
 

 

EMPIRICAL AND THEORETICAL ANALYSES OF THE APPLICABILITY OF 

PROJECTION MODELS AND MIXED MODELS TO FOREST INVENTORY UPDATES  

by 

CHENGCAI NI 

(Under the Direction of Chris J. Cieszewski) 

ABSTRACT 

Projecting forest inventory plays an essential role in forest management. In this study I 

focused on techniques for projecting forest inventories, such as projection models, stand table 

projection techniques, and southern annual forest inventory system (SAFIS) sample plot updates. 

I developed a new stand table projection model whose model form was derived based on 

the same assumptions as the Pienaar & Harrison equation (1988). The new stand table model is a 

two random effects model. It significantly outperformed the Pienaar & Harrison stand table 

projection model using data for Consortium for Accelerate Pine Plantation Studies (CAPPS). The 

new stand table modeling technique is an integration of a new expectation function, maximum 

likelihood estimation, and Empirical Best Linear Unbiased Predictor (EBLUP). 

I proposed the quantile regression estimator for parameters of percentile growth models. 

According to extensive simulation analyses, the new estimator favorably compared with ordinary 

least squares in terms of the first order and second order statistics, especially when error terms 

are heteroscedastic. Simulation results indicated that the gain from quantile regression was 

approximately proportional to heteroscedasticity.  



 

In forest biometrics, it is often the situation that only one observation is available for 

predictions due to investment and biological limitations. Accordingly, mixed models are not 

necessarily superior to projection models. However, mixed models are appropriate for updating 

SAFIS sample plots since multiple observations will become available as the inventory cycle 

repeats. EBLUP can provide the best prediction in comparison with any other methodologies 

available through a weighted scheme that uses information on individual observations and the 

population mean. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

This study investigates various aspects of modeling forest dynamics. One of two basic 

objectives of modeling is to understand and test hypotheses on the mechanism that generates data. 

Another objective is to forecast on the basis of the understood mechanism. In forestry, desired 

model properties, requirements for accounting for variations among individuals, and limited 

observations are often conflicting. 

1.1. Growth and Yield Model Classification 

According to the level of detail in the stand description, forest growth and yield models 

are classified into three categories: whole stand models; diameter class models; and individual 

models. Whole stand models describe a hypothesized functional relation between the underlying 

stand attribute and other attributes that are used as explanatory variables, e.g., stand age, site 

index, trees per acre, stand basal area, and quadratic mean diameter. Diameter class models 

represent a refinement of whole stand models to provide more detailed information on how the 

underlying stand attributes are distributed across size classes. 
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Diameter distributions can be estimated from mathematical models, including 

probability density functions (e.g., Normal, Beta, Weibull, Lognormal). When a predefined pdf is 

used, the idea is to estimate the parameters of the pdf such that the observed diameter 

distribution is adequately fitted. The parameters of the pdf are estimated as a function of stand 

level characteristics (e.g., stand basal area, site index, stand age, quadratic mean diameter, and 

diameter class percentiles) through a variety of methodologies. Once a diameter distribution 

model is identified, it can be linked with a growth function to predict future yields by diameter 

classes. 

Models using the individual tree as the basic unit are referred to as individual models. 

Individual models represent a further level of refinement over whole-stand or diameter 

distribution models in that they simulate the growth of individuals rather than whole stands or 

diameter classes. Although these models can vary greatly in how they generate a list of 

individuals, they generally contain three primary components: diameter growth, height growth, 

and crown growth. When a mortality function is incorporated with these growth functions, future 

yields and stand structure can be simulated. These components are typically functions of stand 

age, site index, and stand density (TPA or stand basal area). Examples among many others are 

FVS (Wykoff et al., 1982), and PTAEDA (Daniels and Burkhart, 1975). 
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1.2. Approaches to Accounting for Variations Among Individuals 

        Clutter (1963) constructed compatible growth and yield equations for loblolly pine. 

Two remarkable contributions to forest biometrics were made by his celebrated research work, 

which are the idea of compatibility and the approach to accounting for variations among 

individuals. Clutter identified the necessity for compatibility between growth and yield functions, 

arguing future yield estimates obtained from the summation of the growth function over the 

projection interval should equal the future yield estimate obtained from the yield function for the 

same interval. Clutter derived a basal area equation (equation 1.1), which ensures compatibility 

between growth and yield functions, since it describes the basal area increment (in logarithm 

scale, ln BA2-ln BA1) during the projection interval from stand age A1 to A2, and more importantly, 

it can be viewed as a yield equation taking variations among stands into account by using ln BA2 

to identify the stand-specific coefficient responsible for variations from stand to stand. 
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Suppose one has the hypothesized basal area yield equation 1.2 and that parameter β3 

is the stand-specific parameter. The equation, ( ) 1213 ln ASBA βββ +−= , can be used to calculate β3. 

Plugging it into equation 1.2 gives equation 1.1. Clutter (1963) used a different approach to 

derive equation 1.1, i.e., differentiating equation 1.2 with respect to A, getting β3 replaced using 

equation 1.2, and integrating the resulting differential equation between ln BA2 and ln BA1, with 

constraint such that ln BA2=ln BA1, when A1=A2. It is easy to see that ln BA1 has two functions: 

serving to increment calculation; and providing specific information on the course of the 

underlying individual. For simplicity I call equations such as 1.1 as projection equations and 

models such as 
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In comparison with corresponding yield models (e.g., e
A
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




++=

1ln 321 βββ ), 

projection models can substantially decrease RMSE, the criterion that is widely used to jointly 

measure both estimator variance and bias. The research works of Lynch and Murphy (1995) and 

Lynch et al. (1999) exemplified the decrease in RMSE. 

Estimated regression function 1.3 had a fit index of 0.95 and MSE of 20.02 ft2 while 

equation 1.4 had a fit index of 0.98 and MSE of 8.53. The only difference between estimated 

regression functions 1.3 and 1.4 is whether or not β1 is taken as a stand-specific coefficient and 

replaced with its estimator (equation 1.5). 
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where 

H=individual height, h=1.3m, HD=dominant height, and D=individual diameter at 

breast height (dbh). 

Projection models have been widely applied in forest biometrics since Clutter (1963) 

first proposed them, including site index (Bailey & Clutter, 1974; McDill & Amateis, 1992; 

Cieszewski & Bailey, 1999; Cieszewski, 2001, 2002), basal area (e.g., Sullivan & Clutter, 1972; 

Pienaar & Harrison, 1988), volume (Clutter1963), stand table projection (Clutter & Jones, 1980; 

Pienaar & Harrison, 1988), and survival models (Clutter & Jones, 1980; Pienaar & Shiver, 1981).  

The projection equations, derived through either differential-integral (Clutter 1963), or 

algebraic difference approach (ADA, Bailey & Clutter, 1974), or generalized algebraic difference 

approach (GADA, Cieszewski & Bailey, 1999), have the following desirable properties: 1.) If 

yield is projected from A1 to A2, and then from A2 to A3, the result should be identical with a 

projection from A1 to A3; 2.) The projected value at A2 should be invariant to the choice of A1; 3.)  
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The response remains the same when projection interval is zero. It is noteworthy that there are 

many equations that take the form of projection equations but lack these desirable properties. 

To a certain degree the fact that projection models are able to account for variations 

among individuals is the reason that projection models were widely applied. Equation 1.3 is a 

representation of the course taken by the population average of the underlying attribute 

(individual height), paying no attention to any specific individual, whereas equation 1.4 takes 

into consideration to a certain degree the particular course of the individual height with the 

requirement that a prior observation provide information on the course of the subject individual. 

A substantial decrease in MSE was observed (from 20.02 ft2 to 8.53 ft2, see Lynch et al., 1999 for 

details). 

Growth and yield models are usually constructed with repeated measurement data that 

are collected repeatedly on sampled subjects. Variations among observations mainly are from 

two sources: variations among subjects and variations within subjects. 

Suppose that a function ( )β,xf may be specified to model the functional relation 

between the response and covariate x, where β is parameter vector. It is reasonable to assume that 

the function form of ( )β,xf is common to all subjects in the sampled population, but the 

parameter β vary across subjects. Accordingly, the mean response function for ith subject can be 

written as ( ) ( )iijiij xfyE ββ ,=  so that jth response of ith subject corresponding to covariate xij is 
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( ) ijiijij exfy += β, , where eij is the error term associated with yij, generally assumed it follows 

normal but not necessarily iid (identically, independently distributed). The model describes the 

systematic variation ( ) ( )iijiij xfyE ββ ,=  and eij random variation associated with measurements 

on the ith subject. It is easy to see that variation among subjects is accounted for through βi. 

Parameters may vary due to variation unexplained by ( )β,xf , for example, due to unobservable 

or excluded explanatory variable. 

Projection models in forest biometrics can be viewed as mixed models that account for 

the variations among individuals through one parameter. If a projection model has the desired 

properties discussed by Clutter (1963), it can be broken down into two components: a mixed 

model, ( ) ijiijij exfy += β, , where only one element of βi varies across subjects; and a predictor for 

βi on the basis of one prior observation. 

Generally, one parameter is not sufficient to account for variations among subjects 

(individuals). Accordingly, various approaches have been proposed, among which the commonly 

used is reparameterization that is to be discussed later. Since estimating βi requires prior 

observations, the number of prior observations, one or more, and statistical test such as 

likelihood ratio test jointly determine how many parameters should be random. Often, the former 

is a dominant factor. Bredenkamp and Gregoire (1998) modeled diameter growth using a 

function that was developed by Schnute (1981). Schnute showed that many existing functions are 
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special cases of his function (Schnute, 1981; Zeide, 1997). Despite the derivations presented by 

Schnute (1981), I can show that the Schnute function is no more than a four-parameter Chapman 

& Richards model with two expected-value parameters (Ratkowsky, 1990). 
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The four-parameter Chapman & Richards function can be written as function 1.6 and 

the Schnute function is function 1.7. Solving function 1.6 for 
4

1

β

β 






 y
at A1, A2 and A yields 

function 1.8, 1.9, and 1.10, respectively. Dividing function 1.8 by 1.9 and 1.10 by 1.9 gives 

function 1.11 and 1.12. Further, dividing function 1.11 by 1.12 yields function 1.13. Solving 

function 1.13 for y leads to function 1.7, the Schnute function. 

Function 1.7 can be interpreted in two different ways. One interpretation is that it is a 

new population model, having nothing to do with accounting for variations among the individual 

but having two new parameters (y1 and y2) with different parameter biological interpretations 

(Ratkowsky, 1990). In contrast, another interpretation is that it is an individual function, getting 

variations among individuals accounted for through two prior observations (β1, β2 are the 

individual-specific parameters in equation 1.6). Different interpretations lead to different 

applications (see Fang & Bailey, 2001; Bailey & Clutter, 1974). The second interpretation is 

most widely applied since it provides great flexibility. The Schnute function demonstrates a way 

to account for variations among individuals, i.e., p prior observations replace p 

individual-specific parameters. 

One approach using one observation to account for multiple varying parameters is the 

Generalized Algebraic Difference Approach (GADA) first proposed by Cieszewski and Bailey 
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(1999). It has been successfully used to derive site index models (Cieszewski & Bella, 1989; 

Cieszewski, 2001, 2002; Rivas et al., 2004, among many others). The GADA makes it feasible to 

construct a site index model that is able to yield polymorphic curves with variable asymptotes. 

If an additional assumption on βi in ( ) ijiijij exfy += β, that βi ~ N (0, D) is made, where 

D is the covariance matrix of βi, ( ) ijiijij exfy += β, becomes a mixed effect model. The mixed 

model approach provides a flexible and powerful tool for the analysis of longitudinal data. As 

Pinheiro and Bates (2000) stated, the increasing popularity of the mixed model approach is due 

to the flexibility it offers in modeling the within-subject correlation that is often present in 

longitudinal data, by the handling of balanced or unbalanced data in a unified framework, and by 

the availability of reliable and efficient software such as Splus LME, NLME, and SAS PROC 

NLMIXED, and PROC MIXED for model fitting. 

If projection models can be viewed as simplified mixed models, Clutter (1963) is the 

first implicit application of mixed models in forestry. Biging (1985) used the random parameter 

approach to estimate the fixed parameters of site index curves. Lappi and Bailey (1989) applied a 

nonlinear mixed model to predict dominant height at both plot and individual tree levels. In the 

Lappi and Bailey model, the random effect entered into dominant height model linearly, so their 

model is a nonlinear marginal model (Demidenko, 2004). Other examples are Hall and Bailey 

(2001), Hall and Clutter (2004), Fang and Bailey (2001), Fang et al. (2001), and Calegario et al.  
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(2004). In these studies, EBLUP (empirical best linear unbiased predictor) was employed to 

predict dominant height, volume and basal area, on the basis of multiple prior observations. 

One advantage of EBLUP is that it can be used to estimate as many random effects as 

desired with any number of prior observations, only if the model is differentiable with respect to 

these random parameters. In contrast, projection models restrict the number of individual specific 

parameters. Generally speaking, algebraic difference approach (ADA) is able to specify one 

individual specific parameter to account for the variations, whereas generalized algebraic 

difference approach (GADA, Cieszewski & Bailey, 1999) is able to use two in practice. The 

ADA approach is applicable to any base equation. The GADA can specify two parameters 

varying among individuals and is algebraically appropriate for fractional growth functions. The 

ADA and GADA do not require specifying a distributional function of individual-specific 

parameters since the distribution is irrelevant to estimation of the individual-specific parameters. 

 The more observations of an individual over time are available, the better the growth 

trajectory can be identified. One example using two prior observations in forestry is Bredenkamp 

and Gregoire (1988), modeling diameter with the Schnute function (Schnute 1981). Projection 

models are able to use two or more observations to increase the accuracy of predictions 

substantially, but not as efficient as EBLUP. 
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The requirement for multiple observations is not always satisfied in the applications of 

mixed models to forestry due to economical as well as biological limitations. In fact, often only 

one prior observation is available for predictions in forestry. In order to account for variations 

among parameters using one observation, the standard approach is to use the observation to 

account for one varying parameter, and to model others with simple functions so that there is 

negligible or no variation among individuals. The Clutter (1963) basal area equation can be 

thought as a perfect example to illustrate this approach. Equation 1.14 is the Schumacher model 

(Schumacher 1939), which, since it is sigmoid and can be easily linearized so that more stand 

level attributes can be incorporated into it, might be the most widely used model in forestry. 

Equation 1.15 is the basal area model in Clutter (1963), where A is stand age, BA is basal area, 

BA20 is basal age at 20, and SI is site index. Comparing equation 1.14 and 1.15 reveals that 

simple linear functions Sbb 100 +=β and SbBAbba 420321 ++= were specified to parameter 0β  

and 1β , respectively, to explain variations among individuals. There is no doubt that replacing 

parameters with functions is always challenged by the data and unknown mechanisms of 

attribute interaction. Accordingly, one prior observation was used to explain 1β variations among 

stands and equation 1.1 followed, whereas Sbb 100 +=β is still responsible for accounting for 

0β  variations among stands. 







+=

A
y 1ln 10 ββ                                                  (1.14) 
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If two observations are expected to be available, on the assumption that the 

Schumacher function is appropriate for basal area, equation 1.16 follows. It does not even 

require parameter estimation since two observations have already exhausted all parameters. 

Although equation 1.16 is always ready for applications and may be useful in the case no model 

is available, it does not find a comfortable niche in practical management use due to two 

drawbacks. First, it completely depends on two observations of a specific individual, failing to 

use information from similar stands to improve predictions. Second, the course of stand basal 

area might be distorted seriously by error terms contained in the two observations. 

1.3. Model-Based FIA Sample Plot Updates 

The USDA forest service has developed an annual inventory system featuring a 

hexagonal grid of Forest Inventory and Analysis (FIA) sample plots to be measured in 5-year 

inventory cycles, with 20% of the plots to be measured each year (Lessard 2001). Because 

inventories are conducted over 5 year cycles, data from the plots not measured in the current year 

will be 1 to 4 years old. Some methods have been proposed to eliminate this lag by estimating 

current conditions for FIA plots. One approach to calculating annual FIA estimates is to update to 
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the current year data for plots measured in previous years and to base estimates on the data for all 

plots. Imputation and Model-based updating techniques have been developed for annual forest 

inventories (Lessard, 2001; McRoberts, 1999, 2001). 

Modeling FIA sample plots is different from common forest modeling and prediction 

in many ways. 

First, since sample plots are systematically distributed throughout a state, each 

representing about 6,000 acres forestland, among FIA plots much more variation occurs in 

comparison with research plots. Consequently, it is reasonable to believe that variations among 

FIA sample plots are much larger than that among research sample plots. One solution to this 

problem is to use more explanatory variables, both quantitative and qualitative, to account for 

this sort of variation. Unfortunately, it does not seem feasible due to the unavailability of such 

additional information and because the primary purpose of forest inventory is to estimate 

population parameters, not to obtain data for modeling. In addition, how to employ additional 

covariates to account for parameter variations is very challenging. Another practical approach in 

forestry to explain variations among individual is the algebraic difference approach, which can 

be viewed as a simple mixed effect model. In an FIA context, this approach is not appropriate 

since one random coefficient is not sufficient to account for all variations among sample plots. 
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Secondly, the primary objective of modeling FIA sample plots is to update plots not 

measured in a current year for annual forest statistics so that the prediction period will be 1 to 4 

years. However, long-term prediction is also desired since SAFIS (Southern Annual Forest 

Inventory System) is intended to improve estimation of both the current resource inventory and 

changes in resources (Roesch et al., 1999). 

