
Enabling Fine-Grained Reconstruction

and Analysis of Web Attacks with In-Browser Recording Systems

by

Bo Li

(Under the Direction of Roberto Perdisci)

Abstract

The web has become a vector for attacks, and many of these attacks cannot be easily detected

in real time. Because of this, we often find ourselves in the situation of analyzing past attacks

retroactively. Therefore, performing refined forensic analysis on browser-based web attacks, such

as drive-by download attacks, social engineering attacks, phishing attacks, and clickjacking attacks,

is a consequential, challenging and time-consuming task. Previous approaches, based on sparse

system logs and browser caches, can hardly reconstruct a precise view of an attack due to the

lack of sufficient information.

To solve this problem, an in-browser recording and replay system is needed. This system

has to be always-on, be lightweight and have the ability to be integrated into different popular

browsers and platforms including mobile devices.

Since most web attacks are JavaScript-driven, we first propose to build up an novel system

for in-browser recording and replay of JavaScript programs. We achieve our goal in two steps:

a recording-only system (JSgraph) and a recording and replay system (JSCapsule).

We propose JSgraph, a novel system for the in-browser recording and reconstruction of

JavaScript programs. Our system considers the JavaScript engine as a black box with a thin

instrumentation layer around it. At the time of recording, such instrumentation layer records

inputs and behaviors to/from the JavaScript engine in order to enable a detailed, post-mortem

reconstruction of ephemeral JS-based web attacks experienced by real network users.

JSgraph is carefully designed to be lightweight and efficient, with a median overhead on popular

website page loads between 3.2% and 3.9%. We also design the system to be portable, which means

it can be integrated into different popular browser and platforms with minimal or no changes.

A more generic framework upon Chrome’s DevTools is further designed to address the

problems in JSgraph, which also provides the foundation to build an in-browser deterministic

recording and replay system in the future.

While JSgraph can reconstruct the JavaScript behaviors, it can not reconstruct any web

attacks which does not leverage the visual lure to the user and the changes to the DOM. To

address this problem, we propose JSCapsule, a novel system for the in-browser recording and

replay of JavaScript programs, which provide us the ability to get step-by-step information of

what happened in the JavaScript in order to have more precise understanding of attack codes for

the deployment of counter defense. More future work on generating instrumentations for recording

automatically is needed, in order to build a fully-deterministic recording and replay system for

JavaScript execution to assist the analysis of web-borne attacks.

Index words: Forensic analysis, In-Browser Recording and Reconstruction,
In-Browser Recording and Replay,
Phishing attack, Clickjacking attack, JavaScript debugging, Crash analysis

Enabling Fine-Grained Reconstruction

and Analysis of Web Attacks with In-Browser Recording Systems

by

Bo Li

B.Eng., Beijing Institute of Technology, 2012

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2017

c© 2017

Bo Li

All Rights Reserved

Enabling Fine-Grained Reconstruction

and Analysis of Web Attacks with In-Browser Recording Systems

by

Bo Li

Major Professor: Roberto Perdisci

Committee: Kyu H. Lee

Kang Li

Electronic Version Approved:

Suzanne Barbour

Dean of the Graduate School

The University of Georgia

December 2017

Acknowledgments

I would like to thank my friends and family for their support and encouragement through my

PhD program. I would like to give my sincere thank to Dr. Roberto Perdisci for his support, his

patient, and his inspiration with this research. None of the work is possible without him. I would

also like to thank Dr. Kang Li and Dr. Kyu Hyung Lee for their help and guidance.

iv

Table of Contents

Page

Acknowledgments . iv

List of Figures . vii

List of Tables . viii

Chapter

1 Introduction and Literature Review 1

1.1 Introduction . 1

1.2 Literature Review . 5

2 JSgraph: Enabling Reconstruction of Web Attacks via Efficient

Tracking of Live In-Browser JavaScript Executions 8

2.1 Abstract . 9

2.2 Introduction . 9

2.3 JSgraph System . 21

2.4 Visualizing JSgraph’s Audit Logs 30

2.5 Analysis of Web Attacks . 32

2.6 Performance Evaluation . 38

2.7 Discussion . 45

2.8 Additional Related Work . 45

2.9 Conclusion . 47

2.10 Acknowledgment . 48

v

3 Recording Framework for post-mortem web-borne attack analysis 49

3.1 Introduction . 49

3.2 Framework System . 51

3.3 Conclusion . 58

4 JSCapsule: Enabling Fine-Grained Reconstruction and Analysis of

Web Attacks with In-Browser Record-and-Replay Systems 60

4.1 Introduction . 60

4.2 JSCapsule System Details . 61

4.3 Conclusion and Future Work 64

5 Future work for Auto Recording Code Generation 66

6 conclusion . 68

Bibliography . 69

vi

List of Figures

2.1 Overview of in-the-wild social engineering malware download attack 13

2.2 Malware attack analysis using JSgraph: backtracking graph. 16

2.3 JSgraph audit logs – Excerpt 1 (simplified) . 17

2.4 JSgraph audit logs – Excerpt 2 (simplified) . 17

2.5 Excerpt from Blink/V8 bindings code we instrumented. 28

2.6 Audit Logs Visualization – Graph Legend . 30

2.7 HTML+JS content and related forward tracking graph 32

2.8 Forward tracking of a social engineering malware download attack. 33

2.9 In-the-wild social engineering extension download attack 35

2.10 Extension download attack: backtracking graph (partial) 36

2.11 Extension download attack: forward tracking graph 36

2.12 Analysis of phishing attack with key-logger . 39

2.13 Overhead and baseline execution time for page loads 43

3.1 Demo of the Structure of Chrome’s DevTools System. 52

3.2 simplified process of auto-open-devtools for new tab. 53

3.3 simplified process of auto-open-devtools for pop-up window. 53

3.4 simplified modification for file creation for new tab. 56

3.5 simplified modification for file creation for pop-up window. 56

4.1 simplified structure of JSCapsule Recording System. 62

4.2 Demo of the Structure of Replay Engine with Feedback. 63

vii

List of Tables

2.1 Performance overhead (50th- and 95th-percentile) percentage overhead 42

viii

Chapter 1

Introduction and Literature Review

1.1 Introduction

The web has become a vector of attacks. Millions of attacks nowadays are initialized or performed

from the internet, especially through modern browsers.

For instance, a large majority of malware infections is now being delivered via web-based social

engineering attacks, whereby cyber-criminals play tricks on the users’ minds to lure them into

inadvertent malware downloads [6, 57]. Such malware downloads open a door in victims’ systems

for attackers to carry out a series of following criminal behaviors, for example, stealing the victim’s

sensitive information, performing unauthorized financial transactions or using the compromised

machine as part of a large botnet to launch further attacks (e.g., DDoS, spam, phishing, etc.). Such

attacks often cause much more catastrophic consequences to enterprises. For instance, one single

social-engineering attack has recently caused the South Carolina Department of Revenue to leak

3.6 million social security numbers and 3.3 million user bank accounts [9]. Furthermore, according

to a report from the FBI, social engineering attacks have resulted in financial losses amounting

to more than $3 billion dollars in 2016 [1]. What’s worse, the influence of social engineer attacks is

widespread within enterprises. 60% of enterprise networks have been victims of social engineering

attacks, according to [10, 1],

Unfortunately, many of these attacks are often polymorphic and ephemeral, and thus cannot

be easily detected in real time. For instance, one of the adware campaign we observed on May 12,

2017 delivered attacks through more than 300 domain name variations and distributed different

1

kinds of malwares/extensions (e.g. JS/Adware.StreamItOnline, OSX.Trojan.Gen and so on) based

on the different types of operating systems and browsers of victims. This adware campaign delivers

other benign pages after first few visits (identified by IP address and Cookies), in order to escape

from being studied. The details of this campaign is described in Section 2.2.2.

Besides the social engineering malware download attacks, other popular web-based attacks,

such as phishing attacks, clickjacking attacks, drive-by download attacks and so on, also lead to

victims’ sensitive information leak and financial loss, by luring victims visually or taking advantage

of vulnerabilities of their systems/browsers.

Because of those characteristic of web-based attacks, we often find ourselves in the situation

of analyzing past attacks retroactively. Therefore, performing refined post-mortem analysis on

browser-based web attacks, is a consequential, challenging and time-consuming task.

To address such problem, several requirements have to be satisfied. A recording and replay

system is needed to assist the forensics investigation of past attacks for deploying defense methods

to prevent future attacks. Such system has to be always-on, be lightweight and have the ability

to be integrated into different popular browsers and platforms including mobile devices.

Current existing record-and-replay techniques do not do a very good job to satisfy these

requirements. On one hand, most of the recording and replay systems [27, 26, 32, 17, 13, 11, 54, 33]

are designed for debugging purpose, not for forensic analysis for web attacks. If the purpose is

limited to debugging, several adjustments can be made to simplify the scenario. First, they can

be designed to be active while debugging and not always-on. Some approaches [11, 56, 54] is not

transparent to user in a way that they require too much accessories in/around the browser to enable

recording, which makes it even harder to be always-on. Second, they do not need to be lightweight.

For example, the system-wide or application-wide recording systems [27, 26, 32, 54] try to record

too much redundant system information, which dramatically slows down the users’ experience if

used to do daily internet browsing and still have a big semantic gap between system-level events and

2

JS execution inside a browser which makes it difficult for forensics investigators to have a overall

idea of how the code used by the attack was delivered and what JS events were perform to lure the

victims falling into the attack. In order to achieve the deterministic replay, some system modified

the browser deeply and alter their functionalities, which will also introduces a noticeable overhead

for users. For example, TimeLapse[18] and ReJS [63] change the logic of the browser (HTML or CSS

parser scheduling) in the recording phase to make the rendering process works single-threaded and

replay the recorded none-deterministic events one by one. Third, they [17, 13, 11, 56, 63] do not have

to be portable, since the debugging can be perform in a controlled environment. On the other hand,

current existing systems [55, 56, 62], which are particularly designed for web attack analysis, fail to

do fine-grained deterministic replay/reconstruction for different reasons. Either because it does not

record sufficient information to reconstruct complete deterministic replay/reconstruction[56, 62]

or because it fails to solve deterministic-replay problem in multithread modern browsers [55].

On the way towards our ultimate goal, which is to achieve in-browser recording and replay

system for the fine-grained reconstruction and analysis of web-borne attacks, we first proposed

WebCapsule [55], which records and replays all the non-deterministic inputs to the renderer engine.

However, WebCapsule fails to perform deterministic replay because it does not implement JS

execution tracking and recording. We then proposed ChromePic [62], which records a detailed

snapshot of the state of a web page at every significant user interaction. However, ChromePic

does not log anything in between user actions, which will lead to the failure of tracking and

reconstructing the details of the social engineering attack in many cases.

Building the fully-deterministic recording and replay system around renderer engine is difficult

in multithread modern browsers. Therefore, we limit ourself to the recording and replay of the

execution of JavaScript program. Since most web attacks are JavaScript-driven, recording and

replay JavaScript execution can help us reconstruct and analyze web-based attacks in most cases.

3

Even just achieving the goal of non-deterministic recording and replay of JavaScript program

execution is not easy. We thus divided the approach into two steps: a recording-only system

(JSgraph) and a recording and replay system (JSCapsule) of JavaScript execution.

We propose JSgraph (represented in Chapter 2), a novel system for the in-browser recording

of JavaScript programs. Our system considers the JavaScript engine as a black box with a thin

instrumentation layer around it. At the time of users’ browsing, such instrumentation layer records

all inputs and behaviors to/from the JavaScript engine, including changes to the DOM content,

platform calls, callbacks from event targets, DOM timers and web workers, critical JavaScript

execution events and so on.

JSgraph is also carefully designed to be lightweight and efficient, with a median overhead on

popular website page loads between 3.2% and 3.9%. We also design the system to be portable,

which means it can be integrated into different popular browser and platforms with minimal or no

changes. To achieve this goal, we build our recording system as a self-contained instrumentation

of Google’s Blink rendering engine to inherit Blink’s portability.

In JSgraph, we create a visualization system to reconstruct the execution process of important

or interested events and demonstrate that JSgraph can successfully reconstruct social engineering

malware download attacks and phishing attacks along with cross-site scripting (XSS) attacks.

A more generic recording framework upon Chrome’s DevTools (Chapter 3) is further designed

to address the problems in existing forensics analysis tools (such as JSgraph), which also provides

the foundation to build a more robust fully-deterministic version of JSCapsule to better analyze

web-based attacks in the future.

While JSgraph can reconstruct attacks leveraging the visual effect and changes to the DOM (e.g.

social engineering attacks), more fine-grained ideas of what happened within JavaScript is required

in order to deploy precise counter defense in the browser for attacks that don’t mainly leverage

visual lure or DOM changes (e.g. drive-by downloads attack). To this end, we propose JSCapsule, a

4

forensic system for the in-browser recording and replay of JavaScript programs. JSCapsule records

all non-deterministic inputs to the JavaScript engine, including changes to the DOM content,

platform calls, callbacks from event targets, DOM timers and web workers, and so on, and replays

those non-deterministic inputs in an isolated environment to reproduce the execution of JavaScript

programs in a deterministic way to have a precise analysis of JavaScript program execution of

web-based attacks. We implement an early in-memory version (shown in Chapter 4) to demonstrate

that we could perform in-browser recording and replay of the execution of JavaScript programs in

an isolated environment in a deterministic way. Our ultimate goal of a fully-deterministic recording

and replay of JavaScript program execution based-on the new recording framework could be

achieved by more future works on auto recording code generation (discussed in Chapter 5).

1.2 Literature Review

Current web-application replay techniques mainly have two directions. Some [17, 13, 11, 55, 56,

62, 53] are particularly designed for web-application. Others [27, 26, 32, 54, 33] do not target

at web-application but can be extended or applied to web application recording and replay. For

those targeting particularly at web-application, some [17, 13, 63, 55, 62] techniques are embedded

within the web-application, while others [11, 56, 53] do not modify the application itself but use

some accessories to help the recording and replay.

TimeLapse [18] is a debugging tool based on Apple’s WebKit [4] which can record and replay

the web content deterministically. In order to achieve the deterministic replay, TimeLapse deeply

changes the logic of Safari [3] in the recording, such as HTML parser scheduling, to make the

whole Safari works like single-threaded and replay the recorded none-deterministic events one

by one. Since it is based on Safari, it only works on MacOS. WaRR [13] is a tool that records and

replays the interaction between users and modern web applications. It consists of two components:

a recorder which is embedded in a web browser to record user actions and a replayer which is an

5

enhanced, developer-specific web browser. Those two components are independent from each other.

Telemetry [11] is a performance testing framework used by Chrome. It uses current Chrome’s

DevTools Remote Debugging Protocol [5] or adb shell [2] to record users’ interactions and replay

them through Operating System independent action simulation tools. Network traffic is recorded

and replayed by Web Page Replay [12]. Clickminer [56] tries to use Selenium webdriver [8] to

reconstruct user interaction and use a customized proxy to replay the network traffic by best match

approach from URL. MugShot [53] captures every event in an executing JavaScript program, which

allows developers to deterministically reply past execution of web applications, by building up a

server-side proxy to delivery extra recording code library written in JavaScript. ReJS [63] provides

a time-traveling debugger for web application, by considering the JavaScript engine as a gray-box.

By extending components in the program runtime with interrogative interfaces, ReJS makes it

possible to maintain live runtime states during time-traveling. WebCapsule [55] is a recording

and replay forensic engine for web browser. It records and replays all none-deterministic inputs

to rendering engine, including user interaction, web traffic and none-deterministic platform calls.

By embedding itself completely into rendering engine, WebCapsule is portable to most popular

platforms and even mobile apps. ChromePic [62] records a detailed snapshot of the state of a web

page, including a screenshot and “deep” DOM snapshot at every significant user interaction, by

modifying Chromium code base. ChromePic aims to enable the reconstruction of attacks that have

a significant visual effect in order to lure users, such as social engineering and phishing attacks.

