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A Metropolis-Type Dynamics and the Monte Carlo Damage Spreading technique
are proposed to study Ising, mixed-spin Ising, and Blume-Capel models on the 2-
dimensional square lattice. For the mixed spin Ising model, our results strongly
suggest that this spin model may have a tricritical point at finite temperature; For
S=1 and 2 integer spin Blume-Capel models, our results suggest there exists one
multi-critical point along the order-disorder transition line. For S=3/2 and 5/2 half-
integer spin Blume-Capel models, our results show that this multi-critical behavior
does not exist.

The Self-Consistent High-Order Feynman Diagram Expansion Technique is intro-
duced and then employed to study two correlated electron models: the Hubbard
Model (HBM) and the Anderson Impurity Model (AIM) with maximum expansion
order n = 3. The basic idea of Monte Carlo Summation technique combined with
the Self-Consistent Feynman Diagram Expansion, the initial results, and proposed
future work on this topic are also presented.
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Chapter 1

Introduction

It could be argued that current physics research can be divided into three areas -

theoretical, experiment, and computational. Numerical approaches, in which systems

are mimicked as accurately as possible using a computer or in which computer models

are set up to provide well-behaved experimental systems are increasingly providing

a bridge between theory and experiment.

A powerful numerical approach is the Metropolis Monte Carlo method. It was

introduced in 1953 at the dawn of computer age and its range of applicability and

accuracy have continued to increase with the development of more advanced tech-

nology. One of the simplest and most natural applications is to discrete magnetic

spin models. In the first part of this work, we will study the Ising model, mixed spin

Ising model and Blume-Capel model on the two-dimensional square lattice by using

the Monte Carlo Damage Spreading (MCDS) technique. The reasons why I choose

mixed spin Ising model and Blume-Capel model to be studied are that there are two

opposite conclusions regarding the existence or not of the tricritical point. Here, we

first introduce the MCDS technique and a Metropolis-type Dynamics on the basis

of Metropolis Monte Carlo principle, then we use this technique to study the above

spin models. For the mixed spin Ising model, our results strongly suggest that this

spin model may have a tricritical point at finite temperature. We also employ the

damage spreading technique to study the general integer and half-integer spin-S

Blume-Capel model on the square lattice. For S=1 and 2 integer spins, our results

1
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suggest that there exists one multi-critical point along the order-disorder transition

line. For S=3/2 and 5/2 half-integer spins, our results show that this multi-critical

behavior does not exist for this model.

The interacting fermion problem is of fundamental importance in a wide range

of research areas, including fields as diverse as electronic structure theory of solids,

strongly correlated electron physics, quantum chemistry, and the theory of nuclear

matter. The Self-Consistent High-Order Feynman Diagram Expansions Technique is

potentially a very efficient tool for the controlled approximate solution of interacting

fermion models. In the second part of this work, we will first introduce the Self-

Consistent Feynman Diagram Expansion (SCFDE) Technique, and then implement

a brute force summation technique to evaluate the expansion for two correlated

electron models, the 2D Hubbard model(2DHBM) and the Anderson Impurity Model

(AIM), with maximum expansion order n = 3. At last, we briefly present a Monte

Carlo Summation Technique for evaluating the Self-Consistent Feynman Diagram

Expansion and initial calculation results comparing the brute force and Monte Carlo

summation results. The implementation of this Monte Carlo diagram summation

method for higher, n > 3, order Feynman diagram poses major algorithmic and

computational challenges and is the direction of our future work on this topic.

The outline of this thesis is as follows: Chapter 2 reviews the theoretical back-

ground about the Monte Carlo method and Damage Spreading technique. Chapter

3 first introduces a Metropolis-Type dynamics, and then presents the MCDS results

for Ising, mixed spin Ising, and Blume-Capel models. The Self-Consistent Feynman

Diagram Expansion Technique is introduced in Chapter 4, and the calculation results

for Hubbard model and Anderson Impurity Model are presented in Chapter 5. In

Chapter 6, we briefly present the basic principle of the Monte Carlo Summation

Technique combined with the Self-Consistent Feynman Diagram Expansion, and

the initial results.



Chapter 2

The Monte Carlo (MC) Method

2.1 Introduction

The Monte Carlo(MC) method is defined by representing the solution of a problem as

a parameter of a hypothetical population, and using a random sequence of numbers

to construct a sample of the population, from which statistical estimates of the

parameter can be obtained.

The definition shows that the scope of applications is enormous and fascinating.

Many problems that at first glance do not seem to allow treatment with the MC

method, can be transformed into stochastic ones. Here we concentrate on the descrip-

tion of MC method to statistical mechanics problems [1]-[4].

2.2 Simple Sampling vs. Importance Sampling

2.2.1 Simple Sampling

One of the simplest and most effective uses for MC method is the evaluation of

definite integrals which are intractable by analytical techniques. For simplicity, we

wish to calculate the one-dimensional integral

I =
∫ b

a
f(x) dx (2.1)

The simple sampling Monte Carlo method gives an estimate value of this integral

by choosing n points xi randomly from the interval [a,b] with a uniform distribution

3
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I ∼= b − a

M

M∑
i=1

f(xi) (2.2)

Here we actually approximate the average of the function f(x) to be

〈f(x)〉 ∼= 1

M

M∑
i=1

f(xi) (2.3)

The error for this estimate is O(1/
√

M), the convergence is very slow. Also,

simple sampling will only be approximate for functions that are relatively smooth.

Any sharp peak in the f value will probably be missed by the simple MC method.

Obviously, it would be more efficient to sample the function at points where the main

contribution comes from. This leads to the development of importance sampling

Monte Carlo method.

2.2.2 Importance Sampling

The importance sampling Monte Carlo method involves the use of a weight function

p(x) > 0 such that

∫ b

a
p(x) dx = 1 (2.4)

It follows that

I =
∫ b

a
f(x) dx =

∫ b

a

f(x)

p(x)
p(x) dx (2.5)

We may choose the points xi according to the measure p(x)dx, instead of uni-

formly. The average of the function f(x) is then

〈f(x)〉 ∼= 1

M

M∑
i=1

f(xi)

p(xi)
(2.6)

Computing the variance one obtains
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σ2 =
∫ b

a

[
f(x)

p(x)

]2

p(x) dx −
[∫ b

a

f(x)

p(x)
p(x) dx

]2

(2.7)

To make the variance as small as possible, we may choose

p(x) ∼= |f(x)|∫ b
a |f(x)| dx

(2.8)

At this point we have arrived at the idea of importance sampling.

For a real thermal system with phase space X governed by the Hamiltonian

H(X), the average value of an observable as a function of temperature T , 〈A(X)〉
is given by

〈A(X)〉β =
1

Z

∫ ∞

−∞
A(X)e−βH(X) dX (2.9)

where β=1/kBT . Z is the normalization factor for the canonical ensemble known as

the partition function

Z =
∫ ∞

−∞
e−βH(X) dX (2.10)

Now, according to the above procedures, we have

〈A(X)〉β ∼=
∑M

i=1 A(Xi)e
−βH(Xi)∑M

i=1 e−βH(Xi)
(2.11)

and using the idea of importance sampling , we get

〈A(X)〉β ∼=
∑M

i=1[A(Xi)e
−βH(Xi)/p(Xi)]∑M

i=1[e
−βH(Xi)/p(Xi)]

(2.12)

Choosing

p(Xi) =
1

Z
e−βH(Xi) (2.13)
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i.e. the equilibrium distribution, the variance, which we want to reduce, is prac-

tically zero. At this point, the computation of the quantity 〈A(X)〉 then reduces to

simple arithmetic averaging

〈A(X)〉β ∼= 1

M

M∑
i=1

A(Xi) (2.14)

How can we generate a random sample of Xi which are distributed according to

p(X) ?

2.3 The Metropolis Algorithm

2.3.1 Metropolis Algorithm

Metropolis[5] etal. put forward the idea of using a Markov Chain such that starting

from an initial state X0 further states are generated which are ultimately distributed

according to p(X), i.e. p(X) tends to peq(X) as M → ∞. In order that the Markov

process converges to peq(X), the transition rate ( the probability of transition from

point Xi to point Xj in phase space ) W (Xi → Xj) must satisfy the detailed balance

condition

peq(Xi)W (Xi → Xj) = peq(Xj)W (Xj → Xi) (2.15)

Then from Eqs.(2.13) and (2.15)

peq(Xi)

peq(Xj)
=

W (Xj → Xi)

W (Xi → Xj)
= e−β∆H (2.16)

where ∆H is the energy change (H(Xi) - H(Xj)). The choice of W (Xi → Xj) is

not unique. A convenient one is

W (Xi → Xj) =




e−β∆H if ∆H > 0

1 if ∆H ≤ 0
(2.17)
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So, The Metropolis algorithm is very simple to program

(1) Specify an initial point X0 in phase space.

(2) Generate a new state X
′
.

(3) Compute the energy change ∆H

(4) Generate a uniform random number R ∈[0,1].

(5) If ∆H < 0, accept the new state and return to step (2).

(6) Otherwise, if ∆H > 0, then calculate e−β∆H , if it is larger than R, accept the

new state and return to step (2); otherwise retain the old configuration as the new

one and return to step (2).

Note that the Metropolis algorithm does not specify how the changes to the

configuration should be made, it just says that any proposed change to the system

should be accepted with a certain probability that depends on the change in energy.

How the changes are made depends on the variables and the model being studied.

The only constraints on the update procedure are :

(1) It should be ergodic , i.e. every configuration can be reached from every other

configuration in a finite number of iterations.

(2) The transition probability W (Xi → Xj) satisfy the detailed balance condi-

tion.

2.3.2 Metropolis Algorithm for the Ising Model

For the Ising model, governed by the Hamiltonian

H = −J
∑

<ij>

SiSj (2.18)

where the S takes the values ±1. < ij > denotes that spin Si has only Sj as nearest

neighbors and vice versa. J is the exchange interaction. For this model, the obvious

change in the configuration is to try to update ( or ‘flip’ ) a spin, i.e. flip the sign (
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or direction ) of the spin variable. ∆H here depends only on the spin values at the

site and its nearest neighbors, i.e.

If ∆H ≤ 0, we make the proposed change.

If ∆H > 0, we make the change with probability e−β∆H .

The Ising model is a very important model in statistical physics. It displays the

phenomenon of a second order Phase Transition. Phase Transitions are classified in

part by their order:

• First order: discontinuity in order parameter or energy (i.e. the first derivative

of the partition function).

• Second order: divergence in the susceptibility or specific heat (i.e. the second

derivative of the partition function).

etc.

2.4 The Monte Carlo Damage Spreading Technique

The Monte Carlo Damage Spreading (MCDS) technique, i.e. measuring the Ham-

ming distance between two different initial configurations as they evolve in time as

explained in the next chapter, was first studied in theoretical biology in the context

of genetic evolution[6]. Later the MCDS concept found its way into the simulations

of physical systems[7]-[16]. In this method one essentially monitors the time evolu-

tion of two or more copies of the same system with different initial configurations

subject to a specific dynamics and to the same thermal noise (i.e. same random

number sequence). It turns out that this method is less sensitive to the static fluc-

tuations, when compared to the conventional Monte Carlo method where the time

evolution of a single copy is investigated. The MCDS method has been success-

fully applied to many magnetic models, like cellular automata, Ising ferromagnet,

P-state clock, Potts, ANNNI(Axial Next-Nearest Neighbor Ising), Ashkin-Teller,
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discrete N-vector, XY, the Heisenberg, and spin glasses. Besides its wide variety of

applications, the relationship between damage spreading and the time-dependent

thermodynamic properties in the Ising model[17], the possible connection of damage

transition (where the damage vanishes) and the percolation transition of geometrical

clusters of correlated spins [18]-[20] are also investigated.

Most of the above systems to which the damage spreading technique have been

applied are the systems with the second order phase transition. Also, the MCDS

technique has been used to study the critical properties of the BEG model on a

honeycomb lattice in the vicinity of tricritical line and showed how the MCDS tech-

nique may be applied to identify the tricritical point[21]. For the q-state Potts model

on square lattice the MCDS studies also showed that it is possible to calculate the

critical temperature of the model as well as to give some indication of the order of

the phase transition[22]. MCDS technique represents nowadays an important tool in

the study of the dynamic as well as the static behavior in magnetic systems.

