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Abstract

Let g be a simple Lie algebra over the field C of complex numbers, with root system

Φ relative to a fixed maximal toral subalgebra h. Let S be a subset of the simple roots

∆ of Φ, which determines a standard parabolic subalgebra of g. Fix an integral weight

µ ∈ h∗, with singular set J ⊆ ∆. We determine when an infinitesimal block O(g, S, J) := Oµ
S

of parabolic category OS is nonzero using the theory of nilpotent orbits. We extend work

of Futorny-Nakano-Pollack, Brüstle-König-Mazorchuk, and Boe-Nakano toward classifying

the representation type of the nonzero infinitesimal blocks of category OS by considering

arbitrary sets S and J , and observe a strong connection between the theory of nilpotent

orbits and the representation type of the infinitesimal blocks. We classify certain infinitesimal

blocks of category OS including all the semisimple infinitesimal blocks in type An, and all

of the infinitesimal blocks for F4 and G2.

Index words: Category O; Representation type; Verma modules



Classifying the Representation Type

of Infinitesimal Blocks

of Category OS

by

Kenyon J. Platt

B.A., Utah State University, 1999

M.S., Utah State University, 2001

M.A, The University of Georgia, 2006

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2008



c© 2008

Kenyon J. Platt

All Rights Reserved



Classifying the Representation Type

of Infinitesimal Blocks

of Category OS

by

Kenyon J. Platt

Approved:

Major Professor: Brian D. Boe

Committee: Edward Azoff

Leonard Chastkofsky

Daniel Nakano

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2008



Dedication

For Emily, whose support and patience have meant more to me than I can with due justice

express.

iv



Acknowledgments

Research of the author partially supported by a VIGRE Fellowship at the University of

Georgia.

I would like to thank first my Ph.D. advisor Brian Boe. His understanding, support,

feedback and advice have been invaluable in my studies. I wish to also thank Daniel Nakano

for his help, support and advice. Appreciation also goes to Jon Carlson, Edward Azoff and

Leonard Chastkofsky for their help during my studies at UGA. I would also like to thank

Bobbe Cooper for many insightful conversations.

v



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Representation Theory of Lie Algebras . . . . . . . . . . . 8

3 Non-Zero Infinitesimal Blocks . . . . . . . . . . . . . . . . . . . . . 16

3.1 The Idea: A Look at Type An . . . . . . . . . . . . . . . . . . 16

3.2 Nilpotent Orbits . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Richardson Orbits . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Nonzero Blocks of Category OS . . . . . . . . . . . . . . . . 25

3.5 Nonzero Blocks for the Classical Types . . . . . . . . . . 29

3.6 Nonzero Blocks for the Exceptional Types . . . . . . . . . 35

4 Representation Type of Infinitesimal Blocks . . . . . . . . . . . . 46

4.1 Representation Type . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Radical Filtrations and Extensions . . . . . . . . . . . . . . 46

vi



vii

4.3 The Uα-Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Representation Type of Infinitesimal Blocks of Category

OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Representation Type of Blocks for the Classical Lie Algebras 57

5.1 Type An . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Type BCn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Type Dn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Representation Type of Blocks for the Exceptional Lie Algebras 76

6.1 An Order-Reversing Map . . . . . . . . . . . . . . . . . . . . 76

6.2 Representation Type of Infinitesimal Blocks in Type G2 . 77

6.3 Representation Type of Infinitesimal Blocks in Type F4 . 79

6.4 Remarks About Types E6, E7, and E8 . . . . . . . . . . . . . 84

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



List of Figures

3.1 Nilpotent Orbits for g = sl6(C) . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Ordering on nilpotent orbits for so9(C) (left) and sp8(C) (right) . . . . . . . 31

3.3 Ordering on nilpotent orbits for so8(C) . . . . . . . . . . . . . . . . . . . . . 33

3.4 Ordering on nilpotent orbits for G2 . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Ordering on nilpotent orbits for F4 . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Ordering on nilpotent orbits for E6 . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Ordering on nilpotent orbits for E7 . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Ordering on nilpotent orbits for E8 . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 A Kite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Ext1-Quiver of a Diamond Linkage Class . . . . . . . . . . . . . . . . . . . . 53

4.3 Subquiver of eAe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 The X Ext1-quiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Subquiver of eAe for X-block . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1 Special Nilpotent Orbits for G2 . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Special Orbits for F4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



List of Tables

2.1 Dynkin Diagrams of Root Systems of Simple Lie Algebras . . . . . . . . . . 7

3.1 Richardson Orbits and Hirai Equivalence Classes for B4 and C4 . . . . . . . 31

3.2 Richardson Orbits and Hirai Equivalence Classes for D4 . . . . . . . . . . . . 34

3.3 Richardson Orbits and Hirai Equivalence Classes for G2 . . . . . . . . . . . . 36

3.4 Richardson Orbits and Hirai Equivalence Classes for F4 . . . . . . . . . . . . 37

3.5 Richardson Orbits and Hirai Equivalence Classes for E6 . . . . . . . . . . . . 38

3.6 Root Subsystem Types of E7 Split Under Hirai Equivalence . . . . . . . . . 40

3.7 Richardson Orbits and Hirai Equivalence Classes for E7 . . . . . . . . . . . . 42

3.8 Richardson Orbits and Hirai Equivalence Classes for E8 . . . . . . . . . . . . 44

4.1 Projective Indecomposable Modules in a Diamond Linkage Class . . . . . . . 53

4.2 Projective Indecomposable Modules for X-block . . . . . . . . . . . . . . . . 55

5.1 Representation Type of Infinitesimal Blocks in Type A5 . . . . . . . . . . . . 62

5.2 Equivalence Classes of Subsets of Simple Roots in BC4 . . . . . . . . . . . . 71

5.3 Representation Type of Infinitesimal Blocks in Type BC4 . . . . . . . . . . . 72

5.4 Equivalence Classes of Subsets of Simple Roots in D4 . . . . . . . . . . . . . 74

5.5 Representation Type of Infinitesimal Blocks in Type D4 . . . . . . . . . . . . 75

6.1 Representation Type of O(G2, ΦS, ΦJ) . . . . . . . . . . . . . . . . . . . . . 77

6.2 Pre-Images of Orbits in G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Representation Type of O(F4, ΦS, ΦJ) . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Pre-Images of Special Orbits in F4 . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



Chapter 1

Introduction

1.1 Historical Background

Representation theory is concerned with realizing a group or an algebra as a collection of

matrices. In this way, one can understand the way the group or algebra acts linearly on

a vector space, where the action respects the operations in the group or algebra. In the

process, one is able to understand more completely the structure of the group or algebra.

Representation theory has found uses in many areas, particularly where symmetry arises.

These areas include physics, chemistry, and mathematics itself.

Suppose g is a finite-dimensional semisimple Lie algebra over the field C of complex

numbers. If V is a vector space on which there is an action of g defined which respects the

bracket in g, then V is called a g-module. One often discusses representations of g via the

equivalent language of g-modules.

In 1976, the Russian mathematicians I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand

[BGG] introduced a category of g-modules, called category O. The letter O stands for a Rus-

sian word meaning “basic” or “principal”. This is appropriate because this category contains

many g-modules which are important in applications (including the finite dimensional mod-

ules), and in some sense is the smallest category containing the finite dimensional modules

with the right properties to facilitate the study of these modules.

For any subset S of simple roots for g, one can construct a parabolic subalgebra pS of g. In

the early 1980’s, A. Rocha-Caridi [RC] introduced category OS, which generalized ordinary

category O. Since pS-modules are generally more easily understood than g-modules, category

OS is useful for inductive arguments involving g-modules.
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2

Category OS is a highest weight category [CPS, Sec. 3], and it decomposes as a direct

sum of certain subcategories, called infinitesimal blocks, which are defined in terms of the

infinitesimal characters of the universal enveloping algebra. Under this decomposition, a

g-module in category OS decomposes as a direct sum of submodules with each summand

belonging to one of the infinitesimal blocks. For each infinitesimal block, there is a finite

dimensional quasi-hereditary algebra A such that the block is equivalent to the category of

finitely generated A-modules [CPS, Thm. 3.6], [FM, Thm. 3, Ex. 5.2]. An infinitesimal block

contains at most finitely many simple g-modules, and some contain only the zero g-module.

Suppose that g is a finite-dimensional simple Lie algebra over C, so g has a root system

Φ of type An, Bn, Cn, Dn, E6, E7, E8, F4, or G2. If ρ is the half sum of positive roots and

µ + ρ is an antidominant integral weight for S, then the infinitesimal block Oµ
S contains all

the simple modules with highest weight linked to µ via the dot action of the Weyl group W

of Φ.

The integral infinitesimal blocks of category OS are determined (up to equivalence of

categories) by subsets J of the simple roots; we allow J = ∅, which corresponds to the

regular infinitesimal blocks. Write O(g, S, J) for the infinitesimal block determined by the

triple (g, S, J).

Indecomposable modules of a finite dimensional algebra provide a complete description

of all the modules of the algebra. Consequently, classifying the indecomposable modules for

a fixed finite dimensional algebra A is a central theme in the representation theory of such

algebras. One of the first questions one can ask is, “How classifiable are the indecomposable

modules of A?” The algebra A will fall into one of three classes depending on the classifia-

bility of its indecomposable modules. If there are only finitely many isomorphism classes of

indecomposable A-modules, then we say that A has finite representation type, and if there

are infinitely many such isomorphism classes, then A has infinite representation type. If A

has infinite representation type, it can be further classified as having tame representation
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type if, roughly speaking, these indecomposable modules can be parameterized in some way,

and wild representation type otherwise (see [Dro] and [CB, Sec. 6]).

For S, J ⊆ ∆, let AS,J be a finite dimensional quasi-hereditary algebra for which the

category modf(AS,J) of finitely generated AS,J -modules is equivalent to the infinitesimal

block O(g, S, J). We will say that O(g, S, J) has finite (respectively, infinite, tame, wild)

representation whenever AS,J has finite (respectively, infinite, tame, wild) representation

type.

The classification of the representation type of the infinitesimal blocks of category OS

began with the classification of the representation type of the blocks of ordinary category O

(where S = ∅). This was done by Futorny, Nakano, and Pollack [FNP] and, using different

techniques, by Brüstle, König, and Mazorchuk [BKM]. Boe and Nakano [BN] later classified

the representation type of all infinitesimal blocks of OS with S ∩ J = ∅.

1.2 Investigations

The simple modules are the building blocks of arbitrary modules of an algebra. However,

an infinitesimal block O(g, S, J) may not contain any simple modules. Consequently, one

can ask, “under what conditions does O(g, S, J) contain at least one simple module?” Even

though category OS has been studied for over a quarter of a century, an easy description of

the nonzero blocks has been elusive. Enright and Hunziker [EH, Sec. 2.5] gave a criterion

for a block to be nonzero, but it is not easy to apply. In this dissertation, the answer will

be given via nilpotent orbits of g. The description of the nonzero infinitesimal blocks will

be given in terms of a partial ordering defined on the nilpotent orbits, and the Richardson

orbits will provide the key.

An infinitesimal block is semisimple if and only if there are no extensions between its

simple modules. An infinitesimal block with only one simple module is necessarily semisimple,

but there are semisimple blocks with more than one simple module. In fact, we will show

that in every type but An, there are semisimple blocks with more than one simple module.
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In type An, a result of J. Brundan [Bru] implies that the semisimple infinitesimal blocks are

precisely those blocks having one simple module. The question of when an infinitesimal block

in type An contains exactly one simple module is answered in this thesis using partitions,

and is related to the nilpotent and Richardson orbits. We will use this result to provide a

sufficient condition for infinitesimal blocks in types Bn and Cn to be semisimple.

Collected in this work are results for the representation type of infinitesimal blocks

O(g, S, J) when g is of type An, Bn, or Cn and (ΦS, ΦJ) is a Hermitian symmetric pair.

This follows from the classification of non-empty and semisimple infinitesimal blocks in these

types, and the work of Boe and Nakano [BN], Boe and Hunziker [BH], and Enright [E].

The representation type of all of the infinitesimal blocks for type F4 and G2 have been

computed here. The complete results for these two cases required the use of a computer.

Examples in the classical types are also given in this thesis. A strong link between repre-

sentation type of infinitesimal blocks and nilpotent orbits is observed in these cases, and

the classification of the representation type of the infinitesimal blocks in types F4 and G2 is

given in terms of ideas from nilpotent orbits.



Chapter 2

Preliminaries

2.1 Notation

Write Z for the integers, and Z≥0, Z>0, Z<0 for the non-negative positive, and negative

integers, respectively. Denote the real numbers by R and the field of complex numbers by C.

Denote the trace of a square matrix or an endomorphism x by tr(x).

In this thesis, we will work over the field C of complex numbers. Take g to be a complex

simple Lie algebra; for example,

sln+1(C) = { x ∈ gln(C) | tr(x) = 0 }

so2n+1(C) =








m b p

c 0 −bt

q −ct −mt




∣∣∣∣ m, p, q ∈ gln(C), bt, c ∈ C
n, q = −qt, p = −pt





sp2n(C) =







 m p

q −mt




∣∣∣∣ m, p, q ∈ gln(C), q = qt, p = pt



 (2.1)

so2n(C) =






 m p

q −mt




∣∣∣∣ m, p, q ∈ gln(C), q = −qt, p = −pt





with bracket given by [x, y] = xy − yx. The material in this section can be found in [Hum].

If V is a complex vector space, then let gl(V ) denote the usual Lie algebra of endo-

morphisms of V . Let ad: g → gl(g) denote the adjoint representation of g. If V is finite

dimensional and x ∈ gl(V ), then x has a Jordan canonical form; i.e., there is an ordered

basis of V such that the matrix of x with respect to this basis is the direct sum of Jordan

5
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blocks:

xi =




λi 1 0 · · · 0

0 λi 1 · · · 0

...
...

. . .
. . .

...

0 0 · · · λi 1

0 0 · · · 0 λi




Therefore, x is the sum of a diagonal matrix and a nilpotent matrix, and these two matrices

commute with each other. We say that x ∈ gl(V ) is semisimple if x is diagonalizable. We

say that x ∈ gl(V ) is nilpotent if xk = 0 for some k > 0.

Given x ∈ g, there exist unique xs, xn ∈ g such that x = xs + xn with [xs, xn] = 0,

ad xs ∈ gl(g) is semisimple, and ad xn ∈ gl(g) is nilpotent. This is called the Jordan-

Chevalley decomposition of x. If x = xs, then we say that x is semisimple, and we say

x is nilpotent if x = xn.

Let h be a maximal toral subalgebra of g. For example, take the set of diagonal matrices

in each of the Lie algebras in (2.1). Let h∗ := HomC(h, C) be the dual of h. Denote by

Φ the root system of g with respect to h, and for each α ∈ Φ, let gα = { x ∈ g | [h, x] =

α(h)x for all h ∈ h } denote the α-root space of g. We have the root space decomposition

g = h ⊕
⊕

α∈Φ

gα

of g.

Let κ : g×g → C denote the Killing form on g. For each λ ∈ h∗, there is a unique element

hλ ∈ h such that κ(hλ, h) = λ(h) for all h ∈ h, and so we have a nondegenerate symmetric

bilinear form on h∗ defined by (λ, µ) = κ(hλ, hµ).

We will take n = dimC h∗ to be the rank of Φ, and denote the fixed set of simple roots by

∆ = {α1, α2, . . . , αn}. Denote the set of positive (respectively, negative) roots with respect

to ∆ by Φ+ (respectively, Φ−).

If

n+ =
⊕

α∈Φ+

gα and n− =
⊕

α∈Φ−

gα
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Φ Dynkin Diagram

An (n ≥ 1) ◦ ◦ ◦ ◦ ◦ ◦
α1 α2 α3 αn−2 αn−1 αn

Bn (n ≥ 2) ◦ ◦ ◦ ◦ ◦ ◦
α1 α2 α3 αn−2 αn−1 αn

Cn (n ≥ 3) ◦ ◦ ◦ ◦ ◦ ◦
α1 α2 α3 αn−2 αn−1 αn

Dn (n ≥ 4) ◦ ◦ ◦ ◦ ◦ ◦
◦α1 α2 α3 αn−3 αn−2

αn−1

αn

En (n = 6, 7, 8) ◦ ◦ ◦ ◦

◦

◦
α1

α2

α3 α4 α5 αn

F4 ◦ ◦ ◦ ◦
α1 α2 α3 α4

G2
◦ ◦
α1 α2

Table 2.1: Dynkin Diagrams of Root Systems of Simple Lie Algebras

then the Lie subalgebras b+ = h⊕ n+ and b− = h⊕ n− of g are called Borel subalgebras.

The coroot of α ∈ Φ is defined to be:

α̌ =
2α

(α, α)

For each α ∈ Φ, the reflection in h∗ through the hyperplane Pα = { β ∈ h∗ | (β, α) = 0 } is

given by sα(β) = β − (β, α̌)α for each β ∈ h∗. Let W denote the Weyl group of Φ, which

is generated by the reflections sα for α ∈ Φ. In fact, the simple reflections, si := sαi
,

i = 1, 2, . . . , n generate the Weyl group W. If w ∈ W is written as w = si1si2 · · · sit with

ij ∈ {1, 2, . . . , n} and t minimal, then we call this a reduced expression for w and we call

t the length of w, and write l(w) = t. By definition, l(1) = 0. Furthermore, there exists a

unique longest element w0 of W.

Define a partial ordering on W as follows. For w, w′ ∈ W, write w → w′ if l(w) < l(w′)

and w′ = wsα for some α ∈ Φ. Write w < w′ if there is a sequence w = w0 → w1 →

· · · → wr = w′. This partial ordering is compatible with the length function, and is called

the Bruhat ordering.
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The simple Lie algebras are classified by the Dynkin diagrams given in Table 2.1. The

classical Lie algebras sln+1(C), so2n+1(C), sp2n(C), and so2n(C) have respective root sys-

tems of types An, Bn, Cn and Dn. The Lie algebras with root systems of type E6, E7, E8,

F4, or G2 are called exceptional Lie algebras.

2.2 Representation Theory of Lie Algebras

Let V be a vector space over C. A Lie algebra homomorphism ϕ : g → gl(V ) is called a

representation of g in V and the dimension of ϕ is the dimension of V . We say that V is

a g-module if g acts linearly on V and this action respects the bracket in g. There is a one-

to-one correspondence between representations of g and g-modules. A simple g-module is

a g-module V 6= 0 whose only g-submodules are V and 0.

Let U(g) denote the universal enveloping algebra of g. We have that V is a g-module if

and only if V is a U(g)-module.

Let V be a (not necessarily finite dimensional) g-module. For each µ ∈ h∗, define the

µ-weight space of V to be:

Vµ = { v ∈ V | hv = µ(h)v for all h ∈ h }

If Vµ 6= 0 , then we call µ a weight of V , and its multiplicity is dim Vµ. Denote the set of

weights of V by wt(V ).

The set X = {µ ∈ h∗ | (µ, α̌) ∈ Z for all α ∈ Φ } is the integral weight lattice, and its

elements are called integral weights. The set X+ = {µ ∈ X | (µ, α̌) ∈ Z≥0 for all α ∈ Φ+ }

is the set of dominant integral weights, and we say that µ ∈ X+ is a strongly dominant

integral weight if (µ, α̌) ∈ Z>0 for all α ∈ Φ+.

Since ∆ is a basis for h∗, any weight can be written as a linear combination of simple

roots. Consequently, there is a natural action of W on h∗. In fact, this is an action on X.

The strongly dominant integral weight

ρ =
1

2

∑

α∈Φ+

α
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plays a useful role in the representation theory of Lie algebras. One nice property that ρ has

is that

(ρ, α̌) = 1 for all α ∈ ∆ (2.2)

(see [Hum, Sec. 13.3]). The Weyl group acts on h∗ via the dot action:

w · µ = w(µ + ρ) − ρ

for all w ∈ W, µ ∈ h∗.

