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Abstract

Graphs enjoy profound importance because of their versatility and expressivity. They can

be effectively used to represent social networks, search engines and genome sequencing. The

field of subgraph pattern matching has been of significant importance and has wide-spread

applications. Conceptually, we want to find subgraphs that match a pattern in a given

graph. Much work has been done in this field with solutions like Subgraph Isomorphism and

Regular Expression matching. With Big Data, scientists are frequently running into massive

graphs that have amplified the challenge that this area poses. We study the speedup and

communication behavior of three distributed algorithms that we proposed for inexact pattern

matching. We also study the impact of different graph partitionings on runtime and commu-

nication. Our extensive results show that the algorithms exhibit excellent scalable behavior

and min-cut partitioning can lead to improved performance under some circumstances, and

can also drastically reduce the network traffic.
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Chapter 1

Introduction

Graphs are of utmost importance in the field of Computer Science because of their expres-

sivity and the ability to abstract a huge class of problems. They have been successfully used

to study and model numerous problems in different fields. These applications vary from

software plagiarism detection, web search engines, study of molecular bonds to the modeling

of social networks like Facebook, LinkedIn and Twitter [1].

Graph pattern matching is one of the most important and widely studied class of problems

in graphs. A considerable amount of research has been put into this area, sprouting concepts

like Subgraph Isomorphism, Regular Expression matching [2] and Graph Simulation [3].

Conceptually, pattern matching algorithms seek to find subgraphs of a given graph that

are similar to the given pattern graph [4]. Though, the Subgraph Isomorphism returns the

strictest matches for graph matching in terms of topology [5], the problem is NP-complete

[6], and thus does not scale well even for medium-scale graphs.

Graph simulation, on the other hand, provides a practical alternative to subgraph isomor-

phism by relaxing the stringent matching conditions of subgraph isomorphism, and allowing

matches to be found in polynomial time. Some researchers [4, 7, 8] even argue that graph

simulation is more appropriate than subgraph isomorphism for modern problems like social
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network analysis because it yields matches that are conceptually more meaningful.

With the rapid advent of Big Data, graphs have transformed into huge sizes and are

rapidly getting out of the grasp of conventional computational approaches. Nowadays, graphs

with millions of vertices and billions of edges are becoming a norm. New computational

models and modern techniques are needed to scale to this ever-growing need of processing

power. This paper discusses a few of those solutions for the subgraph pattern matching

problem.

The outline of this report is as follows: In next chapter, we discuss the background and

a description of the subgraph pattern matching problem along with its types. In Chapter

3, we discuss a few computational models that have been used recently for graph processing

in distributed systems. We follow-up with brief description of three new algorithms that we

proposed in [4]. Chapter 5 goes through the implementation of distributed algorithms on two

platforms and briefly compare their pros and cons. Chapter 6 discusses the experimental

results and report the speedup and efficiency of the algorithms. Chapter 7 talks about

the impact of graph partitioning along two lines of runtime improvement and network I/O

reduction. The penultimate chapter gives an insight into the related work and the final

chapter concludes with a listing of future work.
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Chapter 2

Background

In this section, we discuss the background and give motivation for the need of new approaches

to deal with the large scale graphs in general and query processing in particular. Today,

Facebook has over 1 billion vertices and the average degree of each vertex is 1401, Twitter

has well over 200 million active users creating over 400 million tweets each day2. In genome

sequencing, recent work [9] attempts to solve the genome assembly problem by traversing

the de Brujin graph of the read sequence. The de Brujin graph can contain as many as 4k

vertices where k is atleast 20. All of these models, translate to massive graphs that many

existing approaches fail to cope with.

To handle the mammoth scale of these graphs, an obvious approach is to distribute the

graphs onto multiple machines and then run them concurrently to efficiently calculate the

result in parallel. Consequently, some of the basic challenges are the following:

1. how to distribute the graph?

2. how to come up with an efficient algorithm that runs as concurrently as possible?

3. how to reduce the communication/traffic among different machines (in part, a side

1http://www.facebook.com/press/info.php?statistics
2http://blog.twitter.com
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affect of the top two)?

We go through these questions as we discuss the problem of Subgraph Pattern Matching in

depth.

2.1 Subgraph Pattern Matching

The problem of subgraph matching is defined as follows: Let G=(V, E, l) be a graph, where

V is the set of vertices, E is the set of edges, and l is the labelling function that assigns

a label to each vertex in V. Let Q=(Vq, Eq, lq) be the query (pattern) graph where Vq is

the set of vertices, Eq is the set of edges and lq are the labels of Vq. Intuitively, the goal

of subgraph pattern matching is to find all subgraphs from the data graph G that match

the pattern graph Q. Thus, G′(V ′, E ′, l′) is a subgraph of G if and only if (1) V ′ ⊆ V ; (2)

E ′ ⊆ E; and (3) ∀u ∈ V ′ : l′(u) = l(u).

In this paper, without loss of generality we assume all vertices are labeled, all edges are

directed, and there are no multiple edges. We also assume a query graph is a connected

graph because the result of pattern matching for a disconnected query graph is equal to

the union of the results for its connected components. We use the terms pattern and query

graph interchangeably.

2.2 Types of Pattern Matching

In this section, we briefly review the five types of pattern matching. The first one is Subgraph

Isomorphism, the next one is Graph Simulation proposed in [3], the Dual Simulation and

Strong Simulation were proposed in the [10] and Strict Simulation by us [4]. A much more

exhaustive list can be found at [11].

We use an example for every type to illustrate the concept. The example uses the idea
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of a recommendation network where we are looking for specific expertise satisfying some

conditions in a social network. All of the examples have a query graph and a datagraph with

labels inside the nodes and vertex ids hanging outside the nodes.

2.2.1 Subgraph Isomorphism

Arguably, subgraph isomorphism is the most widely studied problem for graph pattern

matching. By definition, subgraph isomorphism describes a bijective mapping between a

query graph Q(Vq, Eq, lq) and a subgraph of a data graph G(V,E, l), denoted by Q �iso G.

That is, assuming G′(V ′, E ′, l′) is a subgraph of G, graph Q will be subgraph isomorphic

of G if there is a bijective function f from the vertices of Q to the vertices of G′ such that

(u, v) is an edge in Q if and only if (f(u), f(v)) is an edge in G′ [12]. It should be noted

that function f ensures that u and f(u) have the same labels. Ullmann’s algorithm is widely

known, and still is probably the most popular subgraph isomorphism algorithm [11]. This is

a form of exact matching. However, this problem is NP-hard in general case and not scalable

in case of large graphs.
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Figure 2.1: Subgraph Isomorphism
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Figure 2.1 shows an example of subgraph isomorphism. There will be two subgraph

matches {4,6,7,8} and {5,6,7,8} using subgraph isomorphism that are highlighted in the

data graph.

