

GRAPH TREE DECOMPOSITION ENABLED BIOPOLYMER FOLDING

by

QI LI

(Under the Direction of Liming Cai)

ABSTRACT

 Biopolymer tertiary structure prediction by computer programs plays a very important

role in complementing the experimental determination method. There are two structure

prediction approaches: template-based and ab initio predictions. Due to the nature of residue

interactions in biopolymer tertiary structures, both prediction approaches are required to perform

intensive computations. Previous research has discovered a small treewidth property for

interaction topology graphs of biopolymer tertiary structures, rendering the opportunity to speed

up the combinatorial computation needed by the predictions with graph tree decomposition based

dynamic programming. In the current research, a heuristic strategy is developed to reduce the

memory space usage for the dynamic programming. An application of this method to the

template-based protein tertiary structure prediction is considered in detail. In addition, the

method is extended as a step toward the ab initio prediction of biopolymer tertiary structures.

INDEX WORDS: template-based structure prediction, ab initio structure prediction,

biopolymer sequence-structure prediction, graph tree decomposition,

treewidth, dynamic programming

GRAPH TREE DECOMPOSITION ENABLED BIOPOLYMER FOLDING

by

QI LI

B.S., Central China Normal University, China, 2001

M.S., East China Normal University, China, 2004

M.Ed., University of Georgia, 2006

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2010

© 2010

Qi Li

All Rights Reserved

GRAPH TREE DECOMPOSITION ENABLED BIOPOLYMER FOLDING

by

QI LI

 Major Professor: Liming Cai

 Committee: Russell Malmberg
 Khaled Rasheed

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
December 2010

iv

ACKNOWLEDGEMENTS

It has been my honor to study under Dr. Liming Cai’s guidance. Dr. Cai is the most

dedicated professor I have been working with. I thank Dr. Cai for his patience, encouragement,

and clear direction in this research, and his prompt response to requests.

I would like to thank Dr. Russell Malmberg and Dr. Khaled Rasheed for their valuable

time and suggestions.

I would like to thank Xingran Xue, Joseph Robertson, Yingfeng Wang, Zhibin Huang

and other members in the RNA Informatics group for their help.

Finally, I would like to thank my beautiful wife, Jin Tang, and both our parents, brothers

and sisters for their endless support and love that make everything possible.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER

 1 INTRODUCTION ...1

 2 TREE DECOMPOSITION BASED DYNAMIC PROGRAMMING4

 2.1 Definition and Properties ...5

 2.2 A TDDP Algorithm..6

 3 BIOPOLYMER FOLDING ...10

 3.1 Template-Based Structure Prediction ..11

 3.2 ab initio Structure Prediction ...15

 4 A MEMORY EFFICIENT ALGORITHM FOR TEMPLATE-BASED PROTEIN

TERTIARY STRUCTURE PREDICTION ...19

 4.1 Table Size Reduction ...19

 4.2 Energy Functions ...28

 4.3 Overview of the TDDP Algorithm Implementation36

 5 A TOPOLOGY MODEL FOR ab initio TERTIARY STRUCTURE

PREDICTION…………………………………………………………………….….38

 5.1 Space Partition ...39

vi

 5.2 Candidate Generation...43

 5.3 Dynamic Programming ..45

 6 CONCLUSION AND FUTURE WORK ..46

REFERENCES ..48

vii

LIST OF TABLES

Page

4.1 The relationship between core units and their candidates ...20

4.2 An abstract basic structure of a dynamic table ..21

4.3 The dynamic table with only the “Score” column ...23

4.4 The final data structure of a dynamic table ..26

4.5 The alignment tables ..30

4.6 The two body interactions of the template sequence t ...30

4.7 All combinations of mappings between core units and their candidates31

4.8 Weights on different type of energies ..32

4.9 Mutation energy matrix..34

4.10 Secondary structure scoring matrix ...34

4.11 The two body interaction matrix ..35

5.1 The mapping between vertex and its designated space regions ...43

viii

LIST OF FIGURES

Page

2.1 A graph (a) and its tree decomposition (b) of width 2 ...6

2.2 A graph and its tree decomposition ...7

2.3 Three tables for the three tree bags in Figure 2.2(b) ..9

3.1 A Folded ChainB of Protein Kinase C (PDB-ID 1AV) protein (a) with 8 core units and its

corresponding structure graph (b) ..12

3.2 A tree decomposition for the structure graph in Figure 3.1(b) ..13

3.3 The nucleotide interactions of yeast tRNA (Asp) (a) and its corresponding topology graph

(b)…… ...17

4.1 The preprocessing alignment result between a query sequence q and a template sequence

t…………………. ...20

4.2 The constructed template sequence graph ...21

4.3 The tree generated by a tree decomposition for the graph in Figure 4.221

4.4 The breakdown of a dynamic table ..24

4.5 A simplified example of an alignment between a template sequence t and a query sequence

q……..29

5.1 Distance between two overlapped spheres ..40

5.2 A tree decomposition of the graph in Figure 3.3(b) with 7 tree bags41

5.3 Merging spheres ...42

5.4 Discrete positions of a sphere ..44

1

CHAPTER 1

INTRODUCTION

Biopolymer (e.g. a protein or RNA) tertiary structure carries the essential information for

defining the biopolymer biological functions. The tertiary structure determination of a

biopolymer can be conducted by the use of X-ray crystallography and nuclear magnetic

resonance (NMR) [1]. While experimental determination of a biopolymer tertiary structure and

function is the most reliable way [10], a much faster, perhaps less accurate, structure prediction

by computer programs can facilitate the experimental determination by narrowing down the

number of structure candidates for further validation. This has been a strong motivation to

develop accurate and efficient computational methods for biopolymer tertiary structure

prediction from sequence data.

 In general, the existing computational methods for biopolymer tertiary structure

prediction can be either template-based or ab initio. A template-based prediction method uses

templates as references to predict the structure of a new sequence through sequence-structure

alignment [8, 9, 16, 33, 34, 35, 36]. A tertiary structure template is usually constructed from a

consensus structure of homologous polymers. The template-based prediction assumes that the

total number of different structural folds in nature is relative small compared with the number of

sequences of biopolymers [35]. With known tertiary structures of biopolymers identified, the

tertiary structure of a new sequence may have existed among these previously discovered

structures. However, this method can only predict structures that we already knew. As an

2

alternative, a ab initio prediction method derives the tertiary structure directly from the sequence

without referring to any previously solved structures [2, 10, 12, 13, 15, 19, 20, 21, 24, 26]. The

ab initio prediction searches a space of 3D conformations of a new sequence for the most

possible conformation with biological constraints. For example, the constraint for a protein

sequence is that the native structure of the sequence should possess the minimum global free

energy [35]. However, due to the large space 3D conformations, identifying the desired

conformation is computation intensive. The ab initio prediction tends to trade efficiency with

prediction accuracy.

The need for computation efficiency also exists in a template-based prediction since an

efficient sequence-structure alignment algorithm is required to search a large number of structure

templates. We are interested in examining how a graph tree decomposition framework can be

used for the alignment algorithm. The graph tree decomposition can be very promising in terms

of computational time. The tree decomposition has the beauty of separating unrelated concerns,

which decreases the computational complexity from exponential time to polynomial time on

graphs with a fixed treewidth. This can be accomplished through a bottom up dynamic

programming, which carries out the optimal search process considering the biological constraints

based on the tree bags of the tree decomposition of the examined graph. We call such a process

tree decomposition based dynamic programming, or TDDP in short.

The TDDP has been studied for a template-based prediction for protein threading and

RNA secondary structure homology search [14, 18, 28, 29, 32, 34, 35]. The core computation of

these applications is the sequence-structure alignment using TDDP [29]. However, for a naïve

implementation, the memory space for saving the dynamic tables can grow exponentially as the

treewidth. In this research, we will propose a heuristic strategy to reduce the memory space of

3

the dynamic tables without sacrificing the running time complexity. In addition, we will explore

the energy functions which will be used to compute the objective function during the dynamic

programming process.

The TDDP can also be suitable for a ab initio structure prediction. The new challenge is

that the dynamic programming process for the ab initio prediction has to consider not only the

fitness score but also the geometric constraints due to the lack of folded templates. We will

explore ideas on how to take advantage of the tree decomposition to integrate the geometric

constraints into the dynamic programming process to keep the computation complexity as

polynomial time. In this research, we will focus on an application to RNA 3D folding.

The rest of the thesis is organized as follows. Chapter 2 introduces the notion of graph

tree decomposition and dynamic programming algorithm using a maximum independent set

problem as an example. Chapter 3 explores the components of biopolymer folding in detail and

how a TDDP algorithm can solve the alignment problem in a polynomial time for a given fixed

treewidth. Chapter 4 illustrates the heuristic strategy to reduce the size of dynamic tables and the

energy functions which are involved for template-based protein tertiary structure prediction.

Chapter 5 examines a potential framework to integrate the check of the geometric constraints

into a TDDP algorithm for the ab initio RNA 3D Folding. Chapter 6 concludes the work of this

research and addresses the future work.

