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Abstract

Taxicab numbers, of Hardy and Ramanujan fame, are positive integers which can be

represented as the sum of two positive integer cubes, in two distinct ways. The smallest such

integer is 1729 = 13 + 123 = 93 + 103. One question which naturally arises, is to ask how

many numbers with this property there are, up to some bound N . This is usually denoted

ν(N). The current best lower bound, ν(N) > CN1/3 log(N), is due to Hooley. The best

upper bound, ν(N) = O
(

N4/9+ε
)

, is due to Heath-Brown.

A related question is to count the number of integer solutions to w3 +x3 + y3 + z3 = 0. A

solution is considered trivial if it is some permutation of the form w3+(−w)3+y3+(−y)3 = 0.

Manin’s conjecture states that the number of non-trivial solutions, with |w|, |x|, |y|, |z| <

N1/3 should be asymptotic to cN1/3(log(N))4 for some positive constant c.

Using a parametrization found by Euler, we show that the number of such solutions

is in fact bounded below as predicted by Manin’s conjecture. Moreover, we show that by

restricting ourselves to the case where two of w, x, y, z are non-negative and the other two

are non-positive (that is, a solution which yields a taxicab number) we get the same lower

bound cN1/3(log(N))4, though not necessarily the same constant.
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Chapter 1

Introduction

Taxicab numbers are so named after a story about mathematicians Hardy and Ramanujan.

As the story goes, Hardy went to visit Ramanujan at the hospital as he had fallen ill. Not

sure exactly what to say, Hardy mentioned that the number of the taxicab he rode in to

get to the hospital was 1729, which he claimed seemed to be a rather uninteresting number.

Ramanujan is said to have immediately replied that in fact 1729 was quite interesting, as

it is the smallest positive integer which can be written as the sum of two positive integer

cubes, in two different ways. Indeed:

1729 = 13 + 123 = 93 + 103

In order to study the positive integers which can be represented as the sum of two cubes

in at least two distinct ways, we begin with the following definitions:

ν(N) = #{k ≤ N : k = x3
1 + y3

1 = x3
2 + y3

2; xi, yi ≥ 0; x1 6= x2, y2}

r(k) = #{(x, y) : x3 + y3 = k and x ≥ y}

r+(k) = #{(x, y) : x3 + y3 = k and x ≥ y ≥ 0} (1.1)

The count ν(N) has been widely studied. In 1963, Hooley [7] showed:

ν(N) = O
(

N2/3 log log(N)(log(N))−1/2
)

In 1980, Hooley [8] improved this result to ν(N) = Oε(N
5/9+ε), using the large sieve. In

1995, Trevor Wooley [24] gave an elementary proof of Hooley’s second bound using binary

quadratic forms.

1
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In 1997, Heath-Brown [6] proved a general theorem about non-singular cubic forms with

three rational coplanar lines. Applying the result to this problem gives the current best upper

bound for ν(N):

ν(N) = Oε(N
4/9+ε)

The current best lower bound for ν(N) also appeared in Hooley’s 1980 paper [8]. He

uses a partial parametrization of taxicab solutions given by Ramanujan, which we discuss in

chapter eight, to show:

ν(N) > CN1/3 log(N)

Note that the count ν(N) can be expressed as:

ν(N) =
∑

n≤N

r+(n)≥2

1

In contrast, the count we consider in this paper is slightly different:

∑

n≤N

r+(n)≥2

(

r+(n)

2

)

(1.2)

This count can be considered counting taxicab numbers with multiplicity where the multi-

plicity is the number of ways that an integer n can be expressed as the sum of two cubes in

two distinct ways. From these expressions we see that if every integer had at most two such

representations, these two counts would be equal. But in fact:

87539319 = 1673 + 4363 = 2283 + 4233 = 2553 + 4143

6963472309248 = 24213 + 190833 = 54363 + 189483

= 102003 + 180723 = 133223 + 166303

48988659276962496 = 387873 + 3657573 = 1078393 + 3627533

= 2052923 + 3429523 = 2214243 + 3365883

= 2315183 + 3319543
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24153319581254312065344 = 289062063 + 5821623 = 288948033 + 30641733

= 286574873 + 85192813 = 270932083 + 162180683

= 265904523 + 174924963 = 262243663 + 182899223

These results were found by Leech [12] in 1957, Rosenstiel et. al. [18] in 1991, Wilson [23] in

1997, and Rathbun [17] in 2002 respectively. The first three of these examples are in fact the

smallest such integers with their respective number of representations. The last is conjectured

to be the smallest positive integer which can be written as the sum of two positive integer

cubes in six different ways, but this is not yet known. More generally, Silverman and Tate

[19] show that for any given positive integer N there exists some positive integer which can

be written as the sum of two positive integer cubes in N different ways. Their technique

uses elliptic curves to find rational solutions, and then by clearing denominators leads to an

integer solution. This result may seem a bit unsatisfying as it induces large cube factors. We

may then be inclined to modify the question to require that the cubes involved be pairwise

coprime. That is, if w3 + z3 = x3 + y3 = k, then gcd(w, z) = gcd(x, y) = 1. Surprisingly,

there are no known integers with at least 4 positive coprime solutions! For the rest of the

paper, we will not require this additional pairwise coprimality condition.

An alternative way of looking at this new count of taxicab numbers is to instead consider

the equation:

w3 + x3 + y3 + z3 = 0 (1.3)

Note that each taxicab number corresponds to a solution to this equation. Moreover if we

remove the condition that all of the integers involved in a taxicab number be positive, then

the count with multiplicities (1.2) would be the same (up to a constant factor to account for

permutations) as counting integer solutions to (1.3) where say w3 + z3 < N .

In general, suppose F (w, x, y, z) is a non-singular cubic form with integer coeffi-

cients. Then Manin’s conjecture implies that if there is at least one non-zero solution

to F (w, x, y, z) = 0, then the number of non-trivial solutions such that |w|, |x|, |y|, |z| < B

will be asymptotically cB(logB)r where r is the rank of the Picard group of the surface
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F = 0. Peyre and Tschinkel [14] calculated the rank of the Picard group for the surface

(1.3), as r = 4.

Now if we are considering solutions to (1.3) which correspond to our original taxicab

definition, we need for exactly two of w, x, y, z to be non-negative, say w and z, and the other

two to be non-positive, say x and y. Moreover in this case, if we want w3+z3 = −x3−y3 < N

then indeed we must have w,−x,−y, z < N1/3. Hence Manin’s conjecture gives an expected

upper bound on (1.2) of cN1/3(logN)4 by setting B = N1/3 . In chapter six we show that in

fact, (1.2) is bounded below by cN1/3(logN)4.

Chapters two, three, and four discuss the parametrization to (1.3) that Euler found which

we will use to bound the number of solutions. In chapter five we discuss the ideas of using

this parametrization by giving an upper bound on a special case. In chapter seven we apply

the same techniques used for the lower bound to a proof of an upper bound for solutions of

a particular type. Chapters eight and nine give and extend a partial parametrization given

by Ramanujan which give solutions to (1.3) of a useful type.

Finally, any work involved in adding like powers of integers would not be complete without

mentioning Waring’s Problem. In 1770, Waring wrote that every positive integer is the sum

of at most nine cubes, and the sum of at most 19 fourth powers (for a survey of results

and current research on Waring’s Problem see [21]). Wieferich in 1909 [22] with Kempner in

1912 [10] finally proved the statement for cubes. Also in 1909, Landau [11] showed that at

most a finite number of integers actually required nine cubes. This leads to the more difficult

question of how many cubes are required to realize all except a finite number of integers.

Framed in this way Landau’s result is that at most eight are required for all but a finite

number. Dickson in 1939 [3] in fact showed that 23 and 239 are the only two integers for

which nine cubes are required. Linnik in 1942 [13] proved that at most seven are required for

all except a finite number. As mentioned above, for k ≡ 4, 5 (mod 9) at least four cubes

are required, thus we know that the correct answer is one of 4,5,6,7; and it is expected that

4 or 5 is most likely. Finally, we can relax the condition again to ask how many cubes are
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required in order to realize almost all integers. Davenport in 1939 [2] proved that almost all

integers can in fact be written as the sum of at most 4 cubes.



Chapter 2

Rational Parametrization

As discussed in the introduction, we will bound a count of taxicab numbers by looking at

non-trivial solutions to (1.3), which we’ll restate here:

w3 + x3 + y3 + z3 = 0

To study solutions to this equation, we’ll use the following complete rational parametrization

discovered by Euler [9]. To define the parametrization, we let:

F (a, b, c) = 9a3 + 9a2b+ 3a2c+ 3ab2 − 6abc+ 3ac2 + 3b3 + 3b2c+ bc2 + c3

For each (w, x, y, z) solution to (1.3), there exists r ∈ Q and a, b, c ∈ Z so that:

w = r · F (a, b, c)

x = r · F (−a, b,−c)

y = r · F (−a,−b, c)

z = r · F (a,−b,−c)

Moreover, given a solution to (1.3) with w + y and x + z not both zero, we can find such

a, b, c by letting

A(w, x, y, z) = yz − wx (2.1)

B(w, x, y, z) = w2 − wz + z2 − x2 + xy − y2

C(w, x, y, z) = w2 − wz + z2 + x2 − xy + y2 − yz − wx+ 2wy + 2xz

6



7

and then choosing any s ∈ Q so that

a = s · A

b = s · B

c = s · C

are all integers.

If w + y = x+ z = 0 (which we consider as ”trivial” solutions later) then let

A(w, x, y, z) = x+ y

B(w, x, y, z) = y − x

C(w, x, y, z) = 0

We will most often consider s = 1 and s = 1
gcd(A,B,C)

.

To realize a taxicab number from a solution to (1.3) we need only place the variables

w, x, y, z into pairs. While we could choose any of the three possible pairings, by denoting

our taxicab number k, the following appears to possess the most symmetry when used with

the parametrization:

k = w3 + z3 = (−x)3 + (−y)3 (2.2)

In order to simplify the use of this parametrization, we will define the map

φ(a, b, c) 7→ (W,X, Y, Z) (2.3)

where:

W = W (a, b, c) = F (a, b, c) (2.4)

X = X(a, b, c) = F (−a, b,−c)

Y = Y (a, b, c) = F (−a,−b, c)

Z = Z(a, b, c) = F (a,−b,−c)

Thus for any a, b, c ∈ Z, φ(a, b, c) = (W,X, Y, Z) satisfies (1.3), e.g.W 3+X3+Y 3+Z3 = 0.
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Substituting these expressions for the variables w, x, y, z in (2.2), allow us to better

understand the form of a taxicab number. By letting

U = U(a, b, c) = 3a2 + (b+ c)2 (2.5)

V = V (a, b, c) = 3a2 + (b− c)2

we have an expression for K = W 3 + Z3 as:

K = K(a, b, c) = 18aUV [UV + 4b2(U + V )] (2.6)

We call a solution to (1.3) or (2.2), a primitive solution if gcd(w, x, y, z) = 1. The following

proposition, shows that every primitive solution to (2.2), up to permutation, corresponds to

a positive integer triple (a, b, c) via the map φ. This will allow us to bound the number of

taxicab numbers by bounding the number of triples (a, b, c). Except for the added condition

that the integers a, b, c can be made positive, this result is also given in [4].

Proposition 2.1: For any primitive solution to (2.2) with k > 0 (up to re-ordering of the

variables combined with possibly multiplying through by -1 to ensure k > 0), there exists an

integer g, and integers a, b, c with gcd(a, b, c) = 1 and a, b, c ≥ 0 with φ(a, b, c) = (W,X, Y, Z),

such that

W = gw X = gx Y = gy Z = gz

and so:

K(a, b, c) = g3k

Proof. Using the A,B,C from (2.1), and h = gcd(A,B,C) we let a = A/h, b = B/h,

c = C/h. Then let:

φ(a, b, c) = (W,X, Y, Z)

By choosing g = W/w we have found a, b, c, g so that gcd(a, b, c) = 1 and W,X, Y, Z are as

required by the proposition. We now must show we can choose a, b, c ≥ 0.

Since U, V of (2.5) are positive semi-definite quadratic forms, we have U, V ≥ 0. By

(2.6) we can see that K(a, b, c) > 0 if and only if a > 0. Notice that swapping the pairs,
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k = (−x)3 +(−y)3 = w3 +z3, or changing the order within a pair, for example k = z3 +w3 =

(−y)3 + (−x)3, only permutes the order of the variables and does not change the basic

solution to (2.2). To see that we can also choose b, c ≥ 0, we examine how b and c change

with respect to such permutations. The following maps define three other permutations:

φ(a,−b,−c) = (Z, Y,X,W )

φ(a, b,−c) = (−Y,−Z,−W,−X)

φ(a,−b, c) = (−X,−W,−Z,−Y )

We can see from these maps that we can indeed choose b ≥ 0 and c ≥ 0 as well.

We could prove a similar proposition for non-primitive solutions to (2.2). In this case,

we would have to allow for g ∈ Q. But since for our technique, we will need only to count

primitive solutions and will handle non-primitive solutions by scaling primitive solutions, we

won’t require such a result.

Note that there are eight permutations (allowing multiplying by -1 to keep k > 0) of the

variables which preserve a particular solution to (2.2):

w,x,y,z z,y,x,w -y,-z,-w,-x -x,-w,-z,-y

w,y,x,z z,x,y,w -y,-w,-z,-x -x,-z,-w,-y

The maps given in the above proposition, along with the identity map, describe the relation-

ship between the permutations in each row. We were able to show in the above proposition

that by restricting ourselves to a > 0, b, c ≥ 0 we will count each row exactly once. But since

all eight of these permutations represent the same solution, there are therefore two different

triples a, b, c with gcd(a, b, c) = 1 and a > 0, b, c ≥ 0 associated with each solution.

We can also give the map which takes a solution above to the other in the same column.

This map, composed with the identity and the three maps given in the previous proposition,

generate the other four permutations which preserve a solution to (2.2),

(a, b, c) −→ (ah1(a
2, b2, c2), ch2(a

2, b2, c2), bh3(a
2, b2, c2))

(W,X, Y, Z) 7−→ (W ·H, Y ·H,X ·H,Z ·H)
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where

h1(t, u, v) = (27t2 + 18tu+ 3u2 + 18tv + 10uv + 3v2)

h2(t, u, v) = (9t2 + 30tu+ 9u2 + 6tv + 6uv + v2)

h3(t, u, v) = (81t2 + 54tu+ 9u2 + 30tv + 6uv + v2)

and:

H = H(a2, b2, c2) = h1(a
2, b2, c2) · h2(a

2, b2, c2) · h3(a
2, b2, c2)

Notice that a, b, c ≥ 0 if and only if each of ah1(a
2, b2, c2), ch2(a

2, b2, c2), and bh3(a
2, b2, c2)

are non-negative as well. Hence as described, for each primitive solution to (2.2) there are

exactly two triples, a, b, c associated to it as described in Proposition 2.1. We will discuss the

relationship between these two triples more extensively in chapter four.

