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ABSTRACT 

 

 

Electroencephalography (EEG) provides significant guidance to multimedia analysis. 

Meanwhile, analyzing eye movement data is a meaningful method to understand visual 

perception. Essentially, EEG and Eye tracking records can serve as a bridge that reduces the 

gap between comprehension of multimedia content and its digital representation. Current 

research only focuses on EEG and Eye Tracker data in a separated manner to collect relevant 

information. It is necessary to combine them together to provide meaningful analysis on the 

mapping between multimedia features and brain’s functional response. 

   In this thesis, I propose a platform to simultaneously record EEG and eye movement data 

by integrating 256-channel EEG and Eye Tracker devices together. Then a procedure is 

designed and tested to process the EEG and eye movement records. Finally, an experiment is 

performed to explore the correlation between multimedia stimulus and corresponding brain 

and eye response. 
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Chapter 1 
 
Introduction 

 

 

 

This chapter reviews the current literatures of EEG and Eye Tracking technologies applied in 

multimedia analysis, provides the background of devices and methods used in this thesis, and 

explains the motivation of simultaneously analyzing EEG and Eye Tracker data. 

 

 

1.1   Multimedia Analysis 

 

Since we entered a digital multimedia information era, it becomes significant to automatically 

analyze the semantic content behind a multimedia representation. The ultimate purpose of 

multimedia analysis is to efficiently access, digest, and retrieve information [1]. There are 

several strategies for multimedia analysis, including studying users’ interactions and 
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feedbacks, designing biologically-plausible multimedia features, and a combination of low-

level features and semantics description of multimedia data [2]. Recently, researchers started 

applying brain science knowledge and neuroimaging technologies to bridge the semantic gaps 

in multimedia analysis [3].  

   Applying neuroscience knowledge such as EEG to analyze the correspondence between 

low-level multimedia features and high-level semantics is becoming a hot research area in 

multimedia analysis. EEG-based multimedia technology measures the subject’s cognitive 

processing while the subject is exposed to stimuli. Several researches proved that EEG-guided 

method can significantly enhance the accuracy of image/video analysis [4, 5].   

 

 

1.2   Eye Tracking Technology 

 

Eye Tracker is a device used in the scientific study of human perception and vision. By 

recording human eye movement and position, it provides accurate and quantitative evidence 

to study visual and attentional processes [6]. Gaze occurs when eyes are relatively stationary 

in one position. The process of tracking gaze point during eye movement could have a 

significant impact on high-level multimedia analysis [7].  

   Several commercial devices have been developed to record and analyze eye movements. In 

the present study, Tobii X2-30 Eye Tracker is used (Figure 1.1).  It is a stand-alone eye tracker 

that can be used for detailed research of natural behavior. It could accurately record gaze 

coordination information at a sampling-rate of 40 Hz. Tobii also provides a software 

development kit that easily allows programming to operate the Eye Tracker for specific 

experimental purposes. 
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Figure 1.1: Tobii X2-30 Eye Tracker 

 

 

1.3   EEG Technology 

 

Electroencephalogram (EEG) is defined as an electrical activity recorded from the scalp head 

surface after being picked up by metal electrodes and conductive media [8]. In 1875, British 

physician Richard Caton became the first person to report the successful measurement of 

electrical activity of an animal brain. The first human EEG experiment was conducted by 

German Neurologist Hans Berger in 1924. The first international standard for the electrode 
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was adopted by the International Federation in Electroencephalography and Clinical 

Neurophysiology in 1958. It is called 10-20 electrode placement system. This system 

standardized physical placement and designations of electrodes on the scalp. The head is 

divided into proportional distances from prominent skull landmarks (nasion, preauricular 

points, inion) to provide adequate coverage of all regions of the brain [9]. Electrode 

placements are labeled according to adjacent brain areas: F (frontal), C (central), T (temporal), 

P (posterior), and O (occipital). Odd numbers are at the left side of the head and even numbers 

accompany the letters on the right side (Figure 1.2) [9]. 

 

 

 

Figure 1.2: Labels for points according to 10-20 electrode placement system 
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   EEG recorded from the surface of the scalp is mainly generated by the synchronous activity 

of populations of neurons on the cerebral cortex [10]. The system contains four main 

structures: electrodes capture the digital signal from the scalp, amplifiers enhance the 

microvolt signals to the proper range where they can be precisely quantified, converters 

transfer signals from analog to digital form, and finally endpoint devices store and display 

recorded data. Currently, EEG measurements are usually made with electrode caps. 

Commonly used electrode caps can comprise up to 128 or 256 channel active electrodes 

(Figure 1.3, Net Station Acquisition Technical Manual). In this thesis, a 256 channel EEG 

device manufactured by Electrical Geodesics Inc. is used. The overview of the system is 

shown in Figure 1.4 (Net Station Acquisition Technical Manual). 

 

 

Figure 1.3: 256 channel EEG caps. 
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   As the EEG procedure is non-invasive and painless, it is being widely used to study the brain 

organization of cognitive processes such as perception, memory, attention, language, and 

emotion in normal adults and children [9]. Nowadays, presenting natural visual and auditory 

multimedia to participants in EEG-based neurophysiology studies has been well-established 

[2]. Continuous collaborative efforts from the EEG fields are critically important to decipher 

the neural semantics of multimedia comprehension. 

 

 

 

Figure 1.4: Electrical Geodesics Inc. GES 300 system. 
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1.4   Current Research Review and Motivation 

 

Both EEG and Eye Tracking technology have been widely used in study of multimedia 

analysis.  A. Kapoor developed an EEG device to measure the subconscious cognitive 

processing that occurs in the brain as users see images, even when they are not trying to 

explicitly classify them [11]. The framework integrates a discriminative visual category 

recognition system with information obtained from EEG measurements. The authors validated 

the framework with experiments using real-world data and reported significant improvement 

in image classification accuracy [2]. P. Sajda introduced brain-computer interfaces (BCIs) 

which synergistically integrate computer vision and human vision so as to construct a system 

for image triage. Their approach exploits machine learning for real-time decoding of brain 

signals which are recorded noninvasively via EEG [12]. S. Koelstra aimed to find neuro-

physiological indicators to validate tags attached to video content. They presented videos and 

tags to participants and examined whether the shown tags were congruent with the presented 

videos by detecting the occurrence of an N400 event-related potential [13].  All of the above 

studies indicate that EEG is an effective method for multimedia analysis.    

   On the other hand, Eye tracking also has been widely applied to the research of analyzing 

visual and attentional processes. Different tools have been developed in order to implement 

specific approaches in eye movement analysis, such as eSeeTrack that examines patterns of 

sequential gaze recordings (Tsang, Tory, & Swindells, 2010), or aimed to be adapted in 

existing tools, such as GazeTrackerTM (Lankford, 2000) [6].  

   Although both EEG and Eye Tracking technologies have been used in a number of 

researches trying to analyze multimedia, most of them only study EEG and Eye Tracker data 

in a separated manner. In our view, it is important to combine them together to provide 

meaningful analysis of the mapping between multimedia features and brain’s functional 

response. Even though some commercial software could analyze EEG and Eye-tracker data 
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together, those platforms are usually proprietary, non-extensible and non-modifiable [6]. In 

the present study, we design a platform to simultaneously record EEG and eye movement data 

by integrating the 256-channel EEG and Eye Tracker device together. Furthermore, an 

innovative method is provided which tries to combine EEG and Eye Tracking data together 

to analyze the semantic content of multimedia.  

