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ABSTRACT 

This study investigates three issues on U.S. renewable energy markets. The primary 

objective is to describe how U.S. renewable energy policies affect solar photovoltaic (PV) and 

biodiesel industries.   

The first essay develops and estimates an analytical framework for assessing the optimal 

solar energy subsidy, which takes into account the environment, health, employment, and 

electricity accessibility benefits. Results indicate that an optimal subsidy is positively affected by 

the marginal external benefit. Calibrating the model, using published elasticities, yields estimates 

of the optimal solar energy subsidy equaling to approximately $0.02 per kilowatt hour when 

employment effects are omitted. The estimated optimal subsidy is in line with many current state 

feed-in-tariff rates, giving support to these initiatives aimed at fostering solar energy production.  

The second essay examines price volatility spillovers among U.S. crude oil, diesel, 

biodiesel, and soybeans based on weekly prices from 2007 to 2014. A univariate EGARCH 

model along with a DCC-MGARCH model are employed. The univariate EGARCH model 

provides evidence of double-directional price-volatility spillovers between biodiesel and soybean 

markets and between crude oil and biodiesel markets. Further there exists unidirectional price-

volatility spillovers from the crude oil market to the soybean market and from the diesel market 



to the biodiesel market. The DCC-MGARCH model indicates time-varying conditional 

correlations among markets and the pairwise conditional correlations fluctuated from 2008 to 

2009.  

The third essay investigates the effect of Poisson type policy jumps on biodiesel 

investment through the theory of investment under uncertainty. The analysis considers the 

probability of a policy being implemented if it is not in effect and the probability of it being 

withdrawn if it is in effect. As an application, the policy switching regime of the discontinuous 

federal tax credit of $1.00 per gallon on biodiesel is modeled as a Poisson jump process. Results 

support that time inconsistent government policies do lead to market uncertainty. The analysis 

reveals a pronounced negative impact on the decisions to invest in a biodiesel refinery. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

This dissertation consists of five chapters. This chapter (Chapter 1) is the introduction, Chapters 

2-4 are three essays, and Chapter 5 is the conclusion. Chapter 2 (Essay 1): Toward an Optimal 

U.S. Solar Photovoltaic Subsidy, develops an analytical framework for assessing the optimal 

solar energy subsidy, which takes into account the environment, health, employment, and 

electricity accessibility benefits. Chapter 3 (Essay 2): Price Volatilities among U.S. Biodiesel, 

Diesel, Crude Oil, and Soybean Markets, employs a univariate EGARCH along with a Dynamic 

Conditional Correlation (DCC) Multivariate GARCH model to examine the price-volatility 

spillovers among the markets and indicated time-varying conditional correlations among 

markets. Chapter 4 (Essay 3): Biodiesel Investment in a Disruptive Policy Environment, 

investigates the effect of Poisson type policy jumps on biodiesel investment through the theory 

of investment under uncertainty. Conclusions and discussions of future research are presented in 

Chapter 5.  

1.1. Background 

1.1.1. Solar Photovoltaic (PV) Industry Development and Government Policies 

The solar photovoltaic (PV) device that produces a useable amount of electricity was first 

introduced by Bell Labs in 1954. The energy crisis of the 1970s turned attention to using solar 

cells to produce electricity in homes and businesses, however, prohibitive prices (nearly 30 times 

higher than the current price) made large-scale applications impractical (SEIA, 2014a). The 
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development of technology resulted in a decreasing cost industry making solar PV more feasible 

and affordable. Figure 1.1 illustrates U.S. solar PV installations and average system price from 

2000 to 2013 (SEIA, 2014a). The installation capacity in 2013 was over ten times larger than in 

2009 while the average system price in 2013 was around one-third less.   

In terms of residential solar PV, in the first quarter of 2014, 232 megawatts of residential 

solar PV was installed in the United States.  This exceeded the non-residential (commercial) 

market’s 225 megawatts for the first time in the history (SEIA, 2014b). Such growth is driven by 

a range of government policies. At the federal level, taxpayers may claim a 30% personal tax 

credit for residential systems and installation costs (DSIRE, 2012). State and municipal 

authorities also employ various supporting policies in the form of net metering, feed-in tariff, 

cash rebates, renewable-portfolio standards (RPS), solar set-asides, and solar renewable-energy 

credits (Burns and Kang, 2012; Timilsina et al., 2012).  

Net metering is the simplest incentive for renewables (Burns and Kang, 2012). Net 

metering policies allow distributed generation customers to sell excess electricity to a utility at a 

retail rate and receive credit in their utility bill. Net metering policies have facilitated the 

expansion of renewable energy through on-site generation, known as distributed generation 

(National Conference of State Legislatures, 2014). Solar panels are one of the common 

distributed generation.  

Feed-in tariffs (FIT) are an alternative to net metering. In general, feed-in tariff rates that 

lead to significant additional renewable energy investment are set above the retail cost of 

electricity. As of May 2013, the statewide feed-in tariff programs were implemented in seven 

states, California, Hawaii, Maine, Oregon, Rhode Island, Vermont, and Washington. There are 

more electricity provider programs in many states. Feed-in tariff policies usually specify rate and 
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contract terms, system size and sector restrictions, and program size limitations. Most contracts 

are long term (10-20 years). Most FIT programs have a maximum size for individual projects 

and may limit participation to certain sectors, like residential customers (EIA, 2013a).  

Feed-in tariff and net metering are both methods where a utility company compensates 

energy producers (e.g. homeowners) for the energy fed back into the grid. Simply put, net 

metering requires one meter while feed-in tariff requires two (Hoffmann, 2009). In net metering, 

the meter simply runs backwards when homeowners’ solar panels are producing more electricity 

than the property is using. Most electricity meters are bi-directional and can measure current 

flowing in two directions. While feed-in tariff requires a second meter and additional wiring. The 

second meter allows different pricing for electricity consumption and generation. The advantage 

is it offers the homeowner an attractive rate of return without significantly raising the overall 

cost of electricity (Hoffman, 2009). Chapter 2 develops and assesses the optimal solar energy 

subsidy in the form of feed-in tariff.  

1.1.2. Biodiesel Industry Development and Government Policies 

Biodiesel is the second largest category of global biofuels, accounting for 6.9 billion gallons in 

2013, which is 22.6% of total biofuel production (Rapier, 2014). Table 1.1 indicates U.S. 

biodiesel production in 2013 and 2014 are around four times as large as that in 2010.  The U.S. 

consumption in 2013 and 2014 are more than five times as large as that in 2010.  

The U.S. biodiesel policies along with European Union policies directly affect the U.S. 

biodiesel market. The two primary means by which subsidies affect the demand for U.S. 

biodiesel are the Renewable Fuel Standard (RFS) and the Blender Tax Credit (BTC) (Babcock, 

2011). The RFS is a federal mandate requiring the blending of biofuels into U.S. transportation 

fuels. It originated with the Energy Policy Act of 2005 and was expanded and extended by the 
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Energy Independence and Security Act of 2007 (EISA) (U.S. Department of Energy, 2014a). 

The initial RFS (referred to as RFS1) mandated that a minimum of four billion gallons of 

renewable fuel be incorporated into the nation’s gasoline supply in 2006, and that this minimum 

volume rise to 7.5 billion gallons by 2012 (Schnepf and Yacobucci, 2013). EISA was passed on 

December 19, 2007, and the EPA issued its final rule to implement and administer the expanded 

RFS (referred to as RFS2) on February 3, 2010. RFS2 subdivides the total renewable fuel 

requirement into four separate but nested categories (Schnepf and Yacobucci, 2013). One of the 

four categories is biomass-based diesel, which is a diesel fuel substitute made from renewable 

feedstock, including biodiesel and non-ester renewable diesel. The 2013 biodiesel mandate was 

revised upwards from one billion gallons to 1.28 billion gallons (Schnepf and Yacobucci, 2013). 

EPA proposed to maintain the same volume for biomass-based diesel for 2014 and 2015 as was 

adopted for 2013 (EPA, 2015a).  

A biodiesel tax credit of $1.00 per gallon was established in 2005 by the American Jobs 

Creation Act of 2004. It was then extended by the Energy Policy Act of 2005 and amended by 

the Energy Improvement and Extension Act of 2008. The tax credit temporarily lapsed in 2010. 

It was then extended again by the Tax Relief, Unemployment Insurance Reauthorization, and Job 

Creation Act of 2010 (Yacobucci, 2012). The credit was allowed to expire at the end of 2011, 

with the American Taxpayer Relief Act of 2012 retroactively extending the tax credit through 

December 31, 2013 (U.S. Department of Energy, 2014). The credit was then allowed to expire, 

but could possibly be reestablished. On May 15, 2014, the U.S. Senate failed to pass the Expiring 

Provisions Improvement Reform and Efficiency (EXPIRE) act. The EXPIRE act included 

extension of biodiesel tax credit through December 31, 2015 and retroactive to January 1, 2014 

(U.S. Senate Committee on Finance, 2014). 
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The impact of Untied States biodiesel policies also depends on their interaction with EU 

biodiesel policies (de Gorter et al., 2011). The European Commission (EC) initiated anti-

dumping and anti-subsidy investigations into imports of biodiesel from the United States on June 

13, 2008, after a complaint was lodged by the European Biodiesel Board (EBB), which 

represents the European biodiesel industry, in April 2008. According to the EC investigation, the 

U.S. tax credit of $1.00 per gallon of biodiesel caused European producers to lose market share. 

Meanwhile, U.S. biodiesel production and prices fell sharply in June 2008 (de Gorter et al., 

2013). The EC imposed temporary anti-dumping and anti-subsidy duties on imports of biodiesel 

from the United States in March 13, 2009. The measures were in place for four months while the 

investigation continued. On July 12, 2009, the EC imposed definitive anti-dumping and anti-

subsidy duties for a period of five years (EBB, 2014). The U.S. biodiesel prices stabilized after 

the duties were implemented in March 2009. 

1.2. Problem Statement 

1.2.1. Optimal Solar Photovoltaic (PV) Subsidy 

In the past, qualitative research has summarized and categorized solar photovoltaic government 

policies. While the stimulus for government subsidies is rooted in standard economic theory of 

externalities, it is surprising that a simple yet critical question for determining the optimal 

government policy has not previously been explored. Simply put, what is the economically 

optimal solar subsidy? Despite the long history of subsidizing solar energy in the United States, 

an optimal subsidy level has not been determined.  Such an optimal subsidy would consider the 

external benefits arising from improved environmental, health, and (potentially) employment. 

Empirical studies are lacking, which examine the impact of subsidies on these macroeconomic 

factors.  
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One may believe solar PV subsidy is certain to have a marked impact on the consumption 

of fossil energy and on the adoption of solar panels. However, the impact is uncertain and 

depends on household preferences. Prior to CO2 emission concerns, fossil energies were 

generally thought of as normal goods. In this case, the direction of fossil-energy consumption 

from favorable solar PV policies is unclear. An increase in the subsidy can result in reduced, an 

increase, or no change in fossil-energy consumption. Given public concern with CO2 emissions, 

fossil energies are becoming an inferior good where households with higher incomes will tend to 

spend proportionally less of their income on carbon based fuels. This leads to a proposition that 

an increase in the subsidy yields less fossil-energy consumption. Therefore, changing household 

preferences can have a marked impact on the effect a solar PV subsidy has on adoption of solar 

panels and on the consumption of fossil energy. Given inferior-good characteristics for fossil 

energies, government policies favorable to solar and alternative energies in general will result in 

reduced fossil-energy consumption, higher fossil prices, and reduced environmental damage.  

In contrast to the popular relief, the effect of a solar subsidy on panel prices is generally 

uncertain. In the long run, a solar subsidy may stimulate demand for panels leading to a supply 

response and if the panel industry is characterized by economies to scale, then panel prices 

would fall. However, in the short run the sign could be reversed. In this case, the sign is similar 

to the share of a commodity tax being borne by both the seller and buyer. It is the result of a 

portion of the subsidy being received by the sellers of solar panels in the form of higher panel 

prices. The more elastic the panel price is to a change in the subsidy, the larger will be the 

response of panel price and the less effective will be the subsidy. The slippage in the effects of 

the subsidy yields a lower optimal subsidy. The subsidy is being absorbed into higher prices for 
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solar panels, which mitigates its effectiveness. Depending on the magnitude of the elasticities, 

this slippage can affect intended policy results.  

1.2.2. Biodiesel Price Volatilities and Investment Decisions 

Ethanol and biodiesel are the two common types of biofuels. Most of the biofuel-related price 

level and volatility literature considers ethanol as the representative of biofuel, especially for the 

U.S. biofuel market (Saghaian, 2010; Serra et al., 2011; McPhail, 2011; Zhang et al., 2009; 

Trujillo-Barrera et al., 2012; Du and McPhail, 2012; Gardebroek and Hernandez, 2013). U.S. 

biodiesel draws much less attention than ethanol, despite the fact that the United States is the 

largest national producer of biodiesel (Rapier, 2014). The study provides a first attempt to 

investigate price volatility in the U.S. biodiesel market.  

In addition to the market characteristics, government policies may also play a role in the 

volatility relation. The disruptive federal policies of on and off tax credit are possibly leading to 

the link in biodiesel/soybean price volatility.  

Hence the disruptive policies may also play an impact on investment decisions. The 

history of government policy uncertainty coupled with annual changes in the RFS does not 

provide a stable policy platform for a young and maturing biodiesel industry. Theory would then 

hypothesize that such disruptive policies would negatively impact the biodiesel market. Instead 

of providing a stable price regime, it is hypothesized policies would lead to price volatility.  

1) If these exists a high probability of a tax credit being implemented in the near future, then 

biodiesel investors will want to delay investment. 

The tax credit will reduce the cost of investment and hence increase the value of waiting. 

An increased expectation of establishing a tax credit in the next period appears to have a marked 

effect on the lack of willingness to invest in the current period. 
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2) With a current tax credit, as the probability of the credit being withdrawn increases, biodiesel 

investors will want to capitalize on this tax credit before it is withdrawn. 

The increasing possibility of losing the tax credit within the next year lowers the 

premium of the option. The prospect of losing the credit induces firms to invest more readily 

now. 

1.3. Objectives 

The overall objective of this dissertation is to describe how U.S. renewable energy policies affect 

solar photovoltaic (PV) and biodiesel industries. These objectives will be addressed through 

three essays with the following specific objectives:  

1. Develop a theoretical framework for assessing the optimal solar energy subsidy and 

calibrate the model using published elasticities. 

      Detailed objectives include: 

 Develop a comparative statics theoretical model on the optimal solar-energy subsidy 

 Explore external benefits (environment, health, and employment) as well as electricity 

accessibility benefits 

 Analyze welfare effects and marginal external benefits (MEB) of solar-energy 

generation 

 Collect benchmark values and calculate parameter ranges 

 Capture key factors influencing the optimal solar-energy subsidy by sensitivity analysis 

 Employ Monte Carlo simulation to investigate the likelihood of a positive subsidy 

2. Examine price volatilities among U.S. biodiesel, diesel, crude oil, and soybean markets 

by employing univariate EGARCH and DCC-MGARCH models 

      Detailed objectives include: 
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 Summarize U.S. biodiesel policies and the impact of EU biodiesel policies on U.S. 

biodiesel market 

 Conduct descriptive statistics, augmented unit root tests, normality tests, autocorrelation 

tests, and arch effect on crude oil, biodiesel, and food time-series prices 

 Employ univariate EGARCH model to investigate price-volatility spillovers among 

markets 

 Apply Dynamic Conditional Correlation (DCC) MGARCH model to identify time-

varying conditional correlations 

3. Investigate the impact of time inconsistent government policies on market uncertainty 

      Detailed objectives include: 

 Summarize inconsistent government biodiesel policies over the past decade 

 Employ a geometric Brownian motion model on biodiesel prices 

 Incorporate Poisson type policy jumps into a real options model for biodiesel 

investments decisions 

 Estimate the threshold prices for biodiesel investments decisions 
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Table 1.1.  U.S. Biodiesel Production, Exports, and Consumption (Million Gallons), 2005 – 

2014 (U.S. Department of Energy, 2015) 

 

 

  

Year Production Imports Exports Net Exports Consumption

2005 91 9 9 0 91

2006 250 46 36 -10 261

2007 490 145 281 136 354

2008 678 326 700 375 304

2009 516 80 275 195 322

2010 343 24 109 85 260

2011 967 37 76 38 886

2012 991 36 128 93 899

2013 1359 342 196 -146 1429

2014 1240 212 83 -130 1402

U.S. Biodiesel Production, Exports, and Consumption (Million Gallons)
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Figure 1.1. U.S. solar PV installations and average system price, 2000—2013  

(Source: Solar Energy Industry Association, Photovoltaic (Solar Electric)) 
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CHAPTER 2 

TOWARD AN OPTIMAL U.S. SOLAR PHOTOVOLTAIC SUBSIDY1 

  

  

                                                 
1 Liu, S., G. Colson, and M.E. Wetzstein. 2016. Submitted to Resource and Energy Economics, 04/12/2016.  
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Abstract 

An analytical framework for assessing the optimal solar energy subsidy is developed and 

estimated, which takes into account the environment, health, employment, and electricity 

accessibility benefits. Results indicate that an optimal subsidy is positively affected by the 

marginal external benefit. However, this effect is mitigated by the elasticity of demand for 

conventional electricity and elasticity of supply for solar electricity with respect to the solar 

subsidy. One result indicates when the elasticity of demand is negative, the more responsive 

fossil energy is to a solar energy subsidy, the higher is the marginal external benefit. Calibrating 

the model using published elasticities yields estimates of the optimal solar energy subsidy equal 

to approximately $0.02 per kilowatt hour when employment effects are omitted.  The estimated 

optimal subsidy is in line with many current state feed-in-tariff rates, giving support to these 

initiatives aimed at fostering solar energy production.   
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2.1. Introduction 

Fostered by an array of government policies, programs, and financial support, solar photovoltaic 

(PV) was the fastest growing renewable power technology in the past decade worldwide (IEA, 

2014), with generation expanding from 1.5GW in 2000 (IEA, 2014) to just over 100GW in 2012 

(REN21, 2013).  In the United States, the expansion of residential-renewable energy systems is 

driven by a range of government programs and substantial transfers of wealth via subsidies.  At 

the federal level, taxpayers may claim a 30% personal tax credit for residential PV systems and 

installation costs (DSIRE, 2012).  State and municipal authorities also employ various supporting 

policies in the form of cash rebates, net metering, renewable-portfolio standards (RPS), solar set-

asides, and solar renewable-energy credits (Burns and Kang, 2012; Timilsina et al., 2012).  

Recently, states have enacted Feed-in-Tariff (FIT) systems (California, Hawaii, Oregon, 

Vermont, and Rhode Island) (REN21, 2013).  In the United States, Goldberg (2000) estimates 

that when cumulative subsidies and electricity generation between 1947-1999 are considered, 

solar energy received subsidies worth $0.51/kWh (in 1999 dollars).  Badcock and Lenzen (2010) 

estimate that in 2007 the global total subsidy for solar PV was $0.64/kWh (in 2007 dollars).  

More recent studies by the EIA (2007, 2010) estimate that the direct federal financial 

interventions and subsidies in U.S. solar energy markets grew from $179 million in 2007 to 

$1,134 million in 2010 (2010 dollars). 

While the impetus for government subsidies of solar energy production as an alternative 

to traditional fossil fuels is rooted in standard economic theory of externalities, surprisingly a 

simple yet critical question for determining optimal government policy has not previously been 

explored.  Simply put, what is the economically optimal solar subsidy?  Despite the long history 

of subsidizing solar energy in the U.S., a policy with sound economic basis due to the external 
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benefits arising from improved environmental, health, and (potentially) employment, previous 

research has not estimated what monetary level this subsidy should actually take.  In order to 

foster growth in the solar industry and shift away from carbon emitting fossil fuels with the aim 

of maximizing social welfare and correcting the fossil fuel externality, quantifying the optimal 

level for solar energy subsidies is required. 

As a step in quantifying this critical value, the objective of this study is to derive the 

socially optimal solar PV subsidy for residential energy production.  Proceeding in two steps, 

first a model based on utility maximization is developed that incorporates environmental, health, 

employment, and electricity accessibility benefits affected by the level of solar subsidization.  

The model critically considers the influence of solar PV subsidies not only on the stimulation of 

the use of renewable energy, but also the income incentive for households to increase their use of 

electricity from fossil fuels.  As is shown, the nature of demand for electricity from fossil fuels 

can partially or even completely swamp the benefits from solar subsidies. Second, using 

published elasticities and parameter values the model is calibrated to deliver a numerical 

estimate of the optimal residential solar PV energy subsidy.  A positive result for current 

policymakers is found in that the estimated optimal subsidy is in line with the levels of support 

under some of the feed-in-tariffs employed in the U.S. 

2.2. Theoretical Model 

Building upon previous work in the optimal tax/subsidy literature, including gasoline taxes 

(Parry and Small, 2005), ethanol subsidies (Vedenov and Wetzstein, 2008), and biodiesel 

subsidies (Wu et al. 2012), a theoretical model for the optimal residential solar PV subsidy is 

developed. It is assumed solar energy, S, is determined by peak hours of sunlight per year 𝑧 

(hours) and quantity of solar panels purchased by the household 𝐼 (watts or kW). Let ℎ denote 
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peak hours of sunlight per day. 𝑧 = 365ℎ. In general, a household receives utility from 

electricity consumption and from generating solar energy (personal satisfaction and independent 

security from generating energy) (Welsch and Biermann, 2014).  A household also receives 

satisfaction from non-interference of electrical power, A. Within the United States most power 

outages are natural environmental problems effecting transmission and distribution networks. 

Solar PV systems are generally left untouched by such natural causes (Fthenakis, 2013). Installed 

rooftop solar PV can mitigate these power outages. Specifically, access to electricity, 𝐴, is 

assumed to depend on a household’s solar energy  

𝐴 = 𝐴(𝑆) with 
𝜕𝐴

𝜕𝑆
> 0. (1) 

Further assume a household also receives satisfaction from a conventional utility plant (coal, 

natural gas, and petroleum), F, and a composite consumption good, X, with associated numeraire 

price pX = 1. A utility function may then be represented as 

𝑢[𝑋, 𝐹, 𝑆, 𝐴(𝑆)],               (2) 

where all the determinants positively influence utility. 

