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Abstract

Recently there has been an interest in asymptotic expansions of the tail probabilities of a

variety of processes that are ubiquitous in statistics. However, little to no work has been

done when the AR(1) process is built upon extreme value random variables. This process

appears when the distribution of the current maximum is dependent on the previous. The

goal of this dissertation is to explore asymptotic expansions of tail probabilities on this

topic, in particular using the Gumbel distribution. In each of the theoretical projects we

build second-order expansions, many of which are improvements over the already known

first-order ones. We also examine exactly when each of the expansions should and should

not be used through simulation studies. Finally, we perform a data analysis in the extreme

value theory setting on riverflow data, and as much as possible connect this same data set

to the theoretical results.
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Chapter 1 An Overview of the Dissertation

1.1 Introduction

Extreme value theory is the study of the behavior of observations that fall extremely far away

from the mean of a distribution. Typically one studies asymptotic properties of the upper

tail, or in other words the high percentiles. One could also perform analysis on the lower

tail, which would be equivalent to studying the limiting behavior of the minimum values.

For a basic, nontheoretical introduction to the ideas of extreme value theory, we recommend

Coles (2001).

The literature is rich with results. Fisher and Tippett (1928) proved that the maximum of

a sample followed one of three limiting distributions. Similar work was confirmed and studied

in Gumbel (1958), Fréchet (1927), and Weibull (1951), after whom the three extreme value

distributions were named. Balkema and de Haan (1974) and Pickands (1975) studied the

distribution of the distance above a specified level, known as Peaks over Threshold (POT).

Leadbetter et al. (1983) explored extremes of sequences of random variables which are not

necessarily stationary.

As for applications of extreme value theory, many disciplines require the asymptotic

results of high percentiles. Tail area approximations are important since they shed light

on possible behaviors of extreme events and when to expect them to occur. We list the

following references as examples relating to environmental statistics. Butler et al. (2007)

studied trends in wave heights, in particular the North Sea. For earthquake magnitudes, see

Caers et al. (1999) and Pisarenk and Sornette (2003). Examples of applications to ozone

levels may be found in Smith and Shivey (1995). Finally, Smith (1999) studied extremes in

rainfall at four different stations across the United States.
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There are also applications to nonenvironmental disciplines. One example is in insurance

risk, where companies need to study the probabilities of rare events or of large claims. See

Asmussen (2001) for further discussion on this topic. For applications to queueing theory,

see Borokov (1976), Norros (2003), and Whitt (2002).

This dissertation consists largely of asymptotic expansions of upper tail probabilities

of various extreme value formulas. The distribution we focus on for the majority of the

dissertation is the Gumbel, for two reasons. Firstly, the Gumbel is a special case of the

generalized extreme value model and easier to work with than the Fréchet and Weibull

distributions. Secondly, and more importantly, often a likelihood ratio test will allow one

to reduce the generalized extreme value model to the Gumbel case, making interpretation a

little easier. It is therefore of interest to have results on tail probabilities in such an event.

We are primarily interested in building an AR(1) process where the innovations are

Gumbel random variables. This process would be a useful contribution to extreme value

theory and also time series. The motivation for considering this process is that it may arise

when the distribution of the current annual maximum is dependent on the previous year’s

maximum, and the random variables have been shown to satisfy the Gumbel distribution,

possibly with covariates in the parameters. We consider a variety of cases that mainly

revolve around the choice of weights. In certain situations, particular choices of weights

could completely change the optimal approximation, and these instances will be discussed

later.

There are several motivations for considering higher order expansions of tail probabili-

ties. First, processes like those that will appear in the dissertation are ubiquitous in many

disciplines, especially the ones mentioned above, and accurate estimations of their proba-

bilities are needed. Second, further terms would likely provide more precise probabilities
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than a first-order alone by introducing correction terms. And third, while the literature

contains numerous first-order results, much fewer exist on second-order, and even fewer to

none on further terms. Therefore the results that follow in this dissertation will be valuable

contributions to extreme value theory.

As examples of known results, we recommend Resnick (1986), Bingham et al. (1989), and

Broniatowski and Fuchs (1995) for the first-order analysis. These texts cover topics ranging

from convolutions to the subexponential setting. For second-order results, see Omey (1988),

Geluk et al. (1997), and Barbe and McCormick (2005). The only paper we know of that

contains higher order expansions is Barbe and McCormick (2009). The latter two papers

cover approximations in the heavy tail distribution setting.

The dissertation takes the following path. In the next section, we review the distributions,

formulas, definitions, and inequalities needed to understand the material to be discussed in

later chapters. These statements will come into play in the proofs. Afterwards, a total of

five projects relating to extreme value theory will be investigated.

The first project, discussed in Chapter 2, is a streamflow data analysis. For reasons to

be discussed later, we shall condense the data into the seasonal maxima (and therefore four

observations) per year, and then we will fit a generalized extreme value model through all

four seasons, using time as a covariate. The results will come into play in future chapters as

we use them to illustrate the later theoretical results.

The second project is covered in Chapters 3 and 4. We shall study the upper tail behavior

of the AR(1) process with Gumbel innovations. Chapter 3 establishes the groundwork for

the convolution of just two variables, and in Chapter 4 the results are extended to the

possibly infinite series. Chapter 3 also provides an introduction to how the situation would

be handled if we were working with variables from the Types II or III families. We close the
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project with some examples, a simulation study, and an application to the Peachtree Creek

data.

Chapter 5 contains the third project, which can be viewed as a special case of the second

in that it is a convolution, but where all weights are equal. One particular case would be

finding the distribution of the sum of n Gumbel random variables. This situation, while

common in practice, must be treated separately since the rules for deriving the asymptotics

are very different from what we do in the previous project. The steps are rather involved, and

so this topic deserves its own project. Again, we list several examples of the main result,

as well as conduct a simulation study. Finally, we use the approximation on the winter

observations from the streamflow data set.

In Chapter 6, the fourth project borrows ideas from the second and third, but introduces

the possibility of ties occurring in the weights used in the convolution. There are actually

several ways in which this may happen, but we derive the expansion for only one of those

cases to give an idea of how the general problem would be solved. Some examples are

provided, and we use as one of the examples an application to the Peachtree Creek again.

Lastly, the fifth project in Chapter 7 explores a different topic, the upper tail behavior

of the convolution of weighted regularly varying random variables that are Markov chain

dependent. Variables that are regularly varying fall into the Type II extreme value family,

and our results are extensions of published ones, not all of which were necessarily chain

dependent.

At the end of the dissertation, after the concluding remarks and the bibliography, a series

of appendices contain supplemental material. This chapter includes second derivatives and

Hessian matrices from Chapter 2, extra proofs from Chapter 4, and tables of numerical values

from Chapters 4 and 5.
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1.2 Useful Formulas

Before beginning the dissertation, we provide this short section of the formulas used most

frequently during the data analysis and the proofs that follow.

Definition 1.1. The Generalized Extreme Value distribution is defined as

F (x) =


exp

{
−
[
1 + ξ

σ
(x− µ)

]− 1
ξ

}
, 1 + ξ(x−µ)

σ
> 0, ξ 6= 0

exp
{
− exp

[
−
(
x−µ
σ

)]}
,−∞ < x <∞, ξ = 0.

(1.1)

Here ξ is said to be the shape parameter, µ the location parameter, and σ > 0 the scale

parameter. We abbreviate the distribution as GEV(ξ, µ, σ).

Depending on the choice of ξ, the generalized extreme value distribution falls into one of

three families - the Gumbel, the Fréchet, or the Weibull. These three families are defined

next.

Definition 1.2. The Gumbel distribution is also the Type I Extreme Value Distribution. We

denote it as Λ, and it is the limiting case as ξ → 0. The distribution is

Λ(x) = exp

{
− exp

[
−
(
x− µ
σ

)]}
,−∞ < x <∞. (1.2)

Note that Λ = GEV(0, µ, σ).

Definition 1.3. The Fréchet distribution is also the Type II Extreme Value Distribution.

We denote it as Φ, and it occurs when ξ > 0. The distribution is

Φ(x) = exp

{
−
[
1 +

ξ

σ
(x− µ)

]− 1
ξ

}
, x > µ− σ

ξ
. (1.3)
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Alternatively, for α > 0 we may instead define the Fréchet distribution using the sometimes

more convenient formula

Φα(x) = e−x
−α
, x > 0. (1.4)

In this case, Φα = GEV( 1
α
, 1, 1

α
).

Definition 1.4. The Weibull distribution is also the Type III Extreme Value Distribution.

We denote it as Ψ, and it occurs when ξ < 0. The distribution is

Ψ(x) = exp

{
−
[
1 +

ξ

σ
(x− µ)

]− 1
ξ

}
, x < µ− σ

ξ
. (1.5)

Alternatively, for α > 0 we may instead define the Weibull distribution using the sometimes

more convenient formula

Ψα(x) =


e−(−x)α , x < 0

1, x ≥ 0.

(1.6)

In this case, Ψα = GEV(− 1
α
,−1, 1

α
).

Next, Euler’s constant γ is defined by

γ = lim
n→∞

[
n∑
k=1

1

k
− log(n)

]
∼= 0.5772156649.... (1.7)

Also known as the Euler-Mascheroni constant, γ appears regularly in the analysis of Gumbel

random variables. In particular, if X is a standard Gumbel variable, then E(X) = γ. There

are numerous published integrals and sums that equal γ; see Gradshteyn and Ryzhik (1980),

Seo et al. (1997), and Choi and Seo (1998).

Now we define the gamma, digamma, and beta functions. The gamma integral will appear
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extensively in our two-term expansion analyses, while the beta function will arise when we

turn our attention to the Weibull cases in Section 3.5. The digamma function appears in

Chapter 6 when we discuss ties in weights of convolutions.

Definition 1.5. For α > 0, the gamma function Γ(α) is represented by the integral

Γ(α) =

∫ ∞
0

tα−1e−tdt. (1.8)

In particular, if n is a positive integer, then Γ(n) = (n − 1)!. We also have the recursion

Γ(α+ 1) = αΓ(α), which holds for all real values of α except for 0 and the negative integers.

Definition 1.6. For α > 0, the digamma function Ψ(α) is represented by

Ψ(α) =
d

dx
log Γ(x)

∣∣∣
x=α

=
Γ′(α)

Γ(α)
. (1.9)

Definition 1.7. For α, β > 0, the beta function B(α, β) is represented by

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
. (1.10)

Next, we state the equations for the mean, median, and variance of the generalized extreme

value distribution. We need to use these formulas when conducting the data analysis in

Chapter 2.

Definition 1.8. If X ∼ GEV(ξ, µ, σ), then the expected value is

E(X) =


µ+ σ

(
Γ(1−ξ)−1

ξ

)
, ξ ∈ (−∞, 1) \ {0}

µ+ σγ, ξ = 0

∞, ξ ≥ 1.

(1.11)
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Definition 1.9. If X ∼ GEV(ξ, µ, σ), then the median is

Med(X) =


µ+ σ

(
(log 2)−ξ−1

ξ

)
, ξ 6= 0

µ− σ log(log 2), ξ = 0.

(1.12)

Definition 1.10. If X ∼ GEV(ξ, µ, σ), then the variance is

Var(X) =



σ2

ξ2

[
Γ(1− 2ξ)− (Γ(1− ξ))2] , ξ ∈ (−∞, 0.5) \ {0}

π2σ2

6
, ξ = 0

∞, ξ ≥ 0.5.

(1.13)

Having established the basic formulas, we also need to state definitions associated with

regular variation, and how they are connected to the generalized extreme value distribution.

These statements will be used in the expansions of the Fréchet mixture in Section 3.4, as

well as the regular varying variables with Markov chains in Chapter 7.

Definition 1.11. The tail distribution F = 1− F is said to be regularly varying at ∞ with

index −α, denoted as RV−α, if for x > 0

lim
t→∞

F (tx)

F (t)
= x−α. (1.14)

Definition 1.12. A function L(·) is slowly varying at ∞ if for any c > 0,

L
(x
c

)/
L(x)→ 0 as x→∞.

Finally, we state some theorems and inequalities that will be used in the proofs and deriva-

tions to come in the dissertation.
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Definition 1.13. (Fubini’s Theorem) Let A and B be measure spaces and f be A × B

measurable. Further suppose that

∫
A×B
|f(x, y)|d(x, y) <∞.

Then ∫
A

∫
B

f(x, y)dxdy =

∫
B

∫
A

f(x, y)dydx.

Definition 1.14. (Chapman-Kolmogorov Equation - see Resnick (1992)) If Pi,j(m) denotes

the Markov chain transition probability of moving from state i to state j in m steps, or

Pi,j(m) = P (Xm = j|Xo = i), then Pi,j(m+ n) =
∑

k Pi,k(m)Pk,j(n).

Definition 1.15. (Markov’s Inequality) Suppose X is a random variable and a > 0. Then

P (|X| > a) ≤ E(|X|)
a

. (1.15)

Definition 1.16. (Chernoff’s Inequality) Suppose X is a random variable and y > 0. Then

for any a > 0,

P (|X| > y) ≤ E
(
ea|X|

)
e−ay. (1.16)

Definition 1.17. (Jensen’s Inequality) Suppose X is a random variable and that f : R→ R

is a convex function. Further suppose that E(|X|) <∞ and E(|f(X)|). Then

f(E(X)) ≤ E(f(X)). (1.17)

Definition 1.18. (Hölder’s Inequality - see Resnick (1999)) Suppose p, q satisfy

p > 1, q > 1, and
1

p
+

1

q
= 1,
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and that X, Y are random variables satisfying

E(|X|p) <∞ and E(|Y |q) <∞.

Then

|E(XY )| ≤ E(|XY |) ≤ (E|X|p)1/p(E|Y |q)1/q. (1.18)

Definition 1.19. (Triangle Inequality) For any real numbers ai,∣∣∣∣∣∑
i

ai

∣∣∣∣∣ ≤∑
i

|ai|.

Definition 1.20. (Boole’s Inequality) For a countable set of events Ai, i = 1, 2, · · · ,

P

(⋃
i

Ai

)
≤
∑
i

P (Ai).
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Chapter 2 An Analysis of the Peachtree Creek

2.1 Introduction

Over recent years, there has been considerable interest in fitting statistical models to riverflow

data. To give a few examples, Hollis (1975) established some trends between urbanization

and the frequency of floods. Katz et al. (2002) discussed a variety of practises for detecting

trends in hydrologic extremes, including peaks-over-threshold and block maxima. Villarini et

al. (2009) fit a nonstationary time series to data from Little Sugar Creek in North Carolina.

The United States Geological Survey (USGS) has continuously monitored the Peachtree

Creek in Atlanta, GA since 1958. Daily average measurements of variables such as discharge

(hereafter referred to as streamflow), gage height, water temperature, and pH have been

recorded. Since 1989, more frequent measurements have been taken, and the data are avail-

able for free download at http://waterdata.usgs.gov/ga/ nwis. The water statistics need to be

monitored in order to detect any changes in water quality, to establish baseline information

about the creek, and to detect problems with bacteria and sediment during storms.

Streamflow is the volume of water that flows past a predetermined point in a fixed amount

of time. Naturally, higher levels of streamflow are positively correlated with higher levels

of the creek and increased chances of a flood occurring. The Peachtree Creek floods when

the gage height peaks above 17 feet. Over the years this creek appears to be flooding more

frequently and with greater magnitude of water and destruction, such as the September 2009

flood, as explained on the USGS Georgia Water Science Center web site. The goal of this

paper is to investigate the statistical significance of this observation and study trends by

season.
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2.2 The Data

There are two data sets we use in the analysis. The first contains the daily mean streamflow

measurements recorded every day beginning June 20, 1958, and ending on June 22, 2010.

This makes 18996 total days, and only one day (June 16, 2010) has a missing value. This

data set is the one we shall use to fit the generalized extreme value model. The station that

records the measurements is located in Fulton Country at latitude 33◦49’10”N and longitude

84◦24’28”W (USGS). This location is in the heart of downtown Atlanta, a couple of miles

north from where the interstates I-75 and I-85 merge.

The second data set consists of streamflow and gage heights measured every 15 minutes

and therefore up to 96 recordings per day. Observations were recorded at these intervals

between October 1, 1989 and September 30, 2009. Using this data set, we condense the data

into the daily maximum heights, provided all 96 observations are available. In the event of

a day having only some observations recorded, we take the maximum of what was available,

provided a reasonable number (two-thirds or more) was recorded.

Next, we compute the seasonal maximum average streamflow for the 52 years of data.

For climatology purposes, summer is defined to be the months June through August; fall is

September through November; winter is December through February, and spring is March

through May. Because the first observation in the data set is from June 20, 1958, it is

convenient to define a year as running from June 1 to the following May 31. The 52 years

therefore provide 208 seasonal maxima. Figure 2.1 illustrates year versus the 208 seasonal

maximum streamflow observations, one for every three months. We indeed observe more

severe streamflow measurements in recent years.
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Figure 2.1: Year versus Seasonal Maximum Streamflow
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For ease of word usage, from this point onward we shall refer to the maximum mean

streamflow as simply the maximum streamflow (and thereby drop the word “mean”). By

these terms we mean the maximum of a series of average recordings.

Obviously fitting a model through the maximum heights is the desirable approach, since

a flood is much easier to interpret given the height rather than the streamflow, but we choose

to work with the recorded streamflow because there are 52 years of data - there are only 20

years for the second data set. However, after fitting the generalized extreme value model we

shall use nonparametric techniques to construct estimates for trends in the maximum gage

height. Had we estimated the missing maximum heights from 1958 to 1988 first and then

fitted a model, there would have been a much greater amount of bias.

It is known that there is a positive trend between streamflow and height, and graphically

the relationship looks exponential. However, our data set shows the average streamflow per
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day rather than individual measurements, so using the graph to estimate heights will not

work. In addition, the river changes shape slightly over the years due to erosion, so in the

end our nonparametric method is a safer way of estimating heights. Figure 2.2 illustrates an

example of the exponential pattern from the second data set.

Figure 2.2: Average Streamflow versus Maximum Height, 1989 - 2009
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The first summer (1958) has nineteen missing days because the data set did not start on

June 1, so for that one season we just computed the maximum streamflow of the remaining

days. Also the data set ends on June 22, 2010, but we stopped at May 31 in order to have

an equal number of maxima per season, and also because this final partial summer season

had only just begun.

We suspect different behaviors in each of the four seasons. Had we considered only the
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yearly maxima, any significant seasonal patterns would have been lost. Because of this

motivation, we shall fit a generalized extreme value model with effects from season and time.

Figure 2.3 shows box-plots of the seasonal maximum streamflow per season, while Table 2.1

displays the summary statistics. Spring and fall clearly have the greatest variation, while

summer and winter have the lowest.

Figure 2.3: Box-Plots of Seasonal Maximum Streamflow
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Table 2.1: Seasonal Maxima Summary Statistics
Season Mean SD Min. Q1 Median Q3 Max.
Summer 1309.5192 878.8647 105 813 1070 1668 5040

Fall 1613.3654 1512.2333 181 755 1240 1742 8500
Winter 1927.1538 1075.7654 441 1122 1640 2575 4720
Spring 2327.4615 1617.2457 618 1052 1760 3222 6060

Figure 2.4 shows the year versus the seasonal maximum streamflow for each season.