Since taxicab numbers require two distinct representations as the sum of two cubes, we

next provide a characterization of trivial solutions. A solution to (2.2) is clearly trivial, and

hence does not represent a taxicab number, if as sets {w, z} = {−x,−y}, or equivalently if

w+x = 0 or w+ y = 0. We also consider trivial the case where w+ z = 0 which corresponds

to k = 0.

Lemma 2.2: The trivial solutions to (2.2), W + Z = 0, W + X = 0, and W + Y = 0,

arise exactly when a, b, or c is 0, respectively.

Proof.

Case 1: W + Z = 0

We have W + Z = 6a(3a2 + (b− c)2) so W + Z = 0 if and only if a = 0.

Case 2: W +X = 0

We have W +X = 2b(3b2 + (3a− c)2) so W +X = 0 if and only if b = 0.

Case 3: W + Y = 0

We have W + Y = 2c(c2 + 3(a− b)2) so W + Y = 0 if and only if c = 0.

As noted in the introduction, much of the previous work on this problem has been con-

cerned with the solutions to (2.2) with w, z,−x,−y all non-negative. To that end, we may
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be interested in which integer triples a, b, c lead to such a solution under the parametriza-

tion. The following two propositions give necessary and sufficient conditions. The first is a

necessary condition which may aid in calculating an upper bound on the count of taxicab

numbers.

Proposition 2.3: Given integers a, b, c > 0, and using the parametrization given above

in (2.4), if W (a, b, c), Z(a, b, c),−X(a, b, c),−Y (a, b, c) are all positive, then b+ c < 3a.

Proof. We begin with the expression for Z(a, b, c) via the parametrization:

Z = 9a3 − 9a2b− 3a2c+ 3ab2 − 6abc + 3ac2 − 3b3 − 3b2c− bc2 − c3

= (3a− b− c)(3a2 + b2 + c2) − (6a2b+ 2b3 + 2b2c+ 6abc)

From this we can see that if Z > 0 then 3a − b − c must be positive since a, b, c > 0 and

hence b+ c < 3a.

The next proposition is a sufficient condition for a relation on a, b, c for which each of

W (a, b, c),−X(a, b, c),−Y (a, b, c), Z(a, b, c) are positive. This will be useful while calculating

our lower bound on the count of taxicab numbers.

Proposition 2.4: Given integers a, b, c > 0, with b+c < a, then using the parametrization

given above in (2.4), W (a, b, c), Z(a, b, c),−X(a, b, c), −Y (a, b, c) are all positive.

Proof. We’ll show that each of W,−X,−Y, Z are positive under the condition b+ c < a,

beginning with the parametrization of each:

W = 9a3 + 9a2b+ 3a2c + 3ab2 − 6abc + 3ac2 + 3b3 + 3b2c+ bc2 + c3

> 9a3 + 9abc + 3a2c+ 3ab2 − 6abc+ 3ac2 + 3b3 + 3b2c+ bc2 + c3

= 9a3 + 3abc + 3a2c+ 3ab2 + 3ac2 + 3b3 + 3b2c+ bc2 + c3

> 0

−X = 9a3 − 9a2b+ 3a2c+ 3ab2 + 6abc + 3ac2 − 3b3 + 3b2c− bc2 + c3

> 9a2b− 9a2b+ 3a2c+ 3b3 + 6abc+ 3bc2 − 3b3 + 3b2c− bc2 + c3
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= 3a2c+ 6abc + 2bc2 + 3b2c+ c3

> 0

−Y = 9a3 + 9a2b− 3a2c+ 3ab2 + 6abc + 3ac2 + 3b3 − 3b2c+ bc2 − c3

> 9a2c+ 9a2b− 3a2c+ 3b2c+ 6abc+ 3c3 + 3b3 − 3b2c+ bc2 − c3

= 6a2c+ 9a2b+ 6abc+ 2c3 + 3b3 + bc2

> 0

Z = 9a3 − 9a2b− 3a2c+ 3ab2 − 6abc + 3ac2 − 3b3 − 3b2c− bc2 − c3

= 3(a− b− c)(3a2 + b2 + c2) + 2c(3a2 + bc + c2 − 3ab)

> 3a2 + bc+ c2 − 3ab

> 3ab+ bc+ c2 − 3ab

= bc + c2

> 0



Chapter 3

Describing the gcd’s

In this chapter we will describe the gcd’s which arise from an arbitrary but fixed a, b, c triple.

In the next chapter explore the relationship between the two different gcds coming from the

two distinct a, b, c triples which yield the same solution to (2.2). Let φ(a, b, c) = (W,X, Y, Z)

from (2.3), and let g = gcd(W,X, Y, Z). Although we will have to prove several lemmas

before beginning the proof of the main result in this chapter, we will state it first here. Simply

stated, Theorem 3.1 shows that g � αβγ, where α = gcd(a, c2 + 3b2), β = gcd(b, c2 + 3a2),

and γ = gcd(c, b2 + 3a2); and the implied constant is a product of small powers of 2 and 3.

This result was proven independently in [4].

Theorem 3.1: Suppose gcd(a, b, c) = 1. Then we can write g = 2e23e3αβγ, where α =

gcd(a, c2 + 3b2), β = gcd(b, c2 + 3a2), and γ = gcd(c, b2 + 3a2). Further, if 2 exactly divides

abc then e2 = 2, if 4 divides one of a, b or c and the other two are odd then e2 = 1, otherwise

e2 = 0. If 3 | c but 3 - ab then e3 = 1, otherwise e3 = 0. Moreover, if a prime p divides

gcd(α, β) · gcd(α, γ) · gcd(β, γ), then p = 2, 3.

In order to prove this result, we’ll begin with some preliminary lemmas.

Lemma 3.2: If a prime p 6= 2, 3 divides gcd(W,X, Y, Z), and p divides gcd(a, b)·gcd(a, c)·

gcd(b, c), then p divides gcd(a, b, c).

Proof. Suppose p | gcd(a, b). Since p | gcd(W,X, Y, Z), we must have p | W + Y . But:

W + Y ≡ 2c3 (mod p)

Hence p | gcd(a, b, c). A similar argument works for the other two gcd’s: if p | gcd(a, c) we

notice that W + X ≡ 6b3 (mod p), and if p | gcd(b, c) we notice that W + Z ≡ 18a3

(mod p).

13
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Next note for a prime p 6= 3 that pe | (W + Z) and p2e | (W 2 −WZ + Z2) if and only if

pe |W and pe | Z. Using the parametrization from chapter two, we also have that:

W + Z = 6a(3a2 + (b− c)2)

X + Y = 6a(3a2 + (b+ c)2)

This next lemma proves that the primes that we are interested in (i.e. those dividing

gcd(W,X, Y, Z)), can not divide both of the non-trivial factors in either W + Z or X + Y

given above.

Lemma 3.3: Let p 6= 2, 3 be a prime dividing gcd(W,X, Y, Z). If gcd(a, b, c) = 1 then p

does not divide either gcd(a, 3a2 + (b− c)2) or gcd(a, 3a2 + (b+ c)2).

Proof. Suppose p | gcd(a, 3a2 + (b− c)2). By hypothesis, p must divide W 2 −WZ + Z2,

but:

W 2 −WZ + Z2 ≡ 12b2(3a2 + (b+ c)2)2 (mod p)

Since by Lemma 3.2, p can not divide both a and b, we must have that p divides 3a2+(b+c)2.

But we assumed p divides 3a2 + (b − c)2, hence it must divide their difference (3a2 + (b +

c)2) − (3a2 + (b− c)2) = 4bc, which also yields a contradiction to Lemma 3.2.

To get the second gcd condition, use the pair X, Y rather than W,Z with the same

argument.

Proposition 3.4: Suppose that a, b, c are integers such that gcd(a, b, c) = 1. Let p 6= 2, 3

be a prime. If pe | gcd(W,X, Y, Z), then pe divides one of:

i) gcd(a, c2 + 3b2)

ii) gcd(b, c2 + 3a2)

iii) gcd(c, b2 + 3a2)

Proof. Since pe | gcd(W,X, Y, Z), then pe divides both:

W + Z = 6a(3a2 + (b− c)2)

X + Y = 6a(3a2 + (b+ c)2)
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By Lemma 3.3 p can not divide both a and 3a2 + (b − c)2 nor can p divide both a and

3a2 + (b + c)2. So, if pe does not divide a, then pe must divide both 3a2 + (b + c)2 and

3a2 + (b − c)2 and hence their difference, namely 4bc. Since p does not divide gcd(b, c) by

Lemma 3.2, either pe | b or pe | c.

Case 1: pe | a.

Note that p2e divides both W 2 −WZ +Z2 and X2 −XY +Y 2. Examining these modulo

p2e we have:

W 2 −WZ + Z2 ≡ 3(b+ c)2(c2 + 3b2)2 (mod p2e)

X2 −XY + Y 2 ≡ 3(b− c)2(c2 + 3b2)2 (mod p2e)

Hence pe divides (c2 + 3b2), since if it does not, p must divide both (b+ c) and (b− c), hence

both b and c, which contradicts Lemma 3.2. So this gives condition i).

Case 2: pe | b.

We’ll use the same argument here noticing that this time:

W 2 −WZ + Z2 ≡ 3(c2 + 3a2)3 (mod p2e)

X2 −XY + Y 2 ≡ 3(c2 + 3a2)3 (mod p2e)

Hence p2e divides (3a2 + c2), giving condition ii).

Case 3: pe | c. Again the same argument applies, noticing this time

W 2 −WZ + Z2 ≡ 6a(b2 + 3a2)3 (mod p2e)

X2 −XY + Y 2 ≡ 9(a2 + 3b2)(b2 + 3a2)3 (mod p2e)

Hence pe divides (3a2 + b2), since if it does not, we would have p dividing a which is a

contradiction to Lemma 3.2. So this gives condition iii).

At this point, we have characterized the gcd’s up to some powers of 2 and 3. These powers

are described by the following lemmas.

Lemma 3.5: Let g = gcd(W,X, Y, Z). If gcd(a, b, c) = 1 then the only powers of 2 which

can divide g are 20 = 1 and 23 = 8. Moreover 8 divides g if and only if 2 divides a + b+ c.
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Proof. If we consider a, b, c modulo 16 we see that under the map φ (modulo 16), when

2 - gcd(a, b, c) then either g ≡ 1 (mod 2) or g ≡ 8 (mod 16). Looking modulo 2 we have:

W ≡ X ≡ Y ≡ Z ≡ (a + b+ c) (mod 2)

Lemma 3.6: Let g = gcd(W,X, Y, Z). If gcd(a, b, c) = 1 then the only powers of 3 which

can divide g are 30 = 1, 31 = 3, and 32 = 9. Moreover, 3 divides g if and only if 3 divides c,

and 9 divides g if and only if 3 divides both c and b.

Proof. If we consider a, b, c modulo 27 we see that under the map φ (modulo 27), that if

3 - gcd(a, b, c) then g 6≡ 0 (mod 27). Next we look modulo 3:

W ≡ c2(b+ c) (mod 3)

X ≡ c2(b+ 2c) (mod 3)

Y ≡ c2(2b+ c) (mod 3)

Z ≡ 2c2(b+ c) (mod 3)

So, 3 divides g if and only if 3 divides c, since if 3 doesn’t divide c it must divide both b+ c

and 2b+ c and hence their sum, which would imply that 3 does divide c. So, to understand

when higher powers of 3 divide g, we’ll suppose that 3 divides c and look modulo 9:

W ≡ 3b2(a + b) (mod 9)

X ≡ 3b2(2a + b) (mod 9)

Y ≡ 6b2(a + b) (mod 9)

Z ≡ 3b2(a + 2b) (mod 9)

Like the case for modulo 3, we have that 9 divides g if and only if 3 divides gcd(b, c).

We now can prove the result mentioned at the start of this chapter, namely:

Theorem 3.1: Suppose gcd(a, b, c) = 1. Then we can write g = 2e23e3αβγ, where α =

gcd(a, c2 + 3b2), β = gcd(b, c2 + 3a2), and γ = gcd(c, b2 + 3a2). Further, if 2 exactly divides

abc then e2 = 2, if 4 divides one of a, b or c and the other two are odd then e2 = 1, otherwise
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e2 = 0. If 3 | c but 3 - ab then e3 = 1, otherwise e3 = 0. Moreover, if a prime p divides

gcd(α, β) · gcd(α, γ) · gcd(β, γ), then p = 2, 3.

Proof. Let p > 5 be a prime. Then if p divides two of the factors α, β, γ then it divides

two of a, b, c. But by the form of α, β, and γ, p must therefore divide all three of a, b, c. Since

gcd(a, b, c) = 1 indeed the last statement of the theorem is satisfied. The rest of the proof

follows directly from Lemma 3.2 and Proposition 3.4, except for the values of e2 and e3.

For e2, notice that since gcd(a, b, c) = 1 :

2 | α iff 2 | a and 2 - bc

2 | β iff 2 | b and 2 - ac

2 | γ iff 2 | c and 2 - ab

Therefore if 2 divides two of a, b, c or none of a, b, c, then 2 does not divide αβγ and in this

case by Lemma 3.5, 2 does not divide g, so e2 = 0. So suppose now that 2 divides only one

of a, b, c. Without loss of generality, suppose 2 divides a but 2 - bc. If 2 exactly divides a,

then 2 exactly divides αβγ but 8 exactly divides g by Lemma 3.5, hence e2 = 2. Finally, if

4 divides a, then 4 exactly divides αβγ (since 4 also exactly divides c2 + 3b2 and hence α),

and by Lemma 3.5, 8 exactly divides g, so e2 = 1.

For e3, notice that since gcd(a, b, c) = 1

3 ‖ α iff 3 | gcd(a, c)

3 ‖ β iff 3 | gcd(b, c)

3 ‖ γ iff 3 | gcd(b, c)

since no higher powers of 3 can divide any one of α, β, or γ. So, if

3 - abc, or

3 | a but 3 - bc, or

3 | b but 3 - ac, or

3 | gcd(a, b) but 3 - c

then 3 does not divide αβγ. By Lemma 3.6, 3 does not divide g hence e3 = 0.
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If 3 does not divide b, but 3 divides both a and c then 3 exactly divides αβγ and by

Lemma 3.6, 3 exactly divides g, so again e3 = 0.

If 3 does not divide a, but 3 divides both b and c, then 3 exactly divides both β and γ,

and hence 9 exactly divides αβγ. By Lemma 3.6, 9 exactly divides g, so again e3 = 0.

Finally, if 3 divides c but 3 does not divide ab, then 3 does not divide αβγ, but by Lemma

3.6, 3 exactly divides g, so we must have e3 = 1.

We can deduce the following Corollary also given in [4].

Corollary 3.7: Let p > 3 be a prime dividing gcd(W,X, Y, Z), then p ≡ 1, 7 (mod 12).

Proof. From Proposition 3.4 we have that p divides one of gcd(a, c2+3b2), gcd(b2, c2+3a2),

and gcd(c2, b2 +3a2), and by Lemma 3.2, p does not divide gcd(a, b) gcd(b, c) gcd(a, c). Hence

-3 must be a quadratic residue modulo p. So indeed p ≡ 1, 7 (mod 12).