Associated with this utility function are external environmental effects along with 

“green” and high-tech job opportunities effects.1 Let the environmental effect of consuming 

power-plant electricity, 𝐷, be decomposed into greenhouse gas emissions, 𝐷𝑔, and localized air 

pollution, 𝐷𝑎. Climate change is mainly induced by emissions of greenhouse gases. Non-

greenhouse gases, including SO2, NOX, PM2.5, and PM10, also have negative local impact on 

health, environment, and infrastructure.  It is assumed greenhouse gas emissions and localized air 

pollution depend on aggregate conventional electricity, �̅�.  Specifically,  

𝐷 = 𝐷𝑔(�̅�) + 𝐷𝑎(�̅�), (3) 
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∂𝐷𝑔

∂�̅�
> 0,

∂𝐷𝑎

∂�̅�
> 0. 

In addition to these environmental effects, there are “green” and high-tech job 

opportunities, J, effects.  Employment has been argued to be a macroeconomic benefit of 

renewable-energy deployment (IRENA, 2014). Subsidies for renewable-electricity generation 

will change the composition of domestic employment. Job opportunities, J, then depends on 

aggregate solar energy, 𝑆̅.  

𝐽 = 𝐽(𝑆̅), 

𝜕𝐽

𝜕𝑆̅
> 0. 

(4) 

Additively attaching these external effects to the household utility function (2) yields 

𝑈 = 𝑢[𝑋, 𝐹, 𝑆, 𝐴(𝑆)] − 𝛿(𝐷) + 𝜙(𝐽). (5) 

The external effects 𝐷 and 𝐽 are features of the household’s environment, so they are perceived 

by the household as exogenous. The functions u and 𝜙 are quasi-concave, whereas 𝛿 is weakly 

convex representing the disutility from environmental damages. The external benefits of reduced 

environmental damages (both greenhouse gas emissions and localized air pollution) and 

increased “green” and high-tech job opportunities are embedded in (5).   

Given the presence of externalities, households ignore the effect of their own electricity 

consumption on environmental damages from consuming and generating electricity and job 

opportunities. A households’ expenditures are on X, the composite good, E, its consumption of 

electricity (kWh), and 
𝑆

𝑧
, the purchasing of solar panels (kW), with associated per unit prices, 1, 

pE, and pS. Income, W, is augmented with the sale of solar electricity, S, (kWh) at price (pE + s), 

where s is the subsidy.  A household then attempts to maximize utility (2), subject to the budget 

constraint 
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𝑋 + 𝑝𝐸𝐸 + 𝑝𝑆

𝑆

𝑧
= 𝑊 + (𝑝𝐸 + 𝑠)𝑆, 

𝑋 + 𝑝𝐸𝐹 + (𝑝𝑧 − 𝑠)𝑆 = 𝑊, (6) 

where 𝑝𝑧 =
𝑝𝑆

𝑧
, and F = E – S  denotes household consumption of non-solar electricity.  

This subsidy is a Feed-in Tariff (FIT) subsidy, which in practice differs across states and 

countries. If a FIT is consistently higher than the market price of electricity, it represents a 

continuous subsidy, as is the case in Germany (Eurelectric, 2004; Badcock and Lenzen, 2010). 

However, in Spain, FITs are set at a level 80% to 90% of the average market electricity price 

(Badcock and Lenzen, 2010), which does not provide a continuous subsidy.  Only during periods 

of fluctuating electricity prices does the subsidy effectively exist (Hoffman, 2006; Badcock and 

Lenzen, 2010). But in general, FIT rates leading to significant renewable-energy investments are 

set above the retail cost of electricity (EIA, 2013a).  

Aggregate household consumption of electricity �̅� consists of aggregate conventional 

electricity from the power plant �̅� and aggregate solar energy generated by the household, 𝑆̅. The 

power plant sells �̅� at a price pE, and buys 𝑆̅ at a price of (pE + s). It is assumed the power plant 

produces �̅� = �̅� − 𝑆̅ at a marginal constant cost c. Electricity price pE depends on aggregate 

household electricity consumption, �̅�, aggregate solar energy generation 𝑆̅, and subsidy 𝑠.  

In terms of the United States, approximately 75% of its population is served by investor-

owned utilities, which are private companies but subject to state regulation (RAP, 2011). The 

remaining 25% of the population are served by consumer-owned utilities, which are established 

as nonprofit utilities.  However, even the investor-owned utilities are regulated to only earn a 

normal return on investments with revenue equaling costs.  

𝑝𝐸�̅� = (𝑝𝐸 + 𝑠)𝑆̅ + 𝑐�̅�. 
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Solving for 𝑝𝐸 yields the price of electricity as a function of the subsidy and aggregate 

conventional and solar electricity,  

𝑝𝐸(𝑠, �̅�, 𝑆̅) =
𝑆̅

�̅�
𝑠 + 𝑐. 

(7) 

The utility sets the electricity price as the solar-to-fossil energy ratio times the subsidy plus the 

marginal cost. Given the nonprofit status of the utility, the subsidy is paid by the utility 

customers in the form of an increase in the price of electricity pE.  

2.2.1. Agent’s choice 

The optimal subsidy is determined from the indirect utility function 

𝑉(𝑠, 𝑝𝐸 , 𝑝𝑧 , 𝐷, 𝐽, 𝐴) = max 𝑢(𝑋, 𝐹, 𝑆, 𝐴) − 𝛿(𝐷) + 𝜙(𝐽) +𝜆[𝑊 − 𝑋 − 𝑝𝐸𝐹 − (𝑝𝑧 − 𝑠)𝑆], (8) 

obtained by maximizing (5) subject to (6), where λ is the Lagrange multiplier. The terms 

𝑠, 𝑝𝐸 , 𝑝𝑧 , 𝐷, 𝐽, and 𝐴 become the model’s parameters.  

The F.O.C.s for (8) are 

𝜕ℒ

𝜕𝑋
= 𝑢𝑋 − 𝜆 = 0, 

𝜕ℒ

𝜕𝐹
= 𝑢𝐹 − 𝜆𝑝𝐸 = 0, 

𝜕ℒ

𝜕𝑆
= 𝑢𝑆 + 𝑢𝐴𝐴𝑆 − 𝜆(𝑝𝑍 − 𝑠) = 0, 

𝜕ℒ

𝜕𝜆
= 𝑊 − 𝑋 − 𝑝𝐸𝐹 − (𝑝𝑧 − 𝑠)𝑆 = 0. 

Taking the ratio and rearranging,  

𝑢𝐹

𝜆
= 𝑝𝐸 , 

(9a) 

(𝑢𝑆  +  𝑢𝐴𝐴𝑆  )

𝜆
= 𝑝𝑧 − 𝑠 =

𝑝𝑆

𝑧
− 𝑠. 

(9b) 
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Equation (9a) states that the household’s marginal monetary benefit of consuming an 

additional kWh of energy from a power plant is equal to the price of energy purchased from the 

electrical plant. Equation (9b) states that the agent’s marginal monetary benefit of producing an 

additional kWh of solar energy is equal to the cost of producing an additional kWh (
𝑝𝑆

𝑧
) less the 

subsidy s. The marginal benefit is the sum of the direct benefits from using solar, uS, plus the 

indirect benefit of increasing access, 𝑢𝐴𝐴𝑆.  

2.2.2 Welfare effects 

The welfare effects of an incremental change in the solar energy subsidy may be determined by 

totally differentiating the indirect utility function (8) with respect to the subsidy level s. Noting 

that 𝜕𝑉 𝜕𝑠⁄ = λS > 0, and 𝜕𝑉 𝜕𝑝𝐸 = −𝜆𝐹 < 0⁄ , 𝜕𝑉 𝜕𝑝𝑧 = −𝜆𝑆 < 0⁄ , 𝜕𝑉 𝜕𝐷⁄ = −𝛿′ < 0, 

𝜕𝑉 𝜕𝐽⁄ = 𝜙′ > 0, 𝜕𝑉 𝜕𝐴⁄ = 𝑢𝐴 > 0 yields 

𝑑𝑉

𝑑𝑠
= λS − 𝜆𝐹

𝑑𝑝𝐸

𝑑𝑠
− 𝜆𝑆

𝑑𝑝𝑧

𝑑𝑠
− 𝛿′

𝑑𝐷

𝑑𝑠
+ 𝜙′

𝑑𝐽

𝑑𝑠
+ 𝑢𝐴

𝑑𝐴

𝑑𝑠
 . 

(10) 

From the definition of 𝑝𝐸, D, J, and A in (7), (3), (4), and (1), respectively,  

d𝑝𝐸

ds
=

𝑆

𝐹
− 𝑠

𝑆

𝐹2

𝜕𝐹

𝜕𝑠
+ 𝑠

1

𝐹

𝜕𝑆

𝜕𝑠
 , 

(11a) 

𝑑𝐷

𝑑𝑠
=

𝜕𝐷𝑎

𝜕𝐹

𝜕𝐹

𝜕𝑠
+

𝜕𝐷𝑔

𝜕𝐹

𝜕𝐹

𝜕𝑠
 , 

(11b) 

𝑑𝐽

𝑑𝑠
=

𝜕𝐽

𝜕𝑆

𝜕𝑆

𝜕𝑠
, 

(11c) 

𝑑𝐴

𝑑𝑠
=

𝜕𝐴

𝜕𝑆

𝜕𝑆

𝜕𝑠
. 

(11d) 

In determining (11), aggregate electricity from power plant, �̅�, and aggregate solar 

energy generated by a household, 𝑆̅, are no longer constant, so their partials with respect to s are 

partials of 𝐹 and 𝑆. 
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Substituting (11) into (10) and dividing by λ results in the marginal monetary welfare 

effect of the solar energy subsidy s: 

1

𝜆

𝑑𝑉

𝑑𝑠
= S − 𝐹 [

𝑆

𝐹
− 𝑠

𝑆

𝐹2

𝜕𝐹

𝜕𝑠
+ 𝑠

1

𝐹

𝜕𝑆

𝜕𝑠
] − 𝑆

𝑑𝑝𝑧

𝑑𝑠
−

𝛿′

𝜆
[
𝜕𝐷𝑔

𝜕𝐹

𝜕𝐹

𝜕𝑠
+

𝜕𝐷𝑎

𝜕𝐹

𝜕𝐹

𝜕𝑠
] 

 

              +
𝜙′

𝜆

𝜕𝐽

𝜕𝑆

𝜕𝑆

𝜕𝑠
+

𝑢𝐴

𝜆

𝜕𝐴

𝜕𝑆

𝜕𝑆

𝜕𝑠
 

          = 𝑠
𝑆

𝐹

𝜕𝐹

𝜕𝑠
− 𝑠

𝜕𝑆

𝜕𝑠
− 𝑆

𝑑𝑝𝑧

𝑑𝑠
− (

𝛿′

𝜆

𝜕𝐷𝑎

𝜕𝐹
+

𝛿′

𝜆

𝜕𝐷𝑔

𝜕𝐹
)

𝜕𝐹

𝜕𝑠
 

 

              + (
𝜙′

𝜆

𝜕𝐽

𝜕𝑆
+

𝑢𝐴

𝜆

𝜕𝐴

𝜕𝑆
)

𝜕𝑆

𝜕𝑠
. 

(12a) 

Equation (12a) may be simplified by defining the externality and access effects as 

𝐸𝐷𝑎𝐹 =
𝛿′

𝜆

𝜕𝐷𝑎

𝜕𝐹
> 0 , 

𝐸𝐷𝑔𝐹 =
𝛿′

𝜆

𝜕𝐷𝑔

𝜕𝐹
> 0 , 

𝐸𝐽𝑆 =
𝜙′

𝜆

𝜕𝐽

𝜕𝑆
> 0, 

𝐴𝐴𝑆 =
𝑢𝐴

𝜆

𝜕𝐴

𝜕𝑆
> 0, 

yielding 

1

𝜆

𝑑𝑉

𝑑𝑠
=  𝑠

𝑆

𝐹

𝜕𝐹

𝜕𝑠
− 𝑠

𝜕𝑆

𝜕𝑠
− 𝑆

𝑑𝑝𝑧

𝑑𝑠
− (𝐸𝐷𝑎𝐹 + 𝐸𝐷𝑔𝐹)

𝜕𝐹

𝜕𝑠
+ (𝐸𝐽𝑆 +  𝐴𝐴𝑆)

𝜕𝑆

𝜕𝑠
. (12b) 

2.2.3. Marginal external effects 

For further analysis and interpretation, it is convenient to express the marginal welfare effects 

(12b) in terms of elasticities. This is accomplished by first defining MEB as the net marginal 

external benefit of solar energy generation  

𝑀𝐸𝐵 = 𝐸𝐽𝑆 − (𝐸𝐷𝑎𝐹 + 𝐸𝐷𝑔𝐹)
𝜏

 𝛼𝑆𝐹
, (13) 
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where the parameters 𝜏 and 𝛼𝑆𝐹 are defined as  

τ =
(

𝜕𝐹
𝜕𝑠

) 𝑆

(
𝜕𝑆
𝜕𝑠

) 𝐹
=

𝜖𝐹𝑠
𝐷

𝜖𝑆𝑠
𝑆 , 

𝛼𝑆𝐹 =
𝑆

𝐹
 , 

where 𝜖𝐹𝑠
𝐷  and 𝜖𝑆𝑠

𝑆  denote elasticity of demand for conventional electricity with respect to the 

subsidy and elasticity of supply for solar electricity with respect to the subsidy, respectively. The 

ratio of solar electricity to conventional electricity is denoted by 𝛼𝑆𝐹.  

MEB is composed of the direct benefits of solar-energy generation, 𝐸𝐽𝑆, and the indirect 

net external marginal benefits from a per-unit change in energy consumption. The direct 

marginal benefits are the effect of solar-energy generation on job opportunities, 𝐸𝐽𝑆.  The 

indirect marginal benefits are changes in greenhouse gas emissions from conventional electricity 

consumption, −𝐸𝐷𝑎𝐹 𝜏

 𝛼𝑆𝐹
, and air quality pollution from conventional electricity consumption, 

−𝐸𝐷𝑔𝐹 𝜏

 𝛼𝑆𝐹
.  

The welfare effects of a change in the subsidy are summarized in the following two 

propositions and associated corollaries.  First, given public concern with CO2 emissions, fossil 

energies are becoming an inferior good where households with higher incomes will tend to spend 

proportionally less of their income on carbon based fuels. This leads directly to Proposition 1. 

Proposition 1.  If  
𝜕𝐹

𝜕𝑊
 < 0, fossil energy is an inferior good, then 

𝜕𝐹

𝜕𝑠
 < 0.  An increase in the 

subsidy yields less fossil-energy consumption.  

Proof: 
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The Marshallian demand function for 𝐹 is 𝐹 = 𝐹(𝑝𝑧 − 𝑠,  𝑝𝐸 , 𝑊), the Hicksian demand function 

is 𝐹𝑉 = 𝐹𝑉(𝑝𝑧 − 𝑠,  𝑝𝐸 , 𝑉), and the expenditure function is 𝑊 = 𝑊(𝑝𝑧 − 𝑠, 𝑝𝐸 , 𝑉).  The 

consumption of fossil-energy identity is then 

𝐹𝑉(𝑝𝑧 − 𝑠, 𝑝𝐸 , 𝑉) ≡ 𝐹[𝑝𝑧 − 𝑠,  𝑝𝐸 , 𝑊(𝑝𝑧 − 𝑠,  𝑝𝐸 , 𝑉)]. 

With two commodities, fossil energy 𝐹 and solar energy 𝑆, the Slutsky equation for a change in 

the price of solar energy is,  

∂F

∂(𝑝𝑧 − 𝑠)
=

∂𝐹𝑉

∂(𝑝𝑧 − 𝑠)
−

𝜕𝐹

𝜕𝑊
𝑆. 

If 𝑆 is a net substitute for F, then 
∂𝐹𝑉

∂(𝑝𝑧−𝑠)
> 0, and 

∂𝐹𝑉

∂s
< 0. For a constant pz , the Slutsky 

equation can then be written as 

∂F

∂s
=

𝜕𝐹𝑉

𝜕𝑠
+

𝜕𝐹

𝜕𝑊
𝑆. (14) 

          (−)                    

If  
𝜕𝐹

𝜕𝑊
< 0, an inferior good, then 

∂F

∂s
< 0.  Q.E.D. 

With households’ preferences to reduce their proportion of income spent on fossil fuels as 

incomes rise, policies favoring solar PV will not only increase solar PV, but also reduce fossil-

energy consumption.   

Corollary 1.1.  From Proposition 1, 
𝜕𝐹

𝜕𝑠
 < 0, then 

d𝑝𝐸

ds
 > 0.  An increase in the subsidy will 

increase the fossil-fuel price. 

Proof: 

From (11a) 

d𝑝𝐸

ds
=

𝑆

𝐹
− 𝑠

𝑆

𝐹2

𝜕𝐹

𝜕𝑠
+ 𝑠

1

𝐹

𝜕𝑆

𝜕𝑠
 . 

Given 
𝜕𝐹

𝜕𝑠
 < 0 and  

𝜕𝑆

𝜕𝑠
 > 0, then 

d𝑝𝐸

ds
 > 0.  Q.E.D.  
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If the utility incurs the cost of a solar PV subsidy, it will pass a portion of this cost unto 

consumers of fossil energy through higher fuel prices.   

Corollary 1.2.  From Proposition 1, 
𝜕𝐹

𝜕𝑠
 < 0, then 

𝑑𝐷

𝑑𝑠
 < 0.  An increase in the subsidy will decrease 

environmental damage. 

Proof: 

From (11b)    

𝑑𝐷

𝑑𝑠
=

𝜕𝐷𝑔

𝜕𝐹

𝜕𝐹

𝜕𝑠
+

𝜕𝐷𝑎

𝜕𝐹

𝜕𝐹

𝜕𝑠
 , 

and from (3) 

d𝐷𝑔

d�̅�
> 0,

𝑑𝐷𝑎

𝑑�̅�
> 0, 

Given 
𝜕𝐹

𝜕𝑠
 < 0, then 

𝑑𝐷

𝑑𝑠
 < 0.  Q.E.D.  

Corollary 1.2 states if the objective of a solar PV subsidy is to reduce fossil-energy consumption, 

then given fossil energy is an inferior good the objective will be realized.    

Corollary 1.3.  From Proposition 1, ϵFs < 0, then the more responsive fossil energy, F, is to a 

solar-energy subsidy, s, the higher is the MEB, 
𝜕𝑀𝐸𝐵

𝜕𝜖𝐹𝑠
 < 0.  

Proof: 

Taking the partial derivative of (13) with respect to the elasticity 𝜖𝐹𝑠 yields 

𝜕𝑀𝐸𝐵

𝜕𝜖𝐹𝑠
= −

(𝐸𝐷𝑎𝐹 + 𝐸𝐷𝑔𝐹)

𝜖𝑆𝑠𝛼𝑆𝐹
< 0 Q.E.D. 

From Corollary 1.3, the more responsive 𝐹 is to 𝑠, the higher will be the MEB.  A large 

reduction in 𝐹 from a change in 𝑠 will lead to a large impact on reducing negative externalities. 
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Corollary 1.4.  From Proposition 1, ϵFs < 0, then the more responsive solar energy, S, is to a 

solar-energy subsidy, s, the lower is the MEB, 
𝜕𝑀𝐸𝐵

𝜕𝜖𝑆𝑠
 < 0.  

Proof: 

Taking the partial derivative of (13) with respect to the elasticity 𝜖𝑆𝑠 yields 

𝜕𝑀𝐸𝐵

𝜕𝜖𝑆𝑠
=

(𝐸𝐷𝑎𝐹 + 𝐸𝐷𝑔𝐹)𝜖𝐹𝑠

𝜖𝑆𝑠
2𝛼𝑆𝐹

< 0 Q.E.D. 

Similar to Corollary 1.3, in terms of S, a large increase in 𝑆 from 𝑠 will lead to a large impact on 

reducing negative externalities.  

 Prior to CO2 emission concerns, fossil energies were generally thought of as normal 

goods.  In this case, as demonstrated in Proposition 2, the direction of fossil-energy consumption 

from favorable solar PV policies is unclear.  

Proposition 2.  If 
𝜕𝐹

𝜕𝑊
 > 0, fossil energy is a normal good, then the sign of 

𝜕𝐹

𝜕𝑠
 is indeterminant.  

An increase in the subsidy can result in reduced, an increase, or no change in fossil-energy 

consumption.  

Proof: 

The proof follows directly from (14) in the proof of Proposition 1.  If |
𝜕𝐹𝑉

𝜕𝑠
| >

𝜕𝐹

𝜕𝑊
𝑆, then 

∂F

∂s
< 0, 

which is consistent with Proposition 1.  Instead, if |
𝜕𝐹𝑉

𝜕𝑠
| <

𝜕𝐹

𝜕𝑊
𝑆, then 

𝜕𝐹

𝜕𝑠
 > 0. The income effect, 

𝜕𝐹

𝜕𝑊
𝑆, completely offsets the negative net substitution effect 

𝜕𝐹𝑉

𝜕𝑠
, leading to 

∂F

∂s
> 0.   Q.E.D. 

Given Proposition 2, an increase in a solar subsidy may result in more fossil energy 

consumption.  

Corollary 2.1.  From Proposition 2, 
𝜕𝐹

𝜕𝑠
 is indeterminant, then 

d𝑝𝐸

ds
 is also indeterminant. 

Corollary 2.2.  From Proposition 2, 
𝜕𝐹

𝜕𝑠
 is indeterminant, then 

𝑑𝐷

𝑑𝑠
 is also indeterminant. 
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The proofs follow directly from the proofs of Corollaries 1.1 and 1.2. 

In summary, an increase in a solar subsidy will lead to less fossil-fuel consumption, lower 

environmental damage, but higher cost of electricity unless the income effect completely offsets 

the negative substitution effect.  However, as in the general case of a Giffen good, this is a 

paradox, which is unlikely to occur.  It would require a relatively large proportion of income 

spent on solar PV and a small Hicksian elasticity of substitution between solar and fossil energy.  

2.2.4. Optimal solar energy subsidy 

Theorem 1. The optimal solar-energy subsidy is 

𝑠∗ =
(𝑀𝐸𝐵 +  𝐴𝐴𝑆)𝜖𝑆𝑠 − 𝜖𝑝𝑧𝑠𝑝𝑧

(1 − 𝜏)𝜖𝑆𝑠
. 

where 

𝜖𝑝𝑧𝑠 =
𝑑𝑝𝑧

𝑑𝑠

𝑠

𝑝𝑧
 , 

is the elasticity for the price of solar panels with respect to the subsidy. 

