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Abstract

Finite element method is one of powerful numerical methods to solve PDE. Usually, if

a finite element solution to a Poisson equation based on a triangulation of the underlying

domain is not accurate enough, one will discard the solution and then refine the triangulation

uniformly and compute a new finite element solution over the refined triangulation. It is

wasteful to discard the original finite element solution. We propose a Prewavelet method

to save the original solution by adding a Prewavelet subsolution to obtain the refined level

finite element solution. To increase the accuracy of numerical solution to Poisson equations,

we can keep adding Prewavelet subsolutions.

Our Prewavelets are orthogonal in the H1 norm and they are locally supported except

for one globally supported basis function in a rectangular domain. We have implemented

these Prewavelet basis functions in MATLAB and used them for numerical solution of

Poisson equation with Dirichlet boundary conditions. Numerical simulation demonstrates

that our Prewavelet solution is much more efficient than the standard finite element method.

Prewavelets over other boundary domains, such as triangle, L-shape domain, are also con-

structed.

Index words: Prewavelet, Poisson, type-one, Triangulation, Multiresolution.
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Chapter 1

Introduction

Finite element method is one of powerful numerical methods to solve PDE. Usually, if a finite

element solution to a Poisson equation based on one level triangulation of the underlying

domain is not accurate enough, one will discard the solution and then refine the triangulation

and compute a new finite element solution at the refined level. It is wasteful to throw the

original finite element solution away. In order to save the original solution and get the more

accurate new solution, we have to add H1
0 orthogonal subsolution. That is, let Vh be a finite

element space over a triangulation ∆h and Vh/2 be the finite element space over the refined

triangulation. Since Vh ⊂ Vh/2, let Wh = Vh/2 	 Vh under H1
0 norm, if Φh ∈ Vh is a finite

element solution of Poisson equation with Dirichlet boundary condition, we can find Ψh ∈Wh

so that Φh + Ψh is the finite element solution in Vh/2. In addition, suppose that φh is the

most accurate solution that a computer can compute in the sense that it would be out of

memory when computing a finite element solution Φh/2 in Vh/2 directly. Since the size of the

linear system associated with Ψh is smaller than Φh/2, if the computer can solve Ψh, we can

add Ψh to Φh to get Φh/2 achieving the next level of accuracy. In this dissertation, we discuss

how to compute Ψh. We shall construct locally supported basis functions and a few global

supported basis functions ψh,k, k = 1, · · · , Nh which span Wh. ψh,k’s are called prewavelets

and Ψh is a linear combination of these ψh,k’s and hence is called a Prewavelet subsolution.

Prewavelets under L2 norm instead of H1
0 norm have been studied for more than 15

years pioneered by Jia and Micchelli [9], see also [5]. There are many methods available to

construct locally supported prewavelets over 2D domains under the L2 norm. That is, Wh =

Vh/2 	 Vh under L2 norm, e.g., in a series of papers [6], [7], [8], [11], and [4]. In 1997, Bastin
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and Laubin ([2]) explained how to construct compactly supported orthonormal wavelets in

Sobolev space in the univariate setting. See also [1] for compactly supported biorthogonal

wavelets in Sobolev space. People were also looking for prewavelets in Sobolev space in

2D domain for numerical solution of PDE, also in the univariate setting. However in [13],

Lorentz and Oswald showed that there is no locally supported prewavelets in Sobolev space

or under H1
0 norm based on integer translations of a box spline over R

2. Since continuous

piecewise linear finite element can be expressed by using box spline B111, the result in [13]

ruins a hope to find locally supported prewavelets under H1
0 norm over R2. But this is not

an end of story. It is possible to construct locally supported prewavelets in a semi-norm in

the univariate setting in [10]. In [14], Jia and Liu used the Prewavelet to solve boundary

valued ODE problem. It is also possible to construct compactly supported prewavelets in

Hr norm over each nested subspace, but the union of these prewavelets over all levels fails

to be a stable basis for a Sobolev space (cf. [12]). Our new question is if we can find a

Prewavelet basis with as few as possible global supported Prewavelet functions. Our answer

is affirmative. That is, there is a Prewavelet basis for Wh with only one global supported

basis function under the H1
0 norm over rectangular domains, and there is a locally supported

Prewavelet basis for Wh over triangular domains, and there is a Prewavelet basis for Wh with

three global supported basis function under the H1
0 norm over L-shape domains. These are

the main results in this dissertation

The dissertation is organized as follows: We first explain a construction method to con-

vert the Dirichlet boundary value problem of Poisson equation into a Poisson equation with

zero boundary condition. An explicit conversion will be given. Thus the H1 norm is now

equivalent to the H1
0 semi-norm. Then we introduce some notation to explain the weak solu-

tion of Poisson equation and its approximation to the exact solution. These explanations

are well-known and given in the Preliminary section §2. In §3, we explain how to construct

locally supported prewavelets under H1
0 semi-norm. In §4, we explain how to implement our

Prewavelet method for numerical solution of Poisson equation. In §5 we present some numer-
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ical results. Our numerical experiment show that the time for computing a finite element

solution by our Prewavelet method is about half of the time by the standard finite element

method using the direct method for inverting the linear systems. If using the conjugate gra-

dient method for the linear systems for the finite element method, the Prewavelet method

is still faster than for sufficiently accurate iterative solutions. In §6, I describe how to con-

struct locally supported Prewavelet under triangular domain, the numerical result shows the

result works. In §7, I got the following result: there is no local supported Prewavelet basis

under H1
0 norm with rectangular boundary if we constructed the Prewavelet from linear box

splines, while there is a compacted local supported Prewavelet basis when the boundary is

triangle. That is, the existence of locally supported Prewavelet basis constructed from linear

box splines under H1
0 norm is dependent on the boundary shape. In §8, I will show the same

kind of results on Prewavelet basis over L-shaped domain.



Chapter 2

Preliminary

2.1 Simplification of the Poisson Equation

Let us start with a square domain Ω = (0, 1)× (0, 1) ∈ R2. Consider the Dirichlet boundary

value problem for Poisson equation:















































−∆u(x, y) = g(x, y), (x, y) ∈ Ω

u(x, y) = f1(x), for y = 0 and 0 ≤ x ≤ 1

u(x, y) = f2(x), for y = 1 and 0 ≤ x ≤ 1

u(x, y) = f3(y), for x = 0 and 0 ≤ y ≤ 1

u(x, y) = f4(y), for x = 1 and 0 ≤ y ≤ 1

Without lose of generality, we may assume that f1(1) = f2(1) = f3(1) = f4(1) = f1(0) =

f2(0) = f3(0) = f4(0) = 0. Otherwise, letting f1(0) = f3(0) = a1, f3(1) = f2(0) = a2,

f2(1) = f4(1) = a3, f4(0) = f1(1) = a4, we define h(x, y) = a1 + (a4 − a1)x + (a2 − a1)y +

(a3 + a1 − a4 − a2)xy, and v(x, y) = u(x, y) − h(x, y). Then the above Dirichlet problem

becomes to:















































−∆v(x, y) = g(x, y), (x, y) ∈ Ω

v(x, y) = f1(x) − h(x, 0), for y = 0 and 0 ≤ x ≤ 1

v(x, y) = f2(x) − h(x, 1), for y = 1 and 0 ≤ x ≤ 1

v(x, y) = f3(y) − h(0, y), for x = 0 and 0 ≤ y ≤ 1

v(x, y) = f4(y) − h(1, y), for x = 1 and 0 ≤ y ≤ 1

which satisfy the above assumption.
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Now let w(x) = v(x, y)−x(f4(y)−h(1, y))− (1−x)(f3(y)−h(0, y))−y(f2(x)−h(x, 1))−

(1 − y)(f1(x) − h(x, 0)). Then w(x) satisfies the equation






−∆w(x, y) = g1(x, y), (x, y) ∈ Ω

w(x, y) = 0, (x, y) ∈ ∂Ω

with g1(x, y) = g(x, y) + ∂2

∂y2 [−x(f4(y)− h(1, y))− (1− x)(f3(y)− h(0, y))] + ∂2

∂x2 [−y(f2(x)−

h(x, 1)) − (1 − y)(f1(x) − h(x, 0))].

If we can find solution for w, it is easy to get u(x, y). In the remaining dissertation, we

only consider the Poisson equation with zero boundary condition:






−∆u(x, y) = g(x, y), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂Ω.
(2.1)

2.2 Seminorm

Next we define

H1
0 (Ω) = {v ∈ L2(Ω) : 〈v, v〉s <∞ and v(x, y) = 0, (x, y) ∈ ∂Ω},

where the inner product 〈u, v〉s is defined by

〈u, v〉s =

∫ 1

0

∫ 1

0

[

∂u(x, y)

∂x

∂v(x, y)

∂x
+
∂u(x, y)

∂y

∂v(x, y)

∂y

]

dxdy.

By using Poincare’s inequality, ‖u‖s =
√

〈u, u〉s is a standard Sobolev norm for H1
0 (Ω).

Suppose u, v ∈ H1
0 (Ω). Integration by parts yields

〈g, v〉 =

∫ 1

0

∫ 1

0

g(x, y)v(x, y)dxdy

=

∫ 1

0

∫ 1

0

−∆u(x, y)v(x, y)dxdy

=

∫ 1

0

∫ 1

0

∂u(x, y)

∂x

∂v(x, y)

∂x
+
∂u(x, y)

∂y

∂v(x, y)

∂y
dxdy

= 〈u, v〉s.

Thus, a weak solution u to (2.1) is characterized by finding u ∈ H1
0 (Ω) such that

〈u, v〉s = 〈g, v〉, ∀v ∈ H1
0 (Ω). (2.2)
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The following result is well-known. For convenience, we present a short proof.

Theorem 2.2.1. Suppose g and u ∈ C2(Ω) is a weak solution satisfying (2.2). Then u is a

classic solution satisfying (2.1).

Proof. Let v ∈ H1
0 (Ω). Then integration by parts gives

〈g, v〉 = 〈u, v〉s

=

∫ 1

0

∫ 1

0

∂u(x, y)

∂x

∂v(x, y)

∂x
+
∂u(x, y)

∂y

∂v(x, y)

∂y
dxdy

=

∫ 1

0

∫ 1

0

−∆u(x, y)v(x, y)dxdy

= 〈−∆u(x, y), v〉.

It follows that 〈g − (−∆u(x, y)), v〉 = 0 for all v ∈ H1
0 (Ω). That is, g ≡ −∆u and hence, u

satisfies (2.1).

2.3 Type-I Triangulation

Next we introduce continuous linear spline space on Ω = [0, 1] × [0, 1]. For convenience, let

Nj = (2j −1)2 and j ≥ 1. Denote xji = i
2j = yji for i = 1, .., 2j −1. Clearly, the lines segment

of x = xji and y = yjk divide the square Ω into Nj sub-squares. The diagonal going from

down-left to up-right of each sub-square divides the sub-square into two congruent triangle.

We will refer to the set of all such triangles as a Type-1 triangulation of Ω (see Figure 1).

�
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�
�
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�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

Figure 1. Type-I triangulation with j=2.
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Define φj
ik to be linear spline with support on the hexagon with following vertices

{(xj(i−1), yj(k−1)), (xji, yj(k−1)), (xj(i+1), yj(k)), (xj(i+1), yj(k+1)), (xj(i+1), yj(k)), (xj(i−1), yj(k))}

and φik(xji′ , yjk′) = δi,i′δk,k′ , where δi,i′ = 0 if i′ 6= i and 1 if i′ = i.

Let Vj = span{φj
ik, i = 1, .., 2j−1, k = 1, .., 2j−1} be the subspace of H1

0 (Ω). By following

lemma, there exists a unique uj ∈ Vj satisfying

〈uj, v〉s = 〈g, v〉 ∀v ∈ Vj . (2.3)

uj is the standard finite element solution in Vj .

2.4 Error Approximation

The following result is well-known. For completeness, we include a short proof.

Lemma 2.4.1. Given g ∈ L2(Ω), (2.3) has a unique solution.

Proof. Reorder the basis functions φ
(j)
ik to φm, m = 1, ..., Nj and let uj =

∑

amφm. Denote

kmn = 〈φm, φn〉s and Fm = 〈g, φm〉 for m = 1, ....., Nj. Set A = (am) to be the coefficient

vector, K = [kmn]1≤m,n≤Nj
to be the stiff matrix, and F = (Fm) to be the right hand side

vector. Then the solutions in (2.3) is written in the following matrix equation form

KA = F. (2.4)

We claim that the solution for above equation always exists and is unique. Otherwise there is

a nonzero vector c such that Kc = 0. Write c = (cm, m = 1, ......, Nj) and let v =
∑Nj

i=1 ciφi

be the linear spline. Then Kc = 0 is equivalent to

〈v, φm〉s = 0 ∀m = 1, · · · , Nj .

Multiplying 〈v, φm〉s by cm and summing over m yields 〈v, v〉s = 0. Thus,

∫ 1

0

∫ 1

0

∂v(x, y)

∂x

∂v(x, y)

∂x
dxdy = 0,
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and
∫ 1

0

∫ 1

0

∂v(x, y)

∂y

∂v(x, y)

∂y
dxdy = 0,

it follows that, ∂v(x,y)
∂x

= 0 and ∂v(x,y)
∂y

= 0, it is a constant function. Boundary condition

implies v ≡ 0. Since {φm} are linear independent, c ≡ 0 and hence, the solution is unique.

Let us discuss the error between u and uj. It is standard in finite element analysis (cf.

[3]). For completeness we present a simple derivation. Subtracting (2.3) from (2.2) implies

〈u− uj, w〉s = 0 , ∀w ∈ Vj . (2.5)

Then for any v ∈ Vj

‖u− uj‖2
s = 〈u− uj, u− uj〉s

= 〈u− uj, u− v〉s + 〈u− uj, v − uj〉s

= 〈u− uj, u− v〉s

≤ ‖u− uj‖s‖u− v‖s.

It follows that ‖u− uj‖s ≤ ‖u− v‖s for any v ∈ Vj. Thus we have proved the following, (cf

[3]).

Lemma 2.4.2. (Céa’s Lemma) ‖u− uj‖s = min{‖u− v‖s : v ∈ Vj}.

Given u ∈ C0(Ω), let uI ∈ Vj be the interpolation of u:

uI =
∑

ik

u(xji, yjk)φ
(j)
ik .

The following error estimate is well-known.

