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Abstract

Fundamental understanding of structure forming processes in the context of mesoscopic

polymer systems is relevant for a number of technological and biomedical applications. In

this thesis, extensive simulations of coarse-grained off-lattice polymer models are performed

using advanced generalized-ensemble Monte Carlo methods. Microcanonical inflection-point

analysis and structural order parameters are used to systematically examine the effects of

bond confinement and short-range repulsion on the structural macrostates and transitions

of elastic homopolymer chains. The effectiveness of the inflection-point analysis is also

demonstrated in a detailed study of polymer aggregation. It is shown that in finite systems,

the aggregation transition is a first-order process consisting of a sequence of substransitions

between intermediate structural phases.
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able potential energy Ēc. The approximation introduced in equation 2.41

holds except in the back-bending region of the first-order pseudophase tran-

sition. The inverse transition temperature βtrans obtained from the two quan-

tities is virtually identical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Canonical and GME energy histograms at a first-order pseudophase transition.

The bimodal canonical energy histogram indicates the coexistence of ordered

and disordered pseudophases, separated by an entropically suppressed energy

region. Each GME ensemble enhances the sampling of suppressed states over

a limited energy range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 (a) Illustration of the canonical energy histograms h(E, βi), (b) the individual

estimates of the logarithm of the density of states S̄i(E), (c) and the combined

estimate of the logarithm of the density of states Ŝ(E) obtained by reweighting. 36
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Chapter 1

Introduction

Polymers of mesoscopic size are complex objects whose thermodynamic and structural prop-

erties depend on the mutual interactions between individual atoms, as well as on the influence

of the thermal environment. For the understanding of biomolecular functions and chemico-

physical material properties of biopolymers and synthetic polymers, systematic studies of

their thermodynamic and structural properties are of utmost relevance. However, the stag-

gering complexity of even the simplest polymer systems precludes the possibility of investi-

gating the relevant physical attributes through direct analytical calculations [1]. Over the

past two decades, the enormous increase in the availability of computational resources, to-

gether with substantial advances in methodological development, resulted in a vast number

of computational studies of polymers and other complex mesoscopic systems. In this thesis,

all simulations utilize Markov chain Monte Carlo methods, which are discussed in detail in

chapter 3.

Among the most efficient Monte Carlo methods are the generalized-ensemble algorithms

such as the simulated tempering [2, 3], replica-exchange parallel tempering [4–7], multiple

Gaussian modified ensemble (MGME) [8], together with multicanonical [9–14] and Wang-

Landau sampling [15–17]. These have been applied successfully in numerous computational
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studies of structural phases and transition properties [18–29], surface adsorption [30–39], and

aggregation [40–46] of generic off-lattice homopolymers and heteropolymers. The folding

properties of coarse-grained protein models have also been examined extensively [47–53].

Importantly, despite the many advances in simulational methodologies, systematic studies

of detailed atomistic models of polymers are well beyond current computational capabilities.

However, it is a significant physical reality that many essential thermodynamic properties of

complex systems are retained on larger than atomistic scales and can be well represented by

coarse-grained models. The motivation behind coarse-grainined models is the observation

that for a wide range of physical phenomena the individual degrees of freedom of a system

do not act independently but rather behave in a cooperative fashion. In fact, coarse-graining

is not just a concept to simplify modeling. It reflects the inherent collective and cooperative

behavior of constituents of systems on mesoscopic and macroscopic scales. This is not

completely unexpected since it is known that certain characteristic properties, such as the

rigidity of solids or the propensity of molecular systems towards aggregation, are often shared

among diverse physical systems and hence cannot depend sensitively on microscopic details.

The concept of coarse-graining is discussed in chapter 4, where we also introduce the generic

model for a flexible elastic homopolymer which is the subject of investigations in chapters 5,

6, and 7.

In mesoscopic systems, structure formation and pseudophase transition processes are

fundamentally influenced by finite-size effects. Systematic statistical analysis methods be-

yond the standard canonical methodology are needed to unravel the intricate details of the

interplay between energy and entropy in finite systems. Due to the averaging process in-

volved in the calculation of canonical quantities such as the ensemble energy or the heat

capacity, specific features of structural transitions and phase properties are often lost [1].

This is remedied in more general approaches such as the Fisher partition zeros [54–57], or

the microcanonical inflection-point analysis [58, 59]. The methods of the canonical and the
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microcanonical analysis are reviewed in chapter 2, together with other fundamental concepts

of statistical mechanics.

One important aspect in the study of polymer systems is the influence of model (“ma-

terial”) and environmental parameters upon the processes that lead to structure formation

and the conformations themselves. In chapter 5, we investigate the influence of the effective

bond confinement range on the formation of structural phases in a coarse-grained model of a

flexible elastic homopolymer. We show that with increasing confinement range the gas-liquid

(or Θ) and the liquid-solid transitions merge and the system transitions directly from the

gas to the solid phase. The effects of short range repulsion between bonded monomers on

the geometry of ground state conformations is discussed in chapter 6.

Protein misfolding and aggregation are at the root of a number of pathological conditions

such as Alzheimers and Parkinsons diseases, cystic fibrosis, and type II diabetes [60, 61].

Recent studies indicate that under suitable conditions, where intermolecular, rather than

intramolecular, interactions dominate the structure formation process, most proteins are

able to form amyloid aggregate assemblies. This suggests that protein aggregation may be

a generic property of polypeptide chains that does not necessarily depend on the specific

amino acid sequences [62, 63]. Hence the essential properties of aggregation processes are

expected to be preserved in simple coarse-grained models including the flexible and semi-

flexible homopolymers and heteropolymers [43]. In chapter 7, we investigate the aggregation

transition in the context of a generic coarse-grained model of interacting homopolymer chains

and show that the aggregation transition is a first-order process consisting of a sequence of

subtransitions between intermediate phases.
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Chapter 2

Elements of Statistical Mechanics

Statistical mechanics aims at explaining the microscopic origins of macroscopic properties of

systems with large numbers of degrees of freedom. The exact solution for the time evolution

of every particle in a single complex system requires enormous computational efforts, and

in most cases provides little insight. In contrast to the stochastic motion of microscopic

particles in a thermal environment, collective system properties such as entropy, pressure,

or temperature, for the most part exhibit relatively simple behavior. The formalism of

statistical mechanics allows us to study these properties by considering the average behavior

of a large number of identically prepared systems, i.e., the statistical ensemble. It is well

established, that for very large systems near the thermodynamic limit, all ensembles become

equivalent. However this is emphatically not true in the case of intrinsically finite systems

for which the choice of an ensemble is non-trivial [1]. Therefore, we shall briefly introduce

several prominent statistical ensembles, starting with arguably the most fundamental one,

the microcanonical ensemble.
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2.1 The microcanonical ensemble

Let us consider a mechanically and adiabatically isolated system with a constant number of

particles (N), volume (V ), and energy (E). At any given moment, the system is to be found

in a particular microstate µ, which is represented by a point (P,Q) = (~p1, ..., ~pN , ~x1, ..., ~xN)

in a 6N dimensional phase-space. At a fixed energy E, the accessible microstates are con-

strained to the hypersurface of constant energy H(µ) = E, where H is the Hamiltonian of

the system. The total number of microstates corresponding to a macrostate with a fixed

energy E is obtained by calculating the density of states1

g(E) =

∫

DPDQ δ(E −H(P,Q)), (2.1)

where

DPDX =
N
∏

n=1

d3pnd
3xn

(2πh̄)3
(2.2)

is the Lebesgue measure over phase space [64]. In computational studies, the energy space

is by necessity discretized into intervals of width ∆E, and the density of states G(Ei) is

obtained by counting the microstates within a thin shell of width ∆E. Formally, G(Ei) is a

discrete function defined as

G(Ei) =

∫ Ei+∆E/2

Ei−∆E/2

g(E)dE, (2.3)

where g(E) in the integrand is the continuous density of states [1].

Assuming that no additional quantities are conserved, i.e. the system is ergodic, all

accessible microstates have equal a priori probabilities [65]. The microcanonical equilibrium

1Please refer to section 2.3 for detailed discussion of alternative definitions of the density of states.
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probability distribution is given by

p(µ)E =











1/g(E), if H(µ) = E

0, if H(µ) 6= E,
(2.4)

and the expectation value of an observable O at a fixed energy E is found by averaging over

the surface of constant energy

〈O〉E =

∫

DPDQ O(P,Q) δ(E −H(P,Q)). (2.5)

The density of states of a typical mesoscopic system can easily span several thousands of

orders of magnitude. It is therefore convenient to define the microcanonical equilibrium

entropy

S(E) = kB ln g(E), (2.6)

as an extensive quantity with dimensions of energy over temperature.2

2.1.1 Microcanonical temperature

Temperature is one of the most fundamental concepts of statistical mechanics. Traditionally,

it has been defined in terms of average kinetic energies of particles in a system [66]. In the

following, we wish to motivate a more fundamental definition and introduce temperature as

an intrinsic system property which can be obtained directly from the microcanonical density

of states. For this purpose, let us consider an adiabatically isolated system composed of two

weakly interacting subsystems, S1 and S2. The energy of the combined system is constant

and can be written as the sum of the energies of the two subsystems E = E1+E2. At a fixed

system energy E, the probability density for subsystem S1 to contain energy E1 is written

2If temperature is measured in the more natural units of energy, entropy becomes a unitless quantity and
the Boltzmann constant equals to unity.
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as

ρ(E1)E =
g1(E1)g2(E − E1)

g(E)
. (2.7)

The density of states of the combined system is given by the convolution of the subsystem

densities

g(E) =

∫

dE1g1(E1)g2(E −E1). (2.8)

In systems with many degrees of freedom, the probability density ρ(E1)E is a sharply peaked

distribution around the equilibrium energy Ē1
3. Hence the convolution in Eq. 2.8 can be

well approximated by the maximum value of the integrand [67]. The maximum is found

when the derivative of the integrand with respect to E1 is set to zero. It follows that

1

g1

dg1
dE1

∣

∣

∣

∣

Ē1

=
1

g2

dg2
dE2

∣

∣

∣

∣

E−Ē1

, (2.9)

or alternatively in terms of the microcanonical entropy

dS1

dE1

∣

∣

∣

∣

Ē1

=
dS2

dE2

∣

∣

∣

∣

E−Ē1

. (2.10)

In analogy to the familiar observation that interacting systems at thermal equilibrium have

equal temperatures, we define the microcanonical temperature as

T (E) =

(

dS(E)

dE

)−1

. (2.11)

Frequently, it is more convenient to consider instead the inverse microcanonical temperature

β(E) =
dS(E)

dE
. (2.12)

3The energy fluctuations per particle around the equilibrium energy Ē1 scale as N−1/2 [67].
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2.1.2 Microcanonical analysis of phase transitions

A macrostate of a system is specified by a set of macroscopic variables and possesses the

characteristics of the predominant microstates. Macrostates are said to belong to the same

thermodynamic phase, if in a given range of some external control parameters4 all of the

system’s thermodynamic observables are analytic, i.e. have convergent Taylor expansions.

Singularities in the observables signify the presence of phase transitions between distinct

phases, typically marked by abrupt changes in macrosopic properties in response to minute

variations of external control parameters. Phase transitions can be roughly divided into two

categories. Abrupt transitions are characterized by the coexistence of two distinct phases and

discontinuities in most physical properties. Continuous transitions, although less common

in nature, have been the object of most intense research. They are marked by diverging

correlation lenghts, large fluctuations, and scale invariance [67].

Divergences and singularities in thermodynamic observables and their derivatives are

found only in infinitely large systems for which the assumption of the thermodynamic limit

is valid. In mesoscopic systems5, due to finite size effects, divergences are replaced by peaks

and discontinuities are smoothed over [1]. For clarity, we designate the term pseudophase

transition to represent significant conformational changes in finite systems. Likewise, ther-

modynamic phases in finite systems shall be referred to as pseudophases. In the following,

we present a powerful formalism for the analysis of pseudophase transitions in the micro-

canonical ensemble: the microcanonical inflection point analysis.

4Some common examples of external control parameters are the canonical temperature, pressure, or the
chemical potential.

5Typical length scales in mesoscopic systems are of the order of ∼ 10− 103 nanometers. In this regime,
exact quantum many-body interactions can be replaced by effective classical potentials, and cooperative
effects dominate structure formation processes. Mesoscopic systems are distinct from macroscopic systems
due to the presence of significant finite-size effects, which disallow the simplifying assumptions of the ther-
modynamic limit.

8



1

2

3

4

5

6

7

-25 -20 -15 -10
-4

-3

-2

-1

0

1

2

3

4

β
(E

)

γ
(E

)

E

2nd

1st

β(E)

γ(E)

γ(E) = 0

Figure 2.1: Microcanonical inflection-point analysis of the inverse microcanonical tempera-
ture β(E). The prominent back-bending region in β(E), together with the positive-valued
peak in its energy derivative γ(E) at E ≈ −15, indicates a first-order transition. The
negative-valued peak at E ≈ −24 corresponds to a second-order transition.

Microcanonical inflection-point analysis

Unlike its canonical counterpart – the heat-bath temperature – the microcanonical inverse

temperature is an inherent property of the system, derived directly from the fundamental

microcanonical quantities S(E) and E. We assert that all essential information about en-

ergetically and entropically driven thermodynamic processes is contained in its curvature.

Hence the microcanonical inverse temperature is an ideal starting point for a comprehensive

analysis of pseudophase transitions [68].

In analogy to the principle of minimal sensitivity [69], structural transitions between

pseudophases occur when β(E), or one of its energy derivatives, responds least sensitively to

variations in energy [58]. In particular, first-order transitions are associated with inflection

9



Figure 2.2: The convex region of the microcanonical entropy S(E) and the back-bending of
the microcanonical inverse temperature β(E) are prominent indicators of first-order transi-
tions. The slope of the double-tangent Gibbs hull H(E) defines the transition temperature
βtr. The Maxwell construction, defined by equal areas of so and sd, is itself positioned at
βtr. The transition energy Etr indicates the location of the largest separation between H(E)
and S(E), which signifies maximal entropic suppression of the transition states. The latent
heat ∆Q corresponds to the width of the transition region between Ed and Eo.

points in β(E) that have a positive slope, accompanied by positive-valued peaks in the energy

derivative γ(E) = dβ(E)/dE. Similarly, a second-order transition occurs when β(E) exhibits

an inflection point with a negative slope and γ(E) attains a negative-valued peak. Examples

of microcanonical pseudophase transition signals are shown in Fig. 2.1. The formalism can

be naturally extended to higher-order transitions. For n > 0, inflection point in the (2n)th-

derivative of entropy, accompanied by a positive-valued valley in the (2n + 1)th-derivative,

indicates a (2n + 1)th-order transition. Similarly, a (2n)th-order transition is marked by an

inflection point in the (2n − 1)th-derivative of entropy and a negative-valued peak in the

(2n)th-order derivative.
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Alternatively, in the case of first-order transitions, the transition temperature βtr can

be obtained by the means of the Maxwell construction, which was originally introduced to

repair the unphysical back-bending in the pressure versus volume isotherms for the van der

Waals gas [1]. In mesoscopic systems, the finite-size effects lead to the entropic suppression

of transition states, which is manifested in the backbending of β(E) and the convex region

in S(E). The position of the Maxwell construction is determined by the equality of the areas

so and sd [Fig.2.2]. Commonly referred to as surface entropies, so and sd are defined as the

integrals

so =

∫ Etr

Eo

dE (βtr − β(E)), (2.13)

sd =

∫ Ed

Etr

dE (β(E)− βtr). (2.14)

The Maxwell line intersects the inverse temperature at the energies Eo, Etr, and Ed. The

latent heat ∆Q = Ed − Eo corresponds to the energetic separation between the ordered

and the disordered pseudophases. The transition energy Etr indicates the location where

intermediate states experience the maximal entropic suppression [1].