(15) 

Proof:  

Setting first-order condition (12b) to zero and dividing by 
∂S

∂s
 yields 

0 = 𝜏𝑠 − 𝑠 −
𝜖𝑝𝑧𝑠

𝜖𝑆𝑠
𝑝𝑧 + 𝑀𝐸𝐵 +  𝐴𝐴𝑆.  

Solving for 𝑠 then yields the optimal solar-energy subsidy.  Q.E.D. 

For interpretation, (15) may be rewritten as 

𝑠∗ =
(𝑀𝐸𝐵 +  𝐴𝐴𝑆)

(1 −
𝜖𝐹𝑠

𝜖𝑆𝑠
)

−
𝜖𝑝𝑧𝑠𝑝𝑧

𝜖𝑆𝑠 − 𝜖𝐹𝑠
 , 

(16) 

leading to Proposition 3. 

Proposition 3.  If 𝜖𝑆𝑠 > 𝜖𝐹𝑠, then ∂s*/∂MEB > 0 and ∂s*/∂AAs > 0. 
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The proof follows directly from the denominators in (16).  If 𝜖𝑆𝑠 > 𝜖𝐹𝑠, then (1 −
𝜖𝐹𝑠

𝜖𝑆𝑠
) > 0 and 

𝜖𝑆𝑠 − 𝜖𝐹𝑠 > 0, leading to ∂s*/∂MEB > 0 and ∂s*/∂AAs > 0.  Q.E.D. 

 Proposition 1 implies Proposition 3, so if ∂F/∂W < 0, fossil energy is an inferior good, 

then ∂s*/∂MEB > 0 and ∂s*/∂AAs > 0.  However, even given Proposition 2, where the sign of 

∂F/∂s is indeterminent, as long as solar energy is more subsidy responsive than fossil energy, the 

optimal subsidy is positively influenced by the marginal external benefits and accessibility and 

negatively by the price of solar panels.  

 The sign of s* depends on the responsiveness of the solar-panel price to the subsidy as 

developed in Proposition 4. 

Proposition 4. If 𝜖𝑝𝑧𝑠 < 
(𝑀𝐸𝐵+ 𝐴𝐴𝑆)𝜖𝑆𝑠

𝑝𝑧
 , then s* > 0. 

Proof: Given the denominator (1 − 𝜏)𝜖𝑆𝑠 > 0, the sign of s* depends directly on the numerator,  

(𝑀𝐸𝐵 + 𝐴𝐴𝑆)𝜖𝑆𝑠 − 𝜖𝑝𝑧𝑠𝑝𝑧,.  Solving for 𝜖𝑝𝑧𝑠 yields the proposition.  Q.E.D. 

Proposition 4 states the benefits of solar (MEB + AAS) per-unit price of solar panels, weighted by 

how responsive solar power is to the subsidy, 𝜖𝑆𝑠, must be greater than the responsiveness of the 

price of solar panels to the subsidy, 𝜖𝑝𝑧𝑠, for a positive optimal solar subsidy, s* > 0.  In general, 

the subsidy must have a larger impact on benefits than on the solar panel prices. 

 The effect of a solar subsidy on panel prices is generally unknown.  In the long run a 

solar subsidy may stimulate demand for panels leading to a supply response and if the panel 

industry is characterized by economies to scale, then panel prices would fall.  This scenario 

implies 𝜖𝑝𝑧𝑠 < 0, which leads to Corollary 4.1. 

Corollary 4.1. If 𝜖𝑝𝑧𝑠 < 0, then s* > 0. 

The proof follows directly from the proof of Proposition 4. 
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 However in the short run the sign could be reversed, 𝜖𝑝𝑧𝑠 > 0.  In this case, the sign is 

similar to the share of a commodity tax being borne by both the seller and buyer.  It is the result 

of a portion of the subsidy being received by the sellers of solar panels in the form higher panel 

prices, pz.  The numerator in (15) indicates MEB plus 𝐴𝐴𝑆 multiplied by 𝜖𝑆𝑠, is mitigated by the 

any positive response of 𝑝𝑧 to a change in the subsidy. The more elastic 𝑝𝑧 is to a change in the 

subsidy, the larger will be the response of 𝑝𝑧 and the less effective will be the subsidy.  This 

slippage in the effects of the subsidy yields a lower optimal subsidy. The subsidy is being 

absorbed into higher prices for solar panels, which mitigates its effectiveness.  Depending on the 

magnitude of the elasticities, this slippage can affect intended policy results.  The denominator in 

(15) can be rewritten as (𝜖𝑆𝑠 − 𝜖𝐹𝑠), which weights the MEB mitigated by the solar panel cost 

effect by the responsiveness of generating solar energy and use of conventional energy by the 

subsidy. The greater this responsiveness, the lower will be the subsidy.  

From (15) a tandem relation is revealed between subsidizing the generation of solar 

electricity, s, and the solar panels through a reduction in pz.  Reducing pz through some panel 

subsidy will raise the optimal subsidy, s*, for solar electricity, ∂s*/∂pz < 0.  A solar-panel subsidy 

reduces the slippage associated with higher panel prices.  The degree of this relation depends on 

the strength of the elasticity of panel price to the subsidy, 𝜖𝑝𝑧𝑠.  The more responsive the panel 

price is to the subsidy, the larger in magnitude is this tandem relation.  Policymakers should be 

aware of this relation and its magnitude when setting solar-energy policies and establishing 

programs.  This is particularly true in diverse regions with solar energy bifurcation.  In Arizona 

with abundant hours of solar energy the price of solar panels will be low, 𝑝𝑧 =
𝑝𝑆

𝑧
, which will 

increase the elasticity 𝜖𝑝𝑧𝑠.  The price of panels will then be more responsive to the subsidy; 
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leading to a lower optimal subsidy.  In contrast, Alaska with relatively limited solar hours, the 

optimal solar subsidy would be higher.  

In general, if fossil energy is an inferior good, so ∂F/∂s < 0, then a subsidy will both 

enhance solar adoption, ϵSs > 0, and retard fossil energy use, 𝜖𝐹𝑠 < 0.  The reduction in fossil 

energy from an increase in the solar-energy subsidy will reinforce the positive effect the subsidy 

has on solar adoption.  The more responsive these elasticities are, the lower is the optimal 

subsidy.  The magnitude of this responsiveness is an empirical question requiring the 

parameterization of (15).  

2.3. Application 

The optimal solar subsidy (15) is generally true for any region or country, although the 

parameters and elasticities will likely vary.  As an application, parameter and elasticity values, 

obtained from published sources, are employed for determining the optimal U.S. solar subsidy.  

These values reflect just one possible scenario.  Alternative subsidy levels will occur for 

different regions with modifications to these values. For the numerical analysis of determining 

the optimal solar PV subsidy (15), benchmark values and parameter ranges are summarized in 

Table 2.1. The appendix provides a summary outlining the determination of these estimated 

values.  Based on Table 2.1, the optimal solar PV subsidy for median income household is 𝑠∗ =

7.69 cents/kWh with associated MEB = 7.87 cents/kWh. If excluding the external effect of 

employment, the optimal solar PV subsidy for median income household reduces to 𝑠∗ = 2.24 

cents/kWh with associated MEB = 2.23 cents/kWh. 

2.3.1. Sensitivity Analysis 

The wide range of parameter values in Table 2.1 suggests the benchmark optimal subsidy has an 

associated rather large variance. In order to investigate the sensitivity of the optimal solar PV 
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subsidy, 𝑠∗, to ranges of these parameter values, both individual parameter variation and Monte 

Carlo analysis were implemented.   

2.3.1.1. Individual parameter variation 

In terms of the individual parameter variations, results indicate the optimal solar PV subsidy is 

mainly influenced by the elasticity of solar-panel price with respect to the subsidy, 𝜖𝑝𝑧𝑠, 

environmental effects, 𝐸𝐷𝑎𝐹 + 𝐸𝐷𝑔𝐹, job opportunities effects, 𝐸𝐽𝑆, and access to electricity 

effects, 𝐴𝐴𝑆. All the other parameters have a relatively small impact on the optimal subsidy.  In 

particular, the optimal subsidy is not sensitive to household income.  This implies a supporting 

policy should be similar for both low-income and high-income households.   

Even within the influential parameters their respective impacts vary.  In terms of 

Corollary 4.1, Figure 2.1 illustrates the response of the optimal solar PV subsidy to a range of the 

elasticity of solar-panel price with respect to the subsidy.  As the responsiveness of panel price to 

a subsidy increases, the slippage in the effects of the subsidy also increases, leading to a lower 

subsidy.  The optimal subsidy for Arizona relative to Alaska households is lower. With a positive 

percentage change in the panel price larger than the subsidy percentage change the optimal 

subsidy is negative.  The subsidy is just increasing the panel price and any subsidy benefits are 

evaporated.   

 As illustrated in Figure 2.2, the range of increase in access benefit, from zero to  0.12 ×

10−2$/kWh) has little impact on the optimal subsidy.  The subsidy only increases by 1.6%.  In 

contrast, the external benefit of greenhouse gas emissions, 𝐷𝑔, and localized air pollution, 𝐷𝑎, 

have a relatively larger impact on the optimal subsidy, mainly due to their large magnitudes.  For 

the range of the external benefit, the subsidy increased 73% (Figure 2.3).  However, the major 

impact on the optimal subsidy is the employment parameter.  As illustrated in Figure 2.4, for the 



 

31 

range of the employment parameters, the optimal subsidy increases five times.  This implies the 

changes in the employment parameter have a major impact on the subsidy level.  As indicated in 

the results and discussed in the Implication section, employment is a major determinant of the 

subsidy and probably the most controversial with proponents and detractors of subsidy taking a 

markedly different line on the employment effect.    

2.3.1.2. Monte-Carlo analysis          

For investigating the macro effect of simultaneously changing all the parameters, Monte-Carlo 

analysis on the optimal subsidy is performed.  In particular, 5000 random draws of parameters in 

Table 2.1 were generated using a uniform probability distribution over respective ranges of the 

parameters. The drawn parameters were then employed to calculate the optimal solar PV subsidy 

in (15), and to create an empirical CDF for the optimal subsidy. Table 2.2 lists the probabilities 

of the optimal subsidy being below specific thresholds. As indicated in the table, the probability 

of the optimal subsidy being non-positive is only 17.3%.  Thus, the likelihood of a positive 

subsidy is reinforced by the Monte-Carlo analysis.  There is also over an 80% probability that the 

optimal subsidy is less than $0.15/kWh.     

2.3.2. Implications 

The optimal solar PV for a median income household is 𝑠∗ = 7.69 cents/kWh. If excluding the 

external effect of employment, the optimal solar PV for median income households declines to 

𝑠∗ = 2.24 cents/kWh. In the Dominion Virginia Power’s voluntary FIT program, residential 

participants will receive 15 cents/kWh, which is approximately one-third higher than Virginia’s 

average 2012 retail electricity price (EIA, 2013a). The solar PV subsidy for Virginia residential 

participants is approximately 3.75 cents/kWh, which is between our estimates of optimal solar 
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PV subsidy 2.24 cents/kWh (excluding employment effect) and 7.69 cents/kWh (including 

employment effect).  

The externality effect of job opportunities is controversial. It is believed that the energy 

industry contributes to economic growth by creating jobs and commerce by extracting, 

transforming, and distributing energy goods and services throughout the economy. Job creation 

is a macroeconomic benefit from the energy industry. During the 2008 campaign, Barack Obama 

touted the prospect that investing in renewable energy could produce five million “green jobs” 

(Worstall, 2013). Some studies support renewable-energy technologies generating more job 

opportunities than conventional energy industries (Wei et al., 2010; Stein, 2013). Counterpoints 

generally involve two aspects. First, the solar-energy industry does not create as many jobs as 

expected. Research has indicted solar employment increased just 28% while there was a nine 

fold increase in solar power from 2008 to 2010 (Johnson, 2013). Second, renewable energy does 

not necessarily create more jobs than conventional energy. For example, technologies that 

require ongoing fuel production (coal and natural gas) require more labor than those that do not 

(wind and solar PV) in the operations phase (World Economic Forum, 2012).  Moreover, one 

may also argue that the deployment of renewable energy may increase job opportunities within a 

region. However, at the national level, the large domestic market would not be significantly 

affected by the development of a solar industry. Considering the whole U.S. economy, Rivers 

(2013) estimates that reducing electricity sector emissions by 10% through renewable-electricity 

support policies is likely to increase unemployment approximately 0.1 to 0.3%.  Our sensitivity 

analysis indicates the optimal solar PV subsidy is sensitive to the externality effect of job 

creation. If one believes employment should be a macroeconomic benefit from solar PV, results 
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indicate the optimal solar PV subsidy would be 7.69 cents/kWh.  In contrast, a belief that the 

employment effect should be excluded, the optimal solar PV subsidy falls to 2.24 cents/kWh. 

2.4. Conclusions and Policy Implications 

The theoretical results indicate that changing household preferences can have a marked impact 

on the effect a solar PV subsidy has on adoption of solar panels and on the consumption of fossil 

energy.  If households have a general shift toward viewing fossil energy as an inferior good, then 

any policies directed at incentivizing adoption will be more effective and may not be necessary.  

Given inferior-good characteristics for fossil energies, the proposition and associated corollaries 

imply policies favorable to solar and alternative energies in general will result in reduced fossil-

energy consumption, higher fossil prices, and reduced environmental damage.  In particular, the 

higher fossil-energy prices precipitating from the policy would reduce the Pareto efficiency 

requirement of some cap-n-trade policy or a carbon tax.  If instead fossil energy is a normal good, 

then these impacts from policies favoring renewable energies are not certain.   

 A further concern with policies favoring renewable energies is the possibility of slippage 

in the form of resulting higher prices for renewable-energy inputs.  As the results indicate for 

solar energy, a solar PV subsidy may drive up the price of solar panels.  If so, then the 

effectiveness of the subsidy is compromised.  Little or no information on the degree of this 

possible slippage is known, which is ripe for further research. 

Finally, returning to the issue of camps for and against renewable-energy subsidies, 

empirical results indicate the optimal level of solar PV subsidies are very much dependent on the 

impact such subsidies have on employment.  If renewable energies have limited or no positive 

job impacts, then the justification for a subsidy is substantially weakened.  The results highlight 

the importance of determining the policy impacts on macroeconomic variables like job growth.   
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The result also touches on the complementary aspects of providing household incentives 

for adoption of alternatives along with educating households on the negative external costs of 

using conventional fossil-based energies.  Theoretical results indicate that a solar PV subsidy is 

likely more effective when households are educated on the external cost and shift preferences 

towards viewing fossil energies as being an undesirable commodity.                         
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Footnotes 

1 There are other external effects including environmental damage from transportation and 

extraction of fossil fuels (oil, coal, and natural gas). Including these externalities does not enrich 

the theoretical model, but would positively impact the optimal subsidy.  Also, it is assumed the 

U.S. economy is closed in terms of no leakages from the United States’ attempts to reduce 

negative external effects, influencing another country’s efforts (Elloitt and Fullerton, 2013).     

  



 

36 

Appendix I 

The benchmark values and parameter ranges, listed in Table 2.1, for populating (15) are based on 

published values and adjusted as follows.  

The ratio of solar to fossil-fuel electricity has increased over time. In 2012, the amount of 

solar and fossil fuel energy in the residential sector were 186 and 5137 trillion Btu, respectively 

(EIA, 2014b). The ratio of solar over fossil-fuel electricity, αSF, is then 186/5137 = 0.036, with a 

range of 0.026 to 0.037 based on residential sector energy consumption data in 2011 and 2013.  

Since 2008, solar PV system prices, which include installation costs have continued to 

decline (Chen, 2013). Based on U.S. Solar Market Insight reports (SEIA, 2011-2013) from 2011 

to 2013, the installed price of solar panels, 𝑝𝑆, is set as the average price in 2012 of 5.39 $/W = 

5390 $/kW with a range of 4590 to 6410. It is assumed solar panels receive 4.5 peak hours of 

sunlight on average each day with a range of 3.0 to 6.5 (NREL, 2012). The benchmark value of 

𝑝𝑧 is set at 
𝑝𝑆

𝑧
=

5390

4.5×365
= 3.282 $/KWh with a range of 1.935 to 5.854.  

The average size of a residential PV system in the U.S. is 5 kW (SEIA, n.d.) with a range 

of 3 to 8 kW. Due to real world efficiency losses (irradiance, dust, temperature, and wiring), it is 

expected system power output (AC power) to be approximately 76.9% of the system (DC power) 

size, overall DC to AC derate factor is 0.769 (NREL, n.d.). The benchmark value of annual 

household solar electricity generation is set at S = 365 days/year × 4.5 hrs/day × 5 kW ×

0.769 = 6315 kWh/year with a range of 2526 to 14,596.  

According to (6), a household’s income 𝑊𝑇 = (𝑝𝐸 + 𝑠)𝑆 + 𝑊, indicating 
𝜕𝑊𝑇

𝜕𝑠
= 𝑆. The 

2012 average retail price of electricity in the residential sector is 0.119 $/kWh. The benchmark 

value of the retail price of electricity, 𝑝𝐸, is set as 0.119 $/kWh with a range of 0.117 to 0.121 

based on a residential electricity price in 2011 and 2013 (EIA, 2014a). The 2012 U.S. median 
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household income was $51,371 (US Census Bureau, 2013). Therefore, household income 

is 𝑊𝑇 = (𝑝𝐸 + 𝑠)𝑆 + 𝑊 = (𝑝𝐸𝑆 + 𝑊) + 𝑠𝑆 = 52,122 + 6315𝑠.  

Johnson (2010 and 2014) estimated the long-run price elasticity of supply of renewable 

electricity generation as 2.714 and 2.67 with associated standard errors of 0.611 and 0.473, 

respectively. Based on this estimate, the solar-electricity elasticity of supply with respect to the 

subsidy, ϵSs
S , is set at 2.714 with a range of 1.516 to 3.912.  

Limited analysis exists in estimating the income elasticity of demand for solar panels. 

Algieri et al. (2011) estimated that a 1% increase in income raises exports by 2.69%. With this 

estimate, the income elasticity of demand for solar panels, 𝜖𝐼𝑊
𝐷 =

𝜕𝐼

𝜕𝑊𝑇

𝑊𝑇

𝐼
, is set as 2.69 with a 

range of 1.88 to 3.50. The ranges were determined by the 95% confidence intervals of estimated 

parameters.  

From (14), the elasticity of demand for fossil-fuel electricity with respect to the subsidy is 

𝜖𝐹𝑠
𝐷 = 𝜉𝐹𝑠 + 𝜂𝐹

𝑠𝑆

𝑊𝑇
, 

(A1) 

where 𝜉𝐹𝑠 =
𝜕𝐹𝑣

𝜕𝑠

𝑠

𝐹
 is the substitution elasticity and 𝜂𝐹 denotes income elasticity of demand for F. 

In terms of the income elasticity estimate, Alberini et al., (2011) determined the income elasticity 

of electricity consumption, 𝜂𝐹, is approximately 0.02. After removing specifications of the home 

characteristics, including size, number of floors, and presence of certain appliances, their 

estimate of income elasticity of electricity 𝜂𝐹 increases to 0.05. Similarly, the elasticity of supply 

for solar electricity with respect to the subsidy, 𝜖𝑆𝑠
𝑆 , can be written as 

𝜖𝑆𝑠
𝑆 = 𝜉𝑆𝑠 + 𝜂𝑆

𝑠𝑆

𝑊𝑇
, 

(A2) 
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where 𝜉𝑆𝑠= 
𝜕𝑆𝑣

𝜕𝑠
 
𝑠

𝑆
 is the substitution elasticity and 𝜂𝑆 denotes income elasticity of demand for S. 

Solar energy generation depends on the amount of solar panels purchased by the household. 

Thus, income elasticity of demand for S, 𝜂𝑆 = 𝜖𝐼𝑊
𝐷 = 2.69 with a range of 1.88 to 3.50.  

Assuming the amount of increase in the solar electricity is equal to the amount of 

decrease in the conventional electricity 

𝜕𝐹𝑣

𝜕𝑠
= −

𝜕𝑆𝑣

𝜕𝑠
 , 

(A3) 

the substitution elasticity of conventional electricity is then 

𝜉𝐹𝑠 =
𝜕𝐹𝜈

𝜕𝑠

𝑠

𝐹
 

       = −
𝜕𝑆𝑣

𝜕𝑠

𝑠

𝐹
 

       = −𝜉𝑆𝑠𝛼𝑆𝐹  

       = − (𝜖𝑆𝑠
𝑆 − 𝜂𝑆

𝑠𝑆

W𝑇
) 𝛼𝑆𝐹 . 

(A4) 

Substituting (A4) into (A1),  

𝜖𝐹𝑠
𝐷 = − (𝜖𝑆𝑠

𝑆 − 𝜂𝑆

𝑠𝑆

W𝑇
) 𝛼𝑆𝐹 + 𝜂𝐹

𝑠𝑆

W𝑇
 

        = − (𝜖𝑆𝑠
𝑆 − 𝜖𝐼𝑊

𝐷
𝑠𝑆

W𝑇
) 𝛼𝑆𝐹 + 𝜂𝐹

𝑠𝑆

W𝑇
 

     = −𝜖𝑆𝑠
𝑆 𝛼𝑆𝐹 + (𝜖𝐼𝑊

𝐷 𝛼𝑆𝐹 + 𝜂𝐹)
𝑠𝑆

W𝑇
. 

(A5) 

Based on benchmark values,  

𝜖𝐹𝑠
𝐷 = −2.714 × 0.036 + (2.69 × 0.036 + 0.05)

6315𝑠

(52,121 + 6315𝑠)

= −0.098 +
930.751𝑠

(52,121 + 6315𝑠)
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Limited analysis exists in estimating the elasticity for price of solar panels with respect to 

the subsidy. It is reported that solar panel supply will far exceed demand beyond 2012 (Wang, 

2012). Besides, price of solar panels are affected by many factors, including the type of material, 

its accessibility, complexity in manufacturing, and amount available and demanded (Rose, 

2012). It is assumed the elasticity for price of solar panels with respect to the subsidy is very 

inelastic. The benchmark value of the elasticity for price of solar panels with respect to the 

subsidy, 𝜖𝑝𝑧𝑠, is set at zero with a range of -0.1 to 0.1. 