Last but most important, model systems constructed with FIA sample plot data are to 

be used for updating the very sample plots that models are based on. As the USDA annual 

inventory proceeds in a five-year cycle, more and more measurements of each sample plot will 

accumulate to provide informative data for prediction of individual plots. In this sense, it is 

important to make the best use of previous measurements to improve sample plot prediction. 

Lappi and Bailey (1988) stated that no previous measurement except the most recent one could 

be used for prediction with a projection model. Actually, there are two approaches for which a 

projection model can make use of more than one previous measurement. One simple approach to 

using all prior observations is to project first from every single observation to the desired 

projection age, then simply average these predicted values to reduce the biases caused by random 

components within individuals. The disadvantage of this approach is that it fails to specify the 

model correctly since only one parameter can be assumed to be varying across individuals. 

Another approach, as in Ratkowsky (1990) is to specify more than one specific parameter to 
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accommodate more previous measurements. The number of parameters in the base model limits 

the number of previous measurements that can be used by this approach. More importantly, 

projection models fail to provide algorithms as efficient as does EBLUP. 

1.4. Using EBLUP To Update FIA Sample Plots 

Mixed models provide a flexible and powerful tool for the analysis of longitudinal data. 

Mixed models allow one to account for multiple sources of heterogeneity and correlation in data 

through the inclusion of random effects in the model (Hall & Clutter, 2004). Data on FIA sample 

plots is typically collected repeatedly through time (five-year cycle), so correlation and 

heterogeneity are often present in such longitudinal data. 

Applications of the mixed models in forestry mainly focused on predictions. Some 

examples are Lappi and Bailey (1988), Hall and Bailey (2001), Hall and Clutter (2004), Fang 

and Bailey (2001), and Fang et al. (2001). In these articles, the EBLUP was used to predict 

dominant height, volume and basal area, making use of multiple previous observations. 

Mixed model prediction is performed through using the EBLUP (empirical best linear 

unbiased predictor) to predict random effects for a given subject individual. As BLUP (best 

linear unbiased predictor) implies, it is unbiased and has minimum variance among all linear 

functions of prior observations that are unbiased (Davidian & Giltinan, 1995, p.78). EBLUP has 
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links to several other areas of statistical methodology, including empirical Bayes methods, 

Kalman filtering, selection index, and Kriging (Hall & Clutter, 2004; Robinson, 1991).  

I follow Pinheiro and Bates (2000) notations to present mixed model and EBLUP. The 

jth observation on ith plot is modeled as model (1.17) 

( ) ijijiij exfy += ,φ                                                  (1.17) 

where iiii bBA += βφ , i=1,…, m; j=1,…,ni, ( )DNbi ,0~ ; m is the number of sample 

plots; ni is the number of observations on ith plot; iφ is plot specific parameter vector; the 

matrices Ai and Bi depend on plot (also possibly depend on the values of some covariates at the 

jth observation); β is a p dimensional vector of fixed effects. Random effect bi is r dimensional 

vector of random effects; ( )ijij RNe ,0~  and it does not have to be iid. 

In general, the problem of predicting a random variable can be shown to be that of 

estimating its conditional mean, given the available data. Suppose a vector of ni observations on 

plot i, say 
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predictor of bi is the conditional mean of it, given a vector of the response Yi from ith individual, 

as equation 1.1 shows:  
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where bi is r by 1; 
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Equation 1.18 is called the best linear unbiased predictor (BLUP). When the unknown 

covariance parameters are replaced by their REML or ML estimates, the resulting predictor is 

referred as to EBLUP. Small area estimation involves using direct survey information from areas 

of individual interest together with information on similar or related areas. It has been found that 

more precise estimates can be made if information on the other areas had not been ignored 

(Robinson, 1991). Like small area estimation, the EBLUP can borrow some strength from 

similar or related individuals to improve estimates of separate individual profiles. It is interesting 

to note that the predicted individual response can also be expressed as a weighted average of the 

estimated population-averaged mean and the individual observed response profile (see 

Fitzmaurice, 2004). In summary, in a SAFIS context mixed models in conjunction with EBLUP 

have the following advantages not obtained by other approaches. 

1). Heterogeneity and correlation can be readily handled by the mixed model approach if 

they are present. 

2). The EBLUP predicts observations of the response variable such that both multiple 
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measurements of the subject plot and information on similar or related plots can be jointly used. 

In addition the mixed model can use correlation information to improve predictions (Hall & 

Clutter 2004). A weighting scheme is automatically determined by the EBLUP according to 

variations within the plot and among plots (See chapter 4 for details). 

3) Parameter estimation and random effect prediction are performed simultaneously 

(Pinheiro & Bates, 2000, chap. 7; Hall & Clutter, 2004) In this sense, modeling FIA sample plots 

may be thought of as a dynamic process, and mixed model estimation might be used as an 

algorithm for FIA plot updating.  

4) The EBLUP can provide a means to make long-term prediction and a basis for 

decision-making. Lessard et al. (2001) employed individual diameter growth models to update 

FIA sample plots. It is unlikely that their model is reliable for long-term prediction because only 

one observation is utilized for prediction, though it is appropriate for updating (1 to 4 years). In 

addition, their model depends on reference DBH and cannot grasp the real growth profile. 

1.5. Study Objectives 

According to availability of prior observations for prediction, I classify growth and 

yield model applications into two categories: one observation and multiple observations. The 

latter is exemplified in SAFIS and some intensive forest management. Summarily, the objectives 

of this study are to 
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• Investigate the applicability of mixed models in the case where only one prior 

observation is available for predictions. 

• Develop new models for stand table projection and new estimation methods to provide 

detailed information for management. 

• Present a model system to update SAFIS sample plots. 

• Illustrate the advantages of EBLUP in SAFIS plot updates for long-term trend analysis 

through theoretical analysis. 
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CHAPTER 2 

A NEW STAND TABLE PROJECTION MODEL 

2.1. Introduction 

According to the level of detail in the stand description, growth and yield models can 

be classified into three categories: stand level models, size class models, and individual models. 

Stand level models describe the relation between one stand level attribute and others. In most 

situations, stand level models are likely to be the most appropriate for management. Approaches 

that use individual trees as basic units to predict growth and yield are referred to as individual 

models. Individual models use both stand level attributes and detailed information specifically 

related to each individual, including the coordinates, diameter, height, and crown dimensions. 

Individual models do not find a comfortable niche in practical management due to the very 

detailed inventory information they required, though these models can be useful as research tools 

to study spatial relationships or to provide insights into stand dynamics that could improve stand 

level models. 

Diameter distribution models represent a refinement of whole stand models because 

they break stand level attributes into diameter classes. Goelz (2001) stated that all growth and 
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yield models are diameter distribution models that differ only in regard to which diameter 

distribution is employed and how the distribution is projected in the future. According to Goelz 

(2001), diameter distribution models (Bailey & Dell, 1973; and references cited therein, Hafley 

& Schreuder, 1977; Border et al., 1987; Borders & Patterson, 1990; Liu et al., 2002), 

disaggregation models (Ritchie & Hann, 1997a, 1997b), and stand table projection models 

(Clutter & Jones 1980; Pienaar & Harrison 1988; Nepal & Somers, 1992) fall into this category. 

Two fundamental ways to project the diameter distribution are either from stand-level attributes 

to individual trees or in the reverse order. The diameter distribution or individual tree can be 

either disaggregated from the projected stand attributes (Bailey et al. 1981; Borders 1989) or 

projected directly and aggregated with the stand attributes (Daniels & Burkhart 1988). One 

common characteristic of the category is that both stand level attributes and information 

specifically related to each individual diameter class or tree are included as explanatory variables 

to account for two variation sources: stand variation and individual variation nested in a stand. 

Growth and yield disaggregation is generally based on either additive or proportional 

allocation. Most disaggregation functions are proportion allocation functions, which allocate 

growth or yield in proportion to estimated contribution to the total. Proportional allocations have 

been applied both to growth functions (Zhang et al., 1993) and to the allocation to yield in stand 

table projection (Clutter & Jones, 1980; Pienaar & Harrison, 1988; Nepal & Somers, 1992; 
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McTague & Stansfield, 1994, 1995). Additive disaggregation functions are mainly used to 

allocate growth among sublevel individuals (Dhote, 1994). One potential drawback of the 

additive function is that negative growth predictions may result (Ritchie & Hann, 1997b). 

Stand characteristics explicitly used in functions cited by Ritchie and Hann (1997b) 

include mean basal area or quadratic mean diameter (Clutter & Allison, 1974; Pienaar & 

Harrison, 1988; Harrison & Daniels, 1988; McTague & Stansfield, 1994), basal area (Campbell 

et al., 1979; Clutter & Jones, 1980; McTague & Stansfield, 1994, 1995; Moore et al., 1994), 

volume (Dahms, 1983; Zhang et al., 1993), site index and dominant height (Harrison & Daniels, 

1988), and stand density indicators such as tree per acre (TPA ) and stand density index (SDI ) 

(see Ritchie & Hann, 1997b). Individual characteristics includes one prior observation of 

relevant individual attribute, crown surface area (CSA), crown ratio (CR) or crown class (CC), 

basal area for tress larger than the subject tree (BAL), etc. (Lessard et al. 2001). Among these 

stand characteristics, mean basal area or quadratic mean diameter is the most important one 

because it contains information about BA and TPA and it is highly correlated to individual 

diameter. All the functions cited in Ritchie and Hann (1997b, p. 228) used one prior observation 

of the response as an explanatory variable. From the mixed model standpoint, the prior 

observation is used to identify the individual or predict the model parameter uniquely related to 

the individual. Since one prior measurement is used as an explanatory variable, reference 
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invariant property is desired or required. Although it is difficult to satisfy all the following 

desirable properties of disaggregation or stand table projection functions, insight into these 

properties will help construct consistent and sound projection equations. The following 

properties are desirable, though they may not constitute on exhaustive list. 

The first property is invariance between the estimated aggregate of characteristics 

using stand level model and the aggregate of estimated individual characteristics using 

disaggregation model. In other words, if a certain characteristic is summable (i.e., TPA, basal 

area, and volume), the sum of the individual values projected by the estimated disaggregation 

function should be consistent with the corresponding values projected by the estimated stand 

level function. The invariance property is often maintained by adjusting the sum of individual 

values to equal the stand level estimate (Clutter & Jones, 1980; Pienaar & Harrison, 1988; 

Dahms, 1983; Nepal & Somers, 1992; McTague & Stansfield, 1994, 1995). Similarly, Somers 

and Nepal (1994) presented a general algorithm for maintaining invariance based on the 

assumption that the relative growth between individual trees remains constant and that individual 

predictions are subservient to the stand level model. Summarily, two main adjustment methods 

are proportional allocation (Clutter & Jones, 1980; Pienaar & Harrison, 1988; Dahms, 1983) and 

constant relative growth allocation (Somers and Nepal 1994). Proportional allocation can be 

summarized as )(
)( i

i
i uf

uf
Ww

∑
=  (Ritchie & Hann, 1997a), where wi is the adjusted individual 
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characteristic of interest, W is the estimated aggregate of w in the future, and f (ui) is a function 

of some estimated individual attribute u, often the same as w. It is easily seen that proportional 

allocation reallocates the estimated aggregate to every individual in proportion to its estimated 

contribution to the total. The allocation method of Somers and Nepal (1994) assumes that 

relative growth of any individual with respect to some selected reference individual remains the 

same after adjustments. Suppose basal areas are to be projected at both the individual level and 

stand level; solving 

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yields the estimator for kr. Once kr is estimated, ki can be estimated, where B2 is the stand basal 

area estimated by a stand basal area model, bi1 is the initial basal area of the ith tree, and bi2 is 

projected basal area of the ith tree, br1 and br2 are initial and projected basal areas for some 

selected tree r, respectively, and ki and kr are growth adjustments for ith tree and the reference 

tree r. It can be seen that the invariance property is satisfied with constraint such that ∑
=

=
2

1
22 ˆˆ

n

i
iibkB . 

In addition, when the total survival projection equation is available, the predicted total mortality 

must be distributed or mortality probabilities must be estimated. The allocation method of 

Somers and Nepal (1994) estimates kr and survival adjustment simultaneously, whereas other 

authors distributed mortality before adjusting individual estimates to maintain the invariance 

property. 
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Since all disaggregation functions or stand table projections involve one observation of 

the response and explanatory variables, which can be thought to be functions of stand age, the 

reference invariance property is desired. Reference invariance is a very important property of a 

projection equation. A projection equation lacking this property is dependent on the choice of 

stand age and demonstrates different equation behavior if different reference ages are used; 

however stand age may not explicitly be included in the equation since most explanatory 

variables in a forest model system are functions of stand age. One simple criterion to determine 

whether a projection equation is reference invariant is to see whether the equation is the same as 

its inverse with respect to y1, where y1 denotes observation of the response. Since Clutter (1963) 

introduced the idea of compatibility between growth and yield functions, the idea has been 

accepted as an important property for such functions. Ramirez-Maldonado et al. (1987) 

demonstrated that such a relationship holds true for functions derived through the algebraic 

different approach (ADA) (Bailey & Clutter, 1974; Borders et al. 1984). In this sense, a 

projection equation derived either through derivative and integrals (Clutter, 1963) or ADA 

actually is a growth function. Consider the Schumacher function, 

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that 12 lnln yy = when A1=A2. The growth function is equivalent to ( )1
1

1
212 lnln −− −+= AAyy β . In a 

similar way, it can be shown that ( )( )1
2112 lnln −−+= AAyy αα  or, equivalently, 

( ) ( )( )1lnln 1
211 −−=∆ −AAyy α , with parameter β replaced with the other parameter. Although 

various interpretations of projection equations have been made (Clutter 1963; Bailey & Clutter, 

1974; Ratkowsky, 1990; Cieszewski, 2001, 2002), one important interpretation is that a 

projection function can be viewed as either a growth function or a yield function. 

Disaggregation functions should be able to account for at least two sources of variation: 

stand level variation and individual variation. Stand level variation is usually accounted for by 

incorporating stand level attributes such as site index, quadratic mean diameter, basal area, and 

volume, whereas individual level variation is often accounted for by one prior observation of the 

response and other individual attributes. Individuals in the same stand should have different 

curve shapes and variable asymptotes, as are desired for site index models. This property 

requires that at least two parameters vary from individual to individual within the same stand and 

is extremely difficult to achieve since one observation can account for only variation of one 

parameter. If other individual attributes are included and the function is reference invariant, the 

model system must have additional components to estimate the projected values of such involved 

attributes as diameter, height, crown ratio, etc., and these projected values require other 

individual models that may not necessarily help improve the performance of whole system. 
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A disaggregation method by means of a specific growth function is intuitively 

appealing because the disaggregation function is an implied individual growth function (Ritchie 

& Hann, 1997a). Examples are McTague and Stansfield (1995, 1996), Clutter and Jones (1980), 

and Pienaar and Harrison (1988), and Nepal and Somers (1992). The Pienaar and Harrison 

function actually is a revised version of the Clutter and Jones function (1980). The 

disaggregation function proposed by McTague and Stansfield (1994) is as follows: 
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where di2
2 and di1

2 are squared diameters at breast height of ith tree at stand age A2 and A1, 

respectively; dq is the quadratic mean diameter at A1; BA2 and BA1 are the estimated stand basal 

area corresponding A2 and the observed stand basal area corresponding to A1; N is trees per acre 

(TPA) K is conversion constant from diameter squared to basal area; bai2 is the adjusted 

projected basal area for ith tree. Function 2.1 was used to project individual diameter squared 

forward over time, whereas function 2.2 was used to ensure the invariance between the estimated 

basal area at stand level and the sum of individual basal areas. Function 2.1 has all the desirable 

properties except reference invariance: solving function 2.1 for di1
2 does not yield an equation 
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that is identical to equation 2.1. The curve shape of function 2.1 depends on the choice of A1, 

though it possesses logical behavior in that di2
2=di1

2 when A2= A1. 

Only a few of the 15 functions cited in Ritchie and Hann (1997b) have reference 

invariance across the stand level and individual level, and were derived from an individual 

growth function. Examples include Clutter and Allison (1974, cited in Ritchie and Hann 1997b), 

Clutter and Jones (1980), and Pienaar and Harrison (1988). Actually, these functions are 

essentially the same. More detailed analysis of the Pienaar-Harrison function (1988) is given in 

the following section and a new stand table projection function is derived based on their 

assumptions. 

2.2. Analysis of the Pienaar-Harrison Projection Equation 

The called Pienaar-Harrison projection equation was first developed by Clutter and 

Allison in 1974 (Ritchie and Hann, 1997). Clutter and Jones (1980) used it for stand table 

projection of slash pine plantations after thinning. Subsequently revised by Pienaar and Harrison 

(1988). The equation is able to reproduce multimodal distribution and mathematically simple. 

Tagged diameter remeasurement data is a special requirement when this equation is fitted, and an 

initial stand table is required for application. Borders and Patterson (1990) showed it to be 

superior to the parameter recovery method and the percentile-based projection method. Other 

applications of the Pienaar-Harrison equation can be seen in Knowe and Hibbs (1996), Knowe et 
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al. (1997), Knowe (1994), Dyer (1997), and Nepal and Somers (1992). Dyer (1997) examined 

the Harrison-Daniels equation (1988, cited in Dyer 1997), the Pienaar-Harrison equation (1988), 

and a new disaggregation function. The Pienaar-Harrison equation was found to perform slightly 

better than others in terms of mean absolute residual based on 12-year projections. 

