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ABSTRACT

Music theory undertakes the audacious goal of understanding why music is pleasing to the
ear and why it is effective at expressing emotions. Applying mathematical thinking to music
analysis is nothing new; the field of mathematical music theory is well-established and dates back
to Pythagoras. This said, there is little literature on understanding music through a holistic lens.
Ecologists and economists are more familiar with analyses which address indirect, nonlinear, obscure
relationships between component parts of networks, often using mathematical tools. Network
Environ Analysis, one of these methods, views networks as transactional systems and uses hard
mathematics to describe more fully the effects which arise as systems grow in size.

In this document, we investigate how Network Environ Analysis can be applied to musical
pieces to understand better their musical structures. We describe multiple ways of interpreting
musical pieces as transactional networks and apply the corresponding mathematics in several cases.
We attempt to draw links between mathematical indices which evaluate these networks’ indirect
structures and musical quality, and we use these measures to give rigorous meaning to subjective
music theoretic judgements. Further, we develop statistical tools which use holistic information
related to these transactional networks to define and demonstrate mathematical manifestations of

the style and tonality of a piece of music.
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DEDICATION

To the musicians I know, that we might better understand what makes our art so special.
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1 Introduction

The search for why music “sounds good” has been on the minds of musicians and philosophers alike
for centuries. The use of mathematical reasoning to aid in this process dates back to Pythagoras,
who wondered extensively on why certain frequencies and harmonies are “pleasing to the ear.”
Mathematical music theory as a field addresses many of these questions about frequencies, har-
mony, and sound construction from an analytical point of view. It also seeks to understand music
composition and symmetric or mathematically-developed musical creations. However, it does not
often address some of the big questions about what kinds of mid- or large-scale musical structures
are subjectively appealing.

Philosophically, like any art form, music is not just about what pleases the ear, but about
expressing emotions to the observer. Bottom-up approaches to understanding unquantifiable events
like feelings associated with the arts and music, while often insightful, give a limited scope of
the big picture, and do not capture expressive qualities easily. The word “analysis” still means
exactly what the Greeks meant—to split into parts—and to split loses holistic insights. Top-down,
general thinking about musical pieces and patterns within them is an underdeveloped area within
mathematical music theory, and one which could offer answers in this vein of subjectivity.

This document attempts to address the lack of this holistic thinking. In it, we explore several
mathematical methods for big-picture music analysis, which help to mathematically identify char-
acteristics of the music and to explain in more objective terms several general, subjective music
theoretic definitions. We consider network decompositions of musical pieces on several scales of
organization and discuss their musical relevance. Finally, we introduce new mathematical tools

which can accurately recognize large-scale manifestations of musical style.

1.1 Network Environ Analysis

Network Environ Analysis (NEA) is a powerful, general tool that makes it possible to study objects
as part of a connected system and to identify and quantify the direct and indirect effects in that

system [2]. It is based on the conservative transactions of a consistent currency through the



compartments in an interconnected network. In ecosystem models, an original context for NEA,
this currency is usually energy or matter. This methodology can also be applied to any system
which can be understood as a transactional compartmental network, as in economics or chemistry
or, in our case, music.

A main advantage of network analysis is that it allows for investigation of direct and indirect
interdependencies and relationships between components of a system without removing them from
the system. This is the meaning of holism (components operating in systems), and understanding
full-scale system behavior and its underlying structure requires such a perspective. The ideas of
holistically evaluating ecosystem health using mathematics like NEA have parallels in ideas of
quantifying “musical quality.” Obviously, musical quality is a supremely subjective measure, and
one cannot hope to fully understand this complex issue by using mathematics or models. This
said, the entire point of using NEA to evaluate networks is to understand the behind-the-scenes
mechanics, the interactions beneath the surface, from a full-view perspective.

One of the core hypotheses about transactional networks is that indirect effects account for a
large amount of the behavior of a system, often times more significantly affecting the system in their
sum than direct, easily understood relationships [11]. A good purely mathematical analogy is the
divergence of the harmonic series » %: the tail end terms, while each insignificant, together account
for a large majority of the complete sum. In the same way that neuroscientists can observe specific
connections between parts of the brain and their function, but cannot explain consciousness, so
too might indirect relationships within a piece of music or art capture the intangible qualities and
expressiveness within them. Using NEA to understand musical structures could shed a logical light
on these expressive aspects of the art itself and how they work.

Comprehensive introductions to the many facets of NEA exist in both mathematical and eco-
logical literature [2, 6]. Software packages and Internet resources for computation of mathematical
network properties abound as well [1, 5]. We have made available our own software packages for

music analysis using NEA concepts in conjunction with these tools [8].

1.1.1 NEA mathematics

Before we demonstrate the application of NEA, we will give some background on the mathematics

involved [6]. NEA primarily involves square matrix manipulations; a matrix can represent the



whole network and its connections. To do this, each compartment is labeled with an integer.
For our purposes, we primarily consider structure- and flow-based analyses; storage analysis is

more difficult to interpret meaningfully in music (see Section 6.1.1) [2].

e A primary object is the flow matriz F', whose (i,7) entry is the weight of the direct transac-

tional “flow” (often, energy or matter) from compartment j to compartment i.

e Environmental inputs and outputs are stored in the input and output vectors z,y, resp.

The throughflow vector T codifies the total input (equal to total output) for compartment j:

T; = ZFij+Zj = ZFji+yj
i i

The total system throughflow TST is the sum of throughflows across all compartments, > ;T

e Normalizing F' by T gives G, with entries G;; = %]

Normalizing by T ensures that the matrix series N = [+ G+ G2 +G3 +--- = (I - G) 7l is
convergent. N codifies the transactionary action of the entire system upon itself over all future
time. Indirect effects, defined as multi-step transactional interactions and connections, correspond
concretely to the high-order terms from this series.

Utility analysis considers net interactions between compartments and thus eliminates bidirec-
tional relationships [2]. This is especially helpful in our musical network interpretations since the
connections which arise often go both directions, complicating matters of interpreting cumulative
indirect structure meaningfully.

Fyj—Fji

(3

e The net relation matrix D has entries D;; =
e Since D is normalized, the utility matrivr U =1+ D + D? + --- = (I — D)~! makes sense.

Most of the system measures we consider utilize this information to obtain different metrics on the

indirect structures present in a network [6]:
e The Indirect to Direct Effects ratio (I/D ratio) is self-explanatory and is computed as

1D ratio — MGG+ G+ )T _ Y, (N—-I-G)T
>;GT >;GT

3



e The indirect effects index (IEI) is simply a normalized version of the I/D ratio which takes

values between 0 and 1:
I/D ratio

IEl = —————
1 +1/D ratio

e [Finn’s Cycling Index (FCI) computes the proportion of the total system throughflow which

arises due to indirect cycling effects:

1 Nj; —1
FCI = — ) T,—2—
TST ZJ: 7Ny

o Amplification (Amp) is the number of nondiagonal entries in N which are larger than one.

That these entries exist is surprising—one unit of input can be “amplified” via cycling.
e Synergism (Syn) is the ratio of the sum of the positive to negative entries of U:

ZL]’ Uij s.t. Uij >0
- Zi,j Uij s.t. Ui]’ <0

Syn =

e Mutualism is the ratio of the number of positive to number of negative entries of U.

e Homogenization codifies how well-mixed the transactional material becomes due to indirect
cycling. High values correspond to mixing due mostly to indirect effects. This is computed

using the coefficients of variation of G and N:

Homogenization = CV(G) _ standard deviation(G) /avg(G)

CV(N)  standard deviation(N)/avg(N)

As it pertains to music, we expect that these metrics, particularly homogenization and syner-
gism, can help describe the unbalanced but synergetic importances given to certain musical elements
via repetition in particular musical styles, as in the so-called system of tonality (see Section 4) [7].
This could help compare how stylistic systems in which musical elements are given biases some-
times actually end up creating pieces with more “stability” or organization than systems or styles
which do not prioritize anything. Random or uncoordinated sounds do not always make for good

or expressive music, in most aesthetic opinions.



2 Building Network Models out of Music

To apply network analysis to music, we first will need a transactional network corresponding to
some musical structure. At its core, a piece of music is simply a series of frequencies, which make
up pitches. Music is embedded in time, with pitches held for certain rhythmic durations, much as
organisms might hold and then release a carbon atom or unit of energy.

Using recorded pitches and encoding them into a network would involve significant computer
science problems which are well beyond the scope of this document. In particular, polyphonic pitch
recognition in sound files is an as-yet intractable issue, since each pitch a voice or instrument makes
is actually composed of several simultaneous frequencies. Further, capturing all the nuances of
timing, pitch bending, volume, and timbre in an expressive performance seems frankly impossible.

Accordingly, we focus not upon the frequencies actually heard in a performance, but on the
written score, the plan for which pitches will be played. Even improvised music like jazz often
employs a large-scale plan for harmonic changes, melodic repetition, and the like. Considering this
unchanging aspect of a piece of music removes us from the actual experience of listening to it, but
this viewpoint enables us to analyze it and understand its structure in clear-cut ways.

