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Chapter 1

Introduction

A significant line of research has been the investigation of the special values of

transcendental functions. Given a function defined by a convergent series having

algebraic coefficients with prescribed growth, what can be said about the arithmetic

nature of the values that the function takes on at integer values of the argument?

An example of such a function is the Riemann ζ- function:

ζ(s) =
∞∑

n=1

1

ns

where s is a complex variable with Re(s) > 1. Euler proved:

ζ(2m) = (−1)m+1 (2π)2m

2(2m)!
B2m

for any positive integer m ≥ 1 where the Bk are Bernoulli numbers. From the

presence of π in this formula, one sees that the ζ-function takes on transcendental

values at the positive even integers. It has long been conjectured that ζ(2m + 1)

is transcendental ∀m ∈ N and another, much stronger, conjecture is that these

values are algebraically independent (see Cartier). In 1978, Apéry proved that ζ(3) is

irrational but until recently very little else was known. Then in 2001, Ball and Rivoal

proved that infinitely many of these values are irrational. If δ(a) is the dimension of

the Q-vector space generated by the set {1, ζ(3), ζ(5), ..., ζ(a)}, they proved that for

each ε > 0 and a > A(ε):

δ(a) ≥ 1− ε

1 + log(2)
log(a)

1
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More generally, one may ask if there is a comparable result for linear combinations

of Hurwitz ζ-functions or, in particular, for Dirichlet L-functions. This is the question

pursued in the present work. We now give a brief description of the the general result.

Fix an integer Q ≥ 1 and let c = (c1, c2, ..., cQ) ∈ CQ be such that c 6= 0. If we

define L(s, c) by:

L(s, c) =

Q∑
d=1

cd

∞∑
k=0

1

(kQ + d)s

then we will establish the following:

Theorem 1.1 Let δc(a) denote the Q-dimension of the space generated by the set

{c1, ..., cQ, L(2, c), L(3, c), ..., L(a, c)}. Moreover, suppose that:

Q∑
d=1

cd 6= 0

Then for each ε > 0, there exists an integer A(ε) such that for a > A(ε):

δc(a) ≥ 1− ε

Q + log(2)
log

(
a

Q

)
As in Ball and Rivoal, the key lemma is a criterion of linear independence due

to Nesterenko:

Proposition 1.2 Let θ = (θ1, ..., θM) ∈ CM (M > 2) and suppose that for each n

there is a linear form with integer coefficients:

Ln(~x) =
M∑
l=1

pl,nxl

such that

1. There are α1 and α2, 0 < α1 ≤ α2 < 1, such that:

α
n+o1(n)
1 ≤ |Ln (θ)| ≤ α

n+o2(n)
2

2. There is a β > 1 such that:

max
1≤l≤M

|pl,n| ≤ βn+o3(n)
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Then, if δQ = dimQ{Qθ1 + ... + QθM}:

δQ ≥
ln(β)− ln(α1)

ln(β)− ln(α1) + ln(α2)

Following Ball and Rivoal, we introduce an auxiliary function from which we

derive the requisite sequence of linear forms. Recall that we fix an integer Q ≥ 1

and c = (c1, c2, ..., cQ) ∈ CQ is such that c 6= 0. Extend this sequence periodically,

requiring cd = cd′ if d ≡ d′(mod Q). Of particular interest is the case when χ is a

Dirichlet character with conductor Q and cd = χ(d). Let n, r, and a be integers such

that 1 ≤ r < a
2
, n ∈ N. Furthermore, in the special case cd = χ(d), the parity of a

and n will depend on χ in a manner to be described below. We define m = m(c) = 0

if:
Q∑

d=1

dcd 6= 0

Otherwise, let m be the least positive integer such that cm 6= 0. Since c 6= 0, m ≤ Q.

Then, a fact which will be useful later, it is not difficult to see that:

Q+m∑
d=1+m

dcd 6= 0

since if m = 0 the sum is nonzero by definition and if m 6= 0 it equals Qcm. We will

analyze the function:

Sn,c(z) =
∞∑

k=0

(
Q+m∑

d=1+m

cdRn,d,Q (k)

)
z−kQ

where:

Rn,Q(t) = Q2rnn!a−2r

∏rn−1
l=0

(
t− l

Q

)∏rn−1
l=0

(
t + n + 2 + l

Q

)
∏n

l=0(t + 1 + l)a

and we define:

Rn,d,Q(t) = Rn,Q

(
t +

d

Q

)
For k = 1, 2, 3, ..., the Pochammer symbol is defined to be:

(α)k =
Γ(α + k)

Γ(α)
=

k−1∏
l=0

(α + l)
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Thus:

Rn,d,Q(k) = n!a−2r (Qk + d− rn + 1)rn (Qk + Qn + 2Q + d)rn(
k + 1 + d

Q

)a

n+1

The series defining Sn,c(z) converges for all z ∈ C with |z| > 1 because, as a rational

function in k, Rn,d,Q(k) has total degree ≤ −2 due to our assumption that 1 ≤ r < a
2
.

We begin the proof of Theorem (1.1) by establishing in chapter two that:

Sn,c(1) =
a∑

l=2

Pl,n(1)L(l, c) +

Q+m∑
d=1+m

P̂d,n(1)cd (1.1)

where Pl,n(z), P̂d,n(z) ∈ Q[z]. We here briefly sketch the argument. First expand the

Rn,d,Q(k) into partial fractions:

Rn,d,Q(k) =
a∑

l=1

n∑
j=0

c
(d)
l,j,n(

k + 1 + j + d
Q

)l

where c
(d)
l,j,n ∈ Q and by the uniqueness of the partial fraction expansion:

c
(d)
l,j,n = c

(d′)
l,j,n for all d, d′

The poles are all of order a and, when summed over k and character values, survive

as L(l, c) up to L(a, c). Substituting this expansion into the series defining Sn,c,

rearranging the sums, and evaluating at z = 1 gives the result.

Furthermore, the coefficients Pl,n(1) have additional properties which allow us to

specialize equation (1.1) when we have more information about c = (c1, c2, ..., cQ).

The symmetry of the zeroes of Rn,Q(k) about its poles yields the functional equation:

Rn,Q(k) = (−1)(n+1)aRn,Q(−n− k)

This translates via the partial fraction expansion to:

Pl,n(1) = (−1)(n+1)a+lPl,n(1)
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Thus, for example, if cd = χ(d) where χ is an primitive even Dirichlet character for

which it is known that:

L(2m, χ) = (−1)m+1

(
2π

Q

)2m

Am(χ)

where Am(χ) ∈ Q(e2πi/Q), we take a odd and n even. Hence Pl,n(1) = 0 for l even

and we have:

Sn,χ(1) =

a−1
2∑

l=1

P2l+1,n(1)L(2l + 1, χ) +

Q+m∑
d=1+m

P̂d,n(1)χ(d)

Defining dn,Q = lcm{1, 2, ..., (n + 1)Q + m}, we prove in chapter eight that:

Ln = da
2n,QS2n,c(1)

is a sequence of linear forms with integer coefficients and dn,Q = enQ+o(n) by the

Prime Number Theorem.

With R = r
Q

and A = a
Q

we easily compute, using the residue theorem and

standard estimates on multinomial coefficients, that:

lim sup
n→∞

|Pl,n(1)|1/Qn ≤ Q2R+12A−2R(2R + 1)2R+1

The same estimate is proved for P̂d,n(1). So:

β =
[
eaQ2R+12A−2R(2R + 1)2R+1

]2Q

suffices to satisfy the second part of Nesterenko’s criterion.

The technical heart of the proof is in satisfying the first part of the criterion. In

fact, we explicitly compute the limit:

lim
n→∞

|Sn,c(1)|1/Qn

This requires a detailed investigation of the asymptotics of Sn,c(1) which is the task

undertaken in chapters three through seven. The main term comes from the function:

F (x) =

(
xx

(x + 1)x+1

)1+A
(x + 1 + R)x+1+R

(x−R)x−R
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If we define:

φQ,r,a = max
R≤x<∞

Q2RF (x)

we prove in chapter four that there exists a unique x0 ∈ (R,∞) such that φQ,r,a =

Q2RF (x0). Moreover:

0 < φQ,r,a ≤
Q2R2R+1

RA−2R

In chapters five through seven we establish:

lim
n→∞

|Sn,c(1)|1/nQ = φQ,r,a (1.2)

In chapter three, we prove using Stirling’s formula that for sufficiently small δ

and sufficiently large n depending on δ, if n(R + δ) ≤ k then:

Rn,d,Q(k) = Q2rn (
√

2π )a−2r

(
√

n )a+2r
F (x)nQH(x)G(x)d exp

(
Oδ

(
1

n

))
where x = k

n
. Moreover Rn,d,Q(k) is nondecreasing for k ≤ n(R + δ) for sufficiently

small δ and n large.

In chapter six, we use these facts to prove (1.2) under the hypothesis that

Q∑
d=1

cd 6= 0

Establishing the limit is technically most difficult when
∑Q

d=1 cd = 0. Indeed,

under this assumption, we use the asymptotic product formula above to prove in

chapter seven the following:

There is a constant C > 0 such that if:

In =

[
x0 − C

√
log n

n
, x0 + C

√
log n

n

]

then: ∑
k
n

/∈In

(
Q+m∑

d=1+m

cdRn,d,Q(k)

)
= Q2rn (

√
2π )a−2r

(
√

n )a+2r
F (x0)

nQO

(
1

n

)
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and:

∑
k
n
∈In

(
Q+m∑

d=1+m

cdRn,d,Q(k)

)
= Q2rn (

√
2π )a−2r

(
√

n )a+2r

F (x0)
nQ

√
n

(
τ
′
H0A0

2τQ

Q+m∑
d=1+m

dcd + o(1)

)

where H0 and A0 are nonzero constants. Furthermore:

τ = −1

2

(
d

dx

)2

log (F (x)) |x=x0

and:

τ ′ =
1

2

(
d

dx

)3

log (F (x)) |x=x0

In particular, neither is zero as is proved in chapter four.

However, the reader is strongly cautioned that there is a neglected term in the

main computation which begins on page 57. This term exactly cancels the main term

found in the asymptotic above. In fact, with a bit more care, what we have in fact

established is that:

Sn,c(1) = Q2rn (
√

2π )a−2r

(
√

n )a+2r
F (x0)

nQO

(
1

n

)
It is hoped that the computational method given in this chapter will eventually show

that the next term in the asymptotic is nonvanishing. This would be sufficient to

prove the following:

Conjecture 1.3 Let χ be a Dirichlet character with conductor Q. Suppose χ(−1) =

−1. Take a even and define δχ(a) to be the Q-dimension of the space generated by the

set {χ(1), ..., χ(Q), L(2, χ), L(4, χ), ..., L(a, χ)}. If χ(−1) = 1, take a odd and define

δχ(a) to be the Q-dimension of the space generated by the set {χ(1), ..., χ(Q), L(3, χ),

L(5, χ), ..., L(a, χ)}. Then for each ε > 0, there exists an integer A(ε) such that for

a > A(ε):

δχ(a) ≥ 1− ε

Q + log(2)
log

(
a

Q

)
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Having established the limit:

lim
n→∞

|Sn,c(1)|1/nQ = φQ,r,a

we take:

α1 = α2 = (eaφQ,r,a)
2Q

Theorem (1.1) follows by applying Nesterenko’s criterion.



Chapter 2

Linear Forms In Special Values

Recall the definition of the rational function Rn,d,Q(t):

Rn,d,Q(t) = Q2rnn!a−2r

∏rn−1
l=0

(
t + d

Q
− l

Q

)∏rn−1
l=0

(
t + d

Q
+ n + 2 + l

Q

)
∏n

l=0

(
t + 1 + l + d

Q

)a

We first investigate the coefficients in the partial fraction expansion of Rn,d,Q(t):

Rn,d,Q(t) =
a∑

l=1

n∑
j=0

c
(d)
l,j,n(

t + 1 + j + d
Q

)l
(2.1)

where letting:

Dλ =
1

λ!

dλ

dtλ

we have:

c
(d)
l,j,n = Da−l

(
Rn,d,Q(t)

(
t + j + 1 +

d

Q

)a)
|t=−j−1− d

Q
∈ Q

which is the lth coefficient in the principal part of the Laurent expansion of Rn,d,Q(t)

about the pole t = −j− 1− d
Q

. These coefficients are independent of the congruence

class of d since, by Cauchy’s Theorem:

c
(d)
l,j,n =

1

2πi

∫
|z+j+1+ d

Q
|= 1

2

Rn,d,Q(z)

(
z + j + 1 +

d

Q

)l−1

dz

=
1

2πi

∫
|w+j+1|= 1

2

Rn,Q(w)(w + j + 1)l−1dw

under the linear transformation w = T (z) = z + d
Q

where |w+ j +1| = 1
2

denotes the

circle of radius 1/2 and center w = −j − 1. Henceforth, we will simply write cl,j,n

for c
(d)
l,j,n .

9
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We now insert (2.1) into the function Sn,c(z). By suitably rearranging sums and

evaluating this function at z = 1 with a limit argument, we’ll derive a sequence of

linear forms with rational coefficients in special values of L(s, c). Recall:

Sn,c(z) =
∞∑

k=0

(
Q+m∑

d=1+m

cdRn,d,Q (k)

)
z−kQ

So we have:

Sn,c(z) =
∞∑

k=0

(
Q+m∑

d=1+m

cd

a∑
l=1

n∑
j=0

cl,j,n

(k + 1 + j + d
Q

)l

)
z−kQ

=
a∑

l=1

n∑
j=0

cl,j,nQ
l

Q+m∑
d=1+m

cd

∞∑
k=0

1

((k + j + 1)Q + d)l
z−kQ

=
a∑

l=1

n∑
j=0

Qlcl,j,nz
(j+1)Q

Q+m∑
d=1+m

cd

∞∑
k=j+1

1

(kQ + d)l
z−kQ

=
a∑

l=1

n∑
j=0

Qlcl,j,nz
(j+1)Q

Q+m∑
d=1+m

cd

(
∞∑

k=0

1

zkQ

1

(kQ + d)l

−
j∑

k=0

1

zkQ

1

(kQ + d)l

)

=
a∑

l=1

n∑
j=0

Qlcl,j,nz
(j+1)Q

Q+m∑
d=1+m

cd

∞∑
k=0

1

zkQ

1

(kQ + d)l

−
a∑

l=1

n∑
j=0

Qlcl,j,n

Q+m∑
d=1+m

cd

j∑
k=0

1

(kQ + d)l
z(j−k+1)Q

Define:

P̃d,n(z) = −
a∑

l=1

n∑
j=0

Qlcl,j,n

j∑
k=0

1

(kQ + d)l
z(j−k+1)Q

and:

Pl,n(z) =
n∑

j=0

Qlcl,j,nz
(j+1)Q

Thus:

Sn,c(z) =
a∑

l=1

Pl,n(z)

Q+m∑
d=1+m

cd

∞∑
k=0

1

zkQ

1

(kQ + d)l
+

Q+m∑
d=1+m

P̃d,n(z)cd
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There are identities which further simplify this expression. First we have:

P1,n(1) = Q

n∑
j=0

c1,j,n = Q

n∑
j=0

Rest=−j−1− d
Q
Rn,d,Q(t) = 0

since, from the assumption that r < a
2
, Rn,d,Q(t) has total degree ≤ −2 as a rational

function in t and thus has a zero at infinity. Also, the function
∑∞

k=0
1

zkQ
1

(kQ+d)
has

a logarithmic singularity at z = 1. So:

lim
z→1

|z|>1

n∑
j=0

Qc1,j,nz
(j+1)Q

Q+m∑
d=1+m

cd

∞∑
k=0

1

zkQ

1

(kQ + d)
= 0

Furthermore, for l ≥ 2 and m = 0:

Q+m∑
d=1+m

cd

∞∑
k=0

1

(kQ + d)l
= L(l, c)

If m 6= 0:
Q+m∑

d=1+m

cd

∞∑
k=0

1

(kQ + d)l
= L(l, c)− cm

ml

Hence for m = 0:

Sn,c(1) =
a∑

l=2

Pl,n(1)L(l, c) +

Q+m∑
d=1+m

P̃d,n(1)cd

while if m 6= 0:

Sn,c(1) =
a∑

l=2

Pl,n(1)L(l, c)− cm

a∑
l=2

1

ml
Pl,n(1) +

Q+m∑
d=1+m

P̃d,n(1)cd

=
a∑

l=2

Pl,n(1)L(l, c) +

Q+m∑
d=1+m

P̂d,n(1)cd

where if d 6= Q + m, P̂d,n(1) = P̃d,n(1) and the coefficient of cm = cQ+m is:

P̂Q+m,n(1) = P̃Q+m,n(1)−
a∑

l=2

1

ml
Pl,n(1)

For the sake of consistency of notation, if m = 0 we shall also write P̂d,n(1) for

P̃d,n(1) (d = 1 + m, ..., Q + m). In summary, we’ve proven the following:
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Proposition 2.1 There is a finite expansion:

Sn,c(1) =
a∑

l=2

Pl,n(1)L(l, c) +

Q+m∑
d=1+m

P̂d,n(1)cd

where Pl,n(z), P̂d,n(z) ∈ Q[z].