Besides those technologies which are designed for replaying web application, some system-wide

or application-wide technology can be also adopted to record and replay web applications. Revirt

[27] and PANDA [26] work on the recording and replay of the whole system by instrumenting the

hypervisor to record and replay the execution instruction-by-instruction. R2 [32] reproduces an

application execution, say a browser, by recording and replaying the result of selected functions.

Mozilla RR [54] records the none-deterministic system calls and signals through an application

6

process using modern operating system features and hardware features, such as ptrace [7] and hard-

ware performance counters [52]. CLAP [33] targets to reproduce concurrency bugs. It logs thread

local execution paths in recording, and reconstructs memory dependencies offline by combining

constraints of the thread paths and those of memory model. In this way, the concurrency failures

can reoccur with reduced information recording online, therefore the overhead can be reduced.

7

Chapter 2

JSgraph: Enabling Reconstruction of

Web Attacks via Efficient Tracking of Live In-Browser JavaScript Executions 1

1Li, B., Vadrevu, P., Lee, K. H., & Perdisci, R. (2018, February). In Proceedings of The Network
and Distributed System Security Symposium. Internet Society, ISBN 1-1891562-49-5
DOI: http://dx.doi.org/10.14722/ndss.2018.23319
Reprinted here with permission of publisher.

8

2.1 Abstract

In this paper, we propose JSgraph, a forensic engine that is able to efficiently record fine-grained

details pertaining to the execution of JavaScript (JS) programs within the browser, with particular

focus on JS-driven DOM modifications. JSgraph’s main goal is to enable a detailed, post-mortem

reconstruction of ephemeral JS-based web attacks experienced by real network users. In particular,

we aim to enable the reconstruction of social engineering attacks that result in the download of

malicious executable files or browser extensions, among other attacks.

We implement JSgraph by instrumenting Chromium’s code base at the interface between

Blink and V8, the rendering and JavaScript engines. We design JSgraph to be lightweight, highly

portable, and to require low storage capacity for its fine-grained audit logs. Using a variety of both

in-the-wild and lab-reproduced web attacks, we demonstrate how JSgraph can aid the forensic

investigation process. We then show that JSgraph introduces acceptable overhead, with a median

overhead on popular website page loads between 3.2% and 3.9%.

2.2 Introduction

It is well known that JavaScript (JS, for short) is the main vehicle for web-based attacks, enabling

the delivery of sophisticated social engineering, drive-by malware downloads, cross-site scripting,

and other attacks [37, 43, 46, 23, 29]. It is therefore important to develop systems that allow us

to analyze the inner workings of JS-based attacks, so to enable the development of more robust

defenses. However, while extensive previous work exists on JS code inspection [24, 23, 61, 60] and

web-based attack analysis [18, 55, 53, 63, 15], an important problem remains: to evade defense

systems and security analysts, web-based attacks are often developed to be ephemeral and to

deliver the actual attack code only if certain restrictive conditions are met by the potential victim

environment [43, 37, 64]. Therefore, there is a need for JS-based attack analysis tools that can

9

enable real-time in-browser recording, and subsequent detailed reconstruction, of live security

incidents that affect real users while they simply browse the web.

In this paper, we aim to meet the above mentioned needs by proposing JSgraph, a forensic

engine that is able to efficiently record fine-grained details pertaining to the execution of JavaScript

programs within the browser, with particular focus on JS-driven DOM modifications. Ultimately,

our goal is to enable a detailed, post-mortem reconstruction of ephemeral JS-based web attacks

experienced by real network users. For instance, we aim to enable the reconstruction of social

engineering attacks that result in the download of malicious executable files or browser extensions,

among other attacks.

Our main target deployment environment is enterprise networks, including both mobile and

non-mobile network-connected devices. In such networks, it is common practice to perform forensic

investigations after a security incident is discovered, and our primary goal is to aid such forensic

investigations by providing fine-grained details about web-born attacks to the network’s devices.

To achieve our goal, we design JSgraph to satisfy the following main requirements:

• Efficient Audit Log Recording. Because we aim to record web attacks in real time, as they

affect real victims, and in consideration of the fact that most web attacks are both difficult

to anticipate and ephemeral, we need audit log recording to be always on. Consequently, the

main challenge we face is whether it is feasible to record highly detailed information related

to in-browser JS code execution without significantly impacting the browser’s performance

and usability.

• No Functional Interference. We aim to avoid any modification to the browser’s code base that

would alter its functionalities. For instance, some debugging tools that perform in-browser

record and replay, such as TimeLapse [18] and ReJS [63], alter the rendering engine to force

it to effectively run in single-threaded mode. As this may have an impact on both rendering

performance and behavior, we deliberately avoid making any such changes.

10

• Portability. To make it easily adoptable, we aim to implement a system that is highly portable.

To this end, we build JSgraph by instrumenting Chromium’s code base at the interface

between its rendering engine (Blink) and the JavaScript engine (V8). By confining the core

of JSgraph within Blink/V8 (more precisely, within Chromium’s content module [21]), we

are able to inherit Chromium’s portability, thus making it easier to deploy JSgraph on

multiple platforms (e.g., Linux, Android, Mac, Windows), and different Blink/V8-based

browsers (e.g., Opera, Yandex, Silk, etc.) with little or no changes.

• Limited Storage Requirements. Because security incidents are often discovered weeks or even

months after the fact, we aim to minimize the storage requirements for JSgraph’s audit

logs, making it feasible to retain the logs for extended periods of time (e.g., one year or

longer).

In a nutshell, JSgraph works as follows (system details are provided in Section 2.3). Given a

browser tab, JSgraph monitors every navigation event, logs all changes to the DOM that occur for

each page loaded within that tab, records how JS code is loaded (i.e., whether it is defined “inline”

or loaded from an external URL), follows the execution of every compiled JS script, and logs every

change that a script (or a callback) makes to the DOM. This enables the reconstruction of how a

page’s DOM evolved in time, and how changes to that DOM exactly came about. Ultimately, this

enables a forensic analyst to trace back what JS script or function was responsible for making a

given DOM change, including pinpointing what JS scripts were responsible for presenting a social

engineering attack to the victim, and how the attack was actually constructed within the DOM.

To make JSgraph efficient, we implement its core logging functionalities by extending the DOM

and JS code tracing functionalities offered by Chromium’s DevTools. We then show that our system

introduces acceptable performance overhead. For instance, we show that, on the top 1,000 websites

according to Alexa, JSgraph running on Linux introduces a median website page load overhead

of 3.2%, and a 95th-percentile overhead of 7.4%. Besides building an instrumented browser that

11

can efficiently record fine-grained audit logs, JSgraph also implements a module for abstracting

its fine-grained logs into more easily interpretable graphs. A motivating example that illustrates

how this can help in analyzing in-the-wild web attacks is provided in the next Section 2.2.2.

2.2.1 Threat Model

JSgraph aims to accurately record information that enables the reconstruction of web attacks,

with an emphasis on social engineering malware attacks, but excluding attacks to the browser

software itself. Namely, we assume the browser’s code is part of our trusted computing base

(TCB), along with the operating system’s code. As JSgraph is implemented via lightweight

instrumentation of the browser, we also assume that JSgraph’s code is part of the TCB.

This entails that fully recording the behavior of drive-by exploit kits [31], for example, is outside

the scope of this paper. Nonetheless, we should notice that JSgraph is capable of accurately

recording the execution of malicious JS code delivered by exploit kits, up to the point in which

the browser itself is compromised. If the exploit succeeds, we cannot guarantee that JSgraph will

not be disabled, or that the logs produced afterwards will be accurate, because the exploit code

could alter the logging process. At the same time, the logs recorded before a successful exploit

could be securely stored outside the reach of possible tampering from the compromised browser,

for example by using append only log files [48, 16, 51].

2.2.2 Motivating Example

In this section, we walk through a motivating example to show how JSgraph can aid the forensic

investigation of web security incidents. Specifically, we analyze a real-world social engineering

malware download attack promoted via malicious advertisement. The attack was observed on

May 12, 2017.

12

(a) (b)

(c) (d) (e)

Figure 2.1: Overview of in-the-wild social engineering malware download attack

Overview: The attack works as following (see Figure 2.1). (a) The user simply searches for “wolf

of wall street full movie”; (b) After clicking on the first search result, the browser navigates to

gomovies[.]to. (c) Clicking on the play button to start streaming the movie causes a new window

to popup, under the pressupdateforsafesoft[.]download domain name. An alert dialog is

displayed, with the message “Update the latest version of Flash Player. Your current Adobe Flash

Player version is out of date.” Notice also that the same page displays a “Latest version of Adobe

Flash Player required [...]” message right under the URL bar. (d) Clicking the OK button causes

a download dialog box to be shown. (e) Finally, clicking on the “Download Flash” (or “OK”)

button initiates a .dmg file download. Interestingly, after the download starts, the attack page

also displays the instructions that the user needs to follow to install the downloaded software.

Attack Properties: Searching for the downloaded file’s SHA1 hash2 on VirusTotal produced no

results. Upon submission, 10 out of 56 anti-viruses found the file to be malicious. At the time

of writing, Symantec labels the file as OSX.Trojan.Gen.

2
flshPlay2.42.dmg: 1b9368140220d1470d27f3d67737bb2c605979b4

13

By leveraging a passive DNS database and domain registration information, we discov-

ered that the two domain names that are used to deliver the malicious binary, namely

pressupdateforsafesoft[.]download and pressbuttonforupdate[.]bid, are related to more

than 300 domain name variations that are highly likely used for a large malware distribution

campaign, because they shared close name similarity, date of registration, and resolved IP addresses

(e.g., pressandclickforbestupdates[.]download, pressyoourbestbutton2update [.]download,

clickforfreeandbestupdate[.]download, click2freeupdatethebest[.]bid, etc.). In addi-

tion, we found that in a time window of about eight days, more than one thousand clients (roughly

one third of which were located in the US) may have fallen victim to this malware campaign.

How JSgraph can Help: The question we would like to answer is: “how did this attack work under

the hood?” Answering this question is important, because knowing how the attack is delivered

can greatly help in developing effective countermeasures. Below, we discuss how JSgraph can

help in answering this question.

Remember that JSgraph is an always-on in-browser record-only system, which aims to perform

an efficient recording of any DOM change, with particular focus on DOM changes triggered by JS

code execution. Our goal is to record highly detailed audit logs that can enable the reconstruction

of complex JS-based attacks. At the same time, we aim to provide a tool that can present a forensic

analyst with a high-level and thus more easily interpretable description of how the attack played out.

Our analysis of the attack starts with retrieving, from the JSgraph logs, the URL that served

the executable file download. One may ask “how can the forensic analyst know where to look

for potential malware downloads?” To help answering this question and aid the analysis process,

JSgraph instruments the browser so that it can record if a file download (of any kind) is initiated, the

URL from which the download occurs, and the hash and storage path where the file was saved (while

not currently implemented, JSgraph can also easily store a copy of every downloaded file in the

audit logs). Similarly, JSgraph also instruments the browser to record the download and installation

14

of new browser extensions. It is therefore straightforward to explore JSgraph’s logs to identify all file

(or extension) download events. This allows a forensic analyst to spot potential malicious software

installations. In the particular example we consider here, a forensic analyst may notice that an

executable file named flshPlay2.42.dmg was downloaded from a suspicious .bid domain name

(i.e., pressbuttonforupdate[.]bid). We assume this to be our starting point for attack analysis.

JSgraph’s audit logs report fine-grained details about where a given piece of JS code originated

from, what event listeners it registered (if any), exactly what DOM modifications it requested,

and how those changes were made (e.g., via document.write, explicit DOM node creation

and insertion, change of a DOM element’s parameters, etc.). Now, let us refer to the graph in

Figure 2.2, which we automatically derived by post-processing and abstracting JSgraph’s audit

logs (see also the legend in Figure 2.6 in Section 2.4). The details on how this graph was generated

are provided in Section 2.4. In this section, we will leverage the graph simply as an example of

how JSgraph can help in simplifying the analysis of web attacks.

The graph was computed by starting from the download URL (the node at the bottom high-

lighted in red) and backtracking along browsing events, until the beginning of the browsing session

(e.g., until a parent tab first opened). What the graph shows is that the user first visited www.

google.com. Notice that the search query string typed by the user is not shown in the first graph

node. The reason is that Google uses XMLHttpRequests to send search keywords to the server and

dynamically load the search results, and that the page’s URL is changed by JS code by leveraging

history.pushState() without triggering any navigation. This type of information is captured in

detail in the JS audit logs, as shown in Figure 2.3; however, for the sake of simplicity our log visual-

ization tool does not include them in the graph. Nonetheless, the forensic analyst could use the graph

to identify nodes of interest, and then further explore the related detailed logs, whenever needed.

Figure 2.2 shows that the user then navigated to gomovies[.]to. There, the browser was

instructed to load and execute a piece of JS code (Script 362) that registered an event listener

15

main

hxxps://www.google.com/?gws_rd=ssl

Logic Order: 0

USER NAV

hxxps://gomovies.to/film/the-wolf-of-wall-street-2777/watching.html

Logic Order: 1423

USER NAV

Script_362

hxxps://onclkds.com/apu.php?zoneid=1131575

Logic Order: 1719

PARENT-CHILD

iframe_25269023519680

about:blank

Logic Order: 2821

PARENT-CHILD

Event_Callback:

mousedown

Position: (606,386)

Logic Order: 2818

DEFINITION

P0

(0,22212)

REGISTER

Create and Insert iframe

Logic Order: 2820

EXECUTE

Create and Insert Script Node

Logic Order: 2822

EXECUTE

CREATE

Script_622

Logic Order: 2823

PARENT-CHILD

CREATE

window.open:

URL: hxxps://onclkds.com/?auction_id=9a51fc8f-2e6d-4125-b3...

Logic Order: 2824

EXECUTE

hxxps://onclkds.com/?auction_id=9a51fc8f-2e6d-4125-b38f-6a4d05e81a05&zoneid=11...

Logic Order: 2829

JS NAV

Script_623

Inline

Logic Order: 2925

PARENT-CHILD

Set Location

URL: hxxp://adexc.net/network/?ref_prm=7046&cid=3042956674...

Logic Order: 2926

EXECUTE

hxxp://adexc.net/network/?ref_prm=7046&cid=304295667414&pub_sd=1131575&adprm=&...

Logic Order: 2927

JS NAV

hxxp://upnow2app.pressupdateforsafesoft.download./Ea5j7QwuOrbRLJRiPc_lcut6oqo3...

Logic Order: 2928

REDIRECT

hxxp://update4soft.pressbuttonforupdate.bid/dl.php?pcl=Ea5j7QwuOrbRLJRiPc_lcut...

Logic Order: 2958

USER NAV

Figure 2.2: Malware attack analysis using JSgraph: backtracking graph.