For the purposes of this document, the fundamental network of a piece of music consists of a
compartment for the start of every note and its duration, where the transactions are the end of one
note and the start of the next. A note is a pitch, as it falls into the common 12-note-per-octave
frequency division system in so-called Western music from the past few centuries (the frequencies in
between these 12 logarithmic divisions are not considered) [7]. This model of note-duration pairs is
a simple chain; it is not particularly interesting, nor possesses any of the relevant network properties
that NEA seeks to quantify. As such, we will reduce it in a number of musically meaningful ways.

To create models based on notes, we need a sequence of notes for every piece we hope to analyze.
Written music has frequently become digitized over the past few decades. An ubiquitous format
for this is the MIDI file, which contains information about each note and its start and end time,
regardless of instrument or frequency content. As such, these MIDI files are well-suited to our

purposes. Fortuitously, tools for extracting the note information in MATLAB already exist [12].



2.1 Two types of network interpretations
2.1.1 Note transition networks

One simple way to describe a piece of music as a non-chained network is to view each note in the
12-note system as a compartment, regardless of its duration or specific place in the chained time-
sequence. Then the flows between compartments correspond to direct transitions from one note to
the next whenever one follows another. The weights on these flow connections are determined by
how frequently their respective note-to-note transition occurs across the entire piece, so that TST
is the total number of notes in the piece. Inputs and outputs correspond to the first and last notes.

This methodology requires special consideration for what to do with tuple-stops, or many notes
happening simultaneously. We take the approach here of considering each note of an n-tuple to
represent a fractional 1/n portion of a note, so that a transition to or away from it counts for a
similarly scaled fractional amount.

It is also worth mentioning that the note compartments can be reduced modulo 12 under
a typical octave equivalence relation. Keeping the octave information incorporates some aspect
of whether notes transition upwards or downwards; however, this also increases the number of
compartments in the model and exhibits different network properties. In addition, the way that
a human ear processes sound naturally imposes some of this modulo 12 octave equivalence, so we

generally take this 12-compartment perspective. See Figures 1 and 2 and Sections 2.3 and 3.1.

2.1.2 Formal networks

On an even larger scale, analysis of musical form gives a big-picture view as to how large sections
of music repeat and follow each other. These sections can correspond to entire five-minute chunks
of a large symphonic work, or even to the verses and choruses of a pop song.

Since there are usually fewer than ten large formal sections, the small networks and relationships
they comprise are usually well-understood, at least in music theoretic terms. The ubiquity of a small
variety of general formal templates points to effective musical expression due to their organization;
if any random ordering of sections and repetition was effective at expressing musical beauty, there
would be hundreds of common forms. We address several of these small networks in Section 3.3 in

an attempt to give qualitative music theoretic judgments about form a mathematical backing.
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Figure 1: Note transition network for J.S. Bach’s Prelude to his G major Cello Suite No.1, retaining octave information; each
compartment has a note name and its octave number [5]. A single piece might span from two to six or seven octaves. Note how some
notes, like D4, have more connections than others, and that there is only one input but three outputs (coming from a triple-stop on the
last note). Here we use flats, as in Bb = B-flat, rather than sharps (each note has multiple enharmonically equivalent names).




Figure 2: Note transition network modulo 12 for the G major Prelude [5]. This reduces any piece
to just 12 compartments. Note that by reducing, many more notes have self-loops than in Figure
1, and many more share bidirectional connections; these tell us some notes are directly repeated,
and most pairs happen in both orders at different times. Also, the three outputs have been
reduced to two, since we have identified G3 and Gb together.

2.2 Hierarchical structure and aggregation

As seen in the (limited) variety of possible network interpretations above and in Figure 3, music
has multiple levels of organization. Just as in ecology there are cellular, organismal, species, and
communal scales of transactional activity, so in music there are small and large scale interactions,
from notes to motives to melodies to sections. To fully judge a piece based upon one level of
structure alone ignores a great deal of information.

Music theory and patterns throughout history point to what structural archetypes at vari-
ous fixed scales seem to be particularly expressive, but give no hints as to which levels of detail

contribute most to expression. A piece may have a well-knit and effectively expressive structure



on one level, but poor organization on other levels, and still become famous; for instance, P.I.
Tchaikovsky’s beautiful melodies affect audiences deeply, despite poor formal structures (he was
well aware of these compositional strengths and weaknesses) [16]. Applying network analysis to
multiple levels of musical organization could give insight as to which levels are more expressively
important to the listener, and to the tightness of structure and unity in a piece across scales.

The so-called aggregation process has been considered through multiple lenses in different fields
[4, 15]. One may simplify a network into a smaller one by grouping compartments together and
combining their relationships with other compartments, called aggregating. There are an enormous
number of ways to aggregate compartments in a given network, since any subset can be grouped.

From the information theoretic point of view, it has been proven that information stored in
a network model can only be lost when aggregating compartments in this manner [15]. Some
aggregations preserve more information than others, and an intelligent aggregational strategy can
be difficult to rigorously define. However, intuitive groupings of compartments which serve a similar
function in the modeled system can end up correlating with minimal information loss [4].

Figure 3 shows a variety of possible intuitive aggregations of the fundamental musical network,
namely, all the note-duration pairs chained in direct sequence. Traveling up in the hierarchy
involves aggregations of musical elements while respecting their time-sequential embeddings, so that
the network associated with each block is still a sequential chain, but of similarly-scaled musical
elements and not just note-duration pairs. To apply NEA meaningfully, we leave the hierarchy
by aggregating a second time, now identifying identical elements regardless of their sequential
time-embedding. Section 2.3.2 contains more on the reasoning for this second aggregation.

Fortunately, the reductions we make are in line with music theoretic functional groupings, and
with the musical interpretations of a human listener; people generally can identify repetitions of
musical elements as the same entity and recognize them as such. A listener naturally aggregates
identical sounds and even sequences of sounds across an entire piece. Musical motives or even
key areas are frequently ingrained in a listener’s memory, as evidenced by how frequently people
complain of having a melody stuck in their heads. As such, we believe that these aggregations
mirror the mathematically optimal choices and reflect the listener’s point of view.

Further, despite all the losses described here, we show in Section 4 that there is still a significant

amount encoded in the cumulative information stored in these aggregated networks.



Harmonic information Melodic information Rhythmic information

Piece
y v
Harmonic plan: .
K Formal sections
ey areas
Y Y v
Harmonic progressions Melodic motives Rhythmic motives
and themes
Notes modulo 12
Y l Y
Vertical harmonies ] Notes [ Rhythmic durations ]

Figure 3: Aggregational hierarchy of a few possible information groupings within a piece of music,
from less to more specific. Transactional network thinking can be applied to each block by
aggregating identical elements within the block. Those addressed in this document are in boldface.
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2.3 Implicit assumptions

Naturally, there are several assumptions made about these network interpretations, some of which
have already been mentioned. Clearly, the conceptual model underlying the analysis has an effect
on the network properties because they are properties of models and not of reality, per se [2].
The questions of scale and reduction are important, and rather than choose one as an ideal, we
consider several possibilities. The reductions we have made, such as the modulo 12 equivalence,
are in line with our musical intuition, and how listeners actually process music; thus we believe the
network models we present represent musically relevant information. Below are several other types

of assumptions about the networks we build and analyze.

2.3.1 Polyphony

When constructing transition matrices for polyphonic pieces (where several instruments or voices
make different notes simultaneously), there is room for interpretation on how to classify note
transitions. For this document, we have used the convention of separating each individual melody
line and counting each note transition within it regularly, then adding up. Just as easily, we
could have considered every simultaneous note event as a large tuple-stop and counted fractional
transitions, as we typically do with tuple-stopping in the same melodic line. However, this is prone
to some problems: if individual lines are moving at different speeds, there might be a transition
from a 24-note unison to a single note in a quickly moving voice, which is not in line with how
a human would listen to the note events. The intuitive ear is readily able to tell the difference
between a trumpet and a cello, and processes note transitions within each voice independently, so

separating “by voice” makes sense.

2.3.2 Model-induced information losses, preservations, and relevance

In the network interpretations described above, aggregating inside of one column from Figure

3 inherently loses information corresponding to other columns. For example, considering note

transitions alone forgets about the durational, rhythmic dimension of the fundamental network.
Further, music is embedded in time, and the idea of modeling music as a transactional network

in the schemes above disregards this time-dependent, directional aspect by identifying repetitions
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of musical elements together. The network properties with which NEA is concerned have to do with
steady-state ecosystems which experience the same transactions at every time-step. By viewing
music through this infinite time-stepping lens, then, the NEA indices which utilize infinite matrix
series actually draw on network qualities that are not present in actual musical pieces’ performance
and experience. The second aggregation still preserves information about the direct transitions
between notes, harmonies, motives, or sections but throws away information about their specific
embeddings in the large timeline of a piece.

However, only by identifying repetitions of a musical element as the same, regardless of their
timing, can we obtain meaningful understanding of the organization of a piece and how its com-
ponent parts function together to form a well-knit whole. NEA identifies information about a
network’s cycling processes and holistic construction; seeing a piece as a linear progression without
relation to its past is simplistic. For instance, the I/D ratio and Indirect Effects Index (IEI) can
be computed with “particle tracking” [5, 10]. For the fundamental musical network, a single chain
with n note-duration compartments, this complicated computation is unnecessary; there are simply
() — (n — 1) indirect connections and n — 1 direct ones. This I/D ratio is not a very discerning
index, because it simply scales with n, i.e. piece length. Since we would like to interpret music in
a way which gives indices like these musical and mathematical relevance, we have to change our
viewpoint.