Now, it is possible to say more about the coefficients Pl,n(1). More specifically,

they satisfy a symmetry relation expressed in the following proposition.

Proposition 2.2 For l = 1, ...a, the coefficients in Proposition (2.1) satisfy the

relation:

Pl,n(1) = (−1)(n+1)a+lPl,n(1)

In particular, Pl,n(1) = 0 if a is odd and n and l are even or Pl,n(1) = 0 if a is even

and l is odd.

proof

To derive this relation, recall that:

Pl,n(1) =
n∑

j=0

Qlcl,j,n

where:

cl,j,n = Da−l

(
Rn,d,Q(t)

(
t + j + 1 +

d

Q

)a)
|t=−j−1− d

Q

With t = −x− 1− d
Q

, rewrite:

cl,j,n = (−1)a−lDa−l (Φn,j(x)) |x=j

where:

Φn,j(x) = Rn,d,Q

(
−x− 1− d

Q

)
(j − x)a

= Q2rnn!a−2r(j − x)a(−x)−a
n+1

×
rn−1∏
l=0

(
−x− 1− l

Q

)

×
rn−1∏
l=0

(
−x + n + 1 +

l

Q

)
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So we have:

Φn,n−j(n− x) = Q2rnn!a−2r(n− j − (n− x))a(−(n− x))−a
n+1

×
rn−1∏
l=0

(
−(n− x)− 1− l

Q

)

×
rn−1∏
l=0

(
−(n− x) + n + 1 +

l

Q

)
= Q2rnn!a−2r(−1)a(j − x)a(−1)a(n+1)(−x)−a

n+1

×(−1)rn

rn−1∏
l=0

(
−x− 1− l

Q

)

×(−1)rn

rn−1∏
l=0

(
−x + n + 1 +

l

Q

)
= (−1)anΦn,j(x)

Hence ∀k ≥ 0:

Φ
(k)
n,n−j(n− x) = (−1)k(−1)naΦ

(k)
n,j(x)

Letting k = a− l and x = j:

cl,n−j,n = (−1)a−l(−1)ancl,j,n

so that:

Pl,n(1) = (−1)(n+1)a+lPl,n(1)

It is well known that the even (resp. odd) positive values of L(s, χ) are given by

a formula resembling Euler’s formula for ζ(2m) (see, for example, Iwasawa): Define

εχ = 0 if χ(−1) = 1 and εχ = 1 if χ(−1) = −1. Then for χ primitive and l ≡ εχ mod 2

(l ≥ 2):

L(l, χ) = (−1)1+
l−εχ

2
τ(χ)

2iεχ

(
2π

Q

)l
Bl,χ

l!

where the generalized Bernoulli numbers and Gauss sum Bl,χ, τ(χ) ∈ Q
(
e2πi/Q

)
.

This formula, under the conditions given, shows that L(l, χ) is, in fact, transcen-

dental because of the presence of π.
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So, if cd = χ(d), to restrict our attention to the case where values of L(l, χ) are

unknown, we take a odd and n even if χ(−1) = 1. Then (n + 1)a + l is odd for even

l and Pl,n(1) = 0 by Proposition (2.2). If, on the other hand, χ(−1) = −1, we take

a even. Then Pl,n(1) = 0 for odd l. If χ(−1) = 1, we have:

Sn,c(1) =

a−1
2∑

l=1

P2l+1,n(1)L(2l + 1, c) +

Q+m∑
d=1+m

P̂d,n(1)cd

If χ(−1) = −1:

Sn,c(1) =

a
2∑

l=1

P2l,n(1)L(2l, c) +

Q+m∑
d=1+m

P̂d,n(1)cd



Chapter 3

Analysis of Rn,d,Q(t)

In this chapter we will assemble some facts about the growth of Rn,d,Q(k) for non-

negative integers k. We begin with a simple observation:

Proposition 3.1 Rn,d,Q(k) = 0 for k = 0, 1, ..., b rn−d−1
Q

c

proof

By definition, Rn,d,Q(k) = 0 for any integer k with 0 ≤ k = l−d
Q

for l = 0, ..., rn−1.

However, as we shall show in the next proposition, Rn,d,Q(k) is in fact nondecreasing

on a larger range.

Proposition 3.2 For each sufficiently small δ > 0 (where small depends only upon

a, r, and Q) there is an Nδ such that for each d = 1 + m, ..., Q + m , Rn,d,Q(k) is

monotonically increasing for each n > Nδ and for rn−d
Q

≤ k ≤
(

r
Q

+ δ
)

n.

proof

In this chapter and those that follow, we shall frequently use the notation R = r
Q

,

A = a
Q

, and D = d
Q

. We shall proceed with the proof of the proposition by using the

inequality: ∫ u+s+1

u+1

1

x
dx ≤

s∑
k=1

1

u + k
≤
∫ u+s

u

1

x
dx

valid for u > 0 and s ∈ N, to show that d
dt

log (Rn,d,Q(t)) is positive on an interval

for large n.

15
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We have:

d

dt
log (Rn,d,Q(t)) =

rn−1∑
l=0

Q

Qt− l + d
+

rn−1∑
l=0

Q

Qt + Q(n + 2) + l + d

−a

n∑
l=0

1

t + 1 + l + d
Q

= Q

rn∑
l=1

1

Qt− rn + d + l
+ Q

rn∑
l=1

1

Qt + Q(n + 2) + d− 1 + l

−a
n+1∑
l=1

1

t + d
Q

+ l

≥ Q

∫ Qt+d+1

Qt−rn+d+1

1

x
dx + Q

∫ Qt+Q(n+2)+d+rn

Qt+Q(n+2)+d

1

x
dx

−a

∫ t+ d
Q

+n+1

t+ d
Q

1

x
dx

= Q (ln(Qt + d + 1)− ln(Qt− rn + d + 1))

+Q (ln(Qt + Q(n + 2) + d + rn)− ln(Qt + Q(n + 2) + d))

−a

(
ln

(
t +

d

Q
+ n + 1

)
− ln

(
t +

d

Q

))
We continue the analysis by dividing through by Qn in all terms, noting that this

leaves the expression unchanged, and then with x = t
n
:

d

dt
log (Rn,d,Q(t)) ≥ Q

(
ln

(
x +

d + 1

Qn

)
− ln

(
x−R +

d + 1

Qn

))
+Q

(
ln

(
x + 1 + R +

2Q + d

Qn

)
− ln

(
x + 1 +

2Q + d

Qn

))
−a

(
ln

(
x + 1 +

d + Q

Qn

)
− ln

(
x +

d

Qn

))
= Q [ln (x)− ln (x−R) + ln (x + 1 + R)− ln (x + 1)

−A ln (x + 1) + A ln (x)]

+Q ln

(
x + d+1

Qn

x

)
−Q ln

(
x−R + d+1

Qn

x−R

)

+Q ln

(
x + 1 + R + 2Q+d

Qn

x + 1 + R

)
−Q ln

(
x + 1 + 2Q+d

Qn

x + 1

)
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−a ln

(
x + 1 + d+Q

Qn

x + 1

)
+ a ln

(
x + d

Qn

x

)

= Q

[
(A + 1) ln

(
x

x + 1

)
+ ln

(
x + 1 + R

x−R

)]
+Q ln

(
1 +

d + 1

Qnx

)
−Q ln

(
1 +

d + 1

Qn(x−R)

)
+Q ln

(
1 +

2Q + d

Qn(x + 1 + R)

)
−Q ln

(
1 +

2Q + d

Qn(x + 1)

)
−a ln

(
1 +

d + Q

Qn(x + 1)

)
+ a ln

(
1 +

d

Qnx

)
Since 1

2
· t ≤ ln(1 + t) ≤ t if 0 ≤ t ≤ 1, then:

d

dt
log (Rn,d,Q(t)) ≥ Q

[
(A + 1) ln

(
x

x + 1

)
+ ln

(
x + 1 + R

x−R

)]
+

Q

2
· d + 1

Qnx
−Q · d + 1

Qn(x−R)
+

Q

2
· 2Q + d

Qn(x + 1 + R)

−Q · 2Q + d

Qn(x + 1)
− a · d + Q

Qn(x + 1)
+

a

2
· d

Qnx

if n is large enough that d+1
Qnx

< 1, 2Q+d
Qn(x+1+R)

< 1, 2Q+d
Qn(x+1)

< 1, d+Q
Qn(x+1)

< 1, and

d
Qnx

< 1 for x ≥ R and d = 1+m, ..., Q+m. Furthermore, x must be chosen so that

d+1
Qn(x−R)

≤ 1. Since Qn(x−R) = Qt−rn, this last is the case when t ≥ rn+d+1
Q

. Thus

if δ > 0 and
(
R + d+1

Qn

)
n ≤ t ≤ (R + δ)n or, equivalently R + d+1

Qn
≤ x ≤ R + δ,

then:

d

dt
log (Rn,d,Q(t)) |t=nx ≥ Q

[
(A + 1) ln

(
x

x + 1

)
+ ln

(
x + 1 + R

x−R

)]
−Q− 2Q + d

n(R + 1)
− a · d + Q

Qn(R + 1)

where we’ve dropped the positive terms, used the fact that d+1
Qn(x−R)

≤ 1, and

increased the remaining terms using x ≥ R. Since R < x ≤ R+δ, we have |x−R| ≤ δ

and hence the first term can be made as large as we like for all x in the range under

consideration simply by taking δ sufficiently small. In particular, we can make it

positive and greater than Q. Then the remaining terms can be made negligible by

taking n large. Thus for δ sufficiently small (depending only on A and R), there is
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an N such that for all n ≥ N , all d = 1+m, ..., Q+m, and all x ∈
[
R + d+1

Qn
, R + δ

]
,

d
dt

log (Rn,d,Q(t)) |t=nx > 0.

To conclude the proof of the proposition, observe that if we restrict t to integer

values there are only finitely many possible values between b rn−d−1
Q

c and rn
Q

+ d+1
Q

.

These are at most 4 in number since d ≤ 2Q and they are all contained in the set:{
rn− d

Q
,
rn− d + 1

Q
, ...,

rn

Q
,
rn + 1

Q
, ...,

rn + d + 1

Q

}
Hence we are done if we can show that Rn,d,Q(t) increases monotonically on this set

for large n. Indeed for −d ≤ γ ≤ d:

Rn,d,Q

(
rn+γ+1

Q

)
Rn,d,Q

(
rn+γ

Q

) =
rn + γ + d + 1

γ + d + 1
· 2rn + γ + d + Q(n + 2)

rn + γ + d + Q(n + 2)

·
n+1∏
l=1

(
rn + γ + d + Ql

rn + γ + d + 1 + Ql

)a

As n approaches infinity, the first factor goes to infinity while the second converges

to 2r+Q
r+Q

> 1. To complete the argument, it suffices to show that the third factor is

bounded from below away from 0. Indeed, we have:

n+1∏
l=1

(
rn + γ + d + Ql

rn + γ + d + 1 + Ql

)a

≥
n+1∏
l=1

(
rn + γ + d + Ql

rn + γ + d + Q + Ql

)a

=

(
rn + γ + d + Q

rn + γ + d + Q + Q(n + 1)

)a

=

(
r + γ+d+Q

n

r + Q + γ+d+2Q
n

)

)a

and as n tends to infinity, this converges to
(

r
r+Q

)a

. Thus we see that there is an

N ′ such that for n > N ′:

Rn,d,Q

(
rn+γ+1

Q

)
Rn,d,Q

(
rn+γ

Q

) > 1

for all d = 1 + m, ..., Q + m and −d ≤ γ ≤ d. The proposition follows with Nδ =

max{N, N ′}.
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Finally, we establish an asymptotic product formula for Rn,d,Q(t) when t > (R +

δ)n, for any δ > 0. First, we define:

f(x) = log

((
xx

(x + 1)x+1

)1+A
(x + 1 + R)x+1+R

(x−R)x−R

)

F (x) = exp(f(x)) =

(
xx

(x + 1)x+1

)1+A
(x + 1 + R)x+1+R

(x−R)x−R

H(x) =

√
x

x−R
· x + 1

x + 1 + R
·
(

x + 1 + R

x + 1

)2Q

·
(√

x

(x + 1)3

)a

g(x) = (A + 1) log

(
x

x + 1

)
+ log

(
x + 1 + R

x−R

)
G(x) = exp(g(x)) =

(
x

x + 1

)A+1
x + 1 + R

x−R

g1(x) =
1

2Q

(
A + 1

x
− A + 1

x + 1
+

1

x + 1 + R
− 1

x−R

)
h1(x) =

a− 2r

12
+

a

12x
− 13a

12(x + 1)
+

2Q

x + 1 + R
− 2Q

x + 1
1

12Qx
− 1

12Q(x−R)
− 1

12Q(x + 1)
+

1

12Q(x + 1 + R)

+
1

x + 1
− 1

x + 1 + R

h2(x) =
A

2x
− 3A

2(x + 1)
+

2

x + 1 + R
− 2

x + 1
+

1

2Qx

− 1

2Q(x + 1 + R)
+

1

2Q(x + 1)
− 1

2Q(x−R)

Proposition 3.3 For each δ > 0 and n ≥ Nasym (depending on δ), if x = k
n

then

with the notation above:

Rn,d,Q(k) = Q2rn (
√

2π )a−2r

(
√

n )a+2r
F (x)nQH(x)G(x)d exp

(
Oδ

(
1

n

))
uniformly for k ≥ n(R + δ) and furthermore:

exp

(
Oδ

(
1

n

))
= exp

(
d2

n
g1(x) +

1

n
h1(x) +

d

n
h2(x) + Oδ

(
1

n2

))
proof

Recall the definition of the Pochammer symbol:

(α)k =
Γ(α + k)

Γ(α)
=

k−1∏
l=0

(α + l)
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and apply Stirling’s formula in the form:

Γ(s) = ss− 1
2 e−s

√
2πe

1
12s

+O
(

1
|s|2

)

to:

Rn,d,Q(k) = n!a−2r (Qk + d− rn + 1)rn (Qk + Qn + 2Q + d)rn(
k + 1 + d

Q

)a

n+1

We have:

Rn,d,Q(k) = n!a−2r Γ(Qk + d + 1)

Γ(Qk + d− rn + 1)
· Γ(Qk + Qn + 2Q + d + rn)

Γ(Qk + Qn + 2Q + d)

·

Γ
(
k + 2 + d

Q
+ n
)

Γ
(
k + 1 + d

Q

)
−a

=
(
(n + 1)n+1/2e−(n+1)

√
2π
)a−2r

· (Qk + d + 1)Qk+d+1/2e−(Qk+d+1)

(Qk + d− rn + 1)Qk+d−rn+1/2e−(Qk+d−rn+1)

·(Qk + Qn + 2Q + d + rn)Qk+Qn+2Q+d+rn−1/2

(Qk + Qn + 2Q + d)Qk+Qn+2Q+d−1/2

·e
−(Qk+Qn+2Q+d+rn)

e−(Qk+Qn+2Q+d)
·

(
k + 2 + d

Q
+ n
)−a(k+2+ d

Q
+n−1/2)

(
k + 1 + d

Q

)−a(k+1+ d
Q
−1/2)

ea(k+2+ d
Q

+n)

ea(k+1+ d
Q)

· exp

(
O

(
1

n

))
= ((n + 1)n+1/2e−(n+1)

√
2π)a−2rQ2rnn−(a−2r)n−ae(a−2r)n+a

·

(
k
n

+ d+1
Qn

)Qk+d+1/2

(
k
n
− r

Q
+ d+1

Qn

)Qk+d−rn+1/2

·

(
k
n

+ 1 + r
Q

+ 2Q+d
Qn

)Qk+Qn+2Q+d+rn−1/2

(
k
n

+ 1 + 2Q+d
Qn

)Qk+Qn+2Q+d−1/2

·

(
k
n

+ 1 + 2Q+d
Qn

)−a(k+2+ d
Q

+n−1/2)

(
k
n

+ Q+d
Qn

)−a(k+1+ d
Q
−1/2)

· exp

(
O

(
1

n

))
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It should be noted at this point that for arbitrary δ > 0, if k
n

= x > R + δ then all

of the arguments in the gamma functions are positive and tend to infinity with n.

