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ABSTRACT

Finite element method is one of powerful numerical methods to solve PDE. Usually, if
a finite element solution to a Poisson equation based on a triangulation of the underlying
domain is not accurate enough, one will discard the solution and then refine the triangulation
uniformly and compute a new finite element solution over the refined triangulation. It is
wasteful to discard the original finite element solution. We propose a Prewavelet method
to save the original solution by adding a Prewavelet subsolution to obtain the refined level
finite element solution. To increase the accuracy of numerical solution to Poisson equations,
we can keep adding Prewavelet subsolutions.

Our Prewavelets are orthogonal in the H' norm and they are locally supported except
for one globally supported basis function in a rectangular domain. We have implemented
these Prewavelet basis functions in MATLAB and used them for numerical solution of
Poisson equation with Dirichlet boundary conditions. Numerical simulation demonstrates
that our Prewavelet solution is much more efficient than the standard finite element method.
Prewavelets over other boundary domains, such as triangle, L-shape domain, are also con-

structed.
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CHAPTER 1

INTRODUCTION

Finite element method is one of powerful numerical methods to solve PDE. Usually, if a finite
element solution to a Poisson equation based on one level triangulation of the underlying
domain is not accurate enough, one will discard the solution and then refine the triangulation
and compute a new finite element solution at the refined level. It is wasteful to throw the
original finite element solution away. In order to save the original solution and get the more
accurate new solution, we have to add HJ orthogonal subsolution. That is, let V}, be a finite
element space over a triangulation A, and V}, 2 be the finite element space over the refined
triangulation. Since Vj, C Vj /9, let W), = Vj o © V), under H} norm, if ®;, € V}, is a finite
element solution of Poisson equation with Dirichlet boundary condition, we can find ¥y, € W,
so that ®;, + ), is the finite element solution in V},/. In addition, suppose that ¢, is the
most accurate solution that a computer can compute in the sense that it would be out of
memory when computing a finite element solution ®;,/5 in V}, /5 directly. Since the size of the
linear system associated with W), is smaller than @y ,, if the computer can solve ¥},, we can
add ), to ®;, to get @,/ achieving the next level of accuracy. In this dissertation, we discuss
how to compute ¥;,. We shall construct locally supported basis functions and a few global
supported basis functions ¢y, k = 1,---, N, which span Wj,. 9y, ;’s are called prewavelets
and Wy, is a linear combination of these v, ;’s and hence is called a Prewavelet subsolution.

Prewavelets under L, norm instead of H} norm have been studied for more than 15
years pioneered by Jia and Micchelli [9], see also [5]. There are many methods available to
construct locally supported prewavelets over 2D domains under the Ly norm. That is, W), =

Vij2 © V), under Ly norm, e.g., in a series of papers [6], [7], [8], [11], and [4]. In 1997, Bastin



and Laubin ([2]) explained how to construct compactly supported orthonormal wavelets in
Sobolev space in the univariate setting. See also [1] for compactly supported biorthogonal
wavelets in Sobolev space. People were also looking for prewavelets in Sobolev space in
2D domain for numerical solution of PDE, also in the univariate setting. However in [13],
Lorentz and Oswald showed that there is no locally supported prewavelets in Sobolev space
or under H} norm based on integer translations of a box spline over R?. Since continuous
piecewise linear finite element can be expressed by using box spline Bjj, the result in [13]
ruins a hope to find locally supported prewavelets under H} norm over R?. But this is not
an end of story. It is possible to construct locally supported prewavelets in a semi-norm in
the univariate setting in [10]. In [14], Jia and Liu used the Prewavelet to solve boundary
valued ODE problem. It is also possible to construct compactly supported prewavelets in
H" norm over each nested subspace, but the union of these prewavelets over all levels fails
to be a stable basis for a Sobolev space (cf. [12]). Our new question is if we can find a
Prewavelet basis with as few as possible global supported Prewavelet functions. Our answer
is affirmative. That is, there is a Prewavelet basis for W), with only one global supported
basis function under the H}! norm over rectangular domains, and there is a locally supported
Prewavelet basis for W), over triangular domains, and there is a Prewavelet basis for W), with
three global supported basis function under the H} norm over L-shape domains. These are
the main results in this dissertation

The dissertation is organized as follows: We first explain a construction method to con-
vert the Dirichlet boundary value problem of Poisson equation into a Poisson equation with
zero boundary condition. An explicit conversion will be given. Thus the H' norm is now
equivalent to the Hg semi-norm. Then we introduce some notation to explain the weak solu-
tion of Poisson equation and its approximation to the exact solution. These explanations
are well-known and given in the Preliminary section §2. In §3, we explain how to construct
locally supported prewavelets under H} semi-norm. In §4, we explain how to implement our

Prewavelet method for numerical solution of Poisson equation. In §5 we present some numer-



ical results. Our numerical experiment show that the time for computing a finite element
solution by our Prewavelet method is about half of the time by the standard finite element
method using the direct method for inverting the linear systems. If using the conjugate gra-
dient method for the linear systems for the finite element method, the Prewavelet method
is still faster than for sufficiently accurate iterative solutions. In §6, I describe how to con-
struct locally supported Prewavelet under triangular domain, the numerical result shows the
result works. In §7, I got the following result: there is no local supported Prewavelet basis
under H} norm with rectangular boundary if we constructed the Prewavelet from linear box
splines, while there is a compacted local supported Prewavelet basis when the boundary is
triangle. That is, the existence of locally supported Prewavelet basis constructed from linear
box splines under H} norm is dependent on the boundary shape. In §8, I will show the same

kind of results on Prewavelet basis over L-shaped domain.



CHAPTER 2

PRELIMINARY

2.1 SIMPLIFICATION OF THE POISSON EQUATION

Let us start with a square domain Q = (0,1) x (0,1) € R?. Consider the Dirichlet boundary

value problem for Poisson equation:

/

—Au(z,y) = g(z,y), (,y) €

u(z,y) = fi(z), for y=0 and 0<z<1
u(z,y) = fol(z), for y=1 and 0<z<1
u(z,y) = f3(y), for =0 and 0<y<1
u(z,y) = fa(y), for r=1 and 0<y<1

Without lose of generality, we may assume that fi(1) = fo(1) = f3(1) = f4(1) = f1(0) =
f2(0) = f3(0) = f1(0) = 0. Otherwise, letting f1(0) = f3(0) = a1, f3(1) = f2(0) = as,
fo(1) = fa(1) = a3, f1(0) = f1(1) = a4, we define h(z,y) = a1 + (a4 — a1)x + (a2 — a1)y +

(a3 + a1 — ag — ag)xy, and v(z,y) = u(z,y) — h(z,y). Then the above Dirichlet problem

becomes to:
[ D@y =g(ry). (ry) e
v(z,y) = filx) —h(z,0), for y=0 and 0<z<1
Yy v(z,y) = folz) — h(x,1), for y=1 and 0<z<1
v(z,y) = f3(y) — h(0,y), for =0 and 0<y<l1
| v(ry) = fuly) —h(Ly), for z=1 and 0<y<1

which satisfy the above assumption.



Now let w(z) = v(z,y) —2(fa(y) —h(1,y)) — (L —2)(f3(y) — (0, y)) —y(fa(z) — h(z, 1)) —
(1 —y)(f1(x) — h(z,0)). Then w(z) satisfies the equation

{ —Auw(z,y) = giley),  (2y) €Q

w(z,y) =0, (z,y) € 00

with g1(z,y) = 9(z,9) + 2z [~z (fa(y) = h(1,9)) — (1= 2)(f3(y) — (0, 9)] + Zz [~y (falz) —
h(z,1)) = (1= y)(fu(x) — h(z,0))].

If we can find solution for w, it is easy to get u(z,y). In the remaining dissertation, we

only consider the Poisson equation with zero boundary condition:

—Au(x,y) = g(x,y), x,y) €
(z,y) =9g(=y), (z.y) 2.1)
u(z,y) =0, (z,y) € oK.
2.2  SEMINORM
Next we define
Hy(Q)={vel*(Q): (vv),<oo and v(z,y)=0,(z,y)ec 0N},
where the inner product <u, v)s is defined by
ou(z,y) ov(x,y)  Ou(z,y) dv(z,y)
dxdy.
{u,v) [ ox ox + oy Ay ey
By using Poincare’s inequality, |ulls = 1/(u,u), is a standard Sobolev norm for H}(().
Suppose u,v € H}(Q). Integration by parts yields
1 1
— [ | stewte sy
o Jo
1 1
=/ / —Au(z, y)v(z,y)dzdy
0o Jo
bt dua,y) du(a,y) | ul,y) du(z,y)
N / / ox ox + dy dy dedy

= (u,v)s.

Thus, a weak solution u to (2.1) is characterized by finding u € H} () such that

(u,v)s = {g,v), Vv € Hy(Q). (2.2)



The following result is well-known. For convenience, we present a short proof.

Theorem 2.2.1. Suppose g and u € C*() is a weak solution satisfying (2.2). Then u is a

classic solution satisfying (2.1).

Proof. Let v € H}(2). Then integration by parts gives

(u,v)s
/ / ou(z,y) ov(z,y) N ou(zx,y) 8v(x,y)dxdy
ox oy oy
/ / —Au(z,y)v(x,y)dedy

(—Au(z,y),v).

It follows that (g — (—Au(z,y)),v) = 0 for all v € H}(Q2). That is, ¢ = —Au and hence, u
satisfies (2.1). O

2.3 TYPE-I TRIANGULATION

Next we introduce continuous linear spline space on Q = [0, 1] x [0, 1]. For convenience, let
N; = (2 —1)? and j > 1. Denote zj; = % = yj; for i = 1,..,2/ — 1. Clearly, the lines segment
of v = xj and y = y;; divide the square €2 into N; sub-squares. The diagonal going from
down-left to up-right of each sub-square divides the sub-square into two congruent triangle.

We will refer to the set of all such triangles as a Type-1 triangulation of €2 (see Figure 1).

Figure 1. Type-I triangulation with j=2.



Define (bgk to be linear spline with support on the hexagon with following vertices

{(@j6—1)s Yit=-1))» (@i, Yie—1))s (T5641), Yik)) s (Tjit1)s Yickan))s (Ti41)s Yick))s (T56-1), Ysk))

and @i (7, Yjpr) = 0; 40y ys, where ;. = 0if ¢’ # i and 1 if 7' = 4.
Let V; = span{¢),,i = 1,..,27 =1,k = 1, .., 27— 1} be the subspace of H}(Q2). By following

lemma, there exists a unique u; € V; satisfying
(s, ) = {g,v) Yo € V. (2.3)

u; is the standard finite element solution in V.

2.4 ERROR APPROXIMATION

The following result is well-known. For completeness, we include a short proof.
Lemma 2.4.1. Given g € L*(Q), (2.8) has a unique solution.

Proof. Reorder the basis functions gbgi) t0 ¢, m = 1,..., N; and let u; = Y ap¢rm. Denote
kmn = (@m, On)s and Fp, = (g, ¢m) for m = 1,.....; N;. Set A = (a,,) to be the coefficient
vector, K = [kmn|i<mn<n, to be the stiff matrix, and F' = (F},) to be the right hand side

vector. Then the solutions in (2.3) is written in the following matrix equation form
KA=F. (2.4)

We claim that the solution for above equation always exists and is unique. Otherwise there is
a nonzero vector ¢ such that K¢ = 0. Write ¢ = (¢;,, m =1, ......; N;) and let v = SN i

be the linear spline. Then Kc = 0 is equivalent to
(V,pm)s =0 VYm=1,--- Nj.

Multiplying (v, ¢m)s by ¢, and summing over m yields (v,v)s = 0. Thus,

bt ov(m,y) ov(w,y)
/0 /0 O O dedy =0,




and

//8vxy 8vxy)dxdy:0’
dy

it follows that, 8”(%’” = 0 and %@’y) = 0, it is a constant function. Boundary condition

implies v = 0. Since {¢,, } are linear independent, ¢ = 0 and hence, the solution is unique. ]

Let us discuss the error between u and w;. It is standard in finite element analysis (cf.