In the next chapter, we will use the MCDS technique to study several magnetic

spin models.
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Chapter 3

The Monte Carlo Damage Spreading (MCDS) Studies of Some Two-

Dimensional Magnetic Spin Models

3.1 The Monte Carlo Damage Spreading Technique

3.1.1 A Metropolis-Type Dynamics

The numerical simulations are implemented on a square lattice with N spins and

linear size L(N = L2 sites) submitted to periodic boundary conditions. A configu-

ration of lattice spins at Monte Carlo time t is

C(t) = {Si(t)} i = 1, 2, 3...N (3.1)

The spin variable, Si, assumes values -S,-S+1, ... , S-1, S where S is either a positive

integer or a non-negative integer plus a half. In order to make a configuration C(t)

evolve in time, we use the following dynamics:

During each time interval δt = 1/N , one spin site i is chosen randomly. The spin

value ∆i(t + δt) at time t + δt is then chosen as

∆i(t + δt) =




−S 0 ≤ Zi1(t) < 1/(2S + 1)

−S + 1 1/(2S + 1) ≤ Zi1(t) < 2/(2S + 1)

...... ......

S − 1 (2S − 1)/(2S + 1) ≤ Zi1(t) < 2S/(2S + 1)

S 2S/(2S + 1) ≤ Zi1(t) < 1

(3.2)

12
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where Zi1(t) is a uniform random number, 0 ≤ Zi1(t) ≤ 1.

One then updates the spin according to the following dynamics rule

Si(t + δt) =




∆i(t + δt) Pi(t) ≥ Zi2(t)

Si(t) otherwise
(3.3)

and Sj(t + δt) = Sj(t) for j �= i, where

Pi(t) = e−∆Hi/T (3.4)

∆Hi = H{∆i(t + δt)} − H{C(t)} (3.5)

where 0 ≤ Zi2(t) ≤ 1 is another uniform random number, T is the temperature of

the system in unit of J/KB, KB is the Boltzmann constant.

3.1.2 Damage Spreading Technique

Now, we consider two different initial configurations CA(0) = {SA
i (0)} and CB(0) =

{SB
i (0)} at time t = 0, and let them evolve in time according to the same above

dynamics rule with the same sequence of random numbers for updating the spins.

Then two configurations CA(t) and CB(t) at time t are computed through the fol-

lowing Hamming Distance (or Damage) between them

D(t) =
1

N

N∑
i=1

[1 − δ(SA
i (t), SB

i (t))] (3.6)

where δ(, ) is the Kronecker delta symbol. Physically D(t) measures the fractions of

the spins which differ in the two replicas at time t. In calculations, we average D(t)

over many samples. The average distance is

〈D(t)〉 =
1

Ns

Ns∑
j=1

Dj(t) (3.7)
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where Dj(t) is the damage distance for the jth independent trial, Ns is the number

of independent sample, the sum is over all trials. Also here, we may average the

Dj(t) over only those samples which have survived (i.e. such that CA(t) �=CB(t)),

since one may regard those samples whose D(t) = 0 at low temperature as the ’bad’

ones and hence exclude them.

We also study the ‘Damage Susceptibility ’

σD(t) =
√
〈D2(t)〉 − 〈D(t)〉2 (3.8)

which measures the fluctuations of damage D(t). This quantity will provide a set of

information to characterize different phases of the system, and is very sensitive to

the phase transition.

We will investigate a quantity which we define it as the ratio of NSi=c (number

of spins whose spin Si takes one specified value c ∈ ( -S, -S+1, ... , S-1, S ) to N at

the equilibrium state. In order to decrease the fluctuations, we take an average over

those two replicas ( configuration A and B)

〈PSi=c〉 =
1

Ns

Ns∑
k=1

[
NA

Si=c + NB
Si=c

2N
]k (3.9)

〈PSi=c〉 depends on the temperature, time , initial conditions and the noise. 〈〉 in

(3.9) denotes an average over many samples. This quantity can show us the detailed

spin configurations.

Those three quantities 〈D(t)〉, σD(t) and 〈PSj=c〉, together with temperature, ini-

tial condition and any other parameters, will lead to information about the criticality

of the system.
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3.1.3 Finite Size Scaling

In the context of MCDS studies, in order to obtain a more reliable estimate for the

dynamical (second order) phase transition temperature, we use the finite-size scaling

procedure [1]. For each sample s, we calculate the distance Ds(t) at times t=1,2,3...

. The characteristic time τ1 (a measure of time for two configurations to meet) and

characteristic square time τ2 are defined as

τ1(L, T, s) =
∑

t

tDs(t)/
∑

t

Ds(t) (3.10)

τ2(L, T, s) =
∑

t

t2Ds(t)/
∑

t

Ds(t) (3.11)

At the transition temperature, one expects for τ1 the following scaling form valid

for large L and T close to Tc:

τ1(L, T, s) ∼ u(L)f1(v(L)(T − Tc), s) (3.12)

u(L) gives the size dependence at T = Tc (for an ordinary second order phase

transition, u(L) and v(L) are power laws). One expects for τ2 that

τ2(L, T, s) ∼ u2(L)f2(v(L)(T − Tc), s) (3.13)

and since τ2 is a measure of the squared characteristic time, one expects that the

ratio should be independent of lattice size L at the dynamical transition Tc:

R(L, T, s) = τ2(L, T, s)/τ 2
1 (L, T, s) ∼ f3(v(L)(T − Tc), s) (3.14)

Average over many samples, one gets

〈R(L, T, s)〉 = 〈τ2(L, T, s)/τ 2
1 (L, T, s)〉 ∼ g(v(L)(T − Tc)) (3.15)
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This means that for large L, all the curves 〈R〉 plotted as function of T for different

L should cross at the same temperature Tc, i.e. the dynamical critical temperature

when L → ∞.

In the following simulations, we employ the widely used Power Residue Method

to generate a sequence of pseudo random number, which has both a long period and

good statistical properties (e.g. see [40]).

3.2 The S=1/2 and S=1 Ising Spin Models

We first consider Eq.(2.18), the usual Ising spin model. J > 0 is the (ferromagnetic)

exchange interaction coefficient. For the standard S = 1/2 Ising model, Si=±1; For

S = 1 Ising model, Si=0,±1.

In the following calculations, we average the Dj(t) over only those samples which

have survived. Three kinds of initial conditions are chosen:

IC1: CA(0) = {+1}, and CB(0)={−1} for all i. So from Eq.(3.6), 〈D(0)〉=1.

IC2: CA(0) is random, and CB(0)=−CA(0) for all i. So, 〈D(0)〉=1.

IC3: CA(0) and CB(0) are random and independent. So, 〈D(0)〉=1/2 (S =1/2

model) and 〈D(0)〉=2/3 (S = 1 model).

Fig. 3.1 is the calculation results for S=1/2 and 1 models. In Fig.3.1(a) and

(b), the results are averaged over 1000, 500 and 100 samples for L=10, 20 and 40,

respectively. Similar to other dynamics approaches, we can see that two temperature

regimes exist for both models where a sharp dynamical phase transition ( or damage

spreading transition ), with kBTD/J ∼=2.4 and 1.8 the respective dynamical transi-

tion temperatures for S=1/2 and S=1 models can be observed in our dynamics. In

both figures, at the maximum σD(t) point (the magnitude of σD(t) of other points

are smaller than this point) with L=40, IC1 and t=6000, we estimate (run for sev-

eral different random number sequences ) the transition temperature kBTσ/J to be
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2.30±0.05 and 1.70±0.045, respectively, for these two models. The standard errors

(error bars) are less than the size of symbols.

For the S=1/2 Ising model, Neumann and Derrida [1] applied finite-size scaling

with heat bath dynamics to this model and got the dynamical phase transition

temperature as kBTD/J ∼= 2.25 ± 0.05, which is consistent with the corresponding

exact static transition temperature kBTc/J=2.269. Fig.3.1(c) is our finite size scaling

results for the S=1 model within our dynamics. The standard errors (error bars)

are less than the size of symbols. We calculate 〈R〉 averaged over 1500, 800 and

200 samples against T for L=10, 20 and 40, respectively, using IC2 (other initial

conditions may also be used. The shapes will be a little different, but the estimates

for the transition temperature should be close to this one). Our estimate of Tc for

S=1 Ising model is kBTc/J ∼= 1.675± 0.025. This result is consistent with the static

case as 1.693 [2] or 1.693559 [3], etc.

Fig.3.1(d) is the simulation result of 〈PSj=0〉 -T relationship for the S=1 model

with IC1 averaged over 200 samples at t=6000. 〈PSj=0〉 increases as the temperature

increases, and its S-like shape is very similar to the exact U - T relationship for the

standard Ising S = 1/2 model, U is the internal energy. Actually, 〈PSj=0〉 can indeed

reflect the internal energy U . We can see that there exists an inflection point in

this relationship curve. At the maximum standard deviation point (the magnitude

of standard deviations of other points are smaller than this point), we estimate the

transition temperature to be 1.70±0.055. This point is just the inflection point of

the curve and also corresponds to the static phase transition point of the model.

The standard errors (error bars) are less than the size of symbols.
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3.3 The Mixed Spin Ising Model

3.3.1 The Mixed Spin Ising Model

The mixed spin Ising system is relevant for understanding bimetallic molecular fer-

rimagnets that are synthesized in search of stable, crystalline materials, with spon-

taneous magnetic moments at room temperature[38].

Here, we will use the MCDS technique to study a mixed spin Ising model [MSIM]

on the square lattice in which two inter-penetrating sub-lattices have spins one half

(±1/2) and spins one (±1,0). We consider a mixed spin Ising model on the square

lattice given by the Hamiltonian

H = −J
∑

<ij>

σiSj + G
∑
j

S2
j (3.16)

where the Sj takes the values ±1 or 0 and are located in alternating sites with spins

σi=±1/2. We choose to put the factor of 1/2 into the interaction parameter. Each

spin S has only σ as nearest neighbors and vice versa. The first summation is carried

out only over nearest neighbor pairs of spins, the second summation only runs over

all sites of S sub-lattice. J is the exchange interaction, G is called the crystal field

interaction parameter.

Mixed spin systems provide good results for studying ferrimagnetism. The mag-

netic properties of the mixed Ising models have been studied by high-temperature

series expansions[22], renormalization group(RG)[23, 24, 25], mean field[26], effec-

tive field[27, 28, 17], Monte Carlo simulations and numerical transfer matrix

calculations[30, 31] and the free-fermion approximation[33]. Besides at equilib-

rium conditions as stated as above, within mean field approach, the kinetics of

the model in the presence of a time-dependent oscillating external field, has been

studied[34].
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Among those works, there exist two opposite conclusions for the mixed spin

Ising model on the square lattice: one RG analysis[23], effective field theory with

correlations[29], and mean filed theory[26] indicate that there exists a compensation

point or tricritical point at finite temperature; another RG scheme[24], MC and

numerical transfer matrix techniques[30, 31] then got a contradictory conclusion.

Here, the MCDS technique is also applied to study the MSIM on the square lattice.

We found that the mixed spin Ising model may have a tricritical point at finite

temperature.

A configuration of lattice spins at time t is

C(t) = {σi(t), Sj(t)} i, j = 1, 2, 3...N/2 (3.17)

In the following calculations presented here, we take J > 0 (ferromagnetic interac-

tion), the initial configuration is chosen to be

CA(0) = −CB(0) = {1} ∀ i, j (3.18)

where we have assumed that there are no zero values in both SA and SB sub-lattices

at t=0, i.e. 〈D(t)〉=1 . Similarly, if we take J < 0(anti-ferromagnetic), i.e. the mixed

Ising ferrimagnetic model, the initial condition could be chosen as: spins in the S

sub-lattice to be +1, spins in the σ sub-lattice to be -1 in configuration A, spins in

configuration B then keep opposite to A.