Chapter 4

Comparing gcd’s From The Two (a,b,c)

In chapter two, after the proof of Proposition 2.1 we showed that for each primitive solution

to (2.2) there there are exactly two (a, b, c) integer triples associated to this solution with

a, b, c > 0 and gcd(a, b, c) = 1, which account for all permutations of w, x, y, z in (2.2)

preserving k. In this chapter, we will compare the gcds which arise from these two (a, b, c)

triples. We recall some definitions from chapter two and add a few more.

We begin with the following map, which has most of the features we would like; and then

show how to modify it slightly to preserve the coprimality of the a, b, c triples.

Given a triple (a, b, c) where gcd(a, b, c) = 1, we have the following map to the other

triple (A,B,C) which yields the same primitive solution:

ψ′(a, b, c) = (A,B,C) (4.1)

so that

A = a · h1(a
2, b2, c2)

B = c · h2(a
2, b2, c2)

C = b · h3(a
2, b2, c2)

where:

h1(t, u, v) = 27t2 + 18tu+ 3u2 + 18tv + 10uv + 3v2

h2(t, u, v) = 9t2 + 30tu+ 9u2 + 6tv + 6uv + v2

h3(t, u, v) = 81t2 + 54tu+ 9u2 + 30tv + 6uv + v2

19
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Using the map φ from (2.3) let:

φ(a, b, c) = (w, x, y, z)

Then

φ(A,B,C) = (W,X, Y, Z) = (wH, yH, xH, zH)

where:

H = H(a2, b2, c2) = h1(a
2, b2, c2)h2(a

2, b2, c2)h3(a
2, b2, c2) (4.2)

Since a major concern is with the gcd’s of our solutions, we note that if we let g =

gcd(w, x, y, z) then:

G = gcd(W,X, Y, Z) = gH (4.3)

Notice that the (A,B,C) from this map are not necessarily coprime even if the original

(a, b, c) were. It turns out in fact that gcd(A,B,C) = 2e13e2g2, that is, except for some

powers of the primes 2 and 3, which we will describe explicitly, the gcd(A,B,C) is just g2.

We will prove this beginning with the following proposition.

Proposition 4.1: Given a, b, c with gcd(a, b, c) = 1, using the map ψ′ defined above by

(4.1), and letting D = gcd(A,B,C) and g = gcd(w, x, y, z), then for any prime p not equal

to 2 or 3, p | D iff p | g. Moreover:

p2e ‖ D iff pe ‖ g

Proof. Throughout this proof we let p denote a prime not equal to 2 or 3. First note that

if p | a and p | b then p - c, and further p - h2(a
2, b2, c2). The first since gcd(a, b, c) = 1, while

the second follows by noting that h2(a
2, b2, c2) ≡ c3 (mod p) for such a prime p. This then

tells us that p - D, since B = c · h2(a
2, b2, c2). Recall from Theorem 3.1 that g = 2e23e3αβγ

where α = gcd(a, c2 + 3b2), β = gcd(b, c2 + 3a2), and γ = gcd(c, b2 + 3a2). Therefore such a

p also does not divide g.

We also can show that p - abc implies p - D. We’ll show this by contradiction, suppose that

p - abc but p | D. Then p must divide each of h1(a
2, b2, c2), h2(a

2, b2, c2), and h3(a
2, b2, c2).
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So then p must divide both:

3h1 − h3 = 8c2(3a2 + 3b2 + c2)

3h2 − h1 = 8b2(9a2 + 3b2 + c2)

Since p does not divide b, c or 2, then p must divide both

3a2 + 3b2 + c2

9a2 + 3b2 + c2

and hence their difference 6a2. But since p does not divide 2,3 or a this is a contradiction.

Moreover such a p also can not divide g which is a product of α, β, and γ as described above.

Thus the only primes p which can divide D or g must divide exactly one of a, b, or c.

Suppose that p | a, p - bc, and p | D, then p must divide both h2(a
2, b2, c2) and

h3(a
2, b2, c2). But,

h2(a
2, b2, c2) ≡ (c2 + 3b2)2 (mod p)

h3(a
2, b2, c2) ≡ (c2 + 3b2)2 (mod p)

so p must divide c2 + 3b2.

Note also that if p | a, p - bc, and p | g, then p must divide α = gcd(a, c2 + 3b2), and

hence p must divide 3b2 + c2. The cases for p | b and p | c work similarly, so we know that

indeed p | g if and only if p | D. We now must show that the exponents are as stated in the

proposition.

We continue by describing the powers of p which divide each of A,B, and C. Let pe1 ‖ a

and pe2 ‖ 3b2 + c2, where e1, e2 ≥ 1.

We begin with A. Since A = a · h1(a
2, b2, c2) we need to know what power of p divides

h1. We can rewrite h1 as:

h1(a
2, b2, c2) = (c2 + 3b2)(b2 + 3c2) + 27a4 + 18a2(b2 + c2)
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Since p | c2 + 3b2 but p - b and p - c, then p - b2 + 3c2 and p - b2 + c2. So:

pe2 ‖ (c2 + 3b2)(3c2 + b2)

p2e1 ‖ 27a4 + 18a2(b2 + c2)

Therefore if e2 6= 2e1 then pmin(e2,2e1) ‖ h1(a
2, b2, c2).

If e2 = 2e1 then pmin(e2,2e1) | h1(a
2, b2, c2), but it’s possible that a higher power of p divides

h1.

Therefore, if e2 6= 2e1 then pe1+min(e2,2e1) ‖ A, and if e2 = 2e1 then pe1+min(e2,2e1) | A.

We move on to B. Since B = c · h2(a
2, b2, c2), and we know that p - c, we need only be

concerned with the power of p dividing h2. We begin by rewriting h2 as:

h2(a
2, b2, c2) = (3b2 + c2)2 + 9a4 + 6a2(5b2 + c2)

Since p | 3b2 + c2 but p - b and p - c, then p - 5b2 + c2. So:

p2e2 ‖ (3b2 + c2)2

p2e1 ‖ 9a4 + 6a2(5b2 + c2)

Therefore if e1 6= e2 then p2min(e1,e2) ‖ B, and if e2 = e1 then p2min(e1,e2) | B.

Now for C. The argument for C is just like the one above for B, noting that B =

c · h3(a
2, b2, c2), and rewriting h3 as:

h3(a
2, b2, c2) = (3b2 + c2)2 + 81a4 + 6a2(9b2 + 5c2)

It then follows that if e1 6= e2 then p2min(e1,e2) ‖ C, and if e2 = e1 then p2min(e1,e2) | C.

To now calculate what power of p divides D and g we will split into three cases. Note

that in calculating the power of p dividing g, recall that we are considering the case p | a,

p - bc, and so the power of p dividing g is exactly the power of p dividing α = gcd(a, 3b2 +c2).

So in all of the cases below, pmin(e1,e2) ‖ g.
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Case 1: e2 < e1

In this case, we have, pe1+e2 ‖ A, p2e2 ‖ B,C. So, p2e2 ‖ D.

The power of p dividing g, is pe2 ‖ g.

Case 2: e2 = e1

In this case, we have pe1+e2 = p2e1 ‖ A, p2e1 | B,C. So, p2e1 ‖ D.

The power of p dividing g is pe1 ‖ g.

Case 3: e1 < e2

In this case, p2e1 ‖ B,C. There are three possible cases for the power of p dividing A. If

e1 < e2 < 2e1 then pe1+e2 ‖ A. If e2 = 2e1 then p3e1 | A. If e2 > 2e1 then p3e1 ‖ A. But in

all three of these possibilities, the power of p dividing A is larger than the power dividing B

and C, and hence p2e1 ‖ D.

The power of p dividing g is pe1 ‖ g.

In all three cases, we notice for a prime p 6= 2, 3, where p | a that indeed p2e ‖ D if and

only if pe ‖ g. The cases for p 6= 2, 3 where p | b or p | c follow from a similar argument.

We next describe how the primes 2 and 3 divide D, beginning with the prime 2.

Lemma 4.2: Given a, b, c with gcd(a, b, c) = 1, let (A,B,C) = ψ′(a, b, c) and let D =

gcd(A,B,C), then 2 | D if and only if a + b + c ≡ 0 (mod 2). Moreover, if a + b + c ≡ 0

(mod 2) then 24 ‖ D.

Proof. By looking at A,B, and C modulo 2 we see:

A ≡ a(a4 + b4 + c4) (mod 2)

B ≡ c(a4 + b4 + c4) (mod 2)

C ≡ b(a4 + b4 + c4) (mod 2)

Since gcd(a, b, c) = 1, we then have that 2 | D if and only if a + b+ c ≡ 0 (mod 2).

Note that a + b + c ≡ 0 (mod 2) implies that 2 divides exactly one of a, b, c since

gcd(a, b, c) = 1. We’ll now show that if 2 divides exactly one of a, b, c then 24 exactly divides

each of h1(a
2, b2, c2), h2(a

2, b2, c2), and h3(a
2, b2, c2).
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We begin with h1. First suppose that 2 | a and 2 - bc. We begin by rewriting h1 as:

h1(a
2, b2, c2) = (3b2 + c2)(3c2 + b2) + 27a4 + 18a2(b2 + c2)

Case 1: 2 ‖ a

First note that 3b2 + c2 ≡ 4 (mod 8) and 3c2 + b2 ≡ 4 (mod 8), and that b2 + c2 ≡ 2

(mod 4). Therefore,

24 ‖ (3b2 + c2)(3c2 + b2)

24 ‖ 27a4

24 ‖ 18a2(b2 + c2)

and so 24 ‖ h1(a
2, b2, c2).

Case 2: 22 | a

As in Case 1, we have 24 ‖ (3b2 + c2)(3c2 + b2), but now 25 | 27a4 + 18a2(b2 + c2), so

24 ‖ h1(a
2, b2, c2).

Similarly, 24 ‖ h1(a
2, b2, c2) in the cases 2 | b, 2 - ac and 2 | c, 2 - ab using the following

two rearrangements of h1 respectively:

h1(a
2, b2, c2) = 3(c2 + 3a2)2 + 3b4 + 2b2(9a2 + 5c2)

h1(a
2, b2, c2) = 3(b2 + 3a2)2 + 3c4 + 2c2(5b2 + 9a2)

We use a similar argument for h2(a
2, b2, c2) and h3(a

2, b2, c2).

Lemma 4.3: Given a, b, c with gcd(a, b, c) = 1, let (A,B,C) = ψ′(a, b, c) and let D =

gcd(A,B,C), then 3 | D if and only if 3 | c, 9 ‖ D if and only if 3 | gcd(a, c), and 27 ‖ D if

and only if 3 | gcd(b, c).

Proof. We begin by looking at A,B,C modulo 3:

A ≡ 10ab2c2 (mod 3)

B ≡ c5 (mod 3)

C ≡ bc4 (mod 3)

Hence 3 | D if and only if 3 | c.
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Now suppose that 3 | c and look modulo 9:

A ≡ 3ab4 (mod 9)

B ≡ 0 (mod 9)

C ≡ 0 (mod 9)

So we see that if 3 | c but 3 - ab then 3 ‖ D.

Now suppose that 3 | c and look modulo 27:

A ≡ ab2(3b2 + 10c2 + 18a2) (mod 27)

B ≡ 3c(b2 + 3a2)(a2 + 3b2) (mod 27)

C ≡ 9b5 (mod 27)

From this we can see that if 3 | gcd(a, c) (and 3 - b), then A ≡ 0, 9, 18 (mod 27), B ≡ 0

(mod 27) and C ≡ 9, 18 (mod 27), so 9 ‖ D.

Moreover, if 3 | gcd(b, c) (and 3 - a), then A,B,C ≡ 0 (mod 27). By noting that if

3 | gcd(b, c), then A ≡ 27a5 (mod 81) we see that 27 ‖ D.

We can now describe the two coprime (a, b, c) triples corresponding to each non-trivial

solution to (2.2). Let:

D = gcd(ah1(a
2, b2, c2), ch2(a

2, b2, c2), bh3(a
2, b2, c2))

Then we’ll define a map ψ as

ψ(a, b, c) = (a′, b′, c′) =

(

A

D
,
B

D
,
C

D

)

(4.4)

where A,B,C come from (4.1). So if we let

φ(a, b, c) = (W,X, Y, Z)

φ(a′, b′, c′) = (W ′, X ′, Y ′, Z ′)

then

(W,X, Y, Z) = (gw, gx, gy, gz)

(W ′, X ′, Y ′, Z ′) = (g′w, g′y, g′x, g′z)
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where (w, x, y, z) is a primitive solution to (2.2), e.g. gcd(w, x, y, z) = 1. Now we can compare

the sizes of these two gcds, g and g′. Notice from (4.3) that

g′ =
gH

D3
�
gH

g6
=
H

g5

where H is from (4.2). By letting m = max(a, b, c) we use (4.2) to see that in fact:

g′ �
m12

g5
(4.5)

What we prove next is a bound on the size of the minimum of these two gcds. First we’ll

recall from (2.5) and (2.6) that

U = 3a2 + (b+ c)2

V = 3a2 + (b− c)2

and:

K = 18aUV (UV + 4b2(U + V ))

Proposition 4.4: Suppose a, b, c and a′, b′, c′ are the two coprime triples associated with

a primitive solution to (2.2). Suppose further that w,−x,−y, z > 0. Then using the map φ

from (2.3) let:

φ(a, b, c) = (W,X, Y, Z)

φ(a′, b′, c′) = (W ′, X ′, Y ′, Z ′)

Letting g = gcd(W,X, Y, Z) and g′ = gcd(W ′, X ′, Y ′, Z ′), then

W 3 + Z3 = g3k

W ′3 + Z ′3 = g′3k

and min(g, g′) � k2/3.

Proof. From Proposition 2.3 we know that if W,−X,−Y, Z > 0 then b + c < 3a, so

certainly b, c < 3a. But if b, c < 3a then U � a2 and V � a2 so K � a9. Therefore K = g3k
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implies a � g1/3k1/9. As before, let m = max(a, b, c) and so m � g1/3k1/9. Thus from (4.5):

g′ �
g4k4/3

g5
=
k4/3

g

So indeed if g � k2/3 then g′ � k2/3.

The general case allowing some of the integers w,−x,−y, z to be negative remains as yet

unproven.



Chapter 5

Counting Primitive Solutions

In order to bound the number of taxicab numbers, we’ll bound the number of non-trivial

solutions to (2.2). We begin by bounding the number of primitive solutions, those for which

gcd(w, x, y, z) = 1, and use this to bound the total number of solutions. In chapter two we

showed that we can use the parametrization given by (2.3) and we need only to consider

a, b, c > 0 where gcd(a, b, c) = 1. Thus to bound the number of primitive solutions to (2.2),

we’ll count the following:

1

2

∑

g≥1

#

{

a, b, c ∈ Z>0 :
gcd(a, b, c) = 1; K ≤ g3N ;

gcd(W,X, Y, Z) = g

}

where K is from (2.6) and W,X, Y, Z from (2.4). The 1/2 at the beginning of this expression

is to account for the fact that there are two a, b, c triples for each solution to (2.2).