[3]). For completeness we present a simple derivation. Subtracting (2.3) from (2.2) implies
(u—uj,w)s =0, Yw e V. (2.5)
Then for any v € Vj

lu—wsll} = (u—uj,u— )
= (u—uj,u—v)s+ (u—1uj,v—ujs,
= (u—u;,u—v)s
< flu = wjllsllw =l
It follows that ||u — u;||s < ||lu — v||s for any v € V}. Thus we have proved the following, (cf
3])-

Lemma 2.4.2. (Céa’s Lemma) ||[u — u;||s = min{|ju — v||s : v € V}}.

Given u € C°(Q), let u; € V; be the interpolation of u:

ur ="y uli, )6 -

ik

The following error estimate is well-known.

Lemma 2.4.3. Suppose u € C*(2). Then

= wall, < \/\

02ul)?
y?

8u@ 2
01' oy

i

Oz



Proof. Let w = u — uy. Let us first give estimates of g—i’ and aa—“’ in the region of triangle
T with vertex {(0,0),(0,1/27),(1/27,1/27)}, by the definition, w = 0 on the vertex of the

region T. For (z,y) € T, the Taylor expansion yield the following equations,

0= w(z,y)+ (Vw,(—z,—y))

+ x2/0 (1- t)glf(u — O, (1 — t)y)dt

+ 2xy/0 (1- t)g—Z’%‘J((l —t)z, (1 — t)y)dt

+y2/0 (1—t)gz;]((l—t)a:,(l—t)y)dt

0= w(z,y)+ (Vw, (1/2 —z,—y))
0w

+(1/2 _z)2/0 (1= (1= 1)+ 1/29, (1~ t)y)de

+2(1/27 — 2)(~y) /0 (1-— t)g—:g—j((l — )z + /27, (1 —t)y)dt

+y2/0 (1—t)gzg((l—t)x+t/2j,(1—t)y)dt

0= w(z,y)+(Vuw, (1/2 —2,1/2 —y))

+ (1/27 — z)? /01 (1—1) glf(u — ) +t/20, (1 —t)y +t/27)dt

+2(1/27 — 2)(1/2) — y) /0 (1— t)g—:g—Z((l —t)r + /27, (1 —t)y +t/27)dt
+ (1/27 — y)2/0 (1-— t)%((l — )+ /27, (1 —t)y 4+ t/27)dt.

Equivalently, the above equations can be written in the following matrix form,

1 -z -y w (8}

L gw | _
E_:E -y gx - T2
1 1 w

1 ——r ==

2 2 oy "



d*w

- :—3:2/0 (1 -5~ )2, (1~ )it
_on /1 1= 02%2% (1 e (1 — Dyt
Y 0 dx dy ’ Y

_y / (- t)%j((l ) (1 t)y)dt

Ty =— (1/27 — x)2/0 (1-— t)g%’(@ — ) +1/27, (1 —t)y)dt
—201/2 —a)(=) [ (1= Z T =00 4/2, (= )i
— y2/0 (1— t)g%’((l —t)r +t/27, (1 —t)y)dt
ry = — (1/27 — x)? /1 (1— t)%((l — ) +t/20, (1 —t)y +t/20)dt
—2(1/27 — x)(1/2) —3) /0 (1-— t)g—zg—j((l — ) +1/27, (1 —t)y +t/27)dt
—(1/27 — y)2/0 (1— t)%((l — )+ /27, (1 —t)y +t/2)dt

It is easy to solve %—’;’(:E, y) and g—;‘c’(:ﬂ, y) from the above system of linear equations.

)= =22 / (1= 721~ ), (1~ D))

—2:L'y2j/0 (l—t)g—l;g—z;((l—t)x,(l—t)y)dt

—yzzj/o (1—t)82—w((1—t)x,(1—t)y)dt

Oy?
+ (1/27 — x)?27 /1 (1— t)g%}((l —t)x + /27, (1 —t)y)dt
, -l Oow dw ,
+2(1/2 —x)(—y)zﬂfo (1= DG G =t +1/2. (1= )

+ yzzj/o (1-— t)%((l —t)x + /27, (1 —t)y)dt

10



11

%(x,y) :(1/2ﬂ'—g;)22j/0 (1—t)222((1—t)x+t/2] (1—t)y +t/27)dt
4212 — 2)(1/2 — )2 /01 (1-— t)g—z}g—w((l e £/20, (1 — By + /2t
+(1)2 — g2 /1 (1— t)?; V(1 by 1/27, (1 — t)y + /20t
—(1/23'—:,;)2%'/0 (1—t)?;w((1—t)x+t/2j (1 —t)y)dt

91/ —x)(—y)Qj/O (1 —t)g—wg—l;((l e /27, (1 — )y)dt

— y22j/0 (1-— t)g2 (1 —=t)x+t/2, (1 —t)y)dt

2
Thus we can get the estimation for (2%(z, y)) and ( Yz, y)) with:

ow Pu u | ow ow||?
g < 22j 92j 92j || - 2~
ow 02 82 ow ow ||?
- < 2% 2% 2% .
(5 <x,y>) o2 | | o | S| e |5
it follows
Lol 7 ow 2 ow 2
fo-wlz< [ (—(:z,y)) +<a—y<x,y>) dedy
20|12 ow ow ||?
12/2% || =— 12/2% 12/2% dxd
/// 82 gl iy aaym“’
0%u 162w ||? ow ow ||*
12/2% +12/221 — | +12/2¥
< ox? 0y? || 1 ox Oy Io0
Therefore
ou Ou 02u
el + ], + 2],
lu — s < V12 5 :

that means ||u — us||s goes to zero as j goes to infinity. According Theorem(3.2), we will get

|lu —u,||s < ||u—urlls, and hence, we get the result of this lemma. O

2.5 MULTIRESOLUTION

We start with the definition of multi-resolution approximation of H3():
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Definition 2.5.1. A multiresolution approzimation of H}(Q) is a sequence of finite dimen-
sions subspaces V;, j € Z, of Hy(Q) such that
(1) V; - ‘/j-i-la ] € Z+;
(2) U;2, Vj is dense in Hg(Q).

Let IV be the type-1 triangulation with 2N, triangles. Naturally, let IV be the uniform
refinement of IV. Let V; be the continuous piecewise linear spline space defined on the
previous section. That is, V; = span{¢? i = 1,.,27 — 1,k = 1,..,2/ — 1}, where ¢/, are
continuous piecewise linear functions which is 1 at (xj;, y;x) and zero at all other vertices.
Let Vi1 = span{¢l i =1,..,27t =1,k = 1,.., 27" 1}, and (2,114, y;11.4) are the vertices

on the j+1 level Type-1 triangulation. Then the refinement equation is easily seen to be
. . 1 . 1 . 1 . 1 . 1 . 1 .
+1 +1 +1 +1 +1 +1 +1
e = Poiok T §¢%i—1,2k + §¢%i—1,2k—1 + §¢%i,2k—1 + §¢j2i+1,2k + §¢j2i+1,2k+1 + §¢j2i,2k+1'

See the Figure 2.

| i
(0, 1/23)_%_215_
e
(0,0) (1/27,0)

Figure 2. Dilation relations

The main purpose of this dissertation is to build a basis for the orthogonal complement
W; of V; in V; 11 under the inner product (-, ). Suppose we have the W;. Then V;,; = V;+W;
under the HJ(£2) inner product. For a solution u; satisfying (3), we do not have to find out

the solution for

uji1 € Vjyq such that (u;41,v)s = (g,v), Yv € Vji.
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Instead, we only need to find solutions for

w; € Wj such that (w;,v)s = (g,v), Yv e W,.

Then we have w; 4+ u; = u;41. Ideally, we hope the supports of basis functions for W; are
small, since the small supports can accelerate the calculations of (g,v)s. As explained in
the Introduction, there is no locally supported prewavelets for ;. Nevertheless, we shall
construct basis functions with only a few globally supported basis function for W; in the
following chapters.

Clearly the I'; can be continuously refined and hence we will have a nested sequence of

subspaces

VicVeoCcVaCV,C Vs

to span H} () by Lemma 2.4.3, since C?(12) is dense in H}(Q).
Let W; C Vj41 be the orthogonal complement of V; in V4, for each refinement level j,
ie.,

Vin = VJ@WJ

Then we get the decomposition
Vin=ViEpwm. pmw.pw:p ... pw;
for any j > 1. The weak solution u;;; to the Poisson equation (2.1) at Vj41 can be built by
Ujp1 = Uy + Wy + we + -+ - + wj.

The following chapters focus on building basis functions for the orthogonal complement

w;.



CHAPTER 3

PREWAVELETS OVER TYPE-I TRIANGULATIONS

Next by direct calculation, we obtain the following lemma immediately.

Lemma 3.0.1. We have ( Zk,gz%:rzlk,) =2,

< zk? ¢%:r11 2k >s = 1/2, ( ik ¢%j_21k—17 >s = 1/2, < ik ¢%j—:1,2k7 >s = 1/2,

<¢ %:—21k+17 s =1/2, ( Zk? ¢§:——11 2k—1 s =1, ( Zk’¢%2—+11 okt1r s = 1,

<¢ik, ¢]+12 okr )s = —1/2, (¢ ik ¢%j+12 ore )s = —1/2, < zk>¢%:’_21k—27 )s =—1/2,
<¢ik7 ¢%j21k+27 s =—1/2, (¢ ik ¢]+12 oh—2s)s = 0, (¢] iks 45%:;12 2k+2> )s =0,

<¢ 22k s =—1/2, ( zk7¢2z 12k+1=> =-1, ( zk7¢2z+12k+27> =-1/2,
(
(o1

1 1 1
¢zk’ ¢%j+2 2k+1>> =-1/2, {¢; ik q%;:-l,%—l’ )s=—1, (& ik Q%:r 1,2k—2) )s = —1/2,

e qb], k/,> =0, for other i,k which are not listed above.

3.1 PREWAVELETS CONSTRUCTION

Let ¢’ be a function in Wj. Since W; C V41, let us write ¢/ = > qb’Hblk for some
unknown coefficients b;,. We need to describe the concept of locally supported function in

vJ more precisely.

Definition 3.1.1. ¢/ =% qb{,jlbik is said to be locally supported if there exists a positive
integer I which is independent j, such that the number of the none zero coefficient by, is less

than 1.

By orthogonal condition <<z>§', > W) s = 0, we need to solve the following equations.

0={ W,meﬁj“ :Zbikw{,k,,%jl)s. (3.1)
i,k

14
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Each (i', l{;/) determines one equation. Since there are N; elements in the set Vj, they deter-
mine the N; equations. These N; equations with N, coefficients, b; ;. There are at least
Nji1—N; degrees of freedom. The solution space of these equation system should be the W;.
The linear independence of ¢{,7 - implies that the coefficient matrix of the above linear system

is of full rank. Hence, there are N;;; — NN; linear independent solutions which constitute a

basis for W;.

Definition 3.1.2. Let V! = span{gb{,jl,i =1,..,2m—1,k=1,...2m— 1} be a subspace of
Vig1. Let WI* be subspace of W; such that Wi = W; (V.

Obviously § C Vi, C VA, C...C V¥ =V, andDC W C W2 C...C WZ =W,
There is no nonzero solution of (3.1) in space of V}',,. However, there are five solution of

(3.1) in space V7. They are solutions of the following system of linear equations.

Z bik <¢ng1> {,1>S =0, Z bik <¢g1:1’ %71>s =0,

1<i,k<3 1<i,k<3
i+1 ,j i+1 5
Z bik <¢Zk ¢{,2>s =0, Z bik <¢fk ) %72>S =0.
1<i,k<3 1<i,k<3

They are equivalent to the following equations.

~ ~— ~— ~
»
=) =) (e (@]




Using Lemma 3.0.1, we obtain the following equations.

