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ABSTRACT 

 While functional neuroimaging has been going through significant advancement in 

the past decade, there remains a fundamental question of how we can utilize the imaging 

data to describe brain functional behavior in a reproducible and faithful manner. In this 

dissertation I have elucidated a series of my works all aims at answering the above question, 

yet from three different perspectives both regarding to the neuroscience implication and to 

the scale of the data. Firstly, statistical models are built to characterize the changes of 

functional organization pattern in individual brains (small size), in order to detect the quasi-

stable brain states. Secondly, the concept and corresponding framework of functional 

connectomics summarize the common connectivity patterns within a group of individuals 

(medium size), and use them for dynamic transition modeling. Thirdly, dictionary learning 

method and its distributed implementation enable us for the efficient functional network 

discovery from population-wise data (large size). Based on these works, we could then 

eventually learn the set of holistic brain functional space from fMRI big data, through 

which individual signals can be effectively encoded and analyzed. 
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DEDICATION 

This work is dedicated to the endeavors in discovering knowledges and revealing 

hidden patterns from the vast treasure of the functional neuroimaging. It is the vast 

uncertainties and grand challenges in this field that makes all the studies towards it 

meaningful and interesting. 
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CHAPTER 1 

INTRODUCTION 

1.1 Thesis Statements 

The work in this thesis is focused on one single objective: to better characterize the 

functional organization pattern and the cognitive process of human brain, i.e. “how brain 

works”. A series of studies from me and our group have been performed towards this goal, 

by developing models on the functional Magnetic Resonance Imaging (fMRI) data on 

various scales and conditions. Specifically, I have developed mathematical models for 

characterizing the functional network dynamics and the functional-structural relationships 

of the brain, including fiber-guided functional connectivity modeling [1], sliding time 

window-based functional connectomics analysis framework [2-7], the two-level MCMC 

model for simultaneous temporal and spatial pattern inference [8], and sparsity-regularized 

dictionary learning method for functional network decomposition [9-11].  

Further, as the availability and heterogeneity of the neuroimaging data keeps growing, 

it is becoming much more important to utilize population-level data for learning the holistic 

brain functional networks space, rather than relying on the dominant features from limited 

number of subjects. As highlighted in [12], the need for large-scale fMRI analysis is 

especially imminent to overcome the bias and false-positives in traditional hypothesis-

based studies. In addition, fMRI big data posed grand challenges on the analysis methods: 

data size quickly out-grows the memory capacity and computational power. To address 

such need for large-scale and fast fMRI analytic methodologies, my analysis of fMRI data 
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has been expanded to provide solutions for the big data analytics problem in neuroimaging 

researches by developing fast and parallel machine learning framework. Such solutions 

have become more challenging and in high-demand. The framework incorporates 

integrated informatics system and the fast and scalable algorithms for high-throughput 

neuroimaging researches.  

 

1.2 Contributions 

Concepts and Methods for Dynamic Functional Connectomics: Motivated by the 

discovery both from my own work [1] and other literature reports [13], it has been 

recognized in my research that the functional brain activation is dynamic and modulated 

by state-by-state pattern. Based on such observation I developed the sliding time-window 

based functional connectivity modeling of fMRI data, then extent it into group-wise 

dynamic functional connectomics study based on the DICCCOL system [14]. The 

connectomics is defined by the most representative and/or discriminative connectivity 

features learned from aggregated individual functional dynamics using sparse 

representation. Results from various applications of the connectomics modeling show that 

it can effectively characterize the functional brain behavior using a much reduced set of 

brain states (i.e. encoding) [3]. Further, the state transitions modeling based on the 

connectomics characterization has bene shown to be a powerful approach to model the 

cognitive process as Markov process [6]. The dynamic functional network analysis 

framework and the resulting characterization of common/signature functional 

connectomics from healthy subjects and patients with mental disorders has been applied 
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by various of our collaborators including labs in Yale University, Zhejiang University as 

well as two top hospitals in China.  

Dictionary Learning Methods for Functional Network Discovery: Based on the 

success in applying sparse representation for learning from functional connectivity, we 

further applied the similar sparsity-regularized matrix decomposition method on the raw 

fMRI data in order to discovery meaningful components (i.e. functional networks). The 

dictionary learning method is similar to the Independent Component Analysis (ICA) which 

has been widely applied on fMRI analysis [15, 16], yet is shown to be more advantageous 

over ICA especially for its capability in identifying overlapping functional networks and 

their interactions. Such discovery leads us to the development for the Holistic Atlases of 

Functional Networks and Interactions (HAFNI) [10] system which pooled the functional 

networks from the whole Human Connectome Project (HCP) Q1 database [17] and 

manually aligned them to form an atlas. In addition, the dictionary learning method was 

the core component for my advisor Tianming Liu in one of his NSF grant 1439051 for the 

study of functional architecture of brain. 

Distributed Rank-1 Dictionary Learning (D-r1DL) framework: The D-r1DL 

framework is developed based on the r1DL model for functional network discovery as 

introduced above, with the feature of enabling distributed and high performance 

computation. The framework has been deployed on the high performance computation 

platforms provided by the Georgia Advanced Computing Resource Center, as well as the 

Amazon Elastic Compute Cloud. The current software packages implemented in PySpark 

for functional network decomposition through dictionary learning has the capability of 

handling Terabyte-level fMRI data by parallelization and in-memory data abstraction. In 
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addition, the algorithm has been deployed as a web service on an established 

neuroinformatics system (bd.hafni.cs.uga.edu) for fast individual-level (100~500 Mb) data 

analysis and real-time visualization. 

 

1.3 Thesis Outline 

As illustrated in Fig.1, the work of this thesis contains three highly inter-related chapters 

(chapter 2 to chapter 4) which focuses on functional neuroimaging data analysis from 

individual level (small data, more detailed) to population level (big data, more holistic). In 

chapter 2, the framework developed for characterizing and modeling individual functional 

network dynamics will be introduced, followed by the definition of “functional brain 

states” which is the key concept of this thesis. In chapter3 I will describe the modeling of 

group-wise functional connectomics and its applications. By encoding the functional brain 

states by the discrete connectomics, we can then efficiently characterize the process of 

functional brain dynamics under various conditions. In chapter 4 we will face the challenge 

(and the opportunity) coming from the population-wise big functional imaging data, where 

novel distributed, cloud-based computation solutions are provided to support the 

connectomics analysis. It is envisioned, and partially achieved, in this thesis that the 

functional space discovered from the population-wise data could be serving as “the 

Standard” for all the future functional imaging analysis. 
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Fig.1. An illustrative overview of the three main components in this thesis from the data 

size perspective, which will be detailed in Chapter 2-4. 
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CHAPTER 2 

CHARACTERIZATION OF FUNCTIONAL BRAIN DYNAMICS 

2.1 Pilot Investigations and Observations on Functional Brain Dynamics 

In previous researches on functional brain imaging study, especially for the 

connectivity analysis, a common assumption used is the temporal stationarity. Functional 

connectivity is computed over the entire fMRI scan and used to characterize the strengths 

of connections across regions [18-21]. However, accumulating literature evidence [13, 22, 

23], including our own studies [24] have shown that functional connectivity is under 

dynamic changes at different time scales. In particular, extensive neuroscience research 

suggests that the function of any area of the cortex is subject to top-down influences of 

attention, expectation, and perceptual task [25, 26]. For instance, each cortical area runs 

different “programs” according to the context and to the current perceptual requirements, 

and dynamic functional interactions between structural connections mediate the moment-

by-moment functional switching in the brain [25]. Even in the resting state, functional brain 

connectivity is still under dynamic changes within time scales of seconds to minutes [13]. 

In literature, there have been a variety of studies that investigate the problem of temporal 

brain state changes from different perspectives. For instance, from the fMRI blood-oxygen-

level dependence (BOLD) signal processing perspective, statistical signal processing 

methods have been applied on fMRI signals to detect BOLD signal state change in response 

to stimulus (e.g., [22, 23]), and these results have been correlated to brain state change. 

From the brain network perspective, functional networks have been reported to form and 
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disappear during certain tasks, and the temporal clustering analysis (TCA) approach has 

been developed to detect the dynamic behavior of brain states (e.g., [27, 28]). Signal 

propagation from changing networks within rats and human brains was discussed in [29].  