Thus this formula is valid for all x > R + δ and the O
(

1
n

)
= Oδ

(
1
n

)
is uniform in

x. For brevity we have written Oδ

(
1
n

)
in place of the following expanded expression

which uses the e
1

12s term in Stirling’s formula:

Oδ

(
1

n

)
=

a− 2r

12(n + 1)
+

1

12(Qk + d + 1)
− 1

12(Qk + d− rn + 1)

+
1

12(Qk + Qn + 2Q + d + rn)
− 1

12(Qk + Qn + 2Q + d)

− a

12
(
k + 2 + d

Q
+ n
) +

a

12
(
k + 1 + d

Q

) + Oδ

(
1

n2

)

=
a− 2r

12n
· 1

1 + 1
n

+
1

12nQx
· 1

1 + d+1
nQx

− 1

12nQ(x−R)
· 1

1 + d+1
nQ(x−R)

+
1

12nQ(x + 1 + R)
· 1

1 + 2Q+d
nQ(x+1+R)

− 1

12nQ(x + 1)
· 1

1 + 2Q+d
nQ(x+1)

− a

12n(x + 1)
· 1

1 + 2Q+d
nQ(x+1)

+
a

12nx
· 1

1 + Q+d
nQx

+ Oδ

(
1

n2

)
=

a− 2r

12n
+

1

12nQx
− 1

12nQ(x−R)
+

1

12nQ(x + 1 + R)

− 1

12nQ(x + 1)
− a

12n(x + 1)
+

a

12nx
+ Oδ

(
1

n2

)
Here, the Oδ

(
1
n2

)
is uniform in x > R + δ for n sufficiently large. Letting k

n
= x,

combining these results and writing them in logarithmic form we have:

1

nQ
log Rn,d,Q(k) =

A− 2R

n

(
log(

√
2π)− 1 +

(
n +

1

2

)
log(n + 1)− n log(n)

)
+2R log(Q)− A log(n)

n
+

A

n
+

(
x +

D

n
+

1

2nQ

)
log

(
x +

d + 1

Qn

)
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−
(

x−R +
D

n
+

1

2nQ

)
log

(
x−R +

d + 1

Qn

)
+

(
x + 1 + R +

2

n
+

D

n
− 1

2nQ

)
log

(
x + 1 + R +

2Q + d

Qn

)
−
(

x + 1 +
2

n
+

D

n
− 1

2nQ

)
log

(
x + 1 +

2Q + d

Qn

)
−A

(
x + 1 +

2

n
+

D

n
− 1

2n

)
log

(
x + 1 +

2Q + d

Qn

)
+A

(
x +

1

n
+

D

n
− 1

2n

)
log

(
x +

Q + d

Qn

)
+

A− 2R

12n2
+

1

12n2Q2x
− 1

12n2Q2(x−R)
+

1

12n2Q2(x + 1 + R)

− 1

12n2Q2(x + 1)
− A

12n2(x + 1)
+

A

12n2x
+ Oδ

(
1

n3

)
Next we expand the logarithms to isolate the main terms:

1

nQ
log Rn,d,Q(k) =

(A− 2R)

(
log(

√
2π)− 1

n
+

(
1 +

1

2n

)(
log(n) + log

(
1 +

1

n

))
− log(n)

)

−A(log(n)− 1)

n
+ 2R log(Q)

+

(
x +

D

n
+

1

2nQ

)[
log(x) + log

(
1 +

d + 1

Qnx

)]
−
(

x−R +
D

n
+

1

2nQ

)[
log(x−R) + log

(
1 +

d + 1

Qn(x−R)

)]
+

(
x + 1 + R +

2

n
+

D

n
− 1

2nQ

)[
log(x + 1 + R)

+ log

(
1 +

2Q + d

Qn(x + 1 + R)

)]
−
(

x + 1 +
2

n
+

D

n
− 1

2nQ

)[
log(x + 1) + log

(
1 +

2Q + d

Qn(x + 1)

)]
−A

(
x + 1 +

2

n
+

D

n
− 1

2n

)[
log(x + 1) + log

(
1 +

2Q + d

Qn(x + 1)

)]
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+A

(
x +

1

n
+

D

n
− 1

2n

)[
log(x) + log

(
1 +

Q + d

Qnx

)]
+

A− 2R

12n2
+

1

12n2Q2x
− 1

12n2Q2(x−R)
+

1

12n2Q2(x + 1 + R)

− 1

12n2Q2(x + 1)
− A

12n2(x + 1)
+

A

12n2x
+ Oδ

(
1

n3

)
We next expand the smaller order terms into Taylor series to third order error:

1

nQ
log Rn,d,Q(k) =

(A− 2R)

[
log(

√
2π)− 1

n
+

1

2n
log(n) +

(
1 +

1

2n

)(
1

n
− 1

2n2

+O

(
1

n3

))]
− A · log(n)− 1

n
+ 2R log(Q)

+x log(x)− (x−R) log(x−R) + (x + 1 + R) log(x + 1 + R)

−(x + 1) log(x + 1)− A · (x + 1) log(x + 1) + A · (x) log(x)

+

(
D

n
+

1

2nQ

)
log(x)−

(
D

n
+

1

2nQ

)
log(x−R)

+

(
2

n
+

D

n
− 1

2nQ

)
log(x + 1 + R)−

(
2

n
+

D

n
− 1

2nQ

)
log(x + 1)

−A

(
2

n
+

D

n
− 1

2n

)
log(x + 1) + A

(
1

n
+

D

n
− 1

2n

)
log(x)

+x

[
d + 1

Qnx
− 1

2

(
d + 1

Qnx

)2

+ O

(
1

n3

)]

−(x−R)

[
d + 1

Qn(x−R)
− 1

2

(
d + 1

Qn(x−R)

)2

+ O

(
1

n3

)]

+(x + 1 + R)

[
2Q + d

Qn(x + 1 + R)
− 1

2

(
2Q + d

Qn(x + 1 + R)

)2

+ O

(
1

n3

)]

−(x + 1)

[
2Q + d

Qn(x + 1)
− 1

2

(
2Q + d

Qn(x + 1)

)2

+ O

(
1

n3

)]

−A(x + 1)

[
2Q + d

Qn(x + 1)
− 1

2

(
2Q + d

Qn(x + 1)

)2

+ O

(
1

n3

)]

+Ax

[
Q + d

Qnx
− 1

2

(
Q + d

Qnx

)2

+ O

(
1

n3

)]
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+

(
D

n
+

1

2nQ

)(
d + 1

Qnx

)
−
(

D

n
+

1

2nQ

)(
d + 1

Qn(x−R)

)
+

(
2

n
+

D

n
− 1

2nQ

)(
2Q + d

Qn(x + 1 + R)

)
−
(

2

n
+

D

n
− 1

2nQ

)(
2Q + d

Qn(x + 1)

)
− A

(
2

n
+

D

n
− 1

2n

)(
2Q + d

Qn(x + 1)

)
+A

(
1

n
+

D

n
− 1

2n

)(
Q + d

Qnx

)
+

A− 2R

12n2
+

1

12n2Q2x
− 1

12n2Q2(x−R)
+

1

12n2Q2(x + 1 + R)

− 1

12n2Q2(x + 1)
− A

12n2(x + 1)
+

A

12n2x
+ Oδ

(
1

n3

)
Now we expand the products and collect terms so that finally:

1

nQ
log Rn,d,Q(k) =

(A− 2R)

[
log(

√
2π)

n
+

1

2n
log(n) + O

(
1

n3

)]
− A log(n)

n

+ log

(
Q2R

(
xx

(x + 1)x+1

)1+A
(x + 1 + R)x+1+R

(x−R)x−R

)

+
1

2Qn
log

(
x

x−R
· x + 1

x + 1 + R

)
+

2

n
log

(
x + 1 + R

x + 1

)
+

A

2n
log

(
x

(x + 1)3

)
+

D

n

[
(A + 1) log

(
x

x + 1

)
+ log

(
x + 1 + R

x−R

)]
+

D2

n2

[
1

2

(
A + 1

x
− A + 1

x + 1
+

1

x + 1 + R
− 1

x−R

)]
+

1

n2

[
A− 2R

12
+

A

12x
− 13A

12(x + 1)
+

2

x + 1 + R
− 2

x + 1

]
+

1

n2

[
1

12Q2x
− 1

12Q2(x−R)
− 1

12Q2(x + 1)
+

1

12Q2(x + 1 + R)

]
+

1

n2

[
1

Q(x + 1)
− 1

Q(x + 1 + R)

]
+

D

n2

[
A

2x
− 3A

2(x + 1)
+

2

x + 1 + R
− 2

x + 1
+

1

2Qx

1

2Q(x + 1 + R)
+

1

2Q(x + 1)
− 1

2Q(x−R)

]
+ Oδ

(
1

n3

)
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Recall the notation:

f(x) = log

((
xx

(x + 1)x+1

)1+A
(x + 1 + R)x+1+R

(x−R)x−R

)

F (x) = exp(f(x)) =

(
xx

(x + 1)x+1

)1+A
(x + 1 + R)x+1+R

(x−R)x−R

H(x) =

√
x

x−R
· x + 1

x + 1 + R
·
(

x + 1 + R

x + 1

)2Q

·
(√

x

(x + 1)3

)a

g(x) = (A + 1) log

(
x

x + 1

)
+ log

(
x + 1 + R

x−R

)
G(x) = exp(g(x)) =

(
x

x + 1

)A+1
x + 1 + R

x−R

g1(x) =
1

2Q

(
A + 1

x
− A + 1

x + 1
+

1

x + 1 + R
− 1

x−R

)
h1(x) =

a− 2r

12
+

a

12x
− 13a

12(x + 1)
+

2Q

x + 1 + R
− 2Q

x + 1
1

12Qx
− 1

12Q(x−R)
− 1

12Q(x + 1)
+

1

12Q(x + 1 + R)

+
1

x + 1
− 1

x + 1 + R

h2(x) =
A

2x
− 3A

2(x + 1)
+

2

x + 1 + R
− 2

x + 1
+

1

2Qx

− 1

2Q(x + 1 + R)
+

1

2Q(x + 1)
− 1

2Q(x−R)

Then note that:

f ′(x) = g(x) , f ′′(x) = g′(x) = 2Qg1(x) and
1

Q
H ′(x) = H(x)h2(x)

and that for k ≥ n(R + δ) and n ≥ Nasym:

Rn,d,Q(k) = Q2rn (
√

2π )a−2r

(
√

n )a+2r
F (x)nQH(x)G(x)d exp

(
Oδ

(
1

n

))
where:

exp

(
Oδ

(
1

n

))
= exp

(
d2

n
g1(x) +

1

n
h1(x) +

d

n
h2(x) + Oδ

(
1

n2

))
as claimed in the proposition.



Chapter 4

Maximum of the Main Term

Let R = r
Q

, A = a
Q

, and recall:

F (x) = exp (f(x)) =

(
xx

(x + 1)x+1

)1+A
(x + 1 + R)x+1+R

(x−R)x−R

We define:

φQ,r,a = max
R≤x<∞

Q2RF (x)

Proposition 4.1 There exists a unique x0 ∈ (R,∞) such that:

φQ,r,a = Q2RF (x0)

Moreover:

0 < φQ,r,a ≤
Q2R2R+1

RA−2R

proof

To show this, we follow the argument given in Ball and Rivoal ([1], pp. 199-201).

We see that:

f ′(x) =
F ′(x)

F (x)
= log

(
x1+A (x + 1 + R)

(x + 1)1+A (x−R)

)
Thus, a critical point of F must satisfy:

x1+A (x + 1 + R) = (x + 1)1+A (x−R)

26
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The transformation x = s
1−s

or, equivalently, s = x
x+1

maps the interval [R,∞)

bijectively to
[

R
R+1

, 1
)

and is order preserving. Under this transformation, we see

that any critical point of F must also satisfy the relation:

s1+A =
(R + 1)s−R

R + 1−Rs
(4.1)

and be a root of the function:

PR,A(s) = s1+A(−Rs + (R + 1))− ((R + 1)s−R)

So it is necessary to further understand this critical point as a root of PR,A(s). We

have PR,A(0) = R > 0, PR,A(1) = 0, and PR,A(s) > 0 on
[
0, R

R+1

]
since, on this

interval s1+A > 0, −Rs + R + 1 > 0, and −(R + 1)s + R ≥ 0. Furthermore:

P ′
R,A(s) = (1 + A)sA(−Rs + R + 1)−Rs1+A − (R + 1)

So P ′
R,A(0) = −(R + 1) < 0 and P ′

R,A(1) = A− 2R > 0. Also:

P ′′
R,A(s) = A(1 + A)sA−1(−Rs + R + 1)− 2R(1 + A)sA

= −(1 + A)sA−1(R(A + 2)s− (R + 1)A)

Thus P ′′
R,A(s) > 0 on [0, 1]. Hence, PR,A(s) has a single root in s0 ∈ [0, 1) and

R
R+1

< s0 < 1. Equivalently, on the interval [R,∞), F (x) takes on its maximum

value uniquely at x0 = s0

1−s0
. Writing s = s0, it follows from equation (4.1) that:

φQ,r,a = Q2RF

(
s

1− s

)

= Q2R

( (
s

1−s

) s
1−s(

s
1−s

+ 1
) s

1−s
+1

)1+A (
s

1−s
+ 1 + R

) s
1−s

+1+R(
s

1−s
−R

) s
1−s

−R

= Q2R(1− s)A−2R · s
s(1+A)

1−s · (s + (1 + R)(1− s))
s+(1+R)(1−s)

1−s

(s−R(1− s))
s−R(1−s)

1−s

= Q2R(1− s)A−2R · s
s(1+A)

1−s · (R + 1−Rs)
s+(1+R)(1−s)

1−s

((R + 1)s−R)
s−R(1−s)

1−s
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So we have that:

φQ,r,a = Q2R(1− s)A−2R(R + 1−Rs)R+1((R + 1)s−R)R

·
(

s1+A · R + 1−Rs

(R + 1)s−R

) s
1−s

= Q2R(1− s)A−2R(R + 1−Rs)R+1((R + 1)s−R)R

and since R
R+1

< s0 < 1:

0 < φQ,r,a ≤ Q2R

(
1− R

R + 1

)A−2R(
R + 1−R · R

R + 1

)R+1

(R + 1−R)R

= Q2R

(
1

R + 1

)A−2R(
(R + 1)2 −R2

R + 1

)R+1

= Q2R

(
1

R + 1

)A−2R(
2R + 1

R + 1

)R+1

≤ Q2R2R+1

RA−2R

completing the proof of the proposition.

In subsequent work we will also require some information about f ′′(x0) and

f ′′′(x0). In the remainder of this chapter we endeavor to establish the nonvanishing

of these higher derivatives.

Lemma 4.2 For fixed x and 0 ≤ R < x the functions:

Kx(R) =
1

ln(x + 1 + R)− ln(x−R)

(
1

x−R
− 1

x + 1 + R

)
and:

Hx(R) =
1

ln(x + 1 + R)− ln(x−R)

(
1

(x−R)2
− 1

(x + 1 + R)2

)
are monotonically increasing in R.

proof

Let t =
R+ 1

2

x+ 1
2

. Then 0 ≤ t < 1 and:

Kx(R) =
1

x + 1
2

· 1

ln(1 + t)− ln(1− t)

(
1

1− t
− 1

1 + t

)
=:

K(t)

x + 1
2
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and:

Hx(R) =
1(

x + 1
2

)2 · 1

ln(1 + t)− ln(1− t)

(
1

(1− t)2
− 1

(1 + t)2

)
=

H(t)(
x + 1

2

)2
=

1(
x + 1

2

)2 · 2

1− t2
·K(t)

Since 2
1−t2

is monotonically increasing for 0 ≤ t < 1 it suffices to show that K(t) is

monotonically increasing for 0 ≤ t < 1. This is equivalent to showing that:

K(t)−1 =
ln(1 + t)− ln(1− t)

2t
· (1− t2)

is decreasing. We look at the Taylor expansion:

K(t)−1 =
t− t2

2
+ t3

3
− t4

4
...−

(
−t− t2

2
− t3

3
− t4

4
...
)

2t
· (1− t2)

=

(
1 +

t2

3
+

t4

5
+

t6

7
...

)
· (1− t2)

= 1 +

(
1

3
− 1

)
t2 +

(
1

5
− 1

3

)
t4 + ...

= 1−
∞∑

k=1

2

4k2 − 1
· t2k

Therefore:

d

dt
K(t)−1 = −

∞∑
k=1

4k

4k2 − 1
· t2k−1 < 0

for 0 < t < 1 thus proving the assertion.

As we have seen, for FA,R(x) = F (x) and a given A and R, x0 is defined by the

equation:

d

dx
log (FA,R(x)) = 0

In the following, we shall fix R and view this equation as defining a correspondence

between A and x.
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Since we have that:

d

dx
log (FA,R(x)) = g(x)

= (1 + A) (log(x)− log(x + 1))

+ log(x + 1 + R)− log(x−R)

then:

d

dx
log (FA,R(x)) = 0

if and only if:

A + 1 =
log(x + 1 + R)− log(x−R)

log(x + 1)− log(x)

which defines A as a function of x.