1 12 -1 1/2 2 1/2 -1 1/2 1
~1/2 1 0 -1/2 1/2 0 0 -1

0
0 0 0 0 0 -1/2 0 -1/2 1
o 0 0 -1/2 -1/2 0 1 1/2 -1

J

o o o O
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The rank of the left matrix is four, because ¢1 ;, ¢3, ¢1,, ¢2 5, are linear independent.

So there are five solutions which can be found to be.

bia 0 0 1 0 0
by 1 0 2 1 0 -1
bs1 0 1 0 0 0
bi2 2 0 1 0 1
oo | =0 oo for| =1 |or]| —1]o | 0
bs.2 0 0 0 1 -1
bis 1 0 0 0 0
ba.3 0 0 0 1 1
b33 0 0 0 1 0

More precisely,

(J)i = ¢j+1 P13 5 as shown in Figure 3;
¢ ¢J+1 b3 " as shown in Figure 4;
¢ = —¢]+1 ¢j+l ¢]+1 ¢]+1 as shown in Figure 5;

WP =@l + o+ ¢l — @b as shown in Figure 6;

QH? _ ¢J+1 ¢J+1 ¢9+1 ¢9+1 as shown in Figure 7.




(0,2/27)

(0,1/27)
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(0,2/27)
1
9 (0,1/27)
2
(1/27,0)  (2/27,0) (0,0) (1/27,0)  (2/27,0)
Figure 3. Figure 4.
(0,2/27)
1 1
_‘111 S VA (VIS V2| A
/|
1 1
(1/27,0)  (2/27,0) (0,0) (1/27,0)  (2/27,0)
Figure 5. Figure 6.
(0,2/27)
1
(0,1/29)" 4 -1
-1
(0,0) (1/27,0)  (2/27,0)
Figure 7.

Now we consider ng. Similarly, there are 25 non-zero coefficient for linear system (3.1)

and the coefficient matrix of rank 9. So the dimension of solution space of Wf is 25 —9 = 16.

The first five of them are the same to the wavelet functions in (3.2)—(3.6). The other 11 are

given below.



e s s 8 s 5 s & 5 &

(0,3/27)
(0,2/27)

(0,1/27)

(0,0)

(0,3/27)
(0,2/27)

(0,1/27)

(0,0)

Figure 10.

:;: ¢J+1 ¢J+l
,’3 — ¢]+1 +¢J+1
’,3 — ¢J+1 ¢J+1 ¢]+1
3 — ¢J+1 ¢J+1 ¢]+1
,j _ ¢]+1 ¢J+1 ¢]+1
ﬁ — ¢J+1 ¢J+1 ¢]+1
:421 — ¢J+1 + ¢J+1 + ¢]+1
b= o5 iy T ell -
,’g _ ¢]+1 ¢]+1 ¢]+1
g — ¢J+1 ¢]+1 ¢]+1
= ol el -
1
Z2
(1/29,0)  (3/29,0)
Figure 8.
11
-11
(1/2,0)  (3/29,0)

¢J+1
¢J+1
¢]+1
¢J+1
¢J+1
¢]+1
¢J+1
¢J+1
¢J+1
(0,3/27)
(0,2/27)
(0,1/27)
(0,0)
(0,3/27)
(0,2/27)
(0,1/27)
(0,0)

as shown in Figure §;

as shown in Figure 9;

as shown in Figure 10;
as shown in Figure 11;
as shown in Figure 12;
as shown in Figure 13;
as shown in Figure 14;
as shown in Figure 15;
as shown in Figure 16;
as shown in Figure 17;

as shown in Figure 18.

1

2
I

(1/21,0)  (3/27,0)

Figure 9.

—_ =
—_ =

(1/29,0)  (3/27,0)

Figure 11.
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(0,3/27)
(0,2/27)

(0,1/27)

(0,3/27)
(0,2/27)

(0,1/27)

(0,0)

(0,3/27)
(0,2/27)

(0,1/27)

(0,0)

—_ =
—_

(1/27,0)

(3/27,0)

Figure 12.

1
=

(1/27,0)

(3/27,0)

Figure 14.

(1/27,0)

(3/27,0)

Figure 16.

(0,3/27)
(0,2/27)

(0,1/27)

(0,3/27)
(0,2/27)

(0,1/27)

(0,0)

(0,3/27)
(0,2/27)

(0,1/27)

(0,0)

1
1

1
1

(1/27,0)

(3/27,0)

Figure 13.

1
|

(1/27,0)

(3/27,0)

Figure 15.

(1/27,0)

(3/27,0)

Figure 17.
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(0,3/27)
(0,2/27)
_ 1
(0,1/29) L 1
1

(0,0) (1/27,0) (3/27,0)

Figure 18.

The above computation can be carried out on V" for n = 3, ....27 — 1. We have thus

obtained five types of wavelet functions:
¢(j)i = 2¢]1-;1+1 + ¢]1.;1+2
is supported next to the vertical boundary and is called vertical boundary wavelet.
i% = 2#:%1171 + %112,1

called horizontal boundary wavelet, is supported next to the horizontal boundary. The next

three types are supported inside the domain. The following
wil? = _¢gill,k+1 + ¢gizl,k+1 + qﬁg:-rll,mz + ¢gi2l,k+2
is called interior wavelet of first kind. We call
wz{’l‘: = _¢%j—21k + ¢§j—11,2k + ¢§:§k—1 + 05%:—11,%—1
interior wavelet of second kind. The last one
wfii = ¢§j—11,2k + ¢%2,_21k+1 - gbé:;k—l - Cbg:rll,%

is called interior wavelet of third kind.
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Theorem 3.1.1. All the five types of wavelets in the V', are linear independent for 1 <

n <25 — 1. That is, for each 1 <n < 25 — 1, the following functions

T k=1.n-1,
T k=1,.,n-1,
Uy, 1<ik<n-—1,
wzk, 1<i,k<n-—1,
wzk, 1<i,k<n-—1

are linear independent.

Proof. Let us prove it by induction. It is true for n = 2 and for n = 3. Suppose it is true for

n = p, that is,
‘71 —_— .
67k7 kE=1,..,p—1;

T k=1.,p-1
wzk, 1<i,k<p-—-1,
%k, 1<i,k<p-—-1,
wzk, 1<i,k<p-1,

are linear independent. For n = p + 1, there are 6p — 1 new functions which are

j?l — .
(],lw k _p7
7,2 —
k,0° k _p7

wzk, i or k=up;
wlk, i or k=up;
¢Zk, i or k=np.

Suppose they are not linear independent. That is, one can find

ai., v or k=p;
4 » .
a;,, 1 or k=p;

al,, v or k=p
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such that

a'iy+a® o+ > awWli+ D ahli+ Y awii+v =0, (37)

i O k=p i O k=p i O k=p

where 1" is linear combination of the following functions:
T k=1.p-1
i%, k=1,..p—1;
%k, 1<i,k<p—-1
%k, 1<i,k<p—-1
¢2k, 1<ik<p-—1.
By the definition, QS%;TL% 41, With i=p or k=p appear only once in wf,i’ , with i=p or k = p
, @Dgz; and gf]. Since ¢’*! are linear independent, that is, aik =0, whenior k =p, a! =0,
and a® = 0. Thus the equation (3.7) can be simplified to

S oahwli+ Y d i +¢ =o. (3.8)

ior k=p ior k=p

By the similar reason, ¢2Z o1 When i=p or k = p appear only once in Q/JZ k> Wheni=p or k = p.
Since ¢§,j ! are linear independent, aﬁ x = 0,70r k = p. Thus the equation (3.8) can be further

simplified to the following equation

Z azkw +¢—0

ior k=p

Similarly, a k =0, when i, or , k =p too. Thus the equation (3.7) is reduced to
¢ = 0.
By induction hypothesis, all the coefficient of ¥ = 0 are zeros. Hence,
T k=1.n-1,
T k=1.n-1,
@Z)Zk, 1<,k<n—-1,
wzka 1<4,k<n-—1,

w’lk" 1§Z,k§n_1

are linear independent. O
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Theorem 3.1.2. All the five types of wavelets in the W' form a basis of W} for 1 < n <

2j — 1. That is,

W Span{¢0k, kovwzkvwzkvwzkvlSivkgn—l}
forl1<n<2j—1.

Proof. The dimension of W} is (2n — 1)? — (n)®> = 3n2 —4n + 1. It is easy to count that

there are (2n — 1)* — (n)> = 3n? — 4n + 1 functions in the following set

é”,lg, k=1,..,n
i%, k=1,..,n
?/)Zka 1<ik<m
%k, 1<,k <m

Yl 1<ik<n

which all belong to the space W}'. Since they are linear independent, they form a basis for

space V[/j", where 1 <n <25 —1. O

Finally we need to find wavelets in V[/]?j\Vijj_l. The computations are the same to the
above except for that there is one globally supported basis function. In fact the following
pictures show the basis functions located on the top boundary of the domain 2. (We omit
the pictures for the basis functions on the right vertical boundary which are symmetric with

respect to the line y=x are those basic functions on the top horizontal boundary of €.)

(1) (51 (1) (D)

(0,%) (0,3)

27 — 29 —1 L
(Oa 2J 2 (07 27 11
(0’2J2J (072J2;2

Figure 19. Figure 20.
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(0 2]') (%71) (%71) (0 QJ) (2j71) (2j71)

397 197

(0.2 0.5 1

Y 27

He

H

He
I

-

(0 27 —2 (0 29 —2

Y 727

Figure 21. Figure 22.

(0 2]') (%J) (%J)

127

(0 201

DX

(0 27 -2

DX

Figure 23.

(1) (%21 (L)

(0,%)

127

(0.5

(0.5

Figure 24.

The last one (cf. Figure 24) is the only special basis function since it is not local supported.
The numbers of all these wavelets in szj\ij_l amount to 273 — 8 which is equal to the

; : 27 2711
number of dimension of VjH\VjJrl .

Theorem 3.1.3. All the wavelets in the szj\szj_l are linear independent and form a basis

for ijl\Vﬁl—l which is spanned by the functions in {gbizl, 2L 2 < k<2 -1},

Proof. Let us just concentrate on the basis functions in Vﬁi1\‘/ﬁi1— !and in Wyzj\ij_l. Then

the scaling matrix between two sets of basis functions is the following matrix up to a constant



D
Bl B2
Bl B2
Bl B2
Bl B2
c1 C2
A=
c3 03 C3 Cc3 C3 O3
C4
B2
where
10 2
10 —1
D=<1 2 0 0>, Bl =
11 0
1 -1
11
0 1 1
D’z(o 0 2 1), Bl =
-1 0 1

BY
B2

BY

B2 =

B2 =

B2

o o O

o o o O

BY
D/

o o o O

o o o O
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1 0 2 0 0 0 0
1 0 -1 0 0 1 0
Cl= , (2=
11 0 0 -1 -1 0
1 -1 1 1 0 0

C3:<1 00 0)-

Let E = (m n 0 0). By the row operations we have

m n 0
1 0 2
1 0 -1
E 11 0 0 -1
Bl B2 = 1 -1 1 1
Bl B2 1 0 2
1 0 -1
1 1 0
1 -1
m n
-n 2m
2m —n
n m
— 2m+n 2n 0 O
1 0 2
1 0 -1
1 1 0 0
1 -1 1

; 04:(0 2 0 1>,

26
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Similar for B’. Thus by row operations,

Agi_s

Ay
Gy A

where A,, is an upper triangular matrix of size 4 x 4 while A/ is a lower triangular matrix

of size 4 x 4 which are given below.