In each plot, the dotted lines represent the Ordinary Least Squares regression lines fitting

streamflow against year.
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Figure 2.4: Year versus Seasonal Maximum Streamflow per Season
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Note that while OLS is a näıve procedure since the data are maxima, it nevertheless gives

us a reasonable idea about linear trends per season. For example, we can see that fall

observations exhibit a distinct upward trend in later years. In addition, some of the plots

(fall, for instance) appear to have significantly higher variances in the later years. Based on

these observations, we can specialize the model accordingly.
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2.3 Statistical Methods

Coles (2001) suggests testing for linear trend in time in the location and scale parameters.

In a study on annual maximum sea levels at Fremantle, Western Australia, he also tested for

effects from the Southern Oscillation Index in the location parameter. Graphs illustrating the

effects of this index may be seen in Coles (2008). We initially tested this index as a covariate

in our model, but it did not contribute significant effects. While it is theoretically possible

to test for time trends in the shape parameter ξ, for practical purposes it is unrealistic, so

we keep ξ stationary.

The full model is defined as follows. Let i = 1, 2, 3, 4 denote the seasons summer, fall,

winter, and spring, respectively. Denote by Xti the seasonal maximum average streamflow

in the tth year and ith season, and xti the recorded observation, t = 1, ..., 52. Here t = 1

denotes the year from June 1, 1958 through May 31, 1959. Define F (xti) = P (Xti ≤ xti),

then

F (xti) = exp

{
−
[
1 +

ξi(xti − µi(t)
σi(t)

]− 1
ξi

}
, ξi 6= 0, 1 +

ξi(xti − µi(t))
σi(t)

> 0, (2.1)

where µi(t) = µi + ηit and σi(t) = σi + φit. If any of the ξi = 0, then use the appropriate

limiting Gumbel distribution instead. Let lnL be the log likelihood to be maximized, using

a total of twenty parameters, five per season. Then

lnL = −
4∑
i=1

52∑
t=1

{
log(σi(t)) +

(
1

ξi
+ 1

)
log

(
1 +

ξi(xti − µi(t))
σi(t)

)

+

(
1 +

ξi(xti − µi(t))
σi(t)

)− 1
ξi

}
,

(2.2)

provided that each of the 1 + [ξi(xti − µi(t))]/σi(t) > 0, otherwise lnL = −∞. Again, if
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any of the ξi estimates are very close to 0, then we use the appropriate limiting distribution

instead. We used an evolutionary algorithm to fit the model because it was easier to control

the stipulation that 1 + [ξi(xti − µi(t))]/σi(t) > 0.

A common practice is to set σi(t) = exp{σi + φit} to ensure that the scale parameter

remains positive, but we chose not to do this for three reasons. First, our procedure yields

estimates that never put the scale parameters close to zero. Second, such a definition would

make interpretation much harder than a linear one. And third, for comparison purposes we

tried refitting the model with this alternative scale and found that the estimated values were

extremely similar, so we decided to use the more interpretable linear definition σi(t) = σi+φit.

The selection process worked as follows. Let M0 and M1 be nested models such that

M0 ⊂ M1, and lnL0 and lnL1 be the corresponding log-likelihoods. Then −2(lnL0 − lnL1))

is asymptotically a chi-square distribution with degrees of freedom equal to the number of

parameters dropped by going to M0. If the corresponding p-value is below the significance

level, then M1 fits the model significantly better; otherwise M0 provides just as good a fit.

This process is described extensively in the literature, with Coles (2001) and Coles (2008)

providing several examples from data sets.

Our full model contained a total of five parameters per season. We considered dropping

combinations of the ηi and φi, and for better interpretability we examined these parameters

in groups of four rather than individually. For example, the final model will contain either

all four φi or none, the latter case if none of those parameters are significant. Thus, there

were a total of four possible models to consider, and each chi-square test was on degrees of

freedom 4 or 8. We used α = .10 as a selection criteria because the data were observational

rather than experimental.

Our selection procedure chose the full model itself. Having arrived at a candidate, the
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next step was to investigate whether letting the shape parameters ξi vary from zero was

appropriate per season. A reasonable way of checking this was to test the hypotheses H0 :

ξi = 0 against H1 : ξi 6= 0, i = 1, ..., 4 and computing the p-values. Table 2.2 contains the

results for each shape parameter.

Table 2.2: Shape Parameter Summary
Season Param. Estimate SE 90% Confidence T-Stat P-Value

Summer ξ1 0.0898 0.1203 (-0.1120, 0.2917) 0.7468 0.4589

Fall ξ2 0.2335 0.1317 (0.0125, 0.4544) 1.7728 0.0827

Winter ξ3 0.1293 0.1475 (-0.1182, 0.3768) 0.8763 0.3853

Spring ξ4 0.7455 0.2249 (0.2931, 1.1979) 3.3151 0.0018

At significance level α = .10, the shape parameters for summer and winter were not signifi-

cantly different from 0, and so for those seasons we refitted the data setting ξi = 0, i = 1, 3.

Fall and spring, on the other hand, had shape parameters that were significantly positive.

Table 2.3 compares the log-likelihoods for summer and winter with ξi 6= 0 and with

ξi = 0, and then does the nested likelihood test. In the table −2∆lnLi represents the

doubled difference in log-likelihoods in season i. Also the log-likelihoods displayed are for

summer and winter alone rather than the sum of all four seasonal likelihoods.

Table 2.3: Summer and Winter Log-Likelihoods
Season ξi 6= 0 ξi = 0 −2∆lnLi P-Value

Summer -413.8720 -414.1838 0.6236 0.4297
Winter -429.8705 -430.2704 0.7998 0.3712

Both the confidence intervals presented earlier and the above nested model analysis suggest

that summer and winter may indeed have the shape parameter set equal to 0. To be clear,

the final model treats summer and winter as having a Type I extreme value distribution
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(where ξ1 = ξ3 = 0), whereas fall and spring have a Type II distribution (where ξ2 and ξ4

are significantly positive).

The final step, as described in Section 2.4, is to make inference about the behavior of the

maximum heights, given the established behavior of the maximum streamflow.

2.4 The Selected Models

Table 2.4 summarizes the estimated parameters per season.

Table 2.4: Estimated Parameters per Season
Season Param. Estimate SE 90% Confidence T-Stat P-Value

Summer

ξ1 0 — — — —
µ1 727.6025 148.7033 (478.1937, 977.0112) 4.8930 1.2e-5
σ1 429.7833 100.9200 (260.5178, 599.0488) 4.2587 9.5e-5
η1 8.4951 5.6177 (-0.9271, 17.9173) 1.5122 0.1370
φ1 5.9982 3.9117 (-0.5626, 12.5591) 1.5334 0.1317

Fall

ξ2 0.2335 0.1317 (0.0125, 0.4544) 1.7728 0.0827
µ2 561.6459 139.5658 (327.4646, 795.8271) 4.0242 0.0002
σ2 298.9993 116.2551 (103.9318, 494.0669) 2.5719 0.0133
η2 17.1289 6.6717 (5.9343, 28.3234) 2.5674 0.0135
φ2 13.7862 5.8231 (4.0155, 23.5569) 2.3675 0.0221

Winter

ξ3 0 — — — —
µ3 1687.4669 282.1902 (1214.1707, 2160.7631) 5.9799 2.7e-7
σ3 1106.9248 235.9170 (711.2390, 1502.6106) 4.6920 2.3e-5
η3 -8.8806 7.9343 (-22.1883, 4.4270) -1.1193 0.2686
φ3 -11.3350 6.9608 (-23.0098, 0.3399) -1.6284 0.1100

Spring

ξ4 0.7455 0.2249 (0.3682, 1.1229) 3.3151 0.0018
µ4 1693.3611 237.2369 (1295.2950, 2091.4272) 7.1378 5.1e-9
σ4 855.2209 271.3575 (399.9029, 1310.5388) 3.1516 0.0028
η4 -14.7433 6.8138 (-26.1763, -3.3102) -2.1637 0.0356
φ4 -6.8812 8.4173 (-21.0049, 7.2424) -0.8175 0.4178

Interpretation will be easier if we analyze the expected value of the streamflow per season, but

this involves reparametrizing the variables and recomputing standard errors and p-values.

We begin by considering the expected mean of the seasonal maximum streamflow. For our
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data, it is easily checked using (1.11) that

E(Xti) =


µi + σiγ + (ηi + φiγ)t, i = 1,3

µi + σiΞ
(1)
i + (ηi + φiΞ

(1)
i )t, i = 2,4,

(2.3)

where Ξ
(1)
i = [Γ(1− ξi)− 1] /ξi. Interpretation is easy here because we have written the

expected value as a linear function of time. In order to make inference about the slopes, we

use the delta method to approximate the standard error. Before doing that, we also wish to

investigate the effects of the median streamflow per year. The reason we want to consider

the median as well is because a generalized extreme value model is skewed, so the median

may provide a more robust result. Using (1.12),

Med(Xti) =


µi − σi log(log 2) + (ηi − φi log(log 2))t, i = 1,3

µi + σiΞ
(2)
i + (ηi + φiΞ

(2)
i )t, i = 2,4,

(2.4)

where Ξ
(2)
i =

[
(log 2)−ξi − 1

]
/ξi. Finally, we also make inference about the seasonal variance

through time. For spring, the estimated shape parameter is ξ̂4 = 0.7455, indicating that

spring’s variance does not exist. (We shall address this issue shortly.) Interpretation will be

easier if we instead think in terms of the seasonal standard deviations. Using (1.13), it can

be shown that

SD(Xti) =



π√
6
σi +

(
π√
6
φi

)
t, i = 1,3(

Ξ
(3)
i

) 1
2
σi +

(
Ξ

(3)
i φi

)
t, i = 2

∞, i = 4,

(2.5)

where Ξ
(3)
i = [Γ(1− 2ξi)− (Γ(1− ξi))2] /ξ2

i . Again, we can easily make inference because
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the standard deviation has been written in terms of a linear function of time. The delta

method now works as follows. For seasons summer and winter, define Ai = ηi + γφi, Bi =

ηi − φi log(log 2), and Ci = π√
6
φi, i = 1, 3. Then the gradient matrix is

Gi =


0 0 1 γ

0 0 0 − log(log 2)

0 0 0 π√
6

 .

Meanwhile, for fall we have A2 = η2 + Ξ
(1)
2 φ2, B2 = η2 + Ξ

(2)
2 φ2, and C2 = Ξ

(3)
2 φ2. The

gradient matrix is

G2 =


D12 0 0 1 Ξ

(1)
2

D22 0 0 1 Ξ
(2)
2

D32 0 0 0 Ξ
(3)
2

 ,

where Dri is the derivative of Ξ
(r)
i with respect to ξi; i = 2; r = 1, 2, 3. Finally, for spring

we define A4 and B4 similarly to the reparameterizations in fall, and with similar gradient

matrix but without the third row:

G4 =

 D14 0 0 1 Ξ
(1)
4

D24 0 0 1 Ξ
(2)
4

 .

The complete variance-covariance matrix is therefore ∆ = GΣGT , where

G =



G1 0 · · · 0

0 G2
. . .

...

...
. . . G3 0

0 · · · 0 G4


.
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The eleven square-rooted diagonal entries of ∆ give the approximate standard errors, which

in turn are used to obtain the two-sided p-values. Note that the p-values are all computed

on 49 degrees of freedom, except for spring’s, which are on 50. The Gi matrices are

G1 =


46.2533 42.6408 21.9891

42.6408 39.7076 17.8541

21.9891 17.8541 25.1700

 ,

G2 =


114.1901 86.3071 112.0590

86.3071 70.9387 65.6263

112.0590 65.6263 174.6047

 ,

G3 =


112.9623 100.8884 73.4939

100.8884 90.9656 60.4001

73.4939 60.4001 79.7024

 ,

and

G4 =

 2183.2748 372.5666

372.5666 100.1301

 .

To study the significance of variance in spring, we temporarily refitted the spring data with

the condition that {ξ4 ∈ (−∞, 0.47)}. The chosen upper bound of 0.47, while arbitrary,

allowed us to study the significance of the variance when forced to be finite. The resulting

adjusted model gave the following results for spring, shown in Table 2.5.
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Table 2.5: Adjusted Mean, Median, and Standard Deviation for Spring
Season Param. Estimate SE 90% Confidence T-Stat P-Value

Spring
A4 -19.8839 18.3424 (-50.6360, 10.8681) -1.0840 0.2837
B4 -15.8563 9.8943 (-32.4447, 0.7320) -1.6026 0.1155
C4 -19.8839 133.7022 (-244.0424, 204.2746) -0.1487 0.8824

The effect from the variance on these adjusted estimators is clearly insignificant, and so we

decide to drop the restriction on ξ4 and stick with our original outcome, with infinite spring

variance. Table 2.6 shows the final results for the slopes of the means, medians, and standard

deviations per season.

Table 2.6: Means, Medians, and Variances per Season
Season Param. Estimate SE 90% Confidence T-Stat P-Value

Summer
A1 11.9574 6.8010 (0.5552, 23.3596) 1.7582 0.0850
B1 10.6936 6.3014 (0.1289, 21.2582) 1.6970 0.0960
C1 7.6930 5.0170 (-0.7182, 16.1042) 1.5334 0.1316

Fall
A2 29.1767 10.6860 (11.2612, 47.0923) 2.7304 0.0088
B2 22.4042 8.4225 (8.2834, 36.5249) 2.6600 0.0105
C2 29.1767 13.2138 (7.0231, 51.3304) 2.2080 0.0320

Winter
A3 -15.4233 10.6284 (-33.2423, 2.3957) -1.4511 0.1531
B3 -13.0350 9.5376 (-29.0253, 2.9552) -1.3667 0.1780
C3 -14.5376 8.9276 (-29.5053, 0.4300) -1.6284 0.1099

Spring
A4 -38.3563 46.7255 (-116.6638, 39.9513) -0.8209 0.4156
B4 -17.6435 10.0065 (-34.4135, -0.8736) -1.7632 0.0840

The results show that for each season, the median is a more reliable measure of center

than the mean, since it is robust to unusually high observations and the standard errors

are smaller. In particular, the standard error for spring’s median is 21.4% that of the mean,

causing the median to be decreasing significantly, unlike the mean. Therefore from this point

forward, we take the median as the better measure of center.

Figure 2.5 shows the observed data with the expected median value per season. The

dotted lines represent the 90% prediction intervals, which indeed capture the majority of
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all observations. The black dots are the few observations that fall outside their prediction

intervals.

Figure 2.5: Predicted Median Streamflow per Season
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Finally, we give a practical interpretation. The following numbers are reported in cubic feet

per second, and for simplicity we just say “units.”

1. In summer, the maximum daily average streamflow is increasing on average by 10.6936

units each year, but its standard deviation is not changing significantly.

2. In fall, the maximum daily average streamflow is increasing on average by 22.4042

units each year, and its standard deviation is also increasing by 29.1767 units per year.
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3. In winter, the maximum daily average streamflow appears stationary in both the me-

dian and the standard deviation.

4. In spring, the maximum average streamflow is decreasing on average by 17.6435 units

each year, but its standard deviation is not changing significantly.

2.4.1 Estimated Patterns in Seasonal Maximum Heights

We have successfully determined that the average streamflow is increasing significantly in

summer and fall. However, insurance companies and hydrologists would rather know what

patterns exist with the river height itself as this quantity is much easier to understand. A

flood is classified by its gage height, and so we now pursue establishing what the maximum

height each season most likely would have been. That is, given the average streamflow (in

cubic feet per second), we wish to predict the corresponding maximum height (in feet).

The second data set mentioned in Section 2.2 contains the average streamflow per day,

as well as the maximum height measured per day, spanning the period October 1, 1989

through September 20, 2009. The number of days considered is therefore 7305. Examining

Figure 2.2, there is clearly a positive nonlinear trend between the variables. We could not

find any reasonable models that accurately described this data set, so instead we proceed

nonparamatrically to estimate the heights. To utilize a more robust approach, we compute

medians rather than means as follows. Define D̃ to be the vector of ordered unique daily mean

streamflow observations rounded to the nearest integer, and note that the values of D̃ range

from 3 to 8500. Given a rounded streamflow, find H̃, the median of all maximum heights

whose corresponding streamflow is the current considered value. These median heights are

reasonable predictions given recorded average streamflow.

Recall that we have used our seasonal extreme value model to predict the median stream-
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flow, given year t and season i. Call these medDti, t = 1, ..., 52 and i = 1, ..., 4. We now

compute the predicted maximum height using the following nonparametric procedure:

1. Find the coordinates (D̃a, H̃a) and (D̃a+1, H̃a+1) such that D̃a ≤ medDti < D̃a+1.

2. Compute α =
[
H̃a+1 − H̃a

]
/
[
D̃a+1 − D̃a

]
.

3. Compute medHti = α (medDti) + H̃a − αD̃a.

4. Repeat for all years t and seasons i.

Figure 2.6, divided by season, shows year versus predicted maximum height.

Figure 2.6: Year versus Predicted Maximum Height
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There is a distinct upward trend in summer and fall, and a downward trend in winter and

spring. We can smooth the predictions by (a) fitting an ordinary least squares line through

the points or (b) fitting a least median-of-squares line. The latter approach is more desirable

for our purposes for two reasons. First, we have been using median analyses throughout the

chapter for robustness. Second, this approach relaxes the usual assumptions imposed on the

residuals. We shall also bootstrap the confidence intervals for the median slopes. Tables 2.7

and 2.8 summarize the results for OLS and median regression, respectively. Define θ0,i and

θ1,i to be the intercept and slope parameters respectively for the OLS lines, and θ̃0,i and θ̃1,i

to be those for the median lines.

Table 2.7: OLS Estimates for Predicted Heights
Season Parameter Estimate SE T-Stat P-Value

Summer
θ0,1 -132.7745 25.8338 -5.1396 4.9e-6
θ1,1 0.0732 0.0130 5.6179 8.5e-7

Fall
θ0,2 -243.3921 29.2504 -8.3210 5.3e-11
θ1,2 0.1292 0.0147 8.7581 1.1e-11

Winter
θ0,3 157.4425 32.8438 4.7937 1.5e-5
θ1,3 -0.0717 0.0166 -4.3322 7.1e-5

Spring
θ0,4 205.1521 30.2971 6.7714 1.4e-8
θ1,4 -0.0960 0.0153 -6.2910 7.7e-8

Table 2.8: Median Estimates for Predicted Heights
Season Parameter Estimate SE 95% Confidence P-Value

Summer
θ̃0,1 -116.7596 — — —

θ̃1,1 0.0650 0.0041 (0.0578, 0.0728) 6.4e-81

Fall
θ̃0,2 -243.3388 — — —

θ̃1,2 0.1290 0.0030 (0.1229, 0.1359) < 1.0e-99

Winter
θ̃0,3 160.1106 — — —

θ̃1,3 -0.0732 0.0057 (-0.0826, -0.0621) 4.0e-54

Spring
θ̃0,4 207.3821 — — —

θ̃1,4 -0.0973 0.0039 (-0.1032, -0.0883) < 1.0e-99
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To bootstrap, we first compute all 1326 possible slopes per season and then resample

with replacement from these slopes, recording the median in each case. The 95% confidence

interval follows from the 2.5th and 97.5th percentiles of the vector of recorded medians. Note

that Table 2.8 only displays the analysis for the slopes since the intercepts are not of interest.

