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Abstract

A well-known statistical model - the Bass new product diffusion model is intro-
duced to describe the diffusion of an innovation. The basic assumption of the model
is that the timing of a consumer’s initial purchase is related to the number of pre-
vious buyers. We also introduce two methods of estimating the model’s parameters:
the ordinary least square (OLS) method and nonlinear least square (NLS) method.
We then apply this model to several consumer products data. We obtain the statis-
tically significant estimates for the model’s parameters, and good predictions of the
sales peak and the timing of the peak. We also perform a long range forecast for the
sales of ATM cash card.
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Chapter 1

Introduction

The diffusion of an innovation traditionally has been defined as the process by which

that innovation is communicated through certain channels over time among the

members of a social system [3]. As such, the diffusion process consists of four key

elements: innovation, communication channels, time, and the social system.

The field of research on the diffusion of innovations took off after formation

of the diffusion paradigm by Ryan and Gross [3]. Figure 1.1 could show us the

number of diffusion research publications in developing versus developed countries

between 1940’s and 1980’s: the former represent about 30 percent of all diffusion

publications, while about 70 percent have their setting in developed countries. In

each succeeding two-year period, the number of diffusion publications has increased

considerably, until the late 1970s when the data on the number of publications are

only approximate due to the lag in obtaining those publications.

One fundamental marketing concept for managing resource commitments to a

new product is the product life cycle (PLC). The PLC hypothesizes that sales of a

new product, over time in a target market, go through the stages of launch, growth,

maturity, and decline [1]. Several descriptive, normative, behavioral, managerial, and

analytical models and frameworks have been proposed to depict, explain, forecast,

and manage the life cycle of a new product [2].

As a theory of communications, diffusion theory’s main focus is on communi-

cation channels, which are the means by which information about an innovation is

1
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Figure 1.1: Cumulative number of diffusion research publications by year.

transmitted to or within the social system. These means consist of both the mass

media and interpersonal communications. Members of a social system have different

propensities for relying on mass media or interpersonal channels when seeking infor-

mation about an innovation. Interpersonal communications, including nonverbal

observations, are important influences in determining the speed and shape of the

diffusion process in a social system.

The main impetus underlying these contributions to the diffusion of innovation

is a new product growth model suggested by Bass in 1969 [4]. The Bass model

and its revised forms have been used for forecasting innovation diffusion in retail

service, industrial technology, agricultural, educational, pharmaceutical, and con-
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sumer durable goods markets [5]. Representative companies that have used the model

include Eastman Kodak, RCA, IBM, Sears, and AT&T [6].

The emergence of diffusion modeling literature in marketing could be categorized

as the following five subareas:

(1) Basic Diffusion Models. Definition of innovators/imitators and the formulation

of relationship between innovators and imitators over time. etc.

(2) Parameter Estimation Considerations. Ordinary least square estimation proce-

dure, maximum likelihood and nonlinear least square estimation procedure, Bayesian

and feedback estimation (time-varying parameter) procedure, etc.

(3) Flexible Diffusion Models. Systematic (or random) variation in parameters over

time, flexible diffusion patterns in terms of timing and magnitude of peak of adop-

tion curve, etc.

(4) Refinements and Extensions. Dynamic diffusion models (market saturation

changes over time), multi-generation models ( timing and adoption of different gen-

erations of an innovation), space/time diffusion models (diffusion of an innovation

occurs simultaneously in space and time), etc.

(5) Use of Diffusion Models. Forecasting, descriptive, normative (derivation of

optimal pricing, advertising, etc), etc.

In the product innovation context, diffusion models focus on the development of

a life cycle curve and serve the purpose of forecasting first-purchase sales of inno-

vations. That is, in the first-purchase diffusion models one assumes that, in the

product planning horizon being considered, there are no repeat buyers and purchase

volume per buyer is one unit. The number of adopters defines the unit sales for the

product. The best-known first-purchase diffusion models of new product diffusion in

marketing are those of Fourt and Woodlock [7], Mansfield [8] and Bass [4]. These

models attempted to describe the penetration and saturation aspects of diffusion

process. In this thesis work, we will also restrict ourself to this basic first-purchased
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diffusion model. The development of this model over the last three decades can be

reviewed in book by Mahajan, etal. [9].