   The rest of this thesis is organized as follows. In chapter 2, we explain the details about the 

structure and implementation of the new platform. Then in chapter 3 a procedure is designed 

and tested to process the EEG and eye movement records. Finally, an experiment is performed 

in chapter 4 to explore the connection between multimedia stimulus and corresponding brain 

and eye response. 
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Chapter 2 
 
System Design and Implementation 

 

 

 

This chapter describes in details about the framework of the system, software implementation, 

and experiment workflow to simultaneously acquire EEG and Eye Tracking data. 

 

 

2.1   System Framework 

 

In order to use a Tobii eye tracker and an EGI EEG system in the same experiment, a two 

computer system is needed: one control computer running Eye-tracker SDK and stimulus, and 

one Mac computer running Net Station. The framework of the system is shown in Figure 2.1. 

The Eye Tracker is connected to the control computer via Ethernet (for example by using the 
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USB-Ethernet adapter provided by Tobii). Additionally, the Net Station computer and the 

control computer are connected via USB Serial port. In this system, the control computer will 

present the stimuli, collect and save the Eye Tracking data, and send digital events to the Net 

Station computer containing information about the onset of each stimulus that has been 

presented. 

 

Secondary 
screen

EEG computer 
screen

EEG computer 

(Data acquisition 
computer running Net 
Station software)

Control computer

Stimulus presentation 
and Eye Tracking 
recording computer

Eye Tracker

Amplifier EEG sensor

DVI
DVI

Eye Tracker 
connected by USB 

Event signal 
sent by USB 

DVI

Firewire cable Interface cable

 

 

Figure 2.1: Architecture of the system. 
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2.2   System Implementation 

 

The system is implemented by using the script language of MATLAB. Tobii SDK is able to 

communicate directly with a Tobii eye tracker and record the eye tracking data in MATLAB. 

The Net Station SDK from EGI also supports MATLAB format data. Our system integrates 

the two SDKs through API provided by each of them. The stimuli are presented by the 

Windows Media Player application. The workflow of the system is shown in Figure 2.2.   

 

Stimulus 
Presentation

Data 
Recording

Eye Tracker SDK EEG SDK

USB 
Signal

Data

Data Processing 
and Analysis

Result

 

 

Figure 2.2: System workflow. 

 

   One key factor of the system is data alignment, which means how to precisely mark the 

onset of stimuli on both EEG and Eye Tracking systems. Our method is via sending a binary 

signal through serial port. At the beginning, Tobii SDK will calibrate the Eye Tracker. Then 

the Eye tracker control computer begins to record the eye movement data and send 

information about the onset of the stimuli to the Net Station computer through USB. 

Meanwhile, the Net station will start to record EEG data. This procedure makes sure that we 
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can get two different data files (Eye Tracking data and EEG data) with identical event 

information (time stamps when a certain stimulus was presented). The code of this system is 

listed in the appendix.  
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Chapter 3 
 
Experiment Methods 

 

 

 

This chapter explains the details about experiment procedure, introduces a method for data 

pre-processing, and finally introduces three measurements to evaluate the correlation between 

Eye Tracker and EEG data. 

 

 

3.1   Experiment Procedure 

 

The experiment is conducted on 6 volunteers, who have no history of neurological illness or 

damage, and have normal vision. All the participants are between 23 and 30 years of age. 

Before the experiment, all volunteers receive detailed instructions on the tasks they are going 
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to perform. Then they are asked to wear the 256 channel EEG caps and sit in a dimly lit, 

sound-attenuated room at 1.5 meter from a 17-inch PC monitor. The Eye Tracker is re-

calibrated for each subject to provide precise measurements of the participant’s gaze point 

during the experiment. Participants view 20 movie trailers in random order, while their Eye 

Tracking and EEG data is recorded. 

   The 20 movie trailers are selected from four different genres (Action, Drama, Comedy & 

Thriller), all of which are released in 2013 in the U.S [22]. They are downloaded from 

YouTube website. These official trailers are in English language and between 2-3 minutes in 

length. We select a set of movie trailers that vary considerably in commercial success, in order 

to avoid that most of the trailers we choose have already been seen by participants. All of the 

20 trailers are pre-evaluated by a group of researchers in the Department of Theatre and Film 

Studies at the University of Georgia, and categorized into two groups: 10 are good movie 

trailers (group1) and the rest 10 are bad ones (group2). The categorization is based on the 

evaluation of the audiences. The audiences’ evaluations could be reflected by the vote number 

of audiences who like the trailer and dislike the trailer [22]. The names of the movie trailers 

are listed in Table 3.1. 

 

Table 3.1: Movie Trailers presented to subjects. 
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3.2   Data Preprocessing 

 

This section describes the data structure to store Eye Tracker and EEG data. Then a method 

to clean EEG signal is presented. Finally, we introduce a way to down-sample the EEG signal 

to match the sampling rate of Eye Tracking data. 

 

 

3.2.1 Data Structure 

 

Eye Tracking data is stored in MATLAB format. The X and Y gaze positions on the screen 

are stored separately as two one-dimensional arrays. On the other hand, Net Station SDK uses 

a matrix to record EEG data. Each row represents one channel of the input signal, and each 

column represents the time unit.  

 

 

3.2.2 Eliminate Noise from EEG Signal 

 

EEG raw data often contains several artifacts, such as electrical noise, muscle activity, eye 

blinks, etc. Thus detecting and cleaning those noises becomes a significant problem in EEG 

signal processing and research. In the presented study, the raw data is first filtered with a 1 Hz 
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high-pass filter and 80 Hz low-pass filter to eliminate electronic noise. Then a 60 Hz notch 

filter is applied to remove alternating current (AC) noise.  

   The filtered data is then processed using independent component analysis (ICA) to eliminate 

muscle activity and eye blinks. Proposed by Bell and Sejnowski [14], ICA is suitable for 

blindly separating mixtures on EEG data, since it is plausible that EEG data recorded at 

multiple scalp sensors are linear sums of temporally independent components arising from 

spatially fixed, distinct brain or extra-brain networks [15]. In EEG analysis, each row of the 

input matrix x is the EEG signal recorded at one electrode and the columns are measurements 

recorded at different time points. ICA calculates a matrix W, which decomposes or linearly 

un-mixes the multi-channel scalp data into a sum of temporally independent and spatially 

fixed components. The rows of the output data matrix, u = Wx, are time courses of activation 

of the ICA components. The columns of the inverse matrix, W-1, give the relative projection 

strengths of the respective components at each of the scalp sensors. These scalp weights give 

the scalp topography of each component, and provide evidence for the components’ 

physiological origins [15]. Thus, corrected EEG data could be derived as x’= (W-1) u’, where 

u’ is the matrix of activation waveforms, with rows representing artifactual components being 

removed. In the experiment, we apply ICA to discard all the distinct artifactual components 

through visual inspection. The main advantage of using ICA is that it simultaneously separates 

the EEG and its artifacts into independent components based on the statistics of the data; ICA 

does this without relying on the availability of one or more reference channels for each type 

of artifact. This avoids the problem of the potential mutual contamination of regressing and 

regressed channels [16]. Figure 3.1 shows a schematic illustration of the procedure [17]. 

   We also use standard artifact detection and rejection procedures to remove channels 

containing jumps larger than 40μV/ms, segments with amplitude differences that exceeded 

150μV/200ms, and segments with amplitude differences that did not exceed 0.5μV/200ms 

[18]. 
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Figure 3.1: Remove artifacts from EEG signal using ICA 
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3.2.3 Down-sampling EEG Data 

 

In this study, Eye Tracking data is sampled at a rate of 40 Hz, while EEG signals have the 

sampling rate of 250 Hz. Thus, to analyze the correlation between EEG and Eye Tracking 

data, down-sampling of EEG data is necessary. In practice, we use the Kaiser Window 

resampling method implemented in MATLAB.  Further, in order to avoid starting and ending 

artifacts, the first and last 5s of the EEG and Eye Tracking data gathered during the 

experimental conditions were excluded from the analyses. 