Lemma 2.4.3. Suppose u ∈ C2(Ω). Then

‖u− uI‖s ≤
√

12

2j

√

∥

∥

∥

∥

∂2u

∂x2

∥

∥

∥

∥

2

L∞

+

∥

∥

∥

∥

∂u

∂x

∂u

∂y

∥

∥

∥

∥

2

L∞

+

∥

∥

∥

∥

∂2u

∂y2

∥

∥

∥

∥

2

L∞

.
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Proof. Let w = u − uI . Let us first give estimates of ∂w
∂x

and ∂w
∂y

in the region of triangle

T with vertex {(0, 0), (0, 1/2j), (1/2j, 1/2j)}, by the definition, w = 0 on the vertex of the

region T. For (x, y) ∈ T , the Taylor expansion yield the following equations,

0 = w(x, y) + (∇w, (−x,−y))

+ x2

∫ 1

0

(1 − t)
∂2w

∂x2
((1 − t)x, (1 − t)y)dt

+ 2xy

∫ 1

0

(1 − t)
∂w

∂x

∂w

∂
((1 − t)x, (1 − t)y)dt

+ y2

∫ 1

0

(1 − t)
∂2w

∂y2
((1 − t)x, (1 − t)y)dt

0 = w(x, y) + (∇w, (1/2j − x,−y))

+ (1/2j − x)2

∫ 1

0

(1 − t)
∂2w

∂x2
((1 − t)x+ t/2j, (1 − t)y)dt

+ 2(1/2j − x)(−y)
∫ 1

0

(1 − t)
∂w

∂x

∂w

∂y
((1 − t)x+ t/2j , (1 − t)y)dt

+ y2

∫ 1

0

(1 − t)
∂2w

∂y2
((1 − t)x+ t/2j, (1 − t)y)dt

0 = w(x, y) + (∇w, (1/2j − x, 1/2j − y))

+ (1/2j − x)2

∫ 1

0

(1 − t)
∂2w

∂x2
((1 − t)x+ t/2j, (1 − t)y + t/2j)dt

+ 2(1/2j − x)(1/2j − y)

∫ 1

0

(1 − t)
∂w

∂x

∂w

∂y
((1 − t)x+ t/2j , (1 − t)y + t/2j)dt

+ (1/2j − y)2

∫ 1

0

(1 − t)
∂2w

∂y2
((1 − t)x+ t/2j , (1 − t)y + t/2j)dt.

Equivalently, the above equations can be written in the following matrix form,













1 −x −y

1
1

2j
− x −y

1
1

2j
− x

1

2j
− y

























w

∂w

∂x
∂w

∂y













=













r1

r2

r3













.
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r1 = − x2

∫ 1

0

(1 − t)
∂2w

∂x2
((1 − t)x, (1 − t)y)dt

− 2xy

∫ 1

0

(1 − t)
∂w

∂x

∂w

∂y
((1 − t)x, (1 − t)y)dt

− y2

∫ 1

0

(1 − t)
∂2w

∂y2
((1 − t)x, (1 − t)y)dt

r2 = − (1/2j − x)2

∫ 1

0

(1 − t)
∂2w

∂x2
((1 − t)x+ t/2j , (1 − t)y)dt

− 2(1/2j − x)(−y)
∫ 1

0

(1 − t)
∂w

∂x

∂w

∂y
((1 − t)x+ t/2j, (1 − t)y)dt

− y2

∫ 1

0

(1 − t)
∂2w

∂y2
((1 − t)x+ t/2j , (1 − t)y)dt

r3 = − (1/2j − x)2

∫ 1

0

(1 − t)
∂2w

∂x2
((1 − t)x+ t/2j, (1 − t)y + t/2j)dt

− 2(1/2j − x)(1/2j − y)

∫ 1

0

(1 − t)
∂w

∂x

∂w

∂y
((1 − t)x+ t/2j, (1 − t)y + t/2j)dt

− (1/2j − y)2

∫ 1

0

(1 − t)
∂2w

∂y2
((1 − t)x+ t/2j, (1 − t)y + t/2j)dt

It is easy to solve ∂w
∂y

(x, y) and ∂w
∂x

(x, y) from the above system of linear equations.

∂w

∂x
(x, y) = − 2jx2

∫ 1

0

(1 − t)
∂2w

∂x2
((1 − t)x, (1 − t)y)dt

− 2xy2j

∫ 1

0

(1 − t)
∂w

∂x

∂w

∂y
((1 − t)x, (1 − t)y)dt

− y22j

∫ 1

0

(1 − t)
∂2w

∂y2
((1 − t)x, (1 − t)y)dt

+ (1/2j − x)22j

∫ 1

0

(1 − t)
∂2w

∂x2
((1 − t)x+ t/2j, (1 − t)y)dt

+ 2(1/2j − x)(−y)2j

∫ 1

0

(1 − t)
∂w

∂x

∂w

∂y
((1 − t)x+ t/2j, (1 − t)y)dt

+ y22j

∫ 1

0

(1 − t)
∂2w

∂y2
((1 − t)x+ t/2j, (1 − t)y)dt
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∂w

∂y
(x, y) =(1/2j − x)22j

∫ 1

0

(1 − t)
∂2w

∂x2
((1 − t)x+ t/2j, (1 − t)y + t/2j)dt

+ 2(1/2j − x)(1/2j − y)2j

∫ 1

0

(1 − t)
∂w

∂x

∂w

∂y
((1 − t)x+ t/2j, (1 − t)y + t/2j)dt

+ (1/2j − y)22j

∫ 1

0

(1 − t)
∂2w

∂y2
((1 − t)x+ t/2j, (1 − t)y + t/2j)dt

− (1/2j − x)22j

∫ 1

0

(1 − t)
∂2w

∂x2
((1 − t)x+ t/2j , (1 − t)y)dt

− 2(1/2j − x)(−y)2j

∫ 1

0

(1 − t)
∂w

∂x

∂w

∂y
((1 − t)x+ t/2j, (1 − t)y)dt

− y22j

∫ 1

0

(1 − t)
∂2w

∂y2
((1 − t)x+ t/2j, (1 − t)y)dt

Thus we can get the estimation for
(

∂w
∂x

(x, y)
)2

and
(

∂w
∂y

(x, y)
)2

with:

(

∂w

∂x
(x, y)

)2

≤ 6/22j

∥

∥

∥

∥

∂2u

∂x2

∥

∥

∥

∥

2

L∞

+ 6/22j

∥

∥

∥

∥

∂2u

∂y2

∥

∥

∥

∥

2

L∞

+ 6/22j

∥

∥

∥

∥

∂w

∂x

∂w

∂y

∥

∥

∥

∥

2

L∞

(

∂w

∂y
(x, y)

)2

≤ 6/22j

∥

∥

∥

∥

∂2u

∂x2

∥

∥

∥

∥

2

L∞

+ 6/22j

∥

∥

∥

∥

∂2u

∂y2

∥

∥

∥

∥

2

L∞

+ 6/22j

∥

∥

∥

∥

∂w

∂x

∂w

∂y

∥

∥

∥

∥

2

L∞

.

it follows

‖u− uI‖2
s ≤

∫ 1

0

∫ 1

0

(

∂w

∂x
(x, y)

)2

+

(

∂w

∂y
(x, y)

)2

dxdy

≤
∫ 1

0

∫ 1

0

12/22j

∥

∥

∥

∥

∂2u

∂x2

∥

∥

∥

∥

2

L∞

+ 12/22j

∥

∥

∥

∥

∂2u

∂y2

∥

∥

∥

∥

2

L∞

+ 12/22j

∥

∥

∥

∥

∂w

∂x

∂w

∂y

∥

∥

∥

∥

2

L∞

dxdy

≤
(

12/22j

∥

∥

∥

∥

∂2u

∂x2

∥

∥

∥

∥

2

L∞

+ 12/22j

∥

∥

∥

∥

∂2u

∂y2

∥

∥

∥

∥

2

L∞

+ 12/22j

∥

∥

∥

∥

∂w

∂x

∂w

∂y

∥

∥

∥

∥

2

L∞

)

.

Therefore

‖u− uI‖s ≤
√

12

√

∥

∥

∂2u
∂x2

∥

∥

L∞
+
∥

∥

∥

∂u
∂x

∂u
∂y

∥

∥

∥

L∞

+
∥

∥

∥

∂2u
∂y2

∥

∥

∥

L∞

2j
.

that means ‖u− uI‖s goes to zero as j goes to infinity. According Theorem(3.2), we will get

‖u− uj‖s ≤ ‖u− uI‖s, and hence, we get the result of this lemma.

2.5 Multiresolution

We start with the definition of multi-resolution approximation of H1
0 (Ω):
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Definition 2.5.1. A multiresolution approximation of H1
0 (Ω) is a sequence of finite dimen-

sions subspaces Vj, j ∈ Z+ of H1
0 (Ω) such that

(1) Vj ⊂ Vj+1, j ∈ Z+;

(2)
⋃∞

j=1 Vj is dense in H1
0 (Ω).

Let Γj be the type-1 triangulation with 2Nj triangles. Naturally, let Γj+1 be the uniform

refinement of Γj. Let Vj be the continuous piecewise linear spline space defined on the

previous section. That is, Vj = span{φj
ik, i = 1, .., 2j − 1, k = 1, .., 2j − 1}, where φj

ik are

continuous piecewise linear functions which is 1 at (xji, yjk) and zero at all other vertices.

Let Vj+1 = span{φj+1
ik , i = 1, .., 2j+1−1, k = 1, .., 2j+1−1}, and (xj+1,i, yj+1,k) are the vertices

on the j+1 level Type-1 triangulation. Then the refinement equation is easily seen to be

φj
ik = φj+1

2i,2k +
1

2
φj+1

2i−1,2k +
1

2
φj+1

2i−1,2k−1 +
1

2
φj+1

2i,2k−1 +
1

2
φj+1

2i+1,2k +
1

2
φj+1

2i+1,2k+1 +
1

2
φj+1

2i,2k+1.

See the Figure 2.

�
�

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
�

1
2

1
2

1
2

1
2

1
2

1
2

2

Figure 2. Dilation relations

(0,0) (1/2j, 0)

(0, 1/2j)

The main purpose of this dissertation is to build a basis for the orthogonal complement

Wj of Vj in Vj+1 under the inner product 〈·, ·〉s. Suppose we have theWj . Then Vj+1 = Vj+Wj

under the H1
0 (Ω) inner product. For a solution uj satisfying (3), we do not have to find out

the solution for

uj+1 ∈ Vj+1 such that 〈uj+1, v〉s = 〈g, v〉, ∀v ∈ Vj+1.
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Instead, we only need to find solutions for

wj ∈Wj such that 〈wj, v〉s = 〈g, v〉, ∀v ∈Wj .

Then we have wj + uj = uj+1. Ideally, we hope the supports of basis functions for Wj are

small, since the small supports can accelerate the calculations of 〈g, v〉s. As explained in

the Introduction, there is no locally supported prewavelets for Wj . Nevertheless, we shall

construct basis functions with only a few globally supported basis function for Wj in the

following chapters.

Clearly the Γj can be continuously refined and hence we will have a nested sequence of

subspaces

V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ V5......

to span H1
0 (Ω) by Lemma 2.4.3, since C2(Ω) is dense in H1

0 (Ω).

Let Wj ⊂ Vj+1 be the orthogonal complement of Vj in Vj+1 for each refinement level j,

i.e.,

Vj+1 = Vj

⊕

Wj .

Then we get the decomposition

Vj+1 = V1

⊕

W1

⊕

W2

⊕

W3

⊕

......
⊕

Wj

for any j ≥ 1. The weak solution uj+1 to the Poisson equation (2.1) at Vj+1 can be built by

uj+1 = u1 + w1 + w2 + · · ·+ wj.

The following chapters focus on building basis functions for the orthogonal complement

Wj .



Chapter 3

Prewavelets over Type-I Triangulations

Next by direct calculation, we obtain the following lemma immediately.

Lemma 3.0.1. We have 〈φj
ik, φ

j+1
2i,2k, 〉s = 2,

〈φj
ik, φ

j+1
2i−1,2k, 〉s = 1/2, 〈φj

ik, φ
j+1
2i,2k−1, 〉s = 1/2, 〈φj

ik, φ
j+1
2i+1,2k, 〉s = 1/2,

〈φj
ik, φ

j+1
2i,2k+1, 〉s = 1/2, 〈φj

ik, φ
j+1
2i−1,2k−1, 〉s = 1, 〈φj

ik, φ
j+1
2i+1,2k+1, 〉s = 1,

〈φj
ik, φ

j+1
2i−2,2k, 〉s = −1/2, 〈φj

ik, φ
j+1
2i+2,2k, 〉s = −1/2, 〈φj

ik, φ
j+1
2i,2k−2, 〉s = −1/2,

〈φj
ik, φ

j+1
2i,2k+2, 〉s = −1/2, 〈φj

ik, φ
j+1
2i−2,2k−2, 〉s = 0, 〈φj

ik, φ
j+1
2i+2,2k+2, 〉s = 0,

〈φj
ik, φ

j+1
2i−2,2k−1, 〉s = −1/2, 〈φj

ik, φ
j+1
2i−1,2k+1, 〉s = −1, 〈φj

ik, φ
j+1
2i+1,2k+2, 〉s = −1/2,

〈φj
ik, φ

j+1
2i+2,2k+1, 〉s = −1/2, 〈φj

ik, φ
j+1
2i+1,2k−1, 〉s = −1, 〈φj

ik, φ
j+1
2i−1,2k−2, 〉s = −1/2,

〈φj
ik, φ

j+1
i′,k′, 〉s = 0, for other i

′

, k
′

which are not listed above.

3.1 Prewavelets Construction

Let ψj be a function in Wj . Since Wj ⊂ Vj+1, let us write ψj =
∑

ik φ
j+1
ik bik for some

unknown coefficients bik. We need to describe the concept of locally supported function in

vj more precisely.

Definition 3.1.1. ψj =
∑

ik φ
j+1
ik bik is said to be locally supported if there exists a positive

integer I which is independent j, such that the number of the none zero coefficient bik is less

than I.

By orthogonal condition 〈φj
i′k′, ψj〉s = 0, we need to solve the following equations.

0 = 〈φj
i′k′ ,
∑

i,k

bikφ
j+1
ik 〉s =

∑

i,k

bik〈φj
i′k′, φ

j+1
ik 〉s. (3.1)

14
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Each (i
′

, k
′

) determines one equation. Since there are Nj elements in the set Vj , they deter-

mine the Nj equations. These Nj equations with Nj+1 coefficients, bi,k. There are at least

Nj+1−Nj degrees of freedom. The solution space of these equation system should be the Wj .

The linear independence of φj
i′,k′ implies that the coefficient matrix of the above linear system

is of full rank. Hence, there are Nj+1 − Nj linear independent solutions which constitute a

basis for Wj.

Definition 3.1.2. Let V m
j+1 = span{φj+1

ik , i = 1, .., 2m− 1, k = 1, .., 2m− 1} be a subspace of

Vj+1. Let Wm
j be subspace of Wj such that Wm

j = Wj

⋂

V m
j+1.

Obviously ∅ ⊂ V 1
j+1 ⊂ V 2

j+1 ⊂ . . . ⊂ V 2j

j+1 = Vj+1, and ∅ ⊂ W 1
j ⊂ W 2

j ⊂ . . . ⊂ W 2j

j = Wj .