The outline of this thesis is as follows: Chapter 2 reviews the theoretical back-

ground about the basic Bass diffusion model and the methods of estimating the

model’s parameters. Chapter 3 demonstrates the applications of the Bass diffusion

model in several different areas. Chapter 4 presents the remarks and conclusions.



Chapter 2

The Basic New Product Diffusion Model - The Bass Model

2.1 Introduction

It has been documented that the natural growth of many phenomena can be depicted

by a S-shaped pattern [10, 11]. Examples include phenomena as diverse as the future

populations of cars and computers, the life expectancy of creative geniuses, the fre-

quency of economic booms and buts, the number of fatal car accidents, the incidence

of major nuclear accidents, and the number of deaths from AIDS.

The analytical and empirical evidence for the existence of the S-shaped pattern

to represent the first-purchased growth of a new durable product in marketing was

first presented by Bass [4]. Unlike other growth studies in physical or social sciences

that do not concern themselves with the underlying processes that generate the

S-shaped regularity, the Bass model relies on the diffusion theory to mimic the S-

shaped growth patterns of new durable products [12].

The Bass growth model is best reflected by growth patterns similar to that shown

in Figure 2.1. Sales grow to a peak and then level off at some magnitude lower than

the peak. The stabilization effect is accounted for by the relative growth of the

replacement purchasing component of sales and the decline of the initial purchase

component. We shall be concerned here only with the timing of initial purchase.

In addition, the theoretical framework presented here provides a rationale for long-

range forecasting which is easier to guess than other models.

5
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Figure 2.1: Growth Pattern of a New Product. Sales grow to a peak and then level
off at some magnitude lower than the peak.

2.2 The Bass Diffusion Model

2.2.1 Adoption and Diffusion

In the discussion which follows an attempt will be made to outline the major ideas

of the theory as the timing of adoption.

Some individuals decide to adopt an innovation independently of the decisions of

other individuals in a social system. These individuals are called innovators. Apart

from innovators, adopters are influenced in the timing of adoption by the pressure

of the social system, the pressure increasing for later adopters with the number

of previous adopters. They are defined as imitators. The Bass model assumes that
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potential adopters of an innovation are influenced by two means of communication

- mass media ( external influence ) and interpersonal (internal influence). Interper-

sonal communications, including nonverbal observations, are important influences in

determining the speed and the shape of the S-shaped pattern of the diffusion process

in a social system.

In applying the theory to the timing of initial purchase of a new product, Bass

formulate the following precise and basic assumption: The probability that an initial

purchase will be made at T given that no purchase has yet been made is a linear

function of the number of previous buyers. In the section which follows, the basic

assumption of the theory will be formulated in terms of a continuous model and

a density function of time to initial purchase. We shall therefore refer to a linear

probability element as a likelihood.

2.2.2 The Bass Diffusion Model

Two assumptions characterize the model:

(1) Over a period of interest (”life of the product”) there will be m initial purchases

of the product. Since we are dealing with infrequently purchased products, the unit

sales of the product will coincide with the number of initial purchases during that

part of the time interval for which replacement sales are excluded.

(2) The likelihood of purchase at time T given that no purchase has yet been made

is

P (T ) =
f(T )

1 − F (T )
(2.1)

where f(t) is the likelihood of purchase at T. F (T ) is the distribution function

with F (0)=0. Eq.(2.1) is also called Hazard Rate[20]. Its derivation can be seen

in Appendix A.
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According to Bass’s basic assumption, we have

P (T ) = p +
q

m
Y (T ) = p + qF (T ) (2.2)

where we set F (T ) = Y (T )/m, p and q are two coefficients. Also

F (T ) =
∫ T

0
f(t) dt. (2.3)

Since m is the total number purchasing during the period for which the density

function is constructed.