In response to the need of a more direct approach for characterizing the functional brain 

dynamics, my pilot study developed the model for determining functional brain state 

change points, by identifying abrupt alterations of functional connectivity in large-scale 

brain networks. Our rationale is that the brain function is integrated via large-scale 

structural and functional connectivity (e.g., [30-33]), and that sudden change of global 

functional brain connectivity is a meaningful and effective indicator of functional brain 

state switch. Therefore, in this model the functional brain state is defined as the specific 

organizational pattern of the brain’s global functional connectivity [34], and brain state 

changes are supposed to reflect the brain’s functional interaction dynamics in response to 

external/internal stimulus and/or previous brain states. The model is based on the fiber-

centered approach to define functional connectivity on DTI-derived white matter fibers, 

with the basic premise that axonal fibers obtained from DTI tractography are the structural 

substrates of functional connectivity between brain regions [31, 35, 36], thus provide a 

natural anatomical localization for inference of functional connectivity. In our approach, 

the functional connectivity is defined as the temporal correlation between spatially remote 

fMRI signals extracted from gray matter voxels on the two terminals of a DTI-derived 

axonal fiber. That is, we measure the temporal correlation of fMRI time series of two ends 

of a fiber to define the functional connectivity between the gray matter voxels that it 

connects. The functional connectivity patterns of all of the DTI-derived white matter fibers 

within the whole brain are then concatenated into a descriptive functional feature vector to 
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represent the brain’s state, called functional connectivity vector (FCV), as illustrated below 

in Fig. 2. 

 

Fig.2. (a) Example of a SCGM voxel pair shown in red and blue boxes that are connected 

by DTI-derived fibers (in yellow). (b) The fMRI time series from the two voxels have 

low correlation within a specific time window (State I). (c) The fMRI time series from 

these two voxels are relatively higher correlated within another time window. 

 

The functional brain state change points are then determined by the abrupt changes of 

the FCV patterns calculated by the sliding window approach along the time series. 

Specifically, to quantitatively characterize the functional connectivity dynamics, we define 

the FC value on axonal fibers between voxel pair [vg, vh] in time window [ti, tj]: 

𝐹𝐶(𝑣𝑔, 𝑣ℎ , 𝑡𝑖, 𝑡𝑗) = 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑓𝑀𝑅𝐼 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 𝑜𝑓 𝑣𝑔, 𝑣ℎ 𝑓𝑟𝑜𝑚 𝑡𝑖 to 𝑡𝑗 (1) 

Assume that the totally scan length is l time points, and the time window size is s, we 

could apply a sliding time window (tk, tk+s) where 1≤k≤l-s and obtain FCs defined on 

structurally-connected grey matter (SCGM) voxels. By concatenating all FCs into a vector, 

we thus generated the functional connectivity vector (FCV) of all the fibers defined at each 

time point k: 
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𝐹𝐶𝑉(𝑘) = 𝐹𝐶(𝑣𝑔, 𝑣ℎ , 𝑡𝑖, 𝑡𝑗)|(𝑣𝑔, 𝑣ℎ) ∈ 𝑆𝐶𝐺𝑀, 𝑡𝑖 = 𝑘, 𝑡𝑗 = 𝑘 + 𝑠 (2) 

FCV consists of m (total number of fiber-connected voxel pairs) elements, each is the 

connectivity strength of a specific voxel pair within the time window. Therefore, for each 

brain, we can extract (l-s) FCVs. One running example is given in Fig. 3. 

 

Fig.3. (a) Fibers with their end points in cortical gray matter, five fiber connections are 

highlighted; (b) Dynamics of functional connectivity of the above five SCGM voxel 

pairs. The temporal correlation between a specific voxel pair within each time window is 
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a single cell in the corresponding color-coded vector (1 to 5). Thus each color-coded 

vector is a visualization of the connectivity strength dynamics of that voxel-pair; (c) 

Combined FCVs through the whole time course, which is an extension of (b) from five 

SCGM voxel pairs to all SCGM voxel pairs  

 

The FCV model has the capability to characterize and describe the dynamics of 

functional brain states based on multimodal DTI/fMRI data, and have been applied on task-

based fMRI [37], resting state fMRI [38], and natural stimulus fMRI data sets [39]. 

Meaningful and promising results were obtained from the experiments. In particular, our 

results have shown that the functional brain state change curve roughly follows the external 

stimulus paradigm used in task-based fMRI as shown in Fig. 4, which partially validates 

our approach in that our algorithmic pipeline is totally data-driven and no a priori 

knowledge was used in the analysis.  

 

Fig.4. Temporal alignment between the stimulus curve and the global functional 

connectivity dynamics. The horizontal axis represents the temporal points of brain 

activation; vertical axis is the averaged functional correlation value (except for integrated 

stimulus function). Global functional connectivity for fiber-connected voxels is shown as 
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blue curve, global functional connectivity from randomly connected voxels is shown as 

red curve, ROI-based inferred functional connectivity is shown as orange curve, and the 

integrated stimulus curve are shown as grey triangles.  

 

The major contributions of the structurally-guided dynamic functional connectivity 

modeling above are three-folded. Firstly, we developed, validated and applied a novel 

fiber-centered approach to defining the functional connectivity pattern in the human brain, 

and proposed the FCV pattern to represent a functional brain state. Secondly, instead of 

using raw fMRI BOLD signals, we use the FCV pattern that measures and represents the 

whole-brain functional connectivity of fibers for brain state change detection. Thirdly, the 

work in this paper provides novel understanding of and perspective on the dynamic 

behaviors of functional brain connectivity, which cannot be seen in traditional static 

connectivity analysis, and offers a starting point for in-depth elucidation of the complex 

patterns of large-scale functional brain interactions. 

However, due to the limitations in white matter fiber registration techniques, we have 

not obtained inter-subject correspondence on the FCV patterns in this model. As the result, 

the main objective of the model is for characterization, rather than detailed investigation or 

used for classification purposes. Such limitation is solved by the DICCCOL system we 

have later adopted, which will be introduced in section 2.2 below.  

 

2.2 Temporal/Spatial Segmentation of fMRI Data 

In order to provide the much-needed inter-subject correspondence, our group 

developed and validated 358 consistent and corresponding DTI-derived landmarks across 
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multiple brains and populations, named Dense and Individualized Common Connectivity-

based Cortical Landmarks (DICCCOL) ROIs [14, 35]. In short, each ROI in the DICCCOL 

system was optimized to possess maximal group-wise consistency of DTI-derived fiber 

shape patterns. The neuroscience basis is that each brain’s cytoarchitectonic area possesses 

a unique set of intrinsic inputs and outputs, namely the “connectional fingerprint” [40], 

which largely determines the functions that each brain area performs. This close 

relationship between consistent structural connection pattern and brain function has been 

replicated in a series of our recent studies [41]. This set of 358 DICCCOL landmarks has 

been reproduced in over 240 brains of four separate healthy populations. Importantly, this 

set of 358 DICCCOL landmarks can be accurately predicted in an individual subject based 

only on DTI data. In this way, the voxel-wise fMRI data in each subject is transformed into 

a set of signals defining on 358 ROIs. Further, inspired by the success of Bayesian 

graphical causal models in neuroimaging (e.g., [42-44]) and in recognition of the 

importance of revealing dynamics of functional interaction patterns as introduced in section 

2.1, we then developed the dynamic Bayesian variable partition model (DBVPM) that 

simultaneously infers global functional interactions within brain networks and their 

temporal transition boundaries. A key conceptual novelty in DBVPM is that the temporal 

boundaries of functional brain activities represented by fMRI time series are defined and 

determined by the abrupt change points of multivariate dependences among networks, 

instead of the fMRI time series changes or pair-wise functional connectivity changes as 

used in section 2.1. Thus the temporal stationarity of functional interaction patterns within 

each time segment is achieved automatically and the temporal boundaries of successively 

different multivariate functional interaction patterns are statistically inferred naturally 
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within a unified Bayesian framework. The overall two-level MCMC framework is 

illustrated in Fig. 5. 

 

Fig.5. Algorithmic pipeline of the two-level MCMC scheme for simultaneous functional 

interaction and transition pattern inference. 