There is a partial order on h∗ defined as follows. For µ, λ ∈ h∗, say λ ≺ µ if and only if

µ − λ is a sum of positive roots. If V is a g-module such that V = U(g) · v for some v ∈ Vµ

with the property that gαi
· v = 0 for all i, then we call V a highest weight module with

highest weight µ. The weight µ has the property that λ ∈ wt(V ) implies that either λ = µ

or λ ≺ µ.

2.2.1 Category OS

In the 1970’s, Bernstein-Gelfand-Gelfand [BGG] defined an important category of U(g)-

modules, called category O. The key objects in category O are the Verma modules, which

are constructed as follows. Let µ ∈ h∗, and define an action of h on C by hz = µ(h)z for all

h ∈ h, z ∈ C. We can inflate this to an action of b+ on C by letting n+ act trivially. Denote

this b+-module by Cµ. In fact, any finite dimensional irreducible U(b+)-module is equivalent

to some Cµ (µ ∈ h∗). The induced U(g)-module M(µ) = U(g)⊗U(b+) Cµ with the natural left

action of U(g) is the Verma module associated to µ. In fact, it is a highest weight module

with highest weight µ (see [Dix, Sec. 7.1]).

We will work in special subcategories of category O determined by certain parabolic

subalgebras of g. These categories were defined by Rocha-Caridi in the early 1980’s.

Fix S ⊆ ∆, viewed where appropriate as a subset of {1, . . . , n} via the fixed ordering on

simple roots. For each i ∈ S, there exist xi ∈ gαi
, yi ∈ g−αi

, and hi ∈ h such that [xi, yi] = hi

and αi(hi) = 2 [Dix, 1.10]. Set hS = 〈hi | i ∈ S〉 and hS = {h ∈ h | αi(h) = 0 for all i ∈ S}
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and let

ΦS = Φ ∩
∑

i∈S

Zαi

and Φ+
S = Φ+ ∩ ΦS. Define:

n+
S =

⊕

α∈Φ+

S

gα and n−
S =

⊕

α∈Φ+

S

g−α

If we set gS = n+
S ⊕hS⊕n−

S , then gS is a semisimple Lie algebra with maximal toral subalgebra

hS. Furthermore, viewed as elements of h∗
S (by restricting to hS), ΦS is a root system of gS

with respect to hS having positive roots Φ+
S and simple roots S.

Define mS = n+
S ⊕ hS ⊕ hS ⊕ n−

S and set:

u+
S =

⊕

α∈Φ+\Φ+

S

gα

Since [mS, u+
S ] ⊆ u+

S , we have that pS = mS ⊕ u+
S is a subalgebra of g containing b, called a

standard parabolic subalgebra of g. We call mS the Levi factor and u+
S the nilradical

of pS (see [RC]). The Levi factor mS of pS also has root system ΦS . Denote the Weyl group

of ΦS by WS . It can be considered as a subgroup of W. Let wS be the longest element of

WS.

Let pS be the standard parabolic subalgebra of g determined by S. The category OS is

defined as follows.

Definition 2.2.1 Let OS be the full subcategory of the category of U(g)-modules consisting

of modules V which satisfy the following conditions:

(i) V is a finitely generated U(g)-module.

(ii) As a U(mS)-module, V is the direct sum of finite dimensional U(mS)-modules.

(iii) For all v ∈ V , dimC U(u+
S )v < ∞.

Define X+
S = {µ ∈ h∗ | (µ, α̌) ∈ Z≥0 for all α ∈ Φ+

S }. We have the following theorem

[Hum, Sec. 21].
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Theorem 2.2.2 There is a one-to-one correspondence between the finite dimensional irre-

ducible mS-modules (up to equivalence) and the set X+
S .

Let F (µ) denote the finite dimensional irreducible mS-module of highest weight µ ∈ X+
S .

If V ∈ OS, then by Definition 2.2.1(ii), as an mS-module

V =
⊕

µ∈X+

S

mµF (µ)

for some mµ ∈ Z≥0 ∪ {∞}. Set wtm(V ) = {µ ∈ X+
S | mµ 6= 0 }.

When S = ∅, OS is the category O defined in [BGG]. For each µ ∈ h∗, define:

D(µ) = {µ − (a1α1 + a2α2 + · · ·+ anαn) | ai ∈ Z≥0 }

Category OS has the following properties (see [RC, Sec. 3] for details).

Theorem 2.2.3 Let V ∈ OS.

(i) If U ⊆ V is a submodule, then U ∈ OS and V/U ∈ OS.

(ii) If V1, . . . , Vr ∈ OS, then the finite direct sum
⊕r

i=1 Vi is in OS.

(iii) If V ∈ OS , then

V =
⊕

µ∈X+

S

mµF (µ)

for some mµ ∈ Z≥0.

(iv) There exist µ1, µ2, . . . , µr ∈ X+
S such that wtm(V ) ⊆ D(µ1) ∪ D(µ2) ∪ · · · ∪ D(µr).

(v) V has a Jordan-Hölder series.

The key objects in category OS are the parabolic Verma modules, which are constructed

as follows. Start with a finite dimensional irreducible mS-module F (µ) (µ ∈ X+
S ). Extend

F (µ) to a pS-module by letting u+
S act trivially (this gives the most general finite dimensional

irreducible pS-module). The induced module

V (µ) = U(g) ⊗U(pS) F (µ)
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is a parabolic Verma module (or PVM for short).

PVMs have properties similar to Verma modules, and in fact, generalize the ordinary

Verma modules as shown below [RC, Sec. 3].

Theorem 2.2.4 Let V (µ) be the PVM associated to µ ∈ X+
S .

(i) V (µ) ∈ OS.

(ii) V (µ) is a highest weight module for g with highest weight µ.

(iii) V (µ) has a unique maximal submodule, and hence a unique irreducible quotient module,

denoted L(µ) (this is the same unique irreducible quotient module of M(µ)).

(iv) If S = ∅, then V (µ) = M(µ) and if S = ∆, then V (µ) = L(µ).

(v) If V ∈ OS is irreducible, then V is isomorphic to L(µ) for some µ ∈ X+
S .

We will now discuss briefly projective modules in category OS. First, there are enough

projectives in category OS. In fact, we have the following (see [RC, Sec. 4]).

Proposition 2.2.5 (i) For each V ∈ OS, there is a projective module P in OS such that

V is a quotient of P .

(ii) If P ∈ OS is a projective indecomposable module, then P has a unique maximal sub-

module and hence a unique irreducible quotient.

(iii) There is a one-to-one correspondence between the irreducible modules in OS and the

projective indecomposable modules in OS given by L(µ) ↔ P (µ) for all µ ∈ X+
S . In

fact, P (µ) is the projective cover of L(µ).

We say that V ∈ OS has a parabolic Verma filtration if there is a filtration

V = V0 ⊇ V1 ⊇ · · · ⊇ Vr−1 ⊇ Vr = 0
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such that Vi−1/Vi
∼= V (µi) for some µi ∈ X+

S (1 ≤ i ≤ r). If V has a parabolic Verma

composition series, then let [V : V (µ)] denote the multiplicity of V (µ) as a subquotient of

V in the series (this is well-defined; see [RC, Sec. 5]). If [V (λ) : L(µ)] is the multiplicity of

L(µ) in a Jordan-Hölder series of V (λ), then we have the following reciprocity law [RC, Sec.

6].

Theorem 2.2.6 (Reciprocity in OS) Every projective module in OS has a parabolic

Verma filtration and if λ, µ ∈ X+
S , then:

[P (µ) : V (λ)] = [V (λ) : L(µ)]

2.2.2 Infinitesimal Blocks of OS

Let Z be the center of U(g) and denote the set of algebra homomorphisms Z → C by Z♯. If

V ∈ OS and there exists χ ∈ Z♯ such that zv = χ(z)v for all z ∈ Z and all v ∈ V , then we

say that V has central character (or infinitesimal character) χ.

For each χ ∈ Z♯, let Oχ
S be the full subcategory of OS consisting of modules V ∈ OS

such that for all z ∈ Z, each v ∈ V is annihilated by some power of z − χ(z). If V ∈ OS,

then for each χ ∈ Z♯, there exists V χ ∈ Oχ
S such that:

V =
⊕

χ∈Z♯

V χ

We thus have the decomposition

OS =
⊕

χ∈Z♯

Oχ
S

of the category OS. We call Oχ
S an infinitesimal block of category OS.

For each µ ∈ h∗, the ordinary Verma module M(µ) has a central character which we will

denote by χµ ∈ Z♯. Since V (µ) for µ ∈ X+
S is a highest weight module with highest weight

µ, V (µ) is a quotient of M(µ). Thus, as quotients of M(µ), each of V (µ) and L(µ) also has

central character χµ. Furthermore, if χ ∈ Z♯ is a central character, then there exists µ ∈ h∗

such that χ = χµ. If χ = χµ, we can write Oµ
S = O

χµ

S = O(g, S, µ) for Oχ
S.
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If µ ∈ X+
S , then we have V (µ), L(µ) ∈ Oµ

S. Furthermore, we have the following linkage

principle.

Theorem 2.2.7 (Harish-Chandra Linkage Principle) If λ, µ ∈ h∗, then:

χµ = χν ⇐⇒ ν ∈ W · µ

Thus, V (ν), L(ν) ∈ Oµ
S if and only if ν = wSw · µ for some w ∈ W. Since PVM’s are

constructed from the finite dimensional mS-modules with highest weights in X+
S , the set

of PVM’s in Oµ
S is { V (wSw · µ) | wSw · µ ∈ X+

S }. Consequently, the PVM’s (as well as

the simple modules and projective indecomposable modules) in Oµ
S are parameterized by

{w ∈ W | wSw · µ ∈ X+
S }.

Assume from now on that µ is an integral weight and µ+ρ is antidominant, i.e., (µ+ρ, α̌) ∈

Z≤0 for all α ∈ Φ+; (if it is not antidominant, we can replace it by a W-translate, so we are

justified in making this assumption). Let

Φµ = {α ∈ Φ | (µ + ρ, α̌) = 0 }.

If Φµ = ∅, then µ+ρ is called a regular weight. If µ+ρ and ν +ρ are both regular weights,

then the category Oµ
S is equivalent to Oν

S by the Jantzen-Zuckerman translation principle.

If µ + ρ is a regular weight, then {w ∈ W | wSw · µ ∈ X+
S } is the set

SW = {w ∈ W | l(sαw) = l(w) + 1 for all α ∈ S }

= {w ∈ W | w−1(Φ+
S ) ⊆ Φ+ }

which is the set of smallest length representatives for the right cosets of WS in W.

Now, if µ ∈ h∗ is such that Φµ 6= ∅, then Φµ is a subroot system of Φ, and in this case

µ + ρ is called a singular weight. Suppose α ∈ Φ+ ∩ Φµ. Then (µ + ρ, α̌) = 0 and also we

can write α =
∑n

i=1 aiαi for some ai ∈ Z≥0. Since µ + ρ is antidominant, (µ + ρ, α̌i) ≤ 0 for

each 1 ≤ i ≤ n. Consequently, 0 = (µ+ρ, α̌) =
∑n

i=1 ai(µ+ρ, α̌i) implies that (µ+ρ, α̌i) = 0

for any i ∈ {1, . . . , n} such that ai 6= 0. Setting

J = {α ∈ ∆ | (µ + ρ, α̌) = 0 }
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we have that Φµ is the root system ΦJ which has simple roots J . Note that the Weyl group

WJ of ΦJ is the stabilizer of µ + ρ.

If µ + ρ is singular, then wSw · µ ∈ X+
S if and only if wWJ ⊆ SW. Since WJ stabilizes

µ + ρ, the set

SWJ = {w ∈ SW | w < wsα and wsα ∈ SW for all α ∈ J }

is the set of smallest length representatives for the left cosets wWJ contained in SW. Conse-

quently, the set SWJ parameterizes the set of inequivalent irreducible modules in the infinites-

imal block Oµ
S. That is, the set of simple modules in Oµ

S is the set {L(wSw · µ) | w ∈ SWJ }

(see [BN, Prop. 2.2]).

As with S, we will frequently view the set J as a subset of {1, . . . , n}. We will use the

notation

Oµ
S = O(Φ, S, J) = O(g, S, J)

when Φµ = ΦJ .



Chapter 3

Non-Zero Infinitesimal Blocks

It is possible that an infinitesimal block O(g, S, J) contains only the zero module. Conse-

quently, one of the first questions one can ask is: under what conditions is a given infinitesimal

block guaranteed to contain at least one simple module? First we will discuss this question

in the case when g = sln+1(C). The answer generally will take us into the realm of nilpotent

orbits of g, where combinatorial and geometric tools will provide the answer.

3.1 The Idea: A Look at Type An

Let g = sln+1(C). Recall that if {ε1, · · · , εn+1} is the standard orthonormal basis of h∗ ∼= Rn+1,

then Φ = { εi − εj | 1 ≤ i, j ≤ n+1, i 6= j } with simple roots ∆ = {αi := εi− εi+1 | 1 ≤ i ≤

n } and positive roots Φ+ = { εi − εj | 1 ≤ i < j ≤ n + 1 }. The Weyl group W is isomorphic

to the symmetric group Sn+1, with the simple reflection si acting as a transposition which

interchanges εi and εi+1 and fixes every other basis element.

Fix a set S ⊆ ∆ and let µ + ρ be an antidominant integral weight, where Φµ has simple

roots J ⊆ ∆. Suppose that w ∈ SWJ and let ν = wSw(µ+ ρ) so that ν − ρ = wSw ·µ ∈ X+
S .

Write ν = (ν1, ν2, . . . , νn, νn+1) (in the ε-basis) and note that α̌ = α for all α ∈ Φ. If αi ∈ S,

then

(ν − ρ, αi) = (ν, αi) − (ρ, αi) = νi − νi+1 − 1

by (2.2). Now, (ν − ρ, αi) ∈ Z≥0 and so νi − νi+1 ∈ Z and νi > νi+1 whenever αi ∈ S.

On the other hand, if αi ∈ J and µ + ρ = (µ1, . . . , µn, µn+1), then:

0 = (µ + ρ, αi) = µi − µi+1 ⇐⇒ µi = µi+1

16
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3.1.1 An Example

Consider g = sl7(C). Let S = {α2, α4, α5} and µ + ρ = (0, 0, 1, 1, 1, 2, 2). Then J =

{α1, α3, α4, α6}, and the simple roots in S require ν to be of the form ν = (ν1|ν2, ν3|ν4, ν5, ν6|ν7)

where ν2 > ν3 and ν4 > ν5 > ν6. For convenience, we will say that the coordinates between

two consecutive bars in ν are in the same ‘corral’. In this example, there are four corrals.

The elements in SWJ are precisely those elements w ∈ W ∼= Sn+1 such that wSw(µ+ ρ) = ν

with the coordinates in each corral of ν arranged in decreasing order. For example, if

ν = (1|2, 1|2, 1, 0|0), then ν − ρ is a weight in X+
S .

Put ovals around the nodes in the Dynkin diagram of A6 corresponding to the simple

roots in S, with αi, αj in the same oval if and only if αk ∈ S for each i ≤ k ≤ j. In the same

manner, put boxes around the nodes corresponding to simple roots in J . Then we represent

this example as follows:

◦ ◦ ◦ ◦ ◦ ◦
α1 α2 α3 α4 α5 α6

We can construct a Young diagram πS from ν in the following way. For each corral of

ν, write a sequence of squares, one square for each coordinate in the corral. Arrange these

sequences of squares from longest to shortest. Put the first sequence as the top row, the

second sequence as the next row, and so on. In this example, we have the Young diagram:

πS:

We can construct a Young tableau
∗
πJ from the weight µ + ρ by using the coordinates which

are equal for each row, arranged from longest to shortest. For this example, we have

∗
πJ :

0 0
2 2
1 1 1

By the content of
∗
πJ , we mean the set of integers (including multiplicities) appearing in

∗
πJ . Notice that both πS and

∗
πJ have n + 1 boxes.
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Now, w ∈ SWJ if and only if νi > νj whenever i < j and νi, νj belong to the same ‘corral’.

Consequently, there is a one-to-one correspondence between the elements in SWJ and the

Young tableaux of shape πS and content the same as that of
∗
πJ such that each row is strictly

decreasing. Such tableaux are in one-to-one correspondence with tabloids (tableaux with

unordered rows) of shape πS and content the same as that of
∗
πJ with each row containing

distinct elements. For our example, there are five elements in SWJ , associated to the following

five tabloids:

0
1
2 1
2 1 0

1
0
2 1
2 1 0

1
1
2 0
2 1 0

1
2
1 0
2 1 0

2
1
1 0
2 1 0

Denote a tabloid of shape πS and content the same as that of
∗
πJ by {

∗
πS,J}.

3.1.2 Partitions

The set of partitions of an integer N is the set

P(N) := {π = (π1, π2, . . . , πN) ∈ Z
N | π1 ≥ π2 ≥ · · · ≥ πN ≥ 0,

N∑

i=1

πi = N}

and we write π ⊢ N if π ∈ P(N). We call πi the ith part of π. For any π ∈ P(N), the

partition π̃ = (π̃1, π̃2, . . . , π̃N) ⊢ N defined as

π̃i := #{j | πj ≥ i} for 1 ≤ i ≤ N

is called the dual partition to π. By convention, we will usually omit the trailing 0’s when

we write down a partition of n. Any partition π is described via a Young diagram, with

part πi represented as the ith row of length πi. Furthermore, the Young diagram of π̃ is the

reflection of the Young diagram of π along its main diagonal.
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There is a useful partial ordering E on partitions of N , called the dominance ordering,

defined as follows. If π, η ⊢ N , then π E η if and only if

π1 + π2 + · · · + πi ≤ η1 + η2 + · · ·+ ηi

for every i.

Let’s define the partitions πS and πJ which represent the Young diagrams determined by

S and J that we introduced in Section 3.1.1. Since g is of type An, any subroot system Φ′

is isomorphic to Ar1
× Ar2

× · · · × Ark
with r1 ≥ r2 ≥ · · · ≥ rk ≥ 1. For each such subroot

system, define a partition

π = (r1 + 1, r2 + 1, . . . , rk + 1, 1m) (3.1)

of n+1. For S, J ⊆ ∆, denote the partitions determined by ΦS and ΦJ as, respectively, πS and

πJ . Note that each Ari
in ΦS corresponds to a unique corral of ν, and it has ri+1 coordinates.

Furthermore, there are exactly m = k0 := (n+1)− (|S|+k) corrals with only one coordinate

because ν has n + 1 coordinates and (r1 + 1)+ (r2 + 1) + · · ·+ (rk + 1) = |S|+ k of them are

in corrals with at least two coordinates. On the other hand, each Ari
in ΦJ corresponds to a

unique coordinate of µ + ρ of multiplicity ri + 1 and there are m = l0 := (n + 1) − (|J | + l)

coordinates of multiplicity 1. Thus, πS determines the Young diagram and
∗
πJ determines

the Young tableau (filled with the coordinates of µ + ρ) defined in Section 3.1.1.

3.2 Nilpotent Orbits

In this section, most of the material can be found in [CMcG]. We will assume here that g

is a simple Lie algebra and that G is its adjoint group, a connected complex Lie group. For

g ∈ G, let g · x denote the adjoint action of G on x ∈ g. Let N (g) be the variety of nilpotent

elements of g, called the nullcone of g. The restriction of the adjoint action of G on g to

N (g) is an action on N (g) and furthermore, N (g) has finitely many G-orbits under this

action [L]. For each x ∈ N (g), the orbit G · x is called the nilpotent orbit of x in g.
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There is a one-to-one correspondence between the set of nilpotent orbits of g and certain

weighted Dynkin diagrams; i.e., the Dynkin diagram of g together with some admissible

combination of the integers 0,1, and 2 attached to the nodes [CMcG, Ch. 3].