 

 

3.3   Measurements of Synchrony 

 

The aim of this thesis is to detect the pattern of synchronization between each couple of EEG 

signals recorded at different cortical sites, as well as to find the correlation between EEG 

channels and eye movement data. Thus, measurements of signal synchrony act as key factors 

in our result analysis procedure. In order to achieve this goal, three measurements are 

examined to investigate the temporal synchronization of the signal. 

 

3.3.1 Correlation coefficient 

 

One of the most widely used measurement of synchronization is the Pearson correlation 

coefficient. It represents the linear dependence of two random variables, x and y. If each 
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variable has N scalar observations, then the Pearson correlation coefficient is defined as: 

 

𝑟𝑥𝑦 =
∑ (𝑥𝑖 − 𝑥)((𝑦𝑖 − 𝑦)𝑁
𝑖=1

𝑁(𝜎𝑥)(𝜎𝑦)
 

 

Where 𝑥 and 𝜎𝑥 are the mean and standard deviation of X, and 𝑦 and 𝜎𝑦 are the mean and 

standard deviation of Y. Its absolute value is symmetric in X and Y and attains maximum 

value of 1 for complete synchronization, a minimum value of -1 for completely uncorrelated 

signals, and values close to 0 for linearly independent signals [21]. 

 

 

3.3.2 Coherency 

 

Coherency is similarly defined as the standardized cross-spectrum of complex signals X and 

Y across trials, derived from spectral decompositions of the time series (t) for a given 

frequency (f), with standardization achieved by dividing the cross-spectrum by the product of 

the power spectrum of X and the power spectrum of Y. The cross-spectrum, analogous to the 

covariance in the Pearson correlation equation, is defined as the expected value of the product 

of the complex signal X and the complex conjugate (denoted by *) of the complex signal Y: 

 

𝑆𝑥𝑦(𝑓, 𝑡) =∑ 𝑋(𝑓, 𝑡)𝑌∗(𝑓, 𝑡)
𝑁

𝑖=1
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The power spectrum of signal X at a given frequency and time across trials, analogous to the 

variance of x in the Pearson correlation formula, is equivalent to the cross-spectrum of X with 

itself and is defined as: 

 

𝑆𝑥𝑥(𝑓, 𝑡) =∑ 𝑋(𝑓, 𝑡)𝑋∗(𝑓, 𝑡)
𝑁

𝑖=1
 

 

Y is the same: 

 

𝑆𝑌𝑌(𝑓, 𝑡) =∑ 𝑌(𝑓, 𝑡)𝑌∗(𝑓, 𝑡)
𝑁

𝑖=1
 

 

Thus the magnitude squared coherence is defined as the squared absolute value of the cross-

spectrum divided by the product of the power spectra of X and Y: 

 

𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒𝑥𝑦 =
𝑆𝑋𝑌(𝑓, 𝑡)

2

𝑆𝑋𝑋𝑆𝑌𝑌
 

 

Due to its frequency-dependence, coherence is a very useful measure for synchronization in 

EEG signal [21]. 
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3.3.3 Synchronization Index 

 

The Phase synchronization index has been found widespread use in neurophysiology since the 

analysis can be restricted to certain frequency bands (i.e. alpha, beta, theta, gamma, delta 

bands of EEG signal) reflecting specific brain rhythms, which allows relating the results to 

cognitive processes [21]. Two signals are said to be synchronous if their rhythms coincide. 

The first step in quantifying phase synchronization between two time series x and y is to 

determine their instantaneous phases ∅𝑥(𝑡) and ∅𝑦(𝑡). The most common technique is based 

on the analytic signal approach. From the continues time series x(t), the analytic signal is 

defined as: 

 

𝑍(𝑡) = x(t) + i𝑥̃(𝑡) 

 

Where 𝑥̃(𝑡) is the Hilbert transform of x(t): 

 

𝑥̃(𝑡) =
1

π
𝑝. 𝑣.∫

𝑥(𝑡′)

𝑡 − 𝑡′
𝑑𝑡′

∞

−∞

 

 

(here p.v. denotes the Cauchy principal value). From Z we can obtain the Hilbert phase: 

 

∅𝑥(𝑡) = arctan
𝑥̃(𝑡)

𝑥(𝑡)
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Thus, the synchronization index is defined as: 

 

𝑟𝑥,𝑦
2 =< cos∅𝑥,𝑦(𝑡) >

2+< sin ∅𝑥,𝑦(𝑡) >
2 

 

Where the brackets denote the average over time. The index is confined to the interval [0,1]. 

Values close to zero are attained for uncorrelated phase difference while the maximum value 

corresponds to perfect synchronization. 
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Chapter 4 
 
Result Discussion 

 

 

 

This chapter shows the experiment results calculated by using the data processing method 

mentioned in the last chapter. Then based on the experiment results, several conclusions and 

hypotheses are discussed. 

 

 

4.1   EEG Feature  

 

In the first part of the experiment, we selected 76 “good” channels using the noise elimination 

method described in chapter 3.2.2. As shown in Figure 4.1. Most of the channels are located 

in frontal, posterior and occipital areas. All of these channels are relabeled from 1 to 76, 
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according to the ascending order of their original labels. We use the coherence measure to 

detect phase synchronization of EEG signal and compare the difference between good and 

bad trailers. Each pair of the 76 electrodes from the left and the right hemispheres are analyzed 

together to study their relation to the preference of the trailers. By calculating the coherence, 

we obtain a 76×76 semi matrix for each subject of each trailer, as shown in Figure 4.2. Then 

for each subject, we take the average of all the 10 good trailers and find the top 50 pairs of 

EEG channels that have the largest coherence values. Further, we extract the common 10 out 

of 50 pairs of channels across the 6 participants. See Figure 4.3. The same procedure is 

operated on the 10 bad trailers. In order to find which pairs of EEG channels have significant 

variance across good and bad trailers, we also extract the top 10 pairs of EEG that have the 

largest differences between the two categories, shown in Figure 4.4. 

 

 

Figure 4.1: Selected 76 EEG channels in 10-20 electrode placement system 
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Figure 4.2: Coherence heat map for each pair of EEG channels 
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Figure 4.3: Common 10 pairs of EEG channels across 6 subjects 

   The aim of this study is to find the dynamic coupling between different EEG channels, 

regarding to changes of synchronization patterns during two kinds of preferential stimulus. 

The coherence result of each pair of EEG channels suggests a few important findings. First, 

by analyzing the common top 10 pairs of channels that have the largest value, it is noticeable 

that most of those channels are located at the frontal (29, 39, 49, 221, 235) and occipital (84, 

85, 87, 98, 99, 106, 108, 110, 111, 115, 116, 117, 128, 129, 140, 142, 143, 151, 152, 160, 170, 

171) area. This indicates the importance of cognitive processing taking place at these brain 

regions, which is consistent with the literature published by Costa et al. They propose that 

large phase synchronization values to the dynamic cooperation between cortical areas 

highlights the role of information exchange during emotional responses [16]. In brain science, 

the frontal lobe is associated with human's attention, and the occipital lobe is the visual 

processing center of the brain, which further supports out discovery. Furthermore, we also 

observe that the brain activities related to good and bad trailers shows opposite patterns. For 

good trailers, EEG channels are more synchronized than bad trailers, especially within the left 

occipital areas (29, 39, 49, 84, 85, 87, 98, 99, 106, 108, 110, 111, 115, 116, 117). On the other 
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hand, bad trailers are more coherent within the right hemisphere (128, 129, 140, 142, 143, 

152, 151, 160, 170, 171, 221, 235). 

