
Qrator: A population and Curation tool for the GlycO Ontology

by

Rajesh Narra

(Under the direction of John A. Miller and William S. York)

Abstract

Qrator is a tool for curating and populating glycan structures into the Glycomics

Ontology (GlycO). It takes glycan structures from various web based glycan databases and

converts them to an interoperable XML format and then to a Java Object model which

represents them as a tree structure. An efficient tree-structure alignment algorithm is imple-

mented, similar to a sequence alignment algorithm, but for a branched tree structures. The

tree matching results in a list of glycan structures in descending order of similarity to a

canonical representation of acceptable structures, as implemented in the GlycO ontology.

All the matching and partially matching structures can be viewed graphically along with

suggestions for editing structures to make them match exactly with canonical representation.

When a perfect match is found, Qrator adds the input structure to GlycO. When the input

structure does not match perfectly, it provides a convenient way to edit the input structure

and revalidate the edited structure with by comparison to the canonical representation in

GlycO.

Index words: Ontology Population, Tree Matching, Glycan Matching

Qrator: A population and Curation tool for the GlycO Ontology

by

Rajesh Narra

B.Tech, Jawaharlal Nehru Technological University, India, 2006

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2008

c© 2008

Rajesh Narra

All Rights Reserved

Qrator: A population and Curation tool for the GlycO Ontology

by

Rajesh Narra

Approved:

Major Professors: John A. Miller

William S. York

Committee: Thiab Taha

Budak Arpinar

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

August 2008

Dedication

To my Parents and Shravya.

iv

Acknowledgments

I owe immeasurable debts of gratitude to so many people who have supported me along the

way. I would especially like to thank Dr. William S. York and Dr. John A. Miller. They helped

throughout this work, and gave me an opportunity to have many valuable experiences. I am

very grateful for having an exceptional committee for my thesis and wish to thank the other

committee members, Dr. Budak Arpinar and Dr. Thiab Taha for sparing their precious time

and offering valuable suggestions. Special thanks to Shravya S. Nimmagadda, who could not

have been more supportive of me throughout this entire work and a reliable friend. I would

also like to express my gratitude to Dr. Kochut for his patient support and encouragement.

Finally, I would like to thank my parents who gave me strength when I am mostly in

need of it.

v

Table of Contents

Page

Acknowledgments . v

List of Figures . viii

Chapter

1 Introduction . 1

2 Preliminaries . 3

2.1 Graph Theory . 3

2.2 Subtree Isomorphism . 3

2.3 Web Ontology Language (OWL) 3

2.4 Glycomics Ontology (GlycO) 4

2.5 GlycoTree . 5

3 Related Work . 7

4 Tree-Matching . 10

4.1 Description of Algorithm . 10

4.2 Example . 13

5 Architecture . 24

6 Data Acquistion and Format Conversion 26

6.1 Data Sources . 26

6.2 Format Conversion . 26

6.3 Glyde-II . 27

6.4 Glycomics Object Model(GOM) 28

vi

vii

7 Curation and Population . 31

7.1 Curation . 31

7.2 Population . 33

8 Qrator . 34

9 Conclusions and Future Work . 38

Bibliography . 39

List of Figures

2.1 GlycoTree . 6

4.1 Tree T1 and Tree T2 . 14

4.2 bipartite graph between children of nodes “a” and “1” 15

4.3 bipartite graph between children of nodes “b” and “2” 15

4.4 bipartite graph between children of nodes “c” and “3” 16

4.5 bipartite graph between children of nodes “d” and “4” 16

4.6 Bipartite graph between children of nodes “e” and “6” 16

4.7 Bipartite graph between children of nodes “d” and “4” with scores 17

4.8 Bipartite graph between children of nodes “d” and “8” 17

4.9 Bipartite graph between children of nodes “e” and “9” 17

4.10 Bipartite graph between children of nodes “d” and “8” 18

4.11 Bipartite graph between children of nodes “g” and “8” 18

4.12 Bipartite graph between children of nodes “h” and “9” 19

4.13 Bipartite graph between children of nodes “g” and “8” 19

4.14 Bipartite graph between children of nodes “g” and “4” 20

4.15 Bipartite graph between children of nodes “h” and “6” 20

4.16 Bipartite graph between children of nodes “g” and “4” 20

4.17 Bipartite graph between children of nodes “c” and “3” 21

4.18 Bipartite graph between children of nodes “b” and “2” 21

4.19 Bipartite graph between children of nodes “a” and “1” 22

4.20 Bipartite graph between nodes “a” and “1” 22

4.21 Tree structure that is used to store the matches and corrections in given Tree 23

5.1 Work flow for GlycO Population . 25

viii

ix

6.1 GLYDE-II representation for pentaglycoside molecule 28

6.2 UML diagram for GOM . 29

8.1 Common monosaccharide names and their symbols 35

8.2 Screen shot of Qrator. Image in upper panel is the input structure, left side

image in bottom panel shows the nodes where error occurs in gray color and

right side image in bottom panel is the suggested structure 36

8.3 Screen shot of Qrator. Image in upper panel is the input structure, left side

image in bottom panel shows the nodes where error occurs in black color and

right side image in bottom panel is the suggested structure 37

Chapter 1

Introduction

Glycans are complex carbohydrate structures that are synthesized by living cells and play

key roles in the development and maintenance of these cells. They are complex tree struc-

tures whose nodes are simpler monosaccharide residues and whose edges are chemical bonds

between these residues. Research in glycoproteomics studies the interaction of these glycans,

genes and proteins and the biological process in which they participate. Despite their com-

plexity, modern experimental techniques such as mass spectrometry and Nuclear Magnetic

Resonance (NMR) has provided much knowledge about glycan structures. Due to enormous

growth of data stored in web accessible databases, the task of querying, sharing and corre-

lating structurally related data has become exceptionally complex and therefore unwieldy. As

a result, biologists require intuitive mechanisms for creating and managing this information.

