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Abstract

Collisions between atoms, ions, and molecules play a fundamental role in a number of

astrophysical contexts. In this work, we perform quantum mechanical close-coupling scat-

tering calculations for a variety of collision systems and discuss their implications for our

understanding of various astrophysical processes.

We begin with a study of rovibrational de-excitation of HD in collisions with He. Along

with H2, HD has been found to play an important role in the cooling of the primordial gas in

the formation of the first stars and galaxies, and the rate of this cooling requires a knowledge

of collision rate coefficients with common neutrals such as H and He. In this study we perform

cross section calculations for the He-HD collision system over a range of collision energies

and for initial rovibrational states of j = 0 and 1 for v = 0 to 17. We report rate coefficients

for all ∆v = 0, −1, and −2 transitions and compare them to previous calculations.

Next we examine the effect of theoretically varying the collision-system reduced mass in

collisions of He with vibrationally excited molecular hydrogen. Complex scattering lengths

and vibrational quenching cross sections, and a low-energy scattering resonance are studied

as a function of the collision system reduced mass. Experimental observations of these phe-

nomena in the ultracold regimes for collisions of He with H2, HD, HT, and DT should be

feasible in the near future.



Finally, we perform electron-capture cross section calculations for the collision systems

O7+ + H and C5+ + H using the quantum mechanical molecular orbital close-coupling

method. Charge exchange between highly-charged solar wind ions and neutral interstellar

hydrogen has been found to be a significant contributor to the heliospheric component of

the soft x-ray background, as the highly excited resultant ions emit x-rays in the electron’s

cascade to the ground state. Calculations are performed over a range of collision energies for

all important n-, l-, and S-resolved states. We compare our results to new atomic orbital

close-coupling, classical trajectory Monte Carlo, and experimental merged-beam results.

Index words: Atom-molecule collisions, Atom-ion collisions, Ultracold collisions,
Charge exchange, Rovibrational excitation
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Forrey, Charles C. Havener, Yawei Hui, Teck-Ghee Lee, Heinz-Peter Liebermann, Balakr-
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Chapter 1

Introduction and Literature Review

Inelastic collisions of atoms, ions, and molecules underly a variety of astrophysical process,

the accurate modeling of which requires a detailed knowledge of the cross sections and rate

coefficients for the relevant collision systems. Such processes which are considered in this

work include the radiative cooling of gas clouds during collapse to form the first stars, and

the emission of x-rays from planets, comets, and diffuse gas within the Solar System. Given

the breadth of relevant collision systems and the often limited range of collision energies and

lack of final state resolution in laboratory measurements, the need for theoretical methods

as a supplement to experimental data is evident.

Such methods vary in sophistication from semiclassical to fully quantum mechanical, the

choice of which is determined by considerations of practicality and applicability. In general,

while less taxing on computational resources, semiclassical treatments are valid only for the

highest energies. For the most accurate results, particularly at low to intermediate energies,

we must turn to fully quantal methods, and it is this approach that we adopt in the present

work. In particular, we employ variations of a quantum mechanical close-coupling treatment

wherein the wavefunction of the system is expanded in terms of an appropriate set of basis

functions. In general, these are functions of the electronic energy and internuclear separation

R of the species in question, and form solutions to the Schrödinger equation for fixed values

of R. This yields a set of coupled differential equations which may be solved numerically to

obtain scattering matrix elements and cross sections.

The first system we investigate in Chapter 2 is that of rovibrational de-excitation of HD

by He. This collision system is of interest for its role in determining the thermal balance

1
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of collapsing protoclouds to form the first stars. In particular, every instance of excitation

through photon absorption followed by collisional rovibrational de-excitation results in a

net heating of the gas, while the opposite process results in cooling. Although H2 is the

dominant and more abundant coolant, many studies (see, e.g., Ref. [1]) suggest that, due to

its permanent dipole moment and smaller rotational constant, HD may rival H2 in certain

circumstances as a coolant of primordial clouds. As far as we know, there have been no

experimental studies of this system, although calculations for purely rotational transitions

for v = 0 have been performed by Schaefer [2] and Roueff and Zeippen [3], who also did

calculations for rovibrational transitions [4], though limited to the first four vibrational

states. We extend these calculations to include all bound initial vibrational states (v=0 -

17) and improve on existing calculations by adopting a much larger basis set, and using

numerically determined wavefunctions for the HD interaction potential matrix elements, as

opposed to the harmonic oscillator approximation for the HD vibrational functions employed

by Roueff and Zeippen.

A vital ingredient in scattering calculations is the interaction potential, and cross sections

are generally sensitive to the details of the potential energy surface employed, particularly

at low energies. In Chapter 3, we study the effects of artificially varying the reduced mass

of the He-H2 collision system by varying the mass of one of the hydrogen atoms or the

helium atom. It has been shown by Jamieson and Zygelman [5] that this is equivalent to

adjusting the interaction potential. This technique allows us to probe the sensitivity of cross

sections to small changes in the interaction potential and bound state energy levels at low

collision energies. A number of studies have focused on mass effects in collision dynamics,

including Kreutz et al. for He-HD [6], Jamieson and Zygelman for H-H [5], and Bodo et

al. for F + H2 [7], the last two of which revealed a sensitive dependence of the scattering

length to the presence of weakly bound or virtual states. This finding is confirmed in the

presence of zero energy resonances corresponding to bound states in the present work. In this

chapter we also discuss the complex scattering length, introduced by Balakrishnan et al. [8],
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a concept of great utility in describing the elastic and inelastic cross sections and quenching

rate coefficients in the ultracold limit.

In Chapter 4 we examine charge exchange between O7+ and H, an important contributor

to x-ray emission within the solar system. Over the last two decades, diffuse soft x-ray

(0.1 - 1.5 keV) emission has been observed through the Wisconsin [9] and ROSAT [10]

all-sky surveys, as well as observations by, for instance, a sounding rocket equipped with

microcalorimeters [11], the Chandra X-ray Observatory [12], XMM -Newton [13], and the

Japanese satellite Suzaku [14, 15]. It was proposed by Cox [16] that this emission may be due

in part to charge exchange between heavy solar wind ions and interstellar neutrals such as

H and He which have penetrated the heliosphere, similar to the process originally proposed

by Cravens [17, 18] to explain x-ray emission from comets. After electron capture by the

highly charged ion into an excited state, the electron de-excites in a radiative cascade to the

ground state, emitting at least one x-ray photon in the process. It has since been suggested

that as much as 25-50% of the soft x-ray background at 1/4 keV may be heliospheric in

origin [19, 20], while Koutroumpa et al. found the local 3/4 keV emission detected in front

of shadowing clouds to be almost entirely due to O VII and O VIII emission [21]. Of course,

the accurate modeling of this emission requires detailed knowledge of state-specific charge

exchange cross sections. To achieve this end, we use a fully quantum mechanical molecular

orbital close-coupling (MOCC) treatment to calculate n, l, S-resolved charge exchange cross

sections for the O7++H system. This level of resolution is completely lacking in the literature.

Experimental studies of the system such as those by Havener et al. [22], Meyer et al. [23], and

Panov et al. [24] have generally been limited to total cross sections, while n-resolved relative

cross sections have been obtained by Kearns et al. [25], though these are also restricted

to a narrow band of collision energies, 350-875 eV/u. We compare our results with these

and theoretical atomic orbital close-coupling (AOCC) and classical trajectory Monte Carlo

(CTMC) results, and discuss astrophysical implications.
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In Chapter 5 we report n, l, S-resolved cross sections for a similar charge exchange system,

C5++H, again using an MOCC treatment. l, S-resolved cross sections for this system are

similarly lacking in the literature, with the exception of a semiclassical MOCC treatment for

energies > 15 eV/u and a two-channel fully quantal treatment for lower energies performed

by Shimakura et al. [26]. Meanwhile, experimental studies by Draganić et al. [27], Panov et

al. [24], Phaneuf et al. [28], Crandall et al. [29], and Goffe et al. [30] have been limited to

total cross sections. n-resolved cross sections appear again only in Kearns et al. [25], though

in this case only for an energy of 833 eV/u. We again compare our results to experimental

and theoretical AOCC and CTMC results.

We summarize our results and briefly discuss avenues of future research in Chapter 6.



Chapter 2

Rovibrational quenching of HD in collisions with He1

1Based on J. L. Nolte, P. C. Stancil, T.-G. Lee, N. Balakrishnan, and R. C. Forrey. Submitted
to Astrophys. J., 8/4/11.
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Abstract

Along with H2, HD has been found to play an important role in the cooling of the primordial

gas in the formation of the first stars and galaxies. It has also been observed in a variety

of cool molecular astrophysical environments. The rate of cooling by HD molecules requires

a knowledge of collisional rate coefficients with the primary impactors, H, He, and H2.

To improve knowledge of the collisional properties of HD, we present rate coefficients for

the He-HD collision system over a range of collision energies from 10−5 to 5 × 103 cm−1.

Fully quantum mechanical scattering calculations were performed for initial HD rovibra-

tional states of j = 0 and 1 for v = 0 to 17 which utilized accurate diatom rovibrational

wavefunctions. Rate coefficients of all ∆v = 0, –1, and –2 transitions are reported. Signif-

icant discrepancies with previous calculations, which used a smaller basis set and adopted

harmonic HD wavefunctions for excited vibrational levels, were found. Applications of the

He-HD rate coefficients in various astrophysical environments are briefly discussed.

2.1 Introduction

While H2 has long been acknowledged as the main coolant in the primordial gas during the

formation of the first baryonic objects, nevertheless the other primary coolant, HD, while less

plentiful, may in certain circumstances play a comparable or even greater role in the cooling

of molecular clouds to form the first stars. Although the HD/H2 abundance ratio after freeze-

out is about 10−3 [1, 31, 32, 33], HD may contribute significantly relative to H2 in cooling

the astrophysical media due to its permanent dipole moment — which allows transitions of

∆j = ±1 — and smaller rotational constant. The smaller spacing between energy levels and

larger collisional rate coefficients allow for enhanced excited state populations and greater

rates of energy transfer between the radiation field and matter [1].

The relative importance of H2 and HD in determining the thermal balance has been

the subject of many studies. The question is important, as stellar masses ultimately depend
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on the cooling properties of the dominant coolant in cloud collapse. Puy and Signore [34]

found that, for a 109 M$ protocloud, HD cooling would dominate at a matter temperature

T ∼ 200 K (close to the HD j = 1 → 0 transition energy of 128 K), leading to a decrease

in the matter temperature and possibly to cloud fragmentation. Similarly, it was shown by

Flower and Pineau des Fôrets [35] that HD would contribute as much as 20 percent of the

radiative cooling in the post-shock gas. The contribution of HD to the heating of the gas

when the radiation temperature exceeds the kinetic temperature was addressed by Flower

[1], who showed that the HD contribution could become comparable to H2 at a redshift of

z ∼ 25. Likewise, Galli and Palla [32] showed that HD dominates the heating of primordial

gas at temperatures 150 K in the low-density limit. More recently, Lipovka et al. [36] used

an updated HD cooling function to show that the HD cooling efficiency was significant even

at high gas densities and temperatures, with the HD contribution comparable to that for H2

at temperatures ≥ 3000 K.

However, there is a question of whether the primordial gas can reach sufficiently cool

temperatures for HD cooling to dominate, and many early studies indicating an enhanced

role of HD focused only on the beginning stages of cloud collapse. Nakamura and Umemura

[37, 38] examined the conditions under which gas temperature becomes sufficiently cool (∼

100 - 200 K) for HD to become the primary regulator of thermal evolution. They concluded

that, under the conditions at which the first pregalactic objects are expected to collapse

(namely, at z ∼ 10 − 102 and masses of 105 − 108 M$ in a cold dark matter cosmology),

there will be an insufficient amount of H2 to lower the temperature to the requisite values

(contrary to the findings of Galli and Palla [39]), although HD cooling will sufficiently lower

the gas temperature to produce fragment masses a few times smaller than without HD

cooling. Moreover, they point out that HD may still play a dominant role in star formation

in metal-deficient early galaxies, where gas photoionized by ultraviolet (UV) radiation favors
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the formation of sufficient amounts of H2 to cool the gas below the threshold temperature,

beyond which HD cooling controls the cloud fragmentation.