 

Figure 4.4: Heat map of coherence difference between good and bad trailers 
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This phenomenon contradicts the discussion indicated by Costa et al. that emotional sadness 

is more synchronized in left brain region while happiness occurs in the right hemisphere [16]. 

The difference may be due to the nature of the task itself: preference judgment in our case 

rather that emotional decision in Costa et al. Moreover, there are 2 pairs (151-152, 84-85) that 

have larger values in both good and bad trailers, which suggests these pairs are highly related 

to preference decision. At last, by comparing the top 10 pairs of channels that have the largest 

differences in coherence value across bad and good trailers, we find that 3 pairs (64-65, 133-

8, 165-185) are located in central area, while the other 7 pairs are in frontal or occipital area. 

This indicates the central cortical area could also significantly reflect human preference 

towards multimedia stimuli. 

   EEG data could be separated into five spectral bands: Delta (1-3Hz), theta (4-7Hz), alpha 

(8-12Hz), beta (13-30Hz) and gamma (35-41Hz). In our experiment, the original data is also 

separated by five band-pass filters into different spectral bands. Within each band, we 

calculate the average Synchronization Index (SI) value of each pair of EEG channels across 

all trailers and subjects. From different cortical regions, we select in total 10 pairs of 

symmetric channels to analyze: frontal (5-28, 29-216, 35-226), central (65-165, 51-185), 

temporal (231-255), posterior (85-163), occipital (98-142, 116-160, 106-170), as shown in 

Figure 4.5. Based on the SI result, we observed several interesting discoveries, including that 

the frontal and occipital channels are the most synchronized channels compared to the others, 

which is consistent with the conclusion we mentioned above. The result also clearly indicates 

the importance of the alpha, beta and theta bands that reflect the highest SI at the frontal and 

occipital areas. These two brain regions and corresponding bands could be highly relevant to 

human preference towards multimedia stimuli. Besides symmetric EEG channels, we also find 

that for all the couples of 76 channels, the set of frontal channels showed higher SI among 

each other at most of the alpha, beta and theta bands. 
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Figure 4.5: SI value in different bands of 10 pairs of channels 

 

On the other hand, the occipital channels show their largest SI with posterior channels, instead 

of among each other within occipital channels. Taken as a whole, our results support the theory 

that synchronization provides a useful tool for analyzing and studying variation in brain 

activities related to subjective preference for multimedia stimuli. 

 

 

4.2   EEG and Eye Feature 

 

In order to find the correlation between EEG and eye tracking data, we down-sample the EEG 

data to 40 Hz, which matches the sampling rate of Eye Tracker. Then for each pair of adjacent 
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EEG data, we calculate the absolute difference, which represents the change of amplitude in 

each channel. For eye tracking data, we calculate the distance of adjacent gaze point 

movement. We use correlation measurement to analyze the synchronization between eye 

movement and each EEG channel. Thus, the analysis identifies how eye movement would 

affect EEG power, which is in turn represented by the amount of correlation values.  The result 

is computed and graphed in Figure 4.6. For each subject, we take the average correlation value 

of 10 trailers in the “good” category. Then we extract the common top 10 channels that have 

the largest values. The same procedure is done to “bad” trailers as well. 

 

 

 

Figure 4.6: Correlation value between eye movement and each EEG channel 
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   First of all, we find that on average, the good trailers have higher correlation value than bad 

trailers. That could be due to the subject’s attention while watching the trailers. There is high 

probability that participants are more likely to stare at the screen while they are watching the 

good trailers, so the coherence of their eye movements and brain’s functional responses are 

relatively high. On the other hand, they tend to lose concentration when viewing bad trailers. 

As a result, their eye movement will be larger and disordered, which leads to less consistency 

with their EEG responses. Moreover, channels in frontal (15, 32, 214, 208, 254), temporal 

(91, 256, 231, 246), and occipital (98, 106, 108, 110, 141, 151, 152, 170) regions tend to be 

highly correlated to eye movements. The occipital response has been related to the encoding 

of visual stimuli in the literature [19]. In the present study, we suggest that frontal and 

temporal regions could also have significant impact on human visual response to multimedia 

stimuli. Finally, we extract the common top 10 EEG channels that have the highest correlation 

value with eye movement across all categories and subjects: 39, 91, 106, 128, 141, 32, 165, 

96, 160, 270. Most of them are located in frontal and occipital areas, which further supports 

our hypothesis.  

 

 

4.3   EEG and Eye feature with Shot Detection 

 

In film studies, a shot is a group of correlated sequential images taken contiguously by a single 

camera and representing a continuous action in time and space. Shot detection is used to split 

up a film into basic temporal units [20]. One commonly used method of shot detection is 

called abrupt video transition detection, which could detect the difference between two 

transition frames. This difference could be measured based on some global characteristics of 

frames such as intensity histogram [20]. In a continuous video frame sequence, the histogram 

difference is not obvious, whereas the difference increases when the frame transition occurs. 
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Thus the difference of intensity histogram is an effective method in detecting abrupt 

transitions.  

   In the presented study, our hypothesis is that EEG and eye movement data would follow the 

same trend when shot changing occurs. In another word, shot changing could have significant 

impact on gazing points as well as the human brain’s functional response. In order to find this 

trend, we first apply the shot detection algorithm on all the 20 trailers, and obtain a set of key 

frames of each trailer. Here we take 2 trailers as an example. From each of them, we select 12 

sequential key frames, as shown in Figure 4.7. Then, we visualize all the 76 EEG channels in 

time series, as well as the eye movement data. We mark all the key frames using colored lines 

to show the time point where shot change happens. Again we select the same 2 trailers as an 

illustration, as shown in Figure 4.8. From the figure, we can observe that near the shot 

changing point, there are peaks in both eye movement data and most of the EEG channels 

data. The result supports our hypothesis that when shot changing occurs, EEG magnitude 

variation and eye movement would follow the same trend, especially in frontal, temporal and 

occipital regions. 
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(a) Chairman of the board (Bad trailer) 
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(b) Die Hard 5 (Good trailer) 

 

Figure 4.7: Shot detection of 12 key frames from 2 trailers 
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(a) Chairman of the board (Bad trailer) 
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(b) Die Hard 5 (Good trailer) 

Figure 4.7: Shot detection of 12 key frames from 2 trailers
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Chapter 5 
 
Conclusion 

 

 

 

In this study, we use commercially available Tobii X2-30 Eye Tracker and 256-channel GES 

300 EEG system to investigate the eye movement and corresponding brain’s functional 

responses taking place during multimedia stimuli. The main contributions of our work are as 

follows: 

1. We provide a platform to simultaneously record 256-channel EEG and Eye Tracker 

data. In this thesis, both hardware structure and software implementation are explained in 

detail.  

2. A procedure is designed and tested to process the EEG and eye movement records, 

including eliminating noise from EEG data, calculating eye gazing point movements, and 

defining proper standards to measure the synchronization between EEG and Eye Tracking 

data. 
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3. A set of 20 movie trailers, categorized by two groups, are presented to 6 subjects. 

