TREE DECOMPOSABLE MODELS FOR EFFICIENT BIOINFORMATICS ALGORITHMS
by
CHUNMEI LIu

(Under the direction of Liming Cai)

ABSTRACT

Many important bioinformatics problems are NP-hard and it is thus difficult to find
efficient algorithms to solve them exactly. However, these problems often require efficient
and exact solutions for the accurate understanding of biological systems, presenting a great
challenge in computation. This dissertation initiates an algorithmic framework to address this
challenge, which is established on the theory and techniques of parameterized computation.
In particular, the framework is to model bioinformatics problems with graphs of small tree
width, where existing elegant graph theoretic results, such as the Courcelle’s theorem, may
be applied to achieve efficient (e.g., linear-time) exact algorithms.

The dissertation investigates two technically difficult issues in implementing this frame-
work: (1) how to model bioinformatics problems as monadic second order (MSO) logic
expressible problems on graphs of small tree width; (2) how to develop parameterized
techniques that can reduce other problems to MSO logic expressible graph problems while
maintaining small tree width. Various bioinformatics problems in proteomics and structural
genomics are studied to address these two issues. Experiments were conducted which demon-
strate the advantages of this new algorithmic framework over other methods in both accuracy

and efficiency.



INDEX WORDS: Parameterized computation, Tree decomposition, Tree width,
Subgraph isomorphism, Sequence-structure alignment,
Antisymmetric path, Tandem mass spectra



TREE DECOMPOSABLE MODELS FOR EFFICIENT BIOINFORMATICS ALGORITHMS

by

CHUNMEI LU

B.S., Anhui University, 1999
M.S., Anhui University, 2002

A Dissertation Submitted to the Graduate Faculty
of The University of Georgia in Partial Fulfillment
of the

Requirements for the Degree

DocTOR OF PHILOSOPHY

ATHENS, GEORGIA

2006



© 2006
Chunmei Liu

All Rights Reserved



TREE DECOMPOSABLE MODELS FOR EFFICIENT BIOINFORMATICS ALGORITHMS

by

CHUNMEI LU

Approved:

Major Professor: Liming Cai

Committee: E. Rodney Canfield
Russell L. Malmberg
Robert W. Robinson

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School
The University of Georgia
August 2006



ACKNOWLEDGMENTS

First, I am extremely grateful to my Ph.D. advisor, Professor Liming Cai, for his instruction,
guidance, and inspiration through my Ph.D. career. It is he who led me into these promising
and interesting research areas. His devotion to his students, style in teaching, and excellence
in research have made himself a great advisor and a good example for me to follow in my
academic career.

[ am also grateful to my committee member, Professor Russell Malmberg. He is always
very patient to teach me both biology and computer science. It has been a great pleasure to
work with him and I look forward to future collaboration.

I owe a great debt of gratitude to the other members of my committee, Professors Rodney
Canfield and Robert Robinson, for their contribution to my education through the classes
they taught and the invaluable guidance that they have given me. I feel fortunate to have
studied under them.

I would also like to thank the student members in our research group: Yinglei Song,
Jizhen Zhao, and Dongsheng Che at the Department of Computer Science, Fangfang Pan at
the Department of Plant Biology, and Ping Hu at the Department of Genetics.

I would like to say thank you to Dr. Bo Yan and Professor Ying Xu at the Department
of Biochemistry and Molecular Biology, who collaborated with me on the development and
implementation of the work in proteomics. Others that have provided technical support on
the work of protein tertiary structure prediction are Dr. Juntao Guo, Dr. Guojun Li, and
Kyle Ellrott. I thank them for their wonderful support, and I expect continued collaborations.

I have been receiving financial support during my doctoral student career. Specifically,
the work in this dissertation has been supported by the Graduate School at the University

of Georgia, the Computer Science Department, and the National Institutes of Health.

v



I have also received support from a team of personnel. I thank Professors John Miller and
Hamid Arabnia in graduate advising, Professor Krzysztof Kochut and departmental staff in
administration, and system support.

I would also like to thank my teachers and friends both in China and in the US. They
have made my life beautiful. I cannot list all their names here, but they are truly in my
mind.

Finally, I would like to thank my parents: my father, Hongwen Liu, and my mother,
Lanrong Sui. They are the most wonderful parents in the world. I love them so much. My
brothers and sisters have also always provided me with whatever I need. I want to say special

thank you to them.



TABLE OF CONTENTS

ACKNOWLEDGMENTS

CHAPTER

1 INTRODUCTION

1.1
1.2
1.3

INTRACTABLE PROBLEMS IN BIOINFORMATICS
PARAMETERIZED COMPUTATION .

OUTLINE OF THE DISSERTATION .

2 PRELIMINARIES

2.1
2.2
2.3
2.4
2.5

INTRODUCTION

TREE DECOMPOSITION .

COURCELLE’S THEOREM .

FINDING TREE WIDTH AND TREE DECOMPOSITIONS

SUMMARY .

3 THE LONGEST ANTISYMMETRIC PATH

3.1
3.2
3.3
3.4
3.5
3.6

INTRODUCTION

PROBLEM DESCRIPTION

A MSO LOGIC SENTENCE FOR THE PROBLEM .
THE ALGORITHM .

EXPERIMENTAL RESULTS .

SUMMARY .

4  MAXIMUM ANTISYMMETRIC PATHS

vi

Page

v

10

12
12
13
16
23
30

31
31
34
37
39
42
46

47



4.1 INTRODUCTION
4.2 MODELS AND ALGORITHMS
4.3 EXPERIMENTS AND DISCUSSION

4.4 SUMMARY .

5 GENERALIZED SUBGRAPH ISOMORPHISM
5.1 INTRODUCTION
5.2 PREVIOUS WORK ON GRAPHS OF SMALL TREE WIDTH .
5.3 Map WIDTH FOR SUBGRAPH ISOMORPHISM
5.4 PARAMETERIZED ALGORITHMS FOR SUBGRAPH ISOMORPHISM
5.5 REDUCTION TO SMALLER TREEWIDTH
5.6 SEQUENCE-STRUCTURE ALIGNMENT IN BIOINFORMATICS

5.7 SUMMARY .

6 CONCLUSIONS AND FUTURE WORK
6.1 IMPROVING THE CONSTANT FACTOR
6.2 GRAPHS WITH LARGE TREE WIDTH

6.3 SUMMARY .

BIBLIOGRAPHY

Vil

47
20
61
64

66
67
68
72
74
75
79
84

86
87
88
89

90



CHAPTER 1

INTRODUCTION

Due to the rapid development of biological sciences, a large amount of data has been available
for the description of biological systems. Computational tools can significantly improve the
efficiency and accuracy of data analysis and are thus highly desirable for the processing of
the biological data. Bioinformatics is an emerging and fast growing interdisciplinary research
field that reflects this type of need. In particular, one of the major objectives of bioinformatics
research is to develop new methods and computational tools that can facilitate and provide
new insights into the frontiers of research in molecular and systems biology. In addition, some
problems in bioinformatics are interesting by themselves from the computational perspective.
Developing algorithmic and complexity results for these problems can enrich research in
computer science.

In contemporary molecular biology, the number of possible solutions to a given bioinfor-
matics problem is often combinatorial in nature and in most cases, biologists are interested
in the one(s) that optimize some given objective function. These are known as combinato-
rial optimization problems. Combinatorial optimization problems constitute one of the most
important aspects in the research of bioinformatics, since many problems in bioinformatics
can be reduced to a combinatorial optimization problem. Unfortunately, most of these com-
binatorial optimization problems are known to be NP-hard, which suggests that optimal
solutions for these problems cannot be obtained efficiently unless P = NP.

However, optimal or near optimal solutions for these problems are often required for accu-

rate understanding of the corresponding biological problems. The commonly used approach



to cope with the computational intractability is approximation. In particular, polynomial-
time approximation algorithms can produce approximate solutions with performance guaran-
teed with respect to the optimal ones. However, they introduce inaccurate and an expensive
time/accuracy trade-off, and they are not suitable for solving bioinformatics problems where
accuracy is always desirable. Therefore, developing practically fast and yet accurate solutions
for bioinformatics problems remains a very important research goal.

This dissertation initiates an algorithmic framework to address this issue based on the
theory and techniques of parameterized computation. The framework models bioinformatics
problems with graphs of small tree width based on the Courcelle’s theorem. In particular,
the dissertation investigates two technically difficult issues in implementing this framework:
to model bioinformatics problems as monadic second order (MSO) logic expressible problems
on graphs of small tree width, and to develop parameterized techniques that can reduce other

problems to MSO logic expressible graph problems while maintaining small tree width.

1.1 INTRACTABLE PROBLEMS IN BIOINFORMATICS

1.1.1 ANNOTATING GENOMES FOR NON-CODING RNAS

Non-coding RNAs (ncRNAs) are biologically important and have been known to play impor-
tant roles in many processes including gene regulation, chromosome replication, and RNA
modification [32, 60, 103]. Recently, with the explosive growth of fully sequenced genomes,
efficient computational tools are needed to search the genomes to identify and annotate
ncRNA genes with high accuracy. However, no satisfactory methods have been available for
this problem so far.

An RNA molecule is formed by a sequence of nucleotides. These nucleotides are usually
represented as residue bases of the four possible types adenine(A), guanine(G), uracil(U) and
cytosine(C). Non-coding RNAs fold into secondary structures due to the base pairs formed

between nucleotides on the sequence. Stacked base pairs are energetically more stable and



form stems. Regions consisting of unpaired contiguous nucleotides in the sequence are called
loops.

ncRNAs do not encode proteins. The secondary structure of a ncRNA is important and
to a large extent, determines its biological functions. In general, to search for an ncRNA,
a search tool needs to distinguish the structural features of the ncRNA from others in the
genome. In particular, the tool needs to align all sequence segments in a genome to a model
that contains the statistical profile information obtained from a family of sequences of the
ncRNA. The sequence segments in the genome with statistically significant alignment scores
are reported as hits. Due to the importance of secondary structure, the profile for the ncRNA
needs to include information from both sequence and structure.

An RNA structure may contain pseudoknots, which are structure units that contain at
least two interleaving stems. The optimal sequence-structure alignment between a sequence
segment and a structure without pseudoknots can be performed with a dynamic programming
algorithm in time O(N3W), where N is the length of the sequence segment and W is the
size of the profile. The computational efficiency of this algorithm becomes a bottleneck
when the length of the searched structure is larger than 300 nucleotides. For structures
that contain pseudoknots, the sequence-structure alignment has been shown to be NP-hard
[1]. A few models and algorithms [17, 67, 70, 92] have been developed to model pseudoknot
structures and align a sequence to a pseudoknot structure. However, since the computational
complexities of these algorithms are prohibitively high, they cannot be directly used for
searching pseudoknot structures in large genomes.

Several different approaches [94, 54, 10] have been developed to resolve the difficulty
arising from the computational efficiency of sequence-structure alignment. For example, fil-
tering models have been developed to efficiently preprocess the genome and screen out most of
the regions that do not contain the searched structure. More sophisticated structure models

can then be used to process the regions that have passed the filtering process. Filtering



methods have significantly improved the efficiency of searching. However, filtering methods
have not been applied to searching for pseudoknot structures.

This dissertation develops an original structure model for the secondary structure of an
ncRNA. Based on the structure model, the sequence-structure alignment can be performed
in time O(k'N?) [85, 86|, where k and ¢ are parameters which are small in practice, and
N is the length of the searched structure pattern. In particular, the parameter ¢ is 2 for
pseudoknot free structures and increases only slightly for pseudoknot structures. Test results
show that this algorithm is significantly faster than previous ones but can achieve the same

search accuracy.

1.1.2 PROTEIN TERTIARY STRUCTURE PREDICTION

Protein tertiary structure prediction is a classical problem in bioinformatics. The objective
of this problem is to computationally determine the tertiary structure of a protein molecule
from its amino acid sequence. This problem is important and has been intensively studied
for more than a decade [37, 46, 82, 84, 96, 98]. Currently available methods for this problem
can be roughly classified into two categories. Ab initio methods consider the thermodynamic
energy due to the interactions of atoms in a protein sequence and minimize it to obtain the
tertiary structure of a protein [84]. However, the atomic interactions in a protein sequence
are complex and the ab initio methods have not been able to achieve satisfactory prediction
accuracy. Knowledge-based methods [37, 46, 82, 96, 98] align a sequence to all the available
structure profiles in a database. Prediction is based on the alignment scores. In contrast to
ab initio methods, knowledge-based methods can achieve higher prediction accuracy and are
thus often used in practice to predict protein tertiary structures.

Protein threading is a knowledge-based method for protein tertiary structure prediction.
Threading methods consider both the sequence and structure information for a family of

homologous sequences and include it in a structure profile. The alignments needed in protein



threading are thus sequence-structure alignments. It has been shown that the optimal align-
ment between a sequence and a structure profile that includes two-body residue interactions
and allows gaps is NP-hard [50].

Several algorithms have been developed to optimally align a sequence to a protein struc-
ture. For example, in [96], a divide-and-conquer algorithm is shown that can perform optimal
sequence-structure alignment in polynomial time for most available protein structure tem-
plates if an appropriate cut-off distance is used to model the two-body interactions. In
(98], the sequence-structure alignment is solved with integer programming techniques. In
practice, these two algorithms can perform most sequence-structure alignments in a few
minutes. However, threading methods need to align a sequence to all structure templates
in a database. Therefore, it is desirable to further improve the computational efficiency for
sequence-structure alignment. This should allow the use of more sophisticated model to
improve prediction accuracy.

This dissertation studies the sequence-structure alignment problem for protein threading.
The protein sequence-structure alignment problem can also be reduced to the SUBGRAPH
IsoOMORPHISM problem and a parameterization of this problem can be solved with an efficient
parameterized algorithm. The results of our testing show that this method is significantly
faster than previous algorithms and can achieve better accuracy in sequence-structure align-

ment and fold recognition.

1.1.3 De Novo SEQUENCING FOR PEPTIDE SEQUENCES

Tandem mass spectrometry (MS/MS) has become an important experimental tool for pro-
tein identification in proteomics. A protein sequence can be cut into short peptide sequences
by certain enzymes. A protein peptide can be fragmented into charged ions and their
mass/charge ratios can be measured. Since the peptide can be fragmented at any bond
on its backbone, the mass/charge ratios obtained for a peptide form a spectrum. A spectrum

may contain several different types of ions; b-ions and y-ions are two types that are often



seen in a MS/MS spectrum. The peptide identification problem is to determine the amino
acid sequence of the peptide from its MS/MS spectrum.

Database search based methods [29, 63] have been used to determine the peptide sequence
from its spectrum. Specifically, the spectrum of each peptide in a database is compared with
the spectrum of a new peptide and the similarity between the two spectra can be evaluated.
Peptides whose spectra have significant similarity values with the new one are returned as the
possible sequencing results. However, this method is unable to identify a peptide sequence
that is not in the database. De novo sequencing is to determine the amino acid sequence of
a peptide solely from its MS/MS spectrum.

A number of different methods and models have been developed for de novo sequencing.
In [65], a spectrum is modeled with a directed graph and the corresponding amino acid
sequence can be determined by finding the maximum weighted antisymmetric path in the
graph. Such a graph is called a spectrum graph. However, finding the maximum weighted
antisymmetric path is an NP-hard problem [35] and in [65], only an approximate algorithm
is presented for the problem.

The spectral alignment problem is to find the optimal alignment between the peaks in
two MS/MS spectra. This problem can be solved with a dynamic programming algorithm
in polynomial time if both spectra contain only one type of ion. However, in the presence of
both b-ions and y-ions, the spectra alignment problem is also NP-hard [35]. This problem can
also be reduced to finding the maximum weighted antisymmetric problem in an alignment
graph constructed from the two spectra that are to be aligned.

A novel parameterized algorithm is developed in this dissertation to optimally find the
maximum weighted antisymmetric path in a graph that is slighted modified compared with
the spectrum graph proposed in [65]. A linear time efficient parameterized algorithm has
been developed to find the maximum antisymmetric path in a modified spectrum graph or

an alignment graph. Experimental results show that this algorithm is efficient and effective



for both de novo sequencing and spectral alignment problems and can be effectively applied

to identify post-translational modifications from the alignment of two spectra.

1.1.4 PROTEIN IDENTIFICATION WITH TAG BASED DATABASE SEARCH

Two types of methods have been developed for the peptide sequencing problem, i.e. methods
using database search and de novo sequencing methods. In theory, de novo sequencing
methods can identify a peptide that is not included in a database. However, in practice,
a spectrum generally contains many noisy mass peaks and some mass peaks in the the-
oretical spectrum can be missing in the real spectrum due to errors that can occur in the
experiments. The spectrum graph constructed from a real spectrum is generally disconnected
and it is thus difficult for a de novo sequencing algorithm to find the needed antisymmetric
path.

Database search methods are thus still important for processing real experimental spectra.
However, post-translational modifications (PTMs) often occur on peptides and the possibility
of PTMs must be considered during the database search. This will significantly increase the
computation time needed to compare two spectra since an exhaustive search on all possible
PTMs must be performed. Filtering [34] is a new method that can be used to improve the
computational efficiency of database search. Generally, a simple model is used to efficiently
preprocess all the peptides in a database and only those peptides that are likely to match
the input spectrum are selected for further processing. These selected peptides are called
candidates.

In [34], PepNovo, a tag based filtering program, is developed to speed up the database
search. In particular, the spectrum is processed with a program for de novo sequencing. A
machine-learning based method is then used to evaluate the likelihood that each sequence
tag in the sequencing results is in the corresponding peptide. Peptide sequence tags with a
significant likelihood are then used to filter the database. Only peptides that contain one of

the tags are selected as candidates. However, the accuracy of this method is sensitive to the



quality of the training data and may not work properly in the presence of PTMs, because
the spectrum graph can be disconnected and the de novo sequencing results cannot be easily
obtained.

In this dissertation, a new method is developed for the problem of tag selection. In partic-
ular, an efficient parameterized algorithm is developed to find all the mazimal antisymmetric
paths in a spectrum graph, the tags are selected from these paths, and the likelihood for each
of them to be in the peptide is evaluated. Experiments have shown that this approach can

achieve better accuracy on tag selection and perform significantly faster than PEPNoOVO.

1.2 PARAMETERIZED COMPUTATION

Parameterized computation is particularly suited for coping with computational intractability
under the framework of NP-completeness. In particular, given an instance of an NP-hard
problem (z, ki, ko, -, k), where kq, ko, - , k,,, are parameters, the problem is called fized
parameter tractable (FPT) if there exists an algorithm that can solve the problem in time
O(f(k1, ko, -+, ky)|x|¢), where ¢ is a constant independent of z and k;’s (1 < i < m).
For example, the VERTEX COVER problem, which asks whether a given graph G = (V, E)
contains a vertex subset of size k such that each edge in G has either one of its ends in this
subset, can be solved in time O(2%|V|) using a search tree based technique. Such problems
are solvable in polynomial time for small values of the parameters. In contrast, complexity
classes have also been constructed for parameterized computation. More specifically, we
consider parameterized decision problems that are formulated on circuits. The weight k of
an input assignment is the number of input variables that are assigned to be “true”. For a
given circuit, we consider gates in the circuit with unbounded wefts, and the depth t of the
circuit is the maximum number of such gates in a path from an input to the output of the
circuit. We use W[t] to represent the class of problems (k, z) (k is the parameter) that can be
reduced in time O(f(k)|z|) to a problem that asks whether there exists a weight &’ satisfying

assignment for a circuit of depth ¢, where &’ only depends on k, f(k) is a recursive function,



and c is a constant independent of k. It is easy to show that FPT C W[1] C W[2] --- W[t]

-+, and it is believed that FPT is a proper subset of W[1] and W|t] is a proper subset of
W[t + 1] for ¢t > 1. Analogously to the theory of NP-completeness, complete problems for
these complexity classes have been found. For example, the INDEPENDENT SET problem,
which is to determine whether graph G = (V, E) contains a vertex subset of size k, has
been shown to be W[1]-complete. This suggests that unless FPT=W|1], INDEPENDENT SET
cannot be solved in time O(f(k)|V|¢) for any recursive f, where ¢ is a constant independent
of k and G.

The application of parameterized computation is not limited to theoretical computer sci-
ence. In practice, many intractable optimization problems have inherently small parameters
and methods developed in parameterized computation can thus provide efficient solutions
for them. For example, a parameterized algorithm with time complexity O(kn+ 1.2852%) [20]
has been developed for the VERTEX COVER problem. This algorithm can be practically used
to solve the problem instances where the parameter k is less than 50. In bioinformatics, exact
solutions for many NP-hard optimization problems are needed and it provides an avenue to
apply parameterized computation.

Tree decomposition(tree width) [71] is one of the most original and important graph
theoretical concepts proposed in the last two decades. Tree decomposition was originally
proposed to prove the graph minor theorems. Based on the tree decomposition, it has been
shown that graphs are well-quasi ordered with respect to the relation of minor. The concepts
of tree decomposition and tree width also have profound implications in algorithm study. In
particular, it has been shown that many NP-hard graph optimization problems can be solved
in linear time on graphs with bounded tree width. For example, the MAXIMUM INDEPEN-
DENT SET and MINIMUM DOMINATING SET in a graph G = (V, E') with tree width bounded
by k can be found in time O(2*|V]) and O(2%*|V]) respectively.

A more general result is Courcelle’s theorem [23]. This theorem states that given a tree

decomposition for a graph G = (V| E) with tree width ¢, any predicate that can be expressed



10

in a monadic second order (MSO) logic can be decided in time O(f(t)|V|), where f(t) is a
function whose value only dependents on ¢t. Such work provides a general approach for us to
develop efficient and exact algorithms for important bioinformatics problems.

This dissertation focuses on the study of bioinformatics problems using the concept of
tree decomposition. In particular, we initiate the study of an algorithmic framework that
can model NP-hard bioinformatics problems on graphs with small tree width. The algorithm
developed in Courcelle’s theorem can thus be applied to solve them. Technically, two difficult
but important issues need to be investigated to implement this framework: how to model
bioinformatics problems with MSO logic expressible problems on graphs with bounded tree
width, and how to develop parameterized techniques that can reduce other problems to MSO
logic expressible graph problems while maintaining small tree width. Through experiments
with various bioinformatics problems, we show that this algorithmic framework can provide

efficient and accurate solutions for all the intractable bioinformatics problems in section 1.1.