The slope of the double-tangent Gibbs construction, also shown in Figure 2.2, provides

yet another definition of βtr. As a function of energy, the Gibbs hull is defined as

H(E) = S(Eo) + βtr[E −Eo], (2.15)

where βtr can be expressed in terms of the energy and entropy differences between the ordered

and disordered pseudophases as

βtr =
Sd − So

Ed −Eo

=
∆S

∆Q
. (2.16)

11



With the exception of composite multi-step transitions, characterized by additional oscilla-

tions in the back-bending region of β(E), the transition temperatures obtained by the means

of the Maxwell and Gibbs constructions are identical.

The formalism of the microcanonical inflection-point analysis makes no reference to the

thermodynamic limit. In fact, it is equally suitable for analysis of macroscopic and meso-

scopic systems alike. This is in stark contrast to the more traditional canonical analysis

which is defined under the assumption of the thermodynamic limit and has to be modified

for the treatment of finite systems.

2.2 The canonical ensemble

The canonical ensemble describes the behavior of a closed system which is in thermal equilib-

rium with a large external heat bath at a fixed temperature T . In analogy to the density of

states in the microcanonical ensemble, the partition function Z(T ) contains all the essential

information about the thermodynamic properties of the system under consideration [70]. It

can be defined directly as a Laplace transform6 of the microcanical density of states g(E)

Z(T ) =
∑

i

g(Ei)e
−

Ei
kBT , (2.17)

where T is the canonical temperature and kB is the Boltzmann constant. The condition

of thermal equilibrium prohibits any net average energy transfer between the system and

the heat bath. However, the system can temporarily gain or loose energy through constant

fluctuations and dissipations. The probability for a given microstate µ at a temperature T

6Here we assume that the system under investigation has discrete energy levels, which is always true
in the context of computational studies. In the case of a continuous energy spectrum, the discrete sum is

replaced by the integral Z(T ) =
∫

dE g(E)e
− E

kBT .
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is given by the Boltzmann distribution

p(µ) =
1

Z(T )
e
−H(µ)

kBT , (2.18)

where H is the Hamiltonian of the system. The appropriate thermodynamic potential in the

canonical ensemble is the Helmholtz free energy

F (T ) = −kBT lnZ(T ). (2.19)

This quantity represents the energy available to perform work and can be used to obtain all

other thermodynamic quantities by differentiation [66, 67]. The temperature derivative of

the free energy defines the canonical entropy

S(T ) = −
∂

∂T
F (T )

∣

∣

∣

∣

N,V

, (2.20)

which measures the amount of disorder in the system. The internal energy U , defined as a

sum over all microstate energies weighted by the Boltzmann distribution

U(T ) =

∑

µH(µ)e
−

H(µ)
kBT

Z(T )
=

∑

E E g(E)e
− E

kBT

Z(T )
, (2.21)

represents the average energy of the system. Alternatively, the internal energy can be ob-

tained by the differentiation of the free energy

U(T ) = kBT
2 ∂

∂T
lnZ(T )

∣

∣

∣

∣

N,V

= −T 2 ∂

∂T

(

F

T

)
∣

∣

∣

∣

N,V

. (2.22)
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The amount of energy needed to increase the temperature of the system by one unit is given

by the heat capacity CV , defined as a temperature derivative of the internal energy

CV (T ) =
∂

dT
U(T )

∣

∣

∣

∣

N,V

= −T
∂2

∂T 2
F (T )

∣

∣

∣

∣

N,V

. (2.23)

On the other hand, starting with the third term in equation 2.21 we obtain the following

expression

CV (T ) =
∂

dT

∑

E E g(E)e
− E

kBT

Z(T )
= −

1

kBT 2

∂

∂β

∑

E E g(E)e−βE

∑

E g(E)e−βE

=
1

kBT 2

[

(∑

E E2 g(E)e−βE

Z(T )

)

−

(∑

E E g(E)e−βE

Z(T )

)2
]

=
1

kBT 2

(〈

E2
〉

− 〈E〉2
)

, (2.24)

where the last expression corresponds to the variance of the Boltzmann distribution. This re-

sult is of profound physical importance, establishing the connection between the macroscopic

response quantity CV , and microscopic fluctuations.

2.2.1 Canonical analysis of phase transitions

Sudden dramatic changes of macroscopic properties, in response to small variations of an ex-

ternal control parameter, indicate that the system under investigation is undergoing a phase

transition. Here we consider temperature-driven transitions and describe a classification

scheme similar to Ehrenfest’s.

In the thermodynamic limit, it is generally possible to identify some property of the

system which is non-zero in the ordered phase and zero in the disordered phase, i.e. the

order parameter [1, 70]. A standard example is the magnetization m in a ferromagnetic

system, where m = 1 in the ordered ferromagnetic phase and m = 0 in the disordered
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Figure 2.3: (a) The jump discontinuity in the canonical entropy S, (b) and the singularity
in the heat capacity CV , are characteristic of first order phase transitions.

paramagnetic phase. The derivative of the order parameter with respect to its conjugate

variable defines a response quantity7 which is discontinuous at the transition point. Order

parameters also play a central role in the formulation of the Landau theory, where they serve

as a basis for the expansion of the free energy around the transition point [71].

First order transitions are characterized by a jump discontinuity ∆S in entropy and the

coexistence of two distinct phases8 at the transition temperature. The energetic separation

between the two phases corresponds to the latent heat

∆Q = Ttr ∆S, (2.25)

where ∆S is the height of the discontinuity and Ttr is the transition temperature. The heat

capacity CV exhibits a singularity at Ttr, as shown in Fig. 2.3 (b).

7In the case of the magnetization m, the appropriate conjugate thermodynamic variable is the external
field H , and the corresponding response quantity is the magnetic susceptibility χ.

8As a familiar example, consider the coexistence of gas bubbles and liquid at the boiling point of water.
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Figure 2.4: Second order transitions are characterized by discontinuities in response quan-
tities, such as the heat capacity. (a,b) In the case of a critical second order transition, the
entropy S attains an infinite slope at Tc accompanied by a divergence in the heat capacity
CV . (c,d) So called lambda transitions are characterized by a jump discontinuity in CV and
a cusp singularity in entropy.

Second order transitions do not posses discontinuities in entropy, and for that reason

are often called continuous transitions. Instead, discontinuities are found in the second

derivatives of the free energy with respect to temperature. It is customary to make use

of equation 2.23, and consider the heat capacity CV which also contains the same discon-

tinuities. In the vicinity of the transition point Tc, the heat capacity exhibits a power law

behavior CV (τ) ∝ |τ |−α, where τ = (T − Tc) /Tc and α is the associated critical exponent.

Examples of common types of discontinuities of CV are shown in Fig. 2.4. Other important

quantities such as the magnetic susceptibility χ and the correlation length ξ also exhibit a

power law behavior near the transition point, governed by the critical exponents γ and ν
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respectively. The striking observation, that in the vicinity of the critical temperature Tc, the

behavior of physical systems with diverse microscopic properties can be described in terms

of the same critical exponents, is formalized in the theory of Universality [71].

Canonical analysis in mesoscopic systems

The description of phase transitions in terms of discontinuities and divergences is valid only

in the thermodynamic limit. In situations where the thermodynamic behavior of a system is

affected by finite size effects, this idealized description no longer applies. Nevertheless, the

numerous examples of abrupt changes of macroscopic properties in finite systems necessitate

the generalization of the theory.

In the generalized formalism, peaks in the heat capacity and other response quantities

indicate regions of increased thermodynamic activity, i.e. pseudophase transitions. The

order of the transition is determined from the shape of the canonical energy distribution in

the transition region. Bimodal distributions reveal the coexistence of two pseudophases and

indicate a first-order transition [72]. The associated latent heat of the transition is given by

the energetic separation between the two peaks in the distribution. Second-order transitions

correspond to unimodal energy distributions. The power law behavior of response quantities

contains significant finite-size corrections and in some cases is altogether not applicable [70].

An example of canonical analysis, applied to first- and second-order pseudophase transitions,

is illustrated in Fig. 2.5.

It should be mentioned that second-order pseudophase transitions do not always produce

peaks in the heat capacity. In general, it is necessary to investigate the behavior of several

response quantities in order to obtain an accurate picture of the transition properties of

the system under investigation. However, due to finite size effects, the signals obtained

from different quantities will in general not coincide at a single transition temperature. This
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Figure 2.5: (a) The peak in the heat capacity CV indicates a region of heightened thermody-
namic activity. (b) The two peaks in the bimodal canonical energy distribution correspond
to the ordered and disordered pseudophases, energetically separated by the latent heat ∆Q.
Pseudophase coexistence and latent heat are reliable indicators of a first-order pseudophase
transition. (c) Second-order transitions are marked by wide unimodal energy distributions
at the transition point.

reality further fortifies the argument that the microcanonical inflection-point analysis9, which

defines a unique transition temperature in mesoscopic and macroscopic systems alike, is the

preferred formalism for the analysis of finite systems.

9Introduced in Sec. 2.1.2
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2.3 Alternative definitions of the density of states

In section 2.1 we have defined the microcanonical density of states g(E) as an integral

over the surface of constant energy in the 6N -dimensional phase space. We have argued

that g(E) contains all the essential information about the thermodynamic properties of the

system under consideration, and introduced the formalism of the microcanonical inflection-

point analysis which uses the logarithm of g(E) as its starting point. In section 2.2 we have

shown that the canonical partition function Z(T ) can be obtained by performing a Laplace

transform of g(E). Clearly, the microcanonical density of states plays a fundamental role in

equilibrium statistical mechanics, and as such needs to be carefully defined.

Two distinct definitions of the density of states arise from certain ambiguity in the exact

meaning of the microcanonical ensemble in computational studies. The density of states

can be defined in the context of the conformational microcanonical ensemble (N, V, Ec) as a

function of the conformational (potential) energy only

gc(Ec) =

∫

DQ δ(Ec −H(Q)) (2.26)

This definition is commonly used in Monte Carlo simulations of magnetic systems where

the kinetic energy contributions have little physical significance and the sampling can be

restricted to the conformational space. However, in systems where the transfer between

potential and kinetic energy has important physical interpretation, the sampling of the full

phase space becomes necessary. The standard definition of the microcanonical ensemble

(N, V, E) is applied and the measured density of states becomes a function of the total

system energy, which can be written as the sum of the potential and kinetic energies

E = Ec + Ek. (2.27)
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In order to distinguish between the two definitions, we shall use the symbol Γ(E) to represent

the density of states in the full phase space. The connection between the conformational

density of states gc(E) and Γ(E) is expressed as a convolution [73]

Γ(E) =

∫

dEk gc(E − Ek)gk(Ek), (2.28)

where

gk(Ek) =

∫

DP δ(Ek −H(P)) (2.29)

is the kinetic density of states obtained by integrating over the momentum space.

We shall now turn our attention to the consequence of choosing either the conformational

or the full density of states as the starting point for a systematic analysis of the thermo-

dynamic properties of a system under consideration. In the following we will discuss the

impact of ignoring the momentum degrees of freedom on the results of both the canonical

and microcanonical analysis. As an illustration, we will provide results from Monte Carlo

simulations of two short flexible homopolymers.

2.3.1 Consequences for canonical analysis

The canonical partition function Z(T ) and the microcanonical density of states are connected

via a Laplace transform. We begin with the full density of states Γ(E) and using the definition

from Eq. 2.28 write

Z(T ) = L{Γ(E)} = L{gc ∗ gk} = L{gc}L{gk}, (2.30)

where the last step follows from the convolution theorem [74].
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The partition function of the system can hence be conveniently written as a product of two

independent partition functions

Z(T ) = Zc(T )Zk(T ), (2.31)

which depend on the potential and kinetic energies respectively. It follows that the average

ensemble energy can be expressed as the sum of the average potential and kinetic energies

U(T ) = kBT
2 ∂

∂T
lnZ

∣

∣

∣

∣

N,V

= kBT
2 ∂

∂T
lnZc

∣

∣

∣

∣

N,V

+ kBT
2 ∂

∂T
lnZk

∣

∣

∣

∣

N,V

= 〈Ec〉+ 〈Ek〉. (2.32)

With the exception of systems with rigid constraints, the average kinetic energy is given by

the equipartition theorem

〈Ek〉 =
3NkBT

2
, (2.33)

where N is the number of particles in the system. It follows that the heat capacity CV

obtains only a trivial additive constant from the kinetic energy term

CV(T ) =
∂

∂T
U(T )

∣

∣

∣

∣

N,V

=
∂

∂T
〈Ec〉

∣

∣

∣

∣

N,V

+
∂

∂T

3NkBT

2

= CV,conf. +
3NkB
2

. (2.34)

In conclusion, the locations and shapes of signals for pseudophase transitions are not

affected by the inclusion of the momentum space into a sampling scheme. To substantiate

this assertion, in Fig. 2.6 we present the results from a Monte Carlo study of a short flexible
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Figure 2.6: Results of a Monte Carlo simulation of a short flexible homopolymer of length
N = 13. The average kinetic energy 〈Ek〉 and the kinetic contributions CV,kin. towards the
heat capacity are plotted as points on top of their respective theoretical curves (blue). The
average conformational (potential) energy 〈Ec〉 and the conformational heat capacity CV,conf.

(green) were obtained by sampling of the conformational space. Sampling of the full phase
space was performed to obtain the total average energy U and the combined heat capacity
CV (red). As expected, the combined heat capacity is identical to CV,conf., except for a trivial
additive constant.

homopolymer. The average kinetic energy 〈Ek〉 and the kinetic contributions CV,kin. towards

the heat capacity are plotted as points on top of their respective theoretical curves (blue),

showing good agreement with the predicted values. The average potential energy 〈Ec〉 and

the conformational heat capacity CV,conf. (green) were obtained by the sampling of the con-

figurational space only. Sampling of the full phase space was performed to obtain the total

average energy U and the combined heat capacity CV (red). As expected, the combined

heat capacity is identical to CV,conf., except for a trivial additive constant. The estimate of

the transition temperature is independent of the choice of either definition of the density of

states.
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2.3.2 Consequences for microcanonical analysis

The application of the Laplace transform to the total density of states Γ(E), allowed us

to conveniently disentangle the convolution in Eq. 2.28 into separate kinetic and confor-

mational contributions [Eq. 2.30]. Unfortunately, in the microcanonical ensemble no such

simplification is readily available. Let us however consider a class of physical systems whose

momenta and positional degrees of freedom are independent. Explicit integration over the

momentum space yields a simple expression for the kinetic density of states

gk(Ek) =

∫

DP δ(Ek −H(P)) = E
3N−2

2
k . (2.35)

Combining the result with Eq. 2.28 we obtain

Γ(E) =

∫

dEk gc(E −Ek)E
3N−2

2
k . (2.36)

Next, taking a derivative with respect to the total energy E and dividing both sides by Γ(E)

we get two equivalent expressions for the microcanonical inverse temperature

β(E) =

∫

dEk
3N − 2

2Ek

[

gc(E − Ek)E
3N−2

2
k

Γ(E)

]

(2.37)

=

∫

dEc βc(Ec)

[

gc(Ec)(E −Ec)
3N−2

2

Γ(E)

]

. (2.38)

Recognizing the two terms enclosed in square brackets as the microcanonical probability

densities for the kinetic and potential energies, we can rewrite equations 2.37 and 2.38 as
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β(E) =

∫

dEk
3N − 2

2Ek

ρ(Ek)E =
3N − 2

2

〈

1

Ek

〉

, (2.39)

and

β(E) =

∫

dEc βc(Ec) ρ(Ec)E = 〈βc〉 . (2.40)

The microcanonical inverse temperature, obtained by the differentiation of the total density

of states, can therefore be interpreted as an average of the conformational and kinetic anologs

weighted by their respective microcanonical probability distributions.