This would be facilitated by semantic annotation of the accumulated knowledge. To capture

a formalized description of this complex domain, an ontology for glycans, GlycO [1] is uti-

lized. The strength of GlycO is its canonical representation of the building blocks of glycans

(monosaccharide residues) and their relationships to each other and to the biochemical pro-

cesses by which they are formed. The implementation of this canonical representation within

GlycO is called GlycoTree. These canonical residue representations provide rich semantic

context for describing the relationships between between chemical structures and a host of

biological interactions.

In order to be useful, the GlycO ontology must be populated with valid structures. A large

collection of structures are available via trusted sources such as CarbBank[2], KEGG[3] and

SweetDB. However, due to differences in representation standard and human misconceptions,

1

2

many errors exist in these structural databases. The canonical representation of structures in

GlycO provides a mechanism to specify biologically reasonable structural motifs and thereby

identify errors in these structural databases. Furthermore, the structural integrity of GlycO is

maintained by populating it exclusively with structures that are consistent with the canonical

representation.

Hence each new glycan structure must be validated before using it to populate the

ontology. This paper describes a user friendly curation and population tool called Qrator

that implements an approximate tree matching algorithm. This algorithm identifies subtrees

of the canonical GlycoTree that best match the input structure. If the given structure does

not have a perfect match in the GlycoTree, the tool displays the closest match and suggests

corrections to the structure or extensions to GlycoTree that result in an exact match so that

it is appropriate add the new structure as an instance in the ontology.

This document is organized as follows. Chapter 2 briefly introduces the required prelimi-

naries. Chapter 3 summarizes related work. Chapter 4 presents our Tree-Matching algorithm.

Chapter 5 describes the architectural workflow of the entire process. Chapter 6 presents the

data acquisition and format conversion steps. Chapter 7 describes the entire process of cura-

tion and population. Chapter 8 presents the Qrator tool and finally Chapter 9 presents

conclusions and outlines future work.

Chapter 2

Preliminaries

This section will define preliminary information used in the rest of paper, including relevant

concepts in semantics (i.e., ontologies), glycobiology and graph theory.

2.1 Graph Theory

A tree is defined as an acyclic connected graph, whose vertices are referred to as nodes. A

rooted tree is a tree having a specific node called the root, from which rest of the tree extends.

Consider a node x in a rooted tree T with root r. Nodes that are directly connected to node x

(distal to the root node) are called children of x and conversely, x is parent of these children.

An ordered tree is a rooted tree in which the children of each node are ordered. A labeled tree

is a tree in which a label is attached to each node. An unordered tree is rooted tree which is

not an ordered tree. Note all trees we consider in this paper are labeled unordered trees.

2.2 Subtree Isomorphism

Given two trees T1 and T2, find all possible subtrees of T2 that are isomorphic to T1 (i.e.,

find subtrees of T2 that are identical to T1) or decide that there is no such subtree. Our

algorithm is variant of subtree isomorphism discussed in Chapter 4.

2.3 Web Ontology Language (OWL)

The Web Ontology Language (OWL) is one of the knowledge representation languages for

authoring ontologies and is recommended by World Wide Web Consortium. OWL provides

3

4

the ability to specify classes and properties using a formal description logic. There are three

variations in OWL with different levels of expressiveness.

• OWL Lite provides a classification hierarchy and limited constraints.

• OWL DL provides maximum expressiveness while ensuring decidability.

• OWL Full provides maximum syntactic freedom, limited only by RDF. However,

OWL Full makes no guarantees of decidability.

An ontology expressed in OWL Lite is automatically expressed in OWL DL, similarly

ontology expressed in OWL DL is automatically expressed in OWL FULL.

2.4 Glycomics Ontology (GlycO)

The Glycomics Ontology (GlycO) focuses on the glycoproteomics domain to model the struc-

ture and functions of glycans and glycoconjugates, the enzymes involved in their biosynthesis

and modification, and the metabolic pathways in which they participate. GlycO is intended

to provide both a schema and a sufficiently large knowledge base, which will allow classifi-

cation of concepts commonly encountered in the field of glycobiology in order to facilitate

automated reasoning and information analysis in this domain. The GlycO schema exploits

the expressiveness of OWL-DL to place restrictions on relationships, thus making it suit-

able to be used as a means to classify new instance data. These logical restrictions are

necessary due to the chemical nature of glycans, which have complex, branched structures

that cannot be represented in any simple way. Glycans are thus distinguished from DNA

(e.g., genes) and proteins, which can be represented (at least in their most basic forms) as

simple character strings. The structural knowledge in GlycO is modularized, in that larger

structures are semantically composed from smaller canonical building blocks. In particular,

glycan instances are modeled by linking together several instances of canonical monosaccha-

ride residues, which embody knowledge of their chemical structure (e.g., β-D-GlcpNAc) and

context (e.g., attached directly to the Asn residue of a protein). This bottom-up semantic

5

modeling of large molecular structures using smaller building blocks allows structures in

GlycO to be placed in a biochemical context by describing the specific interactions of its

component parts with proteins, enzymes and other biochemical entities.