These reductions do not mean that the typical indices and computations from NEA say nothing
about musical structure or aesthetic quality, the philosophical motivators for any kind of music
theory. The subconscious understanding of a piece which a listener obtains in real time contains all
the information about the transactional neighbor relations between compartments (notes, motives,
sections, etc.). This information about direct connections is all that we use to construct our network
models. However, one’s subjective enjoyment of a piece may well incorporate a subconscious grasp
of the indirect effects of the structure which is implied by these direct connections. Therefore, we
let these measures stand for themselves as descriptors of a hidden kind of musical structure which

music theory is not equipped to describe.
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3 Applying NEA to Music

We will apply this musical network analysis to several musical pieces to illustrate the construction
of networks and usage of the mathematical tools. We then attempt to relate the mathematical

indices to a measure of “musical quality” in Section 3.2.

3.1 Note transition analysis: J.S. Bach - Cello Suites

First, we will delve into famous works for a single instrument, Johann Sebastian Bach’s Cello Suites.
The most famous, of course, is the first, in G major, whose Prelude tops all other works for cello
in popularity terms. Below in Table 1 is the transition matriz (i.e. flow matrix) corresponding to

a modulo-12 note network. The unreduced transition matrix can be found in Table 2.

C4 D Dy E F F4 G G¢ A Ay B
Cl 1 20 8 18 3 4 14
Cs 9 2 3 3 1
D|l12 7 4 2 18 4 5 5 4 21 1 11
D 2 1 3
E|10 1 13 4 17 7 9 2
F 3 5 4
Fy | 14 7T 4 13 25 20 1
G|3 2 6 5 20 4 33 20
Gy 4 1
Al 12 2 16 8 21 29 1 13 2 24
Ag 11 11
B |15 5 9 3 4 18 23

Table 1: Flow matrix for 12-note transition network of Bach’s G major Prelude [8]. Zero is
omitted for simplicity.

Entry ij may be interpreted as the number of times note ¢ follows note j. As is typical, we enumerate
the twelve notes upwards from C, so that C <> 0, C# < 1, etc.

Note the prevalence of zero. For instance, the note C never transitions immediately to the note
Ct, meaning the first entry in the second row is zero. Further, the only note which transitions to

or from every other note, i.e. with a full row or column, is D, whose entries are in boldface.
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4!

C3|C#¢3| D3| E3|F43 | G3|A3|B3|C4|Cgd | D4 |Dgd | E4 | F4 | Fgd | G4 | Cgd | A4 | Ag4 | B4 | C5 | C45 | D5 | Dg5 | E5 | F5 | Fg5 | G5
C3 2 |1
Cs3 1 1
D3 2 1|1
E3 2 2 1
F§3 3 1 3
G3 1 31313 2 2 511
A3 | 3] 2 |1 1 6 1 1 1
B3 2 3] 3 5| 4 4 5
C4 2 | 2 2 14 4
Cg4 1 1|1 3 1 1
D4 315|271 M3 4|24 131|831 [11]|1[1]1
D4 1 3
E4 3] 2 6 1 |11 4115 | 4 7 4
F4 4 2 5
F44 4 51 4 |13 18 19 1|8 1
G4 2124 2 | 2 3 15 | 1 23 7
G4 4 1
A4 1 9 8 20 22| 1 |13 2 [17]9 4 6
Ag4 1 1|1 1
B4 1 9 1 4 20 9L ] 1 6
C5 1 4 4 8 4 121 1 6
Ct5 1 1 2 4
D5 2 1 3 1|5 [ 1] 1
D45 1 1
E5 1
F5 1 5
F¢5 1 1 :
G5 1 5 6

Table 2: Full transition matrix (not reduced modulo 12) for Bach’s G major Prelude [8]. Octave information is not thrown away. Zero
is omitted for simplicity. As seen in Figure 1, the note D4 has the most connections.



The importance of D is apparent in the following musical passage, right before the end:

a7
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This is an example of a pedal note, a technique where the same note is held or emphasized repeat-
edly for an extended period of time. This technique is often used to make one note, or harmony,
important. The pedal on D and the prevalence of zero, i.e. the absence of some transition con-
nections, are both consequences of this piece’s compositional style: Bach wrote it with the tonality
of G major in mind, and this tonality simply dictates that certain notes and transitions are more
important than others, like D.

The different weights on transition connections codify cumulative information about note rela-
tionships in the entire piece, rather than single time events, as ecological models often represent.
This shows how often certain transition patterns arise, which is directly related to musical style
and a listener’s perception across the entire piece. Tonal relationships and their mathematical
manifestations in holistic patterns are explored further in Section 4.

Now, we may compute the network properties associated with this flow matrix using appropriate
input, output, and storage vectors. An outline of this process for the modulo 12 network follows.
Since the piece starts on the note G, it is only natural that the input vector has a 1 in its eighth entry.
The final triple-stop contains B and two G’s, meaning the output vector should have two nonzero
entries, % in the eighth column and % in the twelfth. Indeed, this balances the inputs and outputs

for every compartment. Conveniently, any such model satisfies this steady-state assumption.
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Index type Modulo 12 Unreduced

1 | # nodes, n 12 28

2 | # links, L 76 158

3 | connectance, L/n? 5278 2015

4 | link density, L/n 6.3333 5.6429

6 | Total System Throughflow 654 654

7 | Finn’s Cycling Index .9829 9673
13 | Amplification 132 754
15 | I/D ratio 656.8596 661.3721
17 | Homogenization 2.0785 2.7525
27 | Synergism 8.5124 4.3957
28 | Mutualism 1.1493 1.1538

Table 3: Outputs from NEA on the matrices from Tables 1 and 2 [1]. See Section 1.1.1 for the
unlisted mathematical definitions [6].

Letting the storage of each compartment remain at one and computing using a publicly available
MATLAB tool for NEA yields the selected network indices in Table 3 [1]. Notable in these indices
are Finn’s Cycling Index, I/D ratio, Homogenization, and Synergism. They encode some of the
hidden structures in the piece, with respect to the model that they are attached to, and may
correspond to intangible qualities that make music expressive.

Some of the others, like amplification, carry meaning in ecology but do not tell us much by
nature of their definition, and simply correlate with network size or total system throughflow in
well-connected systems like our musical models.

Note how much more connected the modulo 12 network is, despite (of course) having the same
total system throughflow. A vast majority of pieces use nearly all or most of the 12 notes when
octave information is discarded, though they rarely have all 2 x (122) possible directed connections.
Still, every compartment usually has a connection in one or two steps to any other in the modulo
12 network. This is different from most ecological models, and is part of the reason that utility
analysis’ net relationships could help decode important connections between musical elements.

Interestingly, homogenization is higher in the larger network, perhaps because it is less dense
and directly connected. Synergism, which we would expect to increase in larger networks due to its
summational nature, actually decreases in the less connected unreduced network, despite mutualism
being similar; the notes’ net relationships function more synergetically together when viewed under

our equivalence relation, perhaps because directed, one-sided relations are more balanced out.
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3.2 Correlating network properties with musical quality

In this section, we would like to see whether any of the network property indices given by NEA for
note transition networks can correlate with some measure of musical quality, since good musical
structure correlates with listener appreciation in practice. One measure of a piece’s quality is its
popularity. Of course, different genres and artists gain societal recognition and fame for a variety
of external factors. To minimize the effects of these, we have chosen to compare pieces which share
the same author, era and style of composition, and instrumentation: Bach’s Cello Suites. As these
pieces are well-known in the public sphere, their popularity data should reflect their quality better
than more obscure songs’, except perhaps the G major suite’s Prelude, whose popularity has been
inflated from its frequent inclusion in commercials and visual media.

All the data here is extracted from the play counts of albums of the complete set of Cello Suites,
recorded by the same performer, available to the public through the music database Spotify.

For example, as seen in Figure 4a, the values for synergism correlate extremely well with pop-
ularity in the first G major Cello Suite. On the other hand, in Figure 4c, synergism correlates
negatively with popularity in the second Suite. Figure 4d shows popularity against synergism
across all six Cello Suites. Indeed, this erratic behavior with wildly varying correlations shows up
in most of the indices NEA provides.

For both the unreduced and modulo 12 note transition networks, there is no statistically signif-
icant positive or negative correlation between any network property and the popularity of the 36
movements of the six Cello Suites. Interestingly, if we do not consider the G major Prelude, a bit
of an outlier due to its high popularity, the correlation coefficients almost all double in magnitude,
but are still insignificant. This could have a number of factors, from small sample size of popularity
data to the small number of pieces compared. Alternatively, the lack of correlations here could
mean that the note transition level of organization has little to do with popularity, but some other,

larger scale could have more relevance.
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(b) Popularity (# of plays) to Synergism across five
movements of Bach’s Cello Suite No.1, excluding the
inflated Prelude. This set has a Pearson correlation
coefficient of 0.9402.
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(c) Popularity (# of plays) to Synergism across six
movements of Bach’s Cello Suite No.2. This set has a
Pearson correlation coefficient of -0.4135.
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(d) Popularity (# of plays) to Synergism across all 34
movements of the six Cello Suites which have a syner-
gism value defined, except the G major Prelude. This
set has a Pearson correlation coefficient of -0.1713,

though with the Prelude included, this is 0.3567.