For the rest of this chapter, we’ll bound the first term in this sum, that is the term g = 1.

Note that in this case, the result of the parametrization is a primitive solution, i.e. letting

φ(a, b, c) = (W,X, Y, Z), then gcd(W,X, Y, Z) = 1. We hope to be able to use this as a model

to generalize for the rest of the terms in the sum using what we have proven about the gcd’s

which arise from this parametrization in the previous chapters. While in this chapter we give

an argument for the upper bound on this term, the ideas used are similar to those for the

lower bound given in the next chapter. Note that by Proposition 2.3, if we are interested in

solutions to (2.2) where w, z,−x,−y are all non-negative, i.e. the taxicab numbers originally

considered by Ramanujan, then we need to only consider case 1 in the proof that follows.

Proposition 5.1: Using the notation in (2.3):

#

{

(a, b, c) :
a, b, c > 0, gcd(a, b, c) = 1, (W,X, Y, Z) = φ(a, b, c)

gcd(W,X, Y, Z) = 1, 0 < W 3 + Z3 = K ≤ N

}

� N1/3

28
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Proof. Recall from (2.6) that letting

U = 3a2 + (b+ c)2

V = 3a2 + (b− c)2

we have:

K = 18aUV (UV + 4b2(U + V ))

Case 1: b, c < a.

In this case, U � a2 and V � a2, so K � a9. Since for each choice of a there are at most

a choices for each of b and c, we have:

#{(a, b, c) b, c < a : gcd(W,X, Y, Z) = 1 and 0 < W 3 + Z3 = K ≤ N}

�
∑

a<N1/9

a2 � N1/3

Case 2: b ≤ a ≤ c (and c ≤ a ≤ b).

If c < 2a say, then U � c2 and V � a2, but since a � c we also have V � c2. and if

c > 2a, then U � c2 and V � c2 so no matter the size of c we have K � ac8. Since for a

fixed a there are at most a choices for b, we have:

#{(a, b, c) b < a < c : gcd(W,X, Y, Z) = 1 and 0 < W 3 + Z3 = K ≤ N}

�
∑

a<N1/9

∑

c<(N
a )

1/8

a

� N1/8
∑

a<N1/9

a7/8 � N1/3

Note that for the other situation, in parenthesis, we can use the same argument but then

V � b2 and U � b2 and hence k � ab8, which gives us the same count.
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Case 3: a < b < c where c− b < a (and a < c < b where b− c < a).

Here we have V � a2 and U � c2, so K � a3c4b2 � a3b6 � a9. Since c− b < a, for each

choice of a and b we have at most a choices for c; so:

#{(a, b, c) in Case 3 : gcd(W,X, Y, Z) = 1 and 0 < W 3 + Z3 = K ≤ N}

�
∑

a<N1/9

∑

b<( N
a3 )

1/6

a

� N1/6
∑

a<N1/9

a1/2 � N1/3

For the other situation, in parenthesis, we repeat the argument noting that we get U � b2

and V � a2, and so K � a3b6, from which we get the same count.

Case 4: a < b < c where c− b ≥ a (and a < c < b where b− c ≥ a).

In this case, V � (c− b)2 and U � c2, and so:

K � ac2(c− b)2[c2(c− b)2 + 4b2c2]

� ac4(c− b)2[(c− b)2 + 4b2]

� ac6(c− b)2 � a(c− b)8 � a9

We can then bound a by N1/9 as usual, and since (c − b) > a, we can then bound c by
(

N
a3

)1/6
, i.e. so K � ac6(c− b)2 � a3c6. after choosing an a and c, we then have restricted b

to the range c −
(

N
ac6

)1/2
< b < c − a. Note that for small c, namely c <

(

N
a

)1/8
, this lower

bound for b is negative, while we have restricted b to positive numbers. So we must count as

follows:

#{(a, b, c) in Case 4 : gcd(W,X, Y, Z) = 1 and 0 < W 3 + Z3 = K ≤ N}

�
∑

a<N1/9







∑

c<(N
a )

1/8

∑

b<c

1 +

( N
a3 )

1/6

∑

c=(N
a )

1/8

c
∑

b=c−( N
ac6

)
1/2

1







�
∑

a<N1/9







∑

c<(N
a )

1/8

c +

( N
a3 )

1/6

∑

c=(N
a )

1/8

(

N

ac6

)1/2






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�
∑

a<N1/9

(

N

a

)1/4

� N1/3

Again, to handle the other situation, in the parenthesis, we have that U � b2 and V �

(b− c)2; and thus, K � ab6(b− c)2 � a(b− c)8, which gives us the same count.



Chapter 6

A Lower Bound

The main result of this chapter is the following corollary which will be proven at the very

end of this chapter. We will first state it here

Corollary 6.7: Let r+(n) be as given in (1.1). Then:

∑

n<N

(

r+(n)

2

)

� N1/3 log4N

Notice that this is indeed the same order as the upper bound predicted by Manin’s

conjecture which was discussed in the introduction. In order to prove this lower bound, we

begin with a few preliminary lemmas.

Lemma 6.1: Fix δ > 0 small, then:

∏

p|N

(

1 −
1

p

)

=

{

1 +O

(

1

log logN

)}

∏

p|N
p<δ log N

(

1 −
1

p

)

Proof. First we see that:

∏

p|N

(

1 −
1

p

)

≤
∏

p|N
p<δ log N

(

1 −
1

p

)

Next, split the product, and note that the number of prime factors p of N for which p >

δ logN is less than log N
log log(Nδ)

. So:

∏

p|N

(

1 −
1

p

)

=
∏

p|N
p≥δ log N

(

1 −
1

p

)

·
∏

p|N
p<δ log N

(

1 −
1

p

)

≥

(

1 −
1

δ logN

)
log N

log log(Nδ) ∏

p|N
p<δ log N

(

1 −
1

p

)

=

{

1 +O

(

1

log logN

)}

∏

p|N
p<δ log N

(

1 −
1

p

)

32
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The next two lemmas bound L(s, χ) in different regions of the complex plane. For the

region 0 < Re(s) < 1, Rademacher [15] gives a bound which is better for most of the region,

but Lemma 6.2 suffices as a bound for the entire region for our purposes.

Lemma 6.2: Let s = σ + it, and let χ be a non-trivial character modulo d, then for

0 < σ ≤ 1:

|L(s, χ)| � (d(|s| + 1))1−σ

(

log(d(|s| + 1)) +
1

σ

)

Proof: We begin by rearranging the definition for L(s, χ) which is defined for σ > 1

L(s, χ) =
∑

n≥1

χ(n)

ns

=
∑

n≤d(|s|+1)

χ(n)

ns
+
∑

k≥|s|+1

∑

1≤a<d

χ(kd+ a)

(kd+ a)s

=
∑

n≤d(|s|+1)

χ(n)

ns
+
∑

k≥|s|+1

∑

1≤a<d

χ(a)

(

1

(kd+ a)s
−

1

(kd)s

)

=
∑

n≤d(|s|+1)

χ(n)

ns
+
∑

k≥|s|+1

1

(kd)s

∑

1≤a<d

χ(a)

(

(

1 +
a

kd

)−s

− 1

)

arriving an expression which is valid for σ > 0.

We now bound this for 0 < σ ≤ 1, first we note that:

|L(s, χ)| �
∑

n≤d(|s|+1)

1

nσ
+
∑

k≥|s|+1

1

(kd)σ

∑

1≤a<d

a|s|

kd

We can continue by bounding each of the sums above. For the first sum, if σ = 1 then:

∑

n≤d(|s|+1)

1

nσ
� log(d(|s| + 1)) (6.1)

While for 0 < σ < 1:

∑

n≤d(|s|+1)

1

nσ
�

(

(d(|s| + 1))1−σ

1 − σ
−

1

1 − σ

)

+ 1

� (d(|s| + 1))1−σ log(d(|s| + 1)) (6.2)

The last line comes from using the mean value theorem on the function f(x) = (d(|s|+1))1−x

to bound the expression inside the parentheses.
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For the second sum, since a < d we have:

∑

k≥|s|+1

1

(kd)σ

∑

1≤a<d

a|s|

kd
≤ |s|d−σ

∑

k≥|s|+1

1

k1+σ

∑

1≤a<d

1

< |s|d1−σ
∑

k≥|s|+1

1

k1+σ

�
|s|1−σd1−σ

σ
(6.3)

Gathering (6.1), (6.2) and (6.3) finishes the lemma.

Lemma 6.3: Let s = σ + it, and let χ be a non-trivial character modulo d, then for

1 ≤ σ < 2:

|L(s, χ)| � log(d(|s| + 1))

Proof: We’ll begin as in Lemma 6.2, with the following rearrangement of L(s, χ):

L(s, χ) =
∑

n≤d(|s|+1)

χ(n)

ns
+
∑

k≥|s|+1

1

(kd)s

∑

1≤a<d

χ(a)

(

(

1 +
a

kd

)−s

− 1

)

Again proceeding as in Lemma 6.2 we continue with:

|L(s, χ)| �
∑

n≤d(|s|+1)

1

nσ
+
∑

k≥|s|+1

1

(kd)σ

∑

1≤a<d

a|s|

kd

We’ll bound each of these two sums separately beginning with the first sum:

∑

n≤d(|s|+1)

1

nσ
≤

∑

n≤d(|s|+1)

1

n
� log(d(|s| + 1)) (6.4)

Continuing by bounding the second sum:

∑

k≥|s|+1

1

(kd)σ

∑

1≤a<d

a|s|

kd
≤ |s|d−σ

∑

k≥|s|+1

1

k1+σ

∑

1≤a<d

1

< |s|d1−σ
∑

k≥|s|+1

1

k1+σ

�
(|s|d)1−σ

σ
(6.5)

Since σ ≥ 1, together (6.4) and (6.5) gives our result.
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From Davenport [1] we have the following result:

Lemma 6.4: Let δ(y) denote the function (for c > 0):

δ(y) =
1

2iπ

c+i∞
∫

c−i∞

ysds

s
=























0 if 0 < y < 1

1/2 if y = 1

1 if y > 1

and let:

I(y, T ) =
1

2iπ

c+iT
∫

c−iT

ys

s
ds

Then for y > 0, c > 0, T > 0:

|I(y, T )− δ(y)| <







yc min(1, T−1| log y|−1) if y 6= 1

cT−1 if y = 1

With these we can prove the following proposition:

Proposition 6.5: Let ω(n) be the number of distinct prime factors of n, and let

ρ(n) = #{t (mod n) : t2 ≡ −3 (mod n)}

then for any M

∑

g<G
(g,6)=1

3ω(g)ρ(g)

g

∏

5<p<M
p|g

(

1 −
6

p

)

= K log3G+O(log2G)

where:

K =
43

6 · 33 · 53

∏

5<p<M

(

1 + 3

(

1 −
6

p

)(

1 +

(

−3

p

))(

1

p− 1

))(

1 −
1

p

)3

·
∏

p≥M

(

1 + 3

(

1 +

(

−3

p

))(

1

p− 1

))(

1 −
1

p

)3
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Proof.

∑

g<G
(g,6)=1

3ω(g)ρ(g)

g

∏

5<p<M
p|g

(

1 −
6

p

)

=
∑

g<G
(g,30)=1

1

g

∏

pa‖g
5<p<M

(

3ρ(pa)

(

1 −
6

p

))

∏

pa‖g
p≥M

3ρ(pa)

=
∑

g≥1
(g,30)=1

1

g







∏

pa‖g
5<p<M

3ρ(pa)

(

1 −
6

p

)













∏

pa‖g
p≥M

3ρ(pa)







1

2iπ

c+i∞
∫

c−i∞

(

G

g

)s
ds

s

by Lemma 6.4, for some c > 0. We’ll want to approximate the infinite integral with the

following integral with finite limits:

c+iT
∫

c−iT

(

G

g

)s
ds

s

for some appropriate T . We’ll show first that this integral with the finite limits gives the

desired result, and then show that this approximation is valid. It turns out that using the

following for c and T will allow us to more easily bound error terms:

c =
1

logG

T = G1/12 (6.6)

We begin by re-writing

∑

g≥1
(g,30)=1

1

g







∏

pa‖g
5<p<M

3ρ(pa)

(

1 −
6

p

)













∏

pa‖g
p≥M

3ρ(pa)







1

2iπ

c+iT
∫

c−iT

(

G

g

)s
ds

s

=
1

2iπ

c+iT
∫

c−iT

∏

5<p<M

(

1 + 3

(

1 −
6

p

)(

1 +

(

−3

p

))

∑

k≥1

1

pk(1+s)

)

·
∏

p≥M

(

1 + 3

(

1 +

(

−3

p

))

∑

k≥1

1

pk(s+1)

)

(

Gs

s

)

ds (6.7)

since for p > 3 and a ≥ 1, ρ(pa) = ρ(p) = 1 +
(

−3
p

)

.
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Now let,

A(s) = κ(s)
∏

5<p<M

((

1 + 3

(

1 −
6

p

)(

1 +

(

−3

p

))

∑

k≥1

1

pks

)

·

(

1 −
1

ps

)3


1 −

(

−3
p

)

ps





3






·
∏

p≥M

((

1 + 3

(

1 +

(

−3

p

))

∑

k≥1

1

pks

)

·

(

1 −
1

ps

)3


1 −

(

−3
p

)

ps





3





(6.8)

where:

κ(s) =

(

1 −
1

4s

)3(

1 −
1

3s

)3(

1 −
1

25s

)3

By expanding the terms inside the product we see:

A(s) = κ(s)
∏

5<p<M

(

1 −
6

ps+1
+

(

−9 − 6

(

−3

p

))

1

p2s

+

(

−126 − 126

(

−3

p

))

1

p2s+1
+O

(

1

p3s

))

·
∏

p≥M

(

(1 +

(

−9 − 6

(

−3

p

))

1

p2s
+O

(

1

p3s

))

So we then can bound

|A(s)| ≤ κ′(σ)
∏

p

(

1 +
6

pσ+1
+

15

p2σ
+

252

p2σ+1
+O

(

1

p3σ

))

where:

κ′(s) =

(

1 +
1

4s

)3(

1 +
1

3s

)3(

1 +
1

25s

)3

Hence, not only is A(s) is absolutely convergent for σ > 1/2, but we can bound A(s)

uniformly, irrespective to our choice of M , so long as we can fix a δ and consider only

σ ≥ δ > 1/2.
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Using this notation, we can continue (6.7) from above:

∑

g≥1
(g,30)=1

1

g







∏

pa‖g
5<p<M

3ρ(pa)

(

1 −
6

p

)













∏

pa‖g
p≥M

3ρ(pa)







1

2iπ

c+iT
∫

c−iT

(

G

g

)s
ds

s

=
1

2iπ

c+iT
∫

c−iT

ζ(1 + s)3L

(

1 + s,

(

−3

·

))3

A(1 + s)
Gs

s
ds

We can evaluate this integral by extending the integral from a line integral to a closed

rectangle R with corners, c − iT, c + iT, −1
6

+ iT, −1
6
− iT . Around this closed curve R we

have:

2iπ
∑

{residues inside R} =

∫

R

=

c+iT
∫

c−iT

+

−1
6

+iT
∫

c+iT

+

−1
6
−iT
∫

−1
6

+iT

+

c−iT
∫

−1
6
−iT

(6.9)

We continue by showing that we can bound the last three integrals on the right hand side

of this equality. First we’ll bound the two two horizontal integrals, by splitting the integral

into two pieces. First integrating with respect to s along the line c + iT to iT . Along this

integral, 1 + s will run from (1 + c) + iT to 1 + iT . Since T is large and c > 0, then for large

G in this region we can bound:

|ζ(1 + s)| � log(T )
∣

∣

∣

∣

L

(

1 + s,

(

−3

·

))∣

∣

∣

∣

� log(T )

The bound for the L−function comes from Lemma 6.3 above and the bound for ζ from

Titchmarsh [20].