As shown below, the Pienaar-Harrison equation can be derived from the Schumacher 

function based on the assumption that only 2β is an individual-specific parameter in the 

Schumacher function,
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of diameter is a power rather than an exponential function of age. He evaluated the Chapman & 

Richards function, the Logistic function, the Weibull function, and the Schumacher function, 

which was called power decline function in his article and found the Schumacher function to be 

twice as accurate as the next best (Chapman-Richards function) and about five times as accurate 

as the Logistic function. Assuming that mortality was nonexistent or evenly distributed across 

diameter, Bailey (1980) showed that equation (2.3) is the diameter equation for some diameter 

distributions such as Weibull, Lognormal, and Generalized Gamma that will preserve the 
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sides of equation 2.3 with respect to A and integrating the result. Certainly, other functions, such 

as the Chapman-Richard, Logistic, and Gompertz functions, can be derived from 
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A variation of equation 2.3, 
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cumulative density function (CDF), was used by Nepal and Somers (1992) and Cao and Baldwin 

(1999) to project stand tables; ai, bi, and ci (i=1, 2) are all Weibull distribution parameters 

corresponding to location, scale, and shape parameter, respectively. The parameter recovery 

method was employed to estimate Weibull distribution parameters in their studies. Algorithms of 

Nepal and Somers (1992) and Cao and Baldwin (1999) make use of Weibull distribution and 

prior observations for projection; obviously because their algorithm are a combination of 

distribution-based method and disaggregation function, they are not applicable to multimodal 

diameter distribution. 

Deriving Pienaar-Harrison Equation From Schumacher Function 

The simplicity of Pienaar-Harrison projection equation (equation 2.4) is an attractive 

feature. The function is reference invariant and derived from the Schumacher function. The 

invariance between the sum of estimated individual basal areas and projected total basal area can 
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be maintained by equation 2.5 
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where
3

2

1
β

φ 







=

A
A , 1ib and 2ib are the ith tree basal area at stand age 1A and 2A , 1b is the mean 

basal area of the subject stand at stand age 1A , β3 is the only parameter to be estimated, n2 is the 

number of survivals at age A2, and BA2 is the projected stand basal area at age 2A . When total 

survival projection model is available, the stand table projection model requires that the 

estimated total mortality be distributed over the estimated stand table at 2A . 

If the diameter distribution is unimodal, the quadratic mean has a similar growth 

pattern to most of the individual diameters because it is the second moment of the diameter 

distribution. Accordingly, it is reasonable to assume that an individual diameter function can be 

used for quadratic mean. Suppose that growth functions for the ith individual and the quadratic 

mean are equations 2.6 and 2.7, respectively 
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where all individuals have the same parameter β3, and d and dq are the ith diameter and quadratic 

mean diameter, respectively. Dividing equation 2.6 by 2.7 yields equation 2.8 
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βα = , qii 222 ββα −= , and 33 βα = . The ratio of the ith diameter to the quadratic mean 

diameter also follows the Schumacher function. Furthermore, if both sides of equation 2.8 are 

squared, 
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Exp
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b i

i
i , where k =0.005454 is the 

conversion from diameter square to basal area in square units if diameter units are inches and 

basal area units are square feet; bi is the basal area of the ith tree, andb is the arithmetic basal 

area mean of all survivals; 
b
bi  is the relative size, which was defined by Pienaar and Harrison 

(1988). If only one initial stand table is available for prediction, either i1φ or i2φ has to be assumed 

to be a global parameter. The best value for i1φ would be 1 for a polymorphic function with a 

single asymptote ( i1φ =1 means all individual diameters have the same asymptote). Replacing the 

parameter i2φ with one prior observation of the relative size
1

1
b
bi by ADA (Bailey & Clutter, 1974), 

equation 2.4 follows. 
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The derived equation is exactly the same as the one proposed by Pienaar and Harrison 

in 1988. It is noteworthy that the procedure I used to derive Pienaar and Harrison projection 

equation is only one possible way. Due to the assumption only one initial stand table is available 

for prediction, two parameters are specified as global parameters. Conversely, from the 

Pienaar-Harrison equation, the Schumacher function can also be derived. 

It should be noted that other stand table projection equations could be derived 

following the approach described above. For example, if you start with the Chapman-Richard 

function, ( )( ) iA
ii ey 3211

βββ −−= and ( )( ) rA
rr ey 3211

βββ −−= , then a stand table projection 

equation ( )
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2
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ri can be obtained with the asymptote parameter 

replaced, where 21 βα = , ri 332 ββα == , and yr is reference stand parameter (e.g. quadratic 

mean diameter) with which individual diameters are to be compared. 

Deriving Schumacher Function from the Pienaar-Harrison Projection Equation 

It is straightforward to derive equation 2.9 conversely from equation 2.4. Equation 2.4 

is equivalent to 1
313

1
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β

 holds for any 

stand age because A1 and A2 are two arbitrary stand ages, where k (.) must be a constant or any 

function of stand or individual attributes that can be viewed as constants. Accordingly, equation 

2.9 holds for any individual. 
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If one further assume that equation 2.4 was derived based on the assumption that the 

mean basal area and individual basal area follow the same growth function with one local 

parameter, from equation 2.9 ( 2β in place of ln k(.)), it is concluded that the individual basal area 

must take the form of 







+= (.)(.) 

3

2 h
A

Expub i
i β

β
, which is equivalent to 
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3

2
1  β

ββ
A

Expb i
i , where, 

u(.) and h (.) are constants or functions like k(.). 

Compatibility Between the Aggregation of Individuals and Estimated Aggregate  

In order to make the sum of projected individual basal areas compatible with predicted 

basal area using a stand level basal area equation, equation 2.4 can be adjusted by multiplying 

RHS with an adjustment coefficient w, and equation 2.10 follows: 
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where 2
~
ib is the adjusted predicted basal area of the ith diameter at A2, and w is the adjustment 

coefficient that ensures the summation of all individual diameters at A2 equal to the projected 

total basal area A2 from a separate basal area model (i.e. 2
1

2
2

ˆ BA
n

i
bi =∑

=
). Summing both sides of 
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equation 2.10 and solving for w yields ∑∑
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derived by replacing w in equation 2.10 with 
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If individual diameters are used in equation 2.12 instead of individual basal areas, then an 

equation identical to the Clutter-Jones equation (Clutter & Jones, 1980) can be obtained. 
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From equation 2.11, it is easy to see that the equation reallocates the observed or 

predicted stand basal area to every individual in proportion to its predicted contribution to the 
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total. Any stand table projection equation may be reformulated in such a way to maintain 

invariance between observed or predicted stand yield and the aggregation of individual yields. 

The following generalization of adjusted individual prediction ensures that the sum of individual 

yields is equal to the stand level observation or prediction. 
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∑
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=                                              (2.14) 

where ), ,( 121 iyxxf is the function projecting an attribute of the ith individual from A1 to A2 using 

y1i and xi as explanatory variables; 2B̂ is the predicted aggregate of b; n2 is survivals at A2, and b is 

the individual characteristic of interest, individual diameter or basal area in this case. It is 

apparent that 2
1

2 ˆ~2
Bb

n

i
i =∑

=
 always holds true. It should be noted that this adjustment method 

requires that mortality allocation be done first. Somers and Nepal (1994) presented a complicated 

algorithm to allocate mortality and adjust diameter estimates simultaneously when there is no 

mortality probability model available. Their adjustment algorithm is based on the assumption 

that relative growth between individuals remains constant. 

2.3. A New Stand Table Projection Model 

Pienaar and Harrison (1988) claimed that comparing the relative size of individual 

survivors over long projection intervals indicated that the relative contribution of smaller than 
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average-sized survivors to the total size decreased over time, whereas the largest relative size 

increased over time. However, empirical evidence from CAPPS data disagrees with their results, 

showing that relative contribution is not significantly increasing or decreasing (see Figure 2.1). 

There is no doubt that the quadratic mean is highly correlated to individual diameters since it 

always has a value close to most of the individual diameter if the diameter distribution is 

unimodal. It might be the best stand parameter to account for variation among stands. Figure 2.2 

shows a strong relation between individual diameter and quadratic mean diameter. Based upon 

the same assumption as the Pienaar and Harrison equation, the following power function is 

available for modeling the relationship between an arbitrary diameter and quadratic mean 

diameter. Equation 2.6 and 2.7 are as follows: 
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Through simple algebraic rearrangement, equation (2.15) and (2.16) result 
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Equating equation 2.15 and 2.16 yields equation 2.17. Equation 2.18 follows with 

further algebraic rearrangement. Reparameterization yields equation 2.19 and 2.20, where 
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1= , dq is stand quadratic mean, and two parameters uniquely specify the 

relationship between the quadratic mean and the DBH of a given individual. 
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iqii dd βα=                                                        (2.20) 

In addition to the Schumacher function, the power function can also be derived from 

other growth equations listed in Table 2.1. A diameter distribution percentile function for PMRC 

loblolly pine data, 





+=
TPA
BAPx lnln 10 ββ , similar to model 2.20, was proposed by Harrison and 

Borders (1996), where Px is xth percentile. This function achieved reasonable fit while 

preventing illogical crossover of adjacent percentiles. All functions in Table 2.1 have two 
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parameters vary across from individuals to another and other parameters common to all. They 

can be generalized in the form of ib
ii Ahad )(= , where )(Ah is a function excluding parameters a 

and b. Furthermore, if you assume that quadratic mean diameter growth follows the same growth 

pattern with different values for parameters a and b and then relate each single diameter to the 

quadratic mean diameter, then equation 2.20 can be obtained. 

Data and Models 

Data used in this study is from the Consortium for Accelerate Pine Plantation Studies 

(CAPPS) initiated in 1987 and maintained by the Daniel B. Warnell School of Forest Resources, 

University of Georgia. Each installation had six blocks in which four 0.15 ha treatment plots 

were assigned one of four treatments. On each treatment plot, a 0.05ha measurement plot was 

centered and approximately 80 loblolly pine seedlings were planted at 2.4 by 2.4m spacing. The 

treatments were (1) Herbicide, (2) fertilization, (3) a combination of herbicide and fertilization, 

and (4) control. For detailed information, refer to Zhang et al. (2002) and Borders and Bailey 

(2001). 

Out of CAPPS 148 plots, 100 sample plots were randomly selected to construct fit data, 

and the rest compiled the validation dataset. First, I fit the fit dataset to model 2.21, incorporating 

plot level random effects and individual diameter level random effects:  
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( ) ijkikqijijk edd ij += ,2,,1
φφ                                           (2.21) 

where 

ijkd = Diameter of the jth tree in the ith plot on kth measurement occasion 

ikqd , = Quadratic mean diameter of the ith plot on kth measurement occasion 

ijke = Random error term assumed to follow normal distribution with mean 0. The subscript k 

indicates that e might depend on the measurement occasion. 

 ,1,11,1 ijiij tP ++= βφ  

ijiij tP ,2,22,2 += +βφ  

where iβ s’ are fixed parameters, ihP , (h=1, 2) is the plot random effect, and  ,ijht is the tree 

random effect which is nested in plot. I assume bivariate normal distributions for both the tree 

level random effects and plot level effects such as ( ) ,0 ~ 1
,2
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Random variables p, t, and e are mutually independent. Parameters were estimated with Splus 

NLME. Maximum likelihood estimates are presented in Table 2.2. 

The fixed parameter estimates are both close 1: 1̂β =1.020464 and 2β̂ =0.991821. These 

estimates imply most individual diameters have a growth pattern similar to their corresponding 

quadratic mean and that the relative size growth pattern is almost a nearly horizontal line as 

shown by Figure 2.1. By comparing V (P1)=0.0022 to V (t1)=0.0986, and V (p2)=0.0014 to V 
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(t2)=0.0220, I notice that t1 and t2 account for a large proportion of variations among individual 

trees. It naturally follows that incorporating quadratic mean significantly decrease variation 

among stands. High correlation coefficient (0.999) between p1 and p2 (plot level) indicates that 

model 2.21 is overfitted. In addition, one initial stand stable provides insufficient information to 

give accurate estimates for four random effects. Therefore, I reduced model 2.21 to 2.22 by 

dropping two plot level random effects. 

( ) ijkikqijijk edd ij += ,2,,1
φφ                                            (2.22) 

where, ijij t ,11+=φα , ijij t ,22+=φβ , and  ,ijht is the tree level random effect which is nested in plot. 

I still assume bivariate normal distributions for the two random effects ( ) ,0 ~ 2
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and 

that the random effect t and e are mutually independent. Parameter estimates for model 2.22 is 

presented in Table 2.3. Residuals vs. fitted dbh plot and observed dbh vs. fitted plot are presented 

in Figure 2.3 and 2.4, respectively. These visual inspections show that normality assumptions are 

not violated by model 2.22. 

A general method for comparing nested model fit by maximum likelihood is the 

likelihood ratio test (LRT). If L2 is the likelihood of the more general model and L1 is the 

likelihood of the reduced model, ( ) ( )( )12
1

2 loglog2log2 LL
L
L

−=







, the likelihood ratio test statistic, 

can be used to test which model is more appropriate. The asymptotic distribution of the LRT 
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statistic is ( )12
2 kk −χ under the null hypothesis that the reduced model is adequate, where k2 is 

the number of parameters to be estimated in the full model, and k1 is the number of parameters to 

be estimated in reduced model (see Pinheiro and Bates 2000). Table 2.4 shows the likelihood 

ratio test results under the hypothesis that model 2.22 is as adequate as model 2.21. There is a 

significant increase in AIC and BIC, as evidenced by the larger value for the likelihood ratio test, 

indicating that model (2.21) gives a better fit. However, constrained to the assumption I made 

that one initial stand table is available for projection, plot level random effects are excluded. One 

solution is to incorporate installation, block, and treatment as covariate to account for parameter 

variations among stands. Since the estimated variance of plot level random effects is relatively 

small and I intend to validate the applicability of model 2.22 for general management situations, 

no covariate is used in the reduced model. As for individual tree diameters, I use an initial stand 

table to predict random effects  ,ijht (h=1,2). 

Model Comparisons 

In this section, three models, the Pienaar-Harrison model 2.23, the new projection 

model 2.24, and the mixed model 2.22 are fitted to the fit data (100 randomly selected plots out 

148). No convergence was obtained for ijk
ijk
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probably because
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ijk
b
b

does not show any significant trends over time (see Figure. 2.1), almost a 
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horizontal line after age 6, where 
ij

ijk
b
b

is relative size of jth tree of ith plot on kth measurement 

occasion. Accordingly, these two projection models (2.23 and 2.24) were fitted using the 

ordinary least square for the convenience of comparison. The projection function of model 2.24 

actually is the same as the function of mixed model 2.22 except it is reparameterized in a 

different way for convergence. By assuming that aqi == 11 ββ  in equation 2.19,
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follows. The projection equation of model 2.24 is derived through algebraic difference approach. 
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where 

2ijkd and 1ijkd are the jth tree’s diameter of ith plot on k2th and k1th measurement 

occasion; dq is quadratic mean diameter, and A is stand age. The mixed model (2.22) uses 
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where 

1̂φ and 2̂φ =estimates for 1φ or 2φ  1β and  ˆ2β , each of which consists of two components: fixed 

parameter estimates  1̂β or  ˆ2β , and predicted random effect ijt ,1̂ or ijt ,2̂ , which is predicted using 

EBLUP based one prior observation ijkd ; 

ikqd , =Quadratic mean diameter of the ith plot on the kth measurement occasion; 
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Most of stand table projection model comparisons in the research have been made at 

stand distribution level by using Kolmogrov-Smirnov two-sample test (Borders, 1984, 1990; 

Nepal & Somers, 1992; Knowe et al. 1997; Trincado. et al., 2003). To isolate the performance of 

the stand table projection models, observed stand attributes were used for each models, and 

comparisons were made only at the individual diameter growth level. The statistical criteria 

employed to compare models were Mean Residuals (MR), Mean Absolute Residuals (MAR) 
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(Vanclay and Skovsgaard, 1997), Mean Absolute Percentage Residuals (MAPR), and Mean 

Square Error (MSE) or its square root, RMSE, which might be the most widely used fit-statistics 

in the field of forestry.  

The basic measure of how closely a model fits a dataset is MSE, which measures the 

average mismatch between each observation and the model. MSE is the statistic whose value is 

minimized with the parameter estimation for least squares. The expectation of MSE defined here is 

( ) ( ) ( )( )2ˆˆ iiii yyEyyVMSEE −+−= , where iŷ and iy  are the estimated response and observed 

response, respectively. MSE consists of two components: variance of the errors and the squared 

MR. It approximately holds that ( ) 2MReVMSE += . Often, RMSE is preferable to MSE because 

the former is measured in the same units as the data, and is representative of the size of an average 

error. Using n-p instead of n in equation 2.29 allows for a minor adjustment of the number of 

parameters estimated in order to make it an unbiased estimator, but for purposes of selecting 

models, other statistics that impose a heavier penalty on model complexity, such as the Akaike 

Information Criterion (AIC) or Schwarz’ Bayesian Information Criterion (BIC), should be 

employed instead of RMSE (Rivas et al., 2004). 

The MR is signed measures of error and indicates whether the model underestimates or 

overestimates the response. MR describes both the direction and magnitude of the error bias. The 
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MAR is also measured in the same units as the original data and is usually similar in magnitude 

to, but slightly smaller than, RMSE. MAR and RMSE indicate the magnitude of the average 

error, but fail to provide information on the relative size of the average difference between 

prediction and observation. In contrast, MAPR gives information on the relative size of residual. 