In calculating the effect of driving on air quality, Parry and Small (2005) assume air 

pollution from vehicles is proportional to miles traveled. Using their study as a guide, it is 

assumed both local air pollution and greenhouse gas emissions from conventional electricity are 

proportional to electricity consumed. In 2012, approximately 68% of the U.S. electricity 

generated was from fossil fuel (coal, natural gas, and petroleum) (EIA, 2014c). Coal, natural gas, 

and petroleum account for 37%, 30%, and 1%, respectively. Muller et al. (2011) estimate that 

gross external damages from the sum of local pollution and greenhouse gas emissions of the 

electricity produced by coal-fired facilities, natural-gas plants, and oil-fired plants are 3.59, 0.56, 

and 2.74 cents/kWh, respectively. For the application a weighted average 2.24 × 10−2 $/𝐾𝑊ℎ 

as a benchmark value of 𝐸𝐷𝑎𝐹 + 𝐸𝐷𝑔𝐹 =
𝛿′

𝜆

𝜕𝐷𝑎

𝜕𝐹
+

𝛿′

𝜆

𝜕𝐷𝑔

𝜕𝐹
 with a range of 1.75 × 10−2 to 3.12 ×

10−2. The range was determined by the 95% confidence intervals of estimated parameters.  

Wei et al. (2011) determine the average of direct employment multiplier for solar PV is 

0.87 Job-Years/GWh with a range of 0.2 to 1.4. Limited analysis exists in estimating the net 

welfare effect of job opportunities. A common measure of the relative contribution of an industry 

to the overall economy is the value-added per worker. Value-added per direct worker in solar PV 

industry is $65,000, indicating on average direct U.S. employment in the solar PV sector 
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contributes $65,000 to GDP (World Economic Forum, 2012). Therefore, the externality effect of 

job opportunities is 𝐸𝐽𝑆 =
𝜙′

𝜆

𝜕𝐽

𝜕𝑆
= 65,000 × (0.87 × 10−6) = 0.057 $/kWh with a range of 

0.013 $/kWh to 0.091 $/kWh. 

For the effect of access to electricity, weather-related outages are estimated to have cost 

the U.S. economy an inflation-adjusted annual average of $18 billion to $33 billion (U.S. 

Department of Energy, 2013). Aggregate electricity consumption in 2012 is 95,004 trillion Btu 

(EIA, 2012), which is approximately 27.843 trillion kWh. Dividing the average cost $25.5 billion 

by the annual electricity consumption results in external benefit of access to electricity, AAS =

uA

λ

∂A

∂S
=

25.5

27.843×103 = 0.092 cents/kWh with a range of 0.065 to 0.118 cents/kWh.  

A summary of these estimates are provided in Table 2.1 and employ in calcuating the 

optimal subsidy (15).  Further refining of these estimates will improve the accuracy in this 

calculation.  The estimates are provided to outline how a benchmart optimal subsidy can be 

estimated with lower and upper ranges. 
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Table 2.1. Benchmark Values and Parameter Ranges 

Parameter Symbol Benchmark      Range 

   Lower Upper 

Peak Hours of Sunlight per Daya (hr)  ℎ 4.5 3.0 6.5 

Household Solar Electricityb (kWh)  𝑆 6315 2526 14,596 

Retail Price of Electricityc ($/kWh) 𝑝𝐸 0.119 0.118 0.122 

Price of Solar Panelsd ($/kWh) 𝑝𝑧 3.282 1.935 5.854 

     

Ratio     

    Solar Electricity/Fossil Electricitye 𝛼𝑆𝐹 0.036 0.026 0.037 

     

Elasticities     

Income elasticity of Demand for 

   Conventional Electricityf 
𝜂𝐹 0.05 0.02 0.05 

    Solar Electricity Elasticity of Supply 

       with respect to the Subsidyg 
𝜖𝑆𝑠

𝑆  2.714 1.516 3.912 

    Income Elasticity of Demand for Solar 

       Panelsh 

    Elasticity for price of solar panels  

       with respect to the subsidy 

𝜖𝐼𝑊
𝐷  

 

𝜖𝑝𝑧𝑠 

2.69 

 

0 

1.88 

 

-0.1 

3.50 

 

0.1 

     

Externality and Access Effects     

    Environmental Costsi(× 10−2$/kWh) 𝐸𝐷𝑎𝐹

+ 𝐸𝐷𝑔𝐹 

2.24 1.75 3.12 

    Job Opportunitiesj(× 10−2$/kWh) 𝐸𝐽𝑆 5.66 1.30 9.30 

    Access to Electricityk(× 10−2$/kWh)  𝐴𝐴𝑆 0.092 0.065 0.118 

     

Marginal External Benefits(× 10−2$/kWh) MEB 7.87   

Optimal Solar PV Subsidy(× 10−2$/kWh) 𝑠∗ 7.69   

 
a NREL, 2012 
b SEIA, 2012 and NREL 
c EIA, 2012 
d SEIA, 2011-2013 
e EIA, 2014c 
f Alberini et al., 2011 
g Johnson, 2010 
h Algieri et al., 2011 
i Muller et al., 2011 
j Wei et al., 2011 and World Economic Forum, 2012 
k US DOE, 2013 
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Table 2.2. Monte Carlo Results for Optimal Solar PV Subsidy  

 

 

Level, 𝑥 (dollar/kWh) 

 

Probability 𝑠∗ < 𝑥 

 

-0.05 

-0.04 

-0.03 

-0.02 

-0.01 

0.00 

0.01 

0.059 

0.074 

0.094 

0.117 

0.146 

0.173 

0.207 

0.02 0.246 

0.03 0.288 

0.04 0.329 

0.05 0.373 

0.06 0.422 

0.07 0.473 

0.08 0.522 

0.09 0.569 

0.10 0.612 

0.11 

0.12 

0.13 

0.14 

0.15 

0.654 

0.699 

0.736 

0.780 

0.816 
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Optimal
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Elasticity of Solar Panel Price with respect to the Subidy 
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Figure 2.1. Response of the Optimal Solar PV Subsidy (dollars per kWh) to Elasticity of 

Solar Panel Price with respect to the Subsidy 
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Figure 2.2. Response of the Optimal Solar PV Subsidy (× 𝟏𝟎−𝟐$/𝐤𝐖𝐡) to Accessibility 

Benefits 
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Figure 2.3. Response of the Optimal Solar PV Subsidy (× 𝟏𝟎−𝟐$/𝐤𝐖𝐡) to Environment 

Benefits 

 

 

  



 

46 

Optimal
Solar PV
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Figure 2.4. Response of the Optimal Solar PV Subsidy (× 𝟏𝟎−𝟐$/𝐤𝐖𝐡) to Employment 

Benefits. 
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CHAPTER 3 

PRICE VOLATILITIES AMONG U.S. BIODIESEL, DIESEL, CRUDE OIL, AND 

SOYBEAN MARKETS2 

  

  

                                                 
2 Liu, S., G. Colson, B. Karali, and M.E. Wetzstein. To be submitted to Energy Economics. 
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Abstract 

Price volatility spillovers among U.S. crude oil, diesel, biodiesel, and soybeans are examined 

based on weekly prices from 2007 to 2014. A univariate EGARCH model along with a DCC-

MGARCH approach are employed. The results provide evidence of double-directional price-

volatility spillovers between biodiesel and soybean markets and between crude oil and biodiesel 

markets. While unidirectional price-volatility spillovers exist from the crude oil market to the 

soybean market and from the diesel to the biodiesel market. The DCC-MGARCH model 

indicates time-varying conditional correlations among markets and the pairwise conditional 

correlations fluctuated from 2008 to 2009. 
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3.1. Introduction 

The emergence of biofuel production has shaken the energy and agricultural commodity markets. 

Traditionally, food and conventional energy prices were mainly connected through the food-

supply chain. Food prices are affected by energy prices through the use of various energy-

intensive inputs including fertilizers, heating and pesticides, and motor-fuel costs. There is a 

general consensus among researchers that the emergence of a global biofuel industry has altered 

this traditional link between energy and agricultural markets (Serra, 2013). A stronger 

connection may now exist through output-demand channels as biofuels impact both the fossil 

fuel and agricultural commodities markets (Taheripour and Tyner, 2008). Increasing crude-oil 

prices not only affect agricultural-commodity prices through higher input costs but also stimulate 

policymakers to provide incentives to develop and adapt biofuels into the conventional fossil-

fuel markets. This increased demand for biofuels may then put upward pressure on the demand 

for agricultural commodities, which are the main inputs employed for biofuel production. 

Underlying this biofuel/commodity market interaction is the continued dependence of these 

markets on crude-oil (Gilbert and Mugera, 2014).  

The two common types of biofuels are ethanol and biodiesel. United States and Brazil 

dominate the ethanol production market, cumulatively accounting for 87% of the global total 

(Rapier, 2014).  In 2013, the United States produced 13.2 billion gallons, which was 57% of the 

total global ethanol production. Brazil was second with another 6.7 billion gallons (Rapier, 

2014). Biodiesel is the second largest category of global biofuels, accounting for 6.9 billion 

gallons globally in 2013, which is 22.6% of total biofuel production (Rapier, 2014). Biodiesel is 

the most commonly consumed biofuel in the European Union. The European Union produced 

2.8 billion gallons of biodiesel in 2013, 40% of the global total (Rapier, 2014).  
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Most of the biofuel-related price level and volatility literature considers ethanol as the 

representative of biofuel, especially for the U.S. biofuel market (Saghaian, 2010; Serra et al., 

2011; McPhail, 2011; Zhang et al., 2009; Trujillo-Barrera, Mallory, and Garcia, 2012; Du and 

McPhail, 2012; Gardebroek and Hernandez, 2013). U.S. biodiesel draws much less attention than 

ethanol, despite the fact that the United States is the largest national producer of biodiesel 

(Rapier, 2014). Although U.S. biodiesel production was only one tenth as much as the ethanol 

production in 2013, it is rising sharply. The U.S. biodiesel production in 2010 was 0.343 billion 

gallons (USDA, 2014). It reached 0.967 and 0.991 billion gallons in 2011 and 2012, 

respectively; almost three times 2010 production. In 2013, at 1.339 billion gallons it was almost 

four times 2010 volume (USDA, 2014). Biodiesel is an emerging major alternative fuel within 

the United States. 

Despite this growing U.S. biodiesel market, a literature review reveals no studies 

conducted on the price volatility in the U.S. biodiesel market. The objection is to then fill this 

gap. The biodiesel market is affected by different policies relative to the ethanol market. 

Furthermore, price-volatility spillover effects may vary by countries due to differences in the 

structure and size of the biodiesel markets, as well as differences in the feedstocks employed and 

the agricultural sector providing these feedstocks (Hassouneh et al., 2012). For addressing price 

volatility, Univariate Exponential GARCH models are employed in conjunction with examining 

volatility interdependence across time by a Dynamic Conditional Correlation (DCC) Multivariate 

GARCH model.  

The reminder of the introduction briefly discusses federal biodiesel policies along with 

European Union policies directly affecting the U.S. biodiesel market. A literature review on 

empirical volatility models addressing biofuels is then presented in Section 2. Section 3 outlines 
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the univariate EGARCH and DCC-MGARCH with Section 4 describing the underlying data. 

Section 5 presents the empirical results and concluding remarks are presented in the final section, 

Section 6.  

Biofuel policies have an impact on prices relations among oil, biofuel, and agricultural-

commodity markets (de Gorter, Drabik, and Just, 2013). Biofuel mandates, subsidies, and the 

fuel-blending restrictions will affect the fossil and agricultural-commodity price relations 

(Gardebroek and Hernandez, 2013). The two primary means that subsidies affect the demand for 

U.S. biodiesel are the Renewable Fuel Standard (RFS) and the blender tax credit (Babcock, 

2011). The RFS is a federal program, which requires transportation fuel sold within the United 

States to contain a minimum volume of renewable fuels (U.S. Department of Energy, 2014) and 

was created under the Energy Policy Act of 2005 (EPA, 2014). The expanded RFS (referred to as 

RFS2), implemented in 2010, subdivides the total renewable fuel requirement into four separate 

but nested categories (Schnepf and Yacobucci, 2013). One of the four categories is biomass-

based diesel, which is a diesel-fuel substitute made from renewable feedstock, including 

biodiesel and non-ester renewable diesel. The biodiesel mandates were 1.15, 0.80, and 1.00 

billions of gallons in 2010, 2011, and 2012, respectively. The 2013 biodiesel mandate was 

revised upwards from one billion to 1.28 billion gallons (Schnepf and Yacobucci, 2013).  The 

biodiesel production in 2013 was beyond the mandate at 1.28 billion gallons. EPA proposed to 

set the renewable fuel standards for 2014 at the levels that were actually produced and used as 

transportation fuel, heating oil or jet fuel in the contiguous U.S. and Hawaii (EPA, 2015). EPA 

proposed annual increases in the required volume of biomass-based diesel for 2015, 2016, and 

2017 (EPA, 2015). The blender tax credit is paid on every gallon of biodiesel that is blended in 

the United States with any quantity of fossil fuel. The $1.00 per gallon blender tax credit for 
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biodiesel was established in 2005 by the American Jobs Creation Act of 2004. It was extended 

by several acts. The tax credit temporarily lapsed in 2010 and was then extended again by the 

Tax Relief, Unemployment Insurance Reauthorization, and Job Creation Act of 2010 

(Yacobucci, 2012). The credit was allowed to expire on December 31, 2013 (U.S. Department of 

Energy, n.d.), but could possibly be reestablished. On May 15, 2014, the U.S. Senate failed to 

pass the “Expiring Provisions Improvement Reform and Efficiency (EXPIRE) Act. The EXPIRE 

Act includes extension of biodiesel tax credit through December 31, 2015 and retroactive to 

January 1, 2014 (U.S. Senate Committee on Finance, 2014). This tax credit helped raise the 

United States biodiesel price by making exports to the European Union more profitable, thereby 

possibly increasing the soybean and corn prices, as land is taken out of corn and used in soybean 

production (de Gorter, Drabik, and Just, 2013).  

The impact of Untied States biodiesel policies also depends on their interaction with EU 

biodiesel policies (de Gorter, Drabik, and Just, 2011). The European Commission (EC) initiated 

anti-dumping and anti-subsidy investigations into imports of biodiesel from the United States on 

June 13, 2008, after a complaint was lodged by the European Biodiesel Board (EBB), which 

represents the European biodiesel industry, in April 2008. According to the EC investigation, the 

U.S. tax credit of $1.00 per gallon of biodiesel caused European producers to lose market share. 

Meanwhile, U.S. biodiesel production and prices fell sharply in June 2008 (de Gorter, Drabik, 

and Just, 2013). The EC imposed temporary anti-dumping and anti-subsidy duties on imports of 

biodiesel from the United States in March 13, 2009. The measures were in place for four months 

while the investigation continued. On July 12, 2009, the EC imposed definitive anti-dumping and 

anti-subsidy duties for a period of five years (EBB, 2014). The U.S. biodiesel prices stabilized 

after the duties were implemented in March 2009.  
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3.2. Literature Review 

While most of the biofuel-related time-series literature has investigated price-level links, the 

literature on the price volatility interactions is relatively limited. The 2007-2008 food crisis 

stimulated research on the price-volatility spillover, which complements research investigating 

price-level impacts. With a few exceptions, the biofuel-related price volatility literature has 

relied on GARCH-type models (Serra, 2013).   

A number of studies examine the volatility-spillover effects among fossil fuels, biofuels, 

and agricultural-commodity prices. Zhang et al. (2009) applied a BEKK-MGARCH model to 

U.S. crude oil, ethanol, and corn prices for the period 1989-2007. They found no links with 

ethanol volatilities influencing corn- and soybean-price volatilities. Instead, the reverse was 

indicated with impacts of agricultural commodity price volatility on energy price volatility. 

During the ethanol boom period, a shock in soybean price volatility impacts ethanol price 

volatility, and a shock in corn price volatility impacts oil price volatility. Serra, Zilberman, and 

Gil (2011) employed VECM-BEKK-MGARCH model using weekly international crude oil 

prices and Brazilian ethanol and sugar prices from 2000 to 2008. Their results suggest a strong 

link between food and energy markets in terms of both price levels and volatility. Trujillo-

Barrera, Mallory, and Garcia (2012) applied univariate GJR-GARCH and BEKK-MGARCH 

models to weekly futures prices for crude oil, ethanol, and corn from 2006 through 2011. They 

found strong and varying volatility transmission from crude-oil futures market to ethanol- and 

corn- futures markets. Gardebroek and Hernandez (2013) employed both BEKK-MGARCH and 

DCC-MGARCH models using weekly prices for U.S. crude oil, ethanol, and corn from 1997 

through 2011 to investigate whether price volatility in oil and ethanol markets stimulates price 

volatility in corn market. Their results indicate there is no volatility spillover from oil or ethanol 
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to corn, which does not support the popular press concern of increased price volatility in 

agricultural markets due to biofuels.  

Other studies narrowed their focus to the relationship between fossil fuels and 

agricultural commodity prices without incorporating biofuel prices. Du, Yu, and Hayes (2011) 

applied a stochastic volatility model to weekly crude oil, corn, and wheat futures prices from 

1998 to 2009 and found evidence of volatility spillover among crude oil, corn, and wheat 

markets after the fall of 2006. Wu, Guan, and Myers (2011) estimated univariate TGARCH and 

asymmetric BEKK-MGARCH models using weekly crude oil and corn cash and future prices 

from 1992 to 2009. Their results indicate significant and positive spillover effects from crude oil 

prices to corn cash and future prices, and these spillover effects are time-varying. Nazlioglu, 

Erdem, and Soytas (2013) concluded there are volatility spillovers from the oil market to corn, 

wheat, and soybean markets from 2006 to 2011 and from wheat to oil market from 1986 to 2011 

by employing a univariate GARCH model and causality in variance test.   

Existing literature has mainly assessed the dynamic linkages of price level and volatility 

between food and energy markets for the ethanol market. A few studies have considered the 

price volatility for the biodiesel market in European countries. Schulz (2012) employed VECM 

and DCC-MGARCH models using weekly prices for German biodiesel, crude oil, and rapeseed 

from 2002 through 2012. The study indicates conditional volatilities are highly persistent and 

conditional correlations are mostly positive but highly fluctuating, especially since the food crisis 

in 2008. Emergent biodiesel market in the United States has, however, received limited if any 

attention.  
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3.3. Methodology 

Two complementing methodologies are employed for investigating the volatility linkages among 

the crude oil, biodiesel, diesel, and soybean price series. The exponential generalized 

autoregressive conditional heteroskedasticity (EGARCH) model developed by Nelson (1991) is 

employed to capture possible asymmetric impact of positive and negative shocks on volatilities. 

EGARCH also avoids imposing non-negativity restrictions on the value of the GARCH 

estimated parameters (Bollerslev, 1986). Complementing EGARCH is the dynamic conditional 

correlation multivariate GARCH (DCC-MGARCH) model (Engel, 2002), which allows 

examination of possible changes in the level of price-volatility interdependence among markets 

through time.   

3.3.1. EGARCH 

Allowing asymmetric stocks, consider an EGARCH model with log difference for crude oil, 

biodiesel, soybean, and diesel 

𝒓𝒕 = 𝜸𝟎 + ∑ 𝜸𝒋𝒓𝒕−𝒋

𝑝

𝑗=1

+ 𝜺𝒕, 

𝜀𝑡|𝑰𝒕−𝟏~(0, 𝜎𝑡
2), 

(1) 

where 𝒓𝒕 denotes the log-difference price vector, 𝜺𝒕 is the stochastic error, which is assumed to 

be normally distributed with a zero mean and conditional (time-varying) variance, 𝜎𝑡
2, and 𝑰𝒕−𝟏 

is the information set at time t − 1.  

𝑙𝑜𝑔(𝜎𝑡
2) = 𝑎0 + ∑ 𝑎𝑖𝑔(𝑧𝑡−𝑖)

𝑞

𝑖=1

+ ∑ 𝑏𝑗𝑙𝑜𝑔 (𝜎𝑡−𝑗
2 )

𝑝

𝑗=1

, (2) 

where 

𝑔(𝑧𝑡) = 𝜃𝑧𝑡 + 𝛾[|𝑧𝑡| − 𝐸|𝑧𝑡|], (3) 
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 𝑧𝑡 =
𝜀𝑡

𝜎𝑡
. 

Equation (2), the conditional variance equation, reflects the EGARCH(p, q) representation. The 

left-hand side of (2) is the log of the conditional variance, which implies the leverage effect is 

exponential. EGARCH modeling explicitly assumes the variance is conditional on its own past 

values as well as a function of the standardized residuals 𝑧𝑡. The persistence of volatility implied 

by (2) is measured by ∑ 𝑏𝑗
𝑝
𝑗=1 . If the unconditional variance is finite, ∑ 𝑏𝑗

𝑝
𝑗=1  is less than one in 

absolute value. The smaller the absolute value of this sum, the less persistent volatility is after a 

shock. In (3), [|𝑧𝑡| − 𝐸|𝑧𝑡|] captures the ARCH effect, which is similar to the concept behind a 

GARCH specification. The parameter 𝜃 allows for this ARCH effect to be asymmetric. A 

statistically significant 𝜃 indicates an asymmetric effect exists.  

Considering an EGARCH(1,1), where p = q =1, the model can test the following 

volatility spillovers among crude oil, biodiesel, soybeans, and diesel markets: (a) from biodiesel, 

soybean, and diesel prices to crude oil prices; (b) from crude oil, soybean, and diesel prices to 

biodiesel prices; (c) from crude oil, biodiesel, and diesel prices to soybean prices; and (d) from 

crude oil, biodiesel, and soybean prices to diesel prices. The modeling framework was adopted in 

previous studies on volatility spillovers. Hamao, Masulis, and Ng (1990) applied this approach to 

a GARCH-M model for detecting volatility spillover across international stock markets. Buguk, 

Hudson, and Hanson (2003) employed this approach in an EGRACH model examining the 

volatility spillover in the catfish supply chain. Wu and Li (2013) also combine this approach with 

an EGARCH model to analyze the volatility spillover in China’s crude oil, corn, and ethanol 

markets.  

Allowing case (a) as an illustration, the contemporaneous squared residuals from the 

mean-conditional variance formulation of log difference of biodiesel, soybean, and diesel prices 
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are exogenous variables in the conditional variance equation of log difference of crude oil prices. 