Proposition 4.3 For fixed R the correspondence between A and x0 is biholomorphic

and monotonically decreasing between A ∈ (2R,∞) and x0 ∈ (R,∞).

proof

We consider the derivative dA
dx

and the asymptotic behavior of A(x) as x → R+

and as x →∞. We compute:

dA

dx
= − log(x + 1 + R)− log(x−R)

log(x + 1)− log(x)

·
[

1

log(x + 1 + R)− log(x−R)

(
1

x−R
− 1

x + 1 + R

)
− 1

log(x + 1)− log(x)

(
1

x
− 1

x + 1

)]
= − log(x + 1 + R)− log(x−R)

log(x + 1)− log(x)
(Kx(R)−Kx(0))

The first factor is clearly positive and the second is positive by the lemma. Hence

dA
dx

< 0 for all x > R.
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We next examine the asymptotics. We have:

lim
x→∞

A(x) = −1 + lim
x→∞

log(x + 1 + R)− log(x−R)

log(x + 1)− log(x)

= −1 + lim
x→∞

log
(

x+1+R
x−R

)
log
(

x+1
x

)
)

= −1 + lim
x→∞

log
(
1 + 2R+1

x−R

)
/
(

1
x

)
log
(
1 + 1

x

)
/
(

1
x

)
= −1 +

2R + 1

1

= 2R

On the other hand:

lim
x→R+

A(x) = −1 + lim
x→R+

log(x + 1 + R)− log(x−R)

log(x + 1)− log(x)

= +∞

We have thus established that A(x) is a one to one direction reversing holomorphic

correspondence between x ∈ (R,∞) and A ∈ (2R,∞). The holomorphic version of

the inverse function theorem implies that its inverse function is holomorphic as well.

Hence, the map A → x0(A) is a one to one holomorphic correspondence between A ∈

(2R,∞) and x ∈ (R,∞) which, moreover, decreases monotonically as A increases.

This proves the proposition. We obtain as a corollary of the proof the following:

Proposition 4.4 If f(x) = log FA,R(x) and x0 ∈ (R,∞) is the unique point where

f ′(x0) = 0 then f ′′(x0) < 0.

proof

We have:

f ′′(x)

2Q
= g1(x) = (A + 1)

(
1

x
− 1

x + 1

)
+

1

x + 1 + R
− 1

x−R
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As before, if x = x0 then:

A + 1 =
log(x + 1 + R)− log(x−R)

log(x + 1)− log(x)

and:

f ′′(x)

2Q
=

log(x + 1 + R)− log(x−R)

log(x + 1)− log(x)

(
1

x
− 1

x + 1

)
+

1

x + 1 + R
− 1

x−R

= − (log(x + 1 + R)− log(x−R)) (Kx(R)−Kx(0))

< 0

Lastly, we establish the nonvanishing of the third derivative of f(x).

Proposition 4.5 With:

f ′′′(x0) =

(
d

dx

)3

log (FA,R(x)) |x=x0(A)

then f ′′′(x0) > 0.

proof

We begin by computing:(
d

dx

)3

log (FA,R(x)) = (1 + A)

(
1

(x + 1)2
− 1

x2

)
+

(
1

(x−R)2
− 1

(x + 1 + R)2

)
Fix R. Using the one to one correspondence between x = x0(A) and A = A(x0), it

suffices to show that the expression, resulting from substituting for A its represen-

tation in terms of x, is nonzero for R < x < ∞. Proceeding thus:(
d

dx

)3

log (FA,R(x)) =
log(x + 1 + R)− log(x−R)

log(x + 1)− log(x)
·
(

1

(x + 1)2
− 1

x2

)
+

(
1

(x−R)2
− 1

(x + 1 + R)2

)
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Rewriting the righthand side of this equation, we see:(
d

dx

)3

log (FA,R(x)) = (log(x + 1 + R)− log(x−R))

·
[

1

log(x + 1 + R)− log(x−R)

·
(

1

(x−R)2
− 1

(x + 1 + R)2

)
− 1

log(x + 1)− log(x)
·
(

1

x2
− 1

(x + 1)2

)]
= (log(x + 1 + R)− log(x−R)) · [Hx(R)−Hx(0)]

The first factor is positive and, by Lemma (4.2), so is the second. Thus f ′′′(x0) > 0

as was to be shown.

Henceforth, we shall fix δ0 > 0 satisfying Proposition (3.2) such that R+δ0 < x0.

Furthermore, we shall fix 0 < δ < δ0 and n shall always be assumed large enough that

both Proposition (3.2) and Proposition (3.3) are valid with δ0 and δ respectively.

That is we will suppose n ≥ max{Nδ0 , Nasym} and make use of the asymptotic

product formula valid on [R + δ,∞].



Chapter 5

The Upper Bound

Now we are able to prove the following proposition which provides an upper bound

for the linear forms constructed in the second chapter.

Proposition 5.1

lim sup
n→∞

|Sn,c(1)|1/nQ ≤ φQ,r,a

proof

We will require a lemma. First we define:

Rn(x) = Q2rn (
√

2π )a−2r

(
√

n )a+2r
H(x0)F (x)nQ

where x0 is the unique critical point of F (x) in [R,∞).

Lemma 5.2 (Tail Estimate) There are an x2 > 2x0 and N1 such that for each

x1 > x2 and each n > N1:

Rn

(
1

2
x1

)
≥
∑
k
n

>x1

Rn,d,Q (k)

Since Rn(x) is monotone decreasing for x > x0, if η > 0 and x1 is chosen such

that x1

2
> x0 + η, then:

∑
k
n

>x1

Rn,d,Q(k) ≤ Rn (x0 + η) < Rn(x0)

34
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In the sequel, it will be assumed that x1 has been chosen such that this estimate is

valid for all large n.

Assuming the lemma for the moment, we prove the proposition. If we choose

n > N1, note that Rn (x0) > Rn

(
1
2
x1

)
, and let cmax = max{|c1|, ..., |cQ|}:

|Sn,c(1)| =

∣∣∣∣∣
Q+m∑

d=1+m

cd

∞∑
k=0

Rn,d,Q(k)

∣∣∣∣∣
≤ cmax

Q+m∑
d=1+m

∣∣∣∣∣
∞∑

k=0

Rn,d,Q(k)

∣∣∣∣∣
= cmax

Q+m∑
d=1+m

 nx1∑
k=0

Rn,d,Q(k) +
∑
k
n

>x1

Rn,d,Q(k)


≤ cmax

Q+m∑
d=1+m

(
nx1∑
k=0

Rn,d,Q(k) + Rn(x0)

)

≤ cmax

Q+m∑
d=1+m

(
nx1 max

R+δ<x<x1

{
Q2rn (

√
2π )a−2r

(
√

n )a+2r
F (x)nQH(x)G(x)d

· exp

(
Oδ

(
1

n

))})
+ cmaxQRn(x0)

= cmaxQ
2rn (

√
2π )a−2r

(
√

n )a+2r
F (x0)

nQ

(
Q+m∑

d=1+m

nx1 max
R+δ<x<x1

{(
F (x)

F (x0)

)nQ

·H(x)G(x)d exp

(
Oδ

(
1

n

))}
+ QH(x0)

)
≤ cmaxQ

2rn+1 (
√

2π )a−2r

(
√

n )a+2r
F (x0)

nQ (nx1Cδ + H(x0))

Here we’ve used Lemma (5.2) and Proposition (3.2), the fact that for d = 1 + m, ...,

Q + m the functions H(x)G(x)d exp
(
Oδ

(
1
n

))
are bounded on [R + δ, x1] by some

constant Cδ > 0, and lastly that:

max
R+δ<x<x1

(
F (x)

F (x0)

)nQ

≤ 1
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Therefore:

lim sup
n→∞

|Sn,c(1)|1/nQ ≤ Q2R lim
n→∞

[
cmax

(
√

2π )a−2r

(
√

n )a+2r
F (x0)

nQ (nx1Cδ + H(x0))

]1/nQ

= Q2RF (x0)

= φQ,r,a

We shall now proceed with the proof of the lemma. We must first examine the

asymptotic behavior of F (x)nQ, H(x), and G(x). We have:

H(x) =

√
x

x−R

x + 1

x + 1 + R

(√
x

x + 1

)a(
x + 1 + R

x + 1

)2Q
1

(x + 1)a
≤ C1

xa

for some constant C1 and x large. Secondly:

G(x) =

(
x

x + 1

)1+A
x + 1 + R

x−R
≤ C2

for some C2 > 1 and x large, and finally:

F (x)nQ =

((
xx

(x + 1)x+1

)A+1
(x + 1 + R)x+1+R

(x−R)x−R

)nQ

=

[((
x

x + 1

)x
1

x + 1

)A+1(
x + 1 + R

x−R

)x−R

(x + 1 + R)1+2R

]nQ

=

( 1(
1 + 1

x

)x
)A+1(

x

x + 1

)A+1(
1 +

1 + 2R

x−R

)x−R

·
(

x + 1 + R

x

)1+2R
x1+2R

xA+1

]nQ

=

[(
1 + o(1)

e

)A+1

(1 + o(1))A+1e1+2R(1 + o(1))1+2R 1

xA−2R

]nQ

=

[
1 + o(1)

eA−2R

1

xA−2R

]nQ

=

(
1 + o(1)

ea−2r

)n
1

x(a−2r)n

Thus we see there is an x2 (depending on A and R) such that for all x ≥ x2:

1

2n
· 1

e(a−2r)n
· 1

x(a−2r)n
≤ F (x)nQ ≤ 2n · 1

e(a−2r)n
· 1

x(a−2r)n
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Now combining all the estimates above and using d ≤ Q + m, we see:

Rn,d,Q(k) = Q2rn (
√

2π )a−2r

(
√

n )a+2r
F (x)nQH(x)G(x)d exp

(
Oδ

(
1

n

))
≤ Q2rn (

√
2π )a−2r

(
√

n )a+2r
F (x)nQ C1

xa
(C2)

Q+mC3

≤ C1(C2)
Q+mC3

H(x0)
Q2rn (

√
2π )a−2r

(
√

n )a+2r
H(x0)

2n

xa

1

e(a−2r)n

1

x(a−2r)n

for x ≥ x2. Let C4 = C1(C2)Q+mC3

H(x0)
. Then for any x1 > x2:

∑
k
n

>x1

Rn,d,Q(k) ≤ C4Q
2rn (

√
2π )a−2r

(
√

n )a+2r
H(x0)2

n 1

e(a−2r)n

∑
k
n

>x1

1(
k
n

)(a−2r)n+a
(5.1)

It remains to estimate the sum on the righthand side:

∑
k
n

>x1

1(
k
n

)(a−2r)n+a
= n(a−2r)n+a

∑
k>nx1

1

k(a−2r)n+a

≤ n(a−2r)n+a 1

(a− 2r)n + a− 1
· 1

(nx1 − 1)(a−2r)n+a−1

=
1

(a− 2r) + a−1
n

· 1(
x1 − 1

n

)(a−2r)n+a−1

≤ 1

a− 2r
· 1(

1− 1
nx1

)(a−2r)n
· 1(

1− 1
nx1

)a−1 ·
1

xa−1
1

· 1

x
(a−2r)n
1

where the first inequality is obtained by observing that for any integer s > 1 and

any u > 1: ∑
k>u

1

ks
<

∫ ∞

u−1

1

ts
dt =

1

s− 1
· 1

(u− 1)s−1

which is true since
∫ k

k−1
1
ts

dt ≥ 1
ks for any integer k. Hence for n > N1 (which depends

on x1, A, and R):

∑
k
n

>x1

1(
k
n

)(a−2r)n+a
≤ 1

a− 2r
· 2e

1
x1

(a−2r) · 1

xa−1
1

· 1

x
(a−2r)n
1
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Inserting this into equation (5.1) yields:

∑
k
n

>x1

Rn,d,Q(k) ≤ C4Q
2rn (

√
2π )a−2r

(
√

n )a+2r
H(x0)2

n 1

e(a−2r)n

· 1

a− 2r
· 2e

1
x1

(a−2r) · 1

xa−1
1

· 1

x
(a−2r)n
1

=

(
C4 ·

1

a− 2r
· 2e

1
x1

(a−2r) · 1

xa−1
1

)
·
(

2n · 2n

2(a−2r)n

)
·

(
Q2rn (

√
2π )a−2r

(
√

n )a+2r
H(x0)

)

·

(
1

2n
· 1

e(a−2r)n
· 1(

x1

2

)(a−2r)n

)

Since a > 1 by hypothesis, then for sufficiently large x3 and x1 > x3:

C4 ·
1

a− 2r
· 2e

1
x1

(a−2r) · 1

xa−1
1

< 1

If a− 2r ≥ 2 then:

2n · 2n

2(a−2r)n
≤ 1

Lastly, if x1

2
> x2 > x3 > 2x0, then:

1

2n
· 1

e(a−2r)n
· 1(

x1

2

)(a−2r)n
≤ F

(x1

2

)nQ

Combining all these estimates with x1 chosen appropriately large, we have:

∑
k
n

>x1

Rn,d,Q(k) ≤ Q2rn (
√

2π )a−2r

(
√

n )a+2r
H(x0)F

(x1

2

)nQ

= Rn

(x1

2

)
which completes the proof of the lemma.



Chapter 6

First Case of the Lower Bound

We will now complement the upper bound established in the previous chapter with

a lower bound to prove:

Proposition 6.1 For any c = (c1, ..., cQ) ∈ CQ:

lim
n→∞

|Sn,c(1)|1/nQ = φQ,r,a

proof

In this chapter, we will prove the result under the assumption that:

Q∑
d=1

cd =

Q+m∑
d=1+m

cd 6= 0

The case where
∑Q

d=1 cd = 0 is much more complicated and will be established in

the next chapter. Henceforth, in this chapter, we shall suppose
∑Q

d=1 cd 6= 0.

Recall that we defined:

Rn(x) = Q2rn (
√

2π )a−2r

(
√

n )a+2r
H(x0)F (x)nQ

Lemma 6.2 For each ε > 0, there exist an η > 0 and an N0 such that for all n > N0

and all 1 + m ≤ d ≤ Q + m:

(1− ε)
∑

k
n
∈[x0−η,x0+η]

Rn

(
k

n

)
≤

∞∑
k=0

Rn,d,Q(k) ≤ (1 + ε)
∑

k
n
∈[x0−η,x0+η]

Rn

(
k

n

)

39



40

proof of lemma

Because G(x0) = 1 and H(x0) > 0, we can choose η small enough so that for

each 1 + m ≤ d ≤ Q + m:

|G(x)dH(x)−H(x0)| <
ε

10
H(x0)

for x ∈ [x0 − η, x0 + η]. In addition η is also chosen so that R + δ0 < x0 − η. Choose

N2 such that for all x = k
n
∈ [R + δ,∞) and all n > N2:∣∣∣∣exp

(
Oδ

(
1

n

))
− 1

∣∣∣∣ < ε

10

In the manner of the tail estimate already proved in Lemma (5.2), we will proceed

by estimating the contribution for the sum over k
n

in subintervals of [R,∞) in terms

of Rn

(
k
n

)
. We begin on the central interval [x0 − η, x0 + η]. If n > N2, then for

x ∈ [x0 − η, x0 + η]:∣∣∣∣G(x)dH(x) exp

(
Oδ

(
1

n

))
−H(x0)

∣∣∣∣
=

∣∣∣∣(exp

(
Oδ

(
1

n

))
− 1

)
G(x)dH(x) + G(x)dH(x)−H(x0)

∣∣∣∣
≤

∣∣∣∣exp

(
Oδ

(
1

n

))
− 1

∣∣∣∣ |G(x)dH(x)|+ |G(x)dH(x)−H(x0)|

≤ ε

10

(
1 +

ε

10

)
H(x0) +

ε

10
H(x0)

≤ 3ε

10
H(x0)

Thus, for k
n
∈ [x0 − η, x0 + η], one has:∣∣∣∣Rn,d,Q(k)−Rn

(
k

n

)∣∣∣∣
=

∣∣∣∣∣Q2rn (
√

2π )a−2r

(
√

n )a+2r
F (x)nQ

[
G(x)dH(x) exp

(
Oδ

(
1

n

))
−H(x0)

]∣∣∣∣∣
≤ Q2rn (

√
2π )a−2r

(
√

n )a+2r
F (x)nQ · 3ε

10
·H(x0)

=
3ε

10
Rn

(
k

n

)
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and so:∣∣∣∣∣∣
∑

k
n
∈[x0−η,x0+η]

Rn,d,Q (k)−
∑

k
n
∈[x0−η,x0+η]

Rn

(
k

n

)∣∣∣∣∣∣ ≤ 3ε

10

∑
k
n
∈[x0−η,x0+η]

Rn

(
k

n

)

We will now estimate the remaining terms, breaking the sum into four intervals:

lower [0, R + δ]; lower middle [R + δ, x0 − η]; upper middle [x0 + η, x1]; and the

tail [x1,∞). We will consider these intervals in turn estimating the sum in terms of

Rn(x) on each. Indeed, we are already in possession of such an estimate for the tail.

For the tail, using Lemma (5.2) we choose x1 > max{2x0, x0 + η} and N1 such

that the estimate:

Rn (x0 + η) ≥
∑
k
n

>x1

Rn,d,Q (k)

holds for n > N1.