There is no nonzero solution of (3.1) in space of V 1
j+1. However, there are five solution of

(3.1) in space V 2
j+1. They are solutions of the following system of linear equations.

∑

1≤i,k≤3

bik
〈

φj+1
ik , φj

1,1

〉

s
= 0,

∑

1≤i,k≤3

bik
〈

φj+1
ik , φj

2,1

〉

s
= 0,

∑

1≤i,k≤3

bik
〈

φj+1
ik , φj

1,2

〉

s
= 0,

∑

1≤i,k≤3

bik
〈

φj+1
ik , φj

2,2

〉

s
= 0.

They are equivalent to the following equations.



















〈φj
1,1, φ

j+1
1,1 〉s 〈φj

1,1, φ
j+1
2,1 〉s .... 〈φj

1,1, φ
j+1
3,3 〉s

〈φj
2,1, φ

j+1
1,1 〉s 〈φj

2,1, φ
j+1
2,1 〉s .... 〈φj

2,1, φ
j+1
3,3 〉s

〈φj
1,2, φ

j+1
1,1 〉s 〈φj

1,2, φ
j+1
2,1 〉s .... 〈φj

1,2, φ
j+1
3,3 〉s

〈φj
2,2, φ

j+1
1,1 〉s 〈φj

2,2, φ
j+1
2,1 〉s .... 〈φj

2,2, φ
j+1
3,3 〉s







































































b1,1

b2,1

b3,1

b1,2

b2,2

b3,2

b1,3

b2,3

b3,3





















































=



















0

0

0

0



















.
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Using Lemma 3.0.1, we obtain the following equations.



















1 1/2 −1 1/2 2 1/2 −1 1/2 1

0 −1/2 1 0 −1/2 1/2 0 0 −1

0 0 0 0 0 −1/2 0 −1/2 1

0 0 0 −1/2 −1/2 0 1 1/2 −1







































































b1,1

b2,1

b3,1

b1,2

b2,2

b3,2

b1,3

b2,3

b3,3





















































=



















0

0

0

0



















.

The rank of the left matrix is four, because φj
1,1, φ

j
2,1, φ

j
1,2, φ

j
2,2, are linear independent.

So there are five solutions which can be found to be.




















































b1,1

b2,1

b3,1

b1,2

b2,2

b3,2

b1,3

b2,3

b3,3





















































=





















































0

0

0

2

0

0

1

0

0





















































or





















































0

2

1

0

0

0

0

0

0





















































or





















































1

1

0

1

−1

0

0

0

0





















































or





















































0

0

0

0

−1

1

0

1

1





















































or





















































0

−1

0

1

0

−1

0

1

0





















































.

More precisely,

ψj,1
0,1 = 2φj+1

1,2 + φj+1
1,3 as shown in Figure 3; (3.2)

ψj,2
1,0 = 2φj+1

2,1 + φj+1
3,1 as shown in Figure 4; (3.3)

ψj,3
1,1 = −φj+1

2,2 + φj+1
3,2 + φj+1

2,3 + φj+1
3,3 as shown in Figure 5; (3.4)

ψj,4
1,1 = φj+1

1,1 + φj+1
2,1 + φj+1

1,2 − φj+1
2,2 as shown in Figure 6; (3.5)

ψj,5
1,1 = φj+1

1,2 + φj+1
2,3 − φj+1

2,1 − φj+1
3,2 as shown in Figure 7. (3.6)
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
(0,0) (1/2j, 0) (2/2j, 0)

(0, 1/2j)

(0, 2/2j)

Now we consider V 3
j . Similarly, there are 25 non-zero coefficient for linear system (3.1)

and the coefficient matrix of rank 9. So the dimension of solution space of W 3
j is 25−9 = 16.

The first five of them are the same to the wavelet functions in (3.2)–(3.6). The other 11 are

given below.
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ψj,1
0,2 = 2φj+1

1,4 + φj+1
1,5 as shown in Figure 8;

ψj,2
2,0 = 2φj+1

4,1 + φj+1
5,1 as shown in Figure 9;

ψj,3
1,2 = φj+1

3,5 + φj+1
3,4 + φj+1

2,5 − φj+1
2,4 as shown in Figure 10;

ψj,3
2,2 = φj+1

5,5 + φj+1
5,4 + φj+1

4,5 − φj+1
4,4 as shown in Figure 11;

ψj,3
2,1 = φj+1

5,3 + φj+1
5,2 + φj+1

4,3 − φj+1
4,2 as shown in Figure 12;

ψj,4
2,1 = φj+1

3,2 + φj+1
4,1 + φj+1

3,1 − φj+1
4,2 as shown in Figure 13;

ψj,4
2,2 = φj+1

3,3 + φj+1
4,3 + φj+1

3,4 − φj+1
4,4 as shown in Figure 14;

ψj,4
1,2 = φj+1

1,3 + φj+1
2,3 + φj+1

1,4 − φj+1
2,4 as shown in Figure 15;

ψj,5
1,2 = φj+1

1,4 + φj+1
2,5 − φj+1

2,3 − φj+1
3,4 as shown in Figure 16;

ψj,5
2,2 = φj+1

3,4 + φj+1
4,5 − φj+1

4,3 − φj+1
5,4 as shown in Figure 17;

ψj,5
2,1 = φj+1

3,2 + φj+1
4,3 − φj+1

4,1 − φj+1
5,2 as shown in Figure 18.
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Figure 9.
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Figure 10.
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Figure 11.

(0,0) (1/2j, 0) (3/2j, 0)

(0, 1/2j)

(0, 2/2j)

(0, 3/2j)
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Figure 13.
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Figure 14.
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Figure 15.
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Figure 16.
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Figure 17.

(0,0) (1/2j, 0) (3/2j, 0)
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Figure 18.

(0,0) (1/2j, 0) (3/2j, 0)

(0, 1/2j)

(0, 2/2j)

(0, 3/2j)

The above computation can be carried out on V n
j for n = 3, ....2j − 1. We have thus

obtained five types of wavelet functions:

ψj,1
0,k = 2φj+1

1,k+1 + φj+1
1,k+2

is supported next to the vertical boundary and is called vertical boundary wavelet.

ψj,2
k,0 = 2φj+1

k+1,1 + φj+1
k+2,1

called horizontal boundary wavelet, is supported next to the horizontal boundary. The next

three types are supported inside the domain. The following

ψj,3
i,k = −φj+1

i+1,k+1 + φj+1
i+2,k+1 + φj+1

i+1,k+2 + φj+1
i+2,k+2

is called interior wavelet of first kind. We call

ψj,4
i,k = −φj+1

2i,2k + φj+1
2i−1,2k + φj+1

2i,2k−1 + φj+1
2i−1,2k−1

interior wavelet of second kind. The last one

ψj,5
i,k = φj+1

2i−1,2k + φj+1
2i,2k+1 − φj+1

2i,2k−1 − φj+1
2i+1,2k

is called interior wavelet of third kind.
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Theorem 3.1.1. All the five types of wavelets in the V n
j+1 are linear independent for 1 ≤

n ≤ 2j − 1. That is, for each 1 ≤ n ≤ 2j − 1, the following functions

ψj,1
0,k, k = 1, .., n− 1,

ψj,2
k,0, k = 1, .., n− 1,

ψj,3
i,k , 1 ≤ i, k ≤ n− 1,

ψj,4
i,k , 1 ≤ i, k ≤ n− 1,

ψj,5
i,k , 1 ≤ i, k ≤ n− 1

are linear independent.

Proof. Let us prove it by induction. It is true for n = 2 and for n = 3. Suppose it is true for

n = p, that is,

ψj,1
0,k, k = 1, .., p− 1;

ψj,2
k,0, k = 1, .., p− 1;

ψj,3
i,k , 1 ≤ i, k ≤ p− 1;

ψj,4
i,k , 1 ≤ i, k ≤ p− 1;

ψj,5
i,k , 1 ≤ i, k ≤ p− 1;

are linear independent. For n = p+ 1, there are 6p− 1 new functions which are

ψj,1
0,k, k = p;

ψj,2
k,0, k = p;

ψj,3
i,k , i or k = p;

ψj,4
i,k , i or k = p;

ψj,5
i,k , i or k = p.

Suppose they are not linear independent. That is, one can find

a1,

a2,

a3
i,k, i or k = p;

a4
i,k, i or k = p;

a5
i,k, i or k = p
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such that

a1ψj,1
0,p + a2ψj,2

p,0 +
∑

i or k=p

a3
i,kψ

j,3
i,k +

∑

i or k=p

a4
i,kψ

j,4
i,k +

∑

i or k=p

a5
i,kψ

j,5
i,k + ψ

′

= 0, (3.7)

where ψ
′

is linear combination of the following functions:

ψj,1
0,k, k = 1, .., p− 1;

ψj,2
k,0, k = 1, .., p− 1;

ψj,3
i,k , 1 ≤ i, k ≤ p− 1;

ψj,4
i,k , 1 ≤ i, k ≤ p− 1;

ψj,5
i,k , 1 ≤ i, k ≤ p− 1.

By the definition, φj+1
2i+1,2k+1, with i=p or k=p appear only once in ψj,3

i,k , with i=p or k = p

, ψj,1
0,p and ψj,2

p,0. Since φj+1 are linear independent, that is, a3
i,k = 0, when i or k =p, a1 = 0,

and a2 = 0. Thus the equation (3.7) can be simplified to

∑

i or k=p

a4
i,kψ

j,4
i,k +

∑

i or k=p

a5
i,kψ

j,5
i,k + ψ

′

= 0. (3.8)

By the similar reason, φj+1
2i,2k, when i=p or k = p appear only once in ψj,4

i,k , when i=p or k = p.

Since φj+1
ik are linear independent, a4

i,k = 0, i or k = p. Thus the equation (3.8) can be further

simplified to the following equation

∑

i or k=p

a5
i,kψ

j,5
i,k + ψ

′

= 0.

Similarly, a5
i,k = 0, when i , or , k =p too. Thus the equation (3.7) is reduced to

ψ
′

= 0.

By induction hypothesis, all the coefficient of ψ
′

= 0 are zeros. Hence,

ψj,1
0,k, k = 1, .., n− 1,

ψj,2
k,0, k = 1, .., n− 1,

ψj,3
i,k , 1 ≤ i, k ≤ n− 1,

ψj,4
i,k , 1 ≤ i, k ≤ n− 1,

ψj,5
i,k , 1 ≤ i, k ≤ n− 1

are linear independent.
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Theorem 3.1.2. All the five types of wavelets in the W n
j form a basis of W n

j for 1 ≤ n ≤

2j − 1. That is,

W n
j = span{ψj,1

0,k, ψ
j,2
k,0, ψ

j,3
i,k , ψ

j,4
i,k , ψ

j,5
i,k , 1 ≤ i, k ≤ n− 1}

for 1 ≤ n ≤ 2j − 1.

Proof. The dimension of W n
j is (2n− 1)2 − (n)2 = 3n2 − 4n + 1. It is easy to count that

there are (2n− 1)2 − (n)2 = 3n2 − 4n + 1 functions in the following set

ψj,1
0,k, k = 1, .., n;

ψj,2
k,0, k = 1, .., n;

ψj,3
i,k , 1 ≤ i, k ≤ n;

ψj,4
i,k , 1 ≤ i, k ≤ n;

ψj,5
i,k , 1 ≤ i, k ≤ n

which all belong to the space W n
j . Since they are linear independent, they form a basis for

space W n
j , where 1 ≤ n ≤ 2j − 1.

Finally we need to find wavelets in W 2j

j \W 2j−1
j . The computations are the same to the

above except for that there is one globally supported basis function. In fact the following

pictures show the basis functions located on the top boundary of the domain Ω. (We omit

the pictures for the basis functions on the right vertical boundary which are symmetric with

respect to the line y=x are those basic functions on the top horizontal boundary of Ω.)
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Figure 22.
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Figure 24.

The last one (cf. Figure 24) is the only special basis function since it is not local supported.

The numbers of all these wavelets in W 2j

j \W 2j−1
j amount to 2j+3 − 8 which is equal to the

number of dimension of V 2j

j+1\V 2j−1
j+1 .

Theorem 3.1.3. All the wavelets in the W 2j

j \W 2j−1
j are linear independent and form a basis

for V 2j

j+1\V 2j−1
j+1 which is spanned by the functions in {φj+1

i,k , 2
j+1 − 2 ≤ i, k ≤ 2j+1 − 1}.

Proof. Let us just concentrate on the basis functions in V 2j

j+1\V 2j−1
j+1 and in W 2j

j \W 2j−1
j . Then

the scaling matrix between two sets of basis functions is the following matrix up to a constant
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A =





















































































D

B1 B2

B1 B2

B1 B2

. . .

B1 B2

C1 C2

C3 C3 C3 . . . C3 C3 C3

C4

B2′ B1′

B2′ B1′

. . .

B2′ B1′

D′





















































































,

where

D =
(

1 2 0 0

)

, B1 =



















1 0 2

1 0 −1

1 1 0

1 −1



















, B2 =



















0 0 0 0

0 0 0 0

0 −1 0 0

1 1 0 0



















,

D′ =
(

0 0 2 1

)

, B1′ =



















−1 1

0 1 1

−1 0 1

2 0 1



















, B2′ =



















0 0 1 1

0 0 −1 0

0 0 0 0

0 0 0 0



















,
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C1 =



















1 0 2

1 0 −1

1 1 0

1 −1



















, C2 =



















0 0 0 0

0 0 1 0

0 −1 −1 0

1 1 0 0



















, C4 =
(

0 2 0 1

)

,

C3 =
(

1 0 0 0

)

.

Let E = (m n 0 0). By the row operations we have













E

B1 B2

B1 B2













=





















































m n 0

1 0 2

1 0 −1

1 1 0 0 −1

1 −1 1 1

1 0 2

1 0 −1

1 1 0 0 −1

1 −1 1 1





















































→





















































m n

−n 2m

2m −n

n m

2m+ n 2n 0 0

1 0 2

1 0 −1

1 1 0 0 −1

1 −1 1 1





















































.
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Similar for B′. Thus by row operations,

A→



























































A1 G1

A2 G2

A3 G3

. . .

A2j−2 G2j−2

C ′
1 C ′

2

G′
2j−2 A′

2j−2

. . .

G′
2 A′

2

G′
1 A′

1



























































,

where An is an upper triangular matrix of size 4 × 4 while A′
n is a lower triangular matrix

of size 4 × 4 which are given below.

A1 =



















1 2 0 0

−1 1 0

1 −1

2



















, G1 =



















0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0



















, A2 =



















1 1 0 0

−1 2 0

2 −1

1



















,

G2 =



















0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0



















, An =



















n 2 0 0

−1 n 0

n −1

2



















, Gn =



















0 0 0 0

0 0 0 0

0 0 0 0

n 0 0 0



















,

A′
n =



















2

−1 n

0 n −1

0 0 2 n



















, G′
n =



















0 0 0 n

0 0 0 0

0 0 0 0

0 0 0 0





















28

and the matrix (C ′
1 C ′

2) is the following matrix

(C ′
1 C ′

2) =













































2j+1 − 5 2

1 0 2

1 0 −1 0 0 1

1 1 0 0 −1 −1

1 −1 1 1

2j+1 − 5 0 0 0 1 0

2 0 1

2 2j+1 − 5













































.