16

InspectorForensicsAgent::handleRecordXHRDataOpenForensics: OPENED: 1
InspectorForensicsAgent::handleRecordXHRDataReadyStateForensics: ReadyState: 1
InspectorForensicsAgent::handleRecordXHRDataReadyStateForensics: ReadyState: 1
ForensicDataStore::recordAddEventListenerEvent : eventTarget: 68966990005520, listener: 25269018159104
InspectorForensicsAgent::willSendXMLHttpRequest : URL: https://www.google.com/search?sclient=psy-ab&biw=1215&bih=555
&q=wolf+of+wall+street+full+movie&oq=wolf+street+of+wall+full&gs_l=hp.3.0.0i22i30k1l4.21523.30020.0.31402.24.22.0.0.0.0. ...
InspectorForensicsAgent::handleRecordHistoryStateObjectAdded: frame: 25269014741568,
Url: /?gws_rd=ssl#q=wolf+of+wall+street+full+movie, Type: 0

Figure 2.3: JSgraph audit logs – Excerpt 1 (simplified)

InspectorForensicsAgent::handleCreateChildFrameLoaderForensics
ForensicDataStore::recordChildFrame : requestURL: about:blank, frame: 25269023519680
InspectorForensicsAgent::handleCreateChildFrameLoaderEndForensics
ForensicDataStore::recordInsertDOMNodeEvent: m_selfNode: 43987025453064,
m_parentNode: 43987026382560, m_nodeSource: <iframe style="display: none;"></iframe>
InspectorForensicsAgent::didModifyDOMAttr: m_selfNode: 43987025302224, m_nodeSource: <script type="text/javascript"></script>
ForensicDataStore::recordInsertDOMNodeEvent: m_selfNode: 43987026264856, m_parentNode: 43987025302224,
m_nodeSource: window.top = null;window.frameElement = null;
var newWin = window.open("https://onclkds.com/?auction_id=9a51fc8f-2e6d-4125- ... ", "new_popup_window_1494561683103", "");
window.parent.newWin_1494561683114 = newWin; window.parent = null; newWin.opener = null;
InspectorForensicsAgent::handleCompileScriptForensics : Thread_id:140362442277824,
Script_id:622, URL: , line: 0, column: 0, Source: window.top = null; window.frameElement = null;
var newWin = window.open("https://onclkds.com/?auction_id=9a51fc8f-2e6d-4125- ... ", "new_popup_window_1494561683103", "");
window.parent.newWin_1494561683114 = newWin; window.parent = null; newWin.opener = null;
InspectorForensicsAgent::handleRunCompiledScriptStartForensics : Thread_id:140362442277824,
iframe: 25269023519680, Script_id: 622
InspectorForensicsAgent::handleWindowOpenForensics : URL: https://onclkds.com/?auction_id=9a51fc8f-2e6d-4125-…,
frameName: new_popup_window_1494561683103, windowFeaturesString:

Figure 2.4: JSgraph audit logs – Excerpt 2 (simplified)

for mousedown events on an element of the page. As the user clicked to watch the movie (see

Figure 2.1b), the callback was activated, which first created a “no source” iframe element (the

source is indicated as about:blank), dynamically generated some JS code, and injected the new

script (Scrip 622) in the context of the newly created iframe, as also shown in Figure 2.4. As

the new JS code is injected into the DOM, it is compiled and executed, triggering a window.open

call. A new window is then opened, with content loaded from onclkds[.]com, including a JS

script that redirects to adexc[.]net by resetting the page’s location. Then, an HTTP-based

redirection takes the browser to a page on pressupdateforsafesoft[.]download. As we will

see later, this page renders as shown in the screenshots of Figures 2.1c-2.1e (notice that while

JSgraph does not log visual screenshots, this functionality could be easily implemented very

efficiently with the approach used by ChromePic [62]). As the user clicks on the download button

(see Figure 2.1d), this corresponds to clicking on an HTML anchor that navigates the browser

to the pressbuttonforupdate[.]bid, triggering the .dmg file download.

17

We would like to emphasize that this backtracking graph provides a high-level, and more

easily interpretable abstraction of the highly complex web content loaded by the browser. In

fact, the gomovies[.]to page alone contains 121 scripts, for a total of more than 6.2MB of

(mostly obfuscated) JS code. Also, the pressupdateforsafesoft[.]download page contains a

large amount of JS code, which is needed to create the social engineering portion of the attack.

JSgraph condenses these to report only the content of interest that had a direct role in leading

to the actual malware attack.

To further analyze the social engineering code delivered by the attack, and how the malware

download is actually triggered in practice, the forensic analyst could then focus on the last step

of the attack, namely the page under pressupdateforsafesoft[.]download, and ask JSgraph

to perform forward tracking. The resulting graph is shown in Figure 2.8 in Section 2.5. While we

defer a detailed explanation of the forward tracking graph to Section 2.5, from Figure 2.8 we can

notice that the JS code shows an alert popup, listens to the user’s clicks (which is needed to begin

the file download), and schedules callbacks, which we found are used to display the installation

instructions shown in Figure 2.1e.

2.2.3 Differences w.r.t. Previous Work

We now discuss how the same attack described in Section 2.2.2 could be analyzed using previous

work, and compare these alternative approaches to JSgraph. We should first remember that one of

our main requirements is that we need to be able to record the “real” attack, as it happens on the

user’s system. The reasons for this requirement are multiple: (i) Web attacks are often ephemeral,

and visiting the attack URLs at a later time (e.g., using high-interaction honeypots) would likely

produce different or no results [36]. (ii) The attack code is often environment-sensitive, and may

behave differently on other machines, compared to what the victim actually experienced. (iii) As

we are interested in social engineering attacks, user actions are critical to “activate” the attack [58];

18

however, user actions are often difficult to reproduce exactly, unless a highly detailed recording

of user-browser interactions is performed at the time of the attack. (iv) Some social engineering

attacks (e.g., malware attacks) are delivered via malicious advertisement; because ad-serving

networks may introduce a high level of non-determinism (e.g., due to the ad bidding process typical

of online ad networks), it may be difficult to reproduce the exact same attack multiple times.

Keeping the real-time recording requirement in mind, there exist a few alternative approaches

that may enable the analysis of in-the-wild web attacks that affect real users. One possible way

would be to record, and later statically analyze, all the HTML and JavaScript content loaded by the

browser during a time window that includes the attack. This could be done by recording all network

traffic traces, or by using a lightweight system such as ChromePic [62]. However, understanding

how the browser loaded, parsed, interpreted, and rendered the web content from network traces

is notoriously hard [56]. Also, while ChromePic can efficiently record screenshots and DOM

snapshots from inside the browser, it does so only at significant user interactions (e.g., at every

mouse click, key press, etc.). This limits the visibility on DOM changes and JavaScript behavior

that occurred in between such interactions. In addition, in these scenarios code analysis presents

several challenges, since the code may need to be re-executed at a later time on a separate system,

to try to fill the gaps, thus suffering from limitations similar to the ones faced by honey-clients.

Concretely, referring to the example in Figure 2.2, ChromePic would not be able to track and

reconstruct fine-grained details about the JS code that enables the social engineering attack. For

instance, ChromePic would not be able to log any detailed information about how Script 362

injects an iframe into the page, about the existence of Script 622 (which is dynamically generated)

and how it opens a new window, and how Script 623 redirects the browser towards the malware

download URL.

Another possible approach is to use record and replay (R&R) systems. However, VM-level

R&R systems [27, 26] tend to be very inefficient, preventing them from being deployed on mobile

19

devices, for example. On the other hand, OS-level R&R systems [54, 25] are more efficient, though

they are not easily portable to different devices. Unfortunately, both these types of systems leave

a large semantic gap that makes analyzing web attacks difficult. In fact, while they can re-run

browsing sessions, they cannot interpret what is happening inside the browser, such as interpreting

the interactions between the JS engine (e.g., V8) and the rendering engine (e.g., Blink) that

carried out the attack. Attaching a JS debugger inside the browser (e.g., via DevTools) at replay

time would alter the browser execution, compared to the recorded traces, and thus prevent a

correct system-level replay to move forward.

Browser R&R systems such as TimeLapse [18] and WebCapsule [55] may come to help, in

that they are able to record fine-grained details internal to the browser (rather then “external”,

as in system-level R&R systems), and thus fill the semantic gap that characterizes VM- and

OS-level R&R systems. Unfortunately, because they attempt to record and replay all events at the

rendering engine level (e.g., inside WebKit or Blink), both these systems tend to have high time

and storage overhead and may fail to deterministically replay the recorded browsing traces. For

instance, in an attempt to achieve deterministic replay, TimeLapse changes the rendering engine

to effectively prevent multi-threading, thus violating the no functional interference requirement.

On the other hand, WebCapsule does not explicitly record JS-level events such as scheduled

actions, and is therefore incapable of performing deterministic replay [55].

JavaScript-level R&R debugging tools, such as Mugshot [53] and ReJS [63], offer direct

visibility into JS execution and JS-driven DOM changes, and could therefore be used to perform

a replay and step-by-step analysis of JS attack code. However, these systems were not intended

for always-on recording, and are not suitable for analyzing adversarial JS code. For instance,

Mugshot is not transparent, in that it modifies the JS environment, and could be detected (and

potentially also disabled) by the JS attack code being recorded. On the other hand, ReJS forces

20

the rendering engine to run in single-threaded mode, thus impacting the browser’s functionality

and performance in a way similar to TimeLapse.

Unlike the works mentioned above, JSgraph aims to be an efficient, always-on, record-only

system that is capable of producing highly detailed audit logs related to browsing sessions, and

that can assist in the investigation of in-the-wild web attacks.

2.3 JSgraph System

In this section, we explain how JSgraph works internally.

2.3.1 Overview

JSgraph consists of two components: (i) an efficient, fine-grained audit logging engine, and (ii) a

visualization module (detailed in Section 2.4) that can post-process the audit logs to produce a higher-

level description of navigation events, JS code inclusion and execution, DOM modifications, etc.

To efficiently record internal browsing events, we leverage and extend Chrome’s DevTools.

Specifically, we implement a new InspectorAgent, extending the InspectorInstrumentation

APIs to collect fine-grained information that is not otherwise gathered by existing DevTools agents.

This makes JSgraph highly portable. In fact, because the vast majority of JSgraph’s code resides

within Chromium’s content module [21], it could be easily adapted and integrated in other browsers

that make use of Blink/V8 for rendering and JS execution, such as Opera, Yandex, Amazon Silk, etc.

2.3.2 Efficiently Recording Page Navigations

Reconstructing the sequence of pages visited by a user is essential to understanding how modern

web attacks work. For instance, the social engineering attack we described in Section 2.2.2 is

delivered through multiple pages/URLs. To efficiently record fine-grained details about how the

browser navigates from one page to another, we extend Chromium’s DevTools instrumentation

21

hook didStartProvisionalLoad, and register our JSgraph inspector agent to listen to the

related callbacks. Furthermore, we instrument receivedMainResourceRedirect to efficiently

record HTTP-based page redirections.

2.3.3 Logging iframe Loading Events

Unlike page navigations, to record the loading of an iframe whose content loads from a

URL expressed in the src parameter, we create a new instrumentation hook into WebLocal-

FrameImpl:: createChildFrame. This allows us to record a pointer to the iframe to be loaded

and the URL from which the content will be retrieved. As the iframe’s web content is loaded

asynchronously by the browser, this information allows us to correctly track all DOM changes

related to the iframe’s DOM, including the compilation and execution of JS code and callbacks

within the iframe’s context.

2.3.4 Tracking DOM Changes

Our main goal in recording DOM changes is to be able to reconstruct the state of the DOM

right before each JS code execution, thus allowing us to understand how potentially malicious

code modifies the DOM to launch an attack. To improve efficiency, instead of creating a full

DOM snapshot every time a JS script or callback function is executed, we incrementally record

all DOM changes applied by Blink, including all changes requested by the HTML parser and

the JS engine via the Blink/V8 bindings. To achieve this, we leverage six different DevTools

instrumentations: didInsertDOMNode, characterDataModified, willRemoveDOMNode, did-

ModifyDOMAttr, didRemoveDOMAttr, and didInvalidateStyleAttr. Moreover, to efficiently

store information about the node that was added/removed or modified, we take advantage of

Blink’s DOM serialization functionalities3.

3see /src/third_party/WebKit/Source/core/editing/serializers/Serialization.h

22

We now provide more details about how we leverage the InspectorInstrumentation APIs

listed above.

• didInsertDOMNode monitors the insertion of DOM nodes. To allow us to later reconstruct

the exact position of the inserted node in the page DOM, its parent node pointer, its next

sibling and the HTML markup of the node (using createMarkup). This will also record

all node attributes, including the src parameter, if content needs to be loaded from an

external source. Because the DOM tree can be built by assembling document fragments

(e.g., by inserting an entire DOM subtree via JS code), the inserted node could actually

represent the root of a subtree with many children nodes. Therefore, we log the markup

representation for the entire subtree. Notice that knowing the subtree root’s parent and next

sibling is still sufficient to correctly reconstruct the state of the DOM tree during analysis.

• characterDataModified logs any modifications to text nodes. For instance, during DOM

construction, if a text node is too large to load at once, the parser will create a node with

partial data and perform a character data modification once the content of the node finishes

loading. JSgraph simply records the node pointer and the final state of the node content.

Because text nodes do not have attributes, and for efficiency reasons, we record the value

of the text node without having to store the full node markup.

• willRemoveDOMNode monitors the deletion of a DOM node. We record the pointer of the

node that is going to be removed, so that the event can be reconstructed by parsing the

audit logs and matching the deleted node pointer to the related entry in the reconstructed

DOM tree.

• didModifyDOMAttr and didRemoveDOMAttr, record all changes to a DOM node’s attributes,

whereas didInvalidateStyleAttr is called when a node’s style change is requested.

23

2.3.5 Logging Script Executions and Callbacks

Before explaining how we record scripts and callbacks execution, we first need to provide some

high-level background on how JS scripts and callbacks are executed in Blink/V8. Let us first

consider scripts. Essentially, a scripts can be defined “inline,” as part of the page’s HTML, or can be

loaded from an external source, e.g., by expressing a URL within the src parameter of a script

HTML tag. When a script node is inserted into the DOM, Blink will retrieve the related source

code and pass it to V8 to be compiled. The JS compiler will give the script’s code a unique script

identifier within that V8 instance, and will then execute the script right after compilation. On the

other hand, callbacks are JS functions that are defined either within a JS script or as a DOM level

0 event handler, and will be executed when a certain circumstance to which they “listen” arises

(e.g., an event such as mousedown, keypress, etc.). There exist multiple types of callbacks, including

event callbacks, scheduled callbacks, animation callbacks, mutation observers, errors, and idle task

callbacks. It is also worth noting that a callback function could be defined in a JS script script A, but

registered as a callback for an event (e.g., using addEventListener) by a separate script script B.

To record complex relationships between DOM elements, scripts, and callback functions,

which can greatly help in understanding the inner-workings of JS-driven web attacks, we extend

Chromium’s DevTools by adding a number of instrumentation hooks within the code bindings

that link Blink to V8 and allow JS code to access and modify the DOM.

Specifically, we instrument Chromium’s V8ScriptRunner and ScriptController, adding

five instrumentation hooks: to handle events such as CompileScript, RunCompiledScriptStart,

RunCompiledScriptEnd, CallFunctionStart, and CallFunctionEnd.

At the moment in which V8 is called to compile a script, we record detailed information

that will be difficult to retrieve once the code is compiled, such as the source code, the source

URL from which the code was retrieved, and the start position of the code in the HTML

document (in terms of text coordinates) for “inline” scripts. We also record the script ID assigned

24

by V8 to the compiled code, to link future executions of the script to its source code. When

RunCompiledScriptStart is called, we also log the script ID and its execution context, by recording

the address of the frame (or page) within which the script was loaded.

Because JavaScript execution within a tab can be seen as single-threaded (notice that

WebWorkers do not have direct access to the DOM), all the DOM changes that are made by

JS code in between the start and end of a RunCompiledScript can be uniquely attributed to a

specific script ID recorded in the audit logs. Similarly, observing when a CallFunction starts and

ends allows us to record the name of the callback function, the script ID related to the source

code where it was defined, and the line and column number where the function is located in

the source code. However, these instrumentation hooks do not allow us to determine how the

callback functions were registered and triggered. To this end, we additionally instrument calls to

addEventListener and willHandleEvent, to log the execution of the callbacks. This allows us

to determine what JS script registered a certain callback function, and for what particular event.

In addition, when a callback is triggered, we can record the details of the event that triggered it.

For instance, if the event is a mousedown, we can record the event type and mouse coordinates; if

the event is a keypress, we record the key code; etc. (our instrumentation also takes event bubbling

into account, to record the correct target DOM element). In a similar way, we also record callbacks

associated to XMLHTTPRequests, for which we record the request URL, request header, ready state,

response content, etc. We follow a similar logging process to record details related to scheduled

callbacks, animation callbacks, idle task callbacks, etc. JSgraph also records messages passed

between frames, thus enabling the reconstruction of possible multi-frame attacks. In addition,

JSgraph can naturally handles asynchronous scripts. From JSgraph’s point of view, script tags

with an ”async” attribute do not differ from synchronous scripts. The reason is that for all scripts,

whether they run asynchronously or not, JSgraph will record the exact time when a script is

parsed and compiled by the browser, as well as whenever a script performs an action on the page.