A parabolic subalgebra p = m ⊕ u is said to be distinguished if dim m = dim(u/[u, u]).

For example, a Borel subalgebra is distinguished. The following theorem, due to Bala and

Carter [BC1, BC2], provides a link between nilpotent orbits of g and parabolic subalgebras

of g (via Levi subalgebras).

Theorem 3.2.1 (Bala-Carter) There is a natural one-to-one correspondence between the

nilpotent orbits of g and the G-conjugacy classes of pairs (m, pm), where m is a Levi subalgebra

of g and pm is a distinguished parabolic subalgebra of the semisimple Lie algebra [m, m].

Since any Borel subalgebra is distinguished, there is a nilpotent orbit OS associated to

the G-conjugacy class of the pair (mS, bmS
), where bmS

is a Borel subalgebra of [mS, mS]. In

fact, one can choose orbit representatives naturally in this case as follows. For each α ∈ S, let

xα be a fixed nonzero element of the root space gα and define a regular nilpotent element

xS =
∑

α∈S

xα

for mS. Then OS = G · xS.

Proposition 3.2.2 If S, S ′ ⊆ ∆, then OS = OS′ if and only if ΦS and ΦS′ are W-conjugate.

Proof. OS = OS′ if and only if (mS, bmS
) and (mS′ , bmS′

) are G-conjugate, which is true if

and only if mS and mS′ are G-conjugate. By [ColMcG, Lemma 3.8.1], this is true if and only

if ΦS and ΦS′ are W-conjugate. �

In consequence of Proposition 3.2.2, we will call an orbit OS a root system orbit of

type ΦS. It turns out that in a few cases (mainly to be dealt with in types Dn and E7)

OS 6= OS′ even though ΦS and ΦS′ are of the same type.

There is a partial order on the set of nilpotent orbits of g defined by O ≤ O′ if and only

if O ⊆ O′.
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3.2.1 Nilpotent Orbits for Classical Lie Algebras

Suppose g is a classical Lie algebra so that g is of type Xn, where X is one of A, B, C or D.

Then the nilpotent orbits in N (g) are parameterized by certain partitions of some integer

N(Xn) [CMcG, Sec. 5.1]. This parametrization is as follows.

Type An: If g = sln+1(C), then any nilpotent element x ∈ N (g) is conjugate under G =

GLn(C) to a nilpotent Jordan-block matrix xπ with Jordan block sizes given by the parts of

the partition π ⊢ n + 1. Consequently, the nilpotent orbits of sln+1(C) are parameterized by

the set PA(n + 1) := P(n + 1) of all partitions of N(An) = n + 1.

Type Bn: If g = so2n+1(C), then the nilpotent orbits of g are parameterized by the set

PB(2n + 1) of partitions of N(Bn) = 2n + 1 for which the even parts occur with even

multiplicity.

Type Cn: If g = sp2n(C), then the nilpotent orbits are parameterized by the set PC(2n) of

partitions of N(Cn) = 2n for which the odd parts occur with even multiplicity.

Type Dn: If g = so2n(C), then the nilpotent orbits are parameterized by the set PD(2n) of

partitions of N(Dn) = 2n for which the even parts occur with even multiplicity, except that

if π ⊢ 4n is a very even partition (i.e., π has only even parts and each even part occurs with

even multiplicity), then there are exactly two orbits corresponding to π.

We will denote an orbit corresponding to the partition π by Oπ. For type D2n, if π ⊢ 4n

is a very even partition, then denote by OI
π and OII

π the two orbits associated to π. If g is

of type An, Bn, or Cn and Oπ, Oπ′ correspond respectively to the partitions π, π′ ⊢ N , then

Oπ ⊆ Oπ′ if and only if π E π′. The same statement is true in type Dn unless π = π′ is

very even and Oπ = OI
π and Oπ′ = OII

π in which case OI
π and OII

π are incomparable. See

[Ger, Hes].
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If S ⊆ ∆, then OS = OπS
for some πS ∈ PX(N) and, in fact, πS is constructed as follows

[Spalt]. If g is of type Xn, then mS is of type Xm × An1−1 × An2−1 × · · · × Anr−1 for m ≥ 0

and n1 ≥ n2 ≥ · · · ≥ nr ≥ 2.

• If X = A, then m = 0 and there exists k ∈ Z≥0 such that n1 +n2 + · · ·+nr +k = n+1

and πS = (n1, n2, . . . , nr, 1
k). In fact, k = (n + 1) − (|S| + r) and πS is the partition

defined in Section 3.1.2 with the same symbol.

• If X = B, then there exists k ∈ Z≥0 such that (2m+1)+2n1+2n2+· · ·+2nr+k = 2n+1

and πS is obtained by arranging the set

{2m + 1, n1, n1, n2, n2, . . . , nr, nr, 1, . . . , 1}

(k 1’s) in decreasing order. Note that we distinguish a root system of type A1 from

that of B1 (short roots).

• If X = C, then there exists k ∈ Z≥0 such that 2m + 2n1 + 2n2 + · · · + 2nr + k = 2n

and arranging the set

{2m, n1, n1, n2, n2, . . . , nr, nr, 1, . . . , 1}

(k 1’s) in decreasing order gives πS. Again we distinguish a root system of type A1

from that of C1 (long roots).

• If X = D, then m 6= 1 and there exists k ∈ Z≥0 such that 2m+2n1+2n2+· · ·+2nr+k =

2n. If m = 0, then πS is obtained by arranging the set

{n1, n1, n2, n2, . . . , nr, nr, 1 . . . , 1}

(k 1’s) in decreasing order; if m ≥ 2, then πS is obtained by arranging the set

{2m − 1, n1, n1, n2, n2, . . . , nr, nr, 1, 1, . . . , 1}

(k + 1 1’s) in decreasing order. Note that we are distinguishing the subroot system of

type D2 from that of type A1×A1 and the subroot system of type D3 from that of A3.
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3.2.2 Nilpotent Orbits for Exceptional Lie Algebras

If g is of type E6, E7, E8, F4, or G2, then the correspondence of Theorem 3.2.1 is given in

the tables in [CMcG, Sec. 8.4]. Furthermore, the partial orderings on nilpotent orbits of the

exceptional Lie algebras are given by Hasse diagrams in [Cart, pp. 439–445]. Remark: there

are some small corrections to the Hasse diagram for E8 which are given in [UGA, Sec. 7].

3.3 Richardson Orbits

Let g be any simple Lie algebra. Let S ⊆ ∆ and let pS = mS ⊕ uS be the corresponding

parabolic subalgebra of g. Then G · uS is a closed, irreducible subvariety of N (g) and there

exists a unique nilpotent orbit RS such that RS = G · uS. The orbit RS is called the

Richardson orbit corresponding to S.

Given S, S ′ ⊆ ∆, it is possible to have RS = RS′ even if S 6= S ′. For S, S ′ ⊆ ∆, write

S ∼ S ′ if and only if RS = RS′. This is an equivalence relation on ∆ and Hirai classified the

equivalence classes in [H] as follows.

Theorem 3.3.1 (Hirai) Let S, S ′ ⊆ ∆.

(i) If S and S ′ are orthogonal to each other, and T1, T2 ⊆ S and T ′
1, T

′
2 ⊆ S ′ with T1 ∼ T2

in ΦS and T ′
1 ∼ T ′

2 in ΦS′, then T1 ∪ T ′
1 ∼ T2 ∪ T ′

2 in Φ.

(ii) We have the following relations.

(a) In An, if there exists w ∈ W (the Weyl group of An) such that wS = S ′, then

S ∼ S ′.

(b) In Bn or Cn, if n = 3k − 1 for k ≥ 1, then (∆ − {α2k−1}) ∼ (∆ − {α2k}).

(c) In D4, {α1, α2} ∼ {α1, α3, α4}.

(d) In Dn, if n = 2k + 1 or n = 3k + 1 for k ≥ 2, then (∆−{α2k}) ∼ (∆−{α2k+1}).

(e) In E6, (∆ − {α1}) ∼ (∆ − {α6}), (∆ − {α3}) ∼ (∆ − {α5}), and (∆ − {α4}) ∼

(∆ − {α2, α5}).
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(f) In E8, (∆ − {α5}) ∼ (∆ − {α2, α3}).

(g) In F4, {α1, α2, α4} ∼ {α1, α3, α4} ∼ {α2, α3}.

(h) In G2, {α1} ∼ {α2}.

(iii) The relations in (ii) generate the whole equivalence relation ∼ under the property given

in (i).

Recall that W ∼= NG(T )/T , where T is a maximal toral subgroup of G. For w ∈ W, let

w 7→ gwT ∈ NG(T )/T under this isomorphism.

Proposition 3.3.2 If S, S ′ ⊆ ∆ and OS = OS′, then RS = RS′.

Proof. If OS = OS′, then by Proposition 3.2.2, there exists w ∈ W such that ΦS′ = wΦS.

Hence, if gw ∈ G is a representative of w, then uS′ = gw · uS because if α ∈ Φ\ΦS and

xα ∈ gα, then gw · xα ∈ gwα and wα ∈ Φ\ΦS′ since ΦS′ = wΦS. Consequently,

RS = G · uS = (Ggw) · uS = G · (gw · uS) = G · uS′ = RS′

which implies that RS = RS′. �

We may have RS = RS′ even though OS 6= OS′. For example, suppose g is of type D4

and S = {α1, α2} and S ′ = {α1, α3, α4}. Then Theorem 3.3.1(ii)(d) implies that RS = RS′ .

But ΦS is of type A2 and ΦS′ is of type A3
1, and so they are not W-conjugate and therefore

OS 6= OS′ by Proposition 3.2.2.

Let X be one of the letters B, C, or D. Given any partition π ⊢ N(Xn), there is a unique

partition πX ∈ PX(N(Xn)), called the X-collapse of π, with the property that πX E π and

ν EπX for any partition ν ∈ PX(N(Xn)) with ν Eπ. For completeness, for any π ∈ PA(n+1)

set πA = π.

Let g be a simple Lie algebra of type Xn, where X is one of the letters A, B, C, or D.

Define a map dX : PX(N(Xn)) → PX(N(Xn)) by dX(π) = (π̃)X . Then dX induces a map
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d′
X on the set of nilpotent orbits in N (g) via d′

X(Oπ) = OdX(π) = O(π̃)X
if π is not very even

whenever Xn = D2m, and if Xn = D2m with π ⊢ 4m very even, then:

d′
D(OI

π) =





OI

π̃ if m is even

OII
π̃ if m is odd

and d′
D(OII

π ) =





OII

π̃ if m is even

OI
π̃ if m is odd

The following theorem is due to Kraft [Kr] for type An and Spaltenstein [Spalt] for types

Bn, Cn, and Dn.

Theorem 3.3.3 If g is a simple Lie algebra of type Xn, where X is one of the letters A,

B, C, or D, then dX is an order-reversing map with the property that d2
X(π) D π for any

π ∈ PX(N(Xn)). Furthermore, the induced map d′
X is an order reversing map on the set of

nilpotent orbits in N (g) such that for all S ⊆ ∆, d′
X(OS) = RS.

To get an idea of how the transpose partitions come up, consider g = sln+1(C). If π ⊢ n+1,

then:

Oπ = { x ∈ sln+1(C) | dim Ker xi =

i∑

j=1

π̃j , i = 1, 2, . . . , n }

For example, if π = (4, 2, 1), then there are three columns of zeros in the nilpotent Jordan

block matrix xπ corresponding to π (one for each Jordan block). Since x2
π increases the

number of columns of zeros by one in each block of xπ of size at least 2 and does nothing to

blocks of size 1, x2
π has 3 + 2 = 5 zero columns. In general, xi

π has one more column of zeros

in each block of xπ of size at least i than xi−1
π and the same number of columns of zeros in

blocks of size less than i. Thus, we get the transpose partition π̃ = (3, 2, 1, 1).

3.4 Nonzero Blocks of Category OS

Let g be any simple Lie algebra and fix S, J ⊆ ∆. We are now ready to use the machinery we

have developed to determine if the block O(g, S, J) is nonzero. We start with some lemmas.

Lemma 3.4.1 If w ∈ SWJ , then wSw(ΦJ) ∩ ΦS = ∅. Conversely, if wSw(ΦJ) ∩ ΦS = ∅

for some w ∈ W, then w1ww2 ∈
SWJ for some w1 ∈ WS and w2 ∈ WJ .
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Proof. Suppose w ∈ SWJ and let µ + ρ ∈ h∗ be an antidominant integral weight with

Φµ = ΦJ . Then wSw · µ ∈ X+
S so that (wSw · µ, α̌) ∈ Z≥0 for all α ∈ Φ+

S . If α ∈ Φ+
S , then

0 ≤ (wSw · µ, α̌) = (wSw(µ + ρ) − ρ, α̌) = (wSw(µ + ρ), α̌) − (ρ, α̌)

so that (wSw(µ + ρ), α̌) ≥ (ρ, α̌) ∈ Z>0 for all α ∈ Φ+
S . Since wS = w−1

S , we thus have that

(µ + ρ, w−1wSα̌) > 0 for all α ∈ Φ+
S . This means that w−1wSα /∈ ΦJ for any α ∈ Φ+

S . That

is, w−1wS(ΦS) ∩ ΦJ = ∅ which implies that ΦS ∩ wSw(ΦJ) = ∅ as required.

For the converse, suppose wSw(ΦJ)∩ΦS = ∅ and again let µ+ρ ∈ h∗ be an antidominant

integral weight with Φµ = ΦJ . Since wS ∈ WS, wS(ΦS) = ΦS and so ΦJ ∩ w−1(ΦS) = ∅

and therefore w−1α /∈ ΦJ for any α ∈ ΦS. Consequently, (µ + ρ, w−1α̌) 6= 0 for any α ∈ ΦS,

which implies that (w(µ + ρ), α̌) 6= 0 for any α ∈ ΦS . Thus, w(µ + ρ) is a regular integral

weight with respect to ΦS and so there exists w1 ∈ WS such that (wSw1w(µ + ρ), α̌) > 0

for all α ∈ S. Hence, (wSw1w(µ + ρ) − ρ, α̌) ≥ 0 for all α ∈ S, since (ρ, α̌) = 1. Therefore,

wSw1w · µ ∈ X+
S so that w1wWJ ⊆ SW. Let w2 ∈ WJ be such that the length of w1ww2 is

minimal among all elements in the coset w1wWJ . Then w1ww2 ∈ SWJ . �

Let xJ be a regular nilpotent element for mJ as defined in Section 3.2. The proofs of the

next two lemmas are adaptations of [Jan2, Sec. 2.5].

Lemma 3.4.2 If w ∈ SWJ , then gwSw · xJ ∈ uS. Conversely, if gwSw · xJ ∈ uS, then

w1ww2 ∈ SWJ for some w1 ∈ WS and w2 ∈ WJ .

Proof. Suppose w ∈ SWJ = SW ∩ wSWJ , where WJ = {w ∈ W | w(Φ+
J ) ⊆ Φ+ } [BN,

Cor. 2.2]. Then w = wSy for some y ∈ WJ so that y = wSw. Now,

gwSw · xJ = gy · xJ =
∑

α∈J

gy · xα

and gy · xα has weight y(α) for each α ∈ J . Since y ∈ WJ , y(α) ∈ Φ+ for each α ∈ J .

Furthermore, by Lemma 3.4.1, y(ΦJ) ∩ΦS = ∅ and so y(α) /∈ Φ+
S for any α ∈ J . Therefore,

gy · xα ∈ uS for each α ∈ J and so gy · xJ ∈ uS.
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Conversely, suppose gwSw · xJ ∈ uS. Then xJ ∈ g−1
wSw · uS = gw−1wS

· uS. Now, gw−1wS
· uS

is the direct sum of all root spaces gα with α ∈ w−1wS(Φ+\ΦS). Since xJ ∈ gw−1wS
· uS, each

α ∈ J must lie in w−1wS(Φ+\Φ+
S ). Thus Φ+

J ⊆ w−1wS(Φ+\ΦS) so that ΦJ ⊆ w−1wS(Φ\ΦS) =

w−1wS(Φ)\w−1wS(ΦS). That is ΦJ ∩w−1wS(ΦS) = ∅ which implies that wSw(ΦJ)∩ΦS = ∅.

By Lemma 3.4.1, there exists w1 ∈ WS and w2 ∈ WJ such that w1ww2 ∈ SWJ . �

Recall the Bruhat decomposition of G as the disjoint union

G =
⊔

w∈W

UgwB

where U is a unipotent subgroup and B is a Borel subgroup of G (see [Jan1, Sec. 1.9]).

Lemma 3.4.3 If xJ ∈ G · uS, then SWJ is not empty.

Proof. Suppose xJ ∈ G · uS. Then xJ ∈ g · uS for some g ∈ G. Using the Bruhat

decomposition of G, we can write g = ugwb for some w ∈ W, u ∈ U , and b ∈ B. Since

B normalizes uS, we have xJ ∈ ugw · uS, and so u−1 · xJ ∈ gw · uS. On the one hand,

u−1 · xJ = xJ + x, where x ∈
⊕

β∈(Φ+\J) gβ. On the other hand, gw · uS =
⊕

α∈w(Φ+\Φ+

S ) gα.

Consequently, J ⊆ w(Φ+)\w(Φ+
S ), so ΦJ ⊆ w(Φ)\w(ΦS) which implies that ΦJ∩w(ΦS) = ∅.

Write w = (w′)−1wS for some w′ ∈ W so that w−1 = wSw′. Then wSw′(ΦJ)∩ΦS = ∅ implies

that w1w
′w2 ∈ SWJ for some w1 ∈ WS and w2 ∈ WJ . �

We are now ready for the main theorem of this section.

Theorem 3.4.4 Suppose S, J ⊆ ∆. The following are equivalent.

(i) O(g, S, J) contains at least one simple module.

(ii) OJ ≤ RS.

(iii) OS ≤ RJ .

Proof. First, O(g, S, J) contains a simple module if and only if SWJ is not empty, since

the simple modules in O(g, S, J) are parameterized by SWJ . If w ∈ SWJ , then gwSw ·xJ ∈ uS
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by Lemma 3.4.2, which means that:

xJ ∈ gw−1wS
· uS ⊆ G · uS

Therefore, G · xJ ⊆ G · uS = RS and so G · xJ ⊆ RS. Since OJ = G · xJ , we have (i) ⇒ (ii).

To show (ii) ⇒ (i), if OJ = G · xJ ⊆ RS = G · uS, then xJ ∈ G · uS. Therefore, by Lemma

3.4.3, SWJ is not empty.

We will now show (ii) ⇔ (iii). First, we have that SWJ = (JWS)−1 = {w−1 | w ∈ JWS }

[BN, Cor. 2.4.1]. Furthermore, OJ ≤ RS if and only if SWJ is not empty. But SWJ =

(JWS)−1 and so if one of these sets is nonempty, then so is the other one. Switching the roles

of the subsets S, J ⊆ ∆, we have OS ≤ RJ if and only if JWS is nonempty. Consequently,

(ii) ⇔ (iii) and the the theorem follows. �

When the orbits are labeled by partitions, then we have an easy criterion for determining

whether or not O(g, S, J) is nonzero.

Corollary 3.4.5 Suppose g is a Lie algebra of type X = A, B, C, or D. If S, J ⊆ ∆, then

the following are equivalent.

(i) O(g, S, J) contains at least one simple module.

(ii) πJ E (π̃S)X.

(iii) πS E (π̃J)X.

Proof. This follows from Theorem 3.4.4 because OJ = OπJ
and RS = O(π̃S)X

by Theorem

3.3.3. �

Another consequence of Theorem 3.4.4 comes from the fact that RS = RS′ if and only

S ∼ S ′ (Hirai equivalence).