Results for MSIM with G=0

We first study the ‘pure’ mixed spin Ising model with zero crystal field interaction.

For this model, high-temperature series expansion[35], RG[23, 25], the equiscale

transformation[36], etc. have shown this model belongs to the same universality

class as the standard σ = 1/2 Ising ferromagnetic model.
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In our MCDS procedure, the simulations have been performed for four lattice size.

The results are averaged over 1500, 800, 400 and 180 samples for L=10,20, 30 and

40, respectively. Fig.3.2. shows the 〈D(t)〉 as a function of temperature and the time.

We know that equilibrium is reached at all temperature except in the critical region

where finite-size and finite-time effects can be seen. The shape of 〈D(t)〉 in Fig.3.2

is very similar to the standard Ising model studied by the DS technique within the

heat bath dynamics and the same initial condition ( Chap.2 [15] ). For the standard

Ising model, within the heat bath dynamics and the initial condition(3.17), it has

been proved that the damage distance 〈D(t)〉 is equivalent to the order parameter,

the average magnetization of the system at time t[1].

We clearly observe two distinct regions in Fig.3.2 (i) a low-temperature region

(T < TD, TD
∼= 2.0) where 〈D(t)〉 does not vanish for all cases; (ii) a high-

temperature region (T ≥ TD), where 〈D(t)〉 vanishes for all system sizes and time

t. Two distinct temperature regions divided by a damage spreading transition tem-

perature kBTD/J are believed to denote the corresponding static continuous phase

transition. The damage spreading features in Fig.3.2 have been observed in most of

the Ising-like systems.

We observed in the calculations that the finite-time effect for t=1000 and t=2000

is relatively small for our chosen initial condition, we will assume that systems have

reached their equilibrium states at t=1000 for the chosen initial condition (3.17).

We only present our calculation results at t=1000.

In view of the temperature dependence of the fluctuation σD(t), our simulation

shows that there is an almost null fluctuation in the low- and high-temperature

regions, except near the damage spreading transition temperature kBTD/J where it

rises abruptly. Fig.3.3 shows the σD(t) as a function of temperature for four system

sizes.
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From the maximum values of σD(t), we may locate the phase transition temper-

ature kBTσ/J . We estimate ( run for several different random number sequences

) kBTσ(L)/J to be 1.90±0.05, 1.99±0.04, 2.02±0.05 and 2.02±0.03 for L=10, 20,

30 and 40, respectively. From those data, we get a more accurate estimate for the

damage spreading (dynamical phase transition) temperature than kBTD/J to be

kBTσ/J ∼= 2.02 for this model.

In order to obtain a more reliable estimate for this transition temperature, we

use the finite size scaling procedure. In Fig.3.4 we plot 〈R〉 averaged over 1500,

800, 400 and 180 samples against kBT/J for L=10, 20, 30 and 40, respectively. Our

estimate of kBTc/J for this mixed Ising ferrimagnetic model with G=0 and the initial

condition (3.17) is kBTc/J ∼= 2.00± 0.01. This result is close to kBTσ/J = 2.02 from

σD(t) and also consistent with its static transition temperature at 1.9569 [33], or

2.016±0.078 [35].

We may use this method to estimate the dynamical critical exponent z defined

at the dynamical critical temperature kBTc/J by τ ∼ Lz, where L is the linear size

and τ is the relaxation time for the dynamics[1]. Near the critical temperature, the

fluctuations are very strong, and unlike the standard Ising model we have no exact

solution of kBTc/J for this model. Therefore we expect rather large error bars in

the estimate of the critical exponent z. We may use τ1 in Eq.(3.10) to measure the

average vanishing time at kBTc/J and repeat the simulations 40 times on different

sizes L=10, 20, 30 and 40. z is the slope of the curve of ln(〈τ1〉) versus ln(L). In

Fig.3.5 we have estimated z with the initial condition (3.17) for this ‘pure’ MSIM

to be

z = 2.65 ± 0.26 (kBTc/J = 2.00) (3.19)
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Results for MSIM with G �=0

We choose several values of G to study by DS procedure. In the following calculations,

we take the parameters to be L=40, t=1000 and Ns=200. Fig.3.6 shows the results

of 〈D(t)〉 as a function of kBT/J and G/J .

We may observe a completely different behavior of 〈D(t)〉 : for G/J ≤ 3.0, the

behavior of 〈D(t)〉 are very similar to the previous G=0 case(the G=0 result is also

presented in the figure), there exist Ising-like continuous phase transition for the

model for those G values; for G/J > 3.0, contrary to the G/J ≤ 3.0 cases, 〈D(t)〉
are zero for all temperature regions. For the low temperature (e.g. kBT/J=0.1), when

G changes from 3.0 to 3.01, the 〈D(t)〉 ‘jumps’from 1 to 0. From Fig.3.6 we may

estimate the approximate( continuous ) dynamical transition temperature kBTD/J

to be 2.55, 2.5,2.25, 2.2, 1.9 and 1.45 for G/J=-6.0, -3.0, -1.0, 0.0, 2.0 and 3.0,

respectively.

In Fig.3.7, we plot the σD(t) curves. Similar things as in Fig.3.6 can be observed:

for G/J ≤ 3.0, peak-like curves of σD(t) can be seen and they are the features of

second order transition; for G/J >3.0, σD(t)=0 for all temperature regions. We may

get more accurate ( continuous ) dynamical transition temperatures than kBTD/J to

be kBTσ/J=2.3±0.035, 2.25±0.04, 2.19±0.035, 2.02±0.03, 1.62±0.04 and 1.26±0.02

for G/J=-6.0, -3.0, -2.0, 0.0, 2.0 and 3.0, respectively. Similarly, we may use the same

finite size scaling procedure to get the improved dynamical transition temperature

results.

The interesting features of 〈PSj=0〉 in S sub-lattice as a function of kBT/J and

G/J are plotted in Fig.3.8. We can also see there exist two different regions for G/J

values: (i) G/J ≤3.0, the 〈PSj=0〉 curves are very similar to the G=0 S-like curve.

There exist continuous phase transitions within those G/J values. In the limit of

G → −∞, this model is reduced to the standard Ising model. S and σ can only take
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+1 or -1 values; (ii) G/J ≥3.01, contrary to the G/J ≤3.0 cases, 〈PSj=0〉 decreases

as the temperature increases. In the limit of G → +∞, this model reaches a new

phase which we may call it the staggered quadrupolar phase, similar to a phase in

the BEG model[37]. In this phase, S sub-lattice has Sj=0 at every site and the σ

sub-lattice has sites occupied randomly by σi=+1 or -1. This phase can be reached at

low temperature kBT/J=0.1 and G/J=5.0 as shown in Fig.3.8 in our DS dynamics

approach.

We may explain the behavior of this model as follows. In this model, we only

consider the nearest-neighbor interaction between S and σ spins. When G becomes

large, the probability for S sub-lattice spins to take the zero values increases, the

interaction of the total system becomes weak, and the second order phase transition

temperature also becomes small. However, when the interaction of the system is

too small, it can not support the long range order of the system, i.e. there is no

continuous phase transition. We may analyze this problem from another angle. We

regard the Sj=0 state as a ‘hole’, then the S sub-lattice are occupied by σ = ±1 and

the holes. Parameter G can change the relative number of σ spins and the holes in the

S sub-lattice ( it has the meaning of chemical potential ). When G → −∞, there is

no hole in the S sub-lattice, both sub-lattices are occupied by σ spins, corresponding

to the standard Ising model. When G increases, the number of holes increases. When

G → +∞, the S sub-lattice are all occupied by Sj=0 spin states. In the equilibrium

state, for G changing between −∞ and +∞, the holes can move and have a tendency

to gather to form clusters in order to make the system stable. When G increases

to a critical value, the σ spins can no longer form infinite clusters, then there is

no long range order and no continuous phase transition. However, the finite σ spin

clusters and the formation of the equivalent ‘hole clusters’ can support a first order

phase transition for the system. Here, the so-called ‘hole cluster’ means: the spins

of the S sub-lattice within a hole cluster are all occupied by hole (Sj=0), although



24

the σ spins occupy the σ sub-lattice within a hole cluster, they have no interactions

among them, it is equivalent to the cluster which is completely composed of holes.

The configuration of spins can verify this point.

According to our DS results, we may schematically plot the finite-temperature

phase diagram for this model, and use kBTσ/J obtained from the σD(t) −T relation-

ship in Fig.3.9 as the (second order) phase transition temperature. In Fig.3.9, the

general shape of the phase diagram shows reasonable agreement between our results

and the Monte Carlo simulations[30], except for the range of G/J > 3.01 where the

first order transition could occur in our DS approach. ¿From our data, we estimate

the tricritical point ( white square in Fig.3.9 ) to be (kBTtri/J , Gtri/J)=(1.26±0.02,

3.00). The estimated static values for the tricritical point for this mixed spin Ising

model on the square lattice are (1.232, 4.198)[23] and ( 0.9936, 3.9376)[32], etc.

We have also performed the same calculations for the J < 0 mixed Ising fer-

rimagnetic model ( using the initial condition stated below Eq.(3.17) ), and very

similar features have been obtained. Therefore, we expect there exist both second

and first order phase transition for this mixed spin Ising model on the square lattice

depending on the G values.

We should point out that, unlike the conventional criteria for a first order transi-

tion, the damage spreading results here seem not to give us explicit evidence for the

first order transition, such as an obvious discontinuity for the order parameter. In

Fig.3.10, we calculate one thermodynamic order parameter, the total magnetization

of the system using the same initial condition of Eq.(3.17) (we take an average over

A and B configurations). Its behavior is quite similar to the 〈D(t)〉 − T relation-

ship. We do not observe the obvious discontinuity or ‘jump’ for 〈|M(t)|〉, 〈D(t)〉 or

〈PSj=0〉 at the tricritical point G/J =3.0 where we regard it as the meeting point of

the second order and the first order transition lines , even if we may claim that at
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G/J = 3.0 those three quantities have had the largest ‘jump’ in the critical region

when compared to other G/J < 3.0 cases as seen in Figs.6, 8 and 10.

Here, we conclude the existence of a tricritical point for the mixed spin Ising

model due to its very similar behavior to the S=1 Blume-Capel model, where its

tricritical behavior is well-known ( see next section ). The S=1 Blume-Capel model

on the square lattice where only one spin variable Si takes 0, or ±1 for each lattice

site has the same form of the Hamiltonian as in Eq.(3.15). For the S=1 Blume-Capel

model, we got quite the same shapes and features for those quantities, 〈D(t)〉, σD(t)

and 〈PSj=0〉 as the mixed spin Ising model, except at the tricritical point (i.e. above

meeting point), an obvious discontinuity or ‘jump’ of 〈D(t)〉 and 〈PSj=0〉 can be

observed for the S=1 Blume-Capel model. Also, the estimated dynamical tricrit-

ical point for this Blume-Capel model by DS technique is in excellent agreement

with other approaches. Unlike the S=1 Blume-Capel model, we can not observe an

obvious discontinuity at the tricritical point in the mixed spin Ising model because

there is only one S=1 sub-lattice for this model. Because of the small discontinuity

in the mixed spin Ising model, we may also name this first order transition the

‘weak’ first order transition. A similar case may refer to the q-state Potts model

(e.g. q=5,6, etc.)[39]. We also expect the results could be improved when system

size L is increased. This simple but fruitful model, the behavior of which is not yet

well established, would be worthy of further studies.

3.4 The Blume-Capel Model

3.4.1 The Blume-Capel Model

The S = 1 Blume-Capel model was originally proposed to study the first-order phase

transition in magnetic systems[4, 5] and has also been used in describing He3 −He4

mixtures[6]. The Hamiltonian can be written as
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H = −J
∑

<ij>

SiSj + G
∑

i

S2
i (3.20)

The first summation is carried out only over nearest neighbor pairs of spins, the

second summation runs over all sites of a square lattice. J > 0 is the ferromagnetic

exchange interaction between nearest neighbor spins, G is the single spin anisotropy

parameter. The S=1 case has been extensively studied by a variety of methods

such as mean field[4, 5], variational methods[7], constant coupling approximation[8],

Monte Carlo simulations[9, 10], transfer matrix[11], renormalization- group[12, 13],

finite-size scaling based on transfer matrix[14], etc. It is well established that for

dimension d ≥ 2, the S=1 Blume-Capel model exhibits a line of continuous phase

transition (Ising type), a line of first-order phase transitions and a tricritical point

where those two lines meet.