1.3 OUTLINE OF THE DISSERTATION

The rest of this dissertation is organized as follows. A thorough survey of the idea of tree
decomposition and its algorithmic implications including Courcelle’s theorem is provided in
Chapter 2. In Chapter 3, we show that the LONGEST ANTISYMMETRIC PATH problem can
be expressed with MSO logic. Based on this fact, practically efficient algorithms are devel-
oped for the de novo sequencing and spectral alignment problems. In Chapter 4, we study
the MAXIMUM ANTISYMMETRIC PATHS problem and show that it can also be expressed
with MSO logic. This result leads to an efficient parameterized algorithm that can select
peptide sequence tags for database search. In Chapter 5, we consider a new parameteri-
zation of the SUBGRAPH ISOMORPHISM problem and show that under certain constraints,
an efficient parameterized algorithm can be developed for this problem. More importantly,

we show that although this problem itself cannot be expressed with MSO logic, it can be



11

reduced to a problem expressible with MSO logic while the graph tree width is not signifi-
cantly increased. This algorithm has been applied to efficiently solve the sequence-structure
alignment problem in bioinformatics. These chapters also include the experimental results of
these new algorithms on biological data. Chapter 6 concludes the dissertation and envisions
possible future improvements of this approach in both theory and practical applications in

bioinformatics.



CHAPTER 2

PRELIMINARIES

2.1 INTRODUCTION

The concept of tree decomposition was originally proposed in the deep investigations into
graph minors [71]. The graph minor theorem started with a conjecture by Wagner [73, 76],
which states that in a infinite series of graphs, there exist two different graphs G; and G,
such that G; is a minor of G;. A minor of a given graph is a new graph that can be obtained
from the graph by edge contraction and the deletion of edges and vertices.

Tree decomposition is the most important concept used in the proof of these graph
minor theorems. In particular, the tree width of a graph restricts what types of minors it
could contain. The graph minor theorems have deep implications in both graph theory and
algorithmic study. For example, an important property associated with a family of minor
closed graphs is that the obstruction set for this family is finite [75]. An obstruction set is a
minimal set of graphs such that any graph in the family does not contain any graph in the
set as a minor. Based on this property, many minor related parameterized graph problems
can be shown to be fixed-parameter tractable without finding the actual algorithms for these
problems [73, 75].

This chapter focuses on the algorithmic aspects of graph tree decomposition. In particular,
a well known fact is that many NP-hard optimization problems can be solved in linear time
on graphs with bounded tree width [6, 23|. Based on this fact, practically efficient algorithms
can be developed for many NP-hard problems since many graphs in practical applications

have bounded tree widths.

12



13

(a) (b)

Figure 2.1: (a) An example of a graph. (b) A tree decomposition of the graph in (a).

2.2 TREE DECOMPOSITION

Definition 2.2.1 ([71]) Let G = (V, E) be a graph, where V is the set of vertices in G, E
denotes the set of edges in G. Pair (T, X) is a tree decomposition of graph G if it satisfies

the following conditions:
1. T = (I, F) defines a tree, the sets of vertices and edges in T are I and F respectively,
2. X ={Xilie ,X; CV}, andVu € V, 3i € I such that u € X,
3. Y(u,v) € B, Ji € I such that u € X; andv € X,
4. Vi,5,k €I, if k is on the path that connects i and j in tree T', then X; N X; C Xj,.

The tree width of the tree decomposition (T, X) is defined as max;es | X;| — 1. The tree width

of the graph G is the minimum tree width over all possible tree decompositions of G.

Figure 2.1(a)(b) shows a tree decomposition. As can be seen from the figure, a tree
decomposition of a graph provides alternative topological view on the graph. In a valid tree

decomposition, every graph vertex must be contained in at least one tree node and the two



14

vertices of each edge must be both contained in at least one tree node. More importantly,
the tree nodes that contain the same graph vertex must span a connected subtree in the tree
decomposition.

A graph is a clique or complete graph if any two of its vertices are connected. A subgraph
of a graph G = (V, F) is a graph H formed on a subset of V' and its edges form a subset of
E. An induced subgraph of a graph G = (V| E) is a subgraph such that any pair of its vertices
are connected if they are connected in G. For a graph that contain a clique subgraph, the

following theorem states an important property associated with its tree decompositions.

Theorem 2.2.2 ([11]) Let G = (V, E) be a graph, where V is the set of vertices in G, E
is the set of its edges. If there exists set U C V' such that the vertices in U induce a clique

in graph V', then in any tree decomposition T' = (I, F') for graph G, there exists a tree node
X, € I such that U C X;.

Proof: We show this fact by induction on the size of U. When |U| = 2, U is an edge in G,
the theorem is trivially correct from the definition of a tree decomposition. Now, we assume
that when |U| = k (k > 2), any tree decomposition of G must have a tree node that contains
U as a subset. For a larger clique U’, such that |U’'| = k + 1, we can partition it into the
disjoint union of U; and {v}, where v is a vertex. Vertices in U thus induce a clique of size
k in G. Based on the induction assumption, for any tree decomposition 1" = (I, F), there
exists a tree node X; € I such that U; C X;.

We now assume the subtree formed by all tree nodes that contain v is T,. If X, is one
of the tree nodes in T, we are done with the proof. We then assume that X; is not in T,,.
In this case, there exists a tree node X; in T, such that X, is the only tree node in T, on
the path from X; to X, in T'. For any vertex u € U, since there is an edge between u and
v in G, there exists a tree node X, in 7, such that X, contains u. However, since X is on
the path from X; to X, in T, and w is contained in both X; and X,, we know that u € X
from the definition of tree decomposition. We thus have shown that U’ C X;. Based on the

principle of induction, the theorem has been proved. O



15

Corollary 2.2.3 The tree width of a graph G = (V, E) is at least |C| — 1, where C is a

subset of V' and vertices in C induce a clique in G.

Corollary 2.2.3 provides a simple approach to estimate the lower bound of the tree width.
A maximal clique for a graph G can be computed in polynomial time and the size of this
clique provides a lower bound for the tree width.

A graph is called bipartite if its vertices can be partitioned into two disjoint sets such that
the two vertices of any edge are from each of the partition. A bipartite graph is complete if
every pair of vertices from each of the partitions is connected. For a graph that contains an

induced complete bipartite subgraph, we have the following theorem.

Theorem 2.2.4 ([11]) Let G = (V, E) be a graph, where V' is the set of vertices in G, E is
the set of its edges. If there exists a subset U of V' such that U = U; U Us, and the subgraph
induced on U is a complete bipartite graph between Uy and Us, then in any tree decomposition

T = (I, F) for G, there ezists a tree node X; € I such that either Uy C X; or Us C Xj.

Proof: We show this theorem by induction on the size of U;. In particular, based on the
definition of tree decomposition, when |U;|=1, the result is trivially true. We assume the
theorem is correct when |U;| = k (kK > 1). We now consider the case where |U;| =k + 1. We
can partition U; into the disjoint union of U] and v where v € U;. Based on the induction
assumption, for any tree decomposition 7" = (I, F’), there exists a tree node X; such that
either U] C X; or Uy C X;. If Uy C X, we are done with the proof. We thus assume that
U] C X;. Similar to the proof of theorem 2.2.2] we consider the subtree 7T, induced by tree
nodes that contain vertex v. If X, is one of the tree nodes in T, we have v € X, and the
theorem has been proved.

We now assume that X; is not in 7, and we can obtain a tree node X; in T, such that
X is the only tree node in 7), in the path that connects X; and X; in T". Now if U, is not
contained in X, then U; C X;. This can be shown as follows. If Ju € Uy, such that u ¢ X,

we consider the subtree T, formed by tree nodes that contain u. T, and T, must be disjoint



16

since if there exists X,, € T, and X,, € T,, then we consider the path that connects X;
and X,, in 7" and X; must be on this path. But since v € X; and v € X,,, we know that
u € X; from the definition of tree decomposition, which is contradictory to the assumption
that u ¢ Xj.

Now since T;, and T, are disjoint subtrees and X; € T}, it is not difficult to see that X
is on the path that connects any two tree nodes from 7T, and T, respectively. For any vertex
vy € Uy, we have (vy,u) € G and (vq,v) € G, from the definition of tree decomposition, we
are able to find tree nodes X; € T,, and X, € T, such that v; € X; and v; € X,. However,
since the path connects X and X; in 7" must pass through X, we know that v; € X;. We
thus obtain that U, C X, which leads to a contradiction. The theorem has been proved. [J

The side size C(G) of a complete bipartite graph G = (Uy U Uy, E) is min {|U;], |Us|}.

The following corollary provides another lower bound for the tree width of a graph.

Corollary 2.2.5 The tree width of graph G is at least the side size of any complete bipartite
subgraph H of G.

2.3 COURCELLE’S THEOREM

Based on a tree decomposition of a given graph, many NP-hard optimization problems
associated with the local topology of a graph can be efficiently solved by combining partial
solutions obtained in subgraphs of smaller sizes. The optimal combination of partial solutions
can be performed with the dynamic programming framework proposed in [6, 23]. Specifically,
partial solutions for the subgraph induced by vertices contained in the subtree rooted at a
particular tree node are obtained by combining with those for subgraphs rooted at its child
nodes. Optimal combinations are obtained with exhaustive computation on vertices in the
tree nodes. A more general result developed in [23] showed that for a given graph G = (V, E),
any problem that can be formulated in monadic second order (MSO) logic can be decided
in time O(f(t)|V|) based on a graph tree decomposition of tree width ¢, for some recursive

function f.



17

In general, the approach maintains a dynamic programming table in each tree node.
Table entries in the leaves of the tree are determined first and a bottom-up development is
followed to compute the table entries for internal nodes. In particular, for a leaf node, all
possible partial solutions for the subgraph induced by vertices contained in it are enumerated
and stored as its table entries. The table of an internal node is filled by querying the tables
of its children to obtain needed partial solutions and combining them. In the following
subsections, we provide a detailed description of the dynamic programming framework with
notions similar to the ones adopted by Matousek and Thomas in [57] in their study of the
SUBGRAPH ISOMORPHISM problem. As an important general result regarding the fixed-
parameter tractability of graph problems where the tree width of the graph is a parameter,

we also provide a brief survey of MSO logic and Courcelle’s theorem [23].

2.3.1 TRANSITION FUNCTIONS

Definition 2.3.1 ([57]) Let G = (V, E) be a graph, T = (I, F') be a binary tree and (T, X)
be a tree decomposition of G. Function f(G,U, D) is a transition function with respect to the

tree decomposition: if |U| = |D|, D is a binary string comprised of 0 and 1’s, the value of f

is determined by G,U, and D, and f(G,U, D) satisfies the following conditions:

1. f(G,X;, D) can be computed in time p1(|X;|), if X; is a leaf of the tree, where pi(x) is

a polynomial of x, and,

2. For an internal node X;, assume X; and X are its two children, f(G,X;, D) can
be computed in time py(|X;|) based on the sets S; = U|Dj|:‘Xj‘{f(G,Xj,Dj)} and
Sk = U, py|=1x, 1 (G, X, D)}, where pa(x) is a function whose value only depends on

x.

For a tree node X; in a given tree decomposition (1" = (I, F), X) for graph G, the
number of possible binary strings D such that |D| = |X;| is bounded by 2/Pl. The set

Si = Upj=jx, {f(G, Xi, D)} may contain up to 2/P1 different numbers. The time needed to



18

determine S; is bounded by 2%l (p;(|X;]) + pa(] Xi|)). If the tree width of the tree decom-

position is bounded by ¢, the computation time needed to determine .S; is bounded by

24(p1(t) + pa(t)).

2.3.2 THE DyNAMIC PROGRAMMING FRAMEWORK

Theorem 2.3.2 ([57]) Let G = (V, E) be a graph, T = (I, F') be a binary tree and (T, X)
be a tree decomposition of G, and f(G,U, D) is a transition function with respect to the

tree decomposition. If R is the root of T, the computation time needed to determine the set

Sk = Upj= g {f(G, R, D)} is bounded by O(2*(p1(t) + p2(t))[V]).

Proof: It is not difficult to see that the total number of tree nodes in a tree decomposition
is bounded by O(|V|) [11]. For each tree node X; in the tree decomposition, we maintain
a dynamic programming table for each tree node X; to store the set S;. Each row in the
table contains the binary string D and the corresponding function value f(G, X;, D). The
algorithm follows a bottom-up fashion and computes the rows in the dynamic programming
tables for leaves of the tree. It then goes upwards to determine the tables of internal nodes.
Based on the definition of a transition function with respect to T', the computation time the
algorithm needs to compute the rows in a table is bounded by O(2!(p;(¢) +p2(t))). The total
amount of computation time is thus bounded by O(2(p1(t) + p2(¢))|V]). W

To illustrate the framework more specifically, we provide two examples where NP-hard
problems can be solved in linear time. An independent set in a graph is a vertex subset
such that every pair of vertices in the subset are disconnected. An wvertexr cover in a graph
is a vertex subset such that at least one of the two vertices of each edge is in the subset.
The MAXIMUM INDEPENDENT SET problem is to find the independent set of the maximum
size in a given graph. In contrast, the goal of the MINIMUM VERTEX COVER problem is
its vertex cover of minimum size. The following theorem states that both problems can be

solved with linear time algorithms on graphs with bounded tree width.



19

Theorem 2.3.3 ([6]) The computation time needed for finding the mazimum independent
set and the minimum vertex cover in graph G = (V, E) is bounded by O(2'|V|), where t is
the tree width of the graph G. We assume that there is a tree decomposition (T = (I, F'), X)

with width t available for G.

Proof: For a binary string D, we use D; to represent the ith bit in D. (1 <i < |D|) For
the problem of finding the maximum independent set, we construct functions V (G, X;, D)
and f(G, X;, D) based on the given tree decomposition of G. We show that the two functions
satisfy the definition of transition function with respect to T'. Specifically, we assume that X;
contains t vertices in G and they are u;,, u;,, - - - ,u;,. A binary string D of length t specifies
the decision on w;,, u;,,- - ,u; for a partial independent set in the subgraph induced by
vertices contained in the subtree rooted at X;. D, = 1 if vertex u;, is included in the
independent set and D, = 0 otherwise. V (G, X;, D) = 1 if there exists a partial independent
set that conforms with D and V (G, X;, D) = 0 otherwise.

Similarly, f(G,X;, D) is the maximum number of vertices contained in a partial inde-
pendent set that conforms with D. If X; is a leaf, to compute V (G, X;, D), we only need to
check if D assigns two connected vertices to the independent set. V(G, X;, D) = 0 if it is
the case and V (G, X;, D) = 1 otherwise. f(G, X;, D) is computed by counting the number
of vertices that are included in the partial independent set by D. The property 1 in Def-
inition 2.3.1 is satisfied. If X; is an internal node with children X; and X}, in order to
determine V(G, X;, D), we refer to the tables for X; and Xj. In both tables, we enumerate
all binary strings D; and Dj, such that D;, Dj conform with D in the decisions on ver-
tices in X; N X; and X; N Xy, respectively. V (G, X;, D) = 1 if there exist D; and D, such
that V(G, X;,D;) = 1 and V(G, Xy, D) = 1, and V(G, X;, D) = 0 otherwise. Similarly,

f(G, X;, D) can be computed with the following formula:

F(G, X, D) = max{[(G, Xj, D;)} + max{ (G, Xy, Di) } + N(X;, D) (2.1)



20

where D; and D; conform with D on vertices in X; N X; and X; N X}, respectively, N(X;, D)
is the number of vertices that are selected by D and in neither X; N X; nor X; N Xj. This
proves that the property 2 is also satisfied by V (G, X;, D) and f(G, X;, D).

It is not difficult to see that the time p; (| X;|) needed for computing f(G, X;, D) is O(] X;|?)
since for an entry in a leaf node, we only need to check whether there exists a connected pair
of selected vertices. For an internal node, the time ps(|X;|) needed for computing f(G, X;, D)
is bounded by O(2%), which is a constant when ¢ is a constant. A closer analysis can show that
the aggregate time needed for computing the f(G, X;, D) for all string D’s is O(2'). From
Theorem 2.3.2, we know that the maximum independent set of graph G can be computed
with time O(2¢|V]). For the minimum vertex cover problem, we change the definition of
function V (G, X;, D) to the validity of the selection of vertex cover that conforms with D
and f(G, X;, D) to the minimum number of vertices contained in a vertex cover that conforms
with D. We can then obtain the same result as the maximum independent set problem. [

In fact, the requirement imposed on function p; (| X;|) can be further relaxed to a function
whose value only depends on | X;|, since if | X;| is a fixed parameter, p;(|X;|) is also fixed even
if it is an exponential function of | X;|. More examples can be found in [6] on NP-hard prob-
lems that can be solved in linear time on graphs with bounded tree width. These problems
include the MINIMUM DOMINATING SET problem and the HAMILTONIAN PATH problem.
For a given problem instance on graph G = (V, E') and a tree decomposition of tree width ¢,
it is not difficult to show that similar transition functions can also be constructed for these
two problems. In particular, for the MINIMUM DOMINATING SET problem, its transition
function needs to consider two possible states associated with a vertex in a tree node Xj,
i.e., being “selected” and “dominated”. The time needed for computing such a transition
function for an internal node X; from its child nodes X; and X}, is thus O(2%). The time
needed for computing the minimum dominating set is O(2%|V|) based on such a transi-
tion function. Similarly, for the HAMILTONIAN PATH problem, the corresponding transition

function needs to include the permutation information associated with the vertices in a tree



21

node. Therefore, the computation time needed to compute this transition function for an
internal node is O(#!2%%). An algorithm with time complexity O(t!2%|V]) is thus available for

the HAMILTONIAN PATH problem.

2.3.3 MOoONADIC SECOND ORDER LOGIC

Definition 2.3.4 A second order logic sentence is a monadic second order logic (MSO) sen-
tence if the relations employed in a predicate are unary relations, i.e., Q1 R1QaRs - - - Qr Ry,
where Q;’s are quantifiers and R;’s (1 < i < k) are unary relations and ¢ is a first order

logic sentence.

A logic sentence formulated on a graph in general contains predicate quantifiers 3, V and
logic symbols V, A and —. In addition, such a logic sentence may contain relations due to
the graph topology. For example, edge(u,v) is “true” if there is an edge between u and v in
the graph and “false” otherwise; S(u) is “true” if vertex w is included in set S and “false”
otherwise.

A graph can be viewed as a structure where its vertices are elements and edges are
relations among the elements. Many graph problems are closely related to satisfying an
MSO logic sentence on a given structure. For example, consider the INDEPENDENT SET
problem whose goal is to decide whether a given graph has an independent set of size k, a
graph contains an independent set of size k if and only if the corresponding structure satisfies

the following MSO logic sentence:
ASVu Yo (((v1 € V) A (va € V) A (S(v1) A S(v2)) — —edge(vy, v2)) A (size(S) =k)) (2.2)

Similarly, the DOMINATING SET problem is equivalent to decide whether the following MSO

logic sentence can be satisfied by a graph structure:
ASVuFu((u € V) A (v € V) A (S(v) V (S(u) A edge(u,v))) A (size(S) = k)) (2.3)

An MSO logic sentence belongs to M S, if it allows vertex subsets are defined by unary

relations and edges are represented with binary relations, otherwise it belongs to M S,. It



22

is not difficult to see that both of the above two MSO logic sentences are in MS;. The
expressing ability of M Sy is stronger than M.S;. For example, the HAMILTONIAN PATH

problem is M S, expressible but cannot be expressed with a MSO logic sentence in M .S; [26].

Theorem 2.3.5 (Courcelle’s Theorem) Given a MSO logic sentence

F=Q R Q2Rs,- - ,QrRrp, where Q;’s are quantifiers and R;’s are unary relations defined
on a vertex or edge subset, (1 < i < k) and ¢ is a first order logic sentence. Based on a
graph G = (V, E) and a tree decomposition T = ((I,F), X) of graph G with tree width t,
there exists an O(f(t)|V|) time algorithm that can decide whether the corresponding structure

of G satisfies F', where f(t) is a function whose value only depends on t.

For a given MSO sentence, its clauses only contain vertices, edges, and relations defined
on them. For each tree bag in the tree decomposition, we can enumerate all possible vertices
and edges that are set to be true by each relation in the sentence. Each of such possibilities
can be represented with a table entry and it is not difficult to see that the total number of
such entries in the table is bounded by a function f(t) of tree width ¢. To determine the
validity of a given entry in the table of an internal node, the tables of the child nodes need
to be queried and the time needed for such an operation is also bounded by a function g(t)
of the tree width t. The time complexity of the overall dynamic programming procedure is
thus bounded by O(f(t)g(t)|V]).

Courcelle’s theorem provides a generalization on graph problems that are fixed-parameter
tractable when the tree width of the graph is a parameter. We show in later chapters that
all the problems we have studied with tree decomposition can be either formulated with a
MSO logic sentence or reduced to such a problem in polynomial time [18]. An interesting
theorem, which is a converse of this theorem, is shown in [80]. It states that if a MS,
sentence is decidable on an infinite family of graphs, the tree widths of graphs in this family
are uniformly bounded by a constant c¢. The theorem is proved by an elegant but complex
reduction from the HALTING problem in [80]. It shows that for a given problem instance

(M, x) of the HALTING problem, it can be reduced to a problem that asks whether a M S,



23

sentence can be satisfied on a graph that contains a grid minor whose size is unbounded and
depends on M and x. Based on this reduction, the tree widths of all graphs in the graph
family must be uniformly bounded by a constant since otherwise the HALTING problem is

decidable.

2.4 FINDING TREE WIDTH AND TREE DECOMPOSITIONS

We consider the following decision problem that asks whether the tree width of a graph is

at most k or not.

Problem 2.4.1 TREE WIDTH
Input: a graph G = (V, E), a positive integer k.

Output: “yes” if G has a tree decomposition with tree width k and “no”, otherwise.