1 2 0 0 000 0 1 1 0 0
11 0 000 0 12 0
Alz 7G1: 7A2:
1 -1 0000 2 _1
2 1000 1
0000 n 2 0 0 0000
000 0 1 n 0 0000
Gy = 7An: 7Gn: )
000 0 n —1 0000
1000 2 n 00 0
9 000 n
P G| 000
" 0 n —1 0000
0 0 2 n 0000
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and the matrix (C] %) is the following matrix

20t 5 2
1 0 2

(€ Cy) =

271—-5 00 0 1 0
2 0 1

2 2t —5
It is easy to see the rank of (C] (%) is 8. Thus the rank of A is 8(27) — 8. Thus, all the

Prewavelet functions constructed above in the V[/]?j\ij_l are linear independent and hence

form a basis of Vﬂl\ijfl O

It is easy to see that the coefficients of the Prewavelet functions in V[/jzj_l in terms of the
basis functions of V;%il\Vfil_ ! are all zeros. Thus the Prewavelet functions in ij_l together
with the Prewavelet functions in Vj%il\V-zj_l are linear independent. It follows the main

Jj+1

result in this dissertation.

3.2 THE MAIN RESULT

Theorem 3.2.1. All the locally supported Prewavelet functions in the W/fj\Wij_l and the
locally supported and one globally supported Prewavelet functions in szj_l form a basis for

W,

The above construction find a Prewavelet basis for W;. We shall use them for numerical
solution of Poisson equation with zero boundary condition in the next chapter. We shall also

show that it is necessary to have a globally supported Prewavelet function in the basis for

W,



CHAPTER 4

THE PREWAVELET METHOD FOR P0OI1SSON EQUATION

Let us use the basis functions of V; and W to solve Poisson equation (2.1). Mainly we explain
how to compute h; € W;. Let g; € V; and g;41 € Vj41 be two FEM solutions. We aim to
show that h; + g; = g;41.

By areordering the indices (i, k), 1 < i,k < 27 in a linear fashion, let V; = span{¢}, .. gvj}
Also, we reorder all five type wavelet functions as well as the globally supported wavelet to

denote W; = span{y?, ..., w{vjﬂ_ n,}- Let ®7, U/ be following vectors,

¢! ¥
o | @ i 3
(bg\’j ¢g\7j+1 —N;

Then we have the following equations
(I)j _ qu)j—l-l’ \I/j — C'j(l)j+17

where B; is N; x N, scaling matrix, and C; is a wavelet matrix of size (N;41 — N;) X Nj41.

Let D; and Ej; be the following matrices:

< jlv(bos < jlv(b%>s """ < {7 g\/j>s
D. — < %,Qﬁ)s < %7¢%>8 """ < %? g\fj>8
< %j7¢]1‘>s < g\/jv¢%>s """ < g\/jv g\/j>8

29



Wi, ¥l
(W, ),

<¢g\/j+1—Nj ) ¢{>S

(Wi, ),
(Wd,40) s

<¢g\/j+1—Nj ) ¢%>S

< ‘{7 w?Vj+1—Nj>s

<¢%7 w%j+1—Nj >S

J J
<¢Nj+1_Nj’ ¢Nj+1—Nj>s’

30

It is easy to see that B;D; ,CT = 01is equivalent to V; LW,. Clearly, we have D; = B, D; BT
ji+1% J J J ] j

and Ej = Cij+1Cf.

Let g; be the projection of g in V;, and h; be the projection of g in W;. Since V; @ W; =

Vii1, gj + h; will be equal to g;;1. Let us write g; = >

N

2100 = (a1, ag, ..., ay;)®7. Simi-

larly, h; = (b1, b, ..., by, —n,) 97, and gj41 = (c1, ¢, ...y ey, )P By computing the weak

solutions hj, g;, and g;41 in W;, V;, and Vji4, respectively, we have

a1
ag
Dj ==
aNj
by
by
Ej -
ON; 1N
&1
Co
Dji =
ENj1a
It follows
a1
ag
. -1
= (Dy)
CI,NJ.

(41, 9)

(63, 9)

(&N,+9)

(¥, g)

(3, 9)

<¢g\[j+l—Nj ) g>
(¢1", g)
(¢, 9)

i+1
(0112 9)

(#1,9)

(63, 9)

(&, 9)
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bl < {7.9)

b 3,

2 _ (Ej)_l <¢2 g) :

ij+1—Nj <¢%j+1_Nj7g>
C1 <¢{+179>
Co _ <¢j+1ag>
= (Dj1)™" ’

CNj+1 <¢3\}§117 g)

The above linear systems provide a computational method to find g;, h;.
We now show h; + g; = gj11. That is, gj41 can be computed by using h; and g; only.

Indeed, we have

g; = (a1, ag, ......,an, )P = ()" (a1, az, ...... ,anJ)T
(CDJH)TBJT(al,ag, ...... ,aNJ)T
= (@ BID; (6], 9), (¢, g), - (0 9)
= (@71 BY(B; D1 BY) " Bi((61™, 9, (63 g). - (ol o)
Similarly,
T

hy = (@) CT(CDnCT) G019, (@5, 9) - (81, 9)) -

and

g = (@)TDIL (1 90, (65 g), - (o))

In order to show h; + g; = g;+1, we only need to prove
-1 -1 -
Bj (B;Dj1Bf) " B;j + CJ(C;D;nCf) Cj = Dily. (4.1)
Notice that B; and C; are not square matrices. That is we can not invert B; and C}. Consider

Bj Bij_HBJT Bij_HCJT

Dy ( BT cr )=
C; S C;D;B]  C;D; 1 CT



B;D; 1 BF 0
0 Cij+1Cf

by using the orthogonal conditions of V; and W;. Then we have the following equation

B;D; 41 (B;Dj BT~ 0

(BJ'T CJT) -1 =1
C;Dj1 0 (C;D;jCT)

where [ stands for the identity matrix. In other words, we have

BjDj _ _
( BI(B;D;1BT)™" CT(C;D;:CT)™ ) =1
CiDja

which can be rewritten in the following form

B;D;

1 -1 7~ 7+1 .

(BJ-T(BJ'D]'HBJ'T) CT(CiDj1CF) ) =1
CjDjta

Hence we have
-1 -1
Bl (B;D;j11B]) BjDj1 4 Cl(C;D;1C]) CiDjyy =1

or

. -1 _
B;I(Bij-‘rlB;r) Bj + CJ'T(CJ'DJHC]'T) C; = Dj-i}l'

32

which is (4.1) and hence h; + g; = gj+1. The above computational procedure have been

implemented in MATLAB and numerical experiments will be reported in the next chapter.



CHAPTER 5

NUMERICAL EXPERIMENTS

We have implemented the Prewavelet method for numerical solution of Poisson equations
over rectangular domains in MATLAB. We would like to demonstrate that our prewavelet
method is more efficient than the standard FEM method.

In the following we provide three tables of CPU times for numerical solutions based
on our prewavelet method and the standard finite element method for various levels of
refinement of an initial triangulation (I'y which consists of two triangles) of the standard
domain [0, 1] x [0, 1].

Let V; be the continuous linear finite element space over triangulation I'; which is the
jth refinement of I'y. For a test function u which is the exact solution of Poisson equation
(2.1), the finite element method is to compute u; € V; directly while our prewavelet method
computes u; by computing wy, k= 1,---,7,1.e., uj = uy +wy + - +w;_;.

In the following we present three tables of CPU times for computing numerical solutions
uj,j =4, 5,6 for three test solutions by using these two methods. Note that we use the direct
method coded in MATLAB to solve the associated linear equations. We shall present tables
of CPU times based on Conjugate Gradient Method for the systems of equations next.

For an exact solution u(z, y) = sin(27x) sin(27y) which clearly satisfies the zero boundary
conditions, we list CPU times for computing numerical solutions u;, j = 4, 5, 6 by using these

two methods in Table 1. (The Figure is shown in Figure 5.1 to 5.6.)

Table 1. CPU times to compute u; by the two methods
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FEM method

Prewavelet Method

j=4

0.164531 seconds

0.204067 seconds

J=5

0.593587 seconds

0.519293 seconds

j=6

13.960323 seconds

6.222679 seconds

For an exact solution u(z,y) = zy(1 — z)(1 — y), the CPU times for numerical solutions

by these two methods are given in Table 2. (The Figure is shown in Figure 5.7 to 5.12.)

Table 2. CPU times for computing u; by the two methods

CPU time FEM method Prewavelet Method
j=4 0.150836 seconds | 0.218282 seconds
j=5 0.574085 seconds | 0.558071 seconds
j=6 13.896825 seconds | 6.202557 seconds

We list the CPU times for computing numerical solutions u;,j = 4,5,6 of u(z,y) =
2y(1 —x)(1 — y)e®™¥ by using these two methods in Table 3. (The Figure is shown in Figure
5.13 to 5.18.)

Table 3. CPU times for computing u; by the two methods

CPU time FEM method Prewavelet Method
j=4 0.144159 seconds | 0.186389 seconds
j=5 0.584828 seconds | 0.459181 seconds
j=6 13.877403 seconds | 6.139101 seconds

It is clear from these three tables that the prewavelet method is much more efficient.
Next we use the Conjugate Gradient Method to solve the linear systems associated with
FEM. Let us consider iterative solutions to u; for j = 6 with various accuracy e. First let us

consider the exact solution u(x,y) = sin(27z) sin(27y).

Table 4. CPU times for approximating the FEM solution ug by Conjugate Gradient Method



€

CPU times

1078

5.411852 seconds

107

5.783497 seconds

10—10

6.221683 seconds

10~

6.616816 seconds

10712

6.917468 seconds

10—13

7.836775 seconds
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To approximate the FEM solution ug of the exact solution u(z,y) = xy(1 — z)(1 —y) by

the Conjugate Gradient Method, we list the CPU times in Table 5 for various accuracy e.

Table 5. CPU times for approximating the FEM solution u; by Conjugate Gradient Method

CPU times

4.476794 seconds

4.878259 seconds

5.306747 seconds

5.887849 seconds

6.811317 seconds

6.754465 seconds

Finally let us consider the CPU times to approximate the FEM solution ug of u(z,y) =

ry(1 — 2)(1 — 3)e by the Conjugate Gradient Method.

Table 6. CPU times for approximating the FEM solution by Conjugate Gradient Method
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€ CPU times

107% | 10.110517 seconds

1079 | 10.740035 seconds

10719 | 11.319618 seconds

1071 | 11.810142 seconds

10712 | 12.320903 seconds

10713 | 13.103407 seconds

It is clear from all six tables, if we want an accurate iterative solution of ug within 107'2,

the prewavelet method appears better.
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Figure 5.3: Scaling level:;j=5 by pre-
wavelets

Figure 5.5: Scaling level:j=4 by pre-
wavelets
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CHAPTER 6

PREWAVELETS SOLUTION TO POISSON EQUATION OVER TRIANGULAR DOMAIN

In this chapter, I deal with the Dirichlet boundary value problem for Poisson equation with

triangular boundary. In reality, this boundary shape is almost as important as the rectangle

boundary.

6.1

SIMPLIFICATION OF THE POISSON EQUATION

Let us start with a triangular domain € € R?, which is determined by three vertices

(0,0),(0,1),(1,0), consider the Dirichlet boundary value problem for Poisson equation:

(

—Au(z,y) = g(z,y),
u(z,y) = fi(w),
u(z,y) = f2(y),

| ulz,y) = fs(x),

Without lose of generality, we may assume that f;(1) =

(z,y
for

for
for r4+y=1 and 0<y<1.