Thus, the conditional variance equation for log difference of crude oil prices is  

𝑙𝑜𝑔(𝜎1,𝑡
2 ) = 𝜔1 + 𝛼1 |

𝜀1,𝑡−1

𝜎1,𝑡−1
− √

2

𝜋
|  + 𝛽1 𝑙𝑜𝑔(𝜎1,𝑡−1

2 ) + 𝛿1

𝜀1,𝑡−1

𝜎1,𝑡−1
 + 

𝑐12 𝑙𝑜𝑔(𝑈2,𝑡) + 𝑐13 𝑙𝑜𝑔(𝑈3,𝑡) + 𝑐14 𝑙𝑜𝑔(𝑈4,𝑡), 

(4) 

where 𝑈2,𝑡, 𝑈3,𝑡, and 𝑈4,𝑡 are the contemporaneous squared residuals from the EGARCH(1,1) for 

log difference of biodiesel prices, AR(1) − EGARCH(1,1) for log difference of soybean prices, 

and EGARCH(1,1) for log difference of diesel prices. Let 𝑐𝑖𝑗, 𝑖 ≠ 𝑗, denote the spillover from 

market 𝑖 to market 𝑗.The existence of a volatility spillover is indicated by the statistical 

significance of 𝑐12, 𝑐13, and 𝑐14. Statistical inference regarding these parameters is based on 

robust standard errors derived by Bollerslev and Wooldridge (1992) to allow for possible 

violations of the assumption of normality for the conditional errors.  

3.3.2. DCC-MGARCH 

Multivariate GARCH models allow the conditional mean to follow a vector autoregressive 

(VAR) structure and allow the conditional covariance matrix of the dependent variables to 

follow a flexible dynamic structure. Such a DCC-MGARCH model is employed to examine the 

level of interdependence and the dynamics of volatility among U.S. crude oil, biodiesel, soybean, 

and diesel markets. Specifically, the DCC-MGARCH model by Engle (2002) approximates a 

dynamic conditional correlation matrix, which permits evaluation of the time-varying 

interdependence among markets. Employing this model, the conditional means of the log 

difference are modeled as a first-order vector autoregressive, VAR(1), process and the 

conditional covariances as a DCC(1,1) process where the variance of each disturbance term 

follows a GARCH(1,1) process.  
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Mathematically, the representation is  

𝒓𝒕 = 𝜸𝟎 + ∑ 𝜸𝒋𝒓𝒕−𝒋

𝑝

𝑗=1

+ 𝜺𝒕, 

𝜺𝒕|𝑰𝒕−𝟏~(0, 𝑯𝒕), 

(5) 

where 𝒓𝒕 is a 4 × 1 vector of log difference crude oil, biodiesel, soybean, and diesel prices, 𝜸𝟎 is 

a 4 × 1 vector of long-run drifts, 𝜸𝒋, with 𝑗 = 1, … , 𝑝, are 4 × 4 matrices of parameters, and 𝜺𝒕 is 

a 4 × 1 vector of forecast errors for the best linear predictor of 𝑟𝑡, conditional on past 

information denoted by 𝑰𝒕−𝟏, and with corresponding variance-covariance matrix 𝑯𝒕. As in a 

standard VAR representation, the elements of 𝛾𝑗, 𝑗 = 1, … , 𝑝, provide measures of own- and 

cross-mean spillovers between markets. A VAR(1) is employed to fit the conditional means of 

log difference. The model can then be rewritten as  

𝒓𝒕 = 𝜸𝟎 + 𝜸𝟏𝒓𝒕−𝟏 + 𝜺𝒕, 

𝜺𝒕|𝑰𝒕−𝟏~(0, 𝑯𝒕). 
(6) 

The conditional variance-covariance matrix 𝐻𝑡 is defined as  

𝑯𝒕 = 𝑫𝒕𝑹𝒕𝑫𝒕, 

𝑫𝒕 = 𝑑𝑖𝑎𝑔(ℎ11,𝑡
1/2

… ℎ44,𝑡
1/2

), 
(7) 

where ℎ𝑖𝑖,𝑡
1/2

 is defined as a GARCH(1,1) specification 

ℎ𝑖𝑖,𝑡 = 𝜔𝑖 + 𝛼𝑖𝜀𝑖,𝑡−1
2 + 𝛽𝑖ℎ𝑖𝑖,𝑡−1, 𝑖 = 1, … ,4.  

The time-dependent conditional correlation matrix 𝑅𝑡 = (𝜌𝑖𝑗,𝑡), i, j = 1, … ,4 is defined as  

𝑹𝒕 = 𝑑𝑖𝑎𝑔(𝑞𝑖𝑖,𝑡
−1/2

)𝑸𝒕𝑑𝑖𝑎𝑔(𝑞𝑖𝑖,𝑡
−1/2

), (8) 

with the 4 × 4 symmetric positive-definite matrix 𝑸𝒕 = (𝑞𝑖𝑗,𝑡), 𝑖, 𝑗 = 1, … ,4, given by 

𝑸𝒕 = (1 − 𝛼 − 𝛽)�̅� + 𝛼𝒖𝒕−𝟏𝒖𝒕−𝟏
′ + 𝛽𝑸𝒕−𝟏, (9) 
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and 𝑢𝑖𝑡 = 𝜀𝑖𝑡/√ℎ𝑖𝑖𝑡. The variable �̅� is the 4 × 4 unconditional variance matrix of 𝑢𝑡, and α and 

β are non-negative parameters satisfying α + β < 1. Equation (9) resembles an autoregressive 

moving average (ARMA) type process, which captures short-term deviations in the correlation 

around its long-run level. The variance-covariance matrix defined in (7) permits modeling the 

degree of volatility interdependence among markets across time.  

3.4. Data 

Weekly crude oil, diesel, biodiesel, and soybean price series are employed from April 13, 2007 

through June 27, 2014, which results in 377 observations. Crude oil prices ($/barrel) represent 

the global spot price for West Texas Intermediate in Cushing, Oklahoma (EIA, 2014d). Biodiesel 

and diesel prices ($/gallon) are from the USDA Agricultural Marketing Service (Center for 

Agricultural and Rural Development, 2014) and low sulfur free diesel on board prices in New 

York Harbor (EIA, 2014e), respectively. Soybean spot prices ($/bushel) represent Memphis 

soybean prices (USDA, 2014). Nominal prices are adjusted to real by the Producer Price Index 

(PPI) for Crude Material (U.S. Department of Labor, 2014). Figure 3.1 illustrates the monthly 

coefficients of variation for crude oil, biodiesel, soybean, and diesel prices during the sample 

period. The coefficients of variation are unstable between mid-2008 and the end of 2009. This 

represents the wide price swings with the pre- and post-recession periods. Figure 3.2 illustrates 

the coefficients of variation for biodiesel during the sample period. The coefficient of variation 

for biodiesel is the largest in October 2009.  

Table 3.1 provides additional insight concerning the potential interdependencies among 

the four markets. The table lists Pearson correlations of log differences, rt = ln(Pt/Pt-1), where Pt 

denotes the vector of real prices (crude oil, biodiesel, soybean, and diesel) at week t. This log 

difference is a close approximate to the percentage change of weekly real prices. All log-
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difference correlations are statistically significant at the 1% level, with the correlation between 

oil and diesel likely stronger than the correlations among the other pairs. These correlations and 

plots indicate U.S. energy and soybean markets appear to be interrelated. Yet, establishing the 

sources of these interdependences on price-volatility spillover requires further analysis.  

Descriptive summary statistics for the log difference are listed in Table 3.2. Log 

differences of crude oil and diesel are more than twice that of biodiesel along with log difference 

of soybean more than three times. This indicates biodiesel prices are potentially not as volatile as 

the other prices. All the prices are all skewed to the left with Jarque-Bera test statistics rejecting 

the null hypothesis of a normal distribution at a 1% significance level. The log difference in 

crude oil indicates a leptokurtosis distribution compared to the other mesokurtic distributions. At 

least at the 10% significance level, the Ljung-Box statistics indicate all the log-difference prices 

exhibit autocorrelation except for biodiesel and diesel log-difference prices and the Lagrange 

Multiplier tests indicate all the log differences of weekly real prices have some arch effects at 

least at the 10% significance level.  

Figures 3.3 through 3.6 illustrate the log difference of weekly prices of crude oil, 

biodiesel, soybeans, and diesel. There is high volatility between mid-2008 and mid-2009. The 

price volatility of fossil fuels, crude oil and diesel, appear to dampen through time after the 

volatile years 2008 and 2009. This suggests the fossil fuels possibly exhibit only a single period 

of volatility clustering. In contrast, the agricultural commodity prices, biodiesel and soybeans, 

and in particular soybean prices appear to exhibit additional volatility clustering in subsequent 

years. The market for the fossil fuels appears to be more intertwined and somewhat distinct from 

the agricultural commodities markets.  
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 Augmented Dickey-Fuller and Phillips-Perron unit-root tests for price log-differences are 

listed in Table 3.3. The null hypothesis is a log-difference price series contains a unit root. 

Results indicate all the series of log difference of real prices are stationary at the 1% significance 

level.  

In the mean equations of univariate models, the lag lengths are determined by the 

autocorrelation function (ACF) and the partial autocorrelation function (PACF) plots along with 

Akaike Information Criterion (AIC) and Schwarz’s Bayesian Information Criterion (SBIC). The 

ACF and PACF plots indicate there is no evidence of autocorrelation for the log differences of 

biodiesel and diesel prices, while the log differences of crude oil and soybean prices are related 

to their one lag. There is a negative lag one autocorrelation for log differences of crude oil and 

soybean prices. AIC and SBIC support this conclusion. 

3.5. Results 

3.5.1. Univariate 𝐄𝐆𝐀𝐑𝐂𝐇 models and volatility spillover 

The estimation results of the univariate EGARCH models are listed in Table 3.4. All models 

were determined to be the best fit by EGARCH(1,1) and mean equations were determined by 

results of serial correlation tests. Lagrange Multiplier tests indicate there are no arch effects in 

the standardized residuals of EGARCH (1,1). The mean equations were determined by ACF and 

PACF plots and AIC and SBIC.  

The results in Table 3.4 indicate significant negative lag-one autocorrelation for both 

crude oil and soybeans at the 5% level. These negative autocorrelations imply the lack of 

autocorrelation persistence in the price series where prices through time remain either above or 

below the mean. A shock to either crude oil or soybean prices will not persist with the bracketed 

prices likely alternating above and below the historical mean. The ARCH effect, 𝛼1, is 
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significant at the 10% level for only log difference in soybean prices. This indicates volatility 

clustering within the soybean prices where large (small) volatility tends to be persistent. All the 

𝛽1 coefficients measuring the GARCH effect are significant at the 1% level. The news from a 

previous period significantly determines the current volatility. The GARCH coefficients for 

crude oil, biodiesel, and diesel are in the neighborhood of 0.3 to 0.4, which indicates the 

presence of persistence within these price series. The strongest level of persistence is associated 

with soybean prices with a GARCH effect of 0.597. Asymmetry in the shocks on volatility is 

apparent in the crude oil prices at a 5% significance level.  This asymmetry indicates the crude 

oil market will respond to a positive price shock by increasing production and mitigating the 

price rise. In contrast, there is a lack of market adjustment for a negative price shock as the 

market attempts to maintain production. A negative shock brings about volatility more than a 

positive shock in the crude-oil market.  

Of particular interest is the spillover effects across the fuel and agricultural markets.  

There are significant, at the 1% level, spillover effects from a shock in crude-oil prices to 

biodiesel, soybean, and diesel markets. The magnitudes of the spillover coefficients are relatively 

small for biodiesel and soybeans, both around 0.10 compared with a diesel coefficient, 0.269. 

Diesel prices appear much more elastic to a crude-oil shock than either biodiesel or soybean 

prices. A crude oil price shock impacts all the other markets indicating the importance of this 

fossil resource in economic activity. The results indicate no spillover effect of a biodiesel shock 

on diesel prices, but a positive spillover on crude oil and soybean prices at a 1% level. The 

positive influence of biodiesel prices on the soybean market at the 1% level is not surprising 

considering the derived demand for soybeans in biodiesel production. The underlying demand 

for crude oil in the fuel market may explain the biodiesel spillover, with both diesel and biodiesel 
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price shocks spilling over into the crude-oil market. The magnitudes of these shocks are diverse 

with the diesel spillover over three time that of biodiesel. Relative to the double-directional 

volatility spillovers between crude oil and diesel, the other spillovers are low with the soybean 

shock on biodiesel prices being slightly higher at 0.134 (1% significance level). This indicates a 

soybean shock has a stronger impact on biodiesel prices than the reverse. Biodiesel is more 

responsive to a soybean shock, more elastic, than a soybean is to a biodiesel shock. With 

soybeans the major input in biodiesel refining and biodiesel not a major market for soybeans, this 

difference in elasticities can be explained. However, in general the elasticities of these spillovers 

are relatively low, highly inelastic. The results do indicate unilateral spillovers. In particular, 

diesel price shocks influence biodiesel but the reverse does not hold. This indicates the 

substitution effect of biodiesel completing with diesel as the price of diesel increases. 

In summary, there are significant spillovers among the fuel and agricultural-commodity 

markets. In terms of fossil fuels, these spillovers appear to be larger, leading to a stronger link, 

between the crude oil and diesel markets relative to the other markets. A possible exception is 

the biodiesel/soybean market with soybeans influencing biodiesel. In tandem with these 

spillovers is the presence of persistence associated with price shocks. In terms of pervious 

literature, Serra (2013) summarized the general findings as follows: (1) Biofuel (or energy) price 

transmits volatility to feedstock prices; (2) Biofuel prices do not transmit volatility to fossil fuel 

prices; (3) Feedstock prices transmit volatility to biofuel prices. The results of the univariate 

EGARCH model are generally consistent with the summary of the time-series literature 

assessing volatility in the U.S. ethanol markets. An exception is the transmission of biofuel 

prices to the crude oil market; although relatively weak. However, possibly even more important 
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for policy analysis is the magnitude of the elasticities associated with these volatility-spillover 

shocks.       

The Ljung-Box test results are listed in Table 3.4 as a measure of overall model fit.  The 

null hypothesis of no autocorrelation could not be rejected at the 10% level for all but the diesel 

price series. This indicates there may exist an improved diesel model specification if the 

objective is forecasting the price series. 

3.5.2. DCC-MGARCH model and volatility spillover 

The DCC model allows examination of whether the level of volatility interdependence among 

markets has changed across time. Table 3.5 lists the coefficient estimates for the conditional 

mean equation and conditional variance matrix of the DCC-MGARCH model. The Ljung-Box 

(LB) statistics indicate there is no evidence of autocorrelation in the standardized residuals at the 

5% significance level. Overall, the residual diagnostic statistics support the adequacy of the 

model specification. 

In the conditional mean equation, the 𝛾1𝑖𝑖 coefficients, i = 1, … ,4, capture own-market 

dependence, the dependence of the log difference of prices in market 𝑖 on its lagged value, while 

the 𝛾1𝑖𝑗, i ≠ j, coefficients capture cross-market dependence. The dependence of the log 

difference of prices in market 𝑖 on the lagged change in market 𝑗. Crude oil prices have no 

significant, at the 10% level, own-mean spillover, while biodiesel, soybean, and diesel prices at 

the 10%, 5%, and 1% significance level, respectively, exhibit relatively strong and negative own-

mean spillovers. The latter findings can be explained by own substitution effects in demand. A 

shock in prices above market equilibrium will lead to a decrease in demand, with the market then 

adjusting prices downward in subsequent periods.  This demand-substitution effect is not 

significant for crude oil, which may be more driven by slowly changing macro-economic 
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conditions, income effects. In terms of the cross-market dependence, the fossil resources are 

negatively influencing the agricultural commodity, soybeans. Generally, a portion of a positive 

shock in fossil input prices would be through the supply curve in the form of higher agricultural 

commodity prices. However, the results do not support this theory. Instead, the negative 

macroeconomic effects from a positive fossil-resource shock may be dampening commodity 

prices. This is supported by the positive diesel shock on the crude oil price series; explained by 

derived demand theory.               

Turning to the conditional variance-covariance equations, the parameter 𝛼𝑖 is positive 

and significant at 1% in all the series, except for biodiesel, which is significant at the 5% level 

and positive. This implies ARCH market shocks have a positive impact on volatility, however, 

the persistence is relatively low. The persistence coefficients 𝛽𝑖 are also all significant at a 1% 

level and relatively large, which indicates a high degree of persistency in the volatility. A 

persistence coefficient close to one implies a high degree of persistency in the volatility. The 𝛽𝑖 

for diesel is 0.901, indicating the diesel market has the highest persistency in the volatility. The 

soybean market has the lowest persistency in the volatility.  

Estimates for the DCC (1, 1) model, yield 𝛼 and 𝛽 coefficients, which are positive and 

significant at the 1% and 5% levels, respectively. This indicates the presence of time-varying 

correlations. It also indicates that shocks in the market cause correlations to increase. The 

magnitudes of 𝛼 and 𝛽 indicate that the evolution of the conditional covariances depends more 

on their past values than on lagged residuals’ innovations. Note that the sums of αi and βi are all 

less than one, which satisfies the restrictions. 

The estimated time-varying conditional pairwise correlations of crude oil, biodiesel, 

soybean, and diesel prices are illustrated in Figures 3.7-3.9. The pairwise conditional correlations 
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are generally positive. In Figure 3.7, the crude oil and diesel correlation is extremely stable at 

around 75% during the sample period, except from the end of 2008 to the beginning of 2009.  

This period of a decline in correlation toward zero represents the Great Recession where 

economic activity sharply declined. Other than this abnormal economic period, the time-varying 

correlations between conventional fuels are relatively strong and stable.  Similarly, the biodiesel 

and diesel correlations, Figure 3.8, are also very stable at a lower correlation, around 40%, 

although not quite as stable as crude oil and diesel correlations.      

It is not just the crude oil and diesel correlations that exhibit unstable correlations during 

the Great Recession; all the pairwise conditional correlations are unstable during this period. 

However, as indicated in Figure 3.9, biodiesel and soybean correlations also exhibit instability 

both before as well as after the Great Recession. This may partially be the result of intermittent 

policies, which disrupts the market relation between soybean inputs for biodiesel refining. On 

March 13, 2009, the European Commission imposed temporary anti-dumping and anti-subsidy 

duties on imports of biodiesel from the U.S. Subsequently, on July 12, 2009, the commission 

extended the duties for five years. From 2005 through 2009 the U.S. federal government 

provided an incentive to produce biodiesel in the form a $1.00 tax credit. This tax credit lapsed 

in 2010 was then renewed in 2011 and lapsed again 2014. Further the U.S. federal government 

established a biodiesel mandate in 2010 providing a biodiesel supply floor. These policies have 

disrupted the market linkages between soybean and biodiesel prices, which leads to unstable 

correlations relative the fossil fuel (crude oil and diesel) price correlations.  

The overall soybean and biodiesel correlation, around 50%, is 33% less than the crude oil 

and diesel correlation. In 2011, approximately 7% of the soybean oil from the U.S. soybean crop 

was diverted from agricultural commodities to biodiesel production (USDA, 2014). This small 
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percentage of soybeans flowing into biodiesel suggests soybean prices respond to other major 

demands for their beans. The livestock market may exert a larger effect on soybean price than 

the biodiesel. From Figure 3.9, there is also a slight decline in their correlations subsequent to the 

recession. This may partially be explained by the declining share of soybeans as an input into 

biodiesel refining. In 2007, U.S. soybean's share of the biodiesel biomass inputs was 80% and in 

2009 it decreased to 49% before rebounding to approximately 57% in 2011 (EPA, 2010). This 

relative weak and slightly declining correlation between soybean and biodiesel prices does not 

support recent concerns of food before biodiesel.   

3.6. Conclusions  

As a first attempt to investigate price volatility in the U.S. biodiesel market, an investigation is 

presented of volatility spillovers employing Univariate EGARCH model and DCC-MGARCH 

model. The empirical results of the univariate EGARCH model are consistent with the general 

findings in the U.S. ethanol market. There exists double-directional price volatility spillovers 

between the biodiesel and the soybean markets and unidirectional price volatility from crude oil 

markets to the soybean market. Fossil fuels prices transmit volatility to biodiesel prices. The 

dominant impact is crude oil price spillovers into the other markets (biodiesel, soybean, and 

diesel). The magnitude of these spillovers is relatively strong for the fossil fuel markets (crude 

oil and diesel), with more inelastic spillovers between the agricultural commodities (soybeans 

and biodiesel) and across with the fossil fuels. An exception is the relatively more elastic impact 

soybean-price effect on the biodiesel market. In terms of persistence, previous volatility as 

measured by the GARCH effect indicates a shock will not be corrected within one time period. 

These results indicate there is a spillover in biodiesel shock into the soybean market. Price 

volatility in the biodiesel market does spillover into the soybean market and as a result of this 
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spillover soybean prices have some persistence in deviating from market trends. However, the 

elasticity of this spillover is very inelastic relative to the spillovers between crude oil and diesel 

markets.  Also, the elasticity from soybean-price volatility onto the biodiesel market is more 

elastic than the reverse. These results generally indicate in terms of price volatility, the food 

before biodiesel issue has weak empirical support. Results indicate biodiesel price volatility has 

about the same spillover elasticity on soybean prices as it does on crude oil prices.                   

The results from the EGARCH model are reinforced with estimation outcomes of the 

DCC-MGARCH model. DCC-MGARCH allows for time-varying conditional correlations in 

price volatility between markets. Removing the Great Recession, the results indicate the 

correlation between crude oil and diesel has not varied much over time. In contrast, the price 

volatility conditional correlations between biodiesel and soybeans exhibit considerable time-

varying with a slight declining trend. This instability and downward trend in conditional 

correlations indicates the lack of strong linkages within these markets. As addressed in the 

results, the presence of substitutes for soybeans in biodiesel refining and the relatively small 

biodiesel market for soybean may explain this weak price-volatility relation. However, in 

addition to these market characteristics, governmental policies may also play a role in this 

volatility relation. The disruptive federal policies of on and off tax credits are possibly leading 

the weak link in biodiesel/soybean price volatility.  

 As the share of biodiesel in our vehicle fuel mix increases, concern arises with 

biodiesel’s impacts on agricultural commodity prices. This initial analysis on biodiesel-price 

volatility effects on soybean-price volatility indicates that, while biodiesel-price volatility does 

appear to influence soybean-price volatility, the relation is highly inelastic relative to the crude 

oil-volatility impacts on diesel-price volatility. If this degree of volatility spillover is still of 
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concern, then U.S. agricultural policy should be directed toward mitigating such spillovers. 