In [5], it was shown that finding the tree decomposition with the minimum tree width
for a graph is an NP-hard problem. In particular, it is shown that the LINEAR CUT problem
can be reduced to the TREE WIDTH problem on a co-bipartite graph in polynomial time.
Readers can refer to [5] for more details on the reduction. However, when k is a fixed
parameter, it is easy to show that the problem is in FPT from the results in the graph
minor theorem. In particular, since a family of graph with tree width at most %k is closed
under taking graph minors, according to [75], there exists a finite obstruction set for this
graph family. Determining whether the tree width of a graph is bounded by k is equivalent
to deciding whether a graph contains one of the graphs in the obstruction set as a minor.
Since there exists an O(f(|H|)|V|?) time algorithm to decide whether a graph G = (V, E)
contains a minor H [73], the verification procedure needs O(g(k)|V|?) time. This proof is
nonconstructive, because the obstruction set for the graph family formed by graphs with
bounded tree width k remains unknown so far. In addition, g(k) is a function whose value
is very large even for small k’s. This algorithm thus cannot be used in practice even if it is

constructive.



24

Theorem 2.4.2 ([73]) Given a graph G = (V, E), there exists an O(g(k)|V|?) time algo-

rithm that can decide whether the tree width of G' is bounded by k or not.

Further improvements on the results in theorem 2.4.2 have been developed in [12]. In
particular, the algorithm needs O(2¥°|V|) time to determine if the tree width of G is bounded
by k. Experiments on this algorithm have shown that it is very slow even on small parameters,
i.e. k = 4. This algorithm thus cannot be used in practice to compute the tree width of a
graph. However, as a significant improvement on the asymptotic complexity of the problem,

a sketch of the algorithm is provided in the following subsection.

2.4.1 LINEAR TIME ALGORITHM

In [12], results on tree widths of a few graph classes is provided. In addition, it is shown
that despite of the NP-hardness of finding the minimum tree width for a graph, the deci-
sion problem of finding the tree width of a graph can be solved in linear time [13]. This
section sketches this algorithm; a few definitions and theorems that are needed to show the

correctness of the algorithm are also presented.

Lemma 2.4.3 ([13]) Suppose that v and w have at least k + 1 common neighbors in G =
(V, E). If the tree width of graph G is at most k, then the tree width of G + (v,w) is also
at most k. Moreover, any tree decomposition of G with tree width at most k is also a tree

decomposition of G + (v, w) with tree width at most k and vice versa.

This lemma provides a certain case where adding additional edges to graphs does not
increase the tree width of the graph. Based on theorem 2.2.3, this lemma can be shown with
a straightforward proof. It is not difficult to see that there is a complete bipartite subgraph
that contains v, w and their neighbors in G. A tree decomposition for G thus either contains
{v,w} or their neighbors in a single tree node. However, the tree width of the graph is

bounded by k. The latter case cannot happen and we know that v and w must be contained



25

in a single tree node and the tree width of the graph is thus not increased by adding an edge
between v and w.

A tree decomposition (T' = (I, F'), X) of tree width k is smooth, if for alli € I, | X;| = k+1,
and for all (¢,7) € F, |X; N X;| = k. Any tree decomposition with tree width k& can be
transformed to a smooth tree decomposition in linear time.

Two positive constants ¢; and ¢, are chosen. ¢; is an upper bound on the fraction of high
degree vertices (defined below), and ¢, denotes a lower bound on the fraction of I-simplicial
vertices (defined below). They satisfy:

. 1 _ 01]{32(]€ + 1)
4k2 + 12k + 16 2

C2 (2.4)

A vertex with degree at most d = max {k? + 4k + 4, 2k/c, } is defined as a low degree vertez,
and a vertex is a high degree verter if it is not a low degree vertex. A low degree vertex is
friendly if it is connected to at least another low degree vertex.

A matching M of a graph G = (V, E) contains a set of edges such that no two edges
share a vertex. A maximal matching is a matching such that adding a graph edge to it turns
it into an edge set that is not a matching. The following two lemmas provide an estimation
of the number of high degree vertices and the number of edges in a maximal matching of a

graph that contains ny friendly vertices.

Lemma 2.4.4 ([13]) There are less than c1|V| high degree vertices in a graph with tree
width k.

Lemma 2.4.5 ([13]) If there are ny friendly vertices in G = (V, E), then any mazimal

matching of G contains at least ny/(2d) edges.

Based on a maximal matching of the graph G, we can contract edges contained in the
matching and obtain a new graph G’. The tree width of the graph G’ is at most that of G.
Hence if G’ is found to have a tree width greater than k, so is G. On the other hand, based
on a tree decomposition of G’ with width k, we can obtain a tree decomposition with width

2k + 1 for graph G.



26

Theorem 2.4.6 ([12]) For all k,l, there ezists a linear time algorithm that when given a
graph G = (V, E) together with a tree decomposition (T, X) of G with tree width at most [,
determine whether the tree width of G is at most k, and if so, finds a tree decomposition of

G with tree width at most k.

The improved graph G’ of a graph G = (V, E) is obtained by connecting all pairs of
vertices that have at least £ + 1 common neighbors in G. Based on Lemma 2.4.3, the tree
width of the improved graph G’ is unchanged. A vertex is simplicial if its neighbors induce

a clique in G, and is I-simplicial if it is simplicial in the improved graph of G.

Theorem 2.4.7 ([13]) For every graph G = (V, E), at least one of the following properties
holds:

1. G contains at least |V'|/(4k* + 12k + 16) friendly vertices.
2. G contains at least co|V'| I-simplicial vertices.

3. The tree width of G is greater than k.

Based on Theorem 2.4.7, deciding if a graph G has a tree width at most k can be

performed with the algorithm sketched as follows.

1. Compare |E| with k|V| — 2k(k + 1). If | E| is larger, return “no”, otherwise proceed to

step 2.

2. Compute the total number of friendly vertices. If it is larger than |V |/(4k* + 12k + 16),

proceed to step 3, otherwise to step 6.
3. Arbitrarily find a maximal matching in G; put the edges in the matching in set S.

4. Contracting edges in S and obtain a new graph Gj.



27

5. Call the algorithm on graph G. If it returns “no”, return “no”, otherwise let [ = 2k+1,
use the algorithm specified in Theorem 2.4.6, and the tree decomposition returned on
G, to decide if the tree width of G is at most k. If it returns “yes”, return “yes” and

the tree decomposition found, otherwise return “no”.

6. Determine I-simplicial vertices in G and check the degree of every I-simplicial vertices.
If there is one with more than k 4 1 neighbors, return “no”, otherwise proceed to step

7.

7. Count the number of I-simplicial vertices, return “no” if it is less than c3|V|, otherwise

proceed to step 8.

8. Remove all I-simplicial vertices from the improved graph of G and obtain a new graph
(5. Call the algorithm on graph Gs. If it returns “no”, return “no”, otherwise proceed

to step 9.

9. For each I-simplicial vertex v in G, find in the tree decomposition of G5 a tree node t
that contains N(v), form a new tree node that contains v U N(v) and connects it to t.

Return “yes” and the constructed tree decomposition.

The algorithm is a recursive algorithm since it reduces graph G to a graph with smaller
size and recursively apply the algorithm to the new graph. It is clear that if the graph G
contains more than |V|/(4k?+ 12k +16) friendly vertices, we know any maximal matching in
G contains at least |V|/2d(4k* + 12k + 16) edges from Lemma 2.4.5. The number of vertices
in graph G is less than (1 — 1/2d(4k? + 12k + 16))|V|. On the other hand, if the graph
contains at least c|V| I-simplicial vertices, the number of vertices in graph G, is at most
(1 — ¢9)|V|. The computation time T'(n) of the algorithm thus must satisfy the following

recursion:

T(n) =T(csn) + O(n) (2.5)



28

where c3 is a constant between 0 and 1. Specifically, ¢3 can be determined with:

1
d(4k2 + 12k + 16)

} (2.6)

c3 =max{l —cy, 1 — 5

We thus have T'(n) = O(n). However, the hidden constant in the computation time is a
large exponential function of £ and the algorithm thus can not be used for practical purpose.
An evaluation of the algorithm has shown that even for small k’s, the computation time
needed by the algorithm is not acceptable for any practical application. A few improved
variants of the algorithm have been proposed, including the parallel variant of the algorithm

in [14] and a variant in [64] that needs O(k?) recursive calls.

2.4.2 HEURISTICS

A few efficient heuristics have been developed to find tree decomposition or to estimate the
tree width of a graph, including fill-in heuristics [7, 22] for finding an upper bound and the
Maximum Cardinality Search for a lower bound [55]. Recently, a new approach developed
in [15] can estimate lower bounds of tree widths using brambles [81]. This approach can
achieve significantly better estimation results on planar graphs than the Maximum Cardi-
nality Search.

Most of the available heuristics focus on the separators of a graph. A separator of a graph
is a vertex subset such that removing vertices in the subset disconnects the graph into at least
two connected components. Since tree bags in a tree decomposition are closely related to
graph separators, a few heuristics have been proposed to construct tree decompositions using
a separator based divide-and-conquer technique [14, 61]. Specifically, a tree decomposition

of a graph G can be constructed by the following algorithm:
1. Find a minimal separator S in graph G.

2. Obtain a new graph G’ by removing S from G, find all connected components

Wl,WQ,"' ,Wk in G'.



29

3. Completely connect all vertices in S and call the algorithm recursively on graphs
Clique(S) U Wy, Clique(S) U Wy, -+, Clique(S) U Wy, and obtain tree decomposi-
tions 14, Ty, - - -, T}.

4. Form a root node R that contains all vertices in S and connect the roots of 1%, T5, - - -,

Ty to R. Return the tree decomposition.

In [14], a few criteria were developed to determine whether the “dividing” made on a
minimal separator increases the tree width of the graph or not. Specifically, if the maximum
tree width for graphs Clique(S) U Wy, Clique(S) U Wy, - -+, Clique(S) U Wy, is at most the
tree width of graph G, S is a safe separator and the tree width of the graph is not increased

by the dividing procedure. A minimal separator S is safe if one of the following is the case:
1. S is a clique.
2. S is an almost clique. Specifically, it contains a clique with |S| — 1 vertices.
3. S contains only one, two or three vertices.

The following theorem provides a general rule for determining whether a separator is safe or

not.

Theorem 2.4.8 ([14]) Suppose S is a separator in graph G = (V, E), and for every com-
ponent Z in G — S, graph G — Z contains a clique on S as its minor. Then S is a safe

separator for G.

Proof: Consider the tree width of the graph Z U clique(S). Since G — Z contains a clique
minor at vertices of S, it is not difficult to see that Z U clique(S) is a minor of the graph G.
Its tree width is thus not less than that of Z U clique(S). The divide-and-conquer technique
thus does not increase the tree width on the resulting subproblems, which suggests that S

is a safe separator. O



30

2.5 SUMMARY

The concepts of tree decomposition and tree width have provided profound insights into
graph theory, algorithm research, and complexity study. In graph theory, tree decomposition
provides a tool to study properties of minor-closed graph families and reveals important
ones associated with such families. In algorithmic research, the concepts of tree decompo-
sition and tree width provide efficient algorithms for many NP-hard optimization problems
on graphs of bounded tree width. In complexity study, the tree width of a graph natu-
rally serves as a parameter and a few important parameterized complexity results have been
obtained, including the PLANAR SUBGRAPH ISOMORPHISM problem [30]. This dissertation
only presents a few important results associated with its algorithmic implications in bioin-
formatics.

Although finding the tree width of a graph is NP-hard, parameterized polynomial or
linear time algorithms are available to decide whether the tree width of a graph is less
than a given integer parameter k£ or not. In practice, separator based divide-and-conquer
heuristics can be used to efficiently find optimal tree decompositions for many graphs. For
solving a bioinformatics problem, approximate tree decompositions affect the running time

of the algorithm but not the accuracy of solutions.



CHAPTER 3

THE LONGEST ANTISYMMETRIC PATH!

Proteomics studies the dynamic roles of protein molecules in complex biological systems.
Tandem mass spectrometry is an important experimental tool in proteomics that can be
used to identify proteins. Many proteomics problems can be formulated as optimization
problems on graphs that can model the experimental spectra obtained from tandem mass
spectrometers. For example, the De Novo sequencing problem can be reduced to finding the
longest antisymmetric path in a spectrum graph. The optimization problems are generally
NP-hard. Therefore, a critical issue in solving them efficiently and exactly is to make the
corresponding graphs be of small tree widths. On the other hand, we need to show that the
problem itself can be expressed with MSO logic. In this Chapter, we focus on resolving these

two 1ssues.

3.1 INTRODUCTION

Tandem mass spectrometry (MS/MS) has been extensively used in proteomics to identify
and analyze proteins [65]. In this method, molecules of a protein can be cleaved into short
peptide sequences by enzymes. Amino acids in these peptides are then determined and
combined to obtain the sequence of the protein. To sequence a peptide, sequences with the
same amino acids are fragmented into charged prefix and suffix subsequences (ions) and their

mass/charge ratios can be measured by a mass spectrometer.

IPart of the data reported in this chapter is reprinted with permission from “Fast de novo peptide
sequencing and spectral alignment via tree decomposition” by C. Liu, et al. in the Proceedings of
the 11th Pacific Symposium on Biocomputing, (PSB 2006), 11: 255-266, Copyright 2006 by World
Scientific Publishing Co. Pte. Ltd., Singapore.

31



32

In an ideal MS/MS spectrum, there are usually two types of ions present: b-ions associated
with N-terminals and y-ions with C-terminals. Ideally, fragmentation may occur at any
position along the peptide backbone and we thus expect to be capable of inferring the amino
acids a peptide contains from its MS/MS spectrum and the masses of single amino acids.
However, difficulty may arise when we intend to identify the ion types for mass peaks. In
addition, experimental spectra are usually incomplete and contain noisy peaks. Therefore,
the de novo sequencing of a peptide solely from its spectrum remains a challenging task
19, 24].

A number of algorithms have been developed for the de novo sequencing problem. An
early developed algorithm [77] generates all amino acid sequences and the corresponding
theoretical spectra to be compared with the experimental spectrum. To find out the best
match, an exponential number of spectra may need to be generated. The algorithm thus
is not efficient. Prefix pruning approaches have been developed to speed up the search by
restricting it to sequences whose prefixes match the spectrum well [83, 104, 107]. However,
heuristic pruning may adversely affect the sequencing accuracy while the computation time
may remain expensive. Another method, such as used by program SEQUEST [29], is to match
the spectrum of an unknown peptide against those in a peptide spectrum database using
correlation functions. Such a sequencing tool may fail to provide the correct answer for
peptides whose spectra are not included in the database. Recently, based on the notion of
spectrum graph [24], the de novo sequencing problem has been reduced to finding the longest
(or maximum scored) antisymmetric path in directed graphs [9, 24, 31, 42, 89]. However,
a straightforward path finding algorithm may yield undesired paths containing multiple
vertices associated with complementary ions. This issue was resolved later with a linear
time dynamic programming algorithm [19] that ensures the path found to be antisymmetric.
However, it requires quadratic time to discover one modified amino acid and more time to

deal with additional noisy peaks.



33

Comparing and evaluating the similarity between two spectra are often used in database
search for peptide identification. Traditional methods for computing the similarity identify
the shared mass peaks between two spectra and use the count as a measure of the similarity.
More recently, spectral alignment was proposed as a new approach to evaluating spectral
similarity; it proves useful for identifying related spectra in the presence of post translational
modifications/mutations [65]. In particular, based on finding the longest (k-shift) path in
alignment graph, a spectral alignment algorithm can align two spectra of n peaks in time
O(n*k), where k is the maximum number of peak shifts resulting from post translation
modifications (PTMs) [65]. However, the algorithm considers only b-ions or y-ions, but not
both. To consider both ion types, a dynamic programming algorithm in the same spirit as
that for de novo sequencing [19] is possible. But it would require a computation time that is
polynomial of a much higher degree.

To provide an efficient but optimal solution for this problem, we introduce a graphical
mechanism to describe related mass peaks in spectra. In particular, those peaks of the mod-
ified or associated with complementary ions are linked with non-directed edges, yielding
extended spectrum graphs and extended alignment graphs. Such graphs demonstrate small
tree width ¢ (usually ¢ < 6) for real mass spectra, so a very efficient algorithm for finding the
longest antisymmetric path can be devised based on the tree decompositions of these graphs.
In particular, the resulting new algorithms for de novo sequencing and spectral alignment
run in time O(6'n) and O(6'n?) respectively. Based on the notion of tree decomposition, the
antisymmetry of complementary vertices can be efficiently ensured on the found path; both
ions types can be simultaneously considered by our algorithms. In addition, using the graph-
ical mechanism, vertices for peaks with similar masses can be easily related and considered
exclusively in the tree decomposition based dynamic programming. This allows vertices for
noisy peaks to be eliminated from the found path.

This algorithm has been implemented and tested on both simulated spectra and real

experimental ones with noisy peaks. For de novo sequencing, the obtained spectrum graphs



34

in general have the tree width around 5. Our algorithm is able to identify the correct peptide
sequences from all the tested spectra with noisy peaks in a few seconds. In particular, the
algorithm achieves more than 96% accuracy on spectra in which the number of noisy peaks
is the same as that of others. In addition, we used the algorithm to identify PTMs of amino
acids based on spectra generated in silico. Our experiments showed that the alignment graph
is generally sparse and its tree width ranges from 4 to 6. Experimental results for spectral

alignment demonstrated that the algorithm can identify all PTMs accurately in seconds.

3.2 PROBLEM DESCRIPTION

In this section, we provide a detailed description of the graph models we employed to solve
the de novo sequencing and spectral alignment problems and the tree decomposition based
algorithm for finding the longest (or maximum scored) antisymmetric paths between two
given vertices. Since finding the optimal tree decomposition is an NP-hard problem, we used
an efficient heuristic algorithm to find a tree decomposition with small tree width for most
of the spectrum and alignment graphs.

In general, the MS/MS spectrum S of a peptide P consists of a set of mass peaks
{1, 29, -+ ,x91}. We assume the total number of peaks is even since for any mass peak
x; in S, there exists a mass peak o, 1_; that is complementary to x; and the sum of their
mass values is the parent mass W of P. One of x; and x9;,1_; is b-ion and the other is y-ion.
A spectrum graph G = (V, E) can be constructed based on the mass peaks in S. Specifically,
vertex v; € V represents x; and, in addition to the mass peaks in S, vertices vy and voryq are
included in G for virtual mass peaks with mass values 0 and W respectively. v; and v; are
connected with a directed edge from v; to v; if the mass value of z; is less than that of z; and
the difference is the mass of a single amino acid; vertices v; and voxy1_; are connected with
an undirected edge since they represent a pair of complementary mass peaks. Sequencing a
peptide from its spectrum thus corresponds to finding the longest antisymmetric directed

path from vy to vy 1. vg is the source of the spectrum graph and vor1q is the sink. A path is



35

A
113 358
%‘ 202 269
5 71 400
£
\ \ \ \ \ \ \ >
0 100 200 300 400
0 7 13 202 269 358 400 41
Mass/Charge
(@) (b)
4 101 1
_ 0 60 A
= 57 204
3
£
o 1 2 3 4
é Mass?Charge : : B
N | E :
c > B
g ; g
0 1 2 3 4
Mass/Charge

(c) (d)

Figure 3.1: (a) The mass peaks in a tandem mass spectrum. (b) The corresponding spectrum
graph, where dashed undirected edges connect complementary vertices. (¢) The mass peaks
in two tandem mass spectra A and B that are to be aligned. Mass peaks 3 and 4 in spectrum
B have a shift of A in their mass values compared to those in spectrum A. (d) The alignment
graph constructed based on the mass peaks in A and B. Dashed undirected edges connect
complementary vertices; only edges along the diagonal vertices are drawn in the figure.



36

antisymmetric if it does not contain two vertices that represent complementary mass peaks.
In particular, at most one of the vertices v; and vog1_;, where 1 < ¢ < k, is allowed to be
present in an antisymmetric path. Figure 3.1(a)(b) provide an example for a spectrum and
its corresponding spectrum graph.

Assume the sets of mass peaks for two given spectra A and B are Sy = {x1,Z2, -+, Top, }
and Sp = {y1,Y2, - , Yok, }, respectively. An alignment between A and B corresponds to a

selection of two subsets M4 C S4 and Mp C Sp that satisfy:
L. | M| = | Mp], and,
2. Tog, 11— & My if z; € Mp, where 1 < i < 2k;, and,
3. Yokot1—j € Mp if y; € Mp, where 1 < j < 2ks.

The score for a given alignment is a function S(M4, Mp) that can be computed from M4
and Mpg. The optimal alignment of A and B is the alignment with the maximum score over
all possible alignments between A and B. The objective of the spectral alignment problem
is to compute the optimal alignment for the two spectra A and B based on a given scoring
function S(My4, Mp). Assume for a given alignment, |Ma| = |Mp| =k, My = {i1,d2, - ,ix},
and Mg = {j1,72, -, jk}- In this dissertation, we only consider scoring functions that can

be formulated as follows:

k—1

S(MA7MB) = Z S(xim7yj7rl7$im+17yjm+1) (31)

=1
where S(;,,, Yjns Tiporrs Yjmsr ) 1S Often evaluated to be 1 if x;,, — ;. ., = ¥i,, — Yin.y1, and O
otherwise.

An alignment graph G = (V, E) can be constructed based on the two spectra A and B
that need to be aligned. Let V' = (S4 x Sg) U {(x0,v0), (Tok,+1, Y2ko+1) }, Where zg, Tog, 11
and Yo, Yok,+1 are virtual mass peaks with zero and parent mass values for spectra A and
B respectively. Vertex (z;,y;) is connected to (zy,y;) with a directed edge if ), > z; and

x —x; =y —y;. Similarly, two vertices (x;, y;) and (xy, y;) are complementary if x;, x), or y;,



37

y; are complementary mass peaks. Complementary vertices are connected with undirected
edges. The spectral alignment problem is thus reduced to finding in G the longest directed
path that connects (xg, o) and (zog, 41, Yor,+1) and does not contain two vertices that are
complementary. Figure 3.1(c)(d) provides an example of two spectra and their alignment
graph. The source and sink in the alignment graph are vertices (xg,vo) and (Tok, 11, Yokyt1)
respectively.