It is also viewed as a weighted version of MAR, using the reciprocal of observation as weight. 

The model evaluation criteria can be summarized as follows: 

∑
=
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i
ii yy
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                                               (2.26) 
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First, I used age=6 (yr.) for model 2.23 and 2.24 as the reference age to project forward 

to ages 7 to 13. Observation at age 6 of each tree in each plot (100 out of 148) was used to 

estimate random effect for each tree with EBLUP. MR, MAR, RMSE, and MAPR were 

calculated for each projection interval from years 1 to 7, corresponding age 8 to 13. Table 2.6 
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presents fit statistics, and Figure 2.5 through 2.8 provides visual inspections that corresponds 

Table 2.6. 

First of all, it is apparent that the accuracy of projection decreases as projection 

intervals increase for models 2.22, 2.23, and 2.24 (see Figure 2.5). Probably the decreasing 

accuracy is caused by heterogeneity and/or increasing deviations caused by the error associated 

with the prior observation with increasing projection intervals. All the models give reasonable 

representation of diameter growth curves, because the mean absolute percentage residual (MAPR) 

for seven-year projection interval is less than 10%, seeing that CAPPS plots are very 

fast-growing under intensive management. 

It is clear from Figure 2.5 and Table 2.6 that the two random effects mixed model 2.22 

is more accurate than model 2.23 and 2.24 in terms of all the fit statistics employed. For the one 

or tow-year projection interval, model 2.23 and 2.24 have preferable fit statistics because their 

regression functions are reference invariant such that the projected dbh and the observed dbh are 

the same when the projection interval is zero. Visual inspections of MR (Figure 2.5d) reveal that 

models 2.23 and 2.34 tend to overestimate dbh. RMSE shows that model 2.22 is preferable to the 

others for long projection intervals. For five, six, and seven-year projection intervals, which can 

be viewed as long intervals if one take such a fast-growing rate as a half inch per year on average  
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into consideration, model (2.22)’s RMSE is almost 10% lower than Pienaar-Harrison model’s. 

The decrease in RMSE is significant. 

 Fit statistics from five-year projections using observations at eight year for both the 

fit dataset and the validation dataset are presented in Table 2.7. The same conclusions as those 

shown in Table 2.6 can be reached. Since the fit statistics from fit dataset are similar to those 

from the validation dataset, conclusion based on the fit dataset applies to the validation data. 

So far, comparisons have been made on the basis of one selected reference age. To 

eliminate to the effect of a specific reference age on comparisons, I also compared the three 

models by projecting forward to every stand age available in the dataset using dbh observed at 

ages 6 to12 as reference. ( )( )∑∑
∑ = =

=

−


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
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21221
ˆ1 summarizes the RMSE 

calculation, where
21kkRMSE =the average RMSE based on projection forward in time from age 

k1 to k2, k1= 6, 7, …, m-1, k2= k1+1, k1+2, …, m (m=13), n=100 (the number of sample plots in 

the fit dataset), and ( ) 21 ,
ˆ

ijkjd =the predicted diameter for the jth tree of the ith plot on the k2th 

measurement occasion, based on the observation made on the k1th occasion. Pairwise 

comparisons of
121 ,mkkRMSE vs.

221 ,mkkRMSE are presented in Figures 2.6 through 2.8, where 

m1 and m2 denote the models to be compared. If two models give exactly the same RMSE, all the 

circles lie in the slope line. If one model outperforms another, more circles are far way from the 
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axis that represents that model. Figures 2.7 to 2.8 show that model 2.22 provides the most 

accurate predictions because it has two random effects to represent diameter growth patterns 

better. 

2.4.Conclusion and Discussion 

Individual growth models are often classified into two categories: (a) polynomial linear 

models or multiple linear regression models, based on the hypothesized functional relation 

between the response and explanatory variables (Zhang et al., 1993; Zhao et al., 2004; Wycoff et 

al; 1982) and (b) models that can be decomposed into two components, potential growth models 

and modifier models. In the latter category, growth is described as a general growth function 

modified by individual tree attributes (Lessard et al., 2001, among others). Generally, individual 

growth models are for annual or fixed-time increments (e.g. five-year increments, Ritchie & 

Hann, 1997a, among others). Often, linear interpolation is required for model fitting or 

application. When an individual model is used for predictions longer than the predetermined 

interval, it is often used in a recursive manner. 

An undesirable property is reference variance, which makes individual model curves 

depend on explanatory variables. One solution is to construct a growth model following 

approach proposed by Clutter (1963), Bailey and Clutter (1974), or Cieszewski (2001). 

Projection models derived using these approaches automatically have reference invariance 
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property such that model shapes are affected only by error terms in the observation of the 

response used as reference and the estimated values of explanatory variables at the projected age. 

One prior observation of the response might be the most important explanatory variable to 

account for variation among individuals. Either individual growth models or projection models 

take advantage of the prior observation. The prediction error ( )yyV −ˆ  of projection models 

comes from four sources of random errors, associated respectively with (a) the prior observations 

of the response used as reference, (b) estimated values at projected age of explanatory variables, 

(c) the response at projected age, and (d) parameter estimates; It is not clear which sort of 

functions, reference variant individual growth functions or reference invariant projection 

functions, is preferable. In addition to reference invariance, one advantage of projection models 

is that they can be viewed as either yield models or growth models. One disadvantage of 

projection models is that additional projection models are required to project other attributes, 

such as crown ratio, if individual attributes used as explanatory variables are functions of stand 

age. In addition, whether the estimated values of these attributes could improve predictions is 

determined by the accuracy of the estimated values, projection equation and projection intervals. 

The Pienaar-Harrison projection model (1988) deals with all variations in a very 

simple way: the quadratic mean is used to account for variation among stands, and one prior 

observation is used to account for variation among individuals nested in the same stand. I 
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developed a new projection model (2.24) based on the same assumptions as those in the 

Pienaar-Harrison model. The function of the new model is reference invariant and derived from a 

hypothesized individual diameter growth functions. Like the Pienaar-Harrison model, it uses the 

quadratic mean diameter and one prior observation to account for variation among stands and 

variation among individual trees, respectively. It is easy to incorporate the new model into a 

model system for more detailed predictions. 

Projection models actually can be viewed as mixed models with one random coefficient, 

which is to be predicted with one prior observation. Using EBLUP, two random coefficients can be 

predicted but predictions are not necessarily improved. The two random effects mixed model (2.22) 

in this study outperform model 2.23 and its counterpart 2.24, which might have resulted from the 

simple model form and moderate correlations between the two random effects. From studies in this 

chapter, if a two-random effects mixed model performs as well as its projection counterpart, it is 

preferable in the sense that it can be used to improve prediction substantially if one more 

observation becomes available for prediction. 

It also seems reasonable to conclude that data, expectation function, parameter 

estimation and model application should be considered systematically in modeling. Any separate 

operation might decrease model applicability. 
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Figure 2.1. Profiles of relative diameter growth for 4 randomly selected CAPPS 
plots, showing that no significant trends over time exist 
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Figure 2.2. Diameter and Quadratic Mean Diameter for four randomly selected 
CAPPS plots, showing that a significant relation exists. 
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Figure 2.3. Residuals vs. Fitted diameters plot for model 2.22 
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Figure 2.4. Observed dbh vs. Fitted dbh plot for model 2.22 (100 
randomly selected plots) 
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Figure 2.5. Comparisons of RMSE (a), MAPR (b), MAR (c), and MR (d) calculated with the 
mixed power function model 2.22, the Pienaar-Harrison model 2.23, the projection power 
model 2.24. Observations at age 6 were used to estimate random effects. 
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Figure 2.6. RMSE pairwise comparisons of the Pienaar-Harrison 
Model and Projection Power Function for 100 CAPPS sample plots.  
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Figure 2.7. RMSE pairwise comparisons of the Mixed Power Function 
and Projection Power Function for 100 CAPPS sample plots. 
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Figure 2.8. RMSE comparisons of the Projection Power Model and Mixed 
Model for 100 CAPPS sample plots. 
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Table. 2.1. Base functions that can be used to derive function 2.20 and 
corresponding individual-specific parameters. 

functions Math Form Specific Parameters 

Chapman-Richards 
( )( ) 321 1
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Table 2.2. Parameter estimates for a multi-level nonlinear mixed effects model 
(model 2.21) with Splus NLME. 
 Parameters Statistics 

  Value StdE DF t-value p-value 

1β  1.020464 0.005953702 65505 171.3999 <.0001 Fixed 

2β  0.991821 0.004175526 65505 237.5319 <.0001 

 Parameters Plot level effect Tree level effect 
  StdD Corr StdD Corr 

1β  0.04652369 -0.999 0.3140669 -0.823 Random 

2β  0.03758353 -- 0.1483711 -- 

Residual=0.1491881, 7604 trees nested in 100 plots 
 

 

Table 2.3. Parameter estimates for a single-level nonlinear mixed effects 
model (model 2.22) with Splus NLME. 
 Parameters Statistics 

  Value StdE DF t-value p-value 

1β  1.01957 0.003731 65505 273.2566 <.0001 Fixed 

2β  0.99281 0.001836 65505 540.6544 <.0001 

 Parameters Tree level effect
  StdD Corr 

1β  0.3173013 -0.827 Random 

2β  0.1528874  

Residual=0.1492513, 7604 trees nested 100 plots 
 

 

Table 2.4. Likelihood Ratio Test under the null hypothesis that model (2.22) is 
adequate 

Model df AIC BIC Log-Likelihood LRT p-value 

Full 

Reduced 

9 

6 

-7372.617 

-7115.068 

-7289.82

-7059.87

3695.309 

3563.534 263.5493

 

<.0001 

Full=model (2.21), Reduced=model (2.22) 
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Table 2.5. Parameter estimate for projection power model and Pienaar-Harrison 
model 

Model Estimate StdE MSE RMSE R-Square 
Projection Power 21.97673 0.1015 0.2780 0.5272 0.9094 
Pienaar-Harrison -0.71678 0.0019 0.3095 0.5563 0.8991 

 

Table. 2.6 Fit statistics based on the fit dataset using observations at age 
6 as reference 
Interval (yr.) Model MAR (in) MR (in) RMSE (in) MAPR (%) 

1 0.1296 -0.0009 0.1772 3.1279 

2 0.1337 -0.0009 0.1816 3.2389 

 

1 

3 0.1454 -0.0434 0.2079 4.1445 

1 0.2038 0.0068 0.2781 4.4959 

2 0.2161 0.0070 0.2912 4.7663 

 

2 

3 0.2115 -0.0468 0.2969 5.0760 

1 0.2837 0.0205 0.3888 5.6481 

2 0.3032 0.0213 0.4098 6.0593 

 

3 

3 0.2808 -0.0403 0.3874 5.7880 

1 0.3616 0.0358 0.4909 6.8137 

2 0.3865 0.0368 0.5176 7.3227 

 

4 

3 0.3492 -0.0382 0.4769 6.5828 

1 0.4275 0.0652 0.5747 7.5518 

2 0.4568 0.0644 0.6069 8.1274 

 

5 

3 0.4098 -0.0095 0.5536 7.1181 

1 0.4820 0.0799 0.6413 8.0739 

2 0.5168 0.0788 0.6802 8.7186 

 

6 

3 0.4599 0.0037 0.6170 7.5484 

1 0.5604 0.1089 0.7418 8.9690 

2 0.6020 0.1066 0.7864 9.6997 

 

7 

3 0.5298 0.0363 0.7108 8.2539 

Model 1, 2, and 3 represents model 2.24, 2.23, and 2.22, respectively. 

MAR =Mean Absolute Residual, MR =Mean Residual, RMSE=Root Mean Square 

Residual, and MAPR=Mean Absolute Percentage Residual 
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Table 2.7. Fit statistics for fit dataset and validation dataset using observations 
at age 8 as references 
 Fit data (100 plots) Validation (48) 

Fit Statistics Model Mean StdE Mean StdE 

1 0.4228 0.3683 0.3943 0.3545 

2 0.4581 0.3829 0.4399 0.3676 

 

AR 

 3 0.3725 0.3362 0.3585 0.3419 

1 0.1237 0.5469 0.0886 0.5229 

2 0.1220 0.5845 0.0861 0.5668 

 

R 

 3 0.1204 0.4871 0.0679 0.4908 

1 0.3144/0.5606 0.5716 0.2811/0.5301 0.5739 

2 0.3564/0.5969 0.5954 0.3286/0.5732 0.5889 

 

SE/RMSE 

 3 0.2517/0.5017 0.5067 0.2453/0.4953 0.5708 

1 6.8059 7.8540 6.2520 6.7630 

2 7.4135 8.3883 7.0696 7.4237 

 

MAPR (%) 

 3 5.7607 6.0358 5.5977 6.3269 
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CHAPTER 3 

QUANTILE REGRESSION APPROACH TO ESTIMATING PERCENTILE GROWTH 

MODEL 

3.1. Introduction 

Diameter distribution models can be broken into two categories: static models and 

dynamic diameter models. Here I refer to static models as models describing stand diameter 

distribution at a specific point in the stand growth trajectory with a chosen probability density 

function. I refer to dynamic models as those describing diameter distribution change through the 

entire growth trajectory. In other words, static models apply to a single stand at a given age 

whereas dynamic models can be used to describe a set of stands throughout their whole growth 

spans, assuming that all stands that have the same stand characteristics used as explanatory 

variables have the same diameter distribution. Many probability density functions (pdf) have 

been applied to model diameter distribution at a specific point in time during the stand growth 

process, including Normal, Lognormal, Gamma, Beta, Weibull (Nelson, 1964; Bliss & Reinker, 

1964; Clutter & Bennett, 1965; all cited in Bailey & Dell, 1973), Johnson’s Sb (Hafley & 

Schreuder, 1977) and a finite mixture of pdf functions (Liu et al., 2002). 
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The ultimate purpose of modeling diameter distributions is to estimate future stand 

tables conditional on stand age and other stand attributes since sometimes it is necessary and 

desirable to have a prediction system that provides estimates of the numbers of trees and 

volumes by diameter classes. In this sense, the parameters of interest for the pdf are functions of 

stand age and other attributes. In early works, pdf parameters were estimated directly as 

regression functions of stand attributes. Due to relationships among parameters and to some 

parameters varying inconsistently with stand attributes (Borders, 1987), a parameter recovery 

method (Bailey, 1981) and percentile-based method (Borders et al., 1987) have been devised to 

project stand tables instead of the parameter prediction method. Parameter recovery and 

percentile-based methods depend on predictions of percentiles to recover an empirical 

distribution directly from predicted percentiles or recover the parameters of chosen distribution, 

usually the Weibull distribution due to its closed form cumulative density function (CDF) and its 

flexibility. The usual process for estimating parameters of percentile growth models has been to: 

(a) acquire a dataset containing dbh data and other observed or calculated stand characteristics to 

be used as explanatory variables, (b) estimate selected percentiles for each plot by the order 

statistics, (c) run ordinary least square or seemingly unrelated regression on the estimated 

percentiles. Obviously, multiple observations of the response variable, dbh, at a given covariate 

are observed in this case. 
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The percentile-based method and parameter recovery method do not rely on the use 

of initial stand tables to reproduce future diameter distributions. Since they do not require the 

initial stand tables, these model can be more widely used than methods that require initial stand 

tables, such as the relative-size projection model proposed by Pienaar and Harrison (1988). 

Consequently they are likely to be less accurate than relative-size projection models according to 

Borders and Patterson (1990) and Knowe et al (1997). In a comparison of parameter recovery 

methods with percentile-based methods, percentile-based methods are more appropriate when 

the diameter distribution is multimodal. One reason that the parameter recovery is preferred is 

that it performs almost as well as percentile-based methods and is more mathematically simple in 

the unimodal case.  

In this study, I proposed using quantile regression to estimate the parameters of the 

percentile regression models and compare this method with the traditional ordinary least squares 

method. I compare the efficiency of these two estimation methods through simulations. One 

advantage of quantile regression is its simplicity with mathematical computations. Instead of the 

above procedure, quantile regression employs a dataset in step (a) directly to estimate the 

percentile growth model. It is apparent that the application of quantile regression is quite simple 

compared with ordinary least squares or seemingly unrelated regression. 
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3.2. Quantile Regression 

Mean regression is a widely used statistical method to investigate the relationship 

between the response variable and explanatory variables, usually taking the form of h(y)=f (x), 

where h(y) represents some transformation of the response variable. The mean regression method 

focuses on estimating the conditional mean of the response variable distribution as some function 

of a set of explanatory variables; in other words, the regression function is defined for the 

expected value of y conditional on x, E(y |x), no matter whether the response variable distribution 

is homoscedastic or heteroscedastic. While the entire conditional distribution of y is of interest, 

rather than only the expected mean just as in the case of modeling a stand diameter distribution, 

the mean regression cannot provide a complete picture of the y distribution conditional on x, just 

as in the case of modeling a stand diameter distribution. 

Conditional quantile Qy (θ|x), which is synonymous with percentile, is essentially a 

curve that consists of points at cumulative distribution function curves of the random variable, 

conditional on covariate x, where θ is the probability of observing a random variable Y< Qy (θ|x). 