When the number of particles in the system is large, the probability densities ρ(Ek)E

and ρ(Ec)E are expected to be sharply peaked around the most probable kinetic Ēk and

potential Ēc energies respectively . We can therefore apply the saddle point approximation

to the integrals in equations [2.39, 2.40] and obtain the following first order approximations

for the inverse temperature

β(E) ≈ βc(Ēc,E), (2.41)

and

β(E) ≈
3N − 2

2

(

1

Ēk,E

)

. (2.42)

The first expression suggests that it is possible to reconstruct β(E) from the conformational

inverse temperature βc, and that the two quantities contain essentially the same informa-

tion. We test the validity of this hypothesis by comparing the microcanonical results of

Monte Carlo simulations of a flexible elastic 55−mer, which were carried out in both the

conformational space and the full phase space.

24



0

100

200

300

400

500

0 0.5 1 1.5 2

S

E/N

S(E) = kB ln Γ(E)

Sc(Ec)

Sk(Ek)

(a)

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2

β

E/N

β

βc

βk

βtrans

(b)

Figure 2.7: Comparison of microcanonical results from a Monte Carlo simulation of a flex-
ible homopolymer of length N = 55.(a) Graphs of the combined S, conformational Sc, and
kinetic Sk entropy curves. (b) The kinetic inverse temperature βk is a strictly convex func-
tion and the application of the inflection-point analysis reveals no transition signals. The
conformational inverse temperature βc clearly differs from β(E), however both indicate a
first-order pseudophase transition at virtually the same temperature.

The kinetic entropy in Fig. 2.7 is a strictly concave function and the application of the

inflection-point analysis to the corresponding inverse temperature βk reveals no transition

signals. The conformational inverse temperature clearly differs from β(E), however both

indicate a first-order pseudophase transition at virtually the same temperature. In Fig. 2.8

we show the comparison between the true β(E) and the reconstruction obtained from the

conformational inverse temperature according to equations 2.41 and 2.42. It is evident that

the approximation is valid, except in the back-bending region of the first-order transition

due to the bimodality of the probability densities ρ(Ek)E and ρ(Ec)E .
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Figure 2.8: Comparison of the inverse microcanonical temperature β(E) (red) and the confor-
mational inverse temperature βc(Ēc) (blue) evaluated at the most probable potential energy
Ēc. The approximation introduced in equation 2.41 holds except in the back-bending region
of the first-order pseudophase transition. The inverse transition temperature βtrans obtained
from the two quantities is virtually identical.

The expression in equation 2.42 can be rewritten as

kBT (E) ≈
2

3N − 2

(

1

Ēk

)−1

, (2.43)

which clearly resembles the well known relationship between the canonical temperature and

the average kinetic energy. In the the thermodynamic limit, this approximation becomes

exact and the equivalency of the microcanonical and canonical ensembles is restored.
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Chapter 3

Computational Methods

Computational algorithms are powerful tools that enable the investigation of physical many-

body systems under thermal conditions, that are far too complex to be solved analytically.

In fact, only a handful of systems with large number of degrees of freedom are exactly solv-

able1, and even the simplest solutions often require bewildering mathematical gymnastics.

Consequently, computational studies are the main source of advances in the fundamental

understanding of complex microscopic and mesoscopic systems such as biopolymers and

proteins [1].

Two complementary classes of computational algorithms have been particularly successful

in unravelling the thermodynamic properties of physical systems. Molecular dynamics sim-

ulations generate a single phase space trajectory by updating the positions and momenta of

every particle in a system according to Hamilton’s equations [75,76]. Alternatively, carrying

out a stochastic sampling of the phase space, Monte Carlo simulations estimate the equilib-

rium properties without an explicit consideration of the system’s inherent dynamics [1, 70].

In this chapter, we shall focus our attention to Markov chain Monte Carlo methods. We will

briefly discuss the essential theory and introduce the well established Metropolis and Paral-

1The most prominent examples of exactly solvable systems with large number of degrees of freedom are
the ideal gas and the two dimensional Ising model.
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lel Tempering algorithms as well as the lesser known Multiple Gaussian modified ensemble

method.

3.1 Markov chain Monte Carlo

The aim of all Monte Carlo methods is to extract the equilibrium thermodynamic properties

of physical systems by performing an efficient stochastic sampling of the phase space. For

this purpose, a set of random microstates {µ1, µ2, ..., µM} is generated according to some

previously known probability distribution p(µi), and the expectation value for any observable

O(µ) is estimated by calculating the average

Ō =
1

M

M
∑

i=1

O(µi). (3.1)

In most Monte Carlo methods, the set of random microstates is generated according to a

discrete-time Markov chain (DTMC) [77]. Markov chains are sequences of random states,

generated according to the time-independent transition probabilities T (µ → ν) which satisfy

the Markov property. In simple terms, the probability of moving to state ν from state µ

depends only on the present state, and is independent of the history of the process. In order

to achieve the correct statistical sampling of an equilibrium thermodynamic ensemble, the

following conditions must also be satisfied.

The process must be ergodic, i.e., there must be a path of non-zero probability between

any pair of states. More formally, the state space S of the Markov chain must consist of a

single aperiodic recurrence class. When ergodicity is satisfied, the ensemble average 〈O〉 can

be approximated by the measured expectation value Ō [Eq. 3.1]

Ō =
1

M

M
∑

i=1

O(µi) ≈ 〈O〉 =

∫

DPDQ O(P,Q)p(P,Q), (3.2)
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where M is the length of the Markov chain. According to the ergodic hypothesis [76], the

approximation becomes exact in the limit of an infinitely long Markov chain

lim
M→∞

1

M

M
∑

i=1

O(µi) =

∫

DPDQ O(P,Q)p(P,Q). (3.3)

The time evolution of a discrete-time Markov process is described by the master equation

∆p(µ)

∆t
=
∑

ν

[p(ν)T (ν → µ)− p(µ)T (µ → ν)] . (3.4)

The equilibrium condition requires that the probability distribution p(µ) is stationary. In

other words, the probability currents into and out of the state µ must be always equal

∑

ν

p(ν)T (ν → µ) =
∑

ν

p(µ)T (µ → ν) . (3.5)

Also known as the balance condition, equation 3.5 sometimes allows for solutions that are

not permitted in the equilibrium ensemble [70]. The stricter condition of detailed balance

requires that the probability of a transfer between any two states must be equal to the

probability of the reverse process. Embodied in the expression

p(µ)T (µ → ν) = p(ν)T (ν → µ) , (3.6)

this condition is sufficient to prevent any non-physical solutions as well as to ensure that the

process is invariant under time reversal.

Having introduced the conditions of ergodicity and detailed balance, we can now derive

the expression for transition probabilities which will ensure correct stochastic sampling ac-

cording to an equilibrium distribution p (µ). For convenience, we will separate the transition

probabilities into two separate terms and write
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T (µ → ν) = s (µ → ν) a (µ → ν) . (3.7)

Assuming the current state µ, the probability of generating a new state ν is given by the

selection probability s (µ → ν), while the probability of accepting the proposed update is

controlled by the acceptance probability a (µ → ν). Combining equations 3.6 and 3.7, we

express the ratio of the transition probabilities as

T (µ → ν)

T (ν → µ)
=

s (µ → ν) a (µ → ν)

s (ν → µ) a (ν → µ)
=

p (ν)

p (µ)
. (3.8)

The ratio of the forward and backward selection probabilities σ(µ, ν) = s (µ → ν) /s (ν → µ)

depends on the choice of the particular update scheme. In the remainder of this thesis, we

shall assume that the forward and backward selection probabilities are equal and the ratio

equals to unity, which is valid for most local Monte Carlo updates. This simplifying assump-

tion allows us to rewrite equation 3.8 without making explicit references to the selection

probabilities

a (µ → ν)

a (ν → µ)
=

p (ν)

p (µ)
. (3.9)

3.1.1 Metropolis sampling

Any set of acceptance probabilities which satisfies equation 3.9 is allowable, however the

standard choice is to set the higher of the two probabilities to unity. This yields the well

known Metropolis acceptance criterion [70, 78]:

a (µ → ν) = min

(

1,
p (ν)

p (µ)

)

. (3.10)

Under most circumstances, Metropolis sampling is carried out according to the canonical

microstate probability distribution p(µ) ∝ e−βE(µ), where β is the inverse canonical temper-
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ature. Hence the acceptance probability is governed by the energy difference between the

proposed and the current states

a (µ → ν) = min

(

1,
e−βE(ν)

e−βE(µ)

)

= min
(

1, e−β∆E
)

. (3.11)

The average of the observable O(µ), measured over the length of a finite Metropolis run,

serves as an estimate for the canonical expectation value 〈O〉 [Eq. 3.2]. In the limit of an in-

finitely long run, this approximation becomes exact [Eq. 3.3]. However, since all simulations

are of finite length, it is imperative to account for the statistical errors introduced due to

the finiteness of the measured data sets. The standard bias corrected error estimator for the

calculated average Ō, obtained from a finite set of M uncorrelated measurements, is written

as

err(Ō) = ±

√

1

M(M − 1)

∑

m

(Om − Ō)2. (3.12)

In reality, most measurements obtained from Monte Carlo simulations are correlated. Hence

it is necessary to introduce the modified error estimator

err(Ō) = ±

√

1

M(Meff − 1)

∑

m

(Om − Ō)2, (3.13)

where Meff is the number of uncorrelated measurements2.

The Metropolis method provides the means for an efficient sampling of conformations

which are dominant at a given temperature. However, the conformations which are found in

the tails of the canonical energy distribution are rarely visited. Further shortcomings of the

Metropolis algorithm, such as the propensity for getting trapped in low-energy configurations

and the notorious reduction in sampling efficiency near pseudophase transitions, motivate

the introduction of more efficient sampling methods.

2For detailed description of the more practical binning and jackknife error estimation methods, please
refer to chapter 4 in [1].
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3.1.2 Parallel tempering

In situations where the Metropolis method fails to produce data of reasonable quality, the

standard way of increasing sampling efficiency is to perform the simulation in a conveniently

chosen generalized ensemble3. In parallel tempering [4–7], multiple canonical ensembles with

different inverse temperatures {β1 < β2 < ... < βN} are simulated in parallel according to

the standard Metropolis scheme. In this context, the generalized ensemble is defined as the

direct product of N canonical ensembles, and the partition function is given by

ZPT(β1, β2, ..., βN) =

N
∏

i=1

Zcan(βi). (3.14)

At judiciously chosen intervals, an exchange of conformations between adjacent tempera-

ture threads i and j is proposed. The combined probability for states (µ, ν) at respective

temperatures (βi, βj) is given by

pµν =
e−βiE(µ)

Zcan(βi)

e−βjE(ν)

Zcan(βj)
, (3.15)

and the acceptance probability for the exchange of conformations is obtained from Eq. 3.10

a (µ ↔ ν; βi, βj) = min

(

1,
e−βiE(ν)e−βjE(µ)

e−βiE(µ)e−βjE(ν)

)

= min
(

1, e[βj−βi][E(ν)−E(µ)]
)

. (3.16)

The exchange rates are governed by the overlap of canonical energy distributions of the

adjacent ensembles, hence the efficiency of the method depends sensitively on the choice of

an appropriate temperature set. As a general rule, the density of temperatures must be

increased in ordered phases and in the vicinity of pseudophase transitions.

3The microstate probability distribution of a generalized ensemble can be arbitrary and does not have to
bear any resemblance to the Boltzmann distribution.

32



In principle, each replica is allowed to traverse the entire simulated temperature range

which leads to the decrease of the autocorrelation time and reduces the likelihood of getting

trapped in local energy minima at low temperatures. However, the performance of this

method rapidly decreases near first-order transitions, where the joint effects of the entropic

suppression of intermediate states and the energetic separation between the ordered and

disordered pseudophases, virtually prevent the exchange of configurations between adjacent

ensembles.

3.1.3 Multiple Gaussian modified ensemble

An alternative generalized ensemble method that offers improved performance is based on the

combination of parallel tempering with the Gaussian modified ensemble (GME) method [8].

The idea behind GME is to modify the canonical Boltzmann distribution by multiplying

it by a Gaussian function, in order to promote sampling in selected energy regions. The

mean energy EG and the variance ∆E2
G of the Gaussian form controls the location and the

width of the region of enhanced sampling. The modified microstate probability at the inverse

temperature β is given by

PGME(µ) ∝ e−βEµ−(Eµ−EG)2/∆E2
G . (3.17)

The measurements obtained from simulations in a modified ensemble must be reweighted in

order to obtain the expectation values in the original canonical ensemble. In the context of

the modified Gaussian ensemble this is done by calculating

〈O〉can,β =

M
∑

i=1

Oie
β(Ei−EG)2/∆E2

G

M
∑

i=1

eβ(Ei−EG)2/∆E2
G

. (3.18)
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Figure 3.1: Canonical and GME energy histograms at a first-order pseudophase transition.
The bimodal canonical energy histogram indicates the coexistence of ordered and disordered
pseudophases, separated by an entropically suppressed energy region. Each GME ensemble
enhances the sampling of suppressed states over a limited energy range.

Strong first-order transitions with bimodal energy distributions typically require several

overlapping GME ensembles to cover the relevant energy range, as illustrated in Fig. 3.1.

The acceptance probability for the exchange of conformations (µ, ν) between neighboring

GME ensembles with mean energies (EG,i, EG,j) at a constant inverse temperature β is

a (µ ↔ ν) = min
(

1, e∆G
)

, (3.19)

where

∆G =
(Eµ −EG,j)

2 − (Eν − EG,j)
2

∆E2
G,j

−
(Eν −EG,i)

2 − (Eµ − EG,i)
2

∆E2
G,i

. (3.20)

The direct product of GME ensembles defines the multiple Gaussian modified ensem-
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ble (MGME). With a proper choice of ensemble parameters (EG,∆EG) it is possible to

achieve a significantly enhanced sampling of previously inaccessible states. This can be fur-

ther improved by allowing for exchanges between GME ensembles at different temperatures.

However, previous knowledge of the system under consideration is usually needed to make a

reasonable estimate for the ensemble parameters. Therefore other more systematic methods,

such as the multicanonical [9–14] and Wang-Landau sampling [15–17], are often used.

3.2 Histogram reweighting methods

In chapter 2, we have introduced the microcanonical inflection point analysis as the means for

the systematic study of pseudophase transitions in the microcanonical ensemble. Application

of this method however presumes the precise knowledge of the microcanonical density of

states g(E) [Eq 2.3]. Previously introduced sampling methods do not directly measure g(E)

but rather generate canonical energy histograms h(E, βi). Hence, it is necessary to introduce

a general method for estimating the density of states from energy histograms.