Corollary 3.4.6 If S ∼ S ′ and J ∼ J ′, then O(g, S, J) is nonzero if and only if O(g, S ′, J ′)

is nonzero.
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Proof. First, O(g, S, J) is nonzero if and only if OJ ≤ RS = RS′ if and only if O(g, S ′, J)

is nonzero. On the other hand, O(g, S ′, J) is nonzero if and only if OS′ ≤ RJ = RJ ′ if and

only if O(g, S ′, J ′) is nonzero. �

The final consequence below provides insight into the partial orderings on the nilpotent

orbits for so2n+1(C) and for sp2n(C). If so2n+1(C) has simple roots ∆ and sp2n(C) has simple

roots ∆′, then using the labeling of simple roots given in Figure 2.1 for Bn and Cn, we have

a one-to-one correspondence αi ↔ α′
i between simple roots in ∆ and those in ∆′. Hence, if

S ⊆ ∆, then S ↔ S ′ for some S ′ ⊆ ∆′.

Corollary 3.4.7 Let g = so2n+1(C) and let g′ = sp2n(C) with respective bases ∆ and ∆′.

If S, J ⊆ ∆ and S ′, J ′ ⊆ ∆′ with S ↔ S ′ and J ↔ J ′, then πJ E (π̃S)B if and only if

πJ ′ E (π̃S′)C.

Proof. First, the respective Weyl groups W, W ′ of Bn and Cn are isomorphic, and they

have the same Bruhat ordering. Consequently, SWJ is nonempty if and only if S′

(W ′)J ′

is

nonempty. Therefore, πJ E (π̃S)B if and only if O(so2n+1(C), S, J) is nonzero if and only if

O(sp2n(C), S ′, J ′) is nonzero if and only if πJ ′ E (π̃S′)C . �

3.5 Nonzero Blocks for the Classical Types

If g is a classical Lie algebra, Corollary 3.4.5 provides us with just the right tool for deter-

mining when an infinitesimal block O(g, S, J) is nonzero. We will consider here four examples,

one for each classical type.

Example 1: A5. The first case of a non-linear ordering on nilpotent orbits for g = sln+1(C)

occurs for n = 5. For type An, every nilpotent orbit is both a Richardson orbit and a root

system orbit. The Hirai equivalence is just the conjugacy classes of subroot systems in this

case, which are labeled by their Cartan type. The Hasse diagram in Figure 3.1 exhibits the

partial ordering.



30

(16) ∅

(2, 14) A1

(22, 12) A2
1

(3, 13)A2 (23) A3
1

(3, 2, 1) A2 × A1

(4, 12)A3 (32) A2
2

(4, 2) A3 × A1

(5, 1) A4

(6) A5

Figure 3.1: Nilpotent Orbits for g = sl6(C)

Consider, for example, any S ⊆ ∆ = {α1, . . . , α5} for which ΦS is of type A3. Then

πS = (4, 12) and π̃S = (3, 13). Thus, if J ⊆ ∆ is such that ΦJ is of type A2, A2
1, A1 or ∅,

then O(g, S, J) is nonzero, and for any other J , O(g, S, J) will be zero.

Example 2: B4. There are 13 nilpotent orbits for so9(C), labeled by the partitions of 9 with

even parts having even multiplicity. The partial ordering on these nilpotent orbits is shown

in the Hasse diagram on the left in Figure 3.2. If Φ is of type Bn, let A1 denote any root

subsystem generated by a single long root, and let B1 denote the root subsystem generated

by the short root αn. If a nilpotent orbit is a root system orbit, the corresponding root

system is given in Figure 3.2 as well.

We use Theorem 3.3.1 to determine the Hirai equivalence classes on subsets of ∆. Because

every subroot system of B4 has irreducible components of type Ak or Bk, if S, S ′ ⊆ ∆

with S ∼ S ′, then |S| = |S ′|. Theorem 3.3.1 (ii)(a) yields {α1} ∼ {α2} ∼ {α3} since
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O(19)
∅

O(22,15)
A1

O(3,16)
B1

O(24,1)
A2

1

O(3,22,12)
A1 × B1

O(32,13)
A2

O(5,14)
B2

O(33)
A2 × B1

O(5,22)

B2 × A1

O(42,1)
A3

O(5,3,1)

O(7,12)
B3

O(9)
B4

O(18)
∅

O(2,16)
C1

O(22,14)
A1

O(23,12)
A1 × C1

O(24)
A2

1

O(4,14)
C2

O(32,12)
A2

O(4,2,12)
A2 × C1

O(32,2)

O(4,22)
C2 × A1

O(42)
A3

O(6,12)
C3

O(6,2)

O(8)
C4

Figure 3.2: Ordering on nilpotent orbits for so9(C) (left) and sp8(C) (right)

Richardson Orbit Corresponding Hirai Equivalence Class
B4 C4

O(19) O(18) {α1, α2, α3, α4}

O(3,16) O(22,14) {α2, α3, α4}

O(3,22,12) O(24) {α1, α2, α3}

O(32,13) O(32,12) {α1, α3, α4}

O(33) O(32,2) {α1, α2, α4}

O(5,14) O(4,2,12) {α3, α4}

O(5,22) O(4,22) {α1, α2} ∼ {α2, α3}

O(5,3,1) O(42) {α1, α3} ∼ {α1, α4} ∼ {α2, α4}

O(7,12) O(6,2) {α1} ∼ {α2} ∼ {α3} ∼ {α4}

O(9) O(8) ∅

Table 3.1: Richardson Orbits and Hirai Equivalence Classes for B4 and C4
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sisi+1αi = αi+1 for i = 1, 2. Furthermore, {α3, α4} generates a root subsystem of type

B2 and so {α3} ∼ {α4} in B4 by Theorem 3.3.1 (ii)(b) and (i) (taking S ′ = ∅). Take

S = {α1, α2} and S ′ = {α4}. Applying Theorem 3.3.1 (i) with T1 = {α1}, T2 = {α2},

and T ′
1 = T ′

2 = S ′, we have {α1, α4} ∼ {α2, α4}. Setting S = {α1} and S ′ = {α3, α4},

Theorem 3.3.1 (i) yields {α1, α4} ∼ {α1, α3} by taking T1 = {α1} = T2, T ′
1 = {α3}, and

T ′
2 = {α4}. It is apparent that {α1, α4} is not in the same equivalence class as {α1, α2} nor

{α3, α4} (note that S and S ′ have to be orthogonal to apply Theorem 3.3.1 (i)). On the

other hand, s1s2s3{α1, α2} = {α2, α3} and so {α1, α2} ∼ {α2, α3}. However, {α1, α2} is not

in the same equivalence class as {α3, α4}. No two subsets of ∆ with three elements can be

in the same equivalence class because there is not enough room in a rank 4 root system to

satisfy orthogonality required to apply Theorem 3.3.1 (i). This argument yields the set of

ten distinct equivalence classes given in Table 3.1. Notice that there are Richardson orbits

that are not root system orbits, and some root system orbits that are not Richardson orbits.

As an example of how Corollary 3.4.5 is applied in this case, suppose S ⊆ ∆ is such that

ΦS is of type A2
1 so that πS = (24, 1). Now, π̃S = (5, 4) with collapse (π̃S)B = (5, 3, 1). Hence,

the Richardson orbit corresponding to S is O(5,3,1), which agrees with what we have in the

Table 3.1. Using Figure 3.2, we see that O(g, S, J) is non-zero if we take J so that ΦJ is of

type B2 × A1 or type A3 (as well as of any type below these in the diagram).

Example 3: C4. There are 14 nilpotent orbits for sp8(C), labeled by the partitions of 8

having odd parts of even multiplicity. The partial ordering on these nilpotent orbits is shown

in the Hasse diagram on the right in Figure 3.2. Similar to what we do for Bn, if Φ is of type

Cn, let A1 denote any root subsystem generated by a single short root, and let C1 denote the

root subsystem generated by the long root αn. Again we show the root system orbits with

their corresponding root system in Figure 3.2. As with B4, there are Richardson orbits that

are not root system orbits, and root system orbits that are not Richardson orbits. Theorem

3.3.1 yields the same ten distinct equivalence classes as B4, given in Table 3.1.
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O(18) ∅

O(22,14) A1

O(3,15)D2 OI
(24) OII

(24)

A2
1

O(3,22,1)D2 × A1

O(32,12) A2

O(5,13)D3 OI
(42) OII

(42)

A3

O(5,3)

O(7,1) D4

Figure 3.3: Ordering on nilpotent orbits for so8(C)

We apply Corollary 3.4.5 the same way in this case as we did for B4. For example, take

S ⊆ ∆ so that ΦS is of type A2
1. Then the Richardson orbit corresponding to S is O(42), and

we can see from Figure 3.2 that O(g, S, J) is non-zero if we take J so that ΦJ is of type

A3 as well as of any type below this in the diagram. Notice that C2 × A1 lies below A3 in

Figure 3.2. This agrees with what we found in our B4 example, even though the diagram for

nilpotent orbits in type B4 is different than that for C4. We expected the agreement, based

on Corollary 3.4.7, but this example shows that the corollary is certainly not trivial!

Example 4: D4. There are 11 nilpotent orbits for so8(C), labeled by the partitions of 8 with

even parts having even multiplicity, with two orbits corresponding to each of the two very
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Richardson Orbit Corresponding Hirai Equivalence Class
O(18) {α1, α2, α3, α4}

O(3,15) {α2, α3, α4}

OI
(24) {α1, α2, α3}

OII
(24) {α1, α2, α4}

O(32,12) {α1, α3, α4} ∼ {α1, α2} ∼ {α2, α3} ∼ {α2, α4}

O(5,13) {α3, α4}

OI
(42) {α1, α3}

OII
(42) {α1, α4}

O(5,3) {α1} ∼ {α2} ∼ {α3} ∼ {α4}

O(7,1) ∅

Table 3.2: Richardson Orbits and Hirai Equivalence Classes for D4

even partitions (24) and (42) of 8. The partial ordering on these nilpotent orbits is shown

in the Hasse diagram in Figure 3.3. If Φ is of type Dn, let D2 denote the root subsystem

generated by the simple roots {αn−1, αn} and let D3 denote the root subsystem generated

by the simple roots {αn−2, αn−1, αn}. The root system orbits are shown in Figure 3.2 with

their corresponding root system, noting that the root systems A2
1 and A3 each have two root

system orbits (since there are two orbits corresponding to a very even partition). Notice that

the nilpotent orbit corresponding to (5, 3) is a Richardson orbit that is not a root system

orbit, and (22, 14) and (3, 22, 1) correspond to root system orbits that are not Richardson

orbits. Note further that the only time collapsing is not necessary to get the Richardson

orbit RS from π̃S is when πS (and therefore π̃S) is very even.

Using Theorem 3.3.1, we have that there are ten Hirai equivalence classes of subsets of

simple roots in D4, given in Table 3.2. If we use the conventions that OI
(24) corresponds to

S1 = {α1, α3}, OII
(24) corresponds to S ′

1 = {α1, α4}, OI
(42) corresponds to S2 = {α1, α2, α3},

and OII
(42) corresponds to S ′

2 = {α1, α2, α4}, then by Theorem 3.3.3, since m = 2, we have
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RS1
= OI

(42), RS′

1
= OII

(42), RS2
= OI

(24), and RS′

2
= OII

(24). For example, O(so8(C), S1, J) is

nonzero if J = S2 but it is zero if J = S ′
2.

3.6 Nonzero Blocks for the Exceptional Types

We will now classify the nonzero infinitesimal blocks in the cases where g is an exceptional

Lie algebra. We will start with the smallest rank (type G2) and work up to the largest rank

(type E8).

First, the nilpotent orbits in g are parameterized by certain weighted Dynkin diagrams,

where each node of such a Dynkin diagram is labeled by one of the integers 0, 1, or 2 [CMcG,

Ch. 3]. On the other hand, the nilpotent orbits of g can be labeled by the G-conjugacy classes

of the pairs (m, pm) as in Theorem 3.2.1. Using the notation introduced by Bala and Carter,

we will label the nilpotent orbit corresponding to G-conjugacy classes of the pair (m, pm) by

XN(ai), where XN is the type of the semisimple Lie algebra [m, m] and i is the number of

simple roots in any Levi subalgebra of the distinguished parabolic subalgebra pm of [m, m].

Write XN rather than XN(a0); these are exactly the root system orbits, with corresponding

root system the same as the label. If there are two nilpotent orbits of the same type XN with

the same value for i, we will choose one and label it XN(ai) and label the other one XN(bi).

A nilpotent orbit is even if and only if its weighted Dynkin diagram involves only the

weights 0 and 2. Every even nilpotent orbit is Richardson, and its corresponding Hirai equiv-

alence class includes the subset

S = {α ∈ ∆ | the α-node on the Dynkin diagram has weight 0 }

of simple roots. In [H] there is a complete list of Richardson orbits that are not even, along

with one subset of simple roots in the corresponding Hirai equivalence class of each such

Richardson orbit.
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∅

A1

Ã1

G2(a1)

G2

Figure 3.4: Ordering on nilpotent orbits for G2

Richardson Orbit Corresponding Hirai Equivalence Class
∅ {α1, α2}

G2(a1) {α1} ∼ {α2}
G2 ∅

Table 3.3: Richardson Orbits and Hirai Equivalence Classes for G2

3.6.1 Type G2

Since there are two root lengths in G2, denote by Ã1 the root subsystem generated by the

short root α1 and by A1 the root subsystem generated by the long root α2.

There are five nilpotent orbits in type G2, with the linear ordering given in Figure 3.4.

The three Richardson orbits are described in Table 3.3.

3.6.2 Type F4

As for G2 there are two root lengths in type F4, so denote by A1 a root subsystem generated

by one of the long roots α1 or α2, and by Ã1 a root subsystem generated by one of the short

roots α3 or α4. Similarly, denote by A2 the root subsystem generated by {α1, α2} and by Ã2

the root subsystem generated by {α3, α4}.
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∅

A1

Ã1

A1 × Ã1

Ã2 A2

A2 × Ã1

Ã2 × A1 B2

C3(a1)

F4(a3)

B3 C3

F4(a2)

F4(a1)

F4

Figure 3.5: Ordering on nilpotent orbits for F4

Richardson Orbit Corresponding Hirai Equivalence Class
∅ {α1, α2, α3, α4}
A2 {α2, α3, α4}

Ã2 {α1, α2, α3}
F4(a3) {α1, α3, α4} ∼ {α1, α2, α4} ∼ {α2, α3}

B3 {α3, α4}
C3 {α1, α2}

F4(a2) {α1, α3} ∼ {α1, α4} ∼ {α2, α4}
F4(a1) {α1} ∼ {α2} ∼ {α3} ∼ {α4}

F4 ∅

Table 3.4: Richardson Orbits and Hirai Equivalence Classes for F4
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Richardson Orbit Corresponding Hirai Equivalence Class
∅ E6

A2
1 D5(2)

A2 A5

A2
2 D4

A2 × A2
1 A4 × A1(2)

A3 A4(4)
D4(a1) A2

2 × A1, A3 × A1(4)
A4 A3(5)
D4 A2

2

A4 × A1 A2 × A2
1(5)

D5(a1) A2 × A1(10)
E6(a3) A3

1(5), A2(5)
D5 A2

1(10)
E6(a1) A1(6)

E6 ∅

Table 3.5: Richardson Orbits and Hirai Equivalence Classes for E6

Figure 3.5 gives the partial ordering on the 16 nilpotent orbits in F4, and Table 3.4 lists

the nine Richardson orbits in F4. Notice that the nilpotent orbit labeled C3(a1) is neither a

root system orbit nor a Richardson orbit.

For an example of how Theorem 3.4.4 can be used to determine the non-zero blocks in

type F4, take S = {α3, α4}. From Table 3.4, one has that the Richardson orbit RS is B3.

Hence, if J = {α1, α2, α3}, then O(g, S, J) is nonzero. In fact, using Figure 3.5, we can take

any J corresponding to a root system orbit that is less than the nilpotent orbit labeled B3

in the Hasse diagram to obtain a nonzero block O(g, S, J). However, note that if we take

J = {α2, α3, α4}, then ΦJ = C3, and the associated nilpotent orbit is incomparable to the

nilpotent orbit labeled B3 and therefore, for this J , O(g, S, J) is zero.
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∅

A1

A2
1

A3
1

A2

A2 × A1

A2 × A2
1 A2

2

A3 A2
2 × A1

A3 × A1

D4(a1)

A4

A4 × A1 D4

A5 D5(a1)

E6(a3)

D5

E6(a1)

E6

Figure 3.6: Ordering on nilpotent orbits for E6
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Root System Label Corresponding Subsets of Simple Roots
(A5)

′ {α3, α4, α5, α6, α7} ∼ {α1, α3, α4, α5, α6}
(A5)

′′ {α2, α4, α5, α6, α7}
(A3 × A1)

′ 9 out of 11 subsets of ∆ generating root systems of type A3 × A1

(A3 × A1)
′′ {α2, α4, α5, α7} ∼ {α1, α3, α4, α7}

(A3
1)

′ 10 out of 11 subsets of ∆ generating root systems of type A3
1

(A3
1)

′′ {α2, α5, α7}

Table 3.6: Root Subsystem Types of E7 Split Under Hirai Equivalence

3.6.3 Type E6

There are 21 nilpotent orbits in type E6, given with their partial ordering in Figure 3.6.

Table 3.5 lists the 15 Richardson orbits in E6. Since there are 64 subsets of the simple roots

in E6, we will introduce some notation to write the Hirai equivalence classes more compactly.

If S, S ′ ⊆ ∆ are such that ΦS and ΦS′ are of the same type, then S ∼ S ′ in type E6 and

we will write ΦS(k) in Table 3.5 for the k subsets of ∆ generating root subsystems of the

same type as ΦS . If k = 1, then we will just write ΦS. For example, there are six simple

roots in E6, each generating a root subsystem of type A1, and so A1(6) represents these six

(singleton) subsets of ∆.