4

CHAPER 2

TREE DECOMPOSITION BASED DYNAMIC PROGRAMMING

In graph theory, a tree decomposition is a topological view of a graph with a tree representation.

The tree decomposition gives rise to the notion of treewidth, a metric measuring how much the

graph is tree-like. In algorithmic graph theory, the tree decomposition has been used to improve

the efficiency of algorithms solving many combinatorial optimization problems on graphs

constrained by a small treewidth.

The treewidth is usually the maximum number of vertices minus one in the tree nodes for

a tree decomposition. While it is NP-complete to determine whether the treewidth of a given

graph is at most a given integer 𝑘 [3, 4], there are polynomial approximation time algorithms for

the problem on a bounded constant 𝑘 [4, 5, 6, 7]. The major interest in the tree decomposition is

that we can solve many computationally hard problems for an arbitrary graph in polynomial or

linear time if we have a tree decomposition of this graph with a treedwidth bounded by a fixed

constant [4].

In this chapter, we will review the definition of the tree decomposition and related

properties. Then we will illustrate how the tree decomposition speeds up solving the maximum

independent set problem by a bottom up dynamic programming, which is also called TDDP as

we did in chapter 1.

5

2. 1 Definition and Properties

Definition [25]: Let G = (V, E) be a graph, where V is the vertex set and E is the edge set. A tree

decomposition of a graph G is a pair (X, T), where X = {𝑋𝑖 | 𝑖 ∈ I} is a family of subsets of V,

and T is a tree whose nodes are annotated with integers in I, satisfying the following conditions:

1) ⋃ 𝑋𝑖𝑖 ∈𝐼 = 𝑉

2) ∀ 𝑢, 𝑣, (𝑢, 𝑣) ∈ E, ∃ i ∈ I such that 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑖

3) ∀ 𝑖, 𝑗,𝑘 ∈ I, if node 𝑗 is on the path from node 𝑖 to node 𝑘 in T, then 𝑋𝑖 ∩ 𝑋𝑘 ⊆ 𝑋𝑗

The tree node 𝑖 of T is associated with 𝑋𝑖, which is called a tree bag. The first condition requires

that each graph vertex should be associated with at least one tree node. The second condition

requires that two adjacent vertices in the graph should appear in at least one same tree node. The

third condition requires that the tree nodes containing a vertex form a connected subtree of T.

There could be many tree decompositions for a graph. For example, a trivial tree

decomposition contains all vertices of a graph in a single root node. The treewidth of the tree

decomposition (X, T) is defined as the 𝑚𝑎𝑥𝑖∈𝐼 |𝑋𝑖|-1. The optimal tree decomposition of a graph

G is the minimum treewidth over all possible tree decompositions. The optimal tree

decomposition can have many forms as well. Figure 2.1 gives an example about a graph and its

tree decomposition of width 2.

A very important characteristic of the tree decomposition is that the tree bag on the path from

one tree bag to another tree bag is a graph separation. In Figure 2.1(b), the tree bag 3 directly

connected the tree bag 1, the tree bag 2 and the tree bag 4 together. If we remove the common

vertices {b, d, e} contained in the tree bag 3, the remaining vertices {a, c, g} are separated. This

characteristic with other properties make it possible to develop dynamic programming

algorithms for many graph problems with a tree decomposition. In the following, we give a

6

detailed explanation about the dynamic programming process on how the tree decomposition

solves the maximum independent set problem for a graph given its tree decomposition.

2. 2 A TDDP Algorithm

The maximum independent set problem finds the maximum size of a set W ⊆ V in a given graph

G = (V, E), such that for all 𝑢, 𝑣 ∈ W and (𝑢, 𝑣) ∉ E. Assume we have a tree decomposition

({𝑋𝑖 | 𝑖 ∈ I}, T) of the input graph G with the treewidth 𝑘. For each 𝑖 ∈ I, define 𝑌𝑖 = {𝑣 ∈ 𝑋𝑗 |

j = i or j is a descendant of i}. Based on the separation property and the definition of the tree

decomposition, we argue that, if we have an independent set W of the subgraph G[𝑌𝑖] induced by

𝑌𝑖, we only need consider what vertices in 𝑋𝑖 belong to W not what vertices in 𝑌𝑖 − 𝑋𝑖 when we

Figure 2.1: A graph (a) and its tree decomposition (b) of width 2.

(a)

(b)

a

b

c

d

e

f

g

h

i

j

1

2

3 4 5 6

7

8
d e

g

d f

g

f g

i

b d

e

a b

d

f h

i

b c

e

g i

j

7

extend W to an independent set of G. This builds the foundation to solve the maximum

independent set problem using a bottom up dynamic programming algorithm in O(𝑚2𝑘) running

time, where 𝑚 is the number of tree nodes.

The dynamic programming starts with building one table 𝑇𝑖 for each tree bag 𝑋𝑖 . The

table 𝑇𝑖 contains |𝑋𝑖 | + 3 columns. One column for each vertex in 𝑋𝑖 . The extra three columns

are “Valid”, “Number” and “Optimal”. The “Valid” column checks if a specific set in a row is

valid according to the constraint that for all 𝑢, 𝑣 ∈ W, (𝑢, 𝑣) ∉ E. The “Number” column means

the size of the current set. The “Optimal” column means the rows with the maximum number in

this table. The number of the optimal rows can be more than one. We can choose one of them

arbitrary. Rows are all possible combinations for vertices in 𝑋𝑖 appearing in W. We can use 1 if

the corresponding vertex is in W or 0 if the vertex is not in W.

Figure 2.2 shows a graph and its tree decomposition for the maximum independent set

problem. Figure 2.3 gives the example of building three tables {𝑇1, 𝑇2, 𝑇3} for the three tree bags

Figure 2.2: A graph and its tree decomposition. The graph (a) has five vertices {1, 2, 3,

4, 5}. Its tree decomposition (b) has treewidth 2 and three tree bags annotated as 1, 2 and

3 separately.

1

2 3

(a) (b)

1

2

3

4

5

1

2 3

2, 3,

4

4, 5 1, 2

8

{1, 2, 3} in Figure 2.2 correspondingly. In Figure 2.3, with a postorder traversal of the tree in

Figure 2.2(b), we build the table 𝑇2 first, the table 𝑇3 second and then the table 𝑇1 at last. Each

row of the tables represents an independent set locally to the tree bags contained in the subtree

corresponding to the considered tree node. Computing leaf nodes (𝑇2 and 𝑇3) is relatively easy

because they do not have children. When computing the table 𝑇1, we first compute the validation

for each row on its own set 𝑋1. We only look up its direct children tables when the combination

itself is valid. For example, we look up both 𝑇2 and 𝑇3 when working on the first, second and

third rows of 𝑇3. But we do not look up the direct children tables when working on the fourth

row of 𝑇1 because the vertex 2 and the vertex 3 should not appear in a valid independent set at

the same time because they form an edge. And we only look for the local optimal rows according

to the overlapped vertices and their values. Choose one arbitrary if there are multiple local

optimal rows. For example, when working on the first row of 𝑇1, we look up 𝑇2 to get the value

for the vertex 1 based on the values of overlapped vertices. For this case, the overlapped vertex is

the vertex 2 and its value is 0. In 𝑇2, there are two valid rows given the value of the vertex 2 is 0.

We are only interested in the row with the maximum number, which means we choose the

second row where the vertex 1 is 1 because the second row has the set size as 1 compared with

the first row where the set size is 0. We choose the global optimal number as our final result once

computing the root table is finished. For this example, the size of the maximum independent set

is 3. If we need to know what vertices are included in the result, we can use preorder traversal to

trace back to get the value for the maximum independent set. We can arbitrarily choose one if

there are multiple optimal rows in the root node table. For this example, the maximum

independent set is {1, 3, 5}.

9

1 2 3 4 5 Valid Number Optimal

1 0 0 0 1 √ 2

0 1 0 0 1 √ 2

1 0 1 0 1 √ 3 √

 1 1 0 ×

1 0 0 1 0 √ 2

0 1 0 1 0 ×

 0 1 1 ×

 1 1 1 ×

4 5 Valid Number Optimal

0 0 √ 0

1 0 √ 1 √

0 1 √ 1 √

1 1 ×

1 2 Valid Number Optimal

0 0 √ 0

1 0 √ 1 √

0 1 √ 1 √

1 1 ×

Table 2 a Table

(c) 𝑇3

(a) 𝑇1

Figure 2.3: Three tables for the three tree bags in Figure 2.2(b). (a) is the table 𝑇1 for the

tree bag 𝑋1 in Figure 2.2(b), (b) is the table 𝑇2 for the tree bag 𝑋2 in Figure 2.2(b), and (c)

is the table 𝑇3 for the tree bag 𝑋3 in Figure 2.2(b). Empty cells mean “Not Applicable”, in

other words, “No need to compute, specify or exist”. The dashed cells in (a) are NOT really

part of the table, but only for the convenient visualization about the choices of looking up

direct children tables.

