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ABSTRACT 

 Latent growth modeling (LGM) is a method commonly used for analyzing longitudinal 

data, derived from confirmatory factor analysis models as a special case of structural equation 

modeling. However, it has several limitations, such as the inability to assess measurement 

invariance in a longitudinal study. This study develops a longitudinal item response theory-latent 

growth modeling (LIRT-LGM) model, which can be viewed as a combination of a LGM model 

and an IRT model for the purpose of investigating growth or change in the latent variable(s). To 

motivate this study, an illustrative example was provided comparing the performance of the 

LGM and LIRT-LGM in analyzing depressive symptoms. The LIRT-LGM was used to analyze 

the data with both the one-parameter logistic (1PL) and the two-parameter logistic (2PL) models. 

A simulation study was presented to provide more detailed information about the performance of 

the LIRT-LGM. Test lengths, sample sizes, and effect sizes were manipulated in the simulation 

study. Type I error and power were compared for the LIRT-LGM to the LGM models. An 

analysis of a real data set from a measure of depressive symptoms indicated the performances of 

the LGM and LIRT-LGM were not consistent. For empirical results, the mean and variance of 

the slope of the LGM were statistically significant, indicating that depressive symptoms 



increased and individual differences increased over three time points. On the other hand, the 

mean of the slope of the LIRT-LGM was not significant, but the variance of the slope of the 2PL 

version was significant. Results of the simulation indicated that the Type I error was controlled 

for most conditions.  When the effect size was .3 with a sample size of 100 at α = .05, the power 

was greater than .8. The results further showed that, when sample sizes, effect sizes, and test 

lengths increased, the performance of LIRT-LGM model was better than the LGM model. 
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CHAPTER 1 

INTRODUCTION 

Researchers may be interested in understanding why and how specific conditions and 

events, such as depression or growth in math aptitude, change over time. What is clear, however, 

is that these phenomena do not necessarily change at the same rate.  For example, math ability 

generally increases steadily from elementary school to high school but not at the same rate or in 

the same way for all students. Researchers are typically interested in the overall patterns of 

change and whether the trend of the growth or decline is linear or some other pattern. They are 

also interested in investigating the different change processes across individuals.  

One approach to studying these kinds of events is to include a time factor in the study’s 

design. Cross sectional designs are often used to infer growth or change, but cross-sectional 

study designs do not account for within subject time.  This is because cross-sectional studies 

collect data at one point in time. As a result, this kind of study cannot provide clear information 

related to individual change. Longitudinal research methods, on the other hand, do allow for 

observation of within subject change.  As a result, these methods are often used to measure 

change over time, and longitudinal data analysis has become more accessible for use in 

accounting for the problems of growth and change (Singer & Willett, 2003).  

 

1.1 Longitudinal Data Analysis 

Longitudinal data indicate the “repeated time-ordered observation of an individual or 

individuals with the goal of identifying processes and causes of intraindividual change and of  
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interindividual patterns of intraindividual change in behavioral development” (Baltes & 

Nesselroade, 1979, p. 7).The longitudinal research method is characterized by the fact that there 

are repeated measures over time within individuals. The goal of longitudinal data analysis is to 

investigate changes in latent means over time and changes in individual differences over time 

regarding one or more outcome variables (Marsh & Grayson, 1994). There are two types of 

individual difference changes over time (Singer & Willett, 2003): (1) intra- (within-) individual 

change describes each person's individual growth trajectory; and (2) inter- (between-) individual 

differences change focus on whether different individuals present similar or different patterns of 

within-individual change.  

Researchers apply longitudinal data to different topics, such as depression, for several 

reasons (Bollen & Curran, 2006; Duncan, Duncan, & Strycker, 2006). First, cross-sectional data 

do not suffice for answering certain questions, such as causal relationships or predicted 

outcomes. Most research questions or theoretical assumptions are potentially caused by a change 

in causal relationships. Thus, when researchers want to obtain the best results related to the issue 

of change, they can collect and analyze longitudinal data. Second, in the past, when researchers 

wanted to investigate the cause-effect relationship between variables, they could only use true 

experimental design methods. After strictly controlling for confounding variables, researchers 

manipulated independent variables and observed the change in the dependent variables. Based on 

the results, researchers inferred whether a causal relationship existed between independent 

variables and dependent variables. However, most behavioral and social science (e.g., 

psychology or sociology) studies use survey methods to collect data from observations that are 

not manipulated. Thus, causal relationships could not be explored. Recent developments in 

longitudinal analyses, however, have enabled investigation of causal relationships by 
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incorporating a time factor in the analysis. In this way, the time factor is able to model the 

assumption of a path relationship.   

 

1.2 Statement of Problem 

Longitudinal data become an important ingredient in research to investigate 

developmental changes because they allow a researcher to investigate changes over time within 

individuals and differences between individuals at a baseline (Hedeker & Gibbons, 2006; 

McArdle & Bell, 2000).  Information is normally collected across time points, such as a pretest 

and posttest, using two or more time points to infer a causal relationship. To make causal 

inferences, a study has to meet three conditions (Duncan et al., 2006). The first condition is 

covariation. This assumes that cause and effect are significantly correlated. The second condition 

is the temporal order of events. This assumes that cause precedes effect in time. The third 

condition is non-spuriousness. That is, other external factors that can influence the explanation of 

the dependent variables can be ruled out or can be controlled.  

Traditionally, longitudinal data are analyzed using statistics such as a paired t-test, 

repeated measures ANOVA or ANCOVA, or auto-regressive models. However, these statistical 

techniques suffer from several limitations (Cho, Cohen, & Bottge, 2013; Maxwell & Tiberio, 

2007). First, in the context of a pre-test and post-test analysis, a paired sample t-test is the 

simplest type of longitudinal analysis. It can be used to determine whether there is a significant 

mean difference between a pre- and post-test. Thus, this model is limited to two-time points: pre-

test (Time 1) and post-test (Time 2). Second, repeated measures ANOVA or ANCOVA can be 

used to test the effects of a continuous dependent variable measured at several time points. 

Although these models are useful in understanding mean differences across time, there are some 
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limitations: (i) these models only work with balanced data; (ii) they cannot deal with missing 

data; (iii) these models ignore time ordering, which means that it is difficult to incorporate time-

varying predictors; (iv) repeated measures ANOVA or ANCOVA are based on the strong 

assumption of sphericity, which means that the variances of every measure should be the same. 

Cho, Cohen, and Bottge (2013) indicated that it is possible to violate the assumption of 

sphericity in instructional intervention studies because the floor effects are likely to occur before 

the treatment, and (v) the repeated measures ANOVA or ANCOVA estimate average change in 

scores over time rather than individual differences in change. Third, auto-regressive models 

cannot provide an adequate generalization for more than two-time points (Duncan et al., 2006). 

Fourth, the dependent variable in traditional techniques is a sum score. In other words, they 

ignore item properties and test information. Thus, these methods do not work well for 

interpreting growth at the individual level. 

Researchers should carefully consider the analytic method that best suits their studies. An 

appropriate analytic method must be compatible with both the hypotheses being tested and the 

data. These two elements provide evidence to support or refute the hypotheses of researchers. 

Unfortunately, traditional statistical methods tend to operate at the group level but fail to address 

hypotheses about the nature and the causes of change at the level of an individual (Hancock, 

Harring, & Lawrence, 2013). Most standard statistical approaches do not reflect the passage of 

time when examining growth. In order to deal with the limitations of these methods, latent 

growth modeling (LGM, Preacher, Wichman, MacCallum, & Briggs, 2008) has been proposed.  

LGM is also known as latent growth curve modeling (Preacher et al., 2008) or latent curve 

analysis (Meredith & Tisak, 1990) and has emerged from the field of structural equation 

modeling (SEM) (Duncan et al., 2006; Hancock et al., 2013; McArdle & Epstein, 1987).  
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LGM is a model for examining specific longitudinal data. It employs a concept derived 

from confirmatory factor analysis (CFA) models as a special case of SEM (Preacher et al., 2008; 

McArdle & Bell, 2000). A LGM model is commonly used for analyzing change over time in the 

behavioral and social sciences (e.g., education, psychology, or sociology). It can describe 

individuals’ behavior in terms of initial levels and its growth trajectories to and from either linear 

or quadratic patterns. Additionally, the LGM model can help to define the change across 

individuals in both intercept and slope, and it simultaneously focuses on changes in covariances, 

variances, and mean values over time. Thus, the LGM procedure is unique because it combines 

individual and group levels of analysis (Duncan et al., 2006; Hancock et al., 2013). In the LGM 

model, the relationship between latent variables and indicators is similar to that of the CFA 

model. The effects of latent variables on their indicators are called factor loadings, which 

describe trends over time in variables that are repeated measures of the same observed variable.   

Although the LGM model has several advantages, such as describing the change in the 

latent construct variable, it does not take fully model the measurement error of the SEM. The 

major drawback of LGM is that it lacks a mechanism for assessing measurement invariance in 

longitudinal research. Thus, LGM may not be the most useful method for drawing correct 

inferences related to change.  

To this end, LGM has been extended to incorporate multiple indicators, namely second-

order latent growth modeling, which can account for measurement invariance. A useful approach 

for simultaneously modeling measurement invariance, item properties, and test or item 

information in growth, is to consider incorporating IRT into the model. Thus, in this dissertation, 

we develop a longitudinal item response theory-latent growth modeling (LIRT-LGM).  This 

model integrates LGM and IRT for use in analyzing longitudinal data to investigate change in 
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the latent variable. This dissertation presents a method of estimating model parameters with a 

maximum likelihood solution and a simulation study to investigate model performance under 

practical testing conditions. 

Although the theory underlying the LGM and LIRT approaches have been available for 

some time, the LIRT-LGM is a new model. Thus, in the example, the LIRT-LGM model will be 

used to investigate changes in depressive symptoms in African-American adolescent girls. This 

will serve to motivate the simulation study. 

 

1.3 The Purpose of the Study 

Previous studies (e.g., Geiser, Keller, & Lockhart, 2013; Fleming at al., 2008) used LGM 

to analyze the depression scale.  The observed variable for the LGM is computed as the sum of 

item scores. However, Fried and Nesse’s (2015) study suggests that depression sum-scores do 

not add up because each item in the depression scale has its specific depressive symptoms. Thus, 

LGM may not be a useful approach for analyzing the depression scale. The first purpose of this 

study was to evaluate the performance of the LGM and LIRT-LGM for analyzing depressive 

symptoms. Two dichotomous IRT models will be implemented in the LIRT-LGM, the 1PL and 

the 2PL models. In the simulation study, we will provide more detailed information about the 

performance of the LIRT-LGM with attention paid to a number of items, sample sizes, and effect 

sizes. Sample sizes are important because appropriate sample sizes are needed to achieve 

sufficient power for statistical tests of interest (Hancock & French, 2013). In addition, this study 

considers that lengths of items are important because more items in a test generally will provide 

a greater amount of information (Baker, 2001). Further, effect sizes are also important as when 

effect sizes increase, so does power. 
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1. 4 Significance of the Study 

The LIRT-LGM includes a latent variable based on observed (i.e., manifest) multiple  

indicators.  As noted above, the 1PL and 2PL IRT models are used in this dissertation.  In 

addition, the LIRT-LGM enables an estimate of a growth pattern for these latent variables. The 

difference between the LGM and LIRT-LGM is that the LGM estimates change based on a 

single observed variable at each time point, whereas the LIRT-LGM estimates change based on 

multiple indicators which are intended to estimate the latent constructs at each time point. The 

major advantage of the LIRT-LGM is that it allows researchers to simultaneously test 

measurement invariance and item properties across measurement time points. If measurement 

invariance holds, researchers can be more confident that the same latent constructs are measured 

at each time point. In addition, the LIRT-LGM provides information associated with the 

measurement characteristics of the indicators. The LIRT-LGM should have greater statistical 

power because it directly models the measurement structure of the indicators. Thus, this new 

model can simultaneously estimate individual differences in stability and change. 

 

1.5 Organization of the Study 

This dissertation describes the development of the LIRT-LGM model using two separate 

perspectives on modeling longitudinal item response data using the latent growth modeling 

method.  Since the computation of observed variables in the traditional LGM and the LIRT-

LGM models can be based on either a CTT- or IRT-based score, the first and second sections of 

Chapter 2 provide an overview of CTT and IRT. The third section describes some useful 

longitudinal item response theory models. The fourth section describes the basic concept of 

latent growth modeling that includes the structural equation modeling and IRT-SEM models. 
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The fifth section describes longitudinal item response theory-latent growth modeling (LIRT-

LGM) as a combination of latent growth modeling and the IRT model with longitudinal data. 

The last section describes the research questions and rationale.  

Chapter 3 presents the methodology of the study. The LGM and LIRT-LGM models are 

presented first with an empirical study and next with a simulation study. These two studies are 

used to evaluate the performance of the LIRT-LGM model. Chapter 4 presents the results of the 

empirical and simulation studies. In addition, the results of the LIRT-LGM model were 

compared with results from the traditional LGM analysis. Chapter 5 includes a discussion and 

conclusion that summarizes the methods and results and describes the practical importance and 

the significance of the study, limitations, and possible future studies.
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CHAPTER 2 

THEORETICAL BACKGROUND 

The longitudinal item response theory-latent growth modeling (LIRT-LGM) that 

integrates LGM and IRT with longitudinal data is a new model. Thus, the purpose of this study is 

to compare the performance of both the LGM and LIRT-LGM and to examine the performance 

of the LIRT-LGM using empirical data and simulated data. 

Since developmental research focuses on a latent construct, such as depression, that 

cannot be directly or simply observed, researchers need to use a set of items to build this latent 

construct. These items are assumed to be valid indicators of the construct, and scores that are 

derived from these items or from the scale are assumed to provide useful information associated 

with the level of a subject on that construct. Thus, these scores are treated as the representation 

of the latent construct (Edwards & Wirth, 2009). Classical test theory (CTT) and item response 

theory (IRT) are two of the techniques that can be used for scale construction. 

In this section, we provide overviews of CTT, IRT, longitudinal item response theory 

(LIRT), and latent growth modeling (LGM) including structural equation modeling (SEM) and 

IRT-SEM. We then present a new model, longitudinal item response theory-latent growth 

modeling (LIRT-LGM). This study argues that LIRT-LGM can be a useful approach for 

measuring the change in latent constructs such as depression and may allow researchers to 

employ a more sophisticated framework for assessing change in the behavioral and social 

sciences. 
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2.1 The Basic Concept of Classical Test Theory (CTT)  

The CTT is the earliest test theory for addressing measurement problems, such as test 

development. Charles Spearman introduced the concept of the observed score in 1904. Spearman 

(1904) argued that the observed score is comprised of the true- and an error- score. The observed 

score is the only manifest element, and the true- and error- score are latent. The observed score 

provides useful information, which can be used to improve the reliability of tests (Alagumalai & 

Curtis, 2005). Because the CTT mainly estimated the reliability of the observed scores in a test, 

it is also called classical reliability theory. That is to say, the CTT tried to estimate the strength of 

the relationship between the observed and true scores (Suen, 1990). The CTT is sometimes 

regarded as the true score theory because its theoretical root is based on the true score model, 

which assumes that the observed score (or total test score) is influenced by a true score and 

random error (Hammond, 2006). There are several assumptions in the CTT (Embretson & Reise, 

2000; Hambleton & Jones, 1993). First, the errors are random and unrelated to true and observed 

scores. Second, true and error scores are uncorrelated. Third, the expected value of error scores 

in the population of respondents is zero. Fourth, the error scores on parallel tests are 

uncorrelated.  The concept of CTT is more simply based on the total test scores, reliability, item 

difficulty, and item discrimination (Weiss & Yoes, 1991). 

 

2.1.1 True Score Model 

The central idea of the CTT can be defined as:  

Observed Score = True score + Error.                                          (1) 

Equation 1 defines that the observed score, which is the score individuals can obtain on 

the measuring instrument, is made up of two components, the “true score” and an “error score” 
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(Hammond, 2006; Wainer & Thissen, 2001; Drolet & Morrison, 2001, Hambleton & Jones, 

1993; Weiss & Yoes, 1991). The true score, which is denoted as “the expected value of observed 

performance on the test of interest,” (Hambleton, Swaminathan, & Rogers, 1991, p. 2) expresses 

the concept of ability in CTT. The true score is the average score if a respondent takes parallel 

forms of the test many times (Weiss & Yoes, 1991). The true score cannot be directly observed; 

thus, it is latent and inferred from the observed score.  The term error, which is defined to be 

unsystematic or random and uncorrelated with the true score, describes the difference between a 

respondent's observed score and his or her true score (Crocker & Algina, 2008; Wainer & 

Thisesen, 2001). Equation 1 can be expressed in the usual notation as: 

X = T + E,                                                                   (2) 

where X is the observed score (or test score), T is the true score, and E is the error score. The 

path diagram of Equation 2 showed in Figure 1. 

To discuss the mathematical terms, the equation for a respondent j can be represented as: 

Xj = Tj + Ej,                                                                      (3) 

where Xj is the observed score for respondent j, Tj is the true score for respondent j, and Ej is the 

 

 

Figure 1. CTT model path diagram. 
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error for respondent j. The CTT assumes that each respondent has a true score. If the expected 

value of Xj is Tj, the expected value of Ej is zero (Wainer & Thissen, 2001; Lord, 1980). Thus, 

the equation of true score for respondent j is given as: 

E(Xj) = Tj,                                                                        (4) 

where E(Xj) indicates the expected value of the random variable X for respondent j.  

The error for respondent j from the Equation 3 is given as: 

Ej = Xj - Tj ,                                                                                                             (5) 

where Ej and Xj are random variables, and Tj is a constant. The expected value of error for 

respondent j is: 

E(Ej) = E(Xj - Tj) 

 = E(Xj) - E(Tj).                                                               (6) 

Since E(Xj) = Tj from Equation 4 and the expected value of Tj is constant, the expected value of 

error for respondent j can be written as (Wainer & Thissen, 2001): 

E(Ej) = Tj - Tj = 0.                                                                (7) 

The CTT assumes that the scores between respondents are independent. When T and E 

are independent, the observed-score (or total score) variance ( ) can be decomposed into true 

score variance ( ) and error score variance ( ) (Lord & Novick, 1968).  From Figure 1, this 

relation can be computed as: 

Var(X) = Var(T + E) 

= Var(T) + Var(E) + 2Cov(TE),             (8) 

where Cov(TE) is equal to zero. Thus, the equation of score variance can be written as: 

2 2 2

X T E    .                                                                         (9) 

2

X

2

T
2

E
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According to Equation 9, measuring a respondent’s true score is most reliable when the error 

variance of a test is small (Wainer & Thissen, 2001).  

 

2.1.2 The Total Test Score       

The total (or the number-correct) test score, which is the estimate of the ability of an 

individual, is defined as the sum of the item responses (scored 0, 1) for each respondent j. The 

equation of the total test score becomes 

1

n

ji

i

x k


 ,              (10) 

where x is the total test score and kij are the item responses for respondent j and i = 1,…, n 

(Wainer & Thissen, 2001). Because the total test score is computed by summing the item 

responses, this will influence the reliability of the total test score. 

 

2.1.3 Reliability                  

Reliability, which is one of the main concepts of the CTT, refers to the stability and 

consistency of assessment results, and it is the strength of the relationship between the observed 

and true scores. Reliability can be expressed as the Pearson’s correlation (r) between the 

observed (X) and true (T) scores, and this correlation is known as the reliability index, 

(Crocker & Algina, 2008; Suen, 1990).   

In general, the r between X and Y is given as (Suen, 1990): 

  
XY

XY

X Y




 
 ,                                                              (11) 

XT
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where XY
 
is the covariance between X and Y, X is the standard deviation of X, and Y is the 

standard deviation of Y.  

As stated above, when T and E are independent, XT , which also can be stated as the 

ratio of the standard deviation of true scores to the standard deviation of the observed scores 

(Lord & Novick, 1968),  can be expressed as (Wainer & Thissen, 2001; Suen, 1990): 

  
XT

XT

X T




 
                                                                         (12) 

where XT is the correlation between the observed and the true scores, T  is the standard 

deviation of the true score, and X
 
is the standard deviation of the observed score, and XT that 

is the covariance between X and T is given as: 

2 2

( ) .XT T E T T TE T                                                   (13) 

where X = T + E from Equation 2, and assuming that the true score and error score are 

independent suggests that 0TE  . Equation 12 can be rewritten as:  

  

2

T
XT

X T




 
                                                                   (14) 

where  is the true score variance. When the XT  relationship is strong as designated by a high 

r, X is better for reflecting T, and X can be viewed as a linear transformation of T (Suen, 1990). 

However, because T is unknown, we cannot directly estimate XT
 
from the observed data. Thus, 

we can estimate the square of the reliability index ( 2

XT ). The 2

XT as expressed in Equation 14 

can be written as (Wainer & Thissen, 2001; Suen, 1990):  

      
 

  

2
2

2

2 2

T

XT

X T




 
  

2

T
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X




  

 

2 2 2

2 2

X E X E

X X

  

 
 

                                                                             

2

2
1 E

X




  ,           (15)            

where 2

XT  is referred to as the reliability coefficient, which can be stated as the correlation 

between scores on the parallel test forms (Crocker & Algina, 2008). For the parallel test forms, 

there are two forms, form X and form Y, of a test having scores x and y, respectively. If E(x) = 

E(y) = t and 
x y  , two forms of a test are parallel. The correlation between the two parallel 

forms of observed scores will be yielded by:  

  
xy

xy

x y




 
  

  
( )( )x yt e t e

x y



 

 
  

x ytt tey tex e e

x y

   

 

  
 .                                                   (16) 

The last three terms of the numerator in Equation 16 will become zero because of the assumption 

of independence. Thus, Equation 16 will be yielded by: 

2

2

tt t
xy

x y x

 


  
  ,                        (17) 

where 2

tt t  and 
2

x y x    . Equation 17 can be written as: 

2

2

t
xy

x





  
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2 2 2

2 2

x e x e

x x

  

 
 

    

2

2
1 .e

x




                   (18) 

xy  is the same as reliability coefficient 2

XT . Even though XT cannot be directly estimated from 

the observed data, 2

XT can be estimated directly (Wainer & Thissen, 2001; Suen, 1990). 

 Reliability is a concept, and researchers apply reliability to designate the proportion of 

true score variance in a group’s observed test scores. Since reliability is known, error variance, 

2

e , is possible to estimate. An expression for 
2

e  can be derived by using Equation 9. Dividing 

both sides by 2

x , the equation can be rewritten as: 

2 2

2 2
1 t e

x x

 

 
  ,                                                                       (19) 

since = from Equation 17,  Equation 19 becomes 

2

2
1 e

xy

x





   

2

2
1 e

xy

x





   

2 2(1 )x xy e    .             (20) 

Thus, the standard error of measurement, which is the square-root of the error variance, can be  

given as: 

1e x xy    .                                                          (21) 

2

2

t

x



 xy
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The standard error of measurement can be used to build confidence intervals around the observed 

scores.  

 

 2.1.4 Item Difficulty and Item Discrimination 

The CTT can provide useful information to guide the selection from item banks in order 

to improve the reliability of the total test score. The characteristics of an item difficulty index 

and item discrimination index can be related to the reliability of total test score, even though 

CTT is mainly focused on test-level information. Item difficulty under the CTT is described as 

the probability of respondents who provide a correct response to an item.  This probability is 

referred to as the p-value of that item known as an item difficulty index. A high p-value indicates 

an easy item, whereas a low p-value indicates difficult items.  Item discrimination is defined as 

the correlation between scores on a dichotomous item and on the total test, using the point-

biserial correlation coefficient, which is the Pearson correlation between the dichotomous item 

variable and the continuous total score variables (Alagumalai & Curtis, 2005; Weiss & Yoes, 

1991). The point-biserial correlation can be defined as: 

1 x
pb

x

b q
 





 ,            (22)                                                

where 1 is the mean of the observed score among respondents who provide a correct response to 

the item, x is the mean of the observed score for all respondents, x is the standard deviation of 

the observed score for all respondents, b indicates the item difficulty index for the item, and q is 

1-b (Suen, 1990).  The ranges of point-biserial correlation are Very good (> .4), Good (< .39, > 

.3), Fair (< .29, > .2), Non-discriminating (< .19, > .0), and Needs attention (< .0). The optimal 

item discrimination is .5 (Alagumalai & Curtis, 2005). When an item exists in low item 
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discrimination, a correct response to the item has little or no relationship with the total score. 

Items with low or zero item discrimination will be removed from a test in order to improve the 

reliability of a test (Alagumalai & Curtis, 2005; Weiss & Yoes, 1991).  

 

2.1.5 The Strength and Limitations of CTT 

A weak theoretical assumption, which makes CTT easy to employ in many testing 

situations, is the important advantage of CTT. Other advantages of CTT include that smaller 

sample sizes are available for analyzing, its model parameter estimation is simple, and data 

analyses do not require stringent goodness of fit studies in order to ensure a good fit of the model 

to the measurement data. However, CTT includes several limitations. First, respondent- or test- 

characteristics are dependent (Hambleton et al., 1991). A respondent’s observed score is 

dependent on the specific scale or test used, that is, test- or scale-dependent. When the test is 

difficult, the respondents will gain low true scores, whereas when the test is easy, they will have 

high true scores. Thus, when the test context is changed, respondents’ predicted true scores 

change as well.  Second, the person statistics are item dependent. Since the test scores in CTT are 

based on the total number-correct scores, respondents have scored dependence on the number of 

correct items. Thus, test scores depend on the item difficulties of the test selected (Weiss & 

Yoes, 1991). Third, the item statistics, that is item difficulties and item discriminations, are 

dependent on a sample where the test items were administered (Hambleton & Jones, 1993; Weiss 

& Yoes, 1991).  For instance, the item parameters (item difficulties and item discriminations) 

would be different if the test items were administered to respondents from a high-ability group  

and from a low-ability group.  



 

19 

 

Although the total score of CTT is easy to compute and to understand, it is based on a 

weak assumption. Thus, it is difficult to obtain a consistency of difficulty, discrimination, and 

reliability on a similar test. Item response theory (IRT; Hambleton et al., 1991; Lord, 1952; Lord 

& Novick, 1968) overcomes these limitations. 

 

2.2 The Basic Concept of Item Response Theory (IRT)  

IRT is built on mathematical models and statistical methods that associate item responses 

with a latent trait and use it to analyze items and scales. This latent trait is a hypothetical variable 

that measures individuals on the psychological constructs of interest on a scale, such as 

depression scale. This scale is continuous, has equal intervals, and is free from measurement 

error. The latent trait is referred to as ability in the educational and psychometric fields and is 

denoted by theta ( ). Ability is assumed to underlie the observed responses for a set of items 

(Osgood, McMorris, & Potenza, 2002), and using either one or more item properties, such as 

item difficulty, describes an item.  IRT is a statistical theory related to a respondent’s ability and 

performance on a test, and abilities are measured by the test items (Hambleton & Jones, 1993). 