Figure 2.7 summarizes the four seasons’ results. The solid lines are the OLS estimates, while

the dotted lines represent the nonparametric estimates.

Figure 2.7: Height Trends per Season
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Two observations are immediately apparent from Tables 2.7 and 2.8. First, all the confidence

intervals exclude 0, indicating that summer and fall heights are increasing significantly, while

winter and spring heights are decreasing significantly. And second, all the standard errors

for the median slopes are much smaller than those for the OLS slopes. We therefore state

the following conclusions, where the median heights have been converted into inches.
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1. In summer, the maximum height is increasing on average by 0.78 inches per year.

2. In fall, the maximum height is increasing on average by 1.55 inches per year.

3. In winter, the maximum height is decreasing on average by 0.88 inches per year.

4. In spring, the maximum height is decreasing on average by 1.17 inches per year.

2.4.2 Diagnostic Checks

We now check whether the final model fits the streamflow data adequately, and that no

further adjustments are necessary. We begin by computing the seasonal residuals, defined

by the observed streamflow minus the median predicted streamflow per season. In Figure

2.8, they all appear random but not necessarily centered around 0. This characteristic is to

be expected, however, since we are estimating extreme values.

Figure 2.8: Residuals from Final Streamflow Model
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We then examine Figure 2.9, the ACF and PACF plots of the residuals, again broken down

by season. There is no evidence of further correlation in time.

Figure 2.9: ACF and PACF Plots by Season
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Next, we stack the residuals in order of occurrence. That is, each group of four residuals

comes from the summer, fall, winter, and spring, respectively, of the same year. Figure 2.10

shows ACF and PACF plots of the resulting vector, again suggesting no further time trends.

The only spikes are at the fourteenth and fifteenth lags, but these are not interpretable.

Figure 2.10: ACF and PACF Plots of Entire Data
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Finally, we conduct a goodness of fit test to verify that our chosen model provides a suitable

fit to the data. The presence of nonstationarity means that some modification to the data is

necessary. Coles (2001) suggests the following transformation that maps the data to standard

Gumbel random variables. Define Zti such that

Zti =


1

ξ̂i
log
[
1 + ξ̂i(Xti−µ̂i−η̂it)

σ̂i+φ̂it

]
, i = 1,3

Xti−µ̂i−η̂it
σ̂i+φ̂it

, i = 2,4.

(2.6)

That is, each of the Zti should have probability distribution function

P (Zti ≤ z) = exp {− exp(−z)} ,−∞ < z <∞. (2.7)
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Before conducting a goodness of fit test, we examine the probability and quantile plots using

the following procedure.

1. Compute the Zti and denote their order statistics by Z(1), ..., Z(N) where Z(j) ≤ Z(j+1),

j = 1, ..., N − 1 and N = 208.

2. Draw the probability plot with the pairs

{
j

N + 1
, exp

{
− exp(−Z(j))

}
; j = 1, ..., N

}
.

3. Draw the quantile plot with the pairs

{
Z(j),− log

[
− log

(
j

N + 1

)]
; j = 1, ..., N

}
.

Both plots in Figure 2.11 suggest a reasonable fit.

Figure 2.11: Probability and QQ Plots
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Most of the goodness-of-fit tests in the literature, however, are for testing for fit to the normal

distribution. There are considerably fewer results available in the extreme value context.
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As examples of references that do address this matter, Chandra et al. (1981) discuss a

Kolmogorov-type statistic, while Hosking (1984) suggests a Wald-type test. Kinnison (1985)

introduced a table for conducting a goodness-of-fit test to the Gumbel distribution. However,

Kinnison (1989) published an improved table based on 100,000 simulations rather than 5,000

as was the case in his earlier work. His improved test proceeds as follows.

1. Compute the probability pairs

{
j

N + 1
, exp

{
− exp(−Z(j))

}
; j = 1, ..., N

}
.

2. Calculate the Pearson correlation coefficient through these pairs.

3. Examine the table whose entries represent the critical points for each combination of

sample size (rows) and probability (columns).

4. Find the correct row, then scroll across to find the lower and upper critical points for

the test statistic. Then look at the column headings to put a bound on the probability.

The correlation coefficient between the quantiles and the exp
{
− exp(−Z(j))

}
is 0.9988. We

consult Kinnison’s table in the row with the nearest sample size of 200, then note that the

coefficient is beyond the last column. Thus, the probability of a good fit is above 0.95,

suggesting the model fits the data extremely well. The row is duplicated in Table 2.9.

Table 2.9: Gumbel GOF Test for Sample Size n = 200
Prob. 0.01 0.025 0.05 0.10 0.25 0.50 0.75 0.95

Corr. 0.9702 0.9785 0.9838 0.9883 0.9930 0.9957 0.9972 0.9983
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2.4.3 Forecasting The 2010 - 2011 Season

Having verified that our model has significant results and that the model fits the data well,

we now conduct a forecast. To give the most reliable results, we use the original model with

the daily mean streamflow to predict the seasonal maximum mean streamflow for the next

year. That is, we forecast the maximum mean streamflow for Summer 2010 through Spring

2011. The preceding data analysis was conducted during Spring 2011, which means that now

we have an extra year of data. Rather than incorporating this extra year into the model, we

instead use the model to forecast the next four streamflow measurements and then compare

with the actual values to see how accurate our model is. Table 2.10 summarizes the results.

Table 2.10: Forecasted Medians for the 2010 - 2011 Year
Season Predicted 90% Prediction Interval Actual In Interval?

Summer 2010 1451.8823 (357.4878, 3398.6284) 545 Yes
Fall 2010 1863.4795 (472.8293, 5882.4474) 1350 Yes

Winter 2010 1402.3123 (661.4273, 2720.2239) 730 Yes
Spring 2011 1118.7097 (544.3879, 6277.8608) 866 Yes

In all four seasons, the prediction intervals successfully captured the observed values. Fall

2010 and Spring 2011 had predicted streamflow closest to the actual measurements. Also

in each season, the actual value was located closer to the lower endpoint of the prediction

interval.

2.5 Conclusions

The goal of the project was to establish that the Peachtree Creek’s flood rates are increas-

ing over time. Seasonality was the critical step in the analysis. The river’s streamflow is

significantly increasing in both summer and fall, and the higher the streamflow, the more
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likely a flood will occur. Thus, the probability of a flood is increasing in summer and fall,

but decreasing in winter and spring.

The Peachtree Creek is flooding with greater magnitudes today than fifty-two years ago.

The seasonal maximum height is increasing significantly in summer and fall, the latter having

the greater rate. As a result, a flood is more likely to occur in fall and summer. The reasons

for increased probability may vary from climate change to urbanization. Future studies on

the maximum gage height could incorporate additional covariates such as population density,

which most likely would be positively correlated with the gage height. The techniques

presented in this paper may also be used on other bodies of water; for instance, the Mississippi

River which flooded most recently in May 2011.
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Chapter 3 Extreme Value Mixtures of Two Variables

3.1 Introduction

In environmental statistics, it is often the case that the current annual maximum measure-

ment of temperature, sea level, river gage height, etc. is influenced in some way by the

previous year’s maximum. For example, if the temperature in a certain location is unusu-

ally high in spring 2010, it could be used as a covariate to predict the seasonal maximum

temperature for spring 2011. Such cycles often happen in environmental statistics.

Building a reasonable model for this situation would work as follows. We first fit a

generalized extreme value model through the data set, possibly choosing to introduce seasonal

and temporal effects and other covariates if so desired. We would then add the most recent

observation as an additional covariate on the location parameter and then find the maximum

likelihood estimates of all parameters. Finally, we would compute confidence intervals and

p-values.

In this dissertation we focus primarily on the Type I distribution, the Gumbel, but

similar studies may be carried out on the Types II and III. We chose to study the Gumbel

distribution in depth because of its ease in comparison to the Fréchet and the Weibull. In

addition, the Gumbel arises very frequently in data analysis. It is often the case that the

shape parameter in the generalized extreme value distribution is not significantly different

from 0, in which case one would reduce the model to a Gumbel. We did just that for summer

and winter in Chapter 2.

Let us now define the generalized extreme value model. For simplicity we assume that

the only covariate is the most recent observation. The cumulative distribution function of

the Gumbel distribution is defined in (1.2), and recall that it is denoted as GEV(0, µ, σ).
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Now introduce the previous observation as a covariate on the location with parameter β.

Throughout the dissertation, unless stated otherwise we take −1 < β < 1. Thus X1|X0 ∼

GEV(0, µ1 + βX0, σ1) and X0 ∼ GEV(0, µ0, σ0) with σ0, σ1 > 0. Evidence for the necessity

of inclusion of the previous observation as a covariate can best be detected by examining

ACF and PACF plots and checking for spikes at the first lag.

The question of interest in this chapter is that X1|X0 is a Gumbel random variable, but

we want to know the unconditional distribution of X1. Once answered, we will have taken

the first step to building probability approximations for the AR(1) process with Gumbel

innovations. This is a distribution that appears regularly in environmental statistics, so our

result will be a valuable contribution to extreme value theory.

We should point out that for the Peachtree Creek data, there was no visible evidence

from Figures 2.9 and 2.10 that the previous year’s observation would contribute significantly

to the model. One can guess this by noting that in none of the plots does the first lag

stretch outside the 95% confidence bounds. However, in other data sets we may very well

observe such a lag, in which case it is worth investigating this interesting new research

question. Nevertheless, at the end of Chapter 4 we will refit the Peachtree Creek data with

the previous year’s observations to illustrate an example of how such a model would work.

Chapters 3 and 4 together take up the second project in the dissertation. In this chapter

we first consider the standard Gumbel case where µi = 0 and σi = 1, i = 0, 1. We derive

two-term expansions for the tail probability along with precise error terms for various values

of β. We later check the effectiveness of our results in a simulation study. Finally, in Chapter

4 we extend the results to a full AR(1) process. Also, at the end of Chapter 3 we give a brief

introduction to the studied two variable mixture but for the Fréchet and Weibull cases.
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3.2 Mixture of Gumbel Random Variables

In this section we derive some theoretical results about upper tail probabilities for the uncon-

ditional distribution, as well as some results on the error term involved. We shall see that,

depending on the choice of β, there are four different approximations for the probability.

Recall that for the standard Gumbel,

Λ(y) = exp
(
−e−y

)
, −∞ < y <∞. (3.1)

We have Z1|Z0 ∼ GEV (0, βZ0, 1) and Z0 ∼ Λ. Notice that

P (Z1 − βZ0 ≤ y|Z0 = z) = P (Z1 ≤ y + βz|Z0 = z) = Λ(y).

As a consequence, Z1− βZ0 and Z0 are independent and Z1− βZ0 ∼ Λ. In other words, the

probability we are estimating is P (βZ1 + βZ0 > y). This observation is important because

now the model may take any weights. In particular, let c1 > c0 be any positive constants.

Then

P (c1Z1 + c0Z0 > y) = P

(
Z1 +

c0

c1

Z0 >
y

c1

)
, (3.2)

and by choosing β = c0
c1

we get the same situation. As a side note, if c1 = c0 then the

probability must be approximated using a different technique. We delay this discussion until

Chapter 5.

To be clear, we explain all the possible cases in the following list and at what point we

answer them.

1. When c0 < c1 < 0, the probability is negligible as y → ∞. This is because most

of the Gumbel’s mass is on the positive half line, and therefore {c0Z0 + c1Z1 > y} =
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{
Z0 + c1

c0
Z1 <

y
c0

}
is extremely unlikely to occur. Lemma 3.2 establishes that the

answer is o
(
ey/c0

)
.

2. When c0 < 0 < c1, −1 < β < 0 and the approximation is (3.5). Lemma 3.3 provides

the remainder term.

3. When β = 0, the problem reduces to the probability of just one Gumbel. The approx-

imation is the same as the previous item.

4. When 0 < 2c0 < c1, 0 < β < 1
2

and the approximation is (3.5). Lemma 3.4 provides

the remainder term.

5. When 0 < 2c0 = c1, β = 1
2

and the approximation is (3.12), given at the end of Lemma

3.5.

6. When 0 < c1 < 2c0, 1
2
< β < 1 and the approximation is derived in Lemma 3.7.

7. When 0 < c0 = c1, β = 1 and the asymptotics need to be treated very differently.

This discussion is rather involved and, for that reason, takes up its own project. We

postpone that analysis until Chapter 5.

The exact integral is

P (Z1 > y) =

∫ ∞
−∞

{
1− exp

(
−e−(y−βx)

)}
e−x exp

(
−e−x

)
dx. (3.3)

A change of variables rewrites (3.3) as

P (Z1 > y) =

∫ ∞
0

{
1− exp

(
−tx−β

)}
e−xdx, (3.4)
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where t = e−y. For large y, 1 − exp
(
−tx−β

)
is small and can be approximated using a

two-term Taylor series by

1− exp
(
−tx−β

)
≈ tx−β − 1

2
t2x−2β.

Therefore for a suitable choice of β and t small enough,

P (Z1 > y) =

∫ ∞
0

[
tx−β − 1

2
t2x−2β

]
e−xdx+R,

where R is a remainder term to be analyzed shortly. Consequently for y large enough and

certain choices of β,

P (Z1 > y) = Γ(1− β)e−y − 1

2
Γ(1− 2β)e−2y +R. (3.5)

Definition 3.1. Let ρ(x) be a probability function on (xl, xu) and Ai(x), i = 1, 2, 3 be three

approximation formulas to the probability. Also let Ri(x) be the error terms associated with

each Ai(x). Then β is said to be a pivot point if

ρ(x) =


A1(x) +R1(x), xl < x < β

A2(x) +R2(x), x = β

A3(x) +R3(x), β < x < xu.

(3.6)

We now establish some lemmas that explain the possible cases.

Lemma 3.1. For w > 0, 0 ≤ 1− e−w − w + 1
2
w2 ≤ min

(
1
2
w2, 1

6
w3
)
.
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Proof. The inequality is easily established using multiple integrals:

0 ≤ 1− e−w − w +
1

2
w2 =

∫ w

0

[e−u − 1 + u]du =

∫ w

0

∫ u

0

[1− e−v]dvdu

=

∫ w

0

∫ u

0

∫ v

0

e−sdsdvdu ≤
∫ w

0

∫ u

0

∫ v

0

1dsdvdu =
1

6
w3.

Also since 1− w ≤ e−w, 0 ≤ 1− e−w − w + 1
2
w2 ≤ 1

2
w2.

We begin with the negligible case, where c0 < c1 < 0, item 1 in the beginning of the section.

Lemma 3.2. For −c0 < c1 < 0, P (c0Z0 + c1Z1 > y) = o
(
ey/c0

)
as y →∞.

Proof. Let F c1
c0
Z1

denote the distribution of c1
c0
Z1. Choose ζ < 0 to be large in the negative

direction. Then

P (c0Z0 + c1Z1 > y) = P

(
Z0 +

c1

c0

Z1 <
y

c0

)
=

∫ ∞
ζ

P

(
Z0 +

c1

c0

Z1 <
y

c0

)
dF c1

c0
Z1

(z) +

∫ ζ

−∞
P

(
Z0 +

c1

c0

Z1 <
y

c0

)
dF c1

c0
Z1

(z)

= (I) + (II).

Note that

sup
ζ<z<∞

P

(
Z0 +

c1

c0

Z1 <
y

c0

)
= exp

[
−e−

(
y−c1ζ
c0

)]
,

and therefore as y →∞

(I) ≤ exp

[
−e−

(
y−c1ζ
c0

)]
→ 0

because for ζ fixed, y−c1ζ
c0
→ −∞. Now observe that as y →∞

exp

[
−e−

(
y−c1ζ
c0

)]
ey/c0

= exp

[
− y
c0

− exp

[
−e−

(
y−c1ζ
c0

)]]
→ 0,
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and so (I) = o
(
ey/c0

)
. Next,

(II) ≤ F c1
c0
Z1

(ζ) = exp
[
−e−c0ζ/c1

]
→ 0 as ζ ↓ −∞,

and therefore P (c0Z0 + c1Z1 > y) = o
(
ey/c0

)
as y →∞.

We turn to the case where −1 < β ≤ 0. The expansion is the same as (3.5), and Lemma 3.3

establishes the error term.

Lemma 3.3. If −1 < β ≤ 0, then R = o(e−2y) as y →∞.

Proof. Set w = tx−β. By Lemma 3.1,

R =

∫ ∞
0

[
1− e−w − w +

1

2
w2

]
e−xdx ≤ 1

6
t3
∫ ∞

0

x−3βe−xdx =
1

6
Γ(1− 3β)t3.

Therefore R = O(t3) = o(t2) = o(e−2y).

From this point forward, we assume that c0, c1 > 0, which makes 0 < β < 1.

Lemma 3.4. If 0 < β < 1
2
, then R = O(e−y/β) as y →∞.

Proof. Write w = tx−β with t = e−y, and observe that

R =

∫ ∞
0

[
1− e−w − w +

1

2
w2

]
e−xdx

=

∫ ∞
0

[
1− e−w − w +

1

2
w2

]
e−t

1/βw−1/β

t1/β × 1

β
w−

1
β
−1dw,

because x =
(
t
w

)1/β
and therefore

∣∣ dx
dw

∣∣ = 1
β
t1/βw−

1
β
−1. We have that 3− 1

β
− 1 = 2− 1

β
< 0
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since 0 < β < 1
2
. The goal is to show that

∫ ∞
0

[
1− e−w − w +

1

2
w2

]
e−t

1/βw−1/β

w−
1
β
−1dw <∞.

By Lemma 3.1, 0 ≤
∣∣1− e−w − w + 1

2
w2
∣∣ ≤ 1

2
w2, and also 2− 1

β
− 1 = 1− 1

β
< −1. Hence

∫ ∞
1

[
1− e−w − w +

1

2
w2

]
e−t

1/βw−1/β

w−
1
β
−1dw <

∫ ∞
1

w−1− 1
β dw <∞.

Next,

∫ 1

0

[
1− e−w − w +

1

2
w2

]
e−t

1/βw−1/β

w−
1
β
−1dw ≤

∫ 1

0

w2− 1
β e−t

1/βw−1/β

dw

=

∫ ∞
1

w
1
β
−2e−t

1/βw1/β

w−2dw (by putting w−1 in for w)

=

∫ ∞
1

w−β(
1
β
−4)e−t

1/βwβw−β−1dw (by putting wβ in for w)

=

∫ ∞
1

βw−3βe−t
1/βwdw <∞.

Therefore for some C > 0, R < Ct1/β and thus R = O
(
t1/β
)

= O
(
e−y/β

)
.

When β = 1
2
, the second term in (3.5) needs to be treated differently. Split the probability

into two integrals with a two-term and a one-term expansion, respectively:

P (Z1 > y) =

∫ ∞
t2

[
tx−β − 1

2
t2x−2β

]
e−xdx+

∫ t2

0

tx−βe−xdx+R

= t

∫ ∞
0

x−
1
2 e−xdx− t2

2

∫ ∞
t2

x−1e−xdx+R

=
√
πt− t2

2

∫ ∞
t2

x−1e−xdx+R.
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Observe that for some constant C,

∫ ∞
t2

x−1e−xdx =

∫ 1

t2
x−1dx+

∫ 1

t2
x−1

[
e−x − 1

]
dx+

∫ ∞
1

x−1e−xdx

= −2 log(t) + C.