Figure 4: Popularity to Synergism as it correlates with multiple subsets of the 36 movements of
the six Cello Suites. Plotting popularity agains other NEA indices yields similarly scattered
images. Note the clusters in (d), usually movements from the same Suite.
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3.3 Formal analysis

The subject of musical form is the highest level of musical structure addressed here. There are
relatively few archetypal large-scale formal patterns in music. In music theoretic terms, a well-
structured piece has a musical form which involves the right balance of repetition and variation. In
practice, recognizing the reappearance of mid- and large-scale musical elements adds much to an
observer’s appreciation. The hard question in understanding musical quality as it relates to form
then becomes what exactly “the right balance” means.

This is where applying NEA and holistic thinking can really help. Interesting indirect relation-
ships only arise when a network has cycles; the network properties mentioned above are heavily
influenced and dependent upon cycling. For instance, the formal sections in non-repeating musical
forms (called through-composed) have transactional relationships with each other of only finite or-
der; their indirect effects are minimal. Though expressive through-composed music certainly exists,
the fact that indirect network effects and systemic unity depend upon cycling gives a mathematical
backing to the music theorits’ subjective concept that “repetition is good.”

Some of the forms here exist on different mid- and large-scale hierarchical levels, and can even
be aggregated into other forms on the list. This aggregation technically throws away information
about the system, but it can still give meaningful insight into a different, larger level of hierarchical
ogranization if done intelligently [4].

We dedicate the rest of this section to exploring the network properties of a handful of common

musical forms. Detailed music theoretic explanations of formal analysis abound in textbooks [7].

3.3.1 Simple Binary form

Simple binary form is the most basic musical form with nontrivial cycling and can be seen as a
prototype for many others. It consists of two sections, which will be compartments A and B,
which transition back and forth an arbitrary number of times. Often, each section is itself repeated
once before transitioning to the other, corresponding to a self loop (or to storage, though this
interpretation is not discussed here). Since the form begins with A and ends with B, we assign an

input to A and an output to B, of weight one.
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Flow matrix: Flow matrix: Flow matrix:
A B A B A B
A0 n—-1 Aln n-1 Ajl0 1
B|n 0 B|n n B|1 0
(a) Simple binary form n times (b) Simple binary form n times (c) Ternary form ABA
without repeats ABAB. .. with repeats AABBAABB. ..

(22

Flow matrix:

Flow matrix: Flow matrix: ‘ A B C D

‘ A B C D ‘ A B C D A1 3 1 0
A0 2 1 0 A1 0 0 1 BIl3 0 0 0
B2 0 0 0 B2 1 0 0 cl1 o 1 2
c|i1 0 0 1 cio0 1 1 0 DIo o 2 o
D0 0 1 0 D{o 0 1 1

(f) Ternary form with nested
(d) Ternary form with nested (e) Ternary form with nested rounded binary
ternary ABACDCABA simple binary AABBCCDDAB AABABACCDCDCABA

Figure 5: Network structures of simple binary and several ternary forms [5]. The topology of
two-part verse-chorus forms is the same as that of 5b above.
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3.3.2 Ternary form

Ternary form is related to rounded binary form (see below). ABA is the common overarching
structure. This changes the network topology of simple binary form, by moving the output from

B to A, and has a different balance of flow values.

3.3.3 Nested ternary form

In this form, each of the sections in the large-scale ABA form is itself composed of a smaller binary
or ternary form. If nesting ternary forms, this leads to a structure ABA CDC ABA, which is
reminiscent of rondo form (see Section 3.3.6). The repeats on the smaller forms are omitted on the
return of the first sectional group; with simple binary, this gives AABB CCDD AB; with rounded

binary (see below), AABABA CCDCDC ABA. Once again, A has the input and output.

3.3.4 Rounded binary form

Rounded binary form is a relative of both simple binary and ternary forms, in which some or all of
the A section returns, sometimes in a different key, during the second half of the B section. When
both sections are repeated, this yields a pattern A A BA BA. In network terms, this simply changes
the weighting of the transitions between A and Bj; the network’s topology remains the same as that
of binary form. Most of the dance movements in Bach’s Cello Suites follow this exact formula; the

minuets follow a nested ternary form (see above).

3.3.5 Sonata form

A dramatic expansion of rounded binary form, sonata form eventually became the idiom in which
a significant proportion of Western European “classical” music has been written. The large-scale
structure consists of an exposition, A, which is repeated; a development section, B; and a recapit-
ulation, a repeat of A, the latter half of which is in a new key. This leaves an overarching AABA,
which is split still smaller by standalone sections which are characterized by their melodic themes.
The A section usually contains four to five distinct themes; the B section often will contain one or
more of these themes, but varied in a way to sound quite different and express a different feeling.

The B section follows no particular pattern and has no set length.
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As such, we will consider sonata form to have an ABCD ABCD E ABCD structure, which can
be aggregated into the smaller rounded binary form, usually with only the first half repeated.
3.3.6 Rondo form

A rondo consists of a rondo section, A, and arbitrarily many other sections B, C, D, ... which
reprise A in between each new one. So, one possible and common rondo form is ABACADA.
Another variation is the hybrid sonata-rondo form, ABA C ABA, which is titled as such because
it follows the harmonic plan of sonata form (see Section 3.3.5) and involves a recapitulation of the
sectional group ABA.

3.3.7 Arch form

A favorite of Béla Bartdk, arch form is not particularly common throughout music history, but

offers a nice comparison to sonata-rondo form. It follows a palindromic, symmetrical pattern, as

in ABCBA or ABCDCBA.

3.3.8 Popular song forms

To touch upon the most popular forms in music created today, and in songs dating back centuries,

we turn to a couple of simplified formulas of strophic forms with reprised choruses:
e Three verse-chorus AABABB
e Four verse-chorus AABABABB
e Verse-chorus with bridge AABABCB

It is notable that the network topology for the forms above with only two distinct sections is
exactly that of simple binary form, though the sequence of repeats (self-loops) is different, leading

to noticeable differences in mathematical properties.
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Flow matrix: Flow matrix:
Flow matrix: A B C D E A B C D E
/A B C D Ao 0 0 0 1 Ao 0 0 1 1
A1l 3 1 0 B2 0 0 0 O B|3 0 0 0 O
B|3 0 0 O cio 2 0 0 O cio 3 0 0 O
ci1 0 1 2 Djio 0 2 0 O bDj{o 0 3 0 O
DO 0 2 0 Ej0 0 0 1 O Ej0 0 0 1 0
(a) Rounded binary form (b) Sonata form with one (c) Sonata form with repeated
AABABA exposition ABCDEABCD exposition

ABCDABCDEABCD

Figure 6: Network structures of rounded binary and sonata forms [5]. Note that in 6b and 6c,
aggregating ABCD into one compartment A yields at two-compartment structure: the repeated
exposition in 6¢ corresponds to the D—A connection, becoming the self-loop in 6a, while 6b takes
on the topology of ternary form, 5c.
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Flow matrix:

Flow matrix:

A B CDE
A B C D

A0 1 1 1 1
Ao 1 1 1

B|{1 0 0 0 0
B|1 0 0 0

Cl1 0 0 0 0
clt o o o
511 0 o0 o D|1 0 0 0 0

E|1 0 0 0 0

(a) 4-part rondo form ABACADA (b) 5-part rondo form ABACADAEA

AN

Flow matrix: Flow matrix: Flow matrix:

A B C A B C /A B C D
A0 2 1 A0 1 0 A0 1 0 O
B2 0 0 Bl1 0 1 B|1 0 1 0
cl1 0 O clo 1 o clio 1 0 1

(c) Sonata-rondo form (d) Arch form ABCBA blo o 10

ABACABA (e) Arch form ABCDCBA

Figure 7: Network structures of several rondo and arch forms [5]. Note the lack of self-loops and
balanced connections between every compartment, i.e. symmetric flow matrices.
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Form Letter sequence Cycling index | IEI Synergism | Homogenization
Simple Binary, no repeats | ABAB .5 7 5 4.46799
Simple Binary, no repeats | ABABAB .66667 814815 | 7 6.6
Simple Binary, twice AABBAABB 125 .34375 | 9 2.34038
Simple Binary, thrice AABBAABBAABB .16667 1404762 | 13 2.47386
Simple Binary, four times | AABBAABBAABBAABB | .1875 43125 | 17 2.57558
Ternary ABA .5 714286 | undefined® | 4.46799
Nested Ternary-Ternary ABACDCABA 72222 .904762 | undefined | 3.74306
Nested Ternary-Binary AABBCCDDAB .05555 1476923 | 4.89189 2.42239
Nested Ternary-Rounded | AABABACCDCDCABA .570707 .817073 | undefined | 2.91068
Rounded Binary AABABA .5 714286 | undefined | 4.46799
Rounded Binary, twice AABABAAABABA .5 714286 | undefined | 4.46799
Sonata ABCDABCDEABCD .653846 1913669 | 5.18056 6.29035
Sonata, single exposition | ABCDEABCD .5 .868852 | 5.70588 6.73056
4-part Rondo ABACADA .642857 .866667 | undefined | 2.51523
Sonata-Rondo ABACABA .690476 .866667 | undefined | 2.90273
Arch, 3-part ABCBA .633333 .866667 | undefined | 3.15303
Arch, 4-part ABCDCBA 702381 1922078 | undefined | 2.99597
Three verse-chorus AABABB .222222 461538 | 7 3

Four verse-chorus AABABABB .375 .609375 | 9 4.07342
Verse-chorus w/bridge AABABCBB .329167 642857 | 10 2.50359
Verse-chorus w/bridge AABABCB 442177 74359 | 10.3333 2.78328

Table 4: NEA index value comparison for several different forms, grouped by similarity.