Thus, IRT mainly focuses on item-level information. It has been developed for tests whose items 

are scored dichotomously, such as yes (1) or no (0) and polytomously, such as short answer tests 

scored 0, 1, or 2 (Kolen & Brennan, 2004). The responses on items can be discrete or continuous, 

and the categories of item scores can be ordered or unordered.  

 

2.2.1 Assumptions 

The mathematical models of IRT specify that a respondent’s probability of giving a 

correct item response is dependent upon the respondent’s ability and an item’s characteristic.  
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Because IRT is based on a family of the mathematical models, strong assumptions must be made 

under which the model can assume to be held (Weiss & Yoes, 1991). The first assumption is 

dimensionality of the latent spaces (or variables). Dimensionality includes unidimensionality and 

multidimensionality. However, most applications of IRT models have assumed 

unidimensionality of latent space. The unidimensional model, which requires that tests measure 

only a single ability, is defined as a model intended to measure a single dimension. Thus, it is 

appropriate for a single common factor for item response. Under the unidimensional IRT model 

for dichotomously scored tests, a respondent’s ability is described by a single latent trait referred 

to as  , and the range of  is     (Kolen & Brennan, 2004). Nevertheless, when a test is 

administered under at least two dimensions, such as speeded tests measuring response speed and 

latent trait, unidimensional IRT models are not appropriate for more than one dimensional test. 

The development of the multidimensional IRT model is important. The multidimensional model 

is defined as a model intended to measure two or more dimensions. The multidimensional model 

is appropriate for two or more abilities to have a different impact on the items, and it is 

appropriate for respondents who have different systematic strategies, knowledge structures, or 

interpretations to apply to the items (Embretson & Reise, 2000). Nonetheless, the 

multidimensional IRT model is more complex and is not commonly applied.  

The second assumption is local independence (LI). LI means that respondents’ responses 

to any set items on a test are statistically independent after taking the ability of a respondent into 

account (Hambleton et al., 1991; Kolen & Brennan, 2004). This implies that the ability and 

response of a respondent to the items are independent. Given the ability of a respondent to 

answer the items, the probability under the LI is equal to the product of the probability of  

answering each individual item. The LI can be defined as: 
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   1 2

1

, ,..., | |
n

n j i j

i

P Y Y Y P Y 


 ,           (23) 

where  1 2, ,..., |n jP Y Y Y  is the probability of a response pattern on n items given the ability for 

respondent j (Hambleton et al., 1991). A concept of the LI is related to unidimensionality if the 

IRT model contains respondents’ abilities only on a single dimension.  

Third, the item characteristics curve (ICC) is the main feature of IRT analyses, and it has 

a specified form. The form of the ICC describes the relationship between the probabilities of a 

correct item response and respondent’s ability level on the construct being measured by the item. 

This relationship is characterized by the item difficulty on the ability scale and by its 

discrimination (Baker & Kim, 2004; Suen, 1990). Without this relationship, items cannot be 

differentiated between respondents with high and with low ability levels. The ICC specifies that 

when the ability level of a respondent increases, the probability of a correct response on items 

increases. In addition, it can be defined by such a mathematical function as ( , , , ) ( ).i i i iP P    

θ is a latent trait, which is referred to as ability. ( )iP  represents the probability of a correct 

response at any point on the   scale, and i represents an item (i = 1, 2, …, n). 
i is the difficulty 

parameter, 
i is the discrimination parameter, and i is the lower asymptote  (Baker & Kim, 

2004). Note that item difficulty, item discrimination, and lower asymptote were referred to as 

Greek letters β, α, and γ or as b, a, and c parameters, respectively in this study. Figure 2 shows 

that when the probability of giving the correct response is .5, the ability on the scale is zero. 

When the probability is 1, the ability is 4, whereas when the ability is -4, the probability is zero 

as in Item 3.  
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Figure 2. The item characteristic curve for three dichotomous items. 

 

The ICC includes three features (Embretson & Reise, 2000). First, the ICC is S-shaped, 

which plots the probability of correct response for the respondent to the item as a monotonically 

increasing function of ability. Second, the shape displays that items differ in location, slope, and 

lower asymptote.  Location relates to item difficulty in the ICC, and it describes the extent to 

which items are different in probabilities across ability. Slope, which refers to item 

discrimination, describes how rapidly the probabilities change with ability. The change of Item 1 

and Item 3, for example, were much faster than Item 2; thus, Item 1 and Item 3 were more 

discriminating than Item 2, because probabilities of item response were relatively more 

responsive to changes in ability level. The lower asymptote means that the probability of success 

does not fall to zero no matter how low ability. For instance, the range of the probabilities of 

Item 2 and 3 were between .0 and .2 shown in Figure 2. However, the range of the probability of 
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Item 1 was over .2, and this means that the item could be solved by guessing with the lower 

asymptote larger than zero no matter how low ability. Three items had different lower 

asymptotes but they had the same difficulty level of 0, indicated in the vertical line shown in 

Figure 2. For example, the probability of a correct response of Item 1 was higher than .5 with 

lower asymptotes of .25. Third, if a respondent is considered to have a low ability level, the 

probability of a correct response to specific items will be close to zero. On the other hand, if a 

respondent is considered to have a high ability level, the probability of a correct response to 

specific items will be close to 1.0.   

 

2.2.2 The Basic Components of IRT 

In a sense, some concepts and some terminologies of IRT are similar to the CTT. For 

example, the concept of item parameters, such as item difficulty and item discrimination, is 

applied in both IRT and CTT. Even though the definitions of item parameters are different, the 

basic ideas are similar.   However, the differences between IRT and CTT are that IRT includes 

three fundamental concepts: item response functions, information functions, and invariance 

(Reise, Ainsworth, & Haviland, 2005; Suen, 1990; Weiss & Yoes, 1991). 

 

2.2.2.1 Item Response Functions (IRFs) 

Item response functions (IRFs) are the basic unit of IRT. They describes the relation 

between a latent variable, which is individual differences on a construct such as depression, and 

the probability of correct item response to measure the latent variable. IRFs are normally used to 

evaluate item quality and serve as building blocks in order to get important psychometric 

properties. Three parameters, item difficulty, item discrimination, and lower asymptote, describe 
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the different aspects of the IRFs. For instance, Figure 3 shows the three dichotomously scored 

items (e.g., Yes or No) of the IRFs. When the location changes along with the ability axis, the 

IRF curve changes its inflection point given the difficulty of an item. Thus, Item 3 is more 

difficult than the other Items. The parameter of item difficulty is similar to the item mean in 

CTT. The steepness at the inflection point of the curve is called item discrimination. An item can 

be better to discriminate between a respondent having ability range around an item difficulty 

when having more discriminating items.  Item 2 shown in Figure 3, for example, is more 

discriminating than the other two items. The parameter of item discrimination is similar to the 

item-test correlation in CTT. The lower asymptote that illustrates the IRFs is the probability 

related to the lower bound of the curve.  In addition, it represents the probability of giving a 

correct response for individuals with low ability; thus, this parameter is referred to as the pseudo-

chance level parameter (Reise et al., 2005; Weiss & Yoes, 1991). For instance, Item 1 has the  

 

 

Figure 3. Item response functions for three dichotomously scored items. 



 

25 

 

lower asymptote in Figure 3.  

When applying three parameters in test items, a three-parameter model has been used. 

Assuming that the lower asymptote is equal to zero, and applying only the item difficulty and 

item discrimination, a two-parameter model is being used. When applying only item difficulty in 

a test item, assuming all item discriminations are the same or setting them to 1 and the lower 

asymptote to zero, the one-parameter or Rasch model has been used. The normal ogive and 

logistic ogive models can be used to describe the IRFs.  

 

2.2.2.1.1 Normal Ogive Model 

The unidimensional two-parameter normal ogive model can be defined as  

 
2 21

,
2

iz
z

iP e dz





               (24) 

where  iP  is the probability of the item response for a respondent, and zi can be written as 

   
1i

i i i

i i

 
    

 


    ,            (25)  

where  is the ability, i is the mean, and i is the standard deviation, which is a measure of the 

spread of the normal distribution. When i is large, the normal ogive is flat. On the other hand, 

when the middle section of a normal ogive is steep, the value of i is small. 1 i is equal to i

that represents the discrimination parameter, and i is equal to i , which is the difficulty 

parameter (Baker & Kim, 2004). 

Assuming that all i are the same to become a constant value,  i i   from Equation  

25 will become i  . Since only one parameter ( i ) will be estimated, this is a one-parameter  
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normal ogive model (Suen, 1990) and equation can be simply written as 

 
2 21

2

i z

iP e dz
 








  .              (26) 

Equation 24 also can be extended to a three-parameter normal ogive model, and the equation can 

be written as: 

   
2 21

1 ,
2

iZ
z

i i iP e dz  





             (27) 

where i parameter is the lower asymptote (Suen, 1990). Since the normal ogive model is more 

complex, Birnbaum (1968) is demonstrating a mathematically more convenient model, a logistic 

ogive model. 

 

2.2.2.1.2 Logistic Ogive Model 

Unlike the normal ogive model,  iP  of the logistic model can be computed directly 

because the logistic model does not involve integration; thus, it is more popular to use in IRT. 

This model also includes three popular models that are the one-parameter logistic (1PL) model or 

Rasch model, two-parameter logistic (2PL) model, and three-parameter logistic (3PL) model.    

1PL model is the simplest IRT model for binary response data. The discrimination 

parameter is fixed for all items, and only the difficulty parameter can compute on different 

values. It is equivalent to what is known as the Rasch model where the discrimination parameter 

is set to a value of 1.The equation for the 1PL model can be written as: 

 
 
 
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1| , ,

1 exp

j i

ij j i
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P Y b
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




 

 
           (28) 
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where  1| ,ij j iP Y b is the probability of correct item response for respondent j to item i; and 

ib is the item difficulty parameter of item i, and it is the point on the ability scales where the 

probability of a correct item response from respondent j to item i is .5 (Baker & Kim, 2004; 

Hambleton et al., 1991).  

 By contrast, the 2PL model includes the item discrimination ia and the 2PL can be 

written as: 

 
 

 

exp
1| , , ,

1 exp

i j i

ij j i i

i j i

a b
P Y b a

a b






 
  
  
 

          (29) 

where ia is the item discrimination parameter, and it describes how well an item can 

discriminate between a respondent having an ability level below or above the item location. ia

reflects the steepness of the ICC in its middle section. The steeper the curve, the more the item 

can be discriminated. On the other hand, the flatter the curve, the less the item can be 

discriminated, because the probability of a correct item response at low ability levels is nearly 

the same as at high ability levels (Baker, 2001).  

 Under the 3PL model, Birnbaum (1968) modified the 2PL to include a parameter, ic , 

which is a lower asymptote. The 3PL can be written as: 

   
 

 

exp
1| , , , 1 ,

1 exp

i j i

ij j i i i i i

i j i

a b
P Y b a c c c

a b






 
    
  
 

            (30) 

where ic is the lower asymptote, and it is the probability of respondents with low abilities 

correctly answering an item (Baker & Kim, 2004).  The difficulty parameter is the point on the 

ability scale where    1 2P c   , and the discrimination parameter is proportional to the slope  
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that is  1 4a c of the ICC at b  (Baker, 2001).  

 

2.2.2.2. Information Functions  

The concept of information function is crucial in IRT. Information function is an index 

indicating the item’s ability to distinguish among individuals. (Reise et al., 2005; Weiss & Yoes, 

1991). Sir R. A. Fisher (1922) described that information function is defined as the reciprocal of 

the precision with which an item parameter is measured. The amount of information, I, is given 

by  

2

1
I


 ,              (31) 

where 2 is the variance of the estimators. The amount of information in a test can be computed 

for each ability level on the ability scale from  to . The information function tells us how 

well each   level is being estimated. When I is large, true ability can be estimated with precision. 

When I is small, ability cannot be estimated, and the estimates will be widely scattered about the 

true ability.  

The IRFs can be transformed to the item information function (IIF), which is described as 

the relationship between an item’s informativeness and ability as shown in Figure 4. The amount 

of information based on a single item can be computed at an ability level. We will get different 

amounts of information in a different range of a given ability from different items. The relatively 

easy items are useful for discriminating among individuals on low ability, whereas the relatively 

difficult items are useful for discriminating among individuals on high ability (Reise et al., 

2005). Figure 4, for example, shows that Item 2 provides different item difficulty of the amount  

 
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Figure 4. Item information function for three example items. 

 

of information in a different ability range, and it provides more information related to 

discriminating items.  

The IIF at a specific ability value is conceptually a ratio of the slope of the ICC and the 

expected measurement error at the specific ability, and the equation is denoted as 

2
'( )

( ) ,
( ) ( )
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i i

P
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P Q


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 

               (32) 

where ( )iI  is the amount of information for item i at the θ level; ' ( )
,i

i

P
P









 that is the first 

derivative of the ICC.
 

 iP  is the probability of a correct response, and it depends on the 

particular ICC model used;      1i iQ P   , that is the probability of the incorrect response.  

 '

iP  can be substituted in the actual derivatives for the three popular logistic models (Baker & 

Kim, 2004). 



 

30 

 

The IIF under the 1PL or Rasch model can be written as 

( ) ( ) ( ),i i iI P Q               (33) 
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The IIF under the 2PL model can be defined as 

2( ) ( ) ( ),i i i iI a P Q               (34) 

where ai is discrimination parameter, 
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The IIF under the 3PL model can be written as 
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A test is formed by a series of items, and each item has its own IIF. When the IIF from 

different items adds together with the assumption of local independence, this forms a test 

information function (TIF) denoted by ( )I   (Baker & Kim, 2004; Birnbaum, 1968; Suen, 1990). 

Figure 5 shows the TIF for three example items from Figure 4. The TIF tells us how well the test 

is doing in estimating θ over the whole range of θ scores. The equation of TIF is defined as  

1

( ) ( ),
n

i

i

I I 


               (36) 

where ( )I  is the amount of test information at the ability level; 

2
'( )

( )
( ) ( )

i

i

i i

P
I

P Q




 

   ; and n is the 

number of items in the test.  



 

31 

 

 

Figure 5. Test information function for three example items. 

 

The item and test information are similar to the item and test reliability of CTT. 

Nevertheless, the major difference is that information in IRT can differ depending on 

respondents who fall along a certain ability range, while the scale reliability in the CTT is the 

same for all respondents, no matter what their raw-score levels (Reise et al., 2005).    

 

2.2.2.3. Invariance  

The values of item parameters in IRT model are constant and do not depend on the 

characteristics of a sample population when item parameters are measured. In other words, the 

item parameters in IRT model have an invariance property within a linear transformation, and 

this is known as item-parameter invariance. Unlike the CTT’s p-values, which change when the 

different sample populations are used, item parameters in IRT will maintain the same values, no 

matter what sample population has been used. In addition to item-parameter invariance, the 
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ability scale does not depend on a specific set of items. However, in CTT, the raw score scale is 

dependent on a specific item set on a single measure.  The advantages of item-parameter 

invariance allow researchers to efficiently link diverse scales that estimate the same latent 

variable and to compare respondents who have responded to different items (Reise et al., 2005; 

Suen, 1990).  

 

2.2.3 The Method of IRT Test Scoring  

The major goal of a test is to obtain a measure of the ability of each respondent. The 

estimated ability of the respondent in IRT is not the same as in CTT. In CTT, total test score is 

obtained by summing correct responses to the items, and this summed score will linearly 

transform to a scale score in order to estimate ability level of a respondent. In contrast, the IRT 

score is a non-linear function of the manifest item responses. It uses the item parameters and the 

knowledge of how these item parameters affect the ICC to estimate the respondent’s ability score 

based on his or her item response. The estimated ability for the respondent has maximized the 

likelihood of the respondents’ item response patterns given the scores of the parameter of n 

dichotomously scored test items (Baker & Kim, 2004; Embretson & Reise, 2000). In a binary 

test item, if a respondent provides a correct answer, his or her response is scored as a 1, 

otherwise scored 0. Since ability is randomly put on the standard z-scale, the score of ability may 

range roughly from -4 to 4. IRT is used to convert item response into a scale to estimate ability 

and to calibrate items and measure item parameters. 

  The probability of giving a correct item response is denoted as  P   , and the 

probability of giving an incorrect item response is denoted as  Q   [i.e.,  1 P  ]. The 

probability of giving correct or incorrect responses yields a function that is monotonically 
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increasing or decreasing. In addition, the probability of correct item response in a test is 

independent of the probability of correct or incorrect responses to the remaining items under the 

assumption of local independence.  The function described by multiplying the probabilities of 

correct and incorrect response patterns is known as the likelihood function (LF), which is crucial 

to all IRT parameter estimation (Embretson & Reise, 2000; Weiss & Yoes, 1991).  

For the LF, suppose that a randomly given respondent j responds to the n items with 

response pattern defined Uj = (u1j,…,unj) to be observed responses where j represents the 

respondent  j = 1,…,N, and uij is dichotomously scored item (0 or 1), i = 1,…,n.  For instance, we 

multiply the three item IRFs in order to get the maximum likelihood for the item response 

pattern. If a respondent answers 1, 1, 0 for three examples items shown in Figure 6, the IRFs, 

 1 ,P   2 ,P  and  3 ,Q  will be multiplied together and the conditional likelihood will be 

obtained. The LF of the probability of the vector of observed responses for a given respondent j 

 

 

Figure 6. Item response functions for three dichotomous item. 
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can be computed by 

   1

1

( ) Prob | ( ) ( ) ,i j ij

n
u u

j jn j i j i j
i

U P Q   




           (37)  

where      1i j i jQ P    (Baker & Kim, 2004; Embretson & Reise, 2000). The likelihood is 

low for a low score of θ because it is unlikely that a respondent answers Item 1 correctly, 

whereas the likelihood is low for the high score of θ because it is unlikely that a respondent 

answers Item 3 incorrectly. Thus, the likelihood for these three items is shown in Figure 7, that 

about θ = 0.6 is the best. When one obtains the highest likelihood, maximum likelihood 

estimation can be used to predict the score of θ for a respondent. 

 

 

 

Figure 7. The likelihood function for three dichotomous items. 
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2.2.3.1 Maximum Likelihood Estimation 

In IRT, ability is estimated in a model (i.e., 1PL, 2PL, or 3PL) for the response of a 

respondent after controlling for the item properties. The ability can be estimated by a maximum 

likelihood method. The maximum likelihood estimation (MLE) is used to estimate the ability of 

a respondent based on searching the ability score that maximizes the LF of a participant’s 

response pattern given item parameters. There are three assumptions to achieve the MLE (Baker 

& Kim, 2004). First, the scores of the item parameters are known. Second, the respondents must 

be independent, and their abilities can be estimated on a respondent by respondent basis. Third, 

all items on the test are modeled by the ICC models, that is 1PL, 2PL, or 3PL.  

The maximum likelihood procedure is an iterative process, and it begins with some a 

priori value for a respondent’s ability and known item parameter (Baker, 2001). The probability 

of obtaining a response uij, which is the observed item response of a respondent j to item i, for a 

dichotomous score to the n items, given the respondent j  and the item parameters  ,i i i   , 

can be written as  

P  
1

( | , ) ( ) ,
iji j

uu

ij j i i j i ju P Q   


             (38) 

where 1
( ) ,

1 exp[ ( )]
i j

i i j

P 
 


  

and assumes 
i and 

i parameter are known. 
i is an intercept, 

and 
i is a slope (i.e., the discrimination parameter);   1 ( )i j i jQ P   . Thus, the slope/intercept 

form, i i j  , will be used in the estimation procedures (Baker & Kim, 2004). 

The MLE treats the likelihood as a function of j and attempts to obtain the score of j  

that maximizes the likelihood. However, one of the problems of the MLE is the IRFs include the 

scores between zero and 1 that are multiplied together in Equation 38. Hence, the conditional 
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likelihood can become very small, and a computer program loses precision. In order to solve this 

problem, we may work with log-likelihood instead of the raw likelihood (Baker & Kim, 2004; 

Embretson & Reise, 2000).The log-likelihood is calculated by summing the IRFs instead of 

multiplying the IRFs, using the natural logarithm of the IRTs. The log-likelihood can be 

computed by,  

L = log
1

( ) [ log ( ) (1 ) log ( )],
n

j ij i j ij i j

i

u P u Q  


                 (39) 

where uij is the observed responses. Because all item parameters are known, the first and the 

second derivatives of the log-likelihood with respect to a given respondent can be computed. 

Note that the derivatives of ( )i jP  and ( )i jQ  with respect to j will be dependent on the 

particular ICC model employed. For instance, letting  ij i jP P  and  ij i jQ Q  , the first 

derivative for 2PL of the log-likelihood function with respect to j can be computed with 

Equation 39, 

1
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Applying the chain rules to calulate
 i j

j

P 






, the Equation of 
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j
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


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When combining Equations 41 and 42, 
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j
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Substituting Equation 43 and 44 into Equation 40 yields  
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The second derivative for 2PL can be computed with Equation 45, 
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 Equation 39 is useful in examining a short test. However, since some data sets may  

contain thousands of respondents answering many items, such as 50 or more items, one needs a  
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numerical method to find the exact maximum log-likelihood given a particular item response  

pattern. A Newton-Raphson procedure is the most commonly used method to compute the 

maximum of the log-likelihood. It will be employed to obtain the estimate of an ability parameter 

through iteration. The Newton-Raphson algorithm is used to find the mode of log-likelihood of 

each respondent. The first procedure in the Newton-Raphson scoring algorithm is specified 

ability starting value. When obtaining the tentatively estimated ability value, we can calculate the 

first (i.e., Equation 40) and second (i.e., Equation 46) derivatives of the log-likelihood function 

using this ability value. By obtaining these ability values, we can compute the ratio, that is, the 

first derivative divided by the second derivative. Thus, the Newton-Raphson iteration can be 

defined as (Baker & Kim, 2004) 

1
2

21
,j j

t t
j jt t

L L
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 





    
                   

              (47) 

where t indexes the iteration, and j
t

 
  is the estimated ability of the respondent within iteration t.  

The iteration will continue until a stable set of parameter estimates is obtained. Using this 

Newton-Raphson iteration, we can find a new value of ability.  

 The MLE has several features. First, since the expected value of ability is always equal to 

the true ability, it is unbiased. Second, the MLE is a proficient estimator, and its errors are based 

on normal distribution. Nevertheless, the main problem of the MLE is that when a respondent 

answers all items correctly (i.e., perfect response vectors) or incorrectly (i.e., zero response 

vectors), the MLE process cannot provide estimates of ability for him or her, because the LR is 

unable to have a single identifiable peak. In addition, MLE works best only with large sample 

sizes and large item pools, such as 50 items (Embretson & Reise, 2000). Moreover, the MLE 

may be incomputable under certain conditions in 3PL. In this situation, Bayesian model  
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estimation is useful to solve the limitation of the maximum likelihood method.  

 

2.2.3.2 Bayesian Model Estimation 

Bayesian model estimation (BME) assumes that if we know the distribution of ability, we 

can use this information in making more accurate ability estimation. The assumed distribution of 

ability is called the prior distribution. When the prior distributions are used to estimate the ability 

level of a respondent, this process is also known as the maximum a posteriori (MAP) scoring 

strategy (Embretson & Reise, 2000).  

MAP estimation includes several concepts. The first concept is the notion of prior 

distribution. It is a hypothetical probability distribution; a researcher assumes respondents who 

are a random sample. Thus, the prior distribution in ability level estimation is the standard 

normal distribution, that is, respondents are sampled from a normal distribution with mean, μ = 

0, and variance, σ
2 

= 1. The second concept is log-likelihood. The third concept is the posterior 

distribution. The definition of posterior distribution is the LF, multiplied at each ability level by 

the density of the prior distribution at that same ability level. The equation of posterior 

distribution can be written as (Hambleton & Jones, 1993; Suen, 1990) 

     | |f U L U g   ,                   (48) 

where  |f U is the posterior distribution;  g  is the prior distribution; and  |L U   is the 

LR as in Equation 37.  

The purpose of MAP is to obtain the score of ability that maximizes the posterior 

distribution that will equal the mode. To estimate respondent ability level using MAP scoring, 

which is specified as normal distribution, the procedure can be used the same as the MLE. That 

is, using a specific response pattern and a parameter of items in a test, we can compute the log-  
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likelihood and the first and second derivatives of LF (Embretson & Reise, 2000).  

The strengths of the MAP are that it incorporates prior information, all perfect and zero 

responses vector can be scored, and the estimation of ability can be determined. However, it still 

includes some limitations (Embretson & Reise, 2000; Weiss & Yoes, 1991). The first limitation 

of the MAP is that scores may be biased in a short test, such as those with fewer than 20 items 

because the expected values of the estimation of MAP are not the same as the value of the true 

parameter. The second limitation is to assume a specific form for the prior distribution. If an 

incorrect prior has been used, scores are critically biased and misleading. The third limitation is 

that if the assumption of ability distribution is invalid, MAP will provide a poor result of ability 

estimation.   

Besides MAP, we can also employ the expected a posteriori (EAP) to estimate ability 

level, and it is non-iterative. The EAP has provided a finite ability level estimate for all perfect 

and zero responses patterns. Unlike MAP, which is finding the mode of the posterior 

distribution, EAP is found by the mean of the posterior distribution. The scoring strategy of the 

EAP is that a set of probability densities on each set of test items is computed at a finite number 

of specified values of ability that is called quadrature nodes. These densities are taken from a 

normal distribution, and the equation of the normal distribution can be written as (Embretson & 

Reise, 2000): 

 
 2

21

2
F e






 
  
 

.                  (49) 

 Each quadrature node (Xr) of the densities is called weights [W(Xr)], which serves as  

discrete prior distribution, and the weights will transform so that their sum equals 1. While  

establishing the quadrature nodes and weights, the EAP estimate of ability can be defined as  
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(Bock & Mislevy,1981) 
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where  | ,j jE U  is the unconditional expectation of j given response vector jU and item 

parameter  ; 
rX indicates the value of ability of the q quadrature nodes;  rL X is the exponent 

of the log-likelihood function to evaluate at each of the q quadrature nodes; and  rW X is the 

weight of each quadrature.  