(b) 𝑇2
(b) 𝑇2

10

CHAPER 3

BIOPOLYMER FOLDING

A template-based tertiary structure prediction method needs an effective computational

algorithm for the alignment between a query biopolymer sequence and an available structure

profile. An ab initio tertiary structure prediction method requires an effective computational

algorithm for fitting a query biopolymer sequence to an unknown 3D conformation. A TDDP

may help both tasks. The first supporting evidence is that there are fast approximation algorithms

to produce a tree decomposition with decent treewidth performance [5]. The approximation of

the treewidth does not affect the optimality but only the running time of the alignment although

the bounded treewidth is possibly larger than the minimum treewidth. The second supporting

evidence is that the interaction topology graph of a biopolymer tertiary structure usually has a

tree decomposition of a small treewidth in nature [14, 28, 29, 35].

The TDDP has been studied for a template-based prediction method for both protein and

RNA [14, 28, 29, 35]. However, the power of this method is based on the high quality aligned

templates, which are not always available. In addition, the template-based prediction can only

predict known structures. As an alternative, the ab initio prediction provides a complementary

approach for sequences that may have novel folds. We are interested in exploring how the TDDP

can be used for the ab initio prediction. There are new challenges to apply the TDDP to ab initio

prediction when considering geometric constraints.

11

In this chapter, we will describe the basic components of the computational alignment

problem, the topology graph, the TDDP solution and challenges for the template-based

prediction method. Then we discuss the potential and challenges how the TDDP can be used for

the ab initio prediction method.

3. 1 Template-Based Structure Prediction

The basic idea of a template-based structure prediction is to place the residues of a query

biopolymer sequence into structural positions of a template structure in an optimal way governed

by a fitness scheme. This procedure is repeated against a collection of templates. The best

sequence-structure alignment provides the prediction about the backbone of the query sequence.

The fitness scheme is application specific. Usually, a statistical or experimental measurement is

used to assess the likelihood of the query sequence fitting into the a structural fold template

The template-based structure prediction usually consists of four components [18, 27]: (1)

a query sequence q and a library T, which is a set of templates with 3D biopolymer structures;

(2) conformational constraints (e.g. statistical energy functions) for measuring the fitness

between the query sequence q and a structure template t, where t ∈ T; (3) an algorithm to align

the query sequence q to the template sequence t based on fitness constraints; and (4) a criterion

for evaluating the confidence level of the predicted structure. The computational alignment

problem exists in the third component.

One particular solution is based on a coarse-grained model [28, 29], which places a

stretch of residues as a whole in some structural unit of a structure template. The structural unit

in a biopolymer structure is a stretch of continuous residues. In a protein tertiary structure, a

structural unit can be a 𝛼 helix or a 𝛽 strand. For a RNA secondary structure, a structural unit

12

can be one half of a stem (e.g.: a double helix) formed by a stack of base pairs. A topology graph

models each template sequence as a mixed graph, which includes both directed edges and

undirected edges. Our framework transforms the sequence-structure alignment to a subgraph

isomorphism problem, which is then solved by a TDDP algorithm.

3.1.1 Topology Graph Representation and Tree Decomposition

A graph H = (V, E | E = A ∪ D) represents a structure template. A vertex 𝑣 of V in the Graph H

represents a structural unit in the template. In protein tertiary structure templates, a structural unit

can be called as a core or core unit. A directed edge in D[H] represents the adjacent connection

of the sequence order (e.g.: from N terminal to C terminal) in a biopolymer backbone. An

undirected edge in A[H] represents the interaction between two structural units.. Both direct

edges D and undirected edges A form the graph edges E. Figure 3.1 gives a protein tertiary

structure and its corresponding topology graph.

Figure 3.1: A Folded ChainB of Protein Kinase C (PDB-ID 1AV) protein (a)

with 8 core units and its corresponding structure graph (b) [29]

13

A preprocessing component computes the candidates in a query sequence for each core

unit of a template sequence for the subgraph isomorphism. Each candidate is represented as a

vertex during the preprocessing. A mixed graph G can be constructed in the same way as the

template graph H is constructed. The graph G represents the query sequence. The preprocessing

results in a map scheme M that suggests the correspondences between the core units in the

template sequence and their candidates in the query sequence. The preprocessing usually sets a

threshold to choose the top k candidates. The accuracy of the preprocessing plays a key role for

the overall sequence-structure alignment.

3.1.2 TDDP Algorithm

A tree decomposition (X, T) of a structural graph H represents a tree topology. Figure 3.2 gives

the tree decomposition of the graph in Figure 3.1 (b). Based on the tree decomposition, the map

Figure 3.2: A tree decomposition for the structure graph in Figure 3.1(b)

N, 1, C

1, 8, C

1, 5, 8

6, 7, 8

5, 6, 8
1, 3, 4, 5

1, 3, 4

1, 2, 3

14

scheme M defined in the preprocessing and a fitness assessment strategy, a bottom up dynamic

programming algorithm can be designed along the tree to find the optimal alignment through

isomorphism between the template structure graph H and a subgraph of the query sequence

graph G.

The algorithm first employs the postorder traversal of the tree to find the optimal

alignment value and then uses the preorder traversal of the tree to trace back the actual optimal

alignment between each core unit and its corresponding candidate. The postorder traversal

process establishes one table for each tree bag and computes every row for local optimal

alignment. The internal nodes only need to look up contents in its direct children tables to

compute the alignment of the local induced subgraph. Once the computing in the root node is

done, a globally optimal alignment can be found and then a trace back process begins to find out

the exact alignment.

3.1.3 Challenge

The major concerns of efficiently implementing the TDDP algorithm are: (1) the size of the

memory space of saving the dynamic tables, (2) the speed of tracing back, and (3) the fitness

assessment. If the memory space of storing the dynamic tables is too large, one single

commodity computer may not have enough memory to handle the algorithm. It is also critical to

keep the tracing back efficient when trying to reduce the space for dynamic tables. The fitness

assessment is application specific. We will discuss a strategy corresponding to solve the first two

concerns in chapter 4. The strategy can be used without regarding of the type of biopolymers.

We will also discuss the energy functions in detail for protein tertiary structure prediction in

chapter 4.

15

3. 2 ab initio Structure Prediction

The basic idea of a ab initio structure prediction method is to search a space of 3D conformations

of a query sequence for the most likely conformation which conforms to the secondary and

tertiary biological constraints required by the sequence. This method considers only one single

query sequence. This method usually consists of three components: (1) a model to derive the

space of all possible 3D conformations, (2) an efficient search algorithm to identify the most

possible conformation, (3) a criterion for evaluating the confidence level of the predicted

structure.

Unlike template-based prediction, ab initio prediction considers not only the secondary

structure and tertiary interactions but also geometric constraints (e.g.: distance and torsions). The

existing methods of modeling all possible 3D conformations tend to be comprehensive in order

to include all possible interactions, resulting in computational inefficiency [22]. In particular, an

exponential prediction algorithm is usually required to predict the most likely 3D folding. The

inefficient computation usually still exists even when adopted a less accurate modeling.

In order to overcome the inefficiency of both modeling and computing, we propose to use

the topology graph model and a TDDP algorithm for the ab initio prediction. Our methodology is

based on two believes. First, a topology graph of a biopolymer structure usually has a small

treewidth. Song et al.(2006) found that only 0.8 percent of 3890 proteins tertiary structure

templates have tree width t > 10 and 92 percent have t < 6 when using 7.5 å 𝐶𝛽 distance cutoff

for defining pairwise interactions. A survey [30] on all RNA tertiary structures available in PDB

and NDB, about 1581 RNA chains, shows that only 12 of the RNAs have treewidth 5 or larger

and more than 99.2% of them have treewidth equals or less than 4. Second, a tree decomposition

of the topology graph can be used to partition the geometric space for structure units to reduce

16

the computing complexity of the prediction. Based on the geometric space partition, we can

develop a dynamic programming algorithm to search for the optimal 3D conformation

constrained by the secondary and tertiary evolving properties of biopolymers.

In the following, we discuss the topology graph model, space partition, dynamic

programming and their challenges for RNA tertiary structure prediction.

3. 2.1 Topology Graph Model for RNA Tertiary Structure

The topology graph model is a pair of (G, F), where G = (V, E) and E = A ∪ D. G is a mixed

graph. Vertices in V represent some strand regions on the sequence. Non-directed edges in A

represent interactions among the strand regions. Directed edges in D represent the connection

between two adjacent regions on the backbone. Edges in E consists of edges in A and edges in D.

Figure 3.3(b) gives a topology graph of the yeast tRNA (Asp) tertiary structure in Figure 3.3(a).

The topology graph is a coarse-grained model. The detailed information related the regions and

interactions between them is provided by the function F.

17

3.2.2 Tree Decomposition and Space Partition

We believe there is a relationship between a structure topology graph and its 3D conformations.