When studying their EEG and eye movement data, several important findings emerges. First, 

our results support the theory that synchronization between EEG channels provides a 

significant and useful tool for deeply understanding the variation in different brain regions 

when multimedia stimuli are presented. Specifically, we find that frontal and occipital regions 

have larger coherence value than the rest areas, which indicates the importance of cognitive 

processing taking place at these brain regions. Moreover, we observe that the brain activities 

related to good and bad trailers shows opposite patterns: EEG channels turn out to be more 

synchronized than bad trailers within the left occipital areas, whereas bad trailers tend to be 

more coherent within the right hemisphere. Second, we discover the importance of the alpha, 

beta and theta bands that reflect the highest SI at the frontal and occipital areas. These two 

brain regions and corresponding bands could be highly relevant to human preference towards 

multimedia stimuli. Third, by analyzing EEG and eye movement data together, we find that 

on average, the good trailers have higher correlation value than bad trailers. Finally, we 

visualize all the EEG channels and corresponding eye movement in time series, combining 

with shot detection. The result further supports our hypothesis that when shot changing occurs, 

EEG and eye movement would follow the same trend, especially in frontal, temporal and 

occipital regions. 
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Chapter 6 
 
Future Work 

 

 

 

In the final part of this thesis, it should be noted that the present work has a number of limits. 

First of all, there are a small number of subjects. Thus the statistical analysis is not strong 

enough to support our conclusion. Here, we report the evidence that EEG and Eye Tracking 

data could provide indicative information about “good” and “bad” movie trailers. Importantly, 

more experimental results are needed to establish the robustness of these findings, and whether 

they can be extended to other types of movies. In addition, in the present study, we only use 

3 measurements to represent the synchronization of the data. However, there are other 

methods to measure the neural signal synchrony, such as Mutual Information and Phase 

Locking Value. It is necessary to test them to see if we can find other results. Lastly, future 

work should relate certain EEG channels or brain regions to specific brain functional 

responses, i.e. adding fMRI data to further analyze the correlation between brain activity and 

eye movement in response to multimedia stimuli.    
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Appendix A 
 

 

Main Function Source Code 
 

 

A.1  Data_acquirement.m 

 

% Eye Tracker and EEG data acquirement  

% Sidi Liu 

% 10/12/2015 

  

 clc  

 clear all 

 close all 

  

subName = input('Please enter your name :');  

movieNum = input('Which movie you want to play :');  
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% ************************************************************************* 

% Open a com port for connecting to EEG  

% ************************************************************************* 

s = serial('COM1');    

fopen(s); 

  

% ************************************************************************* 

% Load Tobii SDK 

% ************************************************************************* 

  

addpath('functions'); 

addpath('tetio');   

  

% ************************************************************************* 

% Initialization and connection to the Tobii Eye-tracker 

% ************************************************************************* 

disp('Initializing tetio...'); 

tetio_init(); 

  

% Set to tracker ID to the product ID of the tracker you want to connect to. 

trackerId = '%%% Tracker ID provided by Tobii %%%'; 

  

% %   FUNCTION "SEARCH FOR TRACKERS" IF NOTSET 

if (strcmp(trackerId, 'NotSet')) 
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    warning('tetio_matlab:EyeTracking', 'Variable trackerId has not been set.');  

    disp('Browsing for trackers...'); 

  

    trackerinfo = tetio_getTrackers(); 

    for i = 1:size(trackerinfo,2) 

        disp(trackerinfo(i).ProductId); 

    end 

  

    tetio_cleanUp(); 

    error('Error: the variable trackerId has not been set. Edit the EyeTrackingSample.m script and 

replace "NOTSET" with your tracker id (should be in the list above) before running this script 

again.'); 

end 

  

fprintf('Connecting to tracker "%s"...\n', trackerId); 

tetio_connectTracker(trackerId) 

     

currentFrameRate = tetio_getFrameRate; 

fprintf('Frame rate: %d Hz.\n', currentFrameRate); 

  

% ************************************************************************* 

% Prepare stimulus  

% ************************************************************************* 

close all; 

movie_name = sprintf('%%% movieFile %%%', movieNum); 
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movie_path = fullfile('%%% moviePath %%%',movie_name); 

mov = VideoReader( movie_name ); 

movDuration = mov.Duration; 

% call for MediaPlayer to show the trailer 

h=actxserver('WMPlayer.OCX.7'); 

  

hold on; 

  

% ************************************************************************* 

% 

% Eye Tracker calibration 

% 

% ************************************************************************* 

  

SetCalibParams;  

% Display the track status window showing the participant's eyes (to position the participant). 

TrackStatus; % Track status window will stay open until user key press. 

  

% Perform calibration 

HandleCalibWorkflow(Calib); 

close all 

  

% ************************************************************************* 

% 



50  

% Start tracking and gathering the gaze data. 

% 

% ************************************************************************* 

  

tetio_startTracking; 

  

leftEyeAll = []; 

rightEyeAll = []; 

timeStampAll = []; 

  

%set the sampling rate 

pauseTimeInSeconds = 1/currentFrameRate; 

durationInSeconds = movDuration; 

steps = floor(durationInSeconds/pauseTimeInSeconds); 

  

fprintf('show the movie and start to collect the data\n'); 

h.openPlayer(movie_path); 

  

% Send signal to EEG to start acquiring EEG data 

fwrite(s,bin2dec('1'),'uint8'); 

  

for i = 1:steps 

     pause(pauseTimeInSeconds); 

    [lefteye, righteye, timestamp, trigSignal] = tetio_readGazeData; 
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    if isempty(lefteye) 

        continue; 

    end 

    leftEyeAll = vertcat(leftEyeAll, lefteye(:,[7,8,12,13])); 

    rightEyeAll = vertcat(rightEyeAll, righteye(:,[7,8,12,13])); 

    timeStampAll = vertcat(timeStampAll, timestamp(:,1));    

end  

  

tetio_stopTracking;  

  

% send another signal to EEG to mark the end of the trailer 

fwrite(s,bin2dec('1'),'uint8'); 

  

% close Eye Tracker 

tetio_disconnectTracker;  

tetio_cleanUp; 

h.close;  

  

% close com port 

fclose(s); 

delete(s); 

clear s; 

  

fprintf('writing the data, hold on!\n'); 
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disp('only collect the gaze data '); 

[gazex,gazey]=DisplayData(leftEyeAll, rightEyeAll ); 

resultEYEfile = sprintf('result-EYE%s%d.mat',subName, movieNum); 

save(resultEYEfile, 'leftEyeAll', 'rightEyeAll', 'timeStampAll', 'gazex', 'gazey'); 

  

scatter (gazex,gazey,50,'filled'); 

axis([0 1 0 1]);  

resultEYEPosition = sprintf('result-EYE%s%d',subName, movieNum); 

saveas(gcf, resultEYEPosition, 'fig') 

 

 

A.2  EEG_preprocessing.m 

 

% EEG data pre-processing 

% Sidi Liu 

% 10/14/2015 

  

clc; 

close all; 

clear all; 

  

%load EEGLAB 

addpath(\eeglab13_4_4b'); 
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eeglab; 

  

DataSet_catagory = {... 

    'bad',... 

    'good'}; 

  

DataSet_subject = {... 

    'subject 1',... 

    'subject 2',... 

    'subject 3'}; 

  

for cataFile = 1:numel(DataSet_catagory) 

    cataName=cellstr(DataSet_catagory(cataFile)); 

    for subFile = 1:numel(DataSet_subject) 

        subName=cellstr(DataSet_subject(subFile)); 

        for iNum=1:10 

            eegdatafile = [%%% eegPath %%%]; 

            movfile = [%%% movPath %%%];         

            mov = VideoReader(movfile); 

            movDuration = mov.Duration; 

             

            clear EEG; 

             

            % ******************************************************************* 
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            % Load EEG data to EEGLAB. 