Now we turn to estimating the contribution on the upper middle range. As noted

in the previous chapter there is a Cδ > 0 such that for d = 1 + m, ..., Q + m and

x ∈ [R + δ, x1]:

H(x)G(x)d exp
(
Oδ

(
1
n

))
H(x0)

≤ Cδ

where we have adjusted the constant to absorb the denominator. In particular this

bound holds on the interval [x0 + η, x1]. So for x = k
n
∈ [x0 + η, x1]:

Rn,d,Q(k) = Q2rn (
√

2π )a−2r

(
√

n )a+2r
F (x)nQG(x)dH(x) exp

(
Oδ

(
1

n

))
≤ Cδ ·Q2rn (

√
2π )a−2r

(
√

n )a+2r
H(x0)F (x)nQ

= Cδ ·Rn(x)

and hence:

Rn,d,Q(k) ≤ Cδ ·

(
F (x0 + η)

F
(
x0 + η

2

))nQ

·Rn

(
x0 +

η

2

)
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Since the number of integers k with k
n
∈ [x0 +η, x1] is at most (x1− (x0 +η))n+1 ≤

C5n for some constant C5, we have:

∑
k
n
∈[x0+η,x1]

Rn,d,Q (k) ≤ Cδ ·Rn

(
x0 +

η

2

)
· C5 · n

(
F (x0 + η)

F
(
x0 + η

2

))nQ

We have:

lim
n→∞

n

(
F (x0 + η)

F
(
x0 + η

2

))nQ

= 0

Thus there is an integer N3 such that:

Cδ · C5 · n

(
F (x0 + η)

F
(
x0 + η

2

))nQ

≤ 1

for n > N3 and hence, for these n:

∑
k
n
∈[x0+η,x1]

Rn,d,Q (k) ≤ Rn

(
x0 +

η

2

)
We now deal with lower middle range. As in the previous case, on the interval

[R + δ, x0 − η], the functions:

G(x)dH(x) exp
(
Oδ

(
1
n

))
H(x0)

are uniformly bounded for 1 + m ≤ d ≤ Q + m by Cδ. So for k
n
∈ [R + δ, x0 − η]:

Rn,d,Q(k) ≤ Cδ ·Rn(x)

= Cδ ·Q2rn (
√

2π )a−2r

(
√

n )a+2r
H(x0)F (x)nQ

Again, because F (x) is monotone increasing on [R + δ, x0 − η]:

Rn,d,Q(k) ≤ Cδ ·

(
F (x0 − η)

F
(
x0 − η

2

))nQ

·Rn

(
x0 −

η

2

)
As before:

lim
n→∞

n

(
F (x0 − η)

F
(
x0 − η

2

))nQ

= 0
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and the number of integers k such that k
n
∈ [R + δ, x0 − η] is at most C6n for some

constant C6. Therefore, there is an N4 such that:∑
k
n
∈[R+δ,x0−η]

Rn,d,Q (k) ≤ Rn

(
x0 −

η

2

)
for n > N4.

Finally, on the lower interval 0 ≤ k
n

< R + δ, we can be assured by the choice of

δ that Rn,d,Q(k) is nondecreasing by Proposition (3.2). If k1 is the least integer with

the property that R + δ0 > k1

n
> R + δ then for k < k1:

Rn,d,Q(k) ≤ Rn,d,Q(k1)

≤ Cδ ·Rn(x)

≤ Cδ ·
(

F (R + δ0)

F (x0 − η)

)nQ

·Rn (x0 − η)

by the estimates on [R+δ, x0−η] and the fact that Rn(x) is increasing on this range.

Again, there are at most C7n integers k with 0 ≤ k
n

< R + δ for some constant C7.

Since:

F (R + δ0)

F (x0 − η)
< 1

there is an N5 such that for n > N5 we have the estimate:∑
0≤ k

n
≤R+δ

Rn,d,Q (k) ≤ Rn (x0 − η)

Now we are able to complete the proof of the lemma. Combining all of the

estimates above: ∑
k
n

/∈[x0−η,x0+η]

Rn,d,Q (k) ≤ Rn(x0 − η) + Rn

(
x0 −

η

2

)
+Rn

(
x0 +

η

2

)
+ Rn (x0 + η)

if n ≥ max{N1, N2, N3, N4, N5}. Now let N6 be large enough so that for n > N6:

4

nη − 1
<

ε

2
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Since F (x) and, consequently, Rn(x) are monotone increasing for R + δ ≤ x < x0

and monotone decreasing for x > x0, it follows that for n > N0 = max{N1, ..., N6}:∑
k
n

/∈[x0−η,x0+η]

Rn,d,Q (k) ≤ 4 max
{

Rn

(
x0 −

η

2

)
, Rn

(
x0 +

η

2

)}
≤ 4

1

nη − 1

∑
k
n
∈[x0− η

2
,x0+ η

2 ]

Rn

(
k

n

)

≤ ε

2

∑
k
n
∈[x0−η,x0+η]

Rn

(
k

n

)
Using our estimate on [x0 − η, x0 + η] and the fact that 3

10
ε + ε

2
< ε, we have:∣∣∣∣∣∣

∞∑
k=0

Rn,d,Q (k)−
∑

k
n
∈[x0−η,x0+η]

Rn

(
k

n

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

k
n
∈[x0−η,x0+η]

Rn,d,Q (k)−
∑

k
n
∈[x0−η,x0+η]

Rn

(
k

n

)∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
k
n

/∈[x0−η,x0+η]

Rn,d,Q (k)

∣∣∣∣∣∣
≤ 3

10
ε

∑
k
n
∈[x0−η,x0+η]

Rn

(
k

n

)
+

ε

2

∑
k
n
∈[x0−η,x0+η]

Rn

(
k

n

)

< ε
∑

k
n
∈[x0−η,x0+η]

Rn

(
k

n

)
Hence:

(1− ε)
∑

k
n
∈[x0−η,x0+η]

Rn

(
k

n

)
≤

∞∑
k=0

Rn,d,Q(k) ≤ (1 + ε)
∑

k
n
∈[x0−η,x0+η]

Rn

(
k

n

)
completing the proof of the lemma.

Now we are in a position to prove the lower bound that will establish the main

result of this chapter. First we observe that the function:

B(~x) =

Q+m∑
d=1+m

cd(1− xd)

is a nonconstant continuous function of ~x = (x1+m, ..., xQ+m) such that:

B(0) =

Q+m∑
d=1+m

cd = τ(c) 6= 0
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by hypothesis. By continuity, there is an ε such that for all ~x = (x1+m, ..., xQ+m)

with |xd| < ε (d = 1 + m, ..., Q + m):

|B(~x)| >
∣∣∣∣τ(c)

2

∣∣∣∣
With this ε, by Lemma (6.2) there is an η such that for d = 1 + m, ...Q + m and

sufficiently large n:

1− ε ≤
∑∞

k=0 Rn,d,Q(k)∑
k
n
∈[x0−η,x0+η] Rn

(
k
n

) ≤ 1 + ε

Hence, for all sufficiently large n:

|Sn,c(1)| =

∣∣∣∣∣
Q+m∑

d=1+m

cd

∞∑
k=0

Rn,d,Q(k)

∣∣∣∣∣ ≥
∣∣∣∣τ(c)

2

∣∣∣∣ ∑
k
n
∈[x0−η,x0+η]

Rn

(
k

n

)
Now define:

cη = max
x∈[x0−η,x0+η]

|F (x)− F (x0)|

Then for x ∈ [x0 − η, x0 + η]:(
1− cη

F (x0)

)
F (x0) ≤ F (x)

Therefore:

lim
n→∞

 ∑
k
n
∈[x0−η,x0+η]

Rn

(
k

n

)1/nQ

≥ lim
n→∞

[
2nηQ2rn

((
1− cη

F (x0)

)
F (x0)

)nQ
(
√

2π )a−2r

(
√

n )a+2r
H(x0)

]1/nQ

= Q2RF (x0)

(
1− cη

F (x0)

)
= φQ,r,a

(
1− cη

F (x0)

)
The lower bound we seek follows once we observe that, subject only to the require-

ment that it be sufficiently small, η was arbitrary and cη tends to 0 with η. Combined

with the upper bound of Proposition (5.1) we have:

lim
n→∞

|Sn,c(1)|1/nQ = φQ,r,a



Chapter 7

Second Case of the Lower Bound

In this chapter, we shall establish the lower bound under the assumption that:

Q∑
d=1

cd =

Q+m∑
d=1+m

cd = 0

We develop f(x) in a Taylor series about its critical point x0:

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + O(x− x0)
3

= f(x0)− τ(x− x0)
2 + O(x− x0)

3

since f ′(x0) = 0 and τ = −f ′′(x0)
2!

= −Qg1(x0) > 0 by Proposition (4.4). Hence:

F (x)nQ = exp (f(x))nQ

= F (x0)
nQ
(
exp

(
−τ(x− x0)

2 + O(x− x0)
3
))nQ

We also have:

g(x) = g(x0) + g′(x0)(x− x0) +
g′′(x0)

2
(x− x0)

2 + O(x− x0)
3

= −2τ(x− x0) + τ ′(x− x0)
2 + O(x− x0)

3

since g(x0) = 0, g′(x0) = 2Qg1(x0) = −2τ , and τ ′ = g′′(x0)
2

= f ′′′(x0)
2

. So:

G(x)d = exp (dg(x))

= exp (−2dτ(x− x0)) exp
(
dτ ′(x− x0)

2
)
exp

(
O(x− x0)

3
)

=

(
1− 2dτ(x− x0) +

4d2τ 2

2
(x− x0)

2 + O(x− x0)
3

)
·
(
1 + dτ ′(x− x0)

2 + O(x− x0)
4
)
·
(
1 + O(x− x0)

3
)

= 1− 2dτ(x− x0) + (2d2τ 2 + dτ ′)(x− x0)
2 + O(x− x0)

3

46
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Finally we write:

H(x) = H0 + H1(x− x0) + H2(x− x0)
2 + O(x− x0)

3

and we’ll use the same notational convention for h1(x), h2(x), and g1(x). For example:

h1(x) = h1,0 + h1,1(x− x0) + h1,2(x− x0)
2 + O(x− x0)

3

Note also that g1,0 = g1(x0) = f ′′(x0)
2Q

= − τ
Q

. Lastly, we abbreviate:

Cn = Q2rn (
√

2π )a−2r

(
√

n )a+2r

We begin by expanding the factor exp
(
Oδ

(
1
n

))
in the asymptotic product of

Rn,d,Q(k). We have:

Rn,d,Q(k) = CnF (x)nQH(x)G(x)d exp

(
d2

n
g1(x)

)
exp

(
1

n
h1(x)

)
· exp

(
d

n
h2(x)

)
exp

(
Oδ

(
1

n2

))
= CnF (x)nQH(x)G(x)d

·
(

1 +
d2

n
g1(x) +

1

n
h1(x) +

d

n
h2(x) + Oδ

(
1

n2

))
= CnF (x)nQH(x)G(x)d +

d2

n
CnF (x)nQH(x)G(x)dg1(x)

+
1

n
CnF (x)nQH(x)G(x)dh1(x) +

d

n
CnF (x)nQH(x)G(x)dh2(x)

+Oδ

(
1

n2

)
CnF (x)nQH(x)G(x)d

We shall expand further by substituting the Taylor series computed above for F (x),

G(x)d, and H(x). We then use the resulting formula to estimate |Sn,c(1)| under the

hypothesis that the components of the vector c ∈ CQ sum to zero. Eventually we

shall show that the main term is nonzero and is of exact order CnF (x0)
nQO

(
1√
n

)
.

So accordingly, before we proceed, we shall prove several lemmas showing that in the

infinite series defining Sn,c(1) the terms indexed outside of a small interval (specified

below) contribute a negligible error. The first such result follows immediately from

a formula proved in the previous chapter:
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Lemma 7.1 If η > 0 is sufficiently small then there is a 0 < λ < 1 such that for n

sufficiently large:

Q+m∑
d=1+m

cd

∑
k
n

/∈[x0−η,x0+η]

Rn,d,Q (k) = CnF (x0)
nQ ·O

(
λnQ

)
proof

From chapter six, for η sufficiently small there is an N0 such that for n > N0:

∑
k
n

/∈[x0−η,x0+η]

Rn,d,Q (k) ≤ 4 max
{

Rn

(
x0 −

η

2

)
, Rn

(
x0 +

η

2

)}
But:

Rn

(
x0 −

η

2

)
= CnF (x0)

nQ

(
F
(
x0 − η

2

)
F (x0)

)nQ

H(x0)

= CnF (x0)
nQλnQ

1 ·O(1)

with 0 < λ1 < 0 and, similarly:

Rn

(
x0 +

η

2

)
= CnF (x0)

nQλnQ
2 ·O(1)

where 0 < λ2 < 0. Letting λ = max{λ1, λ2} then we have for all large n:

∑
k
n

/∈[x0−η,x0+η]

Rn,d,Q (k) = CnF (x0)
nQλnQ ·Od(1)

Multiplying by cd and summing over d from 1 + m to Q + m, the lemma follows.

However, we can cut down to an even smaller interval. The typical term in the

expansion will have the form:

CnF (x0)
nQ exp

(
−nQτ (x− x0)

2) (x− x0)
m

The next two lemmas assure us that not only can we restrict the sum to a smaller

interval with negligible error but that we need only make use of at most the first

four terms of any Taylor series we use.
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Lemma 7.2 There exists a constant C > 0 such that for η > 0 chosen sufficiently

small: ∑
| k

n−x0|>C

√
log n

n

| k
n
−x0|≤η

Rn,d,Q (k) = CnF (x0)
nQ ·O

(
1

n

)

proof

Recall that:

Rn,d,Q(k) = CnF (x)nQH(x)G(x)d exp

(
Oδ

(
1

n

))
and:

F (x)nQ = F (x0)
nQ
(
exp

(
−τ(x− x0)

2 + O(x− x0)
3
))nQ

= F (x0)
nQ

(
exp

(
−τ(x− x0)

2

(
1− 1

τ
O(x− x0)

)))nQ

= F (x0)
nQ
(
exp

(
−nQτ(x− x0)

2
))(1− 1

τ
O(x−x0))

If |x− x0| ≥
√

3
Qσ

√
log n

n
for arbitrary σ > 0 , then:

−nQσ(x− x0)
2 ≤ −3 log n or exp

(
−nQσ(x− x0)

2
)
≤ 1

n3

and so we take C =
√

3
Qτ

and σ = τ . Then we choose η > 0 small enough so that

for η ≥ |x− x0| ≥ C
√

log n
n

:

1− 1

τ
O(x− x0) > 0 and 3

∣∣∣∣1τ O(x− x0)

∣∣∣∣ ≤ 1

Then if η ≥ |x− x0| ≥ C
√

log n
n

:

(
exp

(
−nQτ(x− x0)

2
))(1− 1

τ
O(x−x0)) ≤

(
1

n3

)(1− 1
τ

O(x−x0))

=
1

n3
·
(

1

n3

)− 1
τ

O(x−x0)

≤ 1

n3
· n3| 1τ O(x−x0)|

≤ 1

n2
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As we have seen H(x)G(x)d exp
(
Oδ

(
1
n

))
is uniformly bounded by a constant Cδ > 0

on [x0 − η, x0 + η]. Thus:

∑
| k

n−x0|>C

√
log n

n

| k
n
−x0|≤η

Rn,d,Q (k) ≤ CnF (x0)
nQ · Cδ · (2nη) · 1

n2

= CnF (x0)
nQ ·O

(
1

n

)
Lemma 7.3 If m ≥ 0 then with C as in the previous lemma:

∑
| k

n
−x0|≤C

√
log n

n

CnF (x0)
nQ exp

(
−nQτ (x− x0)

2) (x− x0)
m

≤ CnF (x0)
nQ

(
3Cm+1 (log n)

m+1
2

n
m−1

2

)

Corollary 7.4 If m ≥ 4:

∑
| k

n
−x0|≤C

√
log n

n

CnF (x0)
nQ exp

(
−nQτ (x− x0)

2) (x− x0)
m = CnF (x0)

nQ ·O
(

1

n

)

proof

We have that:

∑
| k

n
−x0|≤C

√
log n

n

CnF (x0)
nQ exp

(
−nQτ(x− x0)

2
)
(x− x0)

m

≤
∑

| k
n
−x0|≤C

√
log n

n

CnF (x0)
nQ

(
C

√
log n

n

)m

≤

(
2C

√
log n

n
· n + 1

)
CnF (x0)

nQ

(
C

√
log n

n

)m

≤ CnF (x0)
nQ

(
3Cm+1 (log n)

m+1
2

n
m−1

2

)
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as asserted in the lemma. The corollary follows immediately since if m ≥ 4:

3Cm+1 (log n)
m+1

2

n
m−1

2

= 3

(
C2 log n

n

)m−4
2

√
(C2 log n)5

n
· 1

n

= O

(
1

n

)
Next we turn to evaluating the terms:∑

| k
n
−x0|≤C

√
log n

n

CnF (x0)
nQ exp

(
−nQτ(x− x0)

2
)
(x− x0)

m

for m = 0, 1, 2, and 3. Define:

Am =

∫ ∞

−∞
|t|m exp

(
−Qτt2

)
dt

In particular, we have the standard integrals:

Lemma 7.5 With Am defined as above:

A0 =

√
π

Qτ

A2 =
1

2Qτ

√
π

Qτ
=

1

2Qτ
A0

Also, with C as in Lemma (7.2), we see:

lim
n→∞

1

n
m+1

2

∑
|l|≤C

√
n log n

|l|m exp

(
−Qτ

(
l2

n

))

= lim
n→∞

∑
∣∣∣ l√

n

∣∣∣≤C
√

log n

∣∣∣∣ l√
n

∣∣∣∣m exp

(
−Qτ

(
l√
n

)2
)
· 1√

n

=

∫ ∞

−∞
|t|m exp

(
−Qτt2

)
dt

= Am

So let us now consider the sum:∑
| k

n
−x0|≤C

√
log n

n

exp
(
−nQτ (x− x0)

2)
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For each n, Let kn be an integer such that
∣∣kn

n
− x0

∣∣ is minimal. Let kn

n
− x0 = φn

n

or, equivalently, kn − nx0 = φn. Also, write k = kn + l so that:

k

n
− x0 =

kn

n
+

l

n
− x0 =

l

n
+

(
kn

n
− x0

)
=

l

n
+

φn

n

Then:

∑
| k

n
−x0|≤C

√
log n

n

exp
(
−nQτ (x− x0)

2) ≈ ∑
|l|≤C

√
n log n

exp

(
−nQτ

(
l

n
+

φn

n

)2
)

where the error results from the loss of at most two terms (since |φn| ≤ 1) which,

because of the choice of C, are of order O
(

1
n3

)
. In the sequel, we will suppress this

error and treat the above as a strict equality. Continuing our analysis:

exp

(
−nQτ

(
l

n
+

φn

n

)2
)

= exp

(
−Qτ

l2

n
− 2Qτ

l

n
φn −Qτ

φ2
n

n

)
= exp

(
−Qτ

l2

n

)(
1− 2Qτ

l

n
φn + O

(
l2

n2

))(
1 + O

(
1

n

))
= exp

(
−Qτ

l2

n

)(
1− 2Qτ

l

n
φn + O

(
l2

n2

)
+ O

(
1

n

)
+ O

(
l

n2

)
+ O

(
l2

n3

))
So in the case where m = 0:

∑
|l|≤C

√
n log n

exp

(
−nQτ

(
l

n
+

φn

n

)2
)

=
∑

|l|≤C
√

n log n

exp

(
−Qτ

l2

n

)
− 2Qτ

φn

n

∑
|l|≤C

√
n log n

l exp

(
−Qτ

l2

n

)

+O

(
1

n2

) ∑
|l|≤C

√
n log n

|l|2 exp

(
−Qτ

l2

n

)

+O

(
1

n

) ∑
|l|≤C

√
n log n

exp

(
−Qτ

l2

n

)
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+O

(
1

n2

) ∑
|l|≤C

√
n log n

|l| exp

(
−Qτ

l2

n

)

+O

(
1

n3

) ∑
|l|≤C

√
n log n

|l|2 exp

(
−Qτ

l2

n

)

=
√

n · (A0 + ε(0)
n ) + O

(
1√
n

)
· (A2 + ε(2)

n ) + O

(
1√
n

)
· (A0 + ε(0)

n )

+O

(
1

n

)
· (A1 + ε(1)

n ) + O

(
1

n3/2

)
· (A2 + ε(2)

n )

=
√

n · (A0 + ε(0)
n ) + O

(
1√
n

)
where ε

(i)
n = o(1) for i = 0, 1, 2, and 3. Next we consider the case m = 1:∑

| k
n
−x0|≤C

√
log n

n

exp
(
−nQτ (x− x0)

2) (x− x0)

=
∑

|l|≤C
√

n log n

exp

(
−nQτ

(
l

n
+

φn

n

)2
)(

l

n
+

φn

n

)
But:

exp

(
−nQτ

(
l

n
+

φn

n

)2
)(

l

n
+

φn

n

)

= exp

(
−Qτ

l2

n
− 2Qτ

l

n
φn −Qτ

φ2
n

n

)(
l

n
+

φn

n

)
= exp

(
−Qτ

l2

n

)(
l

n
+

φn

n

)(
1− 2Qτ

l

n
φn + O

(
l2

n2

))(
1 + O

(
1

n

))
= exp

(
−Qτ

l2

n

)(
l

n
+

φn

n
− 2Qτ

l2

n2
φn + O

(
l3

n3

)
+ O

(
l

n2

)
+ O

(
1

n2

))
So: ∑

|l|≤C
√

n log n

exp

(
−nQτ

(
l

n
+

φn

n

)2
)(

l

n
+

φn

n

)

=
1

n

∑
|l|≤C

√
n log n

l exp

(
−Qτ

l2

n

)
+

φn

n

∑
|l|≤C

√
n log n

exp

(
−Qτ

l2

n

)

−2Qτφn
1

n2

∑
|l|≤C

√
n log n

l2 exp

(
−Qτ

l2

n

)



54

+O

(
1

n3

) ∑
|l|≤C

√
n log n

|l|3 exp

(
−Qτ

l2

n

)

+O

(
1

n2

) ∑
|l|≤C

√
n log n

|l| exp

(
−Qτ

l2

n

)

+O

(
1

n2

) ∑
|l|≤C

√
n log n

exp

(
−Qτ

l2

n

)

= φn ·
1√
n
· (A0 + ε(0)

n )− 2Qτφn ·
1√
n
· (A2 + ε(2)

n ) + A3O

(
1

n

)
+A1O

(
1

n

)
+ A0O

(
1

n3/2

)
= φn

(
A0 + ε(0)

n − 2Qτ(A2 + ε(2)
n )
) 1√

n
+ O

(
1

n

)
=

o(1)√
n

+ O

(
1

n

)
since A0 − 2QτA2 = 0 and |φn| ≤ 1. Similarly in the case m = 2:

∑
| k

n
−x0|≤C

√
log n

n

exp
(
−nQτ (x− x0)

2) (x− x0)
2

=
∑

|l|≤C
√

n log n

exp

(
−nQτ

(
l

n
+

φn

n

)2
)(

l

n
+

φn

n

)2

with:

exp

(
−nQτ

(
l

n
+

φn

n

)2
)(

l

n
+

φn

n

)2

= exp

(
−Qτ

l2

n
− 2Qτ

l

n
φn −Qτ

φ2
n

n

)(
l2

n2
+

2l

n2
· φn +

φ2
n

n2

)
= exp

(
−Qτ

l2

n

)(
1 + O

(
l

n

))(
1 + O

(
1

n

))
·
(

l2

n2
+

2l

n2
· φn +

φ2
n

n2

)
= exp

(
−Qτ

l2

n

)(
l2

n2
+ O

(
l

n2

)
+ O

(
l3

n3

)
+ O

(
l2

n3

))
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So: ∑
|l|≤C

√
n log n

exp

(
−nQτ

(
l

n
+

φn

n

)2
)(

l

n
+

φn

n

)2

=
1

n2

∑
|l|≤C

√
n log n

l2 exp

(
−Qτ

l2

n

)

+O

(
1

n2

) ∑
|l|≤C

√
n log n

|l| exp

(
−Qτ

l2

n

)

+O

(
1

n3

) ∑
|l|≤C

√
n log n

|l|3 exp

(
−Qτ

l2

n

)

+O

(
1

n3

) ∑
|l|≤C

√
n log n

l2 exp

(
−Qτ

l2

n

)

=
1√
n

(A2 + ε(2)
n ) + A(1)O

(
1

n

)
+ A(3)O

(
1

n

)
+ A(2)O

(
1

n3/2

)
=

1√
n

(A2 + ε(2)
n ) + O

(
1

n

)
Lastly if m = 3:∑

| k
n
−x0|≤C

√
log n

n

exp
(
−nQτ (x− x0)

2) (x− x0)
3

=
∑

|l|≤C
√

n log n

exp

(
−nQτ

(
l

n
+

φn

n

)2
)(

l

n
+

φn

n

)3

with:

exp

(
−nQτ

(
l

n
+

φn

n

)2
)(

l

n
+

φn

n

)3

= exp

(
−Qτ

l2

n
− 2Qτ

l

n
φn −Qτ

φ2
n

n

)(
l3

n3
+

3l2

n3
· φn +

3l

n3
· φ2

n +
φ3

n

n3

)
= exp

(
−Qτ

l2

n

)(
1 + O

(
l

n

))(
1 + O

(
1

n

))
·
(

l3

n3
+

3l2

n3
· φn +

3l

n3
· φ2

n +
φ3

n

n3

)
= exp

(
−Qτ

l2

n

)(
O

(
l3

n3

)
+ O

(
l4

n4

))



56

So: ∑
|l|≤C

√
n log n

exp

(
−nQτ

(
l

n
+

φn

n

)2
)(

l

n
+

φn

n

)3

= O

(
1

n

)
+ O

(
1

n3/2

)

= O

(
1

n

)
We are finally able to embark upon the main computation of this chapter. First we

observe:

F (x)nQ = F (x0)
nQ · exp

(
−nQτ(x− x0)

2
)
· exp

(
nO(x− x0)

3
)

= F (x0)
nQ · exp

(
−nQτ(x− x0)

2
)
·
(

1 + O

(
(log n)3/2

√
n

))
= F (x0)

nQ · exp
(
−nQτ(x− x0)

2
)
· (1 + o(1))

if |x− x0| = O

(√
log n

n

)
since in this case:

exp
(
nO(x− x0)

3
)

= exp

(
O

(
(log n)3/2

√
n

))
= 1 + O

(
(log n)3/2

√
n

)
Moreover, it should be noted that the implied constant in the big O does not depend

upon d. So returning to Rn,d,Q(k) and substituting in the Taylor series computed in

the beginning of the chapter we obtain:

Rn,d,Q(k) = (1 + o(1))
[
CnF (x0)

nQ · exp
(
−nQτ(x− x0)

2
)

·
(
H0 + H1(x− x0) + H2(x− x0)

2 + O(x− x0)
3
)

·
(
1− 2dτ(x− x0) + (2d2τ 2 + dτ ′)(x− x0)

2 + O(x− x0)
3
)

+
d2

n
CnF (x0)

nQ · exp
(
−nQτ(x− x0)

2
)

·
(
H0 + H1(x− x0) + H2(x− x0)

2 + O(x− x0)
3
)

·
(
1− 2dτ(x− x0) + (2d2τ 2 + dτ ′)(x− x0)

2 + O(x− x0)
3
)

·
(
g1,0 + g1,1(x− x0) + O(x− x0)

2
)

+
1

n
CnF (x0)

nQ · exp
(
−nQτ(x− x0)

2
)

·
(
H0 + H1(x− x0) + H2(x− x0)

2 + O(x− x0)
3
)
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·
(
1− 2dτ(x− x0) + (2d2τ 2 + dτ ′)(x− x0)

2 + O(x− x0)
3
)

·
(
h1,0 + h1,1(x− x0) + O(x− x0)

2
)

+
d

n
CnF (x0)

nQ · exp
(
−nQτ(x− x0)

2
)

·
(
H0 + H1(x− x0) + H2(x− x0)

2 + O(x− x0)
3
)

·
(
1− 2dτ(x− x0) + (2d2τ 2 + dτ ′)(x− x0)

2 + O(x− x0)
3
)

·
(
h2,0 + h2,1(x− x0) + O(x− x0)

2
)

+Oδ

(
1

n2

)
CnF (x0)

nQ · exp
(
−nQτ(x− x0)

2
)
H(x)G(x)d

]
By multiplying the series, using g1,0 = − τ

Q
, and collecting terms we next obtain:

Rn,d,Q(k) =
[
CnF (x0)

nQ · exp
(
−nQτ(x− x0)

2
)
· (H0 + (H1 − 2dτH0)(x− x0)

+(H2 − 2dτH1 + 2d2τ 2H0 + dτ ′H0)(x− x0)
2 + O(x− x0)

3
)

+
d2

n
CnF (x0)

nQ · exp
(
−nQτ(x− x0)

2
)

·
(
− τ

Q
H0 +

(
− τ

Q
H1 + H0g1,1 +

2dτ 2

Q
H0

)
(x− x0) + O(x− x0)

2

)
+

1

n
CnF (x0)

nQ · exp
(
−nQτ(x− x0)

2
)

·
(
H0h1,0 + (H1h1,0 + H0h1,1 − 2dτH0h1,0)(x− x0) + O(x− x0)

2
)

+
d

n
CnF (x0)

nQ · exp
(
−nQτ(x− x0)

2
)

·
(
H0h2,0 + (H1h2,0 + H0h2,1 − 2dτH0h2,0)(x− x0) + O(x− x0)

2
)

+Oδ

(
1

n2

)
CnF (x0)

nQ · exp
(
−nQτ(x− x0)

2
)
H(x)G(x)d

]
·(1 + o(1))

We next multiply by cd, sum d from 1 + m to Q + m, and then sum k over the

range
∣∣ k
n
− x0

∣∣ ≤ C
√

log n
n

. Note that in the following we have suppressed the range

of summation throughout. We thus obtain:

∑
| k

n
−x0|≤C

√
log n

n

(
Q+m∑

d=1+m

cdRn,d,Q(k)

)
=
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CnF (x0)
nQ

(
Q+m∑

d=1+m

cd

)∑
k

exp
(
−nQτ(x− x0)

2
)
H0

+CnF (x0)
nQ

(
H1

Q+m∑
d=1+m

cd − 2τH0

Q+m∑
d=1+m

dcd

)
·
∑

k

exp(−nQτ(x− x0)
2)(x− x0)

+CnF (x0)
nQ

(
H2

Q+m∑
d=1+m

cd − 2τH1

Q+m∑
d=1+m

dcd + 2τ 2H0

Q+m∑
d=1+m

d2cd

+τ ′H0

Q+m∑
d=1+m

dcd

)
·

(∑
k

exp(−nQτ(x− x0)
2)(x− x0)

2

)

+CnF (x0)
nQO

(∑
k

exp(−nQτ(x− x0)
2)(x− x0)

3

)

+
1

n
CnF (x0)

nQ

(
H0h1,0

Q+m∑
d=1+m

cd

)∑
k

exp
(
−nQτ(x− x0)

2
)

+
1

n
CnF (x0)

nQ

(
(H1h1,0 + H0h1,1)

Q+m∑
d=1+m

cd − 2τH0h1,0

Q+m∑
d=1+m

dcd

)
·
∑

k

exp
(
−nQτ(x− x0)

2
)
(x− x0)

+
1

n
CnF (x0)

nQO

(∑
k

exp
(
−nQτ(x− x0)

2
)
(x− x0)

2

)

+
1

n
CnF (x0)

nQ

(
−τ

Q
H0

Q+m∑
d=1+m

d2cd

)∑
k

exp
(
−nQτ(x− x0)

2
)

+
1

n
CnF (x0)

nQ

(
−τ

Q
H1

Q+m∑
d=1+m

d2cd + H0g1,1

Q+m∑
d=1+m

d2cd

+
2τ 2

Q
H0

Q+m∑
d=1+m

d3cd

)
·
∑

k

exp
(
−nQτ(x− x0)

2
)
(x− x0)

+
1

n
CnF (x0)

nQO

(∑
k

exp
(
−nQτ(x− x0)

2
)
(x− x0)

2

)

+
1

n
CnF (x0)

nQ

(
H0h2,0

Q+m∑
d=1+m

dcd

)∑
k

exp
(
−nQτ(x− x0)

2
)
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+
1

n
CnF (x0)

nQ

(
(H1h2,0 + H0h2,1)

Q+m∑
d=1+m

dcd − 2τH0h2,0

Q+m∑
d=1+m

d2cd

)
·
∑

k

exp
(
−nQτ(x− x0)

2
)
(x− x0)

+
1

n
CnF (x0)

nQO

(∑
k

exp
(
−nQτ(x− x0)

2
)
(x− x0)

2

)

+Oδ

(
1

n2

)
CnF (x0)

nQ

(
Q+m∑

d=1+m

cd

∑
k

exp
(
−nQτ(x− x0)

2
)
H(x)G(x)d

)
+o(1) ·Mn

Where we have denoted by Mn the entirety of the sum preceding this last term. So

using the formulas in Lemma (7.5), recalling that
∑

cd = 0, and listing only terms

that are not O
(

1
n

)
we now have:

∑
| k

n
−x0|≤C

√
log n

n

(
Q+m∑

d=1+m

cdRn,d,Q(k)

)

= −2τH0

[
o(1)√

n
+ O

(
1

n

)]
CnF (x0)

nQ

Q+m∑
d=1+m

dcd

+(−2τH1 + τ
′
H0)

[
1√
n
· (A2 + ε(2)

n ) + O

(
1

n

)]
CnF (x0)

nQ

Q+m∑
d=1+m

dcd

+2τ 2H0

[
1√
n
· (A2 + ε(2)

n ) + O

(
1

n

)]
CnF (x0)

nQ

Q+m∑
d=1+m

d2cd

+
1√
n

[
− τ

Q
H0(A0 + ε(0)

n ) + O

(
1

n

)]
CnF (x0)

nQ

Q+m∑
d=1+m

d2cd

+
1√
n

[
H0h2,0(A0 + ε(0)

n ) + O

(
1

n

)]
CnF (x0)

nQ

Q+m∑
d=1+m

dcd

+CnF (x0)O

(
1

n

)
+ o(1) ·Mn

=
1√
n

[
H0h2,0A0 − 2τH1A2 + τ

′
H0A2 + o(1)

]
CnF (x0)

nQ

Q+m∑
d=1+m

dcd
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+
1√
n

[
2τ 2H0A2 −

τ

Q
H0A0 + o(1)

]
CnF (x0)

nQ

Q+m∑
d=1+m

d2cd

+CnF (x0)
nQO

(
1

n

)
But 2τ 2H0A2 − τ

Q
H0A0 = H0

(
2τ 2 1

2τQ
A0 − τ

Q
A0

)
= 0. Furthermore:

H0h2,0A0 − 2τH1A2 + τ
′
H0A2 = H0h2,0A0 + (−2τH1 + τ

′
H0)A2

= H0h2,0A0 + (−2τH1 + τ
′
H0)

1

2τQ
A0

=

(
H0h2,0 −

H1

Q
+

τ
′
H0

2τQ

)
A0

=
τ
′
H0

2τQ
· A0

since H′(x)
Q

= H(x)h2(x) and, in particular, H1

Q
= H′(x0)

Q
= H(x0)h2(x0) = H0h2,0.