3.2.1 Multiple histogram reweighting

Canonical histogram h(E, βi) provides an approximation for the Boltzmann distribution

pcan(E, βi), which is itself proportional to the microcanonical density of states

h(E, βi) ≈ pcan(E, βi) ∝ g(E)e−βiE (3.21)

Therefore each histogram yields an estimate of the density of states

ḡi(E) = h(E, βi)e
βiE (3.22)

Individual estimates ḡi(E) are only reliable for energies in the vicinity of the peak of the
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Figure 3.2: (a) Illustration of the canonical energy histograms h(E, βi), (b) the individual
estimates of the logarithm of the density of states S̄i(E), (c) and the combined estimate of
the logarithm of the density of states Ŝ(E) obtained by reweighting.

canonical histogram obtained at the temperature βi. Therefore a sufficient overlap between

the histograms of adjacent replicas is necessary to ensure that an accurate estimate of the

density of states can be obtained for the entire energetic range.

The task is now to combine the individual estimates ḡi(E) to obtain an improved estimate

ĝ(E). Unfortunately, general Monte Carlo methods do not yield absolute estimates for the

partition function Z(β) and the estimates ḡi(E) cannot be directly related if obtained at

different temperatures. However, it is possible to introduce a reference partition function

Ẑi =
∑

E

ĝ(E)e−βiE , (3.23)

which serves as the appropriate weight in the estimator for the density of states

ĝ(E) =

∑R
i=1 h(E, βi)

∑R
i=1MiẐ

−1
i e−βiE

. (3.24)

36



The equations 3.23 and 3.24 must be solved iteratively until ĝ(E) has converged. The

relationship between the canonical energy histograms, the individual estimates S̄i(E), and

the final estimate Ŝ(E) of the logarithm of the density of states is illustrated in Fig. 3.2. For

a detailed derivation and a further discussion of the multiple-histogram reweighting method

please refer to [79, 80].

3.2.2 Beziér smoothing

The estimator for the density of states, obtained either by multiple-histogram reweighting

or directly by multicanonical sampling, is not a smooth function but rather a discrete set

of stochastic values. The formalism of the microcanonical inflection point analysis requires

the accurate knowledge of its energy derivatives. These have to be computed by numerical

differentiation which is prone to enhancing the random statistical fluctuations of the original

data set. It is therefore desirable to approximate the density of states by a smooth analytic

function, which can be done very effectively with Beziér curves [1, 81].

Beziér curve of order n is a parametric curve defined by a set of (n + 1) control points

{P0, P1, ...., Pn} and the formula

B(t) =

n
∑

i=0

B
(n)
i (t)Pi, (3.25)

where t ∈ [0, 1] is the path parameter and B
(n)
i are the Bernstein basis polynomials [82] of

degree n

B
(n)
i (t) =

(

n

i

)

(1− t)n−iti. (3.26)

The discrete values of the estimated density of states serve as control points for the approxi-

mating Beziér curve. Assuming that the set of (n+1) control points {g(E0), g(E1), ...., g(En)}

is equally spaced in the energy space over the interval [Emin, Emax], the approximating Beziér
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Figure 3.3: Comparison between the noisy derivative of the microcanonical inverse temper-
ature γ(E) = dβ/dE and the Beziér approximation γbez(E). The systematic error in the
Beziér approximation is visible near Etrans, where the curvature of γ(E) changes abruptly.

function can be directly calculated from

gbez(E) =

n
∑

i=0

(

n

i

)(

Emax −E

Emax −Emin

)n−i(
E − Emin

Emax − Emin

)i

g(Ei). (3.27)

The numerical error introduced by the approximation scheme is typically much smaller than

the random statistical fluctuations in the original noisy data set [1]. However it should be

mentioned that Beziér smoothing may introduce systematic errors to the derivatives of g(E)

in areas of abrupt changes in curvature. This is illustrated in Fig. 3.3 where we compare the

noisy derivative of the microcanonical inverse temperature γ(E) = dβ/dE and the Beziér

approximation γbez(E) in the region of a first-order pseudophase transition.
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3.3 Simple Monte Carlo updates

The efficiency of Monte Carlo simulations depends in equal measure on the choice of the

sampling algorithm and on the selection of appropriate conformational updates. All update

sets must be ergodic, i.e., it must be in principle possible to connect any two arbitrary

states through a finite number of updates. Additionally, all updates must preserve the

constraints of the model, such as volume exclusion and boundary conditions. The efficiency of

individual updates can be different for each model. Hence, there is no general set of updates

that guarantees good performance across different physical models. In the following, we

shall briefly discuss conformational updates which are suitable for simulations of off-lattice

polymers and proteins.

3.3.1 Single displacement update

The single displacement update is easy to implement, satisfies ergodicity, and has equal

forward and backward selection probabilities. The original conformation of a polymer

chain R = {r1, r2, ..., rN} is updated by a random4 displacement ∆ri of a randomly se-

lected i-th monomer. The displacement vector is defined in the Cartesian coordinates as

∆ri = (∆xi,∆yi,∆zi), where each component is selected with uniform probability from

some interval [−l, l ]. In general, longer displacement updates lead to larger energy differ-

ences between the old and the new states ∆E = Enew − Eold. In Monte Carlo simulations,

large positive values of the ratio ∆E/T result in an exponential suppression of the accep-

tance rates [Eq. 3.11]. In order to achieve acceptance rates within the optimal range of

∼ 30% − 70%, the set of temperature dependent displacement parameters l(Ti) must be

determined. Unfortunately, for most off-lattice polymer models, only very short displace-

4Monte Carlo simulations make extensive use of pseudo-random numbers. The popular Mersenne Twister
pseudo-random number generator [83] is used throughout this thesis. For more information on the ‘art’ of
random number generation please refer to [70].
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l(T ), used in a parallel tempering simulation of a flexible elastic 55-mer. The values of
l(T ) were selected to keep the average acceptance rates 〈a〉 within the optimal range of
∼ 30%− 70%.

ment updates are allowed at low temperatures and the generated sequence of states becomes

strongly correlated. An example of the temperature dependence of l(Ti), obtained from a

simulation of a flexible elastic 55-mer, is shown in Fig. 3.4. Polymer models which contain

stiff bonds cannot be sampled using displacement updates and require more sophisticated

rotational updates [1].

3.3.2 Pivot update

The pivot update consists of rotating a portion of the polymer chain over a randomly chosen

rotation axis. This allows for a global change in the polymer conformation and decreases

the correlation between the sampled states. In practice, first a random monomer is selected

to serve as the pivot and the direction of the rotation axis is defined by a random vector
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Figure 3.5: Schematic depiction of the single-displacement and the rotational pivot updates.
In a displacement update, a randomly selected monomer is moved according to a randomly
generated displacement vector ∆ri. The pivot update consists of rotating a portion of the
polymer chain over a randomly chosen axis k by a random angle ∆φ.

k. With equal probability, either terminus of the chain is selected for rotation. The vector

which connects the pivot to any monomer which is to be rotated is denoted by r. The

random rotation angle ∆φ is selected with uniform probability from some interval [−λ, λ].

Finally, the projection r⊥ of the vector r into the plane perpendicular to k is rotated by

∆φ and the resultant vector connecting the pivot and the rotated monomer is given by r′.

A schematic depiction of the single-displacement and the pivot updates is provided in Fig.

3.5. It should be mentioned, that when used in simulations of polymer models with elastic

bonds, the pivot update is not ergodic since it preserves the bond length [1]. Therefore it

is recommended to combine rotational updates with single displacement updates whenever

applicable.
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Chapter 4

Coarse-grained Off-lattice Polymer

Models

It is hardly possible to overestimate the importance of defining an appropriate model to rep-

resent a real physical system in a computational study. What constitutes an ‘appropriate’

model depends largely on the system under investigation and on the level of detail which is

needed to correctly capture the properties of a given physical phenomenon. For example, the

study of chemical reaction kinetics, ground-state geometries of molecules, or the optical and

electronic properties of semiconductors, requires detailed knowledge of the electronic struc-

ture and interactions. In such cases, density functional theory (DFT) [84] or other quantum

mechanical modelling methods need to be employed. On the other hand, a wide range of

interesting physical phenomena, such as protein folding, polymer collapse, adsorption, and

aggregation, are driven by cooperative structure forming processes and as such are not ex-

pected to depend sensitively on the precise electronic or even atomic structures. In principle,

it is possible to gain insight into these processes by means of simplified models with a reduced

number of effective parameters [1,85]. In this chapter we shall briefly discuss the concept of

coarse-graining and introduce the model for the flexible elastic homopolymer together with
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Figure 4.1: An example of a coarse-grained model of polyethylene. Methylene groups (CH2)
are replaced by coarse-grained interaction sites which are depicted as transparent spheres.
The interactions between the sites are described in terms of effective potentials.

a set of structural order parameters which are particularly effective at characterizing the

conformational geometries of polymers in the solid pseudophase.

4.1 Coarse-grained models

The general idea behind coarse-graining is the observation that for a wide range of physical

phenomena the individual degrees of freedom of a system do not act independently but

rather behave in a cooperative fashion. The goal is then to find the minimal set of degrees

of freedom which would allow for an accurate description of a given physical process. In

the context of biomolecules, this typically amounts to replacing individual atoms by coarse-

grained interaction sites and exact quantum many-body interactions by effective potentials

[Fig. 4.1]. The new interaction sites are often referred to as monomers.

Individual conformations of a coarse-grained model with N monomers can be represented

by a 3N -dimensional vector Q = (q1, q2, ...., q3N ) in the reduced coordinate system. The
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components qi represent the relevant degrees of freedom and are defined in terms of the map

q̃i(X) : X → Q (4.1)

between the full conformational space X and the reduced space Q. In the full conformational

space, the canonical partition function is defined as

Zcan =

∫

DX e−βV (X), (4.2)

where V (X) is the exact inter-atomic potential. In order to express Zcan in terms of the

coarse-grained coordinates, we begin by integrating out the microscopic degrees of freedom

Zcan =

∫

DQ

∫

DX

3N
∏

i=1

[δ(qi − q̃i(X))] e−βV (X). (4.3)

Next we replace V (X) by an effective potential

Ṽ (Q) = −kB T ln

∫

DX
3N
∏

i=1

[δ(qi − q̃i(X))] e−βV (X). (4.4)

and write

Zcan =

∫

DQe−βṼ (Q). (4.5)

In principle, Ṽ (X) contains the combined effects of the exact inter-atomic potentials and

hence should allow for an accurate description of the thermodynamic and structural prop-

erties of the original system. However in reality, effective potentials are often only crude

approximations to the definition introduced in Eq. 4.4. The perhaps surprising fact, that a

wide range of physical phenomena can be studied by means of drastically simplified models,

suggests that physical properties that arise through cooperative behaviors do not depend

sensitively on microscopic details.

44



4.2 Flexible elastic homopolymer

The generic model of a flexible, elastic, homopolymer is suitable for the investigation of

the thermodynamic properties of polymer chains on a coarse-grained level. The polymer

is represented by a linear chain of elastically bonded coarse-grained interaction sites, i.e.,

monomers [Fig. 4.3]. Individual monomers have neutral electric charges and do not interact

via Coulomb forces. Instead, all structure forming processes are primarily driven by effective

dipole-dipole interactions represented by the van der Waals forces.

The potential energy of a dipole-dipole interaction between a pair of monomers (i, j)

separated by the distance r is given by

Vdip(r) =
1

4πε0

1

r3
[pi · pj − 3 (pi · r̂) (pj · r̂)] , (4.6)

where pi is the dipole moment of the ith monomer and r̂ is the unit vector in the direction

given by the separation vector between the two monomers [86]. However the strength of

the potential decreases with the third power of the distance which is not consistent with

the 1/r6 decay typically observed in experiments [87]. In fact, the problem must be treated

quantum mechanically to account for the existing overlap between electron wave functions.

The potential Vdip(r) is replaced by a dipole-dipole operator Ĥdip, which is then introduced

as a perturbation to a system of two non-interacting monomers. The first non-trivial term in

the perturbation expansion of the ground state energy yields the desired 1/r6 dependence [1].

In addition to this generic long range attraction, interacting bodies experience strong short

range repulsion due to repelling electronic clouds. Both effects are contained in the famous

Lennard-Jones potential [88]

ULJ(rij) = 4ǫ

[

(

σ

rij

)12

−

(

σ

rij

)6
]

, (4.7)
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Figure 4.2: (a) Non-bonded interactions in the generic model of an elastic homopolymer
are represented by the Lennard-Jones potential. Interacting monomers experience strong
repulsion below the equilibrium distance r0, and are weakly attracted over the interval (r0, rc)
where rc marks the cutoff distance. (b) The nonlinear FENE potential (red) is a symmetric
representation of the bonded interactions. As a possible variant, the symmetry of the bonded
potential can be broken by combining the FENE and the Lennard-Jones potentials (green).

where ǫ sets the energy scale of the interaction while the relevant length scale is given by

the van der Walls distance σ [Fig. 4.2(a)].

The bonds between adjacent monomers are represented by an elastic potential which

allows for longitudinal bond vibrations. The simplest approximation is given by the harmonic

spring potential (Rouse model), however the linearity of the interaction force allows for large

separation between the bonded monomers. This problem can be avoided by introducing a

potential which diverges for |r − r0| ≥ R, where r0 is the equilibrium bond length and R

controls the allowed fluctuation width. A particularly suitable choice is the finitely extensible

nonlinear elastic (FENE) potential [Fig. 4.2] [89–91]

UFENE(rii+1) = −
K

2
R2ln

[

1−

(

rii+1 − r0
R

)2
]

. (4.8)
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Figure 4.3: (a) Generic model of a flexible elastic homopolymer. All monomers interact via
a pairwise Lennard-Jones potential (LJ). Bonded interactions include an additional finitely
extensible nonlinear elastic potential (FENE). (b) In a multi-chain system, the interactions
between monomers belonging to different chains are also represented by the LJ potential.

4.2.1 Single elastic chain

In the following, we will define the model for a single elastic polymer chain which will be used

for the remainder of this thesis [Fig. 4.3]. The specific values of the model parameters will be

provided individually in the later chapters. The energy of a polymer chain of length N in a

conformation X = (r1, · · · , rN) is given by the sum of non-bonded and bonded contributions

E(X) =
N
∑

i<j+1

Unon−bonded(rij) +
N−1
∑

i=1

Ubonded(rii+1). (4.9)

All non-bonded interactions are represented by the Lennard-Jones potential introduced in

Eq. 4.7. In order to reduce the number of required calculations in a computer simulation, it

is a standard procedure to introduce a cutoff distance rc and set ULJ = 0 for all r ≥ rc. The

truncated LJ potential must also be shifted vertically by the constant ULJ(rc) to prevent a

47



discontinuity at rc. Hence the non-bonded interactions are represented by

Unon−bonded(rij) = U trunc
LJ (rij) =















ULJ(rij)− ULJ(rc), rij ≤ rc,

0, rij > rc.

(4.10)

In addition to the FENE potential [Eq. 4.8], bonded interactions contain an additional

Lennard-Jones term

Ubonded(rii+1) = UFENE(rii+1) + U trunc
LJ (rii+1). (4.11)

The short range repulsive part of the LJ potential ensures that the resultant potential is

asymmetric. The shapes of the bonded and non-bonded potentials are shown in Fig. 4.2.