Therefore the approximation is

P (Z1 > y) =
√
πt+ t2 log(t) + Ct2 +R. (3.7)

The extra term Ct2, as we shall see in Lemma 3.5, can be absorbed into the remainder.

Lemma 3.5. When β = 1
2
, as y →∞ R = O (e−2y) in (3.7).

Proof. Let w = tx−β, t = e−y, and Ci, i = 1, 2, 3 be positive constants. Split R into three

integrals via

R =

∫ ∞
1

[
1− e−w − w +

1

2
w2

]
e−xdx+

∫ 1

t2

[
1− e−w − w +

1

2
w2

]
e−xdx

+

∫ t2

0

[
1− e−w − w

]
e−xdx

= R1 +R2 +R3.

(3.8)

Examining the first integral in (3.8),

R1 ≤
∫ ∞

1

1

6
w3e−xdx =

1

6
t3
∫ ∞

1

x−3βe−xdx = C1t
3. (3.9)
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Next,

|R2| ≤
∣∣∣∣∫ 1

t2

[
1− e−w − w +

1

2
w2

]
dx

∣∣∣∣ = 2t2
∣∣∣∣∫ 1

t

[
1− e−w − w +

1

2
w2

]
w−3dw

∣∣∣∣
≤ 1

3
t2
∫ 1

t

1dw =
1

3
t2(1− t) ≤ C2t

2,

(3.10)

because the term involving t3 is negligible. Finally, noting that |1− e−w − w| ≤ w for w > 0,

|R3| ≤

∣∣∣∣∣
∫ t2

0

[
1− e−w − w

]
dx

∣∣∣∣∣ = 2t2
∫ ∞

1

|1− e−w − w|w−3dw ≤ 2t2
∫ ∞

1

w−2dw

= C3t
2.

(3.11)

Putting (3.9) through (3.11) in (3.8), R = O(t2) = O(e−2y). Consequently, as y → ∞ the

expansion (3.8) is

P (Z1 > y) =
√
πe−y − ye−2y +O(e−2y). (3.12)

When 1
2
< β < 1, we cannot approximate the integral using the ordinary two-term expansion

because the choice of β puts 1− 2β < 0. While Γ(α) is defined for negative nonintegers via

Γ(α + 1) = αΓ(α), the corresponding integral that would represent the gamma function in

this case is improper. Instead, we employ an alternative usage of the one-term expansion

to get a second term. Before presenting the answer, we begin with a lemma that will help

simplify an integral that appears in the expansion.

Lemma 3.6. Suppose 1
2
< β < 1. Then

∫ ∞
0

(
e−x − 1 + x

)
x−

1
β
−1dx =

β2

1− β
Γ
(
2− β−1

)
.
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Proof. We first compute the integral over the interval (δ,∞) where δ > 0. Integration by

parts gives

β
(
e−δ − 1 + δ

)
δ−

1
β + β

∫ ∞
δ

(
1− e−x

)
x−

1
β dx.

Integrating by parts a second time results in

β
(
e−δ − 1 + δ

)
δ−

1
β +

β2

1− β
(1− e−δ)δ1− 1

β +
β2

1− β

∫ ∞
δ

x1− 1
β e−xdx

=
β

1− β

(
δ + (1− β)e−δ − βδe−δ − (1− β)

δ
1
β

)
+

β2

1− β

∫ ∞
δ

x1− 1
β e−xdx

= (I) + (II).

(3.13)

Now we send δ ↓ 0. (II) gives the gamma function:

lim
δ↓0

(II) =
β2

1− β

∫ ∞
0

x(2− 1
β )−1e−xdx =

β2

1− β
Γ
(
2− β−1

)
. (3.14)

Using L’Hopital’s Rule twice on (I),

lim
δ↓0

(I) = lim
δ↓0

β2

1− β

(
1− (1− β)e−δ − βe−δ + βδe−δ

δ
1
β
−1

)
= lim

δ↓0

β2

1− β

(
1− e−δ + βδe−δ

δ
1
β
−1

)
= lim

δ↓0

β3

(1− β)2

(
e−δ + βe−δ − βδe−δ

δ
1
β
−2

)
= lim

δ↓0

β3

(1− β)2

(
(1 + β − βδ)δ2− 1

β

eδ

)
= 0.

(3.15)

The fact that 0 < 2− 1
β
< 1 was used in the final calculation. Putting (3.14) and (3.15) into

(3.13), ∫ ∞
δ

(
e−x − 1 + x

)
x−

1
β
−1dx→ β2

1− β
Γ
(
2− β−1

)
as δ ↓ 0.
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Next, we examine
∫ δ

0
(e−x − 1 + x)x−

1
β
−1dx. Observe that

lim
x↓0

e−x − 1 + x

x2
= lim

x↓0

−e−x + 1

2x
= lim

x↓0

e−x

2
=

1

2
,

and so e−x − 1 + x ∼ 1
2
x2 as x ↓ 0. Then

∫ δ

0

(
e−x − 1 + x

)
x−

1
β
−1dx ∼ 1

2

∫ δ

0

x1− 1
β dx→ 0,

because 1− 1
β
> −1. The result follows.

We are now ready to derive the expansion.

Lemma 3.7. Suppose 1
2
< β < 1. Then as y →∞

P (Z1 > y) = Γ(1− β)e−y − β

1− β
Γ
(
2− β−1

)
e−y/β + o

(
e−y/β

)
.

Proof. Write t = e−y and observe that

P (Z1 > y)− Γ(1− β)t

t1/β
=

∫ ∞
0

1− exp(−tx−β)− tx−β

t1/β
e−xdx. (3.16)

Use the change of variables w = t−1/βx to get the integral

∫ ∞
0

[
1− exp(−w−β)− w−β

]
exp(−t1/βw)dw.

Now use another change of variables x = w−β to turn the integral into

− 1

β

∫ ∞
0

(
e−x − 1 + x

)
exp(−t1/βx−1/β)x−

1
β
−1dx.
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Next, observe that by Lemma 3.6

∫ ∞
0

(
e−x − 1 + x

)
exp(−t1/βx−1/β)x−

1
β
−1dx ≤

∫ ∞
0

(
e−x − 1 + x

)
x−

1
β
−1dx

=
β2

1− β
Γ
(
2− β−1

)
<∞,

so by dominated convergence

lim
t↓0
− 1

β

∫ ∞
0

(
e−x − 1 + x

)
exp(−t1/βx−1/β)x−

1
β
−1dx = − β

1− β
Γ
(
2− β−1

)
.

Hence as t ↓ 0

P (Z1 > y)− Γ(1− β)t

t1/β
= − β

1− β
Γ
(
2− β−1

)
+ o(1). (3.17)

Rearranging terms, as t ↓ 0

P (Z1 > y) = Γ(1− β)t− β

1− β
Γ
(
2− β−1

)
t1/β + o(t1/β),

and finally, as y →∞

P (Z1 > y) = Γ(1− β)e−y − β

1− β
Γ
(
2− β−1

)
e−y/β + o

(
e−y/β

)
,

as required.

We have completed the proof for each value of −1 < β < 1. Theorem 3.1 summarizes the

results from this section.
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Theorem 3.1. Let Z1|Z0 ∼ GEV(0, βZ0, 1) and Z0 ∼ Λ. Then as y →∞

P (Z1 > y) =



Γ(1− β)e−y − 1
2
Γ(1− 2β)e−2y + o(e−2y), −1 < β ≤ 0

Γ(1− β)e−y − 1
2
Γ(1− 2β)e−2y +O(e−y/β), 0 < β < 1

2

√
πe−y − ye−2y +O(e−2y), β = 1

2

Γ(1− β)e−y − β
1−βΓ (2− β−1) e−y/β + o

(
e−y/β

)
, 1

2
< β < 1.

Having an alternative statement when two weights are involved would be useful as well, as

in the probability in (3.2).

Corollary 3.1. Let Z1, Z0 ∼ Λ and c1 > c0 > 0. Set V = c1Z1 + c0Z0. Then as y →∞

P (V > y) =



o
(
ey/c0

)
, c0 < c1 < y

Γ(1− c0
c1

)e−y/c1 − 1
2
Γ(1− 2c0

c1
)e−2y/c1 + o(e−2y), c0 < 0 < c1

Γ(1− c0
c1

)e−y/c1 − 1
2
Γ(1− 2c0

c1
)e−2y/c1 +O(e−y/c0), 0 < 2c0 < c1

√
πe−y/c1 − y

c1
e−2y/c1 +O(e−2y), 0 < 2c0 = c1

Γ(1− c0
c1

)e−y/c1 − c0
c1−c0 Γ

(
2− c1

c0

)
e−y/c0 + o

(
e−y/c0

)
, 0 < c1 < 2c0.

We have now laid the groundwork for when the random variables are standard Gumbels.

Now we begin generalizing our results. First, we assume that the scale and original location

parameters are fixed. Let Xi ∼ GEV(0, µ, σ), or put another way Xi = µ + σZi where

Zi ∼ Λ, i = 0, 1 and σ > 0. The easiest way to address the probability is to rewrite

P (X1 + βX0 > y) = P (µ+ σZ1 + β(µ+ σZ0) > y) = P

(
Z1 + βZ0 >

y − (1 + β)µ

σ

)
.
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We have successfully rewritten the probability in a familiar format. The updated theorem

and corollary are stated below, and their proofs are similar to those of Lemmas 3.3 through

3.7.

Theorem 3.2. Let X1|X0 ∼ GEV(0, µ + βX0, σ) and X0 ∼ GEV(0, µ, σ). Define y∗ =

y−(1+β)µ
σ

. Then as y →∞

P (X1 > y) =



Γ(1− β)e−y
∗ − 1

2
Γ(1− 2β)e−2y∗ + o(e−2y/σ), −1 < β < 0

Γ(1− β)e−y
∗ − 1

2
Γ(1− 2β)e−2y∗ +O(e−y/σβ), 0 < β < 1

2

√
πe−y

∗ − y
σ
e−2y∗ +O(e−2y/σ), β = 1

2

Γ(1− β)e−y
∗ − β

1−βΓ (2− β−1) e−y
∗/β + o

(
e−y/βσ

)
, 1

2
< β < 1.

Corollary 3.2. Let Xi = µ + σZi, Zi ∼ Λ, i = 0, 1, and c1 > c0 > 0. Define β = c1
c0

,

y∗ = y−(1+β)µ
σ

, and V = c1X1 + c0X0. Then as y →∞

P (V > y) =



o
(
ey/c0σ

)
, c0 < c1 < 0

Γ(1− c0
c1

)e−y
∗/c1 − 1

2
Γ(1− 2c0

c1
)e−2y∗/c1 + o(e−2y/σ), c0 < 0 < c1

Γ(1− c0
c1

)e−y
∗/c1 − 1

2
Γ(1− 2c0

c1
)e−2y∗/c1 +O(e−y/c0σ), 2c0 < c1

√
πe−y

∗/c1 − y
c1σ
e−2y∗/c1 +O(e−2y/σ), 2c0 = c1

Γ(1− c0
c1

)e−y
∗/c1 − c0

c1−c0 Γ
(

2− c1
c0

)
e−y

∗/c0 + o
(
e−y/c0σ

)
, 2c0 > c1.

Now suppose X1|X0 ∼ GEV(0, µ1 + βX0, σ1) and X0 ∼ GEV(0, µ0, σ0) with σ0, σ1 > 0. To
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work with the probability,

P (X1 + βX0 > y) = P (µ1 + σ1Z1 + β(µ0 + σ0Z0) > y)

= P (σ1Z1 + βσ0Z0 > y − µ1 − βµ0) .

One could then proceed to derive an extension of Theorem 3.1 and Corollary 3.1 by dividing

the Zi by the larger of σ1 and βσ0.

3.3 Simulation Results for Gumbel Mixture

Before building the complete AR(1) process in Chapter 4, we check how our three approxi-

mations behave for various values of β. We simulate N = 10 million values of Z1 and graph

the empirical tail probability, as well as our second-order approximation in Theorem 3.1.

For comparison purposes we also graph the first-order approximation. We investigate what

happens at β = {0.10, 0.20, 0.40, 0.49, 0.50, 0.51, 0.60, 0.80, 0.90}. The reason for considering

β = 0.49 and 0.51 is to see what is happening near the β = 1
2

pivot point. Figure 3.1 displays

the empirical probability (solid black line), the first-order approximation (dashed red line),

and the second-order approximation (dotted blue line) for the 95th percentile and higher.
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Figure 3.1: Approximations for Various Values of β
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Here are some observations. First, for 0 < β < 0.40 the two approximations are virtually

indistinguishable and estimate extremely accurately. Second, when β = 0.49 the first-order

approximation estimates the empirical probability very well, while the second-order approx-

imation underestimates. Only around the 99th percentile does the latter finally catch up.

The same observation applies to when β = 0.51, suggesting that the second-order does not

behave very well when β is very close to 0.50 on either side. This is not a surprise, since

0.50 is the pivot point at which the approximation changes terms. Next, when β = 0.50

both formulas estimate the probability reasonably well. Finally, as β moves upward to 1 the

second-order approximation estimates extremely well, but the first-order overestimates. The
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discrepancy becomes worse as β gets closer to 1.

In Table 3.1 we look at the errors in both approximations. We define an error to be the

empirical probability minus the estimated probability. Therefore a positive error indicates

an underestimate, and a negative error an overestimate.

Table 3.1: Errors in Approximations of Theorem 3.1
β Approx 95% 97.5% 98% 99% 99.5% 99.9% 99.99%

0.10
1st -0.0013 -0.0003 -0.0002 -8.0e-5 -3.9e-5 -1.1e-5 -1.9e-6
2nd 1.1e-5 3.2e-5 9.1e-7 -2.8e-5 -2.6e-5 -1.1e-5 -1.9e-6

0.20
1st -0.0013 -0.0003 -0.0002 -4.0e-5 -1.5e-5 -3.4e-5 -9.4e-6
2nd 0.0002 5.2e-5 2.7e-5 1.6e-5 -1.2e-6 -1.3e-5 -9.4e-6

0.40
1st -0.0024 -0.0006 -0.0004 -0.0001 -4.7e-5 -8.5e-6 6.1e-6
2nd 0.0004 3.2e-5 1.6e-5 -1.6e-5 -2.1e-5 -7.5e-6 6.1e-6

0.49
1st -0.0037 -0.0011 -0.0007 -0.0002 -5.5e-5 1.5e-6 6.3e-7
2nd 0.0199 0.0045 0.0028 0.0006 0.0002 9.6e-6 7.1e-7

0.50
1st -0.0039 -0.0011 -0.0007 -0.0002 -4.4e-5 -4.5e-6 -2.4e-6
2nd -0.0006 -0.0002 -7.9e-5 -2.3e-5 3.4e-6 -2.1e-6 -2.4e-6

0.51
1st -0.0039 -0.0011 -0.0008 -0.0002 -7.5e-5 6.7e-7 -2.1e-6
2nd 0.0226 0.0053 0.0033 0.0008 0.0002 1.1e-5 -2.0e-6

0.60
1st -0.0070 -0.0021 -0.0015 -0.0004 -0.0001 -6.4e-6 4.5e-6
2nd 0.0020 0.0005 0.0003 8.3e-5 3.1e-5 4.3e-6 4.7e-6

0.80
1st -0.0309 -0.0114 -0.0084 -0.0032 -0.0013 -0.0001 -4.3e-6
2nd 0.0006 0.0002 0.0001 3.1e-5 1.8e-5 2.7e-5 3.4e-6

0.90
1st -0.0865 -0.0344 -0.0258 -0.0107 -0.0045 -0.0006 -3.3e-5
2nd 0.0003 5.5e-5 2.6e-5 -1.9e-5 -7.9e-6 6.3e-6 6.0e-6

The results support the observations we have already made from the graphs. We now take

a closer look by examining the relative errors in Table 3.2. Define a relative error to be the

error from Table 3.1 divided by the corresponding approximated probability.
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Table 3.2: Relative Errors in Approximations of Theorem 3.1
β Approx 95% 97.5% 98% 99% 99.5% 99.9% 99.99%

0.10
1st -0.0259 -0.0116 -0.0103 -0.0079 -0.0078 -0.0112 -0.0184
2nd 0.0002 0.0013 0.0000 -0.0028 -0.0052 -0.0107 -0.0183

0.20
1st -0.0251 -0.0118 -0.0098 -0.0040 -0.0030 -0.0138 -0.0863
2nd 0.0031 0.0021 0.0013 0.0016 -0.0002 -0.0132 -0.0863

0.40
1st -0.0462 -0.0253 -0.0204 -0.0121 -0.0094 -0.0085 0.0653
2nd 0.0086 0.0013 0.0008 -0.0016 -0.0042 -0.0074 0.0654

0.49
1st -0.0682 -0.0409 -0.0355 -0.0223 -0.0110 0.0015 0.0063
2nd 0.6608 0.2190 0.1615 0.0670 0.0317 0.0097 0.0072

0.50
1st -0.0718 -0.0418 -0.0331 -0.0190 -0.0087 -0.0045 -0.0239
2nd -0.0126 -0.0070 -0.0039 -0.0023 0.0007 -0.0021 -0.0235

0.51
1st -0.0732 -0.0427 -0.0363 -0.0217 -0.0147 0.0007 -0.0205
2nd 0.8245 0.2680 0.1994 0.0864 0.0380 0.0114 -0.0193

0.60
1st -0.1225 -0.0785 -0.0686 -0.0429 -0.0256 -0.0064 0.0475
2nd 0.0418 0.0195 0.0149 0.0084 0.0063 0.0043 0.0499

0.80
1st -0.3821 -0.3137 -0.2953 -0.2451 -0.2023 -0.1093 -0.0409
2nd 0.0114 0.0073 0.0058 0.0031 0.0037 0.0279 0.0354

0.90
1st -0.6337 -0.5791 -0.5629 -0.5169 -0.4740 -0.3850 -0.2495
2nd 0.0069 0.0022 0.0013 -0.0019 -0.0016 0.0064 0.0639

Comparing the relative error sizes for both formulas, Table 3.2 shows that the second-order

approximation gives more accurate estimation than the first-order for all 0 < β < 1, except

for a small neighborhood around but not including β = 0.50. That is, for some δ1, δ2 > 0

the first-order approximation is more accurate for β ∈ (0.50 − δ1, 0.50 + δ2)\ {0.50}. The

following graphs in Figure 3.2 suggest that such a neighborhood may be [0.47, 0.54]. As a side

note, we also examined the results for −1 < β < 0, and again the second-order approximates

more accurately. Therefore, we exclude those results from the dissertation.
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Figure 3.2: Approximations in a Neighborhood of β = 0.50
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To conclude, when working with just two Gumbel random variables, we recommend the

following procedure:

1. Use the first-order approximation for β ∈ [0.47, 0.50) ∪ (0.50, 0.54].

2. Use the second order approximation for all other values, namely β ∈ (−1, 0.47) ∪

{0.50} ∪ (0.54, 1).
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3.4 Mixture of Fréchet Random Variables

The idea of two-term expansions for Gumbel mixtures can be extended to the Fréchet and

Weibull families. Such an extension is useful because all three extreme value families would

be complete. However, Chapters 4 through 6 return to the Gumbel case.