3.3.9 Interpreting data on formal networks

The four particular indices in Table 4 capture network information which can be used to give
mathematical reasoning to music theoretic judgements and heuristics, explained here.!

As it pertains to the simple binary forms, these indices reflect the heuristic that more repetition
of the entire short form can enhance the expressiveness of the piece, but with decreasing marginal
returns. When self-looping repeats are omitted, there is more direct variation and mixing of musical
material (homogenization), which keeps the listener interested while still cycling often. This lines
up with modern performance practice: performers of Bach’s Cello Suites often skip these repeats,
to shorten the six-movement works for a concert audience (historically, music for dance gatherings
was often repeated, for maximal utility from minimal musical material).

Ternary form shares cycling and homogenization values with both simple binary form and

rounded binary form, which points to their topological relationships. Interestingly, repeating

nterestingly, a number of the forms considered here do not have synergism defined. This is because their flow
matrices are perfectly symmetric, meaning D = 0, so that U = (I — D)™' = I has no negative entries, and the ratio
of sums which defines synergism is not defined [2, 6].
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rounded binary form twice directly adds nothing to these network properties, which may be rele-
vant to why binary form dances (like those in the Cello Suites) are written with just one iteration.
Nesting other forms complicates by adding more compartments, though these indices and the less-
connected network topology (see Figure 5e) accurately mirror the relative scarcity of pieces with
simple binary form as the nested component.

Sonata form, which represents a much longer form than the others listed (sometimes up to
20 minute long pieces), carries with it high values of homogenization and cycling. Notably, not
repeating the long exposition leads to higher values of synergism and homogenization, which point
to the monotony of the four theme groups ABCD happening three separate times. Indeed, music
performers today frequently omit the repeated exposition when playing strictly written sonata
forms, as they find it boring or too long for the listener.

Sonata-rondo form shares similar index values with sonata form, except for its homogenization,
which makes sense; it has fewer thematic groups to add musical variation. However, it carries
higher index values than typical rondo form, perhaps due to its more tightly-knit network topology
(Figures 7a,7b,7c) and meaningful repetition of B. Arch form, with its symmetry, cycles effectively
and has a well-connected topology but does not mix variation in as well as some other forms.

The pop song forms reflect the heuristic notion that adding a bridge or instrumental break
between choruses at the end adds to the indirect effects and cycling between sections as they
interact synergistically. Interestingly, though sharing network topology with simple binary forms,
the different order and repetition patterns of basic verse-chorus forms lead to different low weights,
which yield much higher index values for the same (or less) total system throughflow. It is also
noteworthy that removing one repetition of the chorus at the end of a verse-chorus with bridge
form actually increases every index value, including synergism. Indeed, pop songs which fade out
on an extra repetition of the chorus often get a bad rap for “having a boring ending.”

Aggregationally, there are several relationships worth mentioning, and many more irrelevant
ones (cf. Section 2.2) [4]. For instance, sonata-rondo form can be aggregated into ternary form in
different symmetric ways: (ABA) C (ABA), which follows the intuition about recapitulating, or A
(BACAB) A, which groups strangely in functional terms. Similarly, sonata form can be aggregated
into rounded binary form, which is its historical predecessor: (ABCD) (ABCD) E (ABCD). Inter-

estingly, after aggregation, one cannot tell the difference between sonata-rondo and sonata form
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from the indices in Table 4. This aligns with the loss of information from aggregation.

All in all, the network properties discussed here shed light on why exactly certain formal struc-
tures gain popularity and contain expressive value beyond simply random sectional orderings or
chains. They give mathematical justification for subjective comparisons between forms by music

theorists and performers about repetition and variation.
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4 Tonality

4.1 Background

In the history of Western musical development, a system of tonality arose, in which some notes are
more important than others. In particular, there is a tonal center around which other important
pitches are organized. Systems of harmony and harmonic progression also came into play, adding
horizontal and vertical dimensions of pitch organization which frequently followed common tropes.

Music theory attempts to understand tonal relationships in terms of “harmonic tension and
release.” A tonal center is easily recognized by a listener from the absence of tension around it;
other notes and harmonies are characterized by their feeling of direction back towards this tonal
center. Musicians write pieces by exploiting these fundamental qualities of melody and harmony
for dramatic effect. While these are subjective qualities not easy to distinguish for a computer,
analogous mathematical patterns arise, which reflect the style and tonality of a piece.

In the next sections, we explore the mathematical manifestations and meanings of music the-
oretic concepts. We utilize music theoretic knowledge about prototypical tonal relationships to
apply and develop several indices which extract meaningful information using only simple holistic
data. These indices can both distinguish between a variety of styles of musical composition and
help determine tonal centers in tonal music.

While we describe all the necessary musical concepts and terminology for the purposes of this

mathematical context, in-depth treatment can be found in music theory textbooks [7].

4.2 Detecting atonality

Before we define tonal relationships in more depth, we will consider mathematical ways to determine
if a piece lacks the defining features of tonality, specifically, a hierarchical organization of notes.
Some styles of composition, usually termed atonal, give every note equal importance. Serialism is
one stark example, in which all twelve notes are used before repeating any one of them, and the
entire piece is built (rather mathematically) out of variations on the initial 12-note sequence. Free

atonality is a more general style, containing no specific small-scale melodic tropes or sequences.
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The importance of a note should manifest itself in the number of times it is played across the
entire piece. As far as networks are concerned, this note frequency is itself equal to the total
number of note-to-note inputs into a single compartment j, simply corresponding to its entry in
the throughflow vector, T}.

Going back to the G major Prelude, these totals are shown in Figure 8. As is apparent, the
seven notes of the G major scale (G, A, B, C, D, E, F4#) are frequently visited, and the other five
notes are not. Totals for the first movement of Beethoven’s Fifth Symphony, in C minor, are shown
in Figure 9. Here again, notes of the C minor scale are far more frequent.? Even more dramatically,
a tonal pop song like Michael Jackson’s “Bad” emphasizes yet fewer notes.

On the other hand, an atonal piece such as Anton Webern’s symphonic Passacaglia or a serial
piece like his Klavierstiicke have much more even note distributions, as in Figures 11 and 12,
respectively. Though it is reductionist to say so, these pieces can sound more chaotic and disorderly,

despite their equally-weighted note-hierarchical structure.
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Figure 8: Frequency of each note in Bach’s G major Prelude

2There are multiple “minor” scales. The natural minor is simply the major diatonic scale built on the note three
notes above; here, this is D§ = Eb, so the notes are (C, D, Eb, F, G, Ab, Bb).
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Figure 9: Frequency of each note in Beethoven’s Symphony No.5, first movement
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Figure 10: Frequency of each note in Michael Jackson’s “Bad”
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Figure 11: Frequency of each note in Webern’s Passacaglia Op.1
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Figure 12: Frequency of each note in Webern’s Klavierstiicke Op.posth. (WoO 18)
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4.2.1 Diversity measures

There exist mathematical tools used in ecology to evaluate “species evenness” or diversity in a

community [13, 14]. Some of these include the Shannon index, H' and the Simpson index, X:

R
H' = =) Pjlog(F)) (1)
j=1

R
A=) p? (2)
j=1

Here, P; is the proportion of the total community population belonging to species j (so that
> Pj=1), and R is the richness or total number of species in the community.

The Shannon index is based upon the weighted geometric mean of the P;’s. In NEA contexts,
it has been called throughflow diversity [6]. As every P; — %, i.e. as the species distribution
approaches evennness, H' — log(R). As the distribution approaches a highly uneven weighting,
such as with the domination of one single species, H' — 0.

The Simpson index simply measures the probability that two objects chosen randomly from
the community are the same. As the distribution approaches evenness, A — %. As it approaches
unevenness, A — 1. This is the opposite behavior of what one might intuitively want from such an
index, so we consider here 1 — X instead.

These two measures are each related to different formulations of true diversity, which is simply
computed as the reciprocal of a generalized mean of the proportions P; [3]. As it happens, these

are the weighted geometric mean and weighted arithmetic means, respectively.

1
H' = log <HRPj> = log(true diversity of order 1) (3)

J=17"7

- ! (4)

true diversity of order 2

Now, as seen in Table 5, when applied to the diversity of note frequencies in musical pieces, these
ecological indices can actually differentiate between tonal and atonal note distributions. Notably,

they do so in nonlinear fashions due to their calculation. Rescaling is necessary to see much
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differentiation. Also, these values are somewhat consistent within the large classifications of tonal

and atonal musics; if we wish to distinguish more, we need to delve deeper.