A tree decomposition of the topology graph can be used to partition the geometric space for

structural units. Given a tree decomposition of a topology graph, we propose two steps for the

space partition:

(1) Build a 3D sphere for each tree bag;

(2) Merge all 3D spheres together based on their overlapping vertices and biological

constraints of a biopolymer

(a) (b)

Figure 3.3: The nucleotide interactions of yeast tRNA (Asp) (a) and its corresponding

topology graph (b) [22]. The arcs (1,13), (3,6), (7,8) and (10, 12) represent the

Acceptor, Dyhidrouridine, Anticodon, and Thymine helices respectively. The rest

arcs are for tertiary interaction motifs.

18

Before implementing the above two steps, we need at least consider a few critical questions

as the following. How to decide the diameter of the sphere for each tree bag? How to merge two

or more spheres together if they have overlaps? How to merge two or more spheres if they do not

have overlaps? How are geometric spaces dynamically assigned and managed to structural units?

How to avoid too large designated space for objects which are expected to be close? How to

avoid too restricted designated space for the objects to fold? We will discuss strategies and

techniques in answering these questions in chapter 5.

3.2.3 Dynamic Programming

Given the space partition, we have a designated space for each structural unit. The designated

space helps separate the geometric constraints, which results in reducing the alignment

computational complexity. A bottom up dynamic programming can carry out to search for the

optimal 3D conformation based on their distance, torsions and interactions. A small treewidth of

a topology graph in general guarantees that our approach will be practically applicable to large

sequences.

19

CHAPTER 4

A MEMORY EFFICIENT ALGORITHM FOR TEMPLATE-BASED PROTEIN TERTIARY

STRUCTURE PREDICTION

One of the challengings for implementing the TDDP algorithm for a template-based structure

prediction is the memory consumption. The size of the memory usage for saving the dynamic

tables grows exponentially as the treewidth. Nowadays, the memory size in a single commodity

computer usually is no more than 12GB. It becomes impractical to run the algorithm in a single

commodity computer when the memory consumption is over 12GB. If we can decrease the

memory consumption by an order of magnitude more, we can handle larger sequences or

sequences which have more sophisticated structures. This is important because the treewidth is

usually a small number in nature and the number of treewidth grows much slower than the

number of residues. The larger treewidth we can handle, the much more biopolymer sequences

we can process. This chapter will first propose a heuristic strategy to decrease the size of

dynamic tables. Then it will address the computation incorporating energy functions in detail.

Finally, it will illustrate the basic components of the TDDP algorithm implementation within the

whole architecture.

4. 1 Table Size Reduction

We introduce a few notations first as the following: 𝑛 is the number of core units, 𝑚 is the

number of tree bags, 𝑘 is the number of candidates for each structure unit, 𝑡 is the treewidth,

20

𝑐𝑜𝑟𝑒 stands for a core unit and 𝑐𝑎𝑛 stands for a candidate. We explain our work using a

simplified example in Figure 4.1. Note that we use numbers to represent the core units in circle

and candidates in rectangle, and ignore the amino acid sequences and the loops instead.

Figure 4.1: The preprocessing result between a query sequence q and a template sequence

t. Assuming each core unit has exactly two candidates (See the relationship between core

units and their candidates in Table 4.1). Figure 4.2 gives the constructed template sequence

graph. Figure 4.3 gives the tree decomposition with three tree bag labeled as 1, 2, and 3

separately for the graph in Figure 4.3

Core Unit 1 2 3 4 5

Candidates
1 2 4 5 6

2 3 5 6 7

Table 4.1: The relationship between core units and their candidates

C N

C N

template sequence (t)

query sequence (q)

1 2

3 4 5

1 2

5 6 7 4 3

21

A naive structure of a dynamic table for a tree node looks like Table 4.2

𝑋1𝑋2𝑋3 …𝑋𝑡+1 Valid Score Optimal

𝐴1𝐴2𝐴3 …𝐴𝑡+1 ×

𝐵1𝐵2𝐵3 …𝐵𝑡+1 √ √

𝐶1𝐶2𝐶3 …𝐶𝑡+1 √

The memory space of the table 4.2 is 𝑘𝑡+1(𝑡 + 1 + 3), where 𝑘𝑡+1 is the number of rows, t+1

is the number of columns for each core unit and 3 is the number of extra columns for metadata.

The “Valid” column records if the combination of the choice is consistent with the sequence

position order and non-overlap. The “Score” column records the alignment score calculated

based on energy functions. And the “Optimal” column records the optimal choice, which can be

either minimum value or maximum value. The decision is defined by the application type. Here,

Figure 4.2: The constructed template sequence graph

Figure 4.3: The tree generated by a tree decomposition for the graph in Figure 4.2.

Table 4.2: An abstract basic structure of a dynamic table

1 2

3 4 5

1

2 3

2, 3, 4

 4, 5 1, 2, 3

22

we use maximization for illustration. Minimization is similar. Note that we can skip saving the

table of the root node because the global optimal can be found in this table and there is no need

to keep every rows for further reference. We can use only two rows to represent the root node

table when computing. One row stores the result of a previous combination. Another row stores

the result of a current combination. If the optimal value of the current combination is greater than

that of the previous combination, then update the previous result with the current result.

Otherwise, keep the previous result as what it is. The procedure is repeated until all combinations

are visited. So the following discussion will apply to the tables of non-root nodes.

4.1.1 Removal of Redundant Metadata Columns

The first observation on Table 4.2 is that we can combine the three extra metadata columns into

one. We can remove the “Valid” column if we use 0 or a negative number (e.g.: -1) in the

“Score” column to mark the invalid rows. We can easily search the optimal row based on the

value in the “Score” column. So we can remove the “Optimal” column as well. As a result, we

only need keep the “Score” column. Then the memory space of the table becomes 𝑘𝑡+1(𝑡 + 1 +

1). Table 4.3 gives the dynamic table for the tree bag 2 in Figure 4.3.

4.1.2 Breakdown of Dynamic Tables

The second observation is that we need a good strategy to improve the speed of tracing back

during the dynamic programming process. In Figure 4.3, the overlapping vertices between tree

bag 2 and its parent tree bag 1 are {2,3}. When building the dynamic table of the parent, we look

up its direct children tables to get the corresponding optimal value based on the identified values

for the overlapped part (2,3). Obviously, it can be computationally expensive to search through

23

the whole table of the tree bag 2 to look up a specific row or a few related rows. We need a map

function to calculate the row in a table for a given combination of values on part of the vertices.

The desired asymptotic looking up time should be O(1) with hidden constant factor as small as

possible.

Core Unit 1 2 3 Score

Candidate

1 2 4 4.5

2 2 4 0

1 3 4 0

2 3 4 0

1 2 5 4.8

2 2 5 0

1 3 5 5.1

2 3 5 5.4

In order to generate a map function we can store the data in a consistent way. One good

way is to sort the data before storage. Here we store the data in an ascending order for each

column from right to left. We also sort the vertices by their orders in a template sequence in an

ascending order for each dynamic table. See Table 4.3 as a reference.

Given the combinatorial values of the overlapped vertices, there may be more than one

row in one of its direct children tables which meet the optimal requirement. For example, the

first row and the second row in Table 4.3 meet the requirement that core unit 2 is mapped to

candidate 2 and core unit 3 is mapped to candidate 4. Obviously, it is more efficient if we can

Table 4.3: The dynamic table with only the “Score” column. We use 0

to specify the invalid rows.

24

calculate the starting row only once and then conduct a sequential search for other related rows.

This motivates us to keep the overlapped columns together at the right most part of the table.

After we locate the corresponding rows in one of its children tables, we need to choose an

optimal row. In other words, the parent node only cares about the optimal combination in its

direct child tables. It seems unnecessary to sort the multiple values and then choose the optimal

value during the looking up process. This property motivates us to continue to refine the data

storage to remove the redundant computation of sorting. One good way is to break the table into

two sub-tables. One sub-table, called the “overlapped table” (see Figure 4.4 (a)), is constructed

for the overlapped vertices. The “Score” column in this table only records the optimal value.

And the rest of vertices goes into another sub-table, called the “non-overlapped table” (see

Figure 4.4 (b)).

Core Unit 2 3 Score Pointer

Candidate

2 4 4.5 1

3 4 0 0

2 5 4.8 1

3 5 5.4 2

1 Core Unit

1
Candidate

2

(b) Non-overlapped table

(a) Overlapped table Figure 4.4: The breakdown of a dynamic table. (a) is the overlapped table. (b) is the non-

overlapped table. The overlapped table has an extra “Pointer” column which records which

row in the non-overlapped table where the optimal score is chosen. If the row in the

overlapped table is invalid, we can simply ignore the value of the pointer and set it as a 0.