)€
y=0 and 0<xr<1

r=0 and 0<y<1

f2(1) = f5(1) = f1(0) = f2(0) =

f3(0). Otherwise, letting f1(0) = fo(0) = a1, fi(1) = f3(1) = ag, fo(1) = f3(0) = a3, we

define h(z,y) = a; + asx + azy, and v(z,y) = u(z,y) — h(z,

problem becomes to:

—Av(z,y) = g(z,y),

v(z,y) = fi(z) = h(z,0),
v(z,y) = f2(y) — h(0,y),
v(z,y) = f3(x) — h(z,1 — ),

y). Then the above Dirichlet

(z,y) €
for y=0 and 0<zx <1
for =0 and 0<y<1

for r4+y=1 and 0<y<1

40



Now let ga(r,y) = (1— 2P (h() — h(0, 1)) — (- y)2(fi(55) — h(s%,0)) -
(I+y)2(f3(w%y) — h(35 +5)): and w(z,y) = v(z,y) — g2(x + y). Then w(z,y) is well

defined and has the second order smoothness, and w(x,y) satisfies the equation

—Aw(z,y) = g1(z,y), (z,y) € Q
w(z,y) =0, (z,y) € 09

with ¢1(z,y) = g(z,y) + g—;gﬂx,y) + g—;g2(m,y). If we can find solution for w, it is easy
to get u(x,y). In the remaining part of this chapter, we only consider the Poisson equation

with zero boundary condition:

—Au(z,y) = g(z,y), (z,y) € Q
u(z,y) =0, (z,y) € 002

(6.1)

6.2 SEMINORM
Let us define
Hy(Q)={veLl*(): (vv)y<oc and v(z,y)=0,(z,y) € N}

where seminorm (v, v) is defined by

8 8 0 0

Thus Hj(Q) is a standard Sobolev space. Suppose u € H}(Q), for any function v € H}(Q)

such that v(z,y) = 0, for (x,y) € 0 then integration by parts of (6.1) yields

2/01 /Oyg(x,y)v(%y)dwdy
_ /0 1 /0 " Aule, y)o(e, y)dedy

_/1 /y Ou(z,y) dv(z,y) | Oulz,y) dv(z,y)
N ox ox oy oy

dxdy

= (u,v)s,



42

We can say that the weak solution u to (6.1) is in V' € H}(Q) if
ueV such that (u,v)s=(g,v), YveV. (6.2)

Theorem 6.2.1. Suppose g € C(Q). If u € C*(Q) is a weak solution satisfying (6.2), then

u is a classic solution satisfying (6.1), .

Proof. Let v € H}(Q). Then integration by parts gives

,V)s
/ /y ou(z,y) 01} (x, y) N ou(z,y) av(x’y)dmdy

Ay Ay
/ / —Au(z, y)v(x,y)dzdy

(—Au(z,y),v).

Thus, (g — (—Au(x,y)),v) = 0 for all v € H}(Q). Claim w = g + Au(z,y) € C°(Q) is
identically zero. If w # 0 then w is of one sign in some square {((z1,y1) X (z2,%2)) € () }.
Choose v(z,y) = (x — 21)*(z — 22)*(y — y1)*(y — v2)? in the square ((x1,71) X (22,y2)) and
v = 0 outside the square. Then (w,v) # 0, which is a contradiction. Thus g = —Au(z,y).

U

6.3 LINEAR SPLINE SPACE

For convenient, let N; = (27 — 1)(2U=Y —1). Let zj; = 25 for i = 1,..,27 — 1 and y;; = 5 for
i =1,.,2 — 1 then the segment of x = zj; , y = y;; and y + = = y;; divide the Q into 4’

small subtriangle.

Figure 25. Type-I triangulation,j=2.
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Define (bgk to be linear spline with support on the hexagon with vertices

{(@j6-1): Yie+1)s (@50 Yie-1)), (@5641): Vi) (364105 Yie—1))s (T30 Yier1))s (Tj-1)s Vi) }

and @i, (T, Yspr) = O,y O Let Vj = span{qbgk,i > 0,7 > 0,741 < 27} be the subspace of
H} (). Let
uj € V; such that (uj,v)s = (f,v) Yv eV (6.3)

Theorem 6.3.1. Given f € L?(Q2), (6.3) has a unique weak solution.
Proof. By the same proof as theorem 2.4.1, (6.3) has a unique weak solution. O

Let us observe relationship between u and w;. Subtracting (6.3) from (6.2) implies
(u—u;,w), =0 Yw € V. (6.4)
Then for any v € Vj

lu—wlly = (u—uj,u—uy)y
= (u—uj,u—v)s+ (u—uj,v—uj,
= (u—uj,u—v),
< lu = ujlslu = vlls
It follows that ||u — w;||s < ||[u — v||s for any v € V;. Thus we have proved the following

theorem.

Theorem 6.3.2. ||u — u;||; = min {||lu—v|;:v e V;}.

6.4 ERROR APPROXIMATION

Given u € C°(2), let u; € V; be the interpolation of u:

ur = (@i, Yn) 81 -

ik

The following error estimate is well-known.
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Lemma 6.4.1. Suppose u € C*(2). Then

fu— gl < 2 w

Proof. the proof is similar to the lemma 2.4.3. O

o2u ||
o2,

8u@ 2
01' oy

]

o2

6.5 PREWAVELETS CONSTRUCTION OVER TRIANGULAR DOMAIN

By direct calculation, we obtain the following result immediately.

Lemma 6.5.1. We have (¢}, qﬁ%j;k,) =2,

(Dl Oy )s = 1/20 (Bl D10 s = 12, (O b o )s = 1/2,

(&7 ¢%j—21k+17 bs =1/2, (P, %jlmk_l, )s=1, ( Zk,(b%:fl,zkﬂ, Yo =1,

Gl 05 )e = =12 (Gl O3l )s = /2 {0l dhlgia)a = =1/
<¢ik’ ¢%j21k+2> s =—1/2, (¢, ¢]+12 ok_2:)s = 0, (P, Q%ng okt20)s = 0,

(S ¢]+12 ok-1:)s = —1/2, (P ¢%j11 PYNETORE e (% %::ll okt2r )s = —1/2,
(
(¢]

1 1
¢zk7¢%:—+22k+17> __1/27 < zk7¢22+12k 17> :_17 < Zkv 2?121@ 27> _1/27

s qb], k,,> =0, for other i, k', which are not listed above.

In the following, I will give one method to find the locally supported basis for W;. Suppose
o= > ol by € W;. Then by orthogonal condition, we need to solve the following

equations.

<¢Z’k’7 ¢j>s =0
(Dl > Ol bi)s =0 (6.5)

ik

3 (4" b =0
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Each (i', k') determines one equation. Thus, there are N; elements in the set V; and hence
they determined the NN; equations. These N; equations with N;;; coefficients, b, implies
that there are IV; 1 — N, linear independent solutions of these equation system which compose

a basis for W;.

Definition 6.5.1. Let V'y be a subspace of Vi1 such that V]}; = span{qbg,jl,i > 0,k >

0,i+k <2m}. Let W™ be subspace of W; such that WI" = W; N V1,.

Obviously f = V4, C VA, C...CVE =V, andh =W} Cc W2 C...Cc W¥ =W,
There is no nonzero solution of (6.5) in space of V!, |, and there are two solution of (6.5) in

space V2 “1, they are solutions of the following equation for ¢ > 0,k > 0.

<Zl<z+k<4 ¢]+1blk> ¢{71>s =0

it is equivalent to the following equation

b1
(Glaoolthe Gloodhe @hoolth. ) | b | =(0)
b2
By Lemma 6.5.1, we obtain the following equation.
b11
(=t 12 172) | b |=(0)
b2

The rank of the left matrix is 1, so there are two solutions shown as the follows.

b11 1 1
b2,1 = 2 or 0
b2 0 2
= ¢J+1 qb”“ as shown in Figure 26; (6.6)

¥
@D = qbﬁl gb]“ as shown in Figure 27; (6.7)



46

Definition 6.5.2. ¢/, = 2¢71 + ¢/t1 s the first kind of wavelets on the vertical edge.
0,k 1,2k 1,2k—1

i’}] = 2¢;’2}1 + gb%ﬁm is the second kind of wavelet on the horizontal edge.

(0,2/29) (0,2/27)
(0,1/29) 9 (0,1/27)
1 1 2
(0,0) (1/27,0)  (2/27,0) (0,0) (1/27,0)  (2/27,0)
Figure 26. Figure 27.

Now we consider V}*. Similarly, there are 10 non-zero coefficients for linear system (6.5),
and there are 3 linear independent equations. So the dimension of solution space of Wf’ is
10-3=7. The first two of them are same to the wavelet functions in (6.6) and (6.7), let me

show the other 5 in the following figures.

¢0 5 = ¢]+1 gbﬁl as shown in Figure 28; (6.8)

w ¢]+1 qb’“ as shown in Figure 29; (6.9)

¢11 = qu“ + ¢J+1 + qb”l qb”l as shown in Figure 30; (6.10)

¢11 = ¢]+1 ¢9+1 ¢]+1 gb”l as shown in Figure 31; (6.11)

Vit = ¢hh + ik — ¢l — 3% as shown in Figure 32; (6.12)

Definition 6.5.3. wflf = —¢;:§k+¢g;f;k+l+¢;j_1172k+¢gj_11,2k+1 is the second kind of wavelet.
¢Z}§ = _¢%:—21k + ¢§j+11,2k + ¢§:§k—1 + %#1,21@—1 is the third kind of wavelets, ¢Z ‘b%:rll ok T

- - - . ,
¢%2_2k+1 — q&;;’%_l — gb%;’_l o 18 the forth kind of wavelets.



(0,2/27)

(0,1/27)

(0,0)

(0,2/27)

(0,1/27)

(0,0)

(1/27,0)
Figure 28.

(2/27,0)

1 1

~— 1 —-1

(1/27,0)
Figure 30.

(2/27,0)

(1/27,0)
Figure 32.

(2/27,0)

(0,2/27)

(0,1/27)

(0,0)
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1 2
(1/27,0) ~ (2/27,0)
Figure 29.
KT
1 1
(1/27,0)  (2/27,0)
Figure 31.
1
(1/2/,0)  (2/21,0)
Figure 33. The above

computation can be carried out until V™, m = 2, 3, ....27 —1. We obtain four types of wavelet

. . J_
functions in sz 1
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Theorem 6.5.1. All the five types of wavelet in the V" are linear independent for 1 < n <

2/ — 1. That means for i >0 and k > 0

Te k=1.,n—1
Toe  k=1.,n-1
e, 1<i+k<n-—1
Uy, 1<i+k<n-—1
e, 1<i+k<n-1

are linear independent for 1 <n <2/ — 1.

Proof. Let us prove it by induction, it is true for n=2 and n=3, Suppose it is true for n=p,

that means
"
6,k’ k::l,..,p_]_,

To.  k=1.,p-1,
YR, 1<i+k<p-1,
YR 1<ivk<p-1,
U, 1<i+k<p-1,

are linear independent. For n = p 4 1, there are 3p — 1 new elements, which are

J,1 _
0,k> k _pa
j?l _
k,oa k _pa

W, it k=p,

W, it k=p,

W, itk =p.
Suppose they are not linear independent. Then I can find

1

agp»
a}m,
aik, 1+ k=np,
aik, 1+ k=p,

ajp, 1+k=p,



such that

a(l),pw +ap0w + Z a’zkw + Z a’zk,lvb + Z azk,lvb +¢ _0

i+k=p i+k=p

i+k=p

where 1" is a linear combination of the following elements:

i1 . )
6,]€’ k—l,..,p_l,

j71 —
kO? k— 17..,

p—1;

w,/w 1<i+k<p-1

@le, 1<i+k<p-1;

@Dm 1<i+k<p-1

j+1
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(6.13)

By the definition, gbl 5, appears only once in @bo s ©ap1 appears only once in Pl "05 1 equation

(6.13), that means ag, = a,, = 0. By the same reason, a7, = a?, = a;, =0, for i + k = p.

Therefore the equation (6.13) is simplified to following expression:

Y =0

By the induction, all the coefficients of 1)" = 0 are zeroes. That means

j71 JR—
0k k=1,..,n—

J>2 —
kO’ k—l’..’n_

1

Y

1,

wlk)’ Z+k§n_1,

wlk, t+k<n-1, and

¢Zk, t+k<n-1

are linear independent for 1 <n <2/ — 1.

O

Theorem 6.5.2. All the five types of wavelet in the V' compose a linear independent basis

for Wp for1<n < 27 — 1. That means
(4l
0k
j71
k.05

W = span qplk,

J
¢7/k;7
\ wzk?

k=1 ..n—1:
E=1,..,n—1;
1+k<n-—1;
1+k<n-—1;
i+k<n-1; )
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for1<n<2 —1.