Let Φα(x) = e−x
−α
, x > 0, α > 0 denote the Fréchet model, as in (1.4). In terms of the

generalized extreme value family, this definition is given by GEV
(

1
α
, 1, 1

α

)
.

Suppose X1 ∼ Φα and

(X2|X1 = x) ∼ Φα(· − βx), · > βx.

That is, X2|X1 ∼ GEV
(

1
α
, βx+ 1, 1

α

)
on {x : x− βX1 > 0}. Next, notice that for z > 0

P (X2 − βX1 ≤ z|X1 = x) = P (X2 ≤ z + βx|X1 = x) = Φα(z).

Thus X2 − βX1 and X1 are independent and X2 − βX1 ∼ Φα. In other words, the model is

X2 = βX1 + Z where Z and X1 are independent and Z ∼ Φα. Also by definition, 1− Φα is

RV−α.

We shall use a result from Barbe and McCormick (2005) to obtain a two-term expansion for

P (X2 > y). First we look at a couple of definitions.

Definition 3.2. A distribution function F is said to be asymptotically smooth with index

−α if

lim
δ→0

lim sup
y→∞

sup
0≤|x|≤δ

∣∣∣∣F (y(1− x))− F (y)

xF (y)
− α

∣∣∣∣ = 0.

Definition 3.3. A distribution function F is right-tail dominant if for any δ > 0,

lim
y→∞

F (−yδ)
F (y)

= 0.
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The theorem is stated below.

Theorem 3.3. Let F and G be two distribution functions such that F ,G ∈ RV−α with

α ≥ 1. It is supposed that F and G are asymptotically smooth and right-tail dominant with∫ 0

−∞ ydF (y) and
∫ 0

−∞ ydG(y) both finite. Denote by F ? G(y) the convolution of F and G.

Then as y →∞

1− F ? G(y) = F (y) +G(y) +
α

y

[
F (y)µG(y) +G(y)µF (y)

]
(1 + o(1)), (3.18)

where µF (y) =
∫ y
−y xdF (x), y ≥ 0 denotes the truncated mean of F , and similarly for µG(y).

In particular, if the two means are finite and equal µF and µG respectively, then the conclusion

is

1− F ? G(y) = F (y) +G(y) +
α

y

[
F (y)µG +G(y)µF

]
(1 + o(1)). (3.19)

Provided the assumptions are met, this result will take care of the case where α ≥ 1.

Luckily we need not check asymptotic smoothness on F with the definition above, thanks

to the following additional result from Barbe and McCormick (2005).

Lemma 3.8. If F has an ultimately monotone density, then F is asymptotically smooth.

The density of F is ultimately decreasing since it can be shown that F ′′(y) ∼ −α(α+1)y−α−2

as y → ∞. Thus, F is asymptotically smooth, and further is right-tail dominant because

F (−yδ) = 0 for any y > 0. As for the last assumption in the theorem,
∫ 0

−∞ ydF (y) = 0

because F (y) = 0 on the negative reals. One more lemma is needed before we derive the

expansion.

Lemma 3.9. If Z ∼ Φα, then P (Z > y) = y−α − 1
2
y−2α + o(y−2α) as y →∞.
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Proof. Write

1− Φα(y)− y−α =

∫ ∞
y

[
e−x

−α − 1
]
αx−α−1dx = −

∫ ∞
y

(
1− e−x−α

x−α

)
αx−2α−1dx.

Note that φ(z) = 1−e−z
z
→ 1 as z → 0. Consider

∫ ∞
y

φ(x−α)αx−2α−1dx∫∞
y
αx−2α−1dx

=

∫∞
y
φ(x−α)αx−2α−1dx

1
2
y−2α

= 2αy2α

∫ ∞
y

φ(x−α)x−2α−1dx.

A change of variables brings

2αy2α

∫ ∞
y

φ(x−α)x−2α−1dx = 2α

∫ ∞
1

φ((yx)−α)x−2α−1dx.

Thus by dominated convergence

1− Φα(y)− y−α
1
2
y−2α

= −1 + o(1) as y →∞,

and the result follows.

We may therefore use Theorem 3.3 and Lemma 3.9 on the Fréchet mixture as follows. If
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α > 1, then E(Z) = µF is finite and is equal to Γ (1− α−1). The probability as y →∞ is

P (X2 > y) = P (βX1 + Z > y)

=
α

y
[P (βX1 > y)E(Z) + P (Z > y)E(βX1)] (1 + o(1)) + P (βX1 > y) + P (Z > y)

= βαy−α − 1

2
β2αy−2α + y−α − 1

2
y−2α + o(y−2α) + αy−1E(Z)

[
βαy−α − 1

2
β2αy−2α

+βy−α − 1

2
βy−2α + o(y−2α)

]
(1 + o(1))

= (1 + βα)y−α + αβ(1 + βα−1)Γ
(
1− α−1

)
y−α−1 + o(y−α−1).

Next, if α = 1 then E(Z) is infinite and we must use Theorem 3.3 with the truncated mean.

The two-term expansion is then

P (X2 > y) = (1 + β)y−1 + β

(∫ y

0

x−1e−x
−1

dx

)
y−2 + o(y−2).

It is easily checked that

∫ y

0

x−1e−x
−1

dx <∞ and that

(∫ y

0

x−1e−x
−1

dx

)
y−2 → 0 as y →∞.

We now turn to the case where 0 < α < 1 using another result from Barbe and McCormick

(2005).

Theorem 3.4. Let F and G be asymptotically smooth distribution functions with support

on the positive reals such that F ,G ∈ RV−α, 0 < α < 1. Define the quantity

I(α) =

∫ 1/2

0

(
(1− t)−α − 1

)
αt−α−1dt. (3.20)

Then

lim
y→∞

1− F ? G(y)− F (y)−G(y)

F (y)G(y)
= 2I(α) + 22α − 2α+1. (3.21)
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Setting Θ = 2I(α) + 22α − 2α+1, as y →∞ the statement can be restated as

1− F ? G(y) = F (y) +G(y) + ΘF (y)G(y) + o(F (y)G(y)). (3.22)

We now use Theorem 3.4 and Lemma 3.9 to compute a two-term expansion for P (X2 > y):

P (X2 > Y ) = P (βX1 > y) + P (Z > y) + ΘP (βX1 > y)P (Z > y)

+ o (P (βX1 > y)P (Z > y))

= (1 + βα)y−α − 1

2
(1 + β2α)y−2α + o(y−2α) + (II) + (III).

Examining the second piece,

(II) = Θ

[
βαy−α − 1

2
β2αy−2α + o(y−2α)

] [
y−α − 1

2
y−2α + o(y−2α)

]
= Θβαy−2α + o(y−2α).

Then (III) = o(y−2α) and the expansion becomes

P (X2 > y) = (1 + βα)y−α − 1

2
(1 + β2α − 2Θβα)y−2α + o(y−2α).

We have finally provided a two-term expansion for the Fréchet mixture for all α > 0, sum-

marizing the results in the next theorem.
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Theorem 3.5. Let (X2|X1 = x) ∼ Φα(· − βx) and X1 ∼ Φα with α, β > 0. Then as y →∞

P (X2 > y) =



(1 + βα)y−α + αβ(1 + βα−1)Γ (1− α−1) y−α−1

+ o(y−α−1), α > 1

(1 + β)y−1 + β

(∫ y

0

x−1e−x
−1

dx

)
y−2 + o(y−2), α = 1

(1 + βα)y−α − 1
2
(1 + β2α − 2Θβα)y−2α + o(y−2α), 0 < α < 1.

(3.23)

3.5 Mixture of Weibull Random Variables

Finally, we extend the mixture analysis to the Type III, or Weibull, case. Such an answer

would be a useful contribution to extreme value theory since the Weibull distribution is very

common in practice. First introduced in Fréchet (1927), it arises in applications relating to

decay or failure times. Weibull (1951) provides many examples of data sets in which the

Weibull was modeled, including a study on Indian cotton fiber strength and another study

concerning the stature of adult males in the British Isles. Pinder et al. (1978) fits Weibull

models to survivorship curves of various birds.

As stated in (1.5), for α > 0, denote the Weibull family by

Ψα(x) =


e−(−x)α , x < 0

1, x ≥ 0.

(3.24)

In terms of the generalized extreme value family, Ψα = GEV
(
− 1
α
,−1, 1

α

)
. Suppose X1 ∼ Ψα

and {X2|X1 = x} ∼ Ψα(· − βx), · > βx where β > 0. That is,

X2|X1 ∼ GEV

(
− 1

α
, βX1 − 1,

1

α

)
on x− βX1 < 0.
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Now observe that for y < 0

P (X2 > y) =

∫ 0

−∞
P (X2 > y|X1 = x)

d

dx
(Ψα(x))

=

∫ 0

−∞
P (X2 − βX1 > y − βx|X1 = x)

d

dx
(Ψα(x))

=

∫ y/β

−∞
(1− 1)

d

dx
(Ψα(x)) +

∫ 0

y/β

[1−Ψα(y − βx)]
d

dx
(Ψα(x))

=

∫ 0

y/β

[1−Ψα(y − βx)]
d

dx
(Ψα(x)) .

The last step follows because Ψα(x) = 1 for x ∈ (−∞, y
β
], and since 0 ≤ d

dx
(Ψα(x)) < α the

first integral is 0 by dominated convergence. We proof the following lemma before deriving

the expansion.

Lemma 3.10. For y < 0,

1−Ψα(y) = (−y)α − 1

2
(−y)2α + o((−y)2α) as y ↑ 0. (3.25)

Proof. Write

1−Ψα(y)− (−y)α =

∫ 0

y

{
e−(−x)α − 1

}
α(−x)α−1dx = −

∫ 0

y

[
1− e−(−x)α

(−x)α

]
α(−x)2α−1dx.

Note that φ(z) = 1−e−z
z
→ 1 as z ↑ 0. Consider the following quantity:

∫ 0

y

φ((−x)α)α(−x)2α−1dx∫ 0

y
α(−x)2α−1dx

=

∫ 0

y
φ((−x)α)α(−x)2α−1dx

1
2
(−y)2α

= 2α(−y)−2α

∫ 0

y

φ((−x)α)(−x)2α−1dx.
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A change of variables brings

2α

∫ 1

0

φ((−yx)α)x2α−1dx = 2α

∫ 1

0

x2α−1dx+ o(1) = 1 + o(1).

Thus by dominated convergence

1−Ψα(y)− (−y)α

1
2
(−y)2α

= −1 + o(1) as y ↑ 0,

and the result follows.

The next theorem establishes the two-term expansion for the Weibull mixture. We shall

make use of the beta function defined in (1.7).

Theorem 3.6. Let (X2|X1 = x) ∼ Ψα(· − βx) and X1 ∼ Ψα with α, β > 0. Then as y ↑ 0

P (X2 > y) = C2(−y)2α + C3(−y)3α + o((−y)3α), (3.26)

where C2 = αB(α,α+1)
βα

and C3 = − α
βα

[
B(α,2α+1)

2
+ B(2α,α+1)

βα

]
.

Proof. We perform a second-order expansion on the first exponential term in the integral,

and a first-order expansion on e−(−x)α . No further advanced expansions are needed since the

resulting terms would be negligible. As y ↑ 0, the integral becomes

P (X2 > y) =

∫ 0

y/β

{
1− e−[−(y−βx)]α

}
α(−x)α−1e−(−x)αdx

=

∫ 0

y/β

[
[−(y − βx)]α − 1

2
[−(y − βx)]2α + o((−y)2α)

]
α(−x)α−1 [1− (−x)α] dx.
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Use the change of variables w = βx
y

and therefore
∣∣dx
du

∣∣ = − y
β
. The Jacobian has the negative

sign because y < 0. The integral becomes

P (X2 > y) =

∫ 1

0

{
(−y)α(1− x)α − 1

2
(−y)2α(1− x)2α + o((−y)2α)

}
× α

(
− y
β

)α
xα−1

[
1−

(
−yx
β

)α
+

1

2

(
−yx
β

)2α
]
dx

=
α

βα
(−y)α

∫ 1

0

{
(−y)α(1− x)α − 1

2
(−y)2α(1− x)2α + o((−y)2α)

}
×

[
xα−1 −

(
− y
β

)α
x2α−1 +

1

2

(
− y
β

)2α

x3α−1

]
dx

=
α

βα
(−y)α

∫ 1

0

{
(−y)αxα−1(1− x)α − 1

2
(−y)2αxα−1(1− x)2α + o((−y)2α)

−(−y)2α

βα
x2α−1(1− x)α +

(−y)3α

2βα
x2α−1(1− x)2α

+
(−y)3α

2β2α
x3α−1(1− x)α − (−y)4α

4β2α
x3α−1(1− x)2α

}
dx.

The last three terms are negligible, and the integral becomes

P (X2 > y) =
α

βα
(−y)2α

∫ 1

0

xα−1(1− x)αdx− α

2βα
(−y)3α

∫ 1

0

xα−1(1− x)2αdx

− α

β2α
(−y)3α

∫ 1

0

x2α−1(1− x)αdx+ o((−y)3α)

=
αB(α, α + 1)

βα
(−y)2α − α

βα

[
B(α, 2α + 1)

2
+
B(2α, α + 1)

βα

]
(−y)3α + o((−y)3α)

= C2(−y)2α + C3(−y)3α + o((−y)3α).

The particular case where α = 1 can be worked out exactly and is easily derived through

direct integration:
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Corollary 3.3. For α = 1 and any β > 0,

P (X2 > y) =


1−

(
1

1−β

)
ey +

(
β

1−β

)
ey/β, β 6= 1

1− (1− y)ey, β = 1.

(3.27)

It is interesting to note that in the above corollary, as β ↑ 1 the first case limits to 1 − 2ey

but this does not match the second case. One can easily see that the limiting 1 − 2ey is

incorrect by noting that for y ∈ (− log(2), 0) the claimed probability is negative. Curiously,

the term (−y)α vanishes from the expansion, which necessitates getting the (−y)3α term.

Finally, by using the same process one can derive an expansion for the Weibull mixture using

as many terms as desired. We shall illustrate this process and then discuss how to extract

the nth order term.

Theorem 3.7. Let X1, X2, α, β be defined as above. Then an infinite order expansion for

the tail probability of X2 as y ↑ 0 is

P (X2 > y) =
α

βα

∞∑
i=1

∞∑
j=0

(−1)i+j+1B ((j + 1)α, iα + 1)

i!j!βjα
(−y)(i+j+1)α. (3.28)

Proof. We proceed as before, but this time using the complete Taylor expansions:

P (X2 > y) =

∫ 0

y/β

{
1− e−[−(y−βx)]α

}
α(−x)α−1e−(−x)αdx

= α

∫ 0

y/β

∞∑
i=1

(−1)i+1[−(y − βx)]iα

i!
(−x)α−1

∞∑
j=0

(−1)j(−x)jα

j!
dx.
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Put an upper bound on the inner integrand:

∣∣∣∣(−1)i+j+1

i!j!
[−(y − βx)]iα(−x)(j+1)α−1

∣∣∣∣ ≤ [−(y − βx)]iα

i!

(−x)(j+1)α−1

j!

≤ 1

i!j!
(−y)iα

(
− y
β

)(j+1)α−1

≤ (−y)2α−1

βα−1i!j!
.

Thus, the integrand is integrable on both counting measures and the Lebesgue measure, so

we may bring both summations to the front:

P (X2 > y) = α
∞∑
i=1

(−1)i+1

i!

∞∑
j=0

(−1)j

j!

∫ 0

y/β

(−x)(j+1)α−1[−(y − βx)]iαdx.

A change of variables produces

P (X2 > y) = α
∞∑
i=1

∞∑
j=0

(−1)i+j+1

i!j!

∫ 1

0

(
− y
β

)(j+1)α

x(j+1)α−1(1− x)iα(−y)iαdx

= α
∞∑
i=1

∞∑
j=0

(−1)i+j+1

i!j!

(
− y
β

)(j+1)α

(−y)iαB((j + 1)α, iα + 1)

=
α

βα

∞∑
i=1

∞∑
j=0

(−1)i+j+1B ((j + 1)α, iα + 1)

i!j!βjα
(−y)(i+j+1)α,

as required.

It remains to show that the infinite sum converges. First observe that

Ω =

∣∣∣∣∣ αβα
∞∑
i=1

∞∑
j=0

(−1)i+j+1B ((j + 1)α, iα + 1)

i!j!βjα
(−y)(i+j+1)α

∣∣∣∣∣
≤ α(−y)2α

βα

∞∑
i=1

∞∑
j=0

B ((j + 1)α, iα + 1)

i!j!βjα
.

We shall use the fact that for c1, c2 > 1, 0 ≤ B(c1, c2) ≤ 1. This is true for i ≥ 1 and j ≥ 1,
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but when j = 0 the expression B(α, iα+1) is only guaranteed to satisfy this inequality when

α > 1. We adjust the beta function accordingly:

B ((j + 1)α, iα + 1)

i!j!βjα
=

Γ((j + 1)α)Γ(iα + 1)

Γ((i+ j + 1)α + 1)i!j!βjα
× (j + 1)α

(j + 1)α

=
Γ((j + 1)α + 1)Γ(iα + 1)

αi!(j + 1)!βjαΓ((i+ j + 1)α + 1)
× Γ((i+ j + 1)α + 2)

Γ((i+ j + 1)α + 2)

=
B((j + 1)α + 1, iα + 1)

αi!(j + 1)!βjα
× Γ((i+ j + 1)α + 2)

Γ((i+ j + 1)α + 1)

≤ (i+ j + 1)α + 1

αi!(j + 1)!βjα
=

α + 1

αi!(j + 1)!βjα
+

1

(i− 1)!(j + 1)!βjα
+

j

i!(j + 1)!βjα
.

Hence

Ω ≤ α(−y)2α

βα

∞∑
i=1

∞∑
j=0

[
α + 1

αi!(j + 1)!βjα
+

1

(i− 1)!(j + 1)!βjα
+

j

i!(j + 1)!βjα

]

<
3α(−y)2α

βα

[
α + 1

α

∞∑
j=0

1

(j + 1)!βjα
+
∞∑
j=0

1

(j + 1)!βjα
+
∞∑
j=0

j

(j + 1)!βjα

]

=
3α(−y)2α

βα

[
2α + 1

α

∞∑
j=0

1

(j + 1)!βjα
+
∞∑
j=0

j

(j + 1)!βjα

]

=
3α(−y)2α

βα

[(
2α + 1

α

)
(I) + (II)

]
.

Compute the two sums:

(I) =
∞∑
j=0

βα

(j + 1)!β(j+1)α
= βα

∞∑
j=1

(β−α)j

j!
= βα

(
1− exp

(
β−α

))
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and

(II) =
∞∑
j=0

(j + 1− 1)βα

(j + 1)!β(j+1)α
= βα

∞∑
j=1

j − 1

j!βjα
= βα

[
∞∑
j=1

1

(j − 1)!βjα
−
∞∑
j=1

1

j!βjα

]

= βα

[
1

βα

∞∑
j=1

1

(j − 1)!β(j−1)α
−
∞∑
j=1

1

j!βjα

]
=
∞∑
j=0

(β−α)j

j!
− βα

∞∑
j=1

(β−α)j

j!