3.6.4 Type E7

The partial ordering on the 45 nilpotent orbits in type E7 is given in Figure 3.7, 29 of

which are Richardson orbits. The Richardson orbits are listed in Table 3.7. In E7, there

are 128 subsets of the simple roots, so we will again use the notation introduced for type

E6 to write the Hirai equivalence classes more compactly. However, in type E7, there is a

small difficulty: there are subsets S, S ′ ⊆ ∆ such that ΦS and ΦS′ are of the same type, but

RS 6= RS′ . However, this only happens in three cases: when ΦS is of type A5, A3×A1, or A3
1.
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∅

A1

A2
1

(A3
1)

′ (A3
1)

′′

A2 A4
1

A2 × A1

A2 × A2
1

A2 × A3
1 A2

2 A3

A2
2 × A1

(A3 × A1)
′ (A3 × A1)

′′

D4(a1) A3 × A2
1

D4(a1) × A1

A3 × A2

D4 A4A3 × A2 × A1

D4 × A1 A4 × A1

D5(a1) A4 × A2

(A5)
′ (A5)

′′D5(a1) × A1

A5 × A1E6(a3)

D6(a2)D5

E7(a5)

A6D5 × A1D6(a1)

E7(a4)

E6(a1) D6

E6 E7(a3)

E7(a2)

E7(a1)

E7

Figure 3.7: Ordering on nilpotent orbits for E7
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Richardson Orbit Corresponding Hirai Equivalence Class
∅ E7

(A3
1)

′′ E6

A2 D6

A2
2 D5 × A1

A2 × A3
1 A6

(A3 × A1)
′′ D5(2)

D4(a1) A5 × A1

D4 (A5)
′′

D4(a1) × A1 (A5)
′(2)

A4 D4 × A1

A3 × A2 × A1 A4 × A2

(A5)
′′ D4

A4 × A1 A4 × A1(5)
D5(a1) A4(5)
A4 × A2 A3 × A2 × A1

D5(a1) × A1 A3 × A2(3)
E6(a3) A3 × A2

1(3)
D5 (A3 × A1)

′′(2)
E7(a5) A2

2 × A1(3), (A3 × A1)
′(9)

A6 A2 × A3
1

D5 × A1 A2
2(4)

D6(a1) A3(6)
E7(a4) A2 × A2

1(12)
E6(a1) A4

1(2), A2 × A1(18)
E6 (A3

1)
′′

E7(a3) (A3
1)

′(10), A2(6)
E7(a2) A2

1(15)
E7(a1) A1(7)

E7 ∅

Table 3.7: Richardson Orbits and Hirai Equivalence Classes for E7
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∅

A1

A2
1

A3
1

A4
1 A2

A2 × A1

A2 × A2
1

A2 × A3
1

A3 A2
2

A2
2
× A1

A2
2 × A2

1A3 × A1

D4(a1) A3 × A2
1

D4(a1) × A1

A3 × A2

A3 × A2 × A1

D4 A4 D4(a1) × A2

D4 × A1 A4 × A1 A2
3

A4 × A2
1

D5(a1) A4 × A2

D5(a1) × A1 A4 × A2 × A1

A5 A4 × A3 D4 × A2

E6(a3) A5 × A1 D5(a1) × A2

D5 E6(a3) × A1 D6(a2)

E7(a5)

D5 × A1 E8(a7)

D6(a1) A6

E7(a4) A6 × A1

E6(a1) D5 × A2

D7(a2)

D6E6(a1) × A1A7

E6 E7(a3)E8(b6)

E6 × A1 D7(a1)

E7(a2) E8(a6)

E8(b5) D7

E7(a1) E8(a5)

E8(b4)

E7 E8(a4)

E8(a3)

E8(a2)

E8(a1)

E8

Figure 3.8: Ordering on nilpotent orbits for E8
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Richardson Orbit Corresponding Hirai Equivalence Class
∅ E8

A2 E7

A2
2 D7

D4(a1) E6 × A1

D4 E6

A4 D6

D4(a1) × A2 A7

A4 × A2 D5 × A2

A4 × A2 × A1 A6 × A1

D4 × A2 A6(3)
E6(a3) D5 × A1(3)

D5 D5(2)
E8(a7) A4 × A3, A5 × A1(3)

A6 D4 × A2

D4(a1) A5(4)
A6 × A1 A4 × A2 × A1

E6(a1) D4 × A1(2)
D5 × A2 A4 × A2(4)

E6 D4

D7(a2) A4 × A2
1(4), A2

3(2)
E6(a1) × A1 A4 × A1(12)

E7(a3) A4(6)
E8(b6) A3 × A2 × A1(4)
D7(a1) A3 × A2(10)
E8(a6) A2

2 × A2
1(2), A3 × A2

1(10)
E8(b5) A2

2 × A1(8), A3 × A1(20)
E7(a1) A3(7)
E8(a5) A2 × A3

1(8), A2
2(8)

E8(b4) A2 × A2
1(28)

E8(a4) A4
1(7), A2 × A1(28)

E8(a3) A3
1(21), A2(7)

E8(a2) A2
1(21)

E8(a1) A1(8)
E8 ∅

Table 3.8: Richardson Orbits and Hirai Equivalence Classes for E8
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In each of these cases, there are two Hirai equivalence classes represented; we denote one by

Φ′
S and the other by Φ′′

S. We describe the corresponding subsets of simples in Table 3.6.

3.6.5 Type E8

There are 70 nilpotent orbits in type E8 arranged in the partial ordering given in Figure

3.8. The Hasse diagram for E8 given in [Cart, pp. 439–445] has some errors, but the Hasse

diagram for E8 in Figure 3.8 corrects those errors. There are 34 Richardson orbits in E8, and

they are listed in Table 3.8. We will again use the notation introduced for type E6 to write

the Hirai equivalence classes of the 256 subsets of simple roots in E8 more compactly. Note

that the splitting of a single root system type into distinct Hirai equivalence classes which

occurs in type E7 does not occur in type E8 (or any of the other exceptional Lie algebras).



Chapter 4

Representation Type of Infinitesimal Blocks

4.1 Representation Type

Given a simple Lie algebra g and subsets S, J of simple roots, the infinitesimal block

O(g, S, J) is equivalent to the module category for some quasi-hereditary algebra A [CPS,

Sec. 3]. Projective modules of A admit filtrations by certain standard modules (i.e., the

parabolic Verma modules). Consequently, it is possible at times to deduce the structures

of the projective modules directly. Using this information, one can express the algebra as a

quiver with relations from which one can potentially determine the representation type of

the algebra.

For the remainder of the paper the statement “representation type of O(Φ, S, J)” will

mean one of the five mutually exclusive conditions for the block: zero, semisimple (see Section

4.2 below), finite representation type (but not semisimple), tame representation type, or wild

representation type.

4.2 Radical Filtrations and Extensions

The radical of a g-module V , denoted rad V , is the smallest submodule of V such that

V/rad V is semisimple. If V is a g-module, set rad0 V = V and for each i ≥ 1, set radi V =

rad(radi−1 V ). We thus have the radical filtration of V :

V = rad0V ⊇ rad1V ⊇ rad2V ⊇ · · ·

If V is a finite length module (i.e., all chains of submodules in V have finite length), then

for each i ≥ 0, define radi V = radi V/radi+1 V , which is called the ith radical layer of

46



47

V . Each PVM has a finite radical filtration. We will frequently write the radical layers of a

module V with finite radical filtration as:

rad0V

rad1V

...

radrV

Recall that two rings R, S are said to be Morita equivalent if the category of R-

modules is equivalent to the category of S-modules [Erd, Sec. I.2]. If Λ is a finite dimensional

algebra over C, then we say that Λ is a basic algebra if all simple Λ-modules are 1-

dimensional. Fix a finite dimensional algebra A over C. Then A is Morita equivalent to

some basic algebra Λ [Erd, Cor. I.2.7]. Let L1, . . . , Lr be a complete set of non-isomorphic

simple Λ-modules with corresponding projective covers P1, . . . , Pr. The Ext1
Λ-quiver Q(Λ)

of Λ is a directed graph with vertices in one-to-one correspondence with the simple modules

{Li} and the number of arrows from vertex i to vertex j equal to dimC Ext1
Λ(Li, Lj) =

dimC HomΛ(Pj, rad(Pi))/HomΛ(Pj , rad2(Pi)).

The path algebra CQ(Λ) of Q(Λ) is the complex vector space whose basis is the set

of all paths • → • → · · · → • in Q(Λ), with the product of two paths defined to be the

composition if it exists and zero otherwise [Erd, Sec. I.5]. From a theorem of Gabriel [Gab2],

the basic finite dimensional algebra Λ is isomorphic to CQ(Λ)/I for some ideal I of the

path algebra CQ(Λ). Therefore, the category of A-modules is equivalent to the category of

representations of some path algebra of a quiver with relations.

Every extension between two simple modules in category OS arises from an extension

between them in layers 0 and 1 of the radical filtration of some PVM. An infinitesimal

block Oµ
S is semisimple if and only if there are no extensions between its simple modules.

Because there are no self-extensions between simple modules in a highest weight category,

an infinitesimal block with only one PVM (and hence only one simple module) is necessarily

semisimple.
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Let S be a set of simple modules in Oµ
S corresponding to all the vertices in a single graph

component of the Ext1-quiver associated to Oµ
S. The full subcategory of Oµ

S consisting of

those modules whose composition factors are all contained in S is called a linkage class of

Oµ
S. It is apparent that Oµ

S is semisimple if and only if rad1 V = 0 for all PVM’s V in Oµ
S if

and only if each linkage class of Oµ
S consists of a single simple module.

4.3 The Uα-Algorithm

The Uα algorithm is a tool used to compute radical filtrations of PVM’s in an infinitesimal

block Oµ
S (see [Irv, Sec. 6.3–7.1], [Vog, Sec. 3]).

First, let λ be a regular antidominant integral weight. Fix a simple reflection sα for some

α ∈ ∆. If one composes the translation functors ‘onto’ and ‘out of’ the α-wall, one gets an

exact covariant functor θα on OS called translation through the α-wall. For w ∈ SW,

θαL(wSw · λ) = 0 unless w < wsα ∈ SW; in this case, θαL(wSw · λ) has radical filtration

layers:

L(wSw · λ)

UαL(wSw · λ)

L(wSw · λ)

where UαL(wSw · λ) is a semisimple module defined as follows. Let SW = { x ∈ SW | x >

xsα or xsα /∈ SW }. For x, y ∈ SW with x < y, let µS(x, y) be the coefficient of q(l(y)−l(x)−1)/2

in the relative Kazhdan-Lusztig polynomial P S
x,y(q), called the relative Kazhdan-Lusztig µ-

function (see [Deo, Sec. 3], [CC, Sec. 3.26]). In fact, µS(x, y) = [rad1 V (wSy · λ) : L(wSx · λ)]

(see [BN, Sec. 2.3]). Now:

UαL(wSw · λ) = L(wSwsα · λ) ⊕
⊕

x∈SW

µS(x, w)L(wSx · λ)

One can start with V (wSe · λ) = L(wSe · λ) and use the fact that if w ∈ SW with

w < wsα ∈ SW, then θαV (wSw · λ) is a non-split extension of V (wSwsα · λ) by V (wSw · λ)

to compute inductively the composition factors of each V (wSw · λ).
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In fact, using a “graded” version of the Uα-algorithm, one can compute not just the

composition factors but also the radical filtrations of the PVM’s (see [Bac], [BGS], [BN],

[Irv], [Str]). Given a module M with filtration {M i}, define σM to be the same module with

filtration (σM)i = M i−1. Suppose w, wsα ∈ SW with w < wsα and that the radical filtration

of V (wSw · λ) is known. Compute the radical filtration V = rad0V ⊇ rad1V ⊇ rad2V ⊇ · · ·

of V := V (wSwsα ·λ) as follows. First, the module θαV (wSw ·λ) has the following filtration.

For each i ≥ 0, let L(wSy · λ) be a composition factor of radiV (wSw · λ) with y, ysα ∈ SW

and y < ysα (so that θαL(wSy · λ) 6= 0). If j = 0, 1, 2, then radjθαL(wSy · λ) occurs in the

(i + j)th layer of θαV (wSw · λ). There is a short exact sequence

0 → σV (wSwsα · λ) → θαV (wSw · λ) → V (wSw · λ) → 0

of filtered modules. Hence, deleting the known radical filtration of V (wSw ·λ) from θαV (wSw ·

λ) leaves the radical filtration of V (wSwsα · λ) (with all layers shifted up 1 in index).

Now suppose that µ is any antidominant integral weight and let J ⊆ ∆ be the set of

simple roots on which µ + ρ is singular. If x, w ∈ SWJ , then

[radiV (wSw · µ) : L(wSx · µ)] = [radiV (wSw · λ) : L(wSx · λ)]

[BN, Sec. 2.3], and consequently, the radical filtration of V (wSw · µ) is obtained from that

of V (wSw · λ) by ignoring all simple composition factors L(wSy · λ) with y /∈ SWJ .

4.4 Representation Type of Infinitesimal Blocks of Category OS

In this section, we compile some criteria to determine the representation type of a given

infinitesimal block of category OS. These criteria can be used whenever the structure of the

PVM’s in the infinitesimal block Oµ
S is known; however, one criterion for wild representation

type depends only on knowing something about the Bruhat order on SWJ (Proposition

4.4.4).
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4.4.1 Triangular Infinitesimal Blocks

Suppose a linkage class of O(g, S, J) has m simple modules, labeled L1, . . . , Lm. If Vi is the

PVM with simple quotient Li, and V1, . . . , Vm have radical filtration layers

V1 V2 V3 · · · Vm−1 Vm

L1 L2 L3 · · · Lm−1 Lm

L1 L2 · · · Lm−2 Lm−1

L1 · · · Lm−3 Lm−2

. . .
...

...

L1 L2

L1

(4.1)

then we say that the linkage class is triangular of length m. If O(g, S, J) has only one linkage

class and it is triangular of length m, then we say that O(g, S, J) is a triangular block of

length m.

The following theorem classifies the representation type of all triangular infinitesimal

blocks. For its proof, see [FNP, Props. 5.3, 6.2, 7.1, 7.2].

Theorem 4.4.1 Suppose O(g, S, J) is triangular of length m.

(i) If m = 1, then O(g, S, J) is semisimple.

(ii) If m = 2 or m = 3, then O(g, S, J) has finite representation type.

(iii) If m = 4, then O(g, S, J) has tame representation type.

(iv) If m ≥ 5, then O(g, S, J) has wild representation type.

4.4.2 Finite Representation Type

Suppose a linkage class of O(g, S, J) has m ≥ 2 simple modules. If these simple modules are

labeled L1, . . . , Lm and if Vi is the PVM with simple quotient module Li and the PVM’s
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have radical filtration layers

V1 V2 V3 · · · Vm−1 Vm

L1 L2 L3 · · · Lm−1 Lm

L1 L2 · · · Lm−2 Lm−1

(4.2)

then we say that the linkage class is uniserial of length 2.

The following theorem says that there are very strict conditions placed on the structures

of PVM’s in a block having finite representation type. For details, see [DoRe, Sec. 1] and

[BN, Sec. 3.1].

Theorem 4.4.2 O(g, S, J) has finite representation type if and only if all the linkage classes

of O(g, S, J) having more than one simple module are uniserial of length 2 or triangular of

length 3.

4.4.3 Wild Representation Type

Kite in the Ext1-quiver

Let Λ be a finite dimensional 2-nilpotent algebra. Gabriel’s Theorem [Gab1] asserts that

the Ext1-quiver of Λ separates into a union of quivers whose underlying graphs are Dynkin

diagrams if and only if Λ has finite representation type. Furthermore, Dlab and Ringel [DlRi]

proved that Λ has tame representation type if and only if the Ext1-quiver of Λ separates into

a union of quivers whose underlying graphs are Dynkin or extended Dynkin diagrams with

at least one extended Dynkin diagram.

Suppose the infinitesimal block Oµ
S is equivalent to the module category of a quasi-

hereditary algebra A. Consider the finite dimensional 2-nilpotent algebra Λ = A/rad2A.

Since A ։ Λ, if Λ has wild representation type then so does A. Furthermore, Λ and A have

the same Ext1-quivers since each extension between simple modules arises as an extension

between layers 0 and 1 of the radical filtration of some PVM in Oµ
S.

Now suppose the Ext1-quiver of Λ contains a ‘kite’ with any orientation on the arrows,

such as the kite shown in Figure 4.1. Since the underlying graph is not a Dynkin diagram
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W

Z

Y1 Y2

X

Figure 4.1: A Kite

nor an extended Dynkin diagram, Λ must have wild representation type. This proves the

following proposition.

Proposition 4.4.3 If the Ext1-quiver associated to Oµ
S contains a kite, then Oµ

S has wild

representation type.

Diamond Linkage Classes

The following argument is an adaptation of the argument in [FNP, Sec. 4.2] proving that

O(A1 ×A1, ∅, ∅) has wild representation type. Suppose g is any simple Lie algebra and L is

a linkage class of the infinitesimal block Oµ
S such that L contains exactly four simple modules

L1, L2, L3, L4 and the corresponding PVM’s have the following radical filtration layers:

V1 V2 V3 V4

L1

L2

L1

L3

L1

L4

L2 L3

L1

(4.3)

Based on the structure of the Ext1-quiver of L, which is shown in Figure 4.2, we will call

this a diamond linkage class. Using Theorem 2.2.6, we can compute the structures of the

projective indecomposable modules. These structures are shown in Table 4.1.

For any idempotent e in an algebra A, A has wild representation type whenever eAe has

wild representation type [Erd, I.4.7]. Let P = P1 ⊕ P2 ⊕ P3 ⊕ P4 and set A = EndOµ
S
(P )op.
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L1

L2 L3

L4

Figure 4.2: Ext1-Quiver of a Diamond Linkage Class

P1 P2 P3 P4

L1

L2 L3

L1 L4 L1

L2 L3

L1

L2

L1 L4

L2 L3

L1

L3

L1 L4

L2 L3

L1

L4

L2 L3

L1

Table 4.1: Projective Indecomposable Modules in a Diamond Linkage Class

Then the diamond linkage class is Morita equivalent to the category of finitely-generated

A-modules. Consider the idempotent e = 1L1
+ 1L4

. Localizing at e and using the structure

of P1 and P4, we conclude that the quiver of eAe has a subquiver shown in Figure 4.3.

Consequently, by [Erd, I.10.8(i)] we have that eAe has wild representation type and therefore

Oµ
S has wild representation type.

One application of diamonds and kites is the following proposition due to [BN, Sec. 2.7].

We say that four distinct elements w, x1, x2, y ∈ W form a diamond if y < xi < w for

i = 1, 2 and l(w) = l(y) + 2.

Proposition 4.4.4 (Boe-Nakano) If SWJ contains a diamond, then O(g, S, J) has wild

representation type.
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eL1 eL4

Figure 4.3: Subquiver of eAe

L1 L2

L3

L5 L4

Figure 4.4: The X Ext1-quiver

This follows because a diamond in SWJ gives rise to either a kite in the Ext1-quiver or

else a diamond linkage class of O(g, S, J).

X-Linkage Classes

Suppose Oµ
S has a linkage class with exactly five PVM’s and they have the following radical

filtrations:

V1 V2 V3 V4 V5

L1 L2

L3

L1 L2

L4

L3

L1

L5

L3

L2

(4.4)

where Li is the simple quotient module of Vi. In this case, we will call this linkage class of

OJ
S an X-linkage class. Its Ext1-quiver is shown in Figure 4.4.

Using Theorem 2.2.6, we find that the structures of the projective indecomposable mod-

ules are as shown in Table 4.2. Let P = P1⊕P2⊕P4⊕P5 and set A = EndOµ
S
(P )op. Take the
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eL5 eL2 eL1 eL4

Figure 4.5: Subquiver of eAe for X-block

P1 P2 P3 P4 P5

L1

L3

L1 L4 L2

L3

L1

L2

L3

L1 L5 L2

L3

L2

L3

L1 L4 L5 L2

L3 L3

L1 L2

L4

L3

L1

L5

L3

L2

Table 4.2: Projective Indecomposable Modules for X-block

idempotent e = 1L1
+ 1L2

+ 1L4
+ 1L5

. Localizing at e and using the structures of P1, P2, P4,

and P5 we conclude that the quiver of eAe has a subquiver of the form shown in Figure 4.5.

Now, [Erd, I.10.8(iv)] implies that eAe has wild representation type and therefore so does

Oµ
S.

4.5 Conjectures

We close this chapter by stating two conjectures about the representation type of blocks that

relate to nilpotent orbits and Hirai equivalence ∼ on subsets of ∆.

Conjecture 4.5.1 If g is any simple Lie algebra and S, S ′, J, J ′ ⊆ ∆ are such that S ∼ S ′

and J ∼ J ′, then the infinitesimal blocks O(g, S, J) and O(g, S ′, J ′) have the same represen-

tation type (in the sense of the convention given in Section 4.1).
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A large number of computations support this conjecture. In the following two chapters,

we will see this property manifest itself in various examples. In type An, Hirai equivalence of

subsets of simple roots amounts to considering the W-conjugacy classes of the roots systems

that they generate (Theorem 3.3.1), and so we have the following corollary of the conjecture

in this case.

Corollary 4.5.2 If g is of type An and S, S ′, J, J ′ ⊆ ∆ are such that ΦS and ΦS′ are W-

conjugate, and ΦJ and ΦJ ′ are W-conjugate, then the infinitesimal blocks O(An, S, J) and

O(An, S ′, J ′) have the same representation type.

For S ⊆ ∆, recall the notation OS for a root system nilpotent orbit, and RS for a

Richardson orbit as defined in Sections 3.2 and 3.3.

Conjecture 4.5.3 Let g be any simple Lie algebra, and let S, J ⊆ ∆. If OJ = RS, then

O(g, S, J) is semisimple.

We will prove this conjecture for type An in Section 5.1.1. In fact, in we will prove that

the converse also holds for type An. We will also show that Conjecture 4.5.3 holds in types

F4 and G2.