Agricultural-commodity buffers would be one possible policy for supplementing supplies in 

years of insufficient harvests. Such commodity buffers could blunt food price spikes caused not 

only by possible biofuel shocks but also by other political, institutional, and environmental 

shocks. However, the cost of these policies must be weighed against the magnitude of the 

elasticities and possible ill effects of the spillover. Just considering existing policy impacts on 

price volatilities in terms of enhancing or mitigating price volatility would be a sound 

prescription for any policymaker.   
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Table 3.1. Pearson Correlation for Log Difference in Weekly Prices, 2007-2014a
  

Commodity Crude Oil Biodiesel Soybean Diesel 

Oil 1.000 0.337* 

 

0.341* 

 

0.717* 

 

Biodiesel  1.000 0.546* 

 

0.437* 

 

Soybean   1.000 0.431* 

 

Diesel    1.000 
a * Denotes significance at the 1% level. 
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Table 3.2. Summary Statistics for Log Difference of Weekly Real Prices, 2007-2014a 

 Crude Oil Biodiesel Soybean Diesel 

Mean  
(× 10−2) 

0.139 0.055 0.184 0.112 

Median 

(× 10−2) 

0.390 0.225 0.657 0.312 

Minimum 

(× 10−2) 
−29.592 −17.971 −16.748 −23.987 

Maximum 

(× 10−2) 

26.456 12.120 14.594 14.956 

Standard Deviation 

(× 10−2) 

5.402 3.445 4.248 4.351 

Skewness −0.706 −0.734 −0.621 −0.578 

Kurtosis 6.025 3.413 1.987 3.093 

Coefficent 

of Variation 

 

38.863 

 

62.691 

 

23.087 

 

38.848 

Jarque-Bera 599.970*** 216.212*** 86.018*** 170.791*** 

     

Ljung-Box Test for Autocorrelations 

Q(1) 6.460** 0.142 8.715*** 1.099 

Q(6) 10.677* 5.404 13.443** 17.548** 

     

Lagrange Multiplier Test for ARCH Effects 

LM(1) 14.088*** 3.928** 33.732*** 0.665 

LM(6) 147.935*** 10.609 53.964*** 64.468*** 

a Number of observations is 376 and *, **, and *** asterisks denote significance at the 0.10, 

0.05, and 0.01 levels, respectively.  
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Table 3.3. Unit Root Testsa  

Prices Augmented 

Dickey-Fuller 

Phillips-Perron 

Crude Oil −22.045 −21.902 
Biodiesel −18.954 −18.958 
Soybean −22.510 −22.698 
Diesel −20.461 −20.440 
a All the coefficients are significant at the 1% level, which indicates a stationary process. 
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Table 3.4. Univariate EGARCH Models of Volatility Spillover, Weekly Data, 2007-2014 

Parameters Returns of 

Crude Oil 

(j = 1) 

Returns of 

Biodiesel 

(j = 2) 

Returns of 

Soybean 

(j = 3) 

Returns of 

Diesel 

(j = 4) 

Univariate EGARCH Models 

Intercept 

(Mean) 
0.003∗ 

(0.001) 

0.001 

(0.001) 

0.002 

(0.002) 

0.003∗∗ 

(0.001) 
AR(1) −0.107∗∗ 

(0.048) 

 −0.118∗∗ 

(0.058) 

 

     

Intercept 

(Variance) 
−0.719∗∗ 

(0.345) 

−2.356∗∗∗ 

(0.657) 

−1.048∗ 

(0.539) 

−1.345∗∗∗ 

(0.354) 

α1 0.118 

(0.130) 

−0.069 

(0.110) 

0.169∗ 

(0.091) 

0.159 

(0.145) 

β1 0.391∗∗∗ 

(0.050) 

0.319∗∗∗ 

(0.107) 

0.597∗∗∗ 

(0.104) 

0.411∗∗∗ 

(0.052) 

δ1 −0.191∗∗ 

(0.078) 

0.068 

(0.081) 

−0.074 

(0.072) 

−0.032 

(0.094) 
     

Spillover 

Crude oil to 

𝑐1𝑗 

 0.100∗∗∗ 

(0.028) 

0.096∗∗∗ 

(0.020) 

0.269∗∗∗ 

(0.019) 

Biodiesel to 

𝑐2𝑗 

0.087∗∗∗ 

(0.029) 

 0.094∗∗∗ 

(0.028) 

0.001 

(0.032) 

Soybean to 

𝑐3𝑗 

0.036 

(0.034) 

0.134∗∗∗ 

(0.029) 

 0.077∗∗ 

(0.039) 

Diesel to 

𝑐4𝑗 

0.276∗∗∗ 

(0.027) 

0.074∗∗ 

(0.031) 

0.009 

(0.029) 

 

 

Diagnostic test 

Ljung-Box test for autocorrelation (H0: no autocorrelation in standardized residuals) 

LB(16) 13.499 

(0.636) 

23.288 

(0.106) 

11.857 

(0.754) 

32.980∗∗∗ 

(0.007) 

     

Note: For the EGARCH and spillover results, values in the parentheses below parameter 

estimates are standard errors. For the diagnostic tests, numbers in parentheses beneath diagnostic 

statistics are p-values. The symbol single (*), double (**), and triple (***) asterisks denote 

significance at the 0.10, 0.05, and 0.01 levels, respectively.  
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Table 3.5. Estimation Results for the DCC-MGARCH Model, Weekly Data, 2007-2014 

Coefficient Crude oil 

(i=1) 

Biodiesel 

(i=2) 

Soybean 

(i=3) 

Diesel 

(i=4) 

Conditional Mean Equation 

𝛾0 0.004∗ 

(0.002) 

0.002 

(0.002) 

0.004∗ 

(0.002) 

0.003∗ 

(0.002) 

𝛾11𝑖 0.036 

(0.079) 

0.087 

(0.055) 

−0.111∗ 

(0.057) 

−0.149∗ 

(0.088) 

𝛾12𝑖 0.071 

(0.050) 

−0.114∗ 

(0.061) 

−0.001 

(0.048) 

0.082 

(0.056) 

𝛾13𝑖 0.041 

(0.053) 

−0.041 

(0.062) 

−0.141∗∗ 

(0.062) 

0.018 

(0.062) 

𝛾14𝑖 0.160∗∗ 

(0.062) 

0.038 

(0.048) 

−0.087∗ 

(0.048) 

−0.234∗∗∗ 

(0.071) 

     

Conditional Variance-covariance Equation 

𝜔𝑖 0.000∗∗ 

(0.000) 

0.000∗∗∗ 

(0.000) 

0.000∗∗∗ 

(0.000) 

0.000∗∗ 

(0.000) 

𝛼𝑖 0.107∗∗∗ 

(0.021) 

0.074∗∗ 

(0.031) 

0.127∗∗∗ 

(0.035) 

0.064∗∗∗ 

(0.017) 

𝛽𝑖 0.834∗∗∗ 

(0.033) 

0.837∗∗∗ 

(0.052) 

0.786∗∗∗ 

(0.051) 

0.901∗∗∗ 

(0.024) 

𝛼    0.087∗∗∗ 

(0.032) 

𝛽    0.465∗∗ 

(0.232) 
     

Diagnostic Tests 

Ljung-Box test for autocorrelation (H0: no autocorrelation in standardized residuals) 

LB(16) 20.661 

(0.192) 

16.927 

(0.390) 

13.134 

(0.663) 

25.730∗ 

(0.058) 

     

Note: For the DCC-MGARCH model results, values in the parentheses below parameter 

estimates are standard errors. For Ljung-Box tests, numbers in parentheses beneath diagnostic 

statistics are p-values. The symbol single (*), double (**), and triple (***) asterisks denote 

significance at the 0.10, 0.05, and 0.01 levels, respectively.  

 

 

  



 

75 

 

Figure 3.1. Monthly Coefficients of Variation for Crude Oil, Biodiesel, Soybean, and Diesel 

Prices, 2007-2014 
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Figure 3.2. Monthly Coefficients of Variation for Biodiesel Prices, 2007-2014 
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Figure 3.3. Log Difference of Crude Oil Weekly Prices, 2007-2014 
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Figure 3.4. Log Difference of Biodiesel Weekly Prices, 2007-2014 

  



 

79 

 

Figure 3.5. Log Difference of Soybean Weekly Prices, 2007-2014 
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Figure 3.6. Log Difference of Diesel Weekly Prices, 2007-2014 
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Figure 3.7. Dynamic Conditional Correlations between Crude Oil and Diesel 
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Figure 3.8. Dynamic Conditional Correlations between Biodiesel and Diesel 
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Figure 3.9. Dynamic Conditional Correlations between Biodiesel and Soybean 
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CHAPTER 4 

BIODIESEL INVESTMENT IN A DISRUPTIVE POLICY ENVIRONMENT3 

  

  

                                                 
3 Liu, S., G. Colson, and M.E. Wetzstein. To be submitted to Energy Policy. 
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Abstract 

The effect of Poisson type policy jumps on biodiesel investment is investigated through the 

theory of investment under uncertainty. The analysis considers the probability of a policy being 

implemented if it is not in effect and the probability of it being withdrawn if it is in effect. As an 

application, the policy switching regime of the discontinuous federal tax credit of $1.00 per 

gallon on biodiesel is modeled as a Poisson jump process. Results support that time inconsistent 

government policies do lead to market uncertainty. The analysis reveals a pronounced negative 

impact on the decisions to invest in a biodiesel refinery. However, results indicate a consistent 

policy switching regime may not be that disruptive. It is policy uncertainty that drives the option 

pricing thresholds and a consistent policy switching does not increase the uncertainty.  
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4.1. Introduction 

Economic research on alternative energy investments has generally considered the effect a 

particular policy type has on adoption. In 2014 alone, there were at least 11 studies addressing 

the impact of policy types (e.g. standards, subsidies, or taxes) on the economics of renewable 

energy (samples are Fera et al., 2014; del Rio, 2014; Yi and Feiock, 2014). Considerably less 

research has addressed the timing of when a policy should be instigated.  A decade ago, Pindyck 

(2002) considered timing of policy adoption in environmental economics. In terms of alternative 

energy adoption, Xian et al. (2014) addressed the timing of a U.S. wood pellet subsidy. Type and 

timing are two legs in the 3-Ts of effective government policy development, with the third being 

transience. Transience is concerned with the length and consistency of a policy. The literature is 

void in presenting research directed toward the transience of energy policies. Tangential to 

transience is policy commitment where there are some past research efforts considering a 

policymaker’s commitment through time to enforcing environmental regulations (Poyage-

Theotoky and Teerasuwannajak, 2002). As a first attempt at filling this policy transience void in 

alternative energy adoption, empirical results are presented demonstrating the importance of 

consistent (nondisruptive) policies. Specifically, the U.S. production of biodiesel is investigated 

under shifting, on and off again, federal tax credits. The underlying hypothesis is these 

inconsistent tax credits lead to market uncertainty, which have a pronounced impact on the 

decisions to invest in a biodiesel refinery.    

For investigating this hypothesis, a real options analysis is developed, which considers 

the likelihood of a tax credit policy shift. The analysis considers the probability of a policy being 

implemented if it is not in effect and the probability of the credit being withdrawn if it is in 

effect. This real options analysis follows closely Dixit and Pindyck (1994) section on policy 
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uncertainty. Results support the hypothesis that inconsistent tax credits lead to market 

uncertainty, which can have a pronounced impact on the decision to invest in a biodiesel 

refinery.  If there exists a high probability of a tax credit being implemented in the near future, 

then biodiesel investors will want to delay investment.  Similarly, with a current tax credit, as the 

probability of the credit being withdrawn increases, biodiesel investors will want to capitalize on 

this tax credit before it is withdrawn. The results do reveal it is not a policy switching regime that 

affects investment. It is instead policy uncertainty. A known consistent policy switching regime 

does not increase investment uncertainty. For policy analysis and implementation, it is important 

to make a distinction between policy uncertainty and known policy switching.    

4.1.1. U.S. Biodiesel Subsidies 

The two primary means by which subsidies affect the demand for U.S. ethanol and biodiesel are 

the Renewable Fuel Standard (RFS) and the Blender Tax Credit (BTC) (Babcock, 2011). The 

RFS is a federal mandate requiring the blending of biofuels into U.S. transportation fuels. It 

originated with the Energy Policy Act of 2005 and was expanded and extended by the Energy 

Independence and Security Act of 2007 (EISA) (U.S. Department of Energy, 2014). The initial 

RFS (referred to as RFS1) mandated that a minimum of four billion gallons of renewable fuel be 

incorporated into the nation’s gasoline supply in 2006, and that this minimum volume rise to 7.5 

billion gallons by 2012 (Schnepf and Yacobucci, 2013). EISA was passed on December 19, 

2007, and the EPA issued its final rule to implement and administer the expanded RFS (referred 

to as RFS2) on February 3, 2010. RFS2 subdivides the total renewable fuel requirement into four 

separate but nested categories (Schnepf and Yacobucci, 2013). One of the four categories is 

biomass-based diesel, which is a diesel fuel substitute made from renewable feedstock, including 

biodiesel and non-ester renewable diesel. Table 4.1 lists the RFS2 biomass-based diesel mandate. 
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The 2013 biodiesel mandate was revised upwards from one billion gallons to 1.28 billion gallons 

(Schnepf and Yacobucci, 2013).  EPA proposed to set the renewable fuel standards for 2014 at 

the levels that were actually produced and used as transportation fuel, heating oil or jet fuel in the 

contiguous U.S. and Hawaii (EPA, 2015). EPA proposed annual increases in the required 

volume of biomass-based diesel for 2015, 2016, and 2017 (EPA, 2015). 

A biodiesel tax credit of $1.00 per gallon was established in 2005 by the American Jobs 

Creation Act of 2004. It was then extended by the Energy Policy Act of 2005 and amended by 

the Energy Improvement and Extension Act of 2008. The tax credit temporarily lapsed in 2010. 

It was then extended again by the Tax Relief, Unemployment Insurance Reauthorization, and Job 

Creation Act of 2010 (Yacobucci, 2012). The credit was allowed to expire at the end of 2011, 

with the American Taxpayer Relief Act of 2012 retroactively extending the tax credit through 

December 31, 2013 (U.S. Department of Energy, 2014). The credit was then allowed to expire, 

but could possibly be reestablished. On May 15, 2014, the U.S. Senate failed to pass the Expiring 

Provisions Improvement Reform and Efficiency (EXPIRE) act. The EXPIRE act included 

extension of biodiesel tax credit through December 31, 2015 and retroactive to January 1, 2014 

(U.S. Senate Committee on Finance, 2014). Table 4.1 lists the on and off biodiesel tax credit 

from 2005 through 2014.  

4.1.2. Literature Review 

Markets generally do not perform well to uncertainty. This results in adverse market price 

swings damping investment and innovation. Policymakers can, through policy and programs, 

improve efficiency by reducing market uncertainty. One example is USDA’s situation and 

outlook reports, which provide information on current and projected future market conditions. 

Such information can avoid problems with information asymmetry by reducing market 
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uncertainty. However, even well intended policies can through implementation be less effective 

and may actually be disruptive by aggravating the uncertainty.  Policies associated with the 

biodiesel tax credit may be an example of such a well-intended policy not yielding its full 

potential of stimulating biodiesel investment.  

As also indicated in Table 4.1, the history of governmental policy uncertainty coupled 

with annual changes in the RFS does not provide a stable policy platform for a young and 

maturing biodiesel industry. Theory would then hypothesize such disruptive policies would 

negatively impact the biodiesel market. Instead of providing a stable price regime, it is 

hypothesized policies would lead to price volatility. 

Such inconsistent policy has the potential of disrupting investment by limiting biodiesel 

producers’ access to financing. Specifically, Yokado Biofuels, a small biodiesel maker in 

California, stopped producing vehicle fuel and closed its retail outlet due to the suspension of the 

federal tax credit and the stagnation of the RFS in 2014 (Anderson, 2014). The inconsistent 

policy toward biodiesel has harmed the industry. 

As described in Dixit and Pindyck (1994), firms have the flexibility to begin or defer 

projects given current economic and price environments. This flexibility cannot be captured by 

net present value or discounted cash flow analyses. The presence of real options in an industry 

can have important implications for public policy, particularly in capital intensive industries such 

as telecommunications and energy, where policy changes such as deregulation can have 

significant implications for market uncertainty and the potential for sunk cost investments 

(Mahnovski, 2006).  

Real options theory is widely employed for deriving the optimal investment and operative 

decisions under uncertain policy conditions. Studies have aimed at correctly modeling the 
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market-driven sources of uncertainty under specific policy schemes (Laurikka, 2006; Linnerud et 

al., 2014).  These studies present models were investment is regarded as a single-firm problem in 

an operating environment with multiple exogenous and stochastic prices.  They explore the 

impact of the European Union Emissions Trading Scheme (EU ETS). Wang et al. (2014) 

developed a policy benefit real options model to identify the optimal investment strategy 

with/without the consideration of revenue from a certified emission reduction. Other studies 

acknowledge that policy uncertainty should be explicitly considered. They include stochastic 

jumps in the prices of policy instruments reflecting sudden changes in the policy target. Fuss et 

al. (2008) and Yang et al. (2008) create a stochastic volume of jumps to simulate a carbon price 

shocks under a particular climate policy event.  

With regard to the literature on tax policy uncertainty, the literature indicates how the 

prospect of introducing tax incentives to invest raises the threshold revenue at which a firm 

invests and thereby delays investments. Rodrik (1991) notes that policy reform in developing 

countries can result in the private investors withholding investment until much of the residual 

uncertainty regarding the eventual success of reform is eliminated. In his paper, policy 

uncertainty is modeled in the form of a probability that the reform will be reversed. Mauer and 

Ott (1995) apply the method proposed by Dixit and Pindyck (1994) to analyze the effect of tax 

policy uncertainty on replacement investment decisions and allow for uncertainty in the entire 

arsenal of government tax policy instruments.  

The general conclusion based on geometric Brownian motion processes is policy 

uncertainty should delay firm-level investment and lead to lower levels of investment. The 

literature on the effect tax-policy uncertainty has on investment had received little attention until 

the work by Hassett and Metcalf (1993). They indicate policy uncertainty is not likely to be well 
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captured by a Brownian motion process; it is instead likely to follow a Poisson jump process. A 

few recent studies incorporate the Poisson jump process into a real options model for decision 

making. Handley and Limao (2012) model trade policy shocks as a Poisson process. Lin and 

Huang (2010, 2011) present decision models based on the real options approach for firms that 

have not yet established the energy-saving equipment with entry and exit strategies.  They 

determine the optimal timing to adopt an energy-saving investment project and the optimal 

timing to terminate it.  Their study takes account of the occurrence of unexpected events under a 

Poisson jump process.  

The literature is void in estimating the effect policy shifts (the third leg) have on biodiesel 

investments. The objective is to fill this gap by incorporating a Poisson process into a real 

options model. The policy of the discontinuous federal tax credit of $1.00 per gallon of biodiesel 

is then modeled as a Poisson jump process.  

4.2. Methodology and Data 

4.2.1. Model 

The effect of these Poisson type policy jumps on biodiesel investment can be investigated 

through the theory of investment under uncertainty. Let θ represent the federal income tax credit 

with λ1dt denoting the probability it will be implemented in the next interval of time, dt and λ0dt 

the probability it will be withdrawn.  

It is assumed that biofuel plants are price takers as long as biofuel production remains a 

small fraction of total petroleum fuel production (ESMAP, 2006; Maung and Gustafson, 2011). 

Following closely Dixit and Pindyck (1994) along with Lin and Huang (2010, 2011), the theory 

assumes a firm is considering becoming an entrant into the biodiesel market by producing 

biodiesel with sunk cost of I and an operating cost of v per gallon of biodiesel produced.  
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Assume the price per gallon of biodiesel, p, follows the geometric Brownian motion 

dp = αpdt + σpdz,          (1) 

where α is the drift, σ is the variance parameter, and dz is the increment of a Wiener process.   

 It is further assumed over an interval of low prices say (0, p1), a biodiesel refinery will 

not be initiated regardless if the tax credit is allowed. Over the interval (p1, p0) the refinery will 

be built if the tax credit is allowed, but will wait if the credit is not allowed with the hope of it 

possibly being allowed at some future time. Beyond p0 regardless of the tax policy the biodiesel 

refinery will be built. As illustrated in Figure 4.1, interest is in determining the trigger prices p1 

and p0 where within this price interval the tax credit is effective in stimulating investments in 

biodiesel refineries.         

 Over the range (p0, ∞), the dominant strategy is to always establish a biodiesel refinery 

regardless if there is tax credit or not.  The investment opportunity is then 

𝑉0(𝑝) =
𝑃

𝛿
−

𝑣

𝑟
− 𝐼, (2a) 

in the absence of a tax credit and 

𝑉1(𝑝) =
𝑃

𝛿
−

𝑣−𝜃

𝑟
− 𝐼, (2b) 

with a credit. The prices p and v per period are divided by δ and the discount rate r, respectively 

for determining the present value of the perpetuity, with r – α = δ.   

In contrast, over the range (p1, p0), with a tax credit the refinery is established and 

without it is not. The investment opportunity with a credit is the same as (2b) and without, V0( p) 

is determined as follows. In the next time interval, dt, the tax credit will be implemented with 

probability λ1dt and the refinery established with value V1(p + dp). Without the credit, it will not 

be established yielding a value of V0(p + dp). This yields 

V0(p) = 𝑒−𝑟𝑑𝑡{λ1dt E[V1(p + dp)] + (1 − λ1dt) E[V0(p + dp)]}, 
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where E is the expectation operator.   

The Bellman equation yielding the optimal timing for establishing a biodiesel refinery in 

the absence of a tax credit (waiting to invest) is  

E[dV0(p)] = {rV0(p) – λ1[V1(p) – V0(p)]}dt ,       (3) 

where over the time interval dt the expected rate of capital appreciation, dV0(p), is equal to the 

total expected return, rV0(p) – λ1[V1(p) – V0(p)]. This total expected return is the discount rate r 

times the investment opportunity absence the tax credit mitigated by the expected capital gain 

from institution of the credit in the immediate future, λ1[V1(p) – V0(p)].   

Expanding the left-hand-side of (3) by employing Ito’s Lemma results in  

dV0(p) = V0’(p)dp + ½V0”(p)(dp)2,        (4) 

where V0’= dV/dp and V0” = d2V/dp2.  Substituting (1) into (4) and realizing E(dz) = 0, yields 

E[dV0(p)] = αpV0’(p)dt + ½σ2p2V0”(p)dt. 