4.2.2 Differentiating between tonal styles

Tonal pieces from different eras have different levels of note unevenness, for a variety of musical
reasons. Briefly put, popular music from the past few decades emphasizes a small number of notes in
short songs; centuries-old Baroque-era pieces (like Bach’s Cello Suites) emphasize a few more notes,
mostly from the same key; later Romantic-era music (as with Beethoven’s Fifth Symphony and
later tonal music) develops towards more note equality, with the addition of many chromatic notes
between diatonic scales and modulation to distantly related key areas. This historical evolution is
sometimes termed the dissolution of tonality and ends with complete atonality.

Mathematically, we should simply see a range of diversities, even within tonal music. The
indicators above did not show much distinction within tonal music. As such, we propose our
own Note Evenness Index NEI to quantify how even a note frequency vector D is (i.e. D; is the
frequency of note j), where D and ||D||; are the arithmetic mean and linear sum of the elements

of D, respectively:
12

D,—D| 12
NEI = = P P
Z Elnare> (5)

After rescaling by %, this index is 0 for D perfectly even and 2 for D with only one note. Rather
than just computing a type of weighted geometric or arithmetic mean of proportional frequencies,
as with (1) and (2), this metric incorporates each note’s frequency difference from the average. This
helps to clarify yet further how even the distribution D is, since it factors in individual evenness.
Note that D in our network scenario can be computed in the same way as the throughflow
vector T. However, this evenness index could also be interesting in other ecological situations to

measure diversity in a new way.

4.2.3 Differentiating between atonal styles

We would also like to distinguish further between different atonal styles. In freely atonal pieces,
the frequencies of the transitions between notes are often similarly weighted, as well as those of

notes. In serial music, however, each note appears with similar frequency, but usually appears as
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part of one of a few 12-note sequences. This means that certain transitions will necessarily occur
more frequently than others.

We could simply apply the Shannon or Simpson diversity measures, but again, we would like
to capture component-wise distances from a perfectly even distribution. To differentiate between
these two types of atonality, we propose an analogous Transition Evenness Index TEI to quantify
how even a note transition matrix F' is.

For these purposes, we remove the diagonal of F' to obtain F’; keeping track of repeated notes
does not point to particular styles.®> M is the 12 x 12 matrix of ones less its diagonal, and f, m are

the sums of F’, M, respectively, to normalize each to 1.

1 1 / / 2
TEI(F):Z %szf? w1 f:ZEj, m:ZM:H —12=132 (6)
.7 i#£] i#£]
For a perfectly even transition matrix (disregarding the diagonal), TEI(F') = 0. For a perfectly
uneven F' with only one nondiagonal transition type, TEI(F) = 2 — % = 1.9848 .
These new indices are easy to compute and can consistently distinguish within tonal and atonal

styles of composition. See a comparison with other diversity measures below in Table 5. Every

column except for TEI computes the diversity of the note frequency distribution D.

Piece \ Style | H' |exp(H)/12| X | £@1-X | NEI | TEI
Michael Jackson, Bad Pop Tonal 1.9524 0.5871 0.1724 0.9028 0.9658 | 1.4098
Bach, Prelude Baroque Tonal | 2.1386 0.7073 0.1317 0.9472 0.7587 | 1.1625
Beethoven, Fifth Symphony | Romantic Tonal | 2.2350 0.7788 0.1278 0.9515 0.6079 | 0.9517
Webern, Passacaglia Freely atonal 2.4476 0.9634 0.0892 0.9936 0.2311 | 0.4773
Webern, Klavierstiicke Serial atonal 2.4730 0.9882 0.0853 0.9979 0.1162 | 1.3039

Table 5: Comparison of diversity index values between five example pieces in different styles. We
have computed the Shannon index with base e. Note that the Shannon and Simpson indices
increase with respect to diversity, while NEI and TEI do the opposite. The two atonal pieces have
significantly different note diversity index values from the tonal pieces. NEI shows even more
differentiation within different tonal styles in the ways we would expect, and TEI distinguishes
strongly between the two atonal styles.

3For pieces in any of our tonal, serial, and freely atonal styles, the same single note might be repeated constantly
for extended periods for musical effect. For instance, Webern’s Passacaglia contains many repeated notes, changing
the values of TEI and distinguishing between styles less effectively. TEI(F') = 0.4773, while leaving the diagonal in
yields a value of 0.5634, looking more like a serial piece.
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4.3 Determining the tonal center in tonal music

Determining the tonal center of a piece strictly from holistic data is more challenging than deter-
mining whether it simply fits into the style of tonal music. A simple look at the note frequency
distributions in Figures 8 and 9 does not yield immediate hints as to the tonal centers of these
pieces; the question is not simply answered by determining the most common note. Still, the rela-
tionships dictated by tonality give us enough information to uncover this. Detectable mathematical
patterns arise which reflect the rules of tonal music theory. We examine some of these below and

exploit them to create tools for predicting a tonal center or key area.

4.3.1 Simple defining features of tonality and key areas

A set of inter-note relationships and resolution tendencies is a major characteristic of tonality. For
instance, the note relationship of a perfect fifth carries strong importance in the tonal system. It
has particular harmonic meaning; as Pythagoras noted, it corresponds to a frequency ratio of 3:2,
the simplest integer ratio possible after the octave, 2:1.

In the time-based context of a piece of music, transitioning down a fifth sounds like a release
of harmonic tension, particularly when other simulatneous notes are added in vertical chords. For
instance, the dominant triad is a specific set of three notes which, when played together, all sound
like they are leading towards the tonal center. In particular, the note directly below the tonal
center, the leading tone, has a strong tendency to resolve up to the tonal center. This release of
tension towards the tonal center is a defining feature of being in a particular key.

Confusingly, the typical terminology fifth comes not from the actual seven-note interval between
the two notes in the twelve-note system, but from the five-note interval within a seven-note subset,
a diatonic scale. A tonal key area is characterized by a tonal center and a choice of diatonic scale.
A major key’s diatonic scale, the basic prototype for tonal music, can actually be built out of
successive perfect fifth intervals, by starting seven notes below the tonal center and choosing every
seventh note modulo 12. The most important notes that define this major key are those which
are generated from the first steps in this process, which we try to capture mathematically. As an
example, the sequence of generating a G major scale is shown in Table 6.

Consider the note frequency distribution in Figure 9. As is readily seen, the notes G and C are
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1| 3 5 7] 2 4 | 6
C|Cs| D |Ds| E | F|F¢| G |[Gs|] A |Az| B

Table 6: Order of the generation process for the G major diatonic scale (G, A, B, C, D, E, F%).

extremely frequent, almost twice that of any other note in this C minor piece. The first row of the
transition matrix also gives information about how often the note G transitions to C; see Table 7.
Beethoven firmly establishes the key of C minor by emphasizing the G—C fifth relationship, and
by repeating C and G more than any other notes in the piece. It is clear from Table 8 that he uses
the B—C leading tone relationship to solidify the key as well.

C C D D¢ E F F&@ G Gi A A: B
850 18 118 99 30 58 7 218 19 9 63 110

Table 7: First row of the transition matrix for the first movement of Beethoven’s Fifth Symphony. Each value is

the number of times a note is followed by C, the tonal center of the piece, rounded to the nearest integer. In bold

are the notes of the dominant triad, which are each expected to freqeuntly resolve to C in the tonal system. Note
that G transitions to C more than any other note (besides C itself).

C Cy D D E F F3 G G A As B
0534 0.118 0.159 0.112 0.161 0.063 0.026 0.113 0.028 0.026 0.092 0.317

Table 8: First row of Table 12a, which is the transition matrix for Beethoven’s Fifth, normalized by the frequency
of each respective note. This can be interpreted as the probability that note j transitions immediately to C. In
bold, the leading tone B transitions to C almost a third of the time.

4.3.2 Tonality indicator using note frequencies

Seeing that notes with particularly high frequencies are often important notes in a piece, we define
an indicator F'(j) to tell if note j and the note a perfect fifth below it are both frequently visited,
since this could point in the direction of a relevant tonal relationship. For these purposes, it is

important that all note values are modulo 12.

. 1, if j and j — 7 appear with above average frequency
F@) = (7)
0, otherwise

Recognizing that the diatonic scale is built out of fifths, we define another simple indicator to

capture whether the fifth above j also shows up frequently:

M(@j) = F@G) + F(G+7) (8)
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C C¢& D D¢ E F F4# G G¢ A Ay B
F {0 0 1 0 1 0 1 1 0 1 0 1
Mi{1 o0 2 0 2 0 1 2 0 2 0 2

Table 9: Behavior of F' and M for each note in Bach’s G major Prelude.

A powerful extension of this indicator can be obtained by using the AND operator & on F'(j) rather

than addition, and by iterating recursively. Define

—
M) = P I=0 ©)
M () & M{4(G+7), >0

As i increases, this recursion considers notes around the so-called circle of fifths from note j — 7.
Thus the i*? iteration of this modified indicator effectively determines if the all the notes up to i
steps around the circle of fifths appear often. Up to i = 6, this keeps track of how many notes in
j’s major diatonic scale (constructed by starting at j — 7) occur frequently. Its behavior is listed

in Table 10.
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Table 10: Value of M]/(j) for successive iterations ¢ in Bach’s G major Prelude. Note that the row
1 = 1 of this table corresponds to those in the M row in Table 9 which have value 2.