The advantages of the EAP estimator include that its ability estimate is easy to obtain 

because EAP, which uses discrete prior not a continuous prior, is a non-iterative process. Thus, 

the EAP does not require one to know the first and second derivative of the LF. The EAP is 

simple to calculate, finds mean, and estimates finite ability level for all response patterns. 

However, the disadvantage of EAP estimator is that it is biased when existing in a finite number 

of items.  The biased type is that the estimation of ability level is regressed toward the mean only 

if the number of items is large. 

 

2.2.4 The Strengths and Limitations of IRT 

The main advantages of IRT are its key features, such as ICCs, and strong assumptions, 

such as local independence. Besides, IRT includes other strengths (Hambleton & Jones, 1993). 

First, item statistics are independent on respondent samples from which they are obtained. 

Second, ability scores of respondents are independent on test difficulty. Third, test analysis does 

not need strict parallel tests to evaluate reliability. Fourth, test analysis provides matching test 

items to respondent knowledge level. Fifth, IRT provides detection of item bias and evaluation of 
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test score validity using differential item functioning (DIF) technique.  IRT includes technical 

and practical limitations. On the technical limitations, IRT model is more complex than the CTT 

model. In addition, model fit is a problem because how model fit problems, such as a problem 

related to dimensionality on the test, should be addressed is not completely defined. On practical 

limitations, IRT often requires large sample in order to obtain precise and steady parameter 

estimates.  

 

2.2.5 A Comparison between CTT and IRT (Embretson & Reise, 2000; Hambleton & Jones, 

1993) 

Classical Test Theory Item Response Theory 

CTT’s model is a linear function of true score 

and random error. 

IRT’s model is a non-linear function of item 

parameters and ability. 

CTT is focused on test-level information. IRT is focused on item-level information. 

CTT is referred to as a weak model because of 

the weak assumption that is easy to meet with 

measurement data. 

IRT is referred to as a strong model because of 

strong assumptions, including dimensionality, 

local independence, and ICC; thus, IRT is less 

likely to meet with measurement data. 

The true score has to mean only for a specific 

set of item properties because CTT does not 

include item properties in a model.  

The ability has to mean for any set of 

calibrated items because IRT model includes 

item properties. 

Item properties are not explicitly linked to 

behavior in CTT. 

The relative impact of difficult items on ability 

estimates and item responses is known. 

Ability and item parameters are the dependent 

variables.  

Ability and item properties are independent 

variables if the model fits the data. 

CTT only includes item difficulty and item 

discrimination.  

IRT includes three parameters, item difficulty 

item discrimination, lower asymptote, and 

related to item information functions.  

Item and respondent characteristics do not 

place on the common scale. 

Item and respondent characteristics are placed 

on the common scale. 

CTT is a nominal level measurement. IRT is an interval level measurement, proving 

for Rasch model. 

CTT has limited ability to detect measurement 

invariance. 

IRT employs differential item functioning 

(DIF) to detect measurement invariance. 

The required sample sizes for item parameter 

estimation are normally between 200 and 500.  

Depending on the IRT models, IRT requires 

large sample sizes, normally over 500.  
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IRT model is widely used in order to measure latent ability, and it can also be used to 

analyze ordinal questionnaire data and to devise measurement scales. However, when 

researchers are studying growth or change using the IRT model, the traditional IRT model has to 

be extended with longitudinal data. The next section will discuss longitudinal item response 

theory. 

 

2.3 Longitudinal Item Response Theory (LIRT) models 

In constructing longitudinal research, it is necessary that the same construct is measured 

at all time points. This is in order that it is possible to observe change on the same construct 

(McArdle, Petway, & Hishinuma, 2014). However, researchers may ask: (1) How can they 

describe growth and change? How can they say that the structure is the same, but the score has 

changed over time? How can they attribute changes to the individuals but not changes to the 

scale of measurement? The longitudinal item response theory (LIRT) model is a way to answer 

these types of questions.  LIRT employs an IRT model and allows researchers to investigate item 

and ability distribution parameters using longitudinal data (Tavares & Andrade, 2006). The LIRT 

model has received considerable attention for understanding changes in cognition or behavior 

over time (Choi, Harring, & Hancock, 2009; McArdle et al., 2014; Tavares & Andrade, 2006; 

von Davier, Xu, & Carstensen, 2011). Change across time points can be measured by focusing 

either on group differences or individual differences. In addition, it allows researchers to track 

students’ progress over time in response to a new instructional treatment (Cho et al., 2013). The 

LIRT involves the measuring of group growth, the measuring of individual growth, and latent 

change score. 
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2.3.1 Measuring Group Growth 

LIRT can be traced back to Fischer’s (1973) linear logistic latent trait model (LLTM). 

LLTM is integrated with the linear regression model into the dichotomous Rasch model (RM). 

LLTM can be written as 
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where ijY represents binary response,  1ijY  when respondent j provides a correct response on 

item i;   1| ,ij j iP Y   is the probability of a correct response of respondent j on item i, given a 

respondent ability θj and item difficulty βi. ηm, m = 1, …, p, is the basic parameter, qm is the given 

weight of the basic parameter m on item i, and c, which is a constant,  represents the 

normalization (Fischer, 1997). The LLTM is a unidimensional model because it is a constrained 

RM. LLTM assumed that the treatment effects for all individuals measured were the same at the 

same time intervals; thus, it was not useful for measuring individual change (Wang, Kohli, & 

Henn, 2016). Fischer (1983) extended the LLTM model to the longitudinal case, namely a linear 

logistic latent trait model with relaxed assumptions (LLRA), for two-time points. The probability 

of LLRA at the first time point is dependent only on abilities and the second time point adds 

trend and treatment effects to the model (Embreston, 1991). The LLRA for two time points is  
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and j is decomposed into the sum of the basic parameter as follows: 

1

p

jm m

m

q  


 ,             (54) 

where T1 and T2 are the first and the second time points, respectively;  11| ,ij ijP Y T and 

 21| ,ij ijP Y T are the probability of correct response for respondent j on item i given the item-

specific ability parameter and the treatment effect at time points T1 and T2 , respectively; ij is the 

item-specific ability of a respondent j; m  is basic parameters that represent the treatment effect 

within T1 and T2; jmq is the  dose of treatment m given to ij between  T1 and T2;  τ is the trend 

effect between T1 and T2 (Fischer, 1989, 1997).  Although the LLRA model allows estimating 

structural parameters for treatments, it is not useful for measuring individual differences in 

responsiveness to treatment occasions (Embretson, 1991). In this regard, Andersen (1985) 

presented the multidimensional Rasch model for measuring individual differences to the repeated 

administration.  

 

2.3.2 Measuring Individual Growth 

Andersen’s model assumed the exact same set of items to be administered across time  

points. Andersen (1985) developed this model to assess the effect of time on individual ability  

distribution. In other words, the ability ( j ) of respondent j is extended to include time t.
ib is the  

item difficulty parameter of item i, and a latent linear score with time effects can be expressed as  
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where  *1| ,ijt jt iP Y b is the probability of a correct response from respondent j on item i at the 

time point t, given the respondent ability 
*

jt and item difficulty
ib . ijtY denotes the response of 

respondent j on item i at time point t, 
*

jt is the ability of respondent j at time point t, and 
ib

denotes a time-invariant item difficulty parameter. In this model, item difficulties are constant 

across time points; however, the respondent’s ability involves dependence on time points. In 

other words, different abilities, which might be independent, characterized time points. Although 

Andersen’s model has taken into account time effects of the ability parameter, he did not 

explicitly consider change parameters for individuals. The ability in this model is time-specific, 

and it is unable to reflect individual differences in change over time points. Therefore, 

Embretson (1991) introduced a model for learning and change to examine individual differences 

in change over time. 

The Embretson (1991) model, a multidimensional Rasch model for learning and change 

(MRMLC), estimates both initial ability and one or more modifiability (i.e., latent variables) 

from longitudinal data. This models the ability ( jt ) of respondent j within occasions t. An initial 

ability ( 1j ) is involved in the item responses of respondent j at occasion 1, whereas a later 

ability ( jt ) is involved in the item responses of respondent j at occasion t (t > 1). The MRMLC 

model can be defined as (Embretson, 1991) 
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where 1j represents the initial level (t =1) ability of respondent j, 
2...j jt  are the tth modifiability, 

and it indicates the change in ability for respondent j between occasion t-1 to occasion t, and 

1

t

jm

m




  is the sum of an individual’s initial ability  1j and changes in the ability parameter 

 ( 1)j t  . Item difficulty,
ib , is assumed to be the same for all occasions. Equation 56 shows that 

the MRMLC is a multidimensional Rasch model. In addition to the multidimensional model, the 

probability of item response can be given by a unidimensional model. The probability of giving 

correct item response is dependent upon the same composite ability
c

jt  for all items within 

occasion t and for all t. 
c

jt is the unweighted sum of the first ability and the t-1 modifiabilities up 

to time point t. Thus, for the unidimensional Rasch model, the probability of a correct response 

from respondent j on item i administered under occasion t is given as (Embretson, 1991)  
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           (57) 

where 
c

jt indicates the ability of respondent j on occasion t and 
ib is the difficulty of item i.  

The difference between Andersen’s (1985) model and Embretson’s (1991) model is that 

the set of same items are repeated over time points in Andersen’s model, whereas different sets 

of items are administered across time points in Embretson’s model. If the same items are 

presented in the same test, this may lead to practice or/and memory effects to the same test taker. 

Thus, this may cause local dependency among item responses (von Davier et al., 2011). 

Embretson (1997) further extended the MRMLC model to the 2PL model, namely 

structured latent trait models (SLTM). The SLTM is given as: 
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where  1| , ,ijt jm it imtP Y b  is the probability of the correct response of respondent j to item i 

under time point t given the ability of respondent jm , item difficulty
itb , and the weight of 

ability
imt ; jm is the ability of respondent j on the weight of ability m where jm is collected into 

a vector j ; 
itb is item difficulty i under time point t, and 

imt is the weight of ability m on item i 

under time point t where 
imt is collected into a weight matrix Λ. A major advantage of the 

SLTM involves a particular processing ability jm dependent on 
imt . The SLTM is useful for 

data where items do not have the same discrimination on ability.  

Tavares and Andrade (2006) proposed the 3PL LIRT model, and this model can be seen 

as an extension of Andersen’s (1985) model. Tavares and Andrade’s model assumed that the 

item parameters are known and fixed over time points; however, latent ability parameters 

describe the changes over time points. The 3PL LIRT model can be written as (Tavares & 

Andrade, 2006) 
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where  *1| , , ,ijt jt i i iP Y a b c is the probability of a correct response from respondent j on item i at 

time point t given the respondent ability 
*

jt , item discrimination
ia , item difficulty

ib , and lower 

asymptote 
ic . j is  1,  . . .,

T

j jt   ~ MNt (μ, Σ), where MNt (μ, Σ) is the t-dimensional multivariate 

normal distribution with mean vector μ and covariance matrix Σ (von Davier et al., 2011).  
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In addition to the LIRT stated above, McArdle and Nesselroade (1994) proposed a latent 

change score (LCS), known as latent difference score (LDS), analysis. 

 

2.3.3 Latent Change Score (LCS) 

The LCS model is conducted within the framework of structural equation modeling 

(SEM) of longitudinal data. The LCS combined the concept of the structural modeling with 

latent growth modeling (McArdle, 2001). It is parameterized change as a function of the 

traditional growth terms, including intercept, slope, quadratic terms, and proportional growth. 

Proportional growth means that the change from one variable to another variable is dependent on 

the level at the previous variable, and it can be constrained to the same value across time or can 

differ in value across time (Keller & EL-Sheikh, 2011). McArdle and Hamagami (2004) 

suggested that the key features of the LCS model can straightforwardly define “changes as an 

accumulation of the first differences among latent variables” (p. 314) but not directly define the 

weights of the shape or timing of the change over time for the group (
jt ). In addition, the LCS 

includes other features (Keller & EL-Sheikh, 2011). First, the LCS can model within- and 

between- individual variance. Second, it can handle missing data by using full information 

maximum likelihood (FIML) estimation. Third, the assumption of sphericity or compound 

symmetry does not exist in this model. Fourth, this model can predict an additional aspect of 

change of individual differences by the parameterizing change. Fifth, this model includes 

simultaneously all statistical components of change.  

Generally, researchers assume to measure a homogeneous sample of respondent j 

independently drawn from the population of interest. Assuming that we have measured the same 

repeatedly observed score (
jtY ) on at least two occasions, that is T > 1. In addition, the 
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measurement error is dealt with based on classical test theory. The equation of the observed 

score at any occasion t can be written as (McArdle, 2001) 

jt jt jtY y   ,               (60) 

where Yjt is the observed score on a variable y for respondent j at occasion t, yjt is the score of a 

latent variable y for respondent j at occasion t, and εjt is the error scores of a variable y for 

respondent j at occasion t. It is assumed that the scores of measurement error have a zero mean 

(με), have a non-zero variance  2

 and the same variance at each occasion, and are independent 

of any other component in the model (McArdle, 2001; McArdle & Hamagami, 2001). The latent 

variable is modeled as a function of the latent variable on the previous occasion and the degree 

of change, that is, latent change score.  

A latent change score jty of any two latent or observed scores can be defined as 

(Ghisletta & McArdle, 2012; Keller & EL-Sheikh, 2011; McArdle, 2009; McArdle & 

Hamagami, 2001; McArdle & Nesselroade, 1994) 

( ) ,jt jt j t ty y y                  (61) 

or 

( ) ,jt j t t jty y y               (62) 

and the equation of the observed variables can be defined as 
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where Δt is the interval of time, and it is known and fixed; normally Δt is fixed to1. Thus, yj(t- Δt) 

= yj(t- 1). Δyjt is the difference between y at the current occasion t and y at the prior occasion (t-1); 

yjt is the score of the variable y for respondent j at the current occasion t; and yj(t- Δt) = yj(t- 1) is the 
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score of the variable y for respondent j at a prior occasion (t-1). Since the latent score is 

unconnected from the model based error scores, the latent change score is different from an 

observed change score (McArdle & Hamagami, 2004). In other words, the latent change scores 

Δyjt emphasize the change in a variable y from previous occasion t – 1 to current occasion t, that 

is, the latent change score Δyjt is computed by a current observed value yjt, and subtracts a 

previous observed value yj(t-1) (Keller & EL-Sheikh, 2011; McArdle & Hamagami, 2001; 

Newson, 2015). This means that the score of the variable y for the respondent j at the current 

occasion Yjt is formed as the unit-weighted sum of the latent score at the previous occasion yj(t-1) 

plus the latent change score Δyjt for respondent j from the previous occasion t-1 to the current 

occasion t shown in Figure 8 (Newson, 2015).  

The assumptions of the LCS include “the separation of individuals scores from group 

parameter,” (McArdle & Hamagami, 2001, p. 150) a constant time interval, that is change time is 

equal to 1, and the separation of the latent score (yt) from the error scores (εt) (McArdle & 

Hamagami, 2001). There are several models related to latent change scores, including no change 

score model (NCSM), linear change score model (LCSM), dual change score model (DCSM), 

and triple change score model (TCSM).  

 

 

Figure 8. Latent change score model for two-time points. 
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First, the NCSM is the simple baseline model. This model does not have latent changes to 

capture the differences between occasions; however, this model allows systematic individual 

differences and random error at all time points. In other words, the NCSM only includes the 

latent intercept η1, which is the unit constant, with a variance ψ11 and mean μη1. The μη1 

represents fundamental distribution to all observed variables via the set of fixed unit regressions 

to all manifested scores (McArdle & Nesselroade, 2014). The NCSM can be written as (McArdle 

& Grimm, 2010) 

Δyjt = 0,  

  Yjt = η1j + εjt,             (64) 

where Δyjt is the change score for respondent j at occasion t, Yjt is the observed scores for 

respondent j at occasion t, η1j is the initial level for respondent j, and εjt is the random error for 

respondent j at occasion t.  

Second, the LCSM is essentially extended from the NCSM, but it includes parameters of 

a latent slope η2 with a mean μη2, a variance ψ22, and a covariance ψ12 on the latent change scores 

shown in Figure 9. Since the mean slope of this model represents “the average amount of change 

per unit of time” (McArdle et al., 2014, p. 436), this model is also called a constant change 

model. The coefficient of this model is unified from the latent slope to each latent change score. 

The LCSM is the same as what a researcher wants to obtain with any linear change model. In 

other words, the LCSM is the same as the linear latent growth curve model  

(McArdle & Nesselroade, 2014). The LCSM can be written as (McArdle & Grimm, 2010) 
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where η2j is the latent slope of the model and 
2

2

T

j

t




 is the sum of the latent change score up to 

time t. Yjt can be expressed based on Figure 9 as (McArdle & Grimm, 2010) 
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            (66) 

or we can simply write this as 

1 2 ( 1)jt j j t jtY      .            (67) 

According to Figure 9, circle and ellipsis represent latent variables, rectangular represents 

an observed variable, and the triangle is a constant score.  The latent intercept (η1) only affects 

the first observed variable (Y1), but the second observed variable (Y2) is affected by the latent  

 

 

Figure 9. The linear change score model path diagram. (Note that the path diagram is modified   

                 by McArdle & Nesselroade, 2014.) 
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slope and the first observed variable. Since all coefficients are a fixed value of 1pointing ahead 

in time, any change of the second observed variable is conveyed to the third observed variable 

(Y3). Thus, we can interpret that this is an accumulation of effects (McArdle & Nesselroade, 

2014). For the LCSM, the mean of latent slope describes the mean of change observed from t-1 

to t, and the variance of latent slope allows changes in individual difference. The mean, variance, 

and covariate are free to estimate in the LCSM.  

Third, the change scores of DCSM directly include proportional change parameter β to 

the previous latent change score shown in Figure 10 (McArdle & Grimm, 2010). This model 

allows changes in the common factor scores, although the common factors are defined as 

invariant across times. The DCSM can be written as (McArdle & Grimm, 2010) 

( 1) ,jjt tYy                   (68) 
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where Δyjt is the change score from a previously observed variable, the coefficients of α and β 

describe the change. α is an additive change parameter that is a shift in the change at each 

occasion (McArdle & Hamagami, 2004), and β is proportional change parameters between the 

prior occasion yt and current occasion y(t-1) that describe how each variable affects others across 

time points (McArdle & Grimm, 2010). Thus, four-time points can be defined as 
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         (70)                          

or we can generally write  
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Fourth, the TCSM can estimate the additive, proportional, and latent basis coefficients shown in 

Figure 11 (McArdle & Nesselroade, 2014). The latent basis coefficient of this approach is not a 

fixed value of 1 pointing ahead in time. Rather, it is free to estimate the latent basis coefficients 

of change (αt2) (McArdle & Nesselroade, 2014). For instance, when the weight for the first time 

point is set at α12=0, the weight of change score from first time point (Y1) to second time point 

(Y2) is set at α22 = 1, and the weight of the change score from second time point (Y2) to third time 

point (Y3) α32 is freely estimated. When these weights are estimated at unity, the linear curve is 

the optimal curve.  The TCSM can be written as (McArdle & Grimm, 2010) 

 

 

Figure 10. The dual change score model path diagram. (Note that the path diagram is modified  

                   by McArdle & Nesselroade, 2014.) 
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Thus, four-time points can be defined as 
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or we can generally write  
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Figure 11. The triple change score model path diagram. (Note that the path diagram is modified  

      by McArdle & Nesselroade, 2014.) 
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The latent change score also can be extended to many other forms of change models, 

such as auto-regressive change score (ACS) model (McArdle, 2001), free change score (FCS) 

model (McArdle et al., 2014) and change scores based on second-order difference operators 

(Hamagami & McArdle, 2007).  

 

2.4 The Basic Concept of Latent Growth Modeling (LGM) 

Traditional methods, such as univariate- and multivariate- analysis of variance/covariance, 

auto-regressive, and multiple regression methods, are used to study longitudinal data. However, 

the limitation of these methods was that they only analyzed the mean changes and treated 

differences among individuals as error variance; some error variance might contain helpful 

information related to change (Curran, Obeidat, & Losardo, 2010). In addition, those methods 

both include variations of within-subject and between-subject. Nonetheless, these two kinds of 

variations are not the same; thus, they should be analyzed differently. For instance, the between-

subject variations result in dependencies among observed variables (Takane & de Leeuw, 1987).  

Researchers have extended a statistical approach, growth curve model, to describe 

individual differences and the nature of growth across time. Growth curve model is a flexible 

method to model change over time, it allows for exploring linear and nonlinear trends and 

change in individual differences, and it allows estimating between-person differences in within-

person change over time (Curran et al., 2010; Newsom, 2015). There are two popular methods of 

growth curve model for analyzing longitudinal data. First, growth curve analysis, which is based 

on multilevel modeling (MLM), known as hierarchical linear modeling (HLM), allows for 

dealing with data containing multilevel structure. Second, latent growth modeling (LGM), also 

known as latent growth curve model (Preacher et al., 2008) or latent curve analysis (Meredith & 
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Tisak, 1990), offers additional flexibility and integrates growth curve model in structural 

equation modeling (SEM) (Newsom, 2015). Since the growth curve model in this study is based 

on SEM framework, SEM will be briefly discussed in the next section.   

 

2.4.1 Structural Equation Modeling (SEM) 

SEM can be viewed as a combination of ANOVA, confirmatory factor analysis (CFA), 

multiple regression, and path analysis, and it is widely used in the behavioral and social sciences 

fields. SEM is a generalization of linear modeling providing that mathematical and statistical 

devices and testing hypothesized patterns of complex relationships between observed (measured) 

variables, which denotes indicators, and unobserved (latent) variables, which indicates a 

construct, cannot be directly observed (Preacher et al., 2008).  Researchers are interested in latent 

variables (factors), and the relationships between the latent variables are symbolized by the 

factor loadings between those variables. SEM not only can deal with regression, including single 

or multiple linear regressions, but also can deal with a system of regression equations; thus, it is 

a flexible model. The main strength of SEM is to compare the model to the data; that is, the 

model implies that the structure of the means and covariances can be compared to the means and 

covariances of the data. This comparison, known as fit-statistics, evaluates the matching of 

model and data. The second advantage of SEM is that direct and indirect effect between 

variables can be estimated.  SEM can also be useful in several ways (McArdle & Bell, 2000). 

First, it organizes concepts related to data analysis into scientific models. Second, it provides 

instruments for the estimation of mathematical components and for the assessment of the 

statistical features of models. Third, it allows a flexible method to deal with incomplete data sets. 

Fourth, it contains flexible provisions for models with latent variables.  Overall, there are two 



 

60 

 

important purposes in SEM. First is obtaining an estimate of the model parameter. Second is 

assessing the fit of the model. Although SEM has several advantages and is very useful, the 

required large sample sizes are one of its limitations.  

SEM includes a structural model and measurement model. The structural model denotes 

the casual relationships between latent variables and accounts for the casual effects. For 

continuous indicators, the structural model can be defined as (Muthén, 1983) 

      ,             (76) 

where η is a  latent dependent variable;  π is an intercept , normally fixed to zero; B is the 

coefficient matrix of latent dependent variable η; and ε is a structural equation error .  

The measurement model defines the relationship between a latent variable and its 

observed indicators (Jöreskog & Sorbon, 1996), and the equation can be written as 

 
ij i i j ijy      ,                      (77) 

where yij is an observed indicator variable, i =1,…, n; πi is an intercept for measurement, 

normally fixed to zero; ηj is a latent variable; Λi are factor loadings about the relations of the 

latent response variable (yij) with the latent variables (ηj ); and δij are measurement errors, and it 

follows the normal distribution; that is δ ~ N (0,1) . Simultaneously, SEM can be visualized by 

path diagram, which was invented by Sewall Wright (1921), shown in Figure 12.  

In Figure 12, two latent variables (F1 and F2), represented by a circle, cannot estimate 

directly. The observed variables (Y1 through Y6), represented by rectangles, estimate the latent 

variables. Error terms (ε1 through ε6) are represented by ellipses. Single-headed arrows indicate 

causal relationships, and double-headed arrows define correlation between two latent factors 

(i.e., covariances ψ12) and also represent the variance of latent variables. The two latent factors  
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Figure 12. SEM model with two common factors path diagram. 

 

have their own variances, ψ11 and ψ22, respectively, and they produce variances 
2

t
  in each 

observed variable (i.e., Y1-Y6) through the factor loadings (λ1 to λ6) (McArdle & Nesselroade, 

2014). Each observed variable has a unique
2

t
 , and assuming the unique 

2

t
 is independent of 

other unique and common factors. Normally, the path diagram does not show the intercept πi 

because of setting to zero. 

 In SEM, the parameter estimation and computing model fit are achieved with MLE using 

computer programs, such as LISREL, EQS, AMOS, and Mplus, assuming observed variables to 

be multivariate normal distribution when the observed data are continuous and recommending 

the minimum sample sizes be at least 200 (Kline, 1998). When the sample sizes are large 

enough, the statistical tests are almost significant; thus, the model will be rejected, although the 

data are described very well by the model.  Because of the sensitivity of the statistical test for 

sample sizes, we should employ alternative fit indices, that is goodness-of-fit, to evaluate model 
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fit. The goodness-of-fit indices include goodness-of-fit (GFI), Tucker-Lewis index (TLI), and 

non-normed fit index (NNFI); when these fit indices have the value 1, the model is fitted 

perfectly. The rule of thumb for accepting the model is a value of at least .90, and judging the 

model fit as good requires a value of at least .95. In addition to the fit indices stated above, root 

mean square error of approximation (RMSEA) can also be used to judge the model fit as good. 

When RMSEA is small, which is less than .05, the approximation is good (Hox & Bechger, 

1998).   

In addition to continuous indicators, SEM has been developed to handle dichotomized 

variables since the mid-1970’s. Dichotomous indicators are crucial to develop because observed 

variables are dichotomous with non-equidistant scale steps, especially in the social and 

behavioral sciences. For dichotomous indicators, the structural model is described the same as 

the continuous indicators in Equation 76. Here 
*

iy  is used to model categorical outcomes of the 

measurement model (Muthén, 1983): 

*

ij i i j ijy      .                      (78) 

Equation 78 is identical to Equation 77 except 
*

ijy  is a continuous latent response variable of 

respondent j on item i related to an unobserved variable; Λi is the factor loadings and contains 

matrices of fixed parameters. δij is measurement errors that are uncorrelated to the latent 

variables ηj and each other. Because 
*

ijy is unobserved, the mean for single population can be set 

to zero, and its variances are arbitrary, normally setting variance to 1 for convenience (Muthén, 

1983). In Equation 78, a continuous latent response variable 
*

ijy is introduced to represent the 

propensity of the occurrence of a certain category in a binary outcome. In that case, a binary 

outcome is considered an observed categorical indicator of an unobserved continuous latent 
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response variable (Muthén, 1979, 1984). For a binary outcome, a continuous latent response 

variable
*

ijy is related to the binary outcome of the observed response yi via a threshold τi as in the 

following: 

    
       

    

       
    

  ,   (79) 

 where the threshold τi is usually assumed to be zero because of an identification purpose. Since 

*

iy can be considered as continuous latent response variables underlying observed indicators yi, yi 

are assumed to reflect the
*

iy , and 
*

iy is usually assumed to be normal. 