The Bellman equation (3) is then 

½σ2p2V0”(p) + (r− δ)pV0’(p) − rV0(p) + λ1[V1(p) – V0(p)] = 0,     (5a) 

which is a second-order nonhomogeneous differential equation for determining when to establish 

a biodiesel refinery.  The last term captures the expected capital gain from an effective tax credit 

in the immediate future.  Solving (5a) yields 

𝑉0(𝑝) = 𝐴1𝑝𝛽1 + 𝐴2𝑝𝛽2 +
𝜆1𝑝

𝛿(𝛿+𝜆1)
+

𝜆1(
𝜃−𝑣

𝑟
−𝐼)

𝑟+𝜆1
 , 

where A1 and A2 are constants and β1 and β2 are the positive and negative characteristic roots of 

the quadratic equation 

½σ2 β(β – 1)+ (r− δ)β – (r + λ1) = 0,        

determined by noting V0 = Apβ, V0’ = βApβ-1, and V0” = β(β – 1)Apβ-2. 
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 In the final range (0, p1) the decision to invest in a biodiesel refinery is postponed 

regardless of if there is tax credit program or not. Over this range, the differential equation for 

determining when to enter the biodiesel industry with no tax credit is (5a). Similarly, given a 

credit, the differential equation for determining when to enter the biodiesel industry is 

½σ2p2V1”(p) + (r− δ)pV1’(p) – rV1(p) + λ0[V0(p) – V1(p)] = 0.        (5b)  

  As demonstrated by Dixit and Pindyck (1994), (5) yields solutions to the differential 

equations for the range (0, p1) 

V0(p) = (λ0λ1C𝑝𝛽𝑎 – λ1D𝑝𝛽𝑠)/(λ0 + λ1),       (6a) 

V1(p) = (λ0λ1C𝑝𝛽𝑎 + λ0D𝑝𝛽𝑠)/(λ0 + λ1),       (6b) 

where βa and βs are roots of quadratic equations (see Appendix) with C and D parameters.   

 At the trigger p1 there will be biodiesel entry if a tax policy exists, which leads to the 

following value-matching and smooth-pasting conditions  

(λ0λ1C𝑝𝛽𝑎 + λ0D𝑝𝛽𝑠)/(λ0 + λ1) =
P

δ
−

𝑣−𝜃

𝑟
− I, value matching,    (7a)  

(λ0λ1βaC𝑝𝛽𝑎−1 + λ0βsD𝑝𝛽𝑠−1)/(λ0 + λ1) = 1/δ, smooth pasting.    (7b) 

For the p0 trigger the conditions are 

A1𝑝𝛽1 + A2𝑝𝛽2 + 
𝜆1𝑝

𝛿(𝛿+𝜆1)
 + 

𝜆1(
𝜃−𝑣

𝑟
−𝐼)

𝑟+𝜆1
 = 

P

δ
−

𝑣

𝑟
− I, value matching,    (7c)  

A1𝛽1𝑝𝛽1−1 + A2𝛽2𝑝𝛽2−1 + 
𝜆1

𝛿(𝛿+𝜆1)
 = 1/δ, smooth pasting.     (7d) 

Following Dixit and Pindyck (1994), the last conditions are 

(λ0λ1C𝑝𝛽𝑎 – λ1D𝑝𝛽𝑠)/(λ0 + λ1) = A1𝑝𝛽1 + A2𝑝𝛽2 + 
𝜆1𝑝

𝛿(𝛿+𝜆1)
 +

𝜆1(
𝜃−𝑣

𝑟
−𝐼)

𝑟+𝜆1
,   (7e) 

(λ0λ1βaC𝑝𝛽𝑎−1 – λ1βsD𝑝𝛽𝑠−1)/(λ0 + λ1) = A1𝛽1𝑝𝛽1−1 + A2𝛽2𝑝𝛽2−1 + 
𝜆1

𝛿(𝛿+𝜆1)
 .  (7f) 
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The six equations in (7) are solved numerically for the two triggers, p0 and p1, and the four 

parameters A1, A2, C, and D. 

4.2.2. Data 

Weekly biodiesel price series are employed from January 4, 2008 through June 27, 2014, which 

results in 339 observations. Biodiesel prices ($/gallon) are from the USDA Agricultural 

Marketing Service (CARD, 2014). Nominal prices are adjusted to real by the Producer Price 

Index (PPI) for crude material (U.S. Department of Labor, 2014).  

4.2.2.1. Unit-root analysis 

Following Pindyck’s work studying long-run energy price evolution (Pindyck, 1999), unit root 

tests for biodiesel price series are employed prior to estimating the geometric Brownian motion 

parameters. Augmented Dickey-Fuller (ADF) tests with and without a time trend are performed 

for the logarithm of biodiesel price series 

∆ln𝑝𝑡 = 𝛼 + 𝛽𝑙𝑛𝑝𝑡−1 + ∑ 𝜁𝑖
𝑘
𝑖=1 ∆𝑙𝑛𝑝𝑡−𝑖 + 𝜖𝑡, 

∆ln𝑝𝑡 = 𝛼 + 𝛽𝑙𝑛𝑝𝑡−1 + 𝛿𝑡 + ∑ 𝜁𝑖
𝑘
𝑖=1 ∆𝑙𝑛𝑝𝑡−𝑖 + 𝜖𝑡, 

where ∆ is the first-difference operator and 𝑘 is the number of lags. AIC and SBIC suggest lag 

one. In the ADF test, the null hypothesis is 𝛽 = 0. If it is rejected, then there is no unit root. 

Results, presented in Table 4.2, indicate with and without a time trend, at a 5% significance level 

the ADF tests cannot reject the presence of a unit toot for the logarithm of biodiesel prices. The 

presence of a unit root suggest it is reasonable to model the biodiesel price series as a geometric 

Brownian motion.  

4.2.3. Estimation procedure 

From Ito’s Lemma, if the biodiesel price follows a geometric Brownian motion (1), then its 

logarithm follows a simple Brownian motion 
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𝑑(𝑙𝑛𝑝) = (𝛼 −
1

2
𝜎2) 𝑑𝑡 + 𝜎𝑑𝑧 = 𝜇𝑑𝑡 + 𝜎𝑑𝑧, (8) 

where 𝑑(𝑙𝑛𝑝) follows a normal distribution with mean 𝜇𝑑𝑡 and variance 𝜎2𝑑𝑡, so over a finite 

time interval 𝜏, the change in logarithm of 𝑝 is normally distributed with mean 𝜇𝜏 and variance 

𝜎2𝜏. Given weekly price series, 𝜏 is 1/52 of a year, set 𝛾𝑡 = ∆𝑝𝑡/𝑝𝑡.  

Applying the maximum likelihood method to (8), the estimates for drift and volatility can 

be determined separately. Thus, for the first difference of the logarithm of biodiesel prices, the 

weekly drift (𝜇𝜏) and weekly volatility (√𝜎2𝜏) are estimated as 

�̂�𝜏 = �̅� =
1

𝑛
∑ 𝛾𝑡

𝑛
𝑡=1 , 

√𝜎2𝜏 = 𝑠𝑡𝑑(𝛾𝑡) = √
1

𝑛
∑ (𝛾𝑡 − �̂�𝜏)2𝑛

𝑡=1 , 

where 𝑛 is the number of observations. The drift estimate of the weekly stochastic prices are then  

�̂�𝑤𝑒𝑒𝑘 = �̂�𝜏 = �̂�𝜏 +
1

2
𝜎2̂𝜏. 

While the volatility estimate for biodiesel prices are the same as 

𝜎2̂
𝑤𝑒𝑒𝑘 = 𝜎2̂𝜏. 

In (1), the optimal threshold price is in terms of annual drift, 𝛼, volatility, 𝜎, and discount rate, 𝑟, 

thus, the drift and volatility estimates are adjusted as 

�̂� = �̂�𝑤𝑒𝑒𝑘/𝜏, 

�̂� = �̂�𝑤𝑒𝑒𝑘/√𝜏. 

The drift and volatility estimates of the weekly stochastic prices are �̂�𝑤𝑒𝑒𝑘 = 5.80 ×

10−4 and �̂�𝑤𝑒𝑒𝑘 = 3.57 × 10−2. The corresponding estimates of annual drift and volatility are 

�̂� = 0.030 and �̂� = 0.257.  

A 5% risk-free interest rate is assumed with sunk cost 𝐼 and operating cost 𝑣 obtained 

from the Agricultural Marketing Resource Center (Hofstrand and Johanns, 2015). They 
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calculated total construction costs at $47 million for a 30 million gallon biodiesel refinery.  Sunk 

cost per unit is then determined by dividing total construction cost by capacity, $1.57 per gallon. 

Operating cost per unit is the sum of variable costs and fixed costs. Variable costs include 

soybean oil, natural gas, methanol, chemical, and other direct costs. Fixed costs consist of 

depreciation, interest, labor and management, marketing and procurement, and tax and insurance. 

Current, 2015, operating costs are employed, which is $3.16 per gallon. All of these benchmark 

values are listed in Table 4.3. 

4.3. Results and Discussion 

Considering first a no tax credit policy scenario over the 2005 to 2015 period, the optimal 

investment threshold is 𝑝∗ = 5.976, which is calculated by  

𝑝∗ =
𝛽𝑎

𝛽𝑎−1
(

𝑣

𝑟
+ 𝐼)𝛿,  

where 𝛽𝑎 is the positive root of 

1

2
𝜎2𝛽(𝛽 − 1) + (𝑟 − 𝛿)𝛽 − 𝑟 = 0.  

The Marshallian investment threshold is (
𝑣

𝑟
+ 𝐼) 𝛿 = 1.294. The normal options value premium 

over the Marshallian threshold is 4.683. When the biodiesel tax credit of $1.00 per gallon is in 

effect, the threshold would be  

𝑝1 =
𝛽𝑎

𝛽𝑎−1
(

𝑣−𝜃

𝑟
+ 𝐼) 𝛿 = 4.131,            (9) 

which is 
𝛽𝑎

𝛽𝑎−1

𝜃

𝑟
𝛿 = 1.845 lower than 5.976. However, when the two regimes can switch back 

and forth in a Poisson process, both thresholds are affected.  The effects on the two thresholds 

are examined for 𝑝0, when the tax credit is not currently in effect, and 𝑝1 when it is currently in 

effect.  The probability rates of enactment 𝜆1 and removal 𝜆0 are varied over a range 0 to 1, with 

results listed in Tables 4.4 and 4.5, and Figures 4.2 and 4.3.  
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Table 4.4 indicates that the threshold 𝑝0 increases as the probability of enactment 𝜆1 

within the next year increases. The tax credit will reduce the cost of investment and hence 

increase the value of waiting. The magnitude of this effect is relatively large. An increased 

expectation of establishing a tax credit in the next period appears to have a marked effect on the 

lack of willingness to invest in the current period.  Just the hint of a possible future tax credit can 

reduce current biodiesel investment.  A 10% probability of a tax in the next period will increase 

the price threshold from 5.976 to 7.963, a 33% increase.  There appears to be a large option value 

in delaying investment.        

Even when the tax credit is not in place, the threshold 𝑝0 is affected by the probability of 

its removal, 𝜆0. There is a trivial decreasing trend in 𝑝0 as the probability of removal 𝜆0 

increases. For example, when 𝜆1 = 0.2, 𝑝0 drops less than 1% (from $10.015 to $9.987 per 

gallon) as 𝜆0 increases from 0 to 1. At some future time when the tax credit is enacted, it might 

be removed before it was feasible to invest. This reduces the value of waiting now. However, the 

effect is quantitatively negligible. As the probability of enactment 𝜆1 goes up, this negligible 

effect approaches zero. Firms tend to ignore the possibility of removal at a future time when 

there is a great chance that the tax credit will be implemented within the next year.  

Table 4.5 indicates that the threshold 𝑝1 decreases as the probability of removal, 𝜆0, 

within the next year increases. The increasing possibility of losing the tax credit within the next 

year lowers the premium of the option. The prospect of losing the credit induces firms to invest 

more readily now. This effect is quantitatively not as strong as the delaying effect of 𝜆1 on 𝑝0, 

Table 4.4.  

Even when the tax credit is in effect, the threshold 𝑝1 is affected by the probability of its 

enactment 𝜆1. There is a marked increase in 𝑝1 as the probability of implemented 𝜆1 increases. A 
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current tax credit that is subsequently removed has the possibility of being restored, so the 

incentive to invest immediately declines. 

The results in Tables 4.4 and 4.5 indicate that a disruptive policy can have a major impact 

on biodiesel adoption. This supports the hypothesis that inconsistent tax credits lead to market 

uncertainty, which can have a pronounced impact on the decision to invest in a biodiesel 

refinery. If there exists a high probability of a tax credit being implemented in the near future, 

high λ1, then the threshold price po will increase up to more than five times from not considering 

this possible implementation. Similarly, with a current tax credit, as the probability of the tax 

being withdrawn increases, high λ0, then the threshold price p1 will decline. Biodiesel investors 

will want to capitalize on this tax credit before it is likely to be withdrawn.                

With the results indicating the potential exists for inconsistent tax credit policy impacting 

biodiesel adoption, the natural question is if it actually has had an impact. Considering the ten-

year 2005-2014 period, the tax credit was implemented for five consecutive years from 2005 to 

2009. After that, there are three transitions from having a tax credit to not having a tax credit, 

which are from 2009 to 2010, 2011 to 2012, and 2013 to 2014 (Table 4.1). As a measure of this 

disruption, let 

 �̂�0 = 𝑃𝑟(𝑁𝑜 𝑡𝑎𝑥 𝑐𝑟𝑒𝑑𝑖𝑡 𝑎𝑡 𝑌𝑒𝑎𝑟 = 𝑡 + 1|𝑇𝑎𝑥 𝑐𝑟𝑒𝑑𝑖𝑡 𝑎𝑡 𝑌𝑒𝑎𝑟 = 𝑡) =
3

7
 , 

There are two transitions from not having a tax credit to having a tax credit, which are 

from 2010 to 2011 and 2012 to 2013. During the ten-year period, the tax credit would be 

implemented within the next year when the tax credit was not in effect this year. Therefore,  

�̂�1 = 𝑃𝑟(𝑇𝑎𝑥 𝑐𝑟𝑒𝑑𝑖𝑡 𝑎𝑡 𝑌𝑒𝑎𝑟 = 𝑡 + 1|𝑁𝑜 𝑡𝑎𝑥 𝑐𝑟𝑒𝑑𝑖𝑡 𝑎𝑡 𝑌𝑒𝑎𝑟 =  𝑡) = 1. 

When �̂�0 =
3

7
 and �̂�1 = 1, the threshold prices are 𝑝0 = 27.400 and 𝑝1 = 3.997.  As indicated in 

Table 4.4, the investment threshold 𝑝0when the tax credit is not in effect is markedly higher than 
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the biodiesel real prices in all the years, so no investment would occur without a tax credit.  This 

is also the result when considering a no tax credit policy scenario over 2005 to 2015, where the 

threshold is 𝑝∗ = 5.976.  Although it is considerably lower than po, it is still not feasible to 

invest without a tax credit.  However, the likelihood of the tax credit being established in the 

following year, will discourage current investment.  The investment in biodiesel was always 

questionable without a tax credit, but the likelihood of the implementation of a credit in the near 

future markedly increases the barrier to current investment.      

When the tax credit scenario over the 2005 to 2015 period is considered the threshold is 

𝑝1 = 4.131, which is very close to the  �̂�0 =
3

7
 and �̂�1 = 1 threshold of 𝑝1 = 3.997.  With a 

close to 50% probability the tax credit will be withdrawn, this does not greatly increase the 

likelihood of currently adopting.  Thus, the disruptive policy does not appear to have a large 

impact on adoption of biodiesel.  Future discontinuance of a policy with the hope of stimulating 

current biodiesel investment is not likely to produce much of an effect.  With a 100% probability 

of the tax credit being restored if it is withdrawn, current investment decisions in biodiesel are 

only partially affected.  Investors are believing the loss in credits is only transitory, so the 

threshold price, p1, does not raise appreciably.  In both cases, biodiesel real prices in 2008, 2011, 

and 2013 are greater than the investment threshold 𝑝1 when tax credit is in effect, thus producers 

would choose to invest in these years. While biodiesel refineries would not invest in 2007 and 

2009.   

If interest is in jump starting the biodiesel industry, any hint of a future tax credit can 

markedly reduce current adoption, so a policymaker should consider immediately implementing 

a credit.  However, in establishing such a credit policy, a set short expiration time versus no set 

expiration does not appear to make a large difference.  Thus, at least for biodiesel adoption, the 
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on and then off tax credit policy does not indicate a large impact on investment as opposed to a 

consistent policy of maintaining tax credits.  Currently, with the tax credit not in effect, the 

uncertainty of it being restored does increase the investment threshold p0, more than five times, 

which further dampens interest in investment.  The policy uncertainty markedly increases the 

value of waiting.  However, with a history of reestablishing pasted tax-credit expirations, the 

possibility of a current tax credit being withdrawn does not markedly increase the option value of 

waiting.  The frequency of the on and off policy may explain this result.  As in the case of the 

biodiesel tax credit, since 2009 the annual switch in policy has actually established a consistent 

policy.  Biodiesel investors will respond to this expectation of a continued annual policy switch 

and not markedly increase their option value.  The result is just a lower effective tax credit, if the 

volume of biodiesel production is fairly constant across years.  In fact, with an annual on and off 

tax credit, biodiesel producers will attempt to increase production in years with the credit and 

reduce production in the credit expiration years.  Such a production response to policy shifts is, 

however, inefficient.  It prevents the refinery from continuously operating at or near full capacity 

(minimum point of average cost) and limits the ability to establish long-run contracts providing a 

consistent flow of variable inputs (soybeans).  On the spectrum, as the time interval of policy 

switching shortens, the disruptive policy approaches a continuous policy.  In the case of biodiesel, 

the annual shift, indicated in Table 4.1, appears from the results not to have much of an impact 

on investment during an active tax credit phase.  If, as it may appear in the future, this annual 

switch in policy is disrupted, then a marked change in the price thresholds may occur.  If the tax 

credit is not renewed in 2015, then an annual policy switch is disrupted and the impact on 

investment during an active tax credit phase may well be affected by the future discontinuous.  

Again, it is the uncertainty in policy that effects investment. 
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On the surface, these results may indicate an annual switching of policy is does not have 

much of an impact on investment.  However, in an infant industry such as biodiesel refining, it 

will tend to retard a smooth trajectory of investment.  A continuous tax credit will yield a 

continuous stream of biodiesel investment.  In contrast, a discontinuous tax credit will result in a 

burst of investment then a tax credit is established and then an investment moratorium once 

removed.  Such a disjoint investment trajectory may not be efficient with any entry and exit costs 

in firms’ construction of biodiesel facilities and supplying any unique equipment for biodiesel 

refining.  The shorter the interval of no tax credit the less of a disruption in investment.  However, 

then a tax credit has expired, an extended legislative process required for reestablishing the credit, 

will tend to place any biodiesel investment on hold until the credit is reestablished.  Particularly 

in terms of investments with large sunk costs, such delays in establishing or just reestablishing a 

policy can have a major impact on investments.   

4.3.1. Sensitivity Analysis 

For further understanding into the direction and magnitude of the results, sensitivity to the 

changes in the parameters is investigated. First, the threshold price response to a biodiesel tax 

credit with policy certainty yields a linear negative relationship. From (9), the slope of the 

threshold price to credit is  
dp

dθ
= −

𝛽𝑎

𝛽𝑎−1

𝛿

𝑟
= −1.844 in Figure 4.4a. Figures 4.4b and 4.4c 

illustrate the response of threshold prices 𝑝1 and 𝑝0 to the credit when �̂�0 =
3

7
 and �̂�1 = 1. With 

policy uncertainty, both prices are sensitive to the tax credit, which also yields linear 

relationships. Threshold price 𝑝0 increases while 𝑝1 decreases as the tax credit increases. Even 

when the tax credit is not in place, the threshold 𝑝0 is affected by the tax credit. A biodiesel 

refinery calculates that at a random future time when the tax credit is enacted, greater tax credit 

yields enhanced benefits. This increases the value of waiting. When the tax credit is in effect, a 
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larger tax credit would accelerate investment, so 𝑝1 declines as the tax credit increases. The slope 

in Figure 4.4b is approximately −1.788 while in Figure 4.4c it is approximately 23.552. The 

threshold p0 is markedly more responsive to a change in the tax credit than p1.  

The response of the thresholds to a change in operating cost, v, and sunk cost, I, are 

similar. Costs have positive and linear effects on both thresholds. The effect of costs on 𝑝1 is 

greater than the effect on 𝑝0. From (9), 
dp

dv
=

𝛽𝑎

𝛽𝑎−1

𝛿

𝑟
= 1.844 and 

dp

dI
=

𝛽𝑎

𝛽𝑎−1
𝛿 = 0.092 without 

policy uncertainty.  

Figure 4.5 illustrates the response of threshold prices to the risk-free interest rate. When 

there is no policy uncertainty, Figure 4.5a, a negative relationship exists between the risk-free 

interest rate and the threshold price. From Figure 4.5a, the slope of threshold price to interest rate 

is negative; an increase in the interest rate will decrease the incentive for postponing investment. 

The threshold price decreases at a decreasing rate. Figures 4.5b and 4.5c illustrate the response of 

threshold prices 𝑝1 and 𝑝0 to risk-free interest rate when �̂�0 =
3

7
 and �̂�1 = 1. With policy 

uncertainty, both threshold prices also decline at a decreasing rate as interest rate increases. At a 

high interest rate, there is a large discount in future values. Biodiesel refineries would then invest 

now rather than in the future. With an interest rate close to zero, future values are close to 

current, so there is limited urgently for biodiesel investment. Threshold 𝑝0 is more sensitive to 

the interest rate than 𝑝1. As the risk-free interest rate increases from 0.05 to 0.10, 𝑝0 and 𝑝1 

decline by 42.9% and 10.6%, respectively. 

Figure 4.6a illustrates the response of the threshold prices to the drift without policy 

uncertainty. The threshold price declines at a decreasing rate as the drift rate of biodiesel prices 

increases. The expected biodiesel prices grow at an increasing rate as the drift increases. 