Y (T ) =
∫ T

0
S(t) dt = m

∫ T

0
f(t) dt = mF (T ) (2.4)

is the total number purchasing in the (0, T ) interval. Sales at T is

S(T ) = mf(T ) = P (T )[m− Y (T )] = [p + q
∫ T

0
S(t)/m dt][m −

∫ T

0
S(t) dt]. (2.5)

Expanding above equation, we get

S(T ) =
dY (T )

dT
= pm + (q − p)Y (T ) − q

m
Y (T )2

= p[m − Y (T )] +
q

m
Y (T )[m − Y (T )]. (2.6)

Since dF
dT

= f(T ) = [p + qF (T )][1 − F (T )], solving this non-linear differential

equation we will get

F (T ) =
q − pe−(T+C)(p+q)

q(1 + e−(T+C)(p+q)
. (2.7)

We now use condition F (0) = 0 to get C, and then we will obtain the following

useful formulas
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f(T ) =
(p + q)2e−(p+q)T

p( qe−(p+q)T

p
+ 1)

2 (2.8)

F (T ) =
1 − e−(p+q)T

qe−(p+q)T

p
+ 1

(2.9)

and

S(T ) =
m(p + q)2e−(p+q)T

p( qe−(p+q)T

p
+ 1)

2 . (2.10)

In order to find the time at which the sales reaches its peak, we differentiate

S(T ) and will get

T ∗ =
ln( q

p
)

p + q

S(T ∗) =
m(p + q)2

4q

Y (T ∗) =
m(q − p)

2q
. (2.11)

The expected time to purchase can also be derived (see Appendix B). It is

E(T ) =
ln(p+q

p
)

q
. (2.12)

So, once we know those three parameters: m, p and q, we will obtain the useful

information about the diffusion procedure of a specified new product.

2.2.3 Notes on the Bass Model

The behavioral rationale of the Bass model are summarized:

(1) Initial purchases of the product are made by both ”innovators” and ”imitators”.

Innovators are not influenced in the timing of their initial purchase by the people

who have already bought the product, while imitators are influenced by the number
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of previous buyers.

(2) m is also called the ultimate market potential; p is called the coefficient of

innovation; q is called the coefficient of imitation; Y(T) and S(T) are the cumulative

and noncumulative number of adopters (sales) at time T. If q=0, it reduces to the

exponential distribution of Fourt and Woodlock’s [7]; If p=0, it reduces to the logistic

distribution of Mansfield’s [8];

(3) Figure 2.2 shows the analytical structure underlying the Bass model. As depicted,

the noncumulative adopter distribution peaks at time T ∗, which is the point of

inflection of the S-shaped cumulative adoption curve.

Figure 2.2: Analytical Structure of the Bass Model. The noncumulative adopter dis-
tribution peaks at time T ∗, which is the point of inflection of the S-shaped cumulative
adoption curve.
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2.3 Parameters Estimation for The Bass Model

2.3.1 Estimation Procedures

The use of the Bass model for forecasting the diffusion of an innovation requires the

estimation of three parameters: p, q and m, and a minimum of three time periods

are required to estimate these parameters. The estimates of these parameters are

sensitive to the number of data points used to estimate them. Several estimation

procedures were proposed. For example, a meta-analyzing the results of 15 such

diffusion studies reported average values of 0.03 and 0.38 for p and q, respectively

(see [5] and references therein).

One of the first procedures suggested to estimate the diffusion parameters is the

ordinary least squares (OLS) procedure proposed by Bass [4]. It takes the discrete

or regression analog of Bass model (i.e., Eq.(2.5))

S(T ) = pm + (q − p)Y (T − 1) − q

m
Y (T − 1)2 + ε(T ) (2.13)

where E[ε(T )] = 0 and V ar[ε(T )] = σ2 and ε(Ti) is independent of ε(Tj) for i�=j.