For values of spin S > 1, however, the situation is quite unclear and fewer results

are available. For the S=3/2 case, the mean-field calculation[15], correlated effective-

field treatment[16], differential operator technique[17], finite-size scaling based on

transfer matrix[14] and conventional equilibrium Monte-Carlo simulations[18, 19]

indicate a second-order phase transition with no tricritical point and a separated

first-order transition line which terminates in an isolated multi-critical point. In

contradiction with these results, a renormalization group calculation[13] presents a

unique first-order transition line at low temperature which terminates in the second-

order transition line at a tetra-critical point. Similar results are also obtained by

finite size renormalization group calculations[20] and other conventional equilibrium

Monte Carlo simulations[21].

In the following section, the MCDS technique is also applied to study the Blume-

Capel model on the square lattice. Our results show that for the integer S=1 and

2 Blume-Capel model, there exist a multi-critical point at low temperature which is
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not present for the half-integer S=3/2 and 5/2 spin models. For the controversies

surrounding the S=3/2 Blume-Capel model, the MCDS method allows us for the

first time to distinguish definitely between the two conflicting scenarios discussed in

the literature.

3.4.2 MCDS results for the Blume-Capel Model

In the following calculations presented here, the initial configuration is chosen to be

CA(0) = −CB(0) �= 0 ∀ i (3.21)

i.e we choose 〈D(t)〉 = 1. For example, for the S=2 case, we may choose CA(0) =

−CB(0) = {2}, or , CA(0) = −CB(0) = {1}; Those two choices will not alter the

features of the calculation results. The calculations could have been done starting

with other initial conditions, e.g. two random initial configurations, but in this case,

the equilibrium of the system needs longer to be established at low temperature,

however the results would be also very similar[41].

We choose several values of G to study by our DS procedure. The simulations

have been performed for system size L=40, t=1000 and the results are averaged over

Ns=200 samples. We observed that the finite-time effect for t = 1000 and t = 2000

is relatively small for our chosen initial condition. In the following calculations, we

will assume the systems have reached their equilibrium states at t = 1000 for the

chosen initial condition of Eq.(3.19).

Results for the Blume-Capel model with S=1 and 2

We first study the Blume-Capel model with spin S=1 and initial condition CA(0) =

−CB(0) = {1}. The results are plotted in Fig.3.11. We explain Fig.3.11 as fol-

lows. Fig.3.11(a) shows the results of 〈D(t)〉 as a function of kBT/J and G/J . We
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may observe a completely different behavior of 〈D(t)〉 : for G/J ≤ 2.0, there exist

Ising-like continuous phase transitions for the model. We clearly observe two dis-

tinct regions, a low-temperature region (T < TD ) where 〈D(t)〉 does not vanish

and a high-temperature region(T ≥ TD) for which 〈D(t)〉 vanishes; for G/J > 2.0,

contrary to the G/J ≤ 2.0 cases, 〈D(t)〉 is zero for all temperature regions. For

G/J ≤ 2.0 in Fig.3.11(a), two distinct temperature regions divided by a damage

spreading transition temperature kBTD/J are believed to denote the corresponding

static continuous phase transition that has been observed in most of the Ising-like

systems. From Fig.3.11(a) we may estimate the approximate (continuous) dynam-

ical transition temperature kBTD/J to be 2.35, 2.3, 2.2, 2.1, 1.85, 1.55 and 0.6 for

G/J=-4.0, -3.0, -2.0, -1.0, 0.0, 1.0 and 2.0, respectively. In Fig.3.11(b), we plot the

temperature dependence of the fluctuationσD(t) for our chosen G values. We have

observed that: for G/J ≤ 2.0, the simulations show that there is almost null fluctu-

ation in the low- and high-temperature regions, except near the damage spreading

transition temperature TD where it rises abruptly; for G/J > 2.0, σD(t)=0 for all

temperature regions. The peak-like curves of σD(t) in the G/J ≤ 2.0 regions are

features of a second order transition, and from the maximum values of σD(t) we may

get the more accurate (continuous) dynamical transition temperatures than kBTD/J .

We estimate (run for several different random number sequences) that kBTσ/J to

be kBTσ/J=2.25±0.10, 2.20±0.12, 2.10±0.10, 1.95±0.08, 1.75±0.05, 1.45±0.01 and

0.56±0.03 for G/J=-4.0, -3.0, -2.0, -1.0, 0.0, 1.0 and 2.0, respectively. In Fig.3.11(c),

the interesting features of 〈PSi=0〉 as a function of kBT/J and G/J are plotted. We

also regard 〈PSi=0〉 as an important factor to explain the multi-critical behavior for

this model. We can also see there exist two different regions for those G values: for

G/J ≤2.0, 〈PSi=0〉 increases as the temperature increases. In the limit of G → −∞,

this model is reduced to the standard Ising model, and S can only take +1 or -1

values. For G/J ≥2.01, contrary to G/J ≤2.0 cases, 〈PSi=0〉 decreases as the tem-
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perature increases. In the limit of G → +∞, this model reaches a phase in which

Si=0 at every site.

Similar to the mixed spin Ising model, the behavior of this S = 1 Blume-Capel

model could also be explained as follows. In this model, we only consider the nearest-

neighbor interaction between Si spins. We regard the Si = 0 state as a ‘hole’, then

the lattice sites are occupied by either Si = ±1 spins and the holes. The parameter G

can change the relative number of Si = ±1 spins and the holes in the system ( it has

the meaning of chemical potential ). When G → −∞, there is no hole in the system

, corresponding to the standard Ising model. When G increases, the number of holes

increases, the interaction of the total system becomes smaller, the second order phase

transition temperature also becomes smaller. When G increases to a critical value,

the Si = ±1 spins can no longer form infinite clusters, the interaction of the system

becomes weak and can no longer support long range order of the system. Then

there are no continuous phase transition, however, the clusters composed of Si = ±1

spins and the holes can support a first order phase transition for the system. From

the angle of our Metropolis-type dynamics, because of the smaller interaction ( i.e.

∆Hi in Eq(3.5) approaches zero) when G is larger than this critical G value, the

probability ( i.e. Pi in Eq(3.4) ) to accept the new proposed spin value increases

quickly, and then causes 〈D(t)〉 to go to zero quickly. The above critical G value is

therefore the multi-critical point, i.e. the meeting point of the second order and the

first order transition lines. For the S = 1 Blume-Capel model, this meeting point is

Gtri=2.0 in our DS simulations, and at this point an obvious discontinuity or ‘jump’

of 〈D(t)〉 and 〈PSi=0〉 can be observed in Fig.3.11(a) and Fig.3.11(c). At last, when

G → +∞, the sites are all occupied by Si=0 spin state.

According to our DS results, we may schematically plot the finite-temperature

phase diagram for this model as in Fig.3.11(d). We use Tσ obtained from σD(t) − T

relationship in Fig.3.11(b) as the (second order) phase transition temperature. In



30

Fig.3.11(d), the general shape of the phase diagram shows very good agreement

between our calculations and other familiar results. From our results, we estimate

the tricritical point ( white square in Fig.3.11(d)) for the S = 1 Blume-Capel model

to be (kBTtri/J ,Gtri/J)= (0.56±0.03, 2.00). The estimated static values for the tri-

critical point for this model are (0.609, 1.965)[14], ( 0.608, 1.967)[10], ( 0.610±0.005,

1.966±0.001)[11], (1.088,1.8848)[17], and ( 1.333, 1.848)[15], etc.

Fig.3.12 shows the results for the integer S = 2 Blume-Capel model with

the initial condition CA(0) = −CB(0) = {1}. Very similar features to S = 1

case are obtained by our DS simulations. From the maximum values of σD(t) in

Fig.3.12(b) we may get the (continuous) dynamical transition temperatures to be

kBTσ/J=7.60±0.25, 7.45±0.20, 7.10±0.15, 6.40±0.20, 5.50±0.25, 4.20±0.20 and

1.00±0.15 for G/J=-4.0, -3.0, -2.0, -1.0, 0.0, 1.0 and 2.0, respectively. Then we

get the phase diagram for the S=2 Blume-Capel model in Fig.3.12(d) with the

tricritical point ( white square in Fig.3.12(d)) for S = 2 Blume-Capel model to be

(kBTtri/J , Gtri/J)=( 1.00±0.15, 2.00). The general shape of this phase diagram is

also in agreement with other results such as mean field theory[15] and effective-field

theory[17] that predict ( 1.645, 1.994)[17], and ( 1.333, 1.848)[15], etc.

Results for the Blume-Capel model with S=3/2 and 5/2

For the half-integer spin Blume-Capel model, we choose to put the factor of 1/4 (

product of two 1/2 of the Si spin values ) into the J and G parameters in Eq.(3.19).

For example, for the S = 3/2 model, the parameters in Eq.(3.19) become J/4 and

G/4, and the spin Si can take one of the values among ( -3, -1, 1, 3 ). One advantage

of this procedure is that it is easy for us to calculate D(t) in Eq.(3.6), since the

spin Si still takes integer values now. We first apply our MCDS procedure to the

controversial case of S=3/2 Blume-Capel model concerning the existence or not of

a multi-critical point along the transition line.
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The results are plotted in Fig.3.13 with the initial condition CA(0) = −CB(0) =

{3}. For this model we have observed a different behavior from previous integer

models. Fig.3.13(a) shows the results of 〈D(t)〉 as a function of kBT/J and G/J .

There exist only Ising-like continuous phase transitions for the model. When

G → +∞, the model goes to the standard Ising model with the critical tempera-

ture 4kBTc/J=2.269 ( the dotted line in the figure ), which is consistent with the

temperature 4tc=4kBTc/J=4∗1/[2ln(
√

2 + 1)] = 2/ln(
√

2 + 1)=2.269 as shown in

Ref.[14]. In Fig.3.13(b), we plot the temperature dependence of the fluctuationσD(t)

for our chosen G values ( the dotted line has the same meaning as in Fig.3.13(a) ),

and we estimate the continuous transition temperature to be 4kBTc/J=19.00±0.40,

18.20±0.36, 17.12±0.34, 15.40±0.50, 13.60±0.30, 10.70±0.30, 3.30±0.45, 3.10±0.20,

2.40±0.10, and 2.40±0.10 for G/J=-4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 2.01, 3 and

4, respectively. Our results indicate the absence of a multi-critical point along the

phase transition line.

In order to detect the existence or not of an isolated first-order phase transition

line as shown in Refs.[15, 14, 19] for this model, we plot 〈P|Si|=3/2〉 and 〈P|Si|=1/2〉
at G/J=2.0 and 2.01 in Fig.3.13(c). In the literature[14, 19], the range of this iso-

lated first-order transition line is presented between (4kBT/J , G/J)= (3.2, 1.96)

and (1.6, 2.0), we plot two dashed lines in Fig.3.13(c) to cover this temperature

range. In Fig.3.13(c), we can observe an obvious exchange of the spin values, indi-

cating the first-order transition of two different ordered ferromagnetic phases, one is

magnetization m1 → 3/2 and the other is m2 →1/2. Fig.3.13(d) is the plot of the

phase diagram for this model. We still use Tσ obtained from σD(t)−T relationship in

Fig.3.13(b) as the (second order) phase transition temperature. In Fig.3.13(d), the

general shape of the phase diagram shows very good agreement between our calcu-

lations and other known results[15, 14, 19]. In this model, because of the absence of
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zero value for the spins, the long range order will not vanish, therefore we can only

observe the second-order transition along the transition line when G is changed.