25

Notice that, because we automatically log DOM and JS events belonging to different tabs

into different log files, the recorded events described above can be correctly attributed to a

specific web page and related frames. This per-tab logging approach also serves the purpose of

enabling opportunistic offloading and improving log security and privacy, because each tab can

be independently encrypted (with different keys from a key escrow) and archived.

Nested Scripts and Callbacks – One factor that complicates the logging and reconstruction of

the relationship between scripts and callbacks, is the possibility of nested execution. The nested

execution of JS code may occur due to dynamic JS code generation, such as when a JS script,

script A, adds an additional script tag into the DOM (e.g., via document.write()), thus

triggering the execution of a new script, script B. In this case, the execution of script A will pause

until script B is compiled and executed, after which the execution of script A will resume (a

similar scenario may occur in other corner cases; for instance, if an iframe with no source and

a DOM level 0 onload event callback is dynamically added to the DOM via JS code). JSgraph

is able to correctly reconstruct such nested executions as well.

2.3.6 Logging Critical Events

Of course, logging only DOM changes does not allow us to have a complete picture of how

JS code may impact the user’s browsing experience. To this end, we instrument a number of

critical JS methods and attributes related to changing the page’s location (e.g., with loca-

tion.replace() or location.href, opening a new tab or window (e.g., with window.open()),

making asynchronous network requests (e.g., sending an XMLHttpRequest), etc.

Identifying what JS methods and attributes to instrument is challenging, because there exist

literally thousand of APIs available to JS code. Fortunately, we are only interested in JS APIs

that have an effect on the page, by either modifying the current DOM tree, changing the page

URL, opening new pages, loading new web content, passing messages between page components,

26

etc. Conversely, we do not need to log calls to APIs that allow for reading the value a variable

(e.g., Node.nodeType(), location.toString(), etc.), as they have no effect on the page/DOM,

and are therefore less important to understand how a piece of malicious JS constructed page

elements to launch an attack (e.g., a social engineering attack). To identify what APIs are of

interest, we proceed as explained below.

In practice, Blink and V8 communicate via an interface referred to as “bindings.” Essentially, all

calls to JS methods or attributes that request or pass data to the rendering engine (e.g., to insert or

remove a DOM node or change its attributes, read/change the URL, open a new window, etc.) must

pass through these bindings. The bindings are dynamically generated when Chromium is compiled,

via a fairly complex process (explaining this process is out of the scope of this paper; we refer

the reader to [22] for details). However, once the bindings are compiled, they can be accessed at a

specific disk location4, which for brevity we refer to as blink/bindings. Under blink/bindings,

a large number of C++ classes are created, within multiple subdirectories and .cpp files, that

enable access to Blink from JS code. Especially, V8DOMConfiguration:: MethodConfiguration

mappings are of particular interest. For instance, these include methods such as Document::

write, Window:: setTimeout, XMLHttpRequest:: send, and so on, just to name a few. A small

excerpt from the bindings code for the Window’s MethodCallbacks is shown in Figure 2.5.

To select what methods should be instrumented, we proceeded as follows. First, we automati-

cally instrumented the bindings of an unmodified version of Chromium, so to output a log message

every time a Blink/V8 MethodConfiguration callback is called. Then, we used this instrumented

version of Chromium to browse highly-dynamic websites, using the top ten global sites list from

Alexa.com. Finally, we compiled a list of all Blink/V8 binding callbacks that were activated during

these browsing sessions. This gave us a little less than one hundred APIs that we had to manually

inspect. As the vast majority of API names clearly communicate the API’s functionality, it was

4/src/out/Debug/gen/blink/bindings/

27

static const V8DOMConfiguration::MethodConfiguration V8WindowMethods[] = {
 {"stop", V8Window::stopMethodCallback, ...},
 {"open", V8Window::openMethodCallback, ...},
 {"alert", V8Window::alertMethodCallback, ...},
 {"confirm", V8Window::confirmMethodCallback, ...},
 {"prompt", V8Window::promptMethodCallback, ...},
 {"requestAnimationFrame", V8Window::requestAnimationFrameMethodCallback, ...},
 {"cancelAnimationFrame", V8Window::cancelAnimationFrameMethodCallback, ...},
 {"requestIdleCallback", V8Window::requestIdleCallbackMethodCallback, ...},
 {"cancelIdleCallback", V8Window::cancelIdleCallbackMethodCallback, ...},
 {"setTimeout", V8Window::setTimeoutMethodCallback, ...},
 {"clearTimeout", V8Window::clearTimeoutMethodCallback, ...},
 {"setInterval", V8Window::setIntervalMethodCallback, ...},
 {"clearInterval", V8Window::clearIntervalMethodCallback, ...},
 ...
};

Figure 2.5: Excerpt from Blink/V8 bindings code we instrumented.

quite straightforward to select the API calls to be included in the audit logs, because they either

directly impacted the page’s content (e.g., changing page location, passing messages between page

components, etc.) or represented critical events (e.g., opening a new window, showing an alert

popup, etc.), and the ones that should be excluded. For a few APIs, we had to refer to the related

documentation (i.e., JavaScript documentation or HTML standard) to understand their effect on

the page. However this process was also straightforward. Once we identified the APIs to be logged,

the more time consuming part of this process was to actually instrument the APIs at Blink’s side,

which required us to interpret and serialize all objects passed as arguments to each API of interest.

Notice that the API selection process discussed above is simply meant to reduce engineering

effort. With more engineering time, our instrumentations could be extended to all APIs, and

could potentially also be automated using Chromium’s own dynamic code generation process for

the bindings [22]. At the same time, the APIs currently instrumented by JSgraph are the most

commonly used, and are therefore suitable for demonstrating JSgraph’s capabilities and estimating

performance overhead. Finally, as we will show in Section 2.5, the current instrumentation is

sufficient to capture complex malicious code behavior.

28

2.3.7 Some Optimizations

When didModifyDOMAttr, didRemoveDOMAttr, or didInvalidateStyleAttr hooks are called,

we need to be careful about what we log. As mentioned earlier, we use Blink’s createMarkup

function to log the HTML markup related to DOM nodes. However, createMarkup logs both

the DOM node that is being modified as well as all its children, thus potentially generating a large

(and costly) log at every node attribute modification. To avoid logging the entire subtree under

a node, we therefore implemented a customized version of createMarkup to log only the actual

node markup (along with the node pointer, parent, and next sibling pointer), without logging

its children. In addition, we should notice that some HTML elements may contain attributes with

large amounts of data. For instance, the img tag may have a src that embeds an entire (e.g.,

base64 encoded) image into a data: URL5. Similarly, CSS styles could also include data: URLs

(e.g., to include a background image)6. To avoid storing the same large markup every time a DOM

attribute or style is changed, therefore improving performance and storage overhead, we proceed

as follows. The first time a node containing a data: URL is observed by our instrumentation

hooks, we cache a hash of the data: URL. Next time an attribute or style is modified and we log

the event, if the data: URL has not changed we only log a placeholder that indicates that the

data: URL has not changed since we have last seen that node. This will be reflected in the logs,

from which it is then easy to reconstruct the complete representation of the node by retrieving

the full data: URL from the earlier logs related to the same node.

In large part, the overhead imposed by JSgraph comes from the log I/O overhead (i.e., writing

the logs to disk). To reduce this overhead, we offload the job of storing the audit logs to disk to a

separate Blink thread. To this end, we leverage base::SingleThreadTaskRunner7, which allows

5https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs
6https://css-tricks.com/data-uris/
7see /src/base/single_thread_task_runner.h

29

Node Legend

Page

iframe

USER NAV

Relationship Legend

Critical Event

HTTP redirection
REDIRECT

user-driven
page navigation

JS NAV JS-driven
navigation

Script

Callback definition
and registration

JS-driven insertion
of DOM element

CREATE

DEFINITION

<function_name>

(<line>, <column>)

REGISTER

Callback

EXECUTE JS code executes
critical event

PARENT-CHILD

Element

Figure 2.6: Audit Logs Visualization – Graph Legend

us to create log writing tasks that are responsible for periodically storing batches of recorded

events and can be executed in a separate thread (via PostTask).

2.4 Visualizing JSgraph’s Audit Logs

As discussed in Section 2.3, JSgraph’s audit logs are very detailed, as they contain fine-grained

information about all DOM modifications, the source code of JS scripts, critical JS API calls and

parameters, file download events, etc. Finding interesting information among these detailed logs

can be time consuming.

To aid the investigation process, JSgraph allows for visualizing important events captured in

the audit logs in the form of a graph. A complete legend showing the meaning of the node shapes

and what relationships are tracked by JSgraph is shown in Figure 2.6. The visualization process

works in two steps. First, the analyst selects an event or object of interest. For instance, in the

malware download attack we analyzed in Section 2.2.2, the forensic analyst selects the suspected

30

malware-serving URL as starting point. Then, given the starting point, JSgraph can produce

two different graphs: a backward tracking graph and a forward tracking graph.

The backward tracking graph follows “causal” relationships, and visualizes the chain of events

that directly affected the node of interest. As an example, let us refer again to the example

in Section 2.2.2, and consider the window.open event in Figure 2.2. From that event, the next

iteration of the backward tracking process flags Script 622 as having caused the window.open

event. Notice that other JS scripts that may be present on the same page are deliberately not

shown (unless they directly affected the currently considered node). Going one step further (or one

causal relationship “up”), Script 622 was directly affected (created and inserted into an iframe)

by an event callback triggered by a mousedown event; and so on. The backward tracking ends

when no new causal relationships can be found.

Referring again to the legend in Figure 2.6 and the example backward tracking graph in

Figure 2.2, we should notice that the critical events essentially represent calls to the JS APIs we

discussed in Section 2.3.6. Also, notice that a script can create a node and insert it into the DOM

as child of another parent node, thus producing a parent-child relationship. Similarly, a JS script

can define a JS function, and then register that function as a callback.

The forward tracking graph aims to visualize different type of information. Specifically, given

a starting node, we visualize significant events that have been “caused” by the starting node. We

then recursively proceed by considering all nodes affected by the starting node, and performing

forward tracking from each of them. An example of forward tracking graph related to the example

in Section 2.2.2 is shown in Figure 2.8 (in Section 2.5). This graph was obtained by selecting the

second-to-last URL from the backward tracking graph in Figure 2.2 (i.e., the URL of the page

immediately preceding the malware download event), and walking forward through the logs.

To better explain what type of relationships are captured by JSgraph’s visualization module,

we now provide another example, for which we can analyze both the HTML content and the

31

related graph. Figure 2.7 shows the forward tracking graph related to the HTML content in the

top left quadrant. The logs were produced using our instrumented browser to load the HTML

page, and then click on the “Click me” button.

Notice that the showHello function is defined as part of a script, but registered as an event

listener via a DOM level 0 onclick attribute. Also, notice that the definition of the anonymous

function that is set as a callback for setTimeout, is also represented in the graph, with an edge

from Script 52 to the Scheduled Callback node (notice that the function name is missing from

the graph, since this is an anonymous function). Also, the graph shows that Script 51 is loaded

from an external URL, and that it performs critical operations on the window object (an attempt

to create a popunder window).

 // s2.js
 window.open("http://wikipedia.org").blur();
 window.focus();

 // HTML content
 <html>
 <script src="s2.js"></script>
 <body>
 <script>
 function showHello() {
 setTimeout(function(){ alert("Hello!"); }, 1);
 }
 </script>
 <p>Click here to show "Hello" </p>
 <button onclick="showHello()">Click me</button>
 </body>
 </html>

main

hxxp://anonymous/test_for_callback.html
Logic Order: 0

USER NAV

Script_51
hxxp://anonymous/s2.js

Logic Order: 1

PARENT-CHILD

Script_52
Inline

Logic Order: 5

PARENT-CHILD

Event_Callback:
click

Position: (36,50)
Logic Order: 6

DEFINITION
onclick
(8,22)

REGISTER

window.open:
URL: hxxp://wikipedia.org

Logic Order: 2

EXECUTE

window.blur
frame: 40063644059904

Logic Order: 3

EXECUTE

window.focous:
frame: 40063644058176

Logic Order: 4

EXECUTE

Scheduled_Callback
Logic Order: 7

DEFINITION

(5,19)
REGISTER

Alert
Message: Hello!
Logic Order: 8

EXECUTE

Figure 2.7: HTML+JS content and related forward tracking graph

2.5 Analysis of Web Attacks

In this section, we report details on three experiments aimed at demonstrating how JSgraph

can record fine-grained details about web-based attacks and make their post-mortem analysis

easier. We will first provide details on the forward tracking graph for the malware download

32

hxxp://upnow2app.pressupdateforsafesoft.download./Ea5j7QwuOrbRLJRiPc_lcut6oqo3...

Logic Order: 2928

Script_624

Inline

Logic Order: 2929

PARENT-CHILD

Script_625

Inline

Logic Order: 2930

PARENT-CHILD

Script_626

Inline

Logic Order: 2931

PARENT-CHILD

Script_627

hxxp://code.jquery.com/jquery-latest.min.js

Logic Order: 2932

PARENT-CHILD

Script_628

Inline

Logic Order: 2933

PARENT-CHILD

Script_629

Inline

Logic Order: 2934

PARENT-CHILD

Event_Callback:

click

Position: (644,244)

Logic Order: 2956

DEFINITION

onclick

(43,30)

REGISTER

hxxp://update4soft.pressbuttonforupdate.bid/dl.php?pcl=Ea5j7QwuOrbRLJRiPc_lcut...

Logic Order: 2958

USER NAV

Scheduled_Callback

Logic Order: 2957

DEFINITION

(13,19)

Event_Callback:

load

Logic Order: 2937

DEFINITION

(33,169)

REGISTER

Event_Callback:

DOMContentLoaded

Logic Order: 2936

DEFINITION

J

(1,30176)

REGISTER

Scheduled_Callback

Logic Order: 2939

DEFINITION

(3,1635)

Scheduled_Callback x16

Logic Order: 2940-2955

DEFINITION

(3,6878)

Scheduled_Callback

Logic Order: 2938

DEFINITION

showPopup

(57,29)

REGISTER

Alert

Message: Update the latest version of Flash Player. Your c...

Logic Order: 2935

EXECUTE

REGISTER REGISTER

REGISTER

Figure 2.8: Forward tracking of a social engineering malware download attack.

attack discussed in Section 2.2.2. Then, we will analyze an in-the-wild social engineering attack

that tricks users into installing a malicious extension, and a phishing attack based on a cross-site

scripting (XSS) vulnerability in real web software [35].

2.5.1 Forward Tracking for Malware Download Attack

In Section 2.2.2, we presented the backward tracking graph in Figure 2.1, which reconstructs the

navigation steps and events that took the user from the starting page (the Google search) to the

malware download event. On the other hand, Figure 2.8 reconstructs the JS scripts, callbacks,

critical events, and navigations that occurred starting from the URL the user visited right before

the malware download event (i.e., starting from the second-to-last node in Figure 2.1).

Figure 2.8 shows that an “inline” (i.e., not externally loaded) script (Script 624) first defines

an anonymous function (at source line 13, column 19) to be registered as a scheduled callback.

The scheduled callback registration is actually executed later, after a user’s click, which activates

33

the event callback at logic order 2956. This behavior corresponds to the excerpt from the attack

code shown below. By analyzing the audit logs related to these graph nodes, we found that the

onclick callback will be used later to display the installation instructions (hence the function

name “showStep”) for the downloaded software (see Figure 2.1e).

//DOM level 0 event

<a href="hxxp://update4soft.pressbuttonforupdate.bid/..."

onclick="showStep();" class="download_link">

//Script_624 (simplified)

<script>

function showStep() {

window.onbeforeunload=null;

var nAgt=navigator.userAgent;

...

setTimeout(function(){

window.location=

"hxxp://update4soft.pressbuttonforupdate.bid/..."; },1000);}

</script>

Script 625 and Script 627 define and register an event listener for the load and DOMCon-

tentLoaded events, whereas Script 628 defines the showPopup function that will display the

“fake” download dialog box in Figure 2.1d, and registers it as a scheduled callback. As it executes,

Script 629 will raise a system alert with the message “Update the latest version of Flash Player.

