Iris data (Fisher,

1936). Finally, Chapter 5 discusses the possible future research based on the measurement

error model for interval-valued data.
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Chapter 2

Literature Review

This chapter reviews the concepts, methods, and theories that are relevant to the clustering

of symbolic data. We review the concept of symbolic data in section 2.1. In section 2.2, we

review methods developed to implement linear regression for interval-valued data. Section

2.3 summarizes the literature that considers cluster-wise linear regression for classical data.

Cluster analysis of symbolic data using different methodologies and different dissimilarity

measurements are reviewed in section 2.4. Section 2.5 reviews likelihood functions and some

maximum likelihood estimators for symbolic data.

2.1 Symbolic Data

In statistical analyses, we typically deal with classical data for which the values of a random

variable are numbers or multiple categories. In contrast, for symbolic data, the value or the

realization for a random variable could be a list of numbers, a combination of numbers and

factors, an interval, a histogram, or a distribution. The nature of symbolic data could depend

on how the data are collected. For example, the blood pressure for a person is naturally an

interval value, [low pressure, high pressure]. It could also originate from aggregating a large

sized classical data set into manageable pieces so that the data set becomes one of workable
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size. The complicated structure of symbolic data brings great challenges for statistical anal-

yses. The basic concepts and descriptions for classical data would apply to symbolic data

but their precise formulas do not apply directly. Billard and Diday systematically define dif-

ferent types of symbolic data and the descriptive statistics of these data (Billard and Diday,

2004, 2006b,a, Billard, 2007). In the remainder of this section, we give a brief introduction

of some types of symbolic data.

Using the examples in Billard and Diday (2006a), suppose we have a data set that

records the manufacturers and models of cars within households; for each household, the

manufacturers and models of its cars are a list. For instance, one household may have

x1 = {Honda Accord, Thunderbird};

another may have

x2 = {Toyota Camry, Volvo, Renault}.

Denote X as the records of the manufacturers and models of cars within households;

then, X is a random variable. The above x1 and x2 are realizations of X. Obviously, x1, x2

are not single values; instead, they are a list of categorical values.

The list of values could be numbers as well. For example, the records of weights in

elementary and middle schools of Athens GA for certain age×gender combinations are a list

of numbers. The realization of such a random variable might be like,

x1 = x1(male at 14)={120, 95, 80, 90, 93, 102, 88, 113, 102},

x2 = x2(male at 15)={124, 115, 120, 98, 96, 92, 138, 111, 106}.

The list could be a combination of numbers and categorical values. For example, the

records of demographic information, city, age, and gender, in a clinic could be {Atlanta, 45,

male}. All these random variables are multi-valued symbolic random variables.
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Definition 2.1.1. A random variable is called a multi-valued symbolic random variable if

its possible values take one or more values from a list of values. The values in the list could

be well-defined categorical or quantitative values. �

For a multi-valued symbolic random variable, if each value of a particular realization is

associated with a non-negative measurement, then, it is a modal multi-valued symbolic

random variable. The measurements are typically weights, probabilities, relative frequencies,

etc. The detailed definitions could be found in Billard and Diday (2006a).

We would like to introduce the next type of symbolic data by a example from Billard

and Diday (2006a). Consider credit card expenses for a group of persons in a relatively long

period, the expenses for a particular person in a certain month is an interval value. For

example, Jon’s expenses (in dollars) in January and February are

x1 = x1({Jon, Jan})=[320.81, 538.29],

x2 = x2({Jon, Feb})=[434.54, 598.12].

Another example of interval-valued data is the records of blood pressure. The blood pressure

for a particular person is always an interval like x1=[low pressure, high pressure]=[75, 120].

Definition 2.1.2. A symbolic random variable is interval-valued if it takes values in an

interval, i.e., X = [a, b] ⊂ R1, with a ≤ b, and a, b ∈ R1. The interval can be closed or open

at either end. �

A more complicated type of symbolic data is the histogram interval-valued symbolic

random variable where the realization of the random variable is a histogram. Following the

example from Billard and Diday (2006a), suppose we have the records of arrival delay (X1),

departure delay (X2), and weather delay (X3) for each airline carrier flying into New York’s

JFK Airport. The records for “Airline 1” may be,

x11 = x11(Airline 1)={(≤ 0], .42; (0, 60], .46; [> 60), .12},

6



x12 = x12(Airline 1)={(≤ 0], .44; (0, 60], .47; [> 60), .09},

x13 = x13(Airline 1)={(≤ 0], .92; (> 0), .08},

where x·j are the realizations of the three histogram-valued random variables, Xj, j = 1, 2, 3,

for “Airline 1”. The number following each sub-interval for an particular realization is a per-

centage for that sub-interval. Generally, the number could be a weight, or relative frequency,

or probability for that particular interval. Compared with interval-valued variables, usually

histogram random variables provide more information by giving weights for each sub-interval

within a particular realization. That can possibly lead to better statistical inference.

Definition 2.1.3. Suppose X is a quantitative random variable taking values on a finite

number of non-overlapping intervals, {[ak, bk], k = 1, ..., n} with ak ≤ bk, and n < ∞. A

realization of X takes the form

xi = {[aik, bik], pik; k = 1, ..., si},

where si <∞ is the number of intervals for the ith realization of X, and pik is the weight of

the kth interval for xi with
∑si

k=1 pik = 1. Either end of the interval for xi could be open or

closed. Then, X is a histogram interval-valued symbolic random variable. �

Since we will focus on interval-valued data in this dissertation, the formal definition of

distribution and descriptive statistics of interval-valued data will be discussed in the remain-

der of this section. The descriptive statistics for interval-valued data follow the approach

adopted by Bertrand and Goupil (2000). More details of the topic could be found in Billard

and Diday (2006b,a), and Billard (2007).

Unlike classical data, there is no simple way to use one distribution to describe interval-

valued data. Nevertheless, the concepts of descriptive statistics for interval-valued data are

the same as for classical data, which include histogram, sample mean, sample variance and

7



covariance, etc. Before touching on these quantities, it is necessary to introduce a common

notation of symbolic data and the concept of virtual extensions.

Let the random variables Xj, j = 1, ..., p, have domain X = ×pj=1Xj. Then, each point

x = (x1, ..., xp) in X is called a description vector. Furthermore, let Dj be a subset

of Xj, or Dj ⊆ Xj. Then, the p-dimensional subspace D = (D1, ..., Dp) ⊆ X is called a

description set. The symbolic description of an observation i ∈ Ω = {1, ..., n} for random

variables Xj, j = 1, ..., p, is given by di = (xi1, ..., xip), i = 1, ..., n. The set of all possible

descriptions is called the description space D. In any particular case, xij, the ith realization

of xj, could be classical data or symbolic data. When each Dj, j = 1, ..., p, is a set of one

value only, then, the description vector d is defined as an individual description, i.e.,

x = (x1, ...xp) ≡ d = ({x1}, ..., {xp}), where x ∈ X = ×pj=1Xj.

For symbolic data, there usually exist certain implicit logical dependencies between in-

dividual descriptions. A logical dependency can be represented by a rule v,

v : [x ∈ A]⇒ [x ∈ B]

for A ⊆ D,B ⊆ D and x ∈ X, where v is a mapping of X onto {0, 1} with v(x) = 1 if the

rule is satisfied, and 0 if not.

Definition 2.1.4. Let x ∈ D ⊆ X = ×pj=1Xj be the individual description vector, and let

VX be the set of all rules v operating on X. Then, the virtual description, vir(d), of the

description vector d is the set of all individual description vectors x ∈ D such that v(x) = 1

for v ∈ VX, denoted as

vir(d) = {x : x ∈ D, v(x) = 1,∀v ∈ VX}. (2.1)

�

8



The sample mean and variance for interval-valued data were given by Bertrand and

Goupil (2000). Let X be an interval-valued random variable. The n observations of X are

x1, ..., xn, with xi = [xia, xib], i = 1, ..., n. The individual description vectors x ∈ vir(di) are

assumed to be uniformly distributed over the interval [xia, xib]. Therefore, for ξ ∈ [xia, xib],

the empirical density function is f(ξ) = 1/(xib− xia),∀ξ ∈ [xia, xib]. Moreover, it is assumed

that each object, xi, i = 1, ..., n, is equally likely to be observed with probability 1/n. Then,

we have the following definition.

Definition 2.1.5. The empirical density function for an interval-valued random vari-

able X is defined as

f(ξ) =
1

n

∑
i:ξ∈[xia,xib]

(
1

xib − xia
). (2.2)

�

Let I = [mini∈Ω xia,maxi∈Ω xib] = [Imin, Imax], with Ω = {1, ..., n}. Then, I is the interval

that covers all the observed intervals for the random variable X. We partition the interval

I into r bins Ig = [ζg−1, ζg), g = 1, ..., r, where I0 = Imin and Ir = Imax, and the r bins are

usually equal in length. To construct the histogram, we define the observed frequency

and relative frequency of the interval-valued variable as follows.

Definition 2.1.6. The observed frequency of an interval-valued variable X, given the

bins of the histogram Ig, is, for g = 1, ...r,

fg =
∑
i∈Ω

‖xi ∩ Ig‖
‖xi‖

(2.3)

and the relative frequency is

pg = fg/n, (2.4)

where xi is the ith observation of X, and ‖ · ‖ is the length of an interval. �

9



From the empirical density of an interval-valued random variable, we can obtain the

symbolic sample mean and symbolic sample variance of an interval-valued variable.

Definition 2.1.7. Let X be an interval-valued random variable. Suppose x1, ..., xn is a

random sample of X with xi = [xia, xib], i = 1, ..., n. The symbolic sample mean of X is

given by

X̄ =
1

2n

n∑
i=1

(xia + xib). (2.5)

The symbolic sample variance is given by

S2 =
1

3n

n∑
i=1

(x2
ib + xibxia + x2

ia)−
1

4n2

[
n∑
i=1

(xib + xia)

]2

. (2.6)

�

The sample mean and sample variance in equations (2.5) and (2.6) were first derived

in Bertrand and Goupil (2000). Billard (2008) showed that the sample variance could be

decomposed as follows. By some reorganization, TotalSS≡ nS2 (of equation (2.6)) can be

written as the sum of two parts, TotalSS = Within Sum Squares(WithinSS) + Between Sum

Squares(BetweenSS), where

WithinSS =
1

3

n∑
i=1

[
(xia − x̄i)2 + (xia − x̄i)(xib − x̄i) + (xib − x̄i)2

]
, (2.7a)

BetweenSS =
n∑
i=1

[
xia + xib

2
− X̄

]2

(2.7b)

with x̄i = (xia + xib)/2, X̄ = 1
n

∑n
i=1 x̄i. We can show that

WithinSS =
n∑
i=1

(xib − xia)2

12
, (2.8)

which is the same as that of the uniform distribution variance for each individual interval

10



xi. The WithinSS depends on the assumption of the distribution within the intervals of X.

We have the WithinSS as in equation (2.8) since the individual realization, xi, is assumed

to be a uniform distribution within each interval. When the internal distribution of X is

different, the WithinSS of X is different. Now, it is clear that the symbolic sample variance

for an interval-valued random variable is the sum of two pieces, the total variance within

each interval and the variance between the center points of each interval.

Definition 2.1.8. Let X1, X2 be two interval-valued random variables, and let both have n

observations with xi1 = [xi1a, xi1b] and xi2 = [xi2b, xi2b], i = 1, ..., n, as the ith observations of

X1 and X2. The symbolic sample covariance between the two variables is given by

Cov(X1, X2) =
1

6n

n∑
i=1

[2(xi1a − X̄1)(xi2a − X̄2) + (xi1a − X̄1)(xi2b − X̄2)

+ (xi1b − X̄1)(xi2a − X̄2) + 2(xi1b − X̄1)(xi2b − X̄2)],

(2.9)

where X̄1 = 1
n

∑n
i=1(xi1a + xi1b)/2, X̄2 = 1

n

∑n
i=1(xi2a + xi2b)/2. �

Similarly as for the sample variance, we can denote the sample covariance as (Total

Sum Products)/6n, or TotalSP/6n, and so the sample covariance could be decomposed as

TotalSP=WithinSP + BetweenSP with

WithinSP =
n∑
i=1

(xi1b − xi1a)(xi2b − xi2a)/12, (2.10a)

BetweenSP =
n∑
i=1

[
(xi1a + xi1b)/2− X̄1

] [
(xi2a + xi2b)/2− X̄2

]
. (2.10b)

The sample covariance is also composed into two parts. The WithinSP is the total within

interval association between the two random variables, and the BetweenSP is the covariance

between the interval center points of the two random variables.

Note. From the above equation (2.10), the WithinSP is always a positive addition on the

11



BetweenSP, even if X1 and X2 are actually negatively correlated or not correlated. The

WithinSP is supposed to measure the association within the rectangles, but we do not have

that information in fact. If the assumption is that the distributions within each rectangle

are two independent univariate uniform distributions for X1 and X2, then, the association

between the two random variables within rectangles should be 0. If the assumption is

that the distribution within the rectangular is a bivariate uniform distribution with nonzero

correlation, then, this nonzero correlation affects the within interval variation between the

two random variables. For either scenario, further development is needed to measure the

within interval variation.

2.2 Linear Regression for Interval-Valued Data

Linear regression is a common method used for classical data analysis, and so will also be an

important method for symbolic data analysis. Since we are going to apply linear regression

to interval-valued data clustering later, we review the development of linear regression for

interval-valued data briefly in this section.

The first approach of fitting linear regression to interval-valued data was introduced by

Billard and Diday (2000). They fitted the linear regression using the center point of the

symbolic intervals, called the center method (CR). Later, Neto et al. (2005a,b), and Neto

and de Carvalho (2008) transformed the intervals to center points and ranges, and fitted two

separate linear regressions which is called the Center and Range method (CRM). The CRM

method faces a problem that the lower bound of the predicted interval of response could be

larger than the upper bound. To address the problem, Neto and de Carvalho (2010) added

a constraint to the CRM, called CCRM, such that all the coefficients of the linear regression

for the range points must be non-negative. In this way, the predicted lower bound will

always be equal or smaller than the upper bound. There are some methods that built upon
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the CRM, which are more robust with outliers. Domingues et al. (2010) used the CRM but

adapted a Student-t distribution to the error term of the center points regressions but still

used the normal error for the range regression component. Fagundes et al. (2013) applied a

weighted regression to the CRM in order that the model is more resistant to extreme values.

The most recent development of linear regression for symbolic intervals was by Xu (2010)

who took analogous multiple regression methods ideas for classical data, and then used the

symbolic variance and covariance results for intervals to obtain the regression coefficient

estimates. This is called the symbolic variance method (SVM). This is the first method that

not only considers the information of the lower and upper bounds of the intervals, but also

considers the variations within the intervals.

Some authors explored the method of using interval arithmetic for interval linear regres-

sion (Blanco-Fernández et al., 2011, 2013). Since there are problems with the use of interval

arithmetic methods, we are not going to cover these ideas in this dissertation. Recently, Sun

and Li (2014) introduced an approach which is similar to the CRM but which forces the

coefficients of the range regression line to be the absolute value of the corresponding coef-

ficients for the center point regression except for the intercept. They did not constrain the

coefficients of the range regression line to be positive; instead, when the predicted range is

negative, they shrunk it to be zero. We briefly review some of these models in the remainder

of this section.

Suppose we have n observations in a data set with response variable Y and p predictor

variables X1, ..., Xp. For each observation, each variable is an interval-valued random vari-

able. Let xij, i = 1, ..., n, j = 1, ..., p, be the ith observation for the jth predictor variable,

denoted by xij = [xija, xijb], with xija, xijb ∈ R and xija ≤ xijb. Similarly, let yi be the

ith observation for the response variable Y , denoted by yi = [yia, yib], with yia, yib ∈ R and

yia ≤ yib. Assume the response variable Y has a linear relationship with the predictors

X = (X1, ..., Xp).
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Billard and Diday (2000) took an analogue of standard classical theory to obtain the

regression coefficient estimates for the linear regression of interval-valued data. They defined

the empirical joint density function for two interval-valued random variable X1 and X2 by

f(ξ1, ξ2) =
1

n

n∑
i=1

Ii(ξ1, ξ2)

||zi||
, (2.11)

where zi = xi1 × xi2 = ([xi1a, xi1b], [xi2a, xi2b]) is a rectangle on X1 ×X2, ||zi|| is the area of

the rectangle, and Ii(ξ1, ξ2) indicates whether (ξ1, ξ2) is in the rectangle zi. Then, Billard

and Diday (2000) derived the sample covariance between X1 and X2 as

Cov(X1, X2) =
1

n

n∑
i=1

x̄i1x̄i2 −
1

n2

n∑
i=1

x̄i1

n∑
i=1

x̄i2 (2.12)

where x̄ij = (xija+xijb)/2, j = 1, 2, is the center point of the interval [xija, xijb]. The sample

variance of an interval-valued variable X is defined as

S2 =
1

n

∑
i=1

x̄i
2 − 1

n2

(
n∑
i=1

x̄i

)2

(2.13)

with x̄i = (xia + xib)/2, the center point of interval [xia, xib]. The empirical sample variance

in equation (2.13) and sample covariance in equation (2.12) for the interval-valued data are

the classical variance and covariance of the interval center points. The linear regression

coefficient estimates could then be derived by the standard theory for classical data. For

p = 1, the estimates are

β̂1 =
Cov(Y,X)

S2
X

,

β̂0 =Ȳ − β̂1X̄.

(2.14)

From (2.14), the prediction for the CM method, given a new observation x = [xa, xb], is
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ŷ = [(xa)
T β̂, (xb)

T β̂].

Note. Note that the definitions of sample variance and sample covariance in equations (2.12),

(2.13) are the earlier versions of the definitions (2.1.7), (2.1.8). We will use the definitions

(2.1.7), (2.1.8) in our research since they are more appropriate.

Later, Neto et al. (2005a,b) introduced an approach called the center and range method

(CRM). Denote the center point of a interval x = [xa, xb] with xa, xb ∈ R and xa ≤ xb,

as xc = (xa + xb)/2, the range of the interval as xr = xb − xa, and the radius (half of the

range) of the interval as xδ = r/2. Neto et al. (2005a) transformed the intervals of Y and X

to their interval center points and interval ranges, Y c, Y r, Xc, and Xr. Then, they fitted

separate linear regressions to the center points and ranges between Y and X, respectively.

The model is formulated as follows:

Y c = Xcβc + εc,

Y r = Xrβr + εr,

(2.15)

where Xc = (Xc
1, . . . , X

c
p), X

r = (Xr
1 , . . . , X

r
p) are the interval center points and interval

ranges for variables X1, . . . , Xp with Xc
j = (xc1j, . . . , x

c
nj)

T and Xr
j = (xrij, . . . , x

r
nj)

T , j =

1, . . . , p, being the interval center points and interval range for variableXj; β
c = (βc1, . . . , β

c
p)
T

and εc = (εc1, . . . , ε
c
n) are the regression coefficients and error terms for the interval center

point regression model, while βr = (βr1 , . . . , β
r
p)
T and εr = (εr1, . . . , ε

r
n) are the regression

coefficients and error terms for the interval range regression model.

To estimate the coefficients βc, βr, Neto et al. (2005a) minimized the following function

S =
n∑
i=1

((εci)
2 + (εri )

2),

which is equivalent to minimizing the two parts,
∑n

i=1(εci)
2 and

∑n
i=1(εri )

2, separately. The

regression coefficient estimates, β̂
c
, β̂

r
, of the two regressions in equation (2.15) can be
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obtained by least squares estimation. The predicted interval, given an observation of X, is

ŷa = ŷc − ŷr, ŷb = ŷc + ŷr, (2.16)

where ŷc = (xc)T β̂
c
, and ŷr = (xr)T β̂

r
.

A problem for the CRM methods is that it cannot guarantee that the lower bound is

always smaller than the upper bound for the predicted intervals. To address the problem,

Neto and de Carvalho (2010) added constraints to the CRM models. The constraints force

the coefficients of the range regression to be always positive so that the predicted range will

be always positive. Specifically, the model is

Y c = Xcβc + εc,

Y r = Xrβr + εr,

with constraints βrj ≥ 0, j = 0, 1, ..., p.

(2.17)

The model in equation (2.17) is called the Constrained Center and Range method (CCRM).

While we can still apply the least squares estimation method to the linear regression model

for the center points, we cannot apply the least squares estimation method directly to the

regression for the ranges subject to the constraints. Neto and de Carvalho (2010) used the

Lawson and Hanson’s algorithm (Lawson and Hanson, 1974) to estimate the βr numerically.

Given a new observation of X, the prediction for CCRM is the same as in equation (2.16).

The positive constraints on βr could be problematic. It is not necessary that all the

ranges of X’s have positive correlation with the range of Y . Thus, the CCRM solves one

problem, but causes another problem.

Xu (2010) applied symbolic variance and covariance values to obtain the symbolic varia-

tion least squares estimators of the regression parameters for an interval data linear regression

model. In this way, Xu (2010) utilized all the variation inherent to the data, the within and
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between variation. The model is specified as follows:

Y = Xβ + ε, (2.18)

where Y is the vector of response intervals, X is the design matrix of predictor variable

intervals, ε is the vector of error intervals, β = (β0, ..., βp) is the intercept and the coefficients

of the p predictor variables. Equation (2.18) can be rewritten as

Y − Ȳ = (X − X̄)β + ε,

where Ȳ is the symbolic sample mean of Y , X̄ = (X̄1, ..., X̄p) with X̄j, j = 1, ..., p, as the

symbolic sample mean of Xj. Then, the intercept β0 in equation (2.18) is given by

β0 = Ȳ − β1X̄1 − ...− βpX̄p.

Analogously with the methodology for classical data, the least squares estimators of

β1 ≡ (β1, ..., βp)
T are given by

β̂1 = ((X − X̄)T (X − X̄))−1(X − X̄)T (Y − Ȳ ). (2.19)

This estimator in equation (2.19) is equivalent to

β̂1 = (n× Cov(Xj1 , Xj2))
−1
p×p × (n× Cov(Xj, Y ))p×1, (2.20)

where n × Cov(Xj1 , Xj2) is the (j1, j2)th element of the p × p matrix (X − X̄)T (X − X̄),

n × Cov(Xj, Y ) is the jth element of the p × 1 vector (X − X̄)T (Y − Ȳ ), j, j1, j2 = 1, ..., p.
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Accordingly, the estimator of the intercept β0 is given by

β̂0 = Ȳ − β̂1X̄1 − ...− β̂pX̄p. (2.21)

The estimator in equations (2.20) and (2.21) are the symbolic variation least squares

estimators of the regression coefficients β in equation (2.18). The predicted interval given

an observation of X is

ŷa = min
x∈X

xT β̂,

ŷb = max
x∈X

xT β̂,

(2.22)

where X = {x = (xj) : xja ≤ xj ≤ xjb, j = 1, ..., p}.

Recently, Fagundes et al. (2013) introduced a weighted regression model for interval

data. Sun and Li (2014) proposed a δ-distance and a δ-metric to measure the residuals of

the model. The δ-metric of an interval variable X is defined as

δ(X) = (Xc)2 + (Xr)2, (2.23)

and the δ-distance between interval variables X and Y is defined as

δ(X, Y ) =
√

(Xc − Y c)2 = (Xr − Y r)2, (2.24)

where Xc, Y c are the interval center points of X and Y , Xr, Y r are the interval ranges of X

and Y . They estimated the regression coefficients by minimizing the average metric of the

errors εi, i = 1, ..., n. Both the methods are not essentially different from the CRM; thus, we

will not include any more details here.

In summary, the CM, CRM, and CCRM all transfer the interval data regression model to
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some forms of classical regression models for a solution. The SVM considers both the within

and between interval variation for the estimation of regression coefficients, and it is a real

symbolic linear regression method. Furthermore, the SVM provides more precise predictions

than do the other four methods, and is verified by simulation results. In this dissertation,

we will use the SVM for our research.

2.3 Cluster-wise Linear Regression for Classical Data

Cluster analysis is a common statistical tool that divides the population into different sub-

populations such that the subjects within the same sub-population are similar while the

subjects from different sub-populations are dissimilar. The fundamental and most well-

known clustering method is the K-means clustering (MacQueen, 1967). For a fixed K, the

K-means algorithm needs to form initial clusters to start the clustering process, which is

called initialization. The initialization could be K seeds or K clusters; a detailed discussion

can be found in Anderberg (1973), Cormack (1971). Then, the algorithm partitions the n

objects into K clusters based on the rules under which an object belongs to a cluster with

the nearest mean. A summary of the extension of the K-means algorithm could be found in

Bock (2007, 2008).

The K-means clustering is also called center-based clustering because of its means-based

algorithm. Similar to the K-means clustering, the cluster-wise linear regression method

tries to recover the data structure where the objects are clustered into multiple linear re-

gression models. Cluster-wise linear regression partitions the n objects into K subsets where

each object belongs to its nearest linear regression model. The cluster-wise linear regression

method is one of the most developed clustering methods in statistics. Analogously with

the K-means algorithm, Späth (1979, 1981, 1982) partitioned the data into K subsets and

fitted K linear regressions such that the total sum of squares of the errors is locally min-
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imized. DeSarbo and Cron (1988) utilize the maximum likelihood methodology to choose

the appropriate partition that maximizes the likelihood function, which resulted in a fuzzy

cluster-wise linear regression method. The assumptions for ordinary linear regression mod-

eling apply to the cluster-wise linear regression. Wedel and Kistemaker (1989) proposed

another maximum likelihood methodology by which a particular object can belong to only

one cluster. Later, Tibshirani et al. (2001) and Shao and Wu (2005) explored methods of

determining the number of clusters for a cluster-wise linear regression clustering approach.

Zhang (2003) introduced a K-harmonic means clustering for the cluster-wise linear regres-

sion method, which is less sensitive to the choice of the initialization. Rao et al. (2007) and

Qian and Wu (2011) extended Späth’s (1982) method to one that is more robust by applying

an M -estimation for the linear regression modeling.

All of the above methods about the cluster-wise linear regression approach assume that

we have a response variable and all other variables are predictor variables. However, for

a more general scenario, the data are clustered to hyperplanes and there is not necessarily

an identifiable response variable. Van Aelst et al. (2006) proposed the Linear Grouping

Algorithm (LGA) using an orthogonal regression method. Van Aelst et al. (2006) also

discussed multiple methods of determining the number of groups. To avoid the unexpected

effect of extreme values in the data, Garćıa-Escudero et al. (2009, 2010) introduced a robust

linear clustering using (1 − α)100% of the data (α-trimmed data) to fit the K orthogonal

regression models. That is called the Robust Linear Grouping Algorithm (RLGA). We will

briefly summarize some of these methods in the remainder of this section.

Given a data set with n independent observations, let Y be the response variable, and

X = (X1, ..., Xp) be the predictor variables. Suppose the true relationship between any

given Y and X follows one of the K linear regression models

Yk = Xkβk + εk, k = 1, ..., K,
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where (Xk, Yk) is the set of observations in the kth cluster. Denote P = (C1, ..., CK) with

Ck ∩ Ck′ = ∅, ∀k 6= k′ as a partition of the data set, where Ck = {1, ..., ink
}, k = 1, ..., K,

is the set of observation indices for the kth cluster. Here, nk = |Ck|, k = 1, ..., K, is the

number of observations in the kth cluster with
∑K

k=1 nk = n. In Späth (1979), they solved

the following optimization problem

∆ = argmin
P ; β̂k

K∑
k=1

∑
i∈Ck

r2
ki = argmin

P ; β̂k

K∑
k=1

nk∑
i=1

r2
ki, (2.25)

where β̂k is the coefficient estimate of the kth linear regression model, rki is the regression

residual with rki = yi − ŷi = yi − xTi β̂k given i ∈ Ck. The target is to minimize the ∆ in

equation (2.25) by determining an appropriate partition P . The estimation for β follows the

least squares estimation for a linear regression model. The optimal partition will satisfy

Ck = {(x, y)|(y − xT β̂k) ≤ (y − xT β̂k′)}, ∀k 6= k′}.