(a) Overlapped table

25

The new arranged data structure allows us to only calculate the corresponding row during

the looking up process. The “Pointer” column is very important because we also need to know

the value for the non-overlapped vertices when tracing back from the root. We use 𝑜𝑙 stands for

the number of overlapped vertices between the current tree bag and its parent tree bag. Then the

memory space for one dynamic table becomes

 𝑘𝑜𝑙(𝑜𝑙 + 2)+ 𝑘𝑡+1−𝑜𝑙(𝑡 + 1 − 𝑜𝑙)

In a worst case, where 𝑜𝑙 = 𝑡 or 𝑜𝑙 = 1, the memory space is 𝑘𝑡(𝑡 + 2)+𝑘 . We reduce the

memory space by almost 1/k. In a roughly best case, where 𝑜𝑙 = (t+1)/2, the memory space

is 𝑘(𝑡+1)/2(𝑡 + 1 + 2). We reduce the memory space by almost 1/ 𝑘(𝑡+1)/2

According to the sorted data structure, we come up with the row number prediction

equation below given the column values

 Row Number = ∑ [(𝑞𝑖 − 1) ∗ 𝑘𝑖−1 + 1𝑖∈𝑜𝑣𝑒𝑟𝑙𝑎𝑝] - |𝑜𝑣𝑒𝑟𝑙𝑎𝑝| +1 (4.1)

where 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is an integer set of the overlapped columns, which starts with 1, 𝑖 is the number

of the specific column, 𝑘 is the number of candidates and 𝑞𝑖 is the position of the selected

candidate in the candidate pool of the corresponding core unit. We take Table 4.4(a) as an

example. Calculate the row number when core2 = can3 and core3 = can4. First, we know k = 2.

Given core2 = can3, we get 𝑖 = 1 and 𝑞1 = 2 (because can3 is the second choice). So the first

row number given core2 = can3 can be calculated as equation 4.2

 Row Number = 1 * 20+1 = 2 (4.2)

Then given core3 = can4, we get 𝑖 = 2 and 𝑞2 = 1. So the first row number given core3 = can4

can be calculated as equation 4.3

 Row Number = 0 * 21+1 = 1 (4.3)

26

We can get the final result by combing the equation 4.2 and equation 4.3 according to

equation 4.1 as: Row Number = 2 + 1-2 +1= 2.

4.1.3 Space Compression

The third observation is that keeping all of the concrete combinations of the candidates in a table

is redundant. We can use one unique number 𝑖 to represent each row and then we do not need to

keep the concrete content {𝐴1𝐴2𝐴3 …𝐴𝑡+1} in the row any more if we have a map function

computing the relationship between the unique number 𝑖 and its content. The map function can

be described as:

Map (i) → {𝐴1𝐴2𝐴3 …𝐴𝑡+1}

If we use an array to store the score value, then we can use the position of each score as a key

mapping to its content. Following the logic, we convert the two tables in Figure 4.4 to Table 4.4.

For example, the first row in Table 4.4 maps to the first row in Figure 4.4 (a). We can simply

describe the map function as Map(1) = {2, 4}. At the same time, the value 1 in the pointer

column of the first row in Table 4.1 can be mapped into the first row of Figure 4.4 (b) as Map(1)

= {1}.

Score Pointer

4.5 1

0 0

4.8 1

5.4 2

Table 4.4: The final data structure of a dynamic table

27

Now, the memory space complexity is reduced to 2𝑘𝑜𝑙. In a worst case, where 𝑜𝑙 = t, the

memory space complexity is 2𝑘𝑡. In a best case, where 𝑜𝑙 = 1, the memory space complexity is

2k. In a roughly average case, where ol = (t+1)/2, the memory space complexity is 2𝑘(𝑡+1)/2,

which reduces the memory usage from the original naïve approach 𝑘𝑡+1(𝑡 + 1 + 3) by

1/𝑘(𝑡+1)/2.

Here, we give the map function for each column. Given the row number 𝑖 and the column

position q, and the candidate pool, which can be described as an array A, the value can be

calculated as

 Value = A[p], b =�𝑖 𝑚𝑜𝑑 𝑘𝑞

𝑘𝑞−1
� and p = �

𝑏, 𝑖𝑓 𝑏 ≠ 0
𝑙𝑒𝑛𝑔𝑡ℎ(𝐴), 𝑖𝑓 𝑏 = 0

�

where the 𝑚𝑜𝑑 represents the modulo operation, and 𝑝 represents the index position in the array

A, which stores the value of candidates of a core unit. We use Figure 4.4 (a) as an example.

Given the row number 3, predict its content as the following. For column 1, q = 1, k = 2, A = {2,

3}. We get p=b= �3 % 21

21−1
� = 1. So the value for the first column will be A[1] = 2. For column 2, q

= 2, k = 2, A = {4, 5}, we get p=b=�3 % 22

22−1
� = 2. So the value for the second column will be A[2]

= 5. Putting the above result together, we calculate the values of the third row as {2, 5}, which is

the same as the third row in Figure 4.4(a).

 We give a more concrete example below in terms of how much memory space is saved.

We assume 4B to represent each column, 𝑘 = 10 and 𝑡 = 9. The size for the biggest table under a

naive approach will be: 1010 ×(10+3)×4B = 520GB. In a worst case where 𝑜𝑙 = 9, we

calculate the size of the table as 109 ×2×4B = 8GB, which saves 440GB memory space. In a

best case, where 𝑜𝑙 = 1, we calculate the size of the table as 101 × 2 × 4B = 80B, which saves

28

519.99999992GB memory space. In a roughly average case, where 𝑜𝑙 = 5, we calculate the size

of the table as 105 ×2×4B = 800KB, which saves 519.9992GB memory space.

4. 2. Energy Functions

For template-based protein tertiary structure prediction, energy functions are critical to both the

preprocessing step and the TDDP step. The preprocessing step uses energy functions to choose

strong candidates. The TDDP step uses the energy functions to identify the optimal combination.

The energy functions used in both steps have some overlaps. It is very important to keep the

overlapped functions consistent. We will focus on the energy functions used in the TDDP step.

We refer the reader to [18] for energy functions used in the preprocessing step.

In the following, we will first define some terminologies. Then we will use a simplified

example to explain the calculation with energy functions.

4. 2.1 Terminologies

Let M stands for the function to calculate mutation energy, S stands for the function calculate

singleton energy, G stands for the function to calculate gap penalty, SS stands for the function to

calculate secondary structure match and P stands for the function to calculate pairwise

interaction energy. 𝑐𝑜𝑟𝑒 stands for a Core Unit (e.g.: α helix or β strand) in the template

sequence. 𝑐𝑎𝑛 stands for a candidate in a query sequence for a corresponding core unit

29

4. 2.2 A Simplified Example

 KE

Figure 4.5: A simplified example of an alignment between a template sequence t and a

query sequence q. In the template sequence, SKE is a α helix annotated as core1, MVV is a

loop, and DKS is a β strand annotated as core2. Each core unit in the template has exactly

two candidates in the query sequence. In the query sequence q, there are total 4 different

candidate blocks, which are annotated as can1, can2, can3 and can4 separately.

query sequence (q)

template sequence (t)

can1 can2 can3 can4

some sequences between candidates

SE IAKM DK S

NRE

DK

core1
α helix

core2
β strand

interaction loop

SKE MVV DKS

30

Figure 4.5 gives a template sequence t, a query sequence q and their alignment. The

template sequence consists of SKEMVVDKS. The block SKE from the first residue to the third

residue forms a 𝛼 helix, which is annotated as core1. The block DKS from the seventh residue to

the ninth residue forms a β strand, which is annotated as core2. The block MVV between core1

and core2 is a loop. There are interaction between core1 and core2. The query sequence consists

of SEIAKMDKSKENREDK. Table 4.5 lists the four alignments between core units and their

candidates. Table 4.6 gives the interaction information for the template sequence. We ignore the

interaction between cores and loops. Table 4.7 gives all of the combinations of aligning core

units to their candidates.

Core Unit
SKE

(core1)

SKE

(core1)

DKS

(core2)

DKS

(core2)

Corresponding Candidate
S-E

(can1)

SKE

(can2)

DKS

(can3)

DK-

(can4)

Residue Number Residue Number

1 7

3 8

3 9

Table 4.5 the alignment tables. “-“means gap

Table 4.6: The two body interactions of the template sequence t

31

core1 core2 Valid

can1 can2 Yes

can3 can2 No (because of overlap and wrong order)

can1 can4 Yes

can2 can4 yes

4. 2. 3 Types of Energy Functions

There are three energy functions, together defining the objective function to find the minimum

global energy value by searching all of the combinations.

1) Energy function S1. This is the alignment score between a core and its candidate.

2) Energy function S2. This is the alignment score between a loop in a template sequence

and a corresponding loop in a query sequence.

3) Energy Function S3. This is the pairwise interaction value.

4.2.4 Calculation of Energy Functions

In order to calculate the objective function, we need to calculate the individual energy function

for mutation energy, singleton energy, gap penalty, secondary structure match and pairwise

interaction energy. We adopt the similar techniques used at [18].

In addition, we also need to define a weight for each energy value. The weight is

sensitive to the dataset used and usually tuned according to the specific dataset. Here we adapt

the same weights used in the work of [18]. Table 4.8 gives the values.