Indeed, M]/(j) can consistently identify the diatonic scale used in a piece (or, if a piece changes
keys often, sections of a piece), sometimes requiring a less stringent definition of F' to distinguish
between the notes of the scale and the five other less frequent notes. To search for a possible minor

tonal center at note j, we may simply apply this indicator to identify the major diatonic scale of
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Table 11: Value of M/(j + 3) for successive iterations ¢ in Beethoven’s Fifth Symphony, in C
minor. Here we have lowered the frequency cutoff in the definition of F. This properly identifies
the natural minor scale for C, which is actually the diatonic scale of the relative major, Eb.

the relative major, j + 3, since this is exactly the natural minor scale for note j.

Unfortunately, using this recursive indicator alone does not determine the key of a piece, merely
the diatonic scale used. To determine the tonal center, we may use the choice of scale to inform
our usage of other mathematical hints, like the leading tone relationship exemplified in Table 8 and

those explained in the following sections and tables.

4.3.3 Tonality information in the note transition matrix

Hints towards particular tonalities exist in note transition information as well. Transitions between
notes frequently become more important than others in particular tonal keys, as we saw in the
development of our Transition Evenness Index. The tendency of a particular note to resolve to
one or two particular other notes shows up in the transition matrix. The leading tone relationship
mentioned earlier is just an important one of these tendencies which can be wisely looked for once
the diatonic scale of a piece is known. For instance, knowing that Beethoven’s Fifth uses the
diatonic scale for Eb, we might compare the relationship D—Eb to the stronger B—C correlation
to correctly guess that the piece is in C minor, not Eb major.

Other specific tendencies which require in-depth music theoretic explanation can be seen in

Table 12. We highlight just a few of these without going into detail.
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4.3.4 Tonality information in individual voices

Also worth mentioning is a ranking of sound types and ranges in polyphonic tonal music. The
lowest sounding notes in the bass voice are of the utmost importance in defining a harmony and
the attached subjective harmonic feeling. For instance, in virtually all forms of tonal music, the
fifth transition from dominant down to tonic in the bass voice holds huge priority in the tension-
releasing feeling of reaching the tonal center. By investigating the transition matrix for just the
bass voice in a piece like Beethoven’s Fifth, clues for C minor are even more apparent than in any
other individual voice, or all the voices together. We will not delve into too much detail here, but

provide Table 13 for comparison and contrast with Table 12.
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C Ct D D E F o G G A A4 B
C | 5344 1178 1589 1115 .1612 0632 .0261 .1133 0275 0262 0915 .3173
C¢ | 0130 7020 0020 .0094 O  .0005 0019 .0012 .0076 .0037 .0019 .0072
D | 0759 0758 .3062 .0968 .0718 .1501  .0506 .0297 .0052 .0524 .0247 .1048
D¢ | 0413 0589 .1333 3024 0  .1501 0765 .0867 .0388 .0112 .1084 .0485
E | 0060 0  .0276 .0037 4228 .0244 0 0184 0109 .0045 .0011 .0159
F | 0316 .0034 .0841 2161 .1301 .2429 .1409 .0746 .2022 .0279 .0341  .0426
F§ | .0050 .0017 .0054 .0183 .0217 .0586 .3545 .0269 .0022 .0801 .0073 .0043
G | .1310 0034 1181 .0746 .0921 .1796 .2085 5211 .1930 .1287 .1318 .1316
G& | 0418 0135 .0204 .0274 .0136 .0817 0009 .0661 4475 0120 .0683 .0496
A | 0244 0168 .0188 .0084 .0014 .0068 .0961 .0256 .0112 .3885 .0628 .0260
At | 0454 0034 .0279 1080 .0298 .0208 0345 0236 0475 .1876 4557 .0058
B | .0502 .0034 .0972 .0234 .0556 .0122 .0095 .0128 .0066 0771 .0123 .2464

(a) Transition matrix of Beethoven’s Fifth but where each entry is normalized by the frequency of the note
in the corresponding column, so that each column sums to 1. This can be interpreted as the probability
that note 7 follows note j, after already reaching note j. Important harmonic tendencies such as the
leading tone B—C, secondary leading tone F4—G, and dominant seventh F—Eb are in boldface.

C C# D D E F F4 G G4 A Aj B
C 3955 2290 1598 2793 0835 0405 .2367 .0498 0428 1681 .4210
C# | .0280 0029 0134 0  .0007 .0020 .0025 .0138 .0061 .0036 .0096
D | .1631 .2542 1388 1244 1982 0784 0619 .0093 .0857 .0454 .1390
D§ | .0888 .1977 .1921 0 .1983 .1185 1811 .0702 .0184 .1991 .0643
E | 0122 0  .0398 .0052 0323 0 0385 .0197 .0073 .0020 .0211
F | 0679 .0113 .1212 3097 .2254 2182 1557 3659 0457 .0627 .0566
F&¢ | .0108 0056 .0078 .0263 .0376 .0774 0561 0039 .1310 .0133  .0058
G | .2813 0113 .1703 .1070 .1596 .2372 .3231 3492 2105 2422 1746
Gg | 0898 .0452 .0294 .0392 .0235 .1079 .0014  .1380 0196 1254  .0658
A | 0523 0565 0272 .0121 .0023 .0090 .1488  .0534  .0203 1154 0345
A$ | 0976 0113 .0403 .1549 .0516 .0394 .0535 .0494 .0859 .3068 0077
B | .1077 .0113 .1402 .0336 .0962 .0161 .0148  .0266 .0119 .1261 .0227

(b) Transition matrix of Beethoven’s Fifth, normalized as in (a), but without diagonal elements, to clarify
resolution tendencies. This can be interpreted as the probability that note ¢ follows note j # i, after
already reaching note j. Here we see that G and C are strongly related—they transition to each other more
than to any other note, since each is the maximal value in the other’s column.

C Ct D D E F Fi G G4 A A% B
2.1060 0.0835 1.2984 1.3284 0.1787 1.6403 0.3756 2.2663 0.6852 0.5320 0.8983 0.6072

(c) Row sums of (b). This can be seen as an indicator of how often note i follows any other note. As is
evident, the notes of the C minor scale and especially those of the C minor tonic triad (in bold) act as
gravity wells for other notes to resolve to; all roads lead home to C minor.

Table 12: Note transition information modulo 12 for Beethoven’s Fifth Symphony, viewed under
different tonal contexts.
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C C4 D D4 E F F4 G G4 A Ad B
C | .6842 1250 .1186 0455 0714 .0946 2074 1034 1875 0260 .1081
C# | .0048 8125 0169 .0227
D | .0287 4576 0455 2143 0811 .0370 0260 2162
D¢ | 0239 .0625 .0169 .1818 1486 0296 0345 1558
E 0169 5000 0541 .0303 .0074
F | .0239 2034 1364 1429 4054 .0606 .0667 .1207 .0313
F& | .0048 0339 0227 8182 .0074 0130
G | .1579 0339 .1364 0811 5259 1897 1250 .0260 .0270
G | .0096 0455 0714 1351 0593 4828 0625 .0519 .0270
A | .0048 0169 0909 0074 5938 0390 1081
A | .0096 0339 .3636 0148 0345 6623 0541
B | .0478 0508 0370 0345 4595

(a) Transition matrix of the string bass line of Beethoven’s Fifth, normalized as in Table 12a with zero
omitted. Notably, C and G are repeated sequentially exceedingly often, as seen in boldface. Having the
bass voice hang around dominant and tonic notes is typical in music from bluegrass to polkas to Beethoven
(ask any tuba or bass player) and solidifies chords and key areas.

C Ct D D E F 4 G G4 A At B
C 6667 2188 0556 1429 1591 4375 2 4615 0769 2
Ct | 0152 0313 .0278
D | .0909 0556 4286 .1364 0781 0769 4
D¢ | 0758 3333 .0313 2500 0625 0667 4615
E 0313 0909 1667 .0156
F | .0758 3750 1667 2857 3333 1406 2333 0769
Fi | 0152 0625 0278 0156 0385
G| 5 0625 1667 1364 3667 3077 0769 .05
Gt | .0303 0556 1429 2273 1250 1538 1538 .05
A | 0152 0313 5 0156 1154 2
A% | .0303 0625  .4444 0313 .0667 1
B | .1515 0938 0781 0667

(b) Transition matrix of the string bass line of Beethoven’s Fifth, normalized as in (a), but without
diagonal elements, to clarify resolution tendencies. Here we see an even stronger correlation between G and
C than in Table 12b, and also strong ties between A% and D§ (enharmonically, Bb and Eb), the dominant
and tonic notes in E flat major, the relative major key to C minor. Beethoven actually modulates to Eb for
the second theme (the C compartment in our sonata form structure in Section 3.3.5), as is the standard
operating procedure in sonata form. This strong hint for C minor does not appear in Table 12b.

C C# D D E F Fi G G4 A Ag B
2.6189 0.0742 1.2664 1.2810 0.3045 1.6874 0.1595 1.6668 0.9387 0.8774 0.7352 0.3901

(¢) Row sums of (b). This can be seen as an indicator of how often note i follows any other note in the
bass voice. As in Table 12¢, notes in C minor are especially frequent; indeed, the tonal center, C, massively
outweighs every other note.