It is easy to see the rank of (C ′
1 C ′

2) is 8. Thus the rank of A is 8(2j) − 8. Thus, all the

Prewavelet functions constructed above in the W 2j

j \W 2j−1
j are linear independent and hence

form a basis of V 2j

j+1\V 2j−1
j+1 .

It is easy to see that the coefficients of the Prewavelet functions in W 2j−1
j in terms of the

basis functions of V 2j

j+1\V 2j−1
j+1 are all zeros. Thus the Prewavelet functions in W 2j−1

j together

with the Prewavelet functions in V 2j

j+1\V 2j−1
j+1 are linear independent. It follows the main

result in this dissertation.

3.2 the Main Result

Theorem 3.2.1. All the locally supported Prewavelet functions in the W 2j

j \W 2j−1
j and the

locally supported and one globally supported Prewavelet functions in W 2j−1
j form a basis for

Wj.

The above construction find a Prewavelet basis for Wj . We shall use them for numerical

solution of Poisson equation with zero boundary condition in the next chapter. We shall also

show that it is necessary to have a globally supported Prewavelet function in the basis for

Wj .



Chapter 4

The Prewavelet Method For Poisson Equation

Let us use the basis functions of Vj and Wj to solve Poisson equation (2.1). Mainly we explain

how to compute hj ∈ Wj . Let gj ∈ Vj and gj+1 ∈ Vj+1 be two FEM solutions. We aim to

show that hj + gj = gj+1.

By a reordering the indices (i, k), 1 ≤ i, k ≤ 2j in a linear fashion, let Vj = span{φj
1, ..φ

j
Nj
}.

Also, we reorder all five type wavelet functions as well as the globally supported wavelet to

denote Wj = span{ψj
1, ..., ψ

j
Nj+1−Nj

}. Let Φj , Ψj be following vectors,

Φj =



















φj
1

φj
2

...

φj
Nj



















, Ψj =



















ψj
1

ψj
2

...

ψj
Nj+1−Nj



















.

Then we have the following equations

Φj = BjΦ
j+1, Ψj = CjΦ

j+1,

where Bj is Nj ×Nj+1 scaling matrix, and Cj is a wavelet matrix of size (Nj+1−Nj)×Nj+1.

Let Dj and Ej be the following matrices:

Dj =



















〈φj
1, φ

j
1〉s 〈φj

1, φ
j
2〉s · · · · · · 〈φj

1, φ
j
Nj
〉s

〈φj
2, φ

j
1〉s 〈φj

2, φ
j
2〉s · · · · · · 〈φj

2, φ
j
Nj
〉s

...
...

. . .
...

〈φj
Nj
, φj

1〉s 〈φj
Nj
, φj

2〉s · · · · · · 〈φj
Nj
, φj

Nj
〉s



















29
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Ej =



















〈ψj
1, ψ

j
1〉s 〈ψj

1, ψ
j
2〉s · · · · · · 〈ψj

1, ψ
j
Nj+1−Nj

〉s
〈ψj

2, ψ
j
1〉s 〈ψj

2, ψ
j
2〉s · · · · · · 〈ψj

2, ψ
j
Nj+1−Nj

〉s
...

...
. . .

...

〈ψj
Nj+1−Nj

, ψj
1〉s 〈ψj

Nj+1−Nj
, ψj

2〉s · · · · · · 〈ψj
Nj+1−Nj

, ψj
Nj+1−Nj

〉s.



















.

It is easy to see that BjDj+1C
T
j = 0 is equivalent to Vj⊥Wj . Clearly, we haveDj = BjDj+1B

T
j

and Ej = CjDj+1C
T
j .

Let gj be the projection of g in Vj, and hj be the projection of g in Wj. Since Vj

⊕

Wj =

Vj+1, gj + hj will be equal to gj+1. Let us write gj =
∑Nj

j=1 aiφ
j
i = (a1, a2, ...., aNj

)Φj . Simi-

larly, hj = (b1, b2, ...., bNj+1−Nj
)Ψj, and gj+1 = (c1, c2, ...., cNj+1

)Φj+1. By computing the weak

solutions hj, gj, and gj+1 in Wj , Vj, and Vj+1, respectively, we have

Dj



















a1

a2

...

aNj



















=



















〈φj
1, g〉

〈φj
2, g〉
...

〈φj
Nj
, g〉



















,

Ej



















b1

b2
...

bNj+1−Nj



















=



















〈ψj
1, g〉

〈ψj
2, g〉
...

〈ψj
Nj+1−Nj

, g〉



















,

Dj+1



















c1

c2
...

cNj+1



















=



















〈φj+1
1 , g〉

〈φj+1
2 , g〉

...

〈φj+1
Nj+1

, g〉



















.

It follows


















a1

a2

...

aNj



















= (Dj)
−1



















〈φj
1, g〉

〈φj
2, g〉
...

〈φj
Nj
, g〉



















,
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

















b1

b2
...

bNj+1−Nj



















= (Ej)
−1



















〈ψj
1, g〉

〈ψj
2, g〉
...

〈ψj
Nj+1−Nj

, g〉



















,



















c1

c2
...

cNj+1



















= (Dj+1)
−1



















〈φj+1
1 , g〉

〈φj+1
2 , g〉

...

〈φj+1
Nj+1

, g〉



















.

The above linear systems provide a computational method to find gj, hj .

We now show hj + gj = gj+1. That is, gj+1 can be computed by using hj and gj only.

Indeed, we have

gj = (a1, a2, ......, aNj
)Φj = (Φj)T (a1, a2, ......, anj

)T

= (Φj+1)TBT
j (a1, a2, ......, aNj

)T

= (Φj+1)TBT
j D

−1
j (〈φj

1, g〉, 〈φj
2, g〉, · · · 〈φj

Nj
, g〉)T

= ((Φj+1))TBT
j (BjDj+1B

T
j )

−1
Bj(〈φj+1

1 , g〉, 〈φj+1
2 , g〉, · · · 〈φj+1

Nj+1
, g〉)T

.

Similarly,

hj = ((Φj+1))TCT
j (CjDj+1C

T
j )

−1
Cj(〈φj+1

1 , g〉, 〈φj+1
2 , g〉, · · · 〈φj+1

Nj+1
, g〉)T

.

and

gj+1 = ((Φj+1))TD−1
j+1(〈φj+1

1 , g〉, 〈φj+1
2 , g〉, · · · 〈φj+1

Nj+1
, g〉)T

.

In order to show hj + gj = gj+1, we only need to prove

BT
j (BjDj+1B

T
j )

−1
Bj + CT

j (CjDj+1C
T
j )

−1
Cj = D−1

j+1. (4.1)

Notice that Bj and Cj are not square matrices. That is we can not invert Bj and Cj . Consider





Bj

Cj



Dj+1

(

BT
j CT

j

)

=





BjDj+1B
T
j BjDj+1C

T
j

CjDj+1B
T
j CjDj+1C

T
j




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=





BjDj+1B
T
j 0

0 CjDj+1C
T
j





by using the orthogonal conditions of Vj and Wj. Then we have the following equation





BjDj+1

CjDj+1





(

BT
j CT

j

)





(BjDj+1B
T
j )

−1
0

0 (CjDj+1C
T
j )

−1



 = I,

where I stands for the identity matrix. In other words, we have





BjDj+1

CjDj+1





(

BT
j (BjDj+1B

T
j )

−1
CT

j (CjDj+1C
T
j )

−1
)

= I

which can be rewritten in the following form

(

BT
j (BjDj+1B

T
j )

−1
CT

j (CjDj+1C
T
j )

−1
)





BjDj+1

CjDj+1



 = I.

Hence we have

BT
j (BjDj+1B

T
j )

−1
BjDj+1 + CT

j (CjDj+1C
T
j )

−1
CjDj+1 = I

or

BT
j (BjDj+1B

T
j )

−1
Bj + CT

j (CjDj+1C
T
j )

−1
Cj = D−1

j+1.

which is (4.1) and hence hj + gj = gj+1. The above computational procedure have been

implemented in MATLAB and numerical experiments will be reported in the next chapter.



Chapter 5

Numerical Experiments

We have implemented the Prewavelet method for numerical solution of Poisson equations

over rectangular domains in MATLAB. We would like to demonstrate that our prewavelet

method is more efficient than the standard FEM method.

In the following we provide three tables of CPU times for numerical solutions based

on our prewavelet method and the standard finite element method for various levels of

refinement of an initial triangulation (Γ0 which consists of two triangles) of the standard

domain [0, 1] × [0, 1].

Let Vj be the continuous linear finite element space over triangulation Γj which is the

jth refinement of Γ0. For a test function u which is the exact solution of Poisson equation

(2.1), the finite element method is to compute uj ∈ Vj directly while our prewavelet method

computes uj by computing wk, k = 1, · · · , j, i.e., uj = u1 + w1 + · · ·+ wj−1.

In the following we present three tables of CPU times for computing numerical solutions

uj, j = 4, 5, 6 for three test solutions by using these two methods. Note that we use the direct

method coded in MATLAB to solve the associated linear equations. We shall present tables

of CPU times based on Conjugate Gradient Method for the systems of equations next.

For an exact solution u(x, y) = sin(2πx) sin(2πy) which clearly satisfies the zero boundary

conditions, we list CPU times for computing numerical solutions uj, j = 4, 5, 6 by using these

two methods in Table 1. (The Figure is shown in Figure 5.1 to 5.6.)

Table 1. CPU times to compute uj by the two methods

33
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FEM method Prewavelet Method

j=4 0.164531 seconds 0.204067 seconds

j=5 0.593587 seconds 0.519293 seconds

j=6 13.960323 seconds 6.222679 seconds

For an exact solution u(x, y) = xy(1 − x)(1 − y), the CPU times for numerical solutions

by these two methods are given in Table 2. (The Figure is shown in Figure 5.7 to 5.12.)

Table 2. CPU times for computing uj by the two methods

CPU time FEM method Prewavelet Method

j=4 0.150836 seconds 0.218282 seconds

j=5 0.574085 seconds 0.558071 seconds

j=6 13.896825 seconds 6.202557 seconds

We list the CPU times for computing numerical solutions uj, j = 4, 5, 6 of u(x, y) =

xy(1− x)(1− y)e8xy by using these two methods in Table 3. (The Figure is shown in Figure

5.13 to 5.18.)

Table 3. CPU times for computing uj by the two methods

CPU time FEM method Prewavelet Method

j=4 0.144159 seconds 0.186389 seconds

j=5 0.584828 seconds 0.459181 seconds

j=6 13.877403 seconds 6.139101 seconds

It is clear from these three tables that the prewavelet method is much more efficient.

Next we use the Conjugate Gradient Method to solve the linear systems associated with

FEM. Let us consider iterative solutions to uj for j = 6 with various accuracy ε. First let us

consider the exact solution u(x, y) = sin(2πx) sin(2πy).

Table 4. CPU times for approximating the FEM solution u6 by Conjugate Gradient Method
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ε CPU times

10−8 5.411852 seconds

10−9 5.783497 seconds

10−10 6.221683 seconds

10−11 6.616816 seconds

10−12 6.917468 seconds

10−13 7.836775 seconds

To approximate the FEM solution u6 of the exact solution u(x, y) = xy(1− x)(1− y) by

the Conjugate Gradient Method, we list the CPU times in Table 5 for various accuracy ε.

Table 5. CPU times for approximating the FEM solution uj by Conjugate Gradient Method

ε CPU times

10−8 4.476794 seconds

10−9 4.878259 seconds

10−10 5.306747 seconds

10−11 5.887849 seconds

10−12 6.811317 seconds

10−13 6.754465 seconds

Finally let us consider the CPU times to approximate the FEM solution u6 of u(x, y) =

xy(1 − x)(1 − y)e8xy by the Conjugate Gradient Method.

Table 6. CPU times for approximating the FEM solution by Conjugate Gradient Method
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ε CPU times

10−8 10.110517 seconds

10−9 10.740035 seconds

10−10 11.319618 seconds

10−11 11.810142 seconds

10−12 12.320903 seconds

10−13 13.103407 seconds

It is clear from all six tables, if we want an accurate iterative solution of u6 within 10−12,

the prewavelet method appears better.
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wavelets
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Figure 5.12: Scaling level:j=4 by finite ele-
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wavelets
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Figure 5.15: Scaling level:j=5 by pre-
wavelets
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Figure 5.16: Scaling level:j=5 by finite ele-
ment
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Figure 5.17: Scaling level:j=4 by pre-
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Chapter 6

Prewavelets Solution to Poisson Equation over Triangular Domain

In this chapter, I deal with the Dirichlet boundary value problem for Poisson equation with

triangular boundary. In reality, this boundary shape is almost as important as the rectangle

boundary.

6.1 Simplification of the Poisson Equation

Let us start with a triangular domain Ω ∈ R2, which is determined by three vertices

(0,0),(0,1),(1,0), consider the Dirichlet boundary value problem for Poisson equation:



































−∆u(x, y) = g(x, y), (x, y) ∈ Ω

u(x, y) = f1(x), for y = 0 and 0 ≤ x ≤ 1

u(x, y) = f2(y), for x = 0 and 0 ≤ y ≤ 1

u(x, y) = f3(x), for x+ y = 1 and 0 ≤ y ≤ 1.