Proof. The dimension of W' is (2n — 1)(n — 1) —(n)(n — 1)/2 = (4n—2—n)(n—1)/2. After
counting, there are the same amount of elements in the following set:

( jl 3\
0’,]()7 k — 1’..’771_ 1;

'71 .
ros k=1,.,n—1;
W, it k<n-—1;

1&55, 1+ k<n—1;

j74 y .
| Uik i+ E<n—1;
which are in the space W'. Since they are linear independent, they form a basis for space

Wj",forlgng2j—1. O

Now only work left is to find prewavelets in szj\ij_l. Let me define one more kind of

prewavelets function @Df,‘;’ in this space, see Figure33.

wil? = ¢§j—11,2k + ¢%2_21k_17 i+ k=2,
Thus we know V[/fj\V[/jzj_l span by the following wavelets.

(
é’,llw k:2j_1§
P k=21
j72 ) — j .

WX \W? ' = span ik, THk=2 -1

J J : .
Ty it k=21
Uy, i+ k=2 —1;

W, it k=27

\
By counting, all wavelets in W/fj\Vijj_l amount to 2972 — 5, it is right the number of

. . J J
dimension of VZ\VZ .

Theorem 6.5.3. All the five types of wavelet in the ij\ij_l are linear independent for

scaling functions of ijj\ijj_l, which is set {qﬁgf, 9 2 <4 k<2 -1},
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Proof. Let us just concentrate on the basis functions in ijj\‘/fj_l and in szj\ij_l. Then
the scaling matrix between two sets of basis functions is the following matrix up to a constant.
Let A be a (2712 — 5) x (2/*? — 5) matrix below. If matrix A is invertible, then the

prewavelets basis I choose for szj\szj_l are linear independent.

2 1
1 01
1 1 -1
1 0 1
-1 1 1
1 01
1 1 -1
A= 1 0 1
-1 1 1
1 01
11 -1
1 0 1
-1 11
1 01
1 2
If we denote
1 01 0000
E:<2100>,B: 11 -1 o= 0000’
1 0 1000
—1 1 100



Cl=

0
1
1

o o O

1

o o o O

we can rewrite matrix A in the following expression.

B C
B C
B (C1

F

let E,, = ( 21 0 0 0 0O ), by the row operation we have

2n 1
1 01
E,
= 1 1 -1
B
1 0
-1 1 1
2n 1
—1 2n
let B, = , G
2n+1 -1

2n 1
-1 2n
2n+1
0 000
0 0 00
0 0 00
2n+1 0 0 0

—1
1

2n +1

2n+2 1

52
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0 0 0
22 1 0
0 0 0
G = , F' = 1 0 1 |. Thus by induction, we can get,
0 00
0 1 2
2L 3 0 0
B, Gy
By G
A—
ng_g Gg]’_g
sz_Q G/
F/

here B; are invertible for i = 1,..,27 — 2, and F” is invertible too, so is A. That is, all the five

types of prewavelet in the ij\ij_l are linear independent for basis of ijj\‘/fj_l. O

All the five types of wavelet in the ij\szj_l are linear independent for the basis
of ij\ijj_l, we know the coefficient of wavelet in ij_l for the basis of ijj\‘/fj_l are
all zeros, that means all the wavelets in szj = W; are linear independent. We have thus

established the following theorem.

Theorem 6.5.4. All the five types of wavelet in the szj\Vijj_l and the wavelets in ij_l
compose a basis of W;. That is, under Hy norm, there exists a locally supported box spline

prewavelet basis over triangular domain.



CHAPTER 7

THE EXISTENCE OF LOCALLY SUPPORTED PREWAVELET USING LINEAR BOX SPLINES

In the previous Chapters, prewavelets under H} norm over two different domains were dis-
cussed. There exists a basis of locally supported prewavelets if the domain is a triangle. If
the domain is a rectangle, there exists a basis of prewavelets, which are locally supported
except for one basis function. Now here comes the question, does there exist a locally sup-
ported prewavelet basis when the domain is a rectangle? The following result will answer

this question.

Lemma 7.0.2. There is no locally supported prewavelet basis under H} norm over square

domain if the prewavelets were constructed from linear box splines.

Proof. Recall the triangulation and definition of linear box spline in Chapter 2. By uniform
refinement 2 times from the initial triangulation of Q = [0, 1]*, we obtain the triangulation
in the Figure XX1. This refinement is corresponding to level j=2 in chapter 2. It follows that
the space V5 includes 9 box splines and V3 includes 49 box splines, and the prewavelets in
Wy will be constructed using the 49 box splines in Vj.

In Figure XX1, 25 box splines were marked, each of them represents one linear box
spline. Each of the splines is corresponding to one circle with value 1 at the circle and 0 at
the others, for example, the spline gb:{”l is corresponding to the circle on the low left corner,
the spline ¢§,5 is corresponding to the circle on the upper right corner, and so on for each
of {qbf’,k,i =1,..,5,k=1,..,5}. To construct prewavelet from these 25 spline, we require the
prewavelet 1 satisfy the following two conditions:

Y= Z ¢?,kbi,k
1<i,k<5

o4
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Y is orthogonal to Qﬁl’ %,27 %,37 ¢§,17 ¢%,27 ¢%,37 ¢:23,17 ¢:23,27 ¢§,3-

It follows that there are exactly 25-9=16 degree of freedom for 1. Therefore there are
exactly 16 prewavelets over this region. According to the construction method in Chapter
3, there are 4 boundary prewavelets, 4 type-1 prewavelets, 4 type-1I prewavelets and 4 type-
IIT prewavelets. Thus there are 16 prewavelets, which means there are no other prewavelets
with support in the region marked with circle in Figure XX1. By the same reason, we can
construct 16 locally supported prewavelet in the region marked with circle in figure XX2 or

XX3 or XX4. There are no others prewavelets in these region either.

Figure XX1. Figure XX2.

Figure XX3. Figure XX4.

Now, recall the result in chapter 3, the dimension of the V3 = 7x7 = 49, and dimension of
Vo =3 x3 =09, and the dimension of the prewavelet space W5 should be 49-9=40. Counting
all the locally supported prewavelet functions constructed in above four Figures, there are
12 edge prewavelets, 9 type-1 prewavelets, 9 type-1I prewavelets and 9 type-III prewavelets.

Thus there are totally 39 locally supported prewavelets. In other words, one more prewavelet
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basis function is needed, but this prewavelet can not be constructed in the region marked
by the circle in Figures XX1, or XX2, or XX3, or even XX4 as explained above.

By the above statement, the last prewavelet must have one none zero coefficient corre-
sponding the circle in figure XX5. Otherwise all the coefficients of the last prewavelet comes
from the region marked by the circle in figure XX6, which is the subset of the region marked
by the circle in figure XX1. Then the last prewavelet in the region marked by the circle in

figure XX1, that is a contradiction to the result we already had.

Figure XX5. Figure XX6.

Now assume the last prewavelet has one coefficient coming from the region in the Figure
XX5. We divide the study into three cases, case 1: the coefficient comes from the region in
The Figure XXT7; case 2: the coefficient comes from the region in The Figure XX9; case 3:
the coefficient comes from the region in The Figure XX11.

Case 1: If the last prewavelet must have one coefficient coming from the region marked by
the circle in Figure XX7, then there must be one coefficient coming from the region marked
by the circle in figure XX8. Otherwise, this prewavelet will stay in the region shown in Figure
XX3. According the above statement, it is impossible. Now one coefficient of this prewavelet
comes from the region in Figure XX7, another coefficient comes from the region in Figure
XX8, and the support of this prewavelet has to connect these two regions. Therefore this

prewavelet is not locally supported.
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Figure XX7. Figure XX8.

Case 2: If the last prewavelet must have one coefficient coming from the region marked by
the circle in Figure XX9, then there must be one coefficient coming from the region marked by
the circle in figure XX10. Otherwise, this prewavelet will stay in the region shown in Figure
XX3. According the above statement, it is impossible. Now one coefficient of this prewavelet
comes from the region in Figure XX9, another coefficient comes from the region in Figure
XX10, and the support of this prewavelet has to connect these two regions. Therefore this

prewavelet is not locally supported.

Figure XX9. Figure XX10.

Case 3: If the last prewavelet must have one coefficient coming from the region marked by the
circle in Figure XX11, then there must be one coefficient coming from the region marked by
the circle in figure XX12. Otherwise, this prewavelet will stay in the region shown in Figure
XX4. According the above statement, it is impossible. Now one coefficient of this prewavelet
comes from the region in Figure XX11, another coefficient comes from the region in Figure
XX12, and the support of this prewavelet has to connect these two regions. Therefore this

prewavelet is not locally supported.
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Figure XX11. Figure XX12.

Combine the above three cases, it follows that the lemma is true.

Theorem 7.0.5. There is at least one global supported prewavelet basis under Hy norm over

rectangle domain, if the prewavelets are constructed from linear box splines.

On the other hand, I have proved that there exists localed supported prewavelet basis
when the domain is triangle. Then the existence of locally supported prewavelet basis con-
structed from linear box spline under H; norm is dependent on the boundary shape of the

domain.



CHAPTER 8

PREWAVELETS SOLUTION TO POISSON EQUATION OVER L-SHAPE DOMAIN

In this chapter, I will discuss the existence of a locally supported prewavelet basis over

L-shaped domain , and explain how to construct it.

8.1 TRIANGULATION

For L-shaped domain, there are at least two kinds of triangulations, e.g. the Figures YY1

and YY2.

Figure YY1. Figure YY2.

Which one should we choose? In fact, these two kinds of triangulations have no big dif-
ference for prewavelet construction. Therefore, in this chapter, I will use the first kind of

triangulation.

29
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8.2 SIMPLIFICATION OF THE POISSON EQUATION

Let us start with a L-shape domain Q = [(0,2) x (0,2)]\[(1,2) x (1,2)] € R?. Consider the

Dirichlet boundary value problem for Poisson equation:

/

—Au(z,y) = g(,y), (2,y) €Q

u(z,y) = fi(z), for y=0 and 0<z<2
w(z,y) = fo(z), for y=1 and 1<z <2
u(z,y) = fs(z), for y=2 and 0<z<1
u(z,y) = faly), for =0 and 0<y<2
u(z,y) = fs5(y), for r=1 and 1<y<2
u(z,y) = fo(y), for =2 and 0<y<1

Without lose of generality, we may assume that u(z,y) is equal to zero at each of vertices,
that means f1(0) = f1(2) = fo(1) = f2(2) = f3(0) = f3(1) = fa(0) = fu(2) = f5(1) =
f5(2) = [f6(0) = f6(1) = 0. Otherwise, letting f1(0) = fi(0) = a1, f1(2) = f6(0) = ao,
f6(0) = f2(2) = as, fo(1) = f5(1) = a4, f5(2) = fs(1) = a5, f3(0) = fu(2) = ag, let
by = ai, by = (ay —a1)/4, bg = (ag — a1)/4, by = az/2 — aq + a1/2 + ag/4 — as /4, bs =
as/2 —as+ar1/2+ ax/4—ag/4, by = ay —ay + (a2 — a1)/4 — (ag — a1)/4 + bs + bs, we define
h(z,y) = by + bax?® + bey? + bsz?y + byzy + bszy?, and v(z,y) = u(x,y) — h(x,y). Then the

above Dirichlet problem becomes to:

p

—Au(z,y) = g(z,y), (7,y) €Q
u(z,y) = filz) — h(z,0), for y=0 and 0<z <2
w(z,y) = fola) — h(z,1), for y=1 and 1<z <2
¢ uzy) = fy(x) — h(x,2), for y=2 and 0<z<1
w(z,y) = faly) — h(0,y), for =0 and 0<y<2
w(z,y) = fs(y) — h(l,y), for z=1 and 1<y<?2
u(z,y) = fo(y) — h(2,y), for =2 and 0<y<1

\

which satisfy the above assumption.
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Now let w(z) = v(z,y) — (1 = 3y/2+ ¢y*/2)(fi(z) — h(x,0)) — (1 = 32/2 + 2% /2)(faly) -
h(0,9)) = (¥*/2 = y/2)(fs(x) = h(2,2)) — (22/2 = z/2)(fs(y) — h(2,)) — 2y — y*)(fa(2) —
h(z,1)) — (22 — 2)(f5(x) — h(z,1)). Then w(x) satisfies the equation

—Aw(z,y) = gi(z,y), (z,y) €Q
w(z,y) =0, (x,y) € 00

with g1 (2, y) = g(,y) + Zz[=2(f1(y) — (1, y)) — (1= 2)(fs(y) = b0, )] + 2=~y (fa(x) —
h(z,1)) = (L = y)(fi(z) — h(z,0))].
If we can find solution for w, it is easy to get u(z,y). In the remaining dissertation, we

only consider the Poisson equation with zero boundary condition:

—Au(x,y) = g(:)s,y), (IL",y) e
u(z,y) =0, (x,y) € ON.