2.2.2 Graph Simulation

Graph simulation allows a faster alternative to subgraph isomorphism by relaxing some

conditions.

Definition: Pattern Q(Vq, Eq, lq) matches data graph G(V,E, l) via graph simulation,

denoted by Q �sim G, if there is a binary relation R ⊆ Vq × V such that (1) if (u, u′) ∈ R,

then u and u′ have the same label; (2) for every u ∈ Vq there is a u′ ∈ V such that (u, u′) ∈ R;

(3) for every (u, v) ∈ Eq there is a (u′, v′) ∈ E such that (u, u′) ∈ R and (v, v′) ∈ R [10].

Intuitively, graph simulation only captures the child relationships of vertices. HHK -

a quadratic algorithm, was first proposed in [3] and efficiently computes the match set on

medium-sized graphs, but fails to scale on large graphs.

In plain words, a vertex in a data graph becomes a graph simulation match with a vertex

in query graph if and only if

1. both have the same label, and

2. a subset of its children match all the children of its corresponding vertex in the query

graph.

If both the conditions are true for atleast a single vertex in the data graph for every

vertex in the query graph, then we can say that Q is a graph simulation match to G denoted

by Q�sim G.

In example 2.2, we show graph simulation in action. As can be seen, there are a lot more

semantic matches than just the subgraph isomorphism. Other than the vertices {2, 13}, all

the vertices are in the match set. One may argue that the result set is too big and a bit

6
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Figure 2.2: An example for Graph Simulation

irrelevant as well, e.g., {14} is a match when it is not endorsed by any PM. We will answer

this question as we go through other types of similar methods below.

2.2.3 Dual Simulation

Dual simulation extends graph simulation by also taking into account the parent relationships

of the vertices, thus resulting in a stricter match set.

Definition: Pattern Q(Vq, Eq, lq) matches data graph G(V,E, l) via dual simulation, de-

noted by Q �D
sim G, if (1) Q is a graph simulation match to G with a match relation

RD ⊆ Vq × V , and (2) for every (u, u′) ∈ RD, if there is a w ∈ Vq such that (w, u) ∈ Eq then

there exists a w′ ∈ V such that (w,w′) ∈ RD and (w′, u′) ∈ E. (adapted from [10])

That is, a vertex in a data graph becomes a dual match with a vertex in a query graph

if and only if

1. both have the same label, and
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2. a subset of its children match all the children of its corresponding vertex in the query

graph, and

3. a subset of its parents match all the parents of its corresponding vertex in the query

graph.

If all of the three conditions are true for atleast a single vertex in the data graph for every

vertex in the query graph, then we can say that Q is a dual simulation match to G.
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Figure 2.3: An example for Dual Simulation

Now take a look at example 2.3. We can clearly see that the vertices {1, 3, 14} have

been taken out since they do not satisfy the parent condition from the pattern graph, thus

resulting in a stricter result set than graph simulation.

2.2.4 Strong Simulation

Strong simulation builds on dual simulation by introducing a locality condition. The term

ball is coined [10] to capture this aspect of the match. The ball for a vertex v with radius r

contains all the vertices VB that are within an undirected distance of r from the vertex v,

moreover it has all the edges between those vertices VB and no more.
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Definition: Pattern Q(Vq, Eq, lq) matches data graph G(V,E, l) via strong simulation,

denoted by Q �S
sim G, if there exists a vertex v ∈ V such that (1) Q �D

sim Ĝ[v, dQ] with

maximum dual match set Rb
D in ball b where dQ is the diameter of Q, and (2) v is member

of at least one of the pairs in Rb
D. The connected part of the result match graph of each

ball with respect to its Rb
D which contains v is called a maximum perfect subgraph of G with

respect to Q. [4]

PM

SA

SD

SA

PM

PM

DB

AIDB

AI

DB AI

DB

SA

PM

SA

PM

AI

DB

AIDB

SAPM

AI
1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19 20

21

22

23

24

PM

SA DB AI

Query

Data Graph

PM: Product Manager

SD: Software Developer

SA: System Analyst

DB: Database Designer

AI: AI Specialist

Figure 2.4: An example for Strong Simulation

We can see in Fig 2.4 that the big loop spanning nodes {15, 16, 17, 18, 19, 20, 21, 22, 23,

24} have been taken out since they do not satisfy the locality condition for any ball in the

graph. As claimed earlier, this results in an even more strict match set that retains some

semantic matches but ignores a few that it deems are too spread out.

2.2.5 Strict Simulation

Strict simulation, proposed in [4], is an extension and improvement over strong simulation.

The fundamental difference between strong and strict simulation is the way the balls are

created. Whereas in strong simulation, the ball is created from the entire data graph, in

9



strict simulation we only create balls out of the vertices that were a dual match - thus we

not only reduce much of the effort in creating the balls but also more importantly, it results

in better results thar are closer to those of subgraph isomorphism [4]

We explain strict simulation in more detail in the next section by comparing it with

strong simulation.

2.2.6 Comparison of Strong and Strict Simulation

We refer Fig 2.5 for the example. In the case of strong simulation, we see that because of

the ball around {8}, the resultant match set to the query is quite big. We have marked {25}

in white, since it is not a dual match itself but because strong simulation does not make any

differentiation, the resultant ball around it will have all the vertices (marked in grey) as the

resulting match set to the original query.

On the other hand in strict simulation, when we do the duality check the node {25} is

taken out. Thus, no matter what ball we create, none will have anymore matches than the

ones marked in grey. Also, it can be easily observed that the strict result set {4, 5, 6, 7,

8} is exactly the same as subgraph isomorphism for this example. Thus, going through all

the examples, we can see how we gradually move towards matches that are more closer to

subgraph isomorphism. However, it should be noted that they are not equal. For example, if

there was an additional loop of {DB, AI} at {7} connecting to {6}, then strict result would

have been the same as strong simulation.
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Chapter 3

Models of Computation

With the advent of Big Data computing, computational models for graph algorithms have

been re-examined. Over the years, a number of ideas have been proposed for efficient and

scalable processing of graphs. Since, this paper is focussed on big graphs, we only go through

some of the most important distributed models.

3.1 MPI-like

Several libraries are developed using MPI during last decade to provide platforms for dis-

tributed graph processing like Parallel BGL [13] and CGMgraph [14]. However, these libraries

do not support fault tolerance or some other issues that are important for very large scale

distributed systems.