Without lose of generality, we may assume that f1(1) = f2(1) = f3(1) = f1(0) = f2(0) =

f3(0). Otherwise, letting f1(0) = f2(0) = a1, f1(1) = f3(1) = a2, f2(1) = f3(0) = a3, we

define h(x, y) = a1 + a2x + a3y, and v(x, y) = u(x, y) − h(x, y). Then the above Dirichlet

problem becomes to:



































−∆v(x, y) = g(x, y), (x, y) ∈ Ω

v(x, y) = f1(x) − h(x, 0), for y = 0 and 0 ≤ x ≤ 1

v(x, y) = f2(y) − h(0, y), for x = 0 and 0 ≤ y ≤ 1

v(x, y) = f3(x) − h(x, 1 − x), for x+ y = 1 and 0 ≤ y ≤ 1

40
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Now let g2(x, y) = (1 − x)2(f2(
y

1−x
) − h(0, y

1−x
)) − (1 − y)2(f1(

x
1−y

) − h( x
1−y

, 0)) −

(x+ y)2(f3(
x

x+y
) − h( x

x+y
, y

x+y
)), and w(x, y) = v(x, y) − g2(x + y). Then w(x, y) is well

defined and has the second order smoothness, and w(x, y) satisfies the equation







−∆w(x, y) = g1(x, y), (x, y) ∈ Ω

w(x, y) = 0, (x, y) ∈ ∂Ω .

with g1(x, y) = g(x, y) + ∂2

∂y2 g2(x, y) + ∂2

∂x2 g2(x, y). If we can find solution for w, it is easy

to get u(x, y). In the remaining part of this chapter, we only consider the Poisson equation

with zero boundary condition:







−∆u(x, y) = g(x, y), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂Ω .
(6.1)

6.2 Seminorm

Let us define

H1
0 (Ω) = {v ∈ L2(Ω) : 〈v, v〉s <∞ and v(x, y) = 0, (x, y) ∈ ∂Ω}

where seminorm 〈v, v〉s is defined by

〈f, f〉s = ‖f‖2
s =

∫ 1

0

∫ y

0

[

∂f(x, y)

∂x

∂f(x, y)

∂x
+
∂f(x, y)

∂y

∂f(x, y)

∂y

]

dxdy,

Thus H1
0 (Ω) is a standard Sobolev space. Suppose u ∈ H1

0 (Ω), for any function v ∈ H1
0 (Ω)

such that v(x, y) = 0, for (x, y) ∈ ∂Ω then integration by parts of (6.1) yields

〈g, v〉 =

∫ 1

0

∫ y

0

g(x, y)v(x, y)dxdy

=

∫ 1

0

∫ y

0

−∆u(x, y)v(x, y)dxdy

=

∫ 1

0

∫ y

0

∂u(x, y)

∂x

∂v(x, y)

∂x
+
∂u(x, y)

∂y

∂v(x, y)

∂y
dxdy

= 〈u, v〉s,
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We can say that the weak solution u to (6.1) is in V ∈ H1
0 (Ω) if

u ∈ V such that 〈u, v〉s = 〈g, v〉, ∀v ∈ V. (6.2)

Theorem 6.2.1. Suppose g ∈ C(Ω). If u ∈ C2(Ω) is a weak solution satisfying (6.2), then

u is a classic solution satisfying (6.1), .

Proof. Let v ∈ H1
0 (Ω). Then integration by parts gives

〈g, v〉 = 〈u, v〉s

=

∫ 1

0

∫ y

0

∂u(x, y)

∂x

∂v(x, y)

∂x
+
∂u(x, y)

∂y

∂v(x, y)

∂y
dxdy

=

∫ 1

0

∫ y

0

−∆u(x, y)v(x, y)dxdy

= 〈−∆u(x, y), v〉.

Thus, 〈g − (−∆u(x, y)), v〉 = 0 for all v ∈ H1
0 (Ω). Claim ω = g + ∆u(x, y) ∈ C0(Ω) is

identically zero. If ω 6= 0 then ω is of one sign in some square {((x1, y1) × (x2, y2)) ∈ (Ω)}.

Choose v(x, y) = (x− x1)
2(x − x2)

2(y − y1)
2(y − y2)

2 in the square ((x1, y1) × (x2, y2)) and

v = 0 outside the square. Then 〈w, v〉 6= 0, which is a contradiction. Thus g ≡ −∆u(x, y).

6.3 Linear Spline Space

For convenient, let Nj = (2j − 1)(2(j−1) − 1). Let xji = i
2j for i = 1, .., 2j − 1 and yji = i

2j for

i = 1, .., 2j − 1 then the segment of x = xji , y = yji and y + x = yji divide the Ω into 4j

small subtriangle.
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Figure 25. Type-I triangulation,j=2.
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Define φj
ik to be linear spline with support on the hexagon with vertices

{(xj(i−1), yj(k+1)), (xji, yj(k−1)), (xj(i+1), yj(k)), (xj(i+1), yj(k−1)), (xj(i), yj(k+1)), (xj(i−1), yj(k))}

and φik(xji
′ , yjk

′) = δii′δkk
′ . Let Vj = span{φj

ik, i > 0, j > 0, j + i < 2j} be the subspace of

H1
0 (Ω). Let

uj ∈ Vj such that 〈uj, v〉s = 〈f, v〉 ∀v ∈ Vj (6.3)

Theorem 6.3.1. Given f ∈ L2(Ω), (6.3) has a unique weak solution.

Proof. By the same proof as theorem 2.4.1, (6.3) has a unique weak solution.

Let us observe relationship between u and uj. Subtracting (6.3) from (6.2) implies

〈u− uj, w〉s = 0 ∀w ∈ Vj . (6.4)

Then for any v ∈ Vj

‖u− uj‖2
s = 〈u− uj, u− uj〉s

= 〈u− uj, u− v〉s + 〈u− uj, v − uj〉s

= 〈u− uj, u− v〉s

≤ ‖u− uj‖s‖u− v‖s

It follows that ‖u − uj‖s ≤ ‖u − v‖s for any v ∈ Vj . Thus we have proved the following

theorem.

Theorem 6.3.2. ‖u− uj‖s = min {‖u− v‖s : v ∈ Vj}.

6.4 Error Approximation

Given u ∈ C0(Ω), let uj ∈ Vj be the interpolation of u:

uI =
∑

ik

u(xji, yjk)φ
(j)
ik .

The following error estimate is well-known.
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Lemma 6.4.1. Suppose u ∈ C2(Ω). Then

‖u− uj‖s ≤
√

12

2j

√

∥

∥

∥

∥

∂2u

∂x2

∥

∥

∥

∥

2

L∞

+

∥

∥

∥

∥

∂u

∂x

∂u

∂y

∥

∥

∥

∥

2

L∞

+

∥

∥

∥

∥

∂2u

∂y2

∥

∥

∥

∥

2

L∞

,

.

Proof. the proof is similar to the lemma 2.4.3.

6.5 Prewavelets Construction over Triangular Domain

By direct calculation, we obtain the following result immediately.

Lemma 6.5.1. We have 〈φj
ik, φ

j+1
2i,2k, 〉s = 2,

〈φj
ik, φ

j+1
2i−1,2k, 〉s = 1/2, 〈φj

ik, φ
j+1
2i,2k−1, 〉s = 1/2, 〈φj

ik, φ
j+1
2i+1,2k, 〉s = 1/2,

〈φj
ik, φ

j+1
2i,2k+1, 〉s = 1/2, 〈φj

ik, φ
j+1
2i−1,2k−1, 〉s = 1, 〈φj

ik, φ
j+1
2i+1,2k+1, 〉s = 1,

〈φj
ik, φ

j+1
2i−2,2k, 〉s = −1/2, 〈φj

ik, φ
j+1
2i+2,2k, 〉s = −1/2, 〈φj

ik, φ
j+1
2i,2k−2, 〉s = −1/2,

〈φj
ik, φ

j+1
2i,2k+2, 〉s = −1/2, 〈φj

ik, φ
j+1
2i−2,2k−2, 〉s = 0, 〈φj

ik, φ
j+1
2i+2,2k+2, 〉s = 0,

〈φj
ik, φ

j+1
2i−2,2k−1, 〉s = −1/2, 〈φj

ik, φ
j+1
2i−1,2k+1, 〉s = −1, 〈φj

ik, φ
j+1
2i+1,2k+2, 〉s = −1/2,

〈φj
ik, φ

j+1
2i+2,2k+1, 〉s = −1/2, 〈φj

ik, φ
j+1
2i+1,2k−1, 〉s = −1, 〈φj

ik, φ
j+1
2i−1,2k−2, 〉s = −1/2,

〈φj
ik, φ

j+1
i′,k′, 〉s = 0, for other i

′

, k
′

, which are not listed above.

In the following, I will give one method to find the locally supported basis forWj . Suppose

ψj =
∑

ik φ
j+1
ik bik ∈ Wj. Then by orthogonal condition, we need to solve the following

equations.

〈φj
i′k′ , ψ

j〉s = 0

〈φj
i′k′,
∑

ik

φj+1
ik bik〉s = 0

∑

ik

〈

φj
i′k′, φ

j+1
ik

〉

s
bik = 0.

(6.5)
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Each (i
′

, k
′

) determines one equation. Thus, there are Nj elements in the set Vj and hence

they determined the Nj equations. These Nj equations with Nj+1 coefficients, bik, implies

that there areNj+1−Nj linear independent solutions of these equation system which compose

a basis for Wj.

Definition 6.5.1. Let V m
j+1 be a subspace of Vj+1 such that V m

j+1 = span{φj+1
ik , i > 0, k >

0, i+ k < 2m}. Let Wm
j be subspace of Wj such that Wm

j = Wj

⋂

V m
j+1.

Obviously ∅ = V 1
j+1 ⊂ V 2

j+1 ⊂ . . . ⊂ V 2j

j+1 = Vj, and ∅ = W 1
j ⊂ W 2

j ⊂ . . . ⊂ W 2j

j = Wj .

There is no nonzero solution of (6.5) in space of V 1
j+1, and there are two solution of (6.5) in

space V 2
j+1, they are solutions of the following equation for i > 0, k > 0.

〈
∑

1≤i+k<4 φ
j+1
ik bik, φ

j
1,1

〉

s
= 0

it is equivalent to the following equation

(

〈φj
1,1, φ

j+1
1,1 〉s 〈φj

1,1, φ
j+1
2,1 〉s 〈φj

1,1, φ
j+1
1,2 〉s

)













b1,1

b2,1

b1,2













=
(

0

)

.

By Lemma 6.5.1, we obtain the following equation.

(

−1 1/2 1/2

)













b1,1

b2,1

b1,2













=
(

0

)

The rank of the left matrix is 1, so there are two solutions shown as the follows.












b1,1

b2,1

b1,2













=













1

2

0













or













1

0

2













ψj,1
0,1 = 2φj+1

1,2 + φj+1
1,1 as shown in Figure 26; (6.6)

ψj,1
1,0 = 2φj+1

2,1 + φj+1
1,1 as shown in Figure 27; (6.7)
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Definition 6.5.2. ψj,1
0,k = 2φj+1

1,2k + φj+1
1,2k−1 is the first kind of wavelets on the vertical edge.

ψj,1
k,0 = 2φj+1

2k,1 + φj+1
2k−1,1 is the second kind of wavelet on the horizontal edge.
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Figure 26.
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Figure 27.
(0,0) (1/2j, 0) (2/2j, 0)

(0, 1/2j)

(0, 2/2j)

Now we consider V 3
j . Similarly, there are 10 non-zero coefficients for linear system (6.5),

and there are 3 linear independent equations. So the dimension of solution space of W 3
j is

10-3=7. The first two of them are same to the wavelet functions in (6.6) and (6.7), let me

show the other 5 in the following figures.

ψj,1
0,2 = 2φj+1

1,4 + φj+1
1,3 as shown in Figure 28; (6.8)

ψj,1
2,0 = 2φj+1

4,1 + φj+1
3,1 as shown in Figure 29; (6.9)

ψj,2
1,1 = φj+1

1,3 + φj+1
1,2 + φj+1

2,3 − φj+1
2,2 as shown in Figure 30; (6.10)

ψj,3
1,1 = φj+1

3,1 + φj+1
3,2 + φj+1

2,1 − φj+1
2,2 as shown in Figure 31; (6.11)

ψj,4
1,1 = φj+1

3,2 + φj+1
2,3 − φj+1

1,2 − φj+1
2,1 as shown in Figure 32; (6.12)

Definition 6.5.3. ψj,2
i,k = −φj+1

2i,2k+φj+1
2i,2k+1+φ

j+1
2i−1,2k+φj+1

2i−1,2k+1 is the second kind of wavelet.

ψj,3
i,k = −φj+1

2i,2k + φj+1
2i+1,2k + φj+1

2i,2k−1 + φj+1
2i+1,2k−1 is the third kind of wavelets, ψj,4

i,k = φj+1
2i+1,2k +

φj+1
2i,2k+1 − φj+1

2i,2k−1 − φj+1
2i−1,2k is the forth kind of wavelets.
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Figure 28.
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Figure 29.
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Figure 30.
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Figure 31.
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(0, 1/2j)

(0, 2/2j)

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

1

1

-1

-1

Figure 32.
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Figure 33.
(0,0) (1/2j, 0) (2/2j, 0)

(0, 1/2j)

(0, 2/2j)

The above

computation can be carried out until V m
j , m = 2, 3, ....2j−1. We obtain four types of wavelet

functions in W 2j−1
j



48

Theorem 6.5.1. All the five types of wavelet in the V n
j are linear independent for 1 ≤ n ≤

2j − 1. That means for i > 0 and k > 0

ψj,1
0,k, k = 1, .., n− 1;

ψj,1
k,0, k = 1, .., n− 1;

ψj,2
i,k , 1 ≤ i+ k ≤ n− 1;

ψj,3
i,k , 1 ≤ i+ k ≤ n− 1;

ψj,4
i,k , 1 ≤ i+ k ≤ n− 1;

are linear independent for 1 ≤ n ≤ 2j − 1.

Proof. Let us prove it by induction, it is true for n=2 and n=3, Suppose it is true for n=p,

that means

ψj,1
0,k, k = 1, .., p− 1,

ψj,1
k,0, k = 1, .., p− 1,

ψj,2
i,k , 1 ≤ i+ k ≤ p− 1,

ψj,3
i,k , 1 ≤ i+ k ≤ p− 1,

ψj,4
i,k , 1 ≤ i+ k ≤ p− 1,

are linear independent. For n = p+ 1, there are 3p− 1 new elements, which are

ψj,1
0,k, k = p,

ψj,1
k,0, k = p,

ψj,2
i,k , i+ k = p,

ψj,3
i,k , i+ k = p,

ψj,4
i,k , i+ k = p.

Suppose they are not linear independent. Then I can find

a1
0,p,

a1
p,0,

a2
i,k, i+ k = p,

a3
i,k, i+ k = p,

a4
i,k, i+ k = p,
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such that

a1
0,pψ

j,1
0,p + a1

p,0ψ
j,2
p,0 +

∑

i+k=p

a2
i,kψ

j,2
i,k +

∑

i+k=p

a3
i,kψ

j,3
i,k +

∑

i+k=p

a4
i,kψ

j,4
i,k + ψ

′

= 0, (6.13)

where ψ
′

is a linear combination of the following elements:

ψj,1
0,k, k = 1, .., p− 1;

ψj,1
k,0, k = 1, .., p− 1;

ψj,2
i,k , 1 ≤ i+ k ≤ p− 1;

ψj,3
i,k , 1 ≤ i+ k ≤ p− 1;

ψj,4
i,k , 1 ≤ i+ k ≤ p− 1.

By the definition, φj+1
1,2p appears only once in ψj,1

0,p, φ
j+1
2p,1 appears only once in ψj,1

p,0, in equation

(6.13), that means a1
0,p = a1

p,0 = 0. By the same reason, a2
i,k = a3

i,k = a4
i,k = 0, for i+ k = p.

Therefore the equation (6.13) is simplified to following expression:

ψ
′

= 0

By the induction, all the coefficients of ψ
′

= 0 are zeroes. That means

ψj,1
0,k, k = 1, .., n− 1,

ψj,2
k,0, k = 1, .., n− 1,

ψj,3
i,k , i+ k ≤ n− 1,

ψj,4
i,k , i+ k ≤ n− 1, and

ψj,5
i,k , i+ k ≤ n− 1

are linear independent for 1 ≤ n ≤ 2j − 1.