The OLS procedure is applicable to many diffusion models. Its main advantage

is that it is easy to implement. However, it has some shortcomings [13]. First, in

the presence of few time-series data points and multicollinearity between variables

(Y (T − 1) and Y (T − 1)2), one may obtain parameter estimates which are unstable

or possess wrong signs. Second, the procedure does not directly provide standard

errors for the estimated parameters since nonlinear relationships exist among p, q

and m. Third, there is a time-interval bias because discrete time series data are

used for estimating a continuous model (i.e. the solution of the differential equation

specification of the Bass model).
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The Maximum Likelihood Estimation (MLE)[13], and the Nonlinear Least Square

(NLS)[14] procedures are two other estimation procedures. These procedures specifi-

cally eliminate the time-interval bias and provide the standard errors for the param-

eter estimates.

The approach of MLE also possesses some shortcomings [14]. For example, the

MLE method is applicable in a direct way only to those diffusion models for which

F (T ) in Eq.(2.1) can be expressed as an explicit function of time. NLS estimation

procedure can provide for a better fit and lower forecast errors for durable product

categories and the existence of a downward bias in MLE standard error estimates,

it generally become the standard in diffusion research [15, 16]. It is also noted that

the more the data points used, the better the NLS procedure.

There are also other estimation procedures. For example, the algebraic estimation

(AE) procedure [17] and a numerical technique proposed by Scitovski and Meler

[18], etc. In the following section, we will present the principle of NLS estimation

technique, and use it in the applications of Bass model for next chapter.

2.3.2 Nonlinear Least Square (NLS) Estimation

This approach is designed to overcome some of the shortcomings of the maximum

likelihood approach [14, 19].

Approach 1 (NLS1)

Eq.(2.8) is the cumulative distribution function (c.d.f.) for eventual adopters:

F (T ) =
1 − e−(p+q)T

qe−(p+q)T

p
+ 1

. (2.14)

Therefore the parameter estimates p̂, q̂ and m̂ can be obtained by using the fol-

lowing expression for the number of adopters S(Ti) in the ith time interval (Ti−1, Ti):
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S(Ti) = m[F (Ti) − F (Ti−1)] + ε1
i (2.15)

where ε1
i is an additive error term. Based on Eq.(2.14), the parameters p, q and m

and their asymptotic standard errors can be directly estimated by using nonlinear

least squares procedures.

Approach 2 (NLS2)

Using the nonlinear least squares procedure, an alternative formulation to esti-

mate the parameters of the Bass model is based on following principle. Since the

probability that an individual who has not purchased the product up to period Ti−1

will purchase the product in the ith time interval (Ti−1, Ti) is (F (Ti)−F (Ti−1))/(1−
F (Ti−1)), the number of individuals S(Ti) adopting the product in the ith time

interval is

S(Ti) = [m − Y (Ti−1)][
F (Ti) − F (Ti−1)

1 − F (Ti−1)
] + ε2

i (2.16)

where Y (Ti−1) is the cumulative number of adopters up to time Ti−1, ε2
i is the error

term, and the cumulative distribution function F (T ) is given by Eq.(2.13).

Approach 3 (NLS3)

Another possibility to estimate the parameters via nonlinear least squares is to

use Eq.(2.3), which gives the cumulative number of adopters at time T. That is,

Y (Ti) = mF (Ti) + ε3
i (2.17)

where ε3
i is the error term. Since Y (Ti)=S(T1)+S(T2)+...+S(Ti), the errors ε3

i are

likely to be heteroscedastic (i.e. error variance increasing with i). It is expected that

the estimation of Eq.(2.14) (NLS1) will provide more accurate estimates than the

estimation of Eq.(2.16) (NLS3).
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It should point out that since the nonlinear least squares algorithms employ var-

ious search routines to estimate the parameters, parameter estimates may sometime

be very slow to converge or may not converge. Also, the nonlinear least squares pro-

cedure is applicable directly for only those diffusion models in which F (T ) can be

expressed as an explicit function of time. A new numerical method for the parameter

estimation could read the paper shown in [18]. This method can be used regardless

of whether the analytical solution of the differential equation describing the model

is known or not.



Chapter 3

Applications of The Bass Diffusion Model

3.1 IBM Mainframe Computer Products

The first application of the basic Bass diffusion model presented here is about the

IBM mainframe computers. We illustrate this model’s applications for four genera-

tions of IBM mainframe computers: first generation (vacuum tubes), second gener-

ation (transistors), 360 family (integrated circuits), and 370 family (silicon chips).