3.2 MapReduce

MapReduce is a programming model proposed for the processing of large data sets [15] by

Google. It has been successfully used and deployed worldwide for the parallel computation

of large scale graphs as well. As the name indicates, MapReduce works in two phases - a

12



map phase followed by a reduction phase. The system is comprised of a master node and

a number of workers. In the first phase, the master node divides the input into smaller

sub-problems and distributes it to all the workers. Each worker independently works on its

subproblem and returns its result to the master node. In the reduce phase, all the workers

combine the result in someway to form the answer to the original problem that the master

intended.

As it turns out, the mapreduce model is not ideally suited for many different graph

algorithms. e.g., if we were to do parallel BFS in MapReduce, we would need to execute

the problem in multiple chained map-reduce invocations, which can be costly as it involves

a lot of overhead and can subsequently lead to sub-optimal performance, poor usability and

ease-of-use.

3.3 BSP - Bulk Synchronous Parallel

Bulk Synchronous Parallel (BSP) was a model proposed by Valiant [16] as a computation

model for parallel processing. It was not specifically formulated for graph processing but

as a promising candidate for general purpose parallel computation. It was not proposed

as a programming concept or hardware but as a bridging model - an abstract version of a

computer which provides a conceptual bridge between the physical implementation of the

machine and the abstraction available to a programmer of that machine. It was defined as

a combination of three core attributes [adapted for graphs from [16]] and run in a series of

supersteps:

1. A number of processes running concurrently on a part(s) of the graph - performing

computation and/or memory functions,

2. A communication layer that delivers messages between pairs of processes - not caring

for whether they reside on the same machine or are distributed over a network, and

13
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Figure 3.1: An example for Bulk Synchronous Parallel (BSP)

3. A synchronization barrier in which each processor waits for other processes to finish the

processing and also to receive all the messages destined to it. Once both the conditions

are satisfied, the model continues with the next superstep. If all the processes have

run the supersteps and there are no messages waiting, the whole model terminates and

signals the successful execution of the program as a whole.

BSP is a simple, yet efficient and scalable paradigm for parallel algorithm design and

analysis. It has two performance bottlenecks: (1) synchronization has its implications in

terms of performance when one process has finished, but it has to wait for all others to

finish before proceeding to the next superstep. E.g., in figure 3.1, P2 finishes much later in

the second superstep, but all the other workers have to wait for it to finish. In addition,

(2) BSP does not take into account the case of heterogeneous clusters, since in that case

the synchronization problem is exacerbated even more and even distribution of jobs may

overwhelm a slow process. Work has been done to study the latter limitation in [17], however

they are not a focus for this paper.
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3.4 Vertex-Centric Graph Processing

Vertex-Centric Graph Processing is another model proposed by Google in [18]. It is the first

of its kind distributed system tailored specifically for the processing of large scale graphs.

The system is basically inspired by the BSP model and since it is vertex-centric, the vertices

of a graph take center stage in this system. Each vertex can best be thought of as a process

(component) in BSP i.e., they are the computation unit and can use the communication

layer to send and retrieve messages from other vertices. After a superstep, the messages are

synchronized (i.e., received by all the vertices), then the computation can carry on with the

next superstep and the process keeps repeating until the algorithm finishes.

The first manifestation of this idea came in the form of Pregel [18]. The basic architecture

of Pregel is very intuitive. The system is comprised of a master and a number of workers. The

input graph is partitioned and assigned uniformly to all the workers - no partition is assigned

to master, its only role is to coordinate and oversee the worker activity. Once the graph is

distributed, the master signals all the workers to start execution. At this point, worker

loops through its active vertices, calling the compute() method for each active vertex with

the messages received from the last superstep. The vertex can vote to halt if the algorithm

decides the role of vertex is done and should not be called in the subsequent supersteps. An

inactive vertex can be made active again with an incoming message, once all the vertices are

inactive, master instructs all the workers to halt computation marking the end of a given

job.

In addition to simplicity and efficiency, Pregel also offers additional abstractions like

combiners and aggregators that can be exploited to further boost the performance of the

system. Since, the system works on huge graphs in a distributed fashion, there is an increased

likelihood that even one worker failure can result in the crash of whole system. To avoid this,

Pregel supports fault tolerance and will dynamically reassign the job if one of the workers
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fails.

Since Pregel is not available to the general public, some of the most visible alternatives

that follow the same principles are: GPS (Graph Processing System) [19], Apache Giraph

[20] and Apache HAMA [21].
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Chapter 4

Distributed Algorithms for Graph,

Dual and Strict Simulation

In this chapter, we give an outline of a distributed algorithm each for Graph, Dual and

Strict simulation that are designed for a vertex-centric system. We deliberately omit Strong

simulation because of limited space, plus it is similar to Strict simulation. The details of

these algorithms can be found in [4].

4.1 Graph Simulation

In the designed distributed algorithm for graph simulation, the query graph is distributed

among all vertices of the data graph, and then each vertex should find out its match set

among the vertices of the query graph. Vertex u of the data graph matches to vertex v of

the query graph if they have the same labels, and any child of v has at least one match

among the children of u.

In a vertex-centric system, a vertex initially knows only about its own label and the id

of its children. Therefore, each vertex needs to communicate with its neighbors to learn
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Superstep 1:

• Set match flag true if there is any vertex in query with same label

– Make a match set of potential match vertices

– Ask children about their status

• Otherwise vote to halt

Superstep 2:

• If the flag is true reply back with the local match set

• Otherwise vote to halt

Superstep 3:

• If the flag is true evaluate the members of the local match

– In the case of any removal from the match set, inform parents and set match flag accordingly

– Otherwise vote to halt

• Otherwise vote to halt

Superstep 4 and beyond:

• If there is any incoming removal message reevaluate the local match set

– In the case of any removal from the match set, inform parents and set match flag accordingly

– Otherwise vote to halt

• Otherwise vote to halt

Figure 4.1: Summary of Graph Simulation algorithm

about their labels and status in order to evaluate the children-relationship condition. A

Boolean flag, called match flag, is dedicated to each vertex which indicates if the vertex has

a potential match among the vertices of the query graph. This flag is initially false. The

summary of the steps of the algorithm is displayed in figure 4.1.

In an example displayed in figure 4.2, all the vertices of the data graph labeled a, b, and c

make their flag true at the first superstep, and then vertices 1, 2, and 5 send messages to their

children. At the second superstep only vertices 5, 6, and 7 will reply back to their parents.

At the third superstep, vertices 1, 5, 6, 7, and 8 can successfully validate their match set,
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Figure 4.2: An example for distributed graph simulation

but vertex 2 makes its flag false, because it receives no message from any child. Therefore,

vertex 2 sends a removal message to vertex 1. This message will be received by vertex 1 at

superstep four. It will successfully reevaluate its match set, and the algorithm will finish at

superstep five when every vertex has voted to halt (there is no further communication).