Theorem 6.5.2. All the five types of wavelet in the V n
j compose a linear independent basis

for W n
j for 1 ≤ n ≤ 2j − 1. That means

W n
j = span















































ψj,1
0,k, k = 1, .., n− 1;

ψj,1
k,0, k = 1, .., n− 1;

ψj,2
i,k , i+ k ≤ n− 1;

ψj,3
i,k , i+ k ≤ n− 1;

ψj,4
i,k , i+ k ≤ n− 1;














































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for 1 ≤ n ≤ 2j − 1.

Proof. The dimension of W n
j is (2n− 1)(n− 1)−(n)(n− 1)/2 = (4n−2−n)(n−1)/2. After

counting, there are the same amount of elements in the following set:















































ψj,1
0,k, k = 1, .., n− 1;

ψj,1
k,0, k = 1, .., n− 1;

ψj,2
i,k , i+ k ≤ n− 1;

ψj,3
i,k , i+ k ≤ n− 1;

ψj,4
i,k , i+ k ≤ n− 1;















































which are in the space W n
j . Since they are linear independent, they form a basis for space

W n
j , for 1 ≤ n ≤ 2j − 1.

Now only work left is to find prewavelets in W 2j

j \W 2j−1
j . Let me define one more kind of

prewavelets function ψj,5
i,k in this space, see Figure33.

ψj,5
i,k = φj+1

2i−1,2k + φj+1
2i,2k−1, i+ k = 2j .

Thus we know W 2j

j \W 2j−1
j span by the following wavelets.

W 2j

j \W 2j−1
j = span































































ψj,1
0,k, k = 2j − 1;

ψj,1
k,0, k = 2j − 1;

ψj,2
i,k , i+ k = 2j − 1;

ψj,3
i,k , i+ k = 2j − 1;

ψj,4
i,k , i+ k = 2j − 1;

ψj,5
i,k , i+ k = 2j ;































































By counting, all wavelets in W 2j

j \W 2j−1
j amount to 2j+2 − 5, it is right the number of

dimension of V 2j

j \V 2j−1
j .

Theorem 6.5.3. All the five types of wavelet in the W 2j

j \W 2j−1
j are linear independent for

scaling functions of V 2j

j \V 2j−1
j , which is set {φj+1

i,k , 2
j+1 − 2 ≤ i+ k ≤ 2j+1 − 1}.
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Proof. Let us just concentrate on the basis functions in V 2j

j \V 2j−1
j and in W 2j

j \W 2j−1
j . Then

the scaling matrix between two sets of basis functions is the following matrix up to a constant.

Let A be a (2j+2 − 5) × (2j+2 − 5) matrix below. If matrix A is invertible, then the

prewavelets basis I choose for W 2j

j \W 2j−1
j are linear independent.

A =









































































































2 1

1 0 1

1 1 −1

1 0 1

−1 1 1

. . .

1 0 1

1 1 −1

1 0 1

−1 1 1

. . .

1 0 1

1 1 −1

1 0 1

−1 1 1

1 0 1

1 2









































































































.

If we denote

E =
(

2 1 0 0

)

, B =



















1 0 1

1 1 −1

1 0

−1



















, C =



















0 0 0 0

0 0 0 0

1 0 0 0

1 1 0 0



















,
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C1 =



















0 0 0

0 0 0

1 0 0

1 1 0



















, F =





1 0 1

0 1 2



 ,

we can rewrite matrix A in the following expression.

A =





















































E

B C

B C

B C

. . .

B C

B C

B C1

F





















































.

let En =
(

2n 1 0 0 0 0

)

, by the row operation we have





En

B



 =

























2n 1

1 0 1

1 1 −1

1 0 1

−1 1 1

























→

























2n 1

−1 2n

2n+ 1 −1

1 2n+ 1

2n+ 2 1

























let Bn =



















2n 1

−1 2n

2n+ 1 −1

1



















, Gn =



















0 0 0 0

0 0 0 0

0 0 0 0

2n+ 1 0 0 0



















,
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G′ =



















0 0 0

0 0 0

0 0 0

2j+1 − 3 0 0



















, F ′ =













2j+1 − 2 1 0

1 0 1

0 1 2













. Thus by induction, we can get,

A→

































B1 G1

B2 G2

. . .

B2j−3 G2j−3

B2j−2 G′

F ′

































.

here Bi are invertible for i = 1, .., 2j −2, and F ′ is invertible too, so is A. That is, all the five

types of prewavelet in the W 2j

j \W 2j−1
j are linear independent for basis of V 2j

j \V 2j−1
j .

All the five types of wavelet in the W 2j

j \W 2j−1
j are linear independent for the basis

of V 2j

j \V 2j−1
j , we know the coefficient of wavelet in W 2j−1

j for the basis of V 2j

j \V 2j−1
j are

all zeros, that means all the wavelets in W 2j

j = Wj are linear independent. We have thus

established the following theorem.

Theorem 6.5.4. All the five types of wavelet in the W 2j

j \W 2j−1
j and the wavelets in W 2j−1

j

compose a basis of Wj. That is, under H1
0 norm, there exists a locally supported box spline

prewavelet basis over triangular domain.



Chapter 7

The Existence of Locally Supported Prewavelet Using Linear Box Splines

In the previous Chapters, prewavelets under H1
0 norm over two different domains were dis-

cussed. There exists a basis of locally supported prewavelets if the domain is a triangle. If

the domain is a rectangle, there exists a basis of prewavelets, which are locally supported

except for one basis function. Now here comes the question, does there exist a locally sup-

ported prewavelet basis when the domain is a rectangle? The following result will answer

this question.

Lemma 7.0.2. There is no locally supported prewavelet basis under H1
0 norm over square

domain if the prewavelets were constructed from linear box splines.

Proof. Recall the triangulation and definition of linear box spline in Chapter 2. By uniform

refinement 2 times from the initial triangulation of Ω = [0, 1]2, we obtain the triangulation

in the Figure XX1. This refinement is corresponding to level j=2 in chapter 2. It follows that

the space V2 includes 9 box splines and V3 includes 49 box splines, and the prewavelets in

W2 will be constructed using the 49 box splines in V3.

In Figure XX1, 25 box splines were marked, each of them represents one linear box

spline. Each of the splines is corresponding to one circle with value 1 at the circle and 0 at

the others, for example, the spline φ3
1,1 is corresponding to the circle on the low left corner,

the spline φ3
5,5 is corresponding to the circle on the upper right corner, and so on for each

of {φ3
i,k, i = 1, .., 5, k = 1, .., 5}. To construct prewavelet from these 25 spline, we require the

prewavelet ψ satisfy the following two conditions:

ψ =
∑

1≤i,k<5

φ3
i,kbi,k

54
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ψ is orthogonal to φ2
1,1, φ

2
1,2, φ

2
1,3, φ

2
2,1, φ

2
2,2, φ

2
2,3, φ

2
3,1, φ

2
3,2, φ

2
3,3.

It follows that there are exactly 25-9=16 degree of freedom for ψ. Therefore there are

exactly 16 prewavelets over this region. According to the construction method in Chapter

3, there are 4 boundary prewavelets, 4 type-I prewavelets, 4 type-II prewavelets and 4 type-

III prewavelets. Thus there are 16 prewavelets, which means there are no other prewavelets

with support in the region marked with circle in Figure XX1. By the same reason, we can

construct 16 locally supported prewavelet in the region marked with circle in figure XX2 or

XX3 or XX4. There are no others prewavelets in these region either.
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Now, recall the result in chapter 3, the dimension of the V3 = 7×7 = 49, and dimension of

V2 = 3× 3 = 9, and the dimension of the prewavelet space W2 should be 49-9=40. Counting

all the locally supported prewavelet functions constructed in above four Figures, there are

12 edge prewavelets, 9 type-I prewavelets, 9 type-II prewavelets and 9 type-III prewavelets.

Thus there are totally 39 locally supported prewavelets. In other words, one more prewavelet
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basis function is needed, but this prewavelet can not be constructed in the region marked

by the circle in Figures XX1, or XX2, or XX3, or even XX4 as explained above.

By the above statement, the last prewavelet must have one none zero coefficient corre-

sponding the circle in figure XX5. Otherwise all the coefficients of the last prewavelet comes

from the region marked by the circle in figure XX6, which is the subset of the region marked

by the circle in figure XX1. Then the last prewavelet in the region marked by the circle in

figure XX1, that is a contradiction to the result we already had.
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Now assume the last prewavelet has one coefficient coming from the region in the Figure

XX5. We divide the study into three cases, case 1: the coefficient comes from the region in

The Figure XX7; case 2: the coefficient comes from the region in The Figure XX9; case 3:

the coefficient comes from the region in The Figure XX11.

Case 1: If the last prewavelet must have one coefficient coming from the region marked by

the circle in Figure XX7, then there must be one coefficient coming from the region marked

by the circle in figure XX8. Otherwise, this prewavelet will stay in the region shown in Figure

XX3. According the above statement, it is impossible. Now one coefficient of this prewavelet

comes from the region in Figure XX7, another coefficient comes from the region in Figure

XX8, and the support of this prewavelet has to connect these two regions. Therefore this

prewavelet is not locally supported.
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Case 2: If the last prewavelet must have one coefficient coming from the region marked by

the circle in Figure XX9, then there must be one coefficient coming from the region marked by

the circle in figure XX10. Otherwise, this prewavelet will stay in the region shown in Figure

XX3. According the above statement, it is impossible. Now one coefficient of this prewavelet

comes from the region in Figure XX9, another coefficient comes from the region in Figure

XX10, and the support of this prewavelet has to connect these two regions. Therefore this

prewavelet is not locally supported.
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Case 3: If the last prewavelet must have one coefficient coming from the region marked by the

circle in Figure XX11, then there must be one coefficient coming from the region marked by

the circle in figure XX12. Otherwise, this prewavelet will stay in the region shown in Figure

XX4. According the above statement, it is impossible. Now one coefficient of this prewavelet

comes from the region in Figure XX11, another coefficient comes from the region in Figure

XX12, and the support of this prewavelet has to connect these two regions. Therefore this

prewavelet is not locally supported.
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Combine the above three cases, it follows that the lemma is true.

Theorem 7.0.5. There is at least one global supported prewavelet basis under H1
0 norm over

rectangle domain, if the prewavelets are constructed from linear box splines.

On the other hand, I have proved that there exists localed supported prewavelet basis

when the domain is triangle. Then the existence of locally supported prewavelet basis con-

structed from linear box spline under H1
0 norm is dependent on the boundary shape of the

domain.



Chapter 8

Prewavelets Solution to Poisson Equation over L-shape Domain

In this chapter, I will discuss the existence of a locally supported prewavelet basis over

L-shaped domain , and explain how to construct it.

8.1 Triangulation

For L-shaped domain, there are at least two kinds of triangulations, e.g. the Figures YY1

and YY2.
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Figure YY1.
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Figure YY2.

Which one should we choose? In fact, these two kinds of triangulations have no big dif-

ference for prewavelet construction. Therefore, in this chapter, I will use the first kind of

triangulation.
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8.2 Simplification of the Poisson Equation

Let us start with a L-shape domain Ω = [(0, 2) × (0, 2)]\[(1, 2) × (1, 2)] ∈ R2. Consider the

Dirichlet boundary value problem for Poisson equation:











































































−∆u(x, y) = g(x, y), (x, y) ∈ Ω

u(x, y) = f1(x), for y = 0 and 0 ≤ x ≤ 2

u(x, y) = f2(x), for y = 1 and 1 ≤ x ≤ 2

u(x, y) = f3(x), for y = 2 and 0 ≤ x ≤ 1

u(x, y) = f4(y), for x = 0 and 0 ≤ y ≤ 2

u(x, y) = f5(y), for x = 1 and 1 ≤ y ≤ 2

u(x, y) = f6(y), for x = 2 and 0 ≤ y ≤ 1

Without lose of generality, we may assume that u(x, y) is equal to zero at each of vertices,

that means f1(0) = f1(2) = f2(1) = f2(2) = f3(0) = f3(1) = f4(0) = f4(2) = f5(1) =

f5(2) = f6(0) = f6(1) = 0. Otherwise, letting f1(0) = f4(0) = a1, f1(2) = f6(0) = a2,

f6(0) = f2(2) = a3, f2(1) = f5(1) = a4, f5(2) = f3(1) = a5, f3(0) = f4(2) = a6, let

b1 = a1, b2 = (a2 − a1)/4, b6 = (a6 − a1)/4, b3 = a3/2 − a4 + a1/2 + a6/4 − a2/4, b5 =

a5/2− a4 + a1/2 + a2/4− a6/4, b4 = a4 − a1 + (a2 − a1)/4− (a6 − a1)/4 + b3 + b5, we define

h(x, y) = b1 + b2x
2 + b6y

2 + b3x
2y + b4xy + b5xy

2, and v(x, y) = u(x, y) − h(x, y). Then the

above Dirichlet problem becomes to:











































































−∆u(x, y) = g(x, y), (x, y) ∈ Ω

u(x, y) = f1(x) − h(x, 0), for y = 0 and 0 ≤ x ≤ 2

u(x, y) = f2(x) − h(x, 1), for y = 1 and 1 ≤ x ≤ 2

u(x, y) = f3(x) − h(x, 2), for y = 2 and 0 ≤ x ≤ 1

u(x, y) = f4(y) − h(0, y), for x = 0 and 0 ≤ y ≤ 2

u(x, y) = f5(y) − h(1, y), for x = 1 and 1 ≤ y ≤ 2

u(x, y) = f6(y) − h(2, y), for x = 2 and 0 ≤ y ≤ 1

which satisfy the above assumption.
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Now let w(x) = v(x, y)− (1− 3y/2 + y2/2)(f1(x) − h(x, 0))− (1 − 3x/2 + x2/2)(f4(y)−

h(0, y)) − (y2/2 − y/2)(f3(x) − h(x, 2)) − (x2/2 − x/2)(f6(y) − h(2, y)) − (2y − y2)(f2(x) −

h(x, 1)) − (2x− x2)(f5(x) − h(x, 1)). Then w(x) satisfies the equation







−∆w(x, y) = g1(x, y), (x, y) ∈ Ω

w(x, y) = 0, (x, y) ∈ ∂Ω

with g1(x, y) = g(x, y) + ∂2

∂y2 [−x(f4(y)− h(1, y))− (1− x)(f3(y)− h(0, y))] + ∂2

∂x2 [−y(f2(x)−

h(x, 1)) − (1 − y)(f1(x) − h(x, 0))].