Your current Adobe Flash Player version is out of date,” as shown in Figure 2.1c. This has the

effect of “freezing” the tab, including the execution of all scheduled callbacks and the parsing

of the rest of the page, until the user clicks “OK”. As the user clicks on “OK” to close the

alert window, the browser finishes loading the page, and fires the DOMContentLoaded and load

event listeners, at logic order 2936 and 2937, respectively. Then, the scheduled callback at logic

order 2938 is activated to show the “fake” download dialog box (Figure 2.1d), using JS-driven

animations activated at logic order 2939-2955. When the user clicks on the download button,

the static HTML anchor shown in the previous attack code excerpt is activated, to navigate to

34

(a) (b) (c)

Figure 2.9: In-the-wild social engineering extension download attack

the malware download URL. At the same time, the DOM level 0 onclick callback will execute

the registration of the scheduled callback, which will be triggered one second later (at logic order

2957) to make sure the malware download is indeed initiated.

2.5.2 Social Engineering Extension Download Attack

We also found that visiting the gomovies[.]to site from a Linux machine would lead to the

installation of a malicious browser extension, rather than a .dmg software package8.

As in the malware download case, clicking on the play button on gomovies[.]to causes a

new window to popup, under the getsportscore[.]com domain name. As shown in Figure 2.9,

a popup dialog box lures the user to add an extension called Sport Score to Chrome, which has

been found to be responsible for delivering unwanted ads and PUP software9 and is detected by

the ESET anti-virus as JS/Adware.StreamItOnline10. Then, clicking the “ADD TO CHROME”

button causes a browser extension installation popup.

The backward and forward tracking graphs for this attack are shown in Figure 2.10 and 2.11,

respectively. The backward tracking graph is quite similar to the malware download case (though

the ad-delivering and extension serving domains are different), and we therefore show only part

8The User-Agent string used during the recording of the previous malware download attack was
purposely set to advertise a Mac OS machine, rather than a Linux machine

9Simply search for: chrome ”Sports Score” extension adware
10http://www.virusradar.com/en/JS_Adware.StreamItOnline/map/day

35

hxxp://www.bitadexchange.com/a/display.php?stamat=m%7C%2C%2CA2IWYiLyoGU3B09GH0...

Logic Order: 3309

JS NAV

hxxp://install.getsportscore.com/?pid=51851&clickid=US149496919611924653623609...

Logic Order: 3310

REDIRECT

Script_666

hxxp://code.jquery.com/jquery-1.11.3.min.js

Logic Order: 3313

PARENT-CHILD

Event_Callback:

DOMContentLoaded

Logic Order: 3337

DEFINITION

J

(1,30241)

REGISTER

Event_Callback:

click

Position: (830,371)

Logic Order: 3375

DEFINITION

(3,5172)

REGISTER

Extension Install

URL: hxxps://chrome.google.com/webstore/detail/fciohdpjmgn...

Logic Order: 3382

EXECUTE

Figure 2.10: Extension download attack: backtracking graph (partial)

hxxp://install.getsportscore.com/?pid=51851&clickid=US149496919611924653623609...

Logic Order: 3310

Script_664,667-670

Other Scripts on the Page

Logic Order: 3311,3314-3317

PARENT-CHILD

Script_666

hxxp://code.jquery.com/jquery-1.11.3.min.js

Logic Order: 3313

PARENT-CHILD

Script_671

hxxp://i3j3u3u9.ssl.hwcdn.net/common/scripts/base_new.js?v=1.56

Logic Order: 3318

PARENT-CHILD

Script_672

Inline

Logic Order: 3319

PARENT-CHILD

Event_Callback:

mousemove

Position: (832,352)

Logic Order: 3374

DEFINITION

Builtin

(1224,15)

Error_Callback

Logic Order: 3387

Builtin

(1224,15)

Event_Callback:

DOMContentLoaded

Logic Order: 3337

DEFINITION

J

(1,30241)

REGISTER

Event_Callback:

mouseover

Position: (832,352)

Logic Order: 3373

DEFINITION

(3,5172)

Event_Callback:

click

Position: (830,371)

Logic Order: 3375

DEFINITION

(3,5172)

Scheduled_Callback

Logic Order: 3362

DEFINITION

(498,28)

Event_Callback x3:

readystatechange

Logic Order: 3364-3366

DEFINITION

(272,46)

Event_Callback x3:

readystatechange

Logic Order: 3367-3369

DEFINITION

(272,46)

Event_Callback x3:

readystatechange

Logic Order: 3370-3372

DEFINITION

(272,46)

Event_Callback x3:

readystatechange

Logic Order: 3384-3386

DEFINITION

(272,46)

Event_Callback x3:

readystatechange

Logic Order: 3394-3396

DEFINITION

(272,46)

Get Cookie x16:

__lpval=pid=51851&subid=2777&clickid=US1494969196119246536...

Logic Order: 3320-3335

EXECUTE

Load Image:

hxxps://www.google-analytics.com/r/collect?v=1&

Logic Order: 3336

EXECUTE

Get Cookie x9:

__lpval=pid=51851&subid=2777&clickid=US1494969196119246536...

Logic Order: 3347-3352,3354-3356

EXECUTE

XMLHTTP request

URL: hxxp://sendmepixel.com/pixel.aspx?name=getsportscore&type=pageload&...

Logic Order: 3353

EXECUTE

Load Image:

hxxps://www.google-analytics.com/collect?v=1&

Logic Order: 3357

EXECUTE

XMLHTTP request

URL: hxxp://sendmepixel.com/pixel.aspx?name=getsportscore&type=pageData&...

Logic Order: 3358

EXECUTE

REGISTER

REGISTER REGISTERREGISTER

REGISTER REGISTER

XMLHTTP request

URL: hxxp://sendmepixel.com/pixel.aspx?name=getsportscore&type=gb_detected&...

Logic Order: 3363

EXECUTE

REGISTER

Get Cookie x3:

__lpval=pid=51851&subid=2777&clickid=US1494969196119246536...

Logic Order: 3377-3379

EXECUTE

Load Image:

hxxps://www.google-analytics.com/collect?v=1&

Logic Order: 3380

EXECUTE

XMLHTTP request

URL: hxxp://sendmepixel.com/pixel.aspx?name=getsportscore&type=InstallAttempt&...

Logic Order: 3381

EXECUTE

Extension Install

URL: hxxps://chrome.google.com/webstore/detail/fciohdpjmgn...

Logic Order: 3382

EXECUTE REGISTER

REGISTER

XMLHTTP request

URL: hxxp://sendmepixel.com/pixel.aspx?name=getsportscore&type=InstallCanceled&...

Logic Order: 3388

EXECUTE

Get Cookie x3:

__lpval=pid=51851&subid=2777&clickid=US1494969196119246536...

Logic Order: 3389-3391

EXECUTE

Load Image:

hxxps://www.google-analytics.com/collect?v=1&

Logic Order: 3392

EXECUTE

REGISTER

Figure 2.11: Extension download attack: forward tracking graph

of it, for space reasons. The forward tracking graph is more complex. The reason is that the

install.getsportscore[.]com site, which lures the user into installing the extension, contains

a large amount of user tracking code (due to space constraints, we omit a detailed analysis of the

tracking code). However, the mechanism that triggers Chrome’s extension installation authorization

36

popup is fairly straightforward, and can be seen in both the backward and forward tracking graphs.

Specifically, the JS code at install.getsportscore[.]com uses jQuery to first register a callback

on mouse clicks, as shown in the attack code snippet below (extracted from our audit logs).

$addToBrowser.click(function (e) {

e.preventDefault();

installExtension();

});

The jQuery library translates the above code into the registration of two callbacks: one on

the DOMContentLoaded event, which in turn registers a callback for click events on the “ADD

TO CHROME” button shown in Figure 2.9b.

2.5.3 XSS Attack Analysis

We now discuss an attack based on an XSS vulnerability on the PHPEcho CMS 2.0-rc3, a content

management system (this vulnerability was first disclosed by Jose Luis Gongora Fernandez in June

2009 [35]). We use this vulnerability to conveniently reproduce a possible XSS-driven phishing

attack using a keylogger to steal Facebook login credentials. To reproduce the attack, we deploy

PHPEcho CMS 2.0-rc3 on a virtual machine with CentOS 5.11, Apache 2.2.3, PHP 5.1.6, and

MYSQL 5.0.95, to satisfy PHPEcho’s software dependencies. We then leverage third-party attack

code to trigger the XSS vulnerability, and launch the phishing attacks.

We reproduce the Facebook phishing attack by making use of a JS-based key-logger adapted

from [35]. First, using the XSS vulnerability, a fake Facebook login user interface is injected and

forced to alway appears in the middle of the page, as shown in Firgure 2.12a. A site visitor may get

confused by this window, and type in their username and password to make the window disappear.

In the background, a key-logger captures the victim’s keypresses and sends them to the attacker

in real time. Even if the victim realized that this may be a phishing attempt before submitting

37

the credentials, the attacker will have gained precious information that may be used for reducing

the search space in a following brute-force attack, or other social engineering efforts, for example.

To identify similar attacks in the audit logs, an analyst may start by looking for frequent

callbacks triggered by keypress events, paired with critical events such as XMLHttpRequests,

loading a third-party image, iframe, etc., that may be used to exfiltrate the stolen information. In

our specific example, the analysis may start from the pair of keypress event callback and loading

of a third-party image, as highlighted in red in Figure 2.12b. An analysis of the (partial) backward

tracking graph, drawn by starting from those events, shows that Script 62 is responsible for

registering the keypress callbacks. Also, the script registers a scheduled callback that periodically

loads an external image. Looking at the image’s URL parameters, we can notice that this is likely

used to encode the key code captured by the keypress callback, thus sending them to the attacker.

From the forward tracking graph in Figure 2.12c, which was drawn starting from the page that

contains Script 62, we can see that the scheduled callback defined by Script 62 at line 15, column 27,

is activated multiple times during the attack (once every 200 milliseconds, via a setTimeInterval),

and that every time it is called, it loads the same third-party image with different parameter values.

2.6 Performance Evaluation

In this section, we present a set of experiments dedicated to measuring the overhead introduced

by our JSgraph browser instrumentations.

2.6.1 Experimental Setup

JSgraph is built upon Chromium’s codebase version 48.0.2528.1. Our source code modification

amount to approximately 2,400 lines of C++ code, 150 lines of IDL code and 800 lines of

Python code. We plan to make JSgraph available at https://github.com/perdisci/JSgraph.

To evaluate the overhead imposed by our code changes to Chromium, we performed three different

38

(a) phishing interface

hxxp://192.168.56.101/phpechocms/index.php?module=forum&show=thread&id=4

Logic Order: 28

USER NAV

Script_62

hxxp://ATTACK_DOMAIN_1/fake_facebook.js

Logic Order: 37

PARENT-CHILD

Event_Callback:

keypress

KeyCode: 104

Logic Order: 54

DEFINATION

(6,30)

REGISTER

Scheduled_Callback

Logic Order: 55

DEFINATION

(15,27)

REGISTER

Load Image:

hxxp://ATTACK_DOMAIN_2/?c=%5B%7B%22t%22%3A-1403065436%7D%5D

Logic Order: 56

EXECUTE

(b) backward tracking graph (partial)

hxxp://192.168.56.101/phpechocms/index.php?module=forum&show=thread&id=4

Logic Order: 28

Script_48

hxxp://192.168.56.101/phpechocms/js/global.js

Logic Order: 29

PARENT-CHILD

Script_60

hxxps://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js

Logic Order: 34

PARENT-CHILD

Script_61

Inline

Logic Order: 35

PARENT-CHILD

Script_62

hxxp://ATTACK_DOMAIN_1/fake_facebook.js

Logic Order: 37

PARENT-CHILD

Script_63

Inline

Logic Order: 38

PARENT-CHILD

Script_64

Inline

Logic Order: 40

PARENT-CHILD

Event_Callback:

DOMContentLoaded

Logic Order: 42

DEFINITION

S

(1,31986)

REGISTER

Document.write

Logic Order: 36

EXECUTE

Scheduled_Callback x11

Logic Order: 43-53

DEFINITION

(15,27)

REGISTER

Event_Callback:

keypress

KeyCode: 104

Logic Order: 54

DEFINITION

(6,30)

REGISTER

Scheduled_Callback

Logic Order: 55

DEFINITION

(15,27)

REGISTER

Event_Callback:

keypress

KeyCode: 101

Logic Order: 57

DEFINITION

(6,30)

REGISTER

Scheduled_Callback

Logic Order: 58

DEFINITION

(15,27)

REGISTER

Event_Callback:

keypress

KeyCode: 108

Logic Order: 60

DEFINITION

(6,30)

REGISTER

Event_Callback:

keypress

KeyCode: 108

Logic Order: 61

DEFINITION

(6,30)

REGISTER

Scheduled_Callback

Logic Order: 62

DEFINITION

(15,27)

REGISTER

......
Scheduled_Callback x6

Logic Order: 123-128

DEFINITION

(15,27)

REGISTER

Document.write

Logic Order: 39

EXECUTE

Document.write

Logic Order: 41

EXECUTE

Load Image:

hxxp://ATTACK_DOMAIN_2/?c=%5B%7B%22t%22%3A-1403065436%7D%5D

Logic Order: 56

EXECUTE

Load Image:

hxxp://ATTACK_DOMAIN_2/?c=%5B%7B%22t%22%3A-1403065197%7D%5D

Logic Order: 59

EXECUTE

Load Image:

hxxp://ATTACK_DOMAIN_2/?c=%5B%7B%22t%22%3A-1403065108%7D%2C%7B...

Logic Order: 63

EXECUTE

(c) forward tracking graph

Figure 2.12: Analysis of phishing attack with key-logger

sets of experiments using both Linux and Android systems, as described below. In all experiments,

we leveraged Chromium’s TRACE EVENT instrumentation infrastructure [20] to accurately measure

the time spent executing our instrumentation code, and to create the baseline performance

measurements needed to compute the relative overhead introduced by JSgraph.

Linux – automated browsing (Linux Top1K): The goal of this experiment is to measure the

performance of JSgraph on a large set of popular websites. To this end, we leverage the list of

top 1,000 most popular websites according to Alexa.com. Because it is very time consuming

to manually visit all these websites, we created an automated browsing process. Specifically, we

implemented a tool that allows us to automatically visit the top 1,000 websites, and browse on each

39

one for about two minutes. To roughly mimic the browsing behavior of a human user, during the two

minute time interval, our system clicks on three randomly selected links, in an attempt to navigate

through different pages on each site. For this, we leverage xdotool11, and program it to send a

random number of Tab plus Enter keystrokes, to simulate a click on a random link. To account for

variability in the performance measurement due to random inputs, we visit each website 5 times.

Overall, our automated browsing system spent about 167 hours browsing on these top websites.

In order to perform this experiment, we used a machine with 32 CPU cores (AMD Opteron 6380)

and 128 GB of RAM, and 10 QEMU-based virtual machines running Linux Ubuntu 14.04.

Linux – manual browsing (Linux Top10): With this experiment, we further explore JSgraph’s

performance on ten top US websites. This includes performing searches on Google, watching

videos on Youtube, browsing on Facebook, sending emails in Gmail, posting tweets on Twitter,

browsing on Reddit, etc. We used JSgraph to manually browse on each of these highly dynamic

websites for about five minutes, using a Linux-based Dell Inspiron 15 laptop with a Core-i7 Intel

CPU and 8GB of RAM.

Android - manual browsing (Android Top10): We repeated the experiment outlined above on an

Android-v6.0 Google Pixel-C tablet with an Nvidia X1 quad-core CPU and 3GB of RAM. To

this end, we compiled an APK version of JSgraph, and used the adb bridge to collect JSgraph

audit logs and TRACE EVENT measurements for analysis.

2.6.2 Performance Traces

We now provide some details on how we leveraged Chromium’s TRACE EVENT instrumenta-

tion infrastructure for profiling JSgraph’s performance. We use three types of trace events:

TRACE EVENT0, TRACE EVENT BEGIN0, and TRACE EVENT END0.