Both de novo sequencing and spectral alignment can thus be solved by finding the longest
antisymmetric path in a graph where complementary vertices are connected with undirected
edges. In practice, directed edges in the graph can be scored based on a few experimental
parameters. The optimal results for sequencing or spectral alignment can be obtained by
finding the maximum scored antisymmetric paths that connect two given vertices in the

corresponding spectrum or alignment graph.

3.3 A MSO LoOGIC SENTENCE FOR THE PROBLEM
The LONGEST ANTISYMMETRIC PATH problem can be formulated as follows.

Problem 3.3.1 LONGEST ANTISYMMETRIC PATH

Input: A directed acyclic graph G = (V, E), two vertices s and t, and a partition P of vertices
into disjoint pairs.

Output: The longest path that connects s and t and no two vertices in the path are in the

same pair in P.

We consider the decision version of this problem, which asks whether a given graph
contains an antisymmetric path that connects s and ¢ and its length is k. This problem can

be formulated as follows.

Problem 3.3.2 ANTISYMMETRIC PATH
Input: A directed acyclic graph G = (V, E), two vertices s and t, and a partition P of vertices

into disjoint pairs. A positive integer k.



38

Output: “yes”, if there exists a length k path that connects s and t and no two vertices in

the path are in the same pair in P.

It is not difficult to show that the ANTISYMMETRIC PATH problem can be expressed
with MSO logic if vertices in the same pair in P are connected with a graph edge, which is

the case in a modified spectrum graph.

Theorem 3.3.3 the ANTISYMMETRIC PATH problem can be expressed with MSO logic in a

modified spectrum graph.

Proof: To show this fact, we need to construct a MSO logic sentence that can express
the ANTISYMMETRIC PATH problem. To simplify the notation, we define the following short

logic sentences and combine them to get a MSO logic sentence for the problem.

Si(er,e,Ry) = (e1# ¢) — (=Ra(er) V mincid(er, w))
S(u,Ry) = ((u=s)V (u=1)) — IeVey (incid(e,u) A Ra(e) A Si(er, e, Ry))
Ty(u,er,e2) = (e1 # e2) Aincid(er, u) Aincid(es,w) A Ry(er) A Ra(es)
Tr(u, Ra,e,e1,e2) = Ve((e # e1) A (e # e2) — (mRa(e) V nincid(u, €)))
Ty(Ry, Royu) = (Ru(u) A (us) A (ut) — (GerJea(Ti(u, 1, ) A To(u, Ra, e, €1, e2)))

A(Ry) = Vo((Ri(u) A Ba(v)) — —comp(u,v))

Relation incid(e,u) is “true” if edge e is incident on vertex v, and “false” otherwise.
Relation comp(u, v) is true if vertex u and vertex v are complementary, and “false” otherwise.
Relation R; specifies the vertices that are in the path and R, describes the path edges.
Relations S(u, Ry) combined with Si(eq, e, Ry) suggest that for a vertex that is either the
source or the sink, there exists only one edge in the resulting path incident on it. Similarly,
relations T} (u, €1, ) is combined with Th(u, Rs, e, e1,e3) and T3(Ry, Re,u) to describe the
property that for any internal node in the path, there exist and only exist two edges in
the resulting path incident on it. Relation A(R;) is used to guarantee the antisymmetric

property of the path.



39

Based on these relations, the MSO sentence for the problem is as follows.
3R13R2Vu(5(u, Rg) A Tg(Rl, RQ, u) N A(Rl) N (size(Rg) = k)) (32)

It is not difficult to verify that this MSO logic sentence correctly expresses the ANTISYM-
METRIC PATH problem. In addition, from this sentence we can see that the ANTISYMMETRIC

PATH problem is in M Ss. ]

3.4 THE ALGORITHM

Theorem 3.4.1 ([53]) Given a modified spectrum graph G = (V, E) and a tree decomposi-
tion of tree width t, the longest antisymmetric path that connects the source and the sink in

the graph can be found in time O(6'|V|).

Proof: Based on a tree decomposition of a graph, the longest antisymmetric directed
path that connects two given vertices (source and sink) can be identified using the generic
framework of dynamic programming proposed in [6, 23]. Specifically, since the source is
connected to the sink with an undirected edge, there exists a tree node R in the tree decom-
position such that R contains both vertices and the algorithm selects R as the root of the
tree.

The algorithm maintains a dynamic programming table in each tree node to store pre-
viously computed partial optimal solutions. For a tree node with ¢ vertices, the dynamic
programming table contains 2t 4+ 1 columns, of which the first ¢ columns are used to store
the selection of each vertex in the node to form a partial optimal path.

In addition, ¢ — 1 columns are needed to store the connection state between each pair
of consecutive selected vertices in the node. Two columns V and L are the wvalid bit and
the largest length of the partial path associated with the combination of selections and
connection states in the same table entry. The selection value for a vertex is 1 if it is selected
to be in the partial optimal path and 0 otherwise. The value for a connection state could be

one of the integers in set {0,1,--- [}, where [ is the number of the children of the node.



40

I

/]
A

bottom-up
aldlblclcv]L blelclefalv]L
11 1olo[1]3 1]0[1 13
X o=l X L To[1[1[=Tol-
(a) (b)

Figure 3.2: (a) The dynamic programming table for a tree node comprised of t vertices
x1, 9, , Ty in increasing order of mass values; ¢y, ¢, - -+, ¢;_1 are used to store the connec-
tion states. (b) The dynamic programming tables for internal node X; and its two children
X, and Xj. The tables of X; and X} need to be queried to compute the validity (V') and
the largest path length (L) of a given entry in the table for X;.

The connection state for a pair of consecutive selected vertices in the node is i if the
vertices between the two vertices in the path are covered by the subtree rooted at the sth
child. The number of possible combination of selections and connection states can thus be
up to (2(I + 1))". However, Since we can remove tree nodes with more than two children
by generating extra tree nodes, the table for a tree node with ¢ vertices may contain up to
6! entries. The valid bit for a given entry is set to be 1 if and only if there exists a partial
antisymmetric path that follow the combination of selections and connection states in the
entry.

To determine the relative order of selected vertices in a partial path, the algorithm sorts
the vertices in each tree node based on their corresponding mass peak values, since the mass
peak values of vertices monotonously increase along any directed path from the source to

the sink.



41

The algorithm follows a bottom-up fashion to fill the dynamic programming tables in all
the tree nodes. For a leaf node, it exhaustively enumerates and directly computes the validity
and largest path length for every possible combination of selections and connection states for
vertices in the node. For an internal node, the algorithm refers to the tables of its children
to determine the validity and largest path length for each of its table entry. In particular,
for a given entry, the algorithm obtains its selections of vertices and the corresponding
connection states and then queries the table contained in each of the children nodes. All
valid table entries whose selections of vertices and connection states do not contradict with
the considered one are queried and the one with the largest path length is selected as the
descendent entry in the child. The algorithm sets an entry to be invalid if its selection
of vertices violates the antisymmetric property or one of the children nodes contains no
descendent entries. The largest path length for the entry is then computed by summing up
the number of edges covered by the node itself and the largest path length for the descendent
entry found in each of its child nodes.

In the last stage of the computation, the algorithm queries the table in the root node
R and considers those valid entries that select both the source and the sink and finds the
one with the maximum path length. The algorithm then returns the largest path length of
the selected entry as the length of the longest antisymmetric directed path that connects
the source and the sink. The longest directed antisymmetric path can be determined by a
trace back procedure, where the descendent entries for all the internal nodes are searched
in a up-bottom fashion and vertices that are selected in these entries are inserted into a list
based on the mass values of their corresponding mass peaks. The directed path found by the
algorithm is guaranteed to satisfy the antisymmetric property since, based on the definition
of tree decomposition, any pair of complementary vertices is covered by at least one tree
node. The computation time needed by the algorithm is O(6'N), where ¢ is the tree width

of the tree decomposition and NN is the number of vertices in the graph. O



42

Figure 3.2(a) shows the dynamic programming tables for both internal nodes and leaves
in the tree decomposition. Figure 3.2(b) provides an example for computing the entries in
the table for an internal node X;. Without loss of generality, we assume X; has two child
nodes X; and Xy, and X; = {a,b,c}, X; = {a,d,b} and X = {b, e, c}. To determine the V
and L for entry {(1,1,1),(1,2)} in the table for X;, the algorithm needs to query both of the
tables for X; and X}, since the entry suggests that the vertices on the path between a and b
is covered by the subtree rooted at X; and those between b and c is covered by that rooted
at Xj. To query the table for X, the algorithm only checks valid entries that select both a
and b since X; N X; = {a, b}, thus the leading two entries in the table for X; are checked by
the algorithm. Similarly, since X; N X} = {b, ¢}, the algorithm only checks valid entries that

select both b and ¢ in the table for X.

3.5 EXPERIMENTAL RESULTS

We implemented the algorithm and tested it on both simulated and real experimental MS/MS
spectra. For de novo sequencing, we evaluated the performance of the program on simulated
spectra that contain different amount of noise, and then used it to analyze real experimental
MS/MS spectra. For spectral alignment, we generated simulated spectra for peptides with
Post Transcriptional Modifications (PTMs) and identified modified amino acids with spectral

alignments.

3.5.1 De Novo SEQUENCING

To evaluate the performance of the program on spectra with different amount of noise,
we generated simulated tandem mass spectra for 100000 fully tryptic digested peptides of
proteins in the Yeast genome. We filtered out peptides of less than 5 and more than 24 amino
acids. In addition to the mass peaks that result from the fragmentations of peptides, We
incorporate noisy mass peaks into these simulated spectra and applied the program to obtain

the sequences of amino acids for these noisy spectra. To simulate the noise generally present



43

Noise/Signal | Accuracy (%) | PT(< 5) (%) | PT(=5) (%) | PT(> 5) (%) | CT(s)
0.00 98.60 52.45 44.93 2.62 1.54
0.20 98.27 42.48 41.38 16.15 7.24
0.50 98.29 37.69 34.84 27.47 12.37
0.80 97.98 32.98 37.13 29.87 13.10
1.00 96.95 27.64 39.47 32.89 15.46

Table 3.1: The accuracy of the program on spectra with different amount of noise.
Noise/Signal is the ratio of the number of noisy peaks to that of others in a spectrum.
Accuracy is the percentage of amino acids that are correctly identified by the program;
PT(< 5), PT(= 5) and PT(> 5) are percentages of spectrum graphs whose tree widths
are less than 5, equal to 5 and greater than 5 respectively; CT is the average amount of
computation time the program needs to analyze a spectrum.

in real experimental spectra, noisy mass peaks are generated in groups and the differences
of mass values for mass peaks in the same group are selected to be those of single amino
acids or their combinations. Table 3.1 shows the performance of the program on spectra
with different amount of noise. As we have expected, the tree widths of the spectrum graphs
increases while more noisy peaks are inserted into the spectra and the program thus needs
more computation time to analyze a spectrum. In addition, a slight drop in sequencing
accuracy is observed when the an ideal spectrum is changed into a noisy one.

To evaluate the performance of the program on real experimental spectra, we downloaded
15 tandem mass spectra for peptides in E. Coli proteins from the Open Proteomics Database
(OPD). We evaluated the sequencing accuracy of the program on these spectra and 3 addi-
tional experimental FT-ICR ones. Before we applied the program to a spectrum, the mass
peaks in the spectrum were preprocessed and mass peaks with intensities less than 0.1 of
the maximum intensity value are removed. In addition, mass peaks resulting from isotopes
of carbon atoms were identified and removed from the spectrum as well. Table 3.2 shows

sequencing result we obtained with the program for each spectrum and the amino acids each



44

Real Sequence Obtained Sequence TW | CT (s)
RAFDQIDNAPEEKA RAFDQIDNAPEEQA 6 | 1211
RPQFYFRT RPQFYFRT 4 0.42
KVGEEVEIVGIKE QVGEEVEIVGIKE 6 5.16
KMVVTLIHPIAMDDGLRF | KMVVTILHPIAMDDGIRF | 5 7.30
RAGENVGVLLRG RAGENVGVLLRG 6 13.09
KMVVTLIHPIAMDDGLRF | QMVVTIIHPIAMDDGLRF | 5 6.85
KVVRTAIHALARMQHRG | KVVRTAIHATARMQHRG 6 9.19
KFNQIGSLTETLAAIKM KFNQIGSLTETLAAIQM 6 10.27
RKFATQYMNLFGIKQ RKFATQYMNLFGIKK 6 10.15
KTQLIDVIAEKA QTQIIDVIAEKA ) 5.09
KPVYSNGQAVKD KPVYSNGQAVQD ) 2.53
KLNIDQNPGTAPKY KINIDQNPGTAPQY 6 5.80
KNQTLALVSSRP QNQTLALVSSRP 6 4.85
RVKSQAIEGLVKA RVKSQAIEGLVQA 6 4.10
HGTVVLTALGGILK HGTVVLTAIGGILQ 4 0.22
VEADIAGHGQEVLIR VEADIAGHGQEVLLR 6 10.34
DAFLGSFLYEYSR DAFLGSFLYEYSR ) 2.18

Table 3.2: The performance of the program on real experimental spectra. TW is the tree
width of the spectrum graph; CT is the computation time of the program.

peptide really contains. Some sequencing errors can be seen from the table. However, the
reason for these errors are clear, the program is unable to identify I from L and K from Q
since the mass of I is equal to that of L, and the mass difference between K and Q is too
small to be recognized by the program. The program is thus able to identify the correct

peptide sequences for all the experimental spectra tested in a few seconds.

3.5.2 SPECTRAL ALIGNMENT

As an application of spectral alignment, we used the program to identify modified amino acids
on peptide sequences with PTMs. We generated pairs of spectra in silico from unmodified and

modified peptides respectively and perform a spectral alignment between the spectra gener-



45

Peptide Modified Peptide TW | CT (s)
RAIKNLL RAIK*NLL 4 0.04
FKMKRTQVFWKV FK*MKRTQVFWK*V 6 2.43
MALPFQLLRQLGVA M*ALPFQLLRQLGVA 1 [ 012
AKYEGGL AK*YEGGL 4 0.07
DFLIKRGV DFLIK*RGV 5 0.73
PKDMILLFATTTTKF PK*DMILLFATTTTK*F 6 2.31
LWEVKDRTAHS LWEVK*DRTAHS 6 3.50
TGIAVDKPQSDSRMNAAP | TGIAVDK*PQSDSRM*NAAP | 4 0.08
MAIVMGRLEVKAIS MAIVMGRLEVK*AIS 4 0.12
FVPGQKNGIKGDLS FVPGQK*NGIK*GDLS 4 0.04

Table 3.3: The performance of the program on identifying modified amino acids using spectral
alignment. DNM is the number of modified amino acids identified by the program; TW is
the tree width of the alignment graph; CT is the computation time in seconds.

ated. The mass modifications can be identified from the longest antisymmetric path found by
the program. We introduced two additional parameters, k and A, where k is the maximum
number of modifications allowed in the peptide and A is the maximum amount of mass
modification that may occur on a single base. Based on parameters k and A, vertices (z;, y;)
and (Tog, +1-i, yj7) are connected with an undirected edge if and only if |y — yog, 11— < EA.
In addition, to incorporate possible PTMs in the alignment graph, two vertices (z;,y;) and
(xi,y;) are connected with a directed edge if xy > wx;, y; > y; and the mass difference
between |z, — ;| and |y;s —y;| is less than A. In our experiment, The values of k and A were
set to be 3 and 20.0. Table 3.3 shows the results we have obtained on identifying modified
amino acids on pairs of spectra we generated in silico. It can be seen from the table that the
tree width of an alignment graph ranges from 4 to 6 and the program is able to identify the

modified amino acids in a few seconds.



46

3.6 SUMMARY

In this chapter, we have developed a tree decomposition based algorithm that can efficiently
solve both problems of de novo sequencing and spectral alignment. Based on the notions
of spectrum and alignment graph, both problems can be reduced to finding the longest (or
maximum weighted) antisymmetric directed path that connects the source and sink in the
graph, a problem that can be solved with a linear time dynamic programming algorithm
on graphs with bounded tree width. We provide a detailed description of the algorithm and
show that the de novo sequencing and spectral alignment can be solved with time O(6'n)
and O(6'n?) respectively, where t is the tree width of the corresponding graph and n is the
number of mass peaks in the spectrum (spectra).

The algorithm has been implemented and tested on both spectra generated in silico and
real experimental ones. The results show that, for de novo sequencing, the tree width of a
spectrum graph is around 5 and may slightly increase when the spectrum contains a large
number of noisy mass peaks. The program is able to identify the correct peptide sequences in
the presence of noisy mass peaks in a few seconds. Only a slight drop in sequencing accuracy
is observed while the amount of noise in the spectra increases; for spectral alignment, the
tree width of a spectral alignment ranges from 4 to 6 and the program can correctly identify
all the modified amino acids on all the tested peptides with PTMs.

In this work, we only considered the mass differences between mass peaks and have yet
incorporated an edge-scoring scheme to evaluate the relative weights of different graph edges.
In addition, more experiments are needed to evaluate the performance of the program on real
spectra for both de novo sequencing and spectral alignment. The construction and trimming
of a spectrum or alignment graph may have significant effect on its tree width and thus

deserves further investigation.



CHAPTER 4

MAXIMUM ANTISYMMETRIC PATHS!

4.1 INTRODUCTION

As discussed in chapter 3, it is a challenging problem to determine the amino acid sequence
of a protein peptide from a tandem mass spectrum. The problem becomes more difficult
when the spectrum contains post-translational modifications (PTMs). Existing computa-
tional methodologies for solving this problem can be classified into two major categories:
database search based approaches and de novo peptide sequencing. Database search based
tools such as SEQUEST [29] and Mascot [63] compare a query spectrum with spectra from
peptide sequences in a database and output those with high correlation scores as sequencing
candidates. When the query spectrum contains PTMs, it becomes very difficult to select the
correct peptide sequence since calculation becomes prohibitively slow, due to the enumera-
tion and scoring of all possible modifications for each peptide from the database. In contrast,
de novo sequencing methods [19, 24, 31, 41, 42, 53, 56, 79, 89, 101] aim to infer a peptide
sequence from its spectrum directly without looking up a protein database. However, the
accuracy of de novo sequencing is highly sensitive to the quality of the input spectrum. Usu-
ally it cannot infer a full length peptide sequence due to missing peaks, which consequently
limits its application in practice.

Most of existing approaches [63, 88, 95, 104] for identifying PTMs assume a limited set

of modification types. These modification types can be modeled with pseudo amino acids;

IPart of the data reported in this chapter is reprinted with permission from “Peptide sequence
tag based blind identification of post-translational modifications with point process model” by
C. Liu, et al. in the Proceedings of the 14th International Conference on Intelligent Systems for
Molecular Biology, (ISMB 2006), Bioinformatics, Copyright 2006 by Oxford University Press.

47



48

approaches developed for spectra free of PTMs can thus be directly applied to those with
PTMs. However, spectra with unknown types of modifications may be erroneously processed
with this method. Recently, a few approaches have been proposed for blind PTM iden-
tification [91, 102]. Both approaches optimally align an experimental spectrum with the
spectra from peptide sequences in a database by allowing a shift of certain amount. In par-
ticular, [91] proposes a dynamic programming algorithm to solve this problem. Alternatively,
[102] introduces a point process model to process a spectrum, in which all possible optimal
alignments between two spectra are obtained feasibly by computing the correlation of their
corresponding processes. Both approaches are effective and able to detect unknown types
of modifications. However, due to the large size of the search space, the optimal spectral
alignment may be very time consuming and both approaches may suffer high false positive
rate and computing inefficiency.

Recently, the idea of database filtration based on peptide sequence tags has been intro-
duced to speed up peptide database search [32, 87]. For example, based on a fragmentation
model, GutenTag [87] generates many short sequence tags that are possibly contained in
the peptide for a spectrum and compares the spectrum with ones from peptide sequences
in a database that contain at least one of the selected tags. PEPNOVO [32, 34] evaluates
the reliability of sequence tags on de novo sequencing results with a machine learning based
approach and uses high reliable sequence tags to filter out most of the peptide sequences in a
peptide database. With the reduced search space, the correct peptides can thus be identified
efficiently with the conventional database search methods. Apparently, the methodology of
combining de novo peptide sequencing and database search can dramatically improve the effi-
ciency of peptide identification without sacrificing too much sensitivity. It thus may represent
a promising approach for rapid and reliable peptide identification. However, the presence of
PTMs significantly increases the difficulty of both de novo sequencing and database search.

It is unclear what capability of these tools could be for generating correct peptide sequence



49

tags and further finding out the correct PTMs through database search in the presence of
PTMs.

In this chapter, we introduce an ab initio approach to sequence tag selection, which further
combines with the point process model [102], yields an efficient and accurate method for blind
PTM identification. We have observed from our previous work [53] that the sequence tags
can be selected from the maximum weighted antisymmetric path in a spectrum graph. Due to
missing peaks or the shift of peaks in a spectrum that contains PTMs, a de novo sequencing
algorithm may not be able to find a fully connected antisymmetric path that explains the
spectrum. Nevertheless, it is possible to find all maximum weighted antisymmetric paths
between certain pairs of vertices in the spectrum graph to obtain partial knowledge of the
amino acid sequence of the spectrum. To efficiently implement this idea, we propose a novel
tree decomposition based algorithm that can efficiently and effectively find all maximum
weighted antisymmetric paths in a spectrum graph. We use the notion of extended spectrum
graph that contains additional edges to describe the relationships between pairs of comple-
mentary vertices. Such a graph can deal with spectra with the presence of both b-ions and
y-ions and ensure the antisymmetric property of the paths.