            % *******************************************************************             

            EEG = pop_readegi(eegdatafile, [],[],'auto'); 

            EEG = eeg_checkset( EEG ); 

            % ******************************************************************* 

            % Load EEG channel location file. 

            % ******************************************************************** 

            EEG=pop_chanedit(EEG, 'load',{'G:\\matlab\\MS\\code\\eeglab13_4_4b\\chanloc\\256.elp' 

'filetype' 'autodetect'}); 

            EEG = eeg_checkset( EEG ); 

            % ******************************************************************* 

            % Eliminate bad channels. 

            % ******************************************************************* 

            EEG = pop_select( EEG,'nochannel',{'E72' 'E81' 'E90' 'E91' 'E101' 'E102' 'E112' 'E121' 'E134' 

'E146' ... 

                'E166' 'E175' 'E188' 'E200' 'E209' 'E210' 'E217' 'E218' 'E219' 'E220' ... 

                'E229' 'E230' 'E231' 'E232' 'E233' 'E234' 'E235' 'E236' 'E237' 'E238' ... 

                'E239' 'E240' 'E241' 'E242' 'E243' 'E244' 'E245' 'E246' 'E247' 'E248' ... 

                'E249' 'E250' 'E253' 'E254' 'E255' 'E256'}); 

            EEG = eeg_checkset( EEG ); 

            EEG = pop_rejchan(EEG, 'elec',[1:210] ,'threshold',5,'norm','on','measure','kurt'); 

            EEG = eeg_checkset( EEG ); 

            % ******************************************************************* 

            % Exclude the first and last 5 second from the original data. 

            % ******************************************************************* 
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            startTime = round(EEG.event(1).latency/EEG.srate)+5; 

            endTime = round(movDuration)-5; 

            EEG = pop_select( EEG,'time',[startTime endTime]); 

            EEG = eeg_checkset( EEG ); 

            % ******************************************************************* 

            % Bandpass filter and notch filter. 

            % ******************************************************************* 

            EEG = pop_eegfiltnew(EEG, [], 1, 826, true, [], 0); 

            EEG = eeg_checkset( EEG ); 

            EEG = pop_eegfiltnew(EEG, [], 80, 42, 0, [], 0); 

            EEG = eeg_checkset( EEG ); 

            EEG = pop_eegfiltnew(EEG, 55, 65, 414, 1, [], 0); 

            EEG = eeg_checkset( EEG ); 

            % ******************************************************************* 

            % Run ICA. 

            % ******************************************************************* 

            EEG = pop_runica(EEG, 'extended',1,'interupt','on'); 

            EEG = eeg_checkset( EEG ); 

            % ******************************************************************* 

            % Exclude bad components using ICA. 

            % ******************************************************************* 

            EEG = pop_subcomp( EEG, [1  2  3  5], 0); 

            EEG = eeg_checkset( EEG ); 
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            resultPath = [%%% resultFolder %%%]; 

            resultName = [%%% fileName %%%];          

            EEG = pop_saveset( EEG, 'filename',resultName,'filepath',resultPath); 

            EEG = eeg_checkset( EEG ); 

        end 

    end 

end 

  

 

A.3  extract_band.m 

 

% Extract five bands from original EEG data 

% Sidi Liu 

% 10/14/2015 

  

clc; 

close all; 

clear all; 

  

addpath(\eeglab13_4_4b'); 

eeglab; 

  

DataSet_catagory = {... 
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    'bad',... 

    'good'}; 

  

DataSet_subject = {... 

    'subject 1',... 

    'subject 2',... 

    'subject 3'}; 

  

for cataFile = 1:numel(DataSet_catagory) 

    cataName=cellstr(DataSet_catagory(cataFile)); 

    for subFile = 1:numel(DataSet_subject) 

        subName=cellstr(DataSet_subject(subFile)); 

        for iNum=1:10 

            sourcePath = [%%% sourceFolder %%%]; 

            sourceName = [%%% fileName %%%];  

            clear originEEG; 

            originEEG = pop_loadset('filename',sourceName,'filepath',sourcePath); 

            originEEG = eeg_checkset( originEEG ); 

             

            % ************************************************************** 

            % using band pass filter to filter the data into 5 bands. 

            % ************************************************************** 

            %delta 

            clear tempEEG; 
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            clear tempData; 

            tempEEG = originEEG; 

            tempEEG = pop_eegfiltnew(tempEEG, [], 0.5, 1650, true, [], 0); 

            tempEEG = eeg_checkset( tempEEG ); 

            tempEEG = pop_eegfiltnew(tempEEG, [], 3, 414, 0, [], 0); 

            tempEEG = eeg_checkset( tempEEG );        

            EEGresultPath = [%%%  resulteFolder %%%]; 

            EEGresultName = [%%% fileName %%%];   

            tempEEG = pop_saveset( tempEEG, 'filename',EEGresultName,'filepath',EEGresultPath); 

            tempEEG = eeg_checkset( tempEEG ); 

             

            %theta 

            clear tempEEG; 

            clear tempData; 

            tempEEG = originEEG; 

            tempEEG = pop_eegfiltnew(tempEEG, [], 4, 414, true, [], 0); 

            tempEEG = eeg_checkset( tempEEG ); 

            tempEEG = pop_eegfiltnew(tempEEG, [], 7, 414, 0, [], 0); 

            tempEEG = eeg_checkset( tempEEG );        

            EEGresultPath = [%%%  resulteFolder %%%]; 

            EEGresultName = [%%% fileName %%%];   

            tempEEG = pop_saveset( tempEEG, 'filename',EEGresultName,'filepath',EEGresultPath); 

            tempEEG = eeg_checkset( tempEEG ); 

            tempEEG = pop_saveset( tempEEG, 'filename',EEGresultName,'filepath',EEGresultPath); 
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            tempEEG = eeg_checkset( tempEEG ); 

             

            %alpha 

            clear tempEEG; 

            clear tempData; 

            tempEEG = originEEG; 

            tempEEG = pop_eegfiltnew(tempEEG, [], 8, 414, true, [], 0); 

            tempEEG = eeg_checkset( tempEEG ); 

            tempEEG = pop_eegfiltnew(tempEEG, [], 12, 276, 0, [], 0); 

            tempEEG = eeg_checkset( tempEEG );        

            EEGresultPath = [%%%  resulteFolder %%%]; 

            EEGresultName = [%%% fileName %%%];  

            tempEEG = pop_saveset( tempEEG, 'filename',EEGresultName,'filepath',EEGresultPath); 

            tempEEG = eeg_checkset( tempEEG ); 

             

            %beta 

            clear tempEEG; 

            clear tempData; 

            tempEEG = originEEG; 

            tempEEG = pop_eegfiltnew(tempEEG, [], 13, 254, true, [], 0); 

            tempEEG = eeg_checkset( tempEEG ); 

            tempEEG = pop_eegfiltnew(tempEEG, [], 30, 110, 0, [], 0); 

            tempEEG = eeg_checkset( tempEEG );        

            EEGresultPath = [%%%  resulteFolder %%%]; 
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            EEGresultName = [%%% fileName %%%];  

            tempEEG = pop_saveset( tempEEG, 'filename',EEGresultName,'filepath',EEGresultPath); 

            tempEEG = eeg_checkset( tempEEG ); 

             

            %gamma 

            clear tempEEG; 

            clear tempData; 

            tempEEG = originEEG; 

            tempEEG = pop_eegfiltnew(tempEEG, [], 35, 96, true, [], 0); 

            tempEEG = eeg_checkset( tempEEG ); 

            tempEEG = pop_eegfiltnew(tempEEG, [], 41, 82, 0, [], 0); 

            tempEEG = eeg_checkset( tempEEG );        

            EEGresultPath = [%%%  resulteFolder %%%]; 

            EEGresultName = [%%% fileName %%%];  

            tempEEG = pop_saveset( tempEEG, 'filename',EEGresultName,'filepath',EEGresultPath); 

            tempEEG = eeg_checkset( tempEEG ); 

             

  

        end 

    end 

end 
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A.4  EEG_and_eye_feature.m 

 

% Calculate gaze movment and EEG magnitude change 

% Sidi Liu 

% 10/15/2015 

  

clc; 

close all; 

clear all; 

  

addpath(\eeglab13_4_4b'); 

eeglab; 

  

DataSet_catagory = {... 