When the observed data are categorical to follow the normal distribution, IRT and SEM, 

in fact, cover the same types of categorical data. Therefore, there is a special relationship 

between IRT and SEM methods. Indeed, Takane and de Leeuw (1987) have proved that these 

two models are equivalent. The following section will briefly discuss the connection of IRT and 

SEM for categorical data.  

 

2.4.1.1 IRT-SEM Model 

 When observed variables (yi) are categorical, assuming them to be binary (i.e., yi =1 or yi 

=0), observed variables assume reasonably that they are Bernoulli random variables. Let y = (y1, 

…, yn), the random vector of item response pattern; θ is ability, which is an m-component 

random vector and cannot be measured directly, and its density function is defined by  g  .  

The domain of θ is denoted by Θ, which is the multidimensional region, ranging from   to  , 

and θ assumes to follow a multivariate normal distribution with mean 0 and identity matrix; that 

is θ ~ N(0, (I)). The two-parameter IRT model can be chosen to be either normal ogive or logistic 
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models. The two-parameter normal ogive model in IRT is defined (Bock & Aitkin, 1981; Takane 

& de Leeuw, 1987) 

  ( | ) ( )P Y y P Y y g d  


   ,                      (80) 

where  |P Y y  indicates the conditional probability of observing item response pattern y 

given θ. Under local independence,  |P Y y   can be defined as 

     
1

1

| 1
i i

n
y y

i i

i

P Y y P P  




         ,                 (81) 

where  iP  gives the probability that a correct response (Yi = 1, i = 1, 2,…, n) will take place for 

a respondent whose ability is given by θ, and  iP  is given as 

 
2 21

2

iz
z

iP e dz





     ,i i                  (82) 

where i i iz     and i i i    . Note that the parameter in two-parameter normal ogive 

model in IRT is usually reported in the form of  i i     where i  is the parameter of 

discrimination; and i  is the parameter of difficulty; Ф indicates the cumulative distribution 

function of the standard normal distribution. For the two-parameter logistic model, the form of 

 i i    can be defined as 

 
 

 

exp 1.7

1 exp 1.7

i j i

i i

i j i

  
  

  

 
   
  
 

 ,                                (83) 

where the value of 1.7 is merely stated that obtained parameter of discrimination from the 

logistic model is about 1.7 times as large as the equivalent parameters of the normal ogive 

models (Glockner-Rist & Hoijtink, 2003). 
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When the mean is assumed to be zero and the variance to be one, the SEM for binary 

outcomes can be defined as 

       ( ) ,
U

P Y y h y dy    

       ( | ) ( ) ,
U R

f y w g w dw dy    

        ( ) ( | ) ,
R U

g w f y w dy dw                     (84) 

where U is the multidimensional region, ranging from   to  . U is defined by the direct 

product of intervals, which makes if yi = 1, Ui = (ui,  ) and if yi = 0, Ui = ( , ui).  |f y w

indicates the conditional density of y given w. Note that |y w~ N(Dw, Q
2
), and Equation 84 

involves no distribution assumption; the local independence assumption is not required. 

Therefore, the ( | )
U

f y w dy  can be defined as 

       
1

( | ) ( | ) ,
i

n

i i i
U u

i

f y w dy f y w dy


   

       
1

1

( | ) 1 ( | ) ,
i i

i i

n y y

i i i i i i
u u

i

f y w dy f y w dy


 



            (85) 

where 

    ( | )
i

i i
i i i

u
i

d w u
f y w dy

q

  
  

 
 ,                      (86) 

where qi is the i-th diagonal element of Var(Q
2
)
1/2

. If  

    i
i

i

d

q
                (87) 

and 
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   ,i
i

i

u

q



                (88) 

Equation 86 becomes  

     ( ).i i
i i

i

d w u
w

q
 

 
   
 

                                           (89) 

As alluded to above, since i i i    ,  ( )i i i iw w       . Kamata and Bauer (2008) 

provided the general transformation equations to convert item parameter estimates in the SEM 

     
1 2

1 2

1.7 Var( )

Var( )

i
i

ij







 ,                  (90) 

and 

       
1 2

( )

Var( )

i i
i

i

E 








,           (91) 

where η is the latent variable; Λi and τi are the factor loading and threshold for item i, 

respectively; E(η) and Var(η) are the mean and variance of the latent variables; and Var(δij) is the 

residual variance of item i. Thus, Equation 89 is equivalent to Equation 82 (Kamata & Bauer, 

2008; Takane & de Leeuw, 1987). 

In sum, the ability (i.e., latent trait) in IRT is assumed to be unidimensional, whereas the 

latent variable (i.e., ability in IRT) in SEM tends to be multidimensional. However, IRT and 

SEM are closely related when items are categorical data. As we know, latent variables cannot be 

directly measured; they are measured through a set of items.  When the latent variables in SEM 

are unidimensional, the model is the same as a graded item response model with a probit link 

(Titman, Lancaster, & Colver, 2016). Takane and de Leeuw (1987) showed dichotomous 

variables of SEM to be equivalent to the two-parameter normal ogive model in IRT. Note that 
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the connection between the IRT model and SEM has been discussed in recent research 

(Glockner-Rist & Hoijtink, 2003; Kamata & Bauer, 2008; Titman et al., 2016). 

 

2.4.2 Latent Growth Modeling (LGM) 

 Latent growth modeling (LGM) is commonly used in modeling the growth of the latent 

construct measured by a scale that contains a set of items. It describes the relationship between 

the repeated measurement of the same observed variable and the metric of occasions. In addition, 

LGM makes it possible to explore the relationship between latent predictor variables in change, 

measure the effects of change on other factors, develop better hypothesis articulation, construct 

parallel growth curves, and provide greater statistical power (Newsom, 2015; Preacher et al., 

2008). Furthermore, it directly allows investigation of intraindividual (within-person) change 

over time and interindividual (between-person) variability in intraindividual change (Preacher et 

al., 2008). Basically, LGM delineates individuals’ behavior in terms of initial levels and their 

growth from or to those levels. LGM decides the variability across individuals in both initial 

levels and slope, and it offers an approach to inspecting the contribution of other variables (or 

constructs) to account for those initial levels and slope (Hancock, Kuo, & Lawrence, 2001).  

LGM was originally developed by both Tucker (1958) and Rao (1958); William  

Meredith was the first to relate it to structural equation modeling (SEM) in 1985 (McArdle & 

Bell, 2000; Meredith & Tisak, 1990). LGM employs a concept derived from the confirmatory 

factor analysis (CFA) as a special case of SEM applied to longitudinal data (Preacher et al., 

2008; McArdle & Bell, 2000). The simple linear LGM includes two latent variables, η1 

representing an intercept and η2 representing a slope, and observed variables, U1 to U3, as shown 

in Figure 13. The latent variable indicates that constructs cannot be directly measured, but it can 



 

68 

 

be measured by observed variables. In LGM, the relationship between latent variables and 

indicators is similar to the CFA model. The effects of latent variables on their indicators are 

called loadings, which describe trends over time in observed variables that are repeated measures 

of the same observed variable U, where U has been measured from time t (t =1, …, T) on 

respondent j (j =1, …, N), that is Ujt (Ghisletta & McArdle, 2012). 

In Figure 13, the intercept η1 is the level of outcome measure, and the slope η2 is specified 

to denote shape of the growth curve of change over time (Preacher et al., 2008). LGM model 

requires at least one fixed value for each latent variable and one fixed zero to separate latent 

variables for estimation (McArdle & Nesselroade, 2014). For example, we fixed values of 1 for 

 

  

Figure 13. The linear latent growth models for three time points path diagram. 
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the intercept, and we fixed zero in the slope at the first time point in this study. A triangle means 

a constant of value of 1 that includes the means of the intercept and slope. Circles or ellipses 

indicate latent variables, and rectangles indicate observed variables. One-headed arrows indicate 

fixed or group coefficients (i.e., fixed effect) that are structural weights, and a double-headed 

arrow indicates random or individual’s features (i.e., random effect). The intercept, η1, which is 

constant for any given individual across time, represents the level of the outcome measure (i.e., 

observed variable) U. The loadings of intercept, Λ11 through Λ31, are required to be equal to the 

unit value, normally fixed to 1 in order to represent the effects of a constant for longitudinal data.   

The slope, η2, represents the slope of an individual’s change. The loadings of the slope, 

Λ12 through Λ32, represent the shape of linearly increasing growth over time (McArdle & 

Nesselroade, 2014). The loadings of the slope are set based on a chosen time metric (Preacher et 

al., 2008; Duncan & Duncan, 2004). For instance, one employs a balanced set of basic weights 

as 0, 1, and 2, indicating the mean to reflect a one-unit change from one occasion to the next 

occasion. In addition to the balanced set of basic weights, an unbalanced set of basic weights as 

0, 1, and 3 can be explained for the observed but unbalanced time delay between time points 

(McArdle & Nesselroade, 2014). μη1 and μη2 are the mean of the intercept and slope, 

respectively. The mean of the slope, μη2, indicates a linear increase or decrease across time. If the 

mean of the slope is significant, the increase or decrease across time in the level of the dependent 

variable is statistically different from 0 (Newsom, 2015). ζη1and ζη2 are residuals of the intercept 

and the slope, respectively.  ψη1 and ψη2 are the variances of the intercept and the slope, 

respectively. The variance of the slope, ψη2, indicates the individual differences in change. The 

significant variance of slope suggests that the slopes for individual cases are heterogeneous, 

whereas the insignificant variance of the slope indicates that individual cases are homogeneous 
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(Newsom, 2015).  In addition, the intercept-slope covariance ψη12 is able to estimate. U1 through 

U3 are equal spaces of observed variable U for longitudinal data. e1 to e3 are the error terms, 

which influence the interpretation of the model parameters by correcting the measured variances 

for the random error (Preacher et al., 2008).  

The matrix algebra of LGM based on Figure 13 can be written as  

1 1 11 12 1

1

2 2 21 22 2

2

3 3 31 32 3

U e

U e

U e









        
        

             
                

,            (92) 

where the first column is τ, which is a linear function of intercepts, normally fixing to zero 

because of model identification and not shown in Figure 13, the second column is the loadings of 

the initial level (i.e., intercept), the third column is the loadings of the slope, the fourth column is 

the two latent variables, and the last column is the errors. The basis matrix notation can be 

written as 

U e    ,             (93) 

where U is the observed variables; τ is as stated above; η represents g latent variables that 

indicate the aspects of change; Λ, which indicates the function of time, is a matrix of loading of 

latent variables; and e is error terms. The measurement model indicates the relationship between 

the latent variables (η) and observed variables (U) for longitudinal data (Preacher et al., 2008). 

When g = 2, assuming the U variable measured at three equal-interval occasions, the equation of 

Figure 13 can be defined as: 

1 1 2 2 ,jt j t j t jtU e                   (94) 

and a test for linear growth model could be conducted through the following loadings: 
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1 0

1 1

1 2

 
 

 
 
  

 .              (95) 

The first column represents the true initial amount (i.e., intercept) Λt1 of U, and the second 

column is the true rate of change (i.e., slope) Λt2 across time points from that Λt1. If Λt1 is fixed to 

1, then Equation 94 becomes  

1 2 2jt j j t jtU e     ,                        (96) 

where 
jtU indicates the score on the observed variables for respondent j at time t; ηj1 and ηj2 are 

the intercept and slope for respondent j, respectively; Λt2 is the loading of the slope, giving 

values, such as 0, 1, and 2, to represent time codes, and it determines the shape of the growth 

curve; and 
tje is a random normal error for respondent j on the observed variables at time t 

unexplained by the initial level and the rate of change (Ferrer, Balluerka, & Widaman, 2008). 

The ηj1 and ηj2 can be expressed as functions of latent means and residuals (i.e., individual 

deviations) away from latent means. The equation of ηj1 and ηj2 can be defined as 

11 1j      ,               (97) 

22 2j      ,             (98) 

where μη1 and μη2 are the mean of intercept and slope, respectively, and ζη1 and ζη2 are the 

residuals of the intercept and slope, respectively. ηj1 and ηj2 are referred to as random 

coefficients, and ζη1 and ζη2 are referred to as random effects (Preacher et al., 2008).  When 

substituting Equation 97 and 98 into Equation 96, this equation can be written as 

1 2 2 1 2 2jt t t jtU e             .           (99)    
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We also can derive a covariance structure based on Figure 13. The covariance structure 

indicates the variance and covariance of the population of observed variables for longitudinal 

data as a function of model parameters. The covariance structure is defined as 

'

e      ,            (100) 

where Ψ is the variance-covariance matrix of observed variable U ; Λ is the loading matrix of the 

latent variables; ζ is the variance-covariance matrix of the latent variables; and εe is the variance-

covariance matrix of error terms, and it indicates that part of the variance in data is uncorrelated 

with the hypothesized latent curves (Bollen, 1989; Preacher et al., 2008).  

In addition to deriving the covariance structure, the mean structure can also be derived. 

The mean structure indicates the population mean of observed variables for longitudinal data as a 

function of intercept and the mean of latent variables. The mean structure is defined as (Preacher 

et al., 2008) 

     ,                        (101) 

where μη is the matrix of population mean of observed variables;  is the means matrix of latent 

variables, (i.e., 
1 and 

2 ). As stated above, Λη is the matrix loading of the latent variables. 

Note that the mean structure, in fact, characterizes the population means of observed variable U 

as a function of τ and μη; however, τ normally is constrained to zero so that we can simplify 

measurement model and mean structure. The parameters of researchers interested in the LGM 

are included in the matrices of Λ, ζ, ε, and μη. Therefore, the simple linear LGM model of Figure 

13 estimates a total of six parameters, including the means (μη1 and μη2) and variance and  

covariance (ψη1, ψη2, and ψη1 η2) of latent variables and the constant errors (ψe).   
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2.4.3 Assumptions of LGM 

There are several important assumptions in LGM with maximum likelihood estimation 

(MLE) (Bollen & Curran, 2006; Preacher et al., 2008). First, the means of the error term in 

Equation 93 and residuals in Equation 97 and 98 are assumed to be zero. This mean that if we 

measure the same person repeatedly at a given time point, we assume the means of error and 

residuals to be zero across given occasions. Second, the latent variables (i.e., the intercept and 

slope) are independent with the equation error term. Third, assuming the covariances of all 

variances within and between time points is zero, that is, the errors are independent over time. 

Fourth, assuming random intercepts and slopes are independent of other factors. Fifth, the errors 

of different individuals are independent.  

 

2.4.4 The Strengths and Limitations of LGM 

There are several advantages to using LGM for evaluating change.  First, since LGM 

treats mean, variance, and covariance as random effects, LGM allows the estimation of an 

average growth trajectory (i.e., the mean of intercept and slope) of an individual and individual 

differences (i.e., the variance of intercept and slope) in change over time. Unlike repeated-

measures ANOVA, which evaluates only mean growth patterns and treats variability as an error 

in a growth pattern, LGM estimates the growth trajectory and group means and variances of the 

growth factors separately for each individual. In addition, it allows the study of the predictors of 

those individual differences to answer questions related to which variables apply important 

effects on the rate of development (Hardy & Thiels, 2009; Duncan & Duncan, 2004).  

Second, LGM has considerable flexibility because it is capable of investigating both 

linear and nonlinear change patterns, given at least two-time points. Two factors are adequate 
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and preferable for estimating linear growth, and more than two factors are able to investigate 

nonlinear, such as quadratic and cubic, growth (Duncan et al., 2006; Duncan & Duncan, 2004).  

Third, LGM permits the incorporation of both time-varying and time-invariant covariates. 

Both time-invariant and time-varying variables can be included in models as predictors and 

outcomes of growth functions. Thus, it permits the researcher to explore the antecedents and 

consequences of development (Preacher et al., 2008; Duncan & Duncan, 2004; Duncan et al., 

2006).  

Fourth, LGM has the ability to assess the sufficiency of models by using model fit indices 

and model selection criteria and to explain measurement error by using latent repeated measures. 

LGM is able to explain some error in predictors and to investigate mediation hypotheses 

(Burchinal, Nelson, & Poe, 2006).  

Fifth, for dealing with missing data, LGM is conducted by using the full information 

maximum likelihood (FIML) method, which is suggested to obtain maximum likelihood (ML), 

to estimate parameters. Unlike repeated-measures ANOVA, which either deletes missing data 

cases or imputes the value for missing data prior to the analysis, ML parameter estimation uses 

all available data. In other words, LGM takes all available information instead of deleting 

missing data cases. Thus, LGM is more useful for dealing with missing data than repeated-

measures ANOVA (Hardy & Thiels, 2009; Preacher et al., 2008; Duncan et al., 2006).  

Despite LGM possessing a number of benefits, it has some limitations. First, change is 

systematically associated with the passage of time based on a fundamental assumption. If change 

and the passage of time are not related, studying individual growth trajectories will not be very 

useful (Duncan & Duncan, 2004; Burchinal & Appelbaum, 1991). Second, LGM would not be 

appropriate for randomly varying within-subjects designs, varying within-person distributions of 
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time-varying covariates, and random missing data. Despite LGM having the ability to handle 

missing data and multilevel growth modeling, the analyses do not yet permit the flexibility of the 

random coefficient method (Duncan & Duncan, 2004; Duncan et al., 2006). Third, it relies on 

time-structured data and a slightly reduced power (Burchinal et al., 2006). Fourth, it lacks a 

mechanism for evaluating longitudinal measurement invariance (Sayer & Cumsille, 2001).  

In order to have rigorous basis for meaningful scaling for investigating growth, LGM can 

be considered to incorporate with other approaches, such as IRT. This study employs the LGM 

to integrate the IRT approach with longitudinal data, that is, longitudinal item response theory – 

latent growth modeling (LIRT-LGM). The next section will discuss LIRT-LGM model.  

 

2.5 Longitudinal Item Response Theory – Latent Growth Model (LIRT-LGM) 

The LGM employs a single composite, which is normally summed or averaged over 

items to create a score. It is this score that is used to investigate change. The LGM model is 

directly fit to the vector of means and the matrix of covariances among single observed scores 

measured, that is, one score per individual, at each measurement occasion. As noted above, the 

LGM does not incorporate measurement errors of the indicators into the composite score. In 

order to overcome the limitations of the LGM, in the 1980s the LGM model was extended to 

incorporate multiple indicators. The model incorporating multiple indicators is known as the 

second-order latent growth modeling (Hancock et al., 2001; Sayer & Cumsille, 2001), curve-of-

factors model (McArdle, 1988), latent variable longitudinal curve model (Tisak & Meredith, 

1990), multivariate latent curve models (MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 1997), 

or multiple indicator growth curve model (Chan, 1998). The manifest variables are to be used as 

the indicators of the latent variable (i.e., first-order factors) on each occasion. The growth 
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parameters (i.e., second-order factors) are used to explain variance in and covariance among the 

first-order factors and to investigate growth over time (Ferrer et al., 2008; Hancock et al., 2001; 

Sayer & Cumsille, 2001). 

The basic path diagram of the second-order LGM is presented in Figure 14. The 

difference between the LGM and the second-order LGM is that the intercept η1 and slope η2 of 

the latent variables become the second-order factors. In addition, the first-order factors, F1 to F3, 

are included in the second-order LGM. These are the latent constructs measured by multiple 

indicators on each occasion. The loadings for the second-order factors are described in the first-

order factors; the loadings of the intercept are set to 1 and for the slope are set based on the time 

metric (in this study, these are 0, 1, and 2). The mean and variance of the intercept and slope are 

the most interesting in applications as with the LGM. The loadings, λ, represent a regression 

slope associated with the observed score and the latent construct. The intercepts, τ, in the 

regression model are related to each indicator of the first-order factors. These values are set to 

zero in order that the means of the first-order can be identified constraints on the first-order 

factors (Newson, 2015). The equation in Figure 14 can be stated as 

tj ti ti tj tjY F     ,                 (102) 

where  

1 2 2tj t tjF      ,               (103) 

1 1 1     ,                (104) 

2 2 2     ,               (105) 

where Ytj is the score for respondent j at time t; τti is the intercept of item i at time t, normally τti 

is set to 0 and not shown on Figure 14; Ftj, is first-order factors for respondent j at time t; λtj is the 
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Figure 14. The second-order latent growth models path diagram.
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factor loading of Ftj at time t; εtj is measurement errors; η1 and η2 are the intercept and slope, that 

is, second-order factors, respectively; ψtj are the variance of latent score Ftj; μη1 and μη2 are the 

mean of intercept and slope, respectively; and ζη1 and ζη2 are the residuals of intercept and slope, 

respectively. By substituting Equation 103 through 105 into Equation 102, this equation can be 

rewritten as 

1 22 1 2 2tj ti ti ti t ti ti t ti tj tjY                       .          (106) 

Compared with the LGM model in Figure 13, change in the second-order LGM is modeled in the 

repeated first-order factors rather than in the manifest variables.  

The advantages of this model include that a measurement error of the LGM related to 

each indicator is confounded with occasion-specific variance, whereas the second-order LGM 

provides separate estimates for a variance. Furthermore, this model provides more information 

related to the characteristics of the individual observed variables because of directly modeling 

the measurement structure of the indicators. Moreover, most importantly, this model allows for 

testing measurement invariance of the composites over time. In addition, this model contains 

some potential features. For example, this model should have high reliability, because the 

occasion-specific variance will be reduced.  This is because variance at each time point is 

separated into residual variance and factor variance (i.e., true score variance) so that it leads to 

greater statistical power (Newsom, 2015).  

The LGM model, in fact, can be extended to other elements of structural models, such as 

a nonlinear growth model (Newsom, 2015) or an autoregressive latent trajectory model (Bollen 

& Curran, 2004, 2006). McArdle (1988) has suggested that the LGM model can potentially be 

integrated with IRT in order to obtain a rigorous basis for meaningful scaling.  In this way, 

integrating with IRT models would provide advantages over traditional approaches.
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These advantages include examining measurement invariance, having item and person statistics 

on the same scale, and using items to discriminate among respondents based on latent abilities 

(de la Torre & Patz, 2005; Embretson & Reise, 2000; Hsieh et al., 2013).  

A number of studies provide empirical results and simulation studies using IRT in the 

context of a longitudinal growth modeling framework (McArdle et al., 2009; Wang et al., 2016; 

Wilson, Zheng, & McGuire, 2012). McArdle and colleagues (2009) proposed LGM to 

systematically model linear and nonlinear growth of ability.  Wilson, Zheng, and McGuire 

(2012) describe a latent growth item response model. The Wilson et al. model permits both linear 

and nonlinear modeling of change in ability. These two models can be viewed as 

multidimensional IRT models. The theory underlying LIRT and LGM approach has been 

available for some time; however, to date, integrating longitudinal IRT (LIRT) models and LGM 

is a new model.  

The LIRT-LGM explores growth in a latent variable of interest based on multiple 

repeatedly measured observed (manifest) indicators at each occasion using IRT models. The 

LGM, as used in this study, is based on the second-order LGM. The LIRT model is modified 

based on McArdle and Nesselroade’s (1994) latent change score.  As stated above, latent change 

scores include different models, such as a dual change score model (DCSM). In this study, it is a 

modified linear change score model (LCSM), which is equivalent to a linear latent growth curve 

model (McArdle & Nesselroade, 2014). A general assumption for the LIRT-LGM model is that 

this model assumes each observed variable Uij follows a binomial distribution, and the latent 

continuous variables (θjt) underlying the binary outcomes on the item level are assumed to follow 

a normal distribution. In addition, the measurement errors and residuals in this model are 

assumed to be zero, and the thresholds and loadings are assumed to be equal over time. 
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For the LIRT-LGM model, 
ijtU (i = 1, …, n) is the nth observed scores for respondent j at 

time t; τit is the intercept of item i at time t, normally τti set to 0 and not shown on Figure 15; η1 

and η2 are the intercept and slope, that is, second-order factors, respectively; Δθjt is a latent 

change score, where Δθjt = η2; Λ2t is a matrix of loadings of the slope (i.e., second-order factors), 

reflecting the hypothesized growth pattern of the latent continuous variable θjt; θjt, is composed 

of first-order factors and is a latent continuous variable for respondent j at time t; λti is the 

loading of first-order factors of item i at time t; μη1 and μη2 are the means of intercept and slope 

of the growth parameters, respectively; and ζη1 and ζη2 are the residuals of intercept and slope, 

respectively. ψη1 and ψη2 are the variances of intercept and slope, respectively; ψη12 is the 

covariance of the intercept and slope; and ψ11 to ψ33 are the variances of latent continuous 

variables θjt. This study is interested in the mean slope, which indicates the average amount of 

change per unit of measurement occasion, and the variance slope.  We assume here that 

indicators of the θjt are measured on three equal-interval occasions. The equation of Figure 15 

can be given as 

ijt ti ti jtU     ,                 (107) 

where  

1 2 2jt t jt      , where η2 = Δθjt,            (108) 

1 1 1     ,                (109) 

2 2 2     .               (110) 

By substituting Equation 108 through 110 into Equation 107, Equation 107 can be rewritten as 

1 21 2 2 2ijt ti ti ti ti t ti t ti tjU                     , 

      
1 22 1 2 2 .ti ti ti t ti ti t ti tj                         (111) 
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One of the assumptions of this model is that the item parameters (i.e., difficulty and 

discrimination parameters) of the factor indicator are equal over time; thus, the subscript t will be 

eliminated, and Equation 111 will be reduced to
  

1 22 1 2 2ijt i i i t i i t i tjU                    .     (112) 

The concept of the item parameters remaining equal over time (i.e., measurement invariance) is 

the usual IRT assumption and is important for investigating change across time points in an 

underlying latent construct. Measurement invariance will be discussed in the next section. 

 

2.5.1 Measurement Invariance 

In a longitudinal study, additional hypotheses should be tested because the same observed 

variables are measured at repeated time points, but the same constructs are not assured to be 

measured at each time point. Thus, changes in measured variables can only be interpreted if item 

parameters are not different across time points. This condition is referred to as 

measurement invariance. It is an assumption of IRT and means that IRT item parameter 

estimates do not change when students from the same groups are measured across time on the 

same items (Cohen, Bottge, & Wells, 2001). For example, item difficulty (bi) is assumed to be 

equal over measurement occasions (i.e., bi1 = bi2 =…= bit).  Measurement invariance, in this 

sense, means that the values of parameters are on the same scale over measurement occasions 

(Ferrer et al., 2008; Meredith, 1993).  