Table 4.7: All combinations of mappings between core units and their candidates

32

Type of energy Weights Notation

Mutation 0.002964 𝑤𝑚

Singleton 0.892100 𝑤𝑠

Gap Penalty 0.036929 𝑤𝑔

Secondary Structure Match 0.312064 𝑤𝑠𝑠

Pairwise Interaction 0.324656 𝑤𝑝

We take the combination of the first row in Table 4.7 as an example to illustrate the

calculation of the three functions. The energy function S1 scores the alignment between a core

and its candidate. The function value should be produced in the preprocessing step. We omit the

detail here and refer the reader to [18] for more details. For the discussed example, the energy

calculation can be formulated with the equation 4.4

S1 = 𝑤𝑚 (M(core1, can1) + M(core2, can2)) +𝑤𝑔 (G(core1, can1) + G(core2, can2)) +

𝑤𝑠(S(core1, can1) + S(core2, can2)) + 𝑤𝑠𝑠(SS(core1, can1) + SS(core2, can2)) (4.4)

The energy function S2 scores the alignment between a loop in a template sequence and a

corresponding loop in a query sequence. In our example, the loop in the template sequence is

MVV and the loop in the query sequence is IAKM. We can use Needleman-Wunsch algorithm

[9] to align the query loop and the template loop. The recurrence for the alignment score is the

following

 F (i, j) =max �
𝐹(𝑖 − 1, 𝑗 − 1) + 𝑠�𝑥𝑖 ,𝑦𝑗�,
𝐹(𝑘, 𝑗) − 𝑔(𝑖 − 𝑘), 𝑘 = 0, … , 𝑖 − 1,
𝐹(𝑖,𝑘) − 𝑔(𝑗 − 𝑘), 𝑘 = 0, … , 𝑗 − 1.

� (4.5)

where 𝑥𝑖 represents the 𝑖th amino acid of the template loop, 𝑦𝑗 represents the 𝑗th amino acid of

the query loop, F(i, j) is the best alignment score between the initial segment 𝑥1…𝑖 of x up to 𝑥𝑖

Table 4.8: Weights on different type of energies

33

and the initial segment 𝑦1…𝑗 of y up to 𝑦𝑗, and 𝑔(𝑑) is the affine gap penalty score, which can be

calculated with the equation 4.6

 𝑔(𝑑) = 𝛾 + δ (|d|-1) (4.6)

where 𝛾 is the gap opening penalty, δ is the gap extension penalty, and d is the number of gaps.

In our case, we set 𝛾 as 10.8 and δ as 0.6. 𝑠�𝑥𝑖 ,𝑦𝑗� is the sum of related individual energies,

which can be calculated with the equation 4.7

 𝑠�𝑥𝑖 ,𝑦𝑗� = 𝑤𝑚M (𝑥𝑖,𝑦𝑗) + 𝑤𝑠S (𝑥𝑖, 𝑦𝑗)+ 𝑤𝑠𝑠SS(𝑥𝑖, 𝑦𝑗) (4.7)

M(𝑥𝑖, 𝑦𝑗) is the mutation energy, whose detail can be referred to the mutation matrix Table 4.9.

S(𝑥𝑖, 𝑦𝑗) is the singleton energy, which evaluates the preference of the place of every amino acid

in a residue location within a core of certain solvation accessibility. SS(𝑥𝑖, 𝑦𝑗) is the secondary

structure energy, whose detail can be referred to the secondary structure scoring matrix in Table

4.10.

A noteworthy point here is that the dynamic programming based on the object function

described in the equation 4.5 will have the running time O(𝑛3), which is OK for short sequences

alignment but may be a problem for longer sequences. To reduce the running time from O(𝑛3)

to O(𝑛2), a more sophisticated recurrence than the equation 4.5 would be needed. We can

modify the object function by adopting a simplified gap function

 𝑔(𝑑) = d * 𝛾 (4.8)

where 𝑑 is the number of gaps and 𝛾 is the single gap penalty. Then the new object function

becomes equation 4.9

 F (i, j) =max �
𝐹(𝑖 − 1, 𝑗 − 1) + 𝑠�𝑥𝑖 ,𝑦𝑗�,
𝐹(𝑖 − 1, 𝑗) − 𝑔(1),
𝐹(𝑖, 𝑗 − 1) − 𝑔(1),

� (4.9)

34

Table 4.9: Mutation energy matrix [18]

Table 4.10: Secondary structure scoring matrix [18]

35

We believe the object function 4.5 is more accurate than the object function 4.9. We also

foresee the length of the loop segment sequences will be short for most cases. That means the

O(𝑛3) running time could be feasible. But for some long loop sequences, we may have to either

adopt a O(𝑛2) running time algorithm or look for more insights to add some boundary

limitations to reduce the equation 4.5 to a O(𝑛2) running time algorithm.

The energy function S3 computes the pairwise interaction contribution. Usually, the

template profile gives the pairs of residue-residue interactions. We also know the alignment

between a core and its candidate. Then we can use the residues in the candidate to replace the

residues in the core unit to calculate the pairwise interaction energy based on the two body

interaction matrix in Table 4.11. In our example, we get the alignments (SKE, S-E) and (DKS,

DKS). Based on the residue–residue interactions listed in Table 4.6, we can calculate the

pairwise interaction energy values as the following:

P((core1, can1), (core2, can2)) = P(S,D)+P(E,K)+P(E,S)

Table 4.11: The two body interaction matrix [18]

36

4. 3 Overview of the TDDP Algorithm Implementation

A template-based structure prediction is trying to align a query sequence to a collection of

templates and identify the most optimal alignment. Here we only focus on one query sequence

and one template sequence since the repeated alignment process follows the same logic.

First, the alignment takes the following input: a query sequence, a template sequence,

energy functions and the preprocessing result between the template sequence and the query

sequence. The template sequence gives information about the core units and their start positions

and end positions, and the interactions among core units. The energy functions and the related

scoring matrices specify how to calculate the three alignment fitness scores. The preprocessing

result gives the pairs of each core and its candidates with starting positions and end positions in

the query sequence. The preprocessing result also specifies the alignments between each core

unit and its candidates and the corresponding alignment scores.

Second, it builds a topology graph based on the secondary structure of the template. It

annotates the core unit using integer numbers starting with 1 following the order along the

biopolymer backbone direction. It then runs a tree decomposition program to obtain a tree

topology of the sequence graph.

Third, it builds a matrix for the preprocessing result. Each column is corresponding to

one core unit in the template sequence. For each column, the rows store its candidates. The

candidates should be sorted by their order in the query sequence. The matrix is used to compute

the content in the dynamic tables later on.

Fourth, it builds three matrices for each energy function. The major motivation of

computing the energy function matrices in advance is to reduce the duplicated calculation when

37

calculating the fitness score for valid combinations. As a consequence, the computed energy

matrices will speed up the dynamic programming process.

Fifth, it walks though the tree by postorder traversal to compute the optimal alignment.

For each tree node, it creates two indexes for the two temporary tables (see Figure 4.4 as an

example). One is for the overlapped vertices with its parent node and another is for the rest non-

overlapped vertices. Then it creates the dynamic table (see Table 4.4 as an example) for this tree

bag to record the score and pointer values by computing all combinations. It doesn’t create a

table for the root node as we discussed in 4.1. Note that duplicate calculations on the internal

nodes should be avoided because some energy functions for the overlapped vertices with its

direct children tables may already be computed.

Finally, it traverses the tree by preorder to obtain the optimal alignment. It outputs the

optimal alignment score and the pairs between core and its candidate.

38

CHAPTER 5

A TOPOLOGY MODEL FOR ab initio TERTIARY STRUCTURE PREDICTION

We briefly introduced a topology graph model, a space partition strategy and a TDDP algorithm

for ab initio prediction in chapter 3. To be more precise, we define the following five steps that

carry out the prediction process: (1) derive a topology graph for a given query sequence, (2)

build a sphere for each tree bag based on the tree decomposition of the topology graph, (3)

partition the conformational space by merging spheres, (4) generate discrete candidates for each

vertex in its own designated space, (5) search for the most likely optimal folding based a bottom

up dynamic programming. This chapter, as part of an ongoing project, mainly focuses on step 3,

step 4 and step 5. We will use RNA 3D folding as an example. The framework will be applicable

to ab initio protein tertiary structure prediction although RNAs and proteins have different

biological properties.

Given a topology graph model G, we can get a tree decomposition T of this graph with a

bounded treewidth k. Based on the tree decomposition, we can then build one 3D sphere 𝑆𝑖 = (𝐶𝑖,

𝐷𝑖) for each tree bag 𝑋𝑖 , where 𝐶𝑖 is the origin of this sphere and 𝐷𝑖 is the diameter of this

sphere. Each 3D sphere 𝑆𝑖 has an associated biological constraint 𝑍𝑖 , let ⋃ 𝑍𝑖𝑖 ∈𝐼 = F, which is

the biological constraints of a biopolymer. The diameter of a 3D sphere can be initially decided

by the minimum length to lay down all of the nucleotides coaxially based their relationships. We

define D as the diameter calculation function. Given a tree bag 𝑋𝑖, the 𝐷𝑖 can be calculated with

the equation 5.1

39

 𝐷𝑖 = D (𝑋𝑖,𝐹) (5.1)

5.1 Space Partition

Given the 3D spheres, the tree decomposition T and the biological constraint F, we can merge

the spheres based on their overlapped vertices. Each vertex will have its own designated

restricted area once the merging is done. The restricted area serves for the purpose of decreasing

the computational alignment between a query sequence and its possible 3D conformations. The

real challenge here is how to consistently merge spheres so that the space partition can serve well

for candidate generation and a following optimal search under the constraint F. There are four

basic factors to be considered when merging spheres: (1) merging order and coordinate system,

(2) distance between spheres, (3) torsion, and (4) space redistribution for each vertex.