There may be other star formation scenarios in which the gas can become sufficiently cool

for HD cooling to dominate. Uehara and Inutsuka [40] investigated the role of HD cooling in

the evolution of a post-shock fragmentation and concluded that HD cooling dominates for a

shock velocity of 300 km s−1 and leads to the formation of low-mass stars and possibly brown

dwarfs. Fossil H II regions have also been identified as an environment in which HD may play

a significant role. Nagakura and Omukai [41] found that within initially ionized massive (106

M$) halos, HD cooling could lead to the formation of low-mass stars. The possibility of HD

moderated formation of low-mass stars was also investigated by Machida et al. [42] within

the remnants of primordial supernovae. Simulations by McGreer and Bryan [43] cast doubt

on whether HD cooling in ionized halos would lead to formation of significantly lower mass

stars, but showed that in low-mass (∼ 105 M$) unperturbed halos in which HD surpassed

H2 cooling, relatively low mass stars (∼ 6 times lower than without HD cooling) could form.

Of course, the accuracy of any model of star collapse depends on the chemical data

employed. Collisional rate coefficients are one fundamental ingredient in determining the

thermal balance of the molecular gas and in this work we consider the quenching of HD

excitation due to He collisions. For the He-HD system, the most recent calculation of rate

coefficients for collisional rovibrational excitation were performed by Roueff and Zeippen [4]

in a fully quantal close-coupling approach using the He-H2 potential surface of Muchnick

and Russek [44], hereafter referred to as the MR potential. Roueff and Zeippen reported rate

coefficients for rovibrational transitions between the first 45 rovibrational levels of HD, with

a maximum initial vibrational quantum number of 3. In this work, we extend their earlier

calculations by computing all ∆v = 0, –1 and –2 transitions for initial states v = 0 − 17,

j = 0− 1, for temperatures 10−4 K ≤ T ≤ 103 K. Further, Roueff and Zeippen adopted the

harmonic approximation for the HD vibrational wavefunctions, while the current compu-
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tations utilize explicit, numerical nuclear wavefunctions obtained on an accurate molecular

hydrogen interaction potential.

2.2 Computational details

Inelastic cross sections were obtained using the nonreactive scattering program MOLSCAT

developed by Hutson and Green [45]. In the close-coupling method employed here, the total

wavefunction of the scattering system is expanded in terms of a basis set of Hermite poly-

nomials. The resulting set of coupled differential equations in the expansion coefficients may

then be solved and fit to the appropriate form in the asymptotic region. The MR potential

surface for He-H2 was used, but with bond lengths scaled and the H-D center of mass along r

shifted to account for the change in the D mass. This potential was the subject of a study by

Lee et al. [46], in which calculations of total He-H2 quenching rate coefficients showed it to

give better agreement with experimental data than the more recent potential of Boothroyd

et al. [47].

It is convenient to expand the atom-diatom interaction potential, V (r, R, θ), in terms of

Legendre polynomials:

V (r, R, θ) =
∑

λ

vλ(r, R)Pλ(cos θ), (2.1)

where r is the internuclear distance of HD, R the distance of He from the diatom’s center of

mass, and θ the angle between r and R. The scattering equations then take the form [48]

[
d2

dR2
− l(l + 1)

R2
+ k2

vj

]

F (vjlpJ |R) = 2µ
∑

v′j′l′λ

{fλ(jl, j
′l′J)yλ(vj, v′j′|R)F (v′j′l′pJ |R)},

(2.2)

where k2
vj = 2µ(E − εvj), E being the total energy, εvj the energy of the rovibrational

state, and v, j, l, p, and J being the vibrational, rotational angular momentum, orbital

angular momentum, parity, and total angular momentum quantum numbers, respectively;

fλ(jl, j′l′, J) is a Percival-Seaton coefficient, and

yλ(vj, v′j′|R) =
∫ ∞

0
χ∗(vj|r)vλ(r, R)χ(v′j′|r)dr, (2.3)



10

χ(vj|r) being the vibrational wavefunctions of HD. εvj and χ(vj|r) are obtained by solving

the diatom nuclear Schrödinger equation with the H2 potential of Schwenke [49] and a basis

of Hermite polynomials.

The cross sections are obtained from the scattering matrix Sl via

σvj→v′j′ =
π

k2
vj(2j + 1)

Jmax∑

J=0

|J+j|∑

l=|J−j|

|J+j′|∑

l′=|J−j′|
(2J + 1)|δvv′δjj′δll′ − SJ(vjl, v′j′l′)|2. (2.4)

Collision rate coefficients are obtained by averaging the cross sections over a Boltzmann

distribution of energies at a given temperature T :

kvj→v′j′(T ) =

(
8

πµk3
bT

3

)1/2 ∫ ∞

0
σvj→v′j′(Evj)Evje

−Evj/(kbT )dEvj, (2.5)

where Evj = E − εvj is the kinetic energy in the vj initial state.

The calculations employed a sizable basis set of at least 90 states for each collision energy

and initial rovibrational state. The basis states ranged over vibrational levels from at least

v − 3 to v + 1. The expansion of the interaction potential in each case included λmax ≥ 29.

Convergence was tested for all parameters, including number of partial waves lmax, number

of integration points, matching radius, basis set size, etc.

2.3 Results

Figures 2.1 - 2.3 show cross sections and rate coefficients for different families of ∆v, ∆j

transitions over a large energy and temperature range. The data include the ultracold regime

to demonstrate the effect of resonances near 0.1 cm−1 and the threshold behavior of the cross

sections and rate coefficients as they approach the Wigner limit. The illustrated data are a

small, but representative sampling of the entire set of calculations.2

In Figures 2.1 and 2.2, cross sections and rate coefficients for the dominant rotational

quenching {v, j = 1} → {v′ = v, j′ = 0} family of transitions are plotted, respectively. In

general, we see an increase in the cross section and rate coefficient with vibrational state v

2All computed cross section and rate coefficient data can be obtained from the UGA Molecular
Opacity Project database website, http://www.physast.uga.edu/ugamop/.
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up to about v = 13, reflecting the decreasing energy gap between the first two rotational

states of a given vibrational level. An orbiting resonance, which appears near 0.2 cm−1 in

the cross section for v = 0, is seen to migrate to 0.03 cm−1 by v = 13 as shown in Figure 2-1.

The resonance is responsible for the peak in the rate coefficients near 0.5 K, but also causes

the increase in the rate coefficients for decreasing temperatures below ∼10 K. For higher

vibrational levels, however, the vibrational ordering breaks down as additional resonances at

higher energies appear. This behavior is likely related to the increasing anharmonic nature

of the diatom potential for large values of r which significantly affects the yλ term given by

Equation (2.3).

Figure 2.1: He-HD inelastic cross sections for {v, j = 1}→{ v′ = v, j′ = 0}.
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Figure 2.2: He-HD inelastic rate coefficients for {v, j = 1}→{ v′ = v, j′ = 0}.

Figure 2.3 shows two families of vibrational quenching rate coefficients, those of {v, j =

0}→{ v− 1, j′ = 8} and {v, j = 0}→{ v− 1, j′ = 0} transitions. Here again a general trend

of increasing rate coefficients with increasing v is evident. However, the regular ordering is

modified for higher vibrational states as the resonance near 0.5 K migrates to lower tem-

peratures, vanishes, and is replaced by a higher temperature resonance. We note also that

the rate coefficients are spread over a much wider range covering several orders of magni-

tude, with transitions from the higher vibrational states becoming comparable to the pure

rotational transitions of Figure 2.2.
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Figure 2.3: He-HD inelastic rate coefficients for (a) {v, j = 0} → {v − 1, j′ = 8} and (b)
{v, j = 0}→{ v − 1, j′ = 0}.

While we are unaware of any existing experimental data for He-HD inelastic collisions, the

current results can be assessed by comparing to the limited previous calculations. Rotational

transitions for v = 0 have been computed by Schaefer [2] and Roueff and Zeippen [3] which

were found to be in good agreement. Our rotational transitions are also found to agree

with the previous work. As mentioned above, Roueff and Zeippen extended their earlier

work to include rovibrational transitions, though limited to v ≤ 3 and T = 300-1000 K.

Therefore, focusing on vibrational transitions, Figure 2.4 compares the present results for
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{v = 1, j = 1}→{ v′ = 0, j′} with those of Roueff and Zeippen. The agreement is fair, with a

maximum discrepancy of about a factor of 2 for the case of j′ = 8. When we compare results

for the highest common initial vibrational level, v = 3, the agreement is less satisfactory.

Comparing the results in Figure 2.5 for {v = 3, j = 1} → {v′ = 2, j′}, we find an order of

magnitude difference. It is likely that the main source of this discrepancy lies in the difference

in the respective basis set sizes, as our calculations utilize a basis set of at least a factor of

two larger for all energies. As Roueff and Zeippen included no basis states with v > 3, we

should expect the accuracy of their results to diminish at higher initial vibrational numbers.

Moreover, in addition to our use of at least twice as many potential expansion terms in our

calculation, we suspect another source of the discrepancy to lie in the fact that Roueff and

Zeippen used the harmonic oscillator approximation for the HD vibrational wavefunctions

in determining the potential matrix element yλ(vj, v′j′|R), whereas in the current work,

as mentioned above, numerically determined wavefunctions for the actual HD interaction

potential are adopted. It is expected that agreement should deteriorate for higher v, as the

harmonic approximation becomes increasingly invalid. It has been pointed out by Forrey et

al. [50] and Balakrishnan et al. [51] that, for transitions involving v ≥ 2, the two methods

may yield widely discrepant values.

To test this hypothesis and to further explore the discrepancy with the earlier work of

Roueff and Zeippen, we plot in Figure 2.6 a selection of yλ(vj, v′j′|R) for a range of λ using the

MR potential and for both numerical and HO wavefunctions. Figure 2.6(a) displays matrix

elements for v = v′ = 3, j = j′ = 1 where it is seen that those based on HO wavefunctions

are shifted to smaller R compared to matrix elements utilizing wavefunctions obtained on

an anharmonic potential. The difference is more dramatic for v = v′ = 10, j = j′ = 0 as

displayed in Figure 2.6(b). Figures 2.6(c) and 2.6(d) display off-diagonal matrix elements

corresponding to the initial and final states of Figure 2.5. Significant differences are again

evident between matrix elements obtained with HO and anharmonic wavefunctions which

may partially explain the discrepancies in the rate coefficients given in Figure 2.5. Further,
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Figure 2.4: Comparison of He-HD inelastic rate coefficients for {v = 1, j = 1}→{ v′ = 0, j′}:
current results, solid lines; Roueff & Zeippen [4], dotted lines.

we note the that the matrix elements displayed here are similar to those given for He-H2 in

Lee et al. [46].

Finally, the accuracy of inelastic rate coefficients are sensitive to the details of the PES.

Lee et al. found that the MR potential gives total quenching rate coefficients for v, j =

1, 0 in excellent agreement with experiment for He-H2. However, we are unaware of any

measurements for v ≥ 2. Unfortunately, the MR PES is only constrained by explicit ab

initio energy data for H-H stretching distances of r = 1.2− 1.6 a.u. For larger r, MR adopt

a physically reasonable extrapolation function, but which may lead to some uncertainty in
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Figure 2.5: Comparison of He-HD inelastic rate coefficients for {v = 3, j = 1}→{ v′ = 2, j′}:
current results, solid lines; Roueff & Zeippen [4], dotted lines.

resulting collisional parameters for highly excited v or j levels. Mack et al. [52] explored

variations in the large-r extrapolation of the MR surface for He-H2 inelastic rate coefficients

for highly-excited rovibrational levels near dissociation, but found only small differences.