If we can find solution for w, it is easy to get u(x, y). In the remaining dissertation, we

only consider the Poisson equation with zero boundary condition:







−∆u(x, y) = g(x, y), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂Ω.
(8.1)

8.3 the Non-Existence of Locally Supported Prewavelet Base

Lemma 8.3.1. There is no locally supported prewavelet basis under H1
0 norm over L-shape

domain if the prewavelets were constructed from linear box spline.

Proof. Here the Figure YY1 was zoomed in to refinement level j=3, we get the Figure YY3.

In this region, there should be 161 elements in space V4, and the prewavelets should be

construct from these 161 linear box spline which compose the space V4, and the prewavelets

should be orthogonal to the 33 linear box splines in space V3, it follows there should be

161-33=128 prewavelets in this region.

In Figure YY4, 65 box splines were marked, each of them represents one linear box

spline. Each of the splines is corresponding to one circle with value 1 at the circle and

0 at the others, for example, φ4
1,1 is corresponding to the circle on the low left corner. The

prewavelet constructed from this 65 element should be orthonormal to 24 upper level splines,

so there should be 65-24=41 prewavelet in this region. Using the method shown in Chapter

3, there are 36 inner locally supported prewavelets and 5 edge prewavelets, it follows there
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are exactly 36+5=41 prewavelets. Then there is no other prewavelets in this region. By the

same reason, after locally supported prewavelet construction using the method in Chapter

3, there is no other prewavelets in region shown in Figures YY5, YY6, YY7, YY8 or YY9.

Counting all prewavelets shown in YY4 to YY9, there are exactly 125 prewavelets, there

must be three more prewavelets to match the dimension of W3, 128, for L-shape and the

last three prewavelet can not construct only in the region shown in figure YY4, YY5, YY6,

YY7, YY8 or YY9.

Since the last three prewavelet can not constructed in the region shown in YY6, the last

three prewavelets must have one none zero coefficient coming from the complement of the

region shown in Figure YY6, so the last three prewavelets must have one none zero coefficient

corresponding the circles in Figure YY10, which is the complement of the region shown in

Figure YY6. In order to show one of the last three prewavelet can not be locally supported,

the study will be divided into 13 cases.

Case 1: One coefficient comes from the region shown in Figure YY11. Since the prewavelet

can not be constructed in the region shown in Figure YY4, so there must be one coefficient

coming from the region shown in Figure YY12, and the support of this prewavelet has to

connected these two region. Therefore this prewavelet is not locally supported.

Case 2: One coefficient comes from the region shown in Figure YY13. Since the prewavelet

can not be constructed in the region shown in Figure YY7, so there must be one coefficient

coming from the region shown in Figure YY14, and the support of this prewavelet has to

connected these two region. Therefore this prewavelet is not locally supported.

Case 3: One coefficient comes from the region shown in Figure YY15. Since the prewavelet

can not be constructed in the region shown in Figure YY9, so there must be one coefficient

coming from the region shown in Figure YY16, and the support of this prewavelet has to

connected these two region. Therefore this prewavelet is not locally supported.

Case 4: One coefficient comes from the region shown in Figure YY17. Since the prewavelet

can not be constructed in the region shown in Figure YY8, so there must be one coefficient



63

coming from the region shown in Figure YY18, and the support of this prewavelet has to

connected these two region. Therefore this prewavelet is not locally supported.

Case 5: One coefficient comes from the region shown in Figure YY19. Since the prewavelet

can not be constructed in the region shown in Figure YY5, so there must be one coefficient

coming from the region shown in Figure YY20, and the support of this prewavelet has to

connected these two region. Therefore this prewavelet is not locally supported.

Case 6: One coefficient comes from the region shown in Figure YY21. Since the prewavelet

can not be constructed in the region shown in Figure YY4, so there must be one coefficient

coming from the region shown in Figure YY12, and the support of this prewavelet has to

connected these two region. Therefore this prewavelet is not locally supported.

Case 7: One coefficient comes from the region shown in Figure YY22. Since the prewavelet

can not be constructed in the region shown in Figure YY7, so there must be one coefficient

coming from the region shown in Figure YY14, and the support of this prewavelet has to

connected these two region. Therefore this prewavelet is not locally supported.

Case 8: One coefficient comes from the region shown in Figure YY23. Since the prewavelet

can not be constructed in the region shown in Figure YY7, so there must be one coefficient

coming from the region shown in Figure YY14, and the support of this prewavelet has to

connected these two region. Therefore this prewavelet is not locally supported.

Case 9: One coefficient comes from the region shown in Figure YY24. Since the prewavelet

can not be constructed in the region shown in Figure YY9, so there must be one coefficient

coming from the region shown in Figure YY16, and the support of this prewavelet has to

connected these two region. Therefore this prewavelet is not locally supported.

Case 10: One coefficient comes from the region shown in Figure YY25. Since the pre-

wavelet can not be constructed in the region shown in Figure YY8, so there must be one

coefficient coming from the region shown in Figure YY18, and the support of this prewavelet

has to connected these two region. Therefore this prewavelet is not locally supported.
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Case 11: One coefficient comes from the region shown in Figure YY26. Since the pre-

wavelet can not be constructed in the region shown in Figure YY9, so there must be one

coefficient coming from the region shown in Figure YY16, and the support of this prewavelet

has to connected these two region. Therefore this prewavelet is not locally supported.

Case 12: One coefficient comes from the region shown in Figure YY27. Since the pre-

wavelet can not be constructed in the region shown in Figure YY5, so there must be one

coefficient coming from the region shown in Figure YY20, and the support of this prewavelet

has to connected these two region. Therefore this prewavelet is not locally supported.

Case 13: One coefficient comes from the region shown in Figure YY28. Since the pre-

wavelet can not be constructed in the region shown in Figure YY5, so there must be one

coefficient coming from the region shown in Figure YY20, and the support of this prewavelet

has to connected these two region. Therefore this prewavelet is not locally supported.

combine all above cases, it follows that the lemma is true.
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Figure YY28.
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8.4 A Construction Method

Like the chapter 3, there 3 kind of locally supported inner prewavelet. But there are four

kinds of locally supported edge prewavelets. The following are example of inner prewavelets

ψj,3
1,1 = −φj+1

2,2 + φj+1
3,2 + φj+1

2,3 + φj+1
3,3 as shown in Figure YY29;

ψj,4
1,1 = φj+1

1,1 + φj+1
2,1 + φj+1

1,2 − φj+1
2,2 as shown in Figure YY30;

ψj,5
1,1 = φj+1

1,2 + φj+1
2,3 − φj+1

2,1 − φj+1
3,2 as shown in Figure YY31.

The following are four example of edge prewavelets

ψj,1
1,2 = 2φj+1

1,4 + φj+1
1,5 as shown in Figure YY32;

ψj,2
2,1 = 2φj+1

4,1 + φj+1
5,1 as shown in Figure YY33;

ψj,6
3,6 = 2φj+1

7,12 + φj+1
7,11 as shown in Figure YY34.

ψj,7
6,3 = 2φj+1

12,7 + φj+1
11,7 as shown in Figure YY35.

The following are three global supported prewavelets when the refinement level is 3.

ψj,8 = φj+1
7,15 + φj+1

7,13 + φj+1
7,11 + φj+1

7,9 + φj+1
7,7 + 2φj+1

8,7

as shown in Figure YY36;

ψj,9 = φj+1
15,7 + φj+1

13,7 + φj+1
11,7 + φj+1

9,7 + φj+1
7,7 + 2φj+1

7,8

as shown in Figure YY37;

ψj,10 = φj+1
1,1 + φj+1

1,3 + φj+1
1,5 + φj+1

1,7 + φj+1
1,9 + φj+1

1,11 + φj+1
1,13 + φj+1

1,15

as shown in Figure YY38.

Recall the definition of V m
j+1 andWm

j in chapter 3, for the L-shape, I will give the definition

again in a different way.
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Definition 8.4.1. Let V m
j+1 = Am

j+1 ∪Bm
j+1, with Am

j+1 = span{φj+1
ik , i = 2j − 1− 2m, ..., 2j −

1, k = 21 − 1− 2m, ..., 2j+1 − 1}, Bm
j+1 = span{φj+1

ik , k = 2j − 1 − 2m, ..., 2j − 1, i = 21 − 1 −

2m, ..., 2j+1 − 1}, Let Wm
j be subspace of Wj such that Wm

j = Wj

⋂

V m
j+1.

By the above definition, V m
j+1 is a subspace of Vj+1, W

m
j is a subspace of Wj .

Lemma 8.4.1. All the three types of locally supported inner wavelets and four types of

locally supported edge wavelets and the two global supported prewavelets in the V 1
j+1 are linear

independent. That is, the following functions

ψj,3
2j−1−1,k

, k = 2j−1 − 1, .., 2j − 1,

ψj,3
k,2j−1−1

, k = 2j−1 − 1, .., 2j − 1,

ψj,4
k,2j−1−1, k = 2j−1 − 1, .., 2j − 1,

ψj,4
2j−1−1,k

, k = 2j−1 − 1, .., 2j − 1,

ψj,5
2j−1−1,k, k = 2j−1 − 1, .., 2j − 1,

ψj,5
k,2j−1−1, k = 2j−1 − 1, .., 2j − 1,

ψj,1
k,2j−1

, k = 2j−1 − 1

ψj,2
2j−1,k, k = 2j−1 − 1

ψj,6
k,2j−1−1

, k = 2j−1 + 1, .., 2j − 1,

ψj,7
2j−1−1,k

, k = 2j−1 + 1, .., 2j − 1,

ψj,8,

ψj,9

are linear independent.
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Proof. Suppose they are not linear independent. That is, one can find

a1,

a2,

a3
i,2j−1−1, 2j−1 − 1 < i ≤ 2j − 1;

a3
2j−1−1,i, 2j−1 − 1 ≤ i ≤ 2j − 1;

a4
i,2j−1−1, 2j−1 − 1 < i ≤ 2j − 1;

a4
2j−1−1,i, 2j−1 − 1 ≤ i ≤ 2j − 1;

a5
i,2j−1−1, 2j−1 − 1 < i ≤ 2j − 1;

a5
2j−1−1,i, 2j−1 − 1 ≤ i ≤ 2j − 1;

a6
k,2j−1−1, 2j−1 + 1 ≤ k ≤ 2j − 1,

a7
2j−1−1,k, 2j−1 + 1 ≤ k ≤ 2j − 1,

a8

a9

such that a1ψj,1
2j−1−1,2j−1

+ a2ψj,2
2j−1,2j−1−1

+
∑

ik a
3
i,kψ

j,3
i,k +

∑

ik a
4
i,kψ

j,4
i,k +

∑

ik a
5
i,kψ

j,5
i,k +

∑

ik a
6
i,kψ

j,6
i,k +

∑

ik a
7
i,kψ

j,7
i,k + a8ψj,8

i,k + a9ψj,9
i,k = 0,

By the definition, φj+1
2j−3,2k−1

and φj+1
2k−1,2j−3

appear only once in ψj,4
i,k and ψj,1

i,k and ψj,2
i,k .

Since φj+1 are linear independent, that is, a4
i,k, a

1 = 0, and a2 = 0. Thus the above equation

can be simplified to

∑

ik

a3
i,kψ

j,3
i,k +

∑

ik

a5
i,kψ

j,5
i,k +

∑

ik

a6
i,kψ

j,6
i,k +

∑

ik

a7
i,kψ

j,7
i,k + a8ψj,8

i,k + a9ψj,9
i,k = 0, (8.2)

By the similar reason, φj+1
2j−3,2k

and φj+1
2k,2j−3

appear only once in ψj,5
i,k . Since φj+1

ik are linear

independent, a5
i,k = 0. Thus the equation (3.8) can be further simplified to the following

equation
∑

ik

a3
i,kψ

j,3
i,k +

∑

ik

a6
i,kψ

j,6
i,k +

∑

ik

a7
i,kψ

j,7
i,k + a8ψj,8

i,k + a9ψj,9
i,k = 0, (8.3)

Keep going this way, all the coefficient should be zeros.
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Theorem 8.4.1. All the five types of wavelet in the V n
j are linear independent for 1 ≤ n ≤

2j − 2. That means for i > 0 and k > 0 ψj,1, ψj,2, ψj,3, ψj,4, ψj,5, ψj,6, ψj,7, ψj,8 in V n
j are linear

independent.

Proof. Let us prove it by induction, it is true for n=1 ,Suppose it is true for n=p, that means

ψj,3
i,k , 2j−1 − p < i, k ≤ 2j − 1,

ψj,3
k,i, 2j−1 − p < i, k ≤ 2j − 1,

ψj,4
k,i, 2j−1 − p < i, k ≤ 2j − 1,

ψj,4
i,k , 2j−1 − p < i, k ≤ 2j − 1,

ψj,5
i,k , 2j−1 − p < i, k ≤ 2j − 1,

ψj,5
k,i, 2j−1 − p < i, k ≤ 2j − 1,

ψj,1
k,2j−1

, 2j−1 − p < k ≤ 2j − 1,

ψj,2
2j−1,k, 2j−1 − p < k ≤ 2j − 1,

ψj,6
k,2j−1−1, k = 2j−1 + 1, .., 2j − 1,

ψj,7
2j−1−1,k

, k = 2j−1 + 1, .., 2j − 1,

ψj,8,

ψj,9

are linear independent. For n=p+1, there 3(2j + 2n + 1) + 2 new element, they are

ψj,3
2j−1−n,k

, k = 2j−1 − n, .., 2j − 1,

ψj,3
k,2j−n−1, k = 2j−1 − n, .., 2j − 1,

ψj,4
k,2j−n−1

, k = 2j−1 − n, .., 2j − 1,

ψj,4
2j−1−n,k, k = 2j−1 − n, .., 2j − 1,

ψj,5
2j−1−n,k

, k = 2j−1 − n, .., 2j − 1,

ψj,5
k,2j−1−n

, k = 2j−1 − n, .., 2j − 1,

ψj,1
k,2j−1, k = 2j−1 − 1

ψj,2
2j−1,k

, k = 2j−1 − 1
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Suppose they are not linear independent, so I can find

a3
2j−1−n,k, k = 2j−1 − n, .., 2j − 1,

a3
k,2j−n−1, k = 2j−1 − n, .., 2j − 1,

a4
k,2j−n−1, k = 2j−1 − n, .., 2j − 1,

a4
2j−1−n,k, k = 2j−1 − n, .., 2j − 1,

a5
2j−1−n,k, k = 2j−1 − n, .., 2j − 1,

a5
k,2j−1−n, k = 2j−1 − n, .., 2j − 1,

a1

a2

such that aa1ψj,1
2j−1−1,2j−1 + a2ψj,2

2j−1,2j−1−1 +
∑

ik a
3
i,kψ

j,3
i,k +

∑

ik a
4
i,kψ

j,4
i,k +

∑

ik a
5
i,kψ

j,5
i,k +

∑

ik a
6
i,kψ

j,6
i,k +

∑

ik a
7
i,kψ

j,7
i,k + a8ψj,8

i,k + a9ψj,9
i,k + ψ

′

= 0 Where ψ
′

is linear combination of the

following elements.