11https://github.com/jordansissel/xdotool

40

When placed at the beginning of a function, TRACE EVENT0 records the execution time spent

on executing the whole function. We add this at the beginning of all JSgraph’s instrumentation

hooks. In addition, we add TRACE EVENT BEGIN0 to didStartProvisionalLoad to monitor

the exact time when a user navigation is request, and to CallFunctionStart and RunCom-

piledScriptStart to monitor the start of each JavaScript code execution. Furthermore, we add

TRACE EVENT END0 to CallFunctionEnd and RunCompiledScriptEnd, to record the end of each

JavaScript code execution, and allow us to separately analyze JS execution time from page/DOM

construction and idle times. Also, we inject TRACE EVENT END0 into loadEventFired, to monitor

the firing of page/frame load events.

Using this instrumentation, we measure four types of overhead:

• The page load overhead measures the time spent executing JSgraph’s code between the

time the web page first starts loading and when the load event12 is fired for that same

page. The baseline is represented by the execution time spent by the browser (excluding

the time spent into JSgraph’s hooks) between calls to the didStartProvisionalLoad and

loadEventFired instrumentation hooks.

• Similarly, the DOM construction overhead measures the time spent by JSgraph’s code

(and related baseline execution time) in between when the first DOM node is inserted in the

DOM tree for the page and when the user triggers the navigation to a new page (excluding

the time spent in JS execution).

• The JS execution overhead is measured by considering the total time spent by the browser

to execute JS code during a given browsing session. Essentially, we sum up all time

intervals in between RunCompiledScriptStart and RunCompiledScriptEnd, and between

CallFunctionStart and CallFunctionEnd.

12https://developer.mozilla.org/en-US/docs/Web/Events/load

41

Table 2.1: Performance overhead (50th- and 95th-percentile) percentage overhead

Experiment Overall Page load DOM Construction JS Execution
Linux Top1K 0.5%, 3.1% 3.2%, 7.4% 0.2%, 1.6% 6.8%, 20.1%
Linux Top10 1.6%, 3.7% 3.3%, 5.7% 0.6%, 1.2% 9.6 %, 17.1%

Android Top10 1.5%, 4.7% 3.9%, 8.2% 0.4%, 1.7% 10.2%, 17.3%

• The overall overhead is measured by considering the entire time spent on a page. For

instance, this is often equal to the time in between when a request to load the page

is made, and when the user triggers the navigation to a new page. Specifically, we can

measure this time interval by measuring the time distance between consecutive calls to the

didStartProvisionalLoad hook.

In summary, to compute JSgraph’s overhead relative to the original Chromium code, we use

the following simple formula: o= O
T−O

, where o is the relative overhead, O is the absolute time

spent on JSgraph’s code execution, and T denotes the time interval between browser events as

discussed above (T−O is the baseline time).

2.6.3 Experimental Results

Table 2.1 lists the results of the three experiments performed to measure JSgraph’s overhead

described in Section 2.6.1. Each row indicates the results for one of the three experiments. The

columns correspond to the four types of overhead measurements we described in Section 2.6.2.

Each table cell reports the median and 95-th percentile of the relative overhead, o, seen during

the experiments.

The page load column is particularly significant, since high loading time overhead could

frustrate a user and drive them away from a web page (the relation between page load time and

42

1

10

100

1000

10000

100000

T
im

e
 (

m
s)

 -
 l
o
g
 s

ca
le

Baseline time

Overhead

(a) Linux Top1K Experiment

10

100

1000

10000

100000

T
im

e
 (

m
s)

 -
 l
o
g
 s

ca
le

Linux Top10

Baseline time Overhead

Android Top10

(b) Linux Top10 and Android Top10 Experiments

Figure 2.13: Overhead and baseline execution time for page loads

user satisfaction has been established in previous research [28]). As can be seen from Table 2.1,

the 95-th percentile for the page load overhead is at most 8.2%.

Linux Top1K experiment results indicate the median page load overhead is only about 3.2%.

The JS execution time overhead median value is also low, at 6.8%. Note that the results for Linux

Top10 and Android Top10 experiments are also very similar, even though those experiments

involved very active browsing by a human user.

The three graphs in Figure 2.13 provide further insight into the performance of JSgraph during

the page load phase of all the experiments reported in Table 2.1. The X-axis represents the number

of domains crawled during the experiment, while the Y-axis represents time in microseconds, in

log scale. In all the graphs, the solid blue curve represents the base execution time (i.e., T−O)

spent by the browser, excluding any JSgraph overhead. The curve is obtained by plotting the

absolute execution time for each website visit (i.e. each domain will be represented at multiple

points on the X-axis). The instances are arranged in increasing order of the baseline execution

time. The red marker indicates the overheads introduced by JSgraph. We can see that in all the

3 graphs the overhead is about one order of magnitude smaller than the baseline execution time.

43

2.6.4 Dromaeo Performance Benchmark

To further analyze the overhead introduced by JSgraph, we make use of Dromaeo, a JavaScript

performance benchmark suite from Mozilla (see dromaeo.com). Using a modern laptop running

Ubuntu Linux, we ran the Dromaeo tests two times: (1) with JSgraph enabled, thus including the

overhead discussed in Section 2.6.2; and (2) with JSgraph disabled, so that our instrumentation

hooks are not called by Chromium.

With JSgraph enabled, the browser was able to perform 4143 runs/s13; whereas with JSgraph

disabled, the browser performed 4341 runs/s14. Using the relative overhead definition defined in

Section 2.6.2, this translates to about 4.6% overhead. These results show that JSgraph performed

approximately as in the Linux Top10 experiments (on the same device) reported in the JS

Execution column of Table 2.1.

2.6.5 Storage Requirements

The storage requirements for JSgraph are limited. In the experiments reported in Table 2.1, rows

1-2 (Linux-based experiments), we observed that a total of 50 minutes of very active browsing on

10 highly dynamic, popular websites resulted in 37 MB of compressed audit logs. This means the

average disk space requirement is only about 0.74 MB per minute of active browsing. Assuming 8

hours of active browsing per work day, multiplied by 262 workdays per year, gives us less than 84GB

of audit logs per network user per year, or less than 84TB of storage for 1,000 network users, for

one entire year. For mobile devices, this requirements reduce even further, to 0.34 MB/minute, or

less than 42TB of storage for 1,000 network users for one year. This is likely due to the more limited

web content typically delivered by websites to resource-constrained mobile devices. Considering

the low cost of archival storage, this represents a sustainable cost for an enterprise network.

13Archived results: http://dromaeo.com/?id=268497
14Archived results: http://dromaeo.com/?id=268495

44

2.7 Discussion

Our proof-of-concept implementation of JSgraph has some limitations. For instance, as discussed

in Section 2.3, with more engineering effort we could instrument all Blink/V8 bindings that have

an impact on any aspect of the page. However, we should notice that our current instrumentations

capture all such bindings that are activated by JS code running on popular websites. Therefore,

adding audit log instrumentation to rarely used APIs is unlikely to significantly affect our overhead

estimates, for example.

We should also point out that while the Chromium code based tends to evolve fairly rapidly,

porting JSgraph to newer versions of Chromium is possible with reasonable effort. In fact, a large

part of the effort for our research team was to design the system and identify how to extend the

DevTools instrumentation infrastructure to enable the necessary fine-grained audit logs without

introducing high overhead or altering the browser’s functionalities. Now that this research task

has been performed, and because the DevTools inspector instrumentation infrastructure is fairly

stable, porting our efforts to newer versions of Chrome mostly involves engineering time. This

also implies that, with adequate engineering effort, JSgraph updates could be deployed with a

timeline comparable to Chrome browser releases. Furthermore, to facilitate deployability JSgraph

could integrate a way for administrators to enable/disable logging, or to whitelist highly sensitive

websites that should be excluded from recording.

2.8 Additional Related Work

Along with the previous works discussed in Section 2.2.3, there exist other studies that are related

to JSgraph from different aspects, as discussed below.

Graph-based Forensic Analysis. Causal graphs that show the causality relations between subjects

(e.g., process) and objects (e.g., file) are widely used in system-level attack analysis [41, 30, 40, 42,

45

44]. They record important system events (e.g., system calls) at runtime and analyze them in a post-

mortem attack analysis. Recently, a series of works [45, 50, 49] have proposed to provide accurate and

fine-grained attack analysis. They divide long-running processes into multiple autonomous execution

units and identify causal dependencies between units. A node in their causal graphs represents

fine-grained execution unit instead of a process in the previous system call based approaches and

an edge shows causal relations between those units. Bates at el. [14] propose a novel technique for

auditing data provenance of web service components, called Network Provenance Functions (NPFs).

Dynamic taint analysis techniques [59, 38, 34] can also be used for causality analysis. They

monitor each program instruction to identify data-flow between system components (e.g., memory

object, file, or network). A causal graph constructed by the taint analysis shows data-flow between

those system components.

These techniques present causal relations between system or network components, however,

it is difficult to understand JavaScript execution from their analysis due to a large semantic gaps

between system-level events and JS execution inside a browser. JSgraph can complement these

techniques and fill the gap by providing detailed behaviors of JavaScript execution. For instance,

incorporating JSgraph with a system-level analysis technique will enable seamless reconstruction

of both system-level and in-browser attack provenance.

Record and Replay: System-level record and replay (R&R) techniques [27, 40, 30, 25, 54] have been

proposed to allow forensic analysis or to recover the system from the attack. System-level record

and replay systems might not be very helpful to analyze what happend inside the web-browser

because there is a large semantic gap between the system-level events (i.e., system call) and the

high-level events happen inside the browser such as interaction between the JavaScript engine

(e.g., V8) and the rendering engine (e.g., Blink).

46

As we discussed earlier, Web-browser R&R systems [18, 55] and JavaScript R&R tech-

niques [53, 63] have been proposed, however, they have limitations to allow accurate forensic

analysis of JS execution. Details are discussed in section 2.2.3.

Static JS Analysis: A few static analysis techniques have been proposed to identify malicious JS

code [24, 29]. For example, ZOZZLE [24] classifies JS code based on contextual information from

the abstract syntaxt tree (AST) of the program. Caffein Monkey [29] identifies malicious JS code

based on the usage of obfuscations and methods in the program. However, the dynamic features

of JavaScript make it difficult to statically analyze JS code.

Dynamic JS Analysis: Dynamic anlaysis is widely used to monitor dynamic behaviors of JS

programs. Cova et al. [23] developed a system that can detect and analyze malicius JS codes by

executing them in the emulated environment. They extract a number of features from the JS

code execution and use machine learning techniques to identify the characteristics of malicious JS

programs. There are a number of symbolic execution techniques for JavaScript have been proposed

such as SymJS [47] Kudzu [60], Jalangi [61]. Recently, a forced execution engine for JavaScript,

called J-Force [39], has proposed to identify possible malicious execution paths from the JS code.

J-Force iteratively explore execution paths until all possible paths are covered including the hidden

paths by event and exception handlers. Symbolic executions and forced execution techniques for

JavaScript are generally heavy-weight and requires special execution environment (e.g., VM-based

framework) as they focus on off-line analysis to reveal security issues. On the other hand, JSgraph

focuses on recording the “real” attacks as we discussed in Section 2.2.3.

2.9 Conclusion

We proposed JSgraph, a forensic engine aimed at efficiently recording fine-grained audit logs

related to the execution of JavaScript programs. JSgraph’s main goal is to enable a detailed,

47

post-mortem reconstruction of ephemeral JS-based web attacks experienced by real network users,

with particular focus on social engineering attacks.

We implemented JSgraph by instrumenting Chromium’s code base at the interface between

Blink and V8, and design our system to be lightweight, highly portable, and to require low storage

capacity for its fine-grained audit logs. Using a number of both in-the-wild and lab-reproduced

web attacks, we demonstrated how JSgraph can aid the forensic investigation process. We also

showed that JSgraph introduces acceptable overhead on the browser, which could be further

reduced with some more engineering effort to perform code optimizations.

2.10 Acknowledgment

We thank Adam Doupé for serving as our shepherd, and the anonymous reviewers for their

constructive comments and suggestions for improvement.

This material is based in part upon work supported by the National Science Foundation, under

grant No. CNS-1149051, and by the United States Air Force and Defense Advanced Research

Agency (DARPA), under Contract No. FA8650-15-C-7562. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation or DARPA.

48

Chapter 3

Recording Framework for post-mortem web-borne attack analysis

3.1 Introduction

Modern browsers are very complex. They are more and more like operating systems with intricate

threading scheduler among browser processes and renderer processes. Previous approaches to

web-browser replay [55, 18, 63]] suffered from non-determinism. Most of them are forced to alter

the scheduler functionality in order to achieve deterministic recording and replay(reconstruction).

However, such changes will influence the transparency to the users and influence users’ normal-daily

browsing. Furthermore, recording the interaction between different tabs and the simultaneous

behaviors for opened tabs will be another big part. Therefore, building a recording framework to

deal with those problems is very critical, not only for JSgraph but also for other browser-based

forensic analysis system such as WebCapsule [55], ChromePic [62] and JSCapsule.

To this end, we proposed a recording/logging framework, which can realize the following

purposes:

• Always on. Both JSgraph and WebCapsule took advantage of Chromium InspectorAgent

for the seek of efficient reason. However, the newest version of Chromium requires DevTools

frontend to enable the InspectorAgent, which won’t be opened by normal users and thus

violates our always-on requirement for forensics analysis purpose. We took advantage of the

new feature “auto open devtools for tabs and pop-up” of Chromium, and made further

adjustment to enable our customized InspectorAgent automatically for both new tabs

and pop-up windows.

49

• No Functional Interference. Besides the addition of hooks which only use for the recording

purpose, all other changes will be limited in the DevTools area1 and have no influence to

any areas which will have potential functional interference to daily browsing.

• Isolate Reconstruction per Tab. One of the reasons of separating different logs per tab is

because of the privacy issue introduced by audit logging. By separating the log files per

tabs, the log file could be encrypted (with different keys from a key escrow) immediately

after the closing of the tab and could be offload to other servers opportunistically to prevent

the unauthorized accesses and modifications to history logs. Moreover, since JavaScript on

each tab/Inspector is single threaded (note that worker will have a separate InspectorA-

gent), instrumentation surrounding JavaScript would maintain the logic order and can be

reconstructed or replayed regardless of the scheduling related to time. We developed a new

logging system to create and log events into separate files per Inspector.

• Tab Navigation Relationship. Since the log for each tab is separated into different files, it is

very important to indicate the navigation relationship in order to do backward and forward

tracking through the whole browsing session. For forward tracking, we add an extra hook to

log its children files and creation orders. For backward tracking, we indicates its parent file

from the file name which contains the routing IDs of both its parent frame/window and the

frame itself.

• Efficient Audit Log Recording. In large part, the overhead imposed by forensics system comes

from the log I/O overhead. To reduce this overhead, we offload the job of storing the audit

log to disk to a separate Blink thread. We create log writing tasks that are responsible for

periodically storing batches of recorded events and can be executed in a separate thread.

1see /src/chrome/browser/devtools, /src/content/browser/devtools, /src/content/
renderer/devtools/, and /src/third_party/WebKit/Source/core/inspector/

50

• User Transparency. The approach should be completely transparent to the users, which

means users should not be required to perform any extra actions to enable recording and

should not feel any difference while doing daily browsing.

3.2 Framework System

In this section, we explain how the recording framework works internally.

3.2.1 Overview

The whole recording framework contains the following components: (i) auto enabling our Inspec-

torForensicsAgent for new opened tabs and pop-up windows; (ii) creating separate files for

different tabs; (iii) multithreaded logging system.

As we mentioned in Section 3.1, all the components of the recording framework is confined

within Chromium DevTools system and with no functional inference to the normal browsing.

3.2.2 Auto Enabling InspectorForensicsAgent

To achieve the goal of auto enabling our customized InspectorAgent, InspectorForensic-

sAgent, we take advantage of the new auto-devtools-open feature introduced in newer version

of Chromium on Feb, 20162. This new feature will open/attach the Devtools window auto-

matically once a flag --auto-open-devtools-for-tabs3 is added in the commend line and

autoAttachToCreatedPages is set to be true4.

In order to have a better understanding of how this auto-open-devtools feature works, let we a

closer look of the system. Figure 3.1 demonstrates the structure of whole Chrome’s DevTools system.