4.2 Dual Simulation

The algorithm for dual simulation is very similar to graph simulation. In addition to chil-

drenMatchSet, we extend the algorithm by parentMatchSet which serves to store the match

sets of all the parent vertices. Like graph simulation, we evaluate the duality condition by

using the parentMatchSet in combination with childrenMatchSet. At the end of the algo-

rithm, all the vertices with the match variable set to true are the dual match results to the

query pattern.
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Figure 4.3: A ball around a vertex with dq = 2

4.3 Strict Simulation

Strict simulation is done in two phases: (1) we run dual simulation to get the match set R

and then (2) ∀v ∈ R, we create a ball with a diameter of dq. Once we have all the balls

ready, we run dual simulation on each to have the final output of strict simulation. The

algorithm for strong simulation is quite similar in which we just skip the step (1) of strict

simulation and start with (2) where we create the balls for every vertex in the data graph.

The biggest challenge we faced in strict simulation was the creation of balls. Because of

the scale of graphs, we may end up creating balls for a lot of vertices simultaneously which

could bog down the whole system. Therefore, we tried two different approaches that we go

through below using Figure 4.3 as an example.

4.3.1 Depth-First Ball

As the name suggests, ball creation process works in a depth-first fashion. In the first

superstep, every vertex in R sends a forward message of format M(origin, sender, ballSize,

direction) to all of its adjacent vertices, where origin is the id of the center of ball (for example

x), sender is the vertex sending out this message, ballSize is a value that is decremented by
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one as this message propagates through the graph, and direction indicates if the message

is going from a parent to a child or vice versa. In the second superstep, every vertex that

receives a message m (for example y) will perform the following actions: (a) depending upon

m.direction, it sends outs a reply message like r(m.sender, y) or r(y, m.sender) to m.origin;

(b) it forwards a new message my(m.origin, y, ballSize-1, direction) to all of its adjacent

vertices. Whenever the center of a ball receives a message which has its own id as the

originator, it will add the gathered information to its ball. The messages are passed around

until the value of ballSize they carry becomes 0; at that point the originator vertex has all

the information of its ball.

This approach completes building the ball in ballSize+1 supersteps, by sending out very

small messages. Its major problem is the exponential growth in the number of messages

because every vertex forwards its incoming messages to all its neighbors; therefore, this

approach has a poor performance for balls with slightly big diameters. Our experiments also

approved the problems of this approach; hence, we did not use it in our final implementation.

4.3.2 Breadth-First Ball

This approach works on a simple ping-reply model. The ball center vertex starts off by

sending a ping message to all of its adjacent nodes. In the second superstep, all the recepient

nodes reply back with their label and the ids of their children and parents. Center vertex

upon receiving this information in the third superstep, saves the returned labels and then

ping the parents/children of its parents/children. This process is repeated till we have a ball

of size dq.

For example, in figure 4.4, let us suppose we want to create a ball around vertex X of

radius 2. Initially, X only knows its adjacent node ids 1,7 and no label information. It starts

off by sending a ping message to all of its adjacent nodes. In the second superstep, all the

recipient nodes reply back with their labels and the ids of their children and parents. Thus,
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Figure 4.4: A breadth-first ball around vertex X with dq = 2

in 4.4(b), X upon receiving this information saves the returned labels and the children and

node ids in the ball. In 4.4(c), it sends another ping message to all of its boundary nodes

which reply back with their labels and the ids of their children and parents, consequently

saved by the node X in 4.4(d).

The downside of this approach is that it results in almost twice the number of supersteps,

yet it was much more effective and performed way better than the other approach. Since its

performance was much better than the depth-first approach, we adopted this approach for

strict simulation tests.
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Chapter 5

Implementation of Distributed

Algorithms

Since this paper is primarily focussed on graph pattern matching using the four simulation

methods discussed in Background, in this section we will discuss the implementation of

graph simulation, dual simulation and strict simulation that were proposed in [4]. Since

strict and strong simulation are quite similar, we have omitted strong simulation due to

space constraints.

5.1 GPS - Graph Processing System

As mentioned above, because all of the four algorithms were designed with a BSP and vertex-

centric model, we decided to use something akin to Pregel for the implementation. Of the

numerous implementations of Pregel available, we picked GPS for our algorithms since it

offers everything that we desire of Pregel and is available open-source [22]. It is written in

JAVA and also gives us an option to write a master.compute() method that proved to be

quite handy in case of strong and strict simulation.
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As in Pregel, there are two types of main components in the system: one master node and

k worker nodes. All the nodes communicate with each other using apache MINA which is a

network application framework built on Java’s asynchronous network I/O package (java.io).

All the nodes run on top of HDFS (Hadoop Distributed File System) [23] which acts as the

storage layer E.g,. for the input data graph

GPS offers a very simple programming model. Every vertex in the graph can be ab-

stracted by creating a class that inherits from a vertex abstract class and we just need to

overload its compute method. The compute method has two inputs: (1) an Integer super-

StepNo that represents the particular superstep number compute has been called for and

(2) Iterable〈M〉 which is an iterator available over all the incoming messages for superstep

superStepNo. superStepNo is very helpful in driving the logic of algorithm.

A GPS job starts off by partitioning the data graph over all the participating workers.

Every worker reads its partition and then distribute the vertices based on the round-robin

scheme i.e., vertex v gets assigned to the worker W = v.id % k. The lifecycle of a GPS

job can be summarized in following steps: (a) parse the input graph files (b) start a new

superstep and (c) terminate computation when all the vertices have voted to halt and there

are no messages in transit, otherwise go to (b).

5.2 Akka

Akka is a toolkit and runtime for building highly concurrent, distributed, and fault tolerant

event driven applications on the JVM. It has an extended API that lets you manage ser-

vice failures, load management (back-off strategies, timeouts and processing-isolation), both

horizontal and vertal scalability (add more cores and/or add more machines) 1. The API is

available both in Java as well as Scala.

1http://akka.io/
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5.3 GPS vs Akka

GPS provides an excellent platform for graph processing. However, to enable the mes-

sage passing for custom types, requires considerable effort that is not only time-consuming

but is also prone to bugs. E.g., if the message contains some complex type like Map[Int,

List[Map[Int, Int]]], we need to be very careful with how the message is serialized and then

deserialized at the receiving end. These nitty-gritty details can be cumbersome, hard to

maintain and not so readable.

Akka is a lot different to GPS (Pregel) since it is a general purpose toolkit for building

highly concurrent and distributed applications and not something that is built ground-up

only for graphs. It means there is some work that needs to be done to make Akka work in

a fashion similar to BSP. Perhaps, the biggest edge that Akka has over other comparable

models is its inherent ability and support for sending messages between actors. With Akka

(Scala), the developer does not have to worry about serializing/deserializing of data. They

can send messages wrapping complex types with extremely concise and terse syntax. E.g.,

in figure below, we can clearly see how easy it is to exchange messages between actors using

the Scala syntax for message passing. To send the message, we just wrap it inside a case

class and then the receiving actor can process the message however he wishes.