Biodiesel firms tend to accelerate investment given this expected price increase. Figures 4.6b and 
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4.6c illustrate the response of threshold prices 𝑝1 and 𝑝0 to the drift when �̂�0 =
3

7
 and �̂�1 = 1. As 

the drift rate increases, threshold price 𝑝1 decrease at a decreasing rate while drift rate has a 

negligibly negative effect on 𝑝0. Figure 4.7a illustrates the response of the threshold price to 

volatility rate of biodiesel prices without policy uncertainty. Figures 4.7b and 4.7c illustrate the 

response of threshold prices 𝑝1 and 𝑝0 to the volatility rate when �̂�0 =
3

7
 and �̂�1 = 1. Threshold 

prices increase at an increasing rate as volatility rate increases. As the volatility increases, the 

biodiesel prices process more uncertainty. Biodiesel refineries would then postpone the time of 

investment.  

4.4. Conclusion and Policy Implications 

Effective government policy development should consider the 3-Ts: type, timing, and transience.  

For alternative energy policy, type has generally received extensive investigation while timing 

only a limited extent.  However, transience consideration has receive no consideration.  The 

research results addressing this transience consideration support the hypothesis of time 

inconsistent government policies (tax credits) do lead to market uncertainty.  This does appear to 

have a pronounced negative impact on the decisions to invest in a biodiesel refinery.  However, 

results indicate a consistent policy switching regime may not be that disruptive.  It is policy 

uncertainty that drives the option pricing thresholds and a consistent policy switching does not 

increase the uncertainty.  However, even a consistent policy switching regime is likely to result 

in economic inefficiencies.  These inefficiencies take the form of both scale and investment 

inefficiencies.  Scale inefficiency are in terms of determining production level in response to 

changing policies and investment inefficiency is in terms of annual disjoint biodiesel investment 

levels.  If there exists a high probability of a tax credit being implemented in the near future, then 

biodiesel investors will want to delay investment.  Similarly, with a current tax credit, as the 
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probability of the credit being withdrawn increases, biodiesel investors will want to capitalize on 

this tax credit before it is withdrawn.   

 The empirical results provide evidence that government policymakers involved with 

alternative energy legislative should consider the listens learned by macroeconomic 

policymakers.  Based on macroeconomic theory, monetary policy is aimed at taking a long-run 

perspective in targeting inflation and unemployment levels.  The idea is a stable long-run policy 

perspective will translate into a stable macroeconomic economy.  Such a policy perspective may 

also hold well for alternative energy policies.  Markets generally do not respond well to 

uncertainty not only in terms of price shocks but also government policy shocks.  As the results 

indicate, for biodiesel investments, a time-inconsistent tax credit will markedly raise the price 

thresholds for investment.  Just the hint of enacting a tax credit will dampen current investment 

and once established a burst of investment will then likely occur.  With the results indicating a 

stop and go investment response from time-inconsistent policies, this will not likely lead to 

efficient market investments.  Instead, taking a long-run perspective leading to a smooth 

developing infant biodiesel industry is consistent with the 3-Ts for efficient policy.  Such a 

perspective would suggest a minimum delay in establishing a tax credit and maintaining it for a 

set number of years, rather than requiring an annual renewal.                       
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Appendix II 

The quadratic equation associated with range (p1, p0) is 

½σ2 β(β – 1)+ (r− δ)β – (r + λ1) = 0. 

The corresponding characteristic roots, β1 and β2, are 

𝛽1 =
1

2
−

𝑟−𝛿

𝜎2  + √(
𝑟−𝛿

𝜎2 −
1

2
)

2

+
2(𝑟+𝜆1)

𝜎2   > 1, 

𝛽2 =
1

2
−

𝑟−𝛿

𝜎2  − √(
𝑟−𝛿

𝜎2 −
1

2
)

2

+
2(𝑟+𝜆1)

𝜎2   < 0. 

The quadratic equations associated with range (0, p1) are 

½σ2 β(β – 1)+ (r− δ)β – r = 0  

½σ2 β(β – 1)+ (r− δ)β – (r + λ0 + λ1) = 0  

The corresponding positive characteristic roots, βa and βs, are 

𝛽1 >  𝛽𝑎 =
1

2
−

𝑟−𝛿

𝜎2  + √(
𝑟−𝛿

𝜎2 −
1

2
)

2

+
2𝑟

𝜎2  > 1, 

𝛽𝑠 =
1

2
−

𝑟−𝛿

𝜎2  + √(
𝑟−𝛿

𝜎2 −
1

2
)

2

+
2(𝑟+𝜆0+𝜆1)

𝜎2   > β1. 
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Table 4.1. Energy Independence and Security Act of 2007 (EISA) Expansion of Biomass-

based Diesel Mandate and U.S. Biodiesel Tax Credit 

Year  Biodiesel Mandate  Tax Credit Existence 

  (billion gallons)  ($1.00 per gallon) 

 

2005  −    Yes 

2006  −    Yes 

2007  −    Yes 

2008  −    Yes 

2009  −    Yes 

2010  1.15    No 

2011  0.80    Yes 

2012  1.00    No 

2013  1.28    Yes 

2014  1.63    No 

2015  1.70    ? 

2016  1.80    ? 

2017  1.90    ? 
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Table 4.2. Augmented Dickey-Fuller Unit-root Test Results 

 Test statistics Mackinnon approximate p-value 

With trend −1.568 0.8046 

Without trend −1.567 0.5001 
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Table 4.3. Parameters and Benchmark Values 

Parameter Symbol Benchmark value 

Annual biodiesel price drift 𝛼 0.030 
Annual biodiesel price volatility 𝜎 0.257 
Risk-free interest rate 𝑟 0.050 
Sunk cost ($/gallon) 𝐼 1.570 
Operating cost ($/gallon) 𝑣 3.160 
Biodiesel tax credit ($/gallon) 𝜃 1 
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Table 4.4. Investment Threshold When Tax Credit is not in Effect (𝑷𝟎) 

(Parameters: 𝛼 = 0.030, 𝜎 = 0.257, 𝑟 = 0.050, 𝐼 = 1.57, 𝑣 = 3.16, 𝜃 = 1) 

𝜆1
a 

𝜆0
b 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0 5.976 7.963 10.015 12.159 14.340 16.529 18.716 20.897 23.071 25.239 27.400 

0.1 5.976 7.934 10.005 12.156 14.339 16.529 18.716 20.897 23.071 25.239 27.400 

0.2 5.976 7.922 9.999 12.154 14.338 16.529 18.716 20.897 23.071 25.239 27.400 

0.3 5.976 7.915 9.995 12.152 14.338 16.529 18.716 20.897 23.071 25.239 27.400 

0.4 5.976 7.911 9.993 12.151 14.337 16.529 18.716 20.897 23.071 25.239 27.400 

0.5 5.976 7.908 9.991 12.151 14.337 16.529 18.716 20.897 23.071 25.239 27.400 

0.6 5.976 7.906 9.990 12.150 14.337 16.528 18.716 20.897 23.071 25.239 27.400 

0.7 5.976 7.904 9.989 12.149 14.337 16.528 18.716 20.897 23.071 25.239 27.400 

0.8 5.976 7.903 9.988 12.149 14.337 16.528 18.716 20.897 23.071 25.239 27.400 

0.9 5.976 7.901 9.987 12.149 14.337 16.528 18.716 20.897 23.071 25.239 27.400 

1.0 5.976 7.901 9.987 12.149 14.336 16.528 18.716 20.897 23.071 25.239 27.400 
a λ1dt denotes the probability a tax credit will be implemented in the next interval of time, dt.  
b λ0dt denotes the probability a tax credit will be withdrawn in the next interval of time, dt.  
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Table 4.5. Investment Threshold When Tax Credit is in Effect (𝑷𝟏) 

(Parameters: 𝛼 = 0.030, 𝜎 = 0.257, 𝑟 = 0.050, 𝐼 = 1.57, 𝑣 = 3.16, 𝜃 = 1) 

𝜆1
a 

𝜆0
b 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0 4.131 4.131 4.131 4.131 4.131 4.131 4.131 4.131 4.131 4.131 4.131 

0.1 3.396 3.692 3.852 3.942 3.996 4.029 4.051 4.067 4.078 4.086 4.092 

0.2 3.123 3.472 3.685 3.816 3.898 3.952 3.989 4.014 4.033 4.048 4.059 

0.3 2.974 3.336 3.573 3.725 3.824 3.891 3.937 3.971 3.996 4.015 4.030 

0.4 2.877 3.243 3.491 3.655 3.766 3.841 3.895 3.934 3.963 3.986 4.004 

0.5 2.809 3.174 3.428 3.600 3.718 3.800 3.858 3.902 3.935 3.961 3.981 

0.6 2.758 3.120 3.377 3.555 3.678 3.764 3.827 3.874 3.910 3.938 3.961 

0.7 2.717 3.077 3.336 3.517 3.644 3.734 3.800 3.849 3.887 3.918 3.942 

0.8 2.684 3.042 3.302 3.485 3.614 3.707 3.775 3.827 3.867 3.899 3.925 

0.9 2.657 3.012 3.272 3.457 3.589 3.684 3.754 3.807 3.849 3.882 3.910 

1.0 2.634 2.986 3.247 3.433 3.566 3.663 3.734 3.789 3.833 3.867 3.895 
a λ1dt denotes the probability a tax credit will be implemented in the next interval of time, dt.  
b λ0dt denotes the probability a tax credit will be withdrawn in the next interval of time, dt.  
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Figure 4.1.  Price Triggers for Effective Tax Credit Policy 
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Figure 4.2. Investment Threshold When Tax Credit is not in Effect (𝑷𝟎) 
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Figure 4.3. Investment Threshold When Tax Credit is in Effect (𝑷𝟏) 
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(a)  

 

(b) 

 

(c) 

 

Figure 4.4. Responses of the Investment Threshold to a Biodiesel Tax Credit Policy 

Certainty (a) and Thresholds P1 (b) and 𝑷𝟎 (c) with Policy Uncertainty When �̂�𝟎 =
𝟑

𝟕
 and 

�̂�𝟏 = 𝟏  



 

116 

(a) 

 

(b) 

 

(c) 

 

Figure 4.5. Responses of Investment Threshold to a Risk-free Interest Rate Policy 

Certainty (a) and Thresholds 𝑷𝟏 (b) and P0 (c) with Policy Uncertainty When �̂�𝟎 =
𝟑

𝟕
 and 

�̂�𝟏 = 𝟏  
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(a) 

 

(b) 

 

(c) 

 

Figure 4.6. Responses of Investment Threshold to Drift Policy Certainty (a) and Thresholds 

𝑷𝟏 (b) and P0 (c) with Policy Uncertainty When �̂�𝟎 =
𝟑

𝟕
 and �̂�𝟏 = 𝟏  
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(a) 

 

(b) 

 

(c) 

 

Figure 4.7. Responses of Investment Threshold to Volatility Policy Certainty (a) and 

Thresholds 𝑷𝟏 (b) and P0 (c) with Policy Uncertainty When �̂�𝟎 =
𝟑

𝟕
 and �̂�𝟏 = 𝟏 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

5.1. Summary of Conclusions 

This dissertation investigates three issues on U.S. renewable energy markets; specifically, solar 

photovoltaic (PV) and biodiesel markets. The primary objectives involve developing an 

analytical framework for assessing the optimal solar energy subsidy, examining price volatility 

spillovers among U.S. biodiesel, crude oil, diesel, and soybean markets, and investigating the 

effect of Poisson type policy impacts on biodiesel investment through the theory of investment 

under uncertainty.  

Globally, solar photovoltaic (PV) was the fastest growing renewable power technology in 

the past decade (IEA, 2014). As one essay in the dissertation,  the socially optimal solar PV 

subsidy is derived and quantified for U.S. residential energy production. The essay develops a 

model based on utility maximization that incorporates environment, health, employment, and 

electricity accessibility benefits affected by the level of solar subsidization. Empirical results 

indicate the optimal level of solar PV subsidies are very much dependent on the impact such 

subsidies have on employment. If one believes employment should be a macroeconomic benefit 

from solar PV, results indicate the optimal solar PV subsidy would be 7.69 cents/kWh. In 

contrast, a belief that the employment effect should be excluded, the optimal solar PV subsidy 

falls to 2.24 cents/kWh.  
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The model critically considers the influence of solar PV subsidies not only on the 

stimulation of the use of renewable energy, but also the income incentive for households to 

increase their use of electricity from fossil fuels. Given public concern with CO2 emissions, 

fossil energies are becoming an inferior good where households with higher incomes will tend to 

spend proportionally less of their income on carbon based fuels. With household’s preferences to 

reduce their proportion of income spent on fossil fuels as incomes rise, policies favoring solar 

PV will not only increase solar PV, but also reduce fossil-energy consumption. However, prior to 

CO2 emission concerns, fossil energies were generally thought of as normal goods. In this case 

the impact of favorable solar PV policies on fossil-energy consumption is unclear.  

Biodiesel is an emerging major alternative fuel within the United States. The U.S. 

biodiesel production in 2010 was 0.343 billion gallons (U.S. Department of Agriculture, 2014b). 

It reached 0.967 and 0.991 billion gallons in 2011 and 2012, respectively; almost three times 

2010 production. In 2013, at 1.339 billion gallons it was almost four times 2010 volume (U.S. 

Department of Agriculture, 2014b).  

The empirical results of the univariate EGARCH model indicate there are double-

directional price-volatility spillovers between biodiesel and soybean markets and between crude 

oil and biodiesel markets. The dominant impact is crude oil price spillovers into the other 

markets (biodiesel, soybean, and diesel). The magnitudes of these spillovers are relatively strong 

for the fossil fuel markets (crude oil and diesel), with more inelastic spillovers between the 

agricultural commodities (soybeans and biodiesel). There is a relatively more elastic impact 

soybean-price effect on the biodiesel market. Price volatility in the biodiesel market does 

spillover into the soybean market and as a result of this spillover soybean prices have some 

persistence in deviating from market trends. However, the elasticity of this spillover is very 
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inelastic relative to the spillovers between crude oil and diesel markets. Also, the elasticity from 

soybean-price volatility onto the biodiesel market is more elasticity than the reverse. These 

results generally indicate in terms of price volatility, the food before biodiesel issue has weak 

empirical support.  

The results from the EGARCH model are reinforced with estimation outcomes of the 

DCC-MGARCH model. The price volatility conditional correlations between biodiesel and 

soybeans exhibit considerable time-varying with a slight declining trend. This instability and 

downward trend in conditional correlations indicate the lack of strong linkages within these 

markets. As addressed in the essay, the presence of substitutes for soybeans in biodiesel refining 

and a relatively small biodiesel market for soybean may explain this weak price-volatility 

relation. However, in addition to these market characteristics, government policies may also play 

a role in this volatility relation. The disruptive policies of on and off tax credits are possibly 

leading to the weak link in biodiesel/soybean price volatility.  

The two primary means by which subsidies affect the demand for U.S. biodiesel are the 

Renewable Fuel Standard (RFS) and the Blender Tax Credit (BTC). The RFS is a federal 

mandate requiring the blending of biofuels into U.S. transportation fuels. The biodiesel tax credit 

of $1.00 per gallon was established in 2005 by the American Jobs Creation Act of 2004. It was 

then extended by the Energy Policy Act of 2005, the Tax Relief, Unemployment Insurance 

Reauthorization, and Job Creation Act of 2010, and the American Taxpayer Relief Act of 2012 

(Yacobucci, 2012; U.S. Department of Energy, 2014). During the ten-year period from 2005 to 

2014, the biodiesel tax credit lapsed three times, in 2010, 2012, and 2014, respectively. The 

history of government policy uncertainty along with annual changes in the RFS does not provide 

a stable policy platform for a young and maturing biodiesel industry. The underlying hypothesis 
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is these inconsistent tax credits lead to market uncertainty, which have a pronounced impact on 

the decisions to invest in a biodiesel refinery. For investigating this hypothesis, a real options 

analysis is developed, which considers the likelihood of a tax credit policy shift. 

Results support the hypothesis that inconsistent biodiesel policy leads to market 

uncertainty. If there exists a high probability of a tax credit being implemented in the near future, 

then biodiesel investors will want to delay investment. The tax credit will reduce the cost of 

investment and hence increase the value of waiting. Empirical results indicate the magnitude of 

this effect is relatively large. An increased expectation of establishing a tax credit in the next 

period appears to have a marked effect on the lack of willingness to invest in the current period. 

With a current tax credit, as the probability of the credit being withdrawn increases, biodiesel 

investors will want to capitalize on this tax credit before it is withdrawn. The increasing 

possibility of losing the tax credit within the next year lowers the premium of the option. The 

prospect of losing the credit induces firms to invest more readily now. 

During the ten-year 2005-2014 period, empirical results indicate that the investment in 

biodiesel was always questionable without a tax credit, but the likelihood of the implementation 

of a credit in the near future increases the barrier to current investment. On the other hand, with a 

close to 50% probability the tax credit will be withdrawn, this does not greatly increase the 

likelihood of currently adopting. The disruptive policy does not appear to have a large impact on 

adoption of biodiesel. Future discontinuance of a policy with the hope of stimulating current 

biodiesel investment is not likely to produce much of an effect. Biodiesel real prices in 2008, 

2011, and 2013 are greater than the investment threshold when tax credit is in effect, thus 

producers would choose to invest in these years while biodiesel refineries would not invest in 

2007 and 2009. 
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In summary, this dissertation makes three primary contributions to the energy economics 

research: 

First, it provides both a theoretical framework and empirical analysis for assessing the 

optimal solar energy subsidy. This study fills a gap in quantifying the optimal level for solar 

energy subsidies. It takes into account external benefits from environment, health, and 

employment as well as electricity accessibility benefits. Theoretical results indicate that a solar 

PV subsidy is likely more effective when households are educated on the external cost and shift 

preferences towards viewing fossil energies as being an undesirable commodity. Empirical 

results reveal that the optimal level of solar PV subsidies are very much dependent on the impact 

such subsidies have on employment.  

Second, the study extends multiple time series models to the price volatility for the 

biodiesel market in the U.S. market. The adjusted univariate EGARCH model provides evidence 

of double-directional price-volatility spillovers between crude oil and biodiesel markets and 

between biodiesel and soybean markets. Further there exists unidirectional price-volatility 

spillovers from the diesel market to the biodiesel market. The DCC-MGARCH model indicates 

time-varying conditional correlations among markets and the pairwise conditional correlations 

fluctuated from 2008 to 2009.  

Third, the real options analysis on biodiesel investment addressing the transience in 

government policy supports the hypothesis of time inconsistent government policies do lead to 

market uncertainty. If there exists a high probability of a tax credit being implemented in the 

near future, then biodiesel investors will want to delay investment. Similarly, with a current tax 

credit, as the probability of the credit being withdrawn increases, biodiesel investors will want to 

capitalize on this tax credit before it is withdrawn.  
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5.2. Policy Implications 

Based on the results of the analyses from these three papers, there are multiple implications that 

government policy makers may want to consider. In the optimal solar subsidy study, theoretical 

results indicate that changing household preferences can have a marked impact on the effect a 

solar PV subsidy has on the consumption of fossil energy. If households have a general shift 

toward viewing fossil energy as an inferior good, then any policies directed at incentivizing 

adoption will be more effective. Given inferior-good characteristics for fossil energies, 

government policies favorable to solar and alternative renewable energies in general will result 

in reduced fossil-energy consumption, higher fossil prices, and reduced environmental damage. 

If instead fossil energy is considered as a normal good, then these impacts from policies favoring 

renewable energies are not certain. Therefore, a solar PV subsidy is likely more effective when 

households are educated on the external cost and shift preferences towards viewing fossil 

energies as being an undesirable commodity. Another concern with policies favoring renewable 

energies is the possibility of slippage in the form of resulting higher prices for renewable-energy 

inputs. Results indicate that a solar PV subsidy may drive up the price of solar panels. If so, then 

effectiveness of the subsidy is compromised.  

As the share of biodiesel in our vehicle fuel mix increases, concern arises with biodiesel’s 

impacts on agricultural commodity prices. The initial study on biodiesel-price volatility effects 

on soybean-price volatility indicates that, while biodiesel-price volatility does appear to 

influence soybean-price volatility, relation is highly inelastic relative to the crude oil-price 

volatility impacts on diesel-price volatility. If this degree of volatility spillover is still of concern, 

then U.S. agricultural policy should be directed toward mitigating such spillovers. Agricultural-

commodity buffers could be one possible policy for supplementing supplies in years of 
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insufficient harvests. Such commodity buffers could stabilize food price spikes caused not only 

by possible biofuel shocks but also by other political, institutional, and environmental shocks. 

However, the cost of these policies must be weighed against the magnitude of the elasticities and 

possible ill effects of the spillover. Just considering existing policy impacts on price volatilities 

in terms of enhancing or mitigating price volatility would be sound prescription for any 

policymaker.  

Markets generally do not respond well to uncertainty not only in terms of price shocks 

but also government policy shocks. Effective government policy development should consider 

the 3-Ts: type, timing, and transience. Results of the biodiesel investment study indicate that a 

time-inconsistent tax credit will markedly raise the price thresholds for investment. If interest is 

in jump starting the biodiesel industry, any hint of a future tax credit can markedly reduce 

current adoption, so a policymaker should consider immediately implementing a credit. 

However, in establishing such a credit policy, a set short expiration time versus no set expiration 

does not appear to make a large difference. Taking a long-run perspective leading to a smooth 

developing infant biodiesel industry is consistent with the 3-Ts for efficient policy. Such a 

perspective would suggest a minimum delay in establishing a tax credit and maintaining it for a 

set number of years, rather than requiring an annual renewal.  

5.3. Suggestions for Future Research 

More work could be extended in several directions.  

First, empirical results indicate the optimal level of solar PV subsidies are very much 

dependent on the impact such subsidies have on employment. If renewable energies have limited 

or no positive job impacts, then the justification for a subsidy is substantially weakened. The 

results highlight the importance of determining the policy impacts on macroeconomic variables 
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like job growth in renewable energy industry. Further research should be directed toward the 

renewable policy impacts on macroeconomic variables.  

Second, limited analyses exist in estimating the elasticities and externalities in the solar 

PV subsidy research. The study derived and estimated most parameters based on previous 

literature. The estimates are provided to outline how a benchmark optimal subsidy can be 

estimated with lower and upper ranges. For more accurate empirical result, further refining of 

these estimates are desirable and necessary.  

Third, the price volatility spillover study is an initial analysis on biodiesel and related 

agricultural commodity markets. Further analysis may be conducted by introducing macro-

economic factors into time series models. 

Fourth, the biodiesel investment study employs the history of disruptive policy from 2005 

to 2014 to estimate the probability rates of removal and enactment. Due to the short time period, 

the estimates of probabilities are relatively rough. Robust estimation method or a longer time 

period would yield more accurate estimates of threshold prices.  
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