4.2.2 Interacting elastic chains

A system of interacting elastic homopolymer chains is a suitable model for the study of

generic features of macromolecular aggregation. The energy of M interacting chains, each

consisting of N identical monomers, can be separated into intra-chain and inter-chain pair-

wise interactions

Etotal = Eintra + Einter. (4.12)

The intra-chain contribution

Eintra =

M
∑

k=1

N−1
∑

i=1

Ubonded(r
(k)
ii+1) +

M
∑

k=1

N
∑

i<j

Unon−bonded(r
(k)
ij ) (4.13)
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consists of both bonded and non-bonded interactions, as defined in Sec. 4.2.1, and r
(k)
ij is the

distance between the pair of monomers (i,j) of the k-th chain. The inter-chain contribution

Einter =

M
∑

k<l

N
∑

i,j

U trunc
LJ (|r

(k)
i − r

(l)
j |), (4.14)

consists solely of non-bonded Lennard-Jones interactions. Schematic depiction of the model

is provided in Fig. 4.3 (b).

4.3 Structural order parameters

The formalism of the microcanonical inflection-point analysis, as introduced in section 2.1.2,

provides a systematic approach for the identification and classification of pseudophase tran-

sitions in mesoscopic systems. Further insight into the thermodynamic and structural prop-

erties of polymer systems can be obtained by identifying the set of conformations which are

dominant in a given pseudophase. This can be accomplished either by visual inspection of

sample structures, or more systematically, by introducing a suitable set of structural order

parameters.

An example of a useful and easily computable structural quantity is the radius of gyration

rgyr(X) =

√

√

√

√

1

N

N
∑

i=1

(ri − rcom)
2, (4.15)

where

rcom =
1

N

N
∑

i=1

ri (4.16)

is the center-of-mass of the polymer conformation. The average 〈rgyr〉 is a measure of the

compactness of the dominant conformations found at a given canonical temperature.
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Figure 4.4: The thermal fluctuations of the radius of gyration obtained from a Monte Carlo
simulation of an elastic 55mer. The distinct peaks indicate the locations of the freezing and
collapse transitions at the temperatures Tfreezing and Tcollapse respectively.

Signals, such as peaks and shoulders, in the temperature derivative

d〈rgyr〉

dT
=

〈rgyrE〉 − 〈rgyr〉〈E〉

kBT 2
(4.17)

indicate locations of increased thermodynamic activity and are routinely used to identify

pseudophase transitions [Fig. 4.4].

Alternatively, a wide range of polymer conformation geometries can be identified using

the set of rotationally invariant order parameters

Ql =

[

4π

2l + 1

l
∑

m=−l

|ρl,m|
2

]1/2

, (4.18)

where

ρl,m(X) =
1

N

N
∑

i=0

Yl,m(ri) (4.19)
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Figure 4.5: Intensity plots of the rotationally invariant order parameter Q6 for two variants of
a coarse-grained model of an elastic 15mer. The shading indicates the probability of detecting
a configuration with a given value of the order parameter, red being the maximum probability
and black being the lowest. In figure (a), the two prominent low energy branches reveal the
existence of two solid pseudophases with distinct conformational geometries. Whereas in
(b), only a single solid phase is detected.

is the average of the real spherical harmonics1 evaluated at positions of the individual

monomers [92]. This set of order parameters has been particularly useful in the investi-

gations of polymer systems exhibiting multiple solid pseudophases at low energies [93]. In

Fig. 4.5 we provide an illustration of this approach as applied to two different variants of a

coarse-grained model of an elastic 15mer.

1The real harmonics can be expressed in terms of the better known complex harmonics as

Ylm(ri) =















i√
2

[

Ym
l (ri)− (−1)mY−m

l (ri)
]

if m < 0,

Y m
l (ri) if m = 0,

1√
2

[

Y−m
l (ri) + (−1)mYm

l (ri)
]

if m > 0.

(4.20)
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Chapter 5

Impact of the Bond Confinement

Range on the Structural Transitions

of Elastic Homopolymers

In chapter 4, we have suggested that the structural and thermodynamic properties of polymer

systems can be investigated by the means of rather simple coarse-grained models. It is

desirable that the general features of the model, such as the types of observed pseudophases

and low-energy conformational geometries, remain at least qualitatively similar over a range

of model parameters. In recent studies, the effect of the interaction range between non-

bonded monomers of a single elastic homopolymer has been addressed systematically [25,

26, 94]. It has been found that for sufficiently short interaction ranges, it is possible for

the polymer to fold directly from random-coil structures (i.e., the gas phase) into solid and

compact conformations. Under these conditions, no globular (or liquid) phase is present.

In this chapter, we investigate the effects of restricting the fluctuation range of bonded in-

teractions in a single elastic polymer chain. The variation of the bond extension range allows

us to bridge the gap between self-interacting polymers with stiff bonds (such as proteins)
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and bead-spring chains (elastic polymers) with bonds so floppy that these polymers behave

similarly to a gas of interacting particles. For this purpose, we have performed extensive

replica-exchange Monte Carlo simulations in extended multiple Gaussian modified ensem-

bles [8], which help improve the efficiency of parallel tempering simulations near first-order

transitions. Systematic studies of the structural phases in the space of the bond confinement

parameter were made possible by employing standard canonical analyses of fluctuations in

macroscopic thermodynamic quantities and also by careful analysis of the nature of inflection

points in the microcanonical temperature curve [1, 58].

5.1 Model and simulation parameters

In this study, we employ a coarse-grained model of an elastic homopolymer, in the same form

as introduced in Sec. 4.2.1. This model was originally introduced for investigations of general

properties of elastic polymer chains. Due to the similarity in the transition behavior of atomic

clusters and polymers, however, the scope of this model can be extended to investigate effects

of bond confinement as well. As such, this model allows for the interpolation of systems

ranging from polymers to an almost unconfined gas of atoms.

The energy and the length scales of the truncated and shifted Lennard-Jones potential

(Eq. 4.10) were set to ǫ = 1 and σ = r0/2
1/6 respectively, where r0 = 0.7 marks the location

of the minimum potential. The cut-off radius was set at rc = 2.5σ such that ULJ(rc) ≈

−0.0163169ǫ. The FENE potential (Eq. 4.8), which together with the LJ potential represents

bonded interactions, is used here in the modified form

UFENE(rii+1) = −
K

2
R2

0ln

[

1−

(

rii+1 − r0
R

)2
]

, (5.1)

where K = 40 and R0 = 0.3. The parameter R inside of the logarithmic term controls the
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Figure 5.1: Behavior of the combined bond potential Ubonded(rii+1) = ULJ(rii+1) +
UFENE(rii+1) for different values of the effective bond confinement range R.

effective confinement range of the polymer bonds, whereas the energy scale of the potential is

kept constant. The qualitative behavior of the combined bond potential for different values

of R is shown in Fig. 5.1. The bond elasticity increases with R, i.e., by changing R in a

wide range of values (R ∈ [0.3, 90]), we systematically investigate an entire class of polymer

systems between the limits of stiff polymers (R → 0) and, effectively, a gas of nonbonded

Lennard-Jones particles, for which R → ∞.

In our simulations, we have used the replica-exchange Monte Carlo1 (parallel temper-

ing) [4–7], extended to multiple Gaussian modified ensembles2 (MGME) [8]. The typical

number of replicas in a simulation was ∼ 80, covering the temperature range T ∈ [0.02, 2.0].

The total number of Monte Carlo sweeps per simulation totalled 5 × 108. A replica ex-

1See also section 3.1.2
2See also section 3.1.3
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change update was attempted every 100 Monte Carlo sweeps and accepted at an average

rate exceeding 20%. The acceptance rates for Metropolis updates in each thread was kept at

∼ 40− 60%. Simulations were carried out on a two-dimensional mesh of temperatures and

EG values in the first-order transition region. On average 10 different values of EG were used

per temperature thread. The system was constrained inside of a steric sphere at a constant

density of 0.001 particles per unit volume, in which case the diameter of the sphere is larger

than the length of the fully extended chain. Under these conditions, we consider the system

to be highly dilute.

The results presented in this chapter are compared for classes of polymers with N = 13

and 30 monomers. For verification purposes, we have also studied polymers with up to 55

monomers, which, for this kind of systematic study that covers the entire parameter space,

represents the limit of currently feasible simulations.

5.2 Results

In this section, we investigate the influence of the confinement parameter R on the structural

transitions in elastic chains of lengths N = 13 and 30 in the dilute regime. For this purpose,

we first perform a conventional canonical statistical analysis of fluctuating quantities and

compare with results of a corresponding microcanonical analysis.

5.2.1 Canonical analysis of energetic and structural fluctuations

For the identification of transition points, we first consider the changes in the thermodynamic

behavior of energetic and structural canonical fluctuation quantities. The transition behavior

is compared for various values of the confinement parameter R. This analysis enables us to

construct a structural pseudophase diagram. Differences in the overall generic transition

behavior are discussed for two system sizes (N = 13, 30).
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The statistical fluctuation of a thermodynamic quantity O is defined by the temperature

derivative of its expectation value

〈O(X)〉(T ) =
1

Z(T )

∫

DX O(X)e−E(X)/kBT , (5.2)

where DX is the integral measure in the space of all polymer conformations X and

Z(T ) =

∫

DX e−E(X)/kBT (5.3)

is the partition function of the canonical ensemble of these structures at the canonical (heat-

bath) temperature T . Thus, changes in the monotonic behavior of

d

dT
〈O(X)〉(T ) =

1

kBT 2

× [〈O(X)E(X)〉(T )− 〈O(X)〉(T )〈E(X)〉(T )] (5.4)

indicate pronounced thermal activity of the system. The most common and easily accessible

quantity in Monte Carlo simulations is the specific heat, which represents the fluctuations

of energy3. In this case O = E and

cV (T ) =
1

N

d

dT
〈E(X)〉(T ). (5.5)

The thermal fluctuations of the energy (specific heat) and of the radius of gyration4 of

13mers and 30mers are shown in Fig. 5.2, for different values of bond confinement ranges R.

Generally, peaks and “shoulders” in these quantities indicate locations of structural transi-

tions. The generic transitions of elastic chains are the Θ collapse transition that separates

the gas-like phase of random-coil conformations from the liquid, collapsed globular phase,

3See also section 2.2
4Radius of gyration was introduced in section 4.3.
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Figure 5.2: Specific heat and the thermal fluctuations of the radius of gyration for 13mers
and 30mers, parametrized by the bond confinement parameter R.

and the freezing transition from the globular into the solid “crystalline” phase [18,24]. Inter-

estingly, previous studies have shown that both transitions merge if nonbonded interactions

are restricted to extremely short-ranges [25,26,94]. We have observed similar behavior in sys-

tems where extremely large bond fluctuations are allowed. Whereas, with increasing values

of R, the low-temperature signal in the specific-heat curves in Fig. 5.2 (which, for example,

for R = 3.0 is still clearly associated with the freezing transition) shifts only slightly to lower

temperatures, the Θ transition signal drops significantly and finally merges with the freezing

transition at R ∼ 30. Whether the freezing and Θ transitions remain well separated for
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all values of R < 30 cannot be unambiguously determined by inspection of the canonical

fluctuation quantities, in particular since for R > 15 the freezing transition signal turns into

a shoulder on the low-temperature flank of the more dominant Θ transition peak. We will

provide evidence for the separation of the transitions, using the methods of microcanonical

analysis in the next section.

The general properties of the freezing transition do not change noticeably until its merger

with the Θ transition. This is plausible since the freezing transitions are driven mainly

by the Lennard-Jones pair interactions between bonded and nonbonded monomers that

optimize the icosahedral-like conformations in the solid phase. Therefore, this transition is

not significantly affected by the modifications in the bond elasticity.

In the solid phase, the “magic” 13mer possesses a perfect icosahedral shape [18, 24],

whereas the 30mer forms amorphous structures. The energy histograms of the 13mer ex-

hibit bimodal shapes near the freezing transition point for values of R < 30, suggesting a

first-order-like transition of the finite system. The “liquid-solid” transition of the 30mer

resembles a “liquid-liquid” transition, since the compact globular conformations are difficult

to distinguish from the amorphous solid structures. Nonetheless, the transition signal is

clearly visible and the unimodal shape of the canonical energy histograms (not shown) in

this region of R space indicates a second-order-like transition.

More striking is the dramatic change of the characteristic features of the Θ transition.

As expected, for R ∼ 0.3, the transition is still second-order-like [95, 96]. In the specific

heat-curves in Fig. 5.2 it is clearly visible that with increasing values of R, the shoulders

indicating the Θ transitions turn into distinct peaks which rapidly become narrower and

more pronounced as they shift to lower temperatures. For values of R > 4.5, the canonical

energy histograms obtained at the transition temperature are no longer unimodal, which

suggests that the Θ transition become first-order-like. This can be seen nicely in Fig. 5.3,

where energy histograms for the 13mer with R = 15 at temperatures near the Θ transition
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clearly indicates a first-order pseudophase transition.

point are shown. For temperatures near T = 0.33, the bimodal shape of the histograms is

clearly visible. The phase separation between gas and liquid is unusual for a polymer and

indicates that for R = 15 the particles in the system are quasi-free and behave rather like

a loosely confined interacting gas, because bond-crossings are possible. The disappearance

of the two distinct transition signals for R > 30.0 marks the end of existence of a separate

liquid phase. This behavior is similar for both systems sizes studied and might be universal.

However, the strikingly prominent signals for the Θ transition and the disappearance of the

liquid phase are limited to the dilute regime and would not be observed at higher particle

densities [97, 98]. It should be mentioned that the phase separation becomes substantially

stronger for larger R values, as well as the interfacial surface tension due to the radical

entropic depletion in the energetic gap region.
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With the transition temperatures obtained from the peaks in the canonical quantities

we construct structural phase diagrams parametrized by the temperature T and the con-

finement parameter R. For both system sizes, near the unmodified values of R, we observe

three distinct structural phases. The high-temperature curves in Fig. 5.4 represent the Θ

transition lines, at which the expanded coils in the gas phase collapse into the compact but

disordered globular states in the liquid phase. The green and red portions of the Θ transi-

tion line indicate the regions in which the transition is second-order-like and first-order-like

respectively. The merging of the freezing and the Θ lines indicates the absence of the liquid

phase and a direct transition from the gas to the crystalline phase for values of R > 30.

The apparent similarities between the phase diagrams in the Θ regime suggest that similar

behavior in systems of larger sizes could be expected. The different order of the liquid-solid

transition (first order for the 13mer and second order for the 30mer) is a consequence of the

entropic character of the solid phase. For the 13mer, the icosahedron is the all dominating

morphology with comparatively low entropy and specific energy that sets apart the liquid

phase and creates a phase-separation scenario. On the other hand, the “solid” phase of the

30mer is of rather highly entropic amorphous nature and allows for a continuous crossover

from the liquid phase.