    'bad',... 

    'good'}; 

  

DataSet_subject = {... 

    'subject 1',... 

    'subject 2',... 

    'subject 3'}; 

  

for cataFile = 1:numel(DataSet_catagory) 
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    cataName=cellstr(DataSet_catagory(cataFile)); 

    for subFile = 1:numel(DataSet_subject) 

        subName=cellstr(DataSet_subject(subFile)); 

        for iNum=1:10 

            EEGsourcePath = [%%%¡¡sourceFolder %%%]; 

                EEGsourceName = [%%% fileName %%%]; 

                clear EEG; 

                clear dataEEG; 

                EEG = pop_loadset('filename',EEGsourceName,'filepath',EEGsourcePath); 

                EEG = eeg_checkset( EEG ); 

                % resample to 40 Hz 

                EEG = pop_resample( EEG, 40); 

                EEG = eeg_checkset( EEG ); 

                dataEEG = (EEG.data)'; 

                 

                EyesourcePath = [%%%  sourceFolder %%%]; 

                EyesourceName = [%%% fileName %%%]; 

                clear Eye; 

                clear gazex; 

                clear gazey; 

                Eye = load([EyesourcePath,EyesourceName],'gazex','gazey'); 

                gazex=Eye.('gazex'); 

                gazey=Eye.('gazey'); 

                %%% eliminate 5s from start and end. Sampling rate is 40 
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                gazex = gazex(200:end-200); 

                gazey = gazey(200:end-200); 

                 

                EyeX = data.gazex; 

                EyeY = data.gazey; 

                signallength = length(EEG(:,1)); 

                chanNum = length(EEG(1,:)); 

                result = zeros(chanNum,3); 

                 

                for p = 1:signallength-1 

                x1 = EyeX(p); 

                y1 = EyeY(p); 

                x2 = EyeX(p+1); 

                y2 = EyeY(p+1); 

                if x1==-1 

                    x1=0; 

                    y1=0; 

                end 

                if x2==-1 

                    x2=0; 

                    y2=0; 

                end 

                d=sqrt((x1-x2)^2+(y1-y2)^2); 

                diffEye(p,1)=single(d); 
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                for q=1:chanNum 

                    diffEEG(p,q)=abs(EEG(p+1,q)-EEG(p,q)); 

                end 

                end 

                 

                EEG = pop_saveset( EEG, 'filename',EEGLABresultName,'filepath',EEGLABresultPath); 

                EEG = eeg_checkset( EEG ); 

                save([resultPath,resultName],'dataEEG','gazex','gazey'); 

                 

        end 

    end 

end 

 

 

A.5  EEG_Eye_correlation.m 

 

% calculate the correlation 

% Sidi Liu 

% 10/14/2015 

  

clc; 

close all; 

clear all; 
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DataSet_catagory = {... 

    'bad',... 

    'good'}; 

  

DataSet_subject = {... 

    'subject 1',... 

    'subject 2',... 

    'subject 3'}; 

  

for cataFile = 1:numel(DataSet_catagory) 

    cataName=cellstr(DataSet_catagory(cataFile)); 

    for subFile = 1:numel(DataSet_subject) 

        subName=cellstr(DataSet_subject(subFile)); 

        for iNum=1:10 

                sourcePath = [%%% sourceFolder %%%]; 

                sourceName = [%%% fileName %%%]; 

                clear EEG; 

                clear result; 

                EEG = load([sourcePath,sourceName]); 

                EEG = EEG.data; 

    Eye = load([sourcePath,sourceName]); 

                Eye = Eye.data; 

                chanNum = length(EEG(:,1)); 
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                result = zeros(chanNum); 

                 

                for i = 1:chanNum-1 

                        correlation=corrcoef(EEG(i,:),Eye(1,:)); 

                        result(i) = correlation(1,2); 

                end 

                 

                resultPath = [%%% reslutFolder %%%]; 

                resultName = [%%% fileName %%%]; 

                save([resultPath,resultName],'result'); 

                 

        end 

    end 

end 

 

 

A.6  EEG_coherence.m 

 

% calculate the coherence 

% Sidi Liu 

% 10/17/2015 

  

clc; 
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close all; 

clear all; 

  

DataSet_catagory = {... 

    'bad',... 

    'good'}; 

  

DataSet_subject = {... 

    'subject 1',... 

    'subject 2',... 

    'subject 3'}; 

  

for cataFile = 1:numel(DataSet_catagory) 

    cataName=cellstr(DataSet_catagory(cataFile)); 

    for subFile = 1:numel(DataSet_subject) 

        subName=cellstr(DataSet_subject(subFile)); 

        for iNum=1:10 

            sourcePath = [%%% sourceFolder %%%]; 

            sourceName = [%%% fileName %%%]; 

             

            clear EEG; 

            clear result; 

            clear resultI; 

            EEG = load([sourcePath,sourceName]); 
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            EEG = (EEG.data)'; 

             

            Fs = 250;  %sampling rate 

            W_length = min(size(EEG,1)/5,2^10); 

            W = hamming(W_length); 

            chanNum = length(EEG(1,:)); 

            result = zeros(chanNum,chanNum); 

            resultI = zeros(chanNum,chanNum); 

            [t,f]=mscohere(EEG(:,1),EEG(:,1),W,[],W_length,Fs); 

            Index = find(floor(f)>= 1 &  floor(f)<= 60); 

            FrequencyIndex= [Index(1) Index(end)];   

                for i = 1:chanNum-1 

                    [Pxx] = cpsd(EEG(:,i), EEG(:,i), W, [], W_length, Fs); 

                    for j = i+1:chanNum 

                        [Pyy] = cpsd(EEG(:,j), EEG(:,j), W, [], W_length, Fs); 

                        [Pxy] = cpsd(EEG(:,i), EEG(:,j), W, [], W_length, Fs); 

                        Cxy=Pxy./sqrt(Pxx.*Pyy); 

                        Coh  = (abs(Cxy)).^2; 

                        ICoh = (imag(Cxy)).^2;  

                        Coh = 0.5*log((1+Coh)./(1-Coh)); %first do Fisher's Z 

                        result(i,j) = nanmean(Coh(FrequencyIndex(1):FrequencyIndex(2))); 

                        result(i,j) = (exp(2*result(i,j))-1)./(exp(2*result(i,j))+1); %now do an inverse-Fisher's 

Z to transform back to coherence 

                        ICoh = 0.5*log((1+ICoh)./(1-ICoh)); %first do Fisher's Z 



69  

                        resultI(i,j) = nanmean(ICoh(FrequencyIndex(1):FrequencyIndex(2))); 

                        resultI(i,j) = (exp(2*resultI(i,j))-1)./(exp(2*resultI(i,j))+1); %now do an inverse-

Fisher's Z to transform back to coherence 

                    end 

                end 

             

            resultPath = [%%% reslutFolder %%%]; 

            resultName = [%%% fileName %%%]; 

            save([resultPath,resultName],'result','resultI'); 

  

        end 

    end 

end 

 

 

A.7  EEG_synchronization_index.m 

 

% calculate the synchronization index 

% Sidi Liu 

% 10/12/2015 

  

clc; 

close all; 

clear all; 
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DataSet_catagory = {... 