 

Specifically, the Bayesian variable partition model aims at estimating the posterior 

distribution of the independent and identically distributed observations from the d-

dimensional multivariate normal distribution [y1, y2, …, ym]. By calculating the marginal 

distribution of the data [y1, y2, …, ym]:  
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 (3) 

Given the marginal distribution, we then defined the chain-dependence model if the 

variables can be partitioned into three non-overlapping sub-groups A, B, and C such that 

A and C are conditionally independent given B. Similarly, we defined the V-dependence 
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model if A and B are marginally independent, while C can be viewed as “children” of A 

and B. The definition of the two models are given in Eq. 4: 
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 (4) 

Given the dependence structure as chain (S=1) or V (S=0) structure, we can calculate 

the posterior distribution correspondingly. Then we designed the Markov chain Monte 

Carlo (MCMC) (Me-tropolis-Hastings) to sample from the posterior distribution with the 

following proposals (essentially searching for the optimized solution): 

 

The MCMC above constitutes the spatial partitioning model. In a similar way we can 

define the temporal partitioning model to investigate the dependency structures among the 

ROIs between different time periods and where are the boundaries of temporal blocks that 

exhibit significant differences from each other. Once these boundaries are determined 

statistically, they are considered as the change points of functional interaction patterns 

within the brain networks, as shown in Fig. 6 

1) Randomly choose one ROI and change its subgroup membership; 

2) Randomly choose two ROIs and switch their subgroup memberships; 

3) Swap the values of S (either from 0 to 1, or from 1 to 0). 
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Fig.6. Illustration of two temporal change points of functional interaction patterns at time 

point 1 and 2. In the time period before change point 1, the functional interaction among 

three fMRI signals is a Chain-dependence model (signal1→signal2→signal3), while 

between time points 1 and 2, it is a V-dependence model (signal1→signal2←signal3). 

After the time point 2, it is again a V-dependence model (signal2→signal1←signal3).  

 

In this way the DBVPM simultaneously models and characterizes high-order functional 

interactions and their temporal dynamics via a unified Bayesian framework. To solve the 

model, we then applied a two-level Metropolis-Hastings (MCMC) scheme to sample from 

the posterior distribution of the block boundaries and dependency structures within each 

block. The lower level MCMC samples from the posterior distribution of the dependency 

structures of each block given the block boundaries as discussed above, and the higher 

level MCMC samples from the posterior distribution of the block boundaries. Specifically, 

in the lower level MCMC, the proposal scheme involves alternating between the chain and 
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V structures and changing the group labels of each variable. In the higher level MCMC, 

the proposal scheme involves segmenting one block into two, merging two neighboring 

blocks and shifting a block boundary. In each higher level step, every block runs through 

a lower level MCMC. A dependency structure is sampled for each block as the dependency 

structure for that block in the higher level proposal. Then the log likelihood of the proposal 

can be calculated by summing up the log likelihood of each block. We then check the 

mixing of MCMC and exclude the burn-in from the actual MCMC sample of the posterior 

distribution. Then the posterior probability for each time point to be a change point was 

calculated from MCMC samples. A running example of how the DBVPM reveals the 

dynamics of functional interaction patterns is shown in Fig. 7. 

 

Fig.7. A running example of the evolving dynamic functional interaction patterns within 

the DMN. Blue lines: directed edges; red lines: undirected edges; green spheres: brain 

regions represented by DICCCOL.  
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The DBVPM was evaluated and validated with simulated data and obtained very 

accurate temporal/spatial segmentation of the data. One example result is shown in Fig. 8. 

 

Fig.8. Results on the simulation data. Each node denotes one ROI, with the change of 

their contently structure at time point 100. Detected change point is shown below. 

 

 For the purpose of testing its capability on real fMRI data, we used the functionally 

labeled DICCCOLs and their prediction models to locate the default mode network (DMN) 

([45-47]) and emotion network [48] from a post-traumatic stress disorder (PTSD) dataset. 

The results revealed substantially different multivariate functional interaction signatures 

and temporal transitions in the default mode and emotion networks of PTSD patients, in 

comparison with those in healthy controls. This result demonstrated the effectiveness and 

utility of DBVPM in elucidating interesting features that can-not be revealed by traditional 

static pair-wise functional connectivity analysis. In summary, the study shows that 

Bayesian graph is a powerful tool for modeling connectivity and its dynamics, and the 
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change point detected by the model provides the statistical foundation for our further 

dynamic functional network analysis.  

 

2.3 Functional Networks Dynamics as Connectomics 

Based on the studies in section 2.1 and 2.2, we have successfully characterized and 

modeled the functional brain dynamics and found the method to automatically identify the 

change points for brain functional states. However, there is still a lack of integrated 

framework to describe the connectivity level at group-level across multiple subjects. As it 

has been recognized in neuroimaging literatures that functional connectomes constructed 

via neuroimaging data could offer a complete description of the macro-scale structural 

connectivity within the brain (e.g., [30, 33, 49-51]). In addition, functional connectomics 

signature have been shown to be powerful in characterizing and differentiating brain 

conditions [20]. However, most of the such works applied the assumption of functional 

stationarity which is contrary to the dynamics nature of the functional brain, as discussed 

in section 2.1. Therefore, quantitative modeling and characterization of functional brain 

dynamics has been of general interest in the neuroimaging community for years. For 

instance, functional microstates (a concept similar to the functional brain states in our fMRI 

study) have been well-established in EEG data modeling and analysis [52-55]. Thus it is 

generally agreed that quantitative characterization of these time-dependent functional 

connectivity/connectome dynamics and representative patterns can elucidate 

fundamentally important temporal attributes of functional connections that cannot be seen 

by traditional static pairwise functional connectivity analysis [16].  
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From a technical perspective, the discovery, cross-validation and application of EEG-

based microstates have been fundamentally enabled and facilitated by a standardized 

electrode reference system such as the International 10/20 System. As a result, the 

measured EEG signals and the identified dynamic microstates in different brains can be 

readily mapped into a standard reference system, and thereby effectively integrated and 

compared. However, for R-fMRI data, it has been challenging to integrate and compared 

fMRI signals and their derived measurements across different brains due to the lack of a 

reliable and accurate brain localization and reference system. Thus in our work, similar to 

the approach in section 2.2, the DICCCOL [14] system is adopted for predicting the ROIs 

from the individual brains. As the DICCCOL ROIs possess intrinsically-established 

structural and functional correspondences across individuals, they provide a natural general 

brain reference system across individuals and populations. The structural and functional 

connectomes established by DICCCOL is then used to define and characterize functional 

microstates based on R-fMRI data. In particular, we used the large-scale functional 

connectivity among DICCCOLs as functional connectome (FC), and manually divided the 

temporally varying FCs into quasi-stable segments. For instance, a typical R-fMRI scan 

with time length of 10 minutes can be segmented into 10-20 quasi-stable FC segments, 

within which the FCs are averaged into one vector. The whole analytics pipeline is 

illustrated in Fig. 9. 
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Fig.9. Illustration of calculating dynamic FC and FCS. Top panel: Illustration of R-fMRI 

signals extracted from two DICCCOL ROIs of a randomly selected subject, and their 

sliding time-windowed functional correlations. Middle panel: Functional connectome 

strength (FCS). Each column is a single FCSt at one window, and each row is the 

dynamics of the connectivity strength of one DICCCOL ROI. Bottom panel: Averaged 

FCs of segmented states as color-coded matrices at the corresponding brain states. 