2see https://codereview.chromium.org/1656933002 and https://codereview.chromium.org/

1691813003
3see /src/chrome/common/chrome_switches.cc
4see /src/third_party/WebKit/Source/devtools/front_end/main/module.json

51

Tools
Frontend

DevTools
Client

Inspected
page

DevTools
Agent

�Tools Frontend Renderer Process)

�Inspected Page Renderer Process)

�%URZVHU�3URFHVV�
IPC

IPC

Figure 3.1: Demo of the Structure of Chrome’s DevTools System.

The DevTools window will be auto attached in two situations: when opening a new tab and

when pop-up a new window/tab using window.open() or via same-origin link.

• Opening a new tab. When the flag --auto-open-devtools-for-tabs is set, a new observer

DevToolsAutoOpener will be created and registered to monitor the tab behaviors. When a

new tab is created, DevToolsAutoOpener::TabInsertedAt will be triggered and open a

new DevTools window within browser process. Once the DevTools window is attached, an

IPC message DevToolsAgentMsg Attach will be sent to renderer process where the inspector

session will be initialized which will create many InspectorAgents including our customized

InspectorForensicsAgent. Figure 3.2 shows a simplified process of how InspectorAgent

is created when opening a new tab.

• Pop-up a new window/tab. Upon the attachment of a DevTools window, if the flag autoAt-

tachToCreatedPages is set to be true, a hook WindowCreated in InspectorPagAgent

will be active (by pageAgent().setAutoAttachToCreatedPages in DevTools Frontend)

to monitor the creation of a new pop-up window. When there is a new pop-up window,

52

User

Open a new tab

Browser
(UI)

Browser
(Content)

InsertTabAt
Observer()

OpenDevToolWindow()

GetOrCreateFor
(InspectedContent)

Renderer
Main Thread

IPCSend(Attach)

Renderer
Render Thread

Notify(Attach)

Blink

InitializeSession()
CreateInspector
ForensicAgent()

Figure 3.2: simplified process of auto-open-devtools for new tab.

User
or
JS

Browser
(Content)

Renderer
Main Thread

IPCSend(Attach)

Renderer
Render Thread

Notify(Attach)

Blink

InitializeSession() CreateInspector
ForensicAgent()

Open Popup tab
WindowCreated

(Created)
WaitForCreateWindow

(Created)

RequestDevToolsForFrame
(Created)

Send(Opener,Created)IPCSend(Opener,Created)
GetOrCreateFor

(Created)

Figure 3.3: simplified process of auto-open-devtools for pop-up window.

WindowCreated will be triggered, which sends IPC message to browser process requesting

new DevTools window, and pauses the message loop in renderer process and blocks all input

messages until the creation the DevTools window. When the browser process receives the

DevTools window creation request, it will follow the similar process to create a DevTools

window as opening a new tab. A simplified process is shown in Figure 3.3.

While our customized InspectorForensicsAgent is created, it is not enabled yet. To enable

the InspectorForensicsAgent, there are two ways: (i) add forensicsAgent().enable() side-

53

by-side with pageAgent().setAutoAttachToCreatedPages which is used for enable/set the auto

attach devtools feature to created pages under Main.js script in DevTools Frontend in Figure 3.15

(ii) enable the InspectorForensicsAgent right after it is initialized under the initialization of

inspector session (See InitializeSession() in Figure 3.2 and Figure 3.3).

One drawback of using auto DevTools window open feature to enable our InspectorForensic-

sAgent is that the DevTools window will also be shown up, which violate no functional Interference

requirement (user will see an extra DevTools window). The current solution is to common out the

part of code for DevTools window showing up, so that the DevTools window is created and running

in the background but will not showing up visually. However, with a little bit more engineering

work, we can strip the auto InspectorAgent enabling from the auto DevTools window opening.

3.2.3 Separate File Creation for Different Tabs

Since renderer process of Chromium is sandboxed, in order to write into file from the Inspector-

Agent, we choose to create a file in the browser process, and pass the file handler through IPC

message into renderer process. The previous version of JSgraph creates file handler in RenderPro-

cessHost6 and uses input messages to pass the created file handler into RenderView7. However,

such structure has the following shortages: (i)the auto attach process of the DevTools window

will block all input messages , thus block the passing process of created file handler; (ii) since

file is created per RenderProcessHost and multiple tabs may share a same RenderProcessHost

in certain situations 8, logs are shared by RenderProcessHosts not by tabs; (iii) the change of

RenderProcessHost and RenderView is within the renderer code base and may potentially alter

the functionality of normal browsing. Therefore, in order to address those problems, we design

5see /src/third_party/WebKit/Source/devtools/front_end/main/Main.js
6/src/content/browser/renderer_host/render_process_host_impl.cc
7/src/content/renderer/render_view_impl.cc
8see https://www.chromium.org/developers/design-documents/process-models

54

a new file creation system, using DevTool messages to pass the file handler, creating file handler

per inspector/tab creation, and confining itself within DevTools’ code base.

Remember the two requirements for the created files: (i) the files must be created per tabs; (ii)

logs must contains information that allows we do forward and backward tracking of user navigation

behaviors through different log files. To this end, we inject the file creation process into the control

flow of DevTools window auto-attach discussed in Section 3.2.2, where the navigation relationship

could be indicated. For forward tracking, we take advantage of the hook WindowCreated and log the

routing id of both the opener frame and created frame. For backward tracking, we will create the file

with a special naming system, which contains the information about creation time, creation process

id, opener frame routing id, and created frame routing id. In the end, the name of the created log file

will be in such format: CreationTime CreationProcessID OpenerID CreatedID. With such file

naming system, backward tracking to the beginning of the browsing session can be easily performed.

A customize method CreateAndSendFd is injected into class RenderFrameDevToolsAgen-

tHost9, so that once a DevTools agent host is created, we could call the method which creates the

log file and send the file handler to renderer process. We create a receiver in DevToolsAgent in

renderer process to receive the file handler passed by IPC message and transfer it to base::File.

The file handler will be passed into WebDevToolsAgent in blink, and be eventually passed into

InspectorForensicsAgent we created. The file handler will be stored in ForensicsLogWriter

which is a member of InspectorForensicsAgent and is responsible for log disk writing.

Figure 3.4 shows a simplified version of how we modified the control flow over the process

of the auto DevTools window opening for new tab shown in Figure 3.2. After a tab is created, we

can get the routing id of the newly created tab. Since a new tab have no opener (parent window),

we set the opener to be -1 when creating the new file.

9/src/content/browser/devtools/render_frame_devtools_agent_host.cc

55

User

Open a new tab

Browser
(UI)

Browser
(Content)

InsertTabAt
Observer()

OpenDevToolWindow()

GetOrCreateFor
(InspectedContent)

Renderer
Main Thread

IPCSend(Attach)

IPCSend(Fd)
CreateAndSendFd

(NewTabID)

Renderer
Render Thread

Notify(Attach)

Notify(Fd)

Blink

InitializeSession()
CreateInspector
ForensicAgent()

Notify(Fd) StoreIntoForensics
LogWriter(Fd)

Figure 3.4: simplified modification for file creation for new tab.

User
or
JS

Browser
(Content)

Renderer
Main Thread

IPCSend(Attach)

IPCSend(Fd)

Renderer
Render Thread

Notify(Attach)

Notify(Fd)

Blink

InitializeSession() CreateInspector
ForensicAgent()

Notify(Fd) StoreIntoForensics
LogWriter(Fd)

Open Popup tab
WindowCreated

(Created)
WaitForCreateWindow

(Created)

RequestDevToolsForFrame
(Created)

Send(Opener,Created)IPCSend(Opener,Created)
GetOrCreateFor

(Created)

CreateAndSendFd
(Opener, Created)

Figure 3.5: simplified modification for file creation for pop-up window.

Figure 3.5 shows a simplified version of how we modified the control flow over the process

of the auto DevTools window opening for pop-up window shown in Figure 3.3. When a pop-up

window is created, the routing id of opener frame and created frame will be passed through

IPC message into browser process which will be handler by OnRequestNewWindow under Ren-

derFrameDevToolsAgentHost. From Here, we can call the injected method CreateAndSendFd.

56

3.2.4 Multithreaded Logging System

In the forensics recording (and replay) system, there are mainly two big parts of introduced

overhead: serialization overhead and I/O overhead. The later one is extremely heavy on Android

mobile devices due to the mechanism Android use to write files into disk. Therefore, reducing

the I/O overhead will reduce a big part of the overhead. To this end, we develop a logging system

which dump the audit log into disk in a different thread.

• Challenges: There are two challenges to address.

– Reduce the time taken to put task of dumping log into different thread. The overhead

of each event recording is small but the number of events is very big which cumulates

to a very big overhead. The operation of putting the writing task into a different

thread will be even heavier than the writing task itself in some extreme cases.

– Make sure the logging system record every events. On one hand, The log recording will

be started even before the file handler we created is received by InspectorForensic-

sAgent. On the other hand, the last few events might not be recorded in the thread

when closing the whole browsing. Therefore, to make sure that we record every events

in the separate thread will be another challenge we need to address.

To solve the challenges, we create a ForensicsLogWriter as a member of InspectorForen-

sicsAgent in order to dump the logs. ForensicsLogWriter contains three components: The

file handler we passed into InspectorForensicsAgent, a buffer used to cache the events, and a

SingleThreadTaskRunner10 that allows us to create log writing tasks that are responsible for peri-

odically storing batches of recorded events and can be executed in a separate thread (via PostTask).

ForensicsLogWriter is created along with the creation of InspectorForensicsAgent and

is stored in InspectorForensicsAgent. When ForensicsLogWriter is created, the buffer and

10see /src/base/single_thread_task_runner.h

57

the task runner will be also initialized. All the recorded events will be stored in the buffer first and

the log writing task will not be posted into another thread unless the buffer reaches given size and

the file handler is passed into ForensicsLogWriter. Such structure ensures two things. First, the

writing task will only be posted periodically when the buffer reaches given size not when every time

a event is recorded. Since push event into a buffer takes trivial time compared to PostTask, such

structure can reduce the overhead dramatically. Second, since the buffer in ForensicsLogWriter

is created along with the initialization of InspectorForensicsAgent, which happens before all

the events in the page, the events before the creation of the file handler will be restored in the

buffer first. In this way, we won’t miss any events at the beginning of recording.

One problem of such buffer structure we need to address is that we have to figure out a way

to flush the buffer onto disk right before the closing of the browser. To this end, we add a hook

into Document::DispatchUnloadEvents11 to get the moment when unload event is dispatched,

which will happen at each page navigation and at the closing of the tab. Using this hook, we

could post the log writing task whenever the tab is going to be closed.

Two things need noting. One is that by default, chrome will perform a sudden termination

of the process without dispatch the unload event if there is no unload event listener ever added on

the tab. To make sure the hook will be triggered on every page, we set the chrome platform flag

SuddenTermination to be false when enabling InspectorForensicsAgent. Another one is to set

TaskShutdownBehavior for SingleThreadTaskRunner to be BLOCK SHUTDOWN in order to

prevent the browser from shutting down when closing the browser during the flushing of the buffer.

3.3 Conclusion

In this chapter, we propose a framework which is designed to record audit log deterministically

to help forensic analysis for web-borne attacks. Such framework can help browser-based forensic

11see /src/third_party/WebKit/Source/core/dom/Document.cpp

58

analysis tools to achieve the following requirements: always-on, no functional interference, isolate

reconstruction by tab, showing tab navigation relationship, and writing audit log to disk efficiently.

Under the help of this framework we proposed, we can solve the scheduling problems encountered

by current existing browser-based forensic analysis tools such as WebCapsule, ChromePic and

JSgraph. What’s more, it gives us further confidence to perform complete none-deterministic

recording and replay (JSCapsule) around JavaScript in the future.

59

Chapter 4

JSCapsule: Enabling Fine-Grained Reconstruction

and Analysis of Web Attacks with In-Browser Record-and-Replay Systems

4.1 Introduction

On our approach to enable fine-grained reconstruction and analysis of web attacks, JSgraph,

the recording-only system, is not enough, because it only provides the events that JavaScript

performed to the DOM. For attacks that don’t mainly leverage visual lure or changes to the DOM

(such as drive-by downloads attack), a more fine-grained view of what happened in JavaScript

is required in order to develop precise counter defenses within the browser. Ultimately, we want

to achieve in-browser recording and replay in a deterministic way. To this end, we propose

JSCapsule, which records all non-deterministic inputs to the JavaScript engine, including changes

to the DOM content, platform calls, callbacks from event targets, DOM timers and web workers,

and so on, and replays those non-deterministic inputs in an isolated environment to reproduce the

execution of JavaScript programs in a deterministic way to have a precise analysis of JavaScript

program execution of web-based attacks.

In order to achieve this goal, we have to address several challenges: i) how to design the

system in a way that could achieve complete deterministic replay; ii) how to serialize and

deserialize complex events in order to be able to perform replay in a different browser instance.

For example, it will be very hard to serialize and deserialize the callback functions registered by

addEventListener; iii) how to minimize the storage requirements for the logs but still be able

to perform deterministic replay.

60

We have implemented an early prototype of JSCapsule which can perform in-memory

deterministic recording and replay on simple pages, which stores the recorded serialized data

store in memory. A fully-deterministic off-loading recording and replay system for complex web

pages, which dumps the serialized data store into disk based on the new framework (proposed

in Chapter 3), need more engineering works.

4.2 JSCapsule System Details

In this section, we explain how JSCapsule works internally.

4.2.1 JSCapsule Overview

JSCapsule system contains two parts: i) a recording system which records all none-deterministic

inputs to JavaScript engine; ii) a deterministic post-mortem replay system which can replay all

those none-deterministic inputs step-by-step in an isolated environment. Like JSgraph, JSCap-

sule perform both recording and replay through our customized InspectorForensicsAgent

and confines itself within the Chromium’s content module [21].

4.2.2 JSCapsule Recording System Design

In the recording phase, as shown in Figure 4.1, JSCapsule consider JavaScript engine as a

black box and records all the non-deterministic inputs through the Blink-V8 binding such as

the changes to the DOM, the JavaScript platform calls (math.random(), date()), the executed

scripts, the callback functions added to DOM (e.g. by addEventlistener, setTimeout(),

requestAnimationFrame() and so on), the response of XMLHTTPRequest, inter-frame and web

worker messages, and other resources requested by JavaScript(e.g. CSS, images and so on) using

similar technology we used for JSgraph. As a result, JSCapsule will have similar or even lower

overhead compared to JSgraph.

61

Figure 4.1: simplified structure of JSCapsule Recording System.

4.2.3 JSCapsule Replay System Design

In the replay phase, JSCapsule will first load the whole recorded data store (all recorded events

are loaded in a queue following the logic order) into ForensicsReplayEngine and replay all the

events one by one. The instrumentation hooks we used for recording can now be reused for the

feedback system to ensure the replay of the previous recorded event is accomplished and then

initial the replay for the next recorded event. As shown in Figure 4.2.

• Replay recorded events: There are two kinds of recorded events:

– All the objects related to the events can be serialize, deserialize easily. For replay of

those kinds of events, we re-execute the event with deserialized objects. For example,

we could re-execute the scripts with recorded source code leveraging the function

62

Developer

Recorded
Data Store

Replay
Engine

InspectorFor
ensicAgent

Renderer

StartReplay
Initialize Replay Engine

LoadNextRecordedEvent() PostTask(RecordedEvent)

RunTask(RecordedEvent)NotifyReplayComplete()

Figure 4.2: Demo of the Structure of Replay Engine with Feedback.

evaluateScriptInMainWorld1, which will take the source code of JavaScript, re-

compile it to the script object, and re-execute the script execution event.