    'bad',... 

    'good'}; 

  

DataSet_subject = {... 

    'subject 1',... 

    'subject 2',... 

    'subject 3'}; 

  

DataSet_band = {... 

    'alpha',... 

    'beta',... 

    'delta',... 

    'gamma',... 

    'theta'}; 

  

for cataFile = 1:numel(DataSet_catagory) 

    cataName=cellstr(DataSet_catagory(cataFile)); 

    for subFile = 1:numel(DataSet_subject) 

        subName=cellstr(DataSet_subject(subFile)); 

        for bandFile = 1:numel(DataSet_band) 

            bandName=cellstr(DataSet_band(bandFile)); 

            for iNum=1:10 
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                sourcePath = [%%% sourceFolder %%%]; 

                sourceName = [%%% fileName %%%]; 

                clear EEG; 

                clear result;           

                EEG = load([sourcePath,sourceName]); 

                EEG = EEG.tempData; 

                signallength = length(EEG(1,:)); 

                chanNum = length(EEG(:,1)); 

                result = zeros(chanNum,chanNum,3); 

                 

                for i = 1:chanNum-1 

                    for j = i+1:chanNum 

                        SignalHilb1 = hilbert(EEG(i,:)');  

                        SignalHilb2 = hilbert(EEG(j,:)'); 

                        phase1 = unwrap(angle(SignalHilb1)); 

                        phase2 = unwrap(angle(SignalHilb2)); 

                        % exclude 10% of the signal before and after because of distorsion 

                        % introduced by hilbert transform 

                        perc10w =  floor(signallength*0.1); 

                        phase1 = phase1(perc10w:end-perc10w); 

                        phase2 = phase2(perc10w:end-perc10w); 

                        [index1nm,index2nm, index3nm] = nbt_n_m_detection(phase1,phase2,1,1); 

                        result(i,j,1)=index1nm; 

                        result(i,j,2)=index2nm; 
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                        result(i,j,3)=index3nm; 

                    end 

                end 

  

                resultPath = [%%% reslutFolder %%%]; 

                resultName = [%%% fileName %%%]; 

                save([resultPath,resultName],'result'); 

            end 

        end 

    end 

end 

 

 

A.8  shot_detection.m 

 

% shot detection 

% Sidi Liu 

% 10/18/2015 

  

clc; 

close all; 

clear all; 
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DataSet = {... 

    'Trailer 1',... 

    'Trailer 2'}; 

  

sampleratio = 1/40; 

  

for iFile = 1:numel(DataSet) 

    movName=cellstr(DataSet(iFile)); 

    movePath = [%%% sourceFolder %%%]; 

    video = VideoReader(movePath); 

    rateofFrame = video.FrameRate; 

    keyFrameFile = [%%% sourceFolder %%%]; 

    tempSegData = load(keyFrameFile,'keyFrame'); 

    segData = tempSegData.('keyFrame'); 

    clear tempSegData; 

    numKeyFrames = size(segData,2); 

     

   % *************************************************** 

   % Shot detection using Patel, Nilesh V's algorithm 

   % *************************************************** 

    numOfFrames = video.NumberOfFrames; 

    frameHeight = video.Height; 

    frameWidth = video.Width; 

    %compute the color histogram 
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    B = 5;   

    numOfBins = 2^B; 

    colorInt = 256/numOfBins; 

    HGray = zeros(numOfFrames, numOfBins); 

    stdGray = zeros(1, numOfFrames); 

    for i=1:1:numOfFrames 

        try 

            lFrame = read(video, i); 

        catch 

            break; 

        end 

        lRFrame = lFrame(:,:,1); 

        lGFrame = lFrame(:,:,2); 

        lBFrame = lFrame(:,:,3); 

        %get the intensity 

        lGray = 0.299*lRFrame + 0.587*lGFrame + 0.114*lBFrame; 

        lGrayReshaped = reshape(lGray, 1, frameHeight*frameWidth); 

        stdGray(i) = std(double(lGrayReshaped), 0, 2); 

        lindexGray = uint8(floor(double(lGray)./colorInt + 1)); 

        for j=1:1:frameHeight 

            for k=1:1:frameWidth 

                HGray(i, lindexGray(j, k)) = HGray(i, lindexGray(j, k)) + 1; 

            end 

        end 
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    end 

    %calculate the histogram difference 

    HDGray = [zeros(1, numOfFrames-1)]; 

    for i=1:1:numOfFrames-1 

        HDGray(i) = sum(sum(abs(HGray(i, :) - HGray(i+1, :)))); 

    end 

    %calculate the mean and variance of the frame-to-frame difference, and 

    %compute the threshold of Tb = mean + alpha*variance 

    alpha = 3; 

    mu = mean(HDGray); 

    sigma = std(HDGray); 

    Tb = mu + alpha*sigma; 

    %calculate the low threshold Ts as the bigger value of the two: 1. the 

    %mean value of HDGray. 2. the value of HDGray at the midde of right slope of the 

    %peak in histogram of HDGray 

    DHNumOfBins = 100; 

    DHInt = max(HDGray)/DHNumOfBins + 1; 

    DHist = zeros(1, DHNumOfBins); 

    for i=1:1:numOfFrames-1 

        index = uint8(floor(double(HDGray(i))/DHInt+1)); 

        DHist(index) = DHist(index) + 1; 

    end 

    mxDHist = max(DHist); 

    mxIndex = find(DHist==mxDHist); 
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    Ts = max((mxIndex+2)*DHInt, mu); 

    scaleF = Tb/max(stdGray); 

    stdGray = stdGray.*scaleF; 

    figure, plot(1:numOfFrames-1, HDGray, 1:numOfFrames-1, Tb, 1:numOfFrames-1, Ts); 

    %get the cut transition frame number and output the frame 

    %check the neighboring difference, see if there're multiple spikes near 

    %each other, if so, we treat it as false positive 

    for i=1:1:numOfFrames-1 

        if (HDGray(i) > Tb) 

            highCnt = 1; 

            for j=2:1:10  

                if ((i-j >=1) & (HDGray(i-j) > Tb/3) & HDGray(i-j) > 5000) 

                    highCnt = highCnt + 1; 

                end 

                if ((i+j < numOfFrames-1) & (HDGray(i+j) > Tb/3) & HDGray(i+j) > 5000) 

                    highCnt = highCnt + 1; 

                end 

            end 

            if (highCnt < 2) 

                lFrame1 = read(video, i); 

                lFrame2 = read(video, i+1);  

            end 

        end 

    end 
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    clear eyeSegData; 

    count =1; 

    for indexKF=1:numKeyFrames 

        seg_start = segData(indexKF); 

        tempEye = round(seg_start/rateofFrame/sampleratio); 

        if tempEye < 200   

            continue; 

        end 

        eyeSegData(count,1) = tempEye - 199; 

        count=count+1; 

    end 

    resultname = [%%% reslutName %%%]; 

    save([resultFolder,resultname],'eyeSegData'); 

end 

 