Späth (1979) proposed an algorithm to find the local optima of equation (2.25) as follows:

(i) Initialization: Initialize the K regressions randomly or define them based on some

prior knowledge.

(ii) Clustering : Calculate the residuals between all the observations and each of the K

regression models, and allocate the observations to their closest model. The distance

between the ith observation and the kth regression model is defined as |yi−xTi β̂k|. The

updated partition is P (l) = (C
(l)
1 , ..., C

(l)
K ), where l is the number of iterations.

(iii) Regression: For k = 1, ..., K, fit linear regression models within each of the K clusters

for the partition P (l) = (C
(l)
1 , ..., C

(l)
K ). Let l = l + 1.

(iv) Stop: Repeat (ii) and (iii) until there is no more data point changing its membership.
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According to Zhang (2003), the steps (ii) and (iii) are a monotone decreasing process and

the ∆ in equation (2.25) eventually converges to a local minimum.

For the same problem, DeSarbo and Cron (1988) presented a maximum likelihood method-

ology using a mixture of conditional normal distributions. Let Y be the response variable

of a data set with n independent observations, and let X = (X1, ..., Xp) be the predictor

variables. Let λk, k = 1, ..., K, be the unknown proportions of the conditional normal dis-

tributions that comprise the mixture distribution. Suppose (xi, yi), i = 1, ..., n, is the ith

observation. Let fik(yi|xi, σ2
k,βk) be the probability density function (pdf ) of the condi-

tional distribution of yi. Here fik(·) is assumed to be the pdf of the kth normal distribution

N(xiβk, σ
2
k), where βk = (β0k, ..., βpk) is the set of regression coefficients for the kth linear

regression model and σ2
k is the variance of the normal distribution. Then, yi follows a finite

sum or mixture of conditional univariate normal distributions:

yi ∼
K∑
k=1

λkfik(yi|xi, σ2
k,βk)

=
K∑
k=1

λk(2πσ
2
k)
−1/2 exp

{
−(yi − xiβk)2

2σ2
k

}
,

(2.26)

where the λk and σ2
k satisfy 0 ≤ λk ≤ 1,

∑K
k=1 λk = 1, and σ2

k > 0. Then, the log likelihood

function of the mixture distribution is

ln(L) =
n∑
i=1

ln

{
K∑
k=1

λk(2πσ
2
k)
−1/2 exp

[
−(yi − xiβk)2

2σ2
k

]}
. (2.27)

DeSarbo and Cron (1988) applied an EM algorithm to obtain the estimated optimal values

of λk, σ
2
k, and βk that maximize the log likelihood function in equation (2.27). Once the

estimated optimal values λ̂k, σ̂
2
k, and β̂k are obtained, each observation in the data set can

be assigned to a cluster k based on its estimated posterior probability
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p̂ik =
λ̂kfik(yi|xi, σ̂2

k, β̂k)∑K
k=1 λ̂kfik(yi|xi, σ̂2

k, β̂k)
. (2.28)

Unlike the K-means cluster-wise linear regression algorithm of Späth (1979) where a

particular observation i belongs to only one cluster, the maximum likelihood cluster-wise

linear regression method gives each observation a probability of belonging to the cluster k.

DeSarbo and Cron (1988) then discussed a method of determining the number of clusters

by the Akaike Information Criterion (Akaike, 1973).

Hennig (1996, 1999) further developed DeSarbo and Cron (1988)’s maximum likelihood

method for cluster-wise linear regression. The details could be found in Hennig (1996, 1999).

Wedel and Kistemaker (1989) developed another maximum likelihood methodology for

cluster-wise linear regression methods. Instead of giving a proportion to each cluster k for

an observation as in DeSarbo and Cron (1988), Wedel and Kistemaker (1989) assumed that

a particular observation could belong to only one cluster. Let nk = |Ck| be the number of

observations in the cluster CK given a partition P = (C1, ..., CK), and let (Xk, Yk) be the

set of observations in the kth cluster, where Xk is an nk × p matrix and Yk is an nk × 1

vector. Within each cluster, the relationship between Yk and Xk can be modeled by a linear

regression model with coefficient βk and the variance of error σ2
k. Then, the log likelihood

function is given by

ln(L) =
K∑
k=1

ln

(
(2πσ2)−

nk
2 exp

{
(Yk −Xkβk)

′(Yk −Xkβk)

2σ2
k

})
. (2.29)

For a possible partition, the optimal values of βk and σ2
k that maximize the log likeli-

hood function in equation (2.29) are the ordinary least squares estimators β̂k and σ̂2
k. Given

the number of observations of a data set, the number of possible partitions for the K clus-

ters is finite. Thus, by comparing all the possible partitions, the one that maximizes the

log likelihood function in equation (2.29) can be obtained. However, for a large number
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of observations, the computation time would be huge and therefore sometimes it will be

impossible to investigate all the possible partitions. Wedel and Kistemaker (1989) applied

a transfer algorithm proposed by Banfield and Bassil (1977) which made this maximum

likelihood estimation possible for a large number of observations.

Tibshirani et al. (2001) proposed a Gap statistic to determine the appropriate number of

clusters K for cluster analyses. Let Dk =
∑

i,i′∈Ck
di,i′ be the sum of pairwise distances for

all points in cluster k, where di,i′ is the distance between observation i and i′. Define WK as

WK =
K∑
k=1

1

2nk
Dk. (2.30)

In equation (2.30), WK is a pooled within-cluster average of pairwise distances. Given an

appropriate reference distribution of the n observations in the data set, the Gap statistic is

defined as

Gapn(K) = E∗n(log(W ∗
K))− log(WK), (2.31)

where E∗n(log(W ∗
K)) denotes the expectation of log(W ∗

K) under a n-observation reference data

set, W ∗
K is obtained the same way as WK in (2.30) but on the reference data set. The n-

observation reference data set is usually draw from p uniform distributions where the ranges

of each uniform distributions is the range of each of the p variables in the original data set.

The Gap statistic compares the log pooled within-cluster average of pairwise distances with

its expectation under a null reference distribution of the data. Then, the optimal value K will

be the value that maximizes the Gap statistic. Though the Gap statistic is not particularly

designed for cluster-wise regression methods, it is a very flexible method that could be easily

applied to the cluster-wise regression method.

Shao and Wu (2005) developed an information-based criterion to determine the number

of clusters for the cluster-wise linear regression method. They introduced a penalized term

to the objective function that is the aggregated sum of squares of the errors of the linear
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regression models. When minimizing the objective function, the penalized term, which is a

increasing function of K, prevents K from being too large.

All the methods we have discussed in this section so far explicitly specify Y as the

response variable, but this is not necessarily always the case. When there is no specific

response variable, we can still implement a cluster-wise linear regression model by randomly

assigning one of the variables as the response variable. However, the clustering results could

depend on the choice of the response variable. Van Aelst et al. (2006) applied an orthogonal

regression method for the cluster-wise linear regression methodology so that it is unnecessary

to specify a response variable. For a data set, the orthogonal regression method obtains a

hyperplane that is orthogonal to the smallest principle component of the whole data set.

Specifically, given a data set Ω with variables X = (X1, ..., Xp), the hyperplane is defined as

aTx = b, (2.32)

where a is the eigenvector corresponding to the smallest eigenvalue of the data set, while

b ≡ aTX̄ with X̄ = (X̄1, ..., X̄p) being the mean vector of the data set. The process of

seeking the K linear regressions is similar to the algorithm in Späth (1979). The algorithm

is briefly summarized as follows:

(i) Standardization: All the variables are standardized so that they all have zero mean

and unit variance (this is usually, but not always, necessary for implementing Principal

Component Analysis (PCA)).

(ii) Initialization: Randomly draw K mutually exclusive subsets from the data set. For

each subset, calculate the orthogonal regression hyperplane. The K hyperplanes are

the initial regressions.

(iii) Clustering : Calculate the orthogonal distance between each data point and the K
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hyperplanes. Assign a point to its closest hyperplane.

(iv) Regression: For k = 1, ..., K, update the orthogonal regression hyperplane for each

group.

(v) Stop: Repeat (iii) and (iv) until there is no more data point changing its membership.

Van Aelst et al. (2006) then discussed how to determine the number of groups by using Gap

statistics or a likelihood function with a penalty term.

Garćıa-Escudero et al. (2009) proposed a Robust Linear Grouping Algorithm (RLGA)

that implements a linear grouping algorithm in the presence of outliers. Given a particular

partition P = (C1, ..., CK), the method uses a (1 − α)100% proportion subsample that has

the smallest orthogonal distance with its closest regression line. Here, 0 ≤ α < 1 is a

predetermined proportion. Then, update the K orthogonal regression methods based on the

subsample. Given a data set with n observations, the RLGA is as follows:

(i) Initialization: Randomly draw K mutually exclusive subsets as the initial K clusters

P = (C1, ..., CK), and calculate the orthogonal regression hyperplane for each cluster.

(ii) Clustering : Assign each observation xi, i = 1, ..., n, to its closest cluster in terms of the

orthogonal distance. Compute the orthogonal distance, di, between each observation

and its closest cluster among the K clusters. The orthogonal distance di is defined as

di = inf
k=1,...,K

‖(I − UkU ′k)(xi − X̄k)‖2, (2.33)

where Uk is a p × p matrix with columns being the p unit eigenvectors of the sample

covariance matrix of the nk observations in the kth cluster, and X̄k is the mean vector

of the kth cluster, k = 1, . . . , K. Here we assume that the matrix X = (X1, ..., Xp) is

of full rank. If the rank of X is d < p, then Uk has d columns.
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Keep the set H = (H1, ..., HK) with n(1 − α) observations that have the smallest

distance with its regression line, where Hk ⊆ Ck, k = 1, ..., K.

(iii) Regression: For k = 1, ..., K, calculate the orthogonal regression hyperplane for the

observations within Hk.

(iv) Stop: Repeat (ii) and (iii) until there is no more data point changing its membership.

Based on the simulation results, the method performs much better than does the LGA in

the presence of outliers.

2.4 Cluster Analysis for Symbolic Data

Cluster analysis is one of the most popular topics for symbolic data analysis, especially for

interval-valued data. Gowda and Diday (1991a) proposed measurements of dissimilarities

for interval-valued data (quantitative) and multi-valued data (qualitative), so that clustering

could be easily implemented. Their dissimilarity comprises three components, dissimilarity

components due to position, span, and content. The dissimilarity between two interval-

valued objects is defined as the sum of the three components. The dissimilarity between

two multi-valued objects is defined as the sum of dissimilarities due to span and content.

At each step, a pair of symbolic objects is selected for agglomeration based on minimum

dissimilarity. Analogously with the same methodology, Gowda and Diday (1991b) defined

a similarity by three components, similarity components due to position, span and content.

An agglomerative symbolic clustering was implemented to samples from a mixture of multi-

variate normal distributions. At each step, a pair of symbolic objects with highest similarity

is agglomerated. Using the same three components, Gowda and Ravi (1995) modified the

definition of dissimilarity and similarity, and used both measurements of similarity and dis-

similarity for agglomerative clustering. This avoids disadvantages of the algorithm in Gowda
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and Diday (1991a,b), for which the clustering results based on dissimilarity measures could

be different from the results based on similarity measures.

By following the approach of Chavent (1998), Kim and Billard (2011) introduced a

criterion-based divisive clustering method. At each divisive step, a cluster Ci is selected

to be divided such that the difference between the inertia (or the within-cluster variance) of

Ci and the sum of the inertia of the two partitioned clusters, C1
i , C2

i , is maximized. Then,

for an interval x ∈ Ci, if its center, the average of upper and lower bounds, is smaller or

equal to a cut point c, then, x ∈ C1
i , else x ∈ C2

i . This is a monothetic divisive clustering

method where only one variable is considered at a time.

The K-means and adaptive K-means like clustering methods were developed in many

publications. Chavent and Lechevallier (2002) proposed a dynamical clustering for interval-

valued data using the Hausdorff distance. De Souza et al. (2004), de Souza and de Carvalho

(2004), and de Carvalho et al. (2006a) used similar algorithms but extended them to the city-

block distance, Mahalanobis distance, and L2 distance. De Souza and de Carvalho (2004),

de Carvalho et al. (2006b), and de Carvalho and Lechevallier (2009) applied the adaptive

K-means like algorithm for clustering of interval-valued data. All these methods essentially

implemented the clustering algorithms that were originally proposed by Diday and Simon

(1976). We will briefly summarize some of these clustering methods.

The main process of the clustering algorithms proposed by Diday and Simon (1976) is

iterative in two steps, the representation step and the allocation step. The representation

step calculates the center of a cluster, such as its mean or median. The allocation step

allocates an object to its closest cluster in terms of its distance to the cluster center, where

the definition of distance could be different according to the data types. Diday and Simon’s

algorithm is an extension of the K-means algorithm. Given a data set Ω, a possible partition

of the data set is denoted as P = (C1, ..., CK). Then, the clustering algorithm is given by:

(i) Initialization: Choose a partition P = (C1, ..., CK) of Ω randomly from all the possible
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partitions, denote the center of the K clusters as (µ1, ...,µK).

(ii) Allocation: Assign each observation to its closest cluster in terms of its distance to the

cluster centers, µk, k = 1, ..., K.

(iii) Representation: For k = 1, ..., K, calculate the center of cluster k such that µk mini-

mizes an objective function.

(iv) Stop: Repeat (ii) and (iii) until there is no more observation changing its membership.

When these clustering algorithms apply to interval-valued data, the main difference is in

defining a distance between two intervals. Chavent and Lechevallier (2002) investigated the

Hausdorff distance, defined between two intervals x1 = [x1a, x1b] and x2 = [x2a, x2b] as

dH(x1, x2) = max{|x1a − x2a|, |x1b − x2b|}. (2.34)

The distance between two p-dimension observations, x1 = (x11, ..., x1p) and x2 = (x21, ..., x2p),

is defined as the L1 norm Hausdorff distance

d(x1,x2) =

p∑
j=1

max{|x1ja − x2ja|, |x1jb − x2jb|} =

p∑
j=1

dH(x1j, x2j). (2.35)

Given a data set X = (X1, ..., Xp), let xi = (xi1, ..., xip) be the ith observation with

xij = [xija, xijb], j = 1, ..., p. Let xcij = (xija + xijb)/2 be the center point of the interval

xij, and let xrij = xijb − xija be the range of xij, and let xδij = xrij/2 be the radius. Given

the cluster center µk = (µk1, ..., µkp) with µkj = [µkja, µkjb], j = 1, ..., p, of the cluster k,

the objective function, f(µk), is the sum of the distances between each observation in the

cluster and the cluster center µk, i.e.,

f(µk) =
∑
i∈Ck

p∑
j=1

dH(xij, µkj). (2.36)
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We need to find a µk that minimizes the objective function f(µk). The problem is equivalent

to finding µkj = [µkja, µkjb], j = 1, ..., p, which minimizes

f̃(µkj) =
∑
i∈Ck

dH(xij, µkj) =
∑
i∈Ck

max(|xija − µkja|, |xijb − µkjb|). (2.37)

Denote µckj = (µkja +µkjb)/2, and µδkj = (µkjb−µkja)/2. Then, equation (2.37) is minimized

when

µckj = median{xcij|i ∈ Ck}, µδkj = median{xδij|i ∈ Ck},

k = 1, ..., K, j = 1, ..., p.

(2.38)

For j = 1, ..., p, the optimal value for µckj is the median of the center points of intervals that

are in the cluster k. Similarly, the optimal value for µδkj is the median of the radii of those

intervals that are in the cluster k. The allocation step then assigns each object to its closest

cluster in terms of the Hausdorff distance.

De Souza and de Carvalho (2004) applied the city-block distances to Diday and Simon’s

algorithm. The city-block distance between two intervals x1 and x2 for a given variable is

defined as

dC(x1, x2) = |x1a − x2a|+ |x1b − x2b|. (2.39)

The city-block distance between two p-dimension observations, x1 = (x11, ..., x1p) and x2 =

(x21, ..., x2p) is defined as

d(x1,x2) =

p∑
j=1

dC(x1j, x2j). (2.40)

The objective function is the same as the equation (2.36) but using the city-block distance

instead of the Hausdorff distance. The objective function is minimized when

µkja = median{xija|i ∈ Ck}, µkjb = median{xijb|i ∈ Ck},

k = 1, ..., K, j = 1, ..., p.

(2.41)
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De Souza and de Carvalho (2004) then developed an adaptive distance measure between

two interval vectors based on the city-block distance. For the kth cluster, the adaptive

distance between an observation xi and the cluster center µk is given by

dk(xi,µk) =

p∑
j=1

(λkja|xija − µkja|+ λkjb|xijb − µkjb|), (2.42)

where λkja and λkjb are weights for the jth variable in the kth cluster, j = 1, ..., p, k = 1, ..., K.

If λkja = λkjb, equation (2.42) is a one-component adaptive distance; if λkja 6= λkjb, it is a

two-component adaptive distance. The λkja and λkjb are subject to

(1) λkja, λkjb > 0,

(2)

p∏
j=1

λkja =

p∏
j=1

λkjb = 1.

The objective function f(·) is defined similarly to that in equation (2.36). The optimal

values of these three terms are obtained by fixing two of them each time and minimizing the

objective function. The optimal values of µk are still the medians of the upper bounds and

the lower bounds of the intervals in the cluster k. The optimal values for λkja, λkjb are given

by, for k = 1, ..., K,

λkja =

[∏p
h=1(

∑
i∈Ck
|xiha − µkha|)

] 1
p∑

i∈Ck
|xija − µkha|

, λkjb =

[∏p
h=1(

∑
i∈Ck
|xihb − µkhb|)

] 1
p∑

i∈Ck
|xijb − µkhb|

. (2.43)

From equation (2.43), the values of λkja and λkjb give more weight to the variables that

are closer to the cluster center in terms of the upper and lower bounds. The involvement of

the weights affects the cluster membership for each object and consequently the clustering

results.

The same clustering algorithm and the idea of an adaptive distance can be expanded
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to all other distance definitions that apply to interval-valued data. De Souza et al. (2004)

applied the algorithm to a Mahalanobis distance for interval-valued data. Chavent et al.

(2006) split n intervals of a variable xj into elementary intervals and added a weight to

each interval. Chavent et al. then used the elementary intervals and weights to create a

two components dissimilarity measure with components due to position and weights. That

dissimilarity measure was used for interval-valued data clustering. The details could be

found in Chavent et al. (2006). De Carvalho et al. (2006a) applied a L2 norm distance,

while de Carvalho et al. (2006b) adopted an adaptive Hausdorff distance for interval-valued

data clustering. De Carvalho and Lechevallier (2009) proposed an adaptive distance where

the weights are the same among the K clusters but different between the p variables for each

step.

De Carvalho (2007), analogously with the methodology for classical data, proposed a

fuzzy c-means clustering method for symbolic interval data. For fuzzy c-means clustering,

each object belongs to a cluster by a proportion (or a probability). The details can be found

in de Carvalho (2007).

De Carvalho et al. (2010) developed a cluster-wise regression model for interval-valued

data using the center and range method. The algorithm is analogous to the cluster-wise

linear regression in Späth (1979). Within each cluster, de Carvalho et al. (2010) fitted one

linear regression for the center points and one for the ranges of the intervals, respectively.

As described in section 2.2, CRM minimizes the sum of squares of the errors
∑

i∈Ck
(εci)

2 and∑
i∈Ck

(εri )
2, respectively. The objective function at the representation step of the algorithm

is

f(β̂
c

k, β̂
r

k) =
∑
i∈Ck

((εci)
2 + (εri )

2), k = 1, ..., K,

where β̂
c

k and β̂
r

k are the coefficient estimates for the regression of the center points and the

regression of ranges, respectively. For the allocation step, an observation is assigned to the
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cluster that has the smallest sum of squares of the errors from the center point regression

and range regression models, ((εci)
2 + (εri )

2).

Kim and Billard (2011) developed a polythetic divisive clustering algorithm for p-dimensional

histogram-valued data. Kim and Billard (2012) proposed dissimilarity measures for the sym-

bolic multimodal-valued data and a divisive clustering algorithm for the data. Kim and

Billard (2013) gave some dissimilarity measures for histogram-valued data.

2.5 Likelihood Functions and Maximum Likelihood Estimators for

Symbolic Data

Likelihood functions for interval-valued symbolic data were first developed by Le-Rademacher

and Billard (2011). Let xi, i = 1, ..., n, be a random sample of the interval-valued random

variable X. Let fi be the internal density of xi. For an interval-valued random variable, fi

is usually assumed to be the probability distribution function (pdf ) of a continuous uniform

distribution. That is, for xi = [xia, xib], let ξ ∈ [xia, xib] with xia, xib ∈ R. Then, if we assume

ξ ∈ [xia, xib] are uniformly distributed across [xia, xib], we have fi(ξ) = 1/(xib − xia). Let θi

be the parameter vector of fi where θi is defined to have a one-to-one relationship between

xi and θi. Suppose the distribution of Θ is known with probability density function g(θi; τ ),

where θi is the ith realization of Θ with i = 1, ..., n, and τ is the parameter vector of the

distribution. Since xi is uniquely identified by θi, we have P (X = xi) = P (Θ = θi). The

likelihood function can be obtained based on this relationship.

For interval-valued data, assume that Θ = (Θ1,Θ2) with Θ1 ∼ N(µ, σ2), a normal

distribution, and Θ2 ∼ exp(β), an exponential distribution. Let the ith realization of X be

xi, and let the ith realization of Θ = (Θ1,Θ2) be θi = (θi1, θi2). Let θi1 be the internal

mean of xi, and let θi2 be the internal variance of xi. Then, θi and xi have a one-to-one

correspondence with θi1 = (xia + xib)/2 and θi2 = (xib − xia)2/12. Assume that Θ1 and Θ2
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are independent, then, the probability density function of Θ is given by

g(θi;µ, σ
2, β) = g1(θi1;µ, σ2)g2(θi2; β)

= g1(
xia + xib

2
;µ, σ2)g2(

(xib − xia)2

12
; β),

(2.44)

where g1(·) is the pdf of the normal distribution and g2(·) is the pdf of the exponential

distribution.

The likelihood function of τ = (µ, σ2, β) for a random sample x1, ..., xn of X is given by

L(µ, σ2, β;θ1, ...,θn) =
n∏
i=1

g(θi;µ, σ
2, β).

After some algebra, the maximum likelihood estimator (MLE) for the parameters are

µ̂ =
1

n

n∑
i=1

xia + xib
2

, (2.45)

σ̂2 =
1

n

n∑
i=1

(
xia + xib

2
− µ̂)2, (2.46)

β̂ =
1

n

n∑
i=1

(xib − xia)2

12
. (2.47)

Intuitively, we assume that the center points, θi1 = (xia + xib)/2, of the random sample

x1, ..., xn follow a normal distribution with mean µ and variance σ2, and the internal vari-

ance, θi2 = (xib − xia)2/12, follows an exponential distribution with mean β, and the two

distributions are independent. Then, the MLE of the two parameters for the normal distri-

bution are the sample mean and sample variance of the center points. The MLE of β for the

exponential distribution is the sample mean of the internal variance. The MLEs are coinci-

dent with the classical cases. The details of the MLE given that the normal and exponential

distributions are dependent could be found in Le-Rademacher and Billard (2011).
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Chapter 3

Cluster-wise Regression for

Interval-Valued Data

In chapter 2, we reviewed the development of cluster-wise regression methods for classical

data and clustering analysis for symbolic interval-valued data. In this chapter, we introduce

cluster-wise regression for symbolic interval-valued data. It can be misleading to assume

there is only one linear regression model for the whole data set. In addition, if the population

is clustered onto multiple hyperplanes, the K-means like clustering for symbolic intervals

(Chavent and Lechevallier, 2002, de Souza and de Carvalho, 2004, de Souza et al., 2004,

de Carvalho et al., 2006a,b, de Carvalho and Lechevallier, 2009) is not able to recover such

a data structure. Unlike for classical data, the method of cluster-wise linear regression

methodology for symbolic data is rarely studied. In this chapter, we propose methods for

implementing cluster-wise regression methods for symbolic interval-valued data.

The remainder of this chapter is arranged as follows. Section 3.1 formally introduces the

problem and gives the relevant assumptions. Section 3.2 proposes a algorithm to implement

the cluster-wise regression methodology by adapting K-regressions clustering techniques.

Section 3.3 gives a method to determine the optimal number of clusters K. The simulation
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methodology of the interval-valued data is studied in section 3.4. In section 3.5, several

simulated data sets are used to implement the cluster-wise regression algorithm by the K-

regressions algorithm and the performance is evaluated.

3.1 Introduction

Suppose we have n observations in a data set with response variable Y and p predictor

variables X1, ..., Xp. Denote the p-dimensional predictor variables as (X1, ..., Xp) ≡ X.

All the response and predictor variables are interval-valued random variables as defined in

definition 2.1.2. Let xij, i = 1, ..., n, j = 1, ..., p, be the ith observation for the jth predictor

variable Xj, denoted by xij = [xija, xijb] with xija, xijb ∈ R and xija ≤ xijb. Similarly, let yi

be the ith observation for the response variable Y , denoted by yi = [yia, yib] with yia ≤ yib.

Assume that the response variable Y has K different linear relationships with the predictor

variablesX, where K is a fixed number. Let (Xk, Yk), k = 1, ..., K, be the set of observations

that follow the kth regression model (or belong to the kth cluster). Then,

Yk = Xkβk + εk, k = 1, ..., K, (3.1)

where βk is the set of linear coefficients of the p predictor variables for the kth regression

model, and εk is the error interval vector.

Let nk, k = 1, ..., K, be the number of observations in the kth cluster with
∑K

k=1 nk = n.

We assume the following:

(A) The number of observations nk satisfies p < nk ≤ n, k = 1, ..., K, where p is the

number of predictor variables, and n is the total number of observations in the whole

data set. It can be shown that nk = n only if K = 1.

(B) The individual error intervals in a particular cluster k are drawn independently from
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a normal distribution with mean 0 and standard deviation σ2
k, N(0, σ2

k). The error

intervals εk are independent from εk′ , given k 6= k′, for k, k′ = 1, ..., K.

The first assumption (A) avoids the situation with nk < p such that there is no linear regres-

sion solution for the kth cluster; while the second assumption (B) reduces the computational

complexity of the problem. Our goal is to find an optimal partition P ∗ = (C∗1 , ..., C
∗
K) that

minimizes the overall residuals of the regression models given the number of clusters K.

3.2 Cluster-wise Regression by K-regressions Clustering: Algo-

rithm

In this section, utilizing the Symbolic Variation Method (SVM) for linear regression of

interval-valued data, we propose a K-regressions clustering algorithm to recover the data

structure in equation (3.1).

Given a partition P = (C1, ..., CK), we can fit a linear regression model for each cluster

as in equation (3.1). Denote the coefficient estimate of βk as β̂k for k = 1, ..., K. Then, the

regression residuals for the kth cluster are defined as

rki = d(yi, ŷi) (3.2)

given i ∈ Ck. Here, d(yi, ŷi) stands for the distance between the observation yi and its pre-

dicted interval ŷi. Since ŷi = xTi β̂k, the equation (3.2) can be rewritten as rki = d(yi,x
T
i β̂k).

The predictive interval ŷi using the SVM method is

ŷi = [ŷia, ŷia] = [min
x∈X

xTi β̂k,max
x∈X

xTi β̂k], (3.3)

for i ∈ Ck, where X = {x = (xj) : xja ≤ xj ≤ xjb, j = 1, ..., p}. Our goal is to find an
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optimal partition that minimizes the sum of squared residuals (SSR) given K:

SSR = argmin
P ; β̂k

K∑
k=1

∑
i∈Ck

r2
ki =

K∑
k=1

nk∑
i=1

r2
ki. (3.4)

Since rki in (3.4) is defined as the distance between two intervals, yi and ŷi, different

definitions of the distance between these two intervals variables will affect the clustering

results of K-regressions algorithm. We consider three different distance definitions between

two interval variables: center distance, Hausdorff distance and city-block distance. The

center distance between two p-dimensional interval observations x1 = (x11, . . . , x1p) and

x2 = (x21, . . . , x2p) with xij = [xija, xjib], i = 1, 2, j = 1, . . . , p, is defined as

d(x1,x2) =

p∑
j=1

|xc1j − xc2j|, (3.5)

where xcij = (xija + xijb)/2, is the center point of xij, i = 1, 2, j = 1, . . . , p. The Hausdorff

distance is defined as in equations (2.34); the city-block distance is defined as in equation

(2.39). The algorithm of the K-regressions for the three distance definitions are the same.