Once a functional relation between conditional quantile and the covariate is specified, the 

conditional quantile can be estimated as a regression function of the covariate. Quantile 

regression is a statistical technique for estimating and conducting inference about conditional 

quantile functions, Qy (θ|x)=f (x), either in linear regression or nonlinear models, and was first 
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introduced by Koenker and Bassett (1978). It has become a widely used and accepted technique 

in many areas, especially in econometrics. Just as classical linear regression methods based on 

minimizing sums of squared residuals enable one to estimate models for conditional mean 

functions, the quantile regression method offers a mechanism for estimating models for the full 

range of conditional quantile functions by minimizing weighted absolute residuals. By 

supplementing the estimation of conditional mean functions with techniques for estimating an 

entire family of conditional quantile functions, quantile regression is capable of providing a more 

complete statistical analysis of the stochastic relationship among random variables. 

A random variable is fully characterized by its cumulative distribution function (CDF), 

probability density function (PDF), and quantile function. Sometimes, it is necessary to assume 

that its distribution function parameters are functions of some explanatory variables. Hence, the 

estimation of distribution of Y conditional on X provides a means that can be used to investigate 

the influence of explanatory variable on the shape of the distribution. In forest biometrics, 

modeling diameter distribution as a function of other stand parameters is a perfect example that 

necessitates investigating how the random variable distribution is affected by a set of explanatory 

variables.  

A classical linear regression with iid errors (independently and identically distributed) 

describes a linear functional relation between the mean of the response variable and a set of 
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explanatory variables, such as i
T
ii uxy += β , where ( ) βT

ii xyE =  and iu is IID. Accordingly, the 

corresponding conditional quantile function is ( ) )(| )1(
| θβθ −+= FxxQ T

iiXY  since 

( )( )θβ )1(−+≤ FxyP T
ii ( ) θθ =≤= − )(1FuP i , where (0≤θ ≤1) and )()1( θ−F is the inverse of 

cumulative density function of ui. It is apparent all quantile curves are parallel to each other since 

)()1( θ−F is independent of xi. If the model exhibits some kind of heteroscedasticity in a way such 

that ii
T
ii uxvxy )(+= β , where 0)( >ixv is the variance function and ui is iid with ( )iuE =0, the 

corresponding quantile function is ( ) )()(| )1(
| θβθ −+= FxvxxQ i

T
iiXY . 

Following representation was used to facilitate our simulation analysis since it is 

convenient to generate simulation dataset and to calculate the real quantile regression parameters 

for the sake of comparisons. Theθ th regression quantile (0≤θ ≤1) for the heteroscedastic linear 

model i
T
i

T
ii uxxy ρβ += is defined as ( ) θβθ T

XY xxQ =||  where ( )θρββθ
)1(−+= F . Other 

denotations are defined as follows: 

y= the response variable corresponding to x 

x=the explanatory variable vector 

β=vector of unknown regression parameters 

ρ= vector of unknown scale parameters 

u= random errors that are independent and identically following a distribution that is 

unspecified 
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( )θ)1(−F =the inverse of the cumulative distribution of the errors 

From ( )θρββθ
)1(−+= F , i

T
i

T
ii uxxy ρβ +=  can be rewritten as 

( )θρρβθ
)1(−−+= Fxuxxy T

ii
T
i

T
ii  or i

T
ii wxy += θβ where ( )θρρ )1(−−= Fxuxw T

ii
T
ii . 

So I have 

( )θβ
T
ii xyP ≤  

( )θθ βθρρβ T
i

T
ii

T
i

T
i xFxuxxP ≤−+= − )(1 ( )0≤= iwP  

( ))(1 θρρ −≤= FxuxP T
ii

T
i  

( ))(1 θ−≤= FuP i  

Finally, ( ) θβθ T
XY xxQ =|| . It is important to note the term ρ allows the errors to change 

as a linear function of X and thus various heteroscedastic and homogeneous error model are 

accommodated with regression quantiles ( ) 0|| =iiXY xwQ  where ( )θρρ )1(−−= Fxuxw T
ii

T
ii . 

Term ρ does not have to be estimated explicitly because it is automatically incorporated into the 

estimates of θβ , say, θβ̂ . Homoscedastic regression models are a special case of the linear model 

with ( )0,..,0,0,1=ρ , where all parameters other than the intercept are the same for 

allθ . i
T
i

T
ii uxxy ρβ += and ( )θρββθ

)1(−+= F are not the necessary assumption of linear quantile 

regression as noticed by Buchinsky (1998). It is only assumed that wi in i
T
ii wxy += θβ satisfies 

( ) 0|| =xwQ iXY (Buchinsky, 1998). 
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Assuming that ( )xF XY || θ  is strictly increasing with its density ( )xf XY || θ , the 

conditional quantile can be characterized as 

( ) ( )( )xXayExQ
a

XY =−= |minarg|| θρθ                                    (3.1)  

where ( ) ( )( )0<−= uIuu θρθ is the check function, and ( )0<uI is the indicator function, equal to 

1 if the statement inside the brackets is true, and 0 otherwise. When
2
1

=θ , then the check 

function is an absolute value function, i.e., ( ) uu =θρ . To verify that model 3.1 holds true, note 

that ( )( ) ( ) ∫∫
∞

∞−
−+−−=−

a XY
a

XY dyxyfaydyxyfayxayE )|()()|()(1| || θθρθ . After taking first 

order derivative with respect to a, I have ( ) 0)|()|(1 || =−−− ∫∫
∞

∞− a XY
a

XY dyxyfdyxyf θθ  

and ( ) 0| =−θxaF . Therefore, the solution to the first order condition is ( )( )xFa |ˆ 1 θ−= , which 

is the conditional quantile function. Under the assumption that ( ) θβθ T
XY xxQ =|| , equation 3.1 

implies equation 3.2 

( )( )xXbXyE T
b

=−= |minarg θθ ρβ                                        (3.2)  

Estimating function 3.3, the quantile regression estimator of θβ , is defined as the 

sample analogue estimator based on equation 3.2.  

( )( )∑
=

=−=
n

i

T
b

xXbXy
n 1

|1minargˆ θθ ρβ                                     (3.3) 
















−−+−= ∑∑

<≥ βββ
θ βθβθβ

T
ixiy

T
ii

T
ixiy

T
ii xyxy )1(minˆ                       (3.4) 
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







−= ∑
=

n

i

T
ii xy

1
minˆ ββ
β

                                              (3.5) 

The minimization of estimating function 3.3 has a linear programming representation 

that makes estimation easy. Equation 3.3 can be solved by a modification of simplex linear 

program for any specified value of θ  (Koenker and Bassett, 1978). By expanding the estimating 

function 3.3 to estimating function 3.4, it can be seen that function 3.4 minimizes the sum of 

weighted absolute residuals by giving weight θ to positive residuals and 1-θ to negative residuals. 

(see Koenker & Bassett, 1978; Buchinsky, 1998). If θ=0.5, function 3.4 collapses to function 3.5, 

which is the estimation function for median regression estimation. Median regression is a robust 

alternative to least squares when data is contaminated with outliers or error terms follow other 

distribution than normal distribution. 

The estimator of θβ is asymptotically normal under certain regularity conditions, 

( ) ( )θθθ ββ Λ→− ,0ˆ Nn . Various estimators for asymptotic covariance matrix have been 

proposed, each having some advantages and disadvantages (Buchinsky, 1998). 

Regression quantiles have several important linear model properties that are common 

to least squares regression estimates of expected values. Once one denote the quantile regression 

estimate for a given θ ∈(0,1) and observations (Y, X) by ( )XY,,ˆ θβ , then for any P×P nonsingular 

matrix A and a>0 the following properties holds (see Koenker & Bassett, 1978 for details): 
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1. ( ) ( )XYaXaY ,,ˆ,,ˆ θβθβ =  (Scale change) 

2. ( ) ( )XYaXaY ,,1ˆ,,ˆ θβθβ −=−  (Scale change) 

3. ( ) ( ) φθβφθβ +=+ XYXXY ,,ˆ,,ˆ  (Location shift) 

4. ( ) ( )XYAXAXY ,,ˆ,,ˆ 1 θβθβ −=+  (Design X reparameterization) 

One important property of the quantile regression model is that, for any monotone 

function h (.), is invariance to monotonic transformations, ( ) ( )( )xQhxQ YYh ||)( θθ = . In other 

words, the quantiles of the transformed random variable h (y) are the transformed quantiles of 

the original variable Y.  

Quantile regression does not require that multiple values of the response variable be 

observed for given covariates to estimate the conditional quantile. For the special case where 

multiple values of the response variable y are observed for given covariates x, two natural 

approaches to estimation of conditional quantile are quantile regression and ordinary least 

squares running on estimated quantiles. One question that arises in this case is which estimation 

method is more efficient in the first order and second order since both quantile regression and 

least squares are asymptotically consistent. I tried to use a simulation technique to investigate 

whether quantile regression has any other advantages over least squares estimates than the 

simplicity of mathematical computations. Since quantiles of random variable are not observable, 
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a simulation method is employed to evaluate these two estimators instead of using a dataset for 

estimation method assessment. 

3.3.Simulation Model and Sample Quantile Estimation 

The θth sample quantile of a data set is defined as that value where a θ fraction of the 

data is below that value and a 1-θ fraction of the data is above that value. I estimate the sample 

quantiles based on the order statistics in simulations. The formula is function 3.6. 







−=≤≤+−









−
−

===

++ iiiii

i                           i         

θθα    where θθ  if θxαxα

                        
n
iθ   if θxq

11)()1(
1
1

θ                    (3.6) 

where xi is the ith observations sorted in ascending order and n is sample size. The algorithm 

linearly interpolates between the order statistic of xi, assuming that the ith order statistic is the 

( )
( )thn
i

1
1
−
−  quantile. The estimation method is widely used in statistical packages (e.g. Splus).  

I based the simulations on the linear model yi= xi
Tβ+ xi

Tρui, where xi
Tρ is the linear 

combination of the explanatory variable; ρ is the unknown scale parameter; and ui ~F are 

independent and identically distributed errors. If letting β=βθ -F (-1) (θ) ρ, one has yi= 

xi
Tβθ+(xi

Tρ)ui -(xi
Tρ) F -1(θ), where F -1(θ) is the inverse of the cumulative density function that 

does not have to be known. β=βθ-F -1(θ) ρ implies that Qy(θ |xi)= xi
Tβθ, as demonstrated in section 

3.2. 
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Based on the model ( ) i
T

i
T

ii uxxy ρβ +=  I generated random samples, estimated 

regression coefficients of a specific conditional quantile regression using both the quantile 

regression method and ordinary least squares and compared them to the real values of 

( )ρθββθ
)1(−+= F . Apparently, ρ is incorporated into the estimate for βθ and it does not have to 

be known or to be estimated. Quantile regression does not specify any sort of parametric 

distribution assumption but a parametric conditional quantile form. In our simulation study, I 

used parametric distribution for the convenience of generating random samples and calculating 

real regression coefficients. The algorithm given in Koenker & Bassett (1978) and Bassett & 

Koenker (1982) was used to find the solution to estimating function 3.4. SAS Proc IML was 

employed to perform all simulations. 

3.4. Simulation Analysis 

The purpose of our simulation study is to investigate the first and second order 

efficiency of two estimators for parameters in a linear quantile model in the case where the 

multiple observations of response are available at a fixed covariate. The first estimator is the 

quantile regression estimator while the second estimator is the ordinary least squares estimator 

on the sample quantile of the response at each covariate. Our attentions were focused on 

comparison of quantile regression with ordinary least square and no efforts were made to 

investigate the first order and second order behavior under model misspecification. 
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Extensive simulation experiments were performed for sub-sample size between 20 and 

80, which covers most of the range of sampled trees in forest inventory sample plots. The 

sub-sample size here refers to the number of multiple observations of the response variable at a 

given covariate, and the sample size refers to the number of sample units in which multiple 

response observations respond to the same covariate. Simulation experiments included simple 

linear quantile models, multiple linear quantile models, homoscedastic and heteroscedastic linear 

models, symmetric distribution (normal), asymmetric distribution (weibull) and all combinations 

of these factors under the various sample sizes. 

It is not surprising that the variance of the estimate differs among quantiles. Generally, 

the variance of the estimate increases as the value of θ approaches 0 or 1, but the specifics are 

dependent on the data distribution. Estimates further from the center of the distribution usually 

cannot be estimated as precisely as the median (Cade, 2003). It should be noted that the median 

is not necessarily the quantile that can be estimated most accurately for asymmetric distribution. 

Here I am going to refer the complement of the quantile θ=α as θ=1-α for the sake of simplicity. 

For example, the 10th quantile is the complement of the 90th percentile and vice versa. For 

symmetric distributions such as normal, one quantile has the same estimate variance as its 

complement does (see Tables 3.2 and 3.3), whereas for an asymmetric distribution with a finite 

lower bound such as Weibull, an estimate close to the finite lower bound can be estimated more 



 76

precisely than its complement, as shown in Table 3.1. It also can be seen that for this distribution 

the median is not the quantile that can be estimated most accurately. The Weibull distribution 

with shape parameter 3 and scale parameter 5 (see Table 3.1) is almost asymmetric. When a 

Weibull distribution is positively skewed, the estimate variance increases as θ increases. The 

conclusion above bears some significance for the parameter recovery method in selecting 

quantiles to recover parameters.  

Simulation results indicated that many factors affect parameter estimates and their 

variances, including the number of parameters of a linear function, independent variable range, 

error term distribution in yi= xi
Tβ+(xi

Tρ)ui, sample size and sub-sample size, heteroscedasticity, 

and quantiles. As previously stated, the study’s purpose is to investigate estimate efficiency of 

these two estimators in terms of the second order as well as the first order. From the viewpoint of 

comparing quantile regression with least squares, sub-sample size and error term 

heteroscedasticity are significantly associated with the difference of two estimators in terms of the 

first order and second order. The conclusion drawn from simple linear regression functions 

applies to multiple linear functions, but only a part of simulation results from simple linear 

function are presented. 

In all situations involved in our simulation experiment, quantile regression estimation 

has a smaller bias than ordinary least squares for the same sample size and sub-sample size and 
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with smaller variance of the estimate in the case of heteroscedasticity. For a homoscedasticity 

situation, a quantile regression estimate sometimes has a slightly larger variance for some cases. 

In the case of homoscedasticity there is no need to estimate conditional quantiles since all 

conditional quantiles are parallel to the conditional mean and many regression techniques are 

available for estimating the conditional mean under various assumptions of error distributions. 

Least squares estimates are much more sensitive to sub-sample size. When the number 

of multiple values of the response variable is relatively small, least square estimate bias is much 

larger than quantile regression, especially for a quantile far away from the median. Actually, 

quantile regression was not intended for the multiple response case, but for the single 

observation at a given covariate, so multiple response observation is not a necessary condition 

for quantile regression while it is for least squares. In the case where only a single observation of 

the response variable is available, quantile regression still is able to estimate the regression 

parameters for different quantiles while least square has the same parameter estimates for any 

quantiles. The single observation case helps illustrate why quantile regression is superior to least 

squares in the case of a small sub-sample size although it is unreasonable to apply least squares 

in this single observation case. As demonstrated by Table 3.2, quantile regression estimation is 

less biased than least squares with smaller variance when the number of multiple observations is 

relatively small and error terms are heteroscedastic. The scale parameter vector in Table 3.2 is (1, 
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0.5), which means the coefficient of variation is roughly 0.125. It should be noted that quantile 

regression did not show any advantage over ordinary least squares in terms of the second order in 

the case where error terms are homoscedastic or close to homoscedastic, as indicated by Table 

3.4. 

Simulation results indicated that quantile regression estimation compared very 

favorably with least squares also in terms of the second order in the case of heteroscedasticity 

where quantile regression estimates have smaller estimate bias and variance of the estimate (see 

Tables 3.2, 3.3, and 3.5). The advantage of quantile regression over least squares is proportional 

to heteroscedasticity (Tables 3.3 and 3.5). These three simulation models are identical except for 

that the scale parameter vectors, which are ρ=(1, 0), ρ=(1, 0.5), and ρ=(1, 1) respectively. Note 

that when error terms are homoscedastic the scale parameter vector ρ has all elements equal to 0 

except the first one. 

The following simulation experiment design is different from the ones above in the 

mechanism for generating simulation dataset and parameter estimation procedure. First of all, I 

assumed that the diameter distribution at any stand age of CAPPS stands is Weibull and that the 

percentile growth model of CAPPS stands is Schumacher, ( ) 





=

A
xQ XY

θ
θ

βαθ exp| , where A is 

stand age. 
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Secondly I estimated the parameters θα and θβ for 10 percentiles from 0% to 90% with 

10% increment using quantile regression, and then I can recover these two parameters for the 

diameter distribution at any arbitrary xi by employing percentile 0 (location parameter) and any 

other two percentiles, ( )xQ XY 1| θ and ( )xQ XY 2| θ , based on the Weibull cumulative function 3.7, 

where ai is location parameter; bi is scale parameter; and ci is shape parameter. Parameters ai, bi , 

and ci are conditional on xi (stand age). Given ai, ( )xQ XY 1| θ and ( )xQ XY 2| θ  are known, ci can 

be calculated with equation 3.9. 

( )( ) ( )

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Parameter b can be estimated using either of two percentiles given that parameters a 

and c have been known. Parameter a is a function of stand age as are b and c since they are 

functions of parameter a. Subscript i indicates parameters are associated with covariates, namely 

they are functions of explanatory variables, the stand age in this case. After obtaining the 

estimates for the parameters of the Weibull distribution at any point of time, I abstracted a stand 
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growth system with the Schumacher model as percentile growth model and Weibull as diameter 

distribution model from CAPPS data (see chapter 2). I simulated 100 sample plots that stand age 

uniformly distributes between [1,40] to construct a dataset for estimation and then estimated the 

parameters of percentile growth models with both quantile regression and least squares. It should 

be noted that there is only two quantiles strictly following Schumacher model, i.e., ( )xQ XY 1| θ  

and ( )xQ XY 2| θ , in the constructed system. A part of simulation results, based on 1,000 

simulated datasets, are presented in Table 3.4. The abstracted system did not take other stand 

attributes into account for the difference in percentile growth patterns from stand to stand. In 

addition, other percentiles other than 0th percentile and two percentiles used to recover the 

parameters could not be modeled with a function in this case.  