Meredith (1993) differentiated between nonmetric (or configural) and metric 

measurement invariance. Nonmetric measurement invariance indicates that the factor loadings 

are equal at each time point. Metric measurement invariance can be classified into weak,
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Figure 15. The LIRT-LGM path diagram.
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strong, and strict measurement invariance. Weak measurement invariance is the basic 

assumption of measurement invariance and requires that the factor loading of each indicator 

must have the same numerical value across time points. Weak invariance is employed in the 

LIRT-LGM model. That is, factor loadings in Equation 107, for example, are assumed to be 

equal over the three-time points in the illustration here: 

11 12 13    .          (113) 

  Strong measurement invariance requires that the factor loading and measurement 

intercept of each indicator have the same value over time. Strict measurement invariance requires 

the factor loading, measurement intercept, and item residual variance of each indicator to be 

equal over time. However, strict measurement invariance cannot hold while modeling change 

because heterogeneous variance over time points is often the case. This means that time effects 

are confounded by time-related increases in the variance (Ferrer et al., 2008; Sayer & Cumsille, 

2001).  

To examine the assumption of measurement invariance, studies (e.g., Hofer, 

Thorvaldsson, & Piccinin, 2012) suggest that measurement invariance can be tested by structural 

equation modeling (SEM). For instance, we estimated a model that freed factor loading as a 

baseline model (i.e., unconstrained model), and we subsequently estimated a model that 

constrained the factor loading to be equal. The chi-square difference (
2 ) test (Bollen, 1989; 

Cheung & Rensvold, 2002) was used to determine the model fit differences. The 
2 can be 

computed by 

2 2 2 ,c uc               (114) 

– ,c ucdf df df                                 (115) 
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where 
2

c indicated the value of constrained model, 
2

uc denoted  the value of unconstrained 

model, and dfc and dfun were the degree of freedom of the constrained model and unconstrained 

model, respectively.  If 
2  between the models is not significant, this indicates measurement 

invariance.  In addition to structural equation modeling, measurement invariance can also be 

tested under IRT by obtaining item parameter using either concurrent or separate calibration 

(Cho et al., 2013).  

If measurement invariance fails to hold, this will cause two problems. First, if factor 

loadings and intercepts are freely estimated and are found to not be invariant, it is not certain 

whether the same latent construct can even be measured over time. Hence, the change across 

time points might not represent quantitative growth in the construct.  Rather, it may be reflecting 

shifts in the nature of the construct over time. Second, choosing different referent indicators for 

the scaling of the latent factors may change the model fit substantially as well as the growth 

parameter estimates under partial measurement invariance. Therefore, full measurement 

invariance is a necessary condition for a valid interpretation of change in latent variables with 

multiple indicators for a model (Ferrer et al., 2008).  If measurement invariance fails to hold, 

meaning respondents’ respond differently to the items over time, the factor means, as a result, 

cannot be compared reasonably and would be difficult to interpret. When measurement 

invariance is violated, by choosing other IRT models, researchers may be able to find out which 

items yielded a poor fit.  Researchers could then remove these items from the scale and 

reevaluate the fit (Millsap, 2010). When the assumption of measurement invariance is met, this 

means all items are placed on the same scale over time. 
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2.5.2 The Strengths and Limitations of LIRT-LGM 

There are several advantages to using LIRT-LGM for evaluating growth. First, this model 

allows researchers to simultaneously investigate the invariance, which includes factor structure, 

factor loadings, and intercepts, and item properties across times. If invariance holds, researchers 

would be justified in having more confidence that the same latent construct is being measured at 

each occasion (Ferrer et al., 2008). Second, the model employs multiple indicators rather than a 

single indicator. This allows researchers to investigate longitudinal change in the latent construct, 

thus avoiding the limitations and problems implicit with using composite scores. Third, this 

model can be extended to other models, such as a dual change model or a mixture growth model, 

if one employs at least four-time points. Fourth, in addition to employing MLE, Bayesian 

estimation can also be used when sample sizes are small and when responses are perfect or zero 

response.  

In addition to the several advantages, this model also has some limitations. First, referent 

identification is difficult to choose. The results for the second-order factors could vary when 

referent identification is problematic. Second, one should have knowledge of the framework of 

IRT. Third, because of complex mathematic computations, the analysis generally requires more 

time than simpler growth or IRT models.  
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2.5.3 The Comparison of the LGM and LIRT-LGM 

LGM LIRT-LGM 

LGM estimates change based on a single observed 

variable where it is summed or average in a set of 

items to create an index at each time point. 

LIRT-LGM estimates change based upon observed 

multiple indicators with IRT methods at each time 

point. 

LGM is unable to assess measurement invariance. LIRT-LGM is able to measure measurement 

invariance. 

LGM does not include person- and item- statistics 

on the same scale. 

LIRT-LGM is able to have person- and item- 

statistics on the same scale. 

LGM is unable to use items to discriminate among 

respondents based on the latent abilities. 

LIRT-LGM is able to use items to discriminate 

among respondents based on the latent abilities. 

LGM does not require large sample sizes. LIRT-LGM requires large sample sizes. 

 

2.6 Research Question and Rationale 

Although the theory of LGM and LIRT approaches has been used for a long time, LIRT-

LGM is a new model. Thus, additional work to determine the performance of the LIRT-LGM 

under various conditions is warranted. This study would provide a clear understanding of the 

performance of the LIRT-LGM under several practical testing conditions including different 

item lengths, sample sizes, and effect sizes using simulated data so that researchers are able to 

determine when and how this model may be appropriate to use.  

The mean and variance of the slope were of primary interest in this study; thus, the 

performances of two unconditional models were compared by their mean and variance. 

Empirical data and simulated data were used in this study. Simulated data were generated with 

all items present at each measurement occasion. This study attempted to answer the following 

questions:  

1. Do depressive symptoms change in girls’ early adolescence? Is this change heterogeneous?  

This study hypothesized that depression of adolescents would change over time, and it is not 

heterogeneous in change over time.  
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2. Are there differences between the performance of LGM and LIRT-LGM? 

The major shortcoming of the LGM is that it lacks the ability to model measurement invariance. 

If the measurement invariance does not hold, the results could be overestimated or 

underestimated. On the other hand, the LIRT-LGM not only can model measurement invariance 

but also can have person- and item- statistics on the same scale. Thus, in this study, we 

hypothesized that the performance between both of these models would differ.  

3. Does the 2PL model fit better than the 1PL model?  

In this study, we further hypothesized that the 2PL is a fit model because 2PL includes item  

difficulty and item discrimination. Item discrimination describes that an item can differ between 

a respondent having an ability level below or above the item location. Thus, this model is useful 

to refer to the latent trait as the ability common to the n items on the test or scale. 

4. How do different item lengths and sample sizes influence Type I error using the Monte Carlo 

simulation?  

This study hypothesized that Type I error would be controlled by larger sample sizes and more 

items.  

5. How do different item lengths, sample sizes, and effect sizes influence power? 

In this study, we hypothesized that larger sample sizes and more items would have higher power. 

In addition, when effect sizes increase, power would be high.
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CHAPTER 3 

METHOD 

3.1 Research Structure 

This study compared the performance of the LGM and LIRT-LGM models for measuring 

growth in empirical and simulated data. The empirical study used empirical data to analyze the 

depressive symptoms of African-American adolescent girls using both the LGM and LIRT-LGM 

models. The simulation study used a Monte Carlo simulation to generate data where all 

indicators were present at three-time points in order to compare the overall performance of the 

LGM and LIRT-LGM models. The simulation study evaluated the performance of two models 

under three different conditions: test length, sample size (N), and effect size (ES). Several 

conditions were manipulated to consider the impact on the Type I error and power. Before 

examining Type I Error and power, we conducted a recovery study.  We placed the estimated 

and generating parameters on the same scale in order to calculate root mean square error 

(RMSE), and bias, using the linear equating for the LGM model and using the mean/mean 

transformation method for the LIRT-LGM model. The analyses of both the empirical study and 

the simulation study were conducted using Mplus 7.4 (Muthén & Muthén, 2011).  The research 

structure was shown in Figure 16.
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Figure 16. The research structure.
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3.2 The Empirical Study 

Background 

Depression is the leading cause of disability, and one of the top three causes for the 

burden of diseases in the world (Fried & Nesse, 2015). It has resurged as an important topic in 

social and psychological development. Indeed, depression not only results in health-related 

problems, but also increases the risk of suicide (McGirr et al., 2007; O’Kearney et al., 2009).  

Traditionally, depression is calculated by adding up scores for different depressive 

symptoms to create a sum-score. High scores indicate high levels of depression.  Previous studies 

(LeMoult et al., 2015; Ge et al., 2003; Hayward et al., 1997; Keenan et al, 2008; Petersen, 

Sarigiani, & Kennedy, 1991) have provided evidence that early physical maturation was 

significantly related to elevate depressive symptoms among girls. Early-maturing girls have 

consistently been found to be more likely to exhibit depressed moods than their on-time or late-

maturing peers. However, Ge et al. (2003) and Jones and Bayley (1950) found that early-

maturing boys’ depressive symptoms were not necessarily related to age of maturation, mainly 

because boys enjoyed social advantages over their on-time or late-maturing peers.  Thus, 

depressive symptoms are more likely to be exhibited among adolescent girls. In this study, the 

focus was on adolescent girls at a time during which individual differences in depression were 

likely to be most clearly detected. 

Repeated measures ANOVA had traditionally been used to analyze depression (Petersen 

et al., 1991). This approach has some important limitation, however, including inability to deal 

with missing data. Thus, many studies have employed LGM to analyze depression (Lindhorst & 

Oxford, 2008; Pettit et al., 2011). This study used both the LGM and LGM-LIRT to analyze 

depressive symptoms. To better understand how depressive symptom changes actually take 
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place, this study used the longitudinal data from the Family and Community Health Study 

(FACHS) that was designed to identify neighborhood and family processes that contribute to the 

development of African-American children (Simons et al., 2011). 

 

Research Design 

Data. This study used three time points of data collected for the Family and Community Health 

Study (FACHS), a multi-site (i.e., Iowa and Georgia) investigation of neighborhood and family 

effects on mental health and development of African-American children (Beach et al., 2012; 

Simons et al., 2011).  The sampling strategy was intentionally designed to generate a data set 

with families representing a range of socioeconomic statuses and a wide variety of neighborhood 

settings. In both Iowa and Georgia, households were randomly selected from the sampling frame 

using rosters of fifth-grade students in the public school systems. When a household did not 

interest in participating in the project, it was removed from the rosters, and other households 

were randomly selected until the required number of households had been recruited (Simons et 

al., 2011).  

During the data collection procedures, the interviewers received a month of training in 

the administration of the self-report instruments. When the families’ schedules allowed, two 

home visits were made to each family within seven days. Each visit took on average two hours to 

complete. Informed consent was obtained during the first visit. The primary caregivers (PCs) 

agreed to participate along with the children in their care in this interview, and the children also 

consented to participate in the interview. Self-report questionnaires were administered to the PCs 

and the children in an interview format during each visit because of literacy concerns. Each 

interview was conducted privately between one participant and one interviewer without any 
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other family members present. In the interviews, the instruments were presented on a laptop 

computer.  A series of questions were shown on the screen so both the interviewer and 

participant could see the questions. The interviewer read each question aloud and entered the 

responses of the participants on the computer. Identical procedures were used in other time 

points (see below) for collecting data (Ge et al., 2003). 

Sample. The FACHS sample consisted of 889 African-American children (411 boys and 478 

girls) with their PCs during the first time point. A majority of the PCs were female (829), and 

only 60 were men. Eighty-four percent of the mothers in the sample were biological mothers of 

the targets.  Further, 44% of the mothers were identified as single parents. The educational levels 

of the PCs were varied, ranged from less than high school diploma (19%) to a bachelor’s or 

graduate degree (9%). At the study’s inception, about half of the sample resided in Georgia (n = 

422) and the other half in Iowa (n = 467). The first time point of data, collected from 1997 to 

1998, included interviews with 889 respondents. The second time point of the data, collected 

from 1999 to 2000, included re-interviews with 779 respondents.  The third time point of the 

data, collected from 2001 to 2002, included interviews with 767 respondents (Simons et al., 

2011).  

The sample in this example was drawn from the host study sample and had no missing 

data for the variables of interest. Thus, this sample consisted of 381 African-American girls 

between ages 10 and 15 years.  
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Measures 

Depressive symptoms.  Depressive symptoms were evaluated with the Diagnostic Interview  

Schedule (Robins, Helzer, Croughan, & Ratcliff, 1981).  This measure focused on the list of 

symptoms of depression in the Diagnostic and Statistical Manual of Mental Disorders, Fourth 

Edition (DSM-IV) for major or minor depressive episodes.  We assessed all nine depressive 

symptoms based on criteria in the DSM-IV manual. The items rated on a dichotomous scale 

using diagnostic algorithms that correspond to the DSM-IV criteria were developed by the 

Division of Child and Adolescent Psychiatry at Columbia University (Shaffer et al., 1993). 

Responses were coded “present” as 1 and “absent” as 0 for each of the items describing one of 

the nine depressive symptoms. The depressive symptom score (Belden et al., 2015; Fried & 

Nesse, 2015) was computed by the sum of the number of “present” responses for the nine 

diagnostic symptoms. Thus, a score of at least 5 of these 9 corresponds to a respondent’s answers 

for diagnosing a respondent who has depression. Note that, one of the depressive symptoms must 

be depressed mood. The reliability of the scale was similar across the three time points, with a 

coefficient’s alpha of r  = .86 at Time 1, r  = .89 at Time 2, and r  = .88 at Time 3. A list of the 

nine items measuring depressive symptoms is presented in Appendix A. 

 

Method of Analysis 

Hypotheses were tested for the LGM and LIRT-LGM models with the Mplus 7.4 program 

(Muthén & Muthén, 2011) to measure the depression of African-American adolescent girls 

across three-time points. Both models used an unconditional model analysis measuring a growth 

curve for three-time points, calculated the intercept and slope of average growth curves and 

compared the performance of these two models. The data were described by the LGM and LIRT-
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LGM, having a mean and variance parameter. For the LGM, this study estimated two latent 

variables, intercepts and slopes, using the indicators from each of the three time points under the 

unconditional model. The first latent variable is an intercept, which is constant for any given 

individual across time, and represents the estimated level at Time 1.  It is denoted in the both 

LGM and LIRT-LGM model as intercept η1. The loadings of the intercept are fixed at 1 at all 

time points. The second latent variable is a slope, which indicates an individual’s change.  It is 

denoted in the both LGM and LIRT-LGM model as slope η2. The loading of the slope is fixed at 

0 at Time 1, at 1 at Time 2, and at 2 at Time 3.  

The three observed variables U1 to U3 (see Figure 13) were constructed as the sum of the 

nine items in order to create an index of depressive symptoms for use with the LGM model. This 

model treats depressive symptoms as an observed variable. For the LIRT-LGM model, the first-

order factors (θ1 through θ3) incorporated the multiple indicators into the model. Measures of 

depressive symptoms were treated as categorical variables with thresholds constrained to 

equality across time points in the LIRT-LGM. Maximum likelihood was used to estimate the 

unknown and corresponding parameters. The results of these models were used to describe the 

mean trajectory for depression. 

 

3.3 The Simulation Study 

The Monte Carlo simulation study was used to evaluate the performance of the LIRT-

LGM model compared with the LGM model. Specifically, the differences in test length, effect 

size, and sample size were investigated. In this investigation of the LIRT-LGM model, a linear 

growth pattern was simulated with complete data.  Curvilinear trajectory conditions or missing 

data conditions were not considered. In this simulation study, the Type I error and power of the 
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LIRT-LGM were compared to those of the LGM. In addition, prior to determining the Type I 

error, a recovery analysis was first conducted.  The measures for the recovery analysis included 

correlation coefficient (r), root mean square error (RMSE) and bias. For those conditions in 

which the Type I Error was controlled, power is evaluated. 

 

The Simulation Design 

For LGM and LIRT-LGM, various conditions were manipulated in the comparisons of  

the LGM and the LIRT-LGM models. This study simulated two different test lengths (10 and 30 

items), three sample sizes (100, 500, and 1,000), and four effect sizes (.0, .1, .2, and .3) for each 

model. One thousand replications were simulated for each condition consistent with Leite 

(2007). Thus, there were 24 (2   3   4) independent simulation conditions and 1,000 

replications for each condition resulting in a total of 24,000 datasets being generated.  

 

Data Generation and Analysis 

The Mplus 7.4 program (Muthén & Muthén, 2011) was used for all statistical simulations 

and analyses. The Mplus syntax to generate longitudinal data and to analyze each model is 

provided in Appendices F to K.  

When generating data, the seed option was used in Mplus to start the random draw for 

each experimental condition. Item responses were generated based on the binomial distribution, 

and dependent variables were simulated to be categorical.  

The generating means of the intercepts were fixed at zero, consistent with Muthén and 

Muthén (2011).  Also, the generating mean of the slope was set to zero, since it was used to 

inspect the Type I error. The generating intercept-slope covariance was fixed at zero consistent 
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with Hertzog, von Oertzen, Ghisletta, and Linfenberger (2008). The generating variances of 

intercept and slope followed Muthén and Muthén’s (2011) example, and they were set to 1 and 

.2, respectively. Thus, the covariance matrix was  

1 0

0 .2


 
  
 

.                        (116) 

For three latent variables (θ1 through θ3), the generating mean and variance were 

estimated fixed at value of 0 and 1. This standardizes the scale of the variable to a normal 

distribution with mean of zero and standard deviation of 1 for those latent variables.  The values 

of the loadings and thresholds were generated based on Embretson and Reise (2000). Using a 

unidimensional model, the population values of thresholds were selected with increments of 0. 5, 

that is [-2.0, -1.5, -1.0, -0.5, 0, 0, 0.5, 1.0, 1.5, 2.0], and population loadings increase in 0.10 

increments, that is [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9]. Note that this study fixed the 

first loading to 1 in order to give the latent variables an interpretable scale, otherwise the scale of 

the latent variables could not be estimated (Hox & Bechger, 1998). The values of the parameters 

of the thresholds and loadings of the same items were fixed over repeated measures. The 

significant level in terms of the Type I error rates and power were set to .05. Furthermore, the 

value of the loadings of the slope were fixed starting from zero on the first measurement 

occasion, with increases of one (i.e., 0, 1, and 2), and the loadings of the initial level were all 

fixed at one. Conditions were simulated with weak measurement invariance based on the 

invariance taxonomy proposed by Meredith (1993). In a weak measurement condition, this study 

constrained the loadings and thresholds to be the same across three occasions to identify the 

invariant to be held with the data (Meredith, 1993). The parameters estimates and standard error 
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were estimated using maximum likelihood. Note that this study only focused on completed case 

analysis; thus, it did not consider the effects caused by missing data.  

Analysis of the LGM used the same technique as an empirical study; that is, each 

observed variable at each time point is constructed as the sum of a set of items to create an index 

for that time of measurement. As stated above, this study was interested in the mean and variance 

of the slope of the second-order factors. Effect sizes were set at .0 for detecting Type I errors and 

set to .1, .2, and .3 for detecting power, and the variance of the slope was set to .2 following 

Muthén and Muthén (2011). For the analysis of the LIRT-LGM model, the mean of the intercept 

was fixed at zero and the variance of the intercept was set to 1 as suggested by Muthén and 

Muthén (2011). The mean and variance of the slope were set at the same values as the LGM for 

detecting the Type I error and power. The mean and variance of the first-order factors (i.e., θ1 

through θ3) were fixed to 0 and 1, respectively.   

 

Recovery Study 

Correlation coefficient (r), root mean square error (RMSE), and bias were used for analysis of 

model recovery. r is an index of the degree of linear relationship between the generating and 

estimated parameter, ranging from -1 to 1. There is no relationship existed when r = 0; however, 

when r = 1 or -1, there is existed a perfect positive or negative linear relationship. r was 

calculated using the following equation: 

  

   

1

2 2

1 1

n

i i

i

n n

i i

i i

x x y y

r

x x y y



 

 



 



 

 ,                                                 (117)  
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where xi and yi were the estimated parameter and the generating parameter for item i, 

respectively; and x and y are the means of the estimated parameter and the generating parameter 

for item i, respectively.  

The root mean square error (RMSE) and bias were used to assess the recovery of item 

parameters between the generating parameter and the estimating parameter. The smaller the 

RMSE values, the better the estimation accuracy. Similarly, a zero value of bias indicated 

unbiased parameter estimates. We evaluate RMSE and bias for difficulty parameters as below: 

RMSE (bi) = 

2

1 1

ˆ( )
n R

i ir

i r

b b

Rn

 


,                                                   (118) 

Bias (bi) =
1 1

ˆ( )
n R

i ir

i r

b b

Rn

 


 ,                                                           (119)      

where bi is the generating item difficulty parameter for item i, and ˆ
irb  is the estimated item 

difficulty parameter for item i and replication r, where r = 1, …, R; and n is the number of items 

where i = 1, …, n. RMSE and bias for discrimination parameters were calculated as below:  

RMSE(ai) = 

2

1 1

ˆ( )

,

n R

i ir

i r

a a

Rn

 


                                                 (120) 

 

Bias(ai)=

2

1 1

ˆ( )

,

n R

i ir

i r

a a

Rn

 


                                                         (121) 

where ai is the generating item discrimination parameters, and ˆ
ira  is the estimated item 

discrimination parameter for item i and replication r. However, before calculating RMSE and 
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bias, the generating and estimated parameters were placed on the same scale. This dissertation 

used the linear equating for the LGM model as below (Macro, 1977; Kolen & Brennan, 2004) 

,GE

E G

GE 

 


                                                                   (122) 

where E was the score on the estimated parameter and G was the score on the generating 

parameter; µ(E) and µ(G) were the means of estimated parameter and generating parameter, 

respectively; and σ(E) and σ(G) were the standard deviations of estimated parameter and 

generating parameter, respectively. Solving for the generating parameter score G will give a 

formula for adjusting the raw score E on the estimated parameter as below  

  ,G G
G E

E

G

E

EEG L
 

 
 

    
       

    
                                  (123) 

where LG(E) indicated the adjusted scores on the estimated parameter would have the same µ and 

σ as the raw scores on the generating parameter. If G

E





 
 

 
slope (a) and G

G E

E


 



 
 
 

= 

intercept (b), Equation 123 can be written as 

.G aE b                                               (124) 

When a and b are determined, scores for estimated parameter will put on the same scale as scores 

for generating parameter. We used mean/mean transformation methods for the LIRT-LGM using 

IRTEQ computer software (Han, 2009) as below (Macro, 1977; Kolen & Brennan, 2004) 

 

 
,

E

G

a

a
A




                                                                                (125) 

    ,G EB b A b                                                                   (126) 
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where  Ea and  Ga were the mean of item discrimination of the estimated parameters and 

generating parameter, respectively, and  Eb and  Gb were the mean of item difficulty of the 

estimated parameters and generating parameter, respectively. After calculating the values of A 

and B, we placed the estimated parameters on the same scale as the generating parameters using 

the following transformation (Macro, 1977): 

,G
E

b B
b

A


                                                                                (127) 

( ),E Ga A a                                                                                 (128) 

where 
Eb and 

Gb is the item difficulty of the estimated and generating parameters, respectively, 

and 
Ea and 

Ga is the item discrimination of the estimated and generating parameters, respectively. 

 

Test Statistics 

Type I Error. The null hypothesis can be rejected based on a level of significance α. The 

rejection region (RR) indicates the values of test statistics in order to reject the H0 in favor of the 

Ha. Thus, when the value of the test statistic falls in the RR, H0 will be rejected, and Ha will be 

accepted. On the other hand, when the computed value of the test statistic does not fall in the RR, 

H0 will be accepted (Wackerly, Mendenhall, & Scheffer, 2008). A Type I error is defined as the 

probability of rejecting the true H0. The Type I error rate should be close to .05 when α = .05. 

This study was interested in estimating the means of the slope; thus, the null hypothesis was 

defined as  

2: 0,oH              (129)
 

2: 0aH                     (130)
      



 

101 

 

under all conditions (i.e., different test lengths and sample sizes). µη2 = 0 means no growth over 

repeated measurements. Since a 5% level of significance is commonly used in behavioral and 

social sciences fields, this study reported Type I error rates relative to that value. The mean of 

the slope would be expected to be incorrectly significant in 50 of the 1000 samples when µη2 = 0 

at a 5% level of significance. Type I error will be a good control when the Type I error rate is 

equal to the nominal Type I error rate α = .05 (Pearson, 1927). The range for the Type I error rate 

were evaluated using Bradley’s (1978) criteria. Bradley indicated two criteria for the range null 

hypothesis, including stringent and liberal criteria. The stringent criterion stated that the range 

null hypothesis should lie in α ± 0.1α, and the range null hypothesis of the liberal criterion 

should lie in α ± 0.5α. This study employed the stringent criterion (i.e., .045 to .055) to study the 

Type I error rate. When Type I error were controlled by the LGM and LIRT-LGM models, we 

can examine power. 

Power. Rejecting a false H0 is associated with power.  Statistical power is a useful concept for 

judging the performance of a test. It is given as one minus the probability of making a Type II 

error, β, (i.e., power = 1- β) (Murphy & Myors, 1998).  

 

Model Selection for LIRT-LGM 

−2 Loglikelihood was used to inform the model selection of the 1PL and 2PL for the LIRT-LGM 

model. This value is distributed as a chi-square with degrees of freedom being the difference 

between the number of parameters estimated by each model.  Significance of the chi-square was 

evaluated at the .05 level.    
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CHAPTER 4 

RESULTS 

In general, the results of the empirical study and simulation study were consistent in that 

they both showed that the performance of the LIRT-LGM was better than the LGM model. The 

results of the empirical study will be discussed in the next section.  

 

4.1 Results of the Empirical Study 

Of the initial 478 African-American girl adolescents, three did not respond at Time 1, 32 

did not respond at Time 2, 29 did not respond at Time 3, two did not respond at Time 1 and Time 

3, 30 did not respond at Time 2 and Time 3, and one did not respond during Time 1, Time 2, and 

Time 3. Thus, the analyses of the empirical study were based on a sample size of 381 African-

American adolescent girls with their primary caregivers. The total symptom counts in this 

sample had a mean of 0.30 (SD = 1.09) at Time 1, a mean of 0.40 (SD = 1.31) at Time 2, and a 

mean of 0.49 (SD= 1.45) at Time 3. Thus, the mean depressive symptoms scores consistently 

increased across three-time points as shown in Figure 17. 