Analogously with the algorithm in Späth (1979), we propose the K-regressions cluster-wise

regression for interval-valued data as follows:

(i) Initialization: Choose a partition P = (C1, ..., CK) randomly from all the possible

partitions, or partition the whole data set to K clusters based on some prior knowledge.

(ii) Representation: For k = 1, ..., K, fit regressions Yk = Xkβk + ε to the observations

in each of the K clusters for partition P (l) = (C
(l)
1 , ..., C

(l)
K ), where l stands for the lth

iteration.

(iii) Allocation: For observation i, i = 1, ..., n, calculate its distance to each of the K

regression lines, d(yi,x
T
i β̂k), k = 1, ..., K, and allocate the observation to its closest
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line. The updated partition is now P (l+1) = (C
(l+1)
1 , ..., C

(l+1)
K ).

(iv) Stop: Repeat (ii) and (iii) until the improvement of SSR in equation (3.4) is smaller

than a predetermined criterion, or the number of iterations reaches a predetermined

maximum number.

For the representation step, we apply the SVM to fit the linear regression model. For the

allocation step, the observations are allocated such that, for k = 1, ..., K,

Ck = {(x, y)|d(y,xT β̂k) ≤ d(y,xT β̂k′), ∀k 6= k′}. (3.6)

Given a data set, the algorithm cannot guarantee a global minimum of SSR. Thus, we

repeatedly implement the steps (i)-(iv) a number of times and select the solution which has

the lowest value of SSR. The selected partition can be further iterated until SSR cannot be

reduced anymore.

3.3 Determine the Number of Clusters K

The K-regressions clustering algorithm is to implement the cluster-wise regression method

given that K is known. However, if we do not have prior knowledge about K, a bad guess of

K can mislead the clustering results. Xu (2010) gave a symbolic R-square (R2) of the SVM

for the linear regression of interval-valued data,

R2 =
Var(Ŷ )

Var(Y )
, (3.7)

where Ŷ is the predictive vector of response variable Y , and Var(·) is the symbolic variance.

Using the symbolic R2, we propose methods to determine the number of clusters K.

Given a predetermined maximum number of clusters Kmax, for each K = 1, . . . , Kmax,

calculate the R2 for each cluster k = 1, . . . , K, denoted by R2(K)

k . For the whole data set,
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the weighted average R2 for the n observations given the number of clusters K is defined as

R2(K)

=
K∑
k=1

w
(K)
k R2(K)

k , (3.8)

where w
(K)
k = nk/n is the weight of the R2 for the kth cluster, and nk = |Ck| is the number

of observations for the kth cluster. From the plot of (1−R2(K)
) versus K, the elbow point is

the optimal number of clusters, K∗.

To determine the optimal number of clusters K by looking for the elbow point can be

subjective, especially when the elbow point is not obvious. Analogously with the adjusted

R2 for the linear regression model, we propose an adjusted R2 to determine the optimal K

for the K-regressions algorithm. We know that the R2 for ordinary least square regression

stands for the proportion of variation explained by the model. The R2 is defined as

R2 = 1− SSres/SStot = SSreg/SStot, (3.9)

where SStot =
∑

i(yi − ȳ)2 is the total sum of squares, SSreg =
∑

i(ŷi − ŷ)2 is the sum of

squares of the regression, SSres =
∑

i(yi − ŷi)2 is the sum of squares of the residuals, and

ŷ =
∑

i yi/n is the sample mean of y. The R2 in equation (3.9) can be rewritten as

R2 = 1− varres/vartot, (3.10)

where varres = SSreg/n and vartot = SStot/n. The varres and vartot terms are both biased

estimators of the residual variation and the population variation, respectively. The adjusted

R2 term adjusts these two variance estimators to be unbiased estimators, so that the adjusted

R2 is defined as

R̄2 = 1− SSres/dfe
SStot/dft

, (3.11)
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where dfe = n− p− 1 is the degree of freedom of the residuals, and dft = n− 1 is the degree

freedom of the population variation. The adjusted R2 adjusts the R2 in equation (3.9) so

that it does not always increase.

The K-regressions algorithm fits K regressions on the whole data set, so that the total

number of parameters is K ∗ p. For each K = 1, . . . , Kmax, analogously with the idea of an

adjusted R2 for ordinary least square regression, we define the adjusted weighted R2 for the

K-regressions clustering as

R̄2(K)

= R2(K) − (1−R2(K)

)
K ∗ p

n−K ∗ p− 1

≡ R̄2(K) − P (K),

(3.12)

where P (K) = (1−R2(K)
) K∗p
n−K∗p−1

is the penalty term.

The adjusted weighted R2 in equation (3.12) penalizes the R2(K)
of equation (3.8) by the

factor P (K) when the number of clusters increases. Since we fit K different linear regression

models for the whole data set, K∗p is the number of parameters for the cluster-wise regression

methodology.

From equation (3.12), R̄2(K)
is always smaller than the R2(K)

. The R̄2(K)
increases only if

the increase of K improves the R2(K)
more than the penalized term P (K). Usually when the

number of clusters K increases, the R̄2(K)
increases and reaches a maximum at a certain value

of K, and decreases afterwards. The number of K that maximizes the R̄2(K)
or minimizes the

1− R̄2(K)
is the optimal number of clusters K∗. We compare the two methods of determining

the optimal K by simulation results in the next section.

3.4 Simulation: Methodology

There are many ways to simulate interval-valued data sets where the response variable Y

has a linear relationship with the predictor variables X = (X1, ..., Xp) characterized by
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Y = Xβ + ε. We propose four simulation methods each of which has its advantages and

disadvantages.

Simulation method I

A naive way is to randomly draw n samples from a multivariate normal distribution N(µ,Σ)

as the interval means or center points of the predictor variables, denoted as X
(c)
n×p. We

then calculate the interval means of the response variable as Y (c) = X
(c)
n×pβ + ε, where

ε = (ε1, ..., εn)T are independent and identically normal distributed (iid) random variables,

i.e., εi
iid∼ N(0, σ2), and where β = (β0, ..., βp)

T is given. Then, we simulate the interval ranges

of each predictor variable X
(r)
j , j = 1, ..., p, and the response variable Y (r) independently.

The values of the interval ranges can be drawn, e.g., from an exponential distribution, log-

normal distribution, chi-square distribution or uniform distribution with positive support.

The simulated Xj, j = 1, ..., p, is Xj = [X
(c)
j − 0.5X

(r)
j , X

(c)
j − 0.5X

(r)
j ], and Y = [Y (c) −

0.5Y (r), Y (c) + 0.5Y (r)].

There are two problems with this simulation method. First, the method makes the

interval means of Y and the interval means of X follow a linear relationship, but we need

that the interval variable Y and interval variables X = (X1, . . . , Xp) themselves follow a

linear relationship. Second, from a data set obtained by this method, the interval ranges of

Y would be independent of the interval ranges of X, which is not true. Since Y = Xβ + ε,

given an observation (xi, yi), we have yi = xiβ + εi, i = 1, ..., n. The range of yi is given by,

for i = 1, ..., n,

y
(r)
i = yib − yia

= max
x∈X

(xTi β + εi)−min
x∈X

(xTi β + εi)

= x
(r)
1 |β1|+ ...+ x(r)

p |βp|+ ε
(r)
i ,

(3.13)
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for i = 1, ..., n, where X = {xi = (xij) : xija ≤ xij ≤ xijb, j = 1, ..., p}. From equation (3.13),

the ranges of Y should be positively correlated with the ranges of X. Though the method I

has these obvious problems, the advantage is that it is easy to implement and it guarantees

the distributions within each interval of xij and yi, i = 1, ..., n, j = 1, ..., p, are uniform

distributions because we assume so. In practice, it is very unlikely that an interval data

set with a linear relationship between response variable and predictor variables is obtained

by the process of method I. We will not implement this method in our simulation study in

section 3.5.

Simulation method II

Analogously with the simulation for classical data, we propose a second method to simulate

symbolic intervals X and Y that satisfy Y = Xβ + ε. Suppose the interval means of X

follow a multivariate normal distribution N(µ,Σ), and the interval ranges of Xj, j = 1, ..., p,

follow an exponential distribution exp(λj). The exponential distributions are independent for

j 6= j′, j, j′ = 1, ..., p. Note that here the exponential distribution could be replaced by, e.g.,

a log-normal, chi-square, or uniform distribution with positive support. Then, the interval

means, X
(c)
j , and interval ranges, X

(r)
j , for each predictor variable Xj, j = 1, ..., p, can be

simulated given the parameters of the multivariate normal distribution and the exponential

distributions. The simulated intervals of the predictor variables for a particular observation

i is given by xij = [x
(c)
ij − 0.5x

(r)
ij , x

(c)
ij + 0.5x

(r)
ij ], j = 1, ..., p. The interval yi consists of two

intervals, xTi β and εi, i = 1, ..., n. Since we already had the interval for xi, the interval xTi β
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is given by, for i = 1, ..., n,

xTi β = [ai, bi],

ai =
∑
j:βj>0

xijaβj +
∑

j′:βj′<0

xij′bβj′ ,

bi =
∑
j:βj>0

xijbβj +
∑

j′:βj′<0

xij′aβj′ .

(3.14)

The equation (3.14) is the interval for yi without the error term. To add the error term

εi on yi, suppose the interval means of εi follow a normal distribution, ε
(c)
i

iid∼ N(0, σ2),

and the interval ranges follow an exponential distribution, ε
(r)
i

iid∼ exp(λ). We draw random

samples from the two distributions. The error intervals are then given by εi = [εia, εib] =

[ε
(c)
i − 0.5ε

(r)
i , ε

(c)
i + 0.5ε

(r)
i ], i = 1, ..., n. The simulated intervals for the response variable are

given by yi = [yia, yib] = [ai + εia, bi + εib], i = 1, ..., n, where ai and bi are as in equation

(3.14).

This simulation method is like simulation for classical data, where we add an iid error

term on the simulated xiβ for i = 1, ..., n. There are drawbacks about this method. First,

the range of the simulated yi, i = 1, ..., n, can be derived as

y
(r)
i = (bi − ai) + (εib − εia)

= (xiβ)(r) + ε
(r)
i

≥ (xiβ)(r),

(3.15)

where (xiβ)(r) stands for the range of the interval xiβ. From equation (3.15), the range of

yi is always not less than the range of xiβ, which is not true in practice. In addition, for a

particular i, if we assume that the internal distributions of the intervals xij, j = 1, ..., p, and

εi are uniform distributions, the obtained interval yi is the sum of p + 1 uniform distribu-

tions. The internal distribution of yi is generally not a uniform distribution anymore, which
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violates the assumption of SVM method for the interval-valued data linear regression method.

Simulation method III

In practice, most of the interval data sets arise from aggregating classical data. From this

perspective, we propose a third simulation method. The intervals of X are simulated as

in method II where the interval means come from a multivariate normal distribution, and

the interval ranges are from exponential distributions. The intervals of Xj, j = 1, ..., p,

are given by Xj = [X
(c)
j − 0.5X

(r)
j , X

(c)
j + 0.5X

(r)
j ]. The distributions within these intervals

are assumed to be uniform. For a particular observation i, to obtain the interval yi, we

randomly draw m values from the uniform distribution U(xija, xijb) for each j = 1, ..., p,

denoted by xij1, ..., xijm. The m is a predetermined number. Then the interval yi = [yia, yib]

is determined by

yia = min
l∈{1,...,m}

{β0 + β1xi1l + ...+ βpxipl + εil},

yib = max
l∈{1,...,m}

{β0 + β1xi1l + ...+ βpxipl + εil},
(3.16)

where εil
iid∼ N(0, σ2) for i = 1, ..., n and l = 1, ...,m.

This method is practically reasonable. For example, traffic on an particular intersection

is recorded multiple times everyday; the minimum and maximum values are recorded as the

traffic interval for a day. A more general case for this method is to assume the number m

follows a certain distribution, say, an exponential distribution. For each observation i, the

m’s are the same for all the predictors Xj, j = 1, ..., p, but the m’s are different for different

observations. We have mi
iid∼ exp(λ) for i = 1, ..., n. The interval yi, i = 1, ..., n, is given by

yia = min
l∈{1,...,mi}

{β0 + β1xi1l + ...+ βpxipl + εil},

yib = max
l∈{1,...,mi}

{β0 + β1xi1l + ...+ βpxipl + εil}.
(3.17)
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By allowing a random value for m, this simulation method fits more general scenarios.

For instance, the daily price for a particular stock is an interval where the lower bound is

the minimum price while the upper bound is the maximum price. The prices for the stock

are recorded on a transaction base for every trading day, but the number of transactions on

each day is not fixed. Instead, it is a random number that follows a certain distribution.

The problem for this simulation method is that it cannot guarantee the obtained intervals

yi, i = 1, ..., n, internally follow uniform distributions. The advantage is that it is close to

how the interval data sets are collected in practice.

Simulation method IV

The fourth method tries to remedy the defect of the method III where the intervals yi,

i = 1, ..., n, are generally not uniform distributed internally. The intervals for Xj, j = 1, ..., p,

are simulated the same way as in method III. Similarly as in method III, we assume the

distribution within each interval of Xj is a uniform distribution. For each observation i, m

values are randomly drawn from each interval xij, j = 1, ..., p, denoted by xij1, ..., xijm. The

values of the response variable are calculated for l = 1, ...,m, as

yil = xTilβ + εil, (3.18)

where xil = (1, xi1l, ..., xipl)
T , and εil

iid∼ N(0, σ2) for i = 1, ..., n and l = 1, ...,m. So far,

method IV is the same as method III, but we require the predetermined number m to be

large. For observation i, the interval yi is the interval from the first quartile to the third

quartile of yil, l = 1, ...,m. It can be verified that the interval yi obtained by this way follows

a uniform distribution for a relatively large m, say, m ≥ 3000, see Xu and Billard (2014).

The method can be easily extend to the scenario where m is a random variable.

Method IV solves the problem of method III where intervals yi, i = 1, ..., n, are not
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internally uniformly distributed. The disadvantage of method IV is that the number for m

is not always large enough in practice to ensure that the yi follows a uniform distribution.

Furthermore, in practice when we aggregate classical data sets, we cannot simply cut the

first quartile and the last quartile.

Each of the four methods has its advantages and disadvantages. In the following section

of the simulation study, we will use the third method when m is relatively small. We use

the fourth method if m is relatively large.

3.5 Simulation: Case Study

In this section, we conduct simulation studies to investigate the performance of the K-

regressions algorithm. We try different data structures for the simulations study. The

simulation methods of the interval-valued data follow the simulation methods II, II, and IV

in section 3.4. Method I will not be implemented due to its unpractical process. We first

compare the K-regressions clustering and the traditional K-means clustering methods, and

investigate the convergence of the K-regressions algorithm. Then, we study the performance

of the K-regressions algorithm for several different structures of data sets.

3.5.1 Comparison between the K-regressions Algorithm and K-

means Algorithm

The K-means algorithm is designed for a spherical data structure. When each of the clusters

in a data set is not spherical, the algorithm can fail. For example, if the variables are highly

correlated within a cluster and the clusters are overlapped, it is difficult for the K-means

algorithm to recover such clusters. In this section, we give two examples where the K-means

algorithm fails to recover the true clusters while the K-regressions algorithm successds. The

K-means clustering method for interval-valued data is based on the algorithms in Chavent
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and Lechevallier (2002) and de Souza and de Carvalho (2004). We also study the convergence

of the algorithm for these two examples.

Our first data set (I) is set to be composed of three clusters that follow the equations:

cluster (1) : y = 142 + 5x+ ε1,

(2) : y = 53− 3x+ ε2,

(3) : y = −43 + 0.6x+ ε3,

(3.19)

respectively, where ε1 ∼ N(0, 152), ε2 ∼ N(0, 122), and ε3 ∼ N(0, 72). We apply the simula-

tion method III and set m = 25 to simulate the data set (I) for each of its three regression

models. The observations of these three regression models are simulated separately with 200

observations for each, and then the three data sets are stacked into one data set. Given

K = 3, we implement the K-means clustering method based on each of the city-block

distance (see equation (2.40)) and the Hausdorff distance (see equation (2.35)). For the

K-regressions clustering method, we use the center distance (see equation (3.5)) for demon-

stration purposes.

Figure 3.1(a) shows the three true clusters with the three linear lines of equation (3.19),

respectively. Figure 3.1(b) shows the clustering results based on the K-means algorithm

when the city-block distance was used, while Figure 3.1(c) gives the K-means clustering

results using Hausdorff distance of equation (3.19). From Figure 3.1 (b) and Figure 3.1 (c),

we see that both these K-means algorithms cluster at the intersection areas between the

three clusters in equation (3.19), which are clearly not the correct clusters.

We implement the K-regressions algorithm onto the same data set (I) given the number

of clusters K = 3. After trying multiple initial partitions, the one with minimum SSR (see

equation (3.4)) is said to be the convergence result for the K-regressions algorithm. We call

an initial partition that converges to the minimum SSR as being a good initial partition.
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Figure 3.1 (d), (e), and (f) show the clustering process of the K-regressions algorithm with

a good initial partition. Figure 3.1 (d) shows the first (initialization) iteration of the K-

regressions algorithm, while Figure 3.1 (c) shows the third iteration where the algorithm

starts to converge to the true linear regression model in equation (3.19). Figure 3.1 (f)

shows the tenth or the final iteration of the K-regressions algorithm where the algorithm

converges to the three true linear regression model in equation (3.19). The three linear

regression models obtained by the K-regressions algorithm are, respectively,

(1) y = 138.80 + 4.94x,

(2) y = 54.13− 3.18x,

(3) y = −41.7 + 0.65x.

(3.20)

The coefficients in equation (3.20) are estimated by the SVM method on the three clusters

obtained by the K-regressions algorihtm. These coefficients are close to the true coefficients

in equation (3.19). In addition, by comparing the true data set in Figure 3.1 (a) and the K-

regression clustering results in Figure 3.1 (d), it is safe to say that the K-regression algorithm

recovers the three true clusters for data set (I) in equation (3.19). A further investigation

shows that all the misclassification observations are from the intersection areas between the

three clusters.

Our second data set (II) is a two-dimensional data set that contains three clusters. We

apply the simulation method IV in equation (3.4) and set m = 3000 and to simulate the

data set. One hundred observations for each regression model are simulated and then all the

observations are stacked into one data set. Then, the three linear regression models between
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Comparison between clustering results of K-means algorithm and K-regressions
algorithm for data set (I) of equation (3.19)

the two variables are as follows:

(1) y = 150.5 + 4.5x+ ε1,

(2) y = 53− 3x+ ε2,

(3) y = −53 + 0.5x+ ε3,

(3.21)

where ε1 ∼ N(0, 152), ε2 ∼ N(0, 122), and ε3 ∼ N(0, 72).

The simulated data set (II) with total 300 observations and 3 clusters is visualized in
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Comparison between clustering results of K-means algorithm and K-regressions
algorithm for data set II of equation (3.21)

Figure 3.2(a) where the three true regression lines are also plotted. Given the number of

clusters K = 3, we implement the K-means algorithm to cluster the data set (II). Figure

3.2 (b) and (c) give the clustering results by the K-means algorithm with the city-block

distance of equation (2.40) and the Hausdorff distance of equation (2.35). We can see clearly

from Figure 3.2 (b) and Figure 3.2 (c) that the K-means algorithms with both the city-block

distance and the Hausdorff distance fail to recover the correct clusters .

The K-regression algorithm is applied to this data set (II) for the center distance given the

number of clusters K = 3. Multiple initial partitions are tried and the one with the smallest
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SSR is selected as the correct convergence for the K-regressions algorithm. Figure 3.2 (c),

(d), and (e) show the convergence process of the K-regressions algorithm onto the data set

(II) with the good initial partition. Figure 3.2 (a) is the plot of the three clusters for the

first iteration (initialization). Figure 3.2 (b) shows the third iteration of the algorithm where

the three clusters are already close to the three true clusters. The ninth (final) iteration is

presented in Figure 3.2 (c) and shows clearly the converged three clusters by the algorithm.

The estimated linear regression model by the SVM method for the three converged clusters

are as follows:

(1) y = 151.13 + 4.49x,

(2) y = 54.93− 2.95x,

(3) y = −53.74 + 0.54x.

(3.22)

The estimated coefficients in equation (3.22) and the true coefficients in equation (3.21) are

quite close. In addition, by comparing the plot of the original three linear regression models

in Figure 3.2 (a) and the plot of the converged three clusters in Figure 3.2 (f), it is safe to say

that the K-regression algorithm successfully recovered the true structure of the data set (II).

Both the data set (I) and (II) in equation (3.19) and equation (3.21) are not spherical and

the K-means algorithm failed to recover the true structure whereas our method did succeed.

In these two simulated examples using data set (I) and (II), we assume that the true

number of clusters is known. However, in practice we usually do not have precise information

about the number of clusters. To decide the optimal number of clusters, we use the method

proposed in section 3.3. We calculate the weighted R-squared, R2(K)
, for K = 1, ..., 8, from

equation (3.8). The elbow plot is the plot of R2(K)
versus the number of clusters K. Figure

3.3(a) and (b) show the elbow plots for data set (I) from equation (3.19) and data set (II)

from equation (3.21), respectively. For both data sets, the elbow plots show that the optimal
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(a) (b)

Figure 3.3: Determining the number of clusters K by an elbow plot

number of clusters is K = 3. That is, the elbow plot correctly determines the true number

of clusters for both data sets.

3.5.2 Performance of the K-regressions Algorithm

In this section, we simulate several data sets with different structures to investigate the

performance of the K-regressions algorithm. In particular, we consider the following three

data sets. Data I and II are two-dimensional interval-valued data set with three clusters,

while Data III is a two-dimensional interval-valued data set with four clusters. Table 3.1

provides the parameter setup for the three data sets. In Table 3.1, n is the sample size

for each of the clusters; β0 and β1 are the coefficient of the linear relation for each cluster.

The values µx and σx are the two parameters of the normal distribution N(µx, σx) from

which the interval center points of the predictor variable X are drawn. The value λx is the

parameter of the exponential distribution exp(λx) from which the interval ranges of X are
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Table 3.1: Parameter setup for the Data I, II, and III

Data I Data II Data III
Cluster 1 2 3 1 2 3 1 2 3 4

n 100 100 100 100 100 100 60 60 60 60
β0 1.0 45.0 45.0 142.0 33.0 -73.0 2.0 1.0 3.0 1.0
β1 1.3 1.8 -2.5 5.0 -3.0 0.6 0.8 2.3 -1.8 4.3
µx 4.0 0.0 8.0 -28.0 12.0 -10.0 4.0 3.0 4.0 3.0
σx 12.0 9.6 9.0 10.0 17.0 20.0 4.0 3.0 4.0 3.0
λx 1.5 1.3 1.2 1.0 0.9 1.0 10.0 12.0 10.0 12.0
µe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
σe 5.0 4.0 3.0 6.0 9.0 8.0 1.0 2.0 1.0 4.0
λe 2.5 2.0 2.0

drawn. The error terms εi of a linear regression equation yi = xTi β + εi are drawn from a

normal distribution N(0, σe) where the values of the parameter σe are shown in the row “σe”

in Table 3.1. If a data set is simulated by the simulation method II, the interval ranges of

the error terms εi are drawn from an exponential distribution exp(λe) where the values of

parameter λe are shown in the row “λe” in Table 3.1. Data I is simulated by the simulation

method II in section 3.4, while Data II and III are simulated by the simulation method

III and IV , respectively.

We use the Data I as example to demonstrate the parameter setup in Table 3.1, the

parameter set up for Data II and III are analogously with that for Data I. Data I has

three clusters whose parameters are shown in the three columns under “Data I” in Table 3.1.

Each of the clusters is composed of 100 observations that are indicated in the row “n”. For

cluster 1 of Data I, all parameters that are needed to simulate the 100 observations are in

the column “1” under the “Data I” tab. The coefficients of the linear regression model of

the cluster 1 for Data I is β0 = 1.0 and β1 = 1.3 with an equation y = 1.0 + 1.3x. According

to the simulation method II, we generate 100 interval center points of the variable X from

a normal distribution N(µx = 4.0, σx = 12.0), denoted as x(c) = (x
(c)
1 , . . . , x

(c)
100)T . The 100

interval ranges of the variable X are drawn from an exponential distribution exp(λx = 1.5),
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denoted by xr = (x
(r)
1 , . . . , x

(r)
100). Then, a 100-observation sample of the interval-valued

variable X is composed by

xi = [xia, xib]

= [x
(c)
i − 0.5x

(r)
i , x

(c)
i − 0.5x(r)

z ],

(3.23)

for i = 1, . . . , 100. The 100 interval center points of the error term ε are generated from

a normal distribution N(µe = 0, σe = 5.0), denoted with ε(c) = (ε
(c)
1 , . . . , ε

(c)
100)T . The 100

interval ranges of ε are drawn from an exponential distribution exp(λe) = 2.5, denoted with

ε(r) = (ε
(r)
1 , . . . , ε

(r)
100)T . The 100 interval-valued error terms are obtained by

εi = [εia, εib]

= [ε(c) − 0.5ε(r), ε(c) − 0.5ε(r)],

(3.24)

for i = 1, . . . , 100. Eventually, the interval-valued response variable Y is generated by

yi = [yia, yib]

= [1.0 + 1.3xia + εia, 1.0 + 1.3xib + εib],

(3.25)

for i = 1, . . . , 100. The cluster 2 and 3 of Data I are simulated by a similar way as the

cluster 1. The linear regression equation of cluster 2 for Data I is y = 45 + 1.8x. The 100

interval center points of X are drawn from a normal distribution N(µx = 0, 9.6), while the

100 interval range of X are generated from an exponential distribution exp(1.3). For the

interval-valued error term ε, we have ε
(c)
i

iid∼ N(0, 4) and ε
(r)
i ∼ exp(2.0), i = 1, . . . , 100. For

cluster 3 of Data I, the linear regression equation is y = 45−2.5x. The interval center points

of X follow a normal distribution x
(c)
i

iid∼ N(8, 9), i = 1, . . . , 100. The interval ranges of X

follows an exponential distribution, x
(r)
i ∼ exp(1.2). For the interval-valued error term ε, we

have ε
(c)
i

iid∼ N(0, 3) and ε
(r)
i ∼ exp(2), i = 1, . . . , 100. After simulating all the three clusters
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for Data I, we stack the three 100-observation sample to obtain the Data I. Data I has the

following structure:

(1) y = 1.0 + 1.3x,

(2) y = 45 + 1.8x,

(3) y = 45− 2.5x.

(3.26)

The parameter setups for Data II and III in Table 3.1 are done analogously with Data I.

Note that Data II is simulated by simulation method III so that the error terms are classical

values. The error terms for Data III obtained by the simulation method IV are also classical

values. The values of the parameter σe are for the normal distribution of the classical values

of ε. For example, the error terms of cluster 2 of Data II follows a normal distribution,

ε ∼ N(0, 9), while the error term of cluster 3 of Data III follows a normal distribution,

ε ∼ N(0, 1). The true linear regression equations for the three clusters of Data II are as

follows:

(1) y = 142 + 5x,

(2) y = 33− 3x,

(3) y = −73 + 0.6x.

(3.27)

The true linear regression equations for the four clusters of Data III are as follows:

(1) y = 2.0 + 0.8x,

(2) y = 1.0 + 2.3x,

(3) y = 3.0− 1.8x,

(4) y = 1.0 + 4.3x.