All percentile growth curves are almost parallel lines after logarithm transformation 

since all slopes are almost the same. It is implied that the abstracted system is close to 

homoscedastic after transformation. Therefore, quantile regression is favorable only in the first 

order, not in the second order. I used simulated root mean square error (RMSE) to evaluate these 

two estimators. RMSE is a widely used statistical criterion in the comparison of estimators. The 

RMSE of an estimator ŷ of a parameter y in a statistical model is defined as: ( )( )2ˆ)ˆ( yyEyMSE −= . 

From the definition of the variance ( ) ( )22)( XEXEXV −= , one can express the MSE as 
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( ) ( )( )2ˆˆ)ˆ( yyEyVyMSE −+= by expanding the RHS of ( )( )2ˆ)ˆ( yyEyMSE −= . It is easy to see the 

RMSE can give comprehensive comparisons of estimators by taking both estimate variance and 

bias into considerations. I used RMSE of the response, ( )xQ XY θ|  (quantile of interest), to 

evaluate these two estimators. Simulation results presented in Table 3.6 shows that quantile 

regression still performs better than least squares. 

I also changed values of parameter β for all selected percentiles to make the 

transformed system more heteroscedastic in order to see if quantile regression compared 

favorably with ordinary least squares in the second order in the case of heteroscedasticity. The 

simulation results showed the results I expected, which were presented in Table 3.5. One feature 

of the linear percentile growth model from the simulations is noteworthy. That is, intercept is 

less accurately estimated. 

3.5. Conclusion and Discussion 

In addition to the advantage that quantile regression is computationally simple, when 

multiple observations are available for a given covariate quantile regression produces less biased 

estimates than least squares for parameters of percentile growth models, especially where θ is far 

away from the median and the number of multiple observations is small. Compared with least 

squares, when error terms are homoscedastic or close to homoscedastic, quantile regression can 
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be is slightly unfavorable because the variance of the estimate may be slightly higher. In the case 

of heteroscedasticity, quantile regression is preferable not only in the first order but also in the 

second order, and the advantage is proportional to heteroscedasticity; or in other words, a more 

heteroscedastic response variable means a higher efficiency gain from using quantile regression. 

Increasing the number of multiple observations at a given covariate plays an important role in 

reducing the bias of least squares estimates. Although increasing the number of sample units (the 

number of sample plots) can reduce the variance of the estimate, simulation results indicated that 

it did not reduce least squares estimate bias substantially. 

Based on the assumption that quantile estimation of the order statistics is approximately 

normal, in the case of heteroscedasticity weighted least squares is appropriate in order for the 

least squares estimates to have minimum variance. In the application of weighted least squares, 

weights have to be estimated before final estimates are obtainable. In addition, seemingly 

unrelated regression (Borders et al., 1987) is another alternative to reduce the variance of the 

estimate if the percentile models are related by the fact that the distributions are correlated across 

equations or a subset of explanatory variables (variables in model right-hand sides) are the same. 

One of the SUR assumptions is that for any given equation the error terms are homoscedastic and 

the assumption would be violated since the estimated quantile is also heteroscedastic in the case 

where the response variable distribution is heteroscedastic and the sub-sample size are the same 
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for any given covariate. One advantage of quantile regression is that it does not assume any 

parametric distribution for error terms. 
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Table 3.1. An example of simulation results indicating that the estimate 
variance of a quantile from an asymmetric distribution differs from that of 
its complement quantile 

Real value Estimate Variance P 
 α β α β α β 

10 4.361543 4.47230 4.355132 4.473149 0.098836 0.000647 

20 5.032714 4.60654 5.035191 4.606570 0.079809 0.000518 

30 5.545908 4.70918 5.545155 4.709355 0.072980 0.000477 

40 5.996939 4.79938 5.995237 4.799533 0.070176 0.000460 

50 6.424985 4.88499 6.421753 4.885290 0.071250 0.000463 

60 6.856399 4.97128 6.856291 4.971445 0.073295 0.000486 

70 7.319149 5.06383 7.319075 5.063796 0.079187 0.000513 

80 7.859511 5.17190 7.864819 5.171173 0.092681 0.000593 

90 8.602502 5.32050 8.604470 5.320257 0.130737 0.000847 

Model, ( ) e
x
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 and α=2, β=4, a=3, and 

b=5. [1,  40]x∈ . Sub-sample size, 40; sample size 40; and simulation replication for each percentile is 10,000. The 

estimator for parameters is quantile regression;  
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Table 3.2. Comparison of quantile estimate and least squares estimate in terms of the first order 
and the second order statistics in the case that error terms are heteroscedastic. 
n p Real values α β 
    OLS QR OLS QR 
  α β Est Std Est Std Est Std Est Std 

10 0.7184 3.3592 0.8452 0.7662 0.7020 0.5395 3.4208 0.0994 3.3617 0.0849 

 30 1.4756 3.7378 1.5093 0.6191 1.4790 0.4107 3.7545 0.0808 3.7375 0.0655

20 50 2.0000 4.0000 2.0022 0.5912 2.0050 0.3902 3.9996 0.0766 3.9993 0.0617

70 2.5244 4.2622 2.4933 0.6152 2.5281 0.4075 4.2448 0.0802 4.2607 0.0656 

90 3.2816 4.6408 3.1445 0.7651 3.2959 0.5392 4.5807 0.0999 4.6375 0.0862

10 0.7184 3.3592 0.7599 0.4064 0.7174 0.2670 3.3748 0.0531 3.3597 0.0426 

 30 1.4756 3.7378 1.4836 0.3142 1.4740 0.2022 3.7419 0.0414 3.7378 0.0326

80 50 2.0000 4.0000 2.0038 0.3038 2.0014 0.1943 3.9998 0.0398 3.9999 0.0313

70 2.5244 4.2622 2.5169 0.3175 2.5270 0.2036 4.2581 0.0413 4.2621 0.0324 

90 3.2816 4.6408 3.2449 0.4047 3.2820 0.2643 4.6254 0.0530 4.6411 0.0420

Model  ( ) e
x

xy 







++=

1
5.01βα , where e~ N (0, 1) and α =2, β =4 and ]20,1[∈x . Simulation replication for each percentile is 10,000. 
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Table 3.3. An example of simulation results indicating the gain from the quantile estimate 
increases as error term heteroscedasticity increases. 

α β Real value 
OLS QR OLS QR 

ρ p 

α β Est Std Est Std Est Std Est Std 

10 0.7184 4 0.7616 0.1005 0.7185 0.1039 4.0000 0.0083 4.0001 0.0086
30 1.4756 4 1.4883 0.0772 1.4769 0.0792 4.0000 0.0065 4.0000 0.0066
50 2.0000 4 1.9996 0.0741 1.9990 0.0751 4.0000 0.0061 4.0000 0.0062
70 2.5244 4 2.5138 0.0776 2.5250 0.0785 4.0000 0.0065 4.0000 0.0066

ρ=
(1

, 0
) 

90 3.2816 4 3.2376 0.1001 3.2797 0.1028 4.0000 0.0083 4.0000 0.0085
10 0.7184 3.3592 0.7612 0.4706 0.7128 0.3106 3.3809 0.0612 3.3603 0.0497
30 1.4756 3.7378 1.4943 0.3686 1.4778 0.2375 3.7427 0.0482 3.7375 0.0376
50 2.0000 4.0000 1.9963 0.3502 1.9989 0.2236 4.0006 0.0455 4.0002 0.0358
70 2.5244 4.2622 2.5114 0.3671 2.5254 0.2369 4.2563 0.0484 4.2617 0.0383

ρ=
(1

, 0
.5

) 

90 3.2816 4.6408 3.2332 0.4708 3.2853 0.3082 4.6195 0.0613 4.6399 0.0493
10 0.7184 2.7184 0.7539 0.8537 0.7014 0.4865 2.7626 0.1154 2.7207 0.0883
30 1.4756 3.4756 1.4814 0.6743 1.4764 0.3686 3.4878 0.0909 3.4758 0.0676
50 2.0000 4.0000 2.0089 0.6390 2.0046 0.3514 3.9990 0.0856 3.9996 0.0639
70 2.5244 4.5244 2.5186 0.6634 2.5288 0.3681 4.5135 0.0895 4.5248 0.0678

ρ=
(1

, 1
) 

90 3.2816 5.2816 3.2370 0.8400 3.2945 0.4738 5.2390 0.1131 5.2799 0.0874

The number of observations at a given covariate, 60; simulation models exxy T  ρβα ++= ; e~ N (0, 1) and α =2, β =4 and ]20,1[∈x ; 

simulation replication, 10,000 
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Table 3.4. Simulation results from the growth system abstracted from CAPPS data 

α β 
OLS QR OLS QR 

P 

 

α β n 

 
Est Std Est Std Est Std Est Std

25 9.0696 0.0910 8.8288 0.0906 -6.2281 0.0963 -6.2519 0.0946
35 8.9997 0.0805 8.8231 0.0815 -6.2254 0.0831 -6.2406 0.0827
45 8.9667 0.0671 8.8315 0.0667 -6.2360 0.0712 -6.2508 0.0725

 

0.1 

 

8.8299 

 

-6.2501 

55 8.9408 0.0637 8.8310 0.0632 -6.2358 0.0680 -6.2469 0.0679
25 9.8457 0.0846 9.6796 0.0840 -6.1296 0.0754 -6.1398 0.0757
35 9.7943 0.0744 9.6749 0.0733 -6.1249 0.0635 -6.1323 0.0652
45 9.7728 0.0649 9.6812 0.0624 -6.1345 0.0575 -6.1401 0.0561

 

0.2 

 

9.6807 

 

-6.1383 

55 9.7567 0.0566 9.6819 0.0560 -6.1332 0.0509 -6.1379 0.0502
25 10.4747 0.0634 10.370 0.0647 -6.1420 0.0516 -6.1472 0.0537
35 10.4444 0.0540 10.370 0.0556 -6.1443 0.0439 -6.1485 0.0436
45 10.4292 0.0485 10.371 0.0484 -6.1437 0.0382 -6.1464 0.0376

 

0.3 

 

10.369 

 

-6.1463 

55 10.4168 0.0419 10.368 0.0414 -6.1434 0.0353 -6.1455 0.0346
25 10.9457 0.0629 10.854 0.0635 -6.1110 0.0472 -6.1146 0.0486
35 10.9203 0.0532 10.854 0.0518 -6.1138 0.0396 -6.1157 0.0392
45 10.9068 0.0466 10.856 0.0458 -6.1125 0.0329 -6.1148 0.0328

 

0.4 

 

10.8544 

 

-6.1138 

55 10.8947 0.0402 10.854 0.0409 -6.1114 0.0310 -6.1131 0.0312

n representing the number of trees in one plot; OLS, least square; QR, quantile regression; The system is close to 

homoscedastic. 
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Table 3.5. Simulation results from the modified growth system abstracted from CAPPS data 

α β
OLS QR OLS QR 

P 

 

α β n 

 
Est Std Est Std Est Std Est Std

25 9.0774 0.1453 8.8280 0.1227 -6.1391 0.1939 -6.2466 0.1806
35 9.0096 0.1240 8.8330 0.1035 -6.1687 0.1700 -6.2510 0.1475
45 8.9668 0.1154 8.8252 0.0898 -6.1839 0.1595 -6.2400 0.1321

 

0.1 

 

8.8299 

 

-6.2501 

55 8.9405 0.1097 8.8254 0.0865 -6.1931 0.1517 -6.2433 0.1264
25 9.8630 0.1364 9.6839 0.1153 -5.7847 0.1592 -5.8409 0.1431
35 9.8053 0.1172 9.6817 0.0972 -5.7958 0.1398 -5.8385 0.1203
45 9.7754 0.1049 9.6750 0.0876 -5.8028 0.1308 -5.8332 0.1134

 

0.2 

 

9.6807 

 

-5.8383 

55 9.7572 0.0959 9.6775 0.0781 -5.8069 0.1185 -5.8354 0.1010
25 10.4821 0.1230 10.372 0.0965 -5.3031 0.1430 -5.3497 0.1200
35 10.4415 0.1040 10.366 0.0835 -5.3083 0.1230 -5.3436 0.1055
45 10.4293 0.0929 10.368 0.0744 -5.3217 0.1110 -5.3465 0.0915

 

0.3 

 

10.369 

 

-5.3463 

55 10.415 0.0839 10.367 0.0658 -5.3254 0.1013 -5.3484 0.0836
25 10.9526 0.1175 10.857 0.0955 -5.0767 0.1282 -5.1156 0.1103
35 10.9210 0.1004 10.853 0.0811 -5.0880 0.1119 -5.1144 0.0966
45 10.9085 0.0907 10.853 0.0720 -5.0968 0.1018 -5.1139 0.0846

 

0.4 

 

10.8544 

 

-5.1138 

55 10.8953 0.0793 10.853 0.0642 -5.0967 0.0897 -5.1144 0.0763

n representing the number of trees in one plot; OLS, least square; QR, quantile regression; . The system is modified to be 

heteroscedastic. 
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Table 3.6. RMSE comparison of quantile regression and 
ordinary least squares 

RMSE RMSE  

p 

 

n OLS QR OLS/QR 

 25 0.1416 0.0432 3.2778 

 35 0.1048 0.0381 2.7507 

 45 0.0825 0.0334 2.4701 

0.1 55 0.0691 0.0301 2.2957 

 25 0.0986 0.0401 2.4489 

 35 0.0729 0.0345 2.1130 

 45 0.0581 0.0298 1.9497 

0.2 55 0.0491 0.0272 1.8051 

 25 0.0834 0.0389 2.1362 

 35 0.0628 0.0331 1.8973 

 45 0.0488 0.0282 1.7305 

0.3 55 0.0417 0.0249 1.6747 

 25 0.0737 0.0373 1.9759 

 35 0.0562 0.0316 1.7749 

 45 0.0436 0.0269 1.6202 

0.4 55 0.0377 0.0243 1.5514 
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CHAPTER 4 

MODEL-BASED SAFIS SAMPLE PLOT UPDATING 

4.1. Introduction 

The forest inventory and analysis (FIA) program provides information on the status 

and trends of forest resources. The USDA forest service has developed an annual inventory 

system where 20% of each state’s inventory is conducted every year, and all FIA plots are to be 

measured in a 5-year cycle. Since only 20% of the sample plots are measured in current year and 

other plots are 1 to 4 years old, updating techniques are required to eliminate this lag and 

improve population parameter estimates. One simple approach to annual estimates is to use only 

the current 20%. However, it is less accurate due to the small sample size. It has been suggested 

that estimates for current forest status should take advantage of previous data since they are only 

a few years old and contain a significant amount of information about the current status. Samples 

of research works on utilizing previous FIA data to improve estimates for the current forest 

conditions include Lessard et al. (2001), Johnson et al. (2003), and Van Deusen et al. (1999).  

Many approaches to calculating annual FIA estimates have been considered. These 

approaches can be classified into 3 categories depending on the level of variable being updated, 
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namely, population level (Van Deusen, 1999), plot level (Reams & Van Deusen, 1999), and 

individual tree level (Lessard et al, 2001). 

Population Level Models 

Many approaches have been proposed to calculate annual FIA based on the sampled 

population. One of the simplest approaches is to use the five most recent panels of measurements 

to calculate annual estimates for current status and trends. FIA has selected a five-year moving 

average (MA) as the default estimator for the new annual inventory system (Van Deusen, 2002). 

MA is obtained by assuming that there is no time trend. Suppose that the numbers of plots in five 

panels are n1, n2, n3, n4 and n5 and a total of N plots distributed in the five panels. A simple 

five-year moving average involving summing the means from five consecutive panels is 

∑
−=

− =
t

ti
iitt ywMA

4
,4 , where

N
nw i

i = , t=5, and iy is the mean of the panel measured in year i. The 

variance of the MA can be calculated as  
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The MA estimate for a population parameter is easy to calculate and has a variance 

estimator that is relatively easy to calculate from data as well (Johnson et al., 2003). The major 

problem with the MA is that it is not an unbiased estimator for any particular population 
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parameter (Van Deusen, 2002). Another problem is the selection of weights. The weight defined 

as
N
nw i

i =  might mask time trends that Southern Annual Forest Inventory System (SAFIS) was 

intended to evaluate. However, the equal weighting estimator can be viewed as an unbiased 

estimator at some time approximately in the middle of the rotation cycle (Johnson et al. 2003). 