The algorithm consists of two major components. The fundamental component computes
the maximum weighted antisymmetric paths connecting each pair of vertices contained in
each tree node from a tree decomposition of the spectrum graph. Different tree decompo-
sitions are then generated from the fundamental component to find all maximum weighted
antisymmetric paths between certain pairs of vertices. The time complexity of the algorithm
is O(6'n(n +m)), where t is the tree width of the tree decomposition and is usually small,
n is the number of peaks in the spectrum, and m is the number of maximum weighted
antisymmetric paths. Sequence tags [32, 34] are then selected from all maximum weighted
antisymmetric paths and their reliabilities are evaluated with a score function.

We implemented our algorithm and applied it to PTM identifications. We first generated

sequence tags from 2657 experimental yeast spectra downloaded from the Open Proteomics



20

Database (OPD) [66]. We compared the accuracy of the sequence tags with those generated
by the popular tool PEPNOvVO. Our experiments shows that our ab initio tag generation
algorithm is significantly faster than PEPNOVO with comparable accuracies. We then manu-
ally added PTMs to 2620 spectra from the same data set and used our program to generate
sequence tags and filter a yeast peptide database with a deterministic finite automaton
(DFA) based model. The point process blind search model was then applied to the selected
candidate peptides to identify the PTMs. The experiments on the spectra with PTMs show
that, compared with the results without database filtration, this combined approach can
achieve significantly improved accuracy with 10 times and 80 times of speedups using the

filtration of sequence tags of lengths 3 and 4 respectively.

4.2 MODELS AND ALGORITHMS

4.2.1 EXTENDED SPECTRUM GRAPH AND SEQUENCE TAG SELECTION PROBLEM

In this chapter, we consider all possible ions that a spectrum can contain, the graph con-
structed for a spectrum is thus slightly different from the one in chapter 4. In particular,
we consider all types of ions listed in [65]. Although a spectrum may contain a few different
types of ions, all ions in the spectrum can be classified into two categories: N-terminal ions
and C-terminal ions. For simplicity, we use b-ions and y-ions to represent them respectively.
We assume S = {s1, 82, -+, Sy} to be an experimental spectrum with complementary ions
added if they are missing in the original experimental spectra. The possible mass values for
the partial peptide for a peak s; in the spectrum S form a set V; = {s;+01, $;+02, -+, 8i+0 },
where 0 is the mass offset of ion ¢ in the form of ion type k. Each of the mass values in
V; can be represented with a graph vertex and a vertex set V = {vo} UUJ", Vi U {v,} can
thus be generated for S, where vy and v, are two additional vertices with zero mass and
the parent peptide mass respectively. A spectrum graph [24] can be constructed upon V' by

connecting a directed edge from u to v if the mass difference between them is the mass of



51

a single amino acid and the mass of u is less than that of v. u is an in-neighbor of vertex v

and v is an out-neighbor of vertex w.

113 358
%’ 202 269 total mass=471
EJ 71 400
£
[ I [ I I |
0 i100: 2001 1300 i 400
Mass/(:lharge
(@) N
N E Lo
L e
242 | Al
g S0 |l
< 140 el 440
£ e .l
- : 140
! ! ! L ! Ll >
0 100 200 300 400 0 71 113 242 269 398 440 511
Mass/Charge
(b) (d)

Figure 4.1: (a) A tandem mass spectrum for a short peptide AMRL; for simplicity, only b and
y-ions are included. (b) the spectrum for the same peptide, but with a PTM on amino acid
M. (c¢) The extended spectrum graph for the spectrum in (a) and a longest antisymmetric
sequencing path; dashed undirected edges connect complementary vertices. (d) The extended
spectrum graph for the spectrum in (c), the original antisymmetric path for sequencing is
disconnected due to the modification.

Based on a stochastic model for ions and peaks in a spectrum, vertices and edges in
a spectrum graph can be assigned weights. Traditional approaches for de novo sequencing
determine the amino acid sequence of a peptide by finding the maximum weighted path in
the spectrum graph that connects vy and v,,. However, since a valid sequencing path only
contains either b-ions or y-ions, it is necessary to identify pairs of vertices that cannot appear
in the same sequencing path. Given a partition P that contain disjoint vertex pairs, a pair of

vertices are complementary with respect to P if the vertices are in the same pair. A path in



52

a spectrum graph is antisymmetric with respect to P if it contains at most one vertex from
each pair of complementary vertices in P. A valid sequencing path is thus the maximum
weighted antisymmetric path that connects vy and v,. To address this issue, in addition
to the directed edges in a spectrum graph, we also connect complementary vertices in the
spectrum graph with undirected edges, yielding an extended spectrum graph [53]. we show
later in this chapter that these undirected edges are important to ensure the antisymmetry
of the paths found by our algorithm. Figure 4.1(a)(c) show the spectrum of a short peptide
and an de novo antisymmetric sequencing path contained in the corresponding extended
spectrum graph.

For most of the spectra that contain PTMs, an antisymmetric path that connects vy
and v, may not exist in each of the corresponding spectrum graphs. As an example, Figure
4.1(b)(d) show a shift of peaks and the spectrum graph of the peptide with a PTM on
one of its amino acids. However, we observe that parts of the amino acid sequence of the
peptide can be obtained from maximum weighted antisymmetric paths between certain pairs
of vertices. A path P in a spectrum graph is mazimum weighted antisymmetric if it satisfies

the following constraints:
1. P is antisymmetric,

2. if u,v are the two ends of the path, any antisymmetric path P; that connects u and v

has a weight no larger than that of P,

3. there does not exist an antisymmetric path P, in the graph such that P C Ps.

4.2.2 A MSO LOGIC SENTENCE FOR THE PROBLEM

We consider the following & MAXIMAL ANTISYMMETRIC PATH problem.

Problem 4.2.1 £ MAXIMAL ANTISYMMETRIC PATH
Input: A directed acyclic graph G = (V, E), a positive integer k, m,n € V and a partition P

of V into disjoint pairs.



93

Output: “yes” if there exists a nonextendable antisymmetric path that connects m and n and

it’s weight s k; “no” otherwise.

A simple reduction from the ANTISYMMETRIC PATH problem can show that the MAX-

IMUM ANTISYMMETRIC PATH problem is NP-hard. We thus have the following theorem.

Theorem 4.2.2 k£ MAXIMAL ANTISYMMETRIC PATH problem is NP-complete on general

graphs.

Proof: It is obvious that this problem is in NP. Given an instance (G, k,s,t,P) of
ANTISYMMETRIC PATH problem, since s and t are the source and the sink in the graph G,
if we assign each edge in G weight 1, the antisymmetric path of length k in G is exactly
the antisymmetric path of weight k£ between s and ¢. This path obviously cannot be further
extended. O

It is not difficult to modify the MSO logic sentence for the ANTISYMMETRIC PATH
problem to obtain a MSO logic sentence for the & MAXIMAL ANTISYMMETRIC PATH

problem.

Theorem 4.2.3 £ MAXIMAL ANTISYMMETRIC PATH problem can be expressed with a MSO

logic sentence.

Proof: Similar to the proof in theorem 3.3, we add two additional intermediate rela-

tions to express the property of being nonextendable. In particular, we have the following



o4

intermediate relations.

Si(er, e, Ry) = (er # e) — (Ra(er) V mincid(ey, u))
S(u,Ry) = ((u=m)V (u=n))— IeVe, (incid(e,u) A Ro(e) A Si(e1, e, Ry))
Ty(u,er,e5) = (e1 % es) Aincid(u, ) Aincid(u, es) A Ro(er) A Ro(es)
Ty(u, Ry,e,e1,62) = Ve((e # er) A(e # e2) — (mRz(e) V incid(u, ¢)))
Ty(Ry, Royu) = (Ry(uw) A (u£m) A (un)) — (3er3es(Ti(u, 1, 2) A Tolu, Ro e, 1, €2)))
A(Ry) = Yu((Ri(u) A Ri(v)) — —comp(u,v))
Ei(u) = (u=m)— (Vv(edge(v,u) — (Jq(Ri(q) A comp(q, v))))

Ey(u) = (u=n)— (Vo(edge(u, v) — (3g(Ri(q) A comp(q, v))))

Compared with the proof of theorem 3.3, the two additional relations E;(u) and FEs(u)
are used to describe the “maximal” property of a path. More specifically, £ (u) denotes that
the path cannot be further extended from the left side while maintaining the antisymmetric
property and FEs(u) denotes the same property on the right side of the path. Based on these

relations, the MSO sentence for the problem is as follows.
AR IR Vu(S (u, Re) A T3(Ry, Ro,u) AN A(Ry) A (size(Rg) = k) A Er(u) A Eqy(u)) (4.1)

It is not difficult to verify that this MSO logic sentence correctly expresses the MAXIMAL
ANTISYMMETRIC PATH problem. In addition, from this sentence we can see that the K

MAXIMAL ANTISYMMETRIC PATH problem is in M Ss. O

4.2.3 ALGORITHMS FOR PATH FINDING

The algorithm for finding all maximum weighted antisymmetric paths consist of two major
components. In particular, in a given tree decomposition, the fundamental component that
connects each pair of the vertices contained in each tree node. To find all maximum weighted
antisymmetric paths connecting certain pairs of vertices in the graph, the algorithm generates

different tree decompositions and applies the procedure of the fundamental component to



55

each of them. The overall time complexity of the algorithm is O(6'n(n + m)), where ¢ is
the tree width, n is the number of vertices in the spectrum graph, and m is the number of

maximum weighted antisymmetric paths in the spectrum graph.

THE FUNDAMENTAL COMPONENT

The fundamental part is basically the algorithm described in the proof of theorem 3.4.1
in chapter 4. In particular, the algorithm arbitrarily selects a tree node as the root of a
tree decomposition and maintains a dynamic programming table for each tree node. It then
proceeds from leaves of the tree to the root to fill in all the dynamic programming tables. The
table for each tree node stores the weight of the partial maximum weighted antisymmetric
path connecting each pair of vertices in the tree node.

For a tree node with ¢ vertices, the dynamic programming table contains 2t41 columns, of
which the first ¢ columns store the selection of each vertex in the node to form a subpath and
the other t—1 columns are used to store the connection state between each pair of consecutive
selected vertices in the tree node. Two additional columns V' and L store the valid bit and
the maximum weight of the partial antisymmetric path associated with a combination of
selections and connection states in the same table entry, respectively.

The selection value of a vertex in a tree node is 1 if it is selected to be in the partial
optimal path and 0 otherwise. The value of a connection state could be one of the integers
in set {0,1,--- [}, where [ is the number of children of the tree node. The connection state
for a pair of consecutive selected vertices in the tree node is 0 if they are contiguous in the
path and is i (i > 0) if the vertices on the path between the pair of vertices are covered by
the subtree rooted at the ith child. The number of possible combinations of selections and
connection states can thus be up to (2(I + 1))*. However, since we can remove tree nodes
with more than two children by generating extra tree nodes, the table for a tree node with

t vertices may contain up to 6! entries. The valid bit for a given entry is set to be 1 if there



o6

S

—

---§ - g---
a bc | GV |L|E|u
ﬁ X. 1 111]2 1
i ;

X bottom-up

)
N

alp|d|c|CV |L|E|U b |cl|e|C |GV |LI|E|U
x ol 1/3 1 [1 1[0[1 1] oo
jlalolafa] [1f4fofo] X i fo[1[1] Jo3]1]1

(a) (b)

Figure 4.2: A tree decomposition and its corresponding dynamic programming tables. The
algorithm follows a bottom-up fashion starting with the leaf tree nodes. When computing
the dynamic programming tables for an internal node X;, the tables of its child nodes X;
and X} need to be queried to compute the validity (V'), the maximum path weight (L) and
the extendibility (F) of a given entry in the table for X;; vertex u is added to each tree bag
to compute all the maximum weighted antisymmetric paths that start with it.

exists a partial antisymmetric path that follows the combination of selections and connection
states in the entry.

To determine an entry in the table for a leaf node, the algorithm exhaustively enumerates
and directly computes the validity and the maximum path weight for every possible combi-
nation of selections and connection states for vertices in the node. For an internal node, the
algorithm refers to the tables of its children to determine the validity and the maximum path
weight for each of its table entry. Figure 4.2 provides an example for computing the table
entries for an internal node X;. The computation time needed by the algorithm is O(6'n),
where t is the tree width of the tree decomposition and n is the number of vertices in the

graph.



o7

FINDING ALL MAXIMUM WEIGHTED ANTISYMMETRIC PATHS

Theorem 4.2.4 Given an extended spectrum graph G = (V, E) and a tree decomposition
of G with tree width t, all mazimum weighted antisymmetric paths in G can be identified in
time O(6'|V[(|[V| +m)), where m is the total number of mazimum weighted antisymmetric

paths in G.

Proof: The fundamental component can only compute the maximum antisymmetric paths
between vertices that are included in at least one tree node. Further processing is thus needed
to find all maximum weighted antisymmetric paths in the spectrum graph. For each vertex
u in the spectrum graph, a new tree decomposition can be constructed by including « in all
the tree nodes in the original tree decomposition. n different tree decompositions are thus
generated.

To guarantee that the paths found by the algorithm satisfy the constraints of being
maximum weighted antisymmetric, we further modify the previously described fundamental
component. Specifically, as shown in Figure 4.2, one additional column FE is added to each
dynamic programming table to indicate whether the corresponding path can be extended to
form an antisymmetric path with a larger weight by adding one of the in-neighbors of u to
the path. This bit is set to be 1 if such an extension exists and 0 otherwise. The algorithm
also sets the E bit to be 0 if the corresponding path for an entry does not start with w.
This property for a given entry can be obtained by combining the E bits of its descendent
entries with a direct inspection on vertices that are not included in the descendent entries.
In view of the fact that the number of in-neighbors of u is bounded by 20, the aggregate
computation time for this additional checking is O(6'n).

Based on the F bit of an entry, we are able to select the antisymmetric paths that
start with v and cannot be extended with an in-neighbor of u. However, it is possible that
some of the maximum antisymmetric paths can be extended from the other end of the
path. We thus create an array S of size n and initialize all its elements to be zero. For

any vertex v other than w in the spectrum graph, we can obtain W (u,v), the weight of



o8

the maximum weighted antisymmetric path that connects u and v. For each out-neighbor
vy of v, we obtain W (u,v,v;), the weight of the maximum weighted antisymmetric path
that passes through v and connects v and v;. We then check whether W (u, v, v;) is equal to
W (u,v) 4+ w(v,v;) or not, where w(v, v;) is the weight of the edge (v, v;). If it is the case for
one out-neighbor of v, we set S[v] to be 1, which suggests that the maximum antisymmetric
path between u and v is extendable. The correctness of this operation is obvious since only
in the case where the path is extendable, we can have one out-neighbor v; of v such that
W(u,v,v;) = W(u,v) + w(v,v;). The aggregate time for this operation is again O(6'n).
We then apply the tracing back procedure in the fundamental component to obtain all the
maximum weighted antisymmetric paths starting with u. Based on the E bits and the array
S, we can find all maximum weighted antisymmetric paths from the n tree decompositions
and the total computation time is O(6'n(n +m)), where m is the total number of maximum

weighted antisymmetric paths. We thus have proved theorem. L

4.2.4 RELIABILITY OF SEQUENCE TAGS

We used the scoring scheme proposed in [24] to assign weights to the vertices and edges in
the extended spectrum graphs. The overall reliability of a sequence tag ¢; was considered as
a linear combination of normalized reliabilities r1(¢;) and r5(t;) computed from the weights
of the corresponding edges for ¢; and an autocorrelation score developed in [51] respectively.

In particular, the reliability r(t;) of sequence tag t; is
r(t:) = wiri(t:) + wara(f) (4.2)

where r1(t;) and ro(t;) are computed with

_ W(t:)
B S IO (43

> i Alt)



99

where W (t;) is the sum of the weights of the edges that form ¢; in the extended spectrum
graph, ¢ is the number of sequence tags, and A(t;) is an autocorrelation score computed with
Aty = Y. I'(K)I*(n— k) (4.5)

keP(t;)
where P(t;) is the set of peaks that form ¢; and I*(k) and I*(n — k) are adjusted intensities
of complementary peaks k and n — k in the spectrum. Both r1(¢;) and r4(t;) are obtained
by normalizing W (t;) and A(t;) over all sequence tags that are selected from the maximum

weighted antisymmetric paths.

4.2.5 DATABASE FILTRATION WITH SEQUENCE TAGS

From the generated peptide sequence tags, we introduced a deterministic finite automaton
(DFA) based model and used it to search a yeast peptide database which consists of 670k
tryptically digested peptides (allowed up to 2 missing cleavages). Each amino acid in the
tags represents a state of the DFA. We added an additional state as the start state. The
accept states are the states that correspond to the last amino acids in the tags. Upon reading
the first amino acid in a peptide sequence in the database, the DFA transfers from the start
state to an appropriate state that corresponds to the first amino acid in a tag. The DFA then
transfers from that state to next appropriate state upon reading the following amino acid in
the peptide sequence. The procedure continues until the end of the peptide sequence. The
peptide reading always goes forwards in the entire procedure. However, a trie based model
[32] needs to go back to the head of the trie each time when a substring of tag length in
the peptide sequence has been examined. It thus may need more computation time than our

DFA based model.

4.2.6 PTM IDENTIFICATION BY POINT PROCESS BLIND SEARCH

We finally apply the point process model for peptide identification and PTM search [102] on

the candidate peptides after filtration. This model is an efficient blind search approach that



60

does not require a list of pre-specified PTMs as input in advance. The algorithm attempts
to find a set of optimal mass shifts to maximize the spectral alignment. Through one round
of cross-correlation calculation, it is able to obtain all possible mass shifts feasibly (naturally
includes the optimal mass shifts). The computation time is independent of the number of
PTMs, which outperforms most of the existing PTM identification tools whose computation
time grows exponentially with the number of PTMs.

In particular, the mass peaks in a MS/MS spectrum can be expressed with a point

process. .
w(t) = 6(t —t;) (4.6)
i=1
where t;’s (1 <1i < N) represent the mass values for N mass peaks and § is the Kronecker
delta function [62].
To model K mass shifts, we can group the N mass peaks in a spectrum into K + 1
different groups G;, (1 < i < K + 1) and for G;, each of its mass peaks is shifted by a
quantity A; due to a PTM. We define for x;(t), v;(t) and y(t) as follows.

n(t) = ) ot —tu)

tu€G;

yi(t) = x;(t — Ay)
y(t) = Zyi(t)

It is clear that () is the spectrum of a peptide without PTMs and y(t) is the spectrum of
a peptide that may contain up to K PTMs. We now introduce a functional C[.] to count the
number of peaks contained in an expression of kronecker’s functions. In particular, Clz(t)] =
N and C[z;(t)] = |G;|. We now consider the number of peaks in z(t — A;)y(t). In particular,

based on the following property for the Kronecker delta function.

0 otherwise

we are able to get

Cla(t = Ad)y()] = Clyi()y:(1)] = |Gl (4.7)



61

Assuming that ¢, (1) = Clz(t — 7)y(t)]/N, if we also take into consideration the coinci-

dence of mass peaks due to the shifting, we are able to obtain the following equations.

(€5

Coy(T)lr=n, = N

1

Cmy(7->|7-:(t§+Ai)—t§€ = N

The second equation considers the coincidence of peaks due to the shifting. For the rest
of the 7’s, ¢y (7) = 0. Now, We can identify the mass values of PTMs by finding the peaks
of ¢y (7).

4.3 EXPERIMENTS AND DISCUSSION

4.3.1 DATASETS

We downloaded 2657 annotated yeast ion trap tandem mass spectra from the Open Pro-
teomics Database (OPD) [66]. These spectra were selected based on the criteria with +2
precursor ion and Xcorr > 2.5 without PTMs. All the experimental mass spectra were ion
trap data having a relative low mass resolution. We ran a data preprocessing procedure as
described in [34] to remove isotopic peaks and tiny noise peaks. Due to short of the reliably
annotated spectra with PTMs in public domain, we constructed 2620 modified ones from
those spectra by artificially adding one PTM from a common PTM pool to each spectrum.

The detailed procedure is referred to [102].

4.3.2 TREE WIDTHS FOR SPECTRUM GRAPHS

Computing the optimal tree decomposition for a given graph is an NP-hard problem [5]. A
few efficient heuristics [11] have been developed to compute a tree decomposition with small
tree width for certain types of graphs. We used a greedy fill-in heuristic [11] to find tree
decompositions for the spectrum graphs of the experimental spectra. Figure 4.3 shows the

distribution of the tree widths of the 2657 spectrum graphs. It can be clearly seen from the



62

o
©

~

S
4
©

)

&
=}
3

w

S
=d
o

o

S
L
IS

=
4
w

o o o
=

[N

Distribution of Tree Widths (%)
N
&
Accumulated Distribution of Tree widths
o
o

e 9o

w
IS
@
>
-
©
©
>
w
IS
o
e
N
®
©
>

Tree Width Tree Width

Figure 4.3: The tree widths of the extended spectrum graphs for 2657 experimental spectra;
left: the distribution of the tree widths, right: the cumulative distribution of the tree widths.

figure that the tree widths of about 90% of the spectrum graphs are around 5, which are

sufficiently small for developing an efficient tree decomposition based algorithm.

4.3.3 SEQUENCE TAG GENERATION

We used our program to generate sequence tags at different lengths on the two datasets.
We also ran the public available program PepNovo on the same datasets to obtain sequence
tags. We then compared the generated tags with the sequencing results by SEQUEST and
obtained the percentages of correct tags at different lengths for both of our program and
PepNovo. Table 4.1 lists the results of our experiments on the two datasets and the compar-
ison with PepNovo at different tag lengths. Our approach achieves comparable performance
to PepNovo while is more computationally efficient: over 10 times faster than PepNovo at
all different tag lengths. More importantly, our approach is ab initio and does not require
a training data set as PepNovo does. We believe further improvements in accuracy can be
achieved if a more sophisticated model to evaluate the reliabilities of generated sequence tags

is applied in the future.