 

Specifically, we applied a sliding time window approach to divide the extracted R-

fMRI signal Xi from the i-th DICCCOL into temporal segments TFi,t at time point t, with 

the duration of window length l: 

𝑇𝐹𝑖,𝑡 = 𝑋𝑖,𝑝|𝑡 ≤ 𝑝 < 𝑡 + 𝑙 (5) 
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Then for every pair of temporal segments TFi,t and TFj,t of the time series Xi and Xj 

from two DICCCOLs, we calculated the Pearson correlation Ri,j,t between them: 

𝑅𝑖,𝑗,𝑡 = 𝑐𝑜𝑟𝑟(𝑇𝐹𝑖,𝑡, 𝑇𝐹𝑗,𝑡); 𝑅𝑖,𝑗,𝑡 = 0, if 𝑖 = 𝑗; 𝐹𝐶𝑡 = 𝑅𝑖,𝑗,𝑡|𝑖, 𝑗 ∈ (1, 358) (6) 

where FCt is the functional connectome (FC) at time t, which is a set of correlations from 

the congregation of all Ri,j,t over every combination of i and j, to characterize the whole-

brain functional connectivity. It is a symmetric matrix of dimension 358×358. For 

dimension reduction, we defined the functional connectome strength (FCS): 

𝐹𝐶𝑆𝑡 = ∑ 𝑅𝑖,𝑗,𝑡

358

𝑗=1

;  𝐹𝐶𝑆 = {𝐹𝐶𝑆1, 𝐹𝐶𝑆2, … , 𝐹𝐶𝑆𝑇−𝑙} (7) 

where FCSt is the summation of correlations of each DICCCOL ROI with all the other 

ROIs at time t, which is an I×1 vector. Thus the i-th value in the vector is the strength of 

connectivity of the i-th ROI. FCS is the aggregation of FCSt, representing the dynamics of 

connectome strength through the entire time course. Given that the averaged FCs possess 

intrinsically-established correspondences across individuals, all of the averaged FCs from 

different individuals are then pooled and clustered into Common Functional Connectomes 

(CFCs) via the Fisher Discriminative Dictionary Learning (FDDL) algorithm [56]. The 

basic idea of FDDL is to learn a structured dictionary D from the training data A so that 

A=DX, where X is the coding coefficient. D contains certain numbers of sub-dictionary Di 

that corresponds to the class labels in the training data, under the constraint of maximizing 

the discriminative capacity of the dictionary. Then, the following energy function J(D,X) 

were optimized to obtain the learned dictionary D and its corresponding projection X of the 

data on D [56]: 

𝐽(𝐷,𝑋) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐷,𝑋) 𝑟(𝐴, 𝐷, 𝑋) + 𝜆1‖𝑋‖1 + 𝜆2𝑓(𝑋); 
(8) 
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 𝑟(𝐴, 𝐷, 𝑋) = ‖𝐴𝑚 − 𝐷𝑋𝑚‖𝐹
2 + ‖𝐴𝑚 − 𝐷𝑚𝑋𝑚

𝑚‖𝐹
2 + ∑‖𝐷𝑚̅𝑋𝑚̅

𝑚‖𝐹
2

𝑐

𝑚̅

 

𝑓(𝑋) = 𝑡𝑟(∑ ∑ (𝑥𝑘 − 𝑋𝑚)(𝑥𝑘 − 𝑋𝑚)𝑇 − 𝑡𝑟(
𝑥𝑘∈𝑋𝑚

𝑐

𝑚=1
∑ 𝑛𝑚(𝑥𝑚 − 𝑋)(𝑥𝑚

𝑐

𝑚=1

− 𝑋)𝑇) + 𝜂 ‖𝑋‖𝐹
2  

The first term in the energy function, r(A, D, X) is the constraint on discriminative fidelity, 

allowing the dictionary D able to code the data A (which is the congregated FCS matrix) 

with minimum residual, while at the same time only using one sub-dictionary Dm, but not 

other sub-dictionaries. The neuroscience rationale behind it is that each sub-dictionary Dm 

learned is corresponded to one way of the classification of FCS, where within this class the 

FCS are similar with each other, and X is the projection of the dataset A on dictionary D, 

thus it is the classification result (class labels). In Eq. 7, Xm is the projection of Am, which 

is one of the sub-classes in A, on the whole dictionary D. Xmm is the projection of Am on the 

correct sub-dictionary Dm. Thus to minimize Eq. 8, we will optimize dictionary and its 

corresponding classification to use the correct sub-dictionary Dm to project Am, and avoid 

using other sub-dictionaries. The second term in the energy function in Eq. 8 is the sparse 

constraint, requiring the coding coefficient X be as sparse as possible, i.e., the total number 

of non-zero items in X should be minimized. With this constraint, each single FCS in A 

would only be projected by a limited number of sub-dictionaries, which is in accordance 

with our premise that the brain states would be discrete with abrupt change on the 

boundaries. The third term f(X) is the constraint on the discriminative coefficient, which 

aims to minimize within-class scatter of X, and maximize cross-class scatter of X, according 

to Fisher discrimination criterion. In the definition of f(X), Xk is the item (single FCS) in 

Xm i.e. each class of the projection. The within-class scatter of the projection was measured 
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by the summed distance from each item in the class (xk) to the average of the class. The 

cross-class scatter was measured by the summed distance from the average of each class 

to the average of the whole data. The integer c is the total number of classes in the training 

data A, as well as the total number of sub-dictionaries in dictionary D. The integer ni is the 

number of items in Xi, as there are multiple items in each class of the training data A, and 

η is the scaling constant. The learned dictionary has the same dimension with the input 

training matrix A, and contains sub-dictionaries corresponding to each class label. Also, as 

every state has its own FC, as depicted in Figure 8, we obtained the average FC for each 

sub-dictionary, defined as CFC in our study. The dynamics of brain connectomes could 

then be projected into the small number of representative CFCs with minimum information 

loss. The learned dictionary was then applied to classify the testing matrix T, to project 

brain state in testing data to the CFCs. The solution for the above sparse coding algorithm 

is based on the sparseness function developed in [57] and further enhanced in [58], which 

are all well-established methods.  

With the hypothesis that functional connectomics signatures can effective characterize 

and differentiate healthy control and mental disorders, we applied the model on the PTSD 

dataset as used in section 2.2. Experimental results showed that the CFCs patterns are 

remarkably reproducible across healthy controls and PTSD patients, as visualized in Fig. 

10 below.  
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Fig.10. Visualization of CFCs on cortical surfaces. DICCCOL ROIs are marked as green 

nodes on the cortical surface. Functional connectivities between ROIs are shown as red 

edges connecting those nodes. 

 

More interestingly, two additional CFC patterns with altered connectivity patterns 

(termed signature functional connectome (SFC)) exist dominantly in PTSD subjects. More 

importantly, these two SFC patterns alone can successfully differentiate 80% of PTSD 

subjects from healthy controls with only 2% false positive. These results suggest that SFC 

patterns could be potentially used as the biomarkers of PTSD in the future. Furthermore, 

based on the clustered CFCs, the time series R-fMRI data was projected into a series of 

temporally concatenated CFCs and their temporal transitions patterns were modeled by a 

finite state machine (FSM). Essentially, the graph structure and the edge connection 

strength of the FSM characterize the probability of transition from one CFC pattern to 

another. Our experimental results revealed that meaningful and reproducible FSMs can be 

learned from separate groups of brains. In particular, it was found that the FSM learned 

from PTSD subjects exhibits a substantially altered pattern of CFCs and transition patterns, 

in comparison with the healthy controls, as illustrated in Fig. 11. These results suggest that 

not only the CFCs patterns themselves, but also their temporal transition patterns, can 
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contribute to the characterization and differentiation of PTSD subjects from healthy 

controls.  

 

Fig.11. The state flow diagram depicting significant transitions between CFCs of PTSD 

patient subjects. Nodes representing state #17 and #18 are colored in red as they are SFCs 

for PTSD. The patterns of functional connectivities of CFC #17 and #18 on cortical 

surface are shown to the top panel. 
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In summary, the common functional connectome (CFC) and the derived signature 

functional connectome (SFC) modeling has been shown to be capable of summarizing the 

functional connectivity from multiple time fragments of multiple subjects. The result 

effectively encodes the functional brain dynamics into the label of CFCs and can be used 

to differentiate subjects from different groups, especially between healthy and patients. 