= (1 + βα) exp
(
β−α

)
− βα.

Finally

Ω ≤ 3α(−y)2α

[
2α + 1

α

(
1− exp(β−α)

)
+ (1 + β−α) exp(β−α)− 1

]
,

and so Ω→ 0 as y ↑ 0. Therefore the infinite series converges.

Now suppose we want Cm, the mth component in the n-term expansion, m = 2, ..., n + 1.

The result of Theorem 3.7 can be used to accomplish this. To “peel off” the mth term, find

all i, j such that i ≥ 1, j ≥ 0, i+ j + 1 = m. Then

Cm =
α

βα

m−2∑
j=0

(−1)mB ((j + 1)α, (m− j − 1)α + 1)

j!(m− j − 1)!βjα

=
α

βα

m−2∑
j=0

(−1)mB ((j + 1)α, (m− (j + 1))α + 1)

((j + 1)− 1)!(m− (j + 1))!β((j+1)−1)α

=
α

βα

m−1∑
j=1

(−1)mB (jα, (m− j)α + 1)

(j − 1)!(m− j)!β(j−1)α
.

As for the remaining pieces where i+ j + 1 > m,

∣∣∣∣∣ αβα ∑
i+j+1>m

(−1)m+kB ((j + 1)α, (m+ k − j − 1)α + 1)

j!(m+ k − j − 1)!βjα
(−y)(m+L)α

∣∣∣∣∣ = o((−y)mα),

because the series was shown to converge. We therefore have the following result.
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Theorem 3.8. Let (X2|X1 = x) ∼ Ψα(·−βx) and X1 ∼ Ψα with α, β > 0. Then an n-term

expansion for the tail probability of X2 as y ↑ 0 is

P (X2 > y) =
n+1∑
m=2

Cm(−y)mα + o((−y)mα),

where Cm = α
βα

m−1∑
j=1

(−1)mB (jα, (m− j)α + 1)

(j − 1)!(m− j)!β(j−1)α
.
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Chapter 4 The AR(1) Process with Gumbel Innovations

In the previous chapter we derived a two-term expansion for the mixture of two Gumbel

random variables. That is, if Λ(x) = exp(−e−x) denotes the standard Gumbel distribution,

we considered the distribution of βZ1 + Z0 where Z1, Z0 ∼ Λ. In this chapter we generalize

the results for the AR(1) process given by X0 = Z0 and

Xn = βXn−1 + Zn, n ≥ 1, (4.1)

with the {Zn} i.i.d. with distribution Λ. Consequently

Xn =
∞∑
k=0

βkZn−k. (4.2)

The first step is to ensure that Xn converges for |β| < 1. Note that

E|Z1| =
∫ 0

−∞
(−x)e−x exp(−e−x)dx+

∫ ∞
0

xe−x exp(−e−x)dx

=

∫ ∞
1

log(x)e−xdx+

∫ 1

0

(− log(x))e−xdx ≤ 2,

because ∫ 1

0

(− log(x))e−xdx <

∫ 1

0

(− log(x))dx =

∫ ∞
0

xe−xdx = 1.

Now observe that

E

∣∣∣∣∣
∞∑
k=m

βkZ1−k

∣∣∣∣∣ ≤ |β|m

1− |β|
E|Z1| → 0 as m→∞.
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Thus we have ∣∣∣∣∣
∞∑
k=m

βkZ1−k

∣∣∣∣∣ ≤
∞∑
k=m

|β|k|Z1−k|
L1

→ 0,

and therefore
∑∞

k=m |β|k|Z1−k|
p→ 0. Set Um =

∑∞
k=m |β|k|Z1−k| and note that Um is a

monotonically decreasing sequence of nonnegative random variables. Hence Um → U as

m→∞ where the limit U exists almost surely. Since the limit must agree with the limit in

probability, U
a.s.
= 0. Thus

∞∑
k=m

βkZ1−k
a.s.→ 0 as m→∞.

Hence X1 =
∑∞

k=0 β
kZ1−k exists as an a.s. limit, and Xn =

∑∞
k=0 β

kZn−k is the stationary

solution of the AR(1) process.

4.1 Lemmas Needed for the Expansions

Before moving to the two-term expansion for Xn, we state and prove several lemmas that

come up in the subsequent proofs. Also in the upcoming sections, we shall use the notation

X = V +W where V = Z0 + βZ1 and W =
∑∞

k=2 β
kZk, and further V ∼ FV and W ∼ FW .

Lemma 4.1. For any λβ < 1,

E

[
exp

(
λ

β
W

)]
<∞.

Proof. It suffices to show the alternative statement holds:

E

[
exp

(
λβ

∞∑
k=0

βkZk

)]
<∞.
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Set ξ = λβ < 1. Observe that

E

[
exp

(
ξ
∞∑
k=0

βkZk

)]
=
∞∏
k=0

E
[
exp

(
ξβkZ1

)]
.

Choose any 0 < a < 1, then

E
(
eaZ1

)
=

∫ ∞
−∞

eaze−z exp(−e−z)dz =

∫ ∞
0

z−ae−zdz = Γ(1− a).

Now notice that

1

a

(∫ ∞
0

z−ae−zdz − 1

)
=

∫ ∞
0

(
e−a log(z) − 1

a

)
e−zdz.

Also ∣∣∣∣∣1a
∫ a log(z)

0

e−tdt

∣∣∣∣∣ ≤ log(z) for z ≥ 1, and∣∣∣∣∣1a
∫ a log(1/z)

0

e−tdt

∣∣∣∣∣ ≤ log

(
1

z

)
for 0 < z ≤ 1.

It follows that ∣∣∣∣1a(z−a − 1)e−z
∣∣∣∣ ≤ | log(z)|e−z,

which is integrable over the positive reals, and so by dominated convergence

lim
a↓0

1

a

(∫ ∞
0

z−ae−zdz − 1

)
=

∫ ∞
0

(− log(z))e−zdz =

∫ ∞
−∞

ze−z exp(−e−z)dz

= E(Z1).
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Thus, as a ↓ 0

E
(
eaZ1

)
= Γ(1− a) = 1 + aE(Z1)(1 + o(1)).

Of course,

E(Z1) = lim
a↓0

Γ(1− a)− 1

a
= −Γ′(1) = γ

where γ is the Euler constant defined in (1.7). Hence for k ≥ k0 large enough,

E
[
exp

(
ξβkZ1

)]
< 1 + 2ξβkE|Z1|.

Therefore

∞∏
k=k0

E
[
exp

(
ξβkZ1

)]
<

∞∏
k=k0

(
1 + 2ξβkE|Z1|

)
< exp

(
2ξ

∞∑
k=k0

βkE|Z1|

)

= exp

(
2ξβk0

1− β
E|Z1|

)
<∞.

Finally, since 0 < ξ < 1 we have the usual moment generating function

E
(
eξZ1

)
= Γ(1− ξ) <∞,

and for k = 0, 1, ..., k0 − 1

E
[
exp

(
ξβkZ1

)]
= Γ(1− ξβk) <∞.

Putting it all together,

E

[
exp

(
ξ

∞∑
k=0

βkZk

)]
<∞.
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One important consequence of Lemma 4.1 is that for any 0 < β, ξ < 1, the infinite product

of gamma functions converges. That is,

∞∏
k=0

Γ(1− ξβk) <∞, (4.3)

and this product will show up in the expansions in the next three sections.

Lemma 4.2. Let 0 < β < 1, and choose a such that β < a < 1. Then as y →∞

P (X > y) =

∫ ay

−∞
P (V > y − w)dFW (w) + o

(
e−y/β

)
.

Proof. Observe that

P (X > y) = P (V +W > y) =

∫ ∞
ay

P (V > y−w)dFW (w)+

∫ ay

−∞
P (V > y−w)dFW (w). (4.4)

Now for 1 < λ < 1
β
, we have by Chernoff’s Inequality

∫ ∞
ay

P (V > y − w)dFW (w) ≤ P (W > ay) ≤ E
(
eλW/β

)
e−λay/β.

Additionally choose λ so that λ > 1
a
, which is possible because 1

a
< 1

β
. Then by Lemma 4.1,

P (W > ay) = O
(
e−λay/β

)
= o

(
e−y/β

)
. (4.5)
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Lemma 4.3. Let W be as defined in Lemma 4.1. Choose a and λ such that 1 < λ < 1
β

,

β < a < 1, and aλ > 1. Then as y →∞

∫ ∞
ay

e−(y−w)dFW (w) = o
(
e−y/β

)
.

Proof. By integration by parts,

∫ ∞
ay

ewdFW (w) = −
∫ ∞
ay

ewdFW (w) = eayFW (ay) +

∫ ∞
ay

FW (w)ewdw.

By Lemma 4.1 and Chernoff’s Inequality,

FW (ay) ≤ E
(
eλW/β

)
e−λay/β.

Similarly, we find

∫ ∞
ay

FW (w)ewdw ≤ E
(
eλW/β

) ∫ ∞
ay

e−
λ
β
w+wdw = E

(
eλW/β

)(λ
β
− 1

)−1

e−(λβ−1)ay.

Therefore for some c > 0 we obtain

∫ ∞
ay

e−(y−w)dFW (w) ≤ c exp

(
−
[
λa

β
+ (1− a)

]
y

)
.

Finally, since β < a < 1 and aλ > 1 we have that 1− a+ λa
β
> 1

β
and therefore

∫ ∞
ay

e−(y−w)dFW (w) = o
(
e−y/β

)
.
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Lemma 4.4. For W defined in Lemma 4.1 and 0 < β < 1, E
(∣∣∣We

1
β
W
∣∣∣) <∞.

Proof. Choose any 1 < λ < 1
β
. Then by Lemma 4.1, E

(
e
λ
β
W
)
< ∞. Let ν be such that

1
λ

+ 1
ν

= 1. Then by Hölder’s Inequality in (1.18),

E
(∣∣∣We

1
β
W
∣∣∣) ≤ (E|W |ν)1/ν

[
E
(
e
λ
β
W
)]1/λ

<∞.

Lemmas 4.5 through 4.7 assume that −1 < β < 0. In this situation, write the sum as

∞∑
k=0

βkZk
d
=
∞∑
k=0

β2kZk +
∞∑
k=0

β2k+1Zk = S + T.

Lemma 4.5. For −1 < β < 0, a > 0, and T defined above,

P (T > ay) = o
(
e−y/β

2
)

as y →∞.

Proof. We first show that the lemma holds for βZ0 +β3Z1. Let Fβ2Z1
denote the distribution

of β2Z1. Choose ζ < 0 to be large in the negative direction. Then

P (βZ0 + β3Z1 > ay) = P

(
Z0 + β2Z1 <

ay

β

)
=

∫ ∞
ζ

P

(
Z0 <

ay

β
− β2z

)
dFβ2Z1

(z) +

∫ ζ

−∞
P

(
Z0 <

ay

β
− β2z

)
dFβ2Z1

(z)

= (I) + (II).

Note that

sup
ζ<z<∞

P

(
Z0 <

ay

β
− β2z

)
= exp

[
−e−(ayβ −β2ζ)

]
,
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and therefore as y →∞ (I) ≤ exp
[
−e−(ayβ −β2ζ)

]
→ 0 because ay

β
− β2ζ → −∞ for ζ fixed.

Now observe that as y →∞

exp
[
−e−(ayβ −β2ζ)

]
e−y/β2 = exp

[
y

β2
− e−(ayβ −β2ζ)

]
→ 0,

and so (I) = o
(
e−y/β

2
)

. Next,

(II) ≤ Fβ2Z1
(ζ) = exp

[
−e−ζ/β2

]
→ 0 as ζ ↓ −∞,

and therefore P (βZ0 + β3Z1 > ay) = o
(
e−y/β

2
)

as y →∞. The next step is to assume that

for n ≥ 2,

P

(
β
n−1∑
k=0

β2kZk > ay

)
= P (βUn−1 > ay) = o

(
e−y/β

2
)

as y →∞.

Consider the probability

P (βUn−1 + β2n+1Zn > ay) = P

(
Un−1 + β2nZn <

ay

β

)
=

∫ ∞
ζ

P

(
Un−1 <

ay

β
− β2nz

)
dFβ2nZ1

(z) +

∫ ζ

−∞
P

(
Z0 <

ay

β
− β2nz

)
dFβ2nZ1

(z)

= (I) + (II).

We have by assumption that P
(
Un−1 <

ay
β

)
= o

(
e−y/β

2
)

, so for y large enough

sup
ζ<z<∞

P

(
Un−1 <

ay

β
− β2nz

)
= P

(
Un−1 <

ay

β
− β2nζ

)
= o

(
e−y/β

2
)
.
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Therefore for any ε > 0,

(I) < εe−y/β
2

∫ ∞
ζ

dFβ2nZn(z) ≤ εe−y/β
2

,

and so (I) = o
(
e−y/β

2
)

as y →∞. As for (II),

(II) ≤ Fβ2nZn(ζ) = exp
[
−e−ζ/β2n

]
→ 0 as ζ ↓ −∞.

Therefore as y →∞,

P

(
β

n∑
k=0

β2kZk > ay

)
= P (βUn > ay) = o

(
e−y/β

2
)
.

Finally, we leap to the infinite sum T = β
∑∞

k=0. For any δ > 0, there exists n0 large enough

such that
∣∣∑∞

k=n0+1 β
2kZk

∣∣ < δ, because we know that
∣∣∑∞

k=n0+1 β
2kZk

∣∣ a.s.→ 0 as n0 → ∞.

Consider

P

(
n0∑
k=0

β2kZk +
∞∑

k=n0+1

β2kZk <
ay

β

)
= P

(
Un0 + Ũn0+1 <

ay

β

)
.

We have that −δ < Ũn0+1 < δ almost surely, and so for any ε > 0

P

(
Un0 <

ay

β
− δ
)
≤ P

(
Un0 + Ũn0+1 <

ay

β

)
≤ P

(
Un0 <

ay

β
+ δ

)
⇒ 0 ≤ P

(
Un0 + Ũn0+1 <

ay

β

)
< εe−y/β

2

.

Thus P
(
Un0 + Ũn0+1 <

ay
β

)
= P (T > ay) = o

(
e−y/β

2
)

as y →∞.

Lemma 4.6. For −1 < β < 0 and T defined above, E
(
eT/β

2
)
<∞.
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Proof. First observe that

E
(
eT/β

2
)

= E exp

(
1

β

∞∑
k=0

β2kZk

)
= E

(
eZ0/β

) ∞∏
k=0

E
(
eβ

2k+1Z1

)
.

In Lemma 4.1, set ξ = βk+1. This choice works since either −1 < βk+1 < 0 or 0 < βk+1 < 1,

but in either case ξ < 1. Then for k0 large enough,

E
(
eT/β

2
)
< Γ

(
1− β−1

) k0−1∏
k=0

E
(
eξβ

kZ1

)
exp

(
2ξβk0

1− β
E|Z1|

)
<∞.

Lemma 4.7. For −1 < β < 0, 0 < a < 1, and T defined above,

∫ ∞
ay

e−(y−t)dFT (t) <∞.

Proof. If FT (t) denotes the distribution of T, then first note that by integration by parts,

e−y
∫ ∞
ay

etdFT (t) = e−yeayF T (ay) + e−y
∫ ∞
ay

etF T (t)dt = (I) + (II).

By Lemma 4.5, for y large enough

(I) = e−(1−a)yP (T > ay) = e−(1−a)yo
(
e−y/β

2
)
,

and therefore (I) = o
(
e−y/β

2
)

as y → ∞. Next, we have that for any ε > 0 and y large,

80



ey/β
2
F T (ay) < ε and thus ey/aβF T (t) < ε. Therefore

(II) < εe−y
∫ ∞
ay

ete−t/aβ
2

dt = εe−y
∫ ∞
ay

exp

[
−
(

1

aβ2
− 1

)
t

]
dt

=
εaβ2

1− aβ2
e−y exp

[
−
(

1− aβ2

β2

)
y

]
= o

(
exp

[
−
(

1

β2
+ (1− a)

)])
.

Thus (II) = o
(
e−y/β

2
)

as y →∞, which completes the proof.

4.2 The AR(1) Process when 0 < β < 1

In the next three lemmas, assuming that 0 < β < 1, we perform calculations that all build

upon various pieces of Theorem 3.1. While the steps are similar to one another, due to the

subtle differences among Theorem 3.1 we need to examine each lemma separately. There are

three cases, treating β = 1
2

as the pivot point.

Lemma 4.8. If 0 < β < 1
2

and Zk are i.i.d. standard Gumbel random variables, then as

y →∞

P

(
∞∑
k=0

βkZk > y

)
=
∞∏
k=1

Γ
(
1− βk

)
e−y − 1

2

∞∏
k=1

Γ
(
1− 2βk

)
e−2y +O

(
e−y/β

)
.

Proof. Let a and λ be positive reals such that β < a < 1, 1 < λ < 1
β
, and λ > 1

a
. Then by

Lemma 4.2,

P (X > y) =

∫ ay

−∞
P (V > y − w)dFW (w) + o

(
e−y/β

)
. (4.6)

By Theorem 3.1, we have for y large enough and any w < ay that

P (V > y − w) = Γ(1− β)e−(y−w) − 1

2
Γ(1− 2β)e−2(y−w) +R(y − w),
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where for some c > 0

sup
w<ay

∣∣R(y − w)e(y−w)/β
∣∣ < c.

Set K1 = Γ(1− β) and K2 = −1
2
Γ(1− 2β). Then

∫ ay

−∞
F V (y − w)dFW (w)

=

∫ ay

−∞

[
F V (y − w)−K1e

−(y−w)

K2e−2(y−w)

]
K2e

−2(y−w)dFW (w) +K1

∫ ay

−∞
e−(y−w)dFW (w).

(4.7)

Now

F V (y − w)−K1e
−(y−w)

K2e−2(y−w)
= 1 +

1

K2

R(y − w)e2(y−w) = 1 + ε(y − w).

We examine the ε(y − w):

sup
w<ay
|ε(y − w)| = 1

K2

sup
w<ay

∣∣R(y − w)e(y−w)/βe−(y−w)/βe2(y−w)
∣∣

<
c

K2

sup
w<ay

∣∣∣∣exp

(
−
(

1

β
− 2

)
(y − w)

)∣∣∣∣
≤ c

K2

exp

(
−(1− a)(1− 2β)y

β

)
.

Because (1−a)(1−2β)
β

> 0, we have that ε(y−w)→ 0 as y →∞ uniformly in w < ay. Consider

the piece

∫ ay

−∞
[1 + ε(y − w)]K2e

−2(y−w)dFW (w)

= K2e
−2y

∫ ay

−∞
e2wdFW (w) +K2

∫ ay

−∞
ε(y − w)e−2(y−w)dFW (w).

(4.8)
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Examining the first integral in (4.8),

lim
y→∞

∫ ay

−∞
K2e

2wdFW (w) = −1

2
Γ(1− 2β)

∫ ∞
−∞

e2wdFW (w) = −1

2
Γ(1− 2β)E

(
e2W

)
= −1

2
Γ(1− 2β)E

[
exp

(
∞∑
k=2

2βkZk

)]
= −1

2
Γ(1− 2β)

∞∏
k=2

E
(
e2βkZk

)
= −1

2

∞∏
k=1

Γ(1− 2βk).