2.5 GlycoTree

A GlycoTree (Figure 2.1) is a labeled ordered tree whose nodes are canonical residues, as

defined in the GlycO ontology. The current version[4] of GlycO is limited to a single Gly-

coTree, which focuses on a subclass of glycans called N-glycans. The N-glycan GlycoTree

subsumes a large fraction of the N-glycans whose structures have been chemically character-

ized. That is, many of the known N-glycan structures can be completely specified by choosing

a subset of the nodes of GlycoTree, to form a connected subtree rooted at one of the residue

nodes of the N-glycan GlycoTree. Observation of valid N-glycan structures (as judged by a

qualified curator) that are not subsumed by the current version of the N-glycan GlycoTree

provide justification to extend the N-glycan GlycoTree by addition of new canonical residues.

6

Figure 2.1: GlycoTree

Chapter 3

Related Work

Recently the problem of measuring the similarity of two trees has been a focus of researchers

in various scientific fields such as computational biology [5, 6, 7, 8], information extraction

from web pages [9, 10]. Tai [11] was the first to generalize the edit model from strings to tree

structures, where he used the concept of a “Tree edit distance” to compare the difference

between two structures. The tree edit distance between two trees is defined as the minimum

cost of a series of elementary edit operations needed to transform the first tree into the

second. Since then, tree mapping has been attracting the interest of researchers. The tree

mapping between two trees is a set-theoretic description of the transformation from one tree

to the other. Intuitively, a tree mapping describes the transformation between two trees by

means of a set of node pairs, whereas a tree edit algorithm describes how to transform one

tree into the other. Tree mapping allows us to understand and investigate tree edit distance

in a qualitative and abstract way. In addition to the tree edit distance proposed by Tai (Tai

distance), various tree edit distance measures have been proposed in the past three decades.

For example, the algorithms for computing the structure-preserving [12], constrained [13],

structure-respecting [14], less-constrained [15], and bottom-up [16] distance measures were

proposed according to the definitions using the notion of tree mapping, i.e. these measures

have the corresponding tree mapping definitions.

In sequence alignment methods, the ”similarity score” is often used. A higher simi-

larity score value indicates better alignment. Based on this similarity score approach various

approximate tree matching algorithms have been proposed, including KCaM algorithms [17]

and labeled subtree homeomorphism [18].

7

8

Here, we consider special cases in which there are at most K differences between two input

trees. For these special cases Shasha and Zhang [19] developed an O(K2nH) time algorithm

for the unit cost edit distance problem for ordered trees where H is the minimum height of

two input trees and n is the maximum size of input Trees. Daiji and Tatsuya [20] developed

an algorithm that is able to find the largest common subtrees allowing at most K differences

between two input trees. Their algorithm, [20] implemented as a Tree-edit distance method,

is claimed to work in linear time for constant K and two rooted and unordered trees. Aoki,

Yamaguchi and Okuno [17] developed different approximate Tree matching algorithms for

querying the carbohydrate database. Their approximate matching algorithm is able to find

a maximum common subtree between two input trees allowing gaps in their match. For this

purpose they included a Global Matching subroutine and local matching subroutine in their

algorithm. The global matching algorithm recursively calls the local matching procedure

for all subtrees of the two input trees that have not been matched. After the single largest

matching tree has been found, the resulting unmatched portions of both trees are then used

as the input trees for another round of the local exact matching algorithm.

In populating the GlycO ontology, we require an algorithm that identifies and assigns one

or more subtrees (of a GlycoTree) that best match each input glycan. If no perfect match

exists, the algorithm should calculate the similarity score of the input structure with all pos-

sible subtrees of the GlycoTree and return the top K (where K is specified by the user) simi-

larity scores (in descending order) along with representations of the corresponding subtrees.

We developed an algorithm that fulfills this explicit requirement, although it does not exe-

cute in linear time. Our algorithm takes two trees (GlycoTree, InputStructure) and returns

all perfect matches, if they exist. Otherwise it returns the top K subtrees in descending

order of similarity scores. It also provides graphical representations of the input structure

and the (partially) matching subtrees of the GlycoTree, allowing the user to identify specific

nodes in the subtree that do not precisely match the corresponding nodes of the input struc-

ture. This facilitates curation by providing a rational basis upon which the user can decide

9

whether to edit the input structure, discard the input structure, or extend the GlycoTree to

accommodate the input structure.

Chapter 4

Tree-Matching

4.1 Description of Algorithm

In this section, we describe our Tree-Matching algorithm. It is a variant of a maximum

common subtree isomorphism algorithm. The main difference is that maximum common

subtree isomorphism algorithm identify all possible maximum subtrees between two trees T1

and T2, whereas our algorithm finds all possible subtrees of T2 that are similar to T1 and

displays the list of subtrees in descending order of their similarity scores.

4.1.1 Conventions used

T1 and T2 are two ordered labeled rooted trees whose roots are r1 and r2 respectively. For a

node u, child(u) are the child nodes of u. For a node v in tree T, T(v) denotes the subtree of

T induced from v and its descendents. Finally, w(u,v) is the similarity score assigned when

a single node u of tree T1 and a single node v of tree T2 are compared.

The method “root(T)” returns the root node of the Tree T.

The subprocedure ENQUEUE (Q, s) adds an element “s” to the end of the queue “Q”.

Similarly, the sub procedure DEQUEUE(Q) removes the first element currently existing

in the queue “Q”.

The method numberOfChildren(v) returns the number of child nodes of “v”. The pro-

cedure MAX WEIGHT BIPARTITE GRAPH(X, Y, edge weights[]) returns the list of

edges that have highest sum of weights and maximum cardinality in the matching. Here X

and Y are set of nodes in the bipartite graph and the edge weights[] is an array containing

the weights of the edges that connects the nodes in X and Y.