The data can be obtained in Phister[21] and [22] (for more information about IBM

in these decades and later and an extensive history of the U.S. computer industry, see

[23]). We will see that each of the four generations can capture the growth pattern

of the new products.

Table 3.1, 3.2, 3.3 and 3.4 contain the estimations of Bass diffusion model’s three

parameters and the model’s p-value for the null hypothesis H0: p = 0, q = 0, m = 0

for the first generation, second generation, 360 family and 370 family IBM mainframe

products, from the respective OLS, NLS1, NLS2 and NLS3 estimation procedures.

We can see that all 4 estimation procedures can provide for good estimates of the

parameters from the magnitude of the p-values for those 4 generation computer

products.

Now, we present the comparisons of the observed values with the predicted values

(and 95% C.I.) by OLS, NLS1, NLS2 and NLS3 four procedures for those 4 gen-

eration products. Figure 3.1, 3.2, 3.3 and 3.4 respectively show the observed values

and the values predicted by those four estimation procedures for those 4 generations

15
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Table 3.1: Parameter Estimates for the 1st Generation IBM Mainframe Computer.
Numbers in parentheses are estimated standard errors (asymptotic approximations).
Since p, q and m are nonlinear functions of the OLS parameters, standard error esti-
mates are unavailable for OLS. Pr>F is the model’s p-value for the null hypothesis
H0: p = 0, q = 0, m = 0.

method p q m Pr>F
OLS 0.0391 0.5565 15799 < 0.0001
NLS1 0.0152(0.00116) 0.6579(0.0180) 15682(292) < 0.0001
NLS2 0.0164(0.00139) 0.6270(0.0174) 15858(58) < 0.0001
NLS3 0.0152(0.000882) 0.6339(0.0136) 15861(44) < 0.0001

Table 3.2: Parameter Estimates for the 2nd Generation IBM Mainframe Computer.
Numbers in parentheses are estimated standard errors (asymptotic approximations).
Since p, q and m are nonlinear functions of the OLS parameters, standard error esti-
mates are unavailable for OLS. Pr>F is the model’s p-value for the null hypothesis
H0: p = 0, q = 0, m = 0.

method p q m Pr>F
OLS 0.0314 0.4552 88246 < 0.0001
NLS1 0.0081(0.00161) 0.6080(0.0360) 84500(3610) < 0.0001
NLS2 0.0119(0.00274) 0.5107(0.0379) 88474(1111) < 0.0001
NLS3 0.0094(0.00159) 0.5356(0.0313) 87994(911) < 0.0001

Table 3.3: Parameter Estimates for the 360 Family IBM Mainframe Computer.
Numbers in parentheses are estimated standard errors (asymptotic approximations).
Since p, q and m are nonlinear functions of the OLS parameters, standard error esti-
mates are unavailable for OLS. Pr>F is the model’s p-value for the null hypothesis
H0: p = 0, q = 0, m = 0.

method p q m Pr>F
OLS 0.0411 0.4391 133858 0.0003
NLS1 0.0208(0.00444) 0.5138(0.0496) 134293(8109) < 0.0001
NLS2 0.0220(0.00480) 0.4835(0.0482) 135348(3045) < 0.0001
NLS3 0.0183(0.00258) 0.5168(0.0362) 133445(2261) < 0.0001
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Table 3.4: Parameter Estimates for the 370 Family IBM Mainframe Computer.
Numbers in parentheses are estimated standard errors (asymptotic approximations).
Since p, q and m are nonlinear functions of the OLS parameters, standard error esti-
mates are unavailable for OLS. Pr>F is the model’s p-value for the null hypothesis
H0: p = 0, q = 0, m = 0.

method p q m Pr>F
OLS 0.0353 0.4856 79765 0.0068
NLS1 0.0215(0.00479) 0.4354(0.0982) 92303(17610) < 0.0001
NLS2 0.0213(0.00495) 0.4517(0.1033) 88640(15954) < 0.0001
NLS3 0.0193(0.00224) 0.5204(0.0698) 79369(8878) < 0.0001

of IBM mainframe computers. We can see that for each product those four estima-

tion procedures describe the general trend of the time path of growth very well. In

addition, each estimation procedure can provide a very good fit with respect to both

the magnitude and the timing of the peaks for all of the 4 generation products and

hence the parameter estimates seem reasonable for the model.