8.3 THE NON-EXISTENCE OF LOCALLY SUPPORTED PREWAVELET BASE

Lemma 8.3.1. There is no locally supported prewavelet basis under H} norm over L-shape

domain if the prewavelets were constructed from linear box spline.

Proof. Here the Figure YY1 was zoomed in to refinement level j=3, we get the Figure YY3.
In this region, there should be 161 elements in space Vj, and the prewavelets should be
construct from these 161 linear box spline which compose the space Vj, and the prewavelets
should be orthogonal to the 33 linear box splines in space V3, it follows there should be
161-33=128 prewavelets in this region.

In Figure YY4, 65 box splines were marked, each of them represents one linear box
spline. Fach of the splines is corresponding to one circle with value 1 at the circle and
0 at the others, for example, gb‘il is corresponding to the circle on the low left corner. The
prewavelet constructed from this 65 element should be orthonormal to 24 upper level splines,
so there should be 65-24=41 prewavelet in this region. Using the method shown in Chapter

3, there are 36 inner locally supported prewavelets and 5 edge prewavelets, it follows there
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are exactly 36+5=41 prewavelets. Then there is no other prewavelets in this region. By the
same reason, after locally supported prewavelet construction using the method in Chapter
3, there is no other prewavelets in region shown in Figures YY5, YY6, YY7, YY8 or YY9.

Counting all prewavelets shown in YY4 to YY9, there are exactly 125 prewavelets, there
must be three more prewavelets to match the dimension of Wj, 128, for L-shape and the
last three prewavelet can not construct only in the region shown in figure YY4, YY5, YY6,
YY7, YY8 or YYO.

Since the last three prewavelet can not constructed in the region shown in YY6, the last
three prewavelets must have one none zero coefficient coming from the complement of the
region shown in Figure YYG6, so the last three prewavelets must have one none zero coefficient
corresponding the circles in Figure YY10, which is the complement of the region shown in
Figure YY6. In order to show one of the last three prewavelet can not be locally supported,
the study will be divided into 13 cases.

Case 1: One coefficient comes from the region shown in Figure YY11. Since the prewavelet
can not be constructed in the region shown in Figure YY4, so there must be one coefficient
coming from the region shown in Figure YY12, and the support of this prewavelet has to
connected these two region. Therefore this prewavelet is not locally supported.

Case 2: One coefficient comes from the region shown in Figure YY13. Since the prewavelet
can not be constructed in the region shown in Figure YY7, so there must be one coefficient
coming from the region shown in Figure YY14, and the support of this prewavelet has to
connected these two region. Therefore this prewavelet is not locally supported.

Case 3: One coefficient comes from the region shown in Figure YY15. Since the prewavelet
can not be constructed in the region shown in Figure YY9, so there must be one coefficient
coming from the region shown in Figure YY16, and the support of this prewavelet has to
connected these two region. Therefore this prewavelet is not locally supported.

Case 4: One coeflicient comes from the region shown in Figure YY17. Since the prewavelet

can not be constructed in the region shown in Figure YYS8, so there must be one coefficient
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coming from the region shown in Figure YY18, and the support of this prewavelet has to
connected these two region. Therefore this prewavelet is not locally supported.

Case 5: One coefficient comes from the region shown in Figure YY19. Since the prewavelet
can not be constructed in the region shown in Figure YY5, so there must be one coefficient
coming from the region shown in Figure YY20, and the support of this prewavelet has to
connected these two region. Therefore this prewavelet is not locally supported.

Case 6: One coefficient comes from the region shown in Figure YY21. Since the prewavelet
can not be constructed in the region shown in Figure YY4, so there must be one coefficient
coming from the region shown in Figure YY12, and the support of this prewavelet has to
connected these two region. Therefore this prewavelet is not locally supported.

Case 7: One coefficient comes from the region shown in Figure YY22. Since the prewavelet
can not be constructed in the region shown in Figure YY7, so there must be one coefficient
coming from the region shown in Figure YY14, and the support of this prewavelet has to
connected these two region. Therefore this prewavelet is not locally supported.

Case 8: One coefficient comes from the region shown in Figure YY23. Since the prewavelet
can not be constructed in the region shown in Figure YY7, so there must be one coefficient
coming from the region shown in Figure YY14, and the support of this prewavelet has to
connected these two region. Therefore this prewavelet is not locally supported.

Case 9: One coefficient comes from the region shown in Figure YY24. Since the prewavelet
can not be constructed in the region shown in Figure YY9, so there must be one coefficient
coming from the region shown in Figure YY16, and the support of this prewavelet has to
connected these two region. Therefore this prewavelet is not locally supported.

Case 10: One coefficient comes from the region shown in Figure YY25. Since the pre-
wavelet can not be constructed in the region shown in Figure YYS8, so there must be one
coefficient coming from the region shown in Figure YY18, and the support of this prewavelet

has to connected these two region. Therefore this prewavelet is not locally supported.
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Case 11: One coefficient comes from the region shown in Figure YY26. Since the pre-
wavelet can not be constructed in the region shown in Figure YY9, so there must be one
coefficient coming from the region shown in Figure YY16, and the support of this prewavelet
has to connected these two region. Therefore this prewavelet is not locally supported.

Case 12: One coefficient comes from the region shown in Figure YY27. Since the pre-
wavelet can not be constructed in the region shown in Figure YY5, so there must be one
coefficient coming from the region shown in Figure YY20, and the support of this prewavelet
has to connected these two region. Therefore this prewavelet is not locally supported.

Case 13: One coefficient comes from the region shown in Figure YY28. Since the pre-
wavelet can not be constructed in the region shown in Figure YY5, so there must be one
coefficient coming from the region shown in Figure YY20, and the support of this prewavelet
has to connected these two region. Therefore this prewavelet is not locally supported.

combine all above cases, it follows that the lemma is true.

Figure YY3. Figure YY4.
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Figure YY6.

Figure YY7.

Figure YYS8.
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Figure YY10.

Figure YY11.

Figure YY12.
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Figure YY18.

Figure YY19.

Figure YY20.
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Figure YY21.

Figure YY22.

Figure YY23.

Figure YY24.
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Figure YY25.

Figure YY?26.

Figure YY27.

Figure YY28.
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8.4 A CONSTRUCTION METHOD

Like the chapter 3, there 3 kind of locally supported inner prewavelet. But there are four

kinds of locally supported edge prewavelets. The following are example of inner prewavelets
w ¢]+1 + ¢’+1 + qb”l + (j)”l as shown in Figure YY29;
¢1 1= ¢j+1 + ¢]+1 + ¢]+1 (Z)JH as shown in Figure YY30;

WP =@l + ot — @l — ¢l as shown in Figure YY3L.

The following are four example of edge prewavelets

2 = 2(;5”1 + qb]H as shown in Figure YY32;
¢ = 2(;5”1 qb”l as shown in Figure YY33;
I =205 + @241 as shown in Figure YY34.

2L =2¢51 + ¢l as shown in Figure YY35.

The following are three global supported prewavelets when the refinement level is 3.
WIS = TG+ Bl + T+ T + LT+ 20%)
as shown in Figure YY36;
YR = Gis + Blig + Gilr T 90 +rT + 2078
as shown in Figure YY37;
N e R R TR AT

as shown in Figure YY38.

Recall the definition of V!; and W™ in chapter 3, for the L-shape, I will give the definition

again in a different way.
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Definition 8.4.1. Let V7, = A" | UBT., with ATy, = span{¢};",i =21 —1—2m, ..., 2/ —
Lk=2"—1-2m,.., 2" =1}, B, = span{¢}; ' k=2 —1—2m, .., 20 —1,i=2' -1 —

2m, ..., 20" — 1}, Let W™ be subspace of W; such that W = W; (V1.
By the above definition, V}}, is a subspace of Vj,1, W] is a subspace of W;.

Lemma 8.4.1. All the three types of locally supported inner wavelets and four types of
locally supported edge wavelets and the two global supported prewavelets in the V1 1 are linear

independent. That is, the following functions

¢2] L k=211 .2 —1,
wky iy k=271—1,,20 1,
¢k2] 1y k=271 —1,,20 1,
¢2] L k=211 .2 —1,
%g e k=271—-1.2 —1,

¢k2] 11> k:2j_1—1,..,2j—1,

71 JR— _1
i2j—1’ k=271
@sz Lk k=2-1—-1

wmﬂl,k:%4+Lﬁw—L
¢ylm,k=W*+wa—L
(CUAN
7o

are linear independent.
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Proof. Suppose they are not linear independent. That is, one can find

2l ] << —1;
all o WL 1<i<2 1

a;lj,l_l’i, 2]_1 - 1 S 7/ S 2] - 17

agj,l_li, 2‘]_1_1 §Z§2j_17

a272j,1_1’ 2]_1 + 1 S k S 2‘7 - 17

a;j,1_1 k? 2]_1 + 1 S k S 2‘7 - 17

such that alej 1_-12i—1 + a2¢2] 1,20-1-1 + sz zk _'_ sz zk _'_ sz zk¢
> ik zkw +sz zk@b +a8¢ +a9¢zk—

o . 1 1 . P4 i1 i9
By the definition, gb;;r_&%_l and gb;;r_wj_?) appear only once in ¢} and ¢} and ¢
Since ¢/*1 are linear independent, that is, a},, a' = 0, and a? = 0. Thus the above equation

can be simplified to
>l + Zaz W+ Z af il + Zaz WL+ alE % =0, (82)
ik

By the similar reason, appear only once in 177, Since ¢’ are linear
2J 32k ik ik

¢2k 293
independent, aik = 0. Thus the equation (3.8) can be further simplified to the following

equation
> al +Za,m +Zamw +a® Iy + vl =0, (8.3)
ik

Keep going this way, all the coefﬁment should be zeros. O
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Theorem 8.4.1. All the five types of wavelet in the V" are linear independent for 1 < n <
27 — 2. That means fori >0 and k > 0 7' p32 )73 apdd )78 4pd6 4)p2 T 4pdS in VI are linear

independent.