10

11

4.1.2 TREE MATCHING Algorithm

This algorithm accepts two trees T1 and T2 as inputs. The algorithm now traverses the tree

T2 in a Breadth First Search (BFS) manner and sends each visited node in the tree T2 along

with the root node in the tree T1 to another procedure called the SIMILARITY SCORE

which returns a similarity score between the tree T1 and the subtree of the tree T2 rooted at

the visited node. The structure similarityScore[u] is used to store similarity score between

given tree T1 and the subtree of tree T2 rooted at node u (where “u” is the current visited

node). Finally, the TREE MATCHING Algorithm returns this similarityScore array.

Algorithm 1 TREE-MATCHING(T1,T2)

1: r ← root(T1)
2: s ← root(T2)
3: Q ← φ
4: similarityScore[] ← φ //size of the similarityScore is size of Tree T2

5: ENQUEUE(Q, s)
6: while Q 6= φ do
7: u ← DEQUEUE(Q)
8: for each v ε children(u) do
9: ENQUEUE(Q, v)

10: end for
11: similarityScore[u] = SIMILARITY SCORE(r, u)//return root node of mapping

tree
12: end while
13: return similartyScore;

12

4.1.3 SIMILARITY SCORE Algorithm

This algorithm accepts two nodes “r” and “u” where “r” is the node from the tree T1 and “u”

is the node from tree T2. Initially, the algorithm determines the similarity score between these

two nodes by using a procedure getMatchScore(r,u). The score returned by this procedure

corresponds to the scoring scheme to be followed. In our case, the maximum score assigned

for a perfect match between two given residues is 5, as explained in section 7.1. If the current

node from T1 which is “r” is a leaf node, then the algorithm returns the score obtained from

the getMatchScore procedure and exits. Otherwise, for each of the child nodes in r and u,

the following procedure is executed.

Now let r1, r2, ...rp denote the children of node r in tree T1 and u1, u2, ...uq denote the

children of node u of the tree T2, respectively. The Similarity score Score[ri, yj] for i=1..p and

j=1..q is calculated recursively. Now a bipartite Graph G is constructed by X and Y where

X is the set of children of r and Y is the set of children u and each node in X is connected to

each node in Y. An edge (ri, uj) in G is annotated with weight Score[ri, yj]. The similarity

score between subtree of tree T1 rooted at node r and subtree of tree T2 rooted at node u is

computed using the node-to-node similarity, which is w(r, u) plus the sum of the weights of

the matched edges returned by the procedure MAX WEIGHT BIPARTITE GRAPH.

Note: The edge.getSource() method in Line 15 in the SIMILARITY SCORE algorithm

returns ri where ri is a child node of r. And also the edge.getTarget() method returns ψ(ri)

where ψ(ri) is some node uj that has a match with ri.

The above algorithm only describes the procedure by which similarity scores between

tree T1 and all possible subtrees of tree T2 are obtained. We used a mapping tree structure

in order to keep track of the nodes corresponding to the scores calculated. For simplicity,

this is not included in the above procedures.

13

Algorithm 2 SIMILARITY SCORE(r,u)

1: w(r, u) ← getMatchScore(r, u)
2: totalScore = w(r, u)
3: if child(r) = φ then
4: return totalScore
5: else
6: Score[1...child(r), 1...child(u)] ← φ
7: if numberofChildren(r) ≤ numberofChildren(u) then
8: for ri ε child(r) do
9: for uj ε child(u) do

10: Score[ri, uj] = SIMILARITY SCORE(ri, uj)
11: end for
12: end for
13: childlist L = MAX WEIGHT BIPARTITE GRAPH(child(r), child(u), Score)
14: for edge e ε L do
15: totalScore = totalScore + Score[e.getSource(), e.getTarget()]
16: end for
17: end if
18: return totalScore
19: end if

4.2 Example

The algorithms discussed in the section 4.1 are illustrated by using the following example.

Consider the trees T1 and T2 shown in figure 4.1(a) and 4.1(b). The goal is to find all possible

subtrees of Tree T2 that are similar to Tree T1. Our Algorithm 1 traverses the Tree T2 in

Breadth First Search (BFS) manner and for every visited node it calls Algorithm 2 with

the root node of Tree T1 and currently visited node of Tree T2 as arguments. It stores the

returned similarity score between Tree and subtree of Tree T2 rooted at current visited node

of Tree T2. In this section we briefly discuss the algorithm 2 by considering root nodes of

two trees T1 and T2. The Maximum similarity score between the subtree of Tree T1 rooted

at node v and the subtree of Tree T2 rooted at node w has score equal to the similarty

score between two nodes v and w plus the score of a maximum weight bipartite matching

14

(a) tree T1

(b) tree T2

Figure 4.1: Tree T1 and Tree T2

in G, where G is bipartite Graph({v1, v2, v3, ...vp}, {w1, w2, w3, ...wp}, E) for v1, v2, ...vp and

w1, w2, ...wq be the children of nodes v and w respectively.

Let a score of 2 be the maximum similarity score assigned for two individual nodes v of

Tree T1 and w of Tree T2 in this example, i.e, a score of 1 is assigned if the nodes u and v

are equal (in shape) and a score of 1 is assigned if the labels of the edges that connect each

node them to their parent are equal (for example w(b,2) = 2 since both b and 2 have same

shape and the edge label that connect to its parent is b4 in both cases).

Let us first start with nodes a and 1 of Trees T1 and T2 respectively. In order to decide

the similarity score between the subtree of tree T1 rooted at node a and the subtree of T2

15

rooted at node 1, the following maximum weight bipartite matching problem has to be solved:

Figure 4.2: bipartite graph between children of nodes “a” and “1”

However, solving this bipartite matching problem (Figure 4.2) involves (recursively)

solving further maximum weight bipartite matching problems. First in order to find the

similarity score between subtree of Tree T1 rooted at node “b” and subtree of Tree T2 rooted

at node “2”, the following maximum weight bipartite matching problem also needs to be

solved

Figure 4.3: bipartite graph between children of nodes “b” and “2”

This in turn, requires solving the following maximum weight bipartite matching problem,

in oder to find the maximum similarity score between the subtree of Tree T1 rooted at node

“c” and subtree of Tree T2 rooted at node “3”.