The converse of Conjecture 4.5.3 does not hold generally. For example, if g is of type

F4, S = {α2, α3} = J , then O(g, S, J) is semisimple, but OJ = B2 6= RS = F4(a3) (see

Sections 6.2 and 6.3). Counterexamples also exist in types Bn and Cn. For example, if g

is of type C4, S = {α4} and J = {α2, α3, α4}, then O(g, S, J) is semisimple even though

OJ = O(6,12) 6= RS = O(6,2).



Chapter 5

Representation Type of Blocks for the Classical Lie Algebras

In this chapter, take g to be a classical Lie algebra. We will look at the representation

type of infinitesimal blocks O(g, S, J). We will classify the semisimple blocks in type An.

Furthermore, we will classify the representation type of O(g, S, J) when g is of type An

or BCn and (g, S) is a Hermitian symmetric pair. By considering examples in each of the

classical types, we will shed light on the classification of the representation type of the blocks

of category OS. In fact, we will exhibit a strong connection between the theory of nilpotent

orbits and the representation type of the infinitesimal blocks of category OS.

5.1 Type An

In this section, take g = sln+1(C). A result of Brundan [Bru, Thm. 2] implies that each

nonempty block O(g, S, J) contains exactly one linkage class. This property of infinitesimal

blocks in type An will allow us to classify completely the semisimple infinitesimal blocks

in this case. We will show later in this chapter and the one following that this property is

unique to type An by exhibiting infinitesimal blocks containing more than one linkage class

in every other type.

For type An, the Hermitian symmetric pairs (g, S) are given exactly by the subsets S ⊆ ∆

for which pS is a maximal parabolic subalgebra; i.e., S = ∆−{α} for some α ∈ ∆. Given any

S of this form, we will classify the representation type of the infinitesimal block O(g, S, J)

for any J ⊆ ∆.

57
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5.1.1 Semisimple Blocks in Type An

Fix S, J ⊆ ∆, and recall the notation
∗
πJ , and {

∗
πS,J} as defined in Section 3.1.1. We will

use the ideas from Section 3.1.1 to prove the following classification theorem for semisimple

infinitesimal blocks in type An.

Theorem 5.1.1 If g is of type An, then O(g, S, J) is semisimple if and only if πS = π̃J if

and only if πJ = π̃S.

Proof. First, πS = π̃J ⇐⇒ π̃S = ˜̃πJ ⇐⇒ π̃S = πJ . Let πS = (r1, r2, . . . , rk) and let

πJ = (t1, t2, . . . , tl).

An infinitesimal block O(sln+1(C), S, J) is semisimple if and only if it contains exactly

one simple module [Bru, Thm. 2]. Hence, O(sln+1(C), S, J) is semisimple if and only if SWJ

contains exactly one element. From the discussion in Section 3.1, it suffices to show that

πS = π̃J if and only if there is exactly one tabloid {
∗
πS,J} of shape πS and content from the

tableau
∗
πJ such that each row contains distinct elements.

Suppose that πS = π̃J . Then there is a tabloid {
∗
πS,J} of shape πS and content

∗
πJ

such that each row of the tabloid contains distinct elements, constructed by transposing

the tableau
∗
πJ . Since each column of

∗
πJ contains distinct elements, the rows of {

∗
πS,J} will

have distinct elements. Suppose that {
∗
πS,J}

′ is another tabloid of shape πS and content
∗
πJ

with each row containing distinct elements. We will show {
∗
πS,J} = {

∗
πS,J}′ by induction on

the number of rows in πS. If πS has one row, then
∗
πJ consists of one column and all of its

elements are distinct. Hence, the content of
∗
πJ must go in the one row of {

∗
πS,J} and we have

{
∗
πS,J} = {

∗
πS,J}′. Notice that this argument does not depend on the integer n + 1. Let Φ′ be

a root system of type Am with simple roots ∆′, and let S ′, J ′ ⊆ ∆′. Suppose that k ≥ 2 is

such that if πS′ is a partition whose Young diagram has at most k−1 rows, and if πS′ = π̃J ′ ,

then the tabloid {
∗
πS′,J ′} constructed by transposing

∗
πJ ′ is the only tabloid of shape πS′ and

content πJ ′ with each row containing distinct elements. Now, πS has k rows and no row of

{
∗
πS,J}′ requires more distinct elements than the first. Furthermore, since all distinct elements
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of
∗
πJ are in its first column and πS = π̃J , there are exactly enough distinct elements in

∗
πJ

to fill the first row of {
∗
πS,J}′ (having length r1), and so it must be the same as row one of

{
∗
πS,J}. Set m = n + 1 − r1 and take πS′ = (r2, . . . , rk) and πJ ′ = (t1 − 1, t2 − 1, . . . , tl − 1)

(note that l = r1). Then πS′ consists of the last k − 1 rows of πS and πJ ′ consists of the

last k − 1 columns of πJ . Hence, πS′ = π̃J ′. By the inductive hypothesis, the tabloid {
∗
πS′,J ′}

of shape πS′ and content that of
∗
πJ ′ defined by transposing

∗
πJ ′ is unique. Consequently,

{
∗
πS,J} = {

∗
πS′,J ′} as claimed. Hence, SWJ contains only one element, and therefore there is

only one simple module in O(sln+1(C), S, J).

On the other hand, suppose that O(sln+1(C), S, J) has only one simple module so that

SWJ contains exactly one element. This element corresponds to a tabloid {
∗
πS,J} of shape πS

and content from
∗
πJ such that each row contains distinct elements. Write π̃J = (t̃1, t̃2, . . . , t̃l′).

Set r0 = 0 = t̃0 and suppose that for some 1 ≤ p ≤ k, we have rj = t̃j and the content from

column j of
∗
πJ was forced into row j of {

∗
πS,J} for all 0 ≤ j ≤ p − 1 (which is vacuously

true if j = 0). By Corollary 3.4.5, πS E π̃J and so we must have rp ≤ t̃p. Suppose rp < t̃p.

We will construct a second tabloid {
∗
πS,J}

′ of shape πS with content from
∗
πJ with distinct

elements on each row. Note that there are exactly t̃1 distinct elements in the content of
∗
πJ .

Furthermore, there are precisely t̃p distinct elements available, since (if p ≥ 2) the other

distinct elements were forced into the longer rows of {
∗
πS,J} preceding p. Only rp of them are

in row p of {
∗
πS,J}. Hence, there is an element ai appearing in some row i > p which does

not appear in row p of {
∗
πS,J}. But rp ≥ ri, and so row i of {

∗
πS,J} has no more elements

than the number of elements in row p. Consequently, since ai is in row i but not in row p,

there is an element bp in row p which is not in row i of {
∗
πS,J}. Let {

∗
πS,J}′ be the tabloid

constructed from {
∗
πS,J} by interchanging element ai in row i with bp in row p. Then {

∗
πS,J}

′

is a tabloid of shape πS with content from
∗
πJ such that elements in each row are distinct,

and it is different than the tabloid {
∗
πS,J}. This contradicts that there is only one element in

SWJ . Therefore we must have l′ = k and ri = t̃i for each 1 ≤ i ≤ k. That is, πS = π̃J . �
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5.1.2 Maximal Parabolic Cases in An

Let pS be a maximal parabolic subalgebra of g = sln+1(C) so that ∆ − S = {αk} for some

k ∈ {1, . . . , n} and ΦS = An−k×Ak−1. Set Sk to be the subset of ∆ such that ∆−Sk = {αk}.

Since there is a Dynkin diagram automorphism sending αi to αn−i+1 for each i ∈ {1, . . . , n},

we can assume that 1 ≤ k ≤
⌊

n+1
2

⌋
.

Theorem 5.1.2 If 1 ≤ k ≤
⌊

n+1
2

⌋
, then

(i) O(An, Sk, J) is nonzero if and only if ΦJ = Al
1 for 0 ≤ l ≤ k.

(ii) O(An, Sk, J) is semisimple if and only if ΦJ = Ak
1.

(iii) O(An, Sk, J) has finite representation type (but is not semisimple) if and only if ΦJ =

Ak−1
1 .

(iv) O(An, Sk, J) has wild representation type if and only if ΦJ = Al
1 for 0 ≤ l ≤ k − 2.

(v) O(An, Sk, J) never has tame representation type.

Proof. For each 1 ≤ k ≤
⌊

n+1
2

⌋
, the partition corresponding to Sk is πS = (n − k + 1, k)

and so π̃S = (2k, 1n−2k+1). Hence, using Corollary 3.4.5 we have that O(An, Sk, J) is nonzero

if and only if πJ E π̃S if and only if πJ = (2l, 1n−2l+1) for 0 ≤ l ≤ k if and only if ΦJ = Al
1 for

0 ≤ l ≤ k. Furthermore, by Theorem 5.1.1, O(An, Sk, J) is semisimple if and only if πJ = π̃S

if and only if ΦJ = Ak
1.

Suppose J ⊆ ∆ is such that ΦJ = Ak−1
1 . Since (An, ΦSk

) corresponds to a Hermitian

symmetric pair, O(An, Sk, J) is equivalent to O(An−2k+2, S, ∅), where ΦS = An−2k+1 [E,

Sec. 3], [BH, Thm. 7.3], and this last infinitesimal block has finite representation type by

[BN, Thm. 1.4].

Now suppose that J is such that ΦJ = Al
1 for 0 ≤ l ≤ k − 2. In this case, O(An, Sk, J) is

equivalent to O(An−2l, S, ∅), where ΦS = Ak−l−1 × An−k−l, and this infinitesimal block has

wild representation type by [BN, Thm. 1.4].

Since we have exhausted all possible subroot systems ΦJ of An, the theorem follows. �
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5.1.3 An Example in Type An

We will use the machinery we have developed to compute the representation type of all

infinitesimal blocks O(sl6(C), S, J). There are 32 subsets of simple roots in A5, and so one

could exhibit the representation type of the infinitesimal blocks for type A5 as a 32 × 32

array, with choices for S given by the rows and choices for J given by the columns. However,

Conjecture 4.5.1 is true (verified by direct computation) for type A5. We will therefore

express the representation type of the blocks in type A5 via an 11 × 11 array, with rows

and columns labeled by the 11 possible root subsystem types in A5 (see Corollary 4.5.2),

arranged according to the partial ordering on nilpotent orbits as given in Figure 3.1; this

array is given in Table 5.1. The dashes (−) in the table represent zero infinitesimal blocks.

They are computed using Corollary 3.4.5, and lie roughly in the upper left corner of the

array. The semisimple blocks, labeled with ‘SS’, are determined by using Theorem 5.1.1, and

they lie roughly along the diagonal of the array. The ‘F’, ‘T’, and ‘W’ entries correspond

respectively to infinitesimal blocks having finite, tame, or wild representation type. There

are three maximal parabolic cases, and they correspond to the rows labeled A4, A3×A1, and

A2
2. All of the other entries in Table 5.1 were determined using a computer and the results

in Chapter 4.

Of particular interest are the triangular infinitesimal blocks; Theorem 4.4.1 was used to

determine their representation type. The infinitesimal blocks associated to ΦS = A2 or A3
1,

ΦJ = A2 ×A1 are triangular of length 3 and therefore have finite representation type. Those

associated to ΦS = A1, ΦJ = A3 × A1 are triangular of length 4 and therefore have tame

representation type. Finally, those associated to ΦS = ∅, ΦJ = A4 are triangular of length

6 and therefore have wild representation type.

As can be observed in Table 5.1, there appears to be a strong connection between the

ordering on nilpotent orbits for sln+1(C) and the representation type of infinitesimal blocks

for sln+1(C). This connection is first made in Theorem 3.4.4 for nonzero blocks of any simple

Lie algebra, then extended to include semisimple blocks for sln+1(C) via Theorem 5.1.1,
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ΦJ A
5

A
4

A
3
×

A
1

A
3

A
2 2

A
2
×

A
1

A
2

A
3 1

A
2 1

A
1

∅

ΦS

A5 − − − − − − − − − − SS

A4 − − − − − − − − − SS F

A3 × A1 − − − − − − − − SS F W

A3 − − − − − − SS − F W W

A2
2 − − − − − − − SS F W W

A2 × A1 − − − − − SS F F W W W

A2 − − − SS − F W W W W W

A3
1 − − − − SS F W W W W W

A2
1 − − SS F F W W W W W W

A1 − SS T W W W W W W W W

∅ SS W W W W W W W W W W

Table 5.1: Representation Type of Infinitesimal Blocks in Type A5

and then extended further to maximal parabolic subalgebras of sln+1(C). Table 5.1 supports

the idea that this connection extends generally for sln+1(C). In fact, the computations done

indicate that the structure of an infinitesimal block O(g, S, J) is more complex (in terms of

number of simple modules in any linkage class and how the simple modules fit together in

the radical filtrations of the parabolic Verma modules) than the structure of any nonzero

infinitesimal block O(g, S ′, J ′) whenever OS ≤ O′
S and OJ ≤ O′

J .

5.2 Type BCn

The Weyl groups of the root systems of type Bn and Cn are isomorphic, and the Bruhat

orders on each are the same. Consequently, the relative Kazhdan-Lusztig polynomials are

the same in either case, and using the one-to-one correspondence αi ↔ α′
i for simple roots
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αi in Bn and α′
i in Cn, there is a one-to-one correspondence between the simple modules in

the infinitesimal block O(Bn, S, J) and the infinitesimal block O(Cn, S ′, J ′), where S ↔ S ′

and J ↔ J ′, such that if the simple Li ∈ O(Bn, S, J) corresponds to L′
i ∈ O(Cn, S ′, J ′), then

the PVM’s Vi ∈ O(Bn, S, J) and V ′
i ∈ O(Cn, S ′, J ′) have the same structure. Hence, the

projective indecomposable modules Pi ∈ O(Bn, S, J) and P ′
i ∈ O(Cn, S

′, J ′) also have the

same structure. Therefore, O(Bn, S, J) and O(Cn, S
′, J ′) have the same representation type.

We will consider the representation type of infinitesimal blocks in types Bn and Cn together

in most cases, and when doing so, will label them as BCn.

5.2.1 Semisimple Blocks in Type BCn

The question of when an infinitesimal block is semisimple in type BCn is harder than it

was in type An because there may be more than one linkage class in a semisimple block

in this case. However, we will obtain a sufficient condition for an infinitesimal block to be

semisimple.

First, let g = so2n+1(C). If {ε1, · · · , εn} is the standard orthonormal basis of h∗ ∼= Rn,

then

Φ = {±(εi ± εj) | 1 ≤ i, j ≤ n, i 6= j } ∪ {±εi | 1 ≤ i ≤ n }

with simple roots ∆ = {αi := εi − εi+1 | 1 ≤ i ≤ n − 1 } ∪ {αn := εn } and positive roots

Φ+ = { εi ± εj | 1 ≤ i < j ≤ n } ∪ { εi | 1 ≤ i ≤ n }. Now, the Weyl group W of Φ acts

on h∗ as follows. For 1 ≤ i ≤ n − 1, the simple reflection si acts as a transposition which

interchanges εi and εi+1 and fixes every other basis element, while sn acts by sending εn to

−εn and fixing every other basis element.

Suppose ξ + ρ′ = (ξ1, ξ2, . . . , ξ2n+1) is an antidominant integral weight for sl2n+1(C)

(written in the standard orthonormal basis of R
2n+1). Let W ′ = 〈s′i | 1 ≤ i ≤ 2n〉 be

the Weyl group of A2n. For 1 ≤ i ≤ n, set

ti =





s′is
′
2n−i+1 if 1 ≤ i ≤ n − 1

s′ns′n+1s
′
n if i = n
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and consider the subgroup W ′′ = 〈ti | 1 ≤ i ≤ n〉 of W ′.

Lemma 5.2.1 If g = so2n+1(C) and W ′′ = 〈ti | 1 ≤ i ≤ n〉, then W ′′ ∼= W.

Proof. First, we will show that W ′′ is isomorphic to a subgroup of W. We do this by

showing that the generators of W ′′ satisfy the relations defining W as a Coxeter group. First

observe that if 1 ≤ i ≤ n − 1, then 2n − i + 1 ≥ n + 2. Consequently, since (s′i)
2 = 1 for

1 ≤ i ≤ 2n and (s′is
′
j)

2 = 1 whenever |i − j| ≥ 2, it is clear that t2i = 1 and (titj)
2 = 1

whenever 1 ≤ i, j ≤ n and |i − j| ≥ 2. Furthermore, since (s′is
′
i+1)

3 = 1 for all i, it is not

hard to see that (titi+1)
3 = 1 for 1 ≤ i ≤ n − 2. We are left to verify that (tn−1tn)4 = 1. We

compute:

(s′n−1s
′
n+2s

′
ns

′
n+1s

′
n)

4 = (s′n−1s
′
ns′n+2s

′
n+1s

′
ns′n−1s

′
ns′n+2s

′
n+1s

′
n)2

= (s′n−1s
′
ns′n+2s

′
n+1s

′
n−1s

′
ns′n−1s

′
n+2s

′
n+1s

′
n)

2

= (s′n−1s
′
ns′n−1s

′
n+2s

′
n+1s

′
ns′n+2s

′
n+1s

′
n−1s

′
n)

2

= (s′ns′n−1s
′
ns′n+2s

′
n+1s

′
ns′n+2s

′
n+1s

′
n−1s

′
n)2

= s′ns′n−1s
′
ns′n+2s

′
n+1s

′
ns′n+2s

′
n+1s

′
ns′n+2s

′
n+1s

′
ns′n+2s

′
n+1s

′
n−1s

′
n

= s′ns′n−1s
′
ns′n+2s

′
n+1s

′
n+2s

′
ns′n+1s

′
n+2s

′
ns′n+1s

′
ns′n+2s

′
n+1s

′
n−1s

′
n

= s′ns′n−1s
′
ns′n+1s

′
n+2s

′
n+1s

′
ns′n+1s

′
ns′n+2s

′
n+1s

′
ns′n+2s

′
n+1s

′
n−1s

′
n

= s′ns′n−1s
′
ns′n+1s

′
n+2s

′
ns′n+1s

′
n+2s

′
n+1s

′
ns′n+2s

′
n+1s

′
n−1s

′
n

= s′ns′n−1s
′
ns′n+1s

′
ns′n+2s

′
n+1s

′
n+2s

′
n+1s

′
ns′n+2s

′
n+1s

′
n−1s

′
n

= s′ns′n−1s
′
n+1s

′
ns′n+1s

′
n+1s

′
n+2s

′
n+1s

′
n+1s

′
ns′n+2s

′
n+1s

′
n−1s

′
n

= s′ns′n−1s
′
n+1s

′
ns′n+2s

′
ns′n+2s

′
n+1s

′
n−1s

′
n = 1

Hence, W ′′ is isomorphic to a subgroup of W. To show that W ′′ ∼= W, we will show that

|W ′′| ≥ |W|. To see this, without loss of generality, assume that ξ + ρ′ = (−n,−(n −

1), . . . ,−1, 0, 1, . . . , n − 1, n), and consider the antidominant weight µ + ρ = (−n,−(n −

1), . . . ,−1) for g. Comparing the action of W ′′ on ξ + ρ′ and the action of W on µ + ρ,
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we see that if w = si1si2 · · · sir ∈ W, w′ = ti1ti2 · · · tir ∈ W ′′ (same indices as for w) and

w(µ + ρ) = (µ1, µ2, . . . µn), then w′(ξ + ρ′) = (µ1, µ2, . . . , µn, 0,−µn, . . . ,−µ2,−µ1). Notice

that tn essentially acts by changing the signs of the n and n + 2 coordinates of ξ + ρ′ by

exchanging those two coordinates. Considering just the first n coordinates of w′(ξ + ρ′), we

thus have that the number of weights in the W-orbit of µ + ρ is no more than the number

of weights in the W ′′-obit of ξ + ρ′. Since the W-action on µ + ρ is faithful, we must have

|W| ≤ |W ′′|. Therefore, the lemma follows. �

Fix a set S ⊆ ∆ and let µ + ρ be an antidominant integral weight, where Φµ has simple

roots J ⊆ ∆. Suppose that w ∈ SWJ and let ν = wSw(µ+ ρ) so that ν − ρ = wSw ·µ ∈ X+
S .