Using the similar approach, we have also identified the shared and signature connectomics 

for the functional brain between during resting-state and during task [2].  
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CHAPTER 3 

FUNCTIONAL NETWORK DISCOVERY 

BY DICTIONARY LEARNING METHOD 

3.1 Component-based Analysis for Functional Network Study 

As described in Chapter 2, we have characterized and modeled functional connectivity 

and the group-wise connectomics through various approaches including pair-wise 

connectivity measurement, spatial/temporal segmentation and group-wise connectomics 

representation. The next question for better understanding the organizational architecture 

of cortical function is whether we can infer the similar dynamics pattern directly from the 

voxel-wise fMRI data, rather than relying on the connectivity measurements. Such question 

is especially important as there has been mounting evidence [59-63] that the brain function 

emerges from and is realized by the interaction of multiple concurrent neural processes or 

networks, each of which is spatially distributed across specific structural substrate of 

neuroanatomical areas [64]. However, it is still challenging to robustly and faithfully 

reconstruct concurrent functional networks from raw voxel-wise fMRI data and 

quantitatively measure their network-level interactions, mainly due to the huge data size 

and high noise level, as comparing with the more concise connectivity measurements used 

in Chapter 2. Traditionally, the subtraction approach (contrast between task and baseline 

epochs) has been the dominant methodology in tfMRI paradigm design and tfMRI data 

analysis [65], based on which a majority of previous human neuroimaging/brain mapping 

studies and conclusions were derived and rooted. Despite the remarkable successes and 
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significant neuroscientific insights achieved by the subtraction approach, nevertheless, it 

has difficulty in reconstructing concurrent, interacting functional networks such as task-

evoked and resting state networks. It has been recognized and pointed out in the literature 

that spatially overlapping networks sub-serving different functions are possible to go 

unnoticed by the blocked subtraction paradigms and the associated analysis methods such 

as general linear model (GLM) [66, 67]. Responding to the limitations in the activation 

detection-based methods, as well as for the application on resting-state fMRI data, recently 

a variety of computational methods such as independent component analysis (ICA) [68], 

normalized cut [69] or other clustering algorithms [70] have been employed to map 

functional networks in healthy brains or neurological/psychiatric disorders. Among these 

methods, the component-based modeling has been widely applied in recent studies due to 

its versatility and high reproducibility for group-wise inference [15, 16, 71, 72]. In the 

component-based modeling, the fMRI signal matrix is used as an input for the matrix 

decomposition with specific regularizations (e.g. independence), while the decomposing 

results (i.e. “components”) are then interpreted as functional networks. 

  

3.2 Sparsity-regularized Matrix Decomposition (Dictionary Learning) 

It should be pointed out, however, that current functional network identification 

methods did employ the strategy of spatially clustering fMRI signals [68, 73]. Such 

assumption is that RSNs are not spatially overlapping with each other, that is, the networks 

are spatially independent as much as possible. In order to address the abovementioned 

questions and bridge the current significant neuroscience knowledge gaps, we developed a 

novel computational framework of identifying functional networks from the whole-brain 
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voxel-wise fMRI signals by sparsity-regularized matrix decomposition method (i.e. 

dictionary learning). Inspired by the successes of using sparse representation for signal and 

pattern analysis in the machine learning and pattern recognition fields [74], the basic idea 

of the framework is to aggregate all of hundreds of thousands of fMRI signals within the 

whole brain of one subject into a big data matrix, which is subsequently factorized into an 

over-complete dictionary basis matrix and a reference weight matrix via an effective online 

dictionary learning algorithm [75]. Specifically, for the input matrix SϵRt×n, where t is the 

total number of time points and n is the number of voxels, we aim to learn a meaningful 

and over-complete dictionary DϵRt×m (m>t, m<<n) [75] for the sparse representation of S 

based on the cost function l: 

ℓ(𝑆, 𝐷) ≜ min
𝐷𝜖𝐶,𝛼𝜖ℝ𝑚×𝑛 

1

2
||𝑆 − 𝐷𝛼||

𝐹
2 + 𝜆||𝛼||

1 
 (9) 

In this way, the input matrix from a subject’s whole-brain voxel-wise fMRI signal will 

be represented by a learned dictionary matrix and a sparse coefficient matrix, as illustrated 

in Fig. 11. Each column of the α matrix contains the sparse weights for interpreting each 

fMRI signal with the atomic basis signals in the dictionary. Meanwhile, each row of the α 

matrix stores the information of the voxel spatial distributions that have references to the 

corresponding dictionary atoms. The time series of each over-complete basis dictionary 

represents the functional BOLD activities of a brain network. A particularly important 

characteristic of this framework is that the decomposed reference weight matrix naturally 

reveals the spatial overlap/interaction patterns among reconstructed brain networks. 

Extensive experimental results demonstrated that this novel methodology can effectively 

and robustly uncover multiple functional networks, including both task-evoked and RSNs, 

which can be well-characterized and interpreted in spatial and/or temporal domains. 
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Fig.12. The computational pipeline of sparse representation of whole-brain fMRI signals 

using dictionary learning. (a) The whole-brain fMRI signals are aggregated into the data 

matrix. (b) Illustration of the learned atomic dictionary. Time series of three exemplar 

components are shown in the bottom panels. (c) The decomposed reference weight 

matrices, each row measures the weight parameter of each component in the whole brain. 

 

With the decomposed dictionary components and their reference weight parameters 

across the whole brain for each subject, our next major task is to characterize and interpret 

them within a neuroscience context. In our study, we applied the dictionary learning 

method on publicly released large-scale Human Connectome Project (HCP) high-quality 

tfMRI data (Q1 release) [17]. Experimental results from the HCP datasets shown that these 
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well-characterized functional networks are reproducible across different tasks and 

individual brains and exhibit substantial spatial overlaps with each other, thus forming a 

collection of holistic atlases of functional networks and interactions (HAFNI). In our 

experiments, functional networks from different individuals are manually aligned by the 

cross-examination of several experts, one example is shown in Fig. 13 and the group-wise 

results are provided in Fig. 14. 

 

Fig.13. The task-evoked HAFNI components and the comparison with GLM-derived 

activation maps. HAFNI components across 10 different HCP subjects in the motor task 

are visualized in the two rows. The last two columns are the group-wise averages of 

HAFNI components and the group-wise GLM activation maps. 
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Fig.14. Group-wise averages of 12 HAFNI components across HCP subjects for the four 

tasks, including motor (M), emotion (E), gambling (G), language (L), as well as the 

corresponding averaged GLM-derived activation maps (rightmost column). 

 

More interestingly, these HAFNIs revealed two distinct patterns of highly 

heterogeneous (highly overlapped) regions and highly-specialized (task-evoked) regions 

in tfMRI data and showed that these two patterns of areas are reciprocally localized. In 

general, our work suggests a novel organizational principle of human brain function: its 
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functional architecture is reciprocally composed of hybrid highly-specialized areas and 

highly heterogeneous areas. The reciprocal spatial distribution of the networks is illustrated 

in Fig. 15, showing the existence of both functional Highly-Heterogeneous Region (HHR) 

and Highly-Specialized Regions (HSR). HHR region can be considered as the multiple-

demand (MD) area of the brain [59, 61], while an F-HSR region can be considered as a 

demand-specific (DS) area [59]. It is interesting that those two types of regions are also 

reciprocally distributed and widespread across the cerebral cortex, suggesting that the 

functional cortical architecture is composed of a reciprocal combination of frequent highly-

specialized regions and frequent highly-heterogeneous region across different types of 

cognitive or functional tasks. 

 

Fig.15. Visualization of the frequent HHRs (F-HHR) and frequent HSRs (F-HSR) for one 

individual brain across 7 tasks on the inflated cortical surface, color-coded according to 

the color bar at the bottom.  

 

3.3 Functional Network Transition Modeling  

Based on the functional networks discovered by the dictionary learning methods as 

introduced above, we can then model the transition among network dynamics through a 

sliding time-window based correlation-enforced learning scheme. Specifically, the input 

time series S (of dimension T×P, T is the number of time points, P is the number of voxels) 
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is divided into N number of overlapping temporal segments (i.e. time windows), each with 

window length of W. The overlapping section between the two consecutive windows 

contains W/2 time points. For the first temporal segment S1, the dictionary learning 

algorithm is employed to learn a dictionary D1 and the corresponding weighting coefficient 

matrix z1, which characterize the basis temporal variation patterns and the underlying 

sparse structures of S1 as described in Eq. 9 using K number of dictionary atoms. For the 

later temporal segments Sn (n>1) we perform the similar dictionary learning analysis but 

with enforcement applied upon the learned dictionary Dn to maximize the similarity 

between the overlapping portion of Dn and Dn-1: 

ℓ(𝐷𝑛, 𝑧𝑛) = 𝑚𝑖𝑛
𝐷𝑛𝜖ℝ𝑊×𝐾,𝑧𝑛𝜖ℝ𝐾×𝑃 

1

2
‖𝐷𝑛𝑧𝑛 − 𝑆𝑡‖𝐹 + 𝜆1 ∥ 𝑧𝑛 ∥1− 𝜆2𝑐𝑜𝑟𝑟∗(𝐷𝑛,  𝐷𝑛−1), (10) 

where the corr* function measures the atom-wise similarity between the overlapping 

section (denoted by D1 and D2) of the two dictionary matrix Dn and Dn-1. The final Dn is 

then the combination of D1 and D2. The gradient for z is unaffected by the enforcement 

term thus remains the same as in the original dictionary learning method. As the first W/2 

number of time points in Dn and the last W/2 number of time points in Dn-1 overlaps in time, 

considering a functional network with consistent activation patterns over time, the corr* 

function for its corresponding atoms in dictionary Dn and Dn-1 shall be very high. Thus by 

adding the negative correlation (balanced by λ2) as the extra penalty term, we are aiming 

to identify the most temporally consistent atoms in Dn regarding to atoms in Dn-1 and align 

them at the same index of the two dictionary matrices. The correlation enforcement scheme 

is motivated by the results from our previous work, where highly-correlated atoms were 

found from the consecutive-learned dictionaries. Based on Eq. 10, K number of functional 

networks series (termed as “network continuum”) with consistent temporal patterns within 
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the overlapping section and individualized (variability allowed) spatial patterns can be 

learned from the segmented fMRI data. 