(3.28)

Figure 3.4 shows the data structures for the three data sets, Data I, II, and III. From
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Figure 3.4 (a), (b), and (c), we can observe the structure of Data I, II, and III, respectively.

The regression lines in each plot are the recovered linear lines obtained by the K-regressions

algorithm. We can see that different clusters overlap with each other for all three data sets.

Especially, for Data III, a large proportion of the four clusters is overlapping. In addition,

for a particular data set, each cluster is clustering around a linear regression line.

(a) (b) (c)

Figure 3.4: Data structure for the Data I (a), II (b), and III (c)

For the particular data structure of Data I, we generate a random sample that follows

the Data I structure described in Table 3.1. Then, given the correct number of clusters

K = 3 for Data I, we use the K-regressions algorithm to recover the data structure. We

try a number of random initial partitions and repeat the K-regression algorithm on this

random sample of Data I. Based on these different initial partitions, the clustering result

with smallest sum of squared residuals of equation(3.4) is set to be the correct convergence

for this random sample of Data I. For a random sample of Data I, we tried 50 different

random initial partitions to recover its structure. This whole process is one replication for

Data I and we implement 100 such replications for the structure of Data I to investigate

the overall performance of the K-regression algorithm on Data I. The data set for each

replication is a different random sample that follows the structure of Data I. Table 3.2 gives

the clustering results of K-regression algorithm on 100 simulated random samples of Data

I.
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Table 3.2: K-regressions clustering results for Data I (number of replications=100)

Parameters True center city-block Hausdorff
Values mean std mean std mean std

Cluster 1
β0 1.00 0.92 0.55 0.84 0.55 0.91 0.64
β1 1.30 1.31 0.04 1.29 0.05 1.29 0.05

Cluster 2
β0 45.00 45.02 0.46 45.02 0.45 44.90 0.46
β1 1.80 1.80 0.04 1.80 0.04 1.80 0.04

Cluster 3
β0 45.00 44.86 0.50 45.13 0.53 45.12 0.50
β1 -2.50 -2.49 0.04 -2.50 0.04 -2.51 0.04

n∗ out of 50 - - 28.48 8.77 24.76 12.25 25.87 12.15
SSR - - 890.26 39.18 2181.25 86.35 1458.43 50.66

In Table 3.2 the column “True Values” are the true coefficients for the three clusters of

Data I. For example, the true values of the coefficients of the cluster 1 are β0 = 1.0 and

β1 = 1.3, which indicates that the true linear relationship between the two interval-valued

variables in the cluster 1 of Data I is y = 1.0 + 1.3x. Note that these true values correspond

to the linear regression equations in equation (3.26). The columns “center”, “city-block”,

and “Hausdorff” are the K-regressions algorithm clustering results using the center distance,

the city-block distance, and the Hausdorff distance. For each replication, given the number

of clusters K = 3, we apply the K-regressions algorithm to recover the true clusters of a

particular random sample of Data I. We can obtain the estimated coefficients for each of the

three clusters. After 100 replications, the mean and standard deviation are calculated for

the coefficients of each clusters. The column “mean” under the tab “center” in Table 3.2 is

the mean of the estimated coefficients out of 100 replications by applying the K-regressions

algorithm using center distance. The column “std” is the standard deviation of the estimated

coefficient out of the 100 replications. For example, the means estimated coefficients of β0 and

β1 for the cluster 1 are 0.92 and 1.31, respectively. The standard deviation of the estimated

β0 and β1 for the cluster 1 are 0.55 and 0.04, respectively. Small standard deviations of the

coefficients indicate stable clustering results.
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For each replication, we tried 50 different initial partitions when applying theK-regressions

algorithm to a particular random sample of Data I. The number of good initial partitions

out of 50, n∗, gives an idea about how difficult it is for the algorithm to converge to the

correct cluster by a random initial partition. Out of the 100 replications, we can calculate

the mean and standard deviation of n∗, which is shown in the row “n∗ out of 50” in Table 3.2

for the three distances. The SSR (see equation (3.4)) is also calculated for each replication.

The mean and standard deviation of the SSR out of the 100 replications are presented in

the row “SSR”.

For Data I, we compare the true values of the coefficients and the mean estimated

coefficients in Table 3.2. The true coefficients and the mean of the estimated coefficients are

close relative to their scales for all the three clusters and the three distances. For example,

the mean estimated coefficient of β1 for cluster 1 is 1.31 while the true value of β1 is 1.3.

The difference is 0.01 that is small relative to the value of 1.3. The standard deviations of

the estimated coefficients are all small relative to the coefficient scales, which indicates the

clustering results are stable. For example, the standard deviation of the 100 estimated β1

for the cluster 2 is 0.04 that is relatively small given the mean estimated β1 is 1.8.

Table 3.3: K-regressions clustering results for Data II (number of replications=100)

Parameters True center city-block Hausdorff
Values mean std mean std mean std

Cluster 1
β0 142.00 141.30 2.09 140.77 1.89 141.75 2.01
β1 5.00 4.97 0.07 4.95 0.07 4.99 0.07

Cluster 2
β0 33.00 33.06 1.25 33.39 1.30 33.42 1.28
β1 -3.00 -2.99 0.06 -3.00 0.06 -2.99 0.06

Cluster 3
β0 -73.00 -72.93 0.98 -72.83 1.11 -72.64 1.14
β1 0.60 0.60 0.05 0.60 0.05 0.60 0.06

n∗ out of 50 - - 26.55 14.51 33.42 15.70 34.51 14.74
SSR - - 1757.41 85.17 4127.63 177.30 2689.33 90.65

Table 3.3 presents the clustering results for the Data II with 100 replications. Table 3.3

can be interpreted in a similar way as Table 3.2 for Data I. Given the number of clusters
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K = 3, for all the three distances, the differences between the true coefficients and the mean

estimated regression coefficients are all small relative to the coefficient scales. Small standard

deviations for all the estimated coefficients imply a stable clustering results.

Table 3.4: K-regressions clustering results for Data III (number of replications=100)

Parameters True center city-block Hausdorff
Values mean std mean std mean std

Cluster 1
β0 2.00 2.06 0.38 3.55 1.76 3.86 2.98
β1 0.80 0.81 0.05 0.68 0.17 0.73 0.18

Cluster 2
β0 1.00 1.32 1.31 3.06 2.74 5.20 4.04
β1 2.30 2.36 0.22 2.28 0.50 1.97 0.73

Cluster 3
β0 3.00 2.90 0.32 3.12 0.34 3.02 0.39
β1 -1.80 -1.78 0.04 -1.81 0.05 -1.80 0.05

Cluster 4
β0 1.00 2.13 1.87 4.29 2.67 4.24 2.82
β1 4.30 4.27 0.35 4.04 0.46 4.05 0.48

n∗ out of 200 - - 43.95 45.77 14.73 28.70 24.77 33.35
SSR - - 296.25 20.52 777.90 44.84 521.13 27.75

The clustering results for the Data III are presented in the Table 3.4. The interpretation

of Table 3.4 for Data III follows in a similar manner as for the Table 3.2 for Data I and

Table 3.3 for Data II. Note that for Data III, a large proportion of the four clusters is

overlapped, which makes it more difficult to converge to the correct clusters for the K-

regressions algorithm. For each replication, we tried 200 different initial partitions. The

differences between the true coefficients and the mean estimated coefficients are small relative

to the scales of the coefficients. The standard deviations of the coefficients are small for all

the estimated coefficients and all the three distances. However, the intercept estimates for

clusters 2, 3, and 4 are not as accurate as it is for the cluster 1. This is not surprising given

that cluster 1 is more separated from the other three clusters.

We have explored the performance of the K-regressions clustering algorithm for a given

correct number of clusters, but usually we do not have information about the optimal number

of clusters. Now, we use the same three data structures, Data I, Data II, and Data III

presented in Table 3.1 to investigate the performance of determining the optimal number
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Elbow plots by weighted R2 and adjusted R2 for Data I (a) and (b), Data II
(c) and (d), and Data III (e) and (f)

of clusters by the elbow method, and the adjusted R2. For a particular data structure, we

generate a random sample and implement the K-regressions algorithm for K = 1, . . . , 10.

For each of K = 1, . . . , 10, we try a number of different initial partitions and select the

results with smallest SSR as the correct clustering results. The R2(K)
from equation (3.8)

and R̄2(K)
from equation (3.12) are calculated for each of K = 1, . . . , 10. The elbow plot is

plotted as K versus 1 − R2(K)
. We also plot the K versus R̄2(K)

where the maximum R̄2(K)

determines the optimal number of clusters. This whole process is for one replication, and we

implement total 20 replication to test the performance of elbow method and the adjusted

R2.

Figure 3.5 shows the elbow plots and the plots of R̄2(K)
. Figure 3.5 (a), (b), and (c) are

the elbow plots for Data I, II, and III, respectively, where the grey lines are the elbow
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plots for the 20 replications, the blue line is the average R2(K)
over 20 replications. We can

see that the elbow plots identify the correct optimal number of clusters for all the three data

sets, K = 3 for Data I and II, K = 4 for Data III. It is relatively difficult to determine the

optimal number of clusters for Data III due to the overlapping of clusters, but the elbow

plots correctly determined the number of clusters for all of the 20 replications nevertheless.

The Figure 3.5 (d), (e), and (f) show the plots of R̄2(K)
from equation (3.8) for Data I,

II, and III, respectively. For the plots of R̄2(K)
, we look for the largest value of R̄2(K)

which

corresponds to the optimal number of clusters. For each of the three data structures, the

optimal number of clusters determined by the largest R̄2(K)
is mostly larger than the true

number of clusters for the 20 replications.

Generally, the elbow method is a stable and reliable method to determine the optimal

number of clusters. There could be cases where the R2(K)
decreases gradually and consistently

so that an elbow point is hard to find. Usually such scenarios indicate that there does not

exist an optimal number of clusters to well separate the data and subjective judgment needs

to be involved for a decision. Fixing a reasonable cutoff for the R2(K)
is a realistic option in

practice. The R̄2(K)
, adjusted R2, usually overestimates the optimal number of clusters and

so is not a good method to determine the optimal number of clusters.

62



3.5.3 Appendix

R code for the K-regressions clustering

# ---------------------------------------------------------

# Using SVM method to recover the relationship between x and y

# ---------------------------------------------------------

# --------------------------------------------------------

# variance of interval data

# The function cov.int calculate the variance of a interval-valued

# variable, or covariance between two interval-valued variables

cov.int<-function(x,y=NULL)
{

m<-nrow(x)
if (is.null(y))

{cov<-sum(x[,2]ˆ2+x[,2]*x[,1]+x[,1]ˆ2)/3/m-(sum(x[,1]+x[,2]))
ˆ2/4/mˆ2}

else
{ xbar<-sum(x[,1]+x[,2])/2/m

ybar<-sum(y[,1]+y[,2])/2/m
cov<-sum(2*(x[,1]-xbar)*(y[,1]-ybar)+(x[,1]-xbar)*(y[,2]-ybar)

+

(x[,2]-xbar)*(y[,1]-ybar)+2*(x[,2]-xbar)*(y
[,2]-ybar))/6/m

}

return(cov)
}

# --------------------------------------------------------

# The function corr.int calculate the correlation between two interval-valued

# variables

corr.int<-function(x,y)
{return(cov.interval(x,y)/sqrt(cov.interval(x))/sqrt(cov.interval(y)))}

# --------------------------------------------------------

# The function calculate the variance covariance matrix of a

# multi-dimensional interval-valued data

varcov.interval<-function(x)
{

#nobs<-nrow(x)
nvar<-ncol(x)/2
cov<-matrix(0,nvar,nvar)
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for(i in 1:(nvar-1))

{ for(j in (i+1):nvar)

{

cov[i,j]<-cov.int(x[,(2*i-1):(2*i)],x[,(2*j-1):(2*j)])
}

}

for(i in 1:nvar) cov[i,i]<-cov.int(x[,(2*i-1):(2*i)])
cov[lower.tri(cov)]<-t(cov)[lower.tri(cov)]
return(cov)

}

# --------------------------------------------------------

# The function lm.int calculate the coefficient estimate

# of linear regression between two interval-valued variables

# using the SVM method

lm.int<-function(y,x)
{ beta1<-cov.int(y,x)/cov.int(x)

beta0<-mean.int(y)-beta1*mean.int(x)
res<-cbind(beta0,beta1)
colnames(res)<-c("intercept",deparse(substitute(x)))
return(res)

}

# --------------------------------------------------------

# plot of x and y, x and y are both interval data

# The function plot.int draw a plot of variable x versus y.

# Each observation of the plot is a rectangle to reflect the

# interval-valued variables

library(graphics)
plot.int<-function(x,y,xlab=deparse(substitute(x)) ,ylab=deparse(substitute(y)

),

main=NULL,sub=NULL,asp=NULL, density = NULL, angle = 45, col
= NA,

border = NULL, lty = par("lty"), lwd = par("lwd"),...)
{ rangex<-max(x)-min(x)

rangey<-max(y)-min(y)
length<-nrow(x)
plot(c(min(x)-.03*rangex,max(x)+.03*rangex), c(min(y)-.03*rangex,max(y

)+.03*rangex),
type="n",xlab=xlab,ylab=ylab,main=main,sub=sub,asp=asp,...)

for (i in 1:length)
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{rect(x[i,1], y[i,1], x[i,2], y[i,2],density = NULL, angle = 45, col =

NA,

border = NULL, lty = par("lty"), lwd = par("lwd"),...)}
}

# Function add.rect add more observations (rectangles) onto a plot

# that is plotted by the function plot.int.

add.rect<-function(x,y,col=NA,border=1,...)
{ rangex<-max(x)-min(x)

rangey<-max(y)-min(y)
length<-nrow(x)
for (i in 1:length)
{rect(x[i,1], y[i,1], x[i,2], y[i,2],col=col,border=border,...)}

}

# --------------------------------------------------------

# The function hist.int plot the histogram of an interval-valued

# data set given the number of bin, num.bin. The default value

# of num.bin is 10.

hist.int<-function(x, num.bin=10)

{

min.val <- min(x)
max.val <- max(x)

n <- nrow(x)
bin.width <- (max.val-min.val)/num.bin
freq <- numeric(num.bin)

for (i in 1:n)

{

xbin1 <- (x[i,1] - min.val)/bin.width
xbin2 <- (x[i,2] - min.val)/bin.width
range <- x[i,2]-x[i,1]

n1 <- ceiling(xbin1)
n2 <- ceiling(xbin2)
if (n2>num.bin) n2<-num.bin
dec1 <- xbin1- n1+1

dec2 <- n2-xbin2

freq[n1:n2] <- freq[n1:n2]+1*bin.width/range
freq[n1] <- freq[n1]-dec1*bin.width/range
freq[n2] <- freq[n2]-dec2*bin.width/range
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}

bins1 <- min.val+(0:(num.bin-1))*bin.width
bins2 <- bins1+bin.width

plot.int(cbind(bins1,bins2),cbind(0,freq),xlab=deparse(substitute(x)) ,ylab=

"Frequency")

}

# ------------------------------------------------------------------

# Simulation methodology

# The function simulate.int1, simulate.int2, and simulate.int3

# correspond to the simulation method II, III, IV, respectively,

# in chapter 3.

# ------------------------------------------------------------------

# ------------------------------------------------------------------

# method II

# ------------------------------------------------------------------

# add a interval error on the interval of y which is calculated by linearly

combining

# the intervals of x’s. The lower bound of y is the min of X*beta, while the

upper

# bound is the max of X*beta.

library(MASS)
simulate.int1 <- function(n,beta=c(1,1), x.mu=5,x.sigma=1.5,x.rate=15,e.mu=0,e

.sigma=1.5,e.rate=1.5)

{

p <- length(x.mu)

if(p==1) x.mean <- as.matrix(rnorm(n, x.mu, x.sigma),n,1)

else x.mean <- mvrnorm(n, x.mu, diag(x.sigma))

x<-NULL
for (i in 1:p)

{

x.r <- rexp(n,x.rate[i])
xa <- x.mean[,i]-.5*x.r
xb <- x.mean[,i]+.5+x.r
x <- cbind(x,xa,xb)

}
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beta1<-beta[-1]

#positive and negative positions

pos<-which(beta1>0)
neg<-which(beta1<0)
if(length(pos)!=0)
{

a.pos<-as.matrix(x[,(2*pos-1)],n,length(pos))%*%beta1[pos]
b.pos<-as.matrix(x[,(2*pos)],n,length(pos))%*%beta1[pos]

}

else
{

a.pos<-0
b.pos<-0

}

if(length(neg)!=0)
{

a.neg<-as.matrix(x[,(2*neg)],n,length(neg))%*%beta1[neg]
b.neg<-as.matrix(x[,(2*neg-1)],n,length(neg))%*%beta1[neg]

}

else
{

a.neg<-0
b.neg<-0

}

ya<-beta[1]+a.pos+a.neg
yb<-beta[1]+b.pos+b.neg

e.mean <- rnorm(n,e.mu,e.sigma)
e.r <- rexp(n,e.rate)
e <- cbind(e.mean-.5*e.r,e.mean+.5*e.r)

ya <- ya+e[,1]

yb <- yb+e[,2]

y <- cbind(ya,yb)

data <- cbind(y,x)

return(data)
}

# ------------------------------------------------------------------

# method III
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# ------------------------------------------------------------------

# Randomly draw n.int points within each interval of xs, then calculate the

ys that is

# the linear combination of xs add a error term that follow a normal

distribution.

# The min of the ys would be the lower bound and max is the upper bound.

simulate.int2 <- function(n=10,beta=c(1,1),x.mu=0,x.sigma=10,x.rate=2,n.int
=50,e.mu=0,e.sigma=1)

{

p <- length(x.mu)

if(p==1) x.mean <- as.matrix(rnorm(n, x.mu, x.sigma),n,1)

else x.mean <- mvrnorm(n, x.mu, diag(x.sigma))

x<-NULL
for (i in 1:p)

{

x.r <- rexp(n,x.rate[i])
xa <- x.mean[,i]-.5*x.r
xb <- x.mean[,i]+.5+x.r
x <- cbind(x,xa,xb)

}

ya<-yb<-NULL

for (i in 1:n)

{ x.int<-matrix(0,p,n.int)
for(j in 1:p)

{

x.int[j,] <- runif(n.int,x[i,2*j-1],x[i,2*j])
}

y.int <- beta[1]+beta[-1]%*%x.int+rnorm(1,e.mu,e.sigma)
ya.temp<-min(y.int)
yb.temp<-max(y.int)

ya<-c(ya,ya.temp)
yb<-c(yb,yb.temp)

}

y <- cbind(ya,yb)

data <- cbind(y,x)
return(data)
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}

# ------------------------------------------------------------------

# method IV

# ------------------------------------------------------------------

# Randomly draw n.int number for each interval of xs. The ys corresponding

to these xs

# are calculated as the linear combination of xs add a error term that

follows a normal

# distribution. Then the first quartile to the third quartile of these ys is

the interval

# y. The n.int need to be large.

simulate.int3 <- function(n=10,beta=c(1,1),x.mu=0,x.sigma=10,x.rate=2,n.int
=1000,e.mu=0,e.sigma=1)

{

x.mean <- rnorm(n, x.mu, x.sigma)

x.r <- rexp(n,x.rate)
xa <- x.mean-.5*x.r
xb <- x.mean+.5+x.r
x <- cbind(xa,xb)

p <- length(x.mu)

y<-NULL

for (i in 1:n)

{

x.int <- runif(n.int,x[i,1],x[i,2])
y.int <- beta[1]+beta[2]*x.int+rnorm(1,e.mu,e.sigma)
y.temp<-quantile(y.int,c(.25,.75))

y<-rbind(y,y.temp)
}

colnames(y) <- c("ya","yb")

data <- cbind(y,x)
#plot.int(x,y)

return(data)

}
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# ----------------------------------------------------------------

# The function K.regressions implement the K-regressions

# clustering algorithm given the optimal number of cluster

# K. The interval distance can be center, city-block, or

# Hausdorff distance.

# ----------------------------------------------------------------

library(caret)
K.regressions<-function(data,K,seed,distance="center",max.iter=100,list.group=

FALSE)

{

if (!missing(seed))
set.seed(seed)

p<-ncol(data)/2-1
n<-nrow(data)

data.fold<-createFolds(1:n, k = K)

# initialization

m<-matrix(0,K,2)
group<-rep(0,n)
for (k in 1:K)

{

group[data.fold[[k]]] <- k

m[k,]<-lm.int(data[data.fold[[k]],1:2],data[data.fold[[k]],3:4])
}

cond<-1
i<-0

while(cond && i<=max.iter)
{ i<-i+1

#print(i)

residual<-matrix(0,n,K)

if (distance == "center")

{

for (k in 1:K)

{

residual[,k]<-abs(apply(data[,1:2],1,mean)-m[k,1]-m[k,2]*apply(data
[,3:4],1,mean))

}

}
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if(distance == "city-block")

{

for (k in 1:K)

{

yhat<-m[k,1]+m[k,2]*data[,3:4]
residual[,k]<-abs(data[,1]-apply(yhat,1,min))+abs(data[,2]-apply(yhat

,1,max))
}

}

if (distance == "Hausdorff")

{

for (k in 1:K)

{

yhat<-m[k,1]+m[k,2]*data[,3:4]
residual[,k]<-apply(cbind(abs(data[,1]-apply(yhat,1,min)),abs(data

[,2]-apply(yhat,1,max))),1,max)
}

}

regroup<-apply(residual,1,f<-function(x){return(which(x==min(x))[1])})

if (!all(table(regroup)>p)||length(table(regroup))<K)
stop("Number of observations is smaller than the number of parameters

for one

or more clusters!")

sum.residual<-0
m<-matrix(0,K,2)
for (k in 1:K)

{

m[k,]<-lm.int(data[regroup==k,1:2],data[regroup==k,3:4])
sum.residual<-sum.residual+sum(residual[regroup==k,k])

}

cond<-!all(regroup==group)
#print(sum(ifelse(group==regroup,1,0)))

group<-regroup
}

#m<-m[order(m[,1]),]

models<-matrix(t(m),1,2*K)

if (list.group==T)
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{return(list(sum.residual = sum.residual, models = models, group = group))

}

else
{return(list(sum.residual = sum.residual, models = models))}

}

# ----------------------------------------------------------------

# The function determineK calculate the R2 and adjusted

# R2 of the K-regression clustering for K=1,...,Kmax.

# An elbow plot can be draw to determine the optimal K

# when the R2 is obtained.

# ----------------------------------------------------------------

determineK<-function(data,rep.input,distance.input,Kmax)
{

r2.K<-NULL
for(K in 1:Kmax)

{

cluster<-NULL
rep<-1
seed<-sample(100000,1)
seed.vec<-NULL
while (rep <= rep.input)
{

t<-try(K.regressions(data=data,K=K,list.group=T, seed=seed, distance =

distance.input))
if("try-error" %in% class(t)) {seed<-seed+1; next}
else
{

t<-c(t[[1]],t[[2]])
cluster<-rbind(cluster,t)
rep<-rep+1
seed.vec<-c(seed.vec,seed)
seed<-seed+123

}

}

min.sr<-min(cluster[,1])

opt.position<-which(cluster[,1]==min.sr)[1]
result<-K.regressions(data,K,seed=seed.vec[opt.position],list.group=T)
group<-result$group
m<-result$models
m<-matrix(m,K,2,byrow=T)
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yhat<-matrix(0,nrow(data),2)
r2<-rep(0,K)
for (k in 1:K)

{ pos<-which(group==k)
yhat[pos,1]<-m[k,1]+m[k,2]*ifelse(rep(m[k,2]>0,length(pos)),data[pos,3],

data[pos,4])
yhat[pos,2]<-m[k,1]+m[k,2]*ifelse(rep(m[k,2]>0,length(pos)),data[pos,4],

data[pos,3])
r2[k]<-cov.int(yhat[pos,])/cov.int(data[pos,1:2])

}

weighted.r2<-weighted.mean(r2,table(group))
r2.K<-c(r2.K,1-weighted.r2)

}

p<-ncol(data)/2-1
adjusted.r2<-(1-r2.K)-r2.K*(1:K)*p/(nrow(data)-(1:K)*p-1)

list(r2.K=r2.K,adjusted.r2=adjusted.r2)
}
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Chapter 4

Linear Clustering Using Orthogonal

Regression for Interval-Valued Data

In chapter 3, we proposed an algorithm to recover multiple linear relationships between

a response variable and predictor variables for interval-valued data. That algorithm is a

supervised learning algorithm. More commonly, it is of interest to group a data set into

different clusters for which each cluster clusters around a linear line or a hyperplane of

multiple dimensions. Under such a scenario, we have an unsupervised learning process and

there is not necessarily a specific response variable. The proposed algorithm in chapter 3 can

be applied to this kind of problem by trying each of the variables as the possible response

variable. As Van Aelst et al. (2006) pointed out, however, it could be misleading using a

supervised learning algorithm on this unsupervised problem, since the clustering results are

usually different when using a different variable as the response variable. There is no way to

determine which result is the correct one or the best one. In addition, it is computationally

intensive to try each variable as the response variable.

In this chapter, we propose an unsupervised clustering algorithm by applying a proposed

symbolic orthogonal regression methodology. The orthogonal regression method utilizes the
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total least squares to minimize the sum of squares of error in terms of orthogonal distances

between the observations and the predicted hyperplane. It does not require a response vari-

able; thus, it is appropriate to our unsupervised clustering of the data clustered around

multiple hyperplanes. In the reminder of this chapter, we will present the symbolic orthogo-

nal regression methodology and orthogonal distance in section 4.1. The clustering algorithm

using this symbolic orthogonal regression method is given in section 4.2. Section 4.3 proposes

multiple methods of determining the optimal number of clusters K. A simulation study and

an application are given in section 4.4 and section 4.5, respectively.

4.1 Symbolic Orthogonal Regression and Orthogonal Distance

Orthogonal regression (OR) methodology was originally derived for a measurement error

model for classical data in Fuller (2009). For one dimension, we set up the model

yi = β0 + β1xi, i = 1, . . . , n, (4.1)

where x1, . . . , xn is a random sample of the predictor variable x, and y1, . . . , yn is a random

sample of the response variable y. For the measurement error model, xi and yi cannot be

observed directly. Instead, we observe

µi = xi + ui,

νi = yi + εi,

(4.2)

where ui are independent and identically distributed (iid), N(0, σu), εi
iid∼ N(0, σε) for i =

1, . . . , n, u = (u1, . . . , un) and ε = (ε1, . . . , εn) are independent. Combining (4.1) and (4.2),

we have yi = β0 + β1xi + εi, i = 1, . . . , n. When xi is an unknown fixed constant, the model

is a functional model; while it is a structural model, if xi is a random variable. If the error
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variance ratio

η =
var(ν|x)

var(µ|x)
=
σ2
ε

σ2
u

(4.3)

is known, the estimators of the orthogonal regression model are obtained by solving

min
β0,β1,x1,...,xn

n∑
i=1

[(νi − β0 − β1xi)
2/η + (µi − xi)2]. (4.4)

If η = 1, the solution of (4.4) minimizes the sum of squares of the orthogonal distance between

the vector (yi, xi) and the linear line y = β0 +β1x. The orthogonal distance between a vector

xi and a hyperplane xβ = α given a constant vector (β, α) is defined as

‖β‖−1
2 |xiβ − α|, (4.5)

which is the Euclidean distance between xi and its projected point onto the hyperplane

xβ = α.

Unlike the classical linear regression method, orthogonal regression methods minimize

the sum of squares of orthogonal distances between the data points and the fitted model.

Thus, the fitted model is the same when treating either x or y as the response variable.