The DSM-IV specifies nine depressive symptoms, such as depressed mood or irritable 

and suicidality, and the frequency analyses of each time point were showed in Table 1. Table 1 

reported that except for Item 2 and Item 9, depressive symptoms gradually increased over three-

time points. The highest frequency of depressive symptoms was Item 1 (depressed mood or 

irritable; frequency = 4.72, 8.14, and 10.76, respectively), and the lowest frequency of depressive  
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Figure 17. The mean of the depressive symptoms of the empirical study. 

 

symptoms was Item 5 (change in activity; frequency = 1.57, 2.36, and 2.89, respectively) across 

the three-time points. 

 

4.1.1 Results for the LGM 

The unconditional LGM fit the adolescent African-American girls’ data well: χ
2
 = 0.004, 

df=1, p=.9528; χ
2 

was not significant. The comparative fit index (CFI) was 1.000, indicating a 

good fit.  The root mean square error of approximation (RMSEA) was 0.000, which indicates a 

good fit, because the acceptable value was smaller or equal to 0.05, and the standardized root 

mean square residual (SRMR) was 0.001. This is considered indicating a good fit, because the 

value was less than 0.008. The results of the mean and variance of the intercept and of the slope 

of the LGM and LIRT-LGM are reported in Table 2. 

The negative covariance of the intercept and slope was significant and indicated that 

African-American adolescent girls’ levels of depression were less likely to change across three-

time points. The mean of the slope was positive and significantly different from zero, indicating 
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that the mean of the slope increased between Time 1 and Time 3 at an average rate of .093 points 

each time point. The estimated mean for the intercept indicated that adolescent girls reported 

their levels of depression at the first time point.  The variances in both intercept and slope were 

statistically significant, indicating robust individual differences in the trajectories of depression. 

 

4.1.2 Result for the LIRT-LGM 

In this model, all loadings and thresholds for the first-order factors (i.e., θ1 to θ3) were 

constrained to be equal across three-time points in order to evaluate measurement invariance. 

The first-order factors for each factor had a zero mean and a unit variance. The key interest in 

this model was the mean and variance of the slope. Results for the LIRT- LGM, however, 

differed from the LGM. For the 1PL and 2PL, the negative covariance of the intercept and slope 

was not significant, indicating no relationship between the intercept and slope. In addition, the 

mean of the slope was positive and not significant, reflecting the mean of the slope as having no 

change from Time 1 through Time 3. Moreover, the variances of the intercept of both the 1PL 

and 2PL were not significant. The variance of the slope was not significant in the 1PL model, 

indicating no individual differences in trajectories of depression, whereas the variance of the 

slope was statistically significant in the 2PL model, indicating individual differences in the 

trajectories of depression.  Loadings and thresholds for the depressive symptoms are listed in 

Table 3. Item 6, fatigue or lossof energy, had a higher loading (3.423) and the threshold (17.703) 

for the 2PL, and the 1PL indicated that Item 5 had a higher threshold, indicated easier items to 

respond.  
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Table 1 

 

Descriptive Statistics of Depressive Symptoms across the Three Time Points 
 

 Time 1 Time 2 Time 3 

 Presence =1 Absent =0 Present = 1 Absent = 0 Present = 1 Absent = 0 

Symptoms Freq. % Freq. % Freq. % Freq. % Freq. % Freq. % 

1. Depressed mood or  

    irritable 

18 4.72 363 95.28 31 8.14 350 91.89 41 10.76 340 89.24 

2. Decreased interest or   

    pleasure 

25 6.56 356 93.44 20 5.25 361 94.75 26 6.82 355 93.18 

3. Significant weight change  

   (5%) or change in appetite 

18 4.72 363 95.28 23 6.04 358 93.96 27 7.09 354 92.91 

4. Change in sleep 9 2.36 372 97.64 15 3.94 366 96.06 18 4.72 363 95.28 

5. Change in activity 6 1.57 375 98.43 9 2.36 372 97.64 11 2.89 370 97.11 

6. Fatigue or loss of energy 9 2.36 372 97.64 14 3.67 367 96.33 15 3.94 366 96.06 

7. Guilt/worthlessness 6 1.57 375 98.43 9 2.36 372 97.64 13 3.41 368 96.59 

8. Concentration 13 3.41 368 96.59 14 3.67 367 96.33 19 4.99 362 95.01 

9. Suicidality 10 2.62 371 97.38 16 4.20 365 95.80 15 3.94 366 96.06 

 



 

106 

 

Table 2 

 

The summary of Mean, Variance, and Covariance of the Latent Growth Modeling and 

Longitudinal Item Response Theory-Latent Growth Modeling 
 

 LGM LIRT-LGM 

  1PL 2PL 

Mean    

Intercept   0.300** N/A N/A 

Slope 0.093* 0.279 0.310 

    

Variance    

Intercept 0.580** 5.682 6.180 

Slope 0.357** 1.577   1.652* 

    

Covariance of the intercept and 

slope 

   -0.239* -1.595 -1.689 

Note: *p < .05; **p<.001 

 

 

Table 3 

 

The Loadings and Thresholds for Depressive Symptoms 
 

 Loading  Threshold 

Item 1PL 2PL  1PL 2PL 

1. Depressed mood or irritable N/A 1.000**  4.652** 4.793** 

2. Decreased interest or pleasure N/A 1.304**  8.337** 6.351** 

3. Significant weight change (5%) or change in  

    appetite 

N/A 1.922**  8.440** 9.033** 

4. Chang in sleep N/A 2.003**  9.470** 10.48** 

5. Change in activity N/A 2.968**  10.335** 16.341** 

6. Fatigue or loss of energy N/A 3.423**  9.661** 17.703** 

7. Guilt/worthlessness N/A 2.572**  10.209** 14.139** 

8. Concentration N/A 2.092**  9.290** 10.713** 

9. Suicidality N/A 1.310**  9.516** 7.303** 

Note: *p < .05; **p<.001 
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In sum, both the LGM and 2PL of the LIRT-LGM were similar on only one condition: 

the LGM and the 2PL of the LIRT-LGM models indicated the variance of the slope to be 

statistically significant. Both models, however, also showed different results on the mean of the 

slope, the variance of the intercept, and the covariance of the intercept and slope. Hence, the 

results for the both LGM and the LIRT-LGM models were different for the empirical data. Since 

most conditions were different, a simulation study was used to investigate the performance of the 

two models under practical testing conditions.  

 

4.2 Results of the Simulation Study 

This study first examined the recovery of the item parameters, means, and variances.  Next, the 

simulation study examined Type I error rates for each of the simulation conditions.  Power was 

then determined for those conditions in which Type I error control was demonstrated. 

 

4.2.1 Recovery Analysis 

A recovery analysis was done in order to verify whether Mplus accurately recovered the 

generating parameters under the condition simulated. Correlation, RMSE, and bias were 

estimated to compare estimates with generating values to assess the recovery of item parameters 

for the LGM and LIRT-LGM models. In order to compare estimated parameters with the 

generating parameters using the RMSE and bias, the estimated parameters of both the LGM and 

LIRT-LGM models were placed on the same scale of the generating parameters using linear 

equating for the LGM model (Macro, 1977; Kolen & Brennan, 2004) and mean/mean 

transformation methods for the LIRT-LGM model (Kolen & Brennan, 2004) . Correlations do 

not require both item parameter estimates to be on the same scale. Mean RMSE and mean bias 
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for each condition of the LGM and the LIRT-LGM were separately tabulated. The generating 

and estimated parameters of different test lengths for each condition were tabulated for 

thresholds and loadings separately.  These are presented in Appendices B through E. 

The correlations of both the LGM and LIRT-LGM models are presented in Table 4. 

Correlations for the LGM model ranged from -.812 to .995. Correlations for the 1PL ranged from 

.994 to .995 and for the 2PL ranged from .999 to 1.000. Correlations for the 2PL version of the 

LIRT-LGM indicated a perfect positive linear relationship.  

The results of the recovery analysis for mean RMSE and mean bias for each condition for 

thresholds and loadings are shown in Tables 5 through 8. The values of mean RMSE for the 

LGM model ranged from 0.090 to 0.411. For the LGM model, the mean RMSE values increased, 

when test length and sample size increased. The mean RMSE values of the LGM were large, in 

particular, for the 30-item tests with different sample sizes. This indicated poor recovery because 

of a negative correlation.   For the LIRT-LGM model, the mean RMSE values of the thresholds 

for the 1PL were 0.003 and for the 2PL were close to 0.000. The mean RMSE values of the 

loadings for the 2PL ranged from closed to 0.000 to 0.001 (see Table 6). The mean RMSE values 

of thresholds and loadings for the LIRT-LGM model were small, indicating good recovery for 

the LIRT-LGM model. The results indicated that mean RMSE values of the LGM model were 

larger than those for the LIRT-LGM model.  

Mean bias values for both the LGM and LIRT-LGM models are displayed in Tables 7 

and 8. The mean bias values for the LGM model ranged from 0.003 to 0.013 and for the LIRT-

LGM model were close to 0.000.  The small bias values indicated accurate parameter estimates. 

Thus, these values indicate good recovery of the generating parameters for the LIRT-LGM 
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model across all simulation conditions.  The results showed that the mean bias values of the 

LGM model were larger than the LIRT-LGM. 

 

Table 4 

 

The Correlation for the LGM and LIRT-LGM Models 
 

  LGM  LIRT-LGM 

    1PL  2PL 

Item N        b       a     b 

10 100 -.990  .994**  .999**   .999** 

 500 .904  .994**  .999**   .999** 

 1000 .995  .994**  .999** 1.000** 

30 100 -.812  .995**  .999**   .999** 

 500 .919  .995**  .999**   .999** 

 1000 .926  .995**  .999**   .999** 

Note: *p<.05; **p<.001; b = Threshold (or Item Difficulty); a = Loading (or Item  

           Discrimination). 

 

Table 5 

The Mean RMSE for the LGM Model over 1000 Replications 

 
  LGM 

Item N RMSE 

10 100 0.090 

 500 0.090 

 1000 0.091 

30 100 0.409 

 500 0.410 

 1000 0.411 
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Table 6 

 

The Mean RMSE for the LIRT-LGM Model over 1000 Replications 
 

  LIRT-LGM 

  1PL  2PL 

  RMSE  RMSE 

Item N         b           a         b 

10 100 0.003  0.001 0.000 

 500 0.003  0.000 0.000 

 1000 0.003  0.000 0.000 

30 100 0.003  0.000 0.000 

 500 0.003  0.000 0.000 

 1000 0.003  0.000 0.000 

Note: b = Threshold (or Item Difficulty); a = Loading (or Item Discrimination). 

 

 

Table 7  

The Mean Bias for the LGM Model over 1000 Replications 

 
  LGM 

Item N Bias 

10 100 0.003 

 500 0.003 

 1000 0.003 

30 100 0.013 

 500 0.013 

 1000 0.013 
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Table 8 

The Mean Bias for LIRT-LGM Models over 1000 Replications 

  LIRT-LGM 

         1PL  2PL 

        Bias  Bias 

Item N         b           a         b 

10 100 0.000  0.000 0.000 

 500 0.000  0.000 0.000 

 1000 0.000  0.000 0.000 

30 100 0.000  0.000 0.000 

 500 0.000  0.000 0.000 

 1000 0.000  0.000 0.000 

Note: b = Threshold (Item Difficulty); a = Loading (Item Discrimination). 

 

The mean RMSE and mean bias for the means and variances of the slope for the LGM 

and LIRT-LGM models are presented for different test lengths, sample sizes, and effect sizes in 

Tables 9 through 11. Recall that, in the simulation conditions, the generating means of the slope 

were set to .0, .1, .2, and .3, and the generating variance of the slope were set to .2. For the LGM 

model, the values in Table 9 showed that the estimated means of the slope ranged from -0.004 to 

1.576. Values differed slightly from the generating mean. The mean RMSE values of the mean 

slope ranged from closed to 0.000 to 0.040. These were small when the generating mean was 

equal to .0 with different test lengths and sample sizes. However, when the generating mean was 

equal to .3 for the different test lengths and sample sizes, the mean RMSE values of the mean 

were larger than other conditions.  The values of the mean bias of the mean slope ranged from -

0.001 to closed to 0.000. The small mean bias indicated the accurate parameter estimates. The 

estimated variances of the slope for the LGM models ranged from 0.747 to 7.131. These values 
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differed from the generating variances. The mean RMSE values of the variance slope ranged 

from 0.017 to 0.218. The test length of 30 yielded the largest mean RMSE values for variance of 

the slope. The values of the mean bias for the variance of the slope ranged from 0.001 to 0.007.  

For the LIRT-LGM model, Table 10 showed that the estimated variances of the slope for 

1PL model ranged from 0.006 to 0.314. Both mean RMSE and mean bias values for the variance 

slope of the 1PL were close to 0.000, and the small value for both mean RMSE and mean bias 

indicated good recovery. The estimated variances of the slope for 1PL model ranged from 0.196 

to 0.257. The mean RMSE values were around 0.002 only when the sample size was 100. When 

sample sizes increased, the mean RMSE values were close to 0.000. The mean bias values of 

variance slope also were close to 0.000. This indicated good recovery. Table 11 showed the 

estimated variances of slopes for the 2PL model ranged from -0.005 to 0.300. Both mean RMSE 

and mean bias values for the variance slope of the 2PL were close to 0.000, indicating good 

recovery. The estimated variances of the slope for the 2PL model ranged from 0.199 to 0.241. 

The mean RMSE values were around 0.001 when the sample size was 100. When sample sizes 

increased, the mean RMSE values were close to 0.000. The mean bias values of variance slope 

were close to 0.000 for all simulation conditions, indicating good recovery.  

In sum, the results presented here indicate that the item parameters, including thresholds 

and loadings, of the 2PL version of the LIRT-LGM model for different test lengths and sample 

sizes were reasonably well recovered. The means and variances of the LIRT-LGM model were 

recovered better than for the LGM model. In addition, the mean RMSEs and mean biases for the 

LIRT-LGM were smaller than for the LGM model, further indicating that the LIRT-LGM was 

recovered well.
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Table 9 
 
The Recovery Analysis for Means and Variances for the LGM Model 
 

  LGM 

Item N G. Mean E. Mean RMSE Bias G. Var E.Var RMSE Bias 

10 100 0.0 -0.004 0.000 0.000 0.2 0.747 0.017 -0.001 

  0.1 0.172 0.002 0.000 0.2 0.754 0.018 -0.001 

  0.2 0.348 0.005 0.000 0.2 0.774 0.018 -0.001 

  0.3 0.522 0.007 0.000 0.2 0.793 0.019 -0.001 

 500 0.0 0.003 0.000 0.000 0.2 0.760 0.018 -0.001 

  0.1 0.178 0.002 0.000 0.2 0.768 0.018 -0.001 

  0.2 0.353 0.005 0.000 0.2 0.777 0.018 -0.001 

  0.3 0.524 0.007 0.000 0.2 0.785 0.018 -0.001 

 1000 0.0 0.002 0.000 0.000 0.2 0.756 0.018 -0.001 

  0.1 0.178 0.002 0.000 0.2 0.765 0.018 -0.001 

  0.2 0.353 0.005 0.000 0.2 0.773 0.018 -0.001 

  0.3 0.524 0.007 0.000 0.2 0.781 0.018 -0.001 

30 100 0.0 -0.009 0.000 0.000 0.2 6.834 0.210 -0.007 

  0.1 0.517 0.013 0.000 0.2 6.886 0.211 -0.007 

  0.2 1.043 0.027 -0.001 0.2 7.003 0.215 -0.007 

  0.3 1.558 0.040 -0.001 0.2 7.131 0.219 -0.007 

 500 0.0 0.009 0.000 0.000 0.2 6.849 0.210 -0.007 

  0.1 0.535 0.014 0.000 0.2 6.928 0.213 -0.007 

  0.2 1.059 0.027 -0.001 0.2 7.005 0.215 -0.007 

  0.3 1.574 0.040 -0.001 0.2 7.082 0.218 -0.007 

 1000 0.0 0.011 0.000 0.000 0.2 6.847 0.210 -0.007 

  0.1 0.537 0.014 0.000 0.2 6.924 0.213 -0.007 

  0.2 1.061 0.027 -0.001 0.2 6.994 0.215 -0.007 

    0.3 1.576 0.040 -0.001 0.2 7.082 0.218 -0.007 

Note: G. Mean = Generating Mean; E. Mean = Estimated Mean; G. Var = Generating Variance; E. Var = Estimated Variance 
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Table 10 

 

The Recovery Analysis for Means and Variances for the 1PL Model 
 

  1PL 

Item N G. Mean E. Mean RMSE Bias G. Var E.Var RMSE Bias 

10 100 0.0 0.006 0.000 0.000 0.2 0.246 0.001 0.000 

  0.1 0.109 0.000 0.000 0.2 0.248 0.002 0.000 

  0.2 0.213 0.000 0.000 0.2 0.250 0.002 0.000 

  0.3 0.318 0.001 0.000 0.2 0.257 0.002 0.000 

 500 0.0 0.009 0.000 0.000 0.2 0.203 0.000 0.000 

  0.1 0.110 0.000 0.000 0.2 0.206 0.000 0.000 

  0.2 0.210 0.000 0.000 0.2 0.207 0.000 0.000 

  0.3 0.311 0.000 0.000 0.2 0.209 0.000 0.000 

 1000 0.0 0.009 0.000 0.000 0.2 0.198 0.000 0.000 

  0.1 0.109 0.000 0.000 0.2 0.200 0.000 0.000 

  0.2 0.209 0.000 0.000 0.2 0.202 0.000 0.000 

  0.3 0.310 0.000 0.000 0.2 0.204 0.000 0.000 

30 100 0.0 0.009 0.000 0.000 0.2 0.219 0.001 0.000 

  0.1 0.110 0.000 0.000 0.2 0.223 0.001 0.000 

  0.2 0.212 0.000 0.000 0.2 0.225 0.001 0.000 

  0.3 0.314 0.000 0.000 0.2 0.230 0.001 0.000 

 500 0.0 0.013 0.000 0.000 0.2 0.198 0.000 0.000 

  0.1 0.112 0.000 0.000 0.2 0.201 0.000 0.000 

  0.2 0.213 0.000 0.000 0.2 0.203 0.000 0.000 

  0.3 0.313 0.000 0.000 0.2 0.205 0.000 0.000 

 1000 0.0 0.013 0.000 0.000 0.2 0.196 0.000 0.000 

  0.1 0.112 0.000 0.000 0.2 0.199 0.000 0.000 

  0.2 0.212 0.000 0.000 0.2 0.201 0.000 0.000 

    0.3 0.312 0.000 0.000 0.2 0.202 0.000 0.000 

Note: G. Mean = Generating Mean; E. Mean = Estimated Mean; G. Var = Generating Variance; E. Var = Estimated Variance
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Table 11 

 

The Recovery Analysis for Mean and Variances for the 2PL Model 
 

  2PL 

Item N G. Mean E. Mean RMSE Bias G. Var E. Var RMSE Bias 

10 100 0.0 -0.005 0.000 0.000 0.2 0.237 0.001 0.000 

  0.1 0.096 0.000 0.000 0.2 0.214 0.000 0.000 

  0.2 0.199 0.000 0.000 0.2 0.238 0.001 0.000 

  0.3 0.303 0.000 0.000 0.2 0.241 0.001 0.000 

 500 0.0 -0.001 0.000 0.000 0.2 0.203 0.000 0.000 

  0.1 0.099 0.000 0.000 0.2 0.204 0.000 0.000 

  0.2 0.200 0.000 0.000 0.2 0.203 0.000 0.000 

  0.3 0.299 0.000 0.000 0.2 0.202 0.000 0.000 

 1000 0.0 -0.001 0.000 0.000 0.2 0.200 0.000 0.000 

  0.1 0.099 0.000 0.000 0.2 0.200 0.000 0.000 

  0.2 0.199 0.000 0.000 0.2 0.200 0.000 0.000 

  0.3 0.299 0.000 0.000 0.2 0.200 0.000 0.000 

30 100 0.0 -0.005 0.000 0.000 0.2 0.221 0.001 0.000 

  0.1 0.096 0.000 0.000 0.2 0.219 0.001 0.000 

  0.2 0.197 0.000 0.000 0.2 0.219 0.001 0.000 

  0.3 0.300 0.000 0.000 0.2 0.222 0.001 0.000 

 500 0.0 -0.001 0.000 0.000 0.2 0.201 0.000 0.000 

  0.1 0.099 0.000 0.000 0.2 0.200 0.000 0.000 

  0.2 0.199 0.000 0.000 0.2 0.200 0.000 0.000 

  0.3 0.300 0.000 0.000 0.2 0.202 0.000 0.000 

 1000 0.0 -0.001 0.000 0.000 0.2 0.199 0.000 0.000 

  0.1 0.099 0.000 0.000 0.2 0.199 0.000 0.000 

  0.2 0.200 0.000 0.000 0.2 0.199 0.000 0.000 

    0.3 0.300 0.000 0.000 0.2 0.200 0.000 0.000 

Note: G. Mean = Generating Mean; E. Mean = Estimated Mean; G. Var = Generating Variance; E. Var = Estimated Variance
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4.2.2 Type I Error Analysis 

Table 12 shows the Type I error rates for each of the conditions of the simulation study. The 

error rates were analyzed at a nominal level of significance of .05.  This study assumed control 

using Bradley’s (1978) stringent range of .045 to .055 for a nominal level of .05 for Type I error 

rates. Thus, error rates less than .045 or greater than .055 were considered loss of Type I error 

control.  The results showed that several conditions were determined to have loss of Type I error 

control. First, for a test length of 10 and sample size of 100, for of the LGM model, the error rate 

was .060. Second, when the test length was 10 with N = 500 for the 1PL LIRT-LGM model, the 

error rate was .060. When the test length = 30 with N = 500 and with N = 1000, the error rates 

were .065 and .079, respectively, for the LIRT-LGM. Third, when the test length was 30 with N 

= 1000 of the 2PL LIRT-LGM model, the error rate was .056. High Type I error rates are bolded 

in Tables 12. As can be seen in Figures 18 and 19, the Type I error rates of the 1PL were worse 

than those of the other models, in particular, when test length was 30 with sample sizes of N = 

500 and 1000.  The Type I error rates of the 2PL LIRT-LGM, however, displayed better results 

compared to the other models. Overall, the Type I error performed well for controlling and 

setting aside the problematic conditions.     
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Table 12 

 

The Type I Error for the LGM and LIRT-LGM Models 
 

  LGM  LIRT-LGM 

    1PL  2PL 

Item N Type I Error rate  Type I Error rate  Type I Error rate 

10 100 .060  .054  .054 

 500 .054  .060  .049 

 1000 .052  .048  .050 

30 100 .052  .053  .048 

 500 .045  .065  .048 

 1000 .050  .079  .056 

 

  

 

 

Figure 18. The Type I error rate of the 10 items with the LGM and the LIRT-LGM models. 
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Figure 19. The Type I error rate of the 30 items with the LGM and the LIRT-LGM models. 

 

4.2.3 Power Analysis 

The Type I errors were generally controlled for both the LGM and LIRT-LGM models 

except where noted. Power rates are only reported for those conditions in which the Type I 

Errors were controlled (see Table 13). Acceptable values for power are usually taken to be at 

least .80 (Muthén, 2002).  Power rates less than .80 are shown in bold in Table 13 and in 

parentheses in the sequel.  For the LGM model, low power rates were observed for several 

conditions:  the 10-item test in the N = 500 sample size with ES = .1 (power = .622), the 30-item 

test for the N = 100 sample with ES = .1 (power = .191) and ES = .2 (power = .567), and for the 

30-item test for the N = 500 sample size with ES = .1 (power =.665).  

For the 1PL version of the LIRT-LGM model, low power rates were observed for the 10- 

item test in the N = 100 sample with ES = .1 (power = .200) and ES = .2 (power =.548). In 

addition, for the 30-item test in the N = 100 sample with ES = .1 (power =.253) and ES = .2 
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(power =.626), the power rates also were low. For the 2PL version of the LIRT-LGM model, low 

power rates were observed for the 10-item test in the N = 100 sample for ES =.1 (power =.177) 

and ES = .2 (power =.522), and also for the 10-item test in the N = 500 sample for ES = .1 

(power =.639). Further, for the 30-item test in the N = 100 sample for ES = .1 (power =.182) and 

ES = .2 (power =.583), and for the 30-item test in the N = 500 for ES = .1 (power =.690), the 

power rates were low. In summary, the low power rates were observed for the both LGM and 

LIRT-LGM model when ES was small (i.e., ES = .1 and .2) for samples of size N = 100 and 500. 

However, when sample sizes were large (e.g., N = 1000), both the LGM and LIRT-LGM showed 

high power rates.  

 

4.2.4 Model Selection for the 1PL and 2PL  

This study adopts -2loglikelihood to determine the goodness of fit shown in Table 14.  

The fit indices provided by Mplus 7.4 indicated that the 2PL LIRT-LGM provided a good fit to 

the data since the values of the -2loglikelihood were smaller than the 1PL LIRT-LGM. 
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Table 13 

 

The Power for the LGM and LIRT-LGM Models 
 
 

   LGM  LIRT-LGM 

     1PL  2PL 

Item N Effect Sizes Power rate  Power rate  Power rate 

10 100 .1 N/A  .200  .177 

  .2 N/A  .548  .522 

  .3 N/A  .865  .847 

 500 .1 .622  N/A  .639 

  .2 .992  N/A  .995 

  .3 1.000  N/A  1.000 

 1000 .1 .887  .942  .897 

  .2 1.000  1.000  1.000 

  .3 1.000  1.000  1.000 

30 100 .1 .191  .253  .182 

  .2 .567  .626  .583 

  .3 .868  .920  .905 

 500 .1 .665  N/A  .690 

  .2 .997  N/A  .998 

  .3 1.000  N/A  1.000 

 1000 .1 .922  N/A  N/A 

  .2 1.000  N/A  N/A 

  .3 1.000  N/A  N/A 

 

Table 14 

 

The Fit Indices for the Model Selection of the 1PL and 2PL 
 

  LIRT-LGM 

  1PL  2PL 

Item N -2loglihood  -2loglihood 

10 100 2937.468  2914.848 

 500 14753.594  14668.296 

 1000 29517.896  29354.842 

30 100 8060.984  7979.132 

 500 40462.312  40168.140 

  1000 80963.516  80403.900 
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CHAPTER 5 

DISCUSSION  

Recently, longitudinal research methods have been used to measure individual growth over time; 

thus, longitudinal data analysis has become more accessible in handling the problem of growth. 