It is instructive to consider the effects of the bond confinement range on ground state

conformations. It was previously shown [94] that a decrease in the interaction range of the

Lennard-Jones potential can lead to the disappearance of icosahedral ground-state struc-

tures in “magic” system sizes (such as N = 55). In the present study, the ground state

energies remained virtually constant and the conformations of 13mers retained their icosa-

hedral geometry even for extremely high values of the parameter R. This suggests that the

low-temperature behavior of flexible homopolymer chains is dominated by Lennard-Jones

interactions while the FENE potential influences only the particular orderings of monomers

within the ground-state structures.
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5.2.2 Results of microcanonical inflection-point analysis

As discussed in the previous section, the results obtained by means of canonical analysis

suggest that the Θ transition acquires first-order-like character in systems with large bond

confinement range. However, the analysis of structural transitions based on canonical quan-

tities is often ambiguous. Canonical energy histograms are useful for determining the order

of a transition only if their shape is clearly bimodal or unimodal. In this section, we turn to

microcanonical inflection-point analysis5 which offers a robust and unambiguous approach

towards the classification of structural transitions [1, 14, 58].

In Fig. 5.5 we summarize the results for chains of lengths with N = 13 and 30 monomers

for values R = 0.3, 4.5, 30.0. In addition to the microcanonical temperature β(E) and its

first derivative γ(E) = dβ/dE, we also plot the canonical energy histograms h(E) obtained

at the Θ transition temperature.

For R = 0.3, the negative valued peaks of γ(E) indicate that the Θ transition is of

second order, in agreement with the observation that the canonical energy histograms for

both system sizes are clearly unimodal. At R = 4.5, the peaks of γ(E) become positive and

we conclude that the Θ transition turns to first order. The signals for freezing transitions

remain well outside of the back-bending region of the Θ transition, confirming that the two

transitions are well separated.

In the case R = 30, the multiple peaks in γ(E) indicate that the Θ transition consists of

a hierarchy of subphase transitions. This interesting phenomenon is characteristic of nucle-

ation transitions with entropy reduction due to stepwise loss of translational entropy. One

prominent example is the aggregation transition in systems consisting of multiple polymer

chains [1, 40, 42–44], which will be discussed in detail in Chap. 7. Here, the system under-

goes a direct transition from the solid phase into the gas phase through a series of subphase

transitions consisting of individual monomers breaking away from the bulk.

5See also section 2.1.2
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Figure 5.5: Microcanonical results for 13mers with bond confinement ranges (a) R = 0.3, (b)
4.5, and (c) 30 as well as for 30mers (d)-(f). Shown are inverse temperature curves β(E), their
first derivatives γ(E) = dβ(E)/dE, and (on arbitrary scale) the energy histograms h(E) at
the Θ transition temperature. The horizontal dashed line marks γ = 0. The positive valued
peaks of γ(E) for values of R > 4.5 clearly indicate that the Θ transition is first order, but
remains separate from the freezing transition. The absorption of the freezing transition by
the Θ transition is apparent for large confinement ranges (c, f).
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This can be seen nicely in the case of a 13mer with the confinement range R = 30. Shown

in Fig. 5.5(c), each of the 12 oscillations in the back-bending region of β(E) corresponds to

a subphase transitions. For a 30mer, at the same R value [Fig. 5.5(f)], subphases overlap to

an extent that only an accumulated effect upon β(E) is visible.

The freezing transition is no longer an autonomous transition but instead becomes one of

the subphase transitions that make up the Θ transition. Eventually, this entails the absence

of a separate liquid phase, which is in agreement with the overall picture obtained by the

canonical analysis of fluctuating quantities.

The maximum R value is, of course, limited by the boundary of the simulation sphere

that represents a steric constraint. The presence and the stability of the individual structural

phases depend on the particle density. In the scenario presented here, where we investigate

the disappearance of the liquid phase, we fixed the density to 0.001 particles per unit volume,

whereas additional simulations at a 10 times larger density showed that the liquid phase

remained stable, even for bond confinement ranges as large as R = 100. In the unconstrained

case of open boundaries (which for fixed particle number means vanishing density) and

R → ∞, both liquid and solid phase are supposed to disappear and the gas phase would

remain as the only stable phase. The disappearance of phases by reducing confinement has

already been observed in atomic cluster systems some time ago [99, 100].

In Tables 5.1 and 5.2, we have listed the transition temperatures Tf,θ and latent-heat

values per monomer ∆qf,θ for 13mers and 30mers at various bond confinement ranges R.

Transition temperatures for the second-order transitions were obtained by microcanonical

inflections-point analysis, whereas the transition points and latent heat values were estimated

by means of microcanonical Gibbs construction.6

6For a description of the microcanonical Gibbs construction please refer to section 2.1.2.
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Table 5.1: Microcanonical transition temperatures Tf,θ and latent heats ∆qf,θ at the freezing
and Θ transition points, respectively, for 13mers with different bond confinement ranges R.

R Tf Tθ ∆qf ∆qθ
0.3 0.334± 0.005 1.1± 0.1 0.157± 0.002 N/A
1.5 0.306± 0.005 0.9± 0.1 0.090± 0.002 N/A
3.0 0.291± 0.005 0.64± 0.05 0.208± 0.002 N/A
4.5 0.286± 0.005 0.52± 0.01 0.228± 0.002 1.132± 0.005
9.0 0.283± 0.005 0.387± 0.005 0.249± 0.002 2.133± 0.002
15.0 0.282± 0.005 0.331± 0.005 0.254± 0.002 2.485± 0.002
30.0 0.282± 0.005 0.284± 0.005 0.285± 0.002 2.978± 0.002

Table 5.2: Same as Table 5.1, but for 30mers.

R Tf Tθ ∆qf ∆qθ
0.3 0.39± 0.01 1.3± 0.1 N/A N/A
1.5 0.39± 0.01 1.2± 0.1 N/A N/A
3.0 0.38± 0.01 0.88± 0.05 N/A N/A
4.5 0.37± 0.01 0.69± 0.01 N/A 1.650± 0.005
9.0 0.36± 0.01 0.496± 0.005 N/A 2.647± 0.002
15.0 0.35± 0.01 0.416± 0.005 N/A 3.057± 0.002
30.0 0.35± 0.01 0.344± 0.005 N/A 3.399± 0.002
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Chapter 6

Effects of Short Range Repulsion on

the Structural Properties of Elastic

Homopolymers

Bonded interactions in coarse-grained models of elastic polymers are commonly represented

by the symmetric, finitely extensible, nonlinear, elastic (FENE) potential (Eq. 4.8). In

Chap. 4, we have introduced an alternative representation of the bonded potential, expressed

as a combination of the FENE and Lennard-Jones (LJ) potentials. With the additional LJ

term, the bonded potential becomes strongly repulsive at short ranges and the symmetry of

the FENE potential is broken. However the maximum extension of the bond, also known as

the bond confinement range, is controlled solely by the strongly diverging FENE potential.

The impact of the bond confinement range on the thermodynamic properties of short elastic

homopolymer chains is discussed extensively in Chap. 5. In the following, we systematically

investigate the effects of short range repulsion between bonded monomers on the structural

properties of polymer chains of length N = 15, 55 [93].
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Structural phase diagrams are constructed using the results of canonical and microcanonical

analysis. The geometry of low-energy conformations is examined with the aid of structural

order parameters which were introduced in Sec. 4.3.

6.1 Model and simulation parameters

In this study, we simulate the coarse-grained model of an elastic homopolymer, in the same

general form as introduced in Sec. 4.2.1. The energy scale of the Lennard-Jones potential

is set to ǫ = 1 and the van-der-Waals radius to σ = r0/2
1/6, where r0 = 1.0 is the location

of the potential minimum. We set the cut-off radius at rc = 2.5 σ, and introduce a shift

ULJ(rc) ≈ −0.0163169 to avoid discontinuities in the potential. In order to investigate the

properties of the model over a range of strengths of the bonded LJ interactions, the bonded

potential is introduced in the modified form:

Ubonded(rii+1) = UFENE(rii+1) + η (ULJ(rii+1) + ǫ)− (ǫ+ ULJ(rc)) . (6.1)

The maximum bond extension is limited by the FENE potential (Eq. 4.8), which diverges as

r → r0 ±R. For the purpose of this study, the bond confinement range is fixed at R = 3/7.

The entire potential is shifted by (ǫ+Ushift) in order to match the minimum energy of the non-

bonded interactions. The strength of the bonded LJ potential is controlled by the parameter

η. Increasing the value of η introduces a strong short-range repulsion between pairs of

bonded monomers, and raises the energy cost associated with non-optimal bond lengths.

In particular, compressed bonds result in high energy penalties as η becomes large. The

shapes of the bonded potential corresponding to different values of the η control parameter

are shown in Fig. 6.1.
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Figure 6.1: The modified bonded potential Ubonded(rii+1), represented by the FENE and
Lennard-Jones interactions. The strength of the LJ term is controlled by the parameter
η ∈ [0, 1].

In order to overcome the challenges associated with the simulation of polymers at very

low energies, a parallel version of multicanonical sampling [9, 11, 101] has been employed.

In this method, K independent multicanonical runs are performed in parallel. The initial

estimates for the multicanonical weight functions are the same for all replicas. However,

the random number generators are initialized with different seeds which allows each replica

to perform a unique random walk in the energy space. Displacement updates are proposed

within a cubic box of edge lengths d = 0.3r0 and accepted according to the probability

P (X → X′) = min[1,W (E(X′))/W (E(X))], (6.2)

where W (E(X)) represents the multicanonical weight of a given configuration X. After the
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ith iteration, since the weights are identical in each thread, the energy histograms obtained

for each replica can simply be summed up:

H i(E) =
K
∑

k=1

H i
k(E). (6.3)

The combined histogram is then used together with the current multicanonical weights to

calculate the weights for the subsequent iteration by utilizing the error-weighted recursive

scheme [1, 9, 11].

To analyze the transition behavior of the polymer chains for different values of the pa-

rameter η, we use the microcanonical inflection-point analysis1 [1, 58]. By applying the

principle of minimal sensitivity [69] to the derivatives of the microcanonical entropy S(E),

the application of this method can be extended to higher order pseudophase transitions.

The (2n+ 1)th-order transition (n is a positive integer) is identified from the least sensitive

inflection point of the 2nth-derivative of entropy and the positive valley in the (2n + 1)th-

derivative curve. For a 2nth-order transition, the least sensitive inflection point in the

(2n−1)th-derivative of entropy together with the negative peak in the 2nth-order derivative

curve are utilized to locate the transition energy.

6.2 Results

In the following, we investigate the effects of bond asymmetry and short range repulsion on

the thermodynamic and structural properties of elastic polymers of length N = 15, 55. We

begin with a discussion of the results of canonical analysis which provides a general picture

of the transition behavior. The order and the exact location of each pseudophase transition

are obtained by the means of the microcanonical inflection point analysis, and the combined

results are used to construct pseudophase diagrams.

1See also section 2.1.2
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6.2.1 Canonical results

In canonical analysis, extremal thermal fluctuations of some thermodynamic observable O,

defined as

d

dT
〈O〉 =

1

kBT 2
[〈OE〉 − 〈O〉〈E〉] , (6.4)

can be used to locate regions of increased thermal activity which are typically associated

with pseudophase transitions. The most commonly used observable is the energy E. Its

thermal fluctuation, the heat capacity CV, is useful for identifying transitions in complex

systems.

The heat-capacity curves for a 15mer and a 55mer are shown in Fig. 6.2 (a,b) as functions

of the canonical temperature T . In the case of the 15mer, prominent wide peaks at T ≈ 0.34

indicate the freezing transition at which expanded globular structures change to more com-

pact crystalline or amorphous structures. For η < 0.1, additional peaks below the freezing

transition suggest the existence of a possible solid-solid transition, when the short-range re-

pulsion of the bonded interactions is sufficiently weak. With increasing η, the strength of the

transition signal increases as it shifts towards lower temperatures, and eventually disappears

at η ≈ 0.1.

The freezing transition of a 55mer at η = 1 is a prominent example of a first-order

pseudophase transition. In Fig. 6.2 (b), this corresponds to the pronounced peak at T ≈

0.325. However, the peaks become broader and less pronounced as η decreases. Eventually,

they are no longer associated with a single transition, but rather envelope multiple transition

signals. This ambiguity in distinguishing and classifying the transitions at small η values

is caused by finite-size effects which cannot be resolved by means of canonical statistical

analysis. It is necessary to employ other systematic and robust methods which can clearly

distinguish the sensitive transition signals in finite-size systems.
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Figure 6.2: Heat capacity Cv for elastic polymer chains of length N = 15 (a), and N = 55
(b), with modified bonded potential and different values of the control parameter η.
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6.2.2 Microcanonical results and structural phase diagrams

Here we examine in detail the transition behavior of the polymer chains for representative

values of the η parameter in the interval η ∈ [0, 1]. The combined microcanonical results

are shown in Fig. 6.3 for the 15mer (a,c,e) and the 55mer (b,d,f). For the 15mer, closer

inspection of the derivatives of the microcanonical inverse temperature β(E) reveals two

distinct transition signals inside the energy interval E ∈ [−44,−38]. At E ≈ −44, the

least sensitive point of δ(E) indicates a fourth-order transition. The second transition,

located at E ≈ −38, is of the second-order for η > 0.2 and third-order for η < 0.2. In

the canonical picture, both signals would be enclosed within the broad peaks of the heat

capacity CV (Fig. 6.2), concealing the fact that the freezing transition is a two step process.

The two-step freezing transition is also observed in the case of the 55mer, for η = 0.05, 0.2,

and 1. The prominent back-bending features in the microcanonical inverse temperature

β(E) of the 55mer, accompanied by the positive-valued peaks in γ are clear indicators of

a first-order transition. The peaks in γ(E) are accompanied by inflection points located at

E ≈ −242,−235, and −229 for η = 0.05, 0.20, and 1.00 respectively. Together with the

corresponding positive valleys in δ(E), these inflection points indicate additional third-order

transitions. For η < 0.03, the properties of the freezing transition change as additional

pseudophases emerge and the transition is extended over a wide energy region.

For the 15mer at η ≤ 0.1, clear signals corresponding to a solid-solid transition are

detected. For η = 0.00, third-order solid-solid transition is indicated by the inflection point

in γ(E) at E = −48.92 and the corresponding positive valley in δ(E) = dγ(E)/dE. For

η = 0.02 and 0.05, the negative-valued peaks in γ(E) indicate a second-order transition at

E = −49.7 and −50.4 respectively. Whereas for η ≥ 0.1, no solid-solid transition signals are

detected.
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Figure 6.3: The combined microcanonical results for the 15mer (a,c,e) and the 55mer (b,d,f),
for representative values of the parameter η in the range η ∈ [0, 1].
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Figure 6.4: (a) Microcanonical pseudophase diagram for the 15mer, parametrized by energy
and the control parameter η. The labels G, L, and S stand for “gas”, “liquid”, and “solid”
pseudophases, respectively. The Sic−core pseudophase consists of icosahedral structures with
an unstable liquid-like surface layer. The Sic and Sbi pseudophases are dominated by stable
icosahedral and bihexagonal structures. (b) Expanded section detailing the low energy region
for η < 0.15.

Using the signals obtained from the microcanonical inflection-point analysis, we have

constructed structural phase diagrams for the 15mer and the 55mer, which are presented

in Figs. 6.4 and 6.5, respectively. At high energies and temperatures, the polymer chains

are found in the the gas-like pseudophase (G) in which expanded random-coil structures

dominate. With decreasing temperature and energy, the expanded chains collapse into the

liquid pseudophase (L) which consists mainly of globular structures. The corresponding

pseudophase transition is the well-known Θ-transition (collapse transition). For both system

sizes, the Θ transition is classified as second-order and is represented by blue lines in the

phase diagrams.