For multiple dimensions, the measurement model is

yi = xiβ,

(νi,µi) = (yi,xi) + (εi,ui),

(4.6)

for i = 1, . . . , n, where the parameter β = (β1, . . . , βp)
T is the set of coefficients that need

to be estimated, xi is the p dimensional predictor variables, (νi,µi) are the observed values

while (yi,xi) are the true values, ei = (εi,ui) is the measurement error, and εi and ui are

independent. Let ei
iid∼ N(0,Σe), where Σe = γeσ

2 and γe is known. Then, the orthogonal
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regression estimator is obtained by minimizing

n∑
i=1

(νi − xiβ,µi − xi)γ−1
e (νi − xiβ,µi − xi)′. (4.7)

When γe = I, equation (4.7) is a (p + 1) dimension orthogonal distance between the data

points and the fitted model yi = xiβ; otherwise, it is a general orthogonal distance. Again,

the fitted model is the same when treating any one variable of (νi,µi) as the response variable.

More generally, let µi be p dimensional observations with

µi = xi + ui, i = 1, . . . , n, (4.8)

where xi is the true unobserved value and ui
iid∼ N(0,σu) is the measurement error, and

σu is the covariance matrix of the measurement errors. The unobserved x follows the linear

relationship

xβ = α, (4.9)

where α ∈ R, and β ∈ Rp. If σu is known, the orthogonal regression estimator is obtained

by minimizing

n∑
i=1

(µi − xi)σ−1
u (µi − xi)′

s.t. xiβ = α,

(4.10)

which is a minimization problem with a linear constraint. When σu = σ2I with σ2 known,

equation (4.10) is the simple orthogonal distance. The solution of equation (4.10) is a

hyperplane that crosses the sample mean vector, µ̄, of µ. Thus, β satisfies

(x− µ̄)β = 0. (4.11)
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Then, the β minimizing equation (4.10) is given by

(mµ − λ̂I)β̂ = 0, (4.12)

where λ̂ is the smallest eigenvalue of mµ, and mµ is the covariance matrix of µ. The

estimator β̂ is also called total least squares estimator of β.

Equation (4.11) is a hyperplane that crosses the mean of the data and is perpendicular

to the eigenvector associated with the smallest eigenvalue of the covariance matrix of µ.

The connection between orthogonal regression and principal component analysis (PCA) is

created by the eigenvalue decomposition of the covariance matrix of µ. When applying the

orthogonal regression method for clustering, it is not necessary to specify a response variable.

4.1.1 Orthogonal Regression for Interval-Valued Data

A perspective of symbolic PCA (simple symbolic orthogonal regression method)

The orthogonal regression method for interval-valued data can be implemented based on the

connection between the orthogonal regression and the principal component analysis (PCA)

methods. Let X = (X1, . . . , Xp) be a p dimensional interval-valued data set with n obser-

vations where a realization of Xj is [xja, xjb], j = 1, . . . , p. We assume that the p variables

in X follow the linear relation xβ = α where α ∈ R and β ∈ R. The simple orthogonal

regression coefficient estimate is obtained by minimizing

n∑
i=1

(xi − ẍi)(xi − ẍi)′

s.t. ẍiβ = α,

(4.13)
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where ẍi is the estimated value of xi, and xi is the ith observation of X. Analogously with

the solution of equation (4.10), the estimate of β is given by

(mX − λ̂I)β̂ = 0, (4.14)

where mX is the covariance matrix of X, and λ̂ is the smallest eigenvalue of the mX . The

covariance matrix mX can be constructed by the definition of sample variance and covariance

for the interval-valued data in definitions 2.1.7 and 2.1.8, and λ̂ can be derived accordingly.

Then, the fitted simple orthogonal regression model for the interval-valued data X is as

follows:

(x− X̄)β̂ = 0, (4.15)

where X̄ = (X̄1, . . . , X̄p) is the mean vector of X.

Usually, we standardize the variables before the principal component analysis to avoid

the effect of different scales. The interval-valued random variable can be standardized in a

similar way as for the standardization of classical values. Let X̄ be the sample mean for an

interval-valued variable X, and S be the sample variance; then, the standardized interval

value of X is

Y =
X − X̄√

S
. (4.16)

It can be verified that the symbolic sample mean and variance of Y is 0 and 1, respectively.

Once the variable is standardized, the orthogonal regression method can be implemented

through the covariance matrix of Y . This orthogonal regression method obtained by imple-

menting symbolic PCA is called a simple symbolic orthogonal regression method.

A perspective of a measurement error model (general symbolic orthogonal re-

gression method)

The classical data regression method only considers the “between” variance and covariance in
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equation (2.7) and equation (2.9) since there do not exist a “within” variance nor a “within”

covariance. To additionally consider the internal or within variance and covariance (equation

(2.7a), equation (2.10a)) is the main challenge for interval-valued data analysis. The simple

symbolic orthogonal regression method is one way to integrate the internal variances and

covariances of interval-valued data. Next, we propose an alternative way to construct an or-

thogonal regression method for interval-valued data from the perspective of a measurement

error model.

Let X = (X1, . . . , Xp) be a p dimensional interval-valued data set with n observations.

To look at the problem from a measurement error perspective, we treat X(c), the center

points of X, as the observed values of the p variables. We assume that there exists a matrix

ẍ = (ẍ1, . . . , ẍn)T such that

x
(c)
i = ẍi + ui,

ẍiβ = α,

(4.17)

where ẍi = (ẍi1, . . . , ẍip), ẍij ∈ [xija, xijb], i = 1, . . . , n, j = 1, . . . , p, and where ui =

(ui1, . . . , uip) is the measurement error of ẍi. For an interval value xij = [xija, xijb], the range

of the interval can be seen as the measurement error of the true value ẍij. We assume the

measurement error of xij follows a uniform distribution,

uij∼U(xija − x(c)
ij , xijb − x

(c)
ij ). (4.18)

We have E(uij) = 0 for i = 1, . . . , n, j = 1, . . . , p. Furthermore, we assume that the

measurement error for a particular variable Xj follows a normal distribution overall. In

other words, we assume that ui
iid∼ N(0,Σu), i = 1, . . . , n. Let Uj = ([x1ja − x

(c)
ij , x1jb −

x
(c)
1j ], . . . , [xnja − x(c)

nj , xnjb − x
(c)
nj ])T . Then, the covariance matrix of the normal distribution
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Σu can be estimated by the method of moments as follows:

Σu =


var(U1) . . . cov(Up, U1)

...
. . .

...

cov(U1, Up) . . . var(Up))

 , (4.19)

where cov(Uj, Uj′) is the symbolic covariance between Uj and Uj′ , j, j
′ = 1, . . . , p.

Without loss of generality, we assume α = 0; in other words, the hyperplane always

crosses the origin of the coordinates. If that is not true, we just need to centralize the data

so that X∗ = X − X̄ where X∗ is the centralized data, X̄ = (X̄1, . . . , X̄p) is the mean

vector of X.

Since we assume that ui ∼ N(0,Σu), the density function of ui is

(2π)−p/2|Σu|−1/2 exp{−1

2
uΣ−1

u u
′}. (4.20)

For the data X with n observations, the log likelihood function is

logL = −np
2

log(2π)− n

2
log |Σu| −

1

2

n∑
i=1

(xci − ẍi)Σ−1
u (xci − ẍi)T . (4.21)

The estimation of β can be derived by solving the following minimization problem:

min(− logL)

s.t. ẍiβ = 0.

(4.22)

We adapt the derivation from Fuller (2009) a little to estimate the β. To obtain a unique

solution of β, a constraint on β is needed. Without loss of generality, we set the first element

of β, β1 = −1, and denote the rest of the elements (β2, . . . , βp) as β−1. Similarly, we denote

(ẍi2, . . . , ẍip) as ẍi(−1), and (x
(c)
i2 , . . . , x

(c)
ip ) as x

(c)
i(−1). For given β, the problem in equation
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(4.22) can be solved with respect to xci , i = 1, . . . , n, which is equivalent to minimizing

(x
(c)
i1 − ẍi(−1)β−1,x

(c)
i(−1) − ẍi(−1))Σ

−1
u (x

(c)
i1 − ẍi(−1)β−1,x

(c)
i(−1) − ẍi(−1))

T . (4.23)

This is equivalent to a weighted least square estimation and the estimator of ẍTi is

ẍTi = (β−1, Ip−1)T [(β−1, Ip−1)Σ−1
u (β−1, Ip−1)T ]−1)(β−1, Ip−1)Σ−1

u (x
(c)
i )T

= (x
(c)
i )T −Σuβ(βTΣuβ)−1βT (x

(c)
i )T .

(4.24)

By substituting equation (4.24) into equation(4.21), the estimation of β follows the derivation

in Fuller (2009). The solution of β is given by

(MX(c)X(c) − λ̂Σu)β̂ = 0, (4.25)

where λ̂ is the smallest root of

|MX(c)X(c) − λ̂Σu| = 0, (4.26)

and MX(c)X(c) = n−1X(c)′X(c). The β obtained from equation (4.25) is usually constrained

to be a unit vector. If we set β1 = −1, then the estimation of β−1 is

β̂−1 = (M
X

(c)
−1X

(c)
−1
− λ̂Σ22)−1(M

X
(c)
−1X

(c)
1
− λ̂Σ12), (4.27)

where X
(c)
−1 = (X

(c)
2 , . . . , X

(c)
p ), λ̂ is the smallest root of equation (4.26), and Σ12 is the co-

variance matrix of the measurement errors between X
(c)
1 andX

(c)
−1 while Σ22 is the covariance

matrix of the measurement errors of X
(c)
−1. Alternatively, we can rewrite Σu as submatrices
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in the form

Σu =

 Σ11
1×1

Σ12
1×(p−1)

Σ21
(p−1)×1

Σ22
(p−1)×(p−1)

 , (4.28)

where Σ11 is the variance of the measurement error of X1.

Note that the unit vector β̂ obtained from equation (4.25) and the vector β̂ = (1, β̂
T

−1)T

constructed from equation (4.27) are equivalent in terms of a constant multiplier. According

to our assumption of ẍβ = 0, we usually centralize the data first and then derive the

coefficient estimate of β. Eventually, when we transfer back to the original locations of the

x vector, the hyperplane has the form (x− X̄)β̂ = 0, x ∈ Rp.

From Fuller (2009), the smallest root of |MX(c)X(c) − λ̂Σu| = 0 can be constructed by

the following process. A unitary vector t that satisfies (MX(c)X(c) − λ̂Σu)t = 0 is called

the eigenvector of MX(c)X(c) in the metric of Σu. Let the columns of matrix Q be the

eigenvector of Σu, and let Ω = diag{ω1, . . . , ωp}, where ωj is the jth eigenvalue of Σu. We

can construct the matrix T = [t1, . . . , tp] as

T = QΩ−1/2P , (4.29)

where Ω−1/2 = diag{ω−1/2
1 , . . . , ω

−1/2
p }, and the columns of P are the eigenvectors of the

matrix Ω−1/2QTMX(c)X(c)QΩ−1/2. Then, we have

T TMX(c)X(c)T = diag{λ1, . . . , λp}, (4.30)

where λ1, . . . , λp are the roots of equation (4.26) from which the smallest roots λ̂ can be

obtained and the associated β̂ can be calculated accordingly.

When the measurement errors from the p variables are independent, or the covariance

matrix of the measurement error Σu is a diagonal matrix, the expression in equation (4.23)
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is similar to that for a weighted least squares estimation. The objective function of equation

(4.23) weights less if the measurement error for a variable is large. Generally, we call the

measurement error model for an interval-valued data regression method a general symbolic

orthogonal regression method.

4.1.2 Symbolic Orthogonal Distance

We have established the orthogonal regression methodology for interval-valued data in section

4.1.1. In this section, we define the distance between an interval-valued observation and a

hyperplane. Since the principle of the simple and general symbolic orthogonal regression

methods are different, the distances for the two regressions are defined separately. A symbolic

orthogonal distance is defined for the simple symbolic orthogonal regression method, while a

general orthogonal distance is defined for the general symbolic orthogonal regression method.

For classical data, the orthogonal regression residual of an observation xi for a fitted

hyperplane xβ = α is

ei =
xiβ − α
‖β‖2

, (4.31)

where β is a constant vector and α is a constant value. When the coefficient β is an unit

vector, ‖β‖2 = 1, the distance in equation (4.31) can be simplified as follows:

ei =
〈β, (xi − X̄)〉
‖β‖2

= 〈β, (xi − X̄)〉, (4.32)

where 〈·, ·〉 is the inner product between two vectors. The orthogonal distance between the

observation xi and the fitted hyperplane is the absolute value of the residual ei.

For the simple symbolic orthogonal regression method, we define the simple orthogonal

distance between an interval-valued observation and the fitted hyperplane in a similar way

as for classical data. For interval-valued data, the coefficients β and α in equation (4.31) are

both classical values, the only interval value is the observation xi. A natural way to define
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the orthogonal distance between xi and the hyperplane xβ = α is the orthogonal distance

between the center point of the xi and the hyperplane

dci = ‖β‖−1
2 |(x

(c)
i β − α)| = ‖β‖−1

2 |((xia + xib)β/2− α)|, (4.33)

where xia and xib are the end points vector of xi, x
(c)
i is the center points vector. We call

this definition in equation (4.33) the center distance, denoted as dc. Note the center distance

defined in equation (4.33) is different from the center distance defined in equation (3.5).

Equation (4.33) defines distance between an interval value and a hyperplane while equation

(3.5) define the distance between two interval values. For the model of equation (4.15), the

distance can be simplified as |〈β, (x(c)
i − X̄〉|, where X̄ is the mean vector of X.

Now, we use an alternative way to define the simple orthogonal distance. Given a partic-

ular interval-valued observation xi and a hyperplane xβ = α, we define the minimum and

maximum orthogonal distance between xi and xβ = α as follows:

Dmin
i = min

x∈xi

‖β‖−1
2 (xTβ − α),

Dmax
i = max

x∈xi

‖β‖−1
2 (xTβ − α),

(4.34)

where x ∈ xi ≡ {x = (x1, . . . , xp) : x1 ∈ [xi1a, xi1b], . . . , xp ∈ [xipa, xipb]}. We can see

that Dmin
i is the minimum distance between any point within the hypercube of xi and the

hyperplane xTβ = α, while Dmax
i is the maximum distance. Note that the values of Dmin

i and

Dmax
i can be either positive or negative. The definition in equation (4.34) can be rewritten

as follows:

Dmin
i = ‖β‖−1

2 (
∑
l:βl>0

xilaβl +
∑

m:βm<0

xmβimb − α),

Dmax
i = ‖β‖−1

2 (
∑
l:βl>0

xilbβl +
∑

m:βm<0

xmβima − α).

(4.35)
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Figure 4.1: Examples of orthogonal distance defined by Dmin and Dmax

There are multiple ways to define the orthogonal distance byDmin
i andDmax

i . We consider

three particular ways in the following context. First, we define the orthogonal distance as

the absolute value of the average of Dmin
i and Dmax

i ,

di =
1

2
|Dmin

i +Dmax
i |, (4.36)

which is equivalent to the center distance, dci , defined in equation (4.33).

The second way is defined as the average of the absolute values of Dmin
i and Dmax

i ,

dai =
1

2
(|Dmin

i |+ |Dmax
i |). (4.37)

We call the distance, dai , in equation (4.37) average absolute distance to distinguish it form

the center distance dci of equation (4.33).

Figure 4.1 compares the center distance and the average absolute distance by consider-

ation of 2-dimensional data examples. In Figure 4.1 (a), the observation x1 is generally

further from the line l than is the observation x2. Both the center distance and the average

absolute distance are able to measure that distance difference appropriately. The observa-

tions x3 and x4 in Figure 4.1 (b) have the same center points but the interval ranges are
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larger for x3 for both dimensions. The average distance from l is larger for the points within

x3 than are the points within x4. The average absolute distance can capture this distance

difference, while the center distance for the two observations are the same. For this scenario,

the average absolute distance is more appropriate to measure the orthogonal distance. The

two observations x5 and x6 in Figure 4.1 (c) have the same interval ranges but the positions

are different. The average distance between the points within the observation and l is larger

for x5 than for x6, which the center distance can capture but the average absolute distance

cannot as this latter distance is the same for the two observations. For this example, the

average absolute distance is more appropriate than is the center distance.

To address the inappropriateness of the center distance and average absolute distance

under some certain scenario, we introduce a third distance measure. We revise the definition

of equation (4.36) and equation (4.37) as follows

dmi =
1

2
[min(|Dmin

i |, |Dmax
i |)1Dmin

i Dmax
i >0 + max(|Dmin

i |, |Dmax
i |)]. (4.38)

The distance dmi is called the min max distance to distinguish it from the center distance

and the average absolute distance. The definition in equation (4.38) is equivalent to

dmi =
1

2
‖β‖−1

2 (min
x∈xi

|xTβ − α|+ max
x∈xi

|xTβ − α|), (4.39)

where x ∈ xi is defined the same as for equation (4.34). The interpretation of dmi is that when

the hyperplane does not cross an observation, then the orthogonal distance dmi is the same

as the distance dai . When the hyperplane crosses an observation, the orthogonal distance dmi

is half of the maximum absolute distance, Dmax
i of equation (4.34), between points within

the observation and the hyperplane. For the three examples in Figure 4.1, we can see that

dm1 > dm2 , dm3 > dm4 , and dm5 > dm6 , which is appropriate for all the examples.

The min max distance has an advantage when comparing it with the center distance and
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average absolute distance. We will apply the min max distance in sections 4.3, 4.4, and 4.5.

Though the center distance has some disadvantages under certain situations, we would still

use it due to its simplicity and ease of interpretation, but we will not implement the average

absolute distance due to its obvious defects.

For the general symbolic orthogonal regression method, the objective is to minimize the

sum of squares of the general orthogonal distances between an interval-valued observation

xi and the fitted hyperplane xβ = α. The general orthogonal distance is defined from the

likelihood function of equation(4.21) as

dw =

√
(xci − ẍi)Σ−1

u (xci − ẍi)T , (4.40)

where ẍi is obtained by equation (4.24).

4.2 Orthogonal Regression Clustering Algorithm

After defining the orthogonal regression methodology and orthogonal distances for interval-

valued data in section 4.1, we now present an algorithm that recovers multiple linear regres-

sion structures of a data set without specifying a response variable. Given an interval-valued

data X = (X1, . . . , Xp) with n observations, we assume that the Xj, j = 1, . . . , p, follows K

different linear relationships,

xTβk = αk, k = 1, . . . , K, (4.41)

where (βk, αk) is different for different k not just by multiplying a constant. The different

relationships can be due to different groups but we do not have the information of the groups.

For example, the relationships for different age groups are known to be different, but the

information of age is unavailable. The relationships can also be different due to unknown
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underlying groups.

The Orthogonal Regression Clustering Algorithm (ORCA) uses the orthogonal regression

method to identify the multiple linear relationships within an interval-valued data set X.

This ORCA is similar to the algorithm in section 3.2 by starting with a random partition for a

given number of clustersK. Then, it fits an orthogonal regression method within each cluster.

The observations are regrouped to their closest cluster in terms of the orthogonal distance.

These two steps continue iterating until a local minimum is reached. The optimal partition

minimizes the aggregated sum of squares of orthogonal distances between observations and

their hyperplanes. The algorithm would be repeated many times to search for the optimal

partition. We describe the ORCA by the following detailed steps:

(i) Scale the variables (optional): If we apply the orthogonal regression method by PCA,

to avoid the scale effect on PCA from different variables, we first divide each variable

by its sample variance so that all the variables are on the same scale. In other words,

the variances from different variables are all one.

(ii) Initialization: Randomly assign each observation into one of the K clusters with equal

probability to obtain an initial partition P 0 = (C0
1 , . . . , C

0
K), or partition the whole

data set to K clusters based on prior knowledge.

(iii) Representation: On the lth iteration, for each cluster of the partition P l = (C l
1, . . . , C

l
K),

derive the hyperplane of equation (4.11) or equation (4.15) by the methods described

in section 4.1. Denote the hyperplane for each of the K as xβlk = αlk, where βlk and

αlk are the coefficient estimates for the kth cluster.

(iv) Allocation: Calculate the orthogonal distance between the observation xi with the

hyperplane of each cluster, xβlk = αlk. Allocate the observation to its closest cluster

in terms of the orthogonal distance. The distance, di, between an observation and its
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cluster is

d
(l+1)
i = inf

k=1,...,K
d

(l+1)
ik , (4.42)

where dlik is the distance defined in equation (4.33) or equation (4.34) for the kth cluster.

(v) Stop: Repeat the step (iii) and (iv) until the average aggregate orthogonal distance

1

n

K∑
k=1

∑
xi∈P l

k

dli (4.43)

is smaller than a predetermined criterion or the time of iteration is greater than a

predetermined maximum number. In practice, usually 50 is a practical number to be

set as the maximum number of iterations.

The step (ii), initialization, is crucial for the algorithm to converge onto the optimal

partition. Without prior knowledge, to start the algorithm by randomly splitting the whole

data set into K roughly equal size groups is the simplest way. For such an initialization,

however, since each group of the starting partition is a random sample of the whole data set,

the groups and their fitted hyperplanes may be too close. It can be either slow or hard to

converge to obtain the optimal partition.

To improve the efficiency of the algorithm, we would like to introduce more differences

between groups for the initial partition. Ideally, the closer the initial partition is to the true

partition, the faster the algorithm will converge. We revise the initialization step by adopting

the concept of d-subsets from Rousseeuw and Driessen (1999). Instead of randomly splitting

the data into K roughly equal sized groups, we randomly sample K mutually exclusive d-

subsets where d = p+ 1 is the minimum number of observations to estimate the hyperplane

in a group and a d-subsets is a sample of X with sample size d. The benefit of the d-subsets

is that there is a relatively higher probability each of the d-subsets is from a different true

cluster. From Van Aelst et al. (2006), the probability that each d-subsets is from different
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true cluster is

p =

(
n1

d

)(
n2

d

)
. . .
(
nK

d

)(
n
Kd

) . (4.44)

Although a d-subsets from a true cluster cannot guarantee its fitted hyperplane is close

to the true hyperplane, it does have a higher probability that the fitted hyperplane is close

to the true hyperplane. The revised initialization step can be described as follows:

(ii ') Generate the starting partition by randomly selecting K mutually exclusive d-subsets

from the data set X. Each of the d-subsets is one group of the partition P 0 =

(C0
1 , . . . , C

0
K).

The representation in step (iii) accordingly fits the K hyperplanes based on the K d-subsets.

The simulation results in section 4.4 show the efficiency of the algorithm is improved signif-

icantly.

The number of times to repeat the algorithm to obtain a good initial partition so that

the algorithm converges to the optimal partition can be roughly estimated by equation

(4.44). For example, to have a 95% probability of obtaining at least one initial partition

that has d points from each group, the number of different initial partitions we need to try

is log(.05)/ log(1− p) (Van Aelst et al., 2006).

4.3 Determine the Optimal Number of Clusters K

Given the number of clusters K for a data set, we can implement the ORCA algorithm

proposed in section 4.2. Sometimes, the number of clusters is indicated by some background

knowledge. More often, however, the optimal number of clusters K is unknown and needs

to be determined by some criterion. In this section, we propose some possible criteria to

determine the optimal number of clusters K. Some are relatively subjective while others

utilize statistical tests.
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4.3.1 The Elbow Method

Although it is somewhat subjective, the elbow plot is still an intuitive and feasible way to

determine the number of clusters K. For the orthogonal regression method, there is no

corresponding definition of R-square or the proportion of variance explained as exists in

principal component analysis. Instead, we use the sum of squares of orthogonal distances

(SSOD) to decide the elbow point. The SSOD is the sum of squares of orthogonal distances

between each observation and the hyperplane of the cluster to which it belongs to. For a

interval valued data set with K clusters, the SSOD is defined as

SSOD =
K∑
k=1

nk∑
i=1

d
(k)
i

2
, (4.45)

where nk is the sample size of the kth cluster, d
(k)
i is the orthogonal distance between the ith

observation in the kth cluster and the hyperplane fitted in the kth cluster.

The idea is that before the number of clusters K reaches the optimal number, the increase

of K will add much information. After K reaches its optimal number, to continue to increase

K, the marginal information gain drops. Such a pattern would indicate an elbow point if we

plot the SSOD versus K. We illustrate how the elbow method works by an example.

Given a 3-dimension interval-valued data set X = (X1, X2, X3), suppose that the three

variables in X follow the 3 different linear relationships:

cluster 1 : X1 − 1.3X2 − 1.5X3 − 1 = 0,

2 : 0.222X1 + 0.400X2 + 0.667X3 − 1 = 0,

3 : 0.029X1 + 0.100X2 − 0.286X3 − 1 = 0.

(4.46)

Suppose a total of 300 observations are simulated with 100 observations for each of the

clusters. If the maximum number of clusters is set to be K = 8, we run the clustering
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algorithm by the simple symbolic orthogonal regression method using the center distance

and by the general symbolic orthogonal regression methods for K = 1, . . . , 8. Further, the

simple orthogonal regression method is based on the scaled data. The values of SSOD for

the two methods for each K are summarized in Table 4.1.

Table 4.1: Sum of squares of orthogonal distances for K = 1, . . . , 8

K
1 2 3 4 5 6 7 8

Simple orthogonal
regression

55.617 4.251 0.069 0.055 0.056 0.048 0.045 0.039

General orthogonal
regression

22,772.304 4,148.512 159.032 117.521 115.488 74.082 64.699 82.121

SDK (simple OR) 92.4% 98.4% 20.3% -1.8% 14.3% 6.3% 13.3% -
SDK (general OR) 81.8% 96.2% 26.1% 1.7% 35.9% 12.7% -26.9% -

Unsurprisingly, we see from Table 4.1 that the SSOD decreases when the number of

clusters K increases going from 55.617 for K = 1, down to 0.039 for K = 8, for the simple

orthogonal regression method; and likewise for the general orthogonal regression method

While both methods have decreasing values for SSOD as K increases, the values for the

simple orthogonal regression method are considerably smaller than are those for the general

orthogonal regression method; e.g., when K = 3, SSOD=0.069 for the simple orthogonal

regression method, while SSOD=159.032 for the general orthogonal regression method. One

reason for such a considerable difference is that the values of SSOD for simply orthgonal

regression methods are calculated on a scaled data where the standard deviation of all the

variables are scaled to be one. The second reason is the difference between the definitions

of the simple orthogonal distance (see equation (4.36) and equation (4.38)) and the general

orthogonal distance (see equation (4.40)). The general orthogonal distance involves the

covariance matrix of the measurement errors.

Figure 4.2 (a) shows the plots of SSOD versus K, the elbow plots, for the simple or-

thogonal regression method and Figure 4.2 (b) for the general orthogonal regression method.
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(a) (b)

Figure 4.2: Elbow plots using orthogonal regression for clustering

Both of the plots have a elbow point at K = 3, which indicates that the appropriate number

of clusters is K = 3.

An equivalent approach to the elbow method without drawing the elbow plot itself is

to calculate the percentage of SSOD decrements. The percentage of SSOD decrement is

calculated as follows:

SDK =
SSODK − SSODK+1

SSODK

, (4.47)

where SSODK is the SSOD when the number of clusters is K. The first SDK value that is

less than a predetermined cutoff value corresponds to the optimal K, which indicates that

when the SSOD decrement is small by adding one more cluster, then, this added cluster is

not necessary. The SDK for the data set in equation (4.46) are calculated for each of K =

1, . . . , 7. The results are shown in the row “SDK (simple OR)” and row “SDK (simple OR)”

in Table 4.1, where “SDK (simple OR)” is the SDK for the simple orthogonal regression
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method while “SDK (general OR)” is the SDK for the general orthogonal regression method.

By SDK definition of equation (4.47), the SDK for K = 1 is defined, but the SDK for

K = Kmax is not defined for a given maximum number of clusters Kmax. We can see that

for the simple orthogonal regression method, there is a big drop of SDK from 98.4% at

K = 2 to 20.3% at K = 3. Any cutoff point of SDK between 98% and 21% would determine

the optimal number of clusters to be K = 3. Similarly, for the general orthogonal regression

method, any cutoff point of SDK between 27% and 96% would determine the optimal number

of clusters K = 3. Similarly as for the elbow point, the determination of the cutoff point for

SDK is subjective.