63

TL AL r=1%)|r=3%)|r=>5%)|r=10(%) | r=25%) | T (s)

3 TDtag 75.8 89.1 94.6 96.9 98.1 0.33
PepNovo 75.8 90.1 93.6 96.8 98.8 3.62

4 TDtag 65.3 80.5 88.7 93.6 96.4 0.34
PepNovo 65.5 81.0 86.6 92.3 95.3 3.69

al b TDtag 56.4 72.8 78.3 85.1 89.8 0.33
PepNovo 58.4 71.3 77.6 84.0 88.9 3.83

6 TDtag 50.2 62.3 66.9 76.6 82.4 0.34
PepNovo 49.7 61.5 67.8 75.0 81.8 4.27

3 TDtag 68.1 84.8 90.3 94.8 97.1 0.32
PepNovo 62.8 83.7 89.7 94.9 97.8 3.59

b| 4 TDtag 53.5 71.2 78.6 84.8 90.0 0.32
PepNovo 51.1 1.7 79.3 85.8 91.4 3.64

Table 4.1: A comparison between the performance of our tag selection program and that of
PepNovo at different tag lengths: (a) on 2657 experimental spectra without PTMs and (b)
on 2620 experimental spectra with one artificially added PTM. Columns for r =1, 3, 5, 10,25
represent the percentages of spectra that have at least one correct tag in top 1, 3,5, 10,25
tags generated by our program and PepNovo respectively; T is the average time in seconds
used for generating sequence tags for one spectrum. TL is the tag length and AL is the
algorithm used for tag selection.

4.3.4 BrLIND PTM IDENTIFICATION BY DATABASE SEARCH

After candidate peptides are filtered out with the sequence tags, our point process based blind
search model is applied to evaluate these candidate peptides for further peptide identification
and PTM detection. The results on 2620 modified spectra are listed in Table 4.2. It can be
seen that the sequence tags of lengths 3 and 4 are able to filter out more than 98.3% and
99.8% peptides in the database respectively, which consequently speeds up the calculations
dramatically. In addition, with the reduced search space and enriched signals of correct
peptides, the accuracies of PTM identification by database search are significantly improved
with both sequence tags of lengths 3 and 4. For example, with the filtration of tag length

3, approximately 77% and 92% of spectra are identified correctly as top 1 and within top 5



64

respectively, a significant improvement compared to the corresponding accuracies of 60% and
81% without database filtration. Increasing the tag length from 3 to 4 can further speed up
the PTM identification by approximately 8 times. However, a slight drop in the identification
accuracy is observed in this case due to the relative lower sensitivity of tag generation for

tag length 4.

Tag length Top 1 | Top 2 | Top 3 | Top 4 | Top 5 | Filtration ratio | Time(s)
3 76.69 | 86.01 | 89.29 | 90.70 | 91.62 0.0167 263
4 74.98 | 80.77 | 81.71 | 82.17 | 84.40 0.0014 34
| Without filtration | 60.38 | 72.33 | 76.64 | 79.16 | 81.17 | — | 3843 |

Table 4.2: The accuracy of identifying PTMs from the modified spectra with selected tags of
lengths 3 and 4; the values at Top i = 1, 2, 3,4, 5 represent the cumulative percentages of the
search results capturing the original peptide sequences exactly in Top i; Filtration ratio is
ratio of the survived candidate peptides after tag filtration. Time is the total time in seconds
used for the point-process blind search model to identify correct peptides and PTMs for all
the 2620 experimental spectra. The last row is the results without sequence tag filtration.

4.4 SUMMARY

In this chapter, we develop a novel tree decomposition based algorithm that can efficiently
generate highly accurate sequence tags and conduct efficient PTM identification by com-
bining sequence tag generation and database search. The algorithm models a spectrum with
its corresponding extended spectrum graph and can find all maximum weighted antisym-
metric paths in the spectrum graph with tree width ¢ in time O(6'n(n 4+ m)), where n and
m are the number of vertices and the number of maximum weighted antisymmetric paths
in the graph respectively. Sequence tags are then selected from all the maximum weighted
antisymmetric paths. Our experiments show that this ab initio approach can achieve accu-
racy comparable to that of PepNovo in a significantly reduced amount of computation time.
More importantly, the sequence tags can be used to filter a peptide database effectively and
thus enable the application of more accurate and sophisticated algorithms for PTM identifi-

cation. In particular, we have built a rigid framework to conduct peptide identification and



65

blind PTM search by combining high quality sequence tag generation and efficient database
search. Experiments on spectra with PTMs show that this new approach can generate highly
accurate sequence tags and significantly improve the accuracy of PTM identification by blind

search.



CHAPTER 5

GENERALIZED SUBGRAPH ISOMORPHISM

In this Chapter, we investigate a few new parameterizations of the generalized subgraph iso-
morphism problem. As an important application of these parameterizations in the bioinfor-
matics research, we apply the results we obtained on the problem to the sequence-structure
alignment problem in bioinformatics. This the sequence-structure alignment problem is a
classic and important problem in bioinformatics and computational biology where struc-
tures play an instrumental role yet has not been satisfactorily solved.

It has been shown that optimally aligning a sequence to a generic structure with pseudo-
knots or two-body interactions is NP-hard [1, 50]. A structure profile (or template) generally
consists of a few different structure units. For example, an RNA structure generally contains
stems formed by contiguously stacked base pairs and loops formed by unpaired contiguous
bases. Similarly, a protein structure contains cores and loops. Cores are a-helices or S-strands
while loops consist of residues that do not interact with other residues in the structure. An
sequence-structure alignment is evaluated with an alignment score, which is the sum of the
alignment scores obtained on sequence segments aligned to all the structure units.

The sequence-structure alignment problem at the level of structure units can be formu-
lated as a graph theoretical optimization problem. In particular, a structure unit in a profile
can be represented with a graph vertex. Each pair of vertices whose structure units interact
with each other are connected with a non-directed edge. In addition, neighboring structure
units along the sequence backbone are connected with a directed edge. The resulting graph

is called the structure graph for the structure profile.

66



67

5.1 INTRODUCTION

In previous chapters, we have considered a few problems that can be expressed with MSO
logic sentences and obtained fixed parameter linear time algorithm for these problems. The
existence of such algorithms is due to the generalization result provided by the Courcelle’s
theorem. In this chapter, we consider a problem that cannot be directly expressed with MSO
logic but can still be solved with a fixed parameter linear time algorithm.

A graph G, = (Vi, Ey) is isomorphic to another graph Gy = (V,, Ey) if there exists a
bijective mapping f between V; and V5 such that (u,v) € Ej if and only if (f(u), f(v)) € Es.
The SUBGRAPH ISOMORPHISM problem is to determine, for two given graphs G and H,
whether there exists a subgraph in H that is isomorphic to G. H is often called the host
graph and G is called the guest graph. A simple reduction from the INDEPENDENT SET
problem can show that this problem is NP-complete [35].

One possible parameterization of this problem is to take the size of the guest graph as
a fixed parameter. However, the same reduction from the INDEPENDENT SET shows that
this problem is W[1]-hard. This problem is fixed-parameter tractable for host graphs from
certain restricted graph classes. For example, when the host graph H = (V| F) is a planar
graph, this problem can be solved in time 29(¢Ie21GD| F7| [30]. This result can be further
extended to host graphs with bounded tree width. In [57], it is shown that, when the guest
graph G is of bounded degree, this problem can be solved in time O(|G|"*|H|) based on a
tree decomposition of the host graph H with tree width ¢. Recently, it is shown in [39] that
this problem can be solved in polynomial time when the guest graph has the property of
log-bounded fragmentation and the host graph has bounded tree width.

It is not difficult to see that the SUBGRAPH ISOMORPHISM problem cannot be expressed
with a MSO logic sentence unless the guest graph is of fixed size, since the isomorphic
mapping needs to be described by binary relations unless the size of the guest graph is fixed.

In this chapter, we consider a new parameter of this problem and provide a reduction that



68

can reduce it to a problem that can be expressed with a MSO logic sentence on a graph with
small tree width.

In the following sections, parameterized algorithms and complexity results for a few dif-
ferent parameterizations of the SUBGRAPH ISOMORPHISM problem are presented in detail. In
particular, one parameterized algorithm is in FPT and can be used to develop tools for effi-
cient sequence-structure alignment in bioinformatics. Two case studies, including annotating
noncoding RNA genes in genomes and predicting protein tertiary structures, are shown in

this chapter.

5.2 PREvVIOUS WORK ON GRAPHS OF SMALL TREE WIDTH

The SUBGRAPH ISOMORPHISM problem is fixed parameter tractable when the guest graph

is of fixed size and the host graph is planar. In particular, we consider the following problem.

Problem 5.2.1 PLANAR SUBGRAPH [SOMORPHISM
Input: A quest graph G = (V, E), which is connected and of fixed size, and a planar host
graph H = (M, L).

Output: “yes” if H contains a subgraph that is isomorphic to G; “no” otherwise.

The PLANAR SUBGRAPH ISOMORPHISM problem is NP-complete but fixed parameter
tractable. There exists a 20U¢11981GD| [7| time algorithm that can decide whether G is isomor-
phic to a subgraph of H. The idea for this algorithm is based on the layered decomposition
of a planar graph [8, 30]. The layers can be obtained in linear time with a breadth first
search. It can be further shown that the subgraphs between certain layers have bounded tree
width and this leads to a linear time parameterized algorithm for the PLANAR SUBGRAPH

ISOMORPHISM problem.

Lemma 5.2.2 ([30]) The SUBGRAPH ISOMORPHISM problem can be solved in time O((t +

3)IGI|H]) based on a tree decomposition of the host graph with tree width t.



69

Lemma 5.2.3 ([8, 30]) Given a rooted spanning tree T for a planar graph H, a tree decom-
position of tree width at most 3l can be constructed in polynomial time, where | is the maz-

imum distance between a leave and the root.

This fact can be seen from the tree width of a planar triangulation H' of H. i.e., H' is
on the same vertex set as that of H and H is a subgraph of H’ and each face in H’' is a
triangle. It is easy to see that a tree decomposition of H’ is also that for H. In addition, T
is also a spanning tree for H'. A tree decomposition for H' can in fact be constructed from
T'. Since H' is a planar graph, based on a plane embedding of H’, we assume the leaves of
T are vy, v, - -+ , v, and the path P; from the root r to v; is to the left of that of P, in the
plane. Now, start with P;, we identify all the vertices on the P; (1 < ¢ < m) and all vertices
that are to the left of P; in the plane and form a triangle surface with one of its edges. We
group such vertices in tree bag X;. For the last step, we put all vertices in P, to every X;
(1 <i < m). The number of such vertices in X; is bounded by 3l + 1, because P; contains
at most [ edges. Thus at most 2/ additional vertices are included in X;. Now we connect
X1, X, -+, X, into a path. The resulting tree decomposition is a tree decomposition for H

and its tree width is bounded by 3l.

Theorem 5.2.4 ([30]) The PLANAR SUBGRAPH ISOMORPHISM can be solved in time

20(Gles |GI)| |

The results developed for the PLANAR SUBGRAPH ISOMORPHISM problem requires the
guest graph to be of fixed size. However, this is not always true in practice. The SUBGRAPH
IsoMmoOrPHISM problem under a few other constraints has been studied. For example, we

consider the following problem.

Problem 5.2.5 BOUNDED SUBGRAPH [SOMORPHISM
Input: A guest graph G = (V, E) whose degree is bounded by A, a tree decomposition of tree
width t for the host graph H = (L, M).

Output: “yes” if G is isomorphic to a subgraph of H. “no” otherwise.



70

The BOUNDED SUBGRAPH ISOMORPHISM problem can be solved in time O(|G|™ (¢ +
1)!12t324 H|) [57], which is in P when both t and A are fixed constants. This result thus does
not require the guest graph to be of fixed size. We provide a sketch of this algorithm in this

section. Basically, this algorithm is based on the following fact.

Lemma 5.2.6 Given two graphs G = (V, E) and H = (L, M) that satisfy all of the follow-

1Mmgs:
1. H contains a subgraph G' C H that is isomorphic to G;

2. the isomorphic mapping is f; if u € V is mapped tov € L by f, we define f~1(v) = {u};
for a vertex set V, CV, we define f~4(V,) = Usev. f~Y(w);

3. T = (X, F) is a tree decomposition for H.

For a given tree node X; € X, if X; NG’ # ¢, and G — f~YX; N G") contains connected
components Cy,Cs, -~ ,Cy,, then there does not exist vertices u,v € G and tree nodes X;

and Xy satisfying all of the followings:
1. f(u) € X; and f(v) € Xi;
2. u,veC; (1<i<m);
3. X, is in the path that connects X; and X in T

This is in fact a result implied in the definition of tree decomposition. To show this,
we assume that there exists such u, v and X, Xj. Because u and v are connected in graph
G— f~YX;NG"), there exists a path P that connects u and v in graph G that avoids vertices
in f~1(X; N G'). We now consider the vertices in f(P). Because G and G’ are isomorphic,
there exists a path P’ in G’ (also H) that connects f(u) and f(v) and the vertices in the
path are from f(P).

However, it is not difficult to find that f(u) ¢ X; and f(v) ¢ X;, since otherwise u or v

is in f~Y(X; N G"). In addition, for any vertex s € P, f(s) ¢ X;. In graph H, there exists



71

a path P’ that connects X; and X and avoids X;. This is impossible, since X; must be a
separator for f(u) and f(v) in H.

Lemma 5.2.6 states that for any isomorphic mapping between G and a subgraph of H, if
after we remove from G the vertices that are mapped to vertices in X;, the remaining part of
G consists of a few connected components, then the mapped images for vertices in the same
component must be completely in one of the connected subtrees in 1" — X;. This property
is important for us to obtain an efficient tree decomposition based algorithm to solve the

BOUNDED SUBGRAPH ISOMORPHISM problem.

Theorem 5.2.7 ([57]) Based on a tree decomposition of tree width t for the host graph,
the BOUNDED SUBGRAPH ISOMORPHISM problem can be solved in time O(|G|7T(t +

1)12t354 H).

The algorithm described in theorem 5.2 can be sketched as follows. Without loss of
generality, we assume that 7" is a binary tree and we also maintain a dynamic programming
table in each tree node. Each table entry in any tree node X; maintains a possible mapping
between Y; in the guest graph and a subset Z; of vertices in the tree node. This entry,
however, also maintains a few additional fields to store the subtrees in 17" — X, that each
component in G —Y; is mapped to. A valid bit V, is also associated with each table entry to
indicate whether the partial mapping this entry specifies can be valid or not. Based on this
table structure, we can use a bottom-up dynamic programming approach similar to the one
proposed in [6]. In particular, an exhaustive search of all table entries is performed on a leaf
node. For an internal node, we need to query its child nodes to determine the validity of each
of its table entries. Due to lemma 5.2.6, for a given entry, we are able to store the mapping
status of all other vertices that are not mapped to vertices in X; in a scale of “components”
instead of “vertices”. This thus enables us to check the consistency between different table
entries and guarantees the correctness of this algorithm. The maximum number of entries in

a table can be estimated based on the following simple facts.

1. The number of possible Y;’s is bounded by Zfié (‘?');



72

2. the number of possible Z;’s is bounded by Zf:(l] (tJlrl);
3. the number of possible mappings between given Y; and Z; is |Z;|!;
4. the number of possible connected components for G — Y; is bounded by At;

Because the tree is a binary tree, for each node X;, T'— X; can have up to 3 connected
subtrees and the number of possible ways that connected components in G — Y; can be
assigned to these subtrees is thus bounded by 34!. The total number of table entries in X;

is thus bounded by:

i ('Ci‘) i (ttl) (£ + 1)132 (5.1)

=0 =0

Also we have :
t+1

|G‘ < t+1
E < (t+1)|G| (5.2)
1=0 ( l )
and

ti <t +l 1) _gttl (5.3)

1=0
The time complexity of this algorithm is bounded by O(|G|*F1(t + 1)12¢135¢ H]).

5.3 MAP WIDTH FOR SUBGRAPH [SOMORPHISM

Definition 5.3.1 Given two graphs G = (V, E) and H = (S, M) and a mapping f from V
to 2%, the map width of f is defined as M = max,cy | f(u)|.

Map width is defined for a mapping between vertices in the guest graph and vertex
subsets in the host graph. In particular, the map width for such a mapping is the maximum
cardinality over all the vertex subsets that are mapped to a vertex in the guest graph. We
obtain a new parameterization of the SUBGRAPH ISOMORPHISM problem if we restrict the
map width of the isomorphism mapping to be a fixed small parameter k. We thus consider

the following parameterized subgraph isomorphism problem.

Problem 5.3.2 PARAMETERIZED SUBGRAPH ISOMORPHISM 1 (PSI1):



73

Input: graph G, graph H, mapping f from G to H of map width k;
Output: “yes”™ if and only if there is isomorphism under mapping f between G and a subgraph

of H.
However, the following theorem states that PSI1 problem is unlikely to be in FPT.
Theorem 5.3.3 PSI1 remains NP-complete when k > 3.

Proof: It is sufficient to show that PSI1 is NP-complete when k£ = 3. We can reduce the
3SAT problem to PSI1 when & = 3. In particular, for the boolean formula F' = ci Aco A+« - Acyp,
in a given 3SAT instance, we consider the literals contained in clause ¢;. We assume ¢; =
li, V1, V. For each clause, we generate three graph vertices to represent the three literals
in the clause. We now connect two literals [y, ls with an edge if l; # —ls. The resulting graph
is the host graph H. Guest graph G is simply a clique with m vertices. Each vertex in G
represents a clause. We now have an instance of the PSI1 problem with k = 3 if each vertex
in G can only be mapped to one of the three possible vertices that represent its literals in
H. 1t is clear that F' is satisfiable if and only if H contains a subgraph isomorphic to G. O

A different parameterization is to take the tree width ¢ of the guest graph as a parameter.

We thus have the following parameterized subgraph isomorphism problem.

Problem 5.3.4 PARAMETERIZED SUBGRAPH ISOMORPHISM 2 (PSI2):
Input: Graph H, graph G, a tree decomposition of graph G with tree width t;

Output: “yes” if and only if there is a subgraph in H that is isomorphic to G.

The following theorem states that PSI2 is W[1]-hard.
Theorem 5.3.5 ([18]) The PSI2 is W[1]-hard.

Proof: We reduce from the CLIQUE problem, which asks whether a given graph contains
a clique of size k. We generate a guest graph which is a clique of size k and use the graph
in the CLIQUE problem as the host graph. The tree width of the guest graph is k£ — 1. The

theorem has been proved. ]



74

Another possible parameterization is to take both the width of isomorphic mapping and
the tree width of the guest graph as parameters. The parameterized complexity of this
problem is still open. However, the INDUCED SUBGRAPH ISOMORPHISM problem remains
W/[1]-hard under this parameterization. We thus believe that this problem is unlikely to be
in FPT.

5.4 PARAMETERIZED ALGORITHMS FOR SUBGRAPH ISOMORPHISM

The PARAMETERIZED SUBGRAPH ISOMORPHISM problem is fixed-parameter tractable if
vertices in guest graph G is ordered and vertices in H are partially ordered. And the vertices

selected in the subgraph must follow the same order as in the guest graph.

Theorem 5.4.1 ([86, 85]) For an isomorphic mapping with bounded map width k, based
on a tree decomposition of tree width t for G, PSI can be solved in time O(k'|G|), if vertices
in the quest graph G are ordered and those in the host graph H are partially order. Vertices
in the subgraph that are selected must be ordered and follow the same order as in the guest

graph.

Proof: Based on the tree decomposition of graph GG, a dynamic programming algorithm
that follows the framework developed in [6] can be applied to decide whether such a subgraph
exists or not. This algorithm maintains a dynamic programming table for each tree node in
the tree decomposition of G. Starting with the leave nodes, it fills the table for each tree node.
For a given tree node, the algorithm exhaustively enumerates all possible combinations of
the candidates for its vertices. The algorithm at the same time checks whether corresponding
edges in the guest graph exist between the selected candidates or not. For an internal tree
node, the algorithm only needs to query the tables of its child nodes that store the partial
solutions on subgraphs induced by the vertices in the subtrees rooted at these child nodes.
It is not difficult to see that this algorithm can check whether their selected candidates

follow the same ordering or not. The final conclusion for the problem can be obtained by



75

querying the table in the root of the tree decomposition. A up-bottom trace-back procedure
can be applied to find the subgraph that is isomorphic to the guest graph. The algorithm
is correct since all vertices in GG are ordered and those in H are partially ordered. Because
two contiguous vertices on the backbone of G are connected and there exists a tree node
that contains both vertices, we are able to guarantee that the candidates of the two vertices
follow the same order. Due to the transitivity of ordering, it is not difficult to see that this
algorithm is able to guarantee the validity of the selected mapping. The computation time
needed is O(k'|G|) since for each tree node, the number of combinations of candidates can
be up to O(k'). The theorem has been proved. O

In practice, we often need to consider the MAXIMUM VALUED SUBGRAPH [SOMORPHISM
problem, where edges and vertices in the host graph are associated with certain values and
the objective is to find the maximum valued subgraph that is isomorphic to the guest graph.
We can slightly modify the algorithm in the proof of the theorem 5.4.1 and obtain the

following corollary.

Corollary 5.4.2 ([85, 86]) For an isomorphic mapping with bounded map width k and a
valued host graph H whose vertices and edges are associated with values, based on a tree
decomposition of tree width t for G, the maximum valued subgraph in H that is isomorphic
to G can be solved in time O(k'|G|), if vertices in the guest graph G are ordered and those
in the host graph H are partially ordered. Vertices in the subgraph that are selected must be

ordered and follow the same order as in the guest graph.

5.5 REDUCTION TO SMALLER TREEWIDTH

The SUBGRAPH ISOMORPHISM problem cannot be expressed with a MSO logic sentence
since a binary relation is needed for the isomorphic mapping unless the host graph H is
of fixed size. However, the PARAMETERIZED SUBGRAPH ISOMORPHISM problems we have

studied take the tree width of the host graph and the map width of the isomorphic mapping



76

as the parameters. These problems thus cannot be expressed with a MSO logic sentence.

However, if we consider the following (¢ + 1, k)-PARTITE CLIQUE problem.

Problem 5.5.1 (¢ + 1,k)-PARTITE CLIQUE
Input: A (t + 1, k)-partite graph G = (Vi U Vo U ---U Vi, E), where |Vi| = [Vo| = -+ =
Vigi| = k.

Output: “yes” if G contains a k-clique; “no” otherwise.