(4.9)

Turning to the second integral in (4.8),

∣∣∣∣K2

∫ ay

−∞
ε(y − w)e−2(y−w)dFW (w)

∣∣∣∣ =

∣∣∣∣∫ ay

−∞
R(y − w)dFW (w)

∣∣∣∣
=

∣∣∣∣∫ ay

−∞
R(y − w)e(y−w)/βe−(y−w)/βdFW (w)

∣∣∣∣ < c

∫ ay

−∞
e−(y−w)/βdFW (w)

≤ ce−y/β
∫ ∞
−∞

ew/βdFW (w) = cE
(
eW/β

)
e−y/β.

By Lemma 4.1, E
(
eW/β

)
<∞ and therefore

K2

∫ ay

−∞
ε(y − w)e−2(y−w)dFW (w) = O

(
e−y/β

)
. (4.10)

Next, note that

∫ ∞
−∞

Γ(1− β)ewdFW (w) = Γ(1− β)E
(
eW
)

=
∞∏
k=1

Γ(1− βk). (4.11)

We now consider the integral

K1e
−y
∫ ay

−∞
ewdFW (w) =

∞∏
k=1

Γ(1− βk)e−y − Γ(1− β)e−y
∫ ∞
ay

ewdFW (w). (4.12)
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By Lemma 4.3, the last integral in (4.12) is o(e−y/β).

Lemma 4.9. If β = 1
2
, then as y →∞

P

(
∞∑
k=0

(0.5)k Zk > y

)
=
∞∏
k=1

Γ
(

1− (0.5)k
) (
e−y − ye−2y

)
+O

(
e−2y

)
.

In particular, to five decimal places
∏∞

k=1 Γ
(

1− (0.5)k
)

= 2.55501.

Proof. Let a and λ be positive reals such that β < a < 1, 1 < λ < 1
β
, and λ > 1

a
. Then by

Lemma 4.2,

P (X > y) =

∫ ay

−∞
P (V > y − w)dFW (w) + o

(
e−2y

)
. (4.13)

By Theorem 3.1, for y large enough and any w < ay

P (V > y − w) =
√
πe−(y−w) − (y − w)e−2(y−w) +R(y − w),

where for some c > 0

sup
w<ay

∣∣R(y − w)e2(y−w)
∣∣ < c.

Observe that∫ ay

−∞
F V (y − w)dFW (w) =

√
π

∫ ay

−∞
e−(y−w)dFW (w)

+

∫ ay

−∞

[
F V (y − w)−

√
πe−(y−w)

−(y − w)e−2(y−w)

]
(−(y − w))e−2(y−w)dFW (w).

(4.14)

Now

F V (y − w)−
√
πe−(y−w)

−(y − w)e−2(y−w)
= 1− R(y − w)e2(y−w)

y − w
= 1 + ε(y − w).
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For y large enough,

sup
w<ay
|ε(y − w)| = sup

w<ay

∣∣∣∣R(y − w)e2(y−w)

y − w

∣∣∣∣ < c

(1− a)y
,

and therefore ε(y − w)→ 0 as y →∞ uniformly in w < ay. Now consider

∫ ay

−∞
[1 + ε(y − w)]

[
−(y − w)e−2(y−w)

]
dFW (w)

= e−2y

∫ ay

−∞
we2wdFW (w)− ye−2y

∫ ay

−∞
e2wdFW (w)

−
∫ ay

−∞
ε(y − w)(y − w)e−2(y−w)dFW (w)

= (I) + (II) + (III).

(4.15)

We examine the three integrals in (4.15). By Lemma 4.4,

(I) = E
(
We2W

)
−
∫ ∞
ay

we2wdFW (w) = E
(
We2W

)
+ o(1). (4.16)

As for (II),

lim
y→∞

∫ ay

−∞
e2wdFW (w) =

∫ ∞
−∞

e2wdFW (w) = E
(
e2W

)
=
∞∏
k=1

Γ
(

1− (0.5)k
)
. (4.17)

Examining (III),

∣∣∣∣−∫ ay

−∞
ε(y − w)(y − w)e−2(y−w)dFW (w)

∣∣∣∣ =

∣∣∣∣∫ ay

−∞
R(y − w)dFW (w)

∣∣∣∣
=

∣∣∣∣∫ ay

−∞
R(y − w)e2(y−w)e−2(y−w)dFW (w)

∣∣∣∣ < ce−2y

∫ ay

−∞
e2wdFW (w)

≤ ce−2y

∫ ∞
−∞

e2wdFW (w) = cE
(
e2W

)
e−2y.
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By Lemma 4.1, E
(
e2W

)
<∞ and so

(I) + (III) = e−2y
[
E
(
We2W

)
+ o(1)

]
+O

(
e−2y

)
= O

(
e−2y

)
. (4.18)

Next, note that

∫ ∞
−∞

√
πewdFW (w) = Γ (1− 0.5)E

(
eW
)

=
∞∏
k=1

Γ
(

1− (0.5)k
)
. (4.19)

Collecting (4.15) through (4.19),

∫ ay

−∞
F V (y − w)dFW (w) =

∞∏
k=1

Γ
(

1− (0.5)k
) (
e−y − ye−2y

)
+O

(
e−2y

)
−
√
πe−y

∫ ∞
ay

ewdFW (w).

By Lemma 4.3, the last integral above is o (e−2y), and the result follows.

Finally, we allow 1
2
< β < 1 and see that the formula is similar to the earlier two.

Lemma 4.10. If 1
2
< β < 1, then as y →∞

P

(
∞∑
k=0

βkZk > y

)
=
∞∏
k=1

Γ
(
1− βk

) [
e−y − β

1− β
Γ
(
2− β−1

)
e−y/β

]
+ o

(
e−y/β

)
.

Proof. Let a and λ be positive reals such that β < a < 1, 1 < λ < 1
β
, and λ > 1

a
. Once again

consider the partition

P (X > y) =

∫ ay

−∞
P (V > y − w)dFW (w) + o

(
e−y/β

)
. (4.20)
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By Theorem 3.1, for y large enough and any w < ay

P (V > y − w) = Γ(1− β)e−(y−w) − β

1− β
Γ
(
2− β−1

)
e−(y−w)/β +R(y − w),

where for any ε > 0 and y large enough

sup
w<ay

∣∣R(y − w)e(y−w)/β
∣∣ < ε.

Set K1 = Γ(1− β) and K2 = − β
1−βΓ (2− β−1). Then observe that

∫ ay

−∞
F V (y − w)dFW (w) =

∫ ay

−∞

[
F V (y − w)−K1e

−(y−w)

K2e−(y−w)/β

]
K2e

−(y−w)/βdFW (w)

+

∫ ay

−∞
K1e

−(y−w)dFW (w).

(4.21)

Now

F V (y − w)−K1e
−(y−w)

K2e−(y−w)/β
= 1 +

1

K2

R(y − w)e(y−w)/β = 1 + ε(y − w).

Note that sup
w<ay
|ε(y − w)| < ε

K2

. Consider the piece

∫ ay

−∞
[1 + ε(y − w)]K2e

−(y−w)/βdFW (w)

= K2e
−y/β

∫ ay

−∞
ew/βdFW (w) +K2

∫ ay

−∞
ε(y − w)e−(y−w)/βdFW (w).

(4.22)
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Examining the first integral in (4.22),

lim
y→∞

∫ ay

−∞
K2e

w/βdFW (w) = K2E
(
eW/β

)
= K2E

[
exp

(
∞∑
k=1

βkZk+1

)]

= K2

∞∏
k=1

E
(
eβ

kZ1

)
= − β

1− β
Γ
(
2− β−1

) ∞∏
k=1

Γ(1− βk).
(4.23)

Turning to the second integral,

∣∣∣∣K2

∫ ay

−∞
ε(y − w)e−(y−w)/βdFW (w)

∣∣∣∣ =

∣∣∣∣∫ ay

−∞
R(y − w)dFW (w)

∣∣∣∣
=

∣∣∣∣∫ ay

−∞
R(y − w)e(y−w)/βe−(y−w)/βdFW (w)

∣∣∣∣ < ε

∫ ay

−∞
e−(y−w)/βdFW (w)

≤ εe−y/β
∫ ∞
−∞

ew/βdFW (w) = εE
(
eW/β

)
e−y/β.

By Lemma 4.1, E
(
eW/β

)
<∞ and therefore

K2

∫ ay

−∞
ε(y − w)e−(y−w)/βdFW (w) = o

(
e−y/β

)
. (4.24)

Next, note that

∫ ∞
−∞

Γ(1− β)ewdFW (w) = Γ(1− β)E
(
eW
)

=
∞∏
k=1

Γ(1− βk). (4.25)

We now consider the integral

K1e
−y
∫ ay

−∞
ewdFW (w) =

∞∏
k=1

Γ(1− βk)e−y − Γ(1− β)e−y
∫ ∞
ay

ewdFW (w). (4.26)
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Collecting (4.23) through (4.26),

∫ ay

−∞
F V (y − w)dFW (w) =

∞∏
k=1

Γ(1− βk)
[
e−y − β

1− β
Γ
(
2− β−1

)
e−y/β

]
+ o

(
e−y/β

)
− Γ(1− β)e−y

∫ ∞
ay

ewdFW (w).

By Lemma 4.3, the last integral above is o
(
e−y/β

)
, and the result follows.

4.3 The AR(1) Process when −1 < β < 0

Up to now we have assumed that 0 < β < 1 when performing the two-term expansions on

the AR(1) process with Gumbel innovations. We now turn to the other possibility, when

−1 < β < 0. With a few necessary changes and extensions, the derivation is similar to what

we saw in the previous sections. To get started, write

∞∑
k=0

βkZk
d
=
∞∑
k=0

β2kZk +
∞∑
k=0

β2k+1Zk = S + T. (4.27)

Notice that all the weights in T are negative since all the β’s have odd exponents. Further

note that in S, 0 < β2 < 1 and so we may utilize the same techniques as earlier, but basing

our results on β2 rather than just β. We shall split into three cases, but this time β = −
√

2
2

emerges as the necessary pivot point. Lemma 4.11 examines the first case, and the remaining

two are mentioned in Theorem 4.1 and proven in Appendices B.1 and B.2.

Lemma 4.11. If −
√

2
2
< β < 0 and Zk are i.i.d. standard Gumbel random variables, then

as y →∞

P

(
∞∑
k=0

βkZk > y

)
=
∞∏
k=1

Γ
(
1− βk

)
e−y − 1

2

∞∏
k=1

Γ
(
1− 2βk

)
e−2y +O

(
e−y/β

2
)
.
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Proof. First notice that by Lemma 4.8,

P (S > y) =
∞∏
k=1

Γ
(
1− β2k

)
e−y − 1

2

∞∏
k=1

Γ
(
1− 2β2k

)
e−2y +O

(
e−y/β

2
)
. (4.28)

Let X = S + T , and for some 0 < a < 1 write

P (X > y) =

∫ ∞
ay

P (S > y − t)dFT (t) +

∫ ay

−∞
P (S > y − t)dFT (t). (4.29)

First, ∫ ∞
ay

P (S > y − t)dFT (t) ≤ P (T > ay),

which by Lemma 4.5 is o
(
e−y/β

2
)

as y →∞. Now by (4.28) we have that for y large enough

and any t < ay

P (S > y − t) =
∞∏
k=1

Γ
(
1− β2k

)
e−(y−t) − 1

2

∞∏
k=1

Γ
(
1− 2β2k

)
e−2(y−t) +R(y − t),

where for some c > 0

sup
t<ay

∣∣∣R(y − t)e(y−t)/β2
∣∣∣ < c.

Set K1 =
∏∞

k=1 Γ(1− β2k) and K2 = −1
2

∏∞
k=1 Γ(1− 2β2k), and let FS be the distribution of

S. Then observe that

∫ ay

−∞
F S(y − t)dFT (t) =

∫ ay

−∞

[
F S(y − t)−K1e

−(y−t)

K2e−2(y−t)

]
K2e

−2(y−t)dFT (t)

+K1

∫ ay

−∞
e−(y−t)dFT (t).

(4.30)
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Now

F S(y − t)−K1e
−(y−t)

K2e−2(y−t) = 1 +
1

K2

R(y − t)e2(y−t) = 1 + ε(y − t).

We examine the ε(y − t):

sup
t<ay
|ε(y − t)| = 1

|K2|
sup
t<ay

∣∣∣R(y − t)e(y−t)/β2

e−(y−t)/β2

e2(y−t)
∣∣∣

<
c

|K2|
sup
t<ay

∣∣∣∣exp

(
−
(

1

β2
− 2

)
(y − t)

)∣∣∣∣
≤ c

|K2|
exp

(
−(1− a)(1− 2β2)y

β2

)
.

Because (1−a)(1−2β2)
β2 > 0, we have that ε(y− t)→ 0 as y →∞ uniformly in t < ay. Consider

the piece

∫ ay

−∞
[1 + ε(y − t)]K2e

−2(y−t)dFT (t)

= K2e
−2y

∫ ay

−∞
e2tdFT (t) +K2

∫ ay

−∞
ε(y − t)e−2(y−t)dFT (t).

(4.31)

Examining the first integral in (4.31),

lim
y→∞

∫ ay

−∞
K2e

2tdFT (t) = −1

2

∞∏
k=1

Γ(1− 2β2k)

∫ ∞
−∞

e2tdFT (t)

= −1

2

∞∏
k=1

Γ(1− 2β2k)E
(
e2T
)

= −1

2

∞∏
k=1

Γ(1− 2β2k)E

[
exp

(
∞∑
k=0

2β2k+1Zk

)]

= −1

2

∞∏
k=1

Γ(1− 2β2k)
∞∏
k=0

E
(
e2β2k+1Z1

)
=

1

2

∞∏
k=1

Γ(1− 2β2k)
∞∏
k=0

Γ(1− 2β2k+1) = −1

2

∞∏
k=1

Γ(1− 2βk).

(4.32)
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Turning to the second integral in (4.31),

∣∣∣∣K2

∫ ay

−∞
ε(y − t)e−2(y−t)dFT (t)

∣∣∣∣ =

∣∣∣∣∫ ay

−∞
R(y − t)dFT (t)

∣∣∣∣
=

∣∣∣∣∫ ay

−∞
R(y − t)e(y−t)/β2

e−(y−t)/β2

dFT (t)

∣∣∣∣ < c

∫ ay

−∞
e−(y−t)/β2

dFT (t)

≤ ce−y/β
2

∫ ∞
−∞

et/β
2

dFT (t) = cE
(
eT/β

2
)
e−y/β

2

.

By Lemma 4.6, E
(
eT/β

2
)
<∞ and therefore

K2

∫ ay

−∞
ε(y − t)e−2(y−t)dFT (t) = O

(
e−y/β

2
)
. (4.33)

Next, note that

K1

∫ ∞
−∞

etdFT (t) = K1E
(
eT
)

=
∞∏
k=1

Γ(1− β2k)
∞∏
k=0

Γ(1− β2k+1) =
∞∏
k=1

Γ(1− βk). (4.34)

We now consider the integral

K1e
−y
∫ ay

−∞
etdFT (t) =

∞∏
k=1

Γ(1− βk)e−y −K1e
−y
∫ ∞
ay

etdFT (t). (4.35)

Collecting (4.32) through (4.35),

∫ ay

−∞
F S(y − t)dFT (t) =

∞∏
k=1

Γ(1− βk)e−y − 1

2

∞∏
k=1

Γ(1− 2βk)e−2y +O
(
e−y/β

2
)

−K1e
−y
∫ ∞
ay

etdFT (t).

By Lemma 4.7, the last integral above is o(e−y/β
2
), and the result follows.
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4.4 The Complete AR(1) Expansion Result

In this short section, we state the main result of the chapter. Thereom 4.1 combines Lemmas

4.8 through 4.11, plus it includes the cases β = −
√

2
2

and −1 < β < −
√

2
2

, the proofs of which

are in Appendices B.1 and B.2. In addition, Appendices B.5 and B.6 contain tables of values

for the infinite products
∏∞

k=1 Γ
(
1− βk

)
and

∏∞
k=1 Γ

(
1− 2βk

)
, respectively.

Theorem 4.1. Let Zk be i.i.d. standard Gumbel random variables. If 0 < β < 1
2
, then as

y →∞

P

(
∞∑
k=0

βkZk > y

)
=
∞∏
k=1

Γ
(
1− βk

)
e−y − 1

2

∞∏
k=1

Γ
(
1− 2βk

)
e−2y +O

(
e−y/β

)
.

If β = 1
2
,

P

(
∞∑
k=0

(0.5)k Zk > y

)
=
∞∏
k=1

Γ
(

1− (0.5)k
) (
e−y − ye−2y

)
+O

(
e−2y

)
.

When 1
2
< β < 1,

P

(
∞∑
k=0

βkZk > y

)
=
∞∏
k=1

Γ
(
1− βk

)(
e−y − β

1− β
Γ
(
2− β−1

)
e−y/β

)
+ o

(
e−y/β

)
.

When −
√

2
2
< β < 0, and Zk are i.i.d. standard Gumbel random variables, then

P

(
∞∑
k=0

βkZk > y

)
=
∞∏
k=1

Γ
(
1− βk

)
e−y − 1

2

∞∏
k=1

Γ
(
1− 2βk

)
e−2y +O

(
e−y/β

2
)
.
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If β = −
√

2
2

, then

P

(
∞∑
k=0

βkZk > y

)
=
∞∏
k=1

Γ
(
1− βk

) ∞∏
k=0

Γ
(

1 +
√

2(0.5)k+1
)
e−y

−
∞∏
k=1

Γ
(
1− βk

) ∞∏
k=0

Γ
(

1 +
√

2(0.5)k
)
ye−2y +O

(
e−2y

)
,

and to five decimal places the approximation is

P

(
∞∑
k=0

βkZk > y

)
= 1.19005e−y − 1.49210ye−2y +O

(
e−2y

)
.

Finally, if −1 < β < −
√

2
2

, then

P

(
∞∑
k=0

βkZk > y

)
=
∞∏
k=1

Γ
(
1− βk

) [
e−y − β2Γ(1− β−1)Γ(2− β−2)

1− β2
e−y/β

2

]
+ o

(
e−y/β

2
)
.

As a side note, if we have n < ∞ Gumbel random variables, then the products are taken

from k = 0 or 1 up to n− 1.

4.5 The AR(1) Process in the Non-IID Setting

Finally, we shall derive a two-term expansion for the situation in which the Gumbel random

variables take different location and scale parameters. That is, Xk = σZk + µ with Zk ∼

Λ, σk > 0. Such a situation would be ideal when a time trend exists in the location and/or

scale parameters. For instance, in the Peachtree Creek data set we considered a linear time

trend in the scale parameter via σk = σ + φk. Often one may wish to define σk = σeφk to

ensure that the scale remains positive. It may also be desirable to test for quadratic trends

94



in the location or scale, or even using covariate terms. Such possibilities are discussed in

Coles (2001) and Coles (2008).

Because of the nonstationarity of the Gumbel time series, careful assumptions need to be

imposed if one were to build an infinite series. Instead, we focus on the finite weighted sum.