Fig.3.14 shows the results for the half-integer S = 5/2 Blume-Capel model with

the initial condition CA(0) = −CB(0) = {3}. Very similar features to the S = 3/2

case are obtained by our DS simulations. Because the transition temperatures is

very high for negative G for this model, we only present the results for several

positive G values. ¿From the maximum values of σD(t) in Fig.3.14(b) we estimate

continuous dynamical transition temperatures to be 4kBTc/J=4.50±0.20, 4.00±0.22,

3.60±0.23, 2.40±0.15, 2.40±0.15 and 2.40±0.10 for G/J=2.01, 2.05, 2.10, 2.5, 3

and 4, respectively. In Fig.3.14(c), we plot 〈P|Si|=5/2〉, 〈P|Si|=3/2〉 and 〈P|Si|=1/2〉 as

a function of temperature at G/J=1.98 and 2.01. We can also observe an obvious

exchange of the spin values, indicating the first-order transition of three different

ordered ferromagnetic phases: magnetization m1 → 5/2 , m2 → 3/2 and m3 →1/2.

Therefore we have confirmed the mean field theory results about the existence of

two isolated first-order transition lines for this model[15]. At last, we plot the phase

diagram for S=5/2 Blume-Capel model in Fig.3.14(d), where the model also goes

to the standard Ising model with 4kBTc/J=2.269 when G → +∞.

In this work, we investigate, by means of the MCDS technique, the dynamical

behavior of integer S=1, 2 and half-integer S=3/2, 5/2 Blume-Capel models on a

square lattice within Metropolis-type dynamics. We find that the behavior of the

systems are qualitatively different for the integer- and the half-integer- spin versions

of this model. For the S=1 and S=2 Blume-Capel models, there exists a multi-

critical point along the transition line which strongly depends on the values of the

G parameter; For the S=3/2 and S=5/2 cases, our results indicate the absence of a

multi-critical point along the transition line when G is changed. In the context of the

controversies surrounding the S=3/2 Blume-Capel model, our MCDS results allow

us for the first time to distinguish definitely between two proposed contradictory
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scenarios. In addition, the MCDS simulations present evidence of isolated first-order

transition line(s) for the half-integer Blume-Capel model. A physical explanation to

this quite distinct critical behavior is given.

More detailed description of the calculations for above models can be found in

[41]- [43].
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[21] F.C. Sá Barreto, O.F. Alcantara Bonfim, Physica A 172, 378(1991).

[22] G.J.A. Hunter, R.C.L. Jenkins, C.J. Tinsley, J. Phys. A 234547(1990); R.G.

Bowers, B.Y. Yousif, Phys. Lett. A 96 49(1983).

[23] Kun-Fa Tang, Jia-Zhen Hu, Acta Physica Sinica, 35 1048(1986).

[24] S.G.A. Quadros, S.R. Salinas, Physica A 206 479(1994).

[25] S.L. Schofield, R.G. Bowers, J. Phys. A 13 3697(1980).

[26] T. Kaneyoshi, J.C. Chen, J. Magn. Magn. Mater. 98 201(1991).

[27] A.F. Siqueira, I.P. Fittipaldi, J. Magn. Magn. Mater. 54 678(1986).

[28] T. Kaneyoshi, Solid State Commun. 70 975(1989).

[29] T. Kaneyoshi, J. Phys. Soc. Jpn 56 2675(1989).

[30] G.M. Buendia, M.A. Novotny, J.Phys.: Condens. Matter. 9 5951(1997).



35

[31] G.M. Buendia, M.A. Novotny, J. Zhang , 223(1994), Computer Simulations in

Condensed Matter Physics VII eds. D.P. Landau, K.K. Mon and H.B. Schüttler
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Figure 3.1: The damage spreading results for S = 1/2 and S = 1 Ising spin models.
Fig.3.1(a), the 〈D(t)〉 as a function of kBT/J for the S = 1/2 model. The vertical
dotted line marks the exactly known value of kBTc/J = 2.269 for the standard
Ising model. Two temperature regimes are observed. In Fig.3.1(b), two temperature
regimes are also observed for S=1 model. In both Fig.3.1(a) and Fig.3.1(b), at the
maximum σD(t) point (the magnitude of σD(t) of other points are smaller than this
point) with L=40, IC1 and t=6000, we estimate the transition temperature kBTσ/J
to be 2.30±0.05 and 1.70±0.045, respectively, for these two models. Fig. 3.1(c), the
ratio 〈R〉 versus kBT/J for different sizes L for the S = 1 model. All curves cross
in the kBTc/J region; Fig.3.1(d), the ratio 〈PSi=0〉 as a function of kBT/J for the
S=1 model after a long time limit. At the maximum standard deviation point (the
magnitude of standard deviations of other points are smaller than this point), we
estimate the transition temperature to be 1.70±0.05. In all figures, the standard
errors (error bars) are less than the size of symbols.
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Figure 3.2: The average damage 〈D(t)〉 as a function of temperature for the mixed
Ising ferrimagnetic model with G=0 on the square lattice. The symbols for different
times and the same lattice superimpose, indicating the establishment of equilibrium.
The standard errors (error bars) are less than the size of symbols.
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Figure 3.3: The damage susceptibility σD(t) as a function of temperature for mixed
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from σD(t) to be 2.02.



39

1.975 2.000 2.025 2.050 2.075 2.100
1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

Tc

 L=10
 L=20
 L=30
 L=40

<
R

>

K
B
T/J

Figure 3.4: The ratio 〈R〉 versus temperature for different sizes L for the mixed Ising
ferrimagnetic model with G=0 on the square lattice. The full line is a guide for the
eye. The standard errors (error bars) are less than the size of symbols. All curves
cross in the region of kBTc/J=2.00 ± 0.01.



40

2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
4

5

6

7

8

9

10

11

Tc=2.0

L
n

<
τ 1>

Ln(L)

Figure 3.5: Linear fit for dynamical critical exponent z at kBTc/J=2.0



41

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

0.0

0.2

0.4

0.6

0.8

1.0

        G/J =
 - 6.0
 - 3.0
 - 1.0
   0.0
   2.0
   3.0
 [3.01

         .. 6.0]

<
D

(t
)>

K
B
T/J

Figure 3.6: The average damage 〈D(t)〉 as a function of temperature and G for
mixed Ising ferrimagnetic model with G �=0 on the square lattice at L=40, t=1000
and Ns=200. The standard errors (error bars) are less than the size of symbols.
A completely different behavior of 〈D(t)〉 can be observed for G/J ≤ 3.0 and for
G/J >3.0. The vertical dotted line marks the exactly known value of kBTc/J for the
standard Ising model on the square lattice.
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Figure 3.7: The damage susceptibility σD(t) as a function of temperature and G/J for
mixed Ising ferrimagnetic model with G �=0 on the square lattice at L=40, t=1000
and Ns=200. The standard errors (error bars) are less than the size of symbols. A
completely different behavior can be observed for G/J ≤ 3.0 and for G/J >3.0. The
full line is a guide to the eye. The arrow points to the transition temperature of
standard Ising model on the square lattice.
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Figure 3.11: The damage spreading results for S = 1 Blume-Capel model on the
square lattice at L=40, t=1000 and Ns=200. In the figure, a completely different
behavior can be observed for G/J ≤ 2.0 and for G/J > 2.0. The vertical dotted
line marks the exactly known value of kBTc/J for the standard Ising model on the
square lattice. Fig.3.11(a), the average damage 〈D(t)〉 as a function of temperature
and G/J . Fig.3.11(b), the damage susceptibility σD(t) as a function of temperature
and G/J . The full line is a guide to the eye. From the maximum values of σD(t),
we may locate the phase transition temperature. Fig.3.11(c), the ratio 〈PSi=0〉 as
a function of temperature and G/J . The 〈PSi=0〉=0.0 corresponds to the standard
Ising model. Fig.3.11(d), the finite-temperature phase diagram for S = 1 Blume-
Capel model on the square lattice by damage spreading procedure. The solid line
represents the second order transition. The white square denotes the tricritical point
at which the phase transition changes from second-order to first-order. In Figures
(a), (b) and (c), the standard errors (error bars) are less than the size of symbols.
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Figure 3.12: The damage spreading results for S = 2 Blume-Capel model on the
square lattice at L=40, t=1000 and Ns=200. The notes are the same as in Fig.3.11.
In Figures (a), (b) and (c), the standard errors (error bars) are less than the size of
symbols.
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Figure 3.13: The damage spreading results for S = 3/2 Blume-Capel model on
the square lattice at L=40, t=1000 and Ns=200. Fig.3.13(a), the average damage
〈D(t)〉 as a function of temperature and G/J . Fig.3.13(b), the damage susceptibility
σD(t) as a function of temperature and G/J . The full line is a guide to the eye.
Fig.3.13(c), 〈P|Si|=3/2〉 and 〈P|Si|=1/2〉 as a function of temperature at G/J=2.0 and
2.01. Fig.3.13(d), the phase diagram for S = 3/2 Blume-Capel model on the square
lattice by damage spreading procedure. The solid line represents the second order
transition. The lower arrow points to the transition temperature ( 4kBTc/J=2.269
) of the standard Ising model on the square lattice. In Figures (a), (b) and (c), the
standard errors (error bars) are less than the size of symbols. See text for details.
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Figure 3.14: The damage spreading results for S = 5/2 Blume-Capel model on the
square lattice at L=40, t=1000 and Ns=200. The notes are the same as in Fig.3.13.
In Figures (a), (b) and (c), the standard errors (error bars) are less than the size of
symbols.



Chapter 4

Self-Consistent Feynman Diagram Expansion (SCFDE) Technique

4.1 Field Theory at Finite Temperature

Experiments are done at finite temperatures. Since one goal of many-body theory is

to explain experiments, here we will briefly show how to incorporate finite tempera-

ture into the Green’s function. The finite temperature formalism was originated by

Matsubara. It will actually be easier to use than the zero temperature version, and

the zero temperature result is always easily obtained from the finite temperature

result by just setting T=0.1

4.1.1 Temperature Green’s Function

In treating systems at finite temperature, it will be most convenient to use the

Grand Canonical Ensemble , which allows a variable number of particles. With the

definition of Grand Canonical Hamiltonian

K̂ = Ĥ − µN̂ (4.1)

The Grand Partition Function is

ZG = e−βΩ = Tre−βK̂ (4.2)

Ω is called the thermodynamic potential, β=1/T denotes the inverse temperature.

The Density Operator is

1Note: The References of Chapter 4 are combined in Chapter 5

50
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ρ̂G = Z−1
G e−βK̂ = eβ(Ω−K̂) (4.3)

where µ is the chemical potential, Tr() denotes the Trace of a matrix. For any

Schrödinger operator Ôs(x), the Heisenberg picture is

Ôk(xτ) ≡ eK̂τ/h̄Ôs(x)e−K̂τ/h̄ (4.4)

The Field operator assumes the form

Ψ̂kα(xτ) = eK̂τ/h̄Ψ̂α(x)e−K̂τ/h̄ (4.5)

Ψ̂†
kα(xτ) = eK̂τ/h̄Ψ̂†

α(x)e−K̂τ/h̄ (4.6)

Note that Ψ̂†
kα(xτ) is not the adjoint of Ψ̂kα(xτ) as long as τ is real. If τ is interpreted

as a complex variable, it may be analytically continued to a pure imaginary value

τ=it. The resulting Ψ̂†
kα(x, it) then becomes the true adjoint of Ψ̂kα(x, it). The

operators in Eqs.(4.5),(4.6) are sometimes called the imaginary-time operators.

The single-particle imaginary-time Green’s function is then defined as

Gαβ(xτ,x′τ ′) ≡ −Tr{ρ̂GTτ [Ψ̂kα(xτ)Ψ̂†
kβ(x′τ ′)]} (4.7)

where 0 < τ, τ ′ < βh̄ and ρ̂G is given by Eq.(4.3). Here the symbol Tτ orders the

operators according to their values of τ , with the smallest at the right; Tτ also

includes the signature factor (−1)P , where P is the number of permutations of

fermion operators needed to restore the original ordering. The trace ( Tr ) implies

that this Green’s function G involves a sum over a complete set of states in the

Hilbert space, each contribution being weighted with the operator ρ̂G.