The elbow point can be ambiguous under certain scenarios so that it is hard to determine

the optimal number of clusters. For example, in Figure 4.2(a) for the simple orthogonal

regression method, we might argue that K = 2 could be the elbow point. To overcome these

disadvantages of the elbow method, we introduce other methods to determine K in sections

4.3.2, 4.3.3, 4.3.4.

4.3.2 Information Criterion Approach

The estimation for the measurement error model uses the maximum likelihood estimation

method. Thus, we can utilize the information criterion to determine the optimal number of

clusters K for ORCA using the general symbolic orthogonal regression method. In contrast,

the simple symbolic orthogonal regression method use a symbolic PCA to estimate the co-

efficients of the linear regression model, which does not involve a likelihood function and so

cannot apply the information criterion. We utilize the two commonly used information cri-

teria, Akaike information criterion (AIC) (Akaike, 1973) and Bayesian information criterion

(BIC) (Schwarz, 1978), to determine the optimal number of clusters.

For the general symbolic orthogonal regression method, the data are centralized before

fitting a model. In other words, the model has the form of (x − X̄)β = 0. For each
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cluster, k = 1, . . . , K, we need to estimate the β(k) coefficients and X̄
(k)

, which include a

total of 2p − 1 parameters. The log likelihood function for cluster k is given according to

equation(4.21)

l(k) = −n
(k)p

2
log(2π)− n(k)

2
log |Σ(k)

u | −
1

2

n∑
i=1

(xci
(k) − ẍ(k)

i )Σ(k)
u

−1
(xci

(k) − ẍ(k)
i )T , (4.48)

where n(k) is the sample size of the kth cluster such that
∑K

k=1 n
(k) = n, Σ(k)

u is the covariance

matrix of measurement errors of the kth cluster, and xci
(k) and ẍ

(k)
i are the center points and

the fitted values of the variables in the kth clusters, respectively.

Note the number of parameters of the models for the K clusters is m = K(2p− 1). The

AIC and BIC critiera are, respectively,

AIC = −2
K∑
k=1

l(k) + 2m, (4.49)

BIC = −2
K∑
k=1

l(k) +m ln(n). (4.50)

In equation (4.49) and equation (4.50) the penalty terms for the AIC and BIC are 2m and

m ln(n), respectively. For both information criteria, the smaller the value is, the better the

model fits. When the number of clusters K increases, the model has a better fit. However,

while the term −2
∑K

k=1 l
(k) in equations (4.49) and (4.50) decreases, the penalty terms for

both criteria increase, which prevents the information criteria from decreasing steadily. For

the information criteria, there is no theoretical obstacle to determining K even if the true

optimal number of clusters is 1.
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4.3.3 Gap Statistic

The Gap statistic was proposed by Tibshirani et al. (2001), and is a very flexible method

to estimate the optimal number of clusters in a data set. The Gap statistic was originally

proposed using a spherical clustering as an example, but there is no barrier to extending the

method to a regression based clustering method. The Gap statistic calculates the log pooled

within-cluster average distance to the cluster center, and compares that average distance

with its expectation under a null reference distribution. We have given the definition of Gap

statistics of Tibshirani et al. (2001) in equation (2.30) and equation(2.31). The idea is that

the actual pooled within-cluster sum of squares of distances would decrease faster than its

expected rate under the null distribution before the number of clusters K reaches its optimal

value. The sum of squares of distances would decrease more slowly than its expected rate

after K reaches its optimal value since unnecessary clusters are added. The Gap statistic is

maximized when K is optimal. According to Tibshirani et al. (2001), a uniform distribution

within ranges of the original data set is the best reference distribution.

For the ORCA algorithm, we are minimizing the orthogonal distances between the ob-

servations in an interval-valued data set and its fitted hyperplanes. The Gap statistic can be

adapted to the ORCA by replacing the distance between an observation and its cluster center

with the orthogonal distance between an observation and its fitted hyperplane. Suppose we

partition the data set into K clusters, P = (C1, . . . , CK). The pooled within cluster sum of

squares of orthogonal distances for the partition P is

WK =
K∑
k=1

SSODk, (4.51)

where SSODk is the SSOD for the kth cluster as defined in equation (4.45). The Gap statistic
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is defined as follows:

Gap(K) = E[log(WK(B))]− log(WK), (4.52)

where E[log(WK(B))] is the expectation of WK under the null reference distribution. In prac-

tice, E[log(WK(B))] is obtained by randomly simulating B uniformly distributed samples

and averaging the log pooled SSOD of these B samples, i.e.,

E[log(WK(B))] =
1

B

B∑
b=1

log(WK(b)). (4.53)

The reference samples are classical data samples generated from a uniform distribution over

the ranges of the principal components of the data. The Wk(b) is obtained by implementing

a simple orthogonal regression clustering algorithm on the reference samples.

From Tibshirani et al. (2001), the optimal number of clusters K∗ is the smallest K such

that

Gap(K) ≥ Gap(K + 1)− sK+1, (4.54)

where sK+1 = sdK+1

√
1 + 1/B, and sdK+1 is the standard deviation of SSOD of the B

samples under the reference distribution given the number of clusters being K + 1. Like the

information criterion methods of section 4.3.2, the Gap statistic is defined for K = 1.

Table 4.2: Gap statistic for simple and general orthogonal regression clustering

Model Statistic K=1 2 3 4 5 6 7 8

Simple SSOD 55.62 4.25 0.07 0.06 0.06 0.05 0.05 0.04
orthogonal SSOD (ref) 115.75 27.32 13.73 10.44 7.28 6.06 4.83 3.86
regression sdK 0.07 0.07 0.15 0.13 0.17 0.13 0.13 0.16

Gap 0.73 1.86 5.27 5.23 4.84 4.81 4.65 4.58

General SSOD 22,772.30 4,148.51 159.03 117.52 115.49 74.08 64.70 82.12
orthogonal SSOD (ref) 10,677.09 2,564.75 1,265.26 1,009.10 795.51 616.80 475.64 382.90
regression sdK 0.06 0.04 0.11 0.13 0.14 0.10 0.14 0.11

Gap -0.76 -0.48 2.07 2.14 1.92 2.12 1.99 1.53

Using the simulated data set generated by equation (4.46) as an example, the imple-
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mentation results of the Gap statistics are shown in Table 4.2. Table 4.2 provides the Gap

statistics by ORCA with the simple orthogonal regression using center distance and general

symbolic orthogonal regression methods, respectively. For a particular orthogonal regression

method, the row “SSOD” is the SSOD calculated based on the ORCA clustering results on

the simulated interval-valued data set generated by equation (4.46). The row “SSOD(ref)”

is the expected SSOD on the uniformly distributed reference data sets. The row “sdK” is the

standard deviation of the log SSOD(ref) calculated from 10 uniformly distributed reference

data sets given the number of clusters being K. The row “Gap” shows the Gap statistics

given the number of clusters being K. For the simple orthogonal regression method, we

can see from Table 4.2 that K = 3 is the smallest number of K that satisfies the criterion

equation (4.54): Gap(3) = 5.27 ≥ Gap(3 + 1)− s3+1 = 5.23− 0.13
√

1 + 1/10 = 5.09. Thus,

K = 3 is the optimal number of clusters for the simple orthogonal regression method. For

the general orthogonal regression method, the optimal number of clusters is also K = 3

given that K = 3 is the smallest number that satisfies the equation (4.54): Gap(3) = 2.07 ≥

Gap(3 + 1)− s3+1 = 2.14− 0.13
√

1 + 1/10 = 2.00.

Figure 4.3 (a) and (b) show the observed and expected SSOD values by the simple

orthogonal regression method and the general orthogonal regression method, drawn by the

black and the green lines, respectively. Figure 4.3 (c) and (d) show the Gap statistics

with standard deviation bars for the simple regression method and the general orthogonal

regression method, respectively. From the definition of Gap in equation (4.52) we can see that

if the WK(B) decreases at a same rate as the WK given the number of clusters K increases by

one, then the value of the Gap statistic does not change. For example, when both WK(B)

and WK decrease by 10%, the Gap statistic is now Gap(K + 1) = E[log(0.9WK(B))] −

log(0.9WK) = E[log(WK(B))] − log(WK) = Gap(K). When WK decreases at faster rate

than WK(B), the Gap statistic increases; otherwise, the Gap statistic decreases. We can

see from Figure 4.3 (c) and (d) that the WK decreases faster than its expectation on the
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(a) (b)

(c) (d)

Figure 4.3: Gap statistic for the simple and general orthogonal regression clustering
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reference distribution, WK(B), before K reaches its optimal value 3, given the fact that

the Gap statistic keeps increasing before K = 3. The WK decreases more slowly than does

WK(B) after K reaches the optimal value.

4.3.4 Silhouette Statistic

Rousseeuw (1987) proposed a silhouette statistic to estimate the optimal number of clusters.

The silhouette measures how strong an observation in a particular cluster is separated from

its nearest cluster. For an observation xi, given a particular partition, let a(i) be the average

dissimilarity of xi to all objects in its own cluster, and let b(i) be the average dissimilarity of

i to all the objects in its nearest cluster. The silhouette statistic, s(i), is defined as follows:

si =
b(i)− a(i)

max{a(i), b(i)}
. (4.55)

The range of si is from -1 to 1. When si is negative, the assignment of xi is a misclassifi-

cation. The closer the si value is to 1, the stronger is the indication that xi belongs to its

assigned cluster. A large value of the average silhouette over all the observations indicates

a good separation of the clusters. The average silhouette statistic over the whole data set is

maximized when the number of clusters K is optimized.

In spherical clusters, the dissimilarity is usually measured by the Euclidean distance. To

adapt the silhouette statistic to the ORCA for interval-valued data, we revise the statistic

as follows:

si =
b(i)− a(i)

b(i)
, (4.56)

where a(i) is the orthogonal distance between the observation xi and the hyperplane to

which it belongs, while b(i) is the orthogonal distance between xi and its nearest hyperplane

fitted in the neighbor clusters. According to our algorithm, b(i) would be always greater

than a(i); thus, the denominator in equation (4.55) would be always the b(i) in equation
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(4.56).

The optimal number of clusters is determined when the average silhouette statistic, s =∑n
i=1 si/n, is maximized. This silhouette statistic describes how clearly the clusters are

separated from each other. In addition, the average silhouette statistics on a particular

cluster measure how strongly it is separated from other clusters.

4.4 Simulation Study

In this section, we use simulated data sets to test our algorithms. The simulation methods

of the interval-valued data follow those of section 3.4 by treating the response variable y as

one of the variables for the orthogonal regressions. We will first investigate the convergence

and performance of the algorithm given the correct number of clusters. Then, we compare

the different methods of determining the optimal number of clusters proposed in section 4.3.

4.4.1 Case Study

We study a total of six data sets with different structures and different dimensions to see

if the ORCA algorithm is able to converge to the correct clusters given the correct number

of clusters. In addition, we investigate what is an appropriate number of different initial

partitions we need to try for a particular data set to converge to the correct clusters.

Our first example has the following structure:

cluster (1) : x2 = 8 + 1.3x1 + ε1,

(2) : x2 = 45.5 + 2.8x1 + ε2,

(3) : x2 = 65− 2.5x1 + ε3.

(4.57)

We treat x2 as response variable and x1 as predictor variable and use the simulation method

III in section 3.4 to generate data sets that satisfy the structure in equation (4.57). One
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hundred interval-valued observations are simulated for each of the three clusters and then

the observations from all the three clusters are stacked as one data set. Based on the

simulation method III in section 3.4, the 100 interval center points of x1 of the cluster

1, x
(c)
i1 , i = 1, . . . , 100, are independently generated from a normal distribution N(4, 12).

The 100 interval ranges of x1 for the cluster 1, x
(r)
i1 , i = 1, . . . , 100, are generated from

an exponential distribution exp(1.5). The 100 interval values of x1 are then obtained as

[x
(c)
i1 − 0.5x

(r)
i1 , x

(c)
i1 + 0.5x

(r)
i1 ], i = 1, . . . , 100. For each of i = 1, . . . , 100, we randomly draw

5 values from a uniform distribution, xi1l ∼ U(xi1a, xi1b), l = 1, . . . , 5. The interval value of

xi2 = [xi2a, xi2b] is obtained as

xi2a = min
l∈{1,...,5}

{8 + 1.3xi1l + εil},

xi2b = min
l∈{1,...,5}

{8 + 1.3xi1l + εil},
(4.58)

where εil, l = 1, . . . , 5, is the error term that follows a normal distribution N(0, 7). The

observations for the cluster 2 and 3 are drawn analogously as for the cluster 1. The interval

center points of x1 for the cluster 2 and 3 follow normal distributions N(0, 11) and N(8, 12),

respectively. The interval ranges of x1 for the cluster 2 and 3 are generated from exponential

distributions exp(1.3) and exp(1.2), respectively. The error terms of the cluster 2 and 3 are

generated from normal distributions N(0, 7) and N(0, 8), respectively.

We apply the ORCA using the simple orthogonal regression method with center distance,

the simple orthogonal regression method with min max distance, and the general orthogonal

regression method, to the data set generated by equation (4.57). The clustering results will

be compared with the true clusters. Figure 4.4 (a) shows the plot of the simulated data

with the three true clusters. Figure 4.4 (b), (c), and (d) show the clustering results by the

simple orthogonal regression method (center), the simple orthogonal regression method (min

max), and the general orthogonal regression method, respectively. For all the four figures,
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different colors differentiate the three clusters, but a particular color does not associate with

a particular cluster. It is safe to say that the ORCA using all the three methods correctly

recovers the true clusters by comparing the true clusters in Figure 4.4I (a) and the clustering

results in Figure 4.4 (b), (c), and (d).

This example of equation (4.57) and Figure 4.4 are for demonstration purposes and

verify that ORCA is able to converge to the correct clusters for this particular example.

We conduct our simulation study on various examples with different data structures and a

different number of clusters to look at the performance of the algorithm. In particular, we

consider six examples for which a rough description for each example is shown below. For

the purpose of focusing on the performance of ORCA algorithm, we defer the linear model

equations for each example; the detailed parameter setups and the manner to read these

setups are deferred to the Appendix in section 4.6. The simulation method for each example

is analogous with the method for the example of equation (4.57).

I. Two-dimensional data with three clusters – The sample sizes for the three clusters

are n1 = 100, n2 = 50, and n3 = 50, respectively. The three clusters overlap with

each other. Figure 4.5 (a) and (b) show the simulated three clusters and the ORCA

clustering results using the general orthogonal regression method given the correct

number of clusters K = 3.

II. Two-dimensional data with five clusters – The five clusters have equal sample size with

ni = 100, i = 1, . . . , 5, in each cluster. Figure 4.6 (a) and (b) show the simulated data

set with five clusters and ORCA clustering results on this data set using the general

orthogonal regression methods given the correct number of clusters, K = 5.

III. Two-dimensional data with three clusters – The sample sizes for the three clusters are

n1 = 100, n2 = 50, n3 = 25, respectively. Two of the three clusters overlap a lot with

each other. The third cluster has a relatively small sample size. Figure 4.7 (a) and
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(a) (b)

(c) (d)

Figure 4.4: Clustering results of example of equation (4.57)
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(b) give the simulated data set and the ORCA solution using the general orthogonal

regression method given K = 3.

IV. Two-dimensional data with two clusters with equal sample sizes – The two clusters

have equal sample sizes with ni = 50, i = 1, 2. The two clusters are not well separated.

The simulated data set and the ORCA clustering results using the general orthogonal

regression method given K = 2 are shown in Figure 4.8 (a) and (b).

V. Three clusters in a three-dimensional data – The three clusters are equal sample sized

with ni = 40, i = 1, 2, 3. Visualization is difficult for this 3-dimensional data, but

a relatively small number of mis-clustered observations indicates the ORCA solution

converges to the correct clusters.

VI. Two clusters in a five-dimensional data – The sample sizes for the two clusters are

equal ni = 50, i = 1, 2. Again, a relatively small number of mis-clustered observations

indicates correct convergence by the ORCA solution.

The examples V and V I are multi-dimensional data where it is hard to make plots for them

to show visually the clusters and the linear relationship between variables. To verify that

the ORCA is clustering to the correct clusters, we compare the ORCA clustering results

with the true clusters. When a cluster obtained by the ORCA mostly overlaps with a true

cluster, we say this true cluster is correctly recovered. If an observation in a true cluster

is clustered by ORCA into different clusters, then this observation is mis-clustered. When

the clusters in a data set partially overlap, we expect there are some observations that will

be mis-clustered by the ORCA. However, most of the non-overlapped observations will be

clustered correctly by ORCA. A low number of mis-clustered observations by ORCA for a

particular data set is an indication that the algorithm successfully recovers the true clusters.

We compare the simulated data set and the ORCA clustering results by the general

orthogonal regression method given the correct number of clusters in Figure 4.5, Figure 4.6,
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Figure 4.7, and Figure 4.8 for example data sets I, II, III, and IV , respectively. It is safe

to say that the ORCA using the general orthogonal regression method correctly recovers the

true clusters for each of the example data sets.

Note that the ORCA solutions in Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8 are

all based on the general orthogonal regression method just for illustrative purposes. The

ORCA solutions applying the simple orthogonal regression method with the center distance

and the min max distance correctly recover the clusters for the example data sets I, II, III,

and IV . (see Appendix 4.6.2).

(a) (b)

Figure 4.5: Example data set I and its ORCA clustering results

For the data set examples IV and V , we look at the number of mis-clustered observa-

tions in the clustering results, which are shown in Table 4.3 and Table 4.4. Table 4.3 and

Table 4.4 are essentially frequency tables. The rows correspond to the true clusters in the

simulated data sets, while the columns are the clusters obtained by the ORCA using the

simple orthogonal regression method (center), the simple orthogonal regression method (min

max), and the general orthogonal regression method. For a particular cell of the tables, if the

row cluster does not agree with the column cluster, the cell is the number of mis-clustered

observations.
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(a) (b)

Figure 4.6: Example data set II and its ORCA clustering results

(a) (b)

Figure 4.7: Example data set III and its ORCA clustering results

For example, in Table 4.3, the value in the cell of row “cluster 1” and column “1”

under tab “Simple OR (center)” is 40 that indicates all the 40 observations of cluster 1 in

the simulated data set are correctly clustered as cluster 1 by the ORCA using the simple

orthogonal regression method. The value in the cell of row “cluster 1” and column “3” under

the tab “General OR” is 4. This implies that 4 of 40 observations in the cluster 1 of the

simulated data set are clustered as cluster 3 by the ORCA using the general orthogonal
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(a) (b)

Figure 4.8: Example data set IV and its ORCA clustering results

regression method. These four observations are mis-clustered. Table 4.4 and the other cells

of the Table 4.3 can be interpreted in a similar manner. In general, the numbers of mis-

clustered observations by ORCA for the data set examples IV and V are relatively small.

It is safe to say that the ORCA correctly recovers the clusters for these two data sets.

Table 4.3: Number of mis-clustered observations for data set example V

ORCA clustering results
Simple OR Simple OR General OR

(center) (min max)
1 2 3 1 2 3 1 2 3

Simulated cluster 1 40 0 0 40 0 0 35 1 4
cluseters cluster 2 0 39 1 0 40 0 0 40 0

cluster 3 0 0 40 0 0 40 0 0 40

For each of the above six simulated data sets, we want to understand what is the appro-

priate number of initial partitions needed for a good convergence. Given the correct number

of clusters for each of the example data sets, we tried 1000 different random initial partitions

for the ORCA using the simple orthogonal regression method (center), the simple orthogonal

regression method (min max), and the general orthogonal regression method, respectively.
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Table 4.4: Number of mis-clustered observations for data set example V I

ORCA clustering results
Simple OR Simple OR General OR

(center) (min max)
1 2 1 2 1 2

Simulated cluster 1 50 0 50 0 50 0
cluseters cluster 2 4 46 8 42 4 46

A random initial partition is generated by step (ii’ ) in section 4.2.

In Table 4.5, the percentages in columns “Simple OR (center)”, “Simple OR (min max)”,

and “General OR” are the percentage of a good convergence by ORCA when trying one

thousand different random initial partitions using the simple orthogonal regression method

(center), the simple orthogonal regression method (min max), and the general orthogonal

regression method, respectively. Here a correct convergence means that the ORCA converges

to the correct clusters when starting with a particular initial partition. For example, 85.9% of

the 1000 random initial partitions converge correctly by ORCA using the simple orthogonal

regression (center). The column “Suggested Number” is the suggested number of initial

partitions needed to obtain at least one partition that will converge to the correct clusters

with 95% probability. As discussed in section 4.2, the suggest number of initial partitions is

calculated as

Suggested Number =
log(0.5)

log(1− p)
, (4.59)

where the probability p is obtained by the equation (4.44). If we try only the suggested

number of different initial partitions, we want to know how many times the ORCA is able to

converge correctly based on the simulated good convergence percentage out of the 1000 ran-

dom initial partitions. Take Data I as an example; the suggested number of different initial

partitions is 59. The expected good convergence rate from column ”Simple OR (center)”

is 85.9%. Then, the expected number of good convergences when applying ORCA using
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the simple orthogonal regression method (center) on Data I is 59 × 85.9% = 50.4. Given

that we tried only the suggested number of different initial partitions, we can calculate the

expected numbers of good convergences of ORCA on all Data I - V I. These are given by

columns “Expected simple OR (center)”, “Expected simple OR (min max)”, and “Expected

general OR” in Table 4.5. We can see that when trying the suggested number of different

initial partitions, the ORCA can converge to the correct clusters multiple times for all Data

I-V I. This indicates that to use the suggested number of initial partitions for the ORCA is

a relatively convenient and safe choice to obtain the correct clusters.

Table 4.5: Number of initial partitions for good convergence

Expected Expected Expected
Simple OR Simple OR General OR Suggested simple OR simple OR general OR

(center) (min max) number (center) (min max)

Data I (d=2, K=3) 85.9% 83.0% 72.9% 59 50.4 48.7 42.8
Data II (d=2, K=5) 9.1% 8.7% 2.7% 627 57.1 54.6 16.9

Data III (d=2, K=3) 20.0% 25.2% 11.9% 139 27.7 35.0 16.5
Data IV (d=2, K=2) 43.7% 43.3% 75.3% 8 3.6 3.6 6.2
Data V (d=3, K=3) 27.1% 23.7% 5.3% 49 13.3 11.6 2.6

Data V I (d=5, K=2) 89.8% 76.2% 75.7% 13 11.2 9.5 9.5

From Table 4.5, we can see that the ORCA for the general orthogonal regression method

usually needs a higher number of initial partitions to obtain good convergence than do the

two simple orthogonal regression methods. One of the reasons is that the general orthogonal

regression method requires a more rigid assumption, equation (4.18), which constrains the

measurement error to be within the interval ranges for each variable. This assumption can

be violated sometimes. Furthermore, the fit of the general orthogonal regression method

requires the information of the covariance structure of the measurement errors. To obtain

convergence to the correct clusters for the general orthogonal regression method, not only

a good initial partition is needed, but a good covariance structure that is close to the true

covariance structure of the measurement errors is also needed.
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4.4.2 Comparison of Different Methods to Determine the Optimal

Number of Clusters

In section 4.3, we discussed several methods to determine the optimal number of clusters

for the ORCA algorithm. In this section, we conduct a simulation study for various data

structures and investigate the performance of the different methods. The same six data sets

developed in section 4.4.1 will be considered for the simulation study in this section. Each

method we proposed to determine the optimal number of clusters will be applied to the six

data sets. Instead of visualizing the plot, the elbow method is implemented by evaluating

the SDK , percentage of change on SSOD, defined in equation (4.47). The optimal number

of clusters is chosen as the smallest K such that SDK is less than a predetermined constant

c. In other words, when the number of clusters reaches its optimal value, the percentage of

decrement of SSOD is less than c if a further cluster is added. The predetermined constant

c is set to be 10%, 25%, and 50%, respectively, in our simulation study. Note that by such a

rule on SDK , the elbow method is defined for a single cluster. The Gap statistic described

in section 4.3.3 and the information criterion approaches described in 4.3.2 are defined for

a single cluster as well. The silhouette statistic is not defined for a single cluster. The

information criterion approaches do not apply to the simple orthogonal regression methods

since the likelihood function is not defined for these methods.

For a particular example of Data I-V I, we simulate a random sample based on the

parameter setup in the Appendix 4.6. For each of K = 1, . . . , 8, we tried the suggested

number of initial partitions to apply the ORCA onto this random sample. The clustering

results with smallest SSOD defined in equation (4.45) is set to be the correct cluster results

given each of K = 1, . . . , 8. We collect the information for the Gap statistics, the silhouette

statistics, SSOD, AIC, and BIC of the correct clustering results for each of K = 1, . . . , 8.

The collected information is then used to determine the optimal number of clusters by each
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of the proposed methods in section 4.3. We repeat this whole process 50 times to study the

performance of each method to determine the optimal number of clusters.

The simulation results for the six data sets are summarized in the following tables. Ta-

ble 4.6 shows the simulation results of the estimated optimal number of clusters by ORCA

when applying the general orthogonal regression method. The rows of the table correspond

to the different methods that were used to determine the optimal number of clusters for each

of Data I-V I. The methods we used to estimate the optimal number of clusters are the

Gap statistic defined in equation (4.54), the silhouette statistic defined in equation (4.56),

the two information criterion approaches AIC (see equation (4.49))and BIC (see equation

(4.50)), and the elbow method by evaluating SDK (see equation (4.47)) using three different

cutoff values, 10%, 25%, and 50%. The maximum number of the optimal number of clusters

is set to be eight. The columns labeled 1, . . . , 8 are the estimated optimal number of clusters

by these methods.

Table 4.6 is essentially a frequency table, e.g., for Data I the Gap statistics estimate 3

as the optimal number of clusters for 24 times out of the 50 replications, 4 as the optimal

number of clusters for 25 times, and 5 as the optimal number of clusters for 1 time. The

simulated Data I has three clusters; thus, the Gap statistics correctly estimate the optimal

number of clusters 24 times out of the 50 replications. For each example data set, we mark

the column with true number of clusters by † (dagger). For instance, the column K = 3 is

marked by dagger since the true number of clusters of Data I is 3. We use the SDK with

cutoff values 10%, 25%, and 50% to implement the elbow method. For some cases, the SDK

is never smaller than the cutoff values; then, the number of optimal clusters estimated by the

elbow method under such scenarios is recorded in the column “NA”. For example, 40 times

out of the 50 replications the SDK for all of K = 1, . . . , 8 are greater than cutoff value 10%.

Thus, the last column of row “SDK(10%)” for Data I is 40. The other cells of Table 4.6 can

be interpreted in a similar way as we explained for the Data I.
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From Table 4.6, we can see that the silhouette statistics work consistently well to estimate

the correct number of clusters except for the Data III. The silhouette statistics correctly

estimated the optimal number of clusters for all of the 50 repetitions for Data I and V I, while

it estimates the correct number of clusters 41, 48, and 47 times out of the 50 repetitions for

Data II, IV , and V , respectively. For Data III, from Figure 4.7, we can see two of the three

clusters are very close and a large proportion of their observations are overlapped. Thus, it

is not surprising that the silhouette statistic determines the optimal number of clusters for

the Data II to be two over all the 50 repetitions. The elbow method SDK(50%) works fairly

well to estimate the correct number of clusters for all the six data sets. It correctly estimates

the number of clusters as 50, 32, 43, 36, 47, and 42 times out of the 50 replications for

Data I-V I, respectively. The numbers of correct determinations out of the 50 repetition by

SDK(50%) are generally lower than those for the silhouette statistics. However, the elbow

method SDK(50%) correctly estimates the number of clusters for Data III 43 out of 50

times.