1) Merging order and coordinate system. Each sphere has its own coordinate system

originally. It is better to merge spheres together based on one common coordinate system. Using

one common coordinate system can reduce the transform computing caused by different

coordinate systems. When a new sphere is merged with the existed merged space, it follows the

same common coordinate system. We propose a top down approach to carry out the merging

process. The coordinate system of the root tree bag serves for the one common coordinate

system. Then its direct children, if existed, added. The procedure continues until all nodes are

visited.

2) Distance between overlapped spheres. We define the overlapped vertices 𝑊𝑖𝑗 = 𝑋𝑖 ∩

𝑋𝑗 for merging 𝑆𝑖 and 𝑆𝑗. We then define the distance between 𝑆𝑖 and 𝑆𝑖 with the equation 5.2

 D(𝑆𝑖, 𝑆𝑗) = (𝐷𝑖 + 𝐷𝑗)/2 - D(𝑊𝑖𝑗,𝐹) (5.2)

Figure 5.1 gives an example about merging two spheres.

40

3) Torsion. Deciding the torsion is the most critical part for the space partition. Bad

torsion choice may predict an improperly restricted space. Too small space may not hold the

vertices which are supposed to have some minimum distance restriction. Too large space may

obstruct the vertices in other spaces to be physically close enough to meet the biological

constraint F. We propose a conservative parameter based approach. When merging a sphere with

the existing merged spheres, we move them close enough but do not violate the constraint F. We

conservatively leave maximum open space for future merging. We can use a fixed set of angles

for merging spheres. For example, {60, -60, 180} could be such a kind of set. We can then

develop rules that describe the mapping between the selection of the angle value and its scenario

based on future experiments of known RNA tertiary structures.

4) Space redistribution. We define two types of regions for the overlapped spaces

between spheres. One is called as intended overlapped region, which holds the overlapped

vertices. Another is called as unintended overlapped region, which doesn’t hold the overlapped

𝑎 𝑏

𝑐 𝑑

Figure 5.1: Distance between two overlapped spheres. Point 𝑎 is the center of the left

sphere 𝑆𝑖 , and point 𝑏 is the center of the right sphere 𝑆𝑗. Point 𝑐 and pointer 𝑑 are the

intersecting points between the line (𝑎, 𝑏) and the surfaces of the two spheres. The

distance between 𝑐 and 𝑑 is D(𝑊𝑖𝑗,𝐹). The distance between 𝑎 and 𝑏 is D(𝑆𝑖, 𝑆𝑗) .

41

vertices but is part of the intersection between spheres. Figure 5.2 gives a tree decomposition for

the graph in Figure 3.3(b). Figure 5.3 gives an example of merging spheres of tree bag 3, tree

bag 5 and tree bag 7 in Figure 5.2. The merging in Figure 5.3 mainly focuses on illustrating the

related concepts in space redistribution and doesn’t necessary follow up the top down merging

order. We define the 𝑖th isolated region as 𝑅𝑖 caused by merging. Figure 5.2(a) is about merging

𝑆3 and 𝑆5. Figure 5.2(b) gives an example annotating the isolated regions based on the merging

in Figure 5.2(a). For example, 𝑅2 in Figure 5.2(b) is the designated space for vertices {3, 5, 9}

in Figure 5.2(a). 𝑅2 in Figure 5.2(b) is an intended overlapped region. Figure 5.2(c) adds the

sphere 𝑆7. Figure 5.2(d) gives the new updated isolated regions and their corresponding

annotations. Now 𝑅2 in Figure 5.2 (b) is split into two sub-regions: 𝑅2 and 𝑅5 in Figure 5.2(d),

where 𝑅2 covers the vertices {3, 5} and 𝑅5 covers the vertex {9}. In Figure 5.2(d), 𝑅1, 𝑅2 and 𝑅5

are intended overlapped regions, but 𝑅6 is an unintended overlapped region because there is no

explicitly associated vertex. For an unintended overlapped region, we adopt a “first occupied,

first use” principle. 𝑅6 in Figure 5.2(d) is part of 𝑅3 in Figure 5.2(b). We know this 𝑅3

Figure 5.2: A tree decomposition of the graph in Figure 3.3(b) with 7 tree bags

0, 1, 2, 13

2, 3, 4, 12, 13

3, 4, 5, 9, 12 13, 14

3, 5, 6, 9 5, 9, 10, 11, 12

6, 7, 8, 9

1

2

3 4

5 6

7

42

 and

Figure 5.3: Merging spheres. (a) describes the vertices and their designated regions when

merging sphere 𝑆3 and 𝑆5 . (b) annotates all the isolated 3 regions in (a) as 𝑅1 , 𝑅2 and 𝑅3

separately. For example, vertices {3, 5, 9} in (a) belong to 𝑅2 in (b). (c) describes the vertices

and their designated regions when adding the sphere 𝑆7. (d) annotates all the isolated 7 regions in

(c). For example, vertex {3} in (c) is in 𝑅2 in (d), but vertices {5, 9} in (c) belong to 𝑅5 in (d).

12

(a)

6

4

3 9
5

12

tree bag 5 tree bag 3

(b)

𝑅3

𝑅2

𝑅1

𝑅3

(c)

tree bag 3 tree bag 7 tree bag 5

6

4

7

5

8

3 9

(d)

𝑅4

𝑅5

𝑅6

𝑅7

𝑅2

𝑅1

43

Vertex Regions
3 2
4 3, 6
5 2
6 1, 4
7 7
8 7
9 5
12 3, 6

is the designated space for vertices {4, 12}. Then we still assign 𝑅6 in Figure 5.2(d) as the

designated space for vertices {4, 12} as well. It looks like 𝑅4 in Figure 5.2(d) has no associated

vertices. For such vertices, we still adopt the same principle. So we assign both 𝑅1 and 𝑅4 in

Figure 5.2(d) as the designated spaces for the vertex {6} since 𝑅4 in Figure 5.2(d) is part of 𝑅1

in Figure 5.2(b), where 𝑅1 is assigned for the vertex {6}. Table 5.1 gives the final mapping

between each vertex and its designated space regions. To govern the designated space in a 3D

space, we define a function 𝑅𝐹𝑖 for the 𝑖th region.

5.2 Candidate Generation

The space partition is serving as a coarse-grained guideline for separating 3D objects conformed

to the vertices. The partitioned space tells only what region a vertex belongs to but doesn’t tell

where exactly the vertex should be positioned. In order to get the fine-grained positioning for

each vertex, we need a strategy to generate discrete positions, also called candidates, for vertices.

Before we can generate candidates, we first need a way to divide the designated spaces.

One solution is to use a predefined small cubic to divide the designed region of each vertex into

many smaller sub-regions. All of the sub-regions which satisfy the region function 𝑅𝐹𝑖 will be

Table 5.1: The mapping between vertex and its designated space regions

44

valid sub-regions. Then all valid sub-regions serve as the candidate pool for vertices. Figure 5.4

gives an example for the conceptualized view from the plane.

There are two ways to generate candidates for each vertex given the valid cubic pools:

arbitrary selection and sampling-based selection. The arbitrary selection is an iterative two step

process. The first step arbitrarily generates k candidates for each vertex in its designated space

regions. The second step calculates the number of valid combinations based on the constraint F.

If the number of valid combinations is less than a predefined threshold, then we repeat the

process until the number of valid combinations is equal or greater than the predefined threshold.

The importance of the threshold is to guarantee the local optimal since the candidates of each

vertex are arbitrary generated. We can extend the arbitrary selection into a biased arbitrary

selection by integrating the constraint F into the selection process to decrease the unnecessary

repeated computations. The sampling-based selection seeks heuristics insights from known

structures. It first runs the space partition on known structures. Then it builds a statistical model

to guide more efficient candidate generation.

 x x x
 x
 x x
 x x x x
 x x x x
 x x

 x x x

Figure 5.4: Discrete positions of a sphere. The regions marked as “x” are valid.

45

5.3 Dynamic Programming

Given the tree decomposition, the 3D candidates of each vertex, the biological constraints and an

adopted fitness scheme, we can search for the optimal folding based on a bottom up dynamic

programming. This resembles the TDDP we discussed on chapter 2 and chapter 4.

46

CHAPTER 6

CONCLUSION AND FUTURE WORK

Biopolymer tertiary structure prediction by computer programs is a very important approach to

complement the experimental determination of unknown structures of newly identified

sequences. Due to the issues of computational complexity and accuracy when considering

residue interactions, biopolymer tertiary structure prediction will continue to be an active and

challenging research area. In this research, we first discussed two biopolymer tertiary structure

prediction methods: template-based and ab initio predictions. We then introduced the basic idea

of graph tree decomposition and its application to a maximum independent set problem. A small

treewidth of biopolymer tertiary structures shows great promise for speeding up the

computational complexity by adopting the topology graph model and a suitable TDDP

algorithm.