The imaginary-time Green’s function is useful because it enable us to calculate

the thermodynamic behavior of the system. If the Hamiltonian Ĥ is time independent
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, as is usually the case, then G depends only on the combination τ -τ ′, and not on τ

and τ ′ separately.

For example, one of the observables, the mean number of particles in the system

is given by

N(T, V, µ) = ∓
∫

TrGαβ(xτ,xτ+) d3x (4.8)

where

TrGαβ(xτ,xτ+) = ∓∑
α

Tr[ρ̂GΨ̂†
kα(xτ)Ψ̂kα(xτ)]

= ∓eβΩ
∑
α

Tr[e−βK̂eK̂τ/h̄Ψ̂†
α(x)Ψ̂α(x)e−K̂τ/h̄]

= ∓eβΩ
∑
α

Tr[e−βK̂Ψ̂†
α(x)Ψ̂α(x)]

= ∓ < n̂(x) > (4.9)

Here the cyclic property Tr(ABC)=Tr(BCA)=Tr(CAB) is used, along with the com-

mutativity of any two functions of the same operator. The upper (lower) signs refer

to bosons (fermions).

4.1.2 Interaction Picture and Perturbation Theory

We introduce the interaction picture, which is a basis for perturbation calculations.

For any operator ÔS in the Schrödinger picture, the interaction picture operator ÔI ,

and Heisenberg picture operator ÔK can be defined

ÔI(τ) ≡ eK̂0τ/h̄ÔSe−K̂0τ/h̄

ÔK(τ) ≡ eK̂τ/h̄ÔSe−K̂τ/h̄ (4.10)

where we rewrite Ĥ = Ĥ0 + Ĥ1 and Ĥ0 acting alone yields a soluble problem, Ĥ1 is

a perturbation term. In general, Ĥ0 does not commute with Ĥ1. Therefore, Eq.(4.1)

can be written as K̂ = K̂0 + K̂1. The two pictures are related by
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ÔK(τ) = eK̂τ/h̄e−K̂0τ/h̄ÔI(τ)eK̂0τ/h̄e−K̂τ/h̄

= û(0, τ)ÔI(τ)û(τ, 0) (4.11)

where û is defined by

û(τ1, τ2) ≡ eK̂0τ1/h̄e−K̂(τ1−τ2)/h̄e−K̂0τ2/h̄ (4.12)

Eq.(4.12) can be rewritten as

e−K̂τ/h̄ = e−K̂0τ/h̄û(τ, 0) (4.13)

Eq.(4.12) satisfies the group property

û(τ1, τ2)û(τ2, τ3) = û(τ1, τ3) (4.14)

and the boundary condition

û(τ1, τ1) = 1 (4.15)

Now, using the definition of

K̂1(τ) = eK̂0τ/h̄K̂1e
−K̂0τ/h̄ (4.16)

we can get the derivative of û

h̄
∂û(τ, τ ′)

∂τ
= −K̂1(τ)û(τ, τ ′) (4.17)

If τ is set equal to βh̄, Eqs.(4.13),(4.17) provide a perturbation expansion for the

grand partition function
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e−βΩ = Tre−βK̂

= Tr[e−βK̂0û(βh̄, 0)]

=
∞∑

n=0

(−1/h̄)n(1/n!)
∫ βh̄

0
dτ1 · ·

∫ βh̄

0
dτnTr{e−βK̂0Tr[K̂1(τ1) · ·K̂n(τn)]}

(4.18)

The exact imaginary-time Green’s function can now be rewritten as

Gαβ(xτ,x′τ ′) =

−Tr{e−βK̂0
∑∞

n=0(−h̄)−n(n!)−1
∫ βh̄
0 dτ1 · ·

∫ βh̄
0 dτnTr[K̂1(τ1) · ·K̂n(τn)Ψ̂Iα(xτ)Ψ̂†

Iβ(x′τ ′)]}
Tr{e−βK̂0

∑∞
n=0(−h̄)−n(n!)−1

∫ βh̄
0 dτ1 · · ∫ βh̄

0 dτnTr[K̂1(τ1) · ·K̂n(τn)]}
(4.19)

An important property of Green’s function is its periodicity. From Eq.(4.19), we see

that the variable τi extends from 0 to βh̄, so that -βh̄ < τ − τ ′ < βh̄ is satisfied. Let

τ ′ be fixed (0 < τ ′ < βh̄), then

Gαβ(x0,x′τ ′) = ∓eβΩTr{e−βK̂Ψ̂†
kβ(x′τ ′)Ψ̂kα(x0)}

= ∓eβΩTr{Ψ̂kα(x0)e−βK̂Ψ̂†
kβ(x′τ ′)}

= ∓eβΩTr{e−βK̂Ψ̂kα(xβh̄)Ψ̂†
kβ(x′τ ′)}

= ±Gαβ(xβh̄,x′τ ′) (4.20)

Similarly

Gαβ(xτ,x′0) = ±Gαβ(xτ,x′βh̄) (4.21)

In the usual situation, Ĥ is time independent, and G depends only on the com-

bination τ − τ ′, so Eqs.(4.20),(4.21) can be rewritten as
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Gαβ(x,x′, τ − τ ′ < 0) = ±Gαβ(x,x′, τ − τ ′ + βh̄) (4.22)

As before, our convention is that upper(lower) signs refer to bosons(fermions). As

first proved by Matsubara, Eq.(4.19) can be expressed by a diagrammatic expansion.

This leads to the Feynman Diagram Expansion Technique.

4.2 Self-Consistent Feynman Diagram Expansion Technique

4.2.1 Derivation of Matsubara Frequency

For simplicity, we assume that Green’s function G depends only on the difference

τ1 − τ2 as shown in Eqs.(4.20)-(4.22), which represents the most common situation:

G(x1, τ1,x2, τ2) = G(x1,x2, τ1 − τ2) (4.23)

For both statistics, G is periodic over the range 2βh̄ and then can be expanded in a

Fourier series:

G(x1,x2, τ) = (βh̄)−1
∑
n

e−iωnτG(x1,x2, ωn) (4.24)

where τ ≡ τ1 − τ2 and

ωn =
nπ

βh̄
(4.25)

This representation ensures that G(x1,x2, τ+2βh̄) = G(x1,x2, τ) and the Fourier

coefficient is given by

G(x1,x2, ωn) =
1

2

∫ βh̄

−βh̄
dτeiωnτG(x1,x2, τ) (4.26)

We now separate the above equation into two parts
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G(x1,x2, ωn) =
1

2

∫ 0

−βh̄
dτeiωnτG(x1,x2, τ) +

1

2

∫ βh̄

0
dτeiωnτG(x1,x2, τ)

= ±1

2

∫ 0

−βh̄
dτeiωnτG(x1,x2, τ + βh̄) +

1

2

∫ βh̄

0
dτeiωnτG(x1,x2, τ)

=
1

2
(1 ± e−iωnβh̄)

∫ βh̄

0
dτeiωnτG(x1,x2, τ)

(4.27)

It shows that e−iωnβh̄ is equal to e−inπ = (−1)n (from Eq.(4.25)), and the factor

1
2
(1 ± e−iωnβh̄) reduces to

1

2
(1 ± e−iωnβh̄) =




1 if n is even(boson) or odd(fermion)

0 if n is odd(boson) or even(fermion)
(4.28)

So, the Eq.(4.26) may be rewritten as

G(x1,x2, ωn) =
∫ βh̄

0
dτeiωnτG(x1,x2, τ) (4.29)

where the Matsubara frequency:

ωn =




2nπ
βh̄

boson

(2n+1)π
βh̄

fermion
(4.30)

To be specific, in the subsequent sections, we will explain the SCFDE technique in

the context of single-band extended Hubbard (HB) Model for correlated electron sys-

tems, and then we only deal with odd Matsubara frequency for fermions in Eq.(4.30).

4.2.2 The Hubbard Model

Many theories of strongly correlated electron systems ( e.g. High-Tc superconductors

) begin with the Hubbard Model because of its simplicity. This is a model in which

band electrons interact via a two-body repulsive Coulomb interaction.
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In a Bloch state of energy εp, momentum �p, and band index α has a wave function

Ψ�p,α, one can construct Wannier state

Ψα(�ri) =
1

N

∑
�p∈B.Z.

ei�p·�riΨ�p,α(�ri) (4.31)

where �ri is the location of the ith unit cell, B.Z. denotes 1st Brillouin Zone of the

lattice. The assumption here will be that only one (or a few) band indices matter,

so we drop the index α. The Coulomb interaction matrix elements are

Uij,i′,j′ =
∫

d3r1 d3r2Ψ
∗
i (�r1)Ψ

∗
j(�r2)Ṽ (�r1 − �r2)Ψi′(�r1)Ψj′(�r2) (4.32)

where Ṽ (�r1−�r2) is the (screened) Coulomb interaction. Uij,i′,j′ is expected to decrease

rather rapidly with the separation |i − j|.
The second quantized Hamiltonian in the Wannier function basis is

H = −∑
ij

∑
σ=↑↓

(c†σ(�ri)tijcσ(�rj) + c†σ(�rj)tijcσ(�ri))

+
1

2

∑
iji′j′

∑
σ=↑↓

Uiji′j′c
†
σ(�ri)c

†
σ(�rj)cσ(�rj′)cσ(�ri′)

(4.33)

where c†σ(�r) (cσ(�r) creates (annihilates) an electron at the unit cell �r in the wannier

state of band responsible for the Fermi surface and satisfies

{cσ(�r), c†σ′(�r′)} = δσ,σ′δ�r,�r′

{cσ(�r), cσ′(�r′)} = 0

(4.34)

The hopping in Eq.(4.33) is assumed to be short-range and restricted to nearest

neighbor sites for simplicity:
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tij =

{
t if i, j are nearest neighbors

0 otherwise
(4.35)

The Hubbard Model is an approximation to the more general Hamiltonian where

the Coulomb interaction is assumed to be screened and only the ‘on site’ term is

kept

Uij,i′,j′ = Uδijδi′j′δii′ (4.36)

where U is the ‘on site’ Coulomb repulsive energy, then, we get the known single-band

Hubbard Model

H = −t
∑

(�r,�r′),σ=↑,↓
(c†σ(�r)cσ(�r′) + h.c.) + U

∑
�r

n↑(�r)n↓(�r) (4.37)

Here, we have dropped the lattice sites labeling and (, ) means nearest neighbor sites.

This is also called the tight-binding approximation.

The particle number operator at site �r is

n(�r) =
∑
σ

nσ(�r) =
∑
σ

c†σ(�r)cσ(�r) (4.38)

The Hilbert space of this system is the tensor product of only four states per site,

i.e. |0 >: vacuum; | ↑>: an electron with spin up; | ↓>: an electron with spin down;

| ↑↓>: an up-down pair. For example, for four sites system, we may denote some

operations as follows:

|−,−,−,− >= |vac > ; | ↑, ↓,−,− >= c†1↑c
†
2↓|vac >; | ↑↓,−,−,− >=

c†1↑c
†
1↓|vac >; | ↑, ↓, ↑, ↓>= c†1↑c

†
2↓c

†
3↑c

†
4↓|vac > (Half-Filled); etc;

The single-band Hubbard Model can be extended to the single-band extended

Hubbard Model [8]-[11]
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H = Ht + Hv

= − ∑
j,j′,σ

tj,j′c
†
σ,j′cσ,j +

∑
j,j′

1

2
Vj,j′nj′nj

(4.39)

Here j, j′ label N sites of a finite, d-dimensional Bravais lattice with periodic

boundary conditions. tj,j′ are to include the on-site chemical potential µ, the 1st

neighbor hopping (hybridization) matrix element t and, in a more realistic band

structure model, the weaker 2nd and 3rd neighbor terms, t′ and t′′, etc. The Coulomb

interaction Vj,j′, includes the on-site U and, in a more realistic model, the 1st, 2nd,

..., neighbor repulsions, etc.

4.2.3 Self-Energy and Dyson Equation

Feynman diagram properties can be represented in r-space or k-space. Here, we will

restrict ourself to k-space.