16

Figure 4.4: bipartite graph between children of nodes “c” and “3”

In order to solve the above maximum weight bipartite matching problem, the weights

of the edges in the graph are to be determined, which involves solving further maximum

weight bipartite matching problems. First, in order to find the similarity score between the

subtree of TreeT1 rooted at node “d” and the subtree of Tree T2 rooted at node “4” the

following maximum weight bipartite matching problem has to be addressed:

Figure 4.5: bipartite graph between children of nodes “d” and “4”

In order to solve above maximum weight bipartite matching problem (Figure 4.5) the

following maximum weight bipartite matching has to be solved.

Figure 4.6: Bipartite graph between children of nodes “e” and “6”

The similarity score between the subtree of Tree T1 rooted at node “f” and subtree of

Tree T2 rooted at node “7” is the similarity score between these two nodes alone, since

these are leaf nodes. Since both these nodes have same shape and edge label, they have

17

similarity score of “2”. Hence, the maximum bipartite matching problem shown in Figure 4.6.

Figure 4.7: Bipartite graph between children of nodes “d” and “4” with scores

In the maximum weight bipartite graph shown in figure 4.7 the edge weight between the

nodes “e” and “6” is calculated as “4”. This is because the similiarity score returned from

bipartite graph shown in figure 4.6 is “2” plus the similarity score between the two nodes

“e” and “6” which is also “2”. Since “5” is leaf node of Tree T2, the similarity score between

the subtree of Tree T1 rooted at node “e” and the subtree of T2 rooted at “5” is 2.

Similarly, in order to obtain similarity score between the subtree of Tree T1 rooted at

node “d” and “8”, following maximum weight bipartite matching problem has to be solved:

Figure 4.8: Bipartite graph between children of nodes “d” and “8”

which, in turn, requires solving the following maximum weight bipartite matching

problem.

Figure 4.9: Bipartite graph between children of nodes “e” and “9”

18

The similarity score between the subtree of Tree T1 rooted at node “f” and subtree of

Tree T2 rooted at node “10” is the similiraity score only between these two nodes, since

these are the leaf nodes. Since both these nodes have same shape and edge label, they have

similarity score of “2”. Hence, the maximum bipartite matching problem shown in Figure

4.9 is solved.

Figure 4.10: Bipartite graph between children of nodes “d” and “8”

In the maximum weight bipartite graph shown in figure 4.10 the edge weight between

the nodes “e” and “9” is calculated as “3”, since a similiarity score returned from bipartite

graph shown in figure 4.9 is “2” plus similarity score between these two nodes “e” and “9”

is “1” (since they have different edge labels). Since node “12” is leaf node of Tree T2, the

similarity score between the subtree of Tree T1 rooted at node “e” and that of T2 rooted at

“12” is 2.

Similarly, in order to obtain similarity score score between the subtree of Tree T1 rooted

at node “g” and “8”, the following maximum weight bipartite matching problem has to be

resolved:

Figure 4.11: Bipartite graph between children of nodes “g” and “8”

19

which, in turn, requires solving the following maximum weight bipartite matching

problem.

Figure 4.12: Bipartite graph between children of nodes “h” and “9”

The similarity score between the subtree of Tree T1 rooted at node “i” and subtree of

Tree T2 rooted at node “10” is just the similarity score between these two nodes, since these

are leaf nodes. Since both these nodes have same shape and edge label, they have simi-

larity score of “2”. The maximum bipartite matching problem shown in Figure 4.12 is solved.

Figure 4.13: Bipartite graph between children of nodes “g” and “8”

In the maximum weight bipartite graph shown in figure 4.13 the edge weight between the

nodes “h” and “9” is calculated as “4”. This is the similiarity score returned from bipartite

graph shown in figure 4.12 which is 2, plus similarity score between these two nodes “h” and

“9” which is also 2. Since node “12” is leaf node of Tree T2, the similarity score between the

subtree of Tree T1 rooted at node “h” and T2 rooted at “12” is 2.

Finally, in order to obtain the similarity score score between the subtree of Tree T1

rooted at node “g” and “4”, the following maximum weight bipartite matching problem has

to be addressed:

20

Figure 4.14: Bipartite graph between children of nodes “g” and “4”

which, in turn, requires solving the following maximum weight bipartite matching

problem.

Figure 4.15: Bipartite graph between children of nodes “h” and “6”

The similarity score between the subtree of Tree T1 rooted at node “i” and subtree of

Tree T2 rooted at node “7” is the similiraity score between these two nodes, since these are

leaf nodes. Since both these nodes have the same shape and edge label, they have simi-

larity score of “2”. The maximum bipartite matching problem shown in Figure 4.15 is solved.

Figure 4.16: Bipartite graph between children of nodes “g” and “4”

In the maximum weight bipartite graph shown in figure 4.16 the edge weight between

the nodes “h” and “6” is calculated as “3”, since a similiarity score returned from bipartite

graph shown in figure 4.15 is 2 plus similarity score between these two nodes “h” and “6” is

1 (since they have different edge labels). But due to the node “5” being a leaf node of Tree

21

T2, the similarity score between the subtree of Tree T1 rooted at node “h” and the subtree

T2 rooted at “5” is 2.