1 // case class for message

2 case class message (...)

3

4 // code for ActorA (sender)

5 val msg: Map[Int, List[Int]] = ...

6 actorB ! message(msg)

7

8 // code for ActorB (receiver)

9 def receive = {

10 case g: message => ...

11 }
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In parallel computing, concurrency has always been an important issue that needs to

be taken care of. For quite a while, threads have been the preferred method of achieving

concurrency, however it has its issues related to synchronization giving rise to problems like

deadlocks, starvation, livelocks, etc. With the actor-based model (as in Akka), since the

state is shared with message passing, most of these issues at an implementation level are

taken care of. However, it should be noted that Akka (or any other actor model) is still

susceptible to synchronization issues arising out of the algorithm itself. Also, with actors we

do not have to rely on polling for information, which saves us more time and computational

power.

Figure 5.1: Comparison between GPS and Akka using Graph Simulation

We implemented a prototype application for graph simulation using Akka. We were pleas-

antly surprised by the power and ease provided by Akka and Scala for rapid development.

Even with the most basic implementation, we were able to achieve much better times as we

were getting from a much more accomplished system like GPS. The tests were conducted

on the amazon-2008 [24] dataset and were run over a cluster of 5 machines. As can be seen

in Figure 5.1, Akka ran almost twice as fast as GPS with a naive implementation and some

initial testing.
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Chapter 6

Performance Evaluation

In this chapter, we go through the results of experiments conducted for these algorithms on

GPS.

6.1 Experimental Setup

We conducted extensive testing for all of the three algorithms i.e., graph simulation, dual

simulation and strict simulation. The experiments were conducted on a cluster with 12

machines in all. Each machine has two 2GHz Intel Xeon E5-2620 CPUs, each with six cores.

The ethernet connection is 1Gb/sec. Each machine is running Java 6 and Hadoop HDFS is

setup on the whole cluster. We also setup GPS on all the machines since we wanted to have

the ability to use all the computers in our experiments.

6.1.1 Datasets and storage

We used three datasets for our experiments - two were real-life and one was synthesized.

The synthesized dataset has 108 vertices with around 4 billion edges. Considering the huge

size of file, we broke the graph into multiple files adopting the simple adjacency list format
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for storage. Every line in the file has the standard format like below:

{vertex-id} {vertex-label} {list of outgoing edges ids separated by comma}

0 20 5, 192, 23, 5, 18239

1 23

...............

...............

One real life dataset was uk-2005 downloaded using WebGraph and LLP [25, 26]. It is a

2005 crawl of the .uk domain performed by UbiCrawler[27]. The graph has 39459925 nodes

and 936364282 edges with an average degree of 24.

The other real life dataset was enwiki-2013. The graph represents a snapshot of the

English part of Wikipedia as of late February 2013 [24] vertices equalling 4206785 nodes and

101355853 edges. It is a more dense graph than uk-2005.

Unless mentioned otherwise, the labels on all the vertices were randomly chosen as an

integer in the range from 0 to 200. All of these graphs were loaded into the Hadoop HDFS

for GPS consumption.

We generated queries using two parameters, (1) the number of vertices |Vq| in the query,

and (2) αq which controls the edge density of the graph and is used as |Vq|αq .

6.1.2 Results Verification

To verify the implementation and the results, we put together a combination of few tools

with the workflow shown in Fig 6.1. The process begins by automatically generating a

synthesized data graph of random size and then generating a random query out of it. Once

it has both the inputs, i.e., the data graph and query graph, it runs the sequential as well

as the distributed version of the algorithm and then the results are compared. If equal the

process is repeated, otherwise the whole thing halts and the system reports the fault.
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We ran this comparison for more than a 1000 times for all the three cases of graph, dual

and strict simulation. Once we verified the implementation using this method, we proceeded

to the experiments section.

Auto-generate a 

synthesized graph S

Auto-generate a query 

pattern Q from the data 

graph S 

Run centralized 

algorithm

Run distributed 

algorithm 

Compare 

Results

Equal Not Equal Halt

Figure 6.1: The workflow of the auto comparison model

6.2 Experimental Results

We wanted to do a detailed study of how the algorithms behave with different input varia-

tions. In this report, we only focus on the speedup and efficiency of the algorithms, a more

detailed report can be found in [4].

Before delving into the details of speedup and efficiency, we show the running times of

the three algorithms on the three datasets.
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Figure 6.2: Running times of graph, dual and strict simulation, |Vq| = 25, αq = 1.2

6.2.1 Speedup

The speedup is how much faster the parallel program is, for instance if Tp is the time it

takes to solve the task on p processors, then speedup = T1/Tp. For our algorithms, we adapt

the term speedup as how the distributed algorithm gets faster as we increase the number of

workers. We can use workers to calculate speedup since they represent the logical processors
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for our system. Even, when we ran multiple workers on the same physical node we made

sure that we are not exhausting the number of available threads, so each worker could run

as indepedently as possible. Plus, all the physical nodes are the same.

We show the results of our experiments on the different datasets for the corresponding

speedups in Fig 6.3, 6.4 and 6.5. In all of these experiments, we used 11 nodes as workers and

the remaining one node as the master. On the x-axis, we have the total number of workers

and the other axis corresponds to the speedup. It should be noted that we have more

workers than the number of worker node machines available. We achieve this by distributing

the workers over the 11 worker nodes available. For instance, if we have 44 workers in all we

are essentially running 44/11=4 workers per node.
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Figure 6.3: The speedup on the synthesized dataset, |V | = 108, |Vq| = 25, α = αq = 1.2

We can easily observe the following from the three figures:

1. As we increase the number of workers, we get more speedup. However, the speedup

bar tends to flatten as we approach the maximum number of workers. We can see

that a speedup of more than 11 - which were the total number of worker machines
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Figure 6.4: The speedup on the uk-2005 dataset, |V | = 3.9x107, |Vq| = 25, αq = 1.2
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Figure 6.5: The speedup on the enwiki-2013 dataset, |V | = 4.2x106, |Vq| = 25, αq = 1.2

available - was achieved in the synthesized as well as uk-2005 dataset. The relatively

flat behavior at the higher end is because the input job has been divided into very
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tiny sub-problems, thus each worker has a smaller chunk of the original problem and

the synchronization costs of all the workers become an important factor in the total

computation time.