3.2 Electronic Banking Product - ATM Cash Card

Electronic banking, also known as electronic fund transfer (EFT), uses computer and

electronic technology as a substitute for checks and other paper transactions. EFTs

are initiated through devices such as cards or codes that one use to gain access one’s

account. Many financial institutions use an Automated Teller machine (ATM) card

and a personal identification number (PIN) for this purpose. The federal Electronic

Fund Transfer Act (EFT Act) covers some consumer transaction.

So, to most people, electronic banking means 24-hour access to cash through an

automated teller machine (ATM) or paychecks deposited directly into checking or
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savings account. You generally insert an ATM card and enter your personal identifi-

cation number (PIN). Some ATM’s impose a surcharge, or usage fee, on consumers

who are not members of their institution or on transactions at remote locations.

The Survey of Consumer Finance (SCF) ( http://www.federalreserve.gov ) is

a triennial survey of the balance sheet, pension, income, and other demographic

characteristics of U.S. families. The survey also gathers information on the use of

financial institutions. The links to the surveys provide summary results of the sur-

veys, codebooks and related documentation, and the publicly available data. These

surveys are the most direct precursors of the SCF.

In this section, we use information from this web site to extract the data which

include ATM cash card sales in 1989, 1992, 1995 and 1998. We then use OLS and NLS

methods to estimate the parameters of the Bass diffusion model. We also use this

model to do a long-range forecasting based on the model’s parameters we estimate

from those limit data.

Table 3.5 contains the estimation of Bass diffusion model’s three parameters and

the model’s p-value from the OLS, NLS1, NLS2 and NLS3 procedures, respectively.

The NLS estimation procedure could provide for a better estimate of the parameters

from the magnitude of p-values. However, since fewer data points are available, larger

standard errors are observed.

Table 3.6 show us the series of estimates of ATM cash card sales predicted by

basic Bass diffusion model using above estimated parameters. It could demonstrate

the slowing down of growth rates as sales near the peaks. In focusing on the theoret-

ical issues the Bass diffusion model may serve to aid management in avoiding some

absurd forecasts. However, since fewer data points are available, we observed larger

standard errors and hence these predictions can not present lower and upper error

limits of prediction.
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Table 3.5: Parameter Estimates for ATM Cash Card Sales. Numbers in parentheses
are estimated standard errors (asymptotic approximations). Since p, q and m are
nonlinear functions of the OLS parameters, standard error estimates are unavailable
for OLS. Pr>F is the model’s p-value for the null hypothesis H0: p = 0, q = 0,
m = 0. Note that since fewer data points are available, larger standard errors are
observed.

method p q m Pr>F
OLS 0.0505 0.2088 208602 0.2322
NLS1 0.0415(0.0705) 0.1980(0.1826) 235270(419716) 0.0367
NLS2 0.0448(0.063) 0.2068(0.1716) 216733(322114) 0.0355
NLS3 0.0364(0.0634) 0.1883(0.1487) 267980(483139) 0.0076

Table 3.6: Forecast of ATM Cash Card Sales (2001 - 2016). Numbers in the Year
1989, 1992, 1995 and 1998 are the actual sales. Due to fewer observations we have
not presented the standard errors associated with the prediction.