More recently, Paolini et al. [53] computed the total three-body recombination rate coefficient

for H-H-He collisions with the MR surface and found a 25% difference with experiment below

300 K. Agreement with experiment could be obtained with some modification to the large-r

part of the MR potential. As the three-body recombination rate is dominated by transitions

to highly-excited H2 bound and quasi-bound levels, this is a particularly sensitive, though
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not unique, test of the large-r behavior. Taken together, these observations suggests that the

current inelastic rate coefficients for He-HD are uncertain by about 25% for the dominant

transitions, while uncertainties for transitions with small rate coefficients are likely larger.

2.4 Astrophysical implications

A major motivation for this work as outlined in Section 2.1 is the possible importance of HD

as a coolant during the formation of the first stars, so called Population III stars, from the

primordial gas. Here we have focused on collisions due to He, but H and H2 are also important

impactors. In fact, most modeling studies of primordial gas collapse, have adopted the H-

HD cooling function of Galli and Palla [32], which was actually obtained by mass-scaling the

He-HD v = 0, j = 0 → v′ = 0, j′ = 1 rotational excitation rate coefficients of Schaefer [2].

More elaborate cooling functions have been constructed by Flower et al. [54] and Lipovka et

al. [36] with the former considering H, He, and H2 colliders, but the latter limited to H (see

the summary in Ref. [55]).

While it is beyond the scope of this work to create an HD cooling function, the new

rotational transition rate coefficients will likely have only a minor impact if included in new

cooling function computations for T between ∼100 and ∼1000 K (100 K being the lowest

temperature considered by [4]). However, for T < 100 K, Flower et al. [54] used an extrapo-

lated fit which could now be replaced by our explicit calculations which we note display an

upturn in the rate coefficients near 10-50 K. This is potentially significant as HD is expected

to be the dominant coolant below ∼150 K. On the other hand, the higher temperature

portion of the HD cooling function will be modified and improved given our larger range

of v and our use of larger basis sets and numerical HD rovibrational wavefunctions which

result in a reduction in the rate coefficient magnitudes compared to the earlier calculations

of Roueff and Zeippen, as shown in Figure 2.4. Lipovka [36] found that inclusion of rovi-

brational quenching rates for v = 1− 3 had a significant impact on the cooling function for

T > 1000 K and for all densities.
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While the possible importance of HD in collapsing primordial clouds may have been

first suggested by Varshalovich and Khersonskii [56], its significance as a coolant is still

being debated today (see for example Ref. [55, 57]). Nevertheless, knowledge of collisional

excitation rates are vital to the interpretation of observational data and for the application

to other environments. In fact, Dalgarno and Wright [58] proposed that the pure rotational

lines of HD and H2 could be used to infer the deuterium abundance if the lines could be

measured in nearby molecular clouds. They even hinted at the role of HD as a coolant in the

“prestellar era.” Subsequently, pure HD rotational transitions have been observed with the

Infrared Space Observatory by Bertoldi et al. [59] and Wright et al. [60], who detected the

v = 0, j = 6 → 5 (or R(5)) line and the v = 0, j = 1 → 0 (R(0)) line, respectively, toward

Orion Peak 1. Neufeld et al. [61] detected the pure rotational R(3) and R(4) transitions with

Spitzer toward supernova remnant IC 443. They also obtained tentative detections toward

the star-forming region GGD 37 and Herbig-Haro objects HH 54 and HH 7 which they use

to estimate the interstellar deuterium abundance. Further, the R(0) line was detected in

absorption toward the far-IR continuum sources Sgr B2 [62] and W49 [63].

Regarding rovibrational transitions, there appears to be a single detection, the v = 1 → 0,

j = 6 → 5 line was observed by Ramsay Howat et al. [64] toward Orion Peak 1 with

the United Kingdom Infrared Telescope. However, as H2 rovibrational emission lines have

been observed from numerous photodissociation regions (PDRs), more HD rovibrational

detections are likely given improvements in IR detector technology. In fact, HD chemistry

and collisional excitation models have been incorporated into the Meudon PDR code, but so

far limited to just rotational transitions [65, 66]. The availability of a comprehensive set of

rovibrational collisional rate coefficients, such as begun here, should motivate enhancements

in such modeling capabilities.
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2.5 Conclusions

Collisional rate coefficients of HD are an important ingredient in the simulations of early star

formation and interpretations of IR observational data. We have extended the calculations of

Roueff and Zeippen for the He-HD system to include transitions with j=0 and 1 for v=0 to

17, and for which ∆v = 0, –1, and –2. The energy and temperature range of the calculations

have been expanded into the ultracold limit to resolve resonant features near 0.5 K. While

our results generally agree with those of Roueff and Zeippen for v ≤ 2, we find significant

discrepancies for higher vibrational levels. We believe this is due primarily to differences in the

sizes of our basis sets, and possibly also to the use of accurate HD numerical wavefunctions,

as opposed to the harmonic approximation adopted in the previous work. The new He-HD

rovibrational collisional rate coefficients should allow for a more accurate treatment of the

thermal balance and emission spectra due to HD in a variety of molecular environments.
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Figure 2.6: Comparison of interaction potential matrix elements yλ(vj, v′j′|R) (10−4 a.u.) as
given by Equation 2.3 using numerical rovibrational wavefunctions and harmonic oscillator
(HO) wavefunctions. All HO results are given by thin solid black lines. (a) Diagonal elements
for v, j = 3, 1. (b) Same as (a), but for v, j = 10, 0. (c) and (d) off-diagonal elements for
λ = 1 and λ = 5, respectively, compared to isotropic diagonal elements. All matrix elements
are taken as positive values for plotting convenience.



Chapter 3

Isotope effects in complex scattering lengths for He collisions with

molecular hydrogen1

1Based on J. L. Nolte, B. H. Yang, P. C. Stancil, T.-G. Lee, N. Balakrishnan, R. C. Forrey, and
A. Dalgarno, Phys. Rev. A 81, 014701 (2010). Copyright (2010) by the American Physical Society.
Reprinted with permission of publisher.
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Abstract

We examine the effects of theoretically varying the collision-system reduced mass in collisions

of He with vibrationally excited molecular hydrogen and observe zero-energy resonances for

select atomic “hydrogen” masses less than 1 u or a “helium” mass of 1.95 u. Complex scat-

tering lengths, state-to-state vibrational quenching cross sections, and a low-energy elastic

scattering resonance are all studied as a function of collision-system reduced mass. Exper-

imental observations of these phenomena in the cold and ultracold regimes for collisions of

3He and 4He with H2, HD, HT, and DT should be feasible in the near future.

3.1 Introduction

Recent advances in creating dense samples of translationally cold molecules have generated

much interest in understanding atomic and molecular interactions at temperatures close to

absolute zero. Concurrently, collisions of rotationally and vibrationally excited molecules

with cold atoms and diatomic molecules have received considerable theoretical and experi-

mental attention [67, 68, 69, 70]. Investigation of chemical reactivity in cold and ultracold

atom-molecule collisions and how the reactivity could be influenced by external electric and

magnetic fields are topics of ongoing research in this area [68, 69, 70].

A key aspect of ultracold collisions is that the collisional outcomes are generally sensitive

to details of the interaction potentials. At temperatures lower than 1.0 K, perturbations

introduced by external electric and magnetic fields are comparable to the incident kinetic

energy and external fields may strongly influence resulting collisional parameters. This is

especially the case if the bound state energy levels of the molecule are modified by the

presence of the external field inducing new resonances or eliminating existing ones [71].

There is also extensive literature on isotope effects in chemical reactions [72, 6] and recent

studies indicated that these effects are more pronounced in ultracold collisions, especially

when tunneling or threshold resonances are present [73, 7, 69]. Indeed, it has been shown that

varying the reduced mass of the collision complex in a scattering calculation is equivalent to
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adjusting the interaction potential [5]. Bodo et al. [7] demonstrated this for the F+H2 reaction

by artificially varying the mass of the hydrogen atom from 0.5 to 2.0 u. They found that

for a fictitious “hydrogen” mass of 1.12 u, a zero-energy resonance is formed in this collision

system yielding a zero-temperature rate coefficient that is about three orders of magnitude

larger than the corresponding value for the F+H2 reaction. This effect is somewhat akin

to the Feshbach resonance method in which the scattering length is varied by sweeping a

magnetic field across a Feshbach resonance that couples a bound state of the molecule to

the energy of two colliding atoms [74, 75, 76].

Further, reduced mass tuning of the complex scattering length near zero-energy reso-

nances may be useful in constructing complex optical potentials for each rovibrational level.

The resulting 1-D potentials would be easier to use in subsequent applications (e.g. molecules

in an external field) than the corresponding coupled-channel potentials. In this approach,

the zero-energy resonances would play a similar role to that of magnetic Feshbach resonances

when an asymptotic bound state model [77, 78, 79] is used to construct model potentials.

Here, we show the effect of artificially varying the mass of the hydrogen atom or the

He atom in He collisions with H2, with an aim of understanding the sensitivity of the cross

sections to small changes in the interaction potential as well as energies of quasibound

triatomic complexes formed during the collision.

3.2 The complex scattering length2

In purely elastic scattering, the cross section at very low energies is determined solely by the

scattering length a, defined as the real quantity

a ≡ − lim
k→0

tan η(0)(k)

k
, (3.1)

where η(0)(k) is the s-wave phase shift. For inelastic scattering, however, we may redefine the

phase shift as a complex quantity η(l)
i = λ(l)

i + iµ(l)
i , where l is the orbital angular momentum

2This section does not appear in Nolte et al. (2010) [80], but is added here to outline the relevant
theory.
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quantum number for the system, in which case the scattering length for the incoming channel

becomes

ai = − lim
ki→0

tan(λ(0)
i (ki) + iµ(0)

i (ki))

ki
. (3.2)

As we shall see, introducing a complex phase shift and scattering length will conveniently

enable us to express several inelastic scattering observables in terms of the real and imaginary

parts of these complex quantities.

It is well known that in the case of elastic scattering, tan η(0)(k) goes as k in the zero-

energy limit [81]; i.e., for small k, η(0)(k) ∼ k. For similar behavior in λ(0)
i and µ(0)

i , we have

[82]

ai = − lim
ki→0

sinh(2λ(0)
i (ki)) + i sin(2µ(0)

i (ki))

ki(cosh(2λ(0)
i (ki)) + cos(2µ(0)

i (ki)))
(3.3)

≈ − lim
ki→0



λ(0)
i (ki)

ki
+ i

µ(0)
i (ki)

ki



 .

Defining the real and imaginary parts of the scattering length

αi ≡ − lim
ki→0

λ(0)
i (ki)

ki
, (3.4)

βi ≡ lim
ki→0

µ(0)
i (ki)

ki
, (3.5)

we have

ai = αi − iβi. (3.6)

In order for the absolute value of the elastic scattering matrix element S(l)
ii = e2iη

(l)
i to be less

than or equal to one, the imaginary part of the phase shift µ(l)
i – and therefore βi – must be

positive.

At very low energies, the inelastic s-wave cross section may be simply expressed in terms

of the imaginary parts of either the phase shift or the scattering length. To see this, we note

that the total inelastic cross section is given by

σin =
π

k2
i

∞∑

l=0

(2l + 1)[1− |S(l)
ii |2] (3.7)

=
π

k2
i

∞∑

l=0

(2l + 1)[1− e−4µ
(l)
i ].
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Keeping only the l = 0 term and Taylor expanding the exponential, we have

σ(0)
in ≈ 4πµ(0)

i

k2
i

, (3.8)

and using Equation (3.5) gives

σ(0)
in ≈ 4πβ(0)

i

ki
. (3.9)

As the s-wave is the only significant contributor in the ultracold limit, we may omit the

superscript, and simply write, for the low-energy regime,

σin =
4πµ(0)

i

k2
i

(3.10)

=
4πβi

ki
.

Moreover, since in the limit of ki → 0 we have

S(0)
ii = e2iη

(0)
i (3.11)

≈ 1 + 2iη(0)
i

= 1− 2iki(αi − iβi),

we can write, for the elastic scattering cross section (assuming only an s-wave contribution)

σel =
π

k2
i

|1− S(0)
ii |2 (3.12)

=
π

k2
i

|2iki(αi − iβi)|2,

= 4π|ai|2,

just as in the case of pure elastic scattering.