With further decrease in energy, the 15mer passes the second/third-order transition as-

sociated with the nucleation process, and enters the Sic pseudophase in which icosahedral

structures with unstable surface layer are dominant. At even lower energies (E ≈ −44), the

thermal fluctuations of the polymer are suppressed and a stable surface layer is formed. The
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Figure 6.5: (a) Microcanonical pseudophase diagram for the 55mer, parametrized by tem-
perature and the control parameter η. The labels G, L, and S stand for “gas”, “liquid”,
and “solid” pseudophases, respectively. (b) Expanded section detailing the low temperature
region for η < 0.06. The Sic−core and Sbi−core pseudophases consist of structures with icosahe-
dral and bihexagonal cores, respectively, and unstable liquid-like surface layers. The Sic and
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plete shells. In Smix both icosahedral and bihexagonal core structures are represented. The
“solid” subphases are separated by gray empirical transition bands. Dashed lines represent
lines of transitions higher than second order.
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transition associated with the surface formation process is of fourth order. Visual inspec-

tion of low-energy structures reveals that icosahedral geometries are dominant. However, for

η ≤ 0.1, the additional solid-solid transition suggests the existence of low-energy conforma-

tions with unexpected bihexagonal geometries (Fig. 6.6).

The transition behavior of the 55mer is qualitatively similar to the 15mer for the majority

of values of the η parameter. However, for η < 0.1 the two systems behave differently. The

low-temperature and small-η region of the structural phase diagram in Fig. 6.5, contains

additional transition lines which were not detected for the 15mer. The emergence of the

third-order transition line at T ≈ 0.29 for η < 0.03, marks the end of a clear distinction

between the liquid and solid pseudophases. The nucleation process becomes extended over

a wide temperature range and can’t be associated with a single transition line. Instead, the

polymer transitions between several conformational phases before it forms a stable ground

state structure. We will identify and characterize the dominant conformational phases using

a set of suitable structural order parameters2.

6.2.3 Structural analysis

The tools of microcanonical inflection-point analysis provide us with a systematic way of

identifying and classifying all structural transitions in physical systems. Equally important

is the identification of dominant configurations and their abundance in a relevant energy

range. This can be accomplished either by visual inspection of sample structures, or more

systematically, by introducing a suitable set of structural order parameters. Based on the

microcanonical results, summarized in the structural phase diagrams in Figs. 6.4 and. 6.5, we

expect that for sufficiently small values of the parameter η, two distinct solid pseudophases

should be detected. We aim to identify and characterize the dominant structures for each

pseudophase and obtain a physical interpretation for the emergence of new conformational

2See also section 4.3
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Figure 6.6: Two distinct core geometries found in the low-energy states of elastic polymer
chains of lengths N = 15, 55. (a) The 13-monomer icosahedral core is commonly observed
in the ground state structures of short polymer chains. (b) The unusual bihexagonal core is
found in polymer chains of length N = 15, 55 with sufficiently weak bonded Lennard-Jones
interactions.

geometries when the short-range repulsion between bonded monomers becomes sufficiently

weak. In Chap. 4, we have introduced a set of structural order parameters Ql which are

particularly suitable for the identification of low-energy solid-like structures with well-defined

symmetries.

Preliminary investigation of low-energy structures, obtained from simulations of polymer

chains of length N = 15, 55 with sufficiently weak bonded Lennard-Jones interactions (η <

0.03), reveals the existence of two distinct solid pseudophases. In addition to structures with

icosahedral cores, we have identified bihexagonal cores with six-fold dihedral symmetry.

Examples of both core geometries are shown in Fig. 6.6. Using ∼ 106 polymer structures

per value of η, we have computed Ql up to l = 8 and found that Q6 is the most effective in

distinguishing between the six-fold dihedral symmetry of the bihexagon and the icosahedral
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symmetry. For a bihexagonal core Q6 ≈ 0.41, and the icosahedral core corresponds to

Q6 ≈ 0.65. The results are presented in the form of intensity plots in Figs. 6.7 and 6.8,

for the 15mer and the 55mer respectively. The probability p of detecting a conformation

with a specific value of the order parameter Q6 is represented by shading; red indicates the

maximum probability p = 1 and black corresponds to p = 0.

For η > 0.1, the 15mer has a single solid pseudophase which is predominantly populated

by structures with stable icosahedral cores. In Fig. 6.7, this corresponds to the narrow

funnel centered at Q6 ≈ 0.65, below the fourth-order transition line (purple) at E ≈ −43.

An additional solid pseudophase, consisting mostly of bihexagonal structures, emerges for

η ≤ 0.1, as indicated by the appearance of a second funnel centered at Q6 ≈ 0.41. The

region of coexistence between the two solid pseudophases marks the location of the solid-

solid transition (dashed lines), and is in a good agreement with the estimates obtained from

the microcanonical inflection-point analysis.

Similarly, in the case of the 55mer, we detect a single solid pseudophase for η ≥ 0.02,

populated with structures containing icosahedral cores. For η ≥ 0.04, the microcanonical

signal associated with the freezing transition becomes first-order (Fig. 6.5). This nicely

corresponds with the abrupt onset of the icosahedral funnel in Fig. 6.8 (d). However, unlike

the 15mer, the 55mer does not have an identifiable icosahedral pseudophase for η ≤ 0.005.

In Fig. 6.8 (a), the wide dominant funnel, centered at Q6 ≈ 0.41, contains exclusively

structures with bihexagonal cores. The fourth-order transition signal, represented by the

dashed violet line in the structural phase diagram in Fig. 6.5, corresponds to the increase

in the population of structures with bihexagonal cores at T ≈ 0.24. The population of

structures with icosahedral cores grows quickly with the increasing strength of the bonded

LJ potential. For η ≤ 0.015 (Fig. 6.8 (b)), the ground state structures are found exclusively

inside of the bihexagonal funnel. However, the onset of a prominent icosahedral funnel

at T = 0.17 creates an additional fourth-order transition signal. Another unique feature
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Figure 6.7: Intensity plots showing the distribution of the Q6 order parameter for a 15mer
with η = 0.00, 0.05, 0.10, 1.0 (a,b,c,d). The probability p of detecting a conformation with
a specific value of Q6 is represented by shading; red indicates p = 1 and black corresponds
to p = 0. For η > 0.1, the 15mer has a single icosahedral solid pseudophase (Q6 ≈ 0.65).
An additional solid pseudophase (Q6 ≈ 0.41), populated with bihexagonal conformations, is
found for η < 0.01. The freezing and the solid-solid transitions are represented by solid and
dashed horizontal lines respectively.
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Figure 6.8: Intensity plots showing the distribution of the Q6 order parameter for a 55mer
with η = 0.005, 0.010, 0.020, 0.050 (a,b,c,d). The probability p of detecting a conformation
with a specific value of Q6 is represented by shading; red indicates p = 1 and black cor-
responds to p = 0. For η > 0.02, the 55mer has a single icosahedral solid pseudophase
(Q6 ≈ 0.65). The bihexagonal pseudophase (Q6 ≈ 0.41) emerges at η ≈ 0.02, coexists with
the icosahedral pseudophase for 0.005 < η < 0.02, and becomes the dominant solid subphase
at η ≈ 0.005.
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bihexagonal (green) polymer cores. The icosahedron allows for nearly optimal bond lengths,
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potential minimum. The wide and shifted distribution of the bihexagon reveals the presence
of bonds with reduced length which obtain a large energetic penalty - due to the repulsive
part of the bonded LJ potential - except at very small values of the parameter η.

of the 55mer is the extended coexistence region between the icosahedral and bihexagonal

pseudo-phases for 0.005 < η < 0.012. In fact, a degenerate ground-state consisting of both

conformational geometries is expected near η ≈ 0.012. Further increase in η leads to a

sharp decline in the population of structures in the bihexagonal funnel, until only a single

icosahedral pseudophase remains at η ≈ 0.02.

We are now in the position to discuss the impact of the repulsive part of the LJ poten-

tial, between bonded monomers, on the geometry of low-energy polymer conformations. In

particular, we wish to know the reason for the exclusion of the bihexagonal pseudophase for

all but extremely low strengths of the control parameter η. The answer is readily obtained
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by comparing the bond length distributions between conformations with icosahedral and

bihexagonal cores (Fig. 6.9). In terms of the number of non-bonded interactions, bihexago-

nal conformations are energetically more favorable than icosahedra. However the formation

of a bihexagonal core results in a non-optimal distribution of bond lengths. In particu-

lar, the two six-monomer rings of the bihexagon contain significantly compressed bonds

(rbond ≈ 0.88r0). At very small values of η, the symmetric FENE potential allows for the

existence of compressed bonds without a large energetic penalty; hence the bihexagonal con-

formations dominate. However, with increasing η, which controls the strength of the bonded

LJ potential and the short-range repulsion between bonded monomers, the energetic penalty

for the compressed bonds eventually prevents the formation of bihexagonal structures.
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Chapter 7

Aggregation of Flexible Elastic

Homopolymers

Deeper understanding of aggregation processes in the context of microscopic molecular sys-

tems is relevant for a number of technological and biomedical applications. For example,

protein aggregation is believed to play a critical role during the onset of many prominent

pathological conditions, such Alzheimer’s and Parkinson’s diseases [60, 61]. In this chapter,

we investigate the properties of aggregation transitions in the context of generic coarse-

grained homopolymer systems. By means of parallel replica-exchange Monte Carlo meth-

ods, we perform extensive simulations of systems consisting of up to 20 short polymer chains.

Using the results of the microcanonical inflection-point analysis, we argue that the aggre-

gation transition is a first-order process consisting of a sequence of subtransitions between

intermediate structural phases. We unravel the properties of these intermediate phases by

collecting and analyzing their individual contributions towards the density of states of the

system. The central theme of this systematic study revolves around translational entropy

and its role in the striking phenomena of missing intermediate phases. We conclude with a

brief discussion of the scaling properties of the transition temperature and the latent heat.
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7.1 Model and Methods

Employing the generic coarse-grained model for a system of interacting, flexible homopoly-

mers, we investigate the aggregation of M interacting chains, each composed of N = 5

monomers. During the simulations, the system is constrained inside of a steric sphere at

a constant density of 10−3 monomers per unit volume. At this density the radius of the

constraining sphere is larger than the length of the fully extended polymer chains under in-

vestigation. The total energy of the system can be separated into intra-chain and inter-chain

pairwise interactions

Etotal = Eintra + Einter. (7.1)

The intra-chain contribution

Eintra =

M
∑

k=1

N−1
∑

i=1

UFENE(r
(k)
ii+1) +

M
∑

k=1

N
∑

i<j

U trunc
LJ (r

(k)
ij ) (7.2)

consists of both bonded and non-bonded interactions, where r
(k)
ij is the distance between the

pair of monomers (i,j) of the k-th chain. The first term contains the FENE potential (4.8),

with parameter values K = 40 and R = 0.3. The second term represents the truncated

and shifted Lennard-Jones (LJ) potential (4.10) with the energy scale ǫ set to unity and the

length scale to σ = r0/2
1/6, where r0 = 0.7 is the location of the LJ potential minimum. The

cutoff radius is set to rc = 2.5 σ. The inter-chain contribution

Einter =
M
∑

k<l

N
∑

i,j

U trunc
LJ (|r

(k)
i − r

(l)
j |), (7.3)

consists solely of LJ interactions. For the purpose of this study, all LJ interactions (intra-

and inter-chain) have their parameters set to identical values.
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Relatively small polymer systems, consisting of N < 100 monomers, can be conveniently

simulated using parallel tempering, which is a generalized-ensemble replica-exchange Monte

Carlo method1 [4–7] that can be easily implemented on parallel computer architectures. In

larger systems, the density of states typically spans several thousand orders of magnitude, in

which case the application of more sophisticated methods, such as the multicanonical [9–14]

or Wang-Landau [15–17] sampling, becomes more efficient. In this study we restrict our

attention to systems consisting of up to 20 polymer chains with 5 monomers each. The

lengths of the individual chains have been restricted to ensure that the translational entropies

of the polymers dominate over their inherent conformational entropies.

In a typical simulation, ∼ 80 replicas of the system were simulated in parallel at different

temperatures in the range T ∈ [0.1, 2.0]. Single-monomer random displacement moves,

restricted to a box of size l, were used to perform conformational updates for individual

replicas. The maximum magnitude of the displacement update l was adjusted individually

for each temperature thread to achieve an average acceptance rate of 40−60%. An exchange

of conformations between adjacent replicas was proposed approximately every 100 Monte

Carlo sweeps. The temperature spacing between adjacent replicas was chosen to achieve an

exchange probability exceeding 20%. This results in a higher density of replicas in the low-

temperature region as well as near the locations of phase transitions. On average, 107 replica

exchanges were performed, allowing for a total of 109 Monte Carlo sweeps per simulation.

As a result of parallel tempering simulations, each replica generates a canonical energy

histogram h(E, βi), which serves as an estimate for the microcanonical density of states

gi(E) ≈ h(E, βi) exp (βiE). We have used the weighted multiple-histogram method2 [79, 80]

to combine the individual estimates and obtain an estimate of g(E) valid over the entire

relevant energy range.

1See also section 3.1.2
2See also section 3.2.1
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7.2 Results

Previous studies of single flexible elastic homopolymers have revealed the existence of three

distinct structural phases [18, 24]. In the high-temperature gas-like regime, typical confor-

mations resemble extended, random coils. With decreasing temperature, the system first

undergoes the Θ collapse transition into the liquid-like compact globular phase, and finally

freezes into the solid “crystalline” phase. From our simulations of the multi-chain model

employed in this study, we find that the prominent aggregation transition is accompanied by

the collapse of the individual chains, and the two transitions are not separate processes. This

has also been observed in the case of semi-flexible homopolymers [43]. However, in contrast

to heteropolymer systems [44], the freezing transition occurs at temperatures well below the

aggregation transition. In fact, at low temperatures, the thermodynamic properties of a

multi-chain system are very similar to those of a single polymer chain with identical (total)

number of monomers M ·N .

7.2.1 Microcanonical analysis of aggregation transitions

In this section, we discuss the properties of aggregation transitions from the perspective of

microcanonical analysis, and examine systems consisting of up to M = 20 individual chains

with fixed length of N = 5 monomers. Brief inspection of the microcanonical quantities in

Fig. 7.1 suggests that for all investigated systems the aggregation transition is a first-order

process, as expected. The microcanonical inverse temperature curves β(E) have prominent

back-bending features accompanied by positive-valued peaks in γ(E). The low-energy ag-

gregate phase is energetically separated from the disordered fragmented phase by an amount

corresponding to the latent heat ∆q = efrag − eagg, represented in Fig. 7.1 by the separation

between two dashed vertical lines. Finally, the combined canonical histograms h(E), also

shown in Fig. 7.1, exhibit bimodality characteristic of first-order transitions in finite systems.
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Figure 7.1: Microcanonical temperature β(E) and its energy derivative γ(E) for systems
with M = 2, 3, 5, 11 polymer chains with N = 5 monomers each. The dashed vertical lines
eagg and efrag outline the aggregation transition region. The upper horizontal dashed line
provides an estimate for the inverse aggregation temperature βagg. The oscillations in β(E)
reveal the sequential nature of the transition and correspond to individual subtransitions.
The unimodal canonical energy histograms of the subphases hi(βagg;E) are shown together
with the combined histogram h(βagg;E). The absolute scale of these distributions is arbitrary.
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Closer inspection of the back-bending regions of β(E) reveals additional oscillations.