Year Sales (NLS1) Sales (NLS2) Sales (NLS3)
1989 10740 10740 10740
1992 11557 11557 11557
1995 14059 14059 14059
1998 14829 14829 14829
2001 16484 16284 16802
2004 16972 16584 17578
2007 16984 16365 17941
2010 16518 15654 17858
2013 15625 14534 17334
2016 14397 13125 16422
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Figure 3.1: 1st generation IBM mainframe computer in use per year: observed vs.
predicted by OLS, NLS1, NLS2 and NLS3 estimation procedures. NLS3 give us the
cumulative systems in use.
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Figure 3.2: 2nd generation IBM mainframe computer in use per year: observed vs.
predicted by OLS, NLS1, NLS2 and NLS3 estimation procedures. NLS3 give us the
cumulative systems in use.
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Figure 3.3: 360 family IBM mainframe computer in use per year: observed vs. pre-
dicted by OLS, NLS1, NLS2 and NLS3 estimation procedures. NLS3 give us the
cumulative systems in use.
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Figure 3.4: 370 family IBM mainframe computer in use per year: observed vs. pre-
dicted by OLS, NLS1, NLS2 and NLS3 estimation procedures. NLS3 give us the
cumulative systems in use.



Chapter 4

Conclusions

The Bass growth model for the diffusion of innovation in this work is based on an

assumption that the probability of purchase at any time is related linearly to the

number of previous buyers. There is a behavioral rationale for this assumption.

Data for several products to which it has been applied are in good agreement with

the model. Parameter estimates derived from OLS and NLS estimation procedures

provide good descriptions of the growth of sales. This model is also useful in providing

a rationale for long-range forecasting.

Research on new product diffusion models which are based on or extended from

the basic Bass diffusion model has resulted in a body of literature consisting of several

hundred articles, books, cases and software tools [5]. In order to make these models

effective and realistic, there still exist lots of research possibilities. For example,

when should a monopolist introduce a product if both positive and negative word of

mouth affect diffusion process? How should product be advertised over time? How

does an industry set a price of a new product class over time? etc.

The Bass diffusion model and its extensions have many managerial applications,

such as new product planning and decision making. They can describe the rate of

diffusion, to provide a better understanding of the drivers of adoption, to predict the

future penetration trajectory, to provide inputs for investment, pricing, advertising,

and product development decisions (normative use), etc.

24



25

In conclusion, the Bass-type statistical models for the diffusion of innovation

could contribute to an deep understanding of the process of new product adoption.

We expect further work could be done in this field.



Bibliography

[1] Y. Wind. Product Policy. MA: Addison Wesley. Ch.3. 1988.

[2] E.M. Rogers. Diffusion of Innovations. New York: Free Press. 1995.

[3] E.M. Rogers. Diffusion of Innovations. 3rd Ed. New York: Free Press. 1983.

[4] F.M. Bass. ”A New Product Growth Model for Consumer Durables.” Manage-

ment Science. 215, 15(1969).

[5] V. Mahajan, E. Muller and F.M. Bass. ”New Product Diffusion Models in Mar-

keting: A Review and Directions for Research.” J. of Marketing. 1, 54(1990).

[6] F.M. Bass. ”The Adoption of a Marketing Model: Comments and Observa-

tions.” In Innovation Diffusion of New Product Acceptance, V. Mahajan and

Y. Wind, eds. Cambridge, MA: Ballinger Publishing Company. 1986.

[7] L.A. Fourt and J.W. Woodlock. ”Early Prediction of Market Success for Grocery

Products.” J. of Marketing. 31, 25(1960).

[8] E. Mansfield. ”Technical Change and the Rate of Imitation.” Econometrica.

741, 29(1961).

[9] V. Mahajan, E. Muller and Y. Wind. Eds. New-Product Diffusion Models.

Boston: Kluwer Academic Publishers. 2000.

[10] J.C. Fisher and R.H. Pry . ”A Simple Substitution Model for Technological

Change.” Technological Forecasting and Social Change . 75, 2(1971).

26



27

[11] N. Meade and I. Towhidul. ” Technological Forecasting: Model Selection, Model

Stability, and Combining Models.” Management Science . 1115, 44(1998).

[12] V. Mahajan, E. Muller and F.M. Bass. ”Diffusion of New Products: Empir-

ical Generalizations and Managerial Uses.” Marketing Science. Part2 of 2, 979,

14(1995).