The inelastic rate coefficient also has a simple expression in terms of the imaginary part

of the scattering length. The rate coefficient is given by

qin = 〈viσin〉vi , (3.13)

where 〈 〉vi denotes an average over the collision velocity vi, which is given by

vi =
h̄ki

µ
. (3.14)
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In the zero-energy limit, we have

qin =
h̄ki

µ
σin (3.15)

=
4πh̄

µ
βi.

In the low energy limit, therefore, the two parameters αi and βi go to constants which

determine the elastic and inelastic cross sections and quenching rate coefficients, and are

therefore of importance to the study of ultracold gases. In particular, for cold atom or

molecule trapping experiments, αi and βi give a measure of the efficiency of evaporative

cooling. For large βi (∼ qin), quenching collisions lead to a gain in kinetic energy and trap

loss, while the cross sections of elastic collisions which thermalize the relative velocity of the

particles are determined by the square of the magnitude of the scattering length, α2
i + β2

i .

3.3 Methodology

Our analysis is primarily based on the behavior of cross sections in the Wigner threshold

regime [83] where the scattering length approximation can be conveniently used to charac-

terize elastic and inelastic scattering [8, 84]. A number of previous studies have obtained the

complex components of the scattering length including calculations of H-H2 [8] and He-H2

[84, 85, 86] scattering. Here we extend this analysis to scattering between He and a range

of real and artificial isotopes of H2. Specifically, we consider the three cases in which we

set one atom in the diatom to be H, D, or T and vary the mass of the other atom giving

collisions of the form 3,4He-HX, 3,4He-DX, and 3,4He-TX, where X is varied over a large

range of masses, excluding homonuclear cases. Thus the limit for the HX reduced mass as X

approaches infinity is µ = mH = 1.00794 u, that for DX is µ = mD = 2.0135532127 u, and

for TX it is µ = mT = 3.0160492 u. The entrance channel in each case is selected to be v = 1,

j = 0, and we consider only collisions in the ultracold limit (we adopt a collision energy of

10−6 cm−1, except in the case of the elastic p-wave scattering resonance). Artificially varying

the helium mass is also considered for collisions with HD.
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3.4 Computational method

Elastic and inelastic cross sections were obtained by performing close-coupling calculations

using the non-reactive scattering program MOLSCAT [87]. The potential energy surface

(PES) adopted here was that of Muchnick and Russek (MR, [88]); this surface, along with

that of Boothroyd et al. (BMP, [89]), was discussed previously by Lee et al. [90] who per-

formed state-to-state rovibrational scattering calculations for He-H2 and found that the MR

surface gave the best agreement with available experimental data at thermal energies. (See

also Chapter 2, where the MR potential was adopted for 4He-HD inelastic scattering.)

Here, the isotope dependencies are included by adjusting the collision system reduced

mass, the mass of the diatom in determining the rovibrational energies, and the location of

the diatom center of mass for specifying the Jacobi coordinates. We do not consider mass-

dependent adiabatic or nonadiabatic corrections to the PES [91]. The scattering calculations

are performed using the close-coupling method (see Section 2.2) with appropriate conver-

gence tests performed for the basis set size, asymptotic matching distance, and number of

quadrature points for evaluating the matrix elements of the interaction potential. Three par-

tial waves were found to be adequate for convergence for the ultracold calculations while a

larger number of partial waves was used for the elastic resonance studies.

3.5 Results

It was previously predicted by Balakrishnan et al. [84] in their study of collisions of H2 with

3He and 4He that for each vibrational level of H2 one should find an associated bound state

of He-H2 lying below the dissociation limit of the He-H2 complex. In what amounts to an

adjustment of the well depth of the interaction potential between the atom and molecule,

we here varied the reduced mass of H2. In Figure 3.1 we show the real (elastic) part of the

scattering length as a function of µ/µH2 , where µH2 is the reduced mass of H2. Zero-energy

resonances are identified for the case of HX with 3He and 4He at mass ratios of 0.94 and
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0.78. The former value is smaller than, but very close to, the physical reduced mass limit

of H2, i.e. of two H atoms. Possible resonances corresponding to bound states for the other

isotopomer-He combinations may occur at much lower mass ratios than considered here. The

effect of varying the helium mass for the He-HD case is shown in the inset of Figure 3.1. It

is seen that a zero energy resonance occurs for a “helium mass” of ∼1.95 u.

Figure 3.1: Real part α10 of the scattering length for 3He and 4He collisions with HX, DX
and TX as a function of the ratio of the reduced masses of the hydrogen isotopomer and
H2. Inset, α10 for a variation of the He mass for He-HD collisions.

The imaginary part of the scattering length β10 is displayed in Figure 3.2 for 3He and

4He where it is seen to generally increase with decreasing mass ratio below a value of ∼2.

Some oscillatory behavior is also evident below µ/µH2 = 1 for DX. For instance, a large

resonance occurs near a mass ratio 0.58 for both 3He-DX and 4He-DX, and then another
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peak at ∼0.75 followed by a much smaller one at 0.98. The inset shows the variation of β10

with the mass of the helium atom for He-HD collisions. For a “helium mass” of ∼ 1.95 u

which corresponds to the zero-energy resonance in Figure 3.1, β10 increases by about three

orders of magnitude compared to the 3He case and four-orders of magnitude compared to

the 4He case. As discussed by Flasher and Forrey [92], the ratio β10/α2
10 is found to vary

smoothly as the reduced mass is decreased through the zero-energy resonance, as shown for

3He- and 4He-HX in Figure 3.3.

Figure 3.2: Same as in Figure 3.1, but for the imaginary part β10 of the scattering length.

The oscillatory behavior in β10 can be understood by considering the state-to-state cross

sections for 3He-DX, for example, given in Figure 3.4. For H2, rotational levels up to j′ = 8

are open in the ultracold limit, as shown by the energy level diagram in Figure 3.5. As the
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Figure 3.3: Ratio of β10/α2
10 as a function of reduced mass ratio for 3,4He-HX.

mass is decreased, the highest rotational state is not energetically accessible at the collision

energy considered here. For example, the j′ = 7 state is only accessible for mass ratios greater

than about 0.58, which is the location of a resonance in β10. However, before this rotational

state disappears into the continuum, its cross section decreases sharply to a minimum at a

mass ratio of 0.68. Further, the state-to-state cross section for j′ = 7 has a maximum at

0.75, which corresponds to a maximum in β10. The maximum for the mass ratio of 0.98 is

then caused by the appearance of the j′ = 8 state as it becomes energetically open.

In their study of He-H2 transitions with initial state (v = 1, j = 0) using the BMP

surface, Lee et al. [90] observed a similarly acute dependence of particular state-to-state

rate coefficients on reduced mass. In increasing the molecular reduced mass, the j′ = 8 rate
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Figure 3.4: State-to-state quenching cross sections for 3He-DX(v = 1, j = 0) →3He-DX(v =
0, j′) as a function of the DX/H2 reduced-mass ratio.

coefficient was seen to decrease exponentially while other rotational states showed a much

less sensitive dependence, with the j′ = 10 channel only becoming exoergic and contributing

at a relatively high reduced mass. A somewhat similar situation can be seen in Figure 3.4,

though using the MR PES.

In Figure 3.6(a), we present the elastic cross section in the cold to ultracold regimes for

4He collisions with H2 and three physical isotopes. At ultracold energies, the elastic cross

section decreases with increasing target mass. Also, a J = 1, p-wave resonance occurs near ∼

1 cm−1 for H2. Figure 3.6(a) shows that this resonance shifts to lower energies with increasing
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Figure 3.5: Rovibrational energy levels for first three values of v for He-H2.

molecular target mass with the peak becoming broader and having a maximum at a value of

∼ 0.07 cm−1 for DT, but the magnitude of the resonance is largest for HT. Resonances for

larger values of J are also present, but difficult to discern from the background cross section.

However, as illustrated in Figure 3.6(b), the J = 2 resonance for DT is prominent near ∼ 1.5

cm−1. The experimental detection of this low-energy resonance in the cold regime for the

physical isotopomers would provide critical tests of the spherical component of the He-H2

interaction potential.

An avenue for the measurement of low-energy He-H2 cross sections is suggested by recent

studies of Barletta et al. [93] who proposed the possibility of creating ultracold H2 through

collisions with ultracold rare gas atoms. In their method, cold molecules created by optical
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Stark deceleration [94] are subjected to sympathetic cooling by thermal contact with laser-

cooled rare gas atoms. Compared to other rare gas atoms, the inelastic cross sections for He

with para-H2 are largest, making it a favorable case for such an experimental study [93].

3.6 Conclusions

We have explored the sensitivity of elastic and inelastic scattering in ultracold He-H2 col-

lisions for a range of physical and artificial isotopes of H2 and He. The purpose of these

calculations was to explore how changes in bound state energy levels of H2 and that of

the triatomic He-H2 van der Waals complexes influence scattering at low energies. We have

shown that by varying the molecular (or helium) mass, a zero-energy resonance appears for

the 4He-H2 and 3He-H2 collision systems with v = 1, j = 0, but for reduced-masses corre-

sponding to nuclear masses less than that of the proton (or 3He). For reduced mass ratios

µ/µH2 < 1, the imaginary part of the scattering length for collisions with 3,4He displays a

number of oscillations and resonances which are attributable to energetically open rotational

levels as the reduced mass is increased. An elastic resonance in the cold regime due to p-wave

scattering is seen to shift to lower energies as the target mass is increased. For He-HD, a

zero-energy resonance is found to occur for a “helium mass” of ∼ 1.95 u.
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Figure 3.6: Low-energy elastic cross sections for 4He collisions with molecular hydrogen
isotopomers with v = 1, j = 0. (a) Total cross sections for H2, HD, HT, and DT. (b) Partial
cross sections for the dominant partial waves for 4He-DT.



Chapter 4

Final-state resolved charge exchange between O7+ and H: Applications to

x-ray emission in the solar system1

1Based on J. L. Nolte, Y. Wu, P. C. Stancil, R. J. Buenker, D. R. Schultz, Y. Hui, I. N. Draganić,
C. C. Havener, and M. J. Radović. To be submitted to Phys. Rev. A.
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Abstract

Charge exchange cross sections are calculated for the collision system O7+ + H using the

quantal molecular orbital close-coupling method. Calculations are performed over a range of

collision energies from 0.01 eV/u to 1 keV/u for all important n, l, and S-resolved states. In

particular, we focus on the distribution of electron capture into the n=4 and 5 manifolds, for

both singlet and triplet states. We compare our results to new atomic orbital close-coupling,

classical trajectory Monte Carlo, and experimental merged-beams results, and briefly discuss

their relevance to solar system x-ray emission.

4.1 Introduction

Charge exchange between highly charged solar wind ions and neutral atomic species such

as H and He has over the past two decades been found to be the underlying mechanism

in x-ray emission from several sources within the solar system, as well as the dominant

local contributor to the diffuse soft x-ray background (SXRB) seen in all directions. These

discrete sources include comets, the exosphere of Mars, the x-ray aurora of Jupiter, and

the geocorona, while the local contribution to the SXRB is thought to arise from diffuse

interstellar neutrals which have entered the heliopause and undergo charge exchange with

solar wind species. In this work, we present charge exchange cross sections obtained through

a fully quantal treatment of one of the most important such ion-neutral pairs, O7+ and H,

and discuss the implications of these results in understanding astrophysical x-ray emission

within the solar system.

Consider as a simple example the SXRB, which has been revealed in recent decades

through observations in the soft x-ray band (0.1-1.5 keV). These include the Wisconsin [9]

and ROSAT [10] all-sky surveys, as well as observations by a sounding rocket equipped with

microcalorimeters [11], the Chandra X-ray observatory [12], XMM -Newton [13], and the

Japanese satellite Suzaku [14, 15]. While many of the sources of this emission are galactic or

extragalactic, it was proposed by Cox [16] that observed temporal variations, or “long-term
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enhancements” (LTE’s), in the diffuse x-ray emission below 1 keV may be due to a solar

wind charge exchange (SWCX) mechanism, similar to that proposed by Cravens [17, 18]

to account for cometary x-ray emission. (For a review of x-ray emission from comets, see

Ref. [95].) In the SWCX mechanism, an x-ray is produced as a heavy solar wind ion de-

excites after capturing an electron from a neutral H or He atom which has penetrated the

heliosphere. It has since been suggested that, at lower energies (0.1-0.5 keV), as much as

half of the SXRB may be due to heliospheric SWCX [19, 20]. Apart from its role as a

foreground contaminant in observations of the galactic and extragalactic SXRB (see, e.g.,

Ref. [96]), heliospheric SWCX is worthy of study in its own right, as it allows us to remotely

probe the composition, velocity, temporal variation, and spatial anisotropy of the solar wind

[97, 98, 99].