So: ∑
| k

n
−x0|≤C

√
log n

n

(
Q+m∑

d=1+m

cdRn,d,Q(k)

)

= CnF (x0)
nQ

(
1√
n

[
τ
′
H0A0

2τQ
+ o(1)

] Q+m∑
d=1+m

dcd + O

(
1

n

))

=
CnF (x0)

nQ

√
n

(
τ
′
H0A0

2τQ

Q+m∑
d=1+m

dcd + o(1) + O

(
1√
n

))
Here we have that:

τ
′
H0A0

2τQ

Q+m∑
d=1+m

dcd 6= 0

since
∑Q+m

d=1+m dcd 6= 0 by the choice of m and τ ′ = f ′′′(x0)
2

6= 0 by Proposition (4.5).

Hence under the assumption that
∑Q+m

d=1+m cd = 0:

lim
n→∞

|Sn,c(1)|1/nQ = φQ,r,a

By the results of chapter six, this holds unconditionally thus proving Proposition

(6.1).



Chapter 8

Estimates for Coefficients

Recall from chapter two that:

Sn,c(1) =
a∑

l=2

Pl,n(1)L(l, c) +

Q+m∑
d=1+m

P̂d,n(1)cd

In this chapter, we shall first establish an estimate for the coefficients of these linear

forms. The concluding proposition and its corollary will show that when these forms

are multiplied by an explicit factor (for which there is a standard estimate) we arrive

at forms with integer coefficients.

Proposition 8.1 For l = 1, ..., a:

lim sup
n→∞

|Pl,n(1)|1/Qn ≤ Q2R+12A−2R(2R + 1)2R+1

Likewise, for d = 1 + m, ..., Q + m:

lim sup
n→∞

|P̂d,n(1)|1/Qn ≤ Q2R+12A−2R(2R + 1)2R+1

proof

For l = 1, 2, ..., a it suffices to bound the cl,j,n since Pl,n(1) =
∑n

j=0 Qlcl,j,n.

Because the cl,j,n are independent of the congruence class of d, we can obtain esti-

mates of these coefficients from restricting our attention to Rn,Q(z). Recall:

Rn,Q(z) = Q2rnn!a−2r

∏rn−1
l=0

(
z − l

Q

)∏rn−1
l=0

(
z + n + 2 + l

Q

)
∏n

l=0(z + 1 + l)a
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By definition:

cl,j,n =
1

2πi

∫
|z+j+1|= 1

2

Rn,Q(z)(z + j + 1)l−1dz

If z is restricted to the path of integration, then for k = 0, 1, ..., n:

|z + 1 + k| = |(j − k)− (z + j + 1)|

≥ |j − k| − |z + j + 1|

From this inequality we see that for 0 ≤ k ≤ j − 2:

|z + 1 + k| ≥ j − k − 1/2

≥ j − k − 1

and for j + 2 ≤ k ≤ n:

|z + 1 + k| ≥ k − j − 1/2

≥ k − j − 1

while for k = j − 1, j, j + 1:

|z + 1 + k| ≥ 1

2

Hence:

|(z + 1)n+1| =

∣∣∣∣∣
n∏

k=0

(z + 1 + k)

∣∣∣∣∣ ≥ 2−3(j − 1)!(n− j − 1)!

From:

|z + n + 2| = |z + j + 1 + n− j + 1|

≤ |z + j + 1|+ n− j + 1

= 1/2 + n− j + 1

≤ n− j + 2
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we have: ∣∣∣∣∣Qrn

rn−1∏
l=0

(
z + n + 2 +

l

Q

)∣∣∣∣∣ = |(Q(z + n + 2))rn|

≤ (Q(n− j + 2))rn

=
(rn + Q(n− j + 2)− 1)!

(Q(n− j + 2)− 1)!

Finally, on the path of integration, using |z|−|−j−1| ≤ |z−(−j−1)| = |z+j+1| =

1/2, we have |z| ≤ |j + 1|+ 1/2 ≤ j + 2. Hence:

|(z − rn + 1)rn| = |(−1)rn(−z)rn| ≤ (|z|)rn ≤ (j + 2)rn

and: ∣∣∣∣∣Qrn

rn−1∏
l=0

(
z − l

Q

)∣∣∣∣∣ = |(Qz − rn + 1)rn|

≤ (|Qz|)rn

≤ (Q(j + 2))rn

=
(rn + Q(j + 2)− 1)!

(Q(j + 2)− 1)!

Therefore:

|cl,j,n| ≤ (rn + Q(j + 2)− 1)!

(Q(j + 2)− 1)!(j!(n− j)!)r
· (rn + Q(n− j + 2)− 1)!

(Q(n− j + 2)− 1)!(j!(n− j)!)r

·
(

n!

j!(n− j)!

)a−2r

· (j(n− j))a8a

≤ (2r + 1)2rn+Qn−2+4Q2(a−2r)n(2n2)a

≤ Q2rn+Qn−2+4Q(2R + 1)2rn+Qn−2+4Q2(a−2r)n(2n2)a

since (j(n− j))a8a ≤ (2n2)a and from the following bounds:

(rn + Q(j + 2)− 1)!

(Q(j + 2)− 1)!(j!(n− j)!)r
≤ (2r + 1)rn+Q(j+2)−1

(rn + Q(n− j + 2)− 1)!

(Q(n− j + 2)− 1)!(j!(n− j)!)r
≤ (2r + 1)rn+Q(n−j+2)−1
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These follow directly from a standard bound on multinomial coefficients: n

n1, n2, ..., np

 =
n!

n1!n2!...np!
≤ pn

where n1, ..., np ≥ 0 and n1 + ... + np = n. Thus we have:

lim sup
n→∞

|Pl,n(1)|1/Qn ≤ Q2R+12A−2R(2R + 1)2R+1

Finally:

P̂d,n(1) = −
a∑

l=1

n∑
j=0

Qlcl,j,n

j∑
k=0

1

(kQ + d)l

Since:
j∑

k=0

1

(kQ + d)l
≤

j∑
k=0

1

(kQ + d)
≤ j + 1 ≤ n + 1

it is also the case that for d = 1 + m, ..., Q + m:

lim sup
n→∞

|P̂d,n(1)|1/Qn ≤ Q2R+12A−2R(2R + 1)2R+1

Since eventually we will require linear forms with integer coefficients, it will also be

necessary to have estimates on the size of the denominators of the cl,j,n:

Proposition 8.2 If dn = lcm {1, ..., n} then da−l
n Pl,n(1) ∈ Z for l = 1, ..., a.

Corollary 8.3 If dn,Q = lcm {1, ..., (n + 1)Q + m} then da−l
n,QPl,n(1) ∈ Z for l =

1, ..., a and da
n,QP̂d,n(1) ∈ Z for d = 1 + m, ..., Q + m.

proof

To estimate the size of the denominators in the cl,j,n we write:

Rn,Q(t)(t + j + 1)a =
r∏

l=1

Fl(t)×
r∏

l=1

Gl(t)×H(t)a−2r

where:

Fl(t) =
(Qt− nl + 1)n

(t + 1)n+1

(t + j + 1)



65

Gl(t) =
(Q(t + n + 2) + (l − 1)n)n

(t + 1)n+1

(t + j + 1)

H(t) =
n!

(t + 1)n+1

(t + j + 1)

We will decompose these into partial fractions and give the details of the calculation

for Fl(t). Since the numerator and denominator of Fl(t) have the same degree, the

constant in the partial fraction decomposition is Qn. We write:

Fl(t) =
(Qt− nl + 1)n∏n

h=0
h 6=j

(t + h + 1)
= Qn +

n∑
k=0
k 6=j

ck

t + k + 1

for some constants ck. To solve for these constants, we clear the denominators to

obtain:

(Qt− nl + 1)n = Qn

n∏
h=0
h 6=j

(t + h + 1) +
n∑

k=0
k 6=j

ck

n∏
h=0

h 6=k,j

(t + h + 1)

If we evaluate at t = −p− 1 (p 6= j), all terms but one drop out:

(Q(−p− 1)− nl + 1)n = cp

n∏
h=0

h 6=p,j

(−p− 1 + h + 1)

Thus:

cp =
(−Qp− nl −Q + 1)n∏n

h=0
h 6=p,j

(−p + h)
= (j − p) · (−Qp− nl −Q + 1)n∏n

h=0
h 6=p

(−p + h)

So decomposing Fl(t), Gl(t), and H(t) into partial fractions:

Fl(t) = Qn +
n∑

p=0

p6=j

(j − p)fp,l

t + p + 1

Gl(t) = Qn +
n∑

p=0

p6=j

(j − p)gp,l

t + p + 1

H(t) =
n∑

p=0

p6=j

(j − p)hp

t + p + 1
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where:

fp,l = (−Qp− nl −Q + 1)n

n∏
h=0
h 6=p

(−p + h)−1

=
(−1)n(Qp + nl + Q− n)n

(−1)pp!(n− p)!

= (−1)n−p (nl + Qp + Q− 1)!

(nl + Qp + Q− n− 1)!n!

n!

p!(n− p)!

= (−1)n−p

 nl + Qp + Q− 1

n

 n

p

 ∈ Z

Similarly:

gp,l = (Q(−p + n + 1) + (l − 1)n)n

n∏
h=0
h 6=p

(−p + h)−1

= (−1)p ((Q + l)n−Qp + Q− 1)!

((Q + l)n−Qp + Q− 1− n)!n!

n!

p!(n− p)!

= (−1)p

 (Q + l)n−Qp + Q− 1

n

 n

p

 ∈ Z

and:

hp = n!
n∏

h=0
h 6=p

(−p + h)−1

=
(−1)pn!

p!(n− p)!

= (−1)p

 n

p

 ∈ Z

Recall that Dλ = 1
λ!

(
d
dt

)λ
. Then we have:

(DλFl(t))|t=−j−1 = Qn · δ0,λ +
n∑

p=0

p6=j

(−1)λ (j − p)fp,l

(p− j)λ+1

(DλGl(t))|t=−j−1 = Qn · δ0,λ +
n∑

p=0

p6=j

(−1)λ (j − p)gp,l

(p− j)λ+1
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(DλH(t))|t=−j−1 =
n∑

p=0

p6=j

(−1)λ (j − p)hp

(p− j)λ+1

where δ0,λ = 1 if λ = 0, δ0,λ = 0 if λ ≥ 1. On the basis of these formulae and recalling

that dn = lcm{1, ...n}, one deduces that:

dλ
n · (DλFl(t))|t=−j−1, dλ

n · (DλGl(t))|t=−j−1, dλ
n · (DλH(t))|t=−j−1

are integers for all λ ∈ N. From Leibniz’s formula, for each l = 1, ..., a:

Da−l(Rn,Q(t)(t + j + 1)a) =

∑
ν

(Dν1F1) · · · (DνrFr)(Dνr+1G1) · · · (Dν2rGr)(Dν2r+1H) · · · (DνaH)

where the sum is over all multi-indices ν ∈ Na such that ν1 + ... + νa = a − l, we

conclude that da−l
n cl,j,n ∈ Z and therefore da−l

n Pl,n(1) ∈ Z.

To prove the corollary, we observe that since (n + 1)Q + m > n then dn|dn,Q and

it follows immediately that da−l
n,QPl,n(1) ∈ Z for l = 1, ..., a. Lastly:

da
n,QP̂d,n(1) = −

a∑
l=1

n∑
j=0

Qlda−l
n,Qcl,j,n

j∑
k=0

dl
n,Q

(kQ + d)l
∈ Z

for d = 1 + m, ..., Q + m since the base of the denominator in the inner sum is no

greater than nQ + Q + m = (n + 1)Q + m and a similar computation shows that, in

the case m 6= 0, da
n,QP̂Q+m,n(1) ∈ Z since:

da
n,QP̂Q+m,n(1) = da

n,QP̃Q+m,n(1)−
a∑

l=2

(
dn,Q

m

)l

· da−l
n,Q · Pl,n(1)

and these are integers by what we have shown above.



Chapter 9

Nesterenko’s Criterion

Before we state the main result, we’ll first introduce some notation and terminology.

For u, v ∈ CM , L ⊂ CM a linear subspace, (u, v) = u · v, ||u|| = (u, u)1/2, prL(u)

will denote the projection of u on L, and ρ(u,L) = ||prL⊥(u)||.

If u1, ..., us ∈ CM then det ||(uk, uj)|| > 0 if and only if u1, ..., us are linearly

independent. We define the volume of the parallelepiped constructed on these vectors

by V (u1, ...., us) = (det ||(uk, uj)||)1/2.

If u1, ..., us is the basis of a linear subspace L ⊂ CM then for every v ∈ CM :

V (v, u1, ...., us) = ρ(v,L)V (u1, ...., us)

We will say that a linear subspace L ⊂ CM is a rational subspace if it can be

specified by linear equations with Q-rational coefficients. If L is a rational subspace

and dimL = M−s then the set of linear forms with rational coefficients which vanish

on L forms an s-dimensional linear space over Q. The subset of forms having integer

coefficients form a lattice. The volume of the base parallelipiped of this lattice will

be denoted by V (L). Then it is clearly the case that V (L) ≥ 1.

If L(x) = (a, x) is a linear form then we define ||L|| = ||a||. If the coefficients

are integers such that (a1, ..., aM) = 1, ~a 6= 0, and if L is the hyperplane of CM

defined by the equation L(x) = 0 then V (L) = ||a|| and for any u ∈ CM , ρ(u,L) =

|L(u)| /V (L).

The main result of this chapter is the following version of a theorem of Nesterenko,

originally stated and proved over a real vector space:
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Proposition 9.1 Let θ = (θ1, θ2, ..., θM) ∈ CM with M > 2 and θ 6= 0. Furthermore,

suppose that there exist M sequences {pl,n}n≥0 such that:

(i) ∀l ∈ {1, ...,M}, pl,n ∈ Z

(ii) letting Ln(~x) =
∑M

l=1 pl,nxl, there are α1, α2, 0 < α1 ≤ α2 < 1 with:

α
n+o1(n)
1 ≤ |Ln(θ)| ≤ α

n+o2(n)
2

(iii) ∃β > 1 such that max1≤l≤M |pl,n| ≤ βn+o3(n)

Then:

dimQ{Qθ1 + Qθ2 + .... + QθM} ≥
ln(β)− ln(α1)

ln(β)− ln(α1) + ln(α2)

proof

Fix δ > ln
(

α2

α1

)
. Under the hypotheses we shall prove that for any integer r with

0 ≤ r < ln(β)−ln(α1)
ln(β)+δ

, there exists a constant γr > 0 (depending on θ) such that for

every rational subspace L ⊂ CM , dimL = r:

ρ(θ,L) ≥ γrV (L)
− ln(β)−ln(α1)

ln(β)−ln(α1)−r(ln(β)+δ) (9.1)

The theorem follows immediately since if r is the maximum number of linearly

independent numbers over Q from among θ1, ..., θM , then there are M − r linearly

independent forms L1(x), ..., LM−r(x) having rational coefficients with Lj(θ) = 0

for j = 1, ...,M − r. If L is the rational subspace determined by the equations

L1(x) = ... = LM−r(x) = 0 then dimL = r and θ ∈ L. Therefore ρ(θ,L) = 0. So

the assumption that r < ln(β)−ln(α1)
ln(β)+δ

leads to a contradiction. Hence we must have

r ≥ ln(β)−ln(α1)
ln(β)+δ

for any δ > ln
(

α2

α1

)
.

Before we proceed with the proof, we first require two lemmas.