This problem can be solved with an exhaustive enumeration in time O(k*!). However,
the following theorem states that there exists a polynomial time reduction that can reduce
the (¢t + 1, k)-PARTITE CLIQUE problem to finding the maximum weighted independent set
on a graph with tree width bounded by tlog, k, a graph with tree width smaller than that
of G.

Theorem 5.5.2 ([18]) Let G = (V, E) be t-partite graph, where V- = Uy<;<;U;, with each
component U; containing at most k vertices. Then (t+ 1, k)-PARTITE CLIQUE problem on G

can be reduced to the problem of deciding a maximum weighted independent set on a graph

of tree width (t + 1)[log k.

Proof: Without loss of generality, we assume that |U;| = k, i = 0,1,...,t. Let U; =
{up,ul, ... ,ut_,}. We construct a new weighted graph G’ as follows: G’ = (V' E'), where

V= Z U (UL_W;). Each set

Wi = {givgiv s 7g%logk'\7g|i'logk]}

kzw elements. That is, for every pair

contains 2[log k| vertices. Set Z contains at most
U;,Uj, i < j in the original graph G and every pair of vertices uﬁl,u{ , where u} € U; and
u] € Uj, there is a unique vertex z;ljl € Z if (ul,u]) € E(Q).

Now we consider the edge set E’ in graph G’. For each set W;, i =0,1,...,¢, E' contains

an edge (g5, g;) forevery h = 1,..., [log k1. In addition, £’ contains edges connecting vertices

in Wi, i =1,...,t to vertices in Z. In particular, for edge (u},u]) € E, where u, € U; and



77

ViV v v W ® Weight = [7|
O Weight =1

—_ —T i o
vi v v ow :

i
Uy W, M, U

1 - A T O i

(a) (b)

Figure 5.1: An example to illustrate the reduction to the maximum weighted independent

set problem. (a) The (¢ + 1)-partite graph G, where only components 1, 3 and 8 and three

example edges (ui,ul), (u},us), (u,uf) are shown, k& = 8. (b) The constructed graph G,

log k = 3, where three vertices zi;;‘ : zé:i, zg’:i correspond to the three edges in (a). Since 3(4),

the binary representation of 4, is [100], 3(2) = [010], vertex 2,5 connects to vertices o}, v, v}

and v}, 95, v§ (bold line edges).

uf € Uj, let B(h) = (aias...anegk]) be the canonical binary representation of number A,
where a, € {0,1}, s = 1,..., [logk]. Also let 3(I) = (biby ... b)) be the canonical binary
representation of number [, where b, € {0,1}, s =1,..., [logk]. Vertex z;’l is connected to
vertex ¢' if a;, = 0 (and connected to vertex g’ if a, = 1), for all s = 1,..., [logk]. Also
vertex Z}ZLJZ is connected to vertex g7 if by = 0 (and connected to vertex g if by = 1), for all
s=1,...,[logk]. The weight of each vertex in W; is assigned |Z|. But the weight of each
vertex in set Z is 1. Figure 5.1 shows an example to illustrate the construction of G’.

We now show that G has a clique of size (¢ + 1) if and only if G’ has an independent set
of weight |Z|(t + 1)[log k] +t(t + 1)/2.



78

Now suppose that there is a clique C' in GG. Without loss of generality, assume the ver-
tices in C' are arranged such that C' = {ugo, u}Ll, ..., up, }, because vertices in every U; are
independent to each other. Then in the constructed graph G’, there is an independent set
I of weight |Z|(t + 1)[logk] + t(t + 1)/2 containing [log k| vertices from every set W,
i =0,1,...,t, and exactly t(t + 1)/2 vertices from Z. In particular, corresponding to the
clique C', the independent set I contains vertex g' if the sth bit of the binary presentation of
h; is 1 and contains vertex g° if it is 0, for all i = 0,...,t and s = 1,..., [logk]. In addition,
I contains the following vertices also: z,il’l_j,hj, fori < jand¢,7 =1,...,r. It is not hard to
verify that Io is an independent set with the desired weight.

Conversely, if there is a maximum weight independent set I in G’ with weight |Z|(t +
1)[log k] + t(t + 1)/2, it should contain exactly [logk] vertices from every set W; that is
involved, assume ¢ = 0,...,t. Moreover, it is not hard to see that the subset of involved
vertices from W; is a “binary encoding” of some number, say h;. It is not hard to see either
that vertex zthj is independent to the involved vertices from both W; and W; and so it
belongs to I. Including any other vertex from Z into the independent set I would cause
conflicts with some of the vertices from W;’s that are already in I. Removing any of these
vertices would result in a decrease of total weight by at least |Z| — 1, an amount that cannot
be compensated by the weight of the additional vertex from Z. Moreover, one can check
easily that the independent set I corresponds to a clique C; Cr = {uj , up ..., uj,}.

The constructed graph G’ is actually a bipartite graph with W;’s as one vertex set and Z
the other. So the graph can be decomposed as a tree of at most 1+ kQ@ nodes. There are
at most (t+1)[log k|41 vertices in each bag. That is (UleVVZ)U{z;le} for every i, 7, (i < j), h,
and [, (h < ). Therefore, the tree decomposition has tree width (¢ + 1)[log k]. m

This upper bound on the tree width on G’ allows us to derive an alternative algorithm
based on Courcelle’s theorem. That is, PSI is solvable in time O(2¢FDekln) = O(kt*+1n),
the same complexity as claimed in theorem 5.4.1. The difference is that this new problem

can be expressed with a MSO logic sentence.



79

5.6 SEQUENCE-STRUCTURE ALIGNMENT IN BIOINFORMATICS

The sequence that is to be aligned to the structure profile can be preprocessed and the
possible sequence segments that can be aligned to each structure unit can be determined.
These sequence segments are candidates for the given structure unit. Similarly, each candidate
can be represented with a graph vertex and vertices for candidates of interacting structure
units can be connected to form a sequence graph. In this dissertation, we use G to denote a
structure graph and H for a sequence graph.

It is clear that a possible sequence-structure alignment corresponds to a subgraph con-
tained in the sequence graph H and isomorphic to the structure graph G. Each candidate can
be valued based on the alignment score between its sequence segment and the profile of the
structure unit. In addition, each edge in H can also be associated with a value. In particular,
this value can be computed using the energy or statistical functions modeling the interac-
tions between structure units. The optimal sequence-structure alignment thus corresponds
to a maximum (or minimum) valued subgraph in the sequence graph that is isomorphic to
the structure graph. Since the sequence backbone provides an ordering of structure units and
sequence segments, the parameterized algorithm developed in theorem 5.4.1 and corollary
5.4.2 can possibly be used to develop efficient computational tools for the sequence-structure

alignment.

5.6.1 ANNOTATING NONCODING RNAS oN GENOMES

An RNA structure consists of stacked base pairs, these stacked base pairs form stems. An
RNA structure can be modeled with a conformational graph, in which each vertex repre-
sents a base region of a stem and each edge connects two base regions if they form a stem
or they constitute the two ends of a loop. Figure 5.2 (a)(b) show a secondary structures and
its corresponding structure graph. Figure 5.2 (¢)(d) provide an example on the construction

of the sequence graph for a sequence that is to be aligned to the structure. Based on this



80

' 3 s
o ly ry rp
(@) (b)
5 | A B N
' g/ r21\‘
P :' s t
Vo -t
RN Lo LAz TN N
T ‘\\\‘\ A SRR \\
) .7 v TN \
’ [l L S 1,7 NN | r | I.
i \“ WO AR 12 12 122 22
s/ VU N s
iy 1o PP PP P P g T
(c) (d)

Figure 5.2: (a) An RNA structure that contains parallel stems. (b) The corresponding struc-
ture graph. (¢) An RNA secondary structure (top), and the mapped regions and images of
the stems on the target sequence (bottom). (d) The sequence graph constructed from the
candidates of the stems. (I11,711) and (l;2,r12) are the candidate stems of the first stem, and
(I21,791) and (la2,792) are those of the second stem.



81

Figure 5.3: (a) An RNA structure that contains both nested and pseudoknot stems. (b) A
tree decomposition of its corresponding structure graph without the crossing stem (g, h). (c)

A tree decomposition of its corresponding structure graph added back the crossing stem (g,
h).

representation of sequence and structure, the optimal sequence-structure alignment corre-
sponds to a generalized maximum valued subgraph isomorphism problem in which the host
graph is the conformational graph, usually of a naturally small tree width ¢. From figure
5.3, it’s not difficult to see that the tree width of the conformational graph for a pseudoknot
free structure is bounded by 2 since it is a outer-planar graph [11]. For a conformational
graph that contain pseudoknots, the tree width is in general slightly larger than 2. Using
the dynamic programming algorithm developed in theorem 5.4.1, an optimal alignment can
be found in time O(k!N?) for a given integer parameter k. The value of k can be effectively
determined by a statistical cutoff and is also small in nature. The small tree widths of the
conformational graphs in this problem guarantee the computational efficiency of searching.
Compared with the CYK algorithm developed based on the Covariance Models (CMs) [28],

this new algorithm is significantly faster.



82

This new algorithm was tested on several ncRNA families to test the accuracy and effi-
ciency of the searching algorithm. Experiments have shown that using a significantly reduced
amount of computation time, the searching algorithm based on this new model can achieve
the same accuracy as the CM based searching does. Specifically, on average, the algorithm
is about 24 and 50 times faster than CM based methods on searching for pseudoknot free
sequences that contain around 90 and 150 nucleotides respectively. Our experiments also
demonstrated an even more significant advantage of the algorithm over the CM based search
in computation time when the profiled RNAs contain pseudoknots. As a test of the model on
real genomes, we used the algorithm to search for the tmRNA gene in two bacterial genomes
and the telomerase RNA gene in two yeast genomes. Both the tmRNA and the telomerase
genes were detected in both genomes with high accuracy in days, a task that would have

needed months of computation time if a CM based searching model has been used.

5.6.2 PREDICTING PROTEIN TERTIARY STRUCTURES

Protein threading is an important method for predicting the tertiary structure of a protein
sequence. Specifically, protein threading aligns a protein sequence to all available structure
templates in a database and the tertiary structure is predicted based on the alignment scores.
The core part of a protein threading is thus the sequence-structure alignment. However, it
has been shown that this problem is NP-hard for a generic structure profile that includes two
body interactions between amino acids [50]. Similar to the sequence-structure alignment for
noncoding RNAs, we consider this alignment problem at structure unit level. The structure
units in a structure template are cores. Cores usually represent a-helices and (-strands. To
simplify the problem, gaps are not allowed to appear in cores in a valid sequence-structure
alignment. We model a structure template with a structure graph where the interacting
cores are connected with nondirected edges, and cores neighboring in the backbone are
connected with directed edges. A protein sequence can be preprocessed with the profiles of

each structure unit and an image graph can be similarly constructed. Figure 5.4 (a)(b) show



83

(33 [E53%] We Y %

G Gy C; Cy €y G Cs Cy
(a) (b)
1

il lCZ l‘% 154

(F &3] [Fox] a] ‘

,’:” Cl ““‘\ ',"” cz ““\‘ ’,’”’ CS y“‘,‘ ',"” c4 \y‘,\

— : ‘ : 2 S " .2
il/ i2/ il/ l'?/ l-l/ e -1/1-2/' L, i2 i e,

e < &) ] €3 €3 TCyq €y ] (&)

©) (d)

Figure 5.4: (a) A protein structure template that contains both cores and loops. (b) The
corresponding structure graph. (¢) The mapped region and candidates for each core in the
structure template (bottom). The dashed lines specify the possible mappings between cores
and their images. Core ¢; has two possible images i'., and i%.. (d) The sequence graph
formed by the candidates of cores in the template.

a protein structure template and its corresponding structure graph, while Figure 5.4 (c)(d)
show the construction of sequence graph from the candidates selected for each structure unit.

The optimal alignment between a sequence and a structure template corresponds to
finding the minimum valued subgraph isomorphism between the conformational graph and
the image graph. Based on graph tree decomposition, alignment between a sequence of M
amino acids and a structure template of size N can be performed in time O(M N +k'n), where
n is the number of cores in the structure template and ¢ is the tree width of the conformational
graph. Parameter k, usually small, represents an upper bound for the possible number of
locations in the sequence that can be aligned to a given core. In particular, our experiments
show that among 3890 protein tertiary structure templates compiled using PISCES [93],

only 0.8% of them have treewidth ¢ > 10 and 92% have ¢ < 6, when using 7.5 A Cjs-Cj



84

distance cut-off for defining two-body interactions. The naturally small tree width ¢ and
small parameter k allows the alignment algorithm to run efficiently.

The technique of tree decomposition has been used in protein side-chain packing when
back bone is known [99]. A graph theoretical algorithm proposed in [100] formulates the
protein threading problem as a graph labeling problem, which can be solved with graph tree
decomposition. But the algorithm was not implemented and tested for protein threading. Our
work formulates the alignment into subgraph isomorphism. The introduction of parameter
k makes it possible to achieve efficiency in threading.

For testing and evaluating the efficiency and accuracy of the algorithm, we implemented
the algorithm in program PROTTD and compared its performance with that of PROSPECT
IT [49] and RAPTOR. We used protein pairs in the Dali data set [43] to test the alignment
accuracy of PROTTD. The alignment accuracy was evaluated by comparing the obtained
alignments with those provided by FAST [106]. Our experiments showed that, on average,
PROTTD is about 50 times faster than PROSPECT II to obtain better or same alignment
accuracy. In addition, we tested the algorithm on the lindahl data set [82] for fold recogni-
tion and compared the accuracy with that of RAPTOR at all similarity levels. Our testing
results showed that PROTTD achieved significantly improved fold recognition accuracy on

superfamily and fold levels.

5.7 SUMMARY

The SUBGRAPH ISOMORPHISM problem cannot be expressed with a MSO logic sentence
unless the guest graph is fixed. Our study on the relationship between this problem and
MSO logic has extended the Courcelle’s theorem based on the development of a parameter-
ized algorithm. The algorithm solves the problem by reducing the MAXiMUM WEIGHTED
INDEPENDENT SET problem on a graph with a smaller tree width, which can be expressed

with a MSO logic sentence.



85

The SUBGRAPH ISOMORPHISM problem is an NP-complete problem and has been inten-
sively studied during the past decade. Tree decomposition provides an important algorithmic
tool for developing parameterized algorithms for this problem and a few important results
have been obtained, including a linear time algorithm for PLANAR SUBGRAPH ISOMOR-
PHISM when the guest graph is of fixed size [30] and a polynomial time algorithm [57] when
the guest graph is of bounded degree and the tree width of the host graph is bounded by a
constant.

In this chapter, we study a different parameterization of the SUBGRAPH ISOMORPHISM
problem. We consider the map width for the isomorphic mapping between the guest graph
and the host graph. Based on this new parameter and the tree width of the guest graph, the
parameterized complexities of a few different parameterizations of this problem are investi-
gated. In particular, the SUBGRAPH [SOMORPHISM problem remains intractable while only
one of the parameters, the map width and tree width of the host graph, is fixed. In addi-
tion, a slightly different problem, the INDUCED SUBGRAPH [SOMORPHISM problem, remains
W(1]-hard even both of them are fixed parameters. However, our study also show that under
certain constraints, the SUBGRAPH ISOMORPHISM problem is fixed parameter tractable when
both the map width and tree width of the guest graph are fixed parameters.

This parameterized algorithm can be used to solve the sequence-structure problem in
bioinformatics. In particular, the sequence-structure alignment problem can be formulated
as the MAXIMUM VALUED SUBGRAPH ISOMORPHISM problem and the corresponding graphs
satisfy the constraints needed to guarantee the correctness of the algorithm. In addition, the
tree widths of the guest graphs in the sequence-structure alignment problem are in general
small (less than 6 for majority of problem instances). This algorithm can thus be used to
develop a new computational tool for sequence-structure alignment. Case studies performed
on both ncRNA gene annotation and protein tertiary structure prediction have demonstrated

the advantage of this algorithm over others in both computational efficiency and accuracy.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

NP-hard optimization problems constitute one of the important aspects of bioinformatics
research. Finding efficient but optimal solutions for these problems is thus of fundamental
and important value. In this dissertation, we provide an original perspective on the effort
to develop optimal algorithms for these problems. We notice that, due to the biological or
biochemical nature for these problems, many optimization problems in bioinformatics contain
inherently small parameters. These parameters provide an avenue to study these problems
from the views of parameterized computation. We identified a structure parameter that is
inherently small for several bioinformatics problems. Based on this parameter, we developed
a new theoretical framework that can be used to formulate these problems on graphs and
efficient optimal algorithms for these problems can be developed based on this framework.

The structure parameter we have identified is graph tree width, which is a concept orig-
inally developed in graph minor theory [71]. Tree width is a parameter associated with tree
decomposition, which develops a new topological view on the graphs. Tree decomposition
also has algorithmic implications and has been used to develop parameterized algorithms for
many NP-hard graph optimization problems. Tree width is in general an important param-
eter in these algorithms.

A generic result on the problems that can be solved in linear time on graphs with bounded
tree width is Courcelle’s theorem, which states that any problem that can be expressed with
MSO logic can be solved in linear time on graphs with bounded tree width. With this in
mind, we find that many NP-hard optimization problems in bioinformatics can be formulated

on graphs. The tree width of these graphs are inherently small due to the biochemical or

86



87

biological property of these problems. In addition, the objectives to be optimized can also
be expressed in MSO logic. These algorithms can thus be solved efficiently with the dynamic
programming method developed in Courcelle’s theorem.

We have designed and implemented the parameterized algorithms for a few NP-hard
optimizations in bioinformatics, including the sequence-structure alignment for ncRNA and
proteins, protein identification from MS/MS spectrum and the identification of PTMs with
peptide sequence tag selection. Experiments performed on biological data have demonstrated
the advantage of these algorithms over other methods in both accuracy and computational
efficiency.

This dissertation, however, only serves as a starting point for the development of param-
eterized algorithms and complexity results for problems in bioinformatics research. With
the emergence of more and more new problems, new techniques and methods are definitely
needed and will be developed. These techniques will enhance the understanding of both the
parameterized computation and possibly the biological mechanism behind these problems.
In the following sections, we provide a vision of possible future work to extend the research

in this dissertation.

6.1 IMPROVING THE CONSTANT FACTOR

Parameterized computation provides efficient solutions for some NP-hard problems when
the parameters in these problems are small. In addition, for a parameterized algorithm
that can solve an NP-hard problem (k,n) in time O(f(k)n¢), the constant factor f(k) is
often an exponential function and its value determines the computation time needed by the
algorithm in practice. Improvements on the constant factors are thus important for reducing
the computation time needed to solve these problems. For example, the first parameterized
algorithm developed to solve the VERTEX COVER problem uses a search tree technique
and the computation time needed by this algorithm is bounded by O(2%|V]). Techniques

developed later have led to parameterized algorithms that only need time O(k|V| + 2*). In



88

20], a new O(k|V| + 1.2852%) time algorithm is developed for this problem and it can be
practically used to solve problem instances where the parameter & is not larger than 50.
The algorithms we have developed and implemented in this dissertation are based on
graph tree decomposition and the parameter in these algorithms is the tree width of the
underlying graph. For a structure parameter like tree width, techniques and methods that
can reduce the constant factor in the corresponding parameterized algorithms have not been
available. Developing tree decomposition based algorithms with reduced constant factors
is thus important to further improve the practical value of parameterized computation in
solving bioinformatics problems. In addition, methods and techniques that can lead to such

algorithms are of interest for algorithmic research itself.

6.2 GRAPHS WITH LARGE TREE WIDTH

For all the problems we have studied in this dissertation, we assume the tree width of the
underlying graph is a small integer. Due to the biochemical properties associated with these
problems, the assumption is correct for most of the problem instances in practice. However,
this assumption may not be the case for some of the bioinformatics problems that can be
reduced to a graph optimization problem.

For example, the goal of the RNA folding problem is to find the secondary structure with
the minimum energy for a given RNA sequence. The problem is NP-hard when a sequence
may fold into a structure that contains pseudoknots [1]. All stems that are energetically stable
can be found with a dynamic programming algorithm in polynomial time and based on these
stems, this problem can be reduced to a graph optimization problem. More specifically, a
graph vertex can be used to represent a stem and a graph vertex can be associated with a
weight which is the inverse of the thermal dynamic energy of the corresponding stem. Two
vertices are connected with a graph edge if the corresponding stems conflict on the sequence.
A graph can thus be constructed to represent the sequence and the secondary structure with

the minimum energy is the independent set with the maximum weight in such a graph.



89

This problem can be solved efficiently if the graph constructed from stems is of small
tree width. Unfortunately, our study has suggested that this is not the case and the tree
width of the graph may significantly increase when the length of the sequence increases.
Tree decomposition based dynamic programming thus cannot provide a practically efficient
solution for this problem.

Specific problem properties can sometimes help resolve the difficulty that arises from
a graph with a large tree width. For example, in the RNA folding problem, although the
tree widths of the underlying graphs are in general not small, vertices in a tree bag can
often be partitioned into cliques of large size. This partition has been utilized to reduce the
computation time needed for enumerating all possible combinations of selected vertices since
two vertices in the same clique cannot be selected in the same independent set. This property
has led to an algorithm that can be practically used for structure prediction.

For future research, it is important to develop reductions that can formulate problems on
graphs with tree widths as small as possible. If such a goal cannot be achieved, we need to
develop techniques that can use specific problem properties to resolve the difficulty arising

from a large tree width.

6.3 SUMMARY

In this chapter, we summarize the previous chapters in this dissertation and describe future
research that may deserve further study in the future work. As we have pointed out, param-
eterized and exact computation plays important roles in bioinformatics and the design and
implementation of parameterized algorithms is thus one of the most promising research areas
that can possibly lead to the efficient solutions for NP-hard optimization problems in bioin-
formatics. This dissertation only initiates the effort to consider solving these problems this
way. Additional techniques and methods are definitely needed and will be developed to solve

more NP-hard problems in bioinformatics.



1]

BIBLIOGRAPHY

T. Akutsu, “Dynamic programming algorithms for RNA secondary structure prediction

with pseudoknots”, Discrete Applied Mathematics, 104: 45-62, 2000.