Based on the dictionary learning results, the next step is to cluster the spatial patterns 

(as P×1 vectors) networks continnums. The clustering algorithm is consisted of two layers 

for individual-wise and group-wise clustering. In the first layer, networks within each 

subject are clustered to obtain the individual-level representative cluster centers. As the 

result of the first-layer clustering, networks from each subject will be represented by a few 

cluster centers. In the second layer, cluster centers from all subjects are then pooled 

together and further clustered. The final cluster centers obtained by the second-layer 

clustering are the group-wise representative brain functional states. The cluster centers are 

then mapped back to each functional network based on the clustering results of both layers, 

encoding the functional networks into discrete indices as illustrated in Fig. 16. 

 

Fig.16. Encoded network transition matrix, entry is the representative functional state 

associated with the corresponding time points in the network continuum.  
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As the network dynamics of each subject are now encoded as the state matrix, the 

functional state transitions can then be characterized by the left to right changes between 

adjacent entries in the state matrix. Based on the state transition matrix, a weighted directed 

graph (termed as “transition graph”) is built, where significant transition events with higher 

frequency of occurrence are identified. The resulting significant transitions constitute the 

core transition graph. Using the core graphs obtained from healthy control and patient 

populations as features, we can then build the classifier to discriminate the two populations 

based on their functional state dynamics.  

The experimental results by applying the model on the Autism Brain Imaging Data 

Exchange (ABIDE) datasets show that 74 discriminative transition types among 109 

functional states can be extracted, which shows significant difference between the ASD 

patients and normal controls. 32 of them show significantly higher (p<0.05) frequency in 

ASD patients and 42 of them show significantly higher frequency in healthy controls, as 

summarized in Fig.16. While the transition graph of the two populations share the same set 

of nodes (i.e. functional states), their functional transitions are quite different which reveal 

the potential underlying functional dynamics changes as the result of altered brain 

functional organization pattern caused by the disorder. 
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Fig.17. Visualization of the 74 discriminative functional transitions within the (a) normal 

control and (b) ASD patient populations. Each node in the graph represents one of the 

109 functional state, color-coded by their frequency. Edges representing ASD-specific 

transitions are colored by red, healthy control-specific transitions are colored by blue. 

 

Using the 74 discriminative transitions as feature vectors, the classifier is trained with 

10-folds cross-validation for verification and validation. The classification performance is 

evaluated by average of the 10-folds results based the percentage of TP (true positive), TN 

(true negative), FP (false positive) and FN (false negative) as summarized in Table. 1. The 

classification performance shows that the proposed classification framework based on 

functional network transitions could successfully differentiate the healthy control and 

patient populations. 

Accuracy 

ASD Patients 

as Positive Cases 

Healthy Controls 

as Positive Cases 

Precision Recall Precision Recall 

94.0% 92.2% 97.0% 95.5% 93.0% 

Table.1. Performance of the network transition-based classification framework. 
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3.4 Fast Dictionary Learning Method using Rank-1 Decomposition 

As introduced in section 3.2, we have successfully applied dictionary learning method 

on the whole-brain voxel-wise fMRI data for functional network discovery. However, as 

the data size of fMRI quickly out grows the current computational power, current 

dictionary learning methods are still in need of more improvements regarding to their 

efficiency and scalability. Specifically, while the state-of-the-art methods such as online 

dictionary learning [75] and stochastic coordinate coding method [76] have been 

extensively explored in our prior studies, it has been found that these methods would take 

10~20 minutes (depending on the hardware configuration) to finish the learning on one 

individual dataset consisting of around 1 million fMRI signals. As there are usually 

multiple subjects during multiple tasks/resting-state in each fMRI database (e.g. HCP Q1 

release consisted of the fMRI data from 68 subjects during 7 different tasks and resting-

state), it will then take tens of hours or even several days on our server machine to process 

the whole database, thus severely impeding the analysis progress. The bottleneck of the 

computational speed will be further worsened by another two facts. First, most of the 

previous dictionary learning works for fMRI data modeling assumed the temporal 

stationarity. That is, time series from the whole fMRI scan are used as the input for the 

learning without considering possible temporal dynamics of brain function. While it has 

been shown in various literatures that the organization of brain functions is under time-to-

time state changes [3, 13]. In order to better capture the functional networks dynamics, it 

is more appropriate to perform the dictionary learning method on the temporal segment 

within each quasi-stable brain state. However, such approach will greatly increase the 

computational load as there would be fMRI data defined in multiple temporal segments to 
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be analyzed for each individual dataset. Second, individual-level or small group-level 

analysis might be insufficient for identifying the consistent and discriminative functional 

networks (e.g. for diagnosis purposes), limited by the cross-subject/cross-study variability 

in the reported results. In such cases, population-level studies taking the aggregated fMRI 

data from large number of subjects as input, e.g. the “1000 functional connectome” data 

[32] can overcome such limitations and provide more powerful inference for cognitive and 

clinical neuroscience studies. Yet as discussed in [77], the memory requirement of the 

population-level study quickly goes unbearable as database grows larger, thus requiring a 

more scalable and light-weighted computational framework. 

To provide the solution targeting a more efficient and scalable dictionary learning 

method as discussed above, here we present the rank-1 dictionary learning (r1DL) model 

for the functional network decomposition from fMRI data. The model aims to iteratively 

estimate multiple rank-1 basis vector u (T×1 vector with unit length) and its loading 

coefficient vector v (P×1 vector) to decompose the input signal matrix S of dimension T×P 

by minimizing the following energy function L(u, v):  

𝐿(𝑢, 𝑣) = ‖𝑆 − 𝑢𝑣𝑇‖𝐹 , s. t. ‖𝑢‖ = 1, ‖𝑣‖0 ≤ 𝑟. (10) 

Eq. 10 indicates that the product of u and v is supposed to well-fit the input S while the 

total number of non-zero element in v should be smaller or equal to the given sparsity 

constraint parameter r. Note that Eq. 1 is a special formulation of the more general 

dictionary learning framework described in Eq. 9. The learned dictionary vector u describes 

one underlying functional activation pattern that serves as the basis for the whole brain 

functional dynamics, while the loading coefficient vector v describes how the basis u 

contributes to the activation at each voxel. The minimization problem in Eq. 10 can be 
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solved by alternatively updating u (randomly initialized before the first iteration) and v 

until convergence: 

𝑣 = argmin
𝑣

‖𝑆 − 𝑢𝑣𝑇‖𝐹 = (𝑢𝑇𝑆)𝑇 , 𝑠. 𝑡. ‖𝑣‖0 ≤ 𝑟, 𝑢 = argmin
𝑢

‖𝑆 − 𝑢𝑣𝑇‖𝐹 =
𝑆𝑣

‖𝑆𝑣‖
. (11) 

Eq. 11 involves multiplication between input matrix S and vector u, followed by setting 

all elements in the resulting v smaller than its r-th largest value to zero, essentially 

performing the vector partition operation on v. One rank-1 basis [u, v] can be estimated in 

each step, afterwards the input matrix S will be deflated to its residual R: 

𝑅𝑛 = 𝑅𝑛−1 − 𝑢𝑣𝑇 , 𝑅0 = 𝑆, 1 < 𝑛 ≤ 𝐾, (12) 

where K is the total number of expected basis (i.e. dictionary atoms) to be discovered 

from the input data. From a neuroscience perspective, our basic premise is that during both 

resting-state and task performance, there could be multiple functionally active networks 

involved in the constitution of the fMRI blood oxygen level dependent (BOLD) signals in 

the brain. Thus the fMRI signal measured on each voxel is the combination of the co-

activations from multiple, yet limited number of functional networks. By assuming such 

combination is linear, it will then be appropriate and intuitive to subtract the signal on the 

voxel with the activation patterns from the known networks (e.g. those have been learned 

in previous steps), with the subtraction weighted by the corresponding contributions of 

each network, before decomposing new networks.  