– Objects related to the events can not be easily serialize and deserialize. For those events,

we monitor the creation of those objects in both recording and replay, and re-map

the objects in the replay with those in the recording by the recorded identifier and

the order of creation. Take the replay of the EventListener callbacks to MouseDown

event for example. Serializing and deserializing the callback function will be impossible

if we just stand outside of JavaScript. However, since we recording and the replay of

JS scripts, the callback will be created and added into the DOM in both recording

and replay phase. Therefore, we can remap the callback function object in the replay

to the correspond one in the recording and could be able to re-execute the callback

function by handleEvent() 2. In the recording phase, we record the target pointer,

type of listened event and the pointer of callback function when addEventListener()

is called. We also record the execution of the callback function (and pointer) and

1see /src/third_party/WebKit/Source/bindings/core/v8/ScriptController.cpp
2see /src/third_party/WebKit/Source/core/dom/events/EventListener.h

63

the MouseDown event (pointer coordinates and so on) that triggered the callback. In

the replay phase, the execution of scripts will also execute addEventListener() so

that we can remap the callback function object with the remapped target and event

type. When replay the callback, we can find the remapped callback object (using the

recorded callback pointer) and execute the callback with recorded MouseDown event.

• Feedback recorded values when queried by JavaScript. Besides the recorded events, we also

records other values which was queried during the execution of JavaScript (e.g. Platform

values, callback parameters such as input events, messages, the response of XMLHTTPRequests,

CSS, images, cookies and so on). Those values won’t be recorded unless it is request for the

execution of JavaScript to save storage. For example, we only record and replay third-party

images when the images were read by JavaScript.

It’s worth noting that, with the new framework, all the logs to one tab is confined with in one file

and we also record all inter-frame/tab communications, therefore, we could replay what happened

for a single selected tab in an isolated environment without the help of other logs (e.g. the log

for parent window or the log for web workers in the page) in the future.

4.3 Conclusion and Future Work

We proposed JSCapsule, a in-browser recording and replay system which enables the recording

and replay of nondeterministic inputs to reproduce the execution fo JavaScript programs in a

deterministic way.

An early version of in-memory recording and replay system was implemented which can replay

simple pages in a deterministic way. A fully-deterministic off-loading recording and replay system

for complex web pages based on the new framework need more engineering works.

64

There is one main drawback for the replay mechanism of JSCapsule, which is that we need

to make sure that all the events is replayed in the correct order, if any non-deterministic input

is given to the JavaScript engine, no guarantee can be made on the correctness of the following

execution steps, which may diverge significantly from the recoded execution; it is because giving

any non-deterministic inputs may change the control flow of the JavaScript execution and might

destroy the remapping system in the replay completely. Therefore, we have to instrument all

non-deterministic inputs’ interfaces between Blink and V8 in order to record all of them first.

Huge amount of engineering works are needed if it is done manually. In Chapter 5, we explore

a possible solution in order to generate the recording code automatically in the future.

65

Chapter 5

Future work for Auto Recording Code Generation

One common problem which is faced by both JSgraph and JSCapsule is that how to record

all the inputs/critical events to/from JavaScript Engine. Currently, all the instrumentation works

are done by hand. However, since there are more than 6000 interfaces between Blink and V8 [19],

instrumenting all of them need a large amount of engineering work. Therefore, how to generate

the recording code automatically is a critical issue we want to address as future work.

As discussed in Section 2.3.6, Blink and V8 communicate via an interface referred to as

“bindings” [22]. Here, we will have a quick recap of how the binding compiling process works. Blink

developers use Web IDL language [22] to expose Blink interfaces to V8. The interfaces for each

Blink object (e.g. element, DOMWindow ...) will be specified as a IDL file in the directory of that

object. When Blink is built, the front end of the compiler will parse those IDL files into intermediate

representations (IR), and the back end of the compiler will take the IRs, combine with the build-in

templates 1, and generate the binding code 2. These build-in templates specify how to generate the

binding code for different types of interfaces. For example, methods.cpp.tmpl specify the code

generation template for V8DOMConfiguration:: MethodConfiguration (see Section 2.3.6). We

also have attributes.cpp.tmpl which specify the getter and setter APIs for DOM attributes

and even callback function.cpp.tmpl for callback function binding generation.

While in JSgraph, we are interested in the methods.cpp.tmpl for the reconstruction

of critical JavaScript events. In JSCapsule, we are more interested in the getter part in

1/src/third_party/WebKit/Source/bindings/templates/
2/src/out/Debug/gen/blink/bindings/

66

attributes.cpp.tmpl in order to record all none-deterministic inputs to JavaScript engine. By

modifying the templates, we could add InspectorInstrumentation to collect thoese inputs.

Since we stand in the compiler, it will be very easily to get the inputs’ type and serialize them using

JSONStringValueSerializer3, and write them into disk using the recording framework we created.

3see /src/base/json/json_string_value_serializer.cc

67

Chapter 6

conclusion

We achieved our goal of Enabling Fine-Grained Reconstruction and Analysis of Web Attacks with In-

Browser Recording Systems with two steps: recording and reconstruction, and recording and replay.

We proposed JSgraph, a forensic engine aimed at efficiently recording fine-grained audit logs

related to the execution of JavaScript programs to enable a detailed, post-mortem reconstruction

of ephemeral JS-based web attacks experienced by real network users, with particular focus on

social engineering attacks.

We also implement a early prototype of JSCapsule, a forensic system for the in-browser

recording and replay of JavaScript programs to enable the replay of non-deterministic inputs in

an isolated environment to reproduce the execution of JavaScript programs in a deterministic way.

We also built up a generic recording framework upon Chrome’s DevTools, providing a more

robust way of recording to address the problems in existing post-mortem analysis tools ,and laiding

the foundation to build more robust and fully-deterministic version of JSCapsule in the future.

We implemented both JSgraph and JSCapsule by instrumenting Chromium’s code base at

the interface between Blink and V8, and design our system to be lightweight, highly portable,

and to require low storage capacity. Using a number of both in-the-wild and lab-reproduced web

attacks, we demonstrated how JSgraph and JSCapsule can aid the forensic investigation process

with low recording overhead (0.9% -1.6% on average).

68

Bibliography

[1] 60% of enterprises were victims of social engineering attacks in 2016. https:

//www.scmagazineuk.com/article/576060/.

[2] adb shell. https://developer.android.com/studio/command-line/adb.html.

[3] Apple safari. http://www.apple.com/safari/.

[4] Apple’s webkit. https://webkit.org.

[5] Devtools remote debugging protocol. https://developers.google.com/web/tools/

chrome-devtools/remote-debugging/.

[6] Hacking your head: how cybercriminals use social engi-

neering. https://blog.malwarebytes.com/101/2016/01/

hacking-your-head-how-cybercriminals-use-social-engineering/.

[7] ptrace. https://linux.die.net/man/2/ptrace.

[8] Selenium webdriver. http://docs.seleniumhq.org/projects/webdriver/.

[9] Social engineering attack: Breach in south carolina. https://www.tracesecurity.

com/blog/social-engineering-attack-breach-in-south-carolina-part-1#

.WbAtjtvMwWo.

[10] The social engineering infographic. https://www.social-engineer.org/

social-engineering/social-engineering-infographic/.

69

[11] Telemetry. https://catapult.gsrc.io/telemetry.

[12] Web page replay. https://github.com/chromium/web-page-replay.

[13] S. Andrica and G. Candea. Warr: A tool for high-fidelity web application record and replay.

In Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st International Conference

on, pages 403–410. IEEE, 2011.

[14] A. Bates, W. U. Hassan, K. Butler, A. Dobra, B. Reaves, P. Cable, T. Moyer, and N. Schear.

Transparent web service auditing via network provenance functions. In International

Conference on World Wide Web, WWW ’17, 2017.

[15] L. Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian. Run-time monitoring

and formal analysis of information flows in Chromium. In Annual Network and Distributed

System Security Symposium, 2015.

[16] K. D. Bowers, C. Hart, A. Juels, and N. Triandopoulos. Pillarbox: Combating next-generation

malware with fast forward-secure logging. In Research in Attacks, Intrusions and Defenses

(RAID), 2014.

[17] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst. Interactive record/replay for web application

debugging. In Proceedings of the 26th annual ACM symposium on User interface software

and technology, pages 473–484. ACM, 2013.

[18] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst. Interactive record/replay for web application

debugging. In ACM symposium on User interface software and technology, pages 473–484.

ACM, 2013.

[19] Chrome. Idl compiler. https://chromium.googlesource.com/chromium/src/+/lkcr/

third_party/WebKit/Source/bindings/IDLCompiler.md.

70

[20] Chromium Project. Adding traces to chromium/webkit/javascript. https:

//www.chromium.org/developers/how-tos/trace-event-profiling-tool/

tracing-event-instrumentation.

[21] Chromium Project. Content module. https://www.chromium.org/developers/

content-module.

[22] Chromium Project. Web idl in blink. https://www.chromium.org/blink/webidl.

[23] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of drive-by-download attacks and

malicious javascript code. In International Conference on World Wide Web, WWW ’10, 2010.

[24] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Zozzle: Fast and precise in-browser

javascript malware detection. In USENIX Conference on Security, SEC’11, pages 3–3,

Berkeley, CA, USA, 2011. USENIX Association.

[25] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen. Eidetic systems. In USENIX

Conference on Operating Systems Design and Implementation, OSDI’14, pages 525–540,

Berkeley, CA, USA, 2014. USENIX Association.

[26] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan. Repeatable reverse engineering

with panda. In Program Protection and Reverse Engineering Workshop, PPREW-5, 2015.

[27] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. Revirt: Enabling

intrusion analysis through virtual-machine logging and replay. SIGOPS Oper. Syst. Rev.,

36(SI), Dec. 2002.

[28] S. Egger, P. Reichl, T. Hoßfeld, and R. Schatz. ”time is bandwidth”? narrowing the gap

between subjective time perception and quality of experience. In IEEE International

Conference on Communications, 2012.

71

[29] B. Feinstein and D. Peck. Caffeine monkey: Automated collection, detection and analysis

of malicious javascript. BlackHat’07, 2007.

[30] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara. The taser intrusion recovery system. In

ACM Symposium on Operating Systems Principles, SOSP ’05, 2005.

[31] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K. Levchenko, P. Mavrommatis,

D. McCoy, A. Nappa, A. Pitsillidis, N. Provos, M. Z. Rafique, M. A. Rajab, C. Rossow,

K. Thomas, V. Paxson, S. Savage, and G. M. Voelker. Manufacturing compromise: The

emergence of exploit-as-a-service. In ACM Conference on Computer and Communications

Security, CCS ’12, 2012.

[32] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek, and Z. Zhang. R2: An

application-level kernel for record and replay. In Proceedings of the 8th USENIX conference

on Operating systems design and implementation, pages 193–208. USENIX Association, 2008.

[33] J. Huang, C. Zhang, and J. Dolby. Clap: recording local executions to reproduce concurrency

failures. In Acm Sigplan Notices, volume 48, pages 141–152. ACM, 2013.

[34] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August, and A. D. Keromytis.

A general approach for effciently accelerating software-based dynamicdata flow tracking

on commodity hardware. In USENIX Symposium on Networked Systems Design and

Implementation, NSDI, 2012.

[35] JosS. Phpecho cms 2.0-rc3 - (forum) cross-site scripting cookie stealing/blind, 2009.

[36] A. Kapravelos, M. Cova, C. Kruegel, and G. Vigna. Escape from monkey island: Evading

high-interaction honeyclients. In International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment, DIMVA’11, pages 124–143, Berlin, Heidelberg, 2011.

Springer-Verlag.

72

[37] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna. Revolver: An

automated approach to the detection of evasive web-based malware. In Presented as part of

the 22nd USENIX Security Symposium (USENIX Security 13), pages 637–652, Washington,

D.C., 2013. USENIX.

[38] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. libdft: practical dynamic data

flow tracking for commodity systems. In ACM SIGPLAN/SIGOPS conference on Virtual

Execution Environments, 2012.

[39] K. Kim, I. L. Kim, C. H. Kim, Y. Kwon, Y. Zheng, X. Zhang, and D. Xu. J-force: Forced

execution on javascript. In International Conference on World Wide Web, WWW ’17, 2017.

[40] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek. Intrusion recovery using selective

re-execution. In USENIX Conference on Operating Systems Design and Implementation,

OSDI’10, 2010.

[41] S. T. King and P. M. Chen. Backtracking intrusions. In ACM Symposium on operating

systems principles, SOSP ’03. ACM, 2003.

[42] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen. Enriching intrusion alerts through

multi-host causality. In Network and Distributed System Security Symposium, NDSS’05, 2005.

[43] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle: De-cloaking internet malware.

In IEEE Symposium on Security and Privacy, 2012.

[44] S. Krishnan, K. Z. Snow, and F. Monrose. Trail of bytes: efficient support for forensic analysis.

In ACM conference on Computer and communications security, CCS ’10. ACM, 2010.

[45] K. H. Lee, X. Zhang, and D. Xu. High accuracy attack provenance via binary-based

execution partition. In Network and Distributed System Security Symposium, NDSS, 2013.

73

[46] S. Lekies, B. Stock, M. Wentzel, and M. Johns. The unexpected dangers of dynamic

javascript. In 24th USENIX Security Symposium (USENIX Security 15), pages 723–735,

Washington, D.C., 2015. USENIX Association.

[47] G. Li, E. Andreasen, and I. Ghosh. Symjs: Automatic symbolic testing of javascript web

applications. In ACM SIGSOFT International Symposium on Foundations of Software

Engineering, 2014.

[48] Linux Man Pages. Chattr. http://man7.org/linux/man-pages/man1/chattr.1.html.

[49] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu. MPI: Multiple Perspective

Attack Investigation with Semantic Aware Execution Partitioning. In USENIX Conference

on Security Symposium, Usenix Security, 2017.

[50] S. Ma, X. Zhang, and D. Xu. Protracer: Towards practical provenance tracing by alternating

between logging and tainting. In Network and Distributed System Security Symposium,

NDSS, 2016.

[51] G. A. Marson and B. Poettering. Even more practical secure logging: Tree-based seekable

sequential key generators. In 19th European Symposium on Research in Computer Security

- Volume 8713, ESORICS 2014, 2014.

[52] T. Mathisen. Pentium secrets. Byte, 19(7):191–192, 1994.

[53] J. Mickens, J. Elson, and J. Howell. Mugshot: Deterministic capture and replay for javascript

applications. In USENIX Conference on Networked Systems Design and Implementation,

NSDI’10, pages 11–11, Berkeley, CA, USA, 2010. USENIX Association.

[54] Mozilla. Record and replay framework. http://rr-project.org/.

74

[55] C. Neasbitt, B. Li, R. Perdisci, L. Lu, K. Singh, and K. Li. Webcapsule: Towards a

lightweight forensic engine for web browsers. In ACM SIGSAC Conference on Computer

and Communications Security, CCS ’15, 2015.

[56] C. Neasbitt, R. Perdisci, K. Li, and T. Nelms. Clickminer: Towards forensic reconstruction

of user-browser interactions from network traces. In ACM SIGSAC Conference on Computer

and Communications Security, CCS ’14, 2014.

[57] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad. Towards measuring and mitigating

social engineering software download attacks. In 25th USENIX Security Symposium

(USENIX Security 16), pages 773–789, 2016.

[58] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad. Towards measuring and mitigating

social engineering software download attacks. In USENIX Conference on Security Symposium,

SEC’16, 2016.

[59] J. Newsome and D. X. Song. Dynamic taint analysis for automatic detection, analysis, and

signaturegeneration of exploits on commodity software. In Network and Distributed System

Security Symposium, NDSS ’05, 2005.

[60] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A symbolic execution

framework for javascript. In IEEE Symposium on Security and Privacy, 2010.

[61] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A selective record-replay and

dynamic analysis framework for javascript. In Joint Meeting on Foundations of Software

Engineering, 2013.

[62] P. Vadrevu, J. Liu, B. Li, B. Rahbarinia, K. H. Lee, and R. Perdisci. Enabling reconstruction

of attacks on users via efficient browsing snapshots. In Network and Distributed System

Security Symposium, NDSS, 2017.

75

[63] J. Vilk, J. Mickens, and M. Marron. ReJS: Time-travel debugging for browser-based

applications. In Microsoft Research – Technical Report, 2016.

[64] B. Wu and B. D. Davison. Detecting semantic cloaking on the web. In International

Conference on World Wide Web, WWW ’06, 2006.

76