With this we can bound this integral as:
∣

∣

∣

∣

∣

∣

iT
∫

c+iT

ζ(1 + s)3L

(

1 + s,

(

−3

·

))3

A(1 + s)
Gs

s
ds

∣

∣

∣

∣

∣

∣

�
log6 T

T

iT
∫

c+iT

|Gs| ds

�
log6 T

T

Gc

logG
(6.10)
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Next we bound the integral for s along the line iT to −1
6

+ iT . Along this integral, 1 + s

will run from 1 + iT to 5
6

+ iT . Since T is large, in this region we can bound:

|ζ(1 + s)| � T 1/12+o(1) (6.11)
∣

∣

∣

∣

L

(

1 + s,

(

−3

·

))∣

∣

∣

∣

� T 1/6+o(1)

This bound for the L−function comes from Lemma 6.2 above, and the bound for ζ from

Titchmarsh [20].

With this we can bound this integral as:

∣

∣

∣

∣

∣

∣

−1/6+iT
∫

iT

ζ(1 + s)3L

(

1 + s,

(

−3

·

))3

A(1 + s)
Gs

s
ds

∣

∣

∣

∣

∣

∣

�
T 1/4+o(1)T 1/2+o(1)

T

−1/6+iT
∫

iT

|Gs| ds

� T−1/4+o(1) (6.12)

Putting together (6.10) and (6.12) with our choices for c and T we have:

∣

∣

∣

∣

∣

∣

−1/6+iT
∫

c+iT

ζ(1 + s)3L

(

1 + s,

(

−3

·

))3

A(1 + s)
Gs

s
ds

∣

∣

∣

∣

∣

∣

� G−1/48+o(1) (6.13)

In the same way, we can bound:

∣

∣

∣

∣

∣

∣

∣

−1
6
−iT
∫

c−iT

ζ(1 + s)3L

(

1 + s,

(

−3

·

))3

A(1 + s)
Gs

s
ds

∣

∣

∣

∣

∣

∣

∣

� G−1/48+o(1) (6.14)

For the final integral, along the line with s taking values −1
6

+ iT to −1
6
− iT we can use

the same bounds for ζ and L given in (6.11), hence:

∣

∣

∣

∣

∣

∣

∣

−1
6
−iT
∫

−1
6

+iT

ζ(1 + s)3L

(

1 + s,

(

−3

·

))3

A(1 + s)
Gs

s
ds

∣

∣

∣

∣

∣

∣

∣
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� T 3/4+o(1)

−1
6
−iT
∫

−1
6

+iT

∣

∣

∣

∣

Gs

s

∣

∣

∣

∣

ds

�
T 7/4+o(1)

G1/6
(6.15)

So putting together (6.9) with (6.13), (6.14), and (6.15) and our choices for c and T , we

have:

1

2iπ

c+iT
∫

c−iT

ζ(1 + s)3L

(

1 + s,

(

−3

·

))3

A(1 + s)
Gs

s
ds

=
∑

{residues inside R} +O
(

G−1/48+o(1)
)

(6.16)

We must now calculate the residues inside the rectangle R. Inside the rectangle, both

L
(

1 + s,
(

−3
·

))

and A(1 + s) are analytic and their value at s = 0 is independent of the

choice of G. The rest of the integrand has only the pole at s = 0 inside the rectangle. Since

ζ(s + 1) has a simple pole at s = 0 with residue 1, ζ(s + 1)3 has a pole of order three. By

expanding Gs we have:

Gs = es log G = 1 + s logG+
(s logG)2

2
+

(s logG)3

3!
+ · · ·

Therefore:

{residue at s = 0} = L

(

1,

(

−3

·

))3

A(1)
log3G

3!
+O

(

log2G
)

=
log3G

3!

∏

p



1 −

(

−3
p

)

p





−3

·κ(1)
∏

5<p<M

((

1 + 3

(

1 −
6

p

)(

1 +

(

−3

p

))(

1

p− 1

))

·

(

1 −
1

p

)3


1 −

(

−3
p

)

p





3





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·
∏

p≥M

((

1 + 3

(

1 +

(

−3

p

))(

1

p− 1

))

·

(

1 −
1

p

)3


1 −

(

−3
p

)

p





3






+O
(

log2G
)

= log3G
43

3! · 33 · 53

·
∏

5<p<M

(

(

1 + 3

(

1 −
6

p

)(

1 +

(

−3

p

))(

1

p− 1

))(

1 −
1

p

)3
)

·
∏

p≥M

(

1 + 3

(

1 +

(

−3

p

))(

1

p− 1

))(

1 −
1

p

)3

+O(log2G)

So, by letting

K =
43

3! · 33 · 53

∏

5<p<M

(

(

1 + 3

(

1 −
6

p

)(

1 +

(

−3

p

))(

1

p− 1

))(

1 −
1

p

)3
)

·
∏

p≥M

(

1 + 3

(

1 +

(

−3

p

))(

1

p− 1

))(

1 −
1

p

)3

we have:

{residue at s = 0} = K log3G +O
(

log2G
)

Using this with (6.16) we then have:

1

2iπ

c+iT
∫

c−iT

ζ(1 + s)3L

(

1 + s,

(

−3

·

))3

A(1 + s)
Gs

s
ds = K log3G+O

(

log2G
)

(6.17)

We now will bound the error induced by approximating the integral having infinite limits

of integration, with the integral with the appropriate finite limits. Using Lemma 6.4:
∣

∣

∣

∣

∣

∣

∣

∑

g<G

3ω(g)ρ(g)

g

∏

5<p<L
p|g

(

1 −
6

p

)

−
1

2iπ

c+iT
∫

c−iT

ζ(1 + s)3L

(

1 + s,

(

−3

·

))3

A(1 + s)
Gs

s
ds

∣

∣

∣

∣

∣

∣

∣

=
∑

g≥1
(g,30)=1

1

g







∏

pa‖g
5<p<M

3ρ(pa)

(

1 −
6

p

)













∏

pa‖g
p≥M

3ρ(pa)






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·

∣

∣

∣

∣

∣

∣

1

2iπ

c+i∞
∫

c−i∞

(

G

g

)s
ds

s
−

1

2iπ

c+iT
∫

c−iT

(

G

g

)s
ds

s

∣

∣

∣

∣

∣

∣

<
∑

|g−G|<G17/18

(g,30)=1

1

g







∏

pa‖g
5<p<M

3ρ(pa)

(

1 −
6

p

)













∏

pa‖g
p≥M

3ρ(pa)







(

G

g

)c

(6.18)

+
∑

|g−G|>G17/18

(g,30)=1

1

g







∏

pa‖g
5<p<M

3ρ(pa)

(

1 −
6

p

)













∏

pa‖g
p≥M

3ρ(pa)







(

G
g

)c

T | log(G/g)|

We’ll bound each of these sums separately beginning with the first sum. Since

ω(g) �
logG

log logG

we can bound:

∑

|g−G|<G17/18

(g,30)=1

1

g







∏

pa‖g
5<p<M

3ρ(pa)

(

1 −
6

p

)













∏

pa‖g
p≥M

3ρ(pa)







(

G

g

)c

�
1

G

∑

|g−G|<G17/18

6ω(g)

� G−1/18+o(1) (6.19)

We bound the second summation next:

∑

|g−G|>G17/18

(g,30)=1

1

g







∏

pa‖g
5<p<M

3ρ(pa)

(

1 −
6

p

)













∏

pa‖g
p≥M

3ρ(pa)







(

G

g

)c
1

T | log(G/g)|

�
G1/18+c

T

∑

g≥1
(g,30)=1

1

g1+c







∏

pa‖g
5<p<M

3ρ(pa)

(

1 −
6

p

)













∏

pa‖g
p≥M

3ρ(pa)







=
G1/18+c

T

∏

5<p<M

(

1 + 3ρ(p)

(

1 −
6

p

)

(

∑

k≥1

1

pk(1+c)

))

·
∏

p≥M

(

1 + 3ρ(p)

(

∑

k≥1

1

pk(1+c)

))

=
G1/18+c

T
ζ(1 + c)3L

(

1 + c,

(

−3

·

))3

A(1 + c) (6.20)
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Recall our choice for c = 1/ logG, and so for large values of G we have 1 < 1 + c < 2. In

this region, we can bound both L
(

1 + c,
(

−3
·

))3
and A(1 + c) by a constant. Moreover, as

c→ 0 along the real axis, we have ζ(1 + c) = 1
c

+O(1); and so:

ζ(1 + c)3 =
1

c3
+O

(

1

c2

)

Using these and recalling our choices for c and T , we continue (6.20):

∑

|g−G|>G17/18

(g,30)=1

1

g







∏

pa‖g
5<p<M

3ρ(pa)

(

1 −
6

p

)













∏

pa‖g
p≥M

3ρ(pa)







(

G

g

)c
1

T | log(G/g)|

�
G1/18+c

Tc3

�
log3G

G1/36
(6.21)

Putting together (6.19) and (6.21) we continue (6.18) to get:

∣

∣

∣

∣

∣

∣

∣

∑

g<G

3ω(g)ρ(g)

g

∏

5<p<M
p|g

(

1 −
6

p

)

−
1

2iπ

c+iT
∫

c−iT

ζ(1 + s)3L

(

1 + s,

(

−3

·

))3

A(1 + s)
Gs

s
ds

∣

∣

∣

∣

∣

∣

�
log3G

G1/36
(6.22)

Finally, by combining (6.17) with (6.22) we complete the proof of Proposition 6.5.

We can now prove the following result concerning primitive solutions. We’ll use this to

then prove a result concerning non-primitive solutions which relates this work back to the

function r+(n) defined at the beginning of the first chapter.
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Theorem 6.6:

#

{

a, b, c :

a,b,c>0, gcd(a,b,c)=1,
φ(a,b,c)=(W,X,Y,Z)

g=gcd(W,X,Y,Z), W 3+Z3<g3N,
W,Z,−X,−Y ≥0

}

� N1/3 log3N

Proof. First, let L = g1/3N1/9, and we’ll consider only the solutions for which L/2 <

a < L. From Proposition 2.3, we can insure that we are only considering solutions for which

W,Z,−X,−Y are all positive if we consider only a, b, c triples with a, b, c > 0, gcd(a, b, c) = 1,

and b+ c < a. Therefore, we’ll count the number of triples arising as b < L/4, and c < L/4.

The idea is to count as follows:

#

{

a, b, c :

a,b,c>0, gcd(a,b,c)=1,
φ(a,b,c)=(W,X,Y,Z)

g=gcd(W,X,Y,Z), W 3+Z3<g3N,
W,Z,−X,−Y ≥0

}

≥
∑

g<N1/9

(g,6)=1

#

{

a, b, c :

a,b,c>0, gcd(a,b,c)=1,
φ(a,b,c)=(W,X,Y,Z)

g=gcd(W,X,Y,Z), W 3+Z3<g3N,
W,Z,−X,−Y ≥0

}

≥
∑

g<N1/9

(g,6)=1

∑

αβγ=g
α,β,γ pairwise coprime

N(α, β, γ) (6.23)

where:

N(α, β, γ) = #

{

a, b, c :

(a,b,c)=1, φ(a,b,c)=(W,X,Y,Z),
W,Z,−X,−Y ≥0, gcd(W,X,Y,Z)=g=αβγ

α=(a,c2+3b2), β=(b,c2+3a2),
γ=(c,b2+3a2)

}

Note that by Theorem 3.1, we know that if 2 doesn’t divide αβγ then 2 can not divide g,

similarly for 3.

Using (2.5) and (2.6) we see that if b, c < a, then U, V � a2 and K � a9. Let M =

1
100

logN , and ρ(n) = #{t (mod n) : t2 ≡ −3 (mod n)}. By applying Lemma 6.1 we

have:
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N(α, β, γ) ≥

L
∑

a= 1
2 L

α|a

∑

b< 1
4 L

β|b

γ|b2+3a2

∑

c< 1
4 L

γ|c

α|c2+3b2

β|c2+3a2

(a,b,c)=1
(

c
γ , b2+3a2

γ

)

=1
(

a
α , c2+3b2

α

)

=1
(

b
β

, c2+3a2

β

)

=1

1

�
L
∑

a= 1
2 L

α|a

∑

b< 1
4 L

β|b

γ|b2+3a2

ρ(αβ)
L

g

∏

p|b
p>3

(

1 −
1

p

)

∏

p| b2+3a2
γ

p>3

(

1 −
1

p

)

.
∏

p| a
α

p>3

(

1 −
2

p

)

∏

p| b
β

p>3

(

1 −
2

p

)

�
ρ(αβ)L

g

L
∑

a=1
2 L

α|a

∏

p| a
α

3<p<M

(

1 −
2

p

)

∑

b< 1
4 L

β|b

γ|b2+3a2

∏

p|b
3<p<M

(

1 −
1

p

)

·
∏

p| b2+3a2
γ

3<p<M

(

1 −
1

p

)

∏

p| b
β

3<p<M

(

1 −
2

p

)

(6.24)

We continue by bounding the inner most sum:

∑

b< 1
4 L

β|b

γ|b2+3a2

∏

p|b,
3<p<M

(

1 −
1

p

)

∏

p| b2+3a2
γ

3<p<M

(

1 −
1

p

)

∏

p| b
β

3<p<M

(

1 −
2

p

)

�
∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

∑

b< 1
4 L

b≡r (mod βγ)

∏

p|b
3<p<M

(

1 −
3

p

)

∏

p|b2+3a2

3<p<M

(

1 −
1

p

)

=
∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

∑

b< 1
4 L

b≡r (mod βγ)

∑

d|b
p|d⇒3<p<M

µ(d)3ω(d)

d

∑

e|b2+3a2

p|e⇒3<p<M

µ(e)

e

=
∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

∑

d< 1
4 L

p|d⇒3<p<M

µ(d)3ω(d)

d

∑

e< 49
16 L2

p|e⇒3<p<M,

(−3
p )=1

µ(e)

e

∑

b< 1
4 L

b≡r (mod βγ)
b≡0 (mod d)

b2≡−3a2 (mod e)