The dominant contributing solar wind ions are most likely highly charged (bare or hydro-

genic) C and O, due to their relatively high abundance. In the case of O7+, the O VII Kα

triplet around 570 eV (from the resultant O6+ ion after charge exchange), has been found to

be a ubiquitous presence in repeated observations of the x-ray background [11, 12, 13, 14, 15],

and in observations of the dark side of the moon by Chandra, where its presence has been

attributed to charge exchange within Earth’s geocorona [100]. The forbidden transition (1s2s

3S1 → 1s2 1S0) provides a useful diagnostic for charge exchange, as the intensity of this line

is predicted to be much in excess of the resonant (1s2p 1P1 → 1s2 1S0) and intercombination

(1s2p 3P1 → 1s2 1S0) lines when arising from charge exchange, unlike the case of a thermal

plasma where the ratio of intensities is nearly unity [100, 101].

Additionally, charge exchange is known to contribute to planetary x-ray emission, in

particular from the Martian exosphere and the x-ray aurora of Jupiter. Oxygen emission

features dominate the latter in the 0.6 to 0.9 keV range, although primarily resulting from

collisions with H2 [102, 103, 104, 105]. In the case of Mars, the dominance of the O6+

forbidden line to the exclusion of the intercombination line has again proved a valuable

diagnostic pointing to charge exchange as the origin of ionization in the exosphere [106].
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More recently, observations of the Cygnus Loop with Suzaku and XMM -Newton have

revealed excess emission at 0.7 keV, most likely arising from charge exchange between

O7+ and neutrals, which may account for an apparent anomalous enhancement of metal

abundances in the region [107].

The accurate modeling of x-ray emission arising in these environments requires detailed

knowledge of state (n, l, S) resolved charge exchange cross sections. Experimental investi-

gations of highly charged ions colliding with neutrals have shown that the l-distribution of

capture states may not be assumed to follow that predicted by a statistical population at typ-

ical solar wind velocities [108], and triplet-singlet ratios are likewise velocity-dependent, and

may approach 3:1 only at energies above 10 keV/u [109]. Moreover, while many laboratory

measurements of the relevant ion-neutral systems have been performed over the past several

decades, these studies have largely been constrained by poor energy resolution and limited

detector wavelength ranges. Theoretical methods are therefore a necessary complement to

laboratory data.

The available theoretical methods vary in sophistication from fully quantal close-coupling

(CC) methods to those based on further approximation such as semiclassical and quasi-

classical approaches. The latter include the classical over-the-barrier (COB) method (e.g.,

Ryufuku et al. [110]), the multichannel Landau-Zener (LZ) approximation [111], and the

more sophisticated classical trajectory Monte Carlo (CTMC) technique [112]. It has been

shown, however, that while quasi-classical (i.e., CTMC) methods may model certain exper-

imental trends reasonably well, their accuracy in determining even the n-state distribution

for the relevant energies can be severely limited [113], thus necessitating the use of a quantal

treatment. The quantum mechanical molecular orbital close-coupling (MOCC) method which

we adopt will be described in the following sections.
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4.2 MOCC Method

4.2.1 Molecular Structure Calculations

Adiabatic potentials and nonadiabatic couplings for the O7+ + H scattering system have

been obtained with the multi-reference single- and double-excitation configuration interaction

(MRDCI) approach [114, 115], described below.

In the collision of O7+ with atomic hydrogen, an electron is transferred from the hydrogen

atom to the oxygen ion in a state with principal quantum number n most likely equal to 5

or 4. Because the electron originally bound in O7+ remains in the tightly-bound 1s shell, the

captured electron’s state is essentially hydrogen-like in character. However, the typical basis

set adopted in molecular structure calculations in such cases is the standard set developed

for the neutral O atom with the addition of diffuse orbitals. This is clearly an insufficient

treatment. Therefore, in Wu et al. [116] we have developed a hybrid basis set consisting of

two components: i) the standard Dunning neutral atom basis and ii) a one-electron basis

of hydrogen-like orbitals. The latter basis was optimized to reproduce nearly exactly the

hydrogen-like Rydberg ion energies, and includes a large Gaussian basis set (17s, 11p, 9d,

6f , 3g). A (6s, 3p, 2d, 1f) basis contracted to [4s, 3p, 2d, 1f ] was employed for hydrogen [117].

Using the optimized Gaussian basis, the MRDCI approach has been applied and a full CI

calculation was carried out to compute the adiabatic potentials and nonadiabatic coupling

matrix elements of the [OH]7+ system for internuclear distances between 1.0 and 50 a.u. Ten

1Σ+ and ten 3Σ+ electronic states in A1 symmetry and seven 1Π and seven 3Π electronic

states in B1 symmetry have been calculated.

The adiabatic potentials for the singlet and triplet manifolds are given in Figures 4.1 - 4.4.

(The unit of energy is 1 a.u. = 1 hartree = 27.2114 eV.) Accurate relative asymptotic energies

of the [OH]7+ system have been obtained and compared with the corresponding experimental

atomic spectroscopic data [118] in Table 4.1. When experimental data are lacking for some

O6+ Rydberg levels, energies deduced from the calculations of Johnson et al. [119] have



40

been utilized where available. As shown in Table 4.1, for the MRDCI calculation with the

optimized Gaussian basis set functions, the largest error in the relative asymptotic energies

of the [OH]7+ system is about 0.00872 a.u. for the important channels with n of 4 and 5.

Given the optimized basis, the molecular wavefunctions are computed and the nonadi-

abatic radial and rotational coupling elements are calculated by applying a finite-difference

method [114]. Examples of the coupling elements are given in Figures 4.5 - 4.8.

Figure 4.1: Singlet adiabatic potentials for O7++H.

4.2.2 MOCC Scattering Theory

For the calculation of charge exchange cross sections, we employed the fully quantal MOCC

method. In this method, the coupled radial Schrödinger equations are solved for the coeffi-



41

Table 4.1: Comparison of asymptotic separated-atom energies (in a.u., where 1 a.u. = 1
hartree) between MRDCI calculations and experimental NIST data [118] for O7+ + H.
∆Ecalc is the energy separation of the asymptotic atomic state from the initial state O7+(1s)
+ H(1s) in the MRDCI calculations. ∆Eexp is the same quantity for the experimental values.
∆E = |∆Eexp − ∆Ecalc|. The value marked ∗ has been calculated from the 5 1P1 - 5 1S0

transition wavelength in Johnson et al. [119]. Experimental energies marked N/A are not
available.

Asymptotic atomic state Mol. state This work Expt.[118] ∆Ecalc ∆Eexp ∆E

Singlets

O6+(1s4s 1S) + H+ 1 1Σ+ -33.54801 -33.57149 1.04801 1.04805 0.00004
O6+(1s4d 1D) + H+ 2 1Σ+ -33.53085 -33.55522 1.03085 1.03178 0.00093

1 1Π -33.53081 -33.55522 1.03081 1.03178 0.00097
O6+(1s4f 1F o) + H+ 2 1Π -33.52993 -33.55445 1.02993 1.03101 0.00108

3 1Σ+ -33.52992 -33.55445 1.02992 1.03101 0.00109
O6+(1s4p 1P o) + H+ 4 1Σ+ -33.52464 -33.54871 1.02464 1.02527 0.00063

3 1Π -33.52462 -33.54871 1.02462 1.02527 0.00065
O6+(1s5s 1S) + H+ 5 1Σ+ -32.98837 ∗-33.01188 0.48837 0.48844 0.00007
O6+(1s5f 1F o) + H+ 6 1Σ+ -32.98049 -33.00322 0.48049 0.47978 0.00071

4 1Π -32.98041 -33.00322 0.48041 0.47978 0.00063
O6+(1s5g 1G) + H+ 7 1Σ+ -32.97918 N/A 0.47918 N/A N/A

5 1Π -32.97916 N/A 0.47916 N/A N/A
O6+(1s5d 1D) + H+ 6 1Π -32.97831 -33.00136 0.47831 0.47792 0.00039

8 1Σ+ -32.97829 -33.00136 0.47829 0.47792 0.00037
O6+(1s5p 1P o) + H+ 9 1Σ+ -32.97173 -33.00035 0.47173 0.47691 0.00518

7 1Π -32.97170 -33.00035 0.47170 0.47691 0.00521
O7+(1s) + H(1s) 10 1Σ+ -32.50000 -32.52344 0 0 0

Triplets

O6+(1s4s 3S) + H+ 1 3Σ+ -33.57893 -33.60229 1.07893 1.07885 0.00008
O6+(1s4p 3P o) + H+ 2 3Σ+ -33.54756 -33.57377 1.04756 1.05033 0.00277

1 3Π -33.54751 -33.57377 1.04751 1.05033 0.00282
O6+(1s4d 3D) + H+ 3 3Σ+ -33.53149 -33.55725 1.03149 1.03381 0.00232

2 3Π -33.53146 -33.55725 1.03146 1.03381 0.00235
O6+(1s4f 3F o) + H+ 3 3Π -33.53025 -33.55732 1.03025 1.03388 0.00363

4 3Σ+ -33.53023 -33.55732 1.03023 1.03388 0.00365
O6+(1s5s 3S) + H+ 5 3Σ+ -33.00230 -33.02696 0.50230 0.50352 0.00122
O6+(1s5p 3P o) + H+ 6 3Σ+ -32.98212 -33.01407 0.48212 0.49063 0.00851

4 3Π -32.98191 -33.01407 0.48191 0.49063 0.00872
O6+(1s5f 3F o) + H+ 5 3Π -32.98033 -33.00605 0.48033 0.48261 0.00228

7 3Σ+ -32.98032 -33.00605 0.48032 0.48261 0.00229
O6+(1s5g 3G) + H+ 6 3Π -32.97922 N/A 0.47922 N/A N/A

8 3Σ+ -32.97914 N/A 0.47914 N/A N/A
O6+(1s5d 3D) + H+ 7 3Π -32.97841 -33.00464 0.47841 0.48120 0.00279

9 3Σ+ -32.97836 -33.00464 0.47836 0.48120 0.00284
O7+(1s) + H(1s) 10 3Σ+ -32.50000 -32.52344 0 0 0
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Figure 4.2: Singlet adiabatic potentials for O7++H (detail; 1Σ+ states only).

cients Fi(R) of the molecular orbitals ψi(s, R) in the expansion of the total wavefunction

Ψ =
∑

j

ψj(s, R)Fj(R), (4.1)

where R is the internuclear position vector and s is the position of the electron in the

body-fixed frame. The coupled radial equations are given by
[

∂2

∂R2
− J2

i − Λ2
i

R2
+ k2

i (R)

]

RFi(R) =
∑

j

[V R
ij (R) + V C

ij (R)]RFj(R), (4.2)

in which Ji is the total angular momentum operator and Λi the projection of the electronic

angular momentum on the internuclear axis for state i, and k2
i (R) = −2µ(εi(R)−E) where

εi(R) is the adiabatic potential energy curve for the ith molecular orbital, E is the collision
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Figure 4.3: Triplet adiabatic potentials for O7++H.

energy, and µ is the nuclear reduced mass. On the right side of the equation, the quantities

V R
ij (R) and V C

ij (R) represent the radial and rotational couplings, respectively, and are given in

terms of body-fixed electronic angular momentum operators Lx and Ly and polar coordinates

R, Θ, Φ of R in the space-fixed frame by

V R
ij (R) =

[

〈i|− ∂2

∂R2
+

L2
x + L2

y

R2
|j〉 − 2〈i| ∂

∂R
|j〉 ∂

∂R

]

δΛi,Λj (4.3)

and

V C
ij (R) =

2

R2

[

i〈i|Ly|j〉
∂

∂Θ
− 〈i|Lx|j〉

(
i

sin Θ

∂

∂Φ
− Λj cot Θ

)]

. (4.4)

In practical calculations, only the last and first terms of Equation (4.3) and Equation (4.4),

respectively, are retained as the remaining terms are typically of smaller magnitude.