The elbow method SDK(50%) is a more robust method to estimate the optimal number of

clusters. The elbow method with criteria SDK(10%) and SDK(25%) mostly fails to estimate

the correct number of clusters, which indicates that the thresholds 10% and 25% are too

small most of the time. Note that the threshold of SDK is predetermined subjectively, which

can depend on the scale and structure of the data. In practice, an elbow plot can be helpful

to make the decision about the optimal number of clusters. The information approach AIC

only works for Data V I given that it correctly estimates the number of clusters as 47 out of

the 50 replications. The BIC works well for Data V and V I given that it correctly estimates

the number of clusters as 41 and 52 times out of the 50 replications.

The Gap statistic fails to estimate the correct number of clusters most of the time given

that it correctly estimates the number of clusters only 24, 1, 1, 15, 21, and 50 times out of the

50 replications. The Gap statistic requires that the SSOD of the simulated data decreases
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Table 4.6: Distribution of the estimated number of clusters by ORCA (general orthogonal
regression method)

Method
Estimated number of clusters (K)

1 2 3 4 5 6 7 8 NA

Data I (K=3, p=2)
Gap 0 0 24† 25 1 0 0 0 0
Silhouette 0 0 50† 0 0 0 0 0 0
AIC 0 0 0† 0 0 0 5 45 0
BIC 0 0 0† 0 0 0 16 34 0
SDK(10%) 0 0 0† 0 5 3 2 0 40
SDK(25%) 0 0 0† 15 31 4 0 0 0
SDK(50%) 0 0 50† 0 0 0 0 0 0

Data II (K=5, p=2)
Gap 18 13 6 12 1† 0 0 0 0
Silhouette 0 0 0 0 41† 9 0 0 0
AIC 0 0 0 0 0† 0 1 49 0
BIC 0 0 0 0 0† 0 4 46 0
SDK(10%) 0 0 0 0 14† 15 3 0 18
SDK(25%) 0 0 0 0 33† 14 2 0 1
SDK(50%) 0 0 17 1 32† 0 0 0 0

Data III (K=3, p=2)
Gap 35 14 1† 0 0 0 0 0 0
Silhouette 0 50 0† 0 0 0 0 0 0
AIC 0 0 0† 0 0 0 1 49 0
BIC 0 0 0† 0 0 0 3 47 0
SDK(10%) 0 0 0† 0 1 0 3 0 46
SDK(25%) 0 0 0† 4 18 18 10 0 0
SDK(50%) 0 7 43† 0 0 0 0 0 0

Data IV (K=2, p=2)
Gap 35 15† 0 0 0 0 0 0 0
Silhouette 0 48† 2 0 0 0 0 0 0
AIC 0 0† 0 0 0 0 1 49 0
BIC 0 0† 0 0 0 0 3 47 0
SDK(10%) 0 0† 0 0 0 0 1 0 49
SDK(25%) 0 0† 0 3 17 19 5 0 6
SDK(50%) 0 36† 14 0 0 0 0 0 0

Data V (K=3, p=3)
Gap 23 0 21† 6 0 0 0 0 0
Silhouette 0 1 47† 2 0 0 0 0 0
AIC 0 0 6† 29 11 4 0 0 0
BIC 0 0 41† 9 0 0 0 0 0
SDK(10%) 0 0 0† 9 15 15 5 0 6
SDK(25%) 0 0 3† 29 14 2 0 0 2
SDK(50%) 0 0 47† 3 0 0 0 0 0

Data V I (K=2, p=5)
Gap 0 50† 0 0 0 0 0 0 0
Silhouette 0 50† 0 0 0 0 0 0 0
AIC 0 47† 3 0 0 0 0 0 0
BIC 0 50† 0 0 0 0 0 0 0
SDK(10%) 0 0† 1 5 9 13 9 0 13
SDK(25%) 0 0† 14 23 10 3 0 0 0
SDK(50%) 0 42† 8 0 0 0 0 0 0

† column corresponds to the true number of clusters.
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Table 4.7: Distribution of the estimated number of clusters by ORCA (simple orthogonal
regression method - center distance)

Method
Estimated number of clusters (K)

1 2 3 4 5 6 7 8 NA

Data I (K=3, p=2)
Gap 0 0 50† 0 0 0 0 0 0
Silhouette 0 5 44† 1 0 0 0 0 0
SDK(10%) 0 0 0† 0 2 9 9 0 30
SDK(25%) 0 0 0† 9 25 15 1 0 0
SDK(50%) 0 0 49† 1 0 0 0 0 0

Data II (K=5, p=2)
Gap 17 12 0 0 18† 3 0 0 0
Silhouette 0 0 0 10 38† 1 1 0 0
SDK(10%) 0 0 0 0 16† 13 9 0 12
SDK(25%) 0 0 0 0 41† 9 0 0 0
SDK(50%) 0 0 0 1 47† 2 0 0 0

Data III (K=3, p=2)
Gap 0 36 12† 2 0 0 0 0 0
Silhouette 0 50 0† 0 0 0 0 0 0
SDK(10%) 0 0 0† 0 8 10 10 0 22
SDK(25%) 0 0 0† 20 25 4 1 0 0
SDK(50%) 0 0 50† 0 0 0 0 0 0

Data IV (K=2, p=2)
Gap 0 50† 0 0 0 0 0 0 0
Silhouette 0 50† 0 0 0 0 0 0 0
SDK(10%) 0 0† 0 0 2 5 6 0 37
SDK(25%) 0 0† 0 9 19 12 7 0 3
SDK(50%) 0 49† 1 0 0 0 0 0 0

Data V (K=3, p=3)
Gap 9 0 39† 2 0 0 0 0 0
Silhouette 0 0 50† 0 0 0 0 0 0
SDK(10%) 0 0 0† 7 14 14 9 0 6
SDK(25%) 0 0 11† 33 6 0 0 0 0
SDK(50%) 0 0 50† 0 0 0 0 0 0

Data V I (K=2, p=5)
Gap 0 50† 0 0 0 0 0 0 0
Silhouette 0 50† 0 0 0 0 0 0 0
SDK(10%) 0 0† 1 6 16 17 6 0 4
SDK(25%) 0 0† 15 25 8 2 0 0 0
SDK(50%) 0 49† 1 0 0 0 0 0 0

† column corresponds to the true number of clusters.
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Table 4.8: Distribution of the estimated number of clusters by ORCA (simple orthogonal
regression method - min max distance)

Method
Estimated number of clusters (K)

1 2 3 4 5 6 7 8 NA

Data I (K=3, p=2)
Gap 0 0 50† 0 0 0 0 0 0
Silhouette 0 0 50† 0 0 0 0 0 0
SDK(10%) 0 0 0† 0 2 13 8 0 27
SDK(25%) 0 0 0† 50 0 0 0 0 0
SDK(50%) 0 0 50† 0 0 0 0 0 0

Data II (K=5, p=2)
Gap 11 5 0 0 34† 0 0 0 0
Silhouette 0 0 2 14 34† 0 0 0 0
SDK(10%) 0 0 0 0 2† 18 23 0 7
SDK(25%) 0 0 0 0 45† 5 0 0 0
SDK(50%) 0 0 0 0 50† 0 0 0 0

Data III (K=3, p=2)
Gap 0 47 3† 0 0 0 0 0 0
Silhouette 0 50 0† 0 0 0 0 0 0
SDK(10%) 0 0 0† 0 10 15 11 0 14
SDK(25%) 0 0 0† 18 28 4 0 0 0
SDK(50%) 0 0 50† 0 0 0 0 0 0

Data IV (K=2, p=2)
Gap 0 50† 0 0 0 0 0 0 0
Silhouette 0 50† 0 0 0 0 0 0 0
SDK(10%) 0 0† 0 0 5 5 5 35
SDK(25%) 0 0† 1 9 23 15 2 0 0
SDK(50%) 0 46† 4 0 0 0 0 0 0

Data V (K=3, p=3)
Gap 13 0 37† 0 0 0 0 0 0
Silhouette 0 1 49† 0 0 0 0 0 0
SDK(10%) 0 0 47† 3 0 0 0 0 0
SDK(25%) 0 0 50† 0 0 0 0 0 0
SDK(50%) 0 0 50† 0 0 0 0 0 0

Data V I (K=2, p=5)
Gap 2 48† 0 0 0 0 0 0 0
Silhouette 0 50† 0 0 0 0 0 0 0
SDK(10%) 0 4† 40 6 0 0 0 0 0
SDK(25%) 0 50† 0 0 0 0 0 0 0
SDK(50%) 0 50† 0 0 0 0 0 0 0

† column corresponds to the true number of clusters.
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consistently faster than the reference distribution before the number of clusters reaches

its optimal value. However, since the general orthogonal distance involves the covariance

matrices of measurement errors, the decrement of SSOD can be similar or slower than it is

for the reference distribution before the number of clusters reaches its optimal value. This

is why the Gap statistic keeps underestimating the optimal number of clusters.

Generally, the silhouette statistics work well to determine the optimal number of clusters

for ORCA using the general orthogonal regression method except for some difficult situation

such as Data III. The elbow method is generally a good method to estimate the optimal

number of clusters. The Gap statistic and information approaches mostly fail for ORCA

using the general orthogonal regression method.

Table 4.7 shows the simulation results of ORCA when applying the simple orthogonal

regression method with center distance. The elbow method SDK(50%) outperforms the

other methods given that it correctly estimates the optimal number of clusters as 49, 47, 50,

49, 50, and 49 times out of the 50 replications for Data I-V I, respectively. The silhouette

statistic correctly estimates the optimal number of clusters most of the time except for Data

III. From Table 4.7 we can see that the silhouette statistic correctly estimates the number

of clusters as 44, 38, 50, 50, 50 times out of the 50 replications for Data I, II, IV , V , and

V I, respectively, but 0 times for Data III. As we stated earlier, a large proportion of the

two clusters for Data III overlaps. This is the reason that the silhouette statistic estimates

the optimal number for clusters for Data III as two instead of 3, the true number of clusters,

for all the 50 replications. Since the SSOD of the simple orthogonal regression method is

comparable to that for the reference distribution, the Gap statistic works better for the

simple orthogonal regression method (center) than does the general orthogonal regression

method. The thresholds, 10% and 25%, for the elbow method are too small to estimate the

correct number of clusters for all the data sets.

The simulation results of ORCA when applyed to the simple regression method with the
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min max distance are presented in Table 4.8. We can see that the elbow method SDK(50%)

outperforms all other methods given that it correctly estimates the number of clusters as

50, 50, 50, 46, 50, 50 times out of the 50 replications for Data I-V I, respectively. The

Gap statistic and the silhouette statistic correctly estimate the number of clusters most

of the time except for the Data III. The numbers of correct determinations for the Gap

statistic and the silhouette statistic are mostly smaller than that number for the SDK (50%),

e.g., the number of correct determinations by the Gap statistic for Data II is 34, smaller

than the number of correct determinations by SDK (50%) of 50. The performances of the

Gap statistic and the silhouette statistic are similar considering that the numbers of correct

determinations between the two statistics are close for all the six data sets. The thresholds,

10% and 25%, for the elbow method are mostly too small to estimate the correct number of

clusters for the six data sets .

In summary, the elbow method with threshold 50% for SDK is the best method to

estimate the optimal number of clusters, but an appropriate threshold can be different for

different data sets. An elbow plot can be helpful to choose an appropriate threshold for

the SDKS. The silhouette statistic performs well except for some difficult situations such

as when there is a large proportion of overlaps between clusters as in Data III. The Gap

statistic does not works consistently well especially for the general orthogonal regression

method. The information approaches can only be applied to the general orthogonal regression

method, but the performance is generally bad and not reliable. In our application in section

4.5, we will implement all the methods to determine the optimal number of clusters, but will

rely on the elbow method and the silhouette statistics.
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4.5 Application

In this section, the effectiveness of clustering by the ORCA algorithm is demonstrated on

the iris data (Fisher, 1936). The Iris data have 150 observations consisting of three different

species of Iris flowers: Setosa, Versicolor, and Virginica. Each species includes 50 obser-

vations where four attributes are recorded for each observation, sepal width, sepal length,

petal width, and petal length, respectively. The two widths and two lengths are measured in

centimeter and the measurements are shown in Table 4.9 where SepalL is the sepal length,

SepalW is the sepal width, PetalL is the petal length, and PetalW is the petal width. Fig-

ure 4.9 gives a scatter plot matrix between the four attributes of 150 observations in the Iris

data. In the numerical representation, two of the three species (Versicolor and Verginica)

have substantial overlap, while the third species (Setosa) is relatively well separated from

the other two. We can see that the observations from each species are not spherical. The

Iris data have been a standard benchmark to test the effectiveness of a clustering algorithm

since it was published in Anderson (1935) and Fisher (1936). Note that one can argue that

both K = 2 or 3 could be the optimal number of clusters due to the large overlap between

Iris Versicolor and Iris Virginica (Pal and Bezdek, 1997).

The Iris data are classical data but we will consider them from a symbolic data perspective

and apply our ORCA algorithm to cluster the data. Sepal is part of the calyx of a flower,

typically forming a whorl that encloses the petals and forms a protective layer around a

flower in bud. The width and length of a sepal can be seen as the smallest and largest

distance between any two points on the edge of the sepal. More precisely, the sepal width

and sepal length are the smallest and the largest distances between any two points that are

at the edge of the sepal and the line connecting the two points crosses the center of mass

of the sepal. Similarly, the petal width and petal length are the smallest and the largest

distances between any two points that are at the edge of the petal and the line connecting
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Table 4.9: Iris data (Fisher, 1936)

Setosa Versicolor Virginica
N SepalL SepalW PetalL PetalW SepalL SepalW PetalL PetalW SepalL SepalW PetalL PetalW

1 5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5
2 4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9
3 4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3.0 5.9 2.1
4 4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3 6.3 2.9 5.6 1.8
5 5.0 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3.0 5.8 2.2
6 5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3.0 6.6 2.1
7 4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7
8 5.0 3.4 1.5 0.2 4.9 2.4 3.3 1.0 7.3 2.9 6.3 1.8
9 4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8

10 4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5
11 5.4 3.7 1.5 0.2 5.0 2.0 3.5 1.0 6.5 3.2 5.1 2.0
12 4.8 3.4 1.6 0.2 5.9 3.0 4.2 1.5 6.4 2.7 5.3 1.9
13 4.8 3.0 1.4 0.1 6.0 2.2 4.0 1.0 6.8 3.0 5.5 2.1
14 4.3 3.0 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5.0 2.0
15 5.8 4.0 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4
16 5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3
17 5.4 3.9 1.3 0.4 5.6 3.0 4.5 1.5 6.5 3.0 5.5 1.8
18 5.1 3.5 1.4 0.3 5.8 2.7 4.1 1.0 7.7 3.8 6.7 2.2
19 5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3
20 5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6.0 2.2 5.0 1.5
21 5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3
22 5.1 3.7 1.5 0.4 6.1 2.8 4.0 1.3 5.6 2.8 4.9 2.0
23 4.6 3.6 1.0 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2.0
24 5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8
25 4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1
26 5.0 3.0 1.6 0.2 6.6 3.0 4.4 1.4 7.2 3.2 6.0 1.8
27 5.0 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8
28 5.2 3.5 1.5 0.2 6.7 3.0 5.0 1.7 6.1 3.0 4.9 1.8
29 5.2 3.4 1.4 0.2 6.0 2.9 4.5 1.5 6.4 2.8 5.6 2.1
30 4.7 3.2 1.6 0.2 5.7 2.6 3.5 1.0 7.2 3.0 5.8 1.6
31 4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9
32 5.4 3.4 1.5 0.4 5.5 2.4 3.7 1.0 7.9 3.8 6.4 2.0
33 5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2
34 5.5 4.2 1.4 0.2 6.0 2.7 5.1 1.6 6.3 2.8 5.1 1.5
35 4.9 3.1 1.5 0.2 5.4 3.0 4.5 1.5 6.1 2.6 5.6 1.4
36 5.0 3.2 1.2 0.2 6.0 3.4 4.5 1.6 7.7 3.0 6.1 2.3
37 5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4
38 4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8
39 4.4 3.0 1.3 0.2 5.6 3.0 4.1 1.3 6.0 3.0 4.8 1.8
40 5.1 3.4 1.5 0.2 5.5 2.5 4.0 1.3 6.9 3.1 5.4 2.1
41 5.0 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4
42 4.5 2.3 1.3 0.3 6.1 3.0 4.6 1.4 6.9 3.1 5.1 2.3
43 4.4 3.2 1.3 0.2 5.8 2.6 4.0 1.2 5.8 2.7 5.1 1.9
44 5.0 3.5 1.6 0.6 5.0 2.3 3.3 1.0 6.8 3.2 5.9 2.3
45 5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5
46 4.8 3.0 1.4 0.3 5.7 3.0 4.2 1.2 6.7 3.0 5.2 2.3
47 5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5.0 1.9
48 4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3.0 5.2 2.0
49 5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 6.2 3.4 5.4 2.3
50 5.0 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3.0 5.1 1.8
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Figure 4.9: The scatter plot matrix of the Iris data

the two points crosses the center of mass of the petal. By such an interpretation, the sepal

size can be described by interval-valued data where the lower point of an interval is the sepal

width and upper point of the intervals is the sepal lengths. The interval-valued petal size can
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be formed in a similar way. The interval-valued Iris data is presented in Table 4.10 where

the sepal size is formed by the sepal width and sepal length, and petal size is formed by the

petal width and petal length.

Table 4.10: Interval-valued Iris data

Setosa Versicolor Virginica

N sepal size petal size sepal size petal size sepal size petal size
1 [3.5, 5.1] [0.2, 1.4] [3.2, 7.0] [1.4, 4.7] [3.3, 6.3] [2.5, 6.0]
2 [3.0, 4.9] [0.2, 1.4] [3.2, 6.4] [1.5, 4.5] [2.7, 5.8] [1.9, 5.1]
3 [3.2, 4.7] [0.2, 1.3] [3.1, 6.9] [1.5, 4.9] [3.0, 7.1] [2.1, 5.9]
4 [3.1, 4.6] [0.2, 1.5] [2.3, 5.5] [1.3, 4.0] [2.9, 6.3] [1.8, 5.6]
5 [3.6, 5.0] [0.2, 1.4] [2.8, 6.5] [1.5, 4.6] [3.0, 6.5] [2.2, 5.8]
6 [3.9, 5.4] [0.4, 1.7] [2.8, 5.7] [1.3, 4.5] [3.0, 7.6] [2.1, 6.6]
7 [3.4, 4.6] [0.3, 1.4] [3.3, 6.3] [1.6, 4.7] [2.5, 4.9] [1.7, 4.5]
8 [3.4, 5.0] [0.2, 1.5] [2.4, 4.9] [1.0, 3.3] [2.9, 7.3] [1.8, 6.3]
9 [2.9, 4.4] [0.2, 1.4] [2.9, 6.6] [1.3, 4.6] [2.5, 6.7] [1.8, 5.8]

10 [3.1, 4.9] [0.1, 1.5] [2.7, 5.2] [1.4, 3.9] [3.6, 7.2] [2.5, 6.1]
11 [3.7, 5.4] [0.2, 1.5] [2.0, 5.0] [1.0, 3.5] [3.2, 6.5] [2.0, 5.1]
12 [3.4, 4.8] [0.2, 1.6] [3.0, 5.9] [1.5, 4.2] [2.7, 6.4] [1.9, 5.3]
13 [3.0, 4.8] [0.1, 1.4] [2.2, 6.0] [1.0, 4.0] [3.0, 6.8] [2.1, 5.5]
14 [3.0, 4.3] [0.1, 1.1] [2.9, 6.1] [1.4, 4.7] [2.5, 5.7] [2.0, 5.0]
15 [4.0, 5.8] [0.2, 1.2] [2.9, 5.6] [1.3, 3.6] [2.8, 5.8] [2.4, 5.1]
16 [4.4, 5.7] [0.4, 1.5] [3.1, 6.7] [1.4, 4.4] [3.2, 6.4] [2.3, 5.3]
17 [3.9, 5.4] [0.4, 1.3] [3.0, 5.6] [1.5, 4.5] [3.0, 6.5] [1.8, 5.5]
18 [3.5, 5.1] [0.3, 1.4] [2.7, 5.8] [1.0, 4.1] [3.8, 7.7] [2.2, 6.7]
19 [3.8, 5.7] [0.3, 1.7] [2.2, 6.2] [1.5, 4.5] [2.6, 7.7] [2.3, 6.9]
20 [3.8, 5.1] [0.3, 1.5] [2.5, 5.6] [1.1, 3.9] [2.2, 6.0] [1.5, 5.0]
21 [3.4, 5.4] [0.2, 1.7] [3.2, 5.9] [1.8, 4.8] [3.2, 6.9] [2.3, 5.7]
22 [3.7, 5.1] [0.4, 1.5] [2.8, 6.1] [1.3, 4.0] [2.8, 5.6] [2.0, 4.9]
23 [3.6, 4.6] [0.2, 1.0] [2.5, 6.3] [1.5, 4.9] [2.8, 7.7] [2.0, 6.7]
24 [3.3, 5.1] [0.5, 1.7] [2.8, 6.1] [1.2, 4.7] [2.7, 6.3] [1.8, 4.9]
25 [3.4, 4.8] [0.2, 1.9] [2.9, 6.4] [1.3, 4.3] [3.3, 6.7] [2.1, 5.7]
26 [3.0, 5.0] [0.2, 1.6] [3.0, 6.6] [1.4, 4.4] [3.2, 7.2] [1.8, 6.0]
27 [3.4, 5.0] [0.4, 1.6] [2.8, 6.8] [1.4, 4.8] [2.8, 6.2] [1.8, 4.8]
28 [3.5, 5.2] [0.2, 1.5] [3.0, 6.7] [1.7, 5.0] [3.0, 6.1] [1.8, 4.9]
29 [3.4, 5.2] [0.2, 1.4] [2.9, 6.0] [1.5, 4.5] [2.8, 6.4] [2.1, 5.6]
30 [3.2, 4.7] [0.2, 1.6] [2.6, 5.7] [1.0, 3.5] [3.0, 7.2] [1.6, 5.8]
31 [3.1, 4.8] [0.2, 1.6] [2.4, 5.5] [1.1, 3.8] [2.8, 7.4] [1.9, 6.1]
32 [3.4, 5.4] [0.4, 1.5] [2.4, 5.5] [1.0, 3.7] [3.8, 7.9] [2.0, 6.4]
33 [4.1, 5.2] [0.1, 1.5] [2.7, 5.8] [1.2, 3.9] [2.8, 6.4] [2.2, 5.6]
34 [4.2, 5.5] [0.2, 1.4] [2.7, 6.0] [1.6, 5.1] [2.8, 6.3] [1.5, 5.1]
35 [3.1, 4.9] [0.2, 1.5] [3.0, 5.4] [1.5, 4.5] [2.6, 6.1] [1.4, 5.6]
36 [3.2, 5.0] [0.2, 1.2] [3.4, 6.0] [1.6, 4.5] [3.0, 7.7] [2.3, 6.1]
37 [3.5, 5.5] [0.2, 1.3] [3.1, 6.7] [1.5, 4.7] [3.4, 6.3] [2.4, 5.6]
38 [3.6, 4.9] [0.1, 1.4] [2.3, 6.3] [1.3, 4.4] [3.1, 6.4] [1.8, 5.5]
39 [3.0, 4.4] [0.2, 1.3] [3.0, 5.6] [1.3, 4.1] [3.0, 6.0] [1.8, 4.8]
40 [3.4, 5.1] [0.2, 1.5] [2.5, 5.5] [1.3, 4.0] [3.1, 6.9] [2.1, 5.4]
41 [3.5, 5.0] [0.3, 1.3] [2.6, 5.5] [1.2, 4.4] [3.1, 6.7] [2.4, 5.6]
42 [2.3, 4.5] [0.3, 1.3] [3.0, 6.1] [1.4, 4.6] [3.1, 6.9] [2.3, 5.1]
43 [3.2, 4.4] [0.2, 1.3] [2.6, 5.8] [1.2, 4.0] [2.7, 5.8] [1.9, 5.1]
44 [3.5, 5.0] [0.6, 1.6] [2.3, 5.0] [1.0, 3.3] [3.2, 6.8] [2.3, 5.9]
45 [3.8, 5.1] [0.4, 1.9] [2.7, 5.6] [1.3, 4.2] [3.3, 6.7] [2.5, 5.7]
46 [3.0, 4.8] [0.3, 1.4] [3.0, 5.7] [1.2, 4.2] [3.0, 6.7] [2.3, 5.2]
47 [3.8, 5.1] [0.2, 1.6] [2.9, 5.7] [1.3, 4.2] [2.5, 6.3] [1.9, 5.0]
48 [3.2, 4.6] [0.2, 1.4] [2.9, 6.2] [1.3, 4.3] [3.0, 6.5] [2.0, 5.2]
49 [3.7, 5.3] [0.2, 1.5] [2.5, 5.1] [1.1, 3.0] [3.4, 6.2] [2.3, 5.4]
50 [3.3, 5.0] [0.2, 1.4] [2.8, 5.7] [1.3, 4.1] [3.0, 5.9] [1.8, 5.1]
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The interval-valued Iris data now have two attributes, sepal size and petal size. We

would like to apply the ORCA algorithm to the interval-valued Iris data and recover the

three species. Figure 4.10 shows the relation between the sepal size and petal size for the

interval-valued Iris data. In a similar manner as for the classical Iris data, the species Setosa

is relatively separated from the other two species, while the species Versicolor and Virginica

are largely overlapped.

Figure 4.10: Sepal size and petal size of three species for interval-valued Iris data

We cluster the interval-valued Iris data by applying all the three orthogonal regression

methods of ORCA, ORCA by the simple orthogonal regression method (center), the simple

orthogonal regression method (min max), and the general orthogonal regression method. We

first look at the clustering results given the number of clusters to be two and three. Then

we apply the methods discussed in section 4.3 to determine an optimal number of clusters
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for the Iris data.

Table 4.11 compares frequencies of the three true species with the clustered groups by

the ORCA with three orthogonal regression methods. Note that the labels of the clustered

group, 1, 2, 3, are merely to distinguish between different clusters. For each clustered group,

we count its members as the frequency of each of the three species, Setosa, Versicolor, and

Virginica. For example, given the number of clusters K = 2, all the members of the cluster

1 of the ORCA clustering results by simple OR (center) method are Iris Setosa. All the

members in the second cluster are Iris Versicolor and Iris Virginica. For the same method,

given K = 3, 50 Setosa are clustered into the first group, 41 Versicolor and 2 Virginica

are clustered into the second group, while the remaining 9 Versicolor and 48 virginica are

clustered into the third group.

Table 4.11: Comparison between the true species and the ORCA clustered groups for the
Iris data

Number of Clustered Setosa Versicolor Virginica
clusters groups

Simple OR K=2 1 50 0 0
(center) 2 0 50 50

K=3 1 50 0 0
2 0 41 2
3 0 9 48

Simple OR K=2 1 50 0 0
(min max) 2 0 50 50

K=3 1 50 0 0
2 0 44 2
3 0 6 48

General OR K=2 1 50 0 0
2 0 50 50

K=3 1 50 0 0
2 0 38 2
3 0 12 48

We can see from Table 4.11 that given K = 2, all the three OR methods of the ORCA
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cluster the 50 Iris Setosa as one cluster, while they cluster the 50 Iris Versicolor and 50 Iris

Virginica as the other cluster. Given the number of clusters K = 3, all the three OR methods

of ORCA still cluster the 50 Iris Setosa as one cluster. While the most observations of the Iris

Versicolor and Iris Virginica are clustered into two different clusters, there are observations

in each of these two species that are clustered into a group where the majority is a different

species. This is not surprising given the large overlap between the species Versicolor and

Virginica. The clusters results from the three OR methods are a little different but they

are comparable. Note that the ORCA is not a supervised algorithm which tries to classify

an observation to its species based on the relation between predictor variables and the label

of species. The ORCA algorithm clusters the observations into different groups based on

the linear separability of the data without the species information. From the results in

Table 4.11, the performance of the ORCA algorithm for all the three OR methods works

well to cluster the data based on the linear separability of the data given appropriate number

of clusters.