Figure 4.17: Bipartite graph between children of nodes “c” and “3”

By solving all maximum weight bipartite graph shown in figure 4.8, figure 4.10 , figure

4.13, figure 4.16, we get the weights of edges for the above bipartite graph (figure 4.17). By

solving this bipartite graph we get maximum weight “12”, which is the sum of the weights

of edges that connect nodes “d” and “4”, “g” and “8”. That is, we have higher similarity

score between subtree of Tree T1 starting at node “d” and subtree of Tree T2 starting at

node “4” than that obtained in the subtree of Tree T2 starting at node “8”. Similarly we

have higher similarity score between subtree of Tree T1 starting at node “d” and subtree of

Tree T2 starting at node “8” than that obtained in the subtree of Tree T2 strting at node “4”.

Figure 4.18: Bipartite graph between children of nodes “b” and “2”

By solving the maximum bipartite matching graph problem of the child nodes of “c” and

“3” we obtained a similarity score of 12. This similarity score of child nodes is now added

to that of the similarity score between “c” and “3”, which is 2. The total similarity score

thus calculated between the subtree of Tree T1 rooted at node “c” and the subtree of Tree

22

T2 rooted at node “3” is “14” (figure 4.18).

Figure 4.19: Bipartite graph between children of nodes “a” and “1”

Finally, considering between the child nodes of node “a ” and “1”, a maximum score of

16 is obtained between the node “b” and “2”, which is the highest score calculated among

the child nodes of “a” and “1”. Therefore, the total similarity score between the subtree of

Tree T1 rooted at node “a” and the subtree of Tree T2 rooted at node “1” is 18 as shown in

figure 4.20.

Figure 4.20: Bipartite graph between nodes “a” and “1”

In our case, we are not only interested in finding the maximum similarity scores among

the subtrees, but we also need to store the path through the tree by which this maximum

similarity is obtained. For this pupose a Tree structure is created internally in which each

node consists of information above the nodes matched in each tree along with their similarity

scores. Figure 4.21 presents the tree consisting of the matching information for the example

illustrated in this section.

23

Figure 4.21: Tree structure that is used to store the matches and corrections in given Tree

Chapter 5

Architecture

Figure 5.1 illustrates the work flow of the Qrator. Initially input structures are taken from

various web based sources such as CarbBank, KEGG and SweetDB. These structures are

in various formats which are then converted to a standard Glyde-II format in the format

converter process. The Glyde-II XML document is parsed to create a Glycomics Object

Model (GOM) in Java in which the molecule and all its residues are represented as Java

objects that are linked together. Similarly GlycoTree is also represented in GOM in order

to improve the performance and also ease the programmatic access to various objects. The

approximate tree matching algorithm now considers the GOM representation of both Gly-

coTree and the input structure and finds the closest match. If the closest match found is a

perfect match then this structure is instantiated in GlycO. Otherwise, the user can request

the top K suggested structures to be displayed by the Qrator. Now the user can select one

of the suggested structures and instantiate it in GlycO. On the other hand, the user can edit

the input structure manually and then repeat the process of finding the closest match. An

additional feature offered to trusted users is the option to edit the GlycoTree. If the user’s

input structure is certified to be correct then GlycoTree should be updated, so the user could

opt to edit the GlycoTree itself.

24

25

Figure 5.1: Work flow for GlycO Population

Chapter 6

Data Acquistion and Format Conversion

Creation of an Ontology does not end with schema design. It is more useful when actual

domain knowledge in the form of instances are added. In this section, pre-processing steps

that are performed before population are described.

6.1 Data Sources

Several data sources such as CarbBank, KEGG and SweetDB offer a good place to obtain

glycan data. Though CarbBank is discontinued, it still contains many useful structures which

are used as references in other structures. Hence CarbBank is chosen as a potential resource

for the initial population of the Glycomics Ontology (GlycO).

6.2 Format Conversion

In order to disambiguate the potential instances, the textual description of the struc-

ture was converted into the internal GOM representation. Each database has its own

representation for glycans. Structures from CarbBank are represented in IUPAC format,

which is non-unique two-dimensional textual representation. Using the web service pro-

vided by our colleagues at the German Cancer Research Center who are maintaining Gly-

comeDB (www.glycomedb.org/About.action), these structure are converted from IUPAC

to structurally unambiguous LINUCS format. Unfortunately LINUCS is not able to dis-

ambiguate different naming conventions. For this purpose, we are converting strucutres

into the XML-based Glycan Data Exchange(GLYDE-II) format, which semantically disam-

biguates the different naming conventions of monosaccharide residues, using web service

26

27

(www.glycomedb.org/About.action). Moreover, the structurally rich XML format offers

more flexible programmatic input to the algorithm. This Glyde-II format is explained with

an example in section 6.3.

6.3 Glyde-II

GLYDE-II is a standard for representation of the chemical structures of complex glycans

that is based on a connection table formalism using XML syntax. The GLYDE-II stan-

dards contains two parts, syntax and implementation which are conceptually distinct to

one another. The syntax document is completely specified by a framework called PARCH-

MENT (PARtonomy of CHeMical ENTities) which allows complete structure of biological

molecules. The GLYDE-II implementation also includes a set of rules, naming conventions

for the parts that are absolutely required for representational consistency and disambigua-

tion. In this format the largest structure are defined by their parts. For example, a complex

entity such as a molecule consists of parts that are connected to each other. In this case a

part can be a moiety, a residue or a bound atom. Two parts of an entity are connected by

a link. Here in our example, a molecule is an independent entity which is not be connected

to another molecule. Conversely, the parts of this entity are linked together. The other two

independent entities are, free atom which is not bound to any other atom and an aggregate

which is composed of other independent entities. In a GLYDE-II XML document the root

node is always “GLYDE-II”. The following figure shows an example structure followed by

the GLYDE-II specification for that structure.