Write ν = (ν1, ν2, . . . , νn) (in the ε-basis). Note that α̌i = αi if 1 ≤ i ≤ n − 1 and α̌n = 2αn.

If 1 ≤ i ≤ n − 1, then

(ν − ρ, α̌i) = (ν, αi) − (ρ, αi) = νi − νi+1 − 1

and (ν − ρ, α̌n) = (ν, 2αn) − (ρ, 2αn) = 2νn − 1. Thus, if αi ∈ S, then (ν − ρ, α̌i) ∈ Z≥0; so

for 1 ≤ i ≤ n − 1 we have νi − νi+1 ∈ Z with νi > νi+1, and if αn ∈ S, then νn ∈ 1
2
Z with

νn ≥ 1
2
.

On the other hand, if αi ∈ J and µ + ρ = (λ1, . . . , λn), then

0 = (µ + ρ, α̌i) = λi − λi+1 ⇐⇒ λi = λi+1

whenever 1 ≤ i ≤ n − 1, and 0 = (µ + ρ, α̌n) = 2λn which implies λn = 0 whenever αn ∈ J .

For any S ⊆ ∆, form a subset S ′ of the simple roots ∆′ of A2n by setting:

S ′ = {α′
i ∈ ∆′ | αi ∈ ∆ } ∪ {α′

2n−i+1 | αi ∈ ∆ }

Note that the partition πS ∈ PB(2n+1) is the same as the partition πS′ ∈ PA(2n+1) defined

in Section 3.2.1.

We claim that w := si1si2 · · · sir ∈ SWJ implies that w′ := ti1ti2 · · · tir ∈ S′

(W ′)J ′

. Let

µ + ρ = (µ1, . . . , µn) be an antidominant integral weight for g, where Φµ has simple roots

J . Without loss of generality, we will take µn ∈ Z≤0. If ν = wSw(µ + ρ) = (ν1, . . . , νn),
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then taking the antidominant weight ζ + ρ′ = (µ1, . . . , µn, 0,−µn, . . . ,−µ1), the proof of

Lemma 5.2.1 implies that wS′w′(ζ + ρ′) = (ν1, . . . , νn, 0,−νn, . . . ,−ν1). If w ∈ SWJ , then

νi > νi+1 whenever αi ∈ S for 1 ≤ i ≤ n − 1. If αn ∈ S, then νn ≥ 1 > 0 > −νn. Therefore,

wS′w′(ζ + ρ′) ∈ X+
S′ and so w′ ∈ S′

(W ′)J ′

. Thus we have |SWJ | ≤ |S
′

(W ′)J ′

|.

Now set g = sp2n(C). Again taking the standard orthonormal basis {ε1, · · · , εn} of h∗ ∼=

Rn, we have

Φ = {±(εi ± εj) | 1 ≤ i, j ≤ n, i 6= j } ∪ {±2εi | 1 ≤ i ≤ n }

with simple roots ∆ = {αi := εi − εi+1 | 1 ≤ i ≤ n − 1 } ∪ {αn := 2εn } and positive roots

Φ+ = { εi ± εj | 1 ≤ i < j ≤ n } ∪ { 2εi | 1 ≤ i ≤ n }. Now, the Weyl group W of Φ is

isomorphic to the Weyl group for Bn, and acts on h∗ in the same way.

Take an antidominant integral weight ξ + ρ′ = (ξ1, ξ2, . . . , ξ2n) for sl2n(C) and now let

W ′ = 〈s′i | 1 ≤ i ≤ 2n〉 be the Weyl group of A2n−1. This time, set

ti =





s′is

′
2n−i if 1 ≤ i ≤ n − 1

s′n if i = n

for 1 ≤ i ≤ n.

Lemma 5.2.2 If g = sp2n(C) and W ′′ = 〈ti | 1 ≤ i ≤ n〉, then W ′′ ∼= W.

Proof. The proof is similar to that of Lemma 5.2.1. As before, the only relation we need

to check to show that W ′′ is isomorphic to a subgroup of W is (tn−1tn)4 = 1. We compute:

(s′n−1s
′
n+1s

′
n)4 = (s′n−1s

′
n+1s

′
ns′n−1s

′
n+1s

′
n)2

= (s′n−1s
′
ns′n+1s

′
ns′n−1s

′
n)2

= (s′n−1s
′
ns′n+1s

′
n−1s

′
ns′n−1)

2

= (s′n−1s
′
ns′n+1s

′
n−1s

′
n+1s

′
n−1s

′
ns

′
n−1) = 1

To show that |W ′′| ≥ |W|, without loss of generality, assume that ξ + ρ′ = (−n,−(n −

1), . . . ,−1, 1, . . . , n − 1, n), and consider the antidominant weight µ + ρ = (−n,−(n −
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1), . . . ,−1) for g. If w = si1si2 · · · sir ∈ W and we set w′ = ti1ti2 · · · tir ∈ W ′′, then

w(µ + ρ) = (µ1, µ2, . . . µn) implies w′(ξ + ρ′) = (µ1, µ2, . . . , µn,−µn, . . . ,−µ2,−µ1). Con-

sidering just the first n coordinates of w′(ξ + ρ′), we see that the number of weights in the

W-orbit of µ + ρ is no more than the number of weights in the W ′′-obit of ξ + ρ′. Hence,

|W| ≤ |W ′′| and so W ∼= W ′′. �

Fix a set S ⊆ ∆ and let µ + ρ be an antidominant integral weight, where Φµ has simple

roots J ⊆ ∆. Suppose that w ∈ SWJ and let ν = wSw(µ+ ρ) so that ν − ρ = wSw ·µ ∈ X+
S .

Write ν = (ν1, ν2, . . . , νn) (in the ε-basis). Note that α̌i = αi if 1 ≤ i ≤ n − 1 and α̌n = 1
2
αn.

If 1 ≤ i ≤ n − 1, then

(ν − ρ, α̌i) = (ν, αi) − (ρ, αi) = νi − νi+1 − 1

and (ν − ρ, α̌n) = (ν, α̌n) − (ρ, α̌n) = 1
2
νn − 1. Thus, if αi ∈ S, then (ν − ρ, α̌i) ∈ Z≥0; so for

1 ≤ i ≤ n− 1 we have νi − νi+1 ∈ Z with νi > νi+1, and if αn ∈ S, then νn ∈ Z with νn ≥ 2.

On the other hand, if αi ∈ J and µ + ρ = (λ1, . . . , λn), then

0 = (µ + ρ, α̌i) = λi − λi+1 ⇐⇒ λi = λi+1

whenever 1 ≤ i ≤ n − 1, and 0 = (µ + ρ, α̌n) = 1
2
λn which implies λn = 0 whenever αn ∈ J .

For any S ⊆ ∆, form a subset S ′ of the simple roots ∆′ of A2n−1 by setting:

S ′ = {α′
i ∈ ∆′ | αi ∈ ∆ } ∪ {α′

2n−i | αi ∈ ∆ }

Again the partition πS ∈ PB(2n + 1) is the same as the partition πS′ ∈ PA(2n) defined in

Section 3.2.1.

An argument similar to what we did for so2n+1(C) shows that w := si1si2 · · · sir ∈ SWJ

implies w′ := ti1ti2 · · · tir ∈
S′

(W ′)J ′

. Hence, |SWJ | ≤ |S
′

(W ′)J ′

|.

Theorem 5.2.3 Let g = so2n+1(C) or sp2n(C), and let S, J ⊆ ∆. If πJ = π̃S, then

O(BCn, S, J) is semisimple with exactly one simple module.

Proof. In either case, if πJ = π̃S, then πJ ′ = π̃S′ . Consequently, using Theorems 3.4.5 and

5.1.1, we have 0 < |SWJ | ≤ |S
′

(W ′)J ′

| = 1. Therefore, |SWJ | = 1 and the theorem follows.

�
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5.2.2 Hermitian Symmetric Cases

Suppose g = so2n+1(C) so that Φ = Bn and let S = {α2, . . . , αn}. Then ΦS = Bn−1 and

(Bn, Bn−1) is a Hermitian symmetric pair.

Theorem 5.2.4 Let Φ be of type Bn or Cn, and suppose S, J ⊆ ∆ with S = {α2, . . . , αn}.

(i) O(BCn, S, J) is nonzero if and only if ΦJ = A1, B1, or ∅.

(ii) O(BCn, S, J) is semisimple if and only if ΦJ = A1 or ΦJ = B1; in the first case, the

infinitesimal block has two simple modules and in the second it has one.

(iii) O(BCn, S, J) has finite representation type if and only if ΦJ = ∅.

(iv) O(BCn, S, J) never has wild or tame representation type.

Proof. First, if S ↔ S ′ and J ↔ J ′, then O(Bn, S, J) and O(Cn, S ′, J ′) have the same

representation type, so we need only prove the theorem for O(Bn, S, J). The B-partition

corresponding to ΦS is πS = (2n − 1, 12) and so π̃S = (3, 12n−2). Hence, O(Bn, S, J) is

nonzero if and only if πJ E π̃S if and only if πJ = π̃S or πJ = (22, 12n−3) or πJ = (12n+1) if

and only if ΦJ = B1 or ΦJ = A1 or ΦJ = ∅.

Now, (Bn, Bn−1) corresponds to a Hermitian symmetric pair so we will use [E, Sec. 3],

[BH, Thm. 7.3] to prove the rest of the theorem. First, if ΦJ = A1, then O(Bn, S, J) is

equivalent to two copies of the trivial infinitesimal block O(∅, ∅, ∅) each of which has one

simple module. Consequently, this infinitesimal block has two linkage classes, each with only

one simple module, and hence it is semisimple with two simple modules. On the other hand,

if ΦJ = B1, then O(Bn, S, J) is equivalent to one copy of O(∅, ∅, ∅) and so the block is

semisimple with one simple module. Finally, O(Bn, S, ∅) has finite representation type by

[BN, Theorem 1.4]. We have exhausted all possible subroot systems ΦJ of Bn and so the

theorem follows. �
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Now set g = sp2n(C) with root system Φ = Cn. Let S = {α1, . . . , αn−1} so that ΦS =

An−1. Now we have Hermitian symmetric pair (Cn, An−1) that we will use to obtain additional

results in type BCn.

Theorem 5.2.5 Let Φ be of type Bn or Cn, and suppose S, J ⊆ ∆ with S = {α1, . . . , αn−1}.

Set m =
⌊

n
2

⌋
.

(i) O(BCn, S, J) is nonzero if and only if ΦJ = Al
1 or ΦJ = Al

1 × C1 (0 ≤ l ≤ m).

(ii) O(BCn, S, J) is semisimple if and only if one of the following is true.

(a) n is even and ΦJ = Am
1 or ΦJ = Am−1

1 × C1; in the first case, the block has one

simple module and in the second it has two.

(b) n is odd and ΦJ = Am
1 ×C1; the block has exactly one simple module in this case.

(iii) O(BCn, S, J) has finite representation type if and only if one of the following is true.

(a) n is even and ΦJ = Am−1
1 or ΦJ = Am−2

1 × C1.

(b) n is odd and ΦJ = Am
1 or ΦJ = Am−1

1 × C1.

(iv) O(BCn, S, J) has wild representation type if and only if one of the following is true.

(a) n is even and ΦJ = Ai
1 for 0 ≤ i ≤ m − 2 or ΦJ = Aj

1 × C1 for 0 ≤ j ≤ m − 3.

(b) n is odd and ΦJ = Ai
1 for 0 ≤ i ≤ m − 1 or ΦJ = Aj

1 × C1 for 0 ≤ j ≤ m − 2.

(v) O(BCn, S, J) never has tame representation type.

Proof. We will prove the theorem for O(Cn, S, J) and the case for the corresponding block

in type Bn will follow. Set m =
⌊

n
2

⌋
. Note that if n is even, then n = 2m and if n is odd, then

n = 2m + 1. The C-partition corresponding to ΦS is πS = (n2) and so π̃S = (2n). Hence,

O(Cn, S, J) is nonzero if and only if πJ E π̃S if and only if πJ = (2i, 12(n−i)) for 0 ≤ i ≤ n.

If i = 2l for some 0 ≤ l ≤ m, then ΦJ = Al
1. If i = 2l + 1 for some 0 ≤ l ≤ m, then

ΦJ = Al
1 × C1.
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If πJ = (2n) = π̃S, then O(g, S, J) is semisimple with one simple module by Theorem

5.2.3. If n = 2m, then ΦJ = Am
1 , and if n = 2m + 1, then ΦJ = Am

1 × C1.

Suppose πJ = (2i, 12(n−i)) for 0 ≤ i ≤ n−1. Since (Cn, An−1) corresponds to a Hermitian

symmetric pair, we will use [E, Sec. 3], [BH, Thm. 7.3]. First, we will consider the case

ΦJ = Al
1. If n is even, then 0 ≤ l ≤ m − 1, and if n is odd, then 0 ≤ l ≤ m. By [E, Sec. 3],

we have

O(Cn, An−1, A
l
1) ≃ O(Cn−2j, An−2j−1, A

l−j
1 )

provided 0 ≤ j ≤ m if n is odd and 0 ≤ j ≤ m − 1 if n is even. Taking j = l, we have the

following cases:

O(Cn, An−1, A
l
1) ≃





O(C2(m−l)+1, A2(m−l), ∅) if n = 2m + 1

O(C2(m−l), A2(m−l)−1, ∅) if n = 2m and l ≤ m − 1

If n is odd and l = m, then we have that O(Cn, An−1, A
m
1 ) ≃ O(C1, ∅, ∅) which has finite

representation type by [BN, Thm. 1.3]; if l < m, then O(Cn, An−1, A
l
1) has wild represen-

tation type by [BN, Thm. 1.4], since 2(m − l) + 1 ≥ 3. If n is even and l = m − 1, then

O(Cn, An−1, A
m−1
1 ) ≃ O(C2, A1, ∅) which has finite representation type by [BN, Thm. 1.4];

if l < m − 1, then O(Cn, An−1, A
l
1) has wild representation type by [BN, Thm. 1.4], since

2(m − l) ≥ 4.

Now suppose that ΦJ ′ = Al
1 × C1 for 0 ≤ l ≤ m − 1. By [E, Thm. 3.2(b)], we have

O(Cn, An−1, A
l
1 × C1) ≃ O(Cn−2j, An−2j−1, A

l−j
1 × C1)

for any 0 ≤ j ≤ l. Setting j = l, we have two cases:

O(Cn, An−1, A
l
1 × C1) ≃





O(C2(m−l), A2(m−l)−1, C1) if n = 2m

O(C2(m−l)+1, A2(m−l), C1) if n = 2m + 1

If n is even and l = m − 1, then O(Cn, An−1, A
m−1
1 × C1) is equivalent to two copies of

O(C2, A1, C1) and so it is semisimple with two simple modules by [BN, Thm. 1.5]. If n is even

and l = m − 2, then O(Cn, An−1, A
m−2
1 × C1) is equivalent to two copies of O(C4, A3, C1),
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Label Subsets of Simple Roots

BC4 {α1, α2, α3, α4}

BC3 {α2, α3, α4}

A3 {α1, α2, α3}

A1 × BC2 {α1, α3, α4}

A2 × BC1 {α1, α2, α4}

BC2 {α3, α4}

A2 {α1, α2}, {α2, α3}

A2
1 {α1, α3}, {α1, α4}, {α2, α4}

A1 {α1}, {α2}, {α3}, {α4}

∅ {}

Table 5.2: Equivalence Classes of Subsets of Simple Roots in BC4

which has finite representation type by [BN, Thm. 1.5]. If n is odd and l = m − 1, then

O(Cn, An−1, A
m−1
1 × C1) is equivalent to two copies of O(C3, A2, C1), which has finite rep-

resentation type by [BN, Thm. 1.5]. Finally, if n is even and l < m − 2 then 2(m − l) ≥ 6;

if n is odd l < m − 1 and 2(m − l) + 1 ≥ 5. In either case, O(Cn, An−1, A
l
1 × C1) has wild

representation type by [BN, Thm. 1.5].

We have exhausted all possible subroot systems ΦJ of Cn and so the theorem follows. �

5.2.3 An Example in Type BCn

Let g = so9(C) or sp8(C), so we are considering type BC4. We will compute the represen-

tation type of all infinitesimal blocks O(g, S, J). We will be able to compact the 16 × 16

matrix giving the representation type of O(g, S, J) in a similar fashion to how it was done

for A5 in Section 5.1.3 using Hirai equivalence. We can do this because Conjecture 4.5.1 is

true (verified by direct computation) in type BC4. Table 5.2 gives the 10 Hirai equivalence

classes of subsets of simple roots in type BC4 (see Section 3.5). Recall that if A1 = 〈αi〉 for

1 ≤ i ≤ 3, then A1 ∼ BC1 = 〈α4〉.
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ΦJ

B
C

4

B
C

3

A
3

A
1
×

B
C

2

A
2
×

B
C

1

B
C

2

A
2

A
2 1

A
1 ∅

ΦS

BC4 − − − − − − − − − SS

BC3 − − − − − − − − SS F

A3 − − − − − − − SS F W

A1 × BC2 − − − − − − SS F W W

A2 × BC1 − − − − SS − F W W W

BC2 − − − − − SS F W W W

A2 − − − SS F F W W W W

A2
1 − − SS F W W W W W W

A1 − SS T W W W W W W W

∅ SS W W W W W W W W W

Table 5.3: Representation Type of Infinitesimal Blocks in Type BC4

In Table 5.3 we give the representation type of any infinitesimal block O(BC4, S, J). Note

that the equivalence classes are arranged according to the partial ordering on nilpotent orbits

as given in Figure 3.2. We use the Hasse diagrams in Figure 3.2 along with Corollary 3.4.5

to determine the nonzero infinitesimal blocks, which lie in the upper left triangle of Table

5.3.

There are two Hermitian symmetric cases, given in the rows labeled BC3 and A3. The

entries in Table 5.1 which could not be deduced from the theorems in this section were

determined using a computer and the results in Chapter 4. There are some interesting points

to make here. First, there are some triangular infinitesimal blocks. If ΦS = A1 (or BC1) and

ΦJ = A3, then the corresponding blocks are triangular of length 4 and therefore have tame

representation type. Those associated to ΦS = ∅ and ΦJ = BC3 are triangular of length 8

and therefore have wild representation type. Another point of interest is that if S = {α1, α4}
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and J = {α1, α2, α4}, then the blocks O(g, S, J) and O(g, J, S) have one X-linkage class, and

therefore have wild representation type.

As with A5, we observe in Table 5.1 a strong connection between the ordering on nilpotent

orbits for g and the representation type of infinitesimal blocks for g.

5.2.4 Multiple Linkage Classes in an Infinitesimal Block

We have already observed infinitesimal blocks that have two linkage classes in type BCn.

This observation goes back to Enright-Shelton [ES], where these multiple linkage classes were

observed for the semiregular blocks in the Hermitian symmetric cases. Theorems 5.2.4 and

5.2.5 show that infinitesimal blocks with two linkage classes occur for any n ≥ 2. One may

wonder if there are infinitesimal blocks that have more than two linkage classes. The answer

is yes. We will exhibit some that have four linkage classes.

Let g = so13(C), which has a root system of type B6. Take S to be either of the two

subsets of simple roots in B6 which generate a subroot system of type A3×A1, and take J to

be either of the two subsets of simple roots which generate a subroot system of type A2×B2.

Then O(g, S, J) is semisimple with four simple modules, and hence it has four linkage classes.

One can see this by observing that the lengths of any two of the four elements in SWJ differ

by an even integer, and so there cannot be an extension between the two corresponding

simple modules.