1



46

=
∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

∑

d< 1
4 L

p|d⇒3<p<M
p|(d,γ)⇒p|a

µ(d)3ω(d)

d

∑

e< 49
16 L2

p|e⇒3<p<M,

(−3
p )=1

p|(e,d)⇒p|a
p|(e,β)⇒p|a

µ(e)

e
2ω′(e,a)

{ 1
4
L

LCM(βγ, d, e)
+O(1)

}

=
1

4

L

βγ

∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

∑

d< 1
4 L

p|d⇒3<p<M
p|(d,γ)⇒p|a

µ(d)3ω(d)

d

∏

p|d
p-βγ

1

p

∑

e< 49
16 L2

p|e⇒3<p<M,

(−3
p )=1

p|(e,d)⇒p|a
p|(e,β)⇒p|a

µ(e)2ω′(e,a)

e

∏

p|e
p-dβγ

1

p

+O



























∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

∑

d< 1
4 L

d−square free
p|d⇒3<p<M
p|(d,γ)⇒p|a

3ω(d)

d

∑

e< 49
16 L2

e−square free
p|e⇒3<p<M,

(−3
p )=1

p|(e,d)⇒p|a
p|(e,β)⇒p|a

2ω′(e,a)

e



























(6.25)

where:

ω(n) = #{primes p | n}

ω′(n,m) = #{primes p | n : p - m}

We can bound the error term as follows:

∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

∑

d<1
4 L

d−square free
p|d⇒3<p<M
p|(d,γ)⇒p|a

3ω(d)

d

∑

e< 49
16 L2

e−square free
p|e⇒3<p<M,

(−3
p )=1

p|(e,d)⇒p|a
p|(e,β)⇒p|a

2ω′(e,a)

e

�
∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

∑

d< 1
4 L

d−square free
p|d⇒3<p<M
p|(d,γ)⇒p|a

3ω(d)

d

∏

3<p<M

(−3
p )=1

p|a

(

1 +
1

p

)

∏

3<p<M

(−3
p )=1

p-a

(

1 +
2

p

)
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� (logM)2
∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

∑

d< 1
4 L

d−square free
p|d⇒3<p<M
p|(d,γ)⇒p|a

3ω(d)

d

= (logM)2
∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)







∏

3<p<M
p|(γ,a)

(

1 +
3

p

)

∏

3<p<M
p-γ

(

1 +
3

p

)







� (logM)5
∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

1

= ρ(γ)(logM)5

We will now bound the main term of (6.25). Note first that if d and e are square free

and p | de⇒ 3 < p < M and by our choice of M = 1
100

logN , that necessarily e < 49
16
L2 and

d < L/4. In fact the largest that d or e can be is:

∏

p<M

p = exp

(

∑

p<M

log p

)

≤ exp((2 log 2)M) = exp

(

log 2

50
logN

)

< N1/50 = o(L)

For a nice proof of the first inequality see [5].

So then:

1

4

L

βγ

∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

∑

d≥1
p|d⇒3<p<M
p|(d,γ)⇒p|a

µ(d)3ω(d)

d

∏

p|d
p-βγ

1

p

∑

e≥1
p|e⇒3<p<M,

(−3
p )=1

p|(e,d)⇒p|a
p|(e,β)⇒p|a

µ(e)2ω′(e,a)

e

∏

p|e
p-dβγ

1

p

=
1

4

L

βγ

∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

∑

d≥1
p|d⇒3<p<M
p|(d,γ)⇒p|a

µ(d)3ω(d)

d

∏

p|d
p-βγ

1

p

∏

3<p<M

(−3
p )=1

p|(β,a)

(

1 −
1

p

)

∏

3<p<M

(−3
p )=1

p|(d,a)
p-β

(

1 −
1

p

)

·
∏

3<p<M

(−3
p )=1

p|(a,γ)
p-dβ

(

1 −
1

p

)

∏

3<p<M

(−3
p )=1

p|a
p-dβγ

(

1 −
1

p2

)

∏

3<p<M

(−3
p )=1

p|γ
p-adβ

(

1 −
2

p

)

∏

3<p<M

(−3
p )=1

p-adβγ

(

1 −
2

p2

)



48

=
1

4

L

βγ

∏

3<p<M

(−3
p )=1

p|(β,a)

(

1 −
1

p

)

∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

∏

3<p<M
p|a

p-βγ

(−3
p )=1

(

1 −
4

p2
+

3

p3

)

∏

3<p<M
p|(a,γ)

p-β

(−3
p )=1

(

1 −
4

p
+

3

p2

)

·
∏

3<p<M
p|a

p-βγ

(−3
p )=−1

(

1 −
3

p2

)

∏

3<p<M
p|(a,γ)

p-β

(−3
p )=−1

(

1 −
3

p

)

∏

3<p<M
p|(a,β)

(

1 −
3

p

)

∏

3<p<M
p|β
p-a

(

1 −
3

p

)

·
∏

3<p<M
p-aβγ

(−3
p )=1

(

1 −
5

p2

)

∏

3<p<M
p|γ

p-aβ

(−3
p )=1

(

1 −
2

p

)

∏

3<p<M
p-aβγ

(−3
p )=−1

(

1 −
3

p2

)

�
L

βγ

∏

3<p<M

(−3
p )=1

p|(a,β)

(

1 −
1

p

)

∏

3<p<M
p|(a,γ)

p-β

(−3
p )=1

(

1 −
4

p

)

∏

3<p<M
p|(a,γ)

p-β

(−3
p )=−1

(

1 −
3

p

)

·
∏

3<p<M
p|(a,β)

(

1 −
3

p

)

∏

3<p<M
p|β
p-a

(

1 −
3

p

)

∏

3<p<M
p|γ

p-aβ

(−3
p )=1

(

1 −
2

p

)

∑

0≤r<βγ
r≡0 (mod β)

r2≡−3a2 (mod γ)

1

�
Lρ(γ)

βγ

∏

3<p<M
p|(a,β)

(

1 −
4

p

)

∏

3<p<M
p|(a,γ)

p-β

(−3
p )=1

(

1 −
4

p

)

∏

3<p<M
p|(a,γ)

p-β

(−3
p )=−1

(

1 −
3

p

)

·
∏

3<p<M
p|β
p-a

(

1 −
3

p

)

∏

3<p<M
p|γ
p-a

(

1 −
2

p

)

(6.26)

�
Lρ(γ)

βγ

∏

3<p<M
p|a

(

1 −
4

p

)

∏

3<p<M
p|β
p-a

(

1 −
3

p

)

∏

3<p<M
p|γ
p-a

(

1 −
2

p

)

(6.27)

�
Lρ(γ)

βγ

∏

3<p<M

(

1 −
4

p

)

To get the second equality, note that we have merely changed the sum over d into an Euler

product, where the products inside the sum cause the Euler product to be split into various

cases based upon the primes. For example, in the first case, p | a, p - βγ,
(

−3
p

)

= 1, if p

does not divide d we have the contribution from the fifth product of the summand
(

1 − 1
p2

)

,

while when p does divide d we have the usual factor −3
p

from the first term of the summand,
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multiplied by 1
p

from the first product and
(

1 − 1
p

)

from the second, giving us:

((

1 −
1

p2

)

−
3

p

1

p

(

1 −
1

p

))

=

(

1 −
4

p2
+

3

p3

)

Also, we notice that by our choices for L and g that:

L

βγ

∏

3<p<M

(

1 −
4

p

)

�
L

βγ log4M
�

N1/27

log4M

So indeed, the main term is the dominant term.

We now return to (6.24) using these bounds and (6.27):

N(α, β, γ) �
L2ρ(g)

βγg

∏

3<p<M
p|β

(

1 −
3

p

)

∏

3<p<M
p|γ

(

1 −
2

p

) L
∑

a=1
2 L

α|a

∏

3<p<M
p|a

(

1 −
2

p

)

∏

3<p<M
p|a

(

1 −
4

p

)

�
L2ρ(g)

βγg

∏

3<p<M
p|β

(

1 −
3

p

)

∏

3<p<M
p|γ

(

1 −
2

p

) L
∑

a=1
2 L

α|a

∏

5<p<M
p|a

(

1 −
6

p

)

=
L2ρ(g)

βγg

∏

3<p<M
p|β

(

1 −
3

p

)

∏

3<p<M
p|γ

(

1 −
2

p

) L
∑

a=1
2 L

α|a

∑

d|a
p|d⇒5<p<M

µ(d)6ω(d)

d

=
L2ρ(g)

βγg

∏

3<p<M
p|β

(

1 −
3

p

)

∏

3<p<M
p|γ

(

1 −
2

p

)

∑

d<L
p|d⇒5<p<M

µ(d)6ω(d)

d

L
∑

a=1
2 L

α|a
d|a

1

=
L2ρ(g)

βγg

∏

3<p<M
p|β

(

1 −
3

p

)

∏

3<p<M
p|γ

(

1 −
2

p

)

∑

d<L
p|d⇒5<p<M

µ(d)6ω(d)

d

b L
LCM(α,d)

c
∑

A=d L
2LCM(α,d)

e

1

�
L2ρ(g)

βγg

∏

3<p<M
p|β

(

1 −
3

p

)

∏

3<p<M
p|γ

(

1 −
2

p

)

·
∑

d<L
p|d⇒5<p<M

µ(d)6ω(d)

d

{

L

LCM(α, d)
+ O(1)

}

=
L2ρ(g)

βγg

∏

3<p<M
p|β

(

1 −
3

p

)

∏

3<p<M
p|γ

(

1 −
2

p

)

·















L
∑

d<L
p|d⇒5<p<M

µ(d)6ω(d)

d LCM(α, d)
+ O









∑

d<L
d−square free
p|d⇒5<p<M

6ω(d)

d






















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Note that as before, we can simply sum over all d ≥ 1 instead of d ≤ L due to our choice

of M , and the fact that d must be square free. We continue by showing that the error term

indicated above is indeed smaller than the main term, by first bounding the main term:

L
∑

d≥1
p|d⇒5<p<M

µ(d)6ω(d)

d LCM(α, d)
=

L

α

∑

d≥1
p|d⇒5<p<M

µ(d)6ω(d)

d

∏

5<p<M
p|d
p-α

1

p

=
L

α

∏

5<p<M
p|α

(

1 −
6

p

)

∏

5<p<M
p-α

(

1 −
6

p2

)

While the error term becomes:

�
∑

d≥1
d−squarefree
p|d⇒5<p<M

6ω(d)

d
=

∏

5<p<M

(

1 +
6

p

)

Since α lognM = o(L) for any n, indeed the main term is larger than the error term. We

can continue bounding N(α, β, γ):

N(α, β, γ) �
L3ρ(g)

g2

∏

5<p<M
p|α

(

1 −
6

p

)

∏

3<p<M
p|β

(

1 −
3

p

)

∏

3<p<M
p|γ

(

1 −
2

p

)

�
L3ρ(g)

g2

∏

5<p<M
p|g

(

1 −
6

p

)

We now return to (6.23) using this bound:

#

{

a, b, c :

a,b,c>0, gcd(a,b,c)=1,
φ(a,b,c)=(W,X,Y,Z)

g=gcd(W,X,Y,Z), W 3+Z3<g3N,
W,Z,−X,−Y ≥0

}

≥
∑

g<N1/9

(g,6)=1

∑

αβγ=g
α,β,γ pairwise coprime

N(α, β, γ)

�
∑

g<N1/9

(g,6)=1

∑

αβγ=g
α,β,γ pairwise coprime

L3ρ(g)

g2

∏

5<p<M
p|g

(

1 −
6

p

)

�
∑

g<N1/9

(g,6)=1

∑

αβγ=g
α,β,γ pairwise coprime

N1/3ρ(g)

g

∏

5<p<M
p|g

(

1 −
6

p

)

= N1/3
∑

g<N1/9

(g,6)=1

3ω(g)ρ(g)

g

∏

5<p<M
p|g

(

1 −
6

p

)

Applying Proposition 6.5 completes the proof.
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We now prove the following corollary which gives us a lower bound on the count of the

number of taxicab numbers.

Corollary 6.7: Let r+(n) be as given in (1.1). Then:

∑

n<N

(

r+(n)

2

)

� N1/3 log4N

Proof.

We begin with the following equality where the 1/2 in front of the right hand sum

corresponds to the fact that there are two a, b, c triples for each pair of solutions counted by
(

r+(n)
2

)

:

∑

n<N

(

r+(n)

2

)

=
1

2

∑

m<N1/3

#







a, b, c :

a,b,c>0, gcd(a,b,c)=1,
φ(a,b,c)=(W,X,Y,Z)

g=gcd(W,X,Y,Z), W 3+Z3<g3( N
m3 ),

W,Z,−X,−Y ≥0







�
∑

m≤N1/6

(

N

m3

)1/3

log3

(

N

m3

)

� N1/3 log3N
∑

m≤N1/6

1

m

� N1/3 log4N.



Chapter 7

An Upper Bound

As we did with the theorems concerning the lower bounds, in the previous chapter, we’ll

first prove the theorem concerning primitive solutions. Note that this theorem only counts

solutions for which the gcd(W,X, Y, Z) is small. In order to complete the upper bound, we

would need to be able to handle larger values for the gcd. In fact, to account for all taxicab

numbers where the integers involved are all positive we proved in chapter four that we would

need to deal with gcd’s of size N2/3 rather than just up to N1/6 as in this theorem.

Theorem 7.1:

#



































a, b, c :

a, b, c > 0, gcd(a, b, c) = 1,

φ(a, b, c) = (W,X, Y, Z)

G = gcd(W,X, Y, Z), G < N1/6

W 3 + Z3 < G3N



































� N1/3 log3N

Proof. First consider a, b, c so that G = gcd(W,X, Y, Z) < N1/6. We will first re-write G

as, G = Mg where M = 2e13e2 and gcd(g, 6) = 1. Using Theorem 3.1, we have shown that

the choices for M are 1,3,8,9,24,72. We will then split the count based on the size of a, b, c.

Note that the values for m in the following expression are related to those arising as M and

this relationship also comes from Theorem 3.1.