28

Figure 6.1: GLYDE-II representation for pentaglycoside molecule

6.4 Glycomics Object Model(GOM)

The Glycomics Object Model (GOM) provides a convenient way to translate GLYDE-II XML

documents into other forms such as GlycO OWL instances. The object model was designed

using UML and the classes were coded in Java. The correspondence with GLYDE-II is nearly

one-to-one, as shown in the UML Class Diagram for GOM in Figure 6.2.

29

Figure 6.2: UML diagram for GOM

30

The above displayed GOM is a composite model in which the molecule and all of its

residues are represented as Java objects that are linked together. A GLYDE-II structure

document described in section 6.3, is parsed to create a DOM tree using an XML parser.

This DOM tree is traversed to create a Glycomics Object Model (GOM) in Java. Before

we validate our input structure, GlycoTree from GlycO is extracted and is represented in

the GOM. Using Java Serialization, the above mentioned conversion process is done only

once after each change in GlycoTree, which is rare. By this we improved the speed of our

procedure compared to that specified in [21], the GlycO is queried constantly.

Chapter 7

Curation and Population

The glycan structures that are extracted from the data sources contain many errors. Each

input structure’s linkage pattern must be compared with the pre-existing GlycoTree. For this

purpose an additional processing step is added to the workflow called Curation. This is done

just before the Population of input glycan structure to GlycO. This next section describes

these steps of curation and population.

7.1 Curation

As we described in section 2.4 glycans in GlycO are defined as a tree structure of canonical

residues, which function as a building blocks for more complex carbohydrates. Each instance

that is added to GlycO should comply with this tree structure. Hence we need a curation

step that identifies and assigns the subtree that corresponds to a particular glycan that is to

be instantiated in the ontology. This is achieved by sub-tree isomorphism. For curation there

is a need for an algorithm that not only finds perfect matches, but also allow some gaps in

alignment so that a user can identify sites where the input structure fails and thereby correct

the input structure. Nodes of the trees represent monosaccharides and edges represent the

linkage between them. For determining similarity between two monosaccharides a simple

matching of their names is not sufficient. There are several other factors that need to be

taken into account for matching, for example, the residue’s anomeric configuration, absolute

configuration, and linkage number to its parent. Hence for this purpose, the similarity score

w(u,v) between two monosaccharides, u and v is calculated using the following procedure:

31

32

A score of 1 is assigned when the residue meets the following criteria:

1. Both have same basetypes

2. The Anomeric configuration of both residues is equal

3. The Absolute configuration of both the residues is equal

4. Both the residues have the same substituents

5. The edge link number to the parent is the same for both the residues

The following figure illustrates in detail the scoring assignments based upon the above

scoring schemes.

(a) β-D-GlcpNAc (b) α-D-Manp

In the above figure, the square in part(a) indicates a β-D-GlcpNAc residue and the circle

in part (b) indicates α-D-Manp. Both these residues are similar in their absolute configuration

which is indicated by a “D”. However, they differ in their anomeric configuration which is

“β” for residue in (a) and “α” in residue in (b). Moreover the residue in (a) consists of a

basetype and substituent pair where as that in (b) has only a basetype. Finally, they also

differ in linkages to their parents.

Taking into account the similarities and dissimilarities among the above residues the

similarity score assigned for these residues is “1”.

As per our scoring scheme we can say that two monosaccharide residues are identical if

their similarity score is 5. Using the Tree-Matching algorithm along with this scoring scheme,

33

we are not only able to identify the subtree that corresponds to a particular glycan, but we

are also able to find the nodes at which input glycan structures are failing to match with

GlycoTree. Moreover, this enables us to give suggested structures for making corrections to

the input structure, so that it can be identified with a subtree of GlycoTree.

7.2 Population

Once a perfectly matched subtree of GlycoTree is found for the given glycan structure linkage

pattern, this input structure is used to populate GlycO. For populating and accessing the

ontology we are using the open source Jena API [22] which is developed by HP labs as

part of their Semantic Web Programme. Along with the structure we are also adding the

information of its identifiers in other databases like KEGGID, CCSD, etc.

Chapter 8

Qrator

Qrator is a tool developed for the curation and population procedure described in Chapter

5. Though gathering structures and converting formats is done with out any human inter-

vention, curation requires a domain expert for reviewing the structures that do not have any

perfect matches in the GlycoTree. Most of the experts in this domain are biologists who may

not have computer science background. Qrator makes this task easy by showing the pictorial

representation of input glycan structures and the subtree of GlycoTree it matches. If the

given input glycan structure has no perfect matches, it displays the top K matches with sug-

gested corrections for making it a perfect match in GlycoTree. Qrator provides three options

for each structure using the buttons “create”, “change”, “discard”. Using “Create Button”,

a user can create instance of this glycan structure for GlycO in cases of perfect match. For

imperfect matches, the user has the option to choose one of the suggested structures and

create an instance of it in the ontology using the ”Create” button. The “discard” button

discards the given glycan structure. Figure 8.2 is a screen shot of the Qrator. The topmpost

panel is the pictorial representation of the given glycan structure (the CarbBankID of the

structure shown in figure is CCSD:4419). The image in the bottom left is a replica of the

input structure in which nodes that failed to match with GlycoTree are displayed in grey

color. The image on the right in the bottom panel shows the suggested structure for the given

input structure to make it a perfect Match in a GlycoTree. In this case, two nodes failed due

to mismatches of edge link numbers (both have 3 where suggested structure shows 4). CFG

Nomenclature (http://glycomics.scripps.edu/CFGnomenclature.pdf) is followed for pictorial

34

35

representation of glycans. Figure 8.1 represents common monosaccharide names and their

symbols.