While analyzing longitudinal data, researchers must make certain that the same constructs are 

measuring across different time points. Latent growth modeling is commonly used for analyzing 

change over time. The LGM model describes changes across individuals in the means and 

variance of the intercept and slope and the covariance of the intercept and slope over time. The 

unique aspect of the LGM model is combining the individual and group levels of analysis.  

The scale construction of the LGM is based on classical test theory so, for this model, the 

composite score used in the LGM is the sums of the individual items reported as a single score. 

The advantage of using CTT is that it provides a simple useful means of obtaining a score. One 

important drawback of the LGM model is that it lacks a mechanism for assessing measurement 

invariance over time points.  As a result, there is no mechanism in the model to test whether or 

not the same construct is being measured over time points.  Consequently, the LGM model may 

not be a very useful model for drawing correct inferences associated with change. Thus, in the 

current study, we presented a new model that combined a second-order latent growth model and 

a longitudinal item response theory model to investigate growth over time. The advantages of the 

combination with an LIRT includes handling measurement invariance, having item and person 

statistics on the same scale, and using items to discriminate among respondents based on latent 
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abilities. There were two purposes for this study. First, it compared the performance of the LGM 

and the LIRT-LGM using empirical data to analyze depressive symptoms. In the example, the 

LIRT-LGM was used to analyze depressive symptoms using the 1PL and 2PL models. Second, 

this study provided a simulation study with different sample sizes, test lengths, and effect sizes to 

assess Type I errors and power. Results are summarized below for the empirical example and the 

simulation study. In addition, the suggestions for future research are presented.  

 

5.1 Summary and Discussion 

 This empirical study used in the example presented in this dissertation included data for 

three time points of data collected for the Family and Community Health Study (FACHS, 

Simons et al., 2011).  The DSM-IV specifies nine depressive symptoms that were analyzed based 

on 381 African-American adolescent girls. The results of the empirical example showed that 

mean depression scores increased over the three-time points.  Depressive symptoms increased 

gradually on all three occasions except for two items, decreased interest or pleasure and 

suicidality. Results for the LGM model found that the model fit the data.  Further, the mean and 

variance of the intercept, the mean and variance of the slope, and the covariance of the intercept 

and slope were statistically significant, indicating depression symptoms increased and also that 

individual differences in increase of depressive symptoms were detected.  

Results for the LIRT-LGM, however, were different. The mean of the intercept and of the 

slope, the covariance of the intercept and slope, and the variance of intercept were not 

significant, suggesting that the symptoms of depression did not change over time for this sample.  

Further, the variance of the slope of the 1PL was not significant, meaning no individual 

differences in trajectories were detected. The variance of the slope of the 2PL model, however, 
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showed the same results as the LGM, that is, that there was significant variance in the slope. This 

suggested that individual difference were present in the trajectories of depression. Thus, results 

for the 1PL LIRT-LGM differed from results for the 2PL LIRT-LGM.  

For the simulation study, two test lengths, three sample sizes, and four effect sizes were 

manipulated. Correlations, mean RMSEs, and mean biases were calculated for evaluating 

recovery of item parameters. Correlations for both the LGM and LIRT-LGM models indicated 

clear linear relationships with generating values. The small mean RMSEs and mean bias values 

for the LIRT-LGM indicated good recovery of generating parameters.  Results for the LGM 

model were less accurate as the mean RMSEs were high. In addition, the recovery analysis of the 

means and variances of the two LIRT-LGM models were also well recovered. Recovery of the 

means and variances of the LGM model, however, was poor, since the mean RMSE and mean 

bias were larger than the LIRT-LGM model. Overall, the recovery analysis of item parameters 

indicated that estimation algorithms were able to recover the thresholds (or item difficulty) and 

loading (or item discrimination) for different test lengths and sample sizes. The recovery of 

parameter estimates from the LIRT-LGM model was better than for the LGM model for each 

condition.  

Type I error rates were analyzed at a nominal level of .05, and the acceptable range in 

this study was taken to be between .045 and .055. Type I errors were controlled for most 

conditions. Lack of control was found in one condition for the LGM, three conditions for the 

1PL LIRT-LGM, and one condition of the 2PL LIRT-LGM.  

This study only reported power when the Type I error was controlled.  When the ES were 

.1 and .2 with a sample size of N = 100 and ES = .1 with sample size of N = 500, results indicated 
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low power for both the LGM and LIRT-LGM models. However, when sample sizes and effect 

sizes increased, higher power was observed.   

Overall, the results of this finding were able to respond to the five research questions: (1). 

Do depressive symptoms change in girls’ early adolescence? Is this change heterogeneous? (2). 

Are there differences between the performance of the LGM and the LIRT-LGM? (3). Does the 

2PL model fit better than the 1PL model? (4). How do the test lengths and sample sizes, 

influence the Type I error? and (5). How do the test lengths, sample sizes, and effect sizes 

influence power? In the discussion, this dissertation mainly responded to the research questions 

and was focused on the statistical performance of both the LGM and LIRT-LGM models.  

First, the empirical study found inconsistent results for the LGM and LIRT-LGM.  The 

mean of the LGM model indicated that depressive symptoms increased across three-time points; 

however, results for the LIRT-LGM suggested that depressive symptoms did not change across 

three-time points. In addition, the variances of the LGM model and the 2PL version of the LIRT-

LGM model indicated that there was heterogeneity around the growth parameter, meaning 

individual differences were present in the growth trajectories. Based on the empirical results, 

both methods displayed different results.  Thus, a simulation study was used to investigate the 

Type I error control and power of the two models. 

Second, accounting for measurement invariance is important for longitudinal data as 

researchers need to make certain that the same construct is measured over time. If the invariance 

does not hold, the results are difficult if even possible to interpret. The major differences 

between the LGM and LIRT-LGM models are that the LIRT-LGM is able to measure invariance 

and to have person- and item- statistics on the same scale, but the LGM model does not have 

these features.  Thus, compared to the performance of the LGM and LIRT-LGM models, the 
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recovery analysis of means and variances of the LGM model were poor recovered. In particular, 

the estimated values of variances for the 30-item test were different from the generating values. 

Additionally, the mean RMSE values for this condition were high, indicating less estimation 

accuracy. Even though the recovery was poor, Type I errors were generally controlled, except for 

the 10-item test in the N = 100 samples. Recovery was good of thresholds, loadings, means, and 

variances of the LIRT-LGM models for different test lengths and sample sizes. In this study, the 

performances of the LIRT-LGM models were better than the LGM model. 

Third, -2loglikelihood was used to inform model selection. The result of -2loglikelihood 

for 2PL LIRT-LGM was smaller than the 1PL LIRT-LGM with all simulation conditions. In 

addition to fit indices of -2loglikelihood, the recovery analysis of the mean RMSE and mean bias 

of the 2PL model was recovered better than the 1PL model, since these values were small with 

all simulation conditions. Thus, results of this study suggest that the 2PL LIRT-LGM fit the 

simulated data better than the 1PL LIRT-LGM. 

Fourth, test lengths and sample sizes do affect the Type I Error rates in both methods. 

The minimum sample sizes (N=100) of this dissertation were taken from the recommendations 

for SEM with normal distributions of continuous variables (Anderson & Gerbing, 1988; 

Newsom, 2015). For the LGM model, when test lengths were increased from 10 to 30, and 

sample sizes were larger, the Type I Error rates were controlled. For example, when test length 

was 30 items for the large, N = 1000 sample size, Type I error rates reached a nominal level of 

significance of .05. The 1PL LIRT-LGM, however, performed poorly when items and sample 

sizes were large. For instance, for the 30-item test in the N = 500 and 1000 samples, Type I error 

rates of the 1PL LIRT-LGM were not controlled (i.e., Type I error rates = .069 and .079, 

respectively, for the two sample sizes). Likewise, for the 2PL LIRT-LGM model, for the 30-item 
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test for the N = 1000 sample size, the Type I error rate was not controlled (i.e., Type I error rate 

= .056). In sum, this finding suggested that test lengths and sample sizes were important factors 

influencing Type I error control.  

Fifth, when effect sizes were small (i.e., ES = .1 and .2) with N = 100, the results showed 

low power for the LIRT-LGM model. However, for a larger ES of .3, the results showed higher 

power for the LIRT-LGM model. In addition, when effect size was .1 with N = 500, the results 

showed low power for the LGM and 2PL LIRT-LGM model. Nonetheless, for a ES of .2 witn N 

= 500, the results showed higher power for both the LGM and LIRT-LGM models. The results 

also showed high power when N = 1000. Results in Table 13 indicate that, when sample sizes 

and effect sizes increased, the power rates increased as well. Consequently, test lengths had less 

effect on, although different sample sizes and effect sizes did for both models.  

In addition to different test lengths, sample sizes, and effect sizes, the number of time 

points would also affect power. Three occasions, at a minimum, are required for detecting a 

standard linear growth without constraints. Fan and Fan (2005) found that there was a 

convergence problem with only three-time points. However, there was no convergence problem 

with small sample size (i.e., fewer than 100 cases) for five or more time-points (Newsom, 2015).  

Testing statistical power for the LGM model, it is important to distinguish between tests 

of the significance of the fixed effects (i.e., mean intercept and slope) and the random effect (i.e., 

variance intercept and slope). For the testing mean of the intercept or slope, at least a sample size 

of 100 is needed when effect sizes are small and three time points are involved. Fan and Fan 

(2005) suggested 50-75 cases with medium effect sizes and 100 cases for a smaller effect sizes 

for three time points. When testing the variance of the intercept or slope, however, large sample 

sizes and more time points (e.g., five-time points) are needed. Muthén and Curran (1997) suggest 
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that for measuring the variance of the slope, sample sizes should be at least 500 when effect sizes 

are small and five time points are included. In addition, Rast and Hofer (2014) suggest that at 

least 3,000 cases would be needed for three-time points, at least 1,800 cases for four-time points, 

and at least 750 cases for five-time points, to have sufficient power when measuring variance of 

the slope and intercept.  

This dissertation followed the previous studies (Fan & Fan, 2005; Maas & Hox, 2004, 

2005) and employed three-time points and samples from a minimum of 100 cases to measure 

sufficient power. The results showed that when ES = .1 or .2 and N = 100, the power was less 

than 0.8 for both models for all test lengths studied. In other words, power was not affected by 

test lengths, although it was affected by sample size and effect size. Consequently, this finding 

suggests that one needs to employ a minimum of three time points for testing the mean of the 

slope, but also that ES should be at least.3 for a sample of N = 100 to have sufficient power.  

 

5.2 Future Research 

The results of this study suggested that the LIRT-LGM model performed better than the LGM 

model under the conditions considered in the simulation study.  The recovery analysis was good 

recovered, Type I errors were controlled, and power was better for the LIRT-LGM models 

compared to the LGM. Additional manipulation of various conditions would be useful for 

assessing the performance of the LIRT-LGM model. An important limitation of the empirical 

data set is that it only investigated depressive symptoms in adolescent African-American girls. 

Other ethnicities, such as white, Hispanic, and Asian should also study. Second, the growth 

models can be useful in examining whether there is a significant change in the mean level of test 

scores over time and whether those shapes show linear or nonlinear growth (Curran & Bollen, 
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2001). However, this model cannot be used as a diagnosis tool. In a future study, it would be 

interesting to incorporate the LIRT-LGM model into diagnostic classification modeling (DCM) 

to diagnose people as depressed. Third, both the empirical and simulation studies only employed 

three-time points. Including at least four-time points would provide a better opportunity to 

observe growth.  Further, the model would not be limited to just linear change, and could even 

possibly be extended to a dual change or a triple change model. Fourth, this study only 

manipulated short test lengths of 10 and 30 items and small effect sizes of .0, .1, .2, and .3. 

Additional manipulation of these factors, such as longer test lengths (e.g., 50) and medium effect 

sizes (e.g., .5) or large effect sizes (e.g., .8) might be useful for evaluating the performance of the 

LIRT-LGM model. Fifth, the LIRT-LGM can be extended to more complex models, such as a 

LIRT- latent mixture growth model (LIRT-LMGM) in the future. Sixth, polytomous type should 

also be considered. Seventh, the current study only generated a linear growth pattern and 

included only complete data. Curvilinear trajectory conditions and missing data should also be 

considered. Using other estimation algorithms, such as Bayesian estimation, might be useful for 

exploring the performance of the LIRT-LGM. Eighth, the LIRT-LGM model analyzed data in 

both empirical and stimulation study used 1PL and 2PL. The three parameter logistic model also 

can be included in the LIRT-LGM model. Ninth, the average value of the -2 Log likelihood (-

2LL) across 1000 replications was used to inform the model selection of the 1PL and 2PL for the 

LIRT-LGM model in the current study. However, the model fit test using -2LL on each time and 

a total of repeated 1000 times can also be considered in the future. This would allow one to 

calculate a percentage of best fit for a specific model. 

Overall, according to the results presented, this study suggests that the LIRT-LGM 

provides more consistent results under a variety of practical testing conditions compared to the 
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LGM model. The only problematic condition for the LIRT-LGM model was for the short 10-

item tests in the small sample size (N = 100) and small effect sizes (ES = 0.1 and 0.2) conditions.  

Low power was observed for these conditions. Nevertheless, for larger sample sizes, effect sizes, 

and test lengths, the LIRT-LGM model performs well. The LIRT-LGM appears to be a good 

choice for analyzing categorical data used in longitudinal research based on the results of the 

empirical study and simulation study, although it does require larger sample sizes. 
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APPENDIX A 

The List of Questions of Depressive Symptoms 

Depression Manual: Diagnostic Interview Schedule for Children, Version 4 for Time 1 to   

Time 3 
 

Diagnostic Symptoms Absent Present 

1. Depressed mood or irritable most of the day, nearly every day, as  

    indicated by either subjective report (e.g., feels sad or empty) or   

    observation made by others (e.g., appears tearful) 

  

2. Decreased interest or pleasure in most activities, most of each day   

3. Significant weight change (5%) or change in appetite   

4. Change in sleep: Insomnia or hypersomnia   

5. Change in activity: Psychomotor agitation or retardation   

6. Fatigue or loss of energy   

7. Guilt/worthlessness: Feelings of worthlessness or excessive or  

    inappropriate guilt 

  

8. Concentration: diminished ability to think or concentrate, or more  

    indecisiveness 

  

9. Suicidality: Thoughts of death or suicide, or has suicide plan   
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APPENDIX B 

 

Threshold (or Item Difficulty Parameter) of Generating and Estimated Parameters for LIRT-

LGM with 10 Items 
 

 1PL  2PL 

 Generating 

Parameter b 

Estimated Parameter b 

 

 Generating 

Parameter b 

Estimated Parameter b 

 

Item    N=100 N=500 N=1000     N=100 N=500 N=1000 

1 -2.0 -2.081 -2.083 -2.083  -2.0 -1.983 -1.994 -1.995 

2 -1.5 -1.581 -1.583 -1.583  -1.5 -1.487 -1.495 -1.496 

3 -1.0 -1.081 -1.083 -1.083  -1.0 -0.990 -0.997 -0.997 

4 -0.5 -0.581 -0.583 -0.583  -0.5 -0.493 -0.498 -0.498 

5 0.0 -0.081 -0.083 -0.083  0.0 0.004 0.001 0.001 

6 0.0 -0.081 -0.083 -0.083  0.0 0.004 0.001 0.001 

7 0.5 0.419 0.417 0.417  0.5 0.500 0.500 0.500 

8 1.0 0.919 0.917 0.917  1.0 0.997 0.999 0.998 

9 1.5 1.419 1.417 1.417  1.5 1.494 1.497 1.497 

10 2.0 1.919 1.917 1.917  2.0 1.991 1.996 1.996 
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APPENDIX C 

 

Loading (or Item Discrimination Parameter) of Generating and Estimated Parameters for LIRT-

LGM with 10 Items 
 

 2PL 

 Generating 

Parameter a 

Estimated Parameter a 

Item    N=100 N=500 N=1000 

1 1.0 1.013 1.005 1.004 

2 1.1 1.114 1.105 1.105 

3 1.2 1.216 1.206 1.205 

4 1.3 1.317 1.306 1.306 

5 1.4 1.418 1.407 1.406 

6 1.5 1.519 1.507 1.506 

7 1.6 1.621 1.608 1.607 

8 1.7 1.722 1.708 1.707 

9 1.8 1.823 1.809 1.808 

10 1.9 1.925 1.909 1.908 
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APPENDIX D 

 

Threshold (or Item Difficulty Parameter) of Generating and Estimated Parameters for LIRT-

LGM with 30 Items 
 

 1PL  2PL 

 Generating  

Parameter b 

Estimated Parameter b 

 

 Generating  

Parameter b 

Estimated Parameter b 

 

Item    N=100 N=500 N=1000     N=100 N=500 N=1000 

1 -2.0 -2.091 -2.092 -2.092  -2.0 -1.999 -1.996 -1.996 

2 -1.5 -1.591 -1.592 -1.592  -1.5 -1.502 -1.497 -1.497 

3 -1.0 -1.091 -1.092 -1.092  -1.0 -1.004 -0.998 -0.998 

4 -0.5 -0.591 -0.592 -0.592  -0.5 -0.507 -0.499 -0.498 

5 0.0 -0.091 -0.092 -0.092  0.0 -0.009 0.000 0.001 

6 0.0 -0.091 -0.092 -0.092  0.0 -0.009 0.000 0.001 

7 0.5 0.409 0.408 0.408  0.5 0.489 0.500 0.500 

8 1.0 0.909 0.908 0.908  1.0 0.986 0.999 1.000 

9 1.5 1.409 1.408 1.408  1.5 1.484 1.498 1.499 

10 2.0 1.909 1.908 1.908  2.0 1.981 1.997 1.999 

11 -2.0 -2.091 -2.092 -2.092  -2.0 -1.999 -1.996 -1.996 

12 -1.5 -1.591 -1.592 -1.592  -1.5 -1.502 -1.497 -1.497 

13 -1.0 -1.091 -1.092 -1.092  -1.0 -1.004 -0.998 -0.998 

14 -0.5 -0.591 -0.592 -0.592  -0.5 -0.507 -0.499 -0.498 

15 0.0 -0.091 -0.092 -0.092  0.0 -0.009 0.000 0.001 

16 0.0 -0.091 -0.092 -0.092  0.0 -0.009 0.000 0.001 

17 0.5 0.409 0.408 0.408  0.5 0.489 0.500 0.500 

18 1.0 0.909 0.908 0.908  1.0 0.986 0.999 1.000 

19 1.5 1.409 1.408 1.408  1.5 1.484 1.498 1.499 

20 2.0 1.909 1.908 1.908  2.0 1.981 1.997 1.999 

21 -2.0 -2.091 -2.092 -2.092  -2.0 -1.999 -1.996 -1.996 

22 -1.5 -1.591 -1.592 -1.592  -1.5 -1.502 -1.497 -1.497 

23 -1.0 -1.091 -1.092 -1.092  -1.0 -1.004 -0.998 -0.998 

24 -0.5 -0.591 -0.592 -0.592  -0.5 -0.507 -0.499 -0.498 

25 0.0 -0.091 -0.092 -0.092  0.0 -0.009 0.000 0.001 

26 0.0 -0.091 -0.092 -0.092  0.0 -0.009 0.000 0.001 

27 0.5 0.409 0.408 0.408  0.5 0.489 0.500 0.500 

28 1.0 0.909 0.908 0.908  1.0 0.986 0.999 1.000 

29 1.5 1.409 1.408 1.408  1.5 1.484 1.498 1.499 

30 2.0 1.909 1.908 1.908  2.0 1.981 1.997 1.999 
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APPENDIX E 

Loading (or Item Discrimination Parameter) of Generating and Estimated Parameters for LIRT-

LGM with 30 Items 
 

 2PL 

 Generating 

Parameter a 

Estimated parameter a 

 

Item    N=100 N=500 N=1000 

1 1.0 1.010 1.003 1.002 

2 1.1 1.111 1.104 1.103 

3 1.2 1.212 1.204 1.203 

4 1.3 1.313 1.304 1.303 

5 1.4 1.414 1.405 1.403 

6 1.5 1.515 1.505 1.504 

7 1.6 1.616 1.605 1.604 

8 1.7 1.717 1.706 1.704 

9 1.8 1.818 1.806 1.804 

10 1.9 1.919 1.906 1.905 

11 1.0 1.010 1.003 1.002 

12 1.1 1.111 1.104 1.103 

13 1.2 1.212 1.204 1.203 

14 1.3 1.313 1.304 1.303 

15 1.4 1.414 1.405 1.403 

16 1.5 1.515 1.505 1.504 

17 1.6 1.616 1.605 1.604 

18 1.7 1.717 1.706 1.704 

19 1.8 1.818 1.806 1.804 

20 1.9 1.919 1.906 1.905 

21 1.0 1.010 1.003 1.002 

22 1.1 1.111 1.104 1.103 

23 1.2 1.212 1.204 1.203 

24 1.3 1.313 1.304 1.303 

25 1.4 1.414 1.405 1.403 

26 1.5 1.515 1.505 1.504 

27 1.6 1.616 1.605 1.604 

28 1.7 1.717 1.706 1.704 

29 1.8 1.818 1.806 1.804 

30 1.9 1.919 1.906 1.905 
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APPENDIX F 

Mplus Code Used for Generating Data with 10 and 30 Items 

TITLE: Sample sizes with 100 of 10 or 30 dichotomous items were simulated. 

  

 MONTECARLO: 

    ! Names used in generating 10 items; 

    NAMES = u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

                      u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

                      u13 u23 u33 u43 u53 u63 u73 u83 u93 u103; 

 

    ! Names used in generating 30 items; 

    ! NAMES = u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

             u111 u121 u131 u141 u151 u161 u171 u181 u191 u201 

             u211 u221 u231 u241 u251 u261 u271 u281 u291 u301 

             u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

             u112 u122 u132 u142 u152 u162 u172 u182 u192 u202 

             u212 u222 u232 u242 u252 u262 u272 u282 u292 u302 

             u13 u23 u33 u43 u53 u63 u73 u83 u93 u103 

             u113 u123 u133 u143 u153 u163 u173 u183 u193 u203 

             u213 u223 u233 u243 u253 u263 u273 u283 u293 u303; 

 

! GENERATE used in generating 10 items;    

GENERATE = u11 - u103 (1); 

  

    ! GENERATE used in generating 30 items; 

    !   GENERATE = u11 - u303 (1); 

 

! CATEGORICAL used in generating 10 items; 

CATEGORICAL = u11 - u103; 

 

    ! CATEGORICAL used in generating 30 items; 

    ! CATEGORICAL = u11 - u303; 

 

    NOBSERVATIONS = 100;  ! The NOBSERVATIONS can be replaced by 500 and 1000; 

    NREPS = 1000; 

    SEED = 45335; 

    REPSAVE = ALL; 

    SAVE = I10N100s_*.DAT;
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 ANALYSIS: ESTIMATOR = ML; 

             

 Model population: 

! USED in generating 10 items; 

! (1) to (10) constraint measurement invariance and these show 2PL, as well; 

 

theta1 by u11@1.0 (1)  

               u21*1.1 (2) 

               u31*1.2 (3) 

               u41*1.3 (4) 

               u51*1.4 (5) 

               u61*1.5 (6) 

               u71*1.6 (7) 

               u81*1.7 (8) 

               u91*1.8 (9) 

               u101*1.9 (10);   

theta2 by u12@1.0 (1) 

               u22*1.1 (2) 

               u32*1.2 (3) 

               u42*1.3 (4) 

               u52*1.4 (5) 

               u62*1.5 (6) 

               u72*1.6 (7) 

               u82*1.7 (8) 

               u92*1.8 (9) 

               u102*1.9 (10); 

 theta3 by u13@1.0 (1) 

               u23*1.1 (2) 

               u33*1.2 (3) 

               u43*1.3 (4) 

               u53*1.4 (5) 

               u63*1.5 (6) 

               u73*1.6 (7) 

               u83*1.7 (8) 

               u93*1.8 (9) 

               u103*1.9 (10); 

 

! USED in generating 30 items; 

!theta1 by u11@1.000   

           u21*1.111  (1) 

           u31*1.212  (2) 

           u41*1.313  (3) 

           u51*1.414  (4) 

           u61*1.515  (5) 

           u71*1.616  (6) 
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           u81*1.717  (7) 

           u91*1.818  (8) 

           u101*1.919 (9) 

           u111*1.010 (10) 

           u121*1.111 (11) 

           u131*1.212 (12) 

           u141*1.313 (13) 

           u151*1.414 (14) 

           u161*1.515 (15) 

           u171*1.616 (16) 

           u181*1.717 (17) 

           u191*1.818 (18) 

           u201*1.919 (19) 

           u211*1.010 (20) 

           u221*1.111 (21) 

           u231*1.212 (22) 

           u241*1.313 (23) 

           u251*1.414 (24) 

           u261*1.515 (25) 

           u271*1.616 (26) 

           u281*1.717 (27) 

           u291*1.818 (28) 

           u301*1.919 (29); 

 

    !theta2 by u12@1.000   

                     u22*1.111(1) 

                     u32*1.212 (2) 

                     u42*1.313 (3) 

                     u52*1.414 (4) 

                     u62*1.515 (5) 

                     u72*1.616 (6) 

                     u82*1.717 (7) 

                     u92*1.818 (8) 

                     u102*1.919 (9) 

                     u112*1.010 (10) 

                     u122*1.111 (11) 

                     u132*1.212 (12) 

                     u142*1.313 (13) 

                     u152*1.414 (14) 

                     u162*1.515 (15) 

                     u172*1.616 (16) 

                     u182*1.717 (17) 

                     u192*1.818 (18) 

                     u202*1.919 (19) 

                     u212*1.010 (20) 
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                     u222*1.111 (21) 

                     u232*1.212 (22) 

                     u242*1.313 (23) 

                       u252*1.414 (24) 

                       u262*1.515 (25) 

                       u272*1.616 (26) 

                       u282*1.717 (27) 

                       u292*1.818 (28) 

                       u302*1.919 (29); 

 