44

Figure 4.4: Triplet adiabatic potentials for O7++H (detail; 3Σ+ states only).

Transitions between states with the same symmetry 2S+1Λ, where S is the total electronic

spin quantum number, are driven by the term Aij(R) = 〈i| ∂
∂R |j〉 which appears in V R

ij (R).

In the region of an avoided crossing between two adiabatic potential energy curves, Aij can

become nearly singular and create numerical difficulties (see Figures 4.7 and 4.8). For this

reason, we make a unitary transformation of the molecular orbitals and channel functions to a

diabatic basis in which Aij(R) vanishes. The molecular orbitals in the diabatic representation

are expanded in terms of adiabatic molecular orbitals:

ψd
i (s, R) =

∑

j

Cij(R)ψj(s, R), (4.5)
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Figure 4.5: Family of (5 3Σ+ - N 3Σ+) nonadiabatic radial couplings for O7++H.

where the symmetry is preserved in the diabatic basis by only combining adiabatic molecular

orbitals of the same symmetry. The adiabatic channel functions likewise transform according

to

Fi(R) =
∑

j

Cij(R)Gj(R). (4.6)

The expansion coefficients Cij are elements of the unitary matrix C(R) chosen such that

[120]
d

dR
C(R) + A(R)C(R) = 0, (4.7)

where A(R) is the matrix of nonadiabatic radial coupling terms Aij(R).
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Figure 4.6: Family of (N 3Σ+ - 1 3Π) nonadiabatic rotational couplings for O7++H.

If we introduce a partial wave decomposition of the amplitudes Gj(R)

Gj(R) =
1

R

∑

J,M

gJ
j (R)HJ

M,Λj
(Θ, Φ), (4.8)

where HJ
M,Λj

(which reduces to a spherical harmonic function in the case of M = 0) is a

function of the polar angles Φ and Θ of R in the space-fixed frame, then the coupled radial

equations reduce to the form

[
∂2

∂R2
+

Λ2
i − J(J + 1)

R2
+ 2µE

]

gJ
i (R) =

∑

j

[dV R
ij (R) +d V C

ij (R) + 2µUij(R)]gJ
j (R), (4.9)
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Figure 4.7: Nonadiabatic radial couplings with avoided crossings for adjacent n = 5 singlet
channels for O7++H.

where

Uij(R) =
∑

k

C†
ik(R)εk(R)Ckj(R), (4.10)

and dV R
ij (R) and dV C

ij (R) are the radial and rotational couplings with respect to the diabatic

basis states. The radial coupling takes the same form as in the adiabatic basis, but the

rotational coupling may be reduced to

dV C
ij (R) = −2δΛi,Λj+1 [(J − Λj)(J + Λj + 1)]1/2 〈id|iLy|jd〉

R2

+2δΛi,Λj−1 [(J − Λj)(J − Λj + 1)]1/2 〈id|iLy|jd〉
R2

. (4.11)
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Figure 4.8: Nonadiabatic radial couplings with avoided crossings for adjacent n = 5 triplet
channels for O7++H.

Recasting the coupled equations into matrix form, we have

[
∂2

∂R2
I + VJ(R)

]

GJ(R) = 0, (4.12)

in which the elements of the matrix VJ(R) are given by

VJ
ij(R) =

Λ2
i − J(J + 1)

R2
δij + 2µ(Eδij − Uij(R))−d V R

ij (R)−d V C
ij (R), (4.13)

and each column of the square matrix GJ(R) is a linearly independent solution of Equation

(4.9), GJ
ij(R) being the ith channel component of the jth independent solution. The solutions

of these equations are obtained using the multichannel log-derivative method of Johnson
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[121]. The solutions are subject to the boundary conditions

GJ(R) = J J(R) +N J(R)KJ , (4.14)

in which KJ is the reaction matrix and

J J
ij (R) = δijk

1/2
i RjJ(kiR)

N J
ij(R) = δijk

1/2
i RnJ(kiR), (4.15)

where jJ(kiR) and nJ(kiR) are spherical Bessel functions of the first and second kind for ion-

neutral channels, or Coulomb functions of the first and second kind for Coulomb channels.

After solving for KJ , the scattering matrix SJ is obtained by

SJ = [I + iKJ ][I − iKJ ]−1, (4.16)

and the cross section for an inelastic transition from state i to j is

σij =
πp0

k2
i

∑

J

(2J + 1)|SJ
ij|2. (4.17)

The probability of approach p0 is related to the total number of molecular states gab

which can be formed by a target a and projectile b with electron spin angular momenta Sa

and Sb, and electron orbital angular momenta La and Lb, by

p0 = (2S + 1)(2− δ0,Λ)/gab, (4.18)

where

gab = (2Sa + 1)(2La + 1)(2Sb + 1)(2Lb + 1), (4.19)

and S and Λ are the spin and orbital angular momentum projection quantum numbers of

the molecular state of approach. For colliding hydrogen-like particles, then, we have p0 = 1/4

for the initial singlet channel and p0 = 3/4 for the initial triplet channel.
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4.3 Results

Cross sections were obtained using the MOCC methods outlined in the previous section.

For the MOCC calculations, the number of partial waves and asymptotic matching distance

were tested for convergence, and state-to-state cross sections were obtained by summing over

partial cross sections as in Equation (4.17).

In Figure 4.9 we show the n, l-resolved cross sections of the MOCC calculations. It is clear

that the n = 5 manifold is the dominant path for charge exchange over the entire energy

range, with 5p dominating at collision energies below about 2 eV/u, and 5s dominating

above. This is consistent with the prediction of the COB model, in which the dominant

n-channel is approximated as the largest value satisfying the inequality [122]

nmax ≤ q

[

2|IY |
(

1 +
q − 1

2
√

q + 1

)]−1/2

, (4.20)

where q is the charge of the incident ion and IY (in a.u.) is the ionization potential of the

target. The rather sharp drop-off of the n = 4 channels below about 10 eV/u occurs as

the collision energy falls below that of the nearest approach of the 5s singlet and triplet

channels to the n = 4 channels at around R = 5 a.u. The 4s channel unsurprisingly makes

the smallest contribution to the total cross section over almost the entire energy range; in

both the singlet and triplet manifolds, the 4s potential curve does not approach the other

curves of the n = 4 manifold for energies < 1− 2 a.u. higher than the asymptotic energy of

the entrance channel (see Figures 4.1 - 4.4).

These trends are reflected in the n, l, S−resolved cross sections shown in Figures 4.10

and 4.11. At energies greater than 40 eV/u, the 5f becomes the dominant singlet capture

state, but due to the relative magnitude of singlet and triplet cross sections this dominance

is not reflected in the total cross section. The dominance of 5s for both singlets and triplets

at intermediate to large collision energies seems reasonable; as the collision energy increases,

a greater portion of the avoided crossing between the 5s and adjacent n = 5 state becomes

classically accessible, allowing for increased flux into this channel.
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Figure 4.9: Total n, l-resolved MOCC cross sections for O7++H.

Triplet-singlet ratios for each of the n, l capture states are displayed in Figure 4.12. As

mentioned in Section 4.1, the triplet-singlet ratio is expected to exhibit velocity dependence

at low collision energies, approaching a statistical distribution only around 10 keV/u. The

triplet-singlet distribution for each n, l-state is seen to vary widely over the range of collision

energies, with only a few seeming to approach 3:1 at higher energies. The large drop in the

4p ratio over the 1-100 eV/u range may arise from the avoided crossing between the singlet

4p and 5s states which becomes accessible at higher collision energies, while in the triplet
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Figure 4.10: Singlet n, l-resolved MOCC cross sections for O7++H.

manifold the 4p state does not appear to share any significant avoided crossing with its

adjacent n = 4 states.

In Figure 4.13 we plot total MOCC cross sections as well as those obtained by the AOCC

and CTMC methods (supplied by D. R. Schultz and Y. Hui in a private communication

[123]), along with previous fits and experimental results [124, 125, 22, 23, 24]. For the MOCC

calculations, cross sections computed with and without states of Π symmetry are shown, the

latter neglecting rotational coupling. Below about 1 eV/u, the two calculations are in close

agreement, illustrating the negligible effect of rotational couplings at low energies. At about
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Figure 4.11: Triplet n, l-resolved MOCC cross sections for O7++H.

1 eV/u the cross sections begin to diverge, with the all-states calculation exceeding AOCC

and experimental values by a factor of ∼ 1.5 at the highest energies while the Σ-states (radial

coupling only) calculations appear to follow the trends of the other available data, although

there is some overlap between the MOCC all-states and AOCC calculations at around 100

eV/u. As the inclusion of Π states entails roughly a doubling of the number of couplings

included in the calculation, this indicates that discrepancies at energies greater than ∼ 10

eV/u may be partly due to uncertainties in the MRDCI couplings. For instance, it is a

shortcoming of the MRDCI computational method that the absolute phases of the couplings
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Figure 4.12: Triplet-singlet ratios for n, l-resolved cross sections for O7++H.

for each value of R are determined arbitrarily, so that relative phases must be determined by

comparison with other couplings, a process which allows for many uncertainties. We suspect,

however, that the main source of error may lie in the size of our basis set, particularly in

our neglect of capture into the n ≥ 6 manifolds (see below). For energies below 100 eV/u,

both sets of MOCC results exceed the recent experimental results of Havener et al. [22] by

up to a factor of ∼ 2.5. Similar discrepancies at low energy between MOCC and experiment

have been found for Cl7+ + H [126], N6+ + H [116], and other systems. Other sources of

error in the MOCC calculations may be due to the neglect of electron translation factors

and ionization, but these are expected to only be important for energies greater than 1
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keV/u. (See Wu et al. [116] for further discussion on possible theoretical and experimental

uncertainty.) The CTMC method, which is valid only for higher energies, not unexpectedly

underestimates the total cross section at energies below 105 eV/u.

Figure 4.13: Comparison of total cross sections for O7++H using MOCC, as well as AOCC
and CTMC [123] methods. Also included are fits by Janev et al. (1995) [124] and Phaneuf
et al. (1987) [125], as well as experimental results of Havener et al. (2011) [22], Meyer et al.
(1985) [23], and Panov et al. (1983)[24].

Referring to the plot of n-resolved cross sections in Figure 4.14, we again find fair agree-

ment between AOCC and MOCC calculations in the overlapping energy range of 102 to 103

eV/u, and good agreement between AOCC and CTMC for most n levels for energies greater

than about 5 × 104 eV/u. The only state-resolved experimental information for this collision

system are the relative translation energy spectroscopy (TES) measurements of Kearns et
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al. [25]. The TES measurements, MOCC and AOCC are all in agreement that the dominant

channel is n = 5, followed by n = 4. However, we also find the data from AOCC and Kearns

et al. showing n = 6 capture comparable to that of n = 4 for MOCC, suggesting that this

and possibly other n channels may make important contributions to the total cross section

at high energies. Normalizing the TES results to the absolute magnitude of Meyer et al. [23],

the AOCC results are in slightly better agreement for n = 5 and 4, but overestimate n = 6

for E ≤ 500 eV/u. On the other hand, CTMC finds the n = 4 cross section to be slightly

larger than n = 5 at 10 keV/u.

Figure 4.14: Comparison of n-resolved cross sections for O7++H for MOCC, AOCC, CTMC
calculations and experimental results of Kearns et al. (2003) [25].