Figure 8.1: Common monosaccharide names and their symbols

Another type of mismatch is shown in Figure 8.3 in which the error nodes are represented

in black, since these nodes are not present in the GlycoTree and therefore no comparison is

made. When error nodes are in black, Qrator suggests that these nodes should be removed

for a perfect match. Error nodes in grey color suggest that they have to be changed to match

perfectly but not necessarily removed.

36

Figure 8.2: Screen shot of Qrator. Image in upper panel is the input structure, left side image
in bottom panel shows the nodes where error occurs in gray color and right side image in
bottom panel is the suggested structure

37

Figure 8.3: Screen shot of Qrator. Image in upper panel is the input structure, left side image
in bottom panel shows the nodes where error occurs in black color and right side image in
bottom panel is the suggested structure

Chapter 9

Conclusions and Future Work

This work describs a Tree-Matching algorithm that facilitates the curation of glycan struc-

tures from various trusted glycan databases. This process of curation helps users to make

appropriate changes to the input structures before populating the ontology. This process

helps to maintain the canonical richness of the existing ontology.

By providing a good user interface, we were able to encapsulate all the working details

such as tree matching and structure alignment. Hence this tools appeals to a variety of

end users such as biologists. The input from the users to select the number of suggested

structures one would like to be displayed, which offers more control upon the number of

structure suggestions. More trusted users also have the permissions to change the GlycoTree

itself.

At this point most of the software for Qrator is complete. Work is being done to make

this tool as a web service so as to make it available to more number of users. Efforts are

being made to develop a more general and user friendly interface that would help users to

curate the structures and populate the ontology. In the next few months, we plan to make

Qrator available on the web as a generally accessible curation tool for glycan structures.

38

Bibliography

[1] Thomas,C.,Sheth,A.,York,W.S.: Modular ontology design using canonical building

blocks in the biochemistry domain. In: Proc of the 4th Int. Conference on Formal

Ontologies in Information Systems (FOIS), Baltimore, 2006.

[2] CarbBank, http://ncbi.nlm.nih.gov subdirectory /repository/carbbank.

[3] KEGG: Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/.

[4] Glycomics Ontology, http://lsdis.cs.uga.edu/projects/glycomics/2006/GlycO v0 95.owl.

[5] T. Akutsu, Dynamic programming algorithms for RNA secondary structure prediction

with pseudoknots, Discrete Applied Mathematics 104, 2000, pp. 45-62.

[6] Y. Sakakibara, Pair hidden markov models on tree structures, Bioinformatics 19 2003,

pp. 232-240.

[7] M. Hochsmann, T. Toller, R. Giegerich, and S. Kurtz, Local similarity in RNA secondary

structures, Proc. of the Computational Systems Bioinformatics (CSB), IEEE, 2003, pp.

159-168.

[8] J. Allali and M.-F. Sagot, Novel tree edit operations for RNA secondary structure

comparison, WABI 2004, LNBI 3240, 2004, pp. 412-425.

[9] M. Collins and N. Duffy, Convolution kernels for natural language, Advances in Neural

Information Processing Systems 14 [Neural Information Processing Systems: Natural

and Synthetic, NIPS 2001], MIT Press, 2001, pp. 625-632.

39

40

[10] A. Hogue and D. Karger, Thresher: Automating the unwrapping of semantic content

from the world wide web, Proc. of 14th International World Wide Web Conference

(WWW), 2005, pp. 86-95.

[11] Tai, K., The tree-to-tree correction problem, Journal of the ACM,26, 1979, pp. 422-433.

[12] E. Tanaka, A note on a tree-to-tree editing problem, International Journal of Pattern

Recognition and Artificial Intelligence 9, 1995, no. 1, pp. 167-172.

[13] K. Zhang, A constrained edit distance between unordered labeled trees, Algorithmica

15, 1996, pp. 205-222.

[14] T. Richter, A new measure of the distance between ordered trees and its applications,

Tech. Report 85166-CS, Dept. of Computer Science, Univ. of Bonn, 1997.

[15] C. L. Lu, Z.-Y. Su, and C. Y. Tang, A new measure of edit distance between labeled

trees, COCOON, Lecture Notes in Computer Science, vol. 2108, 2001, pp. 338-348.

[16] G. Valiente, An efficient bottom-up distance between trees, Proc. of 8th International

Symposium on String Processing and Information Retrieval (SPIRE), IEEE Computer

Science Press, 2001, pp. 212-219.

[17] K. F. Aoki, A. Yamaguchi, Y. Okuno, T. Akutsu, N. Ueda, M. Kanehisa, and H. Mamit-

suka, Efficient tree-matching methods for accurate carbohydrate database queries,

Genome Informatics 14 , 2003, pp. 134-143.

[18] R.Y. Pinter, O. Rokhlenko, D. Tsur, M. Ziv-Ukelson, Approximate labelled subtree

homeomorphism, in: Proc. 15th Annu. Symp. Combinatorial Pattern Matching, Lecture

Notes in Computer Science, Vol. 3109, Springer, Berlin, 2004, pp. 55-69.

[19] Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees

and related problems, SIAM J. Computing 18, 1989, pp. 1245-1262.

41

[20] Daiji, F., Tatsuya, A.: Fast Algorithms for Comparision of Similar Unordered Trees, in:

ISAC 2004, Lecture Notes in Computer Science, Vol. 3341, Springer, Berlin, 2004, pp.

452-463.

[21] Sahoo, S.S., Thomas,C.,Sheth,A.,York,W.S., Tartir, S.: Knowledge Modeling and its

Application in Life Sciences: A Tale of two Ontologies. In: World Wide Web Confer-

ence[WWW 2006],Edinburgh,Scotland, 2006.

[22] Jena Semantic Web Framework, http://jena.sourceforge.net/.