Proof. Let us prove it by induction, it is true for n=1 ,Suppose it is true for n=p, that means

wzk’ PV p<i k<2 -1,
o P e p<i k<2 -1
T AT o p<i k<2 -1,
wzm 2 p < k<2 -1,
ey, VT —p<ik <2 -1,
L 2 o p<i k<2 -1,
%yl, W < k<21,
Ut YT —p<k<2 -1,
nglp k=271 41,.,20 —1,
wmllw k=2"141,.2 —1,
Pre,
PP

are linear independent. For n=p+1, there 3(27 4 2n + 1) + 2 new element, they are

7,3 _ oj—1 j
Dty =27, Y
7,3 _ oj—1 j
2i—n 17 k=27 — sy 2 — 1,

¢k23 n_1» k=2j_1—n,..,27—1,
wzj 1_p,k? k:2j_1_n7"72j_17
wQJ 1_nk k:2j_1_n7"72j_17

7,5 _ 9j-1 j
Vpgict_ps K=27"=n,., 27 =1,
i1 i
i72j—1’ k=271-1

%] 1,k k=271-1



Suppose they are not linear independent, so I can find

3
a2j*1—n,k’

3

A 2j—n_15
4

Qg 0i—n_1

4
a2j*1—n,k7

5
a2j*1—n,k’

5
ak,2j*1—n7

CLl

0,2

1,1,0,1
such that aa 1/123-,1_1,23-_1

2.17J,2
+ Ty

k=2"1t—n, .27 -1,
k=271 —n, 29 —1,
k=2"1_p . 2 —1,
k=2"1_p, . 20 —1,
k=271 —n, 29 —1,
k=2i"1_p .. 20 —1,
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3,03 4 17,4 5 10,5
+ Dk Gl + D Gkl D @ik +

ik a?’kdsz + > i azkw{’,: + agwf;’,f + agwfv’,? + 1" = 0 Where 1" is linear combination of the

following elements.

Uy, Pl em<i k<2 —1,
7 2 < k<20 -1,
T P o< k<20 — 1,
e, P —m<i k<2 -1,
Uy, P —m<i k<20 -1,
2 P o< k<2 —1,
Uy Pl-m<k<2 -1,
Wl P em<k <21,
Yy k=271 41,.,2 -1,
Yl k=212 -,
P7s,
Yoo
By the definition, ¢§j+_ln_2,2k_1 and (bé;il’zj_n_z appear only once in wi’,ﬁ and 1/152

and

2 Since ¢/*! are linear independent, that is, ajy, a' =0, and a® = 0. Therefor the above

equation can be simplified to following expression:
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Thus the above equation can be simplified to
DG+ D gl + v =0, (8:4)
ik ik

By the same reason, all the coefficient should be zeros. Therefor the above equation can

be simplified to following expression:

P =0
By the induction, all the coefficient of )" = 0 are zeroes. That means
Uy, P em<i k<2 —1,
7 2 < k<2 -1,
T 2T o< k<20 — 1,
e, P em<i k<2 -1,

Wi, 2T —n<i k<2 -1,

2 P o< k<20 —1,
Ty PTl-m<k<2 -1,
¢§}2_1,k7 29l < k<2 —1,
%’gﬂ_l, k=271 41,.,2 —1,
Yl k=212 -,
P,
(2
are linear independent for V. O

Theorem 8.4.2. All the five types of wavelets in the W' form a basis of W} for 1 < n <

20 — 2.

Proof. By counting, the dimension all the prewavelets in W' for 1 <n < 27 — 2 is right the

dimension of Wj". O

Theorem 8.4.3. All the wavelets in the ngj_l\ij_2 are linear independent and form a

basis for ij;l\vﬁl—? which is spanned by the functions in {qﬁgf, 1<i<2o0rl<k<2}.



Proof. the proof is same ideal appeared in Chapter 3.

Theorem 8.4.4. All the prewavelet functions in the ij_l form a basis for W;.

77

Figure YY29. Figure YY30.

NO

(W
1
H

Figure YY31. Figure YY32.



NO
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Figure YY33.

Figure YY34.

Figure YY35.

Figure YY36.
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NO

Figure YY37. Figure YY38.

8.5 ANOTHER CONSTRUCTION METHOD

There is another method to construct prewavelet basis in L-shape domain. The only different
from the previous section is the last global supported prewavelet 17!, all the others, 173,
pId apBD apB apd2 apd6 qhdT qh3B qp39is same to the one in the previous section.
The 171° are constructed in the following way.
Y0 = G151 + Glas + dlas + dlag

as shown in Figure YY39.

In order to show this basis is right for space W, the definition of V', and W;" should be

given in a different way.

Definition 8.5.1. Let V7, = span{gbg:l,i = 1,..2m+ L,k = 1,...20 — 1} for m =
1,20 =1, Vi = span{dl) i = 1,..,2 — 1Lk = 20,...2m — 27 + 1} U VAT, for m =

27,..,20 42971 — 1, Let W™ be subspace of W; such that W = W; V.
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By above definition, the space of V;lﬂ is the space shown as in Figure YY40, and the

space of V%, | is the space shown as in Figure YY41.

0)
0)

0)
0)

0)
0)

Figure YY39. Figure YY40.
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Figure YY41.
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By the above definition, V! is a subspace of V; 11, W™ is a subspace of W.

Lemma 8.5.1. All the three types of locally supported inner wavelets and three types of
locally supported edge wavelets and the one global supported prewavelet in the V+1 are linear
independent. That is, the following functions

@Dzj e k= 2=t 1.2~ 1,

wQJ e k= -1 1,20 — 1,

Y k=211, 20— 1,

S k=127
. k=2"1-1
¢2a 1k’ k=211

are linear independent.

Proof. Suppose they are not linear independent. That is, one can find

ad i k=271-1,.,2 1
ah e k=271 —1,.,2 -1,
@Gy k=271 1,2 -1,
aly e k=121
agj_Lk, k=2-1-1
a3; k=2"1t-1

such that sz a2g 1 k%g 1k T sz am 1 kw% kT sz a; kw + sz a; kw + sz a k¢
> @ k¢‘7 =
By the definition, qbyﬂ 50k_1 Appear only once in W’k and qu] Lai1_1- Since ¢/*1 are

linear independent, that is, aM, a” = 0. Thus the above equation can be simplified to

Za%j—Lk 2 1k+za2l 11@%3 1k+zazkw +Zazkwil§:0 (8.5)
ik

j+1

By the similar reason, qszﬂ_g’%

appear only once in ¢i ’k. Since qﬁik are linear independent,

a?, = 0. Thus the equation (8.5) can be further simplified to the following equation

3
Za%j—Lk Y1k T Z%a 1sza e T Zaikwik =0, (8.6)
ik ik
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Keep going this way, all the coefficient should be zeros. O

Theorem 8.5.1. All types of wavelet in the V" are linear independent for 1 < n < 27 —1.

That means fori >0 and k > 0

Proof. the proof is similar to the previous section.

Theorem 8.5.2. All types of wavelet in the ijj are linear independent.

1

Proof. By previous theorem, All types of wavelet in the ij_ are linear independent. Let

1" be linear combination of the spline functions in Vij_l, in order to prove the theorem, the

following box splines
Yoo, i=1,.,27 1

7;72]‘717

Wy, i=1,.,270 -1,

1,201
¢i’2j717 = 17"72J - 17

jil
1,217

yi?
¢/
should be linear independent. Suppose they are not linear independent, so I can find

3
@; 951>

4 N j—1
ai’2j,1’ 1 = 17 cey 2‘7 - 1’

5 N j—1
ai72j,1’ 1 = 17 cey 2‘7 - 1’

1
Ay 9i-1>

CLg

1 _ 4 5 . ,
such that abj,l {,21’71 R DI P a?,sz{k + D i a?,k¢g,k + a7 + 4y = 0, By the

j?l

195+ Since ¢’ are linear independent,

L ]+1 3 ]74
definition, gb%_l’m“ and appear only once in ¢ and ¢

that is, af.j ., a' = 0. Therefor the above equation can be simplified to following expression:

Z adp?s + Z aikwi’z + a2+ =0, (8.7)
ik ik
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By the definition, (bgzly- 1 and appear only once in ¢f ,‘;’ . Since ¢/ ! are linear independent,

that is, ai r = 0. Therefor the above equation can be simplified to following expression:

Z a3 + PP ) =0, (8.8)
ik

By the definition, gbgz; and appear only once in wf,f . Since ¢*1 are linear independent,

that is, ai r = 0. Therefor the above equation can be simplified to following expression:

a*h? ¢ =0, (8.9)

By the definition, qbéf_ll ,; and appear only once in ¢f ’,f . Since ¢/ are linear independent,

that is, a® = 0. Therefor the above equation can be simplified to following expression:

Y =0, (8.10)
By previous theorem, all the coefficient of )" = 0 are zeroes. That means

3 i=1,.,271 1,

i,2j71 )

Wy, i=1,.,270 -1,

1,201
1,5 . i
¢Z,2]’*17 v = 17"72J 1_17
i1
@D{’ijla
Pi?
w/

are linear independent for V" O

Theorem 8.5.3. All types of wavelet in the V' are linear independent for 1 < n < 2+
2=t 9,

Proof. the proof is similar to the previous section. O

Theorem 8.5.4. All the five types of wavelet in the V' compose linear independent basis of

Wj”forlgn§2j+2j_1—2.
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Proof. By counting, the number of prewavelet in space V" is exactly the dimension of W

for1<n <2/ 42712 O

Theorem 8.5.5. All types of prewavelet in the W]-2j+2j71_1\1/[/j2j+2j71_2 are linear indepen-
dent for scaling functions of 1/}2j+2j71_1\\/j2j+2j71_2, which is set {¢§,*,;1,2j+1 -2 < k<

2+1 — 1},

Jj495—1_ Jj197—1_ .
‘/j2 +2 1\‘6'2 +2 2 and in

Proof. Let us just concentrate on the basis functions in
W]-2j+2j71_1\Wj2j+2j71_2. Then the scaling matrix between two sets of basis functions is the
following matrix up to a constant.

Where A is (2771 — 2) x (277! — 2) matrix, so if matrix A is invertible, then then the
wavelets basis I choose for I/I/'jzjwq_I\I/(/'fj“jfl_2 are linear independent for the scaling

. J9i1 1\ x 2421
functions of V' *+2 ~I\y2+ =2,

Claim the matrix has rank 27! — 2, so it is invertible. By the calculation



0 0 -1
-1 1 1
1 0 2
1 0 -1
11 0 0 -1
1 -1 1 1
1 0 2
1 0 -1
11 0 0
1 -1 1
0 0 1
D
Bl B2
Bl B2
Bl B2 5
Bl B2
Bl C1
C2
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where
1 0 2
1 0 -1
D:(1200>, Bl =
1 1 0
1 -1
0 0
0 0
C1=
0 —1
1 1

Let E = (m n 0 0). By the row operations we have

m n 0
1 0 2
1 0 -1
E 11 0 0
Bl B2 = 1 -1 1
Bl B2 1

; C2=<1 0),

o o O

o o o O

o o o O
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m n
—n 2m
2m  —n
n m
— 2m+n 2n 0 0
1 0 2
1 0 -1
11 0 0 —1
1 -1 1 1
Thus by row operations,
A Gy
Ay Gy
1 As Gs |
Asgi_o Gaig
&

where A,, is an upper triangular matrix of size 4 x 4 while A/ is a lower triangular matrix

of size 4 x 4 which are given below.

1 2 0 0 0 00O 1 1 0 0
-1 1 0 0 00O -1 2 0
Al = 7G1 = 7A2 =

1 -1 00 0O 2 —1

2 1 000 1

00 00O 2 0 0 0 00O

00 0O -1 n 0 0 00O

G2 = 9 ATL = 9 GTL =

00 0O n —1 0 00O

1 0 00 2 n 0 0 0




88

and the matrix C] is the following matrix

It is easy to see the rank of C] is 2. Thus the rank of A is 21 — 2. Thus, all the prewavelet
functions constructed above in the W/J-zj+2j71_1\Wj2j+2j71_2 are linear independent and hence

. i i1 1\ 201
form a basis of V' ~I\yZ+2 =2, O

All types of prewavelet in the Wf”zjfl_l\l/[/jzj”jfl_z are linear independent for the basis
of Vj2j+2j71_1\vjzj+2jfl_2, we know the coefficient of wavelet in W]2j+2j71_2 for the basis of

j—1_1

J i1 Jpoi—1_ :
| are linear

are all zeros, that means all the wavelets in Vij2

independent. then we come to the following theorem.

Theorem 8.5.6. All types of prewavelets constructed in this section compose the basis of

J4i—1_
WEHE L

Proof. By counting, the number of the prewavelet is exactly the dimension of the space of
Wj2j+2j71_1, combine with the independent property of these prewavelets, they compose the

basis. O
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