Table 4.12: Optimal number of clusters determined by different metrics

Simple OR Simple OR General OR
(center) (min max)

Gap 2 1 1
Silhouette 2 2 2
SD(10%) - 2 2
SD(25%) 5 2 2
SD(50%) 3 1 1

AIC - - 2
BIC - - 2

For a clustering problem, usually the information of the optimal number of clusters is not

available. We apply the different metrics discussed in section 4.3 to determine the optimal

number of clusters for the Iris data clustered by ORCA. Given the maximum number of

clusters to be six, Table 4.12 shows the decision of the optimal number of clusters by different

metrics for the ORCA by the three orthogonal regression methods. For the ORCA using the
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simple orthogonal regression method (center), the optimal number of clusters is 2 by the Gap

statistic and the silhouette statistic. The number of clusters reaches its optimal at 5 and 3

for the elbow method by SD (4.47) with cutoff 25% and 50%, respectively. None of the SDK

is less than 10% for K = 1, . . . , 5. For the ORCA using the simple orthogonal method (min

max), the number of optimal clusters given by the silhouette statistic, the elbow method

with SD cutoff 10% and 25% are all 2, while this number is 1 for the Gap statistic and

the elbow method with SD cutoff 50%. For the ORCA applying the general orthogonal

regression method, the optimal number of clusters is 2 for the silhouette statistic, the elbow

method with SD cutoff 10% and 20%, the AIC, and the BIC, while the Gap statistic and

the elbow method with SD cutoff 50% reach their optimal at 1 cluster.

(a) (b) (c)

Figure 4.11: Elbow plots of ORCA results for the interval-valued Iris data

We understand that an appropriate SD cutoff of the elbow method can be different for

different variables scales, data structures, or clustering methods. An elbow plot is helpful to

determine the optimal number of clusters. Figure 4.11 (a), (b), (c) give the elbow plots for

the ORCA using the simple orthogonal regression method (center), the simple orthogonal

regression method (min max) and the general orthogonal regression method, respectively. It

is arguable that 2 or 3 is the optimal number of clusters by Figure 4.11 (a) for the simple

orthogonal regression method (center). We can see from the elbow plots in Figure 4.11 (b)

that the simple orthogonal regression method (min max) is in favor of 3 clusters. The elbow
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plot in Figure 4.11 indicates that the general orthogonal regression method is in favor of 2

clusters. For all the three methods from the elbow plots, we can see that there is a close

competition between 2 clusters and 3 clusters.

Table 4.13: Different metrics for number of clusters K = 1, . . . , 6

ORCA Method Number of clusters
1 2 3 4 5 6

Simpe OR SSOD 34.21 5.04 1.97 1.26 0.86 0.66
(center) Gap 0.82 1.31 1.34 1.3 1.26 1.29

(0.05) (0.08) (0.11) (0.12) (0.12) (0.12)
Silhouette - 0.69 0.58 0.56 0.5 0.49

SDK 0.85 0.61 0.35 0.32 0.23 -

Simpe OR SSOD 168.35 114.68 103.59 101.12 99.91 98.86
(min max) Gap -0.82 -1.82 -2.6 -3.07 -3.51 -3.75

(0.08) (0.06) (0.07) (0.14) (0.18) (0.14)
Silhouette - 0.26 0.17 0.16 0.15 0.14

SDK 0.32 0.10 0.02 0.01 0.01 -

General OR SSOD 306.52 224.37 222.50 242.56 240.09 244.62
Gap -1.62 -2.75 -3.56 -4.21 -4.5 -4.85

(0.06) (0.09) (0.11) (0.05) (0.12) (0.10)
Silhouette - 0.91 0.76 0.64 0.62 0.65

SDK 0.27 0.01 -0.09 0.01 -0.02 -
AIC 312.52 236.37 240.50 266.56 270.09 280.62
BIC 321.55 254.43 267.60 302.69 315.25 334.81

Table 4.13 presents the detailed values for each of the metrics given the number of clus-

ters K = 1, . . . , 6. For each orthogonal regression method, SSOD is the sum of squared

orthogonal distances between observations and their closest regression line, Gap is the Gap

statistic, silhoutte is the silhoutte statistic, SDK is the percentage of SSOD decrement de-

fined in equation (4.47). The values in parentheses under the Gap statistic are sK+1 (see

equation (4.54)) that is used to determine the optimal number of clusters combined with

the Gap statistic. We can see that an appropriate SD cutoff is much different between the

three orthogonal regression methods. By the silhouette statistic for the general orthogonal

regression method, 0.91 for two clusters and 0.76 for three clusters, the separation between

the clusters is good by assuming normal distributed measurement error. The advantage of
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2 clusters to 3 clusters is small by the silhouette statistics for all the three methods.

In summary, the ORCA using the three orthogonal regression methods can all recover the

clusters given the number of clusters to be two or three. The optimal number of clusters by

the elbow method, the information approaches, the Gap statistic, and the silhouette statistic

are generally in favor of 2, though the competition between 2-cluster and 3-cluster is close.

The determination of silhouette statistics and elbow methods are relatively more stable and

more reliable.
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4.6 Appendix

4.6.1 Parameter Setup of the Simulated Data Sets

This section gives the parameter setup for the six simulated data sets we have used to

illustrate the ORCA algorithm in section 4.4. The simulation method for interval values

of each data set follows the simulation method III in section 3.4. For each Data I-IV , the

variable x2 is set to be the response variable, x1 is the predictor variable. For Data V ,

the variable x3 is set to be the response variable, while all other variables are the predictor

variables. For Data V I, the variable x5 is the response variable and all other variables are

the predictor variables.

In the following description of the parameter setup for the six data sets, each data name

is followed by the number of clusters, data dimensions, and the sample size for each cluster.

For example, Data I is a two-dimensional data set with three clusters where the sample sizes

for the three clusters are n1 = 100, n2 = 50, and n3 = 50. In the equations (4.61), (4.62),

(4.63), (4.64), (4.65), and (4.66), “Cluster” gives the linear regression relations between all

the variables for each cluster. The interval center points of the predictor variables for the

kth cluster of a particular data set are drawn from normal distribution N(µx, σ
2
x) where the

µx and σx are the kth row of µx and σx for two-dimensional data. For multi-dimensional

data set, σx is σ
(k)
x in the equations. The interval ranges of all the predictor variables for a

particular cluster of a data set are drawn from exponential distributions expλ where λ is the

values in the kth row of λ. The error terms of kth are generated from a normal distribution

N(0, σe) where σe is the value in the kth row of σe in the equations.

We take the first cluster of Data I as example to demonstrate the simulation process. The

sample size of the cluster 1 of Data I is 100. From the parameter setup in equation (4.61),

the 100 interval center points of x1 of the cluster 1, x
(c)
i1 , i = 1, . . . , 100, are independently
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generated from a normal distribution N(4, 18). he 100 interval ranges of x1 for the cluster 1,

x
(r)
i1 , i = 1, . . . , 100, are generated from an exponential distribution exp(1.5). The 100 interval

values of x1 are then obtained as [x
(c)
i1 − 0.5x

(r)
i1 , x

(c)
i1 + 0.5x

(r)
i1 ], i = 1, . . . , 100. For each of

i = 1, . . . , 100, we randomly draw 5 values from a uniform distribution, xi1l ∼ U(xi1a, xi1b),

l = 1, . . . , 5. The ith observation of response variable x2 is xi2 = [xi2a, xi2b], i = 1, . . . , 100,

that is obtained as

xi2a = min
l∈{1,...,5}

{8 + 1.3xi1l + εil},

xi2b = min
l∈{1,...,5}

{8 + 1.3xi1l + εil},
(4.60)

where εil, l = 1, . . . , 5, is the error term that follow a normal distribution N(0, 4). The obser-

vations for the cluster 2 and 3 are analogously with the cluster 1. The interval center points

of x1 for the cluster 2 and 3 follow normal distributions N(0, 19) and N(8, 18), respectively.

The interval ranges of x1 for the cluster 2 and 3 are generated from exponential distributions

exp(1.3) and exp(1.2), respectively. The error terms of the cluster 2 and 3 are generated from

normal distributions N(0, 5) and N(0, 5), respectively. We stack the simulated observations

of the three clusters to obtain the Data I. The simulation of Data II-V I are analogously

with Data I.

The detailed parameter setup for the six data sets is as follows:
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Data I (K = 3, p = 2, n1 = 100, n2 = 50, n3 = 50):

Cluster 1 : x2 = −8 + 1.3x1,

2 : x2 = 45 + 2.8x1,

3 : x2 = 35− 2.5x1,

µx = (4, 0, 8)′,

σx = (18, 19, 18)′,

λ = (1.5, 1.3, 1.2)′,

σe = (4, 5, 5)′.

(4.61)

Data II (K = 5, p = 2, ni = 100, i = 1, . . . , 5):

Cluster 1 : x2 =8 + 0.8x1,

2 : x2 =85− 0.5x1,

3 : x2 =4 + 0.2x1,

4 : x2 =5 + 0.5x1,

5 : x2 =13 + x1,

µx =(50, 86, 47, 46, 45)′,

σx =(15, 20, 16, 16, 15)′,

λ =(2, 1.2, 1, 2, 2.2)′,

σe =(2, 2, 2, 2, 2)′.

(4.62)
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Data III (K = 3, p = 2, n1 = 100, n2 = 50, n3 = 25):

Cluster 1 : x2 =35 + 2x1,

2 : x2 =45− 2.8x1,

3 : x2 =1 + 0.8x1,

µx =(4, 0, 8)′,

σx =(12, 9.6, 12)′,

λ =(1.5, 1.3, 1.2)′,

σe =(7, 7, 7)′.

(4.63)

Data IV (K = 2, p = 2, n1 = 50, n2 = 50):

Cluster 1 : x2 =15 + 0.9x1,

2 : x2 =− 15− 0.8x1,

µx =(4, 3)′,

σx =(15, 14)′,

λ =(1.5, 1.3)′,

σe =(6, 6)′.

(4.64)
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Data V (K = 3, p = 3, ni = 40, i = 1, 2, 3):

Cluster 1 : x3 =1 + 1.3x1 + 1.5x2,

2 : x3 =4.5− 1.8x1 − 3x2,

3 : x3 =35− 3.5x1 + 10x2,

µx =


4 5

−3 −3

8 12

 ,
σ(1)
x = diag(20, 8),

σ(2)
x = diag(20, 9),

σ(3)
x = diag(20, 8),

λ =


15 12

13 12

12 12

 ,
σe =(1, 1, 1)′.

(4.65)
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Data V I (K = 2, p = 5, n1 = n2 = 50):

Cluster 1 : x5 =1 + 1.3x1 + 1.5x2 + 2x3 + 4x4,

2 : x5 =4.5− 1.8x1 − 3x2 + 5x3 + x4,

µx =

 4 8 5 12

−3 0 −3 2

 ,
σ(1)
x = diag(20, 20, 8, 8),

σ(2)
x = diag(20, 19, 9, 10),

λ =

 2 1 2.3 2.4

1.5 2.5 1.5 2.4

 ,
σe =(1, 1)′.

(4.66)

4.6.2 The ORCA Results for Data I-IV

We have presented the ORCA results of Data I-IV in section 4.4.1 implemented by the

general orthogonal regression method. The clustering results when applying ORCA on Data

I-IV with the simple orthogonal regression method center and the simple orthogonal re-

gression method (min max) are ploted in Figure 4.12, 4.13, 4.14, and 4.15. Different colors

represent different clusters, but a particular color does not necessarily associate with a partic-

ular cluster. The clustering results can be compared with the original clusters in Figure 4.5,

Figure 4.6, Figure 4.7, Figure 4.8 for Data I-IV , respectively , to verify their correctness.
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(a) Simple OR (center) (b) Simple OR (min max)

Figure 4.12: ORCA results for Data I

(a) Simple OR (center) (b) Simple OR (min max)

Figure 4.13: ORCA results for Data II

(a) Simple OR (center) (b) Simple OR (min max)

Figure 4.14: ORCA results for Data III
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(a) Simple OR (center) (b) Simple OR (min max)

Figure 4.15: ORCA results for Data IV

4.6.3 R Code for the Implementation of the ORCA

# --------------------------------------------

# Standize the interval-valued data to be with variance=1

st.int <- function(data)
{ p <- ncol(data)/2
st.d <- data
m <- s <- NULL

for (i in 1:p)

{

m <- c(m,mean(data[,(2*i-1):(2*i)]))
s <- c(s,cov.int(data[,(2*i-1):(2*i)]))
st.d[,(2*i-1):(2*i)] <- (data[,(2*i-1):(2*i)])/sqrt(s[i])

}

return(st.d)
}

# --------------------------------------------

# Calculate the variance covariance matrix and the correlation

# matrix given a multivariate interval-valued data

covMat<-function(d)
{ p<-ncol(d)/2

cov <- corr <- matrix(0,p,p)
cov[1,1] <- cov.int(d[,1:2])
for (i in 1:p)
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{

corr[i,i] <- 1

for(j in (i+1):p)

{ if(j>p) break
cov[j,j] <- cov.int(d[,(2*j-1):(2*j)])
cov[j,i] <- cov[i,j] <- cov.int(d[,(2*i-1):(2*i)],d[,(2*j-1):(2*j)])

corr[j,i] <- corr[i,j] <- cov[i,j]/sqrt(cov[i,i]*cov[j,j])
}

}

return(list(covMat=cov,corrMat=corr))
}

# --------------------------------------------------------------------

#define the function to calculate the min max orthogonal distance

aod<-function(x,m,p,clusmean)
{ xa <- x[(1:p)*2-1]

xb <- x[(1:p)*2]
Dmin<-sum(apply(cbind(xa*m,xb*m),1,min))-sum(clusmean*m)
Dmax<-sum(apply(cbind(xa*m,xb*m),1,max))-sum(clusmean*m)
if (Dmin*Dmax<0)

d<-sqrt(sum(mˆ2))ˆ-1*max(abs(Dmin),abs(Dmax))/2
else

d<-sqrt(sum(mˆ2))ˆ-1*(abs(Dmin)+abs(Dmax))/2
return(d)

}

# --------------------------------------------

# PCA on the correlation matrix obtained from the covMat

# function, or the covariance matrix for the standardized

# data. They are equivalent

# Using orthogonal regression to do cluster-wise regression

# for interval-valued data

# input:

# data: the interval-valued data that would be clustered

# K: number of clusters

#

# --------------------------------------------------------------------

library(caret)
orthClus<-function(data,K,max.iter,distance="center",scale=T)
{ if(scale==T) data<-st.int(data)

p<-ncol(data)/2
n<-nrow(data)
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#randomly choose K (p+1) subsets

intl<-sample(n,K*(p+1))

#initialize m that will save the linear models at each step

m<-vector("list",K) # m saves the beta coefficients for each cluster

group<-rep(0,n) # group saves the membership for each obs

residual<-regroup<-rep(0,n)
#residual saves the distance between an obs and its nearest hyperplane

#regroup saves the obs membership after each iteration

meanAll<-NULL #meanAll calculate the mean vector for each cluster

for (k in 1:K)

{ m[[k]] <- princomp(covmat=covMat(data[intl[((k-1)*(p)+1):(k*(p))],])[[1]])
$loadings[,p]

t<-NULL
for (l in 1:p)

{t <- c(t,mean(data[intl[((k-1)*(p+1)+1):(k*(p+1))],(2*l-1):(2*l)]))}
meanAll<-rbind(meanAll,t)

}

for (j in 1:n)

{ if(distance=="center")
{ xm <- (data[j,(1:p)*2-1]+data[j,(1:p)*2])*.5
res <-sapply(1:K,f<-function(x){abs(sum(m[[x]]*(xm-meanAll[x,])))},

simplify=T)

}

else if(distance=="average")
res <- sapply(1:K, function(x) aod(data[j,],m[[x]],p,meanAll[x,]))

residual[j] <- min(res)
regroup[j] <- which(res==min(res))[1]

}

group <- regroup

cond<-1
i<-0
while(cond && i<=max.iter)
{ i<-i+1

if (!all(table(regroup)>p)||length(table(regroup))<K)
stop("Number of observations is smaller than the number of parameters

for one or more clusters!")

meanAll <- NULL
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for(k in 1:K)

{ t<-NULL
for (l in 1:p)

{t <- c(t,mean(data[group==k,(2*l-1):(2*l)]))}
meanAll<-rbind(meanAll,t)

m[[k]]<-princomp(covmat=covMat(data[regroup==k,])[[1]])$loadings[,p]
}

dis<-NULL # dis saves the distance between each obs and all fitted

hyperplanes

for (j in 1:n)

{ if(distance=="center")
{xm <- (data[j,(1:p)*2-1]+data[j,(1:p)*2])*.5
res <-sapply(1:K,f<-function(x){abs(sum(m[[x]]*(xm-meanAll[x,])))},

simplify=T)

}

else if(distance=="average")
res <- sapply(1:K, function(x) aod(data[j,],m[[x]],p,meanAll[x,]))

dis<-rbind(dis,res)
residual[j] <- min(res)
regroup[j] <- which(res==min(res))[1]

}

cond<-!all(regroup==group)
group<-regroup

}

if(K>1)
{sortDis<-t(apply(dis,1,sort))
s<-1-sqrt(sortDis[,1]/sortDis[,2])

}

else
{s<-NA
sortDis<-matrix(dis,n,1)

}

names(s)<-NULL

return(list(sum.sq.residual = sum(residualˆ2), models = m, group = group,

niter=i,silhouette=s))

}

# ---------------------------------------------------------------

# orthogonal regression clustering - measurement error model (MEM)

# the orghReg function perform a general orthogonal regression for
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# an interval-valued data.

# Input: interval-valued data

# Ouptputs: fitted model "m"; loglikelihood "loglike"; residual

# multiplier "residualMultiplier".

# Left multiply the center point matrix of the interval-valued

# data by the residualMultiplier is the general orthogonal regression

# residual for each observation.

orthReg<-function(data)
{ p <- ncol(data)/2
n<-nrow(data)
st.d <- data
meanp <- NULL

for (i in 1:p)

{ meanp <- c(meanp,mean(data[,(2*i-1):(2*i)]))
st.d[,(2*i-1):(2*i)] <- data[,(2*i-1):(2*i)]-meanp[i]

}

data <- st.d

rm(st.d)

# the interval mean is the observed valued for MEM: do

# the measurement error is [x_ia-x_ib,x_ib-x_ia]: de

do <- matrix(0,n,p)
de <- matrix(0,n,2*p)
for (i in 1:p)

{do[,i]<-apply(data[,(2*i-1):(2*i)],1,mean)
de[,(2*i-1):(2*i)] <- (data[,(2*i-1):(2*i)]-cbind(do[,i],do[,i]))*2

}

cove<-covMat(de)[[1]]
cove<-diag(diag(cove))
Mzz<-t(do)%*%do/p
# model

m<-eigen(solve(Mzz)%*%cove)[[2]][,1]
#individual residual for each variables, a nxp matrix

residualMultiplier<-t(cove%*%m%*%(m%*%cove%*%m)ˆ(-1)%*%m)
#loglike is the -2*loglikelihood, the smaller the better

loglike<-n*log(det(cove))+sum(apply(do%*%residualMultiplier,1,function(x) x%

*%solve(cove)%*%x))

return(list(meanp=meanp,m=m,residualMultiplier=residualMultiplier,loglike=
loglike,cove=cove))

}

# ---------------------------------------------------------------

# ---------------------------------------------------------------

# The function orthClusMEM perform ORCA by applying the general
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# orthogonal regression method. The input is an interval-valued

# data, the given number of cluster K, and a maximum number of

# iteration.

# Outputs: SSOD; membership of each observation - group;

# fitted models - m; log likelihood - loglike;

# silhouette statistic - silhouette;

orthClusMEM<-function(data,K,max.iter)
{

p<-ncol(data)/2
n<-nrow(data)

# the interval mean is the observed valued for MEM: do

# the measurement error is [x_ia-x_ib,x_ib-x_ia]: de

do <- matrix(0,n,p)
de <- matrix(0,n,2*p)
for (i in 1:p)

{do[,i]<-apply(data[,(2*i-1):(2*i)],1,mean)
de[,(2*i-1):(2*i)] <- (data[,(2*i-1):(2*i)]-cbind(do[,i],do[,i]))*2

}

# randomly choose K (p+1) subsets

intl<-sample(n,K*(p+1))

#initialize m that will save the linear models at each step

m<-vector("list",K)
group<-regroup<-rep(0,n)
distance<-NULL

for(k in 1:K)

{ #tt save a temp result

tt<-orthReg(data[intl[((k-1)*(p+1)+1):(k*(p+1))],])
m[[k]] <- tt$m
residual<-sweep(do,2,tt$meanp)%*%tt$residualMultiplier
distance<-cbind(distance,apply(residual,1,f<-function(x){x%*%solve(tt$

cove)%*%x}))
}

regroup<-apply(distance,1,f<-function(x) {which(x==min(x))[1]})
group <- regroup

cond<-1
i<-0
while(cond && i<=max.iter)
{ i<-i+1

if (!all(table(regroup)>p)||length(table(regroup))<K)
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stop("Number of observations is smaller than the number of parameters

for one or more clusters!")

distance<-NULL
for (k in 1:K)

{ tt<-orthReg(data[regroup==k,])
m[[k]] <- tt$m
residual<-sweep(do,2,tt$meanp)%*%tt$residualMultiplier
distance<-cbind(distance,apply(residual,1,f<-function(x){x%*%solve(

tt$cove)%*%x}))
}

regroup<-apply(distance,1,f<-function(x) {which(x==min(x))[1]})

cond<-!all(regroup==group)
group<-regroup

}

loglike<-sum(sapply(1:K,f<-function(x){orthReg(data[regroup==x,])$loglike}))

if(K>1)
{sortDis<-t(apply(distance,1,sort))
s<-1-sqrt(sortDis[,1]/sortDis[,2])
}

else
{s<-NA
sortDis<-matrix(distance,n,1)
}

names(s)<-NULL
return(list(sum.sq.residual=sum(sortDis[,1]),models=m,group=group,niter=i,

loglike=loglike, silhouette=s))

}

# ---------------------------------------------------------------

# The RegClusGap function is to determine the optimal number of clusters by

ORCA.

# The ORCA can be implemented by general OR, simple OR with center distance,

# or simple OR with min max distance.

# Outputs: optimal K by Gap - optK; SSOR for K = 1˜maxK - W;

# Gap statistic - Gap; membership for each observation - group;

# silhouette statistic for each observation - silhouette;

# AIC - AIC; BIC - BIC.

# Given the outputs of the RegClusGap, to use the method of silhouette

statistic,

# information criterion approach, or elbow method to determine the optimal

# number of clusters can also be implemented.

RegClusGap<-function(data,maxK,scale=FALSE,B,max.iter=50,nrep=50,method=
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orthClusMEM,...)

{ if(scale) data <- st.int(data)
library(lga)
n<-nrow(data)
p<-ncol(data)/2
# loadings of the principal component

v<-princomp(covmat=covMat(data)[[1]])$loadings
# combine the two end points of the same variable into one column

x<-(data[,(1:p)*2-1]+data[,(1:p)*2])/2
# transform the original values

xx<-x%*%v
bound<-cbind(apply(xx,2,min),apply(xx,2,max))
# Gap: the Gap statistic

# sdk: standard deviation of the log SSR of the B reference data

# W: smallest SSR

# Wk: average SSR for the B reference data

Gap<-sdk<-W<-Wk<-group<-silhouette<-AIC<-BIC<-NULL
for(K in 1:maxK)

{ logSSR<-NULL
Wb<-Inf
i<-0

while(i < nrep) #nrep is the number of replication

{ t<-try(method(data,K,max.iter,...))
if(class(t)!="try-error")
{ i<-i+1

if(Wb>t$sum.sq.residual)
{ Wb<-t$sum.sq.residual

groupt<-t$group
silhouettet<-t$silhouette

AICt<-t$loglike+2*K*(2*p-1)
BICt<-t$loglike+log(n)*K*(2*p-1)

}

}

}

W<-c(W,Wb)
group<-cbind(group,groupt)
if(K>1) silhouette<-cbind(silhouette,silhouettet)
if(!is.null(AICt))
{AIC<-c(AIC,AICt)
BIC<-c(BIC,BICt)

}

for(b in 1:B)
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{ xb<-NULL
for(j in 1:p)

{xb<-cbind(xb,runif(n,bound[j,1],bound[j,2]))}
zb<-xb%*%t(v) #transform back to the original scale

SSRb<-lga(zb,k=K,scale=scale,silent=TRUE,biter=200)$ROSS
logSSR<-c(logSSR,log(SSRb))
}

Wk<-c(Wk,mean(exp(logSSR)))
Gap<-c(Gap,(sum(logSSR)/B-log(Wb)))
sdk<-c(sdk,sqrt(sum((logSSR-mean(logSSR))ˆ2)/B*(1+1/B)))

}

optK<-which(Gap[-K]>=(Gap[-1]-sdk[-1]))[1]
return(list(optK=optK,W=W,Wk=Wk,sdk=sdk,Gap=Gap,group=group,silhouette

=silhouette,AIC=AIC,BIC=BIC))

}
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Chapter 5

Future Work

In section 4.1.1 we proposed an orthogonal regression model for interval-valued data by

a measurement error model, the general orthogonal regression method. We used a rigid

assumption in equation (4.18) that restrict the true value of an observation to be always

within the interval of the observation. For convenience purposes, we rewrite the assumption

in equation (4.18) here

uij ∼ U(xija − x(c)
ij , xijb − x

(c)
ij ), (5.1)

where uij is the measurement errors for the ith observation of variable Xj, xij = [xija, xijb],

and x
(c)
ij is the interval center point of xij. In other words, we assume the linear regression

line always crosses the hypercube of each observation. Since our focus in this dissertation is

to recover the clusters for interval-valued data that are clustering around linear regression

lines, we did not study the properties of our general orthogonal regression method using

measurement error model. The simulation study in section 4.4 shows the orthogonal regres-

sion clustering algorithm (ORCA) using the general orthogonal regression method can still

converge to the correct clusters when the assumption in equation (4.18) is violated, though

the convergence does usually require trying more initial partitions. For example, from Fig-

ure 4.4 for the data set in equation (4.57), it is impossible that a linear regression line can
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cross all the rectangles for a particular cluster. The ORCA using the general orthogonal re-

gression method can still recover the true structure for this data set. Future research about

relaxing this assumption will make the measurement error model more appropriate to the

linear regression method for the interval-valued data. The performance of ORCA using the

general orthogonal regression method can possibly be improved if this assumption is relaxed.

One possible way to relax the assumption in equation (4.18) is to implement an iteration

process. In particular, we describe the process as follows:

(i) Start with the assumption in equation (4.18), calculate the covariance matrix of the

measurement errors by equation (4.19). Estimate the linear regression coefficients by

equation (4.27) based on the obtained covariance matrix of measurement errors.

(ii) Calculate the true value for each observation by the estimated linear regression coeffi-

cients. Denote the calculated true value of an observation xij as ẍij; the measurement

error for xij is updated as u′ij = [xija − ẍij, xjib − ẍij]. Update the covariance matrix

for the measurement errors and go back to the step (i).

We can repeat these two steps until certain convergence criterion is satisfied. The criterion

can be, for example, the Euclidean distance between the updated estimated true values of

all observations and the estimated true values from the previous iteration is smaller than a

predetermined value. However, further research is needed to study whether these two steps

can eventually converge.

Using the measurement error model to estimate the linear regression coefficients for

the interval-valued data provides a new way to make inference about the linear regression

coefficients. The asymptotic properties of the linear regression coefficients for measurement

error model were discussed in Fuller (2009). Future research can adapt these properties to

the measurement error model for interval-valued data for inference.
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The measurement error model for interval-valued data provides a maximum likelihood

estimation (MLE) to the linear regression coefficients. Analogously with the maximum

likelihood methodology for cluster-wise regression proposed by DeSarbo and Cron (1988)

for classical data, the maximum likelihood estimation by measurement error model for the

interval-valued data can be used to develop the model based cluster-wise regression for

interval-valued data.
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