The total K number of u vectors constitute the learned dictionary matrix U (of 

dimension T×K). The corresponding sparse vectors v constitute the loading coefficient 

matrix V (of dimension K×P). The algorithmic pipeline is illustrated in Fig. 18.  
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Fig.18. Illustration of the r1DL model applied on fMRI dataset in a running example. (a) 

Illustration of the iterative deflation procedure during which the input data S is 

decomposed and updated at each step from 1 to K.  (b) Visualization of the time series in 

dictionary matrix U. (c) Visualization of the corresponding loading coefficient matrix V. 

 

As shown in the figure, the input fMRI data can be decomposed into several 

neuroscientifically meaningful functional networks, with their temporal patterns defined in 

U matrix and spatial patterns defined in V matrix. As also observed in previous chapters, 

U matrix has been found to be highly correlated or anti-correlated with stimulus paradigm, 

while the corresponding V matrices were found to be consisted of various task-evoked 

networks including visual, auditory, motor network and thalamus, anti-task networks 

including Default Mode Network (DMN), as well as neuroanatomic areas such as the 

ventricle. To validate the effectiveness of the proposed r1DL model, in this work we 

applied the model on HCP Q1 release task fMRI (tfMRI) database. The learned results 

were then compared to the set of functional network atlas identified from the Holistic 
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Atlases of Functional Networks and Interactions (HAFNI) framework introduced in section 

3.2, as well as the 9 resting-state network (RSN) templates reported by applying ICA on 

rsfMRI data [16]. The comparisons showed that the proposed r1DL model can obtain the 

similar set of those well-established functional networks using much reduced time with the 

same parameter settings, as shown in Fig.19. The time cost for decomposing each network 

is just less than 1 second on a typical machine, thus allows near real-time user feedback. 

Further, by using smaller dictionary size parameters, r1DL can achieve several-folds speed-

up comparing with the previous model. 

 

Fig.19. Average time cost (measured in seconds) for decomposing functional networks 

from the tfMRI data during 7 tasks across 68 subjects using three different dictionary 

learning methods as well as different dictionary size parameters for r1DLmodel. 

 

In summary, comparing with the whole-matrix gradient-based dictionary learning 

algorithms, such as the online dictionary learning [75] (based on stochastic gradient 

descent) and the K-SVD [78] (based on gradient descent), there are several key advantages 

of the proposed method that could greatly improve the speed and scalability of the network 

decomposition process. 1) The method does not rely on gradient computation. Thus it does 

not need to tune the learning rate/step size, and also avoids the slow convergence near the 
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solution shared by many gradient-based algorithms. 2) Because the method estimates one 

rank-1 basis vector then saves and discards them at each learning step, r1DL is faster and 

more scalable especially on large datasets as it avoids maintaining the potentially very large 

learned results in the memory. 3) From our pilot tests, it was observed that networks learned 

in the earlier steps were more functionally meaningful, while latter-learned networks tend 

to be noises. This feature, combining with the fact that in r1DL networks are learned 

iteratively, helps us to determine the optimal dictionary size, which is a difficult task when 

applying dictionary learning in practice and a major factor affecting the learning speed. For 

r1DL method, we can safely set a sufficiently large dictionary size for the iterative learning 

and truncate the latter noise network components. In addition, the preliminary results have 

shown that r1DL can obtain similar set of results with smaller dictionary size comparing 

with the previous methods, thus improve its efficiency for application. 4) The method 

enables significantly accelerated user feedback and interactive visual analytics, as it can 

generate the results back to the user based on only the first few functional networks learned, 

then update the results along with the learning process. 
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CHAPTER 4 

POPULATION-WISE FUNCTIONAL SPACE 

FOR BIG DATA ANALYTICS ON FUNCTIONAL NEUROIMAGING 

4.1 fMRI Big Data Analytics 

The models we have developed so far as described through Chapter 2 to Chapter 3 have 

covered most of the most advanced methods in characterizing functional brain and its 

dynamics, and have generated important discoveries. However, the models and discoveries 

we have obtained so far are either subject or group specific, while it has been observed that 

individual-level or small group-level analysis has the problem of lacking the 

representability in their results. The problems are generally indicated by the large cross-

study variability as well as the lowered reproducibility from their conclusions, possibly due 

to the fact that the dataset in consideration was too small to sufficiently cover all the brain 

functional dynamics in the population thus lack the generalizability for the solid and 

holistic conclusion. For example, the dictionary learning methods are generally applied on 

individual voxel-wise [9, 10] data, while the connectomics estimation is performed on the 

regional (DICCCOL) level [3, 8], with the total data size varied from MB (megabyte) to 

GB (gigabyte) level.  

On the other hand, population-level functional network analysis can intrinsically 

overcome such limitations and provide an important and powerful tool for cognitive and 

clinical neuroscience studies. The common and consistent functional networks identified 

across many individuals by the population-wise network analysis can offer a holistic 
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reference system for studying brain response to various stimulus. In recognition of such 

importance, studies on population-level network analysis modeling have been getting more 

focus in the field, including earlier works by [79] who has suggested using a two-stage 

spatial principle component analysis (PCA) framework to first perform dimension 

reduction on individual dataset, followed by performing the full component analysis on the 

aggregated reduced data. Recently, works of [77] used a similar but more robust approach 

to perform spatial PCA in the population-level analysis of Human Connectome Project 

(HCP) grayordinates fMRI data from 1200 subjects. It is still a challenging yet increasingly 

important problem to performing comprehensive network/component analysis on 

extremely-large and ever-growing dataset with high scalability. Specifically, the desired 

framework is supposed to include the following features: 1) being scalable to the data size 

without extra hardware (e.g. memory) requirement; 2) running in parallel/distributed 

manner, to achieve linear/sub-linear time cost with regarding to data size; 3) obtaining both 

individual-level and population-level results, the results shall be integrated and 

comprehensive. In other words, the functional networks obtained from each individual 

dataset by the framework shall be the same comparing to results obtained by other methods 

from the same dataset; 4) establishing the correspondence across individual-level results to 

enable cross-subject, cross-group analysis.  

 

4.2 Distributed Rank-1 Dictionary Learning (D-r1DL) Framework 

Following the previous success in using dictionary learning, especially the r1DL model 

for functional network decomposition and in response to the challenges on fMRI big data 

analytics listed above, we then devolved the novel distributed rank-1 dictionary learning 
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(D-r1DL) model, leveraging the power of distributed computing for handling large-scale 

fMRI big data while at the same time taking advantage of the flexibility of the r1DL model. 

As the r1DL algorithm is very light-weighted regarding to the operational complexities 

most of its routines will only take one vector as input and one vector as output. This feature 

helps the r1DL algorithm to be easily parallelized to its distributed version.  We then used 

the Spark engine to implement the D-r1DL algorithm, which is a high-performance 

distributed compute engine for large-scale data processing. It is similar to MapReduce, but 

has several distinct advantages that make it ideal for the deployment of large-scale analytics 

frameworks. First, its basic abstraction for distributed data, the resilient distributed dataset 

(RDD) [80], combines robust fault-tolerance with highly efficient data layout strategies. 

RDDs track their computation lineage as a directed acyclic graph; therefore, if a segment 

is lost, it can be easily recomputed from the lineage. These lineages can be optimized on-

the-fly to minimize the overhead of the prescribed computations. Second, all operations in 

Spark are performed in-memory, thus significantly improving throughput of data pipelines. 

This is a departure from Hadoop MapReduce, in which data are serialized to disk in 

between map and reduce steps. Third, the Spark compute engine is much more 

generalizable than MapReduce, and can efficiently support highly diverse workloads. 