2. We get more speedup with bigger datasets, and lesser speedup with smaller datasets.

The behavior can be partially explained with the point above. If the input dataset is

already small (e.g., Fig 6.5), then even by introducing more workers, we will not be

able to see the same gain as we would see from a bigger dataset. In fact, the curve can

drop down because of the synchronization and communication costs.

3. It must be noted that we could not fit the synthesized data on a single worker. Based on

multiple experiments spanning small as well as bigger datasets, on average we achieve

a speedup of 1.8 as we jump from 1 to 2 workers, therefore we have extrapolated that

much speedup (indicated by the dotted segment), had we been able to get it running

on a worker with enough memory. We can see that we get more than 30x speedup on

dual simulation which is quite impressive considering we are only running 11 worker

nodes.

6.2.2 Efficiency

Efficiency is how effectively additional processors are used in a distributed system, Efficiency

= Speedup/p, where p are the number of processors. Just like speedup, we can use the

workers as our processors since they effectively represent the logical processors in our system.

In essence, we try to get an idea of the system potential. We present the results of our

efficiency experiments on the three datasets in Figures 6.6, 6.7 and 6.8.

We can observe the following from the efficiency graphs:

1. Just like any other comparable model, the efficiency drops as we increase the total

number of workers. However, the drop is less sharp in the case of bigger datasets.
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Figure 6.6: Efficiency for the synthesized dataset, |V | = 108, |Vq| = 25, α = αq = 1.2
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Figure 6.7: Efficiency for the uk-2005 dataset, |V | = 3.7x107, |Vq| = 25, αq = 1.2

2. With smaller datasets, we drop below 50% efficiency with just 8 workers (e.g., fig 6.8).

This is because when the dataset is small and we distribute it to many workers, the
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Figure 6.8: Efficiency for the enwiki-2013 dataset, |V | = 4.2x106, |Vq| = 25, αq = 1.2

synchronization and communication costs in the system become the significant factor

in the total running time.
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Chapter 7

Impact of Graph Partitioning

In this section, we try to study the effects of graph partitioning as an optimization to

the existing algorithms. Basically, we want to study how the algorithms react to different

partitioning schemes - and if it results in any improvements. Graph partitioning has exten-

sive applications in many areas including telephone network design, VLSI design and task

scheduling. The problem is to partition the graph into p roughly equal parts, such that

number of edges connecting vertices in different parts is minimized [28]

It is important in the context of distributed computing because we want to partition the

graph into pieces such that each piece is mostly self-contained i.e., we want to reduce its

communication to other parts as possible, thus in theory resulting in speed-up. However, it

is not a trivial problem. When we partition the graph, we need to take care of two points:

1. We want to minimize the number of edges going from one partition to the other,

2. An effort must be made to partition the graph into equal parts, so every worker gets

a fair amount of load. This is essential because we do not want to distribute the jobs

unevenly, thus losing out on the benefits of parallelism.

Graph partitioning that enforces the two conditions above is called min-cut partitioning
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which is a NP-complete problem and has been extensively studied in its own right. Graph

partitioning has been successfully used with considerable improvement in various applica-

tions. It must be noticed that graph partitioning has no guarantees to provide consistent

improvements for all graph algorithms. It will result in most speed-up, if the communication

is mostly between adjacent vertices, since partitioning tries to co-locate them in a single

partition, however if that is not the case then communication is inevitable. Semih [19] was

able to achieve 2.2x improvement in speed by partitioning with PageRank algorithm, but in

case of Highly-Connected Component, Single Source Shortest Path the speed-up was only

1.47 and 1.08 respectively.

Since GPS default partitioning method works on a simple hash function (as described in

section 5.1), we call it round-robin (rr) partitioning to differ it from some other methods we

test. Now, we present our intuition as to how graph partitioning should work in our case

and then back it up with experiments and results in the next section.

Since graph partitioning takes into account the topology of graph we are prone to get

imbalanced load among workers as the algorithm runs which can harm the overall perfor-

mance.

Example

Let us walk through the example shown in figure 7.1 with two hypothetical workers W1,W2

and suppose we are running strict simulation. The query and data graphs are given in the

figure 7.1, with the resultant subgraph highlighted in the data graph. The vertex labels are

inside and the id is hanging outside the node. In the default case, the system will employ a

simple round-robin scheme to distribute the vertices over workers. We have highlighted the

vertices that go to worker W1 in grey and the ones in white go to W2. As we know strict

simulation runs in two phases - dual simulation followed by the ball creation process. We
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Figure 7.1: Graph partitioning

can clearly see that the matched subgraph is evenly distributed over both the workers and

the balls are created by both the workers, thus maximum parallelism is achieved.

Now, let us consider the min-cut partitioned case. We have marked the edge with min-cut

where the graph will be partitioned. Now, one of these partitions will go to worker W1 and

other will go to W2. In this case, we can clearly see that the whole matched subgraph will

be contained in one worker and only that worker will be creating the balls, thus essentially

the algorithm is run in a serial fashion, resulting in slower times.

Based on the example above, we can say that with queries having a lower αq (denotes the

number of edges, used as |Vq|αq), there is an increasing probability that we get better speedup

as there is an increasing chance that the resultant matches will be distributed over multiple

workers, thus we will be able to enjoy the benefits of parallelism. However, on the other

hand with queries having a higher αq, we have more chances that the resultant subgraph(s)

will not be well distributed. These issues can become quite visible in algorithms like strict
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simulation where some operations (like creation of balls) are expensive and if they are local

to fewer workers, it can tremendously harm the overall performance of the algorithm, as will

be shown by our results in the next section.

Performance Evaluation

We conducted extensive testing of graph partitioning on multiple datasets and in this section,

we try to present the results and reason about them.

Datasets

We use both a real world dataset and a synthesized dataset. Data graph is governed by three

variables (1) |V | is the number of vertices, (2) α is the number of edges used as |V α|, and

(3), l is the number of labels in the graph that are randomly assigned from the range (0, l).

For query graphs, the only parameter used is |Vq| indicating the number of vertices and αq,

if not mentioned otherwise is kept constant at 1.2.

uk-2002 [24] was used as the real life dataset, that is a 2002 crawl of the .uk domain. It

has 18520486 vertices and 298113762 edges. For the synthesized data graph, we used the

same synthesizer we used in [4] to generate a graph with |V | = 107, an α of 1.2 and l of 200.

The synthesized dataset had 107 vertices with an average degree confirming to α = 1.2.

It was generated using our own synthesizer and the graph had random edges between the

vertices.

To retrieve a query graph for a particular data set, we took |Vq| as the input which is

the size of query graph. We also took αq as input which governs the edge density. αq, if not

mentioned otherwise is kept constant at 1.2. Once, we have both the arguments then we

randomly extract a connected subgraph from the dataset that adheres to the two conditions
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and will be subsequently used as the pattern graph.