Lemma 9.2 If L1 and L2 are linear subspaces of CM such that L2 ⊂ L1 and θ ∈ CM

then:

ρ(θ,L2) ≥ ρ(θ,L1)
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proof

The assertion is elementary but we prove it nevertheless. We have:

||θ||2 = ||prL1
(θ)||2 + ||prL⊥1 (θ)||2

||θ||2 =
∣∣∣∣prL2

(
prL1

(θ)
)∣∣∣∣2 +

∣∣∣∣∣∣prL⊥2

(
prL1

(θ)
)∣∣∣∣∣∣2 + ||prL⊥1 (θ)||2 (9.2)

But also:

||θ||2 = ||prL2
(θ)||2 + ||prL⊥2 (θ)||2

Since L2 ⊂ L1, it must be that L⊥1 ⊂ L⊥2 . So we also have:

θ = prL1
(θ) + prL⊥1 (θ)

= prL2

(
prL1

(θ)
)

+ prL⊥2

(
prL1

(θ)
)

+ prL⊥1 (θ)

with prL⊥2

(
prL1

(θ)
)
+prL⊥1 (θ) ∈ L⊥2 . By the uniqueness of projection prL2

(
prL1

(θ)
)

=

prL2
(θ). Hence:

||θ||2 =
∣∣∣∣prL2

(
prL1

(θ)
)∣∣∣∣2 + ||prL⊥2 (θ)||2

Subtracting equation (9.2) from this we have:

0 = ||prL⊥2 (θ)||2 − ||prL⊥1 (θ)||2 −
∣∣∣∣∣∣prL⊥2

(
prL1

(θ)
)∣∣∣∣∣∣2

from which we easily deduce:

ρ(θ,L2) = ||prL⊥2 (θ)|| ≥ ||prL⊥1 (θ)|| = ρ(θ,L1)

and the lemma is proved.

Lemma 9.3 Suppose L, L1 are rational subspaces of CM , dimL1 = M−1, L 6⊂ L1,

and M = L ∩ L1. Then for θ ∈ CM

1) V (M) ≤ V (L)V (L1)

2) V (M)ρ(θ,M) ≤ V (L)V (L1)(ρ(θ,L) + ρ(θ,L1))
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proof

We first observe that when θ = 0, ρ(θ,M) = ρ(θ,L) = ρ(θ,L1) = 0 and the

second inequality is trivially true. Hence, in the sequel, we assume θ 6= 0. Now

suppose that (a1, x), ..., (ar, x) and (b, x) are bases of lattices of integer forms that

vanish on L and L1 respectively. Then:

V (M) ≤ V (b, a1, ..., ar)

= ||prL(b)||V (a1, ..., ar)

≤ ||b||V (a1, ..., ar)

= V (L1)V (L)

thus proving the first inequality. To prove the second, we will show that it suffices

to prove:

||prL(b)|| ≤ ρ(θ,L) + ρ(θ,L1) (9.3)

when ||θ|| = 1. First, since we have ||b|| = V (L1) and V (M) ≤ ||prL(b)||V (L), as

seen above, it is sufficient to prove:

ρ(θ,M)||prL(b)|| ≤ ||b||(ρ(θ,L) + ρ(θ,L1))

We can make a further reduction by observing that we may assume θ ∈ M⊥ since

if we set τ = prM⊥(θ) ∈M⊥ then θ − τ = prM(θ) ∈M = L ∩ L1. Hence:

prM⊥(θ − τ) = prL⊥(θ − τ) = prL⊥1 (θ − τ) = 0

and therefore:

ρ(θ,M) = ||prM⊥(θ)|| = ||prM⊥(τ)|| = ρ(τ,M)

In similar fashion ρ(θ,L) = ρ(τ,L) and ρ(θ,L1) = ρ(τ,L1). Under the assumption

θ ∈ M⊥, ρ(θ,M) = ||θ||. So, lastly, we may assume ||θ|| = 1 since projection is

linear and the general result follows by application to θ
||θ|| .
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Since ||b|| ≥ 1 then we may suppose ||b|| = 1. The remainder of the argument

will not make use of integrality. Now to prove (9.3), we have:

1 = ||θ||2 = ||prL(θ)||2 + ||prL⊥(θ)||2

and so:

||prL(b)||2 = (||prL(θ)|| · ||prL(b)||)
2 + (||prL⊥(θ)|| · ||prL(b)||)

2 (9.4)

Furthermore:

dim(L ∩M⊥) ≥ dimL+ dimM⊥ −M = dimL − dimM≥ 1

However, we also have:

0 = dim(L1 ∩ L ∩M⊥) ≥ dimL1 + dim(L ∩M⊥)−M = dim(L ∩M⊥)− 1

Hence dim(L ∩ M⊥) = 1. Now, since L ⊃ M, L⊥ ⊂ M⊥. Thus prL(θ) = θ −

prL⊥(θ) ∈ L∩M⊥. We also have prL(b) = b−prL⊥(b) ∈ L∩M⊥ since b ∈ L⊥1 ⊂M⊥.

If prL(θ) 6= 0 and prL(b) 6= 0 then:

prL(θ)

||prL(θ)||
= c · prL(b)

||prL(b)||

for some c ∈ C with |c| = 1. Therefore:

||prL(θ)|| · ||prL(b)|| = |(prL(θ), prL(b))|

= |(prL(θ), b)|

= |(θ, b)− (prL⊥(θ), b)|

≤ |(θ, b)|+ |(prL⊥(θ), b)|

This holds trivially if prL(θ) = 0 or prL(b) = 0. We have by Schwarz’s inequality:

|(prL⊥(θ), b)| = |(prL⊥(θ), prL⊥(b))| ≤ ||prL⊥(θ)|| · ||prL⊥(b)||
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and, since ||b|| = 1, prL⊥1 (θ) = (θ, b)b and:

|(θ, b)| = ||prL⊥1 (θ)||

Combining these, we obtain:

||prL(θ)|| · ||prL(b)|| ≤ ||prL⊥1 (θ)||+ ||prL⊥(θ)|| · ||prL⊥(b)||

Substituting the righthand side of this inequality into equation (9.4) and using the

fact that 1 = ||b||2 = ||prL⊥(b)||2 + ||prL(b)||2 and ||prL⊥(b)|| ≤ 1, we have:

||prL(b)||2 ≤ ||prL⊥1 (θ)||2 + 2||prL⊥1 (θ)|| · ||prL⊥(θ)|| · ||prL⊥(b)||+ ||prL⊥(θ)||2

≤
(
||prL⊥1 (θ)||+ ||prL⊥(θ)||

)2

This concludes the proof of the lemma.

The proof of Proposition (9.1) is by induction on r. For r = 0 there is a

unique zero dimensional rational subspace of CM . Moreover, we have V (L) = 1

and ρ(θ,L) = ||θ||. Hence, formula (9.1) holds with γ0 = ||θ||.

Now suppose that 1 ≤ r < ln(β)−ln(α1)
ln(β)+δ

and that formula (9.1) holds for every

rational subspace of dimension r − 1. Fix ε satisfying the inequalities:

0 < ε <
ln(α2)− ln(α1)− δ

ln(α1)

Also there is an N1 such that for n ≥ N1 and i = 1, 2, and 3, n + 1 + oi(n + 1) ≤

(1 + ε)(n + oi(n)). For k ≤ r, define:

λk =
ln(β)− ln(α1)

ln(β)− ln(α1)− k(ln(β) + δ)

Note that λk > 1. Now let τi = − ln(αi), τ
(i)
n = −

(
1 + oi(n)

n

)
ln(αi) for i = 1, 2 and

βn = β1+
o3(n)

n . We see that limn→∞ τ
(i)
n = τi for i = 1, 2 and limn→∞ βn = β. Then

we have:
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Lemma 9.4 There is an N such that for all n ≥ N :

τ
(1)
n + ln(βn)

λr

(1 + ε)− τ
(2)
n + ln(βn)

λr−1

< − ln(βn)

proof

Observe that ln(β) + τ1 − r(ln(β) + δ) ≤ τ1 − δ since r ≥ 1. We compute:

τ1 + ln(β)

λr

(1 + ε)− τ2 + ln(β)

λr−1

=
(ln(β) + τ1 − r(ln(β) + δ))(1 + ε)(ln(β) + τ1)

ln(β) + τ1

−(ln(β) + τ1 − (r − 1)(ln(β) + δ))(ln(β) + τ2)

ln(β) + τ1

=
(ln(β) + τ1 − r(ln(β) + δ)) [(1 + ε)(ln(β) + τ1)− (ln(β) + τ2)]

ln(β) + τ1

−(ln(β) + τ2)(ln(β) + δ)

ln(β) + τ1

≤ (τ1 − δ) [(1 + ε)(ln(β) + τ1)− (ln(β) + τ2)]

ln(β) + τ1

−(ln(β) + τ2)(ln(β) + δ)

ln(β) + τ1

=
(τ1 − δ)(1 + ε)(ln(β) + τ1)− (ln(β) + τ2)(ln(β) + τ1)

ln(β) + τ1

=

(
ln(β) + τ1

ln(β) + τ1

)
(τ1 − δ)(1 + ε)− (ln(β) + τ2)

Therefore:

τ1 + ln(β)

λr

(1 + ε)− τ2 + ln(β)

λr−1

≤ (τ1 − τ2 − δ) + ε(τ1 − δ)− ln(β)

= (τ1 − τ2 − δ) + ετ1 − ln(β)− εδ

≤ − ln(β)− εδ

since we chose:

ε <
ln(α2)− ln(α1)− δ

ln(α1)

=
−(τ1 − τ2 − δ)

τ1
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Now, since limn→∞ ln(βn) = ln(β) and:

lim
n→∞

τ
(1)
n + ln(βn)

λr

=
τ1 + ln(β)

λr

lim
n→∞

τ
(2)
n + ln(βn)

λr−1

=
τ2 + ln(β)

λr−1

it is possible to choose N such that for n ≥ N :

τ
(1)
n + ln(βn)

λr

(1 + ε)− τ
(2)
n + ln(βn)

λr−1

< − ln(βn)

which completes the proof of the lemma. Henceforth, we will take N1 large enough

so that the lemma holds for n ≥ N1. Now we choose µ > 0 such that the following

inequalities hold:

µα
−(N1+o1(N1))
1 ||LN1|| < 1

and:

2µ
λr−1

λr (
√

M)
λr−1

λr
+λr−1−1 < γr−1

Then choose 0 < γr < µ. Now let’s assume that L is a rational subspace of dimension

r with:

ρ(θ,L) < γrV (L)−λr

and let N be the largest integer with:

V (L)λr ≥ µα
−(N+o1(N))
1 ||LN ||

Such an N exists since the set of such numbers includes N1 (and is hence nonempty)

and is bounded since ||Ln|| ≥ 1 for all n and limn→∞ n+oi(n) = ∞ for i = 1, 2, and 3.

In particular, this is true when i = 1.

We let L1 be the rational subspace defined by LN(x) = 0. Then:

ρ(θ,L1) =
|LN(θ)|
||LN ||

≥ α
N+o1(N)
1 ||LN ||−1 ≥ µV (L)−λr ≥ γrV (L)−λr > ρ(θ,L)
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By Lemma (9.2), L 6⊂ L1. Let M = L ∩ L1. Then by Lemma (9.3):

V (M)ρ(θ,M) ≤ V (L)V (L1)(ρ(θ,L) + ρ(θ,L1))

≤ V (L)||LN ||2ρ(θ,L1)

= 2V (L)|LN(θ)|

and:

V (M) ≤ V (L)V (L1) ≤ V (L)||LN ||

Using these two inequalities, the fact that λr−1 ≥ 1, and applying the induction

hypothesis to M we have:

γr−1V (M)−λr−1 ≤ ρ(θ,M) ≤ 2V (L)|LN(θ)|V (M)−1

Hence, using V (M) ≤ V (L)||LN ||:

γr−1 ≤ 2V (L)|LN(θ)|V (M)λr−1−1

≤ 2V (L)λr−1||LN ||λr−1−1|LN(θ)|

By hypothesis, ||Ln|| ≤
√

Mβn+o3(n) and from the choice of N :

V (L)λr < µα
−(N+1+o1(N+1))
1 ||LN+1|| ≤ µα

−(N+1+o1(N+1))
1

√
MβN+1+o3(N+1)

So we have:

γr−1 ≤ 2
(
µα

−(N+1+o1(N+1))
1

√
MβN+1+o3(N+1)

)λr−1
λr ||LN ||λr−1−1|LN(θ)|

≤ 2
(
µα

−(N+1+o1(N+1))
1

√
MβN+1+o3(N+1)

)λr−1
λr

·
(√

MβN+o3(N)
)λr−1−1

α
N+o2(N)
2

≤ 2µ
λr−1

λr (
√

M)
λr−1

λr
+λr−1−1α

−(N+o1(N))(1+ε)
λr−1

λr
1 β(N+o3(N))(1+ε)

λr−1
λr

·β(N+o3(N))(λr−1−1)α
N+o2(N)
2

= 2µ
λr−1

λr (
√

M)
λr−1

λr
+λr−1−1

·

 α
1+

o2(N)
N

2

α

(
1+

o1(N)
N

)
λr−1

λr
(1+ε)

1

· β
(
1+

o3(N)
N

)(
λr−1

λr
(1+ε)+λr−1−1

)N
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So we have:

γr−1 ≤ 2µ
λr−1

λr (
√

M)
λr−1

λr
+λr−1−1e

[
λr−1

(
τ
(1)
N

+ln(βN )

λr
(1+ε)−

τ
(2)
N

+ln(βN )

λr−1
+ln(βN )

)]
N

Since 2µ
λr−1

λr (
√

M)
λr−1

λr
+λr−1−1 < γr−1, this is a contradiction if:

τ
(1)
N + ln(βN)

λr

(1 + ε)− τ
(2)
N + ln(βN)

λr−1

≤ − ln(βN)

which is, in fact, the case by Lemma (9.4) since N ≥ N1. This completes the proof

of Nesterenko’s criterion.



Chapter 10

Conclusion

Now we are able to establish Theorem (1.1). Recall from chapter eight that dn,Q =

lcm{1, 2, ..., (n + 1)Q + m}. We let pl,n = da
n,QPl,n(1) and p̂d,n = da

n,QP̂d,n(1). Then:

Ln =
a∑

l=2

pl,nL(l, c) +

Q+m∑
d=1+m

p̂d,ncd

is a sequence of linear forms with integer coefficients by the corollary to Proposition

(8.2). Likewise, in the case where cd = χ(d), if χ(−1) = −1 we let pl,n = da
n,QP2l,n(1)

and p̂d,n = da
n,QP̂d,n(1). Then we have:

Ln =

a
2∑

l=1

pl,nL(2l, χ) +

Q+m∑
d=1+m

p̂d,nχ(d)

Lastly, if χ(−1) = 1 we let pl,n = da
2n,QP2l+1,2n(1) and p̂d,n = da

2n,QP̂d,2n(1). Then we

have:

Ln =

a−1
2∑

l=1

pl,nL(2l + 1, χ) +

Q+m∑
d=1+m

p̂d,nχ(d)

By the prime number theorem we estimate dn,Q = enQ+o(n) and so we see that if

we’re not in the case where cd = χ(d) and χ(−1) = 1:

log |Ln| = n log (φQ,r,ae
a)Q + o(n)

by Proposition (6.1). We also have by Proposition (8.1):

log |pl,n| ≤ n log
(
eaQ2R+12A−2R(2R + 1)2R+1

)Q
+ o(n)

78
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and so we take:

β =
[
Q2R+1ea2A−2R(2R + 1)2R+1

]Q
With this β, the Ln satisfy (iii) in Nesterenko’s criterion where M = a + Q− 1

for general c and M = a+2Q
2

if cd = χ(d) and χ(−1) = −1. We then let:

α1 = α2 = (eaφQ,r,a)
Q

Otherwise, if cd = χ(d) and χ(−1) = 1, with M = a+2Q−1
2

we take:

β =
[
Q2R+1ea2A−2R(2R + 1)2R+1

]2Q

and:

α1 = α2 = (eaφQ,r,a)
2Q

Then by Proposition (9.1), in all three of these cases, we have:

δc(a) ≥ log(β)− log(α1)

log(β)

=
(2R + 1) log(Q) + (A− 2R) log(2) + (2R + 1) log(2R + 1)− log(φQ,r,a)

a + (2R + 1) log(Q) + (A− 2R) log(2) + (2R + 1) log(2R + 1)

Using the inequalities 2R < 2R + 1 < 2(R + 1) and φQ,r,a ≤ Q2R2R+1

RA−2R we obtain:

δc(a) ≥
log(R) + A−R

A+1
log(2) + log(Q)

A+1

Q + log(2) + 2R+1
A+1

log(R + 1) + 2R+1
A+1

log(Q)

Finally, we take R ≈ A/(log(A))2 with r the integer part of a/(log(A))2. Since:

log(R) +
A−R

A + 1
log(2) +

log(Q)

A + 1
= (1 + o(1)) log(A)

and:

Q + log(2) +
2R + 1

A + 1
(log(R + 1) + log(Q)) = Q + log(2) + o(1)

As A →∞ we have:

δc(a) ≥
(1 + o(1)) log

(
a
Q

)
Q + log(2) + o(1)

which proves Theorem (1.1). This also suffices to prove Conjecture (1.3) assuming

that Proposition (6.1) is true unconditionally.
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