N. Alon, R. Yuster, and U. Zwick, “Color-coding”, Journal of the ACM, 42: 844-856,
1995.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.
J. Lipman, “Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs”, Nucleic Acids Research, 25(17): 3389-3402, 1997.

E. Amir, “Efficient approximation for triangulation of minimum treewidth”, Proceedings

of 17th Conference on Uncertainty in Artificial Intelligence, 7-15, 2001.

S. Arnborg, D. G. Corneil, and A. Proskurowski, “Complexity of finding embeddings in
a k-tree.”, SIAM Journal on Algebraic and Discrete Methods, 8: 277-284, 1987.

S. Arnborg and A. Proskurowski, “Linear time algorithms for NP-hard problems

restricted to partial k-trees.”, Discrete Applied Mathematics, 23: 11-24, 1989.

E. Bachoore and A. Proskurowski, “Characterization and recognition of partial 3-trees”,

SIAM Journal on Algebraic and Discrete Methods, 7: 305-314, 1986.

B. S. Baker, “Approximate algorithms for NP-complete problems on planar graphs.”,
Journal of the ACM, 41: 153-180, 1994.

C. Bartels, “Fast algorithm for peptide sequencing by mass spectrometry.”, Biomed.

Environ. Mass Spectrom., 19: 363-368, 1990.

90



[10]

[11]

[12]

91

V. Bafna and S. Zhang, “FastR: Fast database search tool for non-coding RNA.” | Pro-
ceedings of the 3rd IEEE Computational Systems Bioinformatics Conference, 52-61,
2004.

H. L. Bodlaender, “Classes of graphs with bounded tree-width.”, Tech. Rep. RUU-CS-

86-22, Dept. of Computer Science, Utrecht University, the Netherlands, 1986.

H. L. Bodlaender, “Better algorithms for the pathwidth and treewidth of graphs.”,
Proceedings of the 18th international Colloquium on Automata, Languages and Pro-

gramming, Springer Verlag, Lecture Notes in Computer Science, 510: 544-555, 1991.

H. L. Bodlaender, “A linear time algorithm for finding tree-decompositions of small

treewidth”, SIAM Journal on Computing, 25: 1305-1317, 1996.

H. L. Bodlaender and A. M. C. A. Koster, “Safe separators for treewidth”, Proceedings

of the 6th Workshop on Algorithm Engineering and FExperiments, 70-94, 2004.

H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle, “Contraction and Treewidth Lower
Bounds”, Proceedings of the 12th Annual Furopean Symposium on Algorithms, 628-639,
2004.

M. Brown and C. Wilson, “RNA Pseudoknot Modeling Using Intersections of Stochastic
Context Free Grammars with Applications to Database Search.”, Pacific Symposium on

Biocomputing, 109-125, 1995.

L. Cai, R. Malmberg, and Y. Wu, “Stochastic Modeling of Pseudoknot Structures: A

Grammatical Approach.”, Bioinformatics, 19, 166 — 73, 2003.

L. Cai, Y. Song, X. Huang, C. Liu, and J. Zhao, “A Case Study of Parameterized

Reduction to MSO logic”, manuscript.



[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

92

T. Chen, M. Y. Kao, M. Tepel, J. Rush, and G. M. Church, “A Dynamic Programming
Approach to De Novo Peptide Sequencing via Tandem Mass Spectrometry.”, Journal
of Computational Biology, 8(3): 325-337, 2001.

J. Chen, I. A. Kanj, and W. Jia, “Vertex Cover: Further Observations and Further

Improvements”, Journal of Algorithms 41(2): 280-301, 2001.

B. Chor, M. Fellows, and D. W. Juedes, “Linear Kernels in Linear Time, or How to Save
k Colors in O(n?) Steps”, Proceedings of the 30th International Workshop on Graph-

Theoretic Concepts in Computer Science, 257-269, 2004.

F. Clautiaux, J. Carlier, A. Moukrim, and S. Négre, “New lower and upper bounds for
graph treewidth”, Proceedings of International Workshop on Experimental and Efficient

Algorithms, Lecture Notes in Computer Sciences, 2647: 70-80, 2003.

B. Courcelle, “The Monadic Second Order Theory of Graphs I: Recognizable Sets of

Finite Graphs”, Information and Computation, 85(1):12-75, 1990.

V. Dancik, T. A. Addona, K. R. Clauser, J. E. Vath, and P. A. Pevzner, “De Novo Pep-
tide Sequencing via Tandem Mass Spectrometry.”, Journal of Computational Biology,

6(3/4): 327-342, 1999.

A. T. Dandjinou, N. Lévesque, S. Larose, J. Lucier, S. A. Elela, and R. J. Wellinger, “A
Phylogenetically Based Secondary Structure for the Yeast Telomerase RNA.”, Current
Biology, 14: 1148-1158, 2004.

R. G. Downey and M. R. Fellows, “Parameterized Complexity”, Monographs in Com-

puter Science, Springer, 1997.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis: Proba-

bilistic models of proteins and nucleic acids, Cambridge Univ. Press, 1998.



28]

[29]

[32]

[33]

[34]

[35]

93

S. Eddy and R. Durbin, “RNA sequence analysis using covariance models.”, Nucleic

Acids Research, 22: 2079-2088, 1994.

J. K. Eng, A. L. McCormack, and J. R. Yates III, “An Approach to Correlate Tandem
Mass Spectral Data of Peptides with Amino Acid Sequences in A Protein Database”,
Journal of the American Society of Mass Spectrometry, 5(11): 976-989, 1994.

D. Eppstein, “Subgraph Isomorphism in Planar Graphs and Related Problems.”,
Journal of Graph Algorithms and Applications, 3.3: 1-27, 1999.

J. Fernandez de Cossio, J. Gonzales, and V. Besada, “A computer program to aid
the sequencing of peptides in collision-activated decomposition experiments.”, CABIOS

11(4): 427-434, 1995.

D. N. Frank and N. R. Pace, “Ribonuclease P: unity and diversity in a tRNA processing
ribozyme.”, Annu Rev Biochem., 67: 153-180, 1998.

A. Frank, S. Tanner, P. Pevzner, “Peptide Sequence Tags for Fast Database Search in
Mass-Spectrometry”, Journal of Proteome Research, 4(4), 1287 -1295, 2005.

A. Frank and P. Pevzner, “PepNovo: De Novo Peptide Sequencing via Probabilistic
Network Modeling”, Anal. Chem., 77(4), 964 -973, 2005.

M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to the Theory
of NP-Completeness”, Freeman, New York, 1979.

D. Gautheret and A. Lambert, “Direct RNA motif definition and identification from
multiple sequence alignments using secondary structure profiles.” | Journal of Molecular

Biology, 313: 1003-1011, 2001.

A. Godzik, A. Kolinski, and J. Skolnick, “Topology fingerprint approach to the inverse
folding problem”, Journal of Molecular Biology, 227: 227-238, 1992.



[38]

[39]

[40]

[41]

[46]

94

S. J. Geobel, B. Hsue, T. F. Dombrowski, and P. S. Masters, “Characterization of the
RNA components of a Putative Molecular Switch in the 3’ Untranslated Region of the
Murine Coronavirus Genome.”, Journal of Virology, 78: 669-682, 2004.

M. Hajiaghayi and N. Nishimura, “Subgraph isomorphism, log-bounded fragmentation
and graphs of (locally) bounded treewidth”, Proceedings of the 27th International Sym-

posium on Mathematical Foundations of Computer Science, 305-318, 2002.

C. W. Hamm, W. E. Wilson, and D. J. Harvan, “Peptide sequencing program.”,
CABIOS 2, 365.

Y. Han, B. Ma, and K. Zhang, “SPIDER: Software for Protein Identification from
Sequence Tags Containing Sequencing Error”, Journal of Bioinformatics and Compu-

tational Biology, 3(3):697-716, 2005.

W. M. Hines, A. M. Falick, A. L. Burlingame, and B. W. Gibson, “Pattern-based algo-
rithm for peptide sequencing from tandem high energy collision-induced dissociation

mass spectra.”, J. Am. Soc. Mass. Spectrom., 3: 326-336, 1992.

L. Holm and C. Sander, “Decision support system for evolutionary classification of
protein structures”, Proceedings of International Conference on Intelligent Systems for

Molecular Biology, 5: 140-146, 1997.

K. Ishikawa and Y. Niva, “Computer-aided peptide sequencing by fast atom bombard-

ment mass spectrometry.”, Biomed. Environ. Mass Spectrom., 13: 373-380, 1986.

R. J. Johnson and K. Biemann, “Computer program (seqpep) to aid in the interpretation
of high-energy collision tandem mass spectra of peptides.”, Biomed. Environ. Mass

Spectrom., 18: 945-957, 1989.

S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S. R. Eddy, “Rfam: an
RNA family database.”, Nucleic Acids Research, 31: 439-441, 2003.



[47]

[48]

[49]

[50]

[51]

95

D. T. Jones, “Protein secondary structure prediction based on position-specific scoring

matrices”, Journal of Molecular Biology, 292(2): 195-202, 1999.

R. J. Klein and S. R. Eddy, “RSEARCH: Finding Homologs of Single Structured RNA
Sequences.”, BMC' Bioinformatics, 4:44, 2003.

D. Kim, D. Xu, J. Guo, K. Ellrott, and Y. Xu, “Prospect II: protein structure prediction

program for genome-scale applications”, Protein Engineering, 16(9): 641-650, 2003.

R. H. Lathrop, “The protein threading problem with sequence amino acid interaction

preferences is NP-complete”, Protein Engineering, 7(9): 1059-1068.

C. Liu, Y. Song, R. Malmberg, and L. Cai, “Profiling and Searching for RNA Pseudoknot

Structures in Genomes.”, Lecture Notes in Computer Science 3515, 968-975.

J. Liu, B. Ma, and M. Li, “PRIMA: Peptide Robust Identification from MS/MS
Spectra”, Proceedings of the Third Asia-Pacific Bioinformatics Conference, 181-190,
2005.

C. Liu, Y. Song, B. Yan, Y. Xu, and L. Cai, “Fast De Novo Peptide Sequencing and
Spectral Alignment”, Proceedings of the Pacific Symposium on Biocomputing 2006, 255-
266, 2006.

T. M. Lowe and S. R. Eddy, “tRNAscan-SE: A Program for Improved Detection of
Transfer RNA genes in Genomic Sequence.”, Nucleic Acids Research, 25: 955-964, 1997.

B. Lucena, “A new lower bound for tree-width using maximal cardinality search.”, STAM

Journal on Discrete Mathematics, 16: 345-353, 2003.

B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li, A. Doherty-Kirby, and G. Lajoie,
“PEAKS: Powerful Software for Peptide De Novo Sequencing by Tandem Mass Spec-

trometry”, Rapid Communication in Mass Spectrometry, 17(20): 2337-2342. 2003.



[57]

[58]

[65]

96

J. Matousek and R. Thomas, “On the complexity of finding iso- and other morphisms

for partial k-trees.”, Discrete Mathematics, 108: 343-364, 1992.

N. Nameki, B. Felden, J. F. Atkins, R. F. Gesteland, H. Himeno, and A. Muto, “Func-
tional and structural analysis of a pseudoknot upstream of the tag-encoded sequence in

E. coli tmRNA.”, Journal of Molecular Biology, 286(3): 733-744, 1999.

G. L. Nemhauser and L. E. Trotter, “Vertex packing: structural properties and algo-

rithms”, Mathematical Programming, 8: 232-248, 1975.

V. T. Nguyen, T. Kiss, A. A. Michels, and O. Bensaude, “7SK small nuclear RNA binds
to and inhibits the activity of CDK9/cyclin T complexes.”, Nature 414: 322-325, 2001.

K. G. Olesen and A. L. Madsen, “Maximal prime subgraph decomposition of Bayesian
networks”, IEEE Transactions on Systems, Man and Cybernetics, Part B, 32: 21-31,
2002.

A. V. Oppenheim and R. W. Schafer, “Discrete-time Signal Processing”, Prentice Hall,
1989.

D. N. Perkins, D. J. Pappin, D. M. Creasy, and J. S. Cottrell, “Probability-based Pro-
tein Identification by Searching Sequence Databases Using Mass Spectrometry Data”,
FElectrophoresis, 20(18), 3551-3567, 1999.

L. Perkovi¢ and B. Reed, “An improved algorithm for finding tree decompositions of
small tree width”, Proceedings of the 25th International Workshop on Graph Theoretic

Concepts in Computer Science, Lecture Notes in Computer Science, 1665: 148-154, 1999.

P. A. Pevzner, V. Dancik, and C. L. Tang, “Mutation-Tolerant Protein Identification
by Mass-Spectrometry.”, Proceedings of The Fourth Annual International Conference

on Computational Molecular Biology: 231-236, 2000.



[66]

[67]

[68]

[69]

[74]

[75]

97

J. T. Prince, M. W. Carlson, R. Wang, P. Lu, and E. M. Marcotte, “The Need for a

Public Proteomics Repository”, Nature Biotechnology, 22(4): 471-472, 2004.

E. Rivas and S. Eddy, “The language of RNA: a formal grammar that includes pseudo-
knots.”, Bioinformatics, 16: 334-340, 2000.

E. Rivas and S. R. Eddy, “Noncoding RNA gene detection using comparative sequence

analysis.”, BMC' Bioinformatics, 2:8, 2001.

E. Rivas, R. J. Klein, T. A. Jones, and S. R. Eddy, “Computational identification of
noncoding RNAs in E. coli by comparative genomics.”, Current Biology, 11: 1369-1373,
2001.

E. Rivas and S. R. Eddy, “A dynamic programming algorithm for RNA structure pre-

diction including pseudoknots.”, Journal of Molecular Biology, 285: 2053-2068, 1999.

N. Robertson and P. D. Seymour, “Graph Minors II. Algorithmic aspects of tree-width.”,
Journal of Algorithms, 7: 309-322, 1986.

N. Robertson and P. D. Seymour, “Graph Minors III. Planar tree width.”, Journal of
Combinatorial Theory Series B, 36: 49-64, 1984.

N. Robertson and P. D. Seymour, “Graph Minors IV. Tree width and well-quasi-

ordering.”, Journal of Combinatorial Theory Series B, 48: 227-254, 1990.

N. Robertson and P. D. Seymour, “Graph Minors V. Excluding a planar graph.”, Journal
of Combinatorial Theory Series B, 41: 92-114, 1986.

N. Robertson and P. D. Seymour, “Graph Minors X. Obstructions to tree decomposi-
tion.”, Journal of Combinatorial Theory Series B, 52: 153-190, 1991.

N. Robertson and P. D. Seymour, “Graph Minors XIII. The disjoint paths problem.”,

Journal of Combinatorial Theory Series B, 63: 65-110, 1995.



[77]

(78]

[79]

[83]

[84]

[85]

98

T. Sakurai, T. Matsuo, H. Matsuda, and I. Katakuse, “Paas 3: A computer program
to determine probable sequence of peptides from mass spectrometric data.”, Biomed.

Mass Spectrom., 11(8): 396-399, 1984.

J. Scott, T. Ideker, R. M. Karp, R. Sharan, “Efficient algorithms for detecting signaling
pathways in protein interaction networks”, Proceedings of the Ninth Annual Interna-

tional Conference on Research in Computational Molecular Biology, 1-13, 2005.

B. C. Searle, S. Dasari, M. Turner, A. P. Reddy, D. Choi, P. A. Wilmarth, A. L. McCor-
mack, L. L. David, and S. R. Nagalla, “High-Throughput Identification of Proteins and
Unanticipated Sequence Modifications Using a Mass-Based Alignment Algorithm for
MS/MS De Novo Sequencing Results”, Anal. Chem, 76(8):2220-30, 2004.

D. Seese, “The Structure of Models of Decidable Monadic Theories of Graphs”, Annals
of Pure and Applied Logic, 53: 169-195, 1991.

P. D. Seymour and R. Thomas, “Call routing and the rat catcher”, Combinatorica 14:
127-241, 1994.

J. Shi, T. L. Blundell, and K. Mizuguchi, “FUGUE: sequence-structure homology
recognition using environment-specific substitution tables and structure- dependent gap

penalties”, Journal of Molecular Biology, 310(1): 243-257, 2001.

M. M. Siegel and N. Bauman, “An efficient algorithm for sequencing peptides using
fast atom bombardment mass spectral data.”, Biomed. Environ. Mass Spectrom., 15:

333-343, 1988.

R. Srinivasan and G. D. Rose, “Ab Initio Prediction of Protein Structure Using LINUS.”

PROTFEINS: Structure, Function, and Genetics, 47:489-495, 2002.

Y. Song, C. Liu, X. Huang, R. Malmberg, Y. Xu, and L. Cai, “Efficient parameter-

ized algorithms for biopolymer structure-sequence alignment”, Proceedings of the Fifth



[36]

[87]

[92]

[93]

99

Workshop on Algorithms in Bioinformatics, Lecture Notes in Bioinformatics 3692, 376-
388, 2005.

Y. Song, C. Liu, R. L. Malmberg, F. Pan, and L. Cai, “Tree decomposition based fast
search of RNA structures including pseudoknots in genomes”, Proceedings of the 2005

IEEE Computational Systems Bioinformatics Conference, 223-224, 2005.

D. L. Tabb, A. Saraf, and J. R. Yates, “GutenTag: High-Throughput Sequence Tagging
via an Empirically Derived Fragmentation Model”, Analytical Chemistry, 75: 6415-6421,
2003.

S. Tanner, H. Shu, A. Frank, L. C. Wang, E. Zandi, M. Mumby, P. A. Pevzner, and V.
Bafna, “InsPecT: Identification of Posttranslationally Modified Peptides from Tandem
Mass Spectra”, Analytical Chemistry, 77(14): 4626-4639, 2005.

J. A. Taylor and R. S. Johnson, “Sequence database searches via de novo peptide
sequencing by tandem mass spectrometry.”, Rapid Commun. Mass Spectrom., 11: 1067-

1075, 1997.

J.A. Taylor and R.S. Johnson, “Implementation and uses of automated de novo peptide

sequencing by tandem mass spectrometry”, Anal. Chem., 73(11), 2594-2604, 2001.

D. Tsur, S. Tanner, E. Zandi, V. Bafna, and P. Pevzner, “Identification of Post-
translational Modifications by Blind Search of Mass Spectra”, Nature Biotechnology,
23(12):1562-1567, 2005.

Y. Uemura, A. Hasegawa, Y. Kobayashi, and T. Yokomori, “ITree adjoining grammars

for RNA structure prediction.”, Theoretical Computer Science, 210: 277-303, 1999.

G. Wang and R. L. Dunbrack, Jr. “PISCES: a protein sequence culling server”, Bioin-
formatics, 16: 257-268, 2000.



[94]

[95]

100

Z. Weinberg and W. L. Ruzzo, “Faster genome annotation of non-coding RNA families
without loss of accuracy.”, Proceedings of the Eighth Annual International Conference

on Computational Molecular Biology, 243-251, 2004.

M. R. Wilkins, E. Gasteiger, A. A. Gooley, B. R. Herbert, M. P. Molloy, P. A. Binz,
K. Ou, J. C. Sanchez, A. Bairoch, K. L. Williams, and D. F. Hochstrasser, “High-

throughput Mass Spectrometric Discovery of Protein Post-Translational Modifications”,

Journal of Molecular Biology, 289(3): 645-657, 1999.

Y. Xu, D. Xu and E. C. Uberbacher, “An Efficient Computational Method for Globally

Optimal Threading”, Journal of Computational Biology, 5: 597-614, 1998.

J. Xu, M. Li, D. Kim, and Y. Xu, “RAPTOR: Optimal Protein Threading by Linear
Programming”, Journal of Bioinformatics and Computational Biology, 1(1): 95-117,
2003.

J. Xu, M. Li, D. Kim, and Y. Xu, “Protein threading by linear programming”, Biocom-

puting: Proceedings of the 2003 Pacific Symposium, 264-275, 2003.

J. Xu, “Rapid Problem Side-Chain Packing via Tree Decomposition”, Proceedings of
the Ninth Annual International Conference on Research in Computational Molecular

Biology, 423-429, 2005.

[100] J. Xu, F. Jiao, and B. Berger, “A Tree-Decomposition Approach to Protein Struc-

ture Prediction”, Proceedings of the 2005 IEEE Computational Systems Bioinformatics

Conference, 247-256, 2005.

[101] B. Yan, C. Pan, V. N. Olman, R. L. Hettich, and Y. Xu, “A graph-theoretic approach

for the separation of b and y ions in tandem mass spectrometry.”, Bioinformatics, 21(5):

563-574, 2005.



101

[102] B. Yan, T. Zhou, P. Wang, Z. Liu, V. A. Emanuele II, V. Olman, and Y. Xu, “A Point-
Process Model for Rapid Identification of Post-Translational Modifications”, Proceedings

of 2006 Pacific Symposium on Biocomputing, 327-338, 2006.

[103] Z. Yang, Q. Zhu, K. Luo, and Q. Zhou, “The 7SK small nuclear RNA inhibits the

Cdk9/cyclin T1 kinase to control transcription.”, Nature 414: 317-322, 2001.

[104] J. R. Yates, P. R. Griffin, L. E. Hood, J. X. Zhou, “Computer aided interpretation
of low energy ms/ms mass spectra of peptides.”, Techniques in Protein Chemistry II,

477-485, Academic Press, San Diego.

[105] J. R. Yates III, J. K. Eng, and A. L. McCormack, “Mining Genomes: Correlating
Tandem Mass Spectra of Modified and Unmodified Peptides to Sequences in Nucleotide
Databases”, Analytical Chemistry, 67(18): 3202-3210, 1995.

[106] J. Zhu and Z. Weng, “FAST: A Novel Protein Structure Alignment Algorithm”, Pro-

teins: Structure, Function and Bioinformatics, 58(3): 618-627, 2005.

[107] D. Zidarov, P. Thibault, M. J. Evans, and M. J. Bentrand, “Determination of primary
structure of peptides using fast atom bombardment mass spectrometry.”, Biomed. Env-

iron. Mass Spectrum., 19: 13-16, 1990.