The single-fermion Green’s function G(k) is the most basic physical quantity

which can be obtained via a Feynman diagram expansion. Another important quan-

tity is the Self Energy, i.e. Σ(k). To recapitulate, G(k) and Σ(k) are defined on a

domain κ of discrete points κ ≡ {iν,�k} given by

κ := M− × B (4.40)

where, for a finite D-dimensional lattice of size L1×L2× ...LD, the Brillouin zone B

is given by

B := {�k = (k1, ..., kD|kd =
2mdπ

Ld
, md ∈ ιd, for d ∈ {1, ..., D}} (4.41)

with
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ιd := {0, 1, ..., Ld − 1} (4.42)

or, alternatively

ιd := {−int(
Ld − 1

2
),−int(

Ld − 1

2
) + 1, ..., +int(

Ld

2
)} (4.43)

where int(x):= max{j|j integer, j ≤ x} for real x. i.e. the wave vector �k=(k1, ..., kD)

is restricted to a discrete grid in d-dimensional reciprocal space with exactly N such

grid points contained in the 1st Brillouin zone B. Also, Ld denotes the integer side

length of the D-dimensional finite lattice in the d-th coordinate direction. Hence,

the number of lattice sites in the finite r-space lattice ι is

|ι| = |B| = L1 × L2 × ... × LD (4.44)

which is the same as |B|, the number of �k-points in the corresponding Brillouin zone

B. The odd Matsubara frequency domain M− is given by

M− := {iν|ν = (2m0 + 1)πT, m0 integer} (4.45)

where T=1/β is the temperature of the physical system, and we let h̄ = 1 in

Eq.(4.30).

The relationship between Green’s function G(k) and the Self Energy Σ(k) is

given by Dyson Equation

G(k) =
1

iν − ε(�k) − Σ(k)
(4.46)

where ε(�k) is the non-interacting electron energy band, given by

ε(�k) = −µ − 2t
D∑

d=1

cos(kd) (4.47)
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with t denoting the 1st neighbor hybridization matrix element and µ denoting the

chemical potential. Both t and µ are given input parameters of the model.

One important property of the Green’s function is its asymptotic behavior at

large |iν|, given by

G(iν,�k) =
1

iν
+ o(

1

iν
)
2

for |iν| → ∞ (4.48)

4.2.4 Self-Consistent Feynman Diagram Expansion

Now, the self-energy Σ(k), in turn, is obtained self-consistent via a Feynman graph

expansion in terms of G and the interaction potential V . As illustrated in Fig.4.1

and Fig.4.1, for order n=1 and 2, an n-th order Σ-graph consists of n non-

n=1

Figure 4.1: All G-irreducible Σ-graphs of n=1 order

directional wavy lines (referred to as V-lines hereafter) and of 2 external and 2n-1

internal directed straight lines (referred to as G-lines hereafter). One incoming and
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n=2

q
1
=K-K

1q
2
=K

1
-K

2

K
3
=K

2
+K-K

1 K
2 K

1
K

Figure 4.2: All G-irreducible Σ-graphs of n=2 order. A possible k-assignment is also
shown.

one outgoing G-line is attached to each endpoint (vertex) of each V -line. The Σ(k)-

contribution for each graph is given by the Feynman rules so that, for k ≡ (�k, iν)

and kv ≡ (�kv, iνv)(v = 1, 2, ...) [12, 13]

Σ(k) =
nmax∑
n=1

∑
g∈Gn

(
−T

N
)
n ∑

k1,..,kn∈κ

F (n)
g (k, k1, .., kn) ≡ Σ(1)(�k) + Σ(>)(k) (4.49)

Here, Gn denotes the set of all topologically distinct G-irreducible Σ-graphs g

of order n, where g is defined to be G-irreducible (G-reducible) iff it cannot (can)

be severed into two disjoint pieces by cutting no more than two internal G-lines, as

illustrated in Fig.4.3.
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Figure 4.3: Selected G-reducible graph of n=2 order. Vertical arrows indicate the
cuts which separate the graph into two disjoint pieces.

The �kv- and iνv- summation domains are, respectively, the set B of N k-grid

points in the 1st Brillouin zone and the set M− of odd Matsubara frequencies.

F (n)
g (k, k1, .., kn) contains the internal G− and V − line factors of graph g, i.e.

F (n)
g (k, k1, .., kn) = (−(2Sf + 1))mgexp(δn,1, iν1

0+)
2n−1∏
u=1

G(ku)×
n∏

x=1

V (qx) for n ≥ 1

(4.50)

Here, the momenta ku and qx associated with the G-and V -lines, respectively,

are determined by the graph’s topology, via the momentum conservation rules at

each vertex, as illustrated in Fig.(4.2). Only the first n of the internal G− lines k-

variables k1, ..,kn, can be chosen and summed over independently; The remaining k−
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variables, kn+1,...,k2n−1, and all q-variables, q1,...,qn, are linear combinations of the

external k and of k1,..,kn. mg denotes the number of closed G− loops in graph g and

Sf is the single-fermion spin quantum number, i.e. Sf=1/2 for non-spin- polarized

electrons. V (q) in Eq.(4.50) denotes the Fourier transform of the interaction potential

V , i.e. for the lattice model Eq.(4.39), with �rj denoting the position vector of site j

and q ≡ (�q, iω)

V (q) =
1

N

∑
j′,j

e−i�q(�rj′−�rj)Vj′,j (4.51)

V (q) is independent of its (even) Matsubara frequency, iω ≡ 2mωiπT .

The n=1 (Hartree-Fock) contribution in Eq.(4.49), denoted by Σ(1), depends

only on the external wave vector �k, but not on the external frequency iν. Since, the

internal frequency (iν1) summation of the n=1 graph converges only conditionally

and only in the presence of the exp(δn,1, iν1
0+) convergence factor, we calculate

Σ(1)(�k) separately.

We list some numbers of rooted, connected, irreducible diagrams of order n

resulting from the Computational Graph Theory[14]:

n number

1 2

2 2

3 10

4 82

5 898

6 12018

7 187626

8 3323682

9 65607682
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10 1424967394

In Fig.4.4, we show the total 10 irreducible graphs for the n=3 order.

n
g
=1n

e
=1(e) n

e
=2

n
d
=1n

c
=1n

b
=2n

a
=2

(g) (f)

(d)(c)(b)(a)

Figure 4.4: 10 G-irreducible Σ-graphs of n=3 order. In Fig.(4.4) (a), 2 different G-line
directions in the loop denote 2 different diagrams. In Fig.(4.4) (b), 2 different V -line
connections in the graph denote 2 different diagrams. In Fig.(4.4) (f), 2 different
V -line connections in the graph denote 2 different diagrams.

Now, we are able to summarize the Self-Consistent Feynman Diagram Expansion

Technique as follows:

(1) Starting from an initial guess , e.g. , Σ(k)old=0.

(2) Use Dyson Eq.(4.46) to get G.

(3) Use Eq.(4.49)-Eq(4.51) to obtain Σ(k)new.

(4) Check convergence:

If ∆Σ = |Σ(k)new − Σ(k)old| < Error, then stop; Otherwise, using standard Feed-

Back method to calculate the next iterate of Σ
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Σnext = λ × Σ(k)new + (1 − λ) × Σ(k)old

where λ is the feed-back parameter. Repeat step(1)- step(4), until we achieve con-

vergence of this iteration cycle. Typically we choose values of λ in the range λ ∈ [0, 1].



Chapter 5

The Applications of Self-Consistent Feynman Diagram Expansion to

The Correlated Electron Models

5.1 The Hubbard Model (HB)

5.1.1 Summation of Matsubara frequency for the 1st order graph

¿From Eqs.(4.49) and (4.50), we can extract the summation part for Matsubara

frequency as

S(�k) = lim
η→0+

−T

N

iν=i∞∑
iν=−i∞

G(�k, iν)eiνη (5.1)

Note that Eq.(4.46) and Eq.(4.48), we take

G0(k) =
1

iν − ε(�k)
∼= 1

iν
+

A

(iν)2 for |iν| → ∞ (5.2)

Consider

∆G(�k, iν) = G(�k, iν) − G0(�k, iν) ∼= A − A0

(iν)2 ∼ 1

(ν)2 for |iν| → ∞ (5.3)

therefore

S(�k) = lim
η→0+

−T

N
[

iν=i∞∑
iν=−i∞

∆G(�k, iν)eiνη +
iν=i∞∑

iν=−i∞
G0(�k, iν)eiνη] = ∆S(�k, η) + S0(�k, η)

(5.4)

In Eq.(5.4), the first term

67
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∆S(�k, η) =
−T

N

iν=i∞∑
iν=−i∞

∆G(�k, iν) (5.5)

can do summation numerically with finite cut-off frequency, since limη→0+ eiνη → 1.

The second term can be written as

S0(�k, η) = lim
η→0+

−T

N

iν=i∞∑
iν=−i∞

G0(�k, iν)eiνη

= lim
η→0+

−T

N

iν=i∞∑
iν=−i∞

eiνη

iν − ε(�k)

= lim
η→0+

−T

N

iν=i∞∑
iν=−i∞

F (iν)

(5.6)

where

F (iν) =
eiνη

iν − ε(�k)
(5.7)

Now, introducing a function (Fermi function) f(z) = 1/(eβz +1), which has poles

at z = iν = (2m + 1)iπ/β, and using Residual Theorem on the odd Matsubara

frequency as shown in Fig.5.1, we can obtain[3]

lim
η→0+

∑
iν

F (iν) =
β

eβε(�k) + 1
(5.8)

hence, Eq.(5.6) becomes

S0(�k) = lim
η→0+

S0(�k, η) =
−T

N

β

eβε(�k) + 1
=

−1

N

1

eβε(�k) + 1
(5.9)

An alternative method is: instead of using Eq.(5.3), we could use

∆G(�k, iν) = G(�k, iν) − G1(�k, iν) (5.10)
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iν  

Figure 5.1: Summation of imaginary odd Matsubara frequency

with

G1(�k, iν) :=
1

iν − ε(�k) − Σ(1)(�k)
=

1

iν − E(�k)
(5.11)

where

E(�k) := ε(�k) + Σ(1)(�k) (5.12)

is called the ‘Hartree-Fock’ band. Similar to above scheme, we can do the summation

numerically with finite cut-off frequency for ∆G, and do the summation analytically

for G1 and get
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S1(�k) = lim
η→0+

S1(�k, η) =
−T

N

β

eβE(�k) + 1
=

−1

N

1

eβE(�k) + 1
(5.13)

An important physical quantity we will calculate is the average electron number

for the model at each lattice site. Similar to Eq.(4.9), the average electron number

is

〈n〉 = n̄ =
1

N

∑
�k,σ

〈n�k,σ〉

=
1

N

∑
�k,σ

lim
τ→0−

G(�k, τ)

=
1

N

∑
�k,σ

lim
τ→0−

〈c†�k,σ
(0)c�k,σ(τ)〉

(5.14)

Using the Fourier Transform of G(�k, iν):

G(�k, τ) = T
∑
iν

e−iντG(�k, iν) (5.15)

we get

〈n〉 =
T

N
lim

τ→0−

∑
�k,σ

∑
iν

e−iντG(�k, iν)

=
T

N

∑
�k,σ

lim
τ→0−

{∑
iν

e−iντ [G(�k, iν) − G1(�k, iν)] +
∑
iν

e−iντG1(�k, iν)}

(5.16)

For the procedures of Eq.(5.1)-Eq.(5.13) we have employed, we may do the first

summation term in Eq.(5.16) numerically with finite cut-off frequency and analyt-

ically get the second summation term as the Fermi function form. Note that the

summation for σ in Eq.(5.16) will lead to factor ”2” for the electron.
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5.1.2 Some Results for the HB Model

We perform our calculations on the 2-dimensional lattice with size L1×L2 = 4×4. For

simplicity, we choose the parameter t = 1 and only consider the on-site interaction,

i.e.

V (q) = U (5.17)

The error (the convergence criterion of the iteration procedure) on the first line of

Page 66 was set to be 10−5. We consider the Half-Filled case, i.e. we set the chemical

potential to be µ = U/2, the expected average electron number ( Eq.(5.16)) should

be 1.