While Spark supports the map and reduce primitives from Hadoop MapReduce, it also 

supports graph processing [81] and streaming [82] APIs on the same compute engine, in 

addition to numerous functional primitives beyond map and reduce. This structural 

flexibility is crucial to the efficient implementation of a wide variety of distributed 

algorithms.  
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An illustration for the operational and algorithmic pipeline consisting of three layers of 

model specification is shown in Fig. 20. The first and foremost deliverable of this work is 

to provide an integrated solution for the large-scale fMRI big data analysis. Therefore, we 

initially deployed the proposed D-r1DL model on our in-house server (termed “in-house 

solution”) with an integrated neuroinformatics system [83]. The neuroinformatics system 

provides a web-based user interface for fMRI data uploading, hosting and result post-

processing as illustrated in Fig. 20(a). Alternatively, we also tested deploying the D-r1DL 

model on the cloud computing service provided by Amazon Web Services Elastic Compute 

Cloud (AWS-EC2), which has been widely applied for biomedical imaging researches due 

to its resource flexibility and ease of use. For the “AWS-EC2 solution”, the data 

preprocessing was performed before running the D-r1DL model on it. Subroutines of the 

r1DL algorithm and its logic flow are illustrated in Fig. 20(b). The parallelization 

subroutines and its relationship with the r1DL algorithm are illustrated in Fig. 20(c). 
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Fig.20. (a): Operations on the neuroinformatics system for preparing the application of 

D-r1DL and post-analysis. (b): Algorithm pipeline of the rank-1 dictionary learning. (c): 

Parallelization subroutines of the D-r1DL model derived from the corresponding 

subroutines of the r1DL using Spark. The distribution of input data S is based on RDDs. 

 

For the parallelization on the Spark engine, we implemented the vector-matrix 

multiplication and the matrix-vector multiplication steps by their corresponding distributed 

primitives in Spark. Reading and partitioning the input data S is supported by the RDD 

abstraction; therefore, the distribution of S to each node as a series of key-value pairs is 

inherently straight forward: data formation of the current work is based on row-vectors. In 

other words, each column in S contains the T number of observations for one specific 

feature, to the total of P features. While S was maintained as an RDD, the vectors u and v 

were broadcast to all nodes. Thus during the vector-matrix multiplication, each node will 

use its portion of the updated u vector, and then estimate the v vector based on the 

multiplication of portions of S and u. The resulting v vectors from all the nodes will be then 

map-reduced by the summation operation. The matrix-vector multiplication is relatively 

easier, where each node will use all the updated v vector then estimate its corresponding 

portion of the u vector. The resulting u vector is just the collection of the results from each 

node. In addition, the matrix deflation operation was also parallelized by broadcasting both 

the u and v vectors then estimating the outer produce between portion of u vector and the 

whole v vector at each node. The S matrix is then subtracted by the results of each node 

through mapping over each row and deflating it in parallel. Because the distributed 

primitives added for the parallelization in D-r1DL will potentially cause large extra 
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computations and/or data transfers across nodes, we analyzed the extra complexity induced 

by the parallelization of the three subroutines. Assuming that there are M number of nodes: 

• For the vector-matrix multiplication for estimating v, the total complexity is 

(T*M+P*M+Tlog(T)+P): T*M caused by the broadcasting, P*M+Tlog(T) caused by the 

map reduce and network shuffle, and P caused by the updating of v. 

• For the matrix-vector multiplication, the total complexity is (P*M+T): P*M caused 

by the broadcasting, and T caused by the updating of u. 

• For the matrix deflation, the total complexity is (P*M+T*M): both u and v will be 

broadcasted to all M nodes. 

The D-r1DL model was deployed on two different sets of server clusters, leading to 

two solutions for the data analysis. The illustrative diagram showing the organization and 

execution architecture of the two solutions are shown below.  
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Fig.21. Illustrative diagram showing the organization and execution architectures for the 

standalone local mode and the multi-worker cluster mode. 

 

Both of the solutions have shown improved performance over the original r1DL model, 

especially when the dataset is large. In our experiment, the testing input files sizes of the 

three types of dataset were 300MB, 700MB and 2GB, respectively. Using the in-house 

solution, we firstly analyzed the performance of the D-r1DL model using different numbers 

of cores on a single machine. It was found that for all the three datasets, there exists clear 

logarithmic relationship (R2=0.84, 0.89 and 0.92) between the number of cores recruited 

and the total time cost for the decomposition. The speed boosts by recruiting more cores 

for the computation comparing with the baseline (1-core) configuration for the three 

datasets using the in-house solution are listed in Table 2, showing the ratio between the 

time cost using 1 core and the time cost using multiple cores. As the configuration for using 

only one core for D-r1DL is equivalent to the non-parallel algorithm, the performance 

statists indicate that the parallelization based on Spark could greatly improve the 

performance of the rank-1 dictionary learning algorithm. 

 Emotion WM RS 

2 cores 3.1 2.8 1.8 

4 cores 6.0 5.1 3.3 

8 cores 6.6 7.7 6.3 

16 cores 6.8 8.6 6.7 

Table.2. Ratios of time cost decreases by recruiting more cores comparing with the 

single-core configuration.  

 

In addition to the experiments of the single-machine multi-core configurations 

conducted using the in-house solution, we have also applied the D-r1DL on the same 
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datasets using the cloud computing service provided by AWS-EC2. We aimed to 

investigate the performance of D-r1DL when applied over multiple machines through a 

network interface. Specifically, as the Spark Python architecture and the resilient 

distributed dataset abstracts have been designed for supporting large-scale, high efficient 

analytic framework, we are interested to test its capability of utilizing the distributed 

computational resources provided by AWS-EC2. We tested the performance in terms of 

time and memory cost of the D-r1DL model using 1, 2, 4, 8 and 16 workers on three 

datasets, while each worker has two cores for the computation. The D-r1DL would be 

running in stand-alone mode under single-worker configuration, similar to the 

configuration used in the in-house solution. As discussed in the complexity analysis aboe, 

the communications through network interfaces caused by the parallelization of 

computation (e.g. the broadcasting of u and v) will potentially increase the time cost mainly 

due to latencies. Thus the single-worker configuration serves as the baseline for testing 

whether recruiting more workers will be beneficial from the performance perspective. The 

results shown that the AWS-EC2 solution recorded faster computation speed (10%~80% 

faster) comparing with the in-house solution, especially on larger dataset, when both of 

them use two cores. Considering the fact that the hardware configuration of AWS-EC2 

features larger memory capacity better optimized for computation purposes, such 

difference in performance is within our expectation. On the other hand, it is interesting to 

observe that for AWS-EC2 solution, there exists the break-even point at which the 

multiple-worker mode outperformed the stand-alone mode, but only for the two larger 

datasets. For the 700MB WM and the 2GB RS dataset, using 4 or more workers could lead 

to faster speed comparing with the standalone mode using 1 worker. While for the smaller 
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300MB Emotion data, the standalone mode is the fastest among all experiments. Thus it 

can be concluded that the multi-worker configuration will be more suitable for analyzing 

larger datasets, while standalone mode or the simpler in-house server solution might be 

preferred for datasets with typically smaller sizes. More importantly, the memory cost on 

each worker is near constant regardless of the data size, indicating that the multi-worker 

mode under AWS-EC2 solution scales good with the increasing input file size, as it 

maintains reasonable small (~100MB) memory cost for all configurations including the 

single-worker standalone mode. That is the major advantage of using Spark Python model 

and its resilient distributed dataset for the parallelization: one or multiple workers need not 

to load the whole dataset at once, but only its corresponding portion of the data according 

to the data partitioning strategy implemented in the RDDs abstract.  

In summary, the better performance gain on larger dataset indicates that the 

parallelization of the rank-1 dictionary learning could potentially overcome the 

computational bottleneck for analyzing big neuroimaging data, potentially enabling high-

throughput analysis on a locally-deployed high-performance computation cluster in the 

future. D-r1DL has shown that it is a suitable solution for fMRI big data analytics: 

1) Accuracy: D-r1DL can discover the same set of results by the General Linear 

Model (GLM), as well as other functional networks reported in literature such as the well-

known resting-state networks (RSNs) also from tfMRI data. 

2) Speed: D-r1DL distributes computational loads to many nodes, thus achieving 

greater speed increases with larger clusters. On individual data, the decomposition results 

are visualized and fed to the user in real-time. 
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3) Scalability: D-r1DL has near-constant memory cost regardless of the input data 

size as the nodes work on partitions of data rather than the whole dataset. Spark’s basic 

distributed data abstraction, the resilient distributed dataset (RDD), is designed to scale 

gracefully with the size of the data. In addition, the memory cost of the learning process is 

minimized to only two vectors. 

4) Deployment: D-r1DL has been integrated into our in-house neuroinformatics 

system and is currently running as a publicly-available web service. 
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