Experimental Environment

The experiments were conducted using GPS on a cluster of 5 machines. Each one has a

128GB DDR3 RAM, two 2GHz Intel Xeon E5-2620 CPUs, each with 6 cores. The ethernet

connection is 1Gb/sec. Four machines acted as slaves with one as the master. Every ex-

periment was repeated a total of three times and then the average is reported in the results

section below.

7.1 Experimental Results

We used METIS [28] for graph partitioning, which can partition an unstructured graph

into k parts using either the multilevel recursive bisectioning [29] or the multilevel k-way

[30] schemes. Both the models can provide high-quality yet different partitions so we tried

both to study the relative impact. The algorithms work with a simple goal: edge-cut which

basically tries to minimize the edges that travel between different partitions. Since graph

partitioning is not the focus of this report, we do not discuss the details of the two types

here. After extensive testing on both (k-way as well as recursive bisectioning), we found that

k-way performed better on average, therefore we only report its results below. However, we

do present the results of both the partitionings in the appendix.

We identify two complexity measures for our tests, (1) runtime which is the time taken

to complete a given job and (2) network traffic which are the number of bytes sent among

workers to complete a given job.
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Figure 7.2: Partitioning effect on the runtime of synthesized dataset, |V | = 107, α = 1.2

7.1.1 Runtime

With the growing scale of graphs, researchers are always trying to minimize the runtime of

the algorithms. The runtime for the two datasets are presented in figures 7.2 and 7.3. On

the x-axis, we manipulate the size of query and y-axis show the runtime in seconds. We

run each test for a min-cut partitioned as well as the default (round-robin) case to see the
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Figure 7.3: Partitioning effect on the runtime of uk-2002-hc, |V | = 1.8x107

comparison. From the figure, we observe that:

1. The runtimes for graph and dual simulation are always faster with min-cut partitioning.

In the worst case, they are about the same as the round-robin case.

2. The total runtime of the algorithm increases as we keep increasing the size of query.
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3. We get the most speed-up in case of dual simulation.

4. The runtimes are much closer in strict simulation and appear mostly unaffected by

min-cut partitioning.

Graph and dual simulation runtimes take benefit from graph partitioning since the ver-

tices always talk to their adjacent vertices only. However, strict simulation is different

because when it is in the process of building the ball, it needs to communicate with vertices

that are further and further away from the center. This increases the probability that the

vertex will communicate with a vertex that lies on some other partition, thus washing away

any benefit that we obtained from partitioning. Also since ball creation is an expensive pro-

cess, even a slight imbalance in the number of vertices creating the balls, can slow down the

whole system. With all of these factors, we can easily see that the times between different

types of partitionings for strict simulation remain the same. It must be noted that we fixed

the αq value to 1.2 to generate queries with low-degree for all of these experiments and the

results are inline with our expectations mentioned earlier.

Further, since it is unfair to report the times based on a single query for any given size,

we created 10 queries for each query size and repeated the experiments. Our times with

those many queries were consistent with the results reported above.
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7.1.2 Network traffic

Another important criteria is the data that needs to be moved among workers. By reducing

the total network traffic, we increase our chances of reducing the runtime and any cost

associated with it. The effect of reduced data traffic could be more prominent in case of a

constrained or a geographically distributed network.
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Figure 7.4: Partitioning effect on the network I/O of synthesized dataset, |V | = 107, α = 1.2

In figures 7.4 and 7.5, we show the results of partitioning on the total network traffic.

44



1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

5 10 20 40 60 80 100 200

To
ta

l N
e

tw
o

rk
 I

/O
 (

K
B

)

Query Size

Min-cut Round-robin

(a) Graph Simulation

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

5 10 20 40 60 80 100 200

To
ta

l N
e

tw
o

rk
 I

/O
 (

K
B

)

Query Size

Min-cut Round-robin

(b) Dual Simulation

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

5 10 20 40 60 80 100 200

To
ta

l N
e

tw
o

rk
 I

/O
 (

K
B

)

Query Size

Min-cut Round-robin

(c) Strict Simulation

Figure 7.5: Partitioning effect on the network I/O of uk-2002-hc, |V | = 1.8x107

We can easily observe the following:

1. The network traffic for graph, dual and strict simulation is always lower with parti-

tioning.

2. On the real life dataset (uk-2002), the network traffic drops considerably. It should be
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noted that the graphs are drawn on a logarithmic scale for the uk-2002 dataset.

3. The total network traffic increases linearly as we increase the size of query.

The power law nature of the real-life dataset is the contributive factor to the drastic drop

in the network traffic [31]. A similar pattern is not present in the synthetic dataset since it

is a graph with randomized edges i.e., the vertices and edges are very uniformly distributed.

To further cement our results above, we created 10 queries for each query size and re-

peated the experiments. Our results with those many queries were consistent with the results

reported above.
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7.1.3 Diameter of pattern graph

In this section, we try to evaluate the claims made earlier with regards to the impact of αq

in conjunction with graph partitioning. Again, we conduct the tests on the two datasets

used above, but this time we generate queries with an αq value of 1.75. We have copied the

results below in Figures 7.6 and 7.7.
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Figure 7.6: Partitioning effect on the runtime of synthesized dataset, |V | = 107, αq = 1.75

By going through the figures, we can make the following conclusions:
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Figure 7.7: Partitioning effect on the runtime of uk-2002-hc, |V | = 1.8x107, αq = 1.75

1. As the query size increases, the running time of all the algorithms increases.

2. If we compare the times against 7.2 and 7.3, we can see that these queries take less

time. That is because with min-cut partitioning we are reducing the network I/O and

also since we have a smaller diameter for the query graph resulting in fewer supersteps

and hence we have a faster running time.
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3. In case of larger queries we get faster times in both graph and dual simulations.

4. We get some interesting results in case of strict simulation with the real life dataset. To

understand the reason, we need to revise the two important phases of strict simulation

- in the first phase, we run dual simulation to get the result and then we create a ball on

every vertex in the result. If in any case the result of dual simulation is not uniformly

distributed over all workers, then some workers are forced to do much more work than

others for creating balls. This slows down the whole process as ball creation is a really

slow process and the biggest bottleneck in strict simulation. In the example graph

where the times are much slower, we found out that all the balls were being created

by fewer workers (most workers were sitting idle), thus essentially it was a sequential

process in the second phase of strict simulation. Hence, these results vindicate our

expectation that queries with a higher αq, on average, will operate badly with strict

simulation as compared to a lower αq.