Table 13: Note transition information modulo 12 for just the bass line in Beethoven’s Fifth
Symphony, viewed under different tonal contexts. Since the bass voice frequently contains far
fewer notes in total than a quickly moving melodic line, and due to its importance in forming

harmony, tonal note relationships can appear with more contrast than in other voices or in total.
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5 Conclusion

In conclusion, big-picture mathematical analysis of music can yield a surprising amount of infor-
mation, in both practically evident aspects and more obscure structures. NEA shows promise as a
mathematical tool in understanding what makes for well-knit music. Its applicability to the var-
ious scales of hierarchical organization allows for an intricate mapping of a musical network and
evaluation of its qualities. Despite the lack of an apparent correlation with popularity or subjec-
tive quality, the concepts and thought processes involved are still quite valuable in music analysis.
Aided in their quest by mathematics and concepts like NEA, music theorists can understand how
musical elements and structures of many types function together from a holistic point of view and
with rigorous mathematical language.

In terms of stylistic systems like tonality and serialism, we have seen how constraints on note
and inter-note transition use manifest themselves as patterns in holistic data. The mathematical
tools presented and proposed in Section 4 hold potential for all sorts of variations and extensions,
and are easily implemented with a computer, especially with publicly available software packages
[8, 9, 12]. They are successful at distinguishing between a variety of musical styles using general
statistical information, which supports the hypothesis that the fundamentally defining feature of a
musical style is simply the set of priorities it gives to certain notes, resolutions, motives, harmonies,
or other musical elements. This view and the compiled tools could help to rigorously describe the
historical process sometimes called the “dissolution of tonality” in music theory and history studies.

Strategies for tonal key recognition based upon a score do exist, but often involve specialized
tricks and a human intellect. A computer, however, can observe holistic patterns in a piece and
interpret them meaningfully, pending the existence of information to be gleaned; we have shown
how neat mathematical interpretations of diatonic scale construction can inform a computer search,
and that there is indeed information in piece-wide statistics. The more esoteric music theoretic ideas
explained in Figures 12 and 13 do not make for clean-cut tools like the recursive scale-recognizer
M; but still correspond to mathematical patterns apparent to the musically informed reader.

Mathematical music analysis only has upwards to go by using interdisciplinary methods and

the holistic viewpoint. We look forward to seeing these ideas develop further.
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6 Future directions

6.1 NEA applications

This document is just the beginning of applying NEA to music and viewing music as a transactional
network. As Section 2.2 and Figure 3 show, there are numerous other scales of musical organization

which we did not address here where NEA could come in handy.

6.1.1 Storage analysis

It is difficult to interpret what storage analysis means in the context of music [2]. Most of the math-
ematical properties which come from storage analysis are redundant in value with their throughflow-
based definitions in our note transition models. All of them are rather irrelevant to our interpre-
tations, in which we chose to have equal storage in every compartment; a storage value x; # 1
would translate to the note j receiving x; repetitions every time it appeared in the piece, which is
certainly not representative of reality.

There may be value in pursuing storage analysis on differently-constructed networks. Adapting
the fundamental sequential network to associate a storage value with the duration of each note
might lend insight, but identifying notes, sections, or different elements together regardless of time-
embedding becomes impossible when each has a distinct duration. Meaningfully applying storage
analysis will require more consideration, but may yield a more accurate model of music, as it could
incorporate both pitch and durational information, the two dimensions of the fundamental musical

network.

6.1.2 Motivic analysis

One of the levels in between the note and formal viewpoints is that of small groups of notes. A mo-
tive, alternately called “motif” or “figure,” is simply a short sequence (incorporating notes and/or
rhythmic durations). Then, as elsewhere, transitions from one motive to the one immediately fol-
lowing become the flows. The defining pitch information in a motive is its intervallic content, i.e.
the spaces between the notes, not the particular notes themselves. One difficulty in motive analysis
is that important motives are usually developed, or manipulated into various forms, by starting on

different notes, transforming upside-down or backwards, faster or slower, etc.
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Unfortunately, although important musical motives (those which occur frequently, or which are
emphasized by context) are often easy for a human ear to recognize, a computer has little “intuition”
about what to look for without incorporating advanced machine learning. Still, it would be easily
possible to create a tool for a comprehensive motivic analysis which simply considers all note- or
interval-sequences of a fixed length, perhaps only considering those which appear more often than

some fixed frequency tolerance, since musically important motives appear multiple times.

6.1.3 Frequency tolerance

In the vein of this “frequency tolerance,” the actual mathematics involved in NEA could be adapted
to glean more musically relevant information, or to more accurately model music. The matrix G"
for n > 1 in a note transition aggregation does not only reflect n-length steps in the fundamental
network; because we have identified notes regardless of time embedding, G™ encodes some n-step
indirect connections that may not actually happen in the timeline of the piece, especially for large n.
However, these entries should have lower values than important (i.e. frequent) n-step connections
that actually happen in the piece. If we impose a frequency tolerance in each power of G, or to D
in utility analysis, we could distill down to more musically important indirect connections.

This viewpoint could also apply to ecological networks, where some modeled relationships are,
in reality, quite negligible.

An investigation or survey of meaningful tolerances is necessary to develop these ideas further

and make them viable. A dynamic tolerance, changing with n, would probably be insightful.

6.1.4 Harmonic analysis

Harmonic networks are slightly tougher to construct, since they involve recognition of multiple
simultaneous notes for each compartment. Automated chord recognition today is actually quite
poor, with both raw recordings and digitized MIDI files. This is probably due to the frequent use
of dissonances and melodic elaborations around a longer-term harmonic structure which does not
substantially change, from the listener’s perspective. Tackling network construction of this type
thus would involve a hands-on human harmonic analysis of any piece in question, which is not a
cheap task in long, polyphonic works. While easy in short pop songs which repeat the same chords,

the simple cyclical networks created probably do not provide much mathematical insight.
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6.1.5 Popularity

A more detailed study of correlations with popularity or other versions of musical quality is in order.
Obtaining robust popularity data may prove to be the most challenging aspect of this task. Once
multiple levels of the network sturctures of a fixed set of pieces have been encoded and analyzed,
a comparison of correlations with formal, harmonic, rhythmic, or motivic data could shed light on

the importance of the various levels of musical organization in effective expression.

6.2 Mathematical reflections of musical style

The diversity measures and tonality indicators we introduced in Section 4 form a whole battery
of mathematical tools for classifying musical styles and keys. Applying them to a large data set
would illustrate their power and effectiveness and uncover any glitches, perhaps leading to refined
formulations. A comprehensive strategy for stylistic determination could be formulated, using all
music theoretic knowledge of tonal tendencies, which could ideally give probabilities for a musical

piece fitting into a given style or key and assign the highest such value to the correct option.

45



References

[1]

Stuart Borrett. “NEA.m”. mathworks.com/matlabcentral/fileexchange/5261-nea-m, MAT-

LAB Central File Exchange, 2004.

Brian D. Fath and Bernard C. Patten. “Review of the Foundations of Network Environ Anal-

ysis”. Ecosystems (1999) 2: 167-179.

Mark O. Hill. “Diversity and evenness: a unifying notation and its consequences.” FEcology

(1973) 54: 427-432.

Hironori Hirata and Robert E. Ulanowicz. “Information Theoretical Analysis of the Aggrega-
tion and Hierarchical Structure of Ecological Networks”. Journal of Theoretical Biology (1985)
116: 321-341.

Caner Kazanci. “EcoNet: A new software for ecological modeling, simulation and network

analysis”. Ecological Modeling (2007) 208/1: 3-8.

Caner Kazanci and Qiangian Ma. “System-wide measures in ecological network analysis”.
Advanced Modelling Techniques Studying Global Changes in Environmental Sciences (2015)
27: 45-68

Stefan M. Kostka and Dorothy Payne. Tonal Harmony, with an Introduction to Twentieth-
Century Music. Boston: McGraw-Hill, 2004.

Nicholas J. Lindell. “Analyzing musical compartmental networks using MIDI files”.
mathworks.com/matlabcentral /fileexchange/72168-analyzing-musical-compartmental-

networks-using-midi-files, MATLAB Central File Exchange, 2019.

Nicholas J. Lindell. “Determining a musical piece’s style and key wusing maths”.
mathworks.com/matlabcentral/fileexchange /7216 7-determining-a-musical-piece-s-style-

and-key-using-maths, MATLAB Central File Exchange, 2019.

46



[14]
[15]

[16]

Qiangian Ma and Caner Kazanci. “Analysis of indirect effects within ecosystem models using

pathway-based methodology”. Ecological Modeling (2013) 252: 238-245.
Bernard C. Patten. “Energy cycling in the ecosystem”. Ecological Modeling (1985) 28: 1-71.
Ken Schutte. “MATLAB and MIDI”. kenschutte.com/midi, 2012.

Claude E. Shannon. “A mathematical theory of communication”. The Bell System Technical

Journal (1948) 27: 379-423 and 623-656.
Edward H. Simpson. “Measurement of diversity”. Nature (1949) 163: 688.
Henri Theil. Economics and Information Theory. Amsterdam: North-Holland, 1967.

Henry Zajaczkowski. Tchaikovsky’s Musical Style. Ann Arbor: UMI Research Press, 1987.

47