52
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#



































a, b, c :

a, b, c > 0, gcd(a, b, c) = 1,

φ(a, b, c) = (W,X, Y, Z)

G = gcd(W,X, Y, Z), G < N1/6

W 3 + Z3 < G3N



































�
∑

g<N1/6

(g,6)=1

∑

m∈{1,2,3,4,6,9,12,18,36}

∑

αβγ=mg
(α,β)=(α,γ)=1

(β,γ)=1,3

D(α, β, γ, g) (7.1)

where:

D(α, β, γ, g) = #



































a, b, c > 0 :

(a, b, c) = 1, α = (a, c2 + 3b2),

β = (b, c2 + 3a2), γ = (c, b2 + 3a2)

mg = αβγ, W 3 + Z3 < (72g)3N,

gcd(W,X, Y, Z) = g, 3g, 8g, 9g, 24g, 72g



































Case 1: b, c < a

For this case, K � a9. So we can write:

D(α, β, γ, g) ≤
∑

a<g1/3N1/9

α|a

∑

b<a
β|b

γ|b2+3a2

∑

c<a
γ|c

α|c2+3b2

β|c2+3a2

(a,b,c)=1
(

c
γ , b2+3a2

γ

)

=1
(

a
α , c2+3b2

α

)

=1
(

b
β

, c2+3a2

β

)

=1

1

≤
∑

a<g1/3N1/9

α|a

∑

b<a
β|b

γ|b2+3a2

∑

c<a
γ|c

α|c2+3b2

β|c2+3a2

1

=
∑

a<g1/3N1/9

α|a

∑

b<a
β|b

γ|b2+3a2

(

a

αβγ
+O(1)

)

ρ(αβ)

=
ρ(αβ)

g

∑

a<g1/3N1/9

α|a

a
∑

b<a
β|b

γ|b2+3a2

1 + O











ρ(αβ)
∑

a<g1/3N1/9

α|a

∑

b<a
β|b

γ|b2+3a2

1










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=
ρ(αβ)

g

∑

a<g1/3N1/9

α|a

a

(

a

βγ
+O(1)

)

ρ(γ)

+ O









ρ(αβ)
∑

a<g1/3N1/9

α|a

(

a

βγ
+ 1

)

ρ(γ)









=
ρ(g)

gβγ

∑

a<g1/3N1/9

α|a

a2 +O









ρ(g)

g

∑

a<g1/3N1/9

α|a

a









+ O









ρ(g)

βγ

∑

a<g1/3N1/9

α|a

a









+O









ρ(g)
∑

a<g1/3N1/9

α|a

1









=
ρ(g)

gβγ

∑

a<g1/3N1/9

α|a

a2 + O









ρ(g)

βγ

∑

a<g1/3N1/9

α|a

a









+ O









ρ(g)
∑

a<g1/3N1/9

α|a

1









=
ρ(g)α2

gβγ

∑

d< g1/3N1/9

α

d2 + O







ρ(g)α

βγ

∑

d< g1/3N1/9

α

d







+ O






ρ(g)

∑

d< g1/3N1/9

α

1







=
ρ(g)α2

gβγ

(

gN1/3

α3
+O

(

g2/3N2/9

α2

))

+ O

(

ρ(g)α

βγ

g2/3N2/9

α2

)

O

(

ρ(g)
g1/3N1/9

α

)

=
N1/3ρ(g)

g
+O

(

N2/9ρ(g)

g1/3

)

+ O

(

ρ(g)
g1/3N1/9

α

)

And so for g < N1/6 we have:

D(α, β, γ, g) �
N1/3ρ(g)

g
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Case 2: b ≤ a ≤ c (and similarly for c ≤ a ≤ b)

For this case, K � ac8 � a9. So we can write:

D(α, β, γ, g) ≤
∑

a<g1/3N1/9

α|a

∑

b<a
β|b

γ|b2+3a2

∑

a<c<

(

g3N
a

)1/8

γ|c

α|c2+3b2

β|c2+3a2

(a,b,c)=1
(

c
γ , b2+3a2

γ

)

=1
(

a
α , c2+3b2

α

)

=1
(

b
β

, c2+3a2
β

)

=1

1

≤
∑

a<g1/3N1/9

α|a

∑

b<a
β|b

γ|b2+3a2

∑

c<

(

g3N
a

)1/8

γ|c

α|c2+3b2

β|c2+3a2

1

=
∑

a<g1/3N1/9

α|a

∑

b<a
β|b

γ|b2+3a2

(

g3/8N1/8

αβγa1/8
+O(1)

)

ρ(αβ)

=
N1/8ρ(αβ)

g5/8

∑

a<g1/3N1/9

α|a

a−1/8
∑

b<a
β|b

γ|b2+3a2

1

+ O











ρ(αβ)
∑

a<g1/3N1/9

α|a

∑

b<a
β|b

γ|b2+3a2

1











=
N1/8ρ(αβ)

g5/8

∑

a<g1/3N1/9

α|a

a−1/8

(

a

βγ
+O(1)

)

ρ(γ)

+ O









ρ(αβ)
∑

a<g1/3N1/9

α|a

(

a

βγ
+ 1

)

ρ(γ)









=
N1/8ρ(g)

g5/8βγ

∑

a<g1/3N1/9

α|a

a7/8 +O









N1/8ρ(g)

g5/8

∑

a<g1/3N1/9

α|a

a−1/8








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+ O









ρ(g)

βγ

∑

a<g1/3N1/9

α|a

a









+ O









ρ(g)
∑

a<g1/3N1/9

α|a

1









=
N1/8ρ(g)α7/8

g5/8βγ

∑

d< g1/3N1/9

α

d7/8 +O







N1/8ρ(g)

g5/8α1/8

∑

d< g1/3N1/9

α

d−1/8







+ O







ρ(g)α

βγ

∑

d< g1/3N1/9

α

d






+ O






ρ(g)

∑

d< g1/3N1/9

α

1







=
N1/8ρ(g)α7/8

g5/8βγ

(

(

g1/3N1/9

α

)15/8

+ O

(

g1/3N1/9

α

)7/8
)

+O

(

N1/8ρ(g)

g5/8α1/8

(

g1/3N1/9

α

)7/8
)

+ O

(

ρ(g)α

βγ

(

g1/3N1/9

α

)2
)

+ O

(

ρ(g)
g1/3N1/9

α

)

=
N1/3ρ(g)

g
+ O

(

N2/9ρ(g)

g1/3

)

+ O

(

N1/9g1/3ρ(g)

α

)

Like in case 1, for g < N1/6:

D(α, β, γ, g) �
N1/3ρ(g)

g

Case 3: a < b < c where c− b < a (and similarly for a < c < b where b− c < a)

For this case, K � a3c4b2 � a3b6 � a9. So we can write:

D(α, β, γ, g) ≤
∑

a<g1/3N1/9

α|a

∑

b<

(

g3N

a3

)1/6

β|b

γ|b2+3a2

∑

b<c<b+a
γ|c

α|c2+3b2

β|c2+3a2

(a,b,c)=1
(

c
γ , b2+3a2

γ

)

=1
(

a
α , c2+3b2

α

)

=1
(

b
β

, c2+3a2
β

)

=1

1

≤
∑

a<g1/3N1/9

α|a

∑

b<

(

g3N

a3

)1/6

β|b

γ|b2+3a2

∑

b<c<b+a
γ|c

α|c2+3b2

β|c2+3a2

1
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=
∑

a<g1/3N1/9

α|a

∑

b<

(

g3N

a3

)1/6

β|b

γ|b2+3a2

(

a

αβγ
+O(1)

)

ρ(αβ)

=
ρ(αβ)

g

∑

a<g1/3N1/9

α|a

a
∑

b<

(

g3N

a3

)1/6

β|b

γ|b2+3a2

1 + O

















ρ(αβ)
∑

a<g1/3N1/9

α|a

∑

b<

(

g3N

a3

)1/6

β|b

γ|b2+3a2

1

















=
ρ(αβ)

g

∑

a<g1/3N1/9

α|a

a

(

(

g3N

a3

)1/6
1

βγ
+O(1)

)

ρ(γ)

+ O









ρ(αβ)
∑

a<g1/3N1/9

α|a

(

(

g3N

a3

)1/6
1

βγ
+ 1

)

ρ(γ)









=
N1/6ρ(g)

g1/2βγ

∑

a<g1/3N1/9

α|a

a1/2 + O









ρ(g)

g

∑

a<g1/3N1/9

α|a

a









+ O









N1/6g1/2ρ(g)

βγ

∑

a<g1/3N1/9

α|a

a−1/2









+ O









ρ(g)
∑

a<g1/3N1/9

α|a

1









=
N1/6ρ(g)α1/2

g1/2βγ

∑

d< g1/3N1/9

α

d1/2 + O







ρ(g)α

g

∑

d< g1/3N1/9

α

d







+ O







N1/6g1/2ρ(g)

βγα1/2

∑

d< g1/3N1/9

α

d−1/2







+ O






ρ(g)

∑

d< g1/3N1/9

α

1






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=
N1/6ρ(g)α1/2

g1/2βγ

(

(

g1/3N1/9

α

)3/2

+O

(

(

g1/3N1/9

α

)1/2
))

+ O

(

ρ(g)α

g

(

g1/3N1/9

α

)2
)

+ O

(

N1/6g1/2ρ(g)

βγα1/2

(

g1/3N1/9

α

)1/2
)

+ O

(

ρ(g)
g1/3N1/9

α

)

=
N1/3ρ(g)

g
+ O

(

N2/9ρ(g)

g1/3

)

+ O

(

N1/9g1/3ρ(g)

α

)

As in the first two cases, for g < N1/6:

D(α, β, γ, g) �
N1/3ρ(g)

g

Note that for the case in parenthesis, a < c < b where b − c < a, we arrive at the same

sequence of equations after the first two as we’ll show below.

First note that K � a3b6 � a9, and so:

D(α, β, γ, g) ≤
∑

a<g1/3N1/9

α|a

∑

b<

(

g3N

a3

)1/6

β|b

γ|b2+3a2

∑

max(a,b−a)<c<b
γ|c

α|c2+3b2

β|c2+3a2

(a,b,c)=1
(

c
γ , b2+3a2

γ

)

=1
(

a
α , c2+3b2

α

)

=1
(

b
β

, c2+3a2
β

)

=1

1

≤
∑

a<g1/3N1/9

α|a

∑

b<

(

g3N

a3

)1/6

β|b

γ|b2+3a2

∑

b−a<c<b
γ|c

α|c2+3b2

β|c2+3a2

1

We then continue the sequence as above to arrive at the same count.

Case 4: a < b < c where c− b ≥ a (and similarly for a < c < b where b− c ≥ a)

For this case, K � ac6(c − b)2 � a(c − b)8 � a9. As before we can bound a above by

g1/3N1/9. Since (c− b) > a we can bound c by
(

g3N
a3

)1/6

, by noting that K � ac6(c− b)2 �

a3c6. Once a and c are chosen, we bound b as:

c−

(

g3N

ac6

)1/2

< b < c− a
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Note that for small c, namely c <
(

g3N
a

)1/8

, this lower bound for b is negative, while we

have previously restricted b to positive numbers. We then must split our count and bound

D(α, β, γ, g) as follows:

D(α, β, γ, g) ≤
∑

a<g1/3N1/9

α|a

∑

c<

(

g3N
a

)1/8

γ|c

β|c2+3a2

∑

b<c
β|b

α|c2+3b2

γ|b2+3a2

(a,b,c)=1
(

c
γ , b2+3a2

γ

)

=1
(

a
α , c2+3b2

α

)

=1
(

b
β

, c2+3a2

β

)

=1

1

+
∑

a<g1/3N1/9

α|a

∑

(

g3N
a

)1/8
≤c<

(

g3N

a3

)1/6

γ|c

β|c2+3a2

∑

c−

(

g3N

ac6

)1/2
<b<c

β|b

α|c2+3b2

γ|b2+3a2

(a,b,c)=1
(

c
γ , b2+3a2

γ

)

=1
(

a
α , c2+3b2

α

)

=1
(

b
β

, c2+3a2

β

)

=1

1

≤
∑

a<g1/3N1/9

α|a

∑

c<

(

g3N
a

)1/8

γ|c

β|c2+3a2

∑

b<c
β|b

α|c2+3b2

γ|b2+3a2

1

+
∑

a<g1/3N1/9

α|a

∑

(

g3N
a

)1/8
≤c<

(

g3N

a3

)1/6

γ|c

β|c2+3a2

∑

c−

(

g3N

ac6

)1/2
<b<c

β|b

α|c2+3b2

γ|b2+3a2

1

=
∑

a<g1/3N1/9

α|a

∑

c<

(

g3N
a

)1/8

γ|c

β|c2+3a2

(

c

αβγ
+O(1)

)

ρ(αγ)

+
∑

a<g1/3N1/9

α|a

∑

(

g3N
a

)1/8
≤c<

(

g3N

a3

)1/6

γ|c

β|c2+3a2

(

1

αβγ

(

g3N

ac6

)1/2

+O(1)

)

ρ(αγ)
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=
ρ(αγ)

g

∑

a<g1/3N1/9

α|a

∑

c<

(

g3N
a

)1/8

γ|c

β|c2+3a2

c

+ ρ(αγ)N1/2g1/2
∑

a<g1/3N1/9

α|a

a−1/2
∑

(

g3N
a

)1/8
≤c<

(

g3N

a3

)1/6

γ|c

β|c2+3a2

c−3

+ O

















ρ(αγ)
∑

a<g1/3N1/9

α|a

∑

c<

(

g3N

a3

)1/6

γ|c

β|c2+3a2

1

















=
ρ(αγ)

g

∑

a<g1/3N1/9

α|a

(

ρ(β)

βγ

(

g3N

a

)1/4

+O

(

ρ(β)

(

g3N

a

)1/8
))

+ ρ(αγ)N1/2g1/2
∑

a<g1/3N1/9

α|a

a−1/2

(

ρ(β)

βγ

(

(

g3N

a

)−1/4

−

(

g3N

a3

)−1/3
)

+ O

(

ρ(β)

(

g3N

a

)−3/8
))

+ O









ρ(αγ)
∑

a<g1/3N1/9

α|a

(

ρ(β)

βγ

(

g3N

a3

)1/6

+ ρ(β)

)









≤
ρ(g)N1/4

g1/4βγ

∑

a<g1/3N1/9

α|a

a−1/4 +O









ρ(g)N1/8

g5/8

∑

a<g1/3N1/9

α|a

a−1/8









+
ρ(g)N1/4

g1/4βγ

∑

a<g1/3N1/9

α|a

a−1/4 +O









ρ(g)N1/8

g5/8

∑

a<g1/3N1/9

α|a

a−1/8









+ O









ρ(g)N1/6g1/2

βγ

∑

a<g1/3N1/9

α|a

a−1/2









+ O









ρ(g)
∑

a<g1/3N1/9

α|a

1








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=
2ρ(g)N1/4

g1/4βγα1/4

∑

d< g1/3N1/9

α

d−1/4 +O







ρ(g)N1/8

g5/8α1/8

∑

d< g1/3N1/9

α

d−1/8







+ O







ρ(g)N1/6g1/2

βγα1/2

∑

d< g1/3N1/9

α

d−1/2






+ O






ρ(g)

∑

d< g1/3N1/9

α

1







=
2ρ(g)N1/4

g1/4βγα1/4

(

(

g1/3N1/9

α

)3/4

+O(1)

)

+O

(

ρ(g)N1/8

g5/8α1/8

(

g1/3N1/9

α

)7/8
)

+ O

(

ρ(g)N1/6g1/2

βγα1/2

(

g1/3N1/9

α

)1/2
)

+ O

(

ρ(g)
g1/3N1/9

α

)

=
2ρ(g)N1/3

g
+O

(

ρ(g)N1/4

g1/4βγα1/4

)

+ O

(

ρ(g)N2/9

g1/3

)

+ O

(

ρ(g)
g1/3N1/9

α

)

As in the previous three cases, for g < N1/6:

D(α, β, γ, g) �
N1/3ρ(g)

g

Having handled all four cases, we return to (7.1) for g < N1/6:

#{a, b, c coprime : k(a, b, c) < N}

�
∑

g<N1/6

(g,6)=1

∑

αβγ=g
α,β,γ pairwise coprime

D(α, β, γ)

�
∑

g<N1/6

(g,6)=1

∑

αβγ=g
α,β,γ pairwise coprime

N1/3ρ(g)

g

� N1/3
∑

g<N1/6

(g,6)=1

3ω(g)ρ(g)

g

Using Proposition 6.5, we can see that for the case g < N1/6 we have finished the proof.