We repeated these tests using multiple queries (with αq = 1.75) and on average, min-cut

partitioned datasets were slower than round-robin in the case of strict simulation. We give

a snapshot of these results in Tables 7.1 and 7.2. Clearly, we can see that the times with a

lower value of αq are much more consistent and become erratic as the αq gets larger.
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Table 7.1: Runtimes of strict simulation on 10 different queries, |Vq| = 100, αq = 1.75

Query # k-way recursive round-robin
1 54.97 56.07 54.95
2 59.62 59.85 63.49
3 88.81 92.84 69.87
4 44.15 42.72 49.80
5 81.18 75.46 57.99
6 347.72 343.37 154.67
7 198.08 215.42 105.90
8 47.59 48.79 57.05
9 96.30 94.95 74.46
10 100.20 111.09 80.75

Table 7.2: Runtimes of strict simulation on 10 different queries, |Vq| = 100, αq = 1.2

Query # k-way recursive round-robin
1 71.78 73.60 72.75
2 73.55 73.04 73.73
3 79.39 81.91 88.64
4 73.15 78.38 75.55
5 69.64 73.06 69.53
6 68.19 68.18 65.51
7 88.42 87.22 91.16
8 76.12 80.21 83.53
9 79.75 82.04 88.46
10 59.74 64.93 61.45
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Chapter 8

Related Work

The problem of subgraph pattern matching is a widely studied topic. In this section, we

try to summarize the literature along three lines (a) distributed graph pattern matching

with a focus on graph simulation (2) the effects of graph partitioning on distributed pattern

matching algorithms and (3) a review of the different implementation options available for

distributed graph algorithms.

Over the years, many different graph pattern matching techniques have been proposed.

There are two broad categories of matching, exact and inexact algorithms[11]. Exact match-

ing works by preserving the edge connectivity i.e., if the two nodes in the pattern graph are

connected by an edge, they must map to two nodes in the other graph that are connected

by an edge as well. There are many variations within exact matching like Graph Isomor-

phism, Subgraph Isomorphism, Homomorphism and Maximum Common Subgraph (MCS).

Subgraph Isomorphism is possibly one of the most well-renowned technique used for pattern

matching. However it is a NP-complete problem which matches the graph based on the

exact topological structure of pattern.

Inexact matching techniques relax the stringent conditions of exact matching and try to

get the semantic matches in a graph. This induced tolerance in the matching process means
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that even if there is a slight noise, it will give some result whereas exact matching will turn

up with nothing. A few techniques like p-homomorphism [32] and bounded simulation [33]

that rely on inexact but semantic matching [5] have been proposed recently.

The ideas of dual and strong simulation were introduced in [10] yet the first distributed

approach for graph simulation was introduced in [34]. However, their approach is not based

on a vertex-centric model and uses a modified version of the hhk algorithm. They identify

three complexity measures namely visit time, makespan and datashipment. They successfully

demonstrate that the distributed model has applications for large scale graph processing.

However, not all of its stages are in parallel and one is strictly serial.

Graph partitioning is another problem that is gaining traction with the advent of dis-

tributed algorithms. These algorithms mostly try to work with the goal of minimizing the

edge-cut in the graph. METIS [28] is a renowned tool that can employ two different tech-

niqeus to generate high-quality partitions. The effects of graph partitioning on different

algorithms have been studied by numerous researchers. [19] talks about the impact of parti-

tioning on algorithms like PageRank, SSSP, etc. and report a noticeable speed-up. We could

not find any literature that studies the impact of partitioning in conjunction with semantic

web matching.
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Chapter 9

Conclusion

Graph pattern matching has been an important topic in the field of Computer Science

and has been gaining prominence recently. It has become more challenging with the rapidly

increasing size of graphs. In this report, we study the three polynomial type pattern matching

techniques in detail. Following are the chief contributions of this report:

1. We showed that the three distributed algorithms - one each for graph, dual and strict

simulation, show speedup as we increase the number of workers.

2. We showed that the efficiency curve drops as we increase the number of workers. With

bigger datasets, the efficiency is much higher than smaller datasets.

3. We demonstrated through experiments that min-cut graph partitioning improves the

runtime of the graph simulation and dual simulation algorithms consistently as com-

pared to round-robin distribution. The improvement in runtime becomes better as we

increase the size of query graph.

4. We demonstrated through experiments that min-cut graph partitioning performs al-

most the same as simple round-robin scheme on strict simulation with a lower value

of αq (denote the number of edges in a graph, used as |Vq|αq - greater αq means a
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dense graph and lower means vice versa). However, it performs much worse than the

round-robin distribution in case of query graphs with a higher value of αq.

5. We showed that min-cut graph partitioning always result in a drop in the network I/O

among workers. This can be significant in the case when the workers are distributed

geographically and/or have choked bandwidth. The drop is much more significant in

case of real life datasets (x100 times).

6. An overview of the different techniques that can be used to build balls around a vertex

in a distributed vertex-centric setting.

We successfully show that the Pregel like vertex-centric model gives us an impressive

speedup (more than 30x times) as well as efficiency on massive graphs. We also show that

graph partitioning can be used to drastically reduce the data communication size, especially

in real life datasets that have the power law graph attribute. Also we show that we achieve

some speed-up in graph and dual simulation with min-cut graph partitioning as compared

to the default round-robin distribution of vertices. Min-cut partitioning has practically no

effect on strict simulation, however under some circumstances it can perform much worse

than round-robin distribution.

9.1 Future Work

1. We intend to look into different ways to improve the strict simulation running times

on GPS. It is clear that creating the ball is a slow and resource consuming process;

hence, we need to find out how we can improve the process of ball-creation. Instead of

creating the ball on every vertex, we intend to come up with techniques to reduce the

number of balls without compromising the results.

Another possible option is to do graph exploration on the dual simulation match to
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prune the result set without creating the balls altogether. This can have drastic im-

provements on the running time of strict simulation.

2. Try to come up with new algorithms that do not suffer the synchronization bottlenecks

of the BSP model, thus achieving maximum parallelism.
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Appendix A

Results of experiments on different

partitioning schemes

Below, we copy the results of our graph partitioning experiments using all three types of

distribution of vertices - the default round-robin, and min-cut partitioning using both k-way

and recursive bisectioning techniques.

A.1 Runtime

Runtime results of both datasets (synthesized and uk-2002) with different partitions are

shown below in figure A.1 and A.2.
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Figure A.1: Comparison of partitioning effects on the runtime of synthesized dataset

A.2 Network I/O

Network I/O results of both recursive bisectioning and k-way min-cut partitioning along

with round-robin on both datasets is given below in fig A.3 and A.4.
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Figure A.2: Comparison of partitioning effects on the runtime of dataset uk-2002-hc
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Figure A.3: A comparison of partitioning effects on the network I/O of synthesized dataset
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Figure A.4: A comparison of partitioning effects on the network I/O of uk-2002-hc
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