[13] D.C. Schmittlein and V. Mahajan. ”Maximum Likelihood Estimation for an

Innovation Diffusion Model of New Product Acceptance.” Marketing Science.

57, 1(1982).

[14] V. Srinivasan and C.H. Mason. ”Nonlinear Least Square Estimation of New

Product Diffusion Models.” Marketing Science. 169, 5(1986).

[15] P.M. Parker. ”Choosing Among Diffusion Models: Some Empirical Evidence.”

Marketing Letters. 81, 4(1993).

[16] P.M. Parker. ”Aggregate Diffusion Forecasting Models in Marketing: A Critical

Review.” International J. of Forecasting. 353, 10(1994).

[17] V. Mahajan and S. Sharma. ”Simple Algebraic Estimation Procedure for Inno-

vation Diffusion Models of New Product Acceptance.” Technological Forecasting

and Social Change. 331, 30(1986).

[18] R. Scitovski and M. Meler. ”Solving Parameter Estimation Problem in

New Product Diffusion Models.” Applied Mathematics and Computation. 45,

127(2002).

[19] V. Mahajan, C.H. Mason and V. Srinivasan. ”An Evaluation of Estimation Pro-

cedures for New Product Diffusion Models” and references therein. In Inno-

vation Diffusion of New Product Acceptance, V. Mahajan and Y. Wind, Eds.

Cambridge, MA: Ballinger Publishing Company. 1986.



28

[20] J.P. Klein and M.L. Moeschberger. ”Survival Analysis Techniques for Censored

and Truncated Data.” Springer-Verlag New York, Inc. 1997.

[21] Phister, Montgomery, Data Processing, Technology, and Economics, Santa

Monica, CA, 1976.

[22] V. Mahajan and E. Muller. ” Timing, Diffusion, and Substitution of Successive

Generations of Technological Innovations: The IBM Mainframe Case.” Tech-

nological Forecasting and Social Changes. 51, 109(1996).

[23] C.H. Ferguson and C.R. Morris. Computer Wars. Times Books, New York,

1993.



Appendix A

Derivation of Eq.(2.1)

A basic quantity, fundamental in survival analysis, is the hazard function. It is also

known as the conditional failure rate or simply as the hazard rate. The hazard rate

is defined by

P̃ (x) = lim
∆x→0

P [x ≤ X < x + ∆x|X ≥ x]

∆x
. (A.1)

According to the property of conditional probability, we have

P [x ≤ X < x + ∆x|X ≥ x] =
P (x ≤ X, X < x + ∆x)

P (X ≥ x)
. (A.2)

If F(X) denotes the distribution function, then (A.2) can be written as

P (x ≤ X, X < x + ∆x)

P (X ≥ x)
=

F (x + ∆x) − F (x)

1 − F (x)
. (A.3)

Therefore, we get

P̃ (x) =
lim∆x→0

F (x+∆x)−F (x)
∆x

1 − F (x)

=
dF
dx

1 − F (x)

=
f(x)

1 − F (x)
. (A.4)

(A.4) is just the Eq.(2.1).
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Appendix B

Derivation of Eq.(2.12)

The expected time to purchase E(T) is

E(T ) =
∫ ∞

0
P (T > t) dt

=
∫ ∞

0
Tf(T ) dT

=
1

p

∫ ∞

0

xe−x

(1 + Be−x)2 dx (B.1)

where x=(p+q)T, B=q/p. Let Y = e−x, then x = −ln(Y ), dx = − 1
Y

dY . The

integration in Eq.(B.1) becomes

I =
∫ 0

1

lnY

(1 + BY )2 dY. (B.2)

Let dv = dY
(1+BY )2

, then we get v = − 1
b(1+BY )

+ c . Eq.(B.2) becomes

I =
∫ 0

1

lnY

(1 + BY )2 dY

=
∫ 0

1

Y lnY

1 + BY
dY −

∫ 0

1

ln(1 + BY )

B
dY

=
ln(1 + B)

B
. (B.3)

Therefore, we get

E(T ) =
1

p

ln(1 + B)

B

=
ln(p+q

p
)

q
. (B.4)
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