We illustrated how to apply the topology graph model for both template-based and ab

initio prediction methods. For the template-based prediction method, we developed a heuristic

strategy to decrease the space complexity by at least an order of magnitude without sacrificing

the speed. We implemented the strategy for protein tertiary structure prediction. At the same

time, we also discussed the computation with energy functions in detail. For the ab initio

prediction method, we proposed a potential topology graph model framework. We identified five

basic steps to carry out the prediction: (1) deriving a topology graph and its tree decomposition,

47

(2) building a sphere for each tree bag, (3) merging spheres, (4) generating candidates and (5)

searching the optimal folding by a dynamic programming algorithm.

The throughput and accuracy of the TDDP algorithm we developed for the template-

based protein tertiary structure prediction need to be tested from real data in the near future. In

addition, we realize the new challenges when extending the topology graph model to ab initio

method. Partitioning 3D space and generating candidates play a key role for the overall

computational complexity and accuracy of the prediction. The soundness of partitioning space is

the foundation for the argument that we only need look up the direct children tables when

carrying out the TDDP algorithm. The approaches of generating candidates affect the geometric

computational complexity and the accuracy of positioning. The framework needs to be

continuously refined as testing on known tertiary structures are conducted in the near future.

48

REFERENCES

[1] Abraham, M., Dror, O., Nussinov, R., and Wolfson, H.J. (2008). Analysis and

classification of RNA tertiary structures. RNA. 14: 2274-2289.

[2] Auffinger, P., Louise-May, S., and Westhof, E. (1999). Molecular Dynamics Simulations

of Solvated yeast tRNA (Asp). Biophys. 76: 50-64.

[3] Arnborg, S., and proskurowski, A. (1986). Characterization and recognition of partial 3-

trees. SIAM Journal on Algebraic and Discrete Methods archive. 7(2): 305-314.

[4] Bodlaender, H.L. (1993). A tourist guide through treewidth. Technical Report RUU-CS-

92-12, Utrecht University, March 1992, Revised March 1993. 1-14.

[5] Bodlaender, H.L. (1997). Treewidth : Algorithm techniques and results. Lecture Notes in

Computer Science. 1295: 19 – 36.

[6] Bodlaender, H.L. (2005). Discovering Treewidth. SOFSEM. 1-16.

[7] Bodlaender, H.L. (2006). Treewidth : Characterizations, Applications, and Computations.

Technical Report UU-CS-92-12, Utrecht University. 1-13.

[8] Bowie, J., Luthy, R., and Eisenberg, D. (1991). A Method to Identify Protein Sequences

that Fold into a Known Three-Dimensional Structure. Science. 253: 164-170

[9] Bryant, S.H., and Altschul, S.F. (1995). Statistics of Sequence-Structure Threading.

Current Opinion Structural Biology. 5:236-244.

49

[10] Das, R., and Baker, D. (2007). Automated de novo Prediction of Native-like RNA

Tertiary Structure. Proceedings of the National Academy of Sciences U.S.A. 104: 14644-

14669.

[11] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press.

[12] Gherghe, C.M., Leonard, C.W., Ding, F., Dokholyan, N.V., and Weeks, K.M., (2009).

Native-like RNA tertiary structures using a sequence-encoded cleavage agent and

refinement by discrete molecular dynamics. Journal of the American Chemical Society.

131: 2541-2546.

[13] Harvey, S. C., Wang, C., Teletchea, S., and Lavery, R. (2003). Motifs in nucleic acids:

molecular mechanics restraints for base pairing and base stacking. Journal of Computing

Chemistry. 24 (1): 1-9.

[14] Huang, Z., Wu, Y., Robertson, J., Feng, L., Malmberg, R., and Cai, L. (2008). Fast and

accurate search for non-coding RNA pseudoknot structures in genomes. Bioinformatics.

24:2281-2287.

[15] Jonikas, M.A., Radmer, R.J., Laederach, A., Das, R., Pearlman, S., Herschlag, D., and

Altman, R. (2009). Coarse-grained modeling of large RNA molecules with knowledge-

based potential and structural filters. RNA. 15: 189-199.

[16] Lathrop, R.H., Rogers, R. G., Bienkowska, J., Bryant, B.K.M., Buturovic, L.J., Gaitatzes,

C., Nambudripad, R., White, J.V., and Smith, T.F. (1998). Analysis and Algorithms for

Protein Sequence-Structure Alignment. Computational Method in Molecular Biology.

Salzberg, S.L., Searls, D.B., and Kasif, S., (eds). Elsevier. 227-255

50

[17] Lenhof, H. P., Reinert, K., and Vingron, M. (1998). A Polyhedral Approach to RNA

Sequence Structure Alignment. Journal of Computational Biology. 5(3): 517-530

[18] Li, H. (2007). Computing images of protein cores for protein threading (MS Thesis). The

University of Georgia.

[19] Major, F., Gautheret, D., and Cedergren, R., (1993). Reproducing the three-dimensional

structure of a tRNA molecule from structural constraints, Proceedings of National

Academy Science. USA. 90: 9408-9412.

[20] Major, F., Turcotte, M., Gautheret, D., Lapalme, G., Fillion, E., and Cedergren, R. (1991).

The combination of symbolic and numerical computation for three-dimensional modeling

of RNA, Science, 253(5025): 1255-1260.

[21] Malhotra, A., Tan, R., and Harvey, S. (1994). Modeling large RNAs and

ribonucleoprotein parti-cles using molecular mechanics techniques. Biophysical Journal.

66 (6): 1777-1795.

[22] Malmberg, R. and Cai, L. (2010). From topology to 3D: effective RNA tertiary structure

prediction. Lab Report, University of Georgia

[23] Kim, D., Xu, D., Guo, J., Ellrott, K. and Xu, Y. (2003). PROSPECT II: protein structure

prediction program for genome-scale applications. Protein Engineering. 16(9):641-650.

[24] Parisien, M. and Major, F., (2008). The MC-Fold and MC-Sym pipeline infers RNA

structures from sequence data. Nature. 452: 51-55.

[25] Robertson, N., and Seymour, P.D. (1984). Graph minors III: Planar tree-width. Journal

of Combinatorial Theory, Series B 36: 49–64,

[26] Sharma, S., Ding, F., and Dokholyan, N.V. (2008). iFoldRNA: three-dimensional RNA

structure prediction and folding. Bioinformatics. 24 (17) : 1951-1952.

http://en.wikipedia.org/wiki/Neil_Robertson_%28mathematician%29�
http://en.wikipedia.org/wiki/Paul_Seymour_%28mathematician%29�

51

[27] Smith, T. F., Conte, L.L., Bienkowska, J., Gaitatzes, C., Rogers, R., and Lathro, R.

(1997). Current limitations to protein threading approaches. Journal of Computational

Biology. 4(3): 217-225.

[28] Song, Y., Ellrott, K., Liu, C., Guo, J., Xu,Y., and Cai, L. (2005). “Efficient Protein

Threading with Tree Decomposition” manuscript. The University of Georgia

[29] Song, Y., Liu, C., Huang, X., Malmberg, R., Xu,Y., and Cai, L. (2006). Efficient

Parameterized Algorithms for Biopolymer Structure-Sequence Alignment. IEEE/ACM

Transactions of on Computational Biology and Bioinformatics. 3(4): 423-432.

[30] Wang, Y., Mohebbi, M., Lin, D., Malmberg, R., and Cai, L. (2010). Tree width of RNA

tertiary structures in PDB and NDB, Lab Report, University of Georgia.

[31] Westhof, E., and Auffinger, P. (2000). RNA Tertiary Structure. John Wiley & Sons Ltd.

Chichester.

[32] Xu, J. (2005). Rapid Side-Chain Packing via Tree Decomposition. Proceeding of 2005

International Conference Research in Computational Biology. 423-439.

[33] Xu, J., Li, M., Kim, D., and Xu, Y. (2003). RAPTOR : Optimal Protein Threading by

Linear Programming. Journal of Bioinformatics and Computational Biology. 1(1): 95-

113.

[34] Xu, J., Jiao, F., and Berger, B. (2005). A Tree-Decomposition Approach to Protein

Structure Prediction. Proceeding of 2005 IEEE Computational Systems Bioinformatics

Conference. 247-256.

[35] Xu,Y., Liu, Z., Cai, L., and Xu, D. (2007). Protein Structure Prediction by Protein

Threading. Computational Methods for Protein Structure Prediction and Modeling:

Volume 2: Structure Prediction. Xu,Y., Xu, D., and Liang J. (eds). Springer

52

[36] Xu, Y., Xu, D., and Uberbacher, E.C. (1998). An Efficient Computational Method for

Globally Optimal Threading. Journal of Computational Biology. 5(3): 597-614.