ψj,3
i,k , 2j−1 − n < i, k ≤ 2j − 1,

ψj,3
k,i, 2j−1 − n < i, k ≤ 2j − 1,

ψj,4
k,i, 2j−1 − n < i, k ≤ 2j − 1,

ψj,4
i,k , 2j−1 − n < i, k ≤ 2j − 1,

ψj,5
i,k , 2j−1 − n < i, k ≤ 2j − 1,

ψj,5
k,i, 2j−1 − n < i, k ≤ 2j − 1,

ψj,1
k,2j−1

, 2j−1 − n < k ≤ 2j − 1,

ψj,2
2j−1,k

, 2j−1 − n < k ≤ 2j − 1,

ψj,6
k,2j−1−1, k = 2j−1 + 1, .., 2j − 1,

ψj,7
2j−1−1,k

, k = 2j−1 + 1, .., 2j − 1,

ψj,8,

ψj,9

By the definition, φj+1
2j−n−2,2k−1 and φj+1

2k−1,2j−n−2 appear only once in ψj,4
i,k and ψj,1

i,k and

ψj,2
i,k . Since φj+1 are linear independent, that is, a4

i,k, a
1 = 0, and a2 = 0. Therefor the above

equation can be simplified to following expression:
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Thus the above equation can be simplified to

∑

ik

a3
i,kψ

j,3
i,k +

∑

ik

a5
i,kψ

j,5
i,k + ψ

′

= 0, (8.4)

By the same reason, all the coefficient should be zeros. Therefor the above equation can

be simplified to following expression:

ψ
′

= 0

By the induction, all the coefficient of ψ
′

= 0 are zeroes. That means

ψj,3
i,k , 2j−1 − n < i, k ≤ 2j − 1,

ψj,3
k,i, 2j−1 − n < i, k ≤ 2j − 1,

ψj,4
k,i, 2j−1 − n < i, k ≤ 2j − 1,

ψj,4
i,k , 2j−1 − n < i, k ≤ 2j − 1,

ψj,5
i,k , 2j−1 − n < i, k ≤ 2j − 1,

ψj,5
k,i, 2j−1 − n < i, k ≤ 2j − 1,

ψj,1
k,2j−1

, 2j−1 − n < k ≤ 2j − 1,

ψj,2
2j−1,k

, 2j−1 − n < k ≤ 2j − 1,

ψj,6
k,2j−1−1, k = 2j−1 + 1, .., 2j − 1,

ψj,7
2j−1−1,k

, k = 2j−1 + 1, .., 2j − 1,

ψj,8,

ψj,9

are linear independent for V n
j .

Theorem 8.4.2. All the five types of wavelets in the W n
j form a basis of W n

j for 1 ≤ n ≤

2j − 2.

Proof. By counting, the dimension all the prewavelets in W n
j for 1 ≤ n ≤ 2j − 2 is right the

dimension of W n
j .

Theorem 8.4.3. All the wavelets in the W 2j−1
j \W 2j−2

j are linear independent and form a

basis for V 2j−1
j+1 \V 2j−2

j+1 which is spanned by the functions in {φj+1
i,k , 1 ≤ i ≤ 2 or 1 ≤ k ≤ 2}.
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Proof. the proof is same ideal appeared in Chapter 3.

Theorem 8.4.4. All the prewavelet functions in the W 2j−1
j form a basis for Wj.
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Figure YY30.
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Figure YY31.
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Figure YY32.
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Figure YY33.
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Figure YY34.

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

21

Figure YY35.
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Figure YY37.
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Figure YY38.

8.5 Another Construction Method

There is another method to construct prewavelet basis in L-shape domain. The only different

from the previous section is the last global supported prewavelet ψj,10, all the others, ψj,3,

ψj,4, ψj,5, ψj,1, ψj,2, ψj,6, ψj,7, ψj,8, ψj,9, is same to the one in the previous section.

The ψj,10 are constructed in the following way.

ψj,10 = φj+1
15,1 + φj+1

15,3 + φj+1
15,5 + φj+1

15,7

as shown in Figure YY39.

In order to show this basis is right for space Wj, the definition of V m
j+1 and Wm

j should be

given in a different way.

Definition 8.5.1. Let V m
j+1 = span{φj+1

ik , i = 1, ..., 2m + 1, k = 1, ..., 2j − 1} for m =

1, ..., 2j − 1, V m
j+1 = span{φj+1

ik , i = 1, ..., 2j − 1, k = 2j, ..., 2m − 2j + 1} ∪ V 2j−1
j+1 , for m =

2j, ..., 2j + 2j−1 − 1, Let Wm
j be subspace of Wj such that Wm

j = Wj

⋂

V m
j+1.
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By above definition, the space of V 1
j+1 is the space shown as in Figure YY40, and the

space of V 9
j+1 is the space shown as in Figure YY41.
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Figure YY40.
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By the above definition, V m
j+1 is a subspace of Vj+1, W

m
j is a subspace of Wj .

Lemma 8.5.1. All the three types of locally supported inner wavelets and three types of

locally supported edge wavelets and the one global supported prewavelet in the V 1
j+1 are linear

independent. That is, the following functions

ψj,3
2j−1,k

, k = 2j−1 − 1, .., 2j − 1,

ψj,4
2j−1,k

, k = 2j−1 − 1, .., 2j − 1,

ψj,5
2j−1,k, k = 2j−1 − 1, .., 2j − 1,

ψj,1
2j−1,k

, k = 1, .., 2j−1 − 1

ψj,2
2j−1,k, k = 2j−1 − 1

ψj,7
2j−1,k, k = 2j−1 − 1

are linear independent.

Proof. Suppose they are not linear independent. That is, one can find

a3
2j−1,k, k = 2j−1 − 1, .., 2j − 1,

a4
2j−1,k, k = 2j−1 − 1, .., 2j − 1,

a5
2j−1,k, k = 2j−1 − 1, .., 2j − 1,

a1
2j−1,k, k = 1, .., 2j−1 − 1

a2
2j−1,k, k = 2j−1 − 1

a7
2j−1,k, k = 2j−1 − 1

such that
∑

ik a
1
2j−1,kψ

j,1
2j−1,k

+
∑

ik a
2
2j−1,kψ

j,2
2j−1,k

+
∑

ik a
3
i,kψ

j,3
i,k +

∑

ik a
4
i,kψ

j,4
i,k +

∑

ik a
5
i,kψ

j,5
i,k +

∑

ik a
7
i,kψ

j,7
i,k = 0,

By the definition, φj+1
2j+1−3,2k−1

appear only once in ψj,4
i,k and ψj,7

2j−1,2j−1−1
. Since φj+1 are

linear independent, that is, a4
i,k, a

7 = 0. Thus the above equation can be simplified to

∑

ik

a1
2j−1,kψ

j,1
2j−1,k

+
∑

ik

a2
2j−1,kψ

j,2
2j−1,k

+
∑

ik

a3
i,kψ

j,3
i,k +

∑

ik

a5
i,kψ

j,5
i,k = 0, (8.5)

By the similar reason, φj+1
2j+1−3,2k

appear only once in ψj,5
i,k . Since φj+1

ik are linear independent,

a5
i,k = 0. Thus the equation (8.5) can be further simplified to the following equation

∑

ik

a1
2j−1,kψ

j,1
2j−1,k +

∑

ik

a2
2j−1,kψ

j,2
2j−1,k +

∑

ik

a3
i,kψ

j,3
i,k = 0, (8.6)
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Keep going this way, all the coefficient should be zeros.

Theorem 8.5.1. All types of wavelet in the V n
j are linear independent for 1 ≤ n ≤ 2j − 1.

That means for i > 0 and k > 0

Proof. the proof is similar to the previous section.

Theorem 8.5.2. All types of wavelet in the V 2j

j are linear independent.

Proof. By previous theorem, All types of wavelet in the V 2j−1
j are linear independent. Let

ψ
′

be linear combination of the spline functions in V 2j−1
j , in order to prove the theorem, the

following box splines

ψj,3
i,2j−1 , i = 1, .., 2j−1 − 1,

ψj,4
i,2j−1 , i = 1, .., 2j−1 − 1,

ψj,5
i,2j−1 , i = 1, .., 2j−1 − 1,

ψj,1
1,2j−1 ,

ψj,9

ψ
′

should be linear independent. Suppose they are not linear independent, so I can find

a3
i,2j−1 , i = 1, .., 2j−1 − 1,

a4
i,2j−1 , i = 1, .., 2j−1 − 1,

a5
i,2j−1 , i = 1, .., 2j−1 − 1,

a1
1,2j−1 ,

a9

such that a1
1,2j−1ψ

j,1
1,2j−1 +

∑

ik a
3ψj,3 +

∑

ik a
4
i,kψ

j,4
i,k +

∑

ik a
5
i,kψ

j,5
i,k + a9ψj,9 + ψ

′

= 0, By the

definition, φj+1
2k−1,2j+1

and appear only once in ψj,4
i,k and ψj,1

1,2j . Since φj+1 are linear independent,

that is, a4
i,k, a

1 = 0. Therefor the above equation can be simplified to following expression:

∑

ik

a3ψj,3 +
∑

ik

a5
i,kψ

j,5
i,k + a9ψj,9 + ψ

′

= 0, (8.7)
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By the definition, φj+1
2k,2j+1

and appear only once in ψj,5
i,k . Since φj+1 are linear independent,

that is, a5
i,k = 0. Therefor the above equation can be simplified to following expression:

∑

ik

a3ψj,3 + a9ψj,9 + ψ
′

= 0, (8.8)

By the definition, φj+1
2k,2j and appear only once in ψj,3

i,k . Since φj+1 are linear independent,

that is, a3
i,k = 0. Therefor the above equation can be simplified to following expression:

a9ψj,9 + ψ
′

= 0, (8.9)

By the definition, φj+1
2j−1,2j and appear only once in ψj,9

i,k . Since φj+1 are linear independent,

that is, a9 = 0. Therefor the above equation can be simplified to following expression:

ψ
′

= 0, (8.10)

By previous theorem, all the coefficient of ψ
′

= 0 are zeroes. That means

ψj,3
i,2j−1 , i = 1, .., 2j−1 − 1,

ψj,4
i,2j−1 , i = 1, .., 2j−1 − 1,

ψj,5
i,2j−1 , i = 1, .., 2j−1 − 1,

ψj,1
1,2j−1 ,

ψj,9

ψ
′

are linear independent for V n
j .

Theorem 8.5.3. All types of wavelet in the V n
j are linear independent for 1 ≤ n ≤ 2j +

2j−1 − 2.

Proof. the proof is similar to the previous section.

Theorem 8.5.4. All the five types of wavelet in the V n
j compose linear independent basis of

W n
j for 1 ≤ n ≤ 2j + 2j−1 − 2.
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Proof. By counting, the number of prewavelet in space V n
j is exactly the dimension of W n

j

for 1 ≤ n ≤ 2j + 2j−1 − 2.

Theorem 8.5.5. All types of prewavelet in the W 2j+2j−1−1
j \W 2j+2j−1−2

j are linear indepen-

dent for scaling functions of V 2j+2j−1−1
j \V 2j+2j−1−2

j , which is set {φj+1
i,k , 2

j+1 − 2 ≤ k ≤

2j+1 − 1}.

Proof. Let us just concentrate on the basis functions in V 2j+2j−1−1
j \V 2j+2j−1−2

j and in

W 2j+2j−1−1
j \W 2j+2j−1−2

j . Then the scaling matrix between two sets of basis functions is the

following matrix up to a constant.

Where A is (2j+1 − 2) × (2j+1 − 2) matrix, so if matrix A is invertible, then then the

wavelets basis I choose for W 2j+2j−1−1
j \W 2j+2j−1−2

j are linear independent for the scaling

functions of V 2j+2j−1−1
j \V 2j+2j−1−2

j .

Claim the matrix has rank 2j+1 − 2, so it is invertible. By the calculation
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A =



































































































1 2

1 0 2

1 0 −1

1 1 0 0 −1

1 −1 1 1

. . .

1 0 2

1 0 −1

1 1 0 0 −1

1 −1 1 1

. . .

1 0 2

1 0 −1

1 1 0 0 −1

1 −1 1 1

0 0 1 0



































































































.

A =





















































D

B1 B2

B1 B2

. . .

B1 B2

. . .

B1 B2

B1 C1

C2





















































,
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where

D =
(

1 2 0 0

)

, B1 =



















1 0 2

1 0 −1

1 1 0

1 −1



















, B2 =



















0 0 0 0

0 0 0 0

0 −1 0 0

1 1 0 0



















,

C1 =



















0 0

0 0

0 −1

1 1



















, C2 =
(

1 0

)

,

Let E = (m n 0 0). By the row operations we have













E

B1 B2

B1 B2













=





















































m n 0

1 0 2

1 0 −1

1 1 0 0 −1

1 −1 1 1

1 0 2

1 0 −1

1 1 0 0 −1

1 −1 1 1




















































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→





















































m n

−n 2m

2m −n

n m

2m+ n 2n 0 0

1 0 2

1 0 −1

1 1 0 0 −1

1 −1 1 1





















































.

Thus by row operations,

A→

































A1 G1

A2 G2

A3 G3

. . .

A2j−2 G2j−2

C ′
1

































,

where An is an upper triangular matrix of size 4 × 4 while A′
n is a lower triangular matrix

of size 4 × 4 which are given below.

A1 =



















1 2 0 0

−1 1 0

1 −1

2



















, G1 =



















0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0



















, A2 =



















1 1 0 0

−1 2 0

2 −1

1



















,

G2 =



















0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0



















, An =



















n 2 0 0

−1 n 0

n −1

2



















, Gn =



















0 0 0 0

0 0 0 0

0 0 0 0

n 0 0 0



















,
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and the matrix C ′
1 is the following matrix

C ′
1 =





2j+1 − 5 2

1 0



 .

It is easy to see the rank of C ′
1 is 2. Thus the rank of A is 2j+1 − 2. Thus, all the prewavelet

functions constructed above in the W 2j+2j−1−1
j \W 2j+2j−1−2

j are linear independent and hence

form a basis of V 2j+2j−1−1
j \V 2j+2j−1−2

j .

All types of prewavelet in the W 2j+2j−1−1
j \W 2j+2j−1−2

j are linear independent for the basis

of V 2j+2j−1−1
j \V 2j+2j−1−2

j , we know the coefficient of wavelet in W 2j+2j−1−2
j for the basis of

V 2j+2j−1−1
j \V 2j+2j−1−2

j are all zeros, that means all the wavelets in W 2j+2j−1−1
j are linear

independent. then we come to the following theorem.

Theorem 8.5.6. All types of prewavelets constructed in this section compose the basis of

W 2j+2j−1−1
j .

Proof. By counting, the number of the prewavelet is exactly the dimension of the space of

W 2j+2j−1−1
j , combine with the independent property of these prewavelets, they compose the

basis.
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