   ! theta3 by u13@1.000   

                       u23*1.111 (1) 

                       u33*1.212 (2) 

                       u43*1.313 (3) 

                       u53*1.414 (4) 

                       u63*1.515 (5) 

                       u73*1.616 (6) 

                       u83*1.717 (7) 

                       u93*1.818 (8) 

                       u103*1.919 (9) 

                       u113*1.010 (10) 

                       u123*1.111 (11) 

                       u133*1.212 (12) 

                       u143*1.313 (13) 

                       u153*1.414 (14) 

                       u163*1.515 (15) 

                       u173*1.616 (16) 

                       u183*1.717 (17) 

                       u193*1.818 (18) 

                       u203*1.919 (19) 

                       u213*1.010 (20) 

                       u223*1.111 (21) 

                       u233*1.212 (22) 

                       u243*1.313 (23) 

                       u253*1.414 (24) 

                       u263*1.515 (25) 

                       u273*1.616 (26) 

                       u283*1.717 (27) 

                       u293*1.818 (28) 

                       u303*1.919 (29); 

 

    [theta1-theta3@0];  ! the mean of the latent factor; 

     theta1-theta3@1;    ! the variance of the latent factor;    

     

   !set up thresholds 
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     [u11$1*-2.0  u12$1*-2.0  u13$1*-2.0]  (11); 

      [u21$1*-1.5  u22$1*-1.5  u23$1*-1.5]  (12); 

     [u31$1*-1.0  u32$1*-1.0  u33$1*-1.0]  (13); 

     [u41$1*-0.5  u42$1*-0.5  u43$1*-0.5]  (14); 

      [u51$1*0.0   u52$1*0.0   u53$1*0.0 ]  (15); 

      [u61$1*0.0   u62$1*0.0   u63$1*0.0 ]  (16); 

      [u71$1*0.5   u72$1*0.5   u73$1*0.5 ]  (17); 

      [u81$1*1.0   u82$1*1.0   u83$1*1.0 ]  (18); 

     [u91$1*1.5   u92$1*1.5   u93$1*1.5 ]  (19); 

     [u101$1*2.0  u102$1*2.0  u103$1*2.0]  (20);  

 

! Item thresholds all estimated with 30 Items; 

[u11$1*-1.999      u12$1*-1.999    u13$1*-1.999] (30);  

 [u21$1*-1.502     u22$1*-1.502    u23$1*-1.502] (31); 

 [u31$1*-1.004     u32$1*-1.004    u33$1*-1.004] (32); 

 [u41$1*-0.507     u42$1*-0.507    u43$1*-0.507] (33); 

 [u51$1*-0.009     u52$1*-0.009    u53$1*-0.009] (34); 

 [u61$1*-0.009     u62$1*-0.009    u63$1*-0.009] (35);  

 [u71$1*0.489       u72$1*0.489     u73$1*0.489]  (36); 

 [u81$1*0.986       u82$1*0.986     u83$1*0.986]  (37); 

 [u91$1*1.484       u92$1*1.484     u93$1*1.484]  (38); 

 [u101$1*1.981   u102$1*1.981     u103$1*1.981]  (39); 

 [u111$1*-1.999  u112$1*-1.999   u113$1*-1.999] (40); 

 [u121$1*-1.502  u122$1*-1.502   u123$1*-1.502] (41); 

 [u131$1*-1.004  u132$1*-1.004   u133$1*-1.004] (42); 

 [u141$1*-0.507  u142$1*-0.507   u143$1*-0.507] (43); 

 [u151$1*-0.009  u152$1*-0.009   u153$1*-0.009] (44); 

 [u161$1*-0.009  u162$1*-0.009   u163$1*-0.009] (45); 

 [u171$1*0.489   u172$1*0.489    u173$1*0.489]  (46); 

 [u181$1*0.986   u182$1*0.986   u183$1*0.986]  (47); 

 [u191$1*1.484   u192$1*1.484   u193$1*1.484]  (48); 

 [u201$1*1.981   u202$1*1.981   u203$1*1.981]  (49); 

 [u211$1*-1.999 u212$1*-1.999  u213$1*-1.999] (50); 

 [u221$1*-1.502 u222$1*-1.502  u223$1*-1.502] (51); 

 [u231$1*-1.004 u232$1*-1.004  u233$1*-1.004] (52); 

 [u241$1*-0.507 u242$1*-0.507  u243$1*-0.507] (53); 

 [u251$1*-0.009 u252$1*-0.009  u253$1*-0.009] (54); 

 [u261$1*-0.009 u262$1*-0.009  u263$1*-0.009] (55); 

 [u271$1*0.489 u272$1*0.489    u273$1*0.489]  (56); 

 [u281$1*0.986 u282$1*0.986    u283$1*0.986]  (57); 

 [u291$1*1.484 u292$1*1.484    u293$1*1.484]  (58); 

 [u301$1*1.981 u302$1*1.981    u303$1*1.981]  (59); 
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    i s | theta1@0 theta2@1 theta3@2;   

            i with s*0;   

   [i@0 s*0];     ! The mean of intercept and slope; 

                                  ! The mean s* can be replaced by 0.1, 0.2, and 0.3 while detecting power; 

   i*1  s*0.2;   ! The variance of intercept and slope;
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APPENDIX G 

Mplus code for Analyzing LGM with 10 and 30 Items 

Title: LGM model with 10 or 30 items and 100 N; 

 Data: File is F:\Simulation\I10N1002PLsm_list.dat; 

        Type=montecarlo; 

 

  Define: 

    !the observed variables used in 10 items;   

    DEP1=u11+u21+u31+u41+u51+u61+u71+u81+u91+u101; 

     DEP2=u12+u22+u32+u42+u52+u62+u72+u82+u92+u102; 

     DEP3=u13+u23+u33+u43+u53+u63+u73+u83+u93+u103;    

 

     !the observed variables used in 30 items; 

    ! DEP1=u11+u21+u31+u41+u51+u61+u71+u81+u91+u101+u111+ 

                 u121+u131+u141+u151+u161+u171+u181+u191+u201+ 

                  u211+u221+u231+u241+u251+u261+u271+u281+u291+u301; 

     !DEP2=u12+u22+u32+u42+u52+u62+u72+u82+u92+u102+u112+ 

                  u122+u132+u142+u152+u162+u172+u182+u192+u202+ 

                  u212+u222+u232+u242+u252+u262+u272+u282+u292+u302; 

     !DEP3=u13+u23+u33+u43+u53+u63+u73+u83+u93+u103+u113+ 

                   u123+u133+u143+u153+u163+u173+u183+u193+u203+ 

                   u213+u223+u233+u243+u253+u263+u273+u283+u293+u303; 

   

  Variable:  

!The variables used in 10 items; 

     NAMES = u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

                       u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

                       u13 u23 u33 u43 u53 u63 u73 u83 u93 u103; 

 

!The variables used in 30 items; 

! NAMES = u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

                     u111 u121 u131 u141 u151 u161 u171 u181 u191 u201 

                     u211 u221 u231 u241 u251 u261 u271 u281 u291 u301
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                     u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

                     u112 u122 u132 u142 u152 u162 u172 u182 u192 u202 

                     u212 u222 u232 u242 u252 u262 u272 u282 u292 u302 

                     u13 u23 u33 u43 u53 u63 u73 u83 u93 u103 

                     u113 u123 u133 u143 u153 u163 u173 u183 u193 u203 

                     u213 u223 u233 u243 u253 u263 u273 u283 u293 u303; 

       USEVARIABLES are DEP1 DEP2 DEP3; 

 

  Analysis: ESTIMATOR IS ML; 

                  LINK IS LOGIT;  

 

  MODEL: 

  !@0, @1, @2 are measurement occasions; 

   i s | DEP1@0 DEP2@1 DEP3@2;   

 

! using in 10 Items 

   DEP1*2.266; 

   DEP2*2.244; 

   DEP3*2.445; 

 

! using in 30 Items 

     !DEP1*2.499; 

     !DEP2*2.443; 

     !DEP3*2.715; 

 

   [s*0];     ! The mean of slope; 

                 ! The mean s* can be replaced by 0.1, 0.2, and 0.3;  

    s*0.2;   ! Variance of the slope; 

 

  Output: Tech9;
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APPENDIX H 

Mplus Code Used for Analyzing the 1PL Model with 10 Items  

 

Title: LIRT-LGM model of Rasch model with 10 items and 100 obs; 

 

  Data: File is F:\Simulation\I10N1002PLsm_list.DAT; 

        Type=montecarlo; 

         

   

  Variable:  

     NAMES are  

     u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

     u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

     u13 u23 u33 u43 u53 u63 u73 u83 u93 u103; 

  

     USEVARIABLES are  

     u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

     u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

     u13 u23 u33 u43 u53 u63 u73 u83 u93 u103; 

      

     CATEGORICAL ARE 

     u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

     u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

     u13 u23 u33 u43 u53 u63 u73 u83 u93 u103; 

 

  Analysis:  

            ESTIMATOR IS ML; 

            PROCESSORS=4; 

 

  Model:  

     theta1 by u11-u101* (1);  

        theta2 by u12-u102* (1); 

     theta3 by u13-u103* (1);
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!Factor mean=0 and variance=1 for identification  

     [theta1-theta3@0];  

     theta1-theta3@1;  

  

!Item thresholds all estimated 

 [u11$1*-2.081   u12$1*-2.081  u13$1*-2.081] (2);  

 [u21$1*-1.581   u22$1*-1.581  u23$1*-1.581] (3); 

 [u31$1*-1.081   u32$1*-1.081  u33$1*-1.081] (4); 

 [u41$1*-0.581   u42$1*-0.581  u43$1*-0.581] (5); 

 [u51$1*-0.081   u52$1*-0.081  u53$1*-0.081] (6); 

 [u61$1*-0.081   u62$1*-0.081  u63$1*-0.081] (7);  

 [u71$1*0.419    u72$1*0.419   u73$1*0.419 ] (8); 

 [u81$1*0.919    u82$1*0.919   u83$1*0.919 ] (9); 

 [u91$1*1.419    u92$1*1.419   u93$1*1.419 ] (10); 

[u101$1*1.919   u102$1*1.919  u103$1*1.919 ] (11); 

  

 i s | theta1@0 theta2@1 theta3@2;   

 

 [i@0 s*0.0];  !Mean; 

  i*1  s*0.2;  !Variance; 

 

 

 output: 

    TECH9;
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APPENDIX I 

 

Mplus Code Used for Analyzing the 1PL Model with 30 Items 

 

Title: LGM-LIRT model of Rasch model with 30 items and 100 obs; 

 

  Data: File is C:\Simulation\Data\I30N1002PL\I30N1002PLsm_list.DAT; 

        Type=montecarlo; 

         

   

  Variable:  

     NAMES = u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

             u111 u121 u131 u141 u151 u161 u171 u181 u191 u201 

             u211 u221 u231 u241 u251 u261 u271 u281 u291 u301 

             u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

             u112 u122 u132 u142 u152 u162 u172 u182 u192 u202 

             u212 u222 u232 u242 u252 u262 u272 u282 u292 u302 

             u13 u23 u33 u43 u53 u63 u73 u83 u93 u103 

             u113 u123 u133 u143 u153 u163 u173 u183 u193 u203 

             u213 u223 u233 u243 u253 u263 u273 u283 u293 u303; 

  

     USEVARIABLES = u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

            u111 u121 u131 u141 u151 u161 u171 u181 u191 u201 

            u211 u221 u231 u241 u251 u261 u271 u281 u291 u301 

            u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

            u112 u122 u132 u142 u152 u162 u172 u182 u192 u202 

            u212 u222 u232 u242 u252 u262 u272 u282 u292 u302 

            u13 u23 u33 u43 u53 u63 u73 u83 u93 u103 

            u113 u123 u133 u143 u153 u163 u173 u183 u193 u203 

            u213 u223 u233 u243 u253 u263 u273 u283 u293 u303; 

      

     CATEGORICAL = u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

            u111 u121 u131 u141 u151 u161 u171 u181 u191 u201 

            u211 u221 u231 u241 u251 u261 u271 u281 u291 u301 

            u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

            u112 u122 u132 u142 u152 u162 u172 u182 u192 u202
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            u212 u222 u232 u242 u252 u262 u272 u282 u292 u302 

            u13 u23 u33 u43 u53 u63 u73 u83 u93 u103 

            u113 u123 u133 u143 u153 u163 u173 u183 u193 u203 

            u213 u223 u233 u243 u253 u263 u273 u283 u293 u303; 

 

  Analysis:  

            ESTIMATOR IS ML; 

            PROCESSORS=4; 

 

  Model:  

 theta1 by u11-u301*(1); 

    theta2 by u12-u302*(1); 

 theta3 by u13-u303*(1);  

     

 

 !Factor mean=0 and variance=1 for identification  

     [theta1-theta3@0];  

      theta1-theta3@1;   

  

 

!Item thresholds all estimated 

[u11$1*-2.091   u12$1*-2.091   u13$1*-2.091] (2); 

[u21$1*-1.591   u22$1*-1.591   u23$1*-1.591] (3); 

[u31$1*-1.091   u32$1*-1.091   u33$1*-1.091] (4); 

[u41$1*-0.591   u42$1*-0.591   u43$1*-0.591] (5); 

[u51$1*-0.091   u52$1*-0.091   u53$1*-0.091] (6); 

[u61$1*-0.091   u62$1*-0.091   u63$1*-0.091] (7); 

[u71$1*0.409   u72$1*0.489    u73$1*0.409 ] (8); 

[u81$1*0.909   u82$1*0.986    u83$1*0.909 ] (9); 

[u91$1*1.409   u92$1*1.484    u93$1*1.409 ] (10); 

[u101$1*1.909  u102$1*1.981  u103$1*1.909 ] (11); 

[u111$1*-2.091  u112$1*-2.091 u113$1*-2.091] (12); 

[u121$1*-1.591  u122$1*-1.591 u123$1*-1.591] (13); 

[u131$1*-1.091  u132$1*-1.091 u133$1*-1.091] (14); 

[u141$1*-0.591  u142$1*-0.591 u143$1*-0.591] (15); 

[u151$1*-0.091  u152$1*-0.091 u153$1*-0.091] (16); 

[u161$1*-0.091  u162$1*-0.091 u163$1*-0.091] (17); 

[u171$1*0.409   u172$1*0.489  u173$1*0.409 ] (18); 

[u181$1*0.909   u182$1*0.986  u183$1*0.909 ] (19); 
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[u191$1*1.409   u192$1*1.484  u193$1*1.409 ] (20); 

[u201$1*1.909   u202$1*1.981  u203$1*1.909 ] (21); 

[u211$1*-2.091  u212$1*-2.091 u213$1*-2.091] (22); 

[u221$1*-1.591  u222$1*-1.591  u223$1*-1.591] (23); 

[u231$1*-1.091  u232$1*-1.091  u233$1*-1.091] (24); 

[u241$1*-0.591  u242$1*-0.591  u243$1*-0.591] (25); 

[u251$1*-0.091  u252$1*-0.091  u253$1*-0.091] (26); 

[u261$1*-0.091  u262$1*-0.091  u263$1*-0.091] (27); 

[u271$1*0.409    u272$1*0.489   u273$1*0.409 ] (28); 

[u281$1*0.909   u282$1*0.986   u283$1*0.909 ] (29); 

[u291$1*1.409   u292$1*1.484   u293$1*1.409 ] (30); 

[u301$1*1.909   u302$1*1.981   u303$1*1.909 ] (31); 

 

i s | theta1@0 theta2@1 theta3@2; 

 

[i@0 s*0.0];  !Mean; 

i*1  s*0.2;  !Variance; 

 

output: 

TECH9;
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APPENDIX J 

 

Mplus Code Used for Analyzing the 2PL Model with 10 Items 

 

Title: LGM-LIRT model of 2PL model with 10 items and 100 obs; 

 

  Data: File is C:\Simulation\I10N1002PLsm_list.DAT; 

        Type=montecarlo; 

         

   

  Variable:  

     NAMES are  

     u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

     u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

     u13 u23 u33 u43 u53 u63 u73 u83 u93 u103; 

  

     USEVARIABLES are  

     u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

     u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

     u13 u23 u33 u43 u53 u63 u73 u83 u93 u103; 

      

     CATEGORICAL ARE 

     u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

     u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

     u13 u23 u33 u43 u53 u63 u73 u83 u93 u103; 

 

  Analysis:  

            ESTIMATOR IS ML; 

            PROCESSORS=4; 

 

  Model:  

  theta1 by u11@1.000  

                  u21*1.114 (1) 
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                  u31*1.216 (2) 

                  u41*1.317 (3) 

                  u51*1.418 (3) 

                  u61*1.519 (5) 

                  u71*1.621 (6) 

                  u81*1.722 (7) 

                  u91*1.823 (8) 

                  u101*1.925(9);  

                            

  theta2 by u12@1.000  

                  u22*1.114 (1) 

                  u32*1.216 (2) 

                  u42*1.317 (3) 

                  u52*1.418 (3) 

                  u62*1.519 (5) 

                  u72*1.621 (6) 

                  u82*1.722 (7) 

                  u92*1.823 (8) 

                  u102*1.925(9);  

                 

  theta3 by u13@1.000  

                  u23*1.114 (1) 

                  u33*1.216 (2) 

                  u43*1.317 (3) 

                  u53*1.418 (3) 

                  u63*1.519 (5) 

                  u73*1.621 (6) 

                  u83*1.722 (7) 

                  u93*1.823 (8) 

                  u103*1.925(9);  

 

!Factor mean=0 and variance=1 for identification  

     [theta1-theta3@0];  

      theta1-theta3@1;  

  

!Item thresholds all estimated 

 [u11$1*-1.983  u12$1*-1.983  u13$1*-1.983] (10);  

 [u21$1*-1.487  u22$1*-1.487  u23$1*-1.487] (11); 

 [u31$1*-0.990  u32$1*-0.990  u33$1*-0.990] (12); 
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 [u41$1*-0.493  u42$1*-0.493  u43$1*-0.493] (13); 

 [u51$1*0.004   u52$1*0.004   u53$1*0.004 ] (14); 

 [u61$1*0.004   u62$1*0.004   u63$1*0.004 ] (15);  

 [u71$1*0.500   u72$1*0.500   u73$1*0.500 ] (16); 

 [u81$1*0.997   u82$1*0.997   u83$1*0.997 ] (17); 

 [u91$1*1.494   u92$1*1.494   u93$1*1.494 ] (18); 

 [u101$1*1.925  u102$1*1.925  u103$1*1.925] (19); 

  

 i s | theta1@0 theta2@1 theta3@2; 

   

  [i@0 s*0.0];  !Mean; 

   i*1 s*0.2;  !Variance; 

 

 output: 

     TECH9; 
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APPENDIX K 

Mplus Code Used for Analyzing the 2PL Model with 30 Items 

 

 

Title: LGM-LIRT model of 2PL model with 30 items and 100 obs; 

 

  Data: File is C:\Simulation\Data\Type I error\I30N1002PL\I30N1002PLsm_list.DAT; 

        Type=montecarlo; 

         

   

  Variable:  

     NAMES = u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

             u111 u121 u131 u141 u151 u161 u171 u181 u191 u201 

             u211 u221 u231 u241 u251 u261 u271 u281 u291 u301 

             u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

             u112 u122 u132 u142 u152 u162 u172 u182 u192 u202 

             u212 u222 u232 u242 u252 u262 u272 u282 u292 u302 

             u13 u23 u33 u43 u53 u63 u73 u83 u93 u103 

             u113 u123 u133 u143 u153 u163 u173 u183 u193 u203 

             u213 u223 u233 u243 u253 u263 u273 u283 u293 u303; 

  

     USEVARIABLES = u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

            u111 u121 u131 u141 u151 u161 u171 u181 u191 u201 

            u211 u221 u231 u241 u251 u261 u271 u281 u291 u301 

            u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

            u112 u122 u132 u142 u152 u162 u172 u182 u192 u202 

            u212 u222 u232 u242 u252 u262 u272 u282 u292 u302 

            u13 u23 u33 u43 u53 u63 u73 u83 u93 u103 

            u113 u123 u133 u143 u153 u163 u173 u183 u193 u203 

            u213 u223 u233 u243 u253 u263 u273 u283 u293 u303; 

      

     CATEGORICAL = u11 u21 u31 u41 u51 u61 u71 u81 u91 u101 

            u111 u121 u131 u141 u151 u161 u171 u181 u191 u201 

            u211 u221 u231 u241 u251 u261 u271 u281 u291 u301
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            u12 u22 u32 u42 u52 u62 u72 u82 u92 u102 

            u112 u122 u132 u142 u152 u162 u172 u182 u192 u202 

            u212 u222 u232 u242 u252 u262 u272 u282 u292 u302 

            u13 u23 u33 u43 u53 u63 u73 u83 u93 u103 

            u113 u123 u133 u143 u153 u163 u173 u183 u193 u203 

            u213 u223 u233 u243 u253 u263 u273 u283 u293 u303; 

 

  Analysis:  

            ESTIMATOR IS ML; 

            PROCESSORS=6; 

             

  Model:  

      theta1 by u11@1.000   

           u21*1.111  (1) 

           u31*1.212  (2) 

           u41*1.313  (3) 

           u51*1.414  (4) 

           u61*1.515  (5) 

           u71*1.616  (6) 

           u81*1.717  (7) 

           u91*1.818  (8) 

           u101*1.919 (9) 

           u111*1.010 (10) 

           u121*1.111 (11) 

           u131*1.212 (12) 

           u141*1.313 (13) 

           u151*1.414 (14) 

           u161*1.515 (15) 

           u171*1.616 (16) 

           u181*1.717 (17) 

           u191*1.818 (18) 

           u201*1.919 (19) 

           u211*1.010 (20) 

           u221*1.111 (21) 

           u231*1.212 (22) 

           u241*1.313 (23) 

           u251*1.414 (24) 

           u261*1.515 (25) 

           u271*1.616 (26) 

           u281*1.717 (27) 
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           u291*1.818 (28) 

           u301*1.919 (29); 

 

    theta2 by u12@1.000   

                    u22*1.111 (1) 

                    u32*1.212 (2) 

                    u42*1.313 (3) 

                    u52*1.414 (4) 

                    u62*1.515 (5) 

                    u72*1.616 (6) 

                    u82*1.717 (7) 

                    u92*1.818 (8) 

                    u102*1.919 (9) 

                    u112*1.010 (10) 

                    u122*1.111 (11) 

                    u132*1.212 (12) 

                    u142*1.313 (13) 

                    u152*1.414 (14) 

                    u162*1.515 (15) 

                    u172*1.616 (16) 

                    u182*1.717 (17) 

                    u192*1.818 (18) 

                    u202*1.919 (19) 

                    u212*1.010 (20) 

                    u222*1.111 (21) 

                    u232*1.212 (22) 

                    u242*1.313 (23) 

                    u252*1.414 (24) 

                    u262*1.515 (25) 

                    u272*1.616 (26) 

                    u282*1.717 (27) 

                    u292*1.818 (28) 

                    u302*1.919 (29); 

 

    theta3 by u13@1.000   

                    u23*1.111 (1) 

                    u33*1.212 (2) 

                    u43*1.313 (3) 

                    u53*1.414 (4) 

                    u63*1.515 (5) 
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                    u73*1.616 (6) 

                    u83*1.717 (7) 

                    u93*1.818 (8) 

                    u103*1.919 (9) 

                    u113*1.010 (10) 

                    u123*1.111 (11) 

                    u133*1.212 (12) 

                    u143*1.313 (13) 

                    u153*1.414 (14) 

                    u163*1.515 (15) 

                    u173*1.616 (16) 

                    u183*1.717 (17) 

                    u193*1.818 (18) 

                    u203*1.919 (19) 

                    u213*1.010 (20) 

                    u223*1.111 (21) 

                    u233*1.212 (22) 

                    u243*1.313 (23) 

                    u253*1.414 (24) 

                    u263*1.515 (25) 

                    u273*1.616 (26) 

                    u283*1.717 (27) 

                    u293*1.818 (28) 

                    u303*1.919 (29); 

  

 !Factor mean=0 and variance=1 for identification  

     [theta1-theta3@0];  

      theta1-theta3@1;  

 

 !Item thresholds all estimated 

 [u11$1*-1.999 u12$1*-1.999    u13$1*-1.999] (30);  

 [u21$1*-1.502 u22$1*-1.502    u23$1*-1.502] (31); 

 [u31$1*-1.004 u32$1*-1.004    u33$1*-1.004] (32); 

 [u41$1*-0.507 u42$1*-0.507    u43$1*-0.507] (33); 

 [u51$1*-0.009 u52$1*-0.009    u53$1*-0.009] (34); 

 [u61$1*-0.009 u62$1*-0.009    u63$1*-0.009] (35);  

 [u71$1*0.489  u72$1*0.489     u73$1*0.489]  (36); 

 [u81$1*0.986  u82$1*0.986     u83$1*0.986]  (37); 

 [u91$1*1.484  u92$1*1.484     u93$1*1.484]  (38); 

 [u101$1*1.981 u102$1*1.981  u103$1*1.981]  (39); 
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 [u111$1*-1.999  u112$1*-1.999  u113$1*-1.999] (40); 

 [u121$1*-1.502  u122$1*-1.502  u123$1*-1.502] (41); 

 [u131$1*-1.004  u132$1*-1.004  u133$1*-1.004] (42); 

 [u141$1*-0.507  u142$1*-0.507  u143$1*-0.507] (43); 

 [u151$1*-0.009  u152$1*-0.009  u153$1*-0.009] (44); 

 [u161$1*-0.009  u162$1*-0.009  u163$1*-0.009] (45); 

 [u171$1*0.489   u172$1*0.489   u173$1*0.489]  (46); 

 [u181$1*0.986   u182$1*0.986   u183$1*0.986]  (47); 

 [u191$1*1.484   u192$1*1.484   u193$1*1.484]  (48); 

 [u201$1*1.981   u202$1*1.981   u203$1*1.981]  (49); 

 [u211$1*-1.999  u212$1*-1.999  u213$1*-1.999] (50); 

 [u221$1*-1.502  u222$1*-1.502  u223$1*-1.502] (51); 

 [u231$1*-1.004  u232$1*-1.004  u233$1*-1.004] (52); 

 [u241$1*-0.507  u242$1*-0.507  u243$1*-0.507] (53); 

 [u251$1*-0.009  u252$1*-0.009  u253$1*-0.009] (54); 

 [u261$1*-0.009  u262$1*-0.009  u263$1*-0.009] (55); 

 [u271$1*0.489   u272$1*0.489    u273$1*0.489]  (56); 

 [u281$1*0.986   u282$1*0.986    u283$1*0.986]  (57); 

 [u291$1*1.484   u292$1*1.484    u293$1*1.484]  (58); 

 [u301$1*1.981   u302$1*1.981   u303$1*1.981]  (59); 

  

 i s | theta1@0 theta2@1 theta3@2;   

  

 [i@0 s*0.0];  !Mean; 

  i*1  s*0.2;  !Variance; 

 

 output: 

     TECH9; 

 

 

 

 