Chapter 8

Ramanujan’s Parametrization

Ramanujan [16] gave a different parametrization for solutions to (1.3) which is not a complete

parametrization. The equations are as follows:

Wr = Wr(m,n) = 6m2 − 4mn + 4n2

Xr = Xr(m,n) = −4m2 + 4mn− 6n2

Yr = Yr(m,n) = −5m2 + 5mn+ 3n2

Zr = Zr(m,n) = −3m2 − 5mn + 5n2

In this chapter, we will discuss how this parametrization compares with the complete

parametrization of Euler discussed in the previous chapters. The main result comparing

these two parametrizations is Lemma 8.4 which shows that all of the solutions generated by

Ramanujan’s parametrization correspond to integer triples (a, b, c) in Euler’s parametrization

inducing large gcd’s.

Since gcd(w, x, y, z) played such a substantial role in the complete rational parametriza-

tion discussed in previous chapters, we ought to describe the gcd’s for this parametrization

as well.

Lemma 8.1: Using the parametrization of Ramanujan, with gcd(m,n) = 1, then

gcd(w, x, y, z) divides 21.

Proof. Let g = gcd(Wr, Xr, Yr, Zr). We first show that:

gcd(g,m) = gcd(g, n) = 1

62
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Suppose p is a prime dividing gcd(g,m). Since p | gcd(Wr, Xr, Yr, Zr) then we also have

p | gcd(5n2, 6n2, 3n2, 4n2) = n2, hence p would divide n, which contradicts the hypothesis

gcd(m,n) = 1. Similarly, p can not divide n.

Certainly g must divide 9Zr+Yr+8Xr = −8m(8m+n). From above, since gcd(g,m) = 1,

either p = 2 or p divides 8m+ n. Looking at the equations modulo 2 we see that:

Zr ≡ m2 +mn + n2 (mod 2)

which has no solutions if gcd(m,n) = 1. So 2 can not divide g. Hence g divides 8m + n.

Letting n ≡ −8m (mod g), and substituting this into our equations we see that modulo g:

Wr ≡ 294m2

Xr ≡ −420m2

Yr ≡ 147m2

Zr ≡ 357m2

From this we see g | gcd(357m2, 147m2, 420m2, 294m2) = 21m2, which with gcd(g,m) = 1

completes the proof.

We can now begin to describe the types of solutions that this parametrization gives with

respect to the complete parametrization. The two sets of (a, b, c) which yield the parametriza-

tion of Ramanujan are:

(a1, b1, c1) = (13m2 − 23mn + 13n2, 14m2 − 14n2, 19m2 − 11mn+ 19n2)

(a2, b2, c2) = (m2 −mn+ n2, m2 +mn+ n2, 2m2 − 2n2).

Lemma 8.2: Let (a1, b1, c1) = (13m2−23mn+13n2, 14m2−14n2, 19m2−11mn+19n2).

If (m,n) = 1, then gcd(a1, b1, c1) divides 147.

Proof. Let g = gcd(a1, b1, c1). We first show that gcd(g,m) = gcd(g, n) = 1. Suppose p

divides gcd(g,m). Then

p | gcd(13n2, 14n2, 19n2) = n2
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and hence p | n, which contradicts gcd(m,n) = 1. Similarly for p | gcd(g, n). Also note that

2 - n, since 2 | (13m2 − 23mn + 13n2) if and only if 2 | gcd(m,n).

Certainly g must divide 13c1 − 19a1 = 294mn. Since from above gcd(2, g) = gcd(m, g) =

gcd(n, g) = 1, we must have g dividing 147.

Lemma 8.3: Let (a2, b2, c2) = (m2−mn+n2, m2+mn+n2, 2m2−2n2). If gcd(m,n) = 1,

then gcd(a2, b2, c2) = 1.

Proof. Let g = gcd(a2, b2, c2). We first show that gcd(g,m) = gcd(g, n) = 1. Suppose p

divides gcd(g,m). Then p must divide gcd(n2, 2n2) = n2, and hence p | n, which contradicts

gcd(m,n) = 1. Similarly for p | gcd(g, n). Also note that 2 - g, since 2 | (m2 + mn + n2) if

and only if 2 | gcd(m,n).

Certainly g must divide b2 − a2 = 4mn. But since gcd(2, g) = gcd(m, g) = gcd(n, g) = 1,

we must have g = 1.

When working with the complete parametrization, we only considered a, b, c triples for

which gcd(a, b, c) = 1. So, to properly make comparisons we would have to divide out the gcd

described in Lemma 8.2 to get the proper type of triples. But, since this gcd is bounded by

a small constant, we can still use these expressions for ai, bi, ci to prove the following lemma:

Lemma 8.4: Using either (a1, b1, c1) or (a2, b2, c2), then the w, x, y, z which arise from

the complete parametrization φ described in chapter two have

gcd(w, x, y, z) �M4

where M = max(m,n). Further, the primitive k which is associated to these (ai, bi, ci) has

size �M6.

Proof. By simply substituting the expressions for ai, bi, ci into the expressions for

W,X, Y, Z given by the parametrization (2.4) we have

(a1, b1, c1) → (g1Wr, g1Xr, g1Yr, g1Zr)

(a2, b2, c2) → (g2Wr, g2Yr, g2Xr, g2Zr)
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where:

g1 = 56(19m2 − 11mn + 19n2)(13m2 − 23mn+ 13n2)

g2 = 8(m2 −mn + n2)(m2 +mn + n2)

Note that the gcd factors, g1, g2 can be re-written as:

g1 = 56a1c1 g2 = 8a2b2

Since by Lemma 8.1, gcd(Wr, Xr, Yr, Zr) divides 147, letting M = max(m,n) we have that

gcd(W,X, Y, Z) � gi � M4.

Finally, factoring our expression for W 3
r + Z3

r we see that k �M6:

k � 63(m2 +mn+ n2)(3m2 − 3mn + n2)(m2 − 3mn+ 3n2)

Note that re-arranging the parametrization given by Ramanujan, switching the expres-

sions for y and z for example, leads to essentially the same sequence of lemmas. The only

change is slightly modifying the constants the gcd’s divide in Lemmas 8.2 and 8.3.

Another interesting property of this parametrization is shown in the following lemma.

Lemma 8.5: Using the parametrization given above:

Wr(m,n) = Wr(m,m− n)

Zr(m,n) = Zr(m,m− n)

Moreover, unless n = m− n or m = 0 we also have:

Xr(m,n) 6= Xr(m,m− n)

Yr(m,n) 6= Yr(m,m− n)

Proof. By simply substituting in the given expressions:

Wr(m,m− n) = 6m2 − 4m(m− n) + 4(m− n)2

= 6m2 − 4m2 + 4mn + 4m2 − 8mn+ 4n2

= 6m2 − 4mn+ 4n2

= Wr(m,n)
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Similarly for Zr. This completes the first part of the lemma. To see the second part we

calculate:

Xr(m,n) −Xr(m,m− n) = −4m2 + 4mn− 6n2 − (−4m2 + 4m(m− n) − 6(m− n)2)

= 4mn− (−2m2 + 8mn)

= 2m(m− 2n)

And indeed this expression equals 0 if and only if either m = 0 or n = m − n. The same

argument follows for Yr.

Note that although this gives us a place to look for integers with at least three represen-

tations as the sum of two integer cubes, it does not guarantee this property. Although the

gcd(Wr, Xr, Yr, Zr) is bounded by 21, the solution generated by (m,n) may have a different

gcd from that generated by (m,m− n).

Finally, we mentioned earlier that this parametrization gives us a family of examples

which yields large gcd’s, even for the case where W,Z,−X,−Y are all positive. The following

lemma gives a family of (m,n) pairs yielding such solutions.

Lemma 8.6: Letting n = −2m then Wr, Zr > 0 and Xr, Yr < 0.

Proof. We can see that Wr is always positive as follows:

Wr = 6m2 − 4mn+ 4n2 = (2n−m)2 + 5m2

Similarly, Xr is always negative.

By simply making the substitution described in the lemma we have

Zr = 27m2

Yr = −m2

hence indeed Zr > 0 and Yr < 0.



Chapter 9

Generalizing Ramanujan’s Parametrization

In this chapter, we generalize Ramanujan’s parametrization given in the previous chapter.

We discuss some of the interesting properties this generalization shares with Ramanujan’s

original parametrization. One question which remains is whether or not the solutions given

by this generalization also have the property that the associated (a, b, c) triples using Euler’s

parametrization induce large gcd’s via Euler’s parametrization.

First we recall Ramanujan’s Parametrization from the previous chapter:

Wr = 6m2 − 4mn + 4n2

Xr = −4m2 + 4mn− 6n2

Yr = −5m2 + 5mn + 3n2

Zr = −3m2 − 5mn+ 5n2

Then for any m,n this is indeed a solution to:

W 3 +X3 + Y 3 + Z3 = 0 (9.1)

We first note that the leading coefficients in these expressions given by the parametriza-

tion are themselves a solution to (9.1), that is:

63 − 43 − 53 − 33 = 0

So, to generalize our parametrization, we’ll start with a primitive solution (A,B,C,D)

to (9.1). Then our generalized parametrization might be expressed as:
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Wg = Am2 + rmn− Bn2

Xg = Bm2 − rmn− An2

Yg = Cm2 + smn−Dn2

Zg = Dm2 − smn− Cn2

With this as our form, we can prove the following proposition.

Proposition 9.1: Given integers A,B,C,D satisfying (9.1), then

(Am2 +Rmn− Bn2)3 + (Bm2 − Rmn−An2)3

+(Cm2 + Smn−Dn2)3 + (Dm2 − Smn− Cn2)3 = 0

for some rational numbers R, S if and only if

−(A +B)(C +D) = T 2 ∈ Z2

in which case R = D2−C2

T
and S = A2−B2

T
.

Proof. We begin by deriving conditions for R and S. By substituting Wg, Xg, Yg, Zg into

(9.1) and simplifying, we get the following two conditions:

R(A2 − B2) + S(C2 −D2) = 0 (9.2)

R2(A+B) + S2(C +D) = AB(A +B) + CD(C +D) (9.3)

While we might like for R and S to be integers, it suffices for them to be rationals at

which point we can clear denominators. From (9.2) we see that we can write

R = −
t1
t2

(C2 −D2) S =
t1
t2

(A2 −B2)

for some integers t1 and t2.

Substituting these expressions for r and s into (9.3) we have:

t21
t22

(

C2 −D2
)2

(A+B) +
t21
t22

(

A2 −B2
)

(C +D) = AB(A +B) + CD(C +D)
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Solving for
t21
t22

we have:

t21
t22

=
AB(A+B) + CD(C +D)

(A+B)(C +D) ((C −D) (C2 −D2) + (A− B) (A2 − B2))

=
AB(A +B) + CD(C +D)

(A+B)(C +D) ((A3 +B3 + C3 +D3) − (AB(A +B) + CD(C +D)))

=
AB(A+B) + CD(C +D)

(A+B)(C +D) (−(AB(A +B) + CD(C +D)))

=
1

−(A +B)(C +D)

So, in order for the parametrization to produce integer solutions to (9.1), we must have

−(A + B)(C + D) be a perfect integer square. In which case, by setting t1 = 1 and t2 =
√

−(A+B)(C +D), we have R and S of the form required by the proposition.

For the parametrization of Ramanujan given to start this chapter, we have:

A = 6, B = −4, C = −5, D = −3

and so −(6 − 4)(−5 − 3) = 16 which is indeed a perfect integer square.

One interesting property of this generalization, is that the salient property −(A+B)(C+

D) ∈ Z2 is preserved by the parametrization. That is, for any m,n ∈ Z, we have:

−(Wg +Xg)(Yg + Zg) = −
(

(A +B)(m2 − n2)
) (

(C +D)(m2 − n2)
)

= −(A+B)(C +D)(m2 − n2)2

∈ Z2

We might also like to characterize the a, b, c which yield such a parametrization. By

substituting our complete parametrization, we have:

W +X = 2b(3b2 + (c− 3a)2)

Y + Z = −2b(3b2 + (c+ 3a)2)
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So, in order for −(W +X)(Y + Z) to be a perfect integer square, we can let:

3b2 + (c− 3a)2 = mL2
1

3b2 + (c+ 3a)2 = mL2
2 (9.4)

for some integers m,L1, L2.

We might like to use these equations to give complete conditions on a, b, c which give

rise to such solutions, but as of yet, such complete conditions remain unproven. We can use

a special case of these equations though to determine some a, b, c which satisfy this integer

square conditions. Begin by rewriting these equations:

3B2 +N2
1 = mL2

1

3B2 +N2
2 = mL2

2 (9.5)

There is then a one-to-one correspondence between integer solutions to (9.4) and integer

solutions to (9.5) if we restrict N1 ≡ N2 (mod 6). Note that the two equations in (9.5) are

indeed the same, hence we can also say that in order to satisfy (9.5) we need two different

solutions to

mL2 = 3B2 +N2 (9.6)

where the value of B is the same.

We will now begin with one such solution, and derive a second one. So suppose we have

a solution to (9.6). Then, by cubing both sides of this expression and reorganizing terms, we

have:

m
(

mL3
)2

= 3
(

3BN2 − 3B3
)2

+
(

N3 − 9NB2
)2

This then is another solution to (9.6). In order to use these two equations for (9.5) we

must multiply our original solution (9.6) by (3N2 − 2B2)2, so that the B term in both

equations agree. Thus we have:

m
(

3L
(

N2 − B2
))2

= 3
(

3B
(

N2 −B2
))2

+
(

3N
(

N2 − B2
))2

m
(

mL3
)2

= 3
(

3B
(

N2 −B2
))2

+
(

N
(

N2 − 9B2
))2
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We can then use these to find the corresponding values of a, b, c. So, let:

c+ 3a = N1 = 3N(N2 −B2)

c− 3a = N2 = N(N2 − 9B2)

Then we have:

a =
N1 −N2

6
=
N(N2 + 3B2)

3

b = 3B(N2 − B2)

c =
N1 +N2

2
= N(2N2 − 6B2)

Thus, in order for a, b, c to be integers, we need to have 3 | N .

Therefore, by choosing integers B,N with 3 | N , we can generate a solution to (9.1)

which yields a generalized Ramanujan parametrization.

Another question we might like to investigate, is whether or not this generalized version

of Ramanujan’s parametrization leads to solutions with large gcds as Ramanujan’s original

parametrization does. Such a general result also remains unproven.
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