It may seem plausible that for some n and some subsets S and J of simple roots in BCn,

the infinitesimal block O(BCn, S, J) contains more than four linkage classes. However, the

question of the existence of such an infinitesimal block is still unknown.

5.3 Type Dn

5.3.1 An Example in Type Dn

Let g = so8(C), which is of type D4. We will compute the representation type of all infinites-

imal blocks O(g, S, J). Other than Corollary 3.4.5 for determining the nonzero blocks, we will
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Label Subsets of Simple Roots

D4 {α1, α2, α3, α4}

D3 {α2, α3, α4}

AI
3 {α1, α2, α3}

AII
3 {α1, α2, α4}

A2 {α1, α3, α4} ∼ {α1, α2} ∼ {α2, α3} ∼ {α2, α4}

D2 {α3, α4}

(A2
1)

I {α1, α3}

(A2
1)

II {α1, α4}

A1 {α1} ∼ {α2} ∼ {α3} ∼ {α4}

∅ ∅

Table 5.4: Equivalence Classes of Subsets of Simple Roots in D4

have to rely on computer calculations for most of the blocks in this case. Since Conjecture

4.5.1 holds in type D4 (verified through computation), we will label the infinitesimal blocks

for D4 with the ten Hirai equivalence classes of subsets of simple roots. These are given in

Table 5.4, together with their labels. The partial ordering on nilpotent orbits of so8(C) is

given in Figure 3.3, from which we can find the nonzero infinitesimal blocks for D4.

In Table 5.5, we give the representation type of any infinitesimal block O(D4, S, J) in

the row corresponding to ΦS and the column corresponding to ΦJ . Note that again the

equivalence classes are arranged according to the partial ordering on nilpotent orbits as

given in Figure 3.3.

If S = {α1, α3, α4} = J , then O(D4, S, J) is semisimple with two simple modules. This

is an example of a simply laced case for which an infinitesimal block splits into two linkage

classes. The same holds for any block for which ΦS = A2 = ΦJ . However, if ΦS = A2 and

ΦJ = A1 × D2 or vice versa, the block O(D4, S, J) is semisimple but with only one simple

module.
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ΦJ D
4

D
3

A
I 3

A
I
I

3

A
2

D
2

(A
2 1
)I

(A
2 1
)I

I

A
1

∅

ΦS

D4 − − − − − − − − − SS

D3 − − − − − SS − − F W

AI
3 − − − − − − SS − F W

AII
3 − − − − − − − SS F W

A2 − − − − SS F F F W W

D2 − SS − − T W W W W W

(A2
1)

I − − SS − T W W W W W

(A2
1)

II − − − SS T W W W W W

A1 − F F F W W W W W W

∅ SS W W W W W W W W W

Table 5.5: Representation Type of Infinitesimal Blocks in Type D4

If ΦS = D2 or A2
1 and ΦJ = A2 or A1 ×D2, then O(D4, S, J) is a triangular infinitesimal

block of length 4 and therefore it has tame representation type.

As in the other classical cases, Table 5.5 demonstrates a close relationship between the

representation type of infinitesimal blocks in type D4 and the partial ordering of nilpotent

orbits.



Chapter 6

Representation Type of Blocks for the Exceptional Lie Algebras

We will address the representation type of infinitesimal blocks for the exceptional Lie algebras

in this chapter. In fact, we will compute the representation type of all the blocks in types F4

and G2 with brute computational force. We will also collect a few results and observations in

types E6, E7, and E8, even though their sizes makes brute computation much more difficult.

6.1 An Order-Reversing Map

For this section only, let g be any finite dimensional complex simple Lie algebra. Denote by

N the set of nilpotent orbits of g. There is a map d : N → N with the following properties:

(i) d(OS) = RS for all S ⊆ ∆;

(ii) if O, O′ ∈ N with O ≤ O′, then d(O′) ≤ d(O);

(iii) d2(O) ≥ O for all O ∈ N ;

(iv) if R := Im d, then d2(O) = O for all O ∈ R.

See [Spalt, Ch. 3]. The set R is called the set of special nilpotent orbits of g. If g is a

classical Lie algebra, the map d is defined in Theorem 3.3.3.

By property (i) of the map d, if S ⊆ ∆, then d−1(RS) contains any root system orbit OS′

with S ∼ S ′.

76
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ΦJ G
2

A
1

Ã
1

∅

ΦS

G2 − − − SS
(1)

A1 − SS SS F
(2) (3) (6)

Ã1 − SS SS F
(3) (2) (6)

∅
SS WT WT WD

(1) (6) (6) (12)

Table 6.1: Representation Type of O(G2, ΦS, ΦJ)

6.2 Representation Type of Infinitesimal Blocks in Type G2

We will now classify the representation type of each infinitesimal block O(G2, S, J). Denote

the root subsystem of G2 generated by the short root α1 as Ã1, and the root subsystem

generated by the long root α2 as A1. Then there is a one-to-one correspondence between the

four subsets of ∆ and the four root systems ∅, Ã1, A1, and G2.

We first use Section 3.6.1 to determine the nonzero infinitesimal blocks. To classify the

nonzero infinitesimal blocks, we generate the Hasse diagram of SWJ and, when necessary,

the radical filtrations of the PVM’s in the infinitesimal block using the Uα-algorithm. Where

convenient, these calculations were done using a computer.

The representation type of the infinitesimal block O(G2, S, J) is given on the row labeled

with the root system ΦS and the column labeled by the root system ΦJ in Table 6.1. As in

Chapter 5, a dash (−) means the block is zero, SS means the block is semisimple, F means

it has finite representation type, and W means it has wild representation type; there are no

tame blocks for G2. The number below each SS in the table represents the number of simple

modules in the semisimple block; this is also the number of linkage classes in the block. The

number below each F or W indicates the number of simple modules in the corresponding



78

∅

G2(a1)

G2

Figure 6.1: Special Nilpotent Orbits for G2

block. If an infinitesimal block is not semisimple, then the block has only one linkage class.

The infinitesimal blocks having finite representation type are uniserial of length two as in

(4.2). The superscript above each W indicates what condition was used to determine that

the infinitesimal block has wild representation type. If there is a diamond in the poset of

SWJ , then it is marked WD in the table. If the poset contains no diamonds but there is a kite

in the Ext1-quiver, then it is marked WK in the table. If the infinitesimal block is triangular

of length at least five, then it is marked with WT . Note that there are no infinitesimal blocks

for G2 labeled WK . However, we will need this label when we discuss the infinitesimal blocks

in type F4.

The set R of special nilpotent orbits for G2 contains three orbits, given in Figure 6.1.

The involution d|R is given by reflecting about the horizontal line of symmetry in Figure 6.1.

The pre-images of these three special orbits are listed in Table 6.2. For each orbit O ∈ R,

the set of all ΦS such that OS is in d−1(O) is enclosed between horizontal and vertical lines

in Table 6.1. Notice that these correspond exactly to the Hirai equivalence classes of subsets

of ∆, and that Conjecture 4.5.1 holds in type G2.

We classify the representation type of the infinitesimal blocks for G2 in the following way.

Theorem 6.2.1 (i) O(G2, S, J) is nonzero if and only if OJ ≤ d(OS) if and only if OS ≤

d(OJ).
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Special Orbit Pre-Image

G2 ∅

G2(a1) G2(a1), Ã1, A1

∅ G2

Table 6.2: Pre-Images of Orbits in G2

(ii) O(G2, S, J) is semisimple if and only if d2(OJ) = d(OS) if and only if d(OJ) = d2(OS).

If OJ = d(OS) or OS = d(OJ), then O(G2, S, J) has one simple module; if |S| = 1 =

|J |, then O(G2, S, J) is semisimple with two linkage classes if S = J and three linkage

classes if S 6= J .

(iii) O(G2, S, J) has finite representation type if and only if |S| = 1 and J = ∅.

(iv) O(G2, S, J) has wild representation type if and only if S = ∅ and |J | ≤ 1.

6.3 Representation Type of Infinitesimal Blocks in Type F4

Now we will classify all of the infinitesimal blocks O(F4, S, J). First, we recall the following

notation for the subroot systems of F4. Suppose T ⊆ ∆. If T = {α1, α2} (long roots), then

ΦT is denoted by A2, whereas if T = {α3, α4} (short roots), then ΦT is denoted by Ã2. If

|T | = 1, then write A1 if T contains a long root and Ã1 if it contains a short root. Since

there are two long simple roots and two short simple roots, write A′
1 if T = {α2} and Ã′

1 if

T = {α4}. Using this notation, we can write the root system generated by one the 16 subsets

of simple roots in F4 in a unique way (see Table 6.3).

The representation type of the infinitesimal block O(F4, S, J) is given on the row labeled

with the root system ΦS and the column labeled by the root system ΦJ in Table 6.3, using the

notation we set up in Section 6.2. There are no tame infinitesimal blocks in type F4. A pair

of numbers below an F or W in the table indicates that the corresponding infinitesimal block
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∅

Ã1

A1 × Ã1

Ã2 A2

F4(a3)

B3 C3

F4(a2)

F4(a1)

F4

0

1

2

3

4

5

6

7

8

L

Figure 6.2: Special Orbits for F4

splits into two linkage classes having the specified numbers of simple modules. For example,

note that O(F4, A2, Ã2) has two linkage classes, and they have, respectively, 20 and 12 simple

modules for a total of 32 simple modules in the infinitesimal block. If an infinitesimal block

is not semisimple, then it does not split into more than two linkage classes in type F4.

All of the infinitesimal blocks O(F4, S, J) having finite representation type are composed

of linkage classes which are uniserial length two as in (4.2). Notice that as one moves right

in a row or down in a column, one expects to eventually find diamonds in the poset of SWJ .

There are 11 special nilpotent orbits in R for F4. They are given in Figure 6.2 (see [Cart,

Sec. 13.4]). The involution d|R is given by reflecting the Hasse diagram in Figure 6.1 about

the horizontal line of symmetry. The pre-images of these special orbits are listed in Table

6.4. For each orbit O ∈ R, the set of all ΦS such that OS is in d−1(O) is enclosed between

horizontal and vertical lines in Table 6.1. As with G2 these correspond exactly to the Hirai
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ΦJ

F
4

B
3

C
3

A
2
×

Ã
′1

Ã
2
×

A
1

B
2

A
2

Ã
2

A
1
×

Ã
1

A
′1
×

Ã
′1

A
1
×

Ã
′1

A
1

A
′1

Ã
1

Ã
′1 ∅

ΦS

F4 − − − − − − − − − − − − − − −
SS
(1)

B3 − − − − − − −
SS F F F WK WK WK WK WD

(1) (2) (2) (2) (6) (6) (9) (9) (24)

C3 − − − − − −
SS

−
F F F WK WK WK WK WD

(1) (2) (2) (2) (9) (9) (6) (6) (24)

A2 × Ã′

1 − − −
SS SS SS F F WK WK WK WD WD WD WD WD

(3) (5) (4) (6) (6,6) (17) (17) (17) (36) (36) (44) (44) (96)

Ã2 × A1 − − −
SS SS SS F F WK WK WK WD WD WD WD WD

(5) (3) (4) (6,6) (6) (17) (17) (17) (44) (44) (36) (36) (96)

B2 − − −
SS SS SS F F WK WK WK WD WD WD WD WD

(4) (4) (9) (6,6) (6,6) (24) (24) (24) (60) (60) (60) (60) (144)

A2 − −
SS WT WT WT WD WD WD WD WD WD WD WD WD WD

(1) (6) (6,6) (6,6) (12) (20,12) (36) (36) (36) (72) (72) (48,48) (96) (192)

Ã2 −
SS

−
WT WT WT WD WD WD WD WD WD WD WD WD WD

(1) (6,6) (6) (6,6) (20,12) (12) (36) (36) (36) (96) (48,48) (72) (72) (192)

A1 × Ã1 −
F F WK WK WK WD WD WD WD WD WD WD WD WD WD

(2) (2) (17) (17) (24) (36) (36) (61) (61) (61) (132) (132) (132) (132) (288)

A′

1 × Ã′

1 −
F F WK WK WK WD WD WD WD WD WD WD WD WD WD

(2) (2) (17) (17) (24) (36) (36) (61) (61) (61) (132) (132) (132) (132) (288)

A1 × Ã′

1 −
F F WK WK WK WD WD WD WD WD WD WD WD WD WD

(2) (2) (17) (17) (24) (36) (36) (61) (61) (61) (132) (132) (132) (132) (288)

A1 −
WK WK WD WD WD WD WD WD WD WD WD WD WD WD WD

(6) (9) (36) (44) (60) (72) (96) (132) (132) (132) (264) (264) (288) (288) (576)

A′

1 −
WK WK WD WD WD WD WD WD WD WD WD WD WD WD WD

(6) (9) (36) (44) (60) (72) (96) (132) (132) (132) (264) (264) (288) (288) (576)

Ã1 −
WK WK WD WD WD WD WD WD WD WD WD WD WD WD WD

(9) (6) (44) (36) (60) (96) (72) (132) (132) (132) (288) (288) (264) (264) (576)

Ã′

1 −
WK WK WD WD WD WD WD WD WD WD WD WD WD WD WD

(9) (6) (44) (36) (60) (96) (72) (132) (132) (132) (288) (288) (264) (264) (576)

∅
SS WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD

(1) (24) (24) (96) (96) (144) (192) (192) (288) (288) (288) (576) (576) (576) (576) (1152)

T
ab

le
6.3:

R
ep

resen
tation

T
y
p
e

of
O

(F
4 ,Φ

S
,Φ

J )



82

Special Orbit O Pre-Image of O H(O)
F4 ∅ ∅

F4(a1) A1, Ã1 {α1} ∼ {α2} ∼ {α3} ∼ {α4}

F4(a2) A1 × Ã1 {α1, α3} ∼ {α1, α4} ∼ {α2, α4}

B3 Ã2 {α3, α4}
C3 A2 {α1, α2}

F4(a3)
F4(a3), C3(a1), B2,

{α1, α3, α4} ∼ {α1, α2, α4} ∼ {α2, α3}
Ã2 × A1, A2 × Ã1

A2 C3 {α2, α3, α4}

Ã2 B3 {α1, α2, α3}

A1 × Ã1 F4(a2)

Ã1 F4(a1)
∅ F4 {α1, α2, α3, α4}

Table 6.4: Pre-Images of Special Orbits in F4

equivalence classes of subsets of ∆, and we see that Conjecture 4.5.1 holds in type F4. For

any special nilpotent orbit O ∈ R, let H(O) denote the Hirai equivalence class associated

to O; these are listed in the third column of Table 6.4. Since Conjecture 4.5.1 holds for F4,

it makes sense to talk about the representation type of the collection of infinitesimal blocks

O(F4,H(O1),H(O2)).

Define L : R → Z≥0, where L(O) is the level of O in the poset given in Figure 6.2. We

classify the infinitesimal blocks for F4 in the following way.

Theorem 6.3.1 Let g be of type F4.

(i) O(F4, S, J) is nonzero if and only if OJ ≤ d(OS) if and only if OS ≤ d(OJ).

(ii) O(F4, S, J) is semisimple if and only if d2(OJ) = d(OS) if and only if d(OJ) = d2(OS).

O(F4, S, J) is semisimple with more than one linkage class if and only if d(OS) =

F4(a3) = d(OJ).

(iii) If O(F4, S, J) has finite representation type, then L(d2(OJ)) = L(d(OS)) − 1 and

L(d2(OS)) = L(d(OJ)) − 1. On the other hand, if either L(d2(OJ)) = L(d(OS)) − 1
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or L(d2(OS)) = L(d(OJ))− 1 and O(F4, S, J) does not have finite representation type,

then OS ∈ {A2, Ã2}, d(OJ) = F4(a3), and O(F4, S, J) consists of exactly one or two

linkage classes which are triangular of length six; therefore it has wild representation

type.

(iv) If L(d2(OJ)) ≤ L(d(OS)) − 2 or L(d2(OS)) ≤ L(d(OJ)) − 2, then O(F4, S, J) has wild

representation type.

Proof. For (i), we use Theorem 3.4.4 and the fact that RS = d(OS) for any S ⊆ ∆.

Inspecting Table 6.3 and using Figure 6.2 with Table 6.4, we obtain (ii)–(iv). Note that

O(F4,H(C3),H(F4(a3))) and O(F4,H(B3),H(F4(a3))) are the only collections of infinites-

imal blocks satisfying L(d2(OJ)) = L(d(OS))− 1 and L(d2(OS)) = L(d(OJ))− 1 but do not

have finite representation type. In these collections, the infinitesimal blocks O(F4, A2, A2 ×

Ã′
1) and O(F4, Ã2, Ã2 × A1) have one triangular linkage class of length 6, while the other

four infinitesimal blocks in the collection have two triangular linkage classes of length 6. As

a remark, these are the only triangular linkage classes of length greater than 2 appearing in

any of the infinitesimal blocks for F4. �

We observe that Table 6.3 is “almost” symmetric across the main diagonal; the

only non-symmetric entries occur between the collections O(F4,H(C3),H(F4(a3))) and

O(F4,H(F4(a3)),H(C3))), and between O(F4,H(B3),H(F4(a3))) and O(F4,H(F4(a3),H(B3))).

This proves the following.

Proposition 6.3.2 If Φ is of type F4, then O(F4, S, J) has the same representation type as

O(F4, J, S) except in the following cases: each of the infinitesimal blocks in the collections

O(F4,H(F4(a3)),H(B3)) and O(F4,H(F4(a3)),H(C3))

has finite representation type, but each of the infinitesimal blocks in the collections

O(F4,H(B3),H(F4(a3))) and O(F4,H(C3),H(F4(a3)))

has wild representation type.
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Before leaving our discussion of type F4, note that O(F4, B2, B2) is semisimple with 9

simple modules. This is the largest semisimple block discovered in our investigations!

6.4 Remarks About Types E6, E7, and E8

In principle, one can use a computer to determine the representation types of the blocks in

types E6, E7, and E8. However, their sizes make this a much more difficult task; therefore,

a better approach would be desirable in these cases. Preliminary calculations suggest that

there is likely an analogue of Theorem 6.3.1 for all the exceptional Lie algebras.

We noted multiple linkage classes in every type we have discussed so far, except type An

for which it has been proven that multiple linkage classes in a single infinitesimal block do

not exist. We will exhibit multiple linkage classes in infinitesimal blocks for types E6, E7,

and E8. These were found using a computer.

• In type E6, take S = {α1, α2, α3, α5, α6} = J . Then O(E6, S, J) is semisimple with 3

simple modules.

• In type E7, take S = {α1, α2, α4, α5, α6, α7} and J = {α1, α2, α3, α5, α6}. Then

O(E7, S, J) is semisimple with 3 simple modules.

• In type E8, take S = {α2, α3, α4, α5, α6, α7, α8} and J = {α1, α2, α4, α6, α8}. Then

O(E8, S, J) is semisimple with 2 simple modules.
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[BKM] Th. Brüstle, S. König, V. Mazorchuk, The coinvariant algebra and representation

types of blocks of category O, Bull. London Math. Soc. 33 (2001), 669–681.

[Cart] R.W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Char-

acters, John Wiley & Sons, London, 1985.

[Cas] L. Casian, Graded characters of induced representations for real reductive Lie

groups, I, J. Algebra 123 (2) (1989), 289–326.

[CC] L.G. Casian, D.H. Collingwood, The Kazhdan-Lusztig conjecture for generalized

Verma modules, Math. Z. 195 (1987), 581–600.

[CMcG] D.H. Collingwood, W.M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras,

Van Nostrand Reinhold, New York, 1993.

[CPS] E. Cline, B.Parshall, L. Scott, Finite-dimensional algebras and highest weight

categories, J. Reine Angew. Math. 391 (1988), 85–99.

[CB] W.W. Crawley-Boevey, On tame algebras and BOCS’s, Proc. London Math. Soc.

56 (1988), 451–483.

[Deo] V.V. Deodhar, On some geometric aspects of Bruhat orderings II. The parabolic

analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987) 483–506.
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