Fig.5.2 shows the results of the n = 2 order for the ∆Σ = |Σ(k)new − Σ(k)old|
at 5 different temperatures (in order to plot it with appropriate scale in the figure,

we divide ∆Σ by the value of first iteration Σ(k)new|t=1 ). We can see the higher

the temperature, the faster the convergence of the iteration procedure. At very low

temperature T=0.05, its behavior is very strange, revealing the possible important

dynamical characteristics of the electron. This can also be seen in the similar behavior

of the average electron number as shown in Fig.5.3.

Fig.5.4 shows results of n = 2 order with three different feed-back convergent

parameters. The behavior of ∆Σ and 〈n〉 are different between them. The small

figure in the plot is the self-energy Σ2 including the real part (ReΣ2) and imaginary

part (ImΣ2). We can see that they converge to the same values with those three

different convergent parameters.

Fig.5.5 and Fig.5.6 are the results for the self-energy ImΣ and ReΣ with max-

imum n = 3 order considered. In the figure, the notation ”n1.n2”(n1 = 2, 3; n2 = 2, 3)

means the n1 order term’s result when maximum n2 order is considered. Fig.5.7 and

Fig.5.8 are the results with the same U and µ but a lower temperature. The features
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at T=1.8 and T=0.5 are a little bit different. From the figures, we can see the results

of Σ2.2 and Σ2.3 is very close. It is obviously reasonable.

5.2 The Anderson Impurity Model (AIM)

5.2.1 Anderson Impurity Model

The Anderson Impurity Model (AIM)[15]-[18] is the archetype for describing dilute,

correlated magnetic impurities in metals. With the Fermi level taken as the energy

origin, the Hamiltonian for the spin-1/2 AIM is given in standard notation by

H = Hhost + Himpurity + Hhybridization

=
∑
�k,σ

ε�kc
†
�kσ

c�kσ +
∑
σ

(εi +
1

2
Uni−σ)niσ +

∑
�k,σ

Vi�k(c
†
iσc�kσ + c†�kσ

ciσ)

(5.18)

The first term in H refers to the host band of non-interacting electrons with

dispersion ε�k and c†�kσ
(c�kσ) creates (annihilates) an electron in the conduction band

in a Bloch state with wave vector �k and spin σ. The second term refers to the single

impurity i with on-site Coulomb interaction U and on-site energy εi. niσ = c†iσciσ

measures the occupation at impurity site i for spin σ. The final term describes the

one-electron hybridization between the impurity and host, c†iσ(ciσ) creates (anni-

hilates) an electron with spin σ at a single impurity site i. Here, we only study

the particle-hole (p-h) symmetric AIM where εi = −U/2 and the impurity charge

ni =
∑

σ〈niσ〉 = 1 for all U .

The AIM here can also be studied by the SCFDE technique. The impurity Green’s

function may be written as

G(iν) =
1

iν + iΓsgn(ν) − εi − Σ(1) − ∆Σ(iν)
(5.19)
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Hence, as in Hubbard Model, we may write

∆G(�k, iν) = G(�k, iν) − Gr(�k, iν) (5.20)

with

Gr(iν) =
1

iν + iΓsgn(ν) − E0

(5.21)

and

E0 = εi + Σ(1) (5.22)

Then the summation term
∑

iν ∆G(�k, iν) can be numerically obtained with finite

cut-off frequency, since ∆G(�k, iν) ∼ 1
(iν)3

for i(ν) → ∞. For the second term

Sr =
∑
iν

Gr(iν)e−iντ (5.23)

We can solve it analytically by using the Residual Theorem. Eq.(5.21) can be

analytically continued as (iν → z)

Gr(z) =
1

z − (E0 − iΓ)
for ν > 0 (5.24)

with a pole at z+ = E0 − iΓ, and

Gr(z) =
1

z − (E0 + iΓ)
for ν < 0 (5.25)

with a pole at z+ = E0 + iΓ. Doing some computations, we will get

Sr = Sr1 + Sr2

= (
∑

iν,ν>0

G+
r (iν)e−iντ ) + (

∑
iν,ν<0

G−
r (iν)e−iντ )
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=
−1

T
[
1

π
arctg(

A + E0

Γ
) − 1

2
] +

Γ

πT

∫ A

−A
F (x) dx

(5.26)

where

F (x) =
f(x)

(x − E0)
2 + Γ2

(5.27)

with f(x) = 1
eβx+1

, the Fermi function. The constant A � E0, Γ, T should be satis-

fied.

The average electron number is

〈n〉 =
2T

N

∑
�k

∑
iν

G(�k, iν)e−iντ (5.28)

The integration in Eq.(5.26) can be done numerically by Simpson’s rule[19]: Assume

we need to get

S =
∫ b

a
f(x) dx (5.29)

then

(1)calculating the following quantity by using trapezoid rule:

Tn = hf(a)+f(b)
2

, with n = 1, h = b − a

(2)calculating T2n = 1
2
Tn + h

2

∑n−1
k=0 f(xk + h

2
)

(3)Using Simpson′s rule to calculate

S2n = 4T2n−Tn

3

(4) If |S2n − Sn| < ζ , stop; Otherwise, set 2n ⇒ n, h
2
⇒ h, repeat (2) and (3).

5.2.2 Some Results for the AIM Model

In the following calculations, we find that there is no difference for the integration

term in Eq.(5.26) between A = 10 and A = 20. We will take A = 10. The other

parameters are set to be Γ = 1, ζ = 10−6.
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We first present the calculation results of Feynman diagram expansion of n = 2

order. Fig.5.9 shows 〈n〉 as a function of iteration step at T = 0.05 and for 5 different

U . We can see that the higher the U , the slower the convergence when T is fixed.

Fig.5.10 and Fig.5.11 are corresponding results of self-energy ReΣ and ImΣ under

the same conditions as in Fig.5.9, the ReΣ part can be regarded as zero, and the

higher the U , the larger the amplitude of ImΣ. Fig.5.12 is the required number of

trapezoids ( denoted by n−l in the figure ) in order to get ζ = 10−6 in the calculation

of integration in Eq.(5.26) for Fig.5.9-Fig.5.11.

Whether an iteration procedure is convergent, divergent, or limit cycle depends on

the feed-back parameter. Fig.5.13 illustrates two λ values’ results: one is convergent,

the other is divergent.

Fig.5.14, Fig.5.15, and Fig.5.16 give the plots of 〈n〉 − t, ReΣ and ImΣ with

n = 2 at different cut-off Matsubara frequency, respectively. As above, the ReΣ part

can be regarded as zero, and different features of ImΣ can be seen in the figures.

Fig.5.17 (T=0.5), Fig.5.18 (T=0.05), and Fig.5.19 (T=0.008), are respectively

the calculation results of ImΣ at 3 different temperature with the same cut-off

Matsubara frequency L0 = 100 and the maximum Feynman diagram order n = 3.

The ImΣ can show us different features around ω = 0. Note that many interesting

physical quantities ( e.g. mass enhancement factor on the Fermi surface ) are related

to the self-energy or its derivative[20, 21].
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Figure 5.2: Behavior of ∆Σ = |Σ(k)new − Σ(k)old| at 5 different temperatures with
U=8.0, µ=4.0. t is the iteration number. n=2. Note that in order to plot it with
appropriate scale in the figure, we divide ∆Σ by the first iteration Σ(k)new|t=1.
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Figure 5.5: Imaginary part of Σ when maximum n = 3 order is considered in the
computations. See text for details.
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Figure 5.7: Imaginary part of Σ at a lower temperature when maximum n = 3 order
is considered in the computations. See text for details.
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Figure 5.16: Imaginary part of Σ when n = 2 order is considered with 5 different
cut-off L0 in the computations.
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Figure 5.17: Imaginary part of Σ when maximum n = 3 order is considered at T=0.5
in the computations. See similar notations in HBM.
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Figure 5.18: Imaginary part of Σ when maximum n = 3 order is considered at
T=0.05 in the computations. See similar notations in HBM.
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Figure 5.19: Imaginary part of Σ when maximum n = 3 order is considered at
T=0.008 in the computations. See similar notations in HBM.



Chapter 6

Monte Carlo Summation Technique and Future Work

Note that in the above Feynman diagram summations of Eq.(4.49) and Eq.(4.50),

we do the k summation in momentum space for all the diagrams of order n’s. It is

a brute force approach and then need a lot of computer CPU time.

Remember that in Chapter 2, the Importance Sampling Monte Carlo method

can bring us the more efficient technique to sample a function at points where

the main contribution comes from in a summation expression. Eq.(4.49) is a high-

dimensional summation expression, therefore the sum of the higher order (n ≥ 2)

graphs, denoted by Σ(>)(k) in Eq.(4.49) can be calculated by Monte Carlo (MC)

Summation Technique.

Similar to Eq.(2.4)-Eq.(2.8) in Chapter 2, we briefly give the basic idea of this

Monte Carlo Summation Technique here. To sum up a function I(x) over a high-

dimensional domain D, we write its sum Σ(I) as[1, 2]

Σ(I) ≡ ∑
X∈D

I(x) = CW

∑
X∈D

S(X)P (X) (6.1)

with a probability distribution P (X), score S(X) and norm factor CW given by

P (X) = C−1
W W (X), S(X) ≡ I(X)/W (X), CW =

∑
X∈D

W (X) (6.2)

respectively. Here, W (X) is an arbitrary non-negative weight function with W (X) >

0 where |I(X)| > 0. Using a Markov-type random walk procedure, we generate a

96
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large of random X−point, X(1), X(1),...,X(M) ∈ D, each with probability P (X), and

evaluate the MC average of S(X)

〈S〉M := M−1
M∑

m=1

S(X(m)) (6.3)

For M → ∞, 〈S〉M → Σ(I)/CW with a variance δS2 ∼ O(M−1). The evaluation

of CW , can be carried out by an analogous MC summation, with the same weight

W (X).

The implementation of this Monte Carlo diagram summation method for n > 1

higher order Feynman diagram expansion poses major algorithmic and computa-

tional challenges in several, quite distinct areas of computational science. The simul-

taneous stochastic summation over diagram topologies and over internal momentum-

energy variables require novel MC updating and scoring approaches as well as major

efforts to achieve variance minimization. The detailed description of this method

combined with Self-Consistent Feynman Diagram Expansion technique can be found

in [3, 4].

The first and successful application of this Monte Carlo Diagram Summation

Technique is for the single Anderson impurity model (AIM) up to n=6 order

Feynman diagram summation. This method combines the stochastic Monte Carlo

sampling technique with a self-consistent Feynman diagram summation into a con-

trolled approximation tool where the self-energy is calculated and compared with

quantum Monte Carlo data[4].

Fig.6.1 and Fig.6.2 show two comparisons of Monte Carlo Diagram Summation

Technique results ( performed in the real space and then Fourier transformed into

the k space ) and brute force results ( k space ) for the first time iteration of 2 × 2

Hubbard model including diagrams up to n = 3. Those two results are in very good

agreement.
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For the future perspectives of this Monte Carlo Feynman Diagram Expansion

technique, we may work in the following directions:

(1) Try to obtain the results with the higher order n > 3 for the AIM and

HBM, and to study the behavior of those models with higher order terms. Sim-

ilar to the Quantum Monte Carlo (QMC) algorithm, this MC summation here also

exhibits a ”minus-sign” problem, however, we expect the minus-sign problem to be

manageable[5], at least up to nmax ∼ 10 − 20.

(2) Parallelization of the codes to reduce the computer CPU time.

(3) Applications and Extensions of this MC Feynman diagram summation tech-

nique. In addition to the Hubbard model (HBM) and Anderson Impurity model

(AIM), this technique can also be used in other strongly correlated electron physics,

such as the cuprate high-temperature superconductors (HTSC)[6], infinite dimen-

sional Hubbard model (IDHBM)[7], etc. Future extensions of this approach will

include applications to (i) multi-band models, relevant to cuprates[8]; (ii) quantum

chemistry; (iii) electronic structure of solids. etc.
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Figure 6.1: real part of the total Σ when maximum n = 3 order is considered in the
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Figure 6.2: imaginary part of the total Σ when maximum n = 3 order is considered
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