In Figures 4.15 and 4.16, we show comparisons of the l-distribution of capture states

for n = 5 for each of the theoretical methods, along with the statistical and low-energy
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distributions, for E = 300 and 1000 eV/u. It is well known that for energies greater than

about 10 keV/u the l-distribution should approach the statistical distribution

W st
nl = (2l + 1)/n2, (4.21)

while for low energies a plausible distribution function is given by [127]

W le
nl = (2l + 1)

[(n− 1)!]2

(n + 1)!(n− 1− l)!
. (4.22)

For increasing energy we find the AOCC and CTMC results in increasing agreement with the

statistical distribution, as we would expect. In Figure 4.17, we have plotted a comparison

of MOCC l-distributions at lower energies with the low-energy distribution of Equation

(4.22). While the MOCC distributions show a rough similarity to the trend of the low-

energy distribution for E = 0.01 and 1 eV/u, at 10 eV/u and higher the distributions are

quite different. See Appendix A for detailed comparisons of the MOCC, AOCC, and CTMC

cross sections as a function of energy at the n, l-level.

A recommended fit to the n, l-resolved cross sections for the O7+ + H collision system

would follow the current MOCC results up to energies between 102 and 103 eV/u, with AOCC

results representing the intermediate regime up to about 105 eV/u, and CTMC results being

used for all higher energies. Triplet-singlet ratios for each n, l state should follow MOCC

values up to 1 keV/u, with linear extrapolations beyond this point to approach a value of

3:1 at around 10 keV/u.

4.4 Conclusions

We have reported l− and S−resolved cross sections for single electron capture into the

dominant n = 4 and 5 manifolds over the energy range 10−2 to 103 eV/u, using the fully

quantal MOCC method. For higher energies the semiclassical AOCC and quasi-classical

CTMC methods were used. Agreement between MOCC and AOCC results in the overlapping

energy range is fair, and MOCC results may be recommended for energies below 102 to

103 eV/u, with AOCC and CTMC results serving as the basis for fits to cross sections at
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Figure 4.15: Comparison of n = 5 l-distributions for O7++H for MOCC, AOCC and CTMC,
along with statistical and low-energy distributions at E = 300 eV/u.

higher energies. Triplet-singlet ratios, which are only available for the MOCC data, may be

extrapolated to approach a 3:1 ratio at higher energies.
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Figure 4.16: Comparison of n = 5 l-distributions for O7++H for MOCC, AOCC and CTMC,
along with statistical and low-energy distributions at E = 1000 eV/u.
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Figure 4.17: Comparison of MOCC n = 5 l-distributions for O7++H to low-energy distribu-
tion at different energies.



Chapter 5

Final-state resolved charge exchange between C5+ and H1

1Based on J. L. Nolte, P. C. Stancil, H.-P. Liebermann, R. J. Buenker, D. R. Schultz, Y. Hui, I.
N. Draganić, and C. C. Havener. To be submitted to Phys. Rev. A.
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Abstract

Charge exchange cross sections are calculated for the collision system C5+ + H using the

quantal molecular orbital close-coupling method. Calculations are performed over a range of

collision energies from 0.01 eV/u to 1 keV/u for all important n, l, and S-resolved states. In

particular, we focus on the distribution of electron capture into the n=3, 4 and 5 manifolds,

for both singlet and triplet states. We compare our results to new atomic orbital close-

coupling, classical trajectory Monte Carlo, and experimental merged-beams results.

5.1 Introduction

We here extend the MOCC method of charge exchange calculations to another collision

system of relevance to x-ray emission in the Solar System, namely C5+ + H. As stated in the

previous chapter, highly charged C and O are the dominant solar wind contributors to x-ray

emission in the solar system, due to their high abundance. While the contribution of these

species to diffuse soft x-ray emission is dominated by O VII, O VIII, and C VI emission lines

[11, 12, 13, 14, 15, 100, 128], C V emission from the Kα complex consisting of the forbidden,

intercombination, and resonance lines is a prominent feature around 300 eV, and was even

found to be a dominant presence in recent Chandra observations of Comet 8P/Tuttle [129].

As with the O7+ + H system, experimental l- and S-resolved charge exchange cross sections

for C5+ + H are completely lacking, with the only n−resolved measurement to our knowledge

being that of the relative cross sections for n = 3, 4, and 5 at a single collision energy by

Kearns et al. [25].

In this work, we again calculate charge exchange cross sections over a range of low to

intermediate collision energies and compare to available theoretical and experimental data.

5.2 Computational details

Adiabatic potentials and nonadiabatic couplings were again obtained with the MRDCI

approach, in calculations by Liebermann and Buenker [130]. In our scattering calculations
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we utilize nine 1Σ+ and nine 3Σ+ electronic states in A1 symmetry, and five 1Π and five 3Π

states in B1 symmetry calculated for internuclear distances between 2.1 and 20 a.u. These

states comprise all n = 3 and 4 states as well as the lowest n = 5 state (5s for both singlets

and triplets), which we have included to represent capture into the n = 5 manifold. In Table

5.2 we show absolute and relative asymptotic energies with respect to the C5+(1s) + H(1s)

entrance channel, for both this calculation and experimental atomic spectroscopic data [118],

and find generally good agreement, the largest error in relative asymptotic energies being

about 0.015 a.u.

In Figures 5.1 - 5.4 we show adiabatic potential energy curves for all channels used in the

calculation, and representative families of nonadiabatic radial and rotational couplings are

shown in Figures 5.5 and 5.6. Figures 5.7 and 5.8 illustrate nonadiabatic radial couplings for

adjacent n = 4 and entrance channels, characterized by sharp peaks at the avoided crossings.

Cross sections are calculated over a collision energy range of 10−2 to 103 eV/u, where

convergence with respect to calculation parameters such as number of partial waves and

asymptotic matching distance has been ensured.

5.3 Results

Total n, l-resolved cross sections are shown in Figure 5.9. The n = 4 channels, which together

with the entrance channel exhibit a series of avoided crossings in the 12-15 a.u. separation

range, form the dominant manifold for charge exchange as expected. The 4s channel in

particular is seen to dominate across the entire energy range up to 1 keV/u. For low energies,

n = 3 channels receive the next largest share of flux, but at 7 eV/u electron capture into the

n = 5 manifold, represented here by the inclusion of the single 5s state, increases sharply

and at the highest energies even surpasses capture to 4f .

Similar trends may be seen in the S-resolved cross sections shown in Figures 5.10 and

5.11. The 4s channel is dominant for both singlets and triplets across the entire energy range,

as in both cases it has the widest avoided crossing with its adjacent n = 4 state, and an
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Table 5.1: Comparison of asymptotic separated-atom energies (in a.u., where 1 a.u. = 1
hartree) between MRDCI calculations and experimental NIST data [118] for C5+ + H. ∆Ecalc

is the energy separation of the asymptotic atomic state from the initial state C5+(1s) +
H(1s) in the MRDCI calculations. ∆Eexp is the same quantity for the experimental values.
∆E = |∆Eexp −∆Ecalc|.

Asymptotic atomic state Mol. state This work Expt. [118] ∆Ecalc ∆Eexp ∆E

Singlets

C4+(1s3s 1S) + H+ 1 1Σ+ -19.41786 -19.42497 0.91806 0.91833 0.00027
C4+(1s3d 1D) +H+ 2 1Σ+ -19.38903 -19.39603 0.88923 0.88939 0.00016

1 1Π -19.38876 -19.39603 0.88896 0.88939 0.00043
C4+(1s3p 1P o) +H+ 3 1Σ+ -19.37933 -19.38766 0.87953 0.88102 0.00149

2 1Π -19.37933 -19.38766 0.87953 0.88102 0.00149
C4+(1s4s 1S) +H+ 4 1Σ+ -18.79662 -18.80045 0.29682 0.29381 0.00301
C4+(1s4d ,1D) +H+ 3 1Π -18.78641 -18.78822 0.28661 0.28158 0.00503

5 1Σ+ -18.78639 -18.78822 0.28659 0.28158 0.00501
C4+(1s4f 1F o) +H+ 4 1Π -18.77899 -18.78825 0.27919 0.28161 0.00242

6 1Σ+ -18.77879 -18.78825 0.27899 0.28161 0.00262
C4+(1s4p 1P o) +H+ 5 1Π -18.77337 -18.78488 0.27357 0.27824 0.00467

7 1Σ+ -18.77261 -18.78488 0.27281 0.27824 0.00543
C4+(1s5s 1S) +H+ 8 1Σ+ -18.52159 -18.51324 0.02179 0.00660 0.01519
C5+(1s) + H(1s) 9 1Σ+ -18.49980 -18.50664 0 0 0

Triplets

C4+(1s3s 3S) +H+ 1 3Σ+ -19.47045 -19.47785 0.97065 0.97121 0.00056
C4+(1s3p 3P o) +H+ 2 3Σ+ -19.41691 -19.42384 0.91711 0.91720 0.00009

1 3Π -19.41656 -19.42384 0.91676 0.91720 0.00044
C4+(1s3d 3D) +H+ 3 3Σ+ -19.38912 -19.39703 0.88932 0.89039 0.00107

2 3Π -19.38909 -19.39703 0.88929 0.89039 0.00110
C4+(1s4s 3S) +H+ 4 3Σ+ -18.81670 -18.82187 0.31690 0.31523 0.00167
C4+(1s4p 3P o) +H+ 5 3Σ+ -18.79425 -18.79989 0.29445 0.29325 0.00120

3 3Π -18.79385 -18.79989 0.29405 0.29325 0.00080
C4+(1s4d 3D) +H+ 6 3Σ+ -18.78389 -18.78886 0.28409 0.28222 0.00187

4 3Π -18.78383 -18.78886 0.28403 0.28222 0.00181
C4+(1s4f 3F o) +H+ 5 3Π+ -18.77706 -18.78822 0.27726 0.28158 0.00432

7 3Σ+ -18.77684 -18.78822 0.27704 0.28158 0.00454
C4+(1s5s 3S) +H+ 8 3Σ+ -18.52711 -18.52394 0.02731 0.01730 0.01001
C5+(1s) + H(1s) 9 3Σ+ -18.49980 -18.50664 0 0 0
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Figure 5.1: Singlet adiabatic potentials for C5++H.

avoided crossing with the adjacent n = 3 state only at R < 5 (See Figures 5.1 - 5.4). In

both cases the n = 3 channels exhibit a gradual increase for energies greater than ∼ 10

eV/u as the avoided crossing between the 4s channel and the n = 3 manifold becomes more

energetically accessible. The sharp increase in both cases of the 5s channel around 7-10 eV/u

is somewhat surprising. This may, however, be largely due to the very broad approach of

the 5s to the entrance channel which may be seen to occur in the neighborhood of 10 a.u.

The fact that we find 5s capture making contributions comparable to n = 4 channels at

the highest energies reinforces our suggestion in the previous chapter that neglect of higher

n states may not be justified. Shimakura et al. [26] calculated n, l, S-resolved cross sections
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Figure 5.2: Singlet adiabatic potentials for C5++H (detail; 1Σ+ states only).

for this system using a semiclassical MOCC treatment for energies above 15 eV/u and a

two-channel (entrance and 4s) quantum MOCC treatment for both singlets and triplets

for lower energies. Comparison with their n, l, S-resolved cross sections (see their Figure 8)

shows agreement that the n = 4 manifold dominates singlets and triplets at low energies,

with the 4s channel dominating up to energies between 0.1 to 1 keV/u. In this energy range,

however, the ordering of the magnitude of capture into different n = 4 states between the

two calculations begins to disagree, while they show n = 3 channels making roughly equal

contributions as the n = 4 to the total cross section around 1 keV/u. Total cross sections at

this energy, however, seem to be in rough agreement to within a factor of less than two.
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Figure 5.3: Triplet adiabatic potentials for C5++H.

The triplet-singlet ratios for all n, l-states are plotted in Figure 5.12. As with O7++H,

we observe a wide spread in triplet-singlet ratios across the range of collision energies and

capture states, with only a few appearing to converge to 3:1 at higher energies. The dip in

3p between 10 and 100 eV/u comes as the avoided crossing between the singlet 3p and 4s

states becomes energetically accessible, while the triplet 3p shares no avoided crossings with

its adjacent n = 3 states; a similar effect was observed for O7++H. The dominance of the

4p ratio is likely due to the slightly wider avoided crossing between the triplet 4s and 4p
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Figure 5.4: Triplet adiabatic potentials for C5++H (detail; 3Σ+ states only).

states, while the extremely narrow avoided crossings between the singlet 4p channel and its

adjacent channels ensure that there will be a much smaller portion of flux into this channel.