Johnson et al. (2003) studied the performance of three classes of weighted average estimators for 

an annual inventory: ARIMA(0,1,1) time series model, ARIMA(0,2,2) time series model, and 

locally least squares regression. Simple moving average with equal weight is a special case of 

ARIMA(0,1,1). Johnson et al. claimed that the MA performed well in terms of mean square error 

in virtually every simulation situation. It is tended to be the best among the estimators tested if 

spatial variation was large and change was relatively small (Johnson, 2001). Their conclusion 

was consistent with Van Deusen’s (2002). Van Deusen (2002) compared the MA approach with 

two other alternatives: simple one panel mean and a mixed estimator. He concluded, based on 

simulated data, that level trend (in which change is small, or horizontal) is a near optimal 

situation for the MA because the expected value of every year is almost the same. In this case, 

the MA follows the level trends well and has small variance relative to simple one panel mean 

and the mixed estimator. However, when there is a trend in FIA data over time, simulated 

comparisons showed that the mixed estimator outperforms the MA. The MA approach tends to 

lag evolving trends, which can result in very large bias (Van Deusen 2002). 
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Van Deusen’s mixed estimator (Van Deusen, 1996, 1999, 2002; Roesch 1999; Theil 

1971; Scott et al. 1999) can be viewed as a compromise between a frequentist and a Beyesian 

approach. Two models, the observation equation and the transition equation, are required to 

describe the ME formulation. The observation model describes the observations for time t=1, 2, 

3,…T, eY += β , where ( )TTyyyY ...,, 21= is the mean vector of plot observations in the panel 

measured at time t, ( )TTeeee ,...,, 21=  is an independent random error vector representing 

sampling error, and ( )TTββββ ,...,, 21= is an unknown random coefficient representing the 

population mean at time t. The transition equation describes how the random coefficients change 

over time or constraints on the time trend, VR =β , where R is the constraint matrix on the 

parameter β , and V is an error vector. Combining eY +=β  and VR =β yields 









+








=








V
e

R
IY
β

0
, where ( )Σ,~ βNY , ( )ΩpNV ,0~  

Plot Level Models and Individual Tree Models 

Plot level and individual level models provide the means to update the current year 

data for plots measured in previous years and then base estimates on the data for all plots. Two 

categories updating techniques, imputation (Reams et al., 1999; McRoberts, 1999, 2001) and 

modeling (McRoberts, 1999, 2001; Lessard et al. 1999, 2001), are of general interest (McRoberts, 

1999). 
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 The imputation approach to dealing with plots previously measured is to view their 

current observations as missing. Imputation can be done by either matching methods or modeling 

methods. Matching imputation methods seek plausible and consistent replacement observations 

by selecting from a pool of current observations that either match prescribed attributes of the 

missing observations or are only similar to the missing observations with respect to the 

prescribed attributes. Modeling imputation methods use a regression model to estimate the mean 

value and add an error term. Both the matching and modeling methods can be divided into two 

main categories: multiple imputation and single imputation. The multiple imputation differs from 

the single imputation in that it allows assessment of uncertainty in imputed variables and 

excludes extreme results by multiple completions of the imputed data set. Reams and McCollum 

(1999) evaluated multiple imputation models for SAFIS, and their research results indicated that 

modeling methods and matching methods gave nearly identical results for both means and 

variances. Furthermore, they found that there is no practical difference between inventory 

estimates when using a model with predictive capability and one that is relatively low. Gartner 

and Reams (2001) applied multiple imputation to update FIA data for Georgia at both the plot 

level and the tree level. They concluded that the tree level modeling imputation performed best 

overall. 
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The use of modeling to update FIA is not new in forestry. One famous example is 

STEMS (Belcher et al., 1982), by which the north central research station (NCRS) of the USDA 

updates FIA data for a proportion of well-established, undisturbed FIA plots. Other recent 

examples of using model-based techniques intended to update data for annual inventory are 

Lessard et al. (2001, 1999) and McRoberts (2001,1999). Lessard et al. (2001) constructed 

distance-independent individual models for species groups using FIA data from Minnesota. 

Models calibrated using the form and methodology presented in their article will be used by 

NCRS for updating information on plots collected under the annual inventory system in the north 

central region. McRoberts (2001,1999) compared one imputation with model-based updating for 

annual forest inventory with respect to basal area. The comparison indicated that simple plot 

level imputation and model-based updating techniques produced similar estimates, though the 

best model-based results were slightly superior to the best imputation results. McRoberts (2001) 

realized that model-based updating techniques would be facilitated as FIA measurements at a 

five-year cycle accumulate. Model-based updating may be further justified if models can be used 

for long-term predictions. Borders (1997) built a set of whole stand models for natural pine stand 

in Georgia to update individual FIA plot data. All models fitted in his study were algebraically 

differenced and calibrated to each individual FIA plot. 

 



 96

Although imputation is accurate for annual inventory statistics, one inherent 

disadvantage of imputation techniques is their dependence on five-year average annual growth as 

a surrogate for annual growth. The disadvantage prevents imputation techniques from being a 

good means of estimating change. The goal of FIA is to provide information on current status 

and trends of forest resources. Change is at least as important as current status to most users of 

FIA data (Van Deusen 2001). As the annual system proceeds, more and more measurements of 

FIA plots become available and will greatly facilitate model-based updating techniques. How to 

make best use of SAFIS data to estimate trends of forest resources on the basis of the annual 

inventory plots is of general interest.  

Since the FIA program requires a sampling intensity of one plot per approximately 

6,000 acres (Brand et al., 1999), plot parameters, such as volume, basal area, and trees per acre, 

etc., vary much more than permanent research sample plots. This feature will challenge modeling. 

Forest biometricians should achieve a compromise between use of growth information on similar 

plots and variation among FIA plots. Although some feasible models were developed for the 

intended purpose of annual forest statistics (Lessard, 1999, 2001; McRoberts, 2001,1999), 

unfortunately, they are not appropriate for long-term predictions. First, the functions of these 

models are annual growth functions, which can be viewed as integration of instantaneous growth 

functions. Therefore, it is apparent that prediction precision would decrease as prediction 
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intervals increase. Secondly, these models fail to incorporate observations of sample plots to 

improve predictions. Although covariates can be used to account for variations among FIA plots, 

observations can provide more information on plot growth. This can be justified by widely used 

applications of projection models in forestry, which take the advantage of one observation as a 

snapshot of the cross-section of subject growth trajectory. Thirdly, model-based updating for FIA 

data depends on two sources of information, information on the subject plot and information 

from similar plots from which strength can be borrowed to improve prediction. Since I do not 

intend to apply models built on based FIA to other stands or plots than the sampled, model fitting 

should not be constrained by model applications. 

Lessard (2001) proposed the average dbh function ( ) ( ) 32exp1
βββ ddE d−=∆ for 

Minnesota FIA updates. Suppose that the curve generated with ( ) ( ) 32exp1
βββ ddE d−=∆  

(parameter estimates are 0.1535, 0.0378, 0.3897 for 1β , 2β , and 3β  in Lessard (2001) for Jack 

Pine) represents the real instantaneous dbh growth rate curve. The other curves in Figure 4.1 

were generated using the following method: a) calculating instantaneous dbh growth rates at dbh 

values, which were taken systematically from the hypothesized real curve; b) reproducing a dbh 

growth series such that 11 *~
−− += iii RIdd , where id~ , 1−id , 1−iR , and I denote the new dbh, the 

hypothesized real dbh, instantaneous rate corresponding to 1−id , and forward projection interval, 

respectively; c) calculating a new instantaneous dbh growth rate curve based on the newly 
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generated dbh series. It can be seen that a new growth rate curve deviates from the hypothesized 

real one approximately proportional to projection interval. Figure 4.1 is used to illustrate why a 

growth function like ( ) ( ) 32exp1
βββ ddE d−=∆  is inappropriate for long-term prediction since 

different instantaneous growth rate curves imply different yield curves. 

Clutter (1963) proposed in his groundbreaking article that a growth function should be 

compatible with the corresponding yield function in sense that integration of the growth function 

should produce the yield function. Based on a derivative-integral relationship, Clutter developed 

a set of stand level functions, which are the first projection function system. Sullivan and Clutter 

(1973) derived the same function system with the algebraic difference approach (ADA). Clutter 

et al. (1983) summarized that a projection function system either by derivative-integral or by 

ADA provided a logically consistent set of equations for prediction, i.e., current status, future 

status, and instantaneous growth rate. Projection functions are applicable to various projection 

intervals and do not require that data be annual increments. This property facilitates its 

application in FIA sample plot updates since forward projection intervals in time are 1, 2, 3, and 

4 years, not a fixed interval. It should be noted that some desirable logical properties were also 

discussed (Clutter et al. 1983, p.123) and that a projection function is illogical if it lacks these 

properties. 
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Take the Clutter basal area equation, 
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where D is basal area at age 20. Differentiation with respect to A and algebraic rearrangement 
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Ramirez-Maldonado et al. (1987) noted that the derivative-integral relationship between 

growth and yield equations holds true for those derived by the algebraic difference approach. 

There is no distinction existing between the derivative-integral and ADA. ADA features 

identifying a parameter of the underlying equation to account for variation among individuals, 

solving the equation at a reference age, say A1, for the identified parameter, replacing the 

parameter in the equation at a projection age, say A2, with a prior observation. The parameter 

replaced corresponds to the constant of integration, say c, of the solution of a certain differential 

equation (Ramirez-Maldonado et al. 1987). Which parameter in a yield equation corresponds to c 

depends on the derivative of the yield equation. Again, I take the Schumacher function 







+=

A
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Integrating these two growth rate equations yields 

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respectively. Imposing the constraint that y2=y1 when A1=A2 is equivalent to specifying the 

parameter corresponding to C to be the individual specific parameter. Projection models derived 

with the derivative-integral approach can be derived with ADA. 

In this chapter, I focus on estimating current status and trends of forest resources in 

Georgia using modeling techniques. Analysis on published models in this context leads to 

application of projection equations with desired logical properties. In addition, realizing some 

drawbacks of projection models in the case that multiple prior observations are available for 

predictions, I discuss the applicability of EBLUP for long-term predictions, though it is not 

feasible to fit mixed model system at present. A whole stand growth and yield model system will 

be developed. 

4.2. Model System for SAFIS Updates and Trend Evaluation 

The data used for this study was provided by Southern Research Station (SRS), the 

USDA forest service, in Knoxville, Tennessee. The data are from 1997 periodic sampling and 

following annual inventory samplings 1998 through 2004. The plot design in these samplings 

was based on a cluster of four fixed plots spaced 120 feet apart. Each served as the center of a 

1/24-acre circular subplot used to sample trees 5.0 inches dbh and larger. A 1/300-acre circular 

microplot, located at the center of the subplot, was used to sample trees 1.0 through 4.9 inches 
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dbh as well as seedlings. SRS provided a total of 3,790 plots measured both in 1997 and a 

following annual survey performed in Georgia. 

Loblolly pine and Slash pine are the two most abundant species, accounting for 26.6% 

and 12.6% of all trees in the data, respectively. The following criteria were used to screen the 

data for model fitting: a) either loblolly or slash pine, c) only use records for live trees, and b) no 

signs for excessive damage, cutting or mortality. A total of 813 loblolly pine and 301 slash pine 

plots satisfied the screening criteria and were available for this study. These plots were combined 

to construct one dataset containing 1114 plots. Volume/plot (1/6 acre), basal area/plot, and trees 

per plot were calculated for all trees alive with five inches and larger. The plots were grouped 

according to species (loblolly pine and slash pine), forest origin (natural or artificial stands), and 

physiographic regions (piedmont, upper coastal plain, and lower coastal plain). Table 4.1 shows 

the plot distribution by physiographic regions, species, and stands origins. 

In the following context, variables are defined as follows: H=dominant height (ft); 

V=cubic ft volume; BA=basal area of a give plot (ft2); N=trees per plot; A=stand age of a given 

plot; others are parameters. 

Dominant/Codominant Height Model 

Dominant height was determined for each SAFIS plot by averaging the total height of 

all tally trees that were classified as dominant or codominant. Several model forms were 
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investigated, including the Chapman-Richards function, the Schumacher function, the Weibull 

function, and the McDill-Amateis function (McDill & Amateis, 1992). The best empirical model 

form by statistics of fit (RMSE) is the Chapman-Richards function (Equation 4.1) 

with 3φ specified as the local parameter. Equation 4.2 was derived through the algebraic 

difference approach by solving for 3φ and replacing it with a prior observation. 

( ) 3211
φφφ AeH −=                                                  (4.1) 
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Equation 4.2 was fitted to the dataset, where ∑
=

+=
4

1
1101

i
ii Iββφ and ∑

=
+=

4

1
2202

i
iiIββφ . 

Indicator variable I1=1 if one plot is loblolly pine and I1=0 otherwise. Indicator variables I2, I3, 

and I4 take 1 for plantation, piedmont, and upper costal plain, respectively, and 0 otherwise. 

There is no statistically significant difference between species or physiographic regions, 

but there is between natural stands and artificial stands. Plantation stands have a smaller 1φ and 

larger 2φ estimates. This implies that plantations grow faster but with smaller asymptotic height. 

The final parameter estimates and statistics of fit are summarized in Table 4.1. Parameter 

estimates by stands origin are presented in Table 4.3. Figure 4.2 shows that there is no systematic  
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pattern of residuals. The predicted dominant height vs. the observed is illustrated in Figure 4.4, 

which indicates that model form 4.2 underestimate dominant height when it is large. 

Volume Projection Model 

Analysis of the data showed that a strong relationship between volume and two 

commonly used measures of stand density, basal area and survivals. The final model form is 4.3 

(Borders, 1997; Hall & Clutter, 2004). It was based on the basic relation described by equation 

4.4. 
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3210
φφφφ NBAHV =                                                  (4.4) 

where ∑
=

+=
4

1
0

i
ikikk Iββφ (k=1, 2, 3), I1, I2, I3, and I4 equals 1 for loblolly pine, plantation, 

piedmont, and upper coastal plain, respectively, 0 otherwise. 

OLS Parameter estimates are listed in Table 4.4. Partial F-test shows that there is no 

significant difference among physiographic region. It is evidenced by statistical tests that a 

statistical significant difference exists between loblolly pine and slash pine by stands origin. 

Accordingly, a total of four models are fitted simultaneously. Parameter estimates by species, and 

stands origin are summarized in Table 4.5. Plots of residual vs. fitted value (in natural logarithm 

scale) and predicted value vs. observed value are presented in Figures 4.3 and 4.5, respectively. 
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Figure 4.5 shows that model form 4.3 will provide accurate predictions of volume per plot, 

provided that basal area and dominant height can be predicted accurately. It is also revealed that 

model form 4.4 slightly underestimates volume per plot when it is large. 

Survival Model 

The most challenging parts of this model system are basal area and trees per plot. 

Modeling survivals of trees is the most difficult due to relatively high variation in mortality 

pattern (Borders, 1997). The variation was exacerbated in SAFIS sample plots by variation in 

environment, management, stands origin, physiographic region, and measurement error. Several 

commonly used nonlinear survival functions, ( )( ) 3331
1

12212 ln φββφ φ AANN −+=  (Clutter & Jones, 

1980), ( )33 12112 lnln ββφ AANN −+=  (Pienaar & Shiver, 1981), and ( )( )122
1

2
12

1

AAExp
A
ANN −








= φ

φ
 

(Clutter et al., 1983) were examined. The Pienaar-Shiver function, for which significant 

parameter estimates were obtained, produced nonsensical survival trends. Parameter estimates 

for others failed to converge. Close examination of the dataset indicated that there was a very 

strong relationship between basal area and survivals. The only explanatory variable that explains 

most of the variation in trees per plot is basal area. Variations of the Schumacher function were 

evaluated for reasonable trends and statistics of fit. Statistics of fit and inspection of trends 

suggest that the final model form be equation 4.5. 
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where all parameters are as defined previously. 

Parameter estimates are presented in Table 4.6. The table shows significant differences 

between natural stands and artificial stands by physiographic region. Survivals of natural stands 

are not statistically dependent on stands age. This is most likely because stand age measurement 

errors mask the relationship between stand age and survivals. The measurement errors also might 

explain why models based on data for permanent research plots do not apply to FIA plots. Stand 

age of natural stands is the most difficult parameter to measure. It was determined based on the 

age of two or three dominant or codominant trees. Parameter estimates by physiographic region 

and stands origin are given in Table 4.7. The plot of predicted vs. observed survivals is presented 

in Figure 4.7. 

Basal Area Projection Model 

The only available independent variable for basal area projection model is stand age. 

Statistics of fit and inspection of trends led to the Clutter basal area model (Clutter, 1963; Clutter 

& Jones 1980). The model form is indexed as equation 4.6 in this chapter. Parameter estimates 

for equation 4.6 and estimates by origin are given in Table 4.8 and 4.9, respectively. Figure 4.6 

presents the plot of the predicted basal area vs. the observed. 
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Applicability of the Model System 

The model system will provide per plot estimates of dominant height, volume, basal 

and trees per plot. Because projection intervals in the dataset range from 1 to 8 years, statistics of 

fit are very favorable. This indicates that these models should work well for updating SAFIS 

sample plots (1 through 4 years). Basal area and survival of trees are less accurate components of 

the model system due to relatively high variation in mortality pattern among sample plots and 

measurement errors in stand age. These less accurate components likely decrease the 

applicability of the system for a long projection interval. In addition, the accuracy of projection 

decreases as projection interval increases. As a result, the models might not effectively achieve 

the objective of evaluating forest trends. However, as SAFIS proceeds, more annual inventory 

data accumulates for individual plots as well as the population. Incorporating the new 

observations of each plot will certainly improve individual plot updating. How to incorporate 

new observations of each plot deserves further research. Mixed effects models are the most 

efficient approach to make use of multiple observations. A theoretical analysis of applicability of 

mixed models is given in the following section. 
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It should be noted that the model system applies only to sample plots not disturbed 

excessively by management and damage. Therefore, an additional model is required to estimate 

the probability of disturbance. In addition, a separate model is needed for sample plots that are 

expected to have many ingrowths. All these additional models can be fitted only after sufficient 

individual plot data become available. As for species or species groups that make up a small 

proportion of the population, the matching imputation method should be employed. 