It is evident that their number is proportional to the number of individual chains in the

system. This observation motivates the description of the aggregation transition as a series of

subtransitions between intermediate structural phases. Here we define the term “subphase”

to represent a distinct grouping of partially formed aggregates. As shown in Fig. 7.2, a system

of M = 4 chains can form three intermediate subphases {{3, 1}, {2, 2}, {2, 1, 1}}, where the

number of elements in each set corresponds to the number of non-interacting partial clusters,

and the numerical values represent the number of chains in each cluster. Previous studies

suggest that subtransitions occur between these partially fragmented subphases [41–44].

However, this analysis was performed mostly on the level of visual inspection of individual

system configurations. For a more quantitative approach, we have implemented a structure-

detection algorithm capable of classifying configurations based on the number and size of

partially formed aggregates. This allows us to collect separate statistical data for each

subphase and to determine their relative frequency.

In the region of the aggregation transition, the total density of states of a system can be

expressed as the sum of contributions from individual subphases

g(E) =
∑

i

gi(E). (7.4)

The probability of finding a system in the i-th subphase at a fixed energy E can then be

written as

pi(E) =
gi(E)

g(E)
. (7.5)
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Figure 7.2: Sample configurations of intermediate subphases found at the aggregation
temperature in a system consisting of four chains with five monomers each. Due to en-
tropic suppression, the {2, 2} subphase has an unexpectedly small canonical probability
p{2,2}(βagg) < 0.007, and is the first example of a missing (or entropically strongly sup-
pressed) subphase in the aggregation process of the multi-chain system.
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In the context of this discussion, the microcanonical entropy S(E) cannot be expressed as a

sum of individual subphase entropies. Instead

S(E) = kBln
∑

i

eSi(E)/kB , (7.6)

where

Si(E) = kBln gi(E). (7.7)

In Fig. 7.3, the microcanonical entropy S(E) (solid) and the individual subphase entropy

curves (dashed) are shown for systems of M = 2 and M = 3 chains. For M = 2, aggregation

is a single-step transition between the fragmented and the aggregate phase. When the

aggregate is dissociated into two weakly interacting chains, the system gains an amount of

entropy approximately equal to the translational entropy of a single chain Strans ∼ lnV ,

where V is the volume of the simulation sphere. This increase in entropy is apparent from

the vertical separation between Sagg and Sfrag. The changes in conformational entropy are

negligible in comparison to the translational entropy and are not relevant to our discussion.

When M = 3, in addition to the aggregate and fragmented phases, a single subphase {2, 1}

can be formed. As a result, aggregation becomes a two-step process, each decreasing the

entropy by an amount ∼ Strans. We note that the entropy curves of the individual subphases

are strictly concave. It is the vertical displacement between the curves, due to changes in

translational entropy, that is ultimately responsible for the origin of the convex intruder in

the microcanonical entropy S(E) and consequently for the back-bending feature in β(E),

signaling the first-order character of the aggregation transition.
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Figure 7.3: Microcanonical entropy per monomer S(E) (solid) and the individual subphase
entropies (dotted) for systems with M = 2, 3 polymer chains. The double-tangent Γ(E)
represents the Gibbs hull, the slope of which provides an estimate for the inverse transition
temperature βagg.
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Table 7.1: Inverse aggregation temperature (βagg), energy per monomer in the aggregate
phase (eagg), energy per monomer in the fragmented phase (efrag), and the latent heat per
monomer (∆q). The uncertainty for all listed quantities is ±0.5 in the last decimal.

System (M ×N) βagg eagg efrag ∆q
2× 5 1.99 -1.77 -1.11 0.67
3× 5 1.81 -2.04 -1.04 1.00
4× 5 1.70 -2.22 -1.01 1.22
5× 5 1.62 -2.35 -0.98 1.37
8× 5 1.51 -2.56 -0.93 1.63
11× 5 1.43 -2.62 -0.89 1.73
20× 5 1.35 -2.80 -0.85 1.95

The differentiation of Eq. (7.6) with respect to energy gives a simple expression for

the microcanonical inverse temperature β(E) in terms of the inverse temperatures of the

individual subphases:

β(E) =

∑

i βie
Si(E)/kB

∑

i e
Si(E)/kB

=
∑

i

pi(E)βi(E). (7.8)

Hence in the transition region, β(E) can be interpreted as the weighted sum of the inverse

subphase temperatures with respect to the multicanonical probabilities from Eq. (7.5). At a

fixed energy E, the system can be found in one of the distinct subphases with a respective

inverse temperature βi(E). In general, βi(E) 6= β(E). However setting the energy derivative

of Eq. (7.5) to zero, we find that βi(E) = β(E) precisely when the probability of a given

subphase pi(E) attains its maximum value. The oscillations in β(E) arise from the changes

in the relative weights pi(E) in the back-bending region.
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In Fig. 7.3, we also show the double-tangent (Gibbs hull) Γ(E). The slope of Γ(E) is the

appropriate quantity for estimating the aggregation transition temperatures. In single-step

first-order transitions, the slope of Γ(E) coincides with the inverse temperature obtained

by Maxwell construction. However, in composite multi-step transitions, the location of the

Maxwell construction becomes ambiguous due to multiple oscillations of β(E). Estimated

aggregation temperatures for system sizes of up to M = 20 are listed in Table 7.1.

7.2.2 Entropically suppressed subphases

In the following, we discuss the results of the analysis of canonical energy histograms

h(E; βagg), shown alongside the microcanonical quantities in Fig. 7.1. The histogram

h(E; βagg), collected at the inverse aggregation temperature βagg, can be expressed as a sum

of contributions from individual subphases

h(E; βagg) =
∑

i

hi(E; βagg), (7.9)

where the canonical histograms of the subphases are related to their contributions towards

the density of states via

hi(E; βagg) ∝ gi(E)e−βaggE . (7.10)

At all system sizes, the aggregate and fragmented phases have the largest canonical prob-

ability and are energetically well separated. The intermediate subphases have overlapping

energy distributions and occur with lower probabilities due to entropic suppression.

A striking feature emerges for systems with M > 3 chains. Already for M = 4 (see

Fig. 7.4), we notice that the subphase consisting of two clusters {2, 2} appears with un-

expectedly small canonical probability p{2,2}(βagg) < 0.007. That only certain subphases

contribute significantly towards the canonical energy histograms, becomes even more appar-

ent for larger systems. In Table 7.2, we list the theoretical values for the number of possible
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Figure 7.4: Subphase entropy curves (patterned) in the aggregation transition region for a
system of M = 4 chains. The entropically suppressed missing subphase {2, 2} is highlighted
in red (solid).

subphases (Nsub) alongside the number of subphases that were detected with non-negligible

probability (N̂sub). The total contribution of the missing subphases towards the canonical

energy histograms h(E) is less then ≈ 3% despite the fact that the number of the subphases

grows rapidly with system size. The observed results suggest that a system of M chains is

most often found in a small subset of (M − 2) subphases, each consisting of K individual

chains and a cluster of (M−K) chains. In fact, for M < 8 we observe (M−1) oscillations in

the inverse microcanonical temperature β(E), showing that the aggregation transition con-

sists of a sequence of (M − 1) distinct subtransitions, each corresponding to a single chain

breaking off the main aggregate. However in larger systems, some of the subtransitions

overlap in energy and cannot be associated with individual oscillations of β(E).
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Table 7.2: Theoretical number of subphases (Nsub); not including the fully aggregated and
fragmented phases, number of significantly represented subphases (N̂sub), and the total con-
tribution of the “missing” subphases towards the canonical distribution h(E) at the inverse
transition temperature βagg.

System (M ×N) Nsub N̂sub

∑

pmiss

3× 5 1 1 N/A
4× 5 3 2 < 0.007
5× 5 5 3 < 0.014
11× 5 54 9 < 0.026
20× 5 625 18 < 0.028

In order to better understand the origins of the missing subphases, let us consider the

effects of energy and translational entropy on the relative positions of individual subphase

entropy curves Si(E). A reduction in the number of intra-chain interactions leads to the

increase in energy, and as a result, subphases with a higher degree of fragmentation have

their entropy curves shifted to higher energies. The number of independent fragments in a

subphase determines its translational entropy and largely the vertical position of its entropy

curve.

Closer look at Eq. (7.6) reveals that only those subphases whose entropy curves are

closest to the total entropy S(E), contribute significantly. Therefore an increase in energy

of a dominant subphase must be compensated by a sufficient increase in its translational

entropy. Not surprisingly, the (M − 2) most significantly represented subphases consist

of K individual chains and a single cluster of (M − K) chains, and arrangement which

maximizes the translational entropy while maintaining a relatively high number of inter-

chain interactions.
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In Fig. 7.4, we provide an example of the first missing subphase in a system of M = 4 chains.

It is clear that except for a very narrow energy interval, the {2, 2} subphase is depleted by

the lower-energy {3, 1} and the higher-entropy {2, 1, 1} subphases (see Fig. 7.2). As the

system size increases, the number of missing subphases increases rapidly, while the number

of subphases with substantial canonical probabilities remains linearly proportional to M .

7.2.3 Scaling properties

It is also interesting to discuss the dependence of the aggregation temperature Tagg = β−1
agg,

and the associated latent heat per monomer ∆q = efrag−eagg, on the system sizeM . Previous

studies have addressed in detail the effects of system size and the particle density ρ on the

transition temperature [45, 46]. Here we keep the monomer density constant at ρ = 10−3

and consider the scaling properties of Tagg and ∆q only to obtain further evidence that the

aggregation transition remains first-order-like with increasing system size. In Table 7.1, we

have listed the values of βagg and ∆q for system sizes of up to M = 20 chains. Assuming

that the finite-size corrections to the aggregation transition temperature are mainly due to

volume effects, we start with the ansatz

Tagg ∝ α0 + α1M
−1/3 +O(M−2/3). (7.11)

Due to the difference in the number of nearest-neighbor interactions between surface and

bulk monomers, we expect the specific heat ∆q to depend not only on the bulk volume

occupied by the system, but also on its surface. Hence,

∆q ∝ δ0 + δ1M
−1/3 + δ2M

−2/3 +O(M−1). (7.12)
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Figure 7.5: Scaling behavior of the aggregation transition temperature Tagg and the latent
heat per monomer ∆q, with respect to M−1/3 where M is the number of polymer chains.
The latent heat increases with system size, providing further evidence that the transition
remains of first order even for large M .
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Data fits of the values from Table 7.1 are shown in Fig. 7.5. We observe that the transition

temperature is reduced for small system sizes as finite-size effects become more prominent.

For very large system sizes, it converges to a fixed value (TM→∞
agg ≈ 0.95). The latent heat

per monomer approaches the estimated value ∆qM→∞ ≈ 2.56 in the thermodynamic limit,

providing further evidence that the aggregation transition is a first-order phase-separation

process.

98



Chapter 8

Summary

In this thesis we have systematically investigated the structural and the thermodynamic

properties of polymer systems represented by generic coarse-grained models. For this pur-

pose, we have used advanced generalized-ensemble Monte Carlo algorithms together with

sophisticated statistical analysis methods such as the microcanonical inflection-point analy-

sis.

In chapter 5, we have examined the flexible elastic homopolymer over a large range of

values of the bond confinement range R. Advanced parallel replica-exchange Monte Carlo

methods, such as the Multiple Gaussian modified ensemble (MGME), were utilized in or-

der to overcome the computational difficulties posed by the strong first-order-like behavior

associated with the Θ transition at large R values. Using the results obtained from the

specific heat and the thermal fluctuations of the radius of gyration, we have constructed

and compared features of the structural hyperphase diagrams for 13mers and 30mers. For

low and intermediate confinement ranges, three distinct structural phases separated by the

freezing and the Θ transitions can be identified, in agreement with the expected behavior.

With increasing values of the parameter R, however, the Θ transition line shifts to lower

temperatures and eventually merges with the freezing transition line, suggesting the absence
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of an independent liquid phase. Microcanonical inflection-point analysis provides conclusive

evidence that the Θ transition turns from second order to first order if the bond confine-

ment range parameter R exceeds a threshold value. This change in the character of the

Θ transition is not influenced by the freezing transition, which in this part of the phase

diagram is still well separated from the Θ point. Increasing the confinement range further,

Θ and freezing transitions merge and exhibit clear indications of a hierarchical nucleation

transition. In this regime, the beads are quasi-free and interact likewise with others, bonded

or nonbonded. The still coupled system behaves like an atomic cluster in a dilute regime.

The general structure of the hyperphase diagrams can be expected to remain qualitatively

intact even for substantially larger systems. The only anticipated change is that the freezing

transition is of first order for all system sizes with more than about 40 monomers [58]. Our

systematic study covers the technologically and biologically interesting regime of polymer

chains with bond elasticities ranging from stiff to highly elastic, which includes all realis-

tic linear macromolecules, and extends into the space of confined systems that behave like

atomic clusters. Since our results are supposed to be generic, they allow for a classification

of the expected transition behavior on the basis of the effective bond confinement range of

these systems.

In chapter 6, we have investigated the thermodynamic and structural properties of elastic

homopolymer chains of lengths N = 15, 55, over a range of values of the model parameter η

which controls the strength of the LJ potential in bonded interactions. At very small values

of η, conformations with bihexagonal cores form the ground state. Increasing the strength of

the bonded LJ potential breaks the symmetry of the FENE potential and leads to additional

short-range repulsion between pairs of bonded monomers. The compressed bonds found in

bihexagonal conformations obtain large energetic penalties and only a single icosahedral solid

phase remains. The results of these two studies show that the coarse-grained homopolymer

model is robust over a wide range of values of the model parameters η and R. However, the
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disappearance of the liquid pseudophase at very large bond confinement ranges (R ≫ 1),

and the emergence of new conformational geometries when the short range repulsion between

bonded monomers is sufficiently weak (η ≪ 1), illustrate the importance of a careful choice

of model parameters.

In chapter 7, we have investigated the properties of the aggregation transition for systems

consisting of up to M = 20 short flexible elastic homopolymer chains. Utilizing the tools of

the microcanonical inflection point analysis, we have found that the aggregation transition

is a sequential process consisting of M − 1 subtransitions between intermediate, partially

fragmented structural phases. Each oscillation in the microcanonical inverse temperature

curve indicates a transition between two adjacent subphases. We have established the rela-

tionship between the microcanonical density of states g(E) and the densities of states gi(E)

corresponding to the individual subphases. From this, we have further derived similar ex-

pressions for the microcanonical entropy S(E) and its energy derivative, the microcanonical

inverse temperature β(E). We have used those relationships to motivate the origins of the

convex intruder in S(E) and the prominent back-bending region in β(E), both of which are

indicators of a first-order pseudophase transition. Canonical energy histograms hi(β;E), col-

lected at the transition temperature βagg for each individual subphase, confirm that certain

subphases contribute only negligibly to the total canonical distribution. The origin of these

missing subphases can be explained on the basis of the effects of translational entropy on

the relative positions of the subphase entropy curves Si(E). The results of this study show

that with increasing system size, the number of possible subphases increases rapidly, whereas

their relevant subset increases only linearly. Finally, we have discussed the scaling properties

of βagg and the latent heat per monomer ∆q. The increasing values of ∆q with system size

provide further evidence that the aggregation transition remains a first-order process even

as M tends towards the thermodynamic limit.
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