A comparison of total MOCC cross sections with those obtained by CTMC and AOCC

methods (from Schultz and Hui, private communication [123]), as well as previous MOCC

results by Bottcher and Heil (1982) [131], a proposed fit by Suno and Kato (2005) [132],

and experimental results [27, 24, 28, 29, 30] is shown in Figure 5.13. Agreement between

the present MOCC results and available data below about 100 eV/u is generally good. The

fit by Suno and Kato is based on MOCC calculations by Shimakura et al. [26] and CTMC

calculations by Shipsey et al. [133], as well as experimental results [24, 28, 30], for all of
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Figure 5.5: Family of (4 1Σ+ - N 1Σ+) nonadiabatic radial couplings for C5++H.

which the lowest represented energy is about 10 eV/u, and in the range 10-100 eV/u we

find generally good agreement with the present calculations. The MOCC calculations by

Bottcher and Heil, meanwhile, only included three Σ states, and are unlikely to be accurate

for the higher energies reported. Considering also the good agreement with the most recent

experimental results by Draganić et al. [27] at lower energies, our results below about 100

eV/u appear to be reasonable. As with O7++H, our results are seen to diverge from the

available data above this energy, and we expect the sources of this discrepancy to be similar

to those already discussed in the last chapter, namely, insufficient basis set size, uncertainty
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Figure 5.6: Family of (N 1Σ+ - 1 1Π) nonadiabatic rotational couplings for C5++H.

in the relative phases of nonadiabatic couplings and, perhaps to a lesser extent, neglect of

electron translation factors and ionization. The AOCC results, on the other hand, appear

to slightly underestimate the total cross section between about 102 and 103 eV/u, but agree

well with the fit by Suno and Kato above 5 keV/u. Data for CTMC, however, is not available

for higher energies and is almost certainly not applicable at the energies represented here.

In Figure 5.14, we show n-resolved cross sections for MOCC, AOCC, and CTMC cal-

culations as well as translation energy spectroscopy (TES) measurements by Kearns et al.

[25] for one collision energy. For the dominant n = 4 channel, we find a factor of roughly

2-3 discrepancy between MOCC and AOCC calculations in the overlap region, and larger
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Figure 5.7: Nonadiabatic radial couplings with avoided crossings for adjacent n = 4 singlet
channels for C5++H.

discrepancies for the n = 3 and n = 5 channels, although with good agreement between 600

and 103 eV/u for n = 3. Interestingly, we also find n = 5 and n = 3 making comparable

contributions around 100-400 eV/u in the AOCC data, suggesting that capture into n = 5

may in fact be significant relative to n = 3 at these and lower energies. Kearns et al., MOCC,

and AOCC results agree that n = 4 is the dominant channel, but the MOCC results are

alone in asserting the dominance of the n = 5 over the n = 3 channel above 300 eV/u. Again,

CTMC results are only given at energies too low to make a meaningful comparison with the

AOCC data.
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Figure 5.8: Nonadiabatic radial couplings with avoided crossings for adjacent n = 4 triplet
channels for C5++H.

Figures 5.15 and 5.16 show comparisons of the l-distribution of capture states for n = 5

for each of the theoretical methods as well as the statistical and low-energy distributions for

E = 300 and 1000 eV/u (see Equations (4.21) and (4.22)). As with O7++H, we again find

AOCC results approaching a statistical distribution at all energies, more so with increasing

energy. Conversely, the MOCC l-distribution is similar to the low-energy distribution func-

tion, except that the former is dominated by l = 0. Surprisingly, the CTMC distributions

are very close to the MOCC results. This reinforces our previous suggestion for the case

of O7++H, that simple analytical models for l-distribution may be unreliable at solar wind



73

Figure 5.9: Total n, l-resolved MOCC cross sections for C5++H.

energies. See Appendix B for detailed comparisons of the MOCC, AOCC, and CTMC cross

sections as a function of energy at the n, l-level.

As for x-ray modeling, our recommended fits to n, l-resolved cross sections follow the same

guidelines as those laid out for O7++H, namely, the use of MOCC results for low energies

up to between 102 and 103 eV/u, AOCC for the intermediate range up to about 105 eV/u,

and CTMC, if available, for all higher energies. Again, triplet-singlet ratios may be obtained

from the present MOCC results and extrapolated to approach a statistical distribution at

higher energies.
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Figure 5.10: Singlet n, l-resolved MOCC cross sections for C5++H.

5.4 Conclusions

We have performed MOCC calculations of l− and S−resolved cross section for single electron

capture into the n = 3, 4, and 5 manifolds for the system C5+H. We find generally good

agreement between the present results and available theoretical and experimental data below

100 eV/u. We also find considerable contributions from n = 5 to the total cross section

at energies greater than ∼ 7 eV/u, and comparison with AOCC results at 100-500 eV/u

confirms this. As with O7++H, we recommend fits to cross sections based on the present
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Figure 5.11: Triplet n, l-resolved MOCC cross sections for C5++H.

MOCC results for energies below 102 to 103 eV/u, with AOCC and CTMC results to be

used for modeling at higher energies.
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Figure 5.12: Triplet-singlet ratios for n, l-resolved cross sections for C5++H.
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Figure 5.13: Comparison of total cross sections for C5++H using MOCC, as well as AOCC
and CTMC [123] methods. Also included are previous MOCC results by Bottcher and Heil
(1982) [131], a fit by Suno and Kato (2005) based on previous theoretical and experimental
results [132], and experimental results of Draganić et al. (2011) [27], Panov et al. (1983) [24],
Phaneuf et al. (1982) [28], Crandall et al. (1979) [29], and Goffe et al. (1979) [30].
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Figure 5.14: Comparison of n-resolved cross sections for C5++H for MOCC, AOCC, CTMC
calculations and experimental results of Kearns et al. [25]. (Error bars estimated from their
O7++H data).
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Figure 5.15: Comparison of n = 4 l-distributions C5++H for MOCC, AOCC and CTMC,
along with statistical and low-energy distributions at E = 300 eV/u.
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Figure 5.16: Comparison of n = 5 l-distributions for C5++H for MOCC, AOCC and CTMC,
along with statistical and low-energy distributions at E = 1000 eV/u.



Chapter 6

Conclusions

In this work we have focused on several atomic, ionic, and molecular scattering systems

of astrophysical importance. Due to the limited availability, reliability, and scope of experi-

mental data for many collision systems of interest, we must often turn to theoretical methods

to supplement our knowledge of the relevant collision systems. The primary aim of this work

has therefore been the investigation of various scattering processes and reporting of the

relevant cross sections and rate coefficients using fully quantum mechanical close-coupling

methods.

In Chapter 2 we calculated cross sections and rate coefficients for the He-HD system,

which plays an important cooling role in the collapse of primordial clouds in early star for-

mation. By adopting a large basis set and by using accurate HD numerical wavefunctions

to determine the potential matrix elements, as opposed to a harmonic oscillator approxima-

tion for the HD vibrational wavefunctions, we believe we have improved upon the available

theoretical results, represented mainly by those of Roueff and Zeippen [4], in addition to

extending the range of vibrational states considered and energy range of the calculations.

The new He-HD rate coefficients will allow for improvements in the HD cooling function

for low and high temperatures. In future work, we plan to perform similar calculations for

rotational excitation of HD by H2.

We have explored in Chapter 3 how changes in the collision system reduced mass affected

the complex scattering length for collisions of H2 with 3He and 4He at low energies. By

changing the reduced mass, we effectively altered the interaction potential of the system,

thereby revealing zero-energy resonances corresponding to bound states of He-H2 with v = 1,
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j = 0 lying below the dissociation limit. We also find a p-wave resonance appearing in the

range 0.1 - 1 cm−1 for 4He-H2 and its isotopomers, the experimental detection of which would

provide a critical test of the spherical component of the He-H2 interaction potential.

Finally, in Chapters 4 and 5 we have reported n, l, S-resolved cross sections for the charge

exchange systems O7++H and C5++H, which are dominant contributors to x-ray emission

within the Solar System. No experimental l, S-resolved cross sections for these systems that

we know of exist in the literature, nor do any l, S-resolved fully quantum calculations con-

taining more than a couple capture channels. To fill this lacuna, we have used a fully quantum

mechanical molecular orbital close-coupling treatment to obtain cross sections for these sys-

tems at energies below 1 keV/u. Supplemented with AOCC and CTMC data at higher

energies, these calculations will provide the basis for a recommended set of cross sections

for the scattering systems, with triplet-singlet ratios extrapolated from the MOCC data at

higher energies.

Figure 6.1: Combined spectra of O7++H, O8++H, O7++He.
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As a preview of further research in this area, we show in Figure 6.1 a preliminary calcu-

lation of the x-ray spectrum of O VII and O VIII emission from charge exchange with H and

He at 1 keV/u. We see clearly in the case of O7+ the dominant peak at ∼ 570 eV arising

from the Kα complex and the smaller Kβ peak at ∼ 670 eV, with the O8+ Lyα line at ∼ 650

eV and all higher Lyman transitions dominating for photon energies ≥ 775 eV. Emission

spectra such as this will prove a vital ingredient in the modeling of heliospheric x-ray emis-

sion, as well as perhaps that of other astrophysical environments such as forward shocks of

supernova remnants, as exciting recent observations of the Cygnus Loop by Suzaku suggest

[107]. Given the wealth of relevant scattering systems for which we lack sufficient data, the

demand for further research in this area remains great.
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Appendix A

n, l-resolved cross sections for O7++H

In this appendix, we show n, l-resolved cross sections for O7++H using MOCC, AOCC, and

CTMC results, for principal quantum numbers n = 4 and 5. In future work, recommended

fits for cross sections between 10−2 and 5× 105 eV/u will be produced from these results.
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Figure A.1: Cross sections for capture into 4s for O7++H; MOCC, AOCC, CTMC results.
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Figure A.2: Cross sections for capture into 4p for O7++H; MOCC, AOCC, CTMC results.
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Figure A.3: Cross sections for capture into 4d for O7++H; MOCC, AOCC, CTMC results.
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Figure A.4: Cross sections for capture into 4f for O7++H; MOCC, AOCC, CTMC results.
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Figure A.5: Cross sections for capture into 5s for O7++H; MOCC, AOCC, CTMC results.
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Figure A.6: Cross sections for capture into 5p for O7++H; MOCC, AOCC, CTMC results.
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Figure A.7: Cross sections for capture into 5d for O7++H; MOCC, AOCC, CTMC results.
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Figure A.8: Cross sections for capture into 5f for O7++H; MOCC, AOCC, CTMC results.
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Figure A.9: Cross sections for capture into 5g for O7++H; MOCC, AOCC, CTMC results.



Appendix B

n, l-resolved cross sections for C5++H

In this appendix, we show n, l-resolved cross sections for C5++H using MOCC, AOCC, and

CTMC results, for principal quantum numbers n = 3, 4 and 5. In future work, recommended

fits for cross sections between 10−2 and 5× 105 eV/u will be produced from these results.
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Figure B.1: Cross sections for capture into 3s for C5++H; MOCC, AOCC, CTMC results.
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Figure B.2: Cross sections for capture into 3p for C5++H; MOCC, AOCC, CTMC results.
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Figure B.3: Cross sections for capture into 3d for C5++H; MOCC, AOCC, CTMC results.
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Figure B.4: Cross sections for capture into 4s for C5++H; MOCC, AOCC, CTMC results.
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Figure B.5: Cross sections for capture into 4p for C5++H; MOCC, AOCC, CTMC results.
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Figure B.6: Cross sections for capture into 4d for C5++H; MOCC, AOCC, CTMC results.
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Figure B.7: Cross sections for capture into 4f for C5++H; MOCC, AOCC, CTMC results.
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Figure B.8: Cross sections for capture into n = 5 for C5++H; MOCC (5s only), AOCC,
CTMC results.