4.3. Using EBLUP to Update SAFIS Sample Plots-A Theoretical Analysis 

Suppose that for the ith of m individual plots, ni responses have been observed so that a 

total of ∑
=

=
m

i
inN

1
data values are available. The data vector, yi, for the ith individual plot, satisfy 

linear model 4.7 

iiiii ebZXy ++= β                                                  (4.7) 

( ) iiiii bZXbyE += β                                                 (4.8) 

( ) iii RbyCov =                                                      (4.9) 

where yi is ni by 1 response vector for observations on the ith individual, Xi is an ni by p model 

matrix for the fixed effects, β  is p by 1 vector of fixed effects coefficient, bi is a r by 1 vector of 

random effects coefficient, Zi is an ni by r model matrix linking yi to random effects; 

( )ini RNe
i

,0~ and Ri is ni by ni covariance matrix. All except β are specific to the ith individual. 
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Suppose that bi is from a normal distribution such that ( )DNb ri ,0~ , where D is a r by r 

covariance matrix, independent of bj or ei. The marginal mean and covariance for yi are 

expressed by equations 4.10 and 4.11, respectively. 

( ) ( )( ) βiiii XbyEEyE ==                                            (4.10) 

( ) ( )( ) ( )( ) i
T

iiiiiii RDZZbyCovEbyECovyCov +=+=                      (4.11) 

Stacking all data for all m individuals gives model 4.12 

eZbXy ++= β                                                    (4.12) 
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( ) rmrmrrrr DDDMD ×××= ,...,~ , and ( )
NNnnnn mm

RRDMR
×××= ,...,

11
, and 

( ) T
NNm ZDZRVVDMV ~,...,1 +== × , T

iiii ZDZRV ~+= . The acronym DM stands for diagonal 

matrix here. 

Given that V is known (D and R are known), it can be shown that the estimator for β is 

the generalized least squares estimator ( ) yVXXVX TT 111ˆ −−−=β , and that estimator for b is 

( )β̂ˆ 1 XyVDZb T −= −  (BLUP) so that the individual estimator for ith individual is given by  
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( )β̂ˆ 1
iii

T
ii XyVDZb −= − . If a point estimate of Vi (D and Ri) is available, it is to be used to replace 

D and R and yields EBLUP such that ( )β̂ˆˆˆ 1
iii

T
ii XyVZDb −= − . 

When D and Ri are unknown, and y is assumed to be normal, the log likelihood is 

equation 4.13. Partial derivatives with respect to β andθ yield equations 4.14 and 4.15, 

respectively. In the context of unbalanced longitudinal data, a closed form solution is not 

available. They can be solved simultaneously with a numerical algorithm (e.g., Newton-Raphson) 

to estimate β andθ  (for details see McCulloch and Searle 2001). 

( ) ( ) ( )( ) ( ) ( ) ( )βθβθπθβ XyVXyVNyL T −−−−−= −1
2
1log

2
12log

2
;,log        (4.13) 

( ) ( ) XVyXVXL TTT 11 −− +−=
∂
∂ θθβ
β

                                    (4.14) 

( ) ( ) ( ) ( ) ( ) ( ) ( )








−

∂
∂

−−







∂
∂

−=
∂
∂ −− βθ

θ
θθβ

θ
θθ

θ
XyVVVXyVVL

k

T

kk

11tr
2
1             (4.15) 

Nonlinear mixed model estimation is based on a first order Taylor expansion around 

bi=0 (or other values). A nonlinear model such as model 4.16 can be linearized through the 

expansion in a way such that ( ) ijiiijiij ebZxAfy ++= ,β , where
( )

0
,

=
∂

+∂
= iT

i

ijiii
i b

b

xbBAf
Z

β
. 

Note that ( )iji xAf ,β  plays the role of βX in a linear model. 

I follow Pinheiro and Bates (2000) notations to present mixed model and EBLUP. The 

jth observation on ith plot is modeled as model (4.16) 

( ) ijijiij exfy += ,φ                                                 (4.16) 
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where iiii bBA += βφ , i=1,…, m; j=1,…,ni, ( )DNbi ,0~ ; m is the number of sample plots; ni is 

the number of observations on ith plot; iφ is plot specific parameter vector; the matrices Ai and Bi 

depend on plot (also possibly depend on the values of some covariates at the jth observation); β  

is a p dimensional vector of fixed effects. bi is r dimensional vector of random effects associated 

with ith plot; eij does not have be iid. Davidian and Giltinan (1995) used variance function 

( ) ( ) ( ) ( )θβαθβσ ,, 2/12/12 GHGeCov =  to account for heterogeneity and correlation within 

individual, where ( )αH is correlation function and ( )θβ ,2/1G is the diagonal matrix with elements 

of the square root of ( )θβ ,G , which is used to model heterogeneity. The variance function 

( )eCov is in place of R in following formulations if eij is not iid. Model (4.17) is the mixed effects 

Schumacher model with all parameters being mixed. Suppose one has a certain factor f, with 3 

values, say f1, f2, and f3, affects 1iφ and 2iφ through linear models ii bII 1231211 +++= βββφ and 

ii bII 2463542 +++= βββφ , where I1=I3=1 if the factor f = f2, 0 otherwise, and I2=I4=1 if the factor f 

= f3, and 0 otherwise. It is apparent that 2β , 3β , 5β , and 6β represent the differences from f1. The 

jth response of the ith plot at level f2 can be modeled with model 4.17: 

( ) ijiiij eAExpy i += 321
φφφ                                             (4.17) 
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where 1β =the intercept of 1φ , 4β =the intercept of 2φ , 7β =fixed parameter of 3φ . 

Suppose a vector of nk1 prior observations on plot k, say
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One can predict bk with equation 4.19, where, bk is r by 1; 
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b
xbBAfZ (S =1,…,nk1); ( )( )kkk XAfY ,β̂−  is nk1 by 1; R is nk1 by nk1; D is 

r by r; Zk is nk1 by r. 

( ) ( )( )
11111111

,ˆˆˆˆˆˆˆˆ 1
kkkk

T
kkk

T
kkk XAfYRZDZZDb β−+=

−                       (4.19) 

( )
22

,ˆˆˆ kiikk XbBAfY += β                                             (4.20) 

After bk is predicted, equation 4.20 can be used to predict nk2 unobserved responses of 

kth plot at covariate Xk2, say Yk2. 
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The dependence between ek1 and ek2, error vectors associated with Yk1 and Yk2, 

respectively, is ignored by equation 4.19. If the dependence exists, the following model is 

preferable since the dependence is accounted for through covariance matrix Vk1k2 between Yk1 

and Yk2. The best (minimum variance) linear unbiased estimator of Yk2 given Yk1 known is 

equation 4.21, which is the expectation of Yk2 conditional on Yk1 if Yk1 and Yk2 follow a joint 

distribution such that 
( )
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(see Hall & Bailey, 2001; Hall & 

Clutter, 2004). 

( ) ( )( )
1112122

1ˆ kkkkkkk YEYVVYEY −+= −                                      (4.21) 

Replacing all unknown quantities in RHS of equation 4.22 with their estimates yields 

( ) ( )( )
1112122

ˆˆˆˆˆˆ 1
kkkkkkk YEYVVYEY −+= − , where ( ) ( )

uu kiikk XbBAfYE ,ˆˆˆ += β  (u=1 or 2) corresponding 

to ( )
2121

,ˆ kkkk eeCovV = , and ( )( )
11121

ˆˆˆ 1
kkkkk YEYVV −−  is the corrector taking covariance into 

account. Another version of ( )
ukYÊ will be ( ) ( )

uu kkk XAfYE ,ˆˆ β=  (u=1 or 2) corresponding to 

( )
211221

,ˆ kk
T
kkkk eeCovDZZV += . 

As equation 4.22 shows, ( )kkkkk XbBAfY ,ˆˆˆ += β  can be rewritten in the form of a 

weighted average combining information from the ith individual only and information from the 

population. Equation 4.22 explains why it is often said that EBLUP estimator shrinks the 

individual predicted response towards the population-averaged mean response profile. The 



 113

weighting scheme is quite reasonable, since more weight should be given to the individual 

observations if within individual variation is relatively small, whereas less weight should be 

given to the individual observations when the population is relatively homogenous. Equation 

4.22 may be viewed as " borrowing strength" across individuals to get the best prediction for ith 

individual. The amount of shrinkage towards population mean depends also on the number of 

observations. In general, there is more shrinkage toward the population mean curve when ni is 

small. This is reasonable since less weight should be given to observed responses when fewer 

data are available. So far, it is clear that EBLUP is the best approach to predicting FIA sample 

plots as shown by equation 4.22 and following derivation. 
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4.4 Conclusion and Discussion 

In this chapter, I reviewed methodologies to update SAFIS sample plots and focused 

on model-based updating. Compared to the matching imputation method, model-based updating 

provides information about trends of forest resources, which is another primary objective of 

forest inventory. Obviously, as SAFIS proceeds, accumulated data will greatly facilitate and 

justify the applicability of model-based updating. 

Our model system is based on SAFIS data measured in 1997 and following annual 

inventories for Georgia. The model system is to be used in conjunction with other models such as 

disturbance probability models and imputation models for other species or species groups. 

Statistics of fit show it is appropriate for one through four year updates. However, these models 

most likely will provide less accurate information about trends of forest resources. All models in 

our model system are projection models due to the availability of data. Data with only two 

remeasurements is not sufficient to fit more appropriate statistical models. One characteristic of 

projection models is that they use only one coefficient parameter to account for variation among 

sample plots. Obviously, one coefficient parameter is insufficient to account for variation in 

SAFIS plots, each of which represents about 6,000-acre forestland. Accurate projection requires 
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more information about individual plots. This will be satisfied as more annual inventory data 

accumulates. 

When more SAFIS data becomes available, more appropriate models should be fitted 

for more accurate projections. Mixed effects models and the empirical best linear unbiased 

predictor (EBLUP) should be employed to update SAFIS plots because they allow more random 

coefficients to account for variation among plots, make efficient use of prior observations, and 

borrow information from similar plots. 

It should be noted that model-based updating applies only to well established and 

undisturbed dominant species plots in conjunction with disturbance probability models. 

Imputation methods are also required for species or species groups that take only a small 

proportion. Updating SAFIS plots is the most challenging due to the involves of almost all 

aspects of forest biometrics and definitely requires collaborative research work of multiple 

partners. 
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Table 4.1 Number of sample plots by physiographic region, species, and stand 
origin 

 Loblolly Slash Total 

Region Natural Artificial Subtotal Natural Artificial Subtotal  

UCP 83 219 302 41 88 129 431 

LCP 21 65 86 49 123 172 258 

Piedmont 243 182 425 - - - 425 

Subtotal 347 466 813 90 211 301  

 
 
 

Table 4.2 Nonlinear OLS parameter estimates and statistics of fit for dominant height 
model (Model 4.2) 

  Parameter Estimate StdE t-Value Pr > |t| RMSE R2 

Intercept 10β̂  90.40703 2.3754 38.06 <.0001 3.9560 0.93201̂φ

 Plantation 12β̂  -6.30645 2.9099 -2.17 0.0305   

Intercept 20β̂  0.058787 0.00475 12.37 <.0001   2φ̂

 Plantation 22β̂  0.021746 0.00615 3.54 0.0004   

 
 
 

Table 4.3 Parameter estimates for dominant height projection 
model by stands origin. 

Natural Stands Artificial Stands 

1̂φ  2φ̂  1̂φ  2φ̂  

90.40703 0.058787 84.10058 0.08053 
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Table 4.4 Nonlinear OLS parameter estimates and statistics of fit for volume 
projection model (Equation 4.3) 

kφ̂   Parameter Estimate StdE t-Value Pr >|t| RMSE R2 

1̂φ  Plantation 12β̂  0.376501 0.0232 16.25 <.0001 0.1435 0.9755

 Intercept 20β̂  1.689769 0.0431 39.17 <.0001   

2φ̂  Loblolly 21β̂  -0.1837 0.0336 -5.46 <.0001   

 Plantation 22β̂  0.272136 0.0398 6.84 <.0001   

 Intercept 30β̂  -0.60069 0.0456 -13.16 <.0001   

3̂φ  Loblolly 31β̂  0.16233 0.0351 4.63 <.0001   

 Plantation 32β̂  -0.33448 0.0412 -8.12 <.0001   

 
 

Table 4.5 Parameter estimates for volume projection model by species 
and stands origins. 

Estimates 
Species Origin 

1̂φ  2φ̂  3̂φ  

N 0 1.50607 -0.43836 
Loblolly 

A 0.376501 1.77825 -0.77284 

N 0 1.68977 -0.60069 
Slash 

A 0.376501 1.96191 -0.93517 

 

 

Table 4.6. Nonlinear OLS parameter estimates and statistics of fit for survival projection 
model (Equation 4.5) 

kφ̂   Parameter Estimate StdE t Value Pr > |t| RMSE R2 

 Intercept 10β̂  0.07209 0.0358 2.01 0.0446   

1̂φ  Plantation 12β̂  -0.43331 0.0602 -7.20 <.0001   

 UCP 14β̂  -0.20791 0.0492 -4.22 <.0001 0.2120 0.9249

Intercept 20β̂  0.78614 0.0295 26.66 <.0001 
2φ̂  

Plantation 21β̂  0.11158 0.0427 2.61 0.0091 

3̂φ  Plantation 32β̂  -0.63767 0.1254 -5.08 <.0001 
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Table 4.7. Parameter estimates for survival projection model by 
physiographic regions and stands origins. 

Estimates Physiographic 

Region 
Origin 

1̂φ  2φ̂  3̂φ  

N -0.13581 0.78614 0  

UCP A -0.56912 0.89772 -0.63767 

N 0.07209 0.78614 0  

Others A -0.36122 0.89772 -0.63767 

 

 

Table 4.8. Nonlinear OLS parameter estimates and statistics of fit for basal area 
projection model (Equation 4.6) 

kφ̂  Parameter Estimate StdE t Value Pr > |t| RMSE R2 

Intercept 10β̂  2.666299 0.1714 15.55 <.0001 0.3094 0.8327 
1̂φ  

Plantation 12β̂  2.098867 0.5567 3.77 0.0002   

Intercept 20β̂  0.643684 0.0754 8.54 <.0001   
2φ̂  

Plantation 22β̂  -0.35897 0.0886 -4.05 <.0001   

 

Table 4.9. Parameter estimates for basal area projection model 
by stands origins. 

Natural Stands Artificial Stands 

1̂φ  2φ̂  1̂φ  2φ̂  

2.666299 0.643684 4.76516 0.28471 
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Figure 4.1. Simulation results showing that different dbh values generate 
difference instantaneous dbh growth rate curves. 
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Figure 4.2. Plot of residuals vs. fitted dominant heights, showing that no 
significant systematic pattern exists 
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Figure 4.3. Plot of residuals vs. fitted log (volume) 
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Figure 4.4. Plot of predicted vs. observed dominant height 
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Figure 4.5. Plot of predicted vs. observed volume per plot 
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Figure 4.6. Plot of predicted vs. observed basal are per plot 
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Figure 4.7. Plot of predicted vs. observed trees per plot 

 

 



 123

 

 

CHAPTER 5 

SUMMARY AND CONCLUSION 

Data for forest growth and yield modeling is longitudinal data. Two sources of 

variation are often presented in growth and yields models. One source is within observational 

units and the other is among observational units. It is apparent that mixed effects models provide 

a powerful and flexible tool for the analysis of longitudinal data. 

Projection models are employed to account for the variation among individuals in 

forestry. A projection model can be viewed as a combination of a mixed model with a single 

random coefficient and an estimator for it. Mixed effects models are not always appropriate for 

the analysis of forest data since no sufficient prior information is available to predict random 

effects for a given individual. Our studies distinguish two situations, one of which is where there 

is only one prior observation available for predictions, and the other is where there are multiple 

observations. The latter situation is exemplified by SAFIS sample plot update. 

Through our studies of projection models, which have been most widely applied in 

forest biometrics since 1963, I conclude that projection models are very useful as long as no 

multiple observations can be afforded for projecting forest inventory. Projection models can 
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behave consistently only if their model forms have properties such as reference invariance or 

path invariance. A simple method to justify whether or not a projection model is consistent is 

proposed. Theoretical and empirical analyses suggest that projection models should be estimated 

with maximum likelihood or generalized least squares. Comparison of EBLUP and the 

estimation method implied by projection models for the random coefficient indicates that 

EBLUP is not always superior to the other in the case where only one prior observation is 

available for predictions. 

Studies were also given to stand table projection stand models, which are an 

indispensable component of a model system, providing detailed information on the underlying 

stands for management. A new stand table model was developed for the situation where one 

initial stand tables are available. Empirical studies support the conclusion that the new model 

outperforms the well-known Pienaar-Harrison model.  

Extensive simulations were performed to compare the traditional estimation method 

for percentile growth model. Simulation results show that quantile regression gives more 

accurate estimates for percentile growth models in terms of the first order and second order 

statistics. 

The southern annual forest inventory system for Georgia was initiated in 1998. The 

new FIA system requires that sample plots should be updated to current condition for annual 
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statistics. Since multiple observations are becoming available, mixed effects models are the most 

appropriate means for updating sample plots. Due to a lack of multiple observations at the 

present stage, a projection model system was built for Georgia. The projection error analyses 

show that projection models are accurate for short projection intervals, but not for long intervals. 

Accordingly, when over three measurements are obtained, a model system should be constructed 

using mixed effects models for more accurate projections. 
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