Define Xk = 0 for k < 1 and Yk = βYk−1 + Xk for 1 ≤ k < n. Then Yn =
∑n−1

k=0 β
kXn−k

where 2 ≤ n <∞. This situation is preferable because in data analysis, a time series model

would be fit to a finite series anyway. Observe that

Yn =
n−1∑
k=0

βk (σn−kZn−k + µn−k)
d
=

n−1∑
k=0

βkσn−kZk +
n−1∑
k=0

βkµn−k.

Some new notation is needed before discussing this generalization. First, since the series is

finite we only require β > 0. (The case where β < 0 will be left as an open question.) Put

µn =
∑n−1

k=0 β
kµn−k. Define β(0) = max

(
βkσn−k

)
and β(1) = max

(
βkσn−k : βkσn−k < β(0)

)
.

That is, β(0) and β(1) are the highest and second highest amongst the βkσn−k, and it is

assumed that there are no multiplicites of these two quantities. Finally, let β(m), 2 ≤ m ≤

n − 1 denote the (m + 1)th highest of the βkσn−k. To be clear, β(0) > β(1) > β(2) ≥ β(3) ≥

· · · ≥ β(n−1). In which case, we may rewrite the series as

Yn
d
=

n−1∑
k=0

β(k)Zk + µn = β(0)

[
n−1∑
k=0

β(k)

β(0)
Zk + µn

]
.

In what follows in Theorem 4.2, define V = Z0 + β(1)

β(0)Z1, W =
∑n−1

k=2
β(k)

β(0)Zk, and Yn = V +W .

Then we shall derive the probability P (Yn > y), or equivalently P (Yn > y∗n) where y∗n = y−µn
β(0) .

This time the pivot point is β(1)

β(0) = 1
2
.

Theorem 4.2. Let β > 0 and Yn, β
(k), µn, and y∗n be defined as earlier with no multiplicities
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of β(0) nor β(1). If 0 < β(1)

β(0) <
1
2
, then as y →∞ a two-term expansion is given by

P (Yn > y∗n) =
n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
e−y

∗
n − 1

2

n−1∏
k=1

Γ

(
1− 2β(k)

β(0)

)
e−2y∗n +O

(
e−y/β

(1)
)
.

In the particular case where β(1)

β(0) = 1
2
, the expansion is

P (Yn > y∗n) =
n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
e−y

∗
n −

n−1∏
k=2

Γ

(
1− 2β(k)

β(0)

)
y∗ne
−2y∗n +O

(
e−y/β

(1)
)
.

Lastly, when 1
2
< β(1)

β(0) < 1, the expansion is

P (Yn > y∗n) = − β(1)

β(0) − β(1)
Γ

(
2− β(0)

β(1)

) n−1∏
k=2

Γ

(
1− β(k)

β(1)

)
e−β

(0)y∗n/β
(1)

+
n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
e−y

∗
n + o

(
e−y/β

(1)
)
.

Proof. We present the proof of the first equation only; the other two follow similar extensions

of Theorem 4.1 and may be found in Appendices B.3 and B.4. Let a be a positive real such

that β(2)

β(1) < a < 1. Then observe that

P (V +W > y∗n) =

∫ ∞
ay∗n

P (V > y∗n − w)dFW (w) +

∫ ay∗n

−∞
P (V > y∗n − w)dFW (w).

For 1 < λ < β(1)

β(2) we have

∫ ∞
ay∗n

P (V > y∗n − w)dFW (w) ≤ P (W > ay∗n)

≤ E

[
exp

(
β(0)λW

β(1)

)]
exp

(
−β

(0)λay∗n
β(1)

)
.
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Further choose λ so that λ > 1
a
, which is possible because 1

a
< β(1)

β(2) . Then

∫ ∞
ay∗n

P (V > y∗n − w)dFW (w) = O

(
exp

(
−β

(0)λay∗n
β(1)

))
= o

(
e−y/β

(1)
)
.

By Theorem 3.1, we have for y∗n large enough and any w < ay∗n that

P (V > y∗n − w) = Γ

(
1− β(1)

β(0)

)
e−(y∗n−w) − 1

2
Γ

(
1− 2β(1)

β(0)

)
e−2(y∗n−w) +R(y∗n − w),

where for some c > 0

sup
w<ay∗n

∣∣∣R(y∗n − w)eβ
(0)(y∗n−w)/β(1)

∣∣∣ < c.

Set K1 = Γ
(

1− β(1)

β(0)

)
and K2 = −1

2
Γ
(

1− 2β(1)

β(0)

)
. Then observe that

∫ ay∗n

−∞
F V (y∗n − w)dFW (w) =

∫ ay∗n

−∞

[
F V (y∗n − w)−K1e

−(y∗n−w)

K2e−2(y∗n−w)

]
K2e

−2(y∗n−w)dFW (w)

+K1

∫ ay∗n

−∞
e−(y∗n−w)dFW (w).

Now

F V (y∗n − w)−K1e
−(y∗n−w)

K2e−2(y∗n−w)
= 1 +

1

K2

R(y∗n − w)e2(y∗n−w) = 1 + ε(y∗n − w).

We examine the ε(y∗n − w):

sup
w<ay∗n

|ε(y∗n − w)| = 1

|K2|
sup
w<ay∗n

∣∣∣R(y∗n − w)eβ
(0)(y∗n−w)/β(1)

e−β
(0)(y∗n−w)/β(1)

e2(y∗n−w)
∣∣∣

≤ c

|K2|
sup
w<ay∗n

∣∣∣∣exp

(
−
(
β(0)

β(1)
− 2

)
(y∗n − w)

)∣∣∣∣
≤ c

|K2|
exp

(
−(1− a)(β(0) − 2β(1))y∗n

β(1)

)
.
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Because β(0) − 2β(1) > 0, ε(y∗n − w) → 0 as y∗n → ∞ uniformly in w < ay∗n. Consider the

piece

∫ ay∗n

−∞
[1 + ε(y∗n − w)]K2e

−2(y∗n−w)dFW (w)

= K2e
−2y∗n

∫ ay∗n

−∞
e2wdFW (w) +K2

∫ ay∗n

−∞
ε(y∗n − w)e−2(y∗n−w)dFW (w).

Examining the first integral,

lim
y∗n→∞

∫ ay∗n

−∞
K2e

2wdFW (w) = −1

2
Γ

(
1− 2β(1)

β(0)

)∫ ∞
−∞

e2wdFW (w)

= −1

2
Γ

(
1− 2β(1)

β(0)

)
E
(
e2W

)
= −1

2
Γ

(
1− 2β(1)

β(0)

)
E

[
exp

(
n−1∑
k=2

2β(k)

β(0)
Zk

)]

= −1

2
Γ

(
1− 2β(1)

β(0)

) n−1∏
k=2

E
(
e2β(k)Z1/β(0)

)
= −1

2

n−1∏
k=1

Γ

(
1− 2β(k)

β(0)

)
.

The last calculation was possible because 1− 2β(k)

β(0) > 0 for all 1 ≤ k ≤ n− 1. Turning to the

second integral,

K2

∫ ay∗n

−∞
ε(y∗n − w)e−2(y∗n−w)dFW (w) =

∫ ay∗n

−∞
R(y∗n − w)dFW (w)

=

∫ ay∗n

−∞
R(y∗n − w)eβ

(0)(y∗n−w)/β(1)

e−β
(0)(y∗n−w)/β(1)

dFW (w)

< c

∫ ay∗n

−∞
e−β

(0)(y∗n−w)/β(1)

dFW (w) ≤ ce−β
(0)y∗n/β

(1)

∫ ∞
−∞

eβ
(0)w/β(1)

dFW (w)

= cE
(
eβ

(0)W/β(1)
)
e−β

(0)y∗n/β
(1)

.

Therefore

K2

∫ ay∗n

−∞
ε(y∗n − w)e−2(y∗n−w)dFW (w) = O

(
e−β

(0)y∗n/β
(1)
)

= O
(
e−y/β

(1)
)
.
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Next, note that

∫ ∞
−∞

Γ

(
1− β(1)

β(0)

)
ewdFW (w) = Γ

(
1− β(1)

β(0)

)
E
(
eW
)

=
n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
.

We now consider the integral

K1e
−y∗n
∫ ay∗n

−∞
ewdFW (w) =

n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
e−y

∗
n − Γ

(
1− β(1)

β(0)

)
e−y

∗
n

∫ ∞
ay∗n

ewdFW (w).

Collecting all the terms,

∫ ay∗n

−∞
F V (y∗n − w)dFW (w) =

n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
e−y

∗
n − 1

2

n−1∏
k=1

Γ

(
1− 2β(k)

β(0)

)
e−2y∗n

+O
(
e−y/β

(1)
)
− Γ(1− β)e−y

∗
n

∫ ∞
ay∗n

ewdFW (w).

For the last integral above, note that by integration by parts

∫ ∞
ay∗n

ewdFW (w) = −
∫ ∞
ay∗n

ewdFW (w) = eay
∗
nFW (ay∗n) +

∫ ∞
ay∗n

FW (w)ewdw.

Observe that

eay
∗
nFW (ay∗n) ≤ E

[
exp

(
β(0)λW

β(1)

)]
exp

(
−
(
β(0)λ

β(1)
− 1

)
ay∗n

)
.

Similarly, we find

∫ ∞
ay∗n

FW (w)ewdw ≤ E

[
exp

(
β(0)λW

β(1)

)]∫ ∞
ay∗n

exp

(
−β

(0)λw

β(1)
+ w

)
dw

= E

[
exp

(
β(0)λW

β(1)

)](
β(0)λ

β(1)
− 1

)−1

exp

(
−
(
β(0)λ

β(1)
− 1

)
ay∗n

)
.
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Therefore for some c > 0 we obtain

∫ ∞
ay∗n

e−(y∗n−w)dFW (w) ≤ c exp

(
−
(
β(0)λa

β(1)
+ 1− a

)
y∗n

)
.

Finally, since β(2)

β(1) < a < 1 and λ > 1 we have that β(0)λa
β(1) + 1− a > β(0)

β(1) , and therefore

∫ ∞
ay∗n

e−(y∗n−w)dFW (w) = o
(
e−β

(0)y∗n/β
(1)
)

= o
(
e−y/β

(1)
)
.

The result follows since o
(
e−y/β

(1)
)

+O
(
e−y/β

(1)
)

= O
(
e−y/β

(1)
)

.

As mentioned earlier, Theorem 4.2 assumes that β(0) and β(1) each have multiplicity of one.

For application purposes, thanks to the choice of β(k) this will almost always be the case.

However, it may be possible to have ties when arbitrary constants are chosen. For instance, if

we were convolving a sequence of random variables from two different Gumbel distributions,

there may indeed be multiplicities to consider. Chapter 6 discusses how such a situation

would be handled.

In order to ease the notation with β(k), we restate Theorem 4.2 using new constants, which

are assumed to be positive.

Theorem 4.3. Let dk, k = 1, · · · , n, n ≥ 3 be positive constants, and define ck = d(k), the

order statistics arranged from largest to smallest. That is, c1 > c2 > c3 ≥ c4 ≥ · · · ≥ cn, and

in particular c1 = max(dk). Assume that c1 and c2 have multiplicities of 1. If 0 < 2c2 < c1,

then as y →∞ a two-term expansion is given by

P

(
n∑
k=1

dkZk > y

)
=

n∏
k=2

Γ

(
1− ck

c1

)
e−y/c1 − 1

2

n∏
k=2

Γ

(
1− 2ck

c1

)
e−2y/c1 +O

(
e−y/c2

)
.
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In the particular case where 0 < 2c2 = c1, the expansion is

P

(
n∑
k=1

dkZk > y

)
=

n∏
k=2

Γ

(
1− ck

c1

)
e−y/c1 −

n∏
k=3

Γ

(
1− 2ck

c1

)
y

c1

e−2y/c1 +O
(
e−y/c2

)
.

Lastly, when 0 < c1 < 2c2, the expansion is

P

(
n∑
k=1

dkZk > y

)
= − c2

c1 − c2

Γ

(
2− c1

c2

) n∏
k=3

Γ

(
1− ck

c2

)
e−y/c2

+
n∏
k=2

Γ

(
1− ck

c1

)
e−y/c1 + o

(
e−y/c2

)
.

4.6 Examples of AR(1) Processes

We now present several examples of how the process may appear in data analysis problems.

In all of the following examples it is assumed that β > 0 and that there are n <∞ units of

time. We denote the Gumbel realizations as X1, ..., Xn. It can be shown that the mean and

variance of the process Yn are given by

E(Yn) = γ
n−1∑
k=0

βkσn−k + µn and Var(Yn) =
π2

6

n−1∑
k=0

β2kσ2
n−k. (4.36)

Example 4.1. First, when all the µk = 0 and σk = 1, Yn reduces to the original process

described in Theorem 4.1, taken over a finite time period. In addition,

E(Yn) =
γ(1− βn)

1− β
and Var(Yn) =

π2(1− β2n)

6(1− β2)
.
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If 0 < β < 1, then we may extend the process to an AR(1), in which case as n→∞

E(Yn)→ γ

1− β
and Var(Yn)→ π2

6(1− β2)
.

Example 4.2. Now let µk = µ and σk = σ, σ > 0, the general i.i.d. case. Then µn =

µ(1− βn)/(1− β) and observe that

P (Yn > y) = P

(
n−1∑
k=0

βkZn−k >
y − µn
σ

)
= P

(
n−1∑
k=0

βkZn−k > y∗n

)
,

allowing Theorem 4.1 to be used. Observe that in this situation, O
(
e−y

∗
n/β
)

= O
(
e−y/σβ

)
and

O
(
e−2y∗n

)
= O

(
e−2y/σ

)
. Further note that for Lemma 4.9, y∗ne

−2y∗n = y
σ
e−2y∗n + O

(
e−2y/σ

)
.

Finally,

E(Yn) =
(γσ + µ)(1− βn)

1− β
and Var(Yn) =

π2σ2(1− β2n)

6(1− β2)
.

If 0 < β < 1, then as n→∞

E(Yn)→ γσ + µ

1− β
and Var(Yn)→ π2σ2

6(1− β2)
.

Example 4.3. Focusing just on the location parameters, let µk = µ + θk. Notice that this

definition is how we defined the location parameter given season in the Peachtree Creek

project, and θ = 0 corresponds to no significant linear time effect. Then

µn =
(µ+ θn)(1− βn)

1− β
− θ [β − nβn + (n− 1)βn+1]

(1− β)2
.

Example 4.4. Now suppose graphical evidence suggests the location parameter may have

a significant quadratic effect. Then define µk = µ+ θ1k + θ2k
2. By carefully computing the
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formula for
∑n−1

k=0 k
2βk, it can be shown that

µn =
(µ+ θ1n+ θ2n

2)(1− βn)

1− β
− (θ1 + 2nθ2)(β − nβn + (n− 1)βn+1)

(1− β)2

+
θ2 [β(1 + β)− n2βn + (2n2 − 2n− 1)βn+1 − (n− 1)2βn+2]

(1− β)3
.

Example 4.5. We now turn to the scale parameters. In data analysis it is often of interest

to define σk = σeφk, σ > 0, which ensures that the scales remain positive. In this example,

we assume that 0 < βe−φ < 1. Since βkσn−k = σenφ(βe−φ)k is strictly decreasing in k, it

follows that β(k) = βkσn−k, k = 0, 1, ..., n− 1. Then y∗n = (y − µn)/σ and the pivot point in

Theorem 4.2 is β(1)/β(0) = βe−φ. As y →∞, the first result in Theorem 4.2 reads

P (Yn > y) =
n−1∏
k=1

Γ
(
1− (βe−φ)k

)
e−y

∗
n − 1

2

n−1∏
k=1

Γ
(
1− 2(βe−φ)k

)
e−2y∗n +O

(
e−y/β

(1)
)
,

provided that 0 < βe−φ < 1
2
. Lastly, given appropriately computed µn, the mean and

variance of Yn are

E(Yn) = γσenφ
(

1− (βe−φ)n

1− βe−φ

)
+ µn and Var(Yn) =

σ2e2φnπ2

6

(
1− (βe−φ)2n

1− (βe−φ)2

)
.

Example 4.6. Now suppose graphical evidence suggests defining the scale parameters in

a linear fashion, namely σk = σ + φk, σ > 0. The advantage of such a definition is that

linearity makes interpretation of the parameters much easier than an exponential definition.

Of course, one has to be careful defining the parameter space of φ, for if φ < 0 then at some

point the scale parameters may become negative. Nevertheless, for application purposes we

will have a finite time period, so in some cases it is possible to fit a model and allow φ to

take on any real values. This definition is what we used in the Peachtree Creek data set.
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The first task is to obtain β(0) and β(1). If the βkσn−k are strictly decreasing in k, then

β(0) = σ+ nφ and β(1) = β(σ+ (n− 1)φ). However, this may not happen, depending on the

choice of values for the parameters. In which case, observe that the ratio of two consecutive

terms of βkσn−k is

βk+1(σ + φn− φ(k + 1))

βk(σ + φn− φk)
= β

(
1− φ

σ + φn− φk

)
.

The maximum value β(0) occurs at k = L, where L ≥ 1 satisfies

β

(
1− φ

σ + φn− φL

)
< 1 and β

(
1− φ

σ + φn− φ(L− 1)

)
> 1.

We need not investigate the equality possibility since it is assumed that multiplicities in the

β(0) and β(1) do not happen. Combining the two conditions, locate the L that satisfies

β

1− β
+
σ

φ
+ n < L <

β

1− β
+
σ

φ
+ n+ 1.

Then β(1) = max
[
βL−1(σ + φ(n+ 1− L)), βL+1(σ + φ(n− 1− L))

]
. Lastly, given µn, the

mean and variance of Yn are

E(Yn) = γ(σ + φn)

(
1− βn

1− β

)
− γφ

(
β − nβn + (n− 1)βn+1

(1− β)2

)
+ µn

and

Var(Yn) =
π2(σ + φn)2

6

(
1− β2n

1− β2

)
− π2φ(σ + φn)

3

(
β2 − nβ2n + (n− 1)β2(n+1)

(1− β2)2

)
+
π2φ2

6

(
β2(1 + β2)− n2β2n + (2n2 − 2n− 1)β2(n+1) − (n− 1)2β2(n+2)

(1− β2)3

)
.
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4.7 Simulation Results

Using a similar setup as in Chapter 3, we now check how our six approximations behave for

various values of −1 < β < 1. Let Y represent the AR(1) process. We simulate N = 10

million values of Y and graph the empirical tail probability, as well as the appropriate

second-order approximation from Theorem 4.1, in Figure 4.1. For comparison purposes we

also graph the first-order approximation.

Figure 4.1: First and Second-Order Approximations for 0 < β < 1
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We first investigate what happens for various positive values of β, especially near the β = 1
2

pivot point. Figure 4.1 displays the empirical probability (solid black line), the first-order
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approximation (dashed red line), and the second-order approximation (dotted blue line)

for the 95th percentile and higher. Table 4.1 displays the raw errors at specified percentiles,

defined as empirical minus estimated probabilities. Table 4.2 contains the relative errors, the

raw error divided by the estimated probability. In both tables, for a given β and percentile

the better approximation is highlighted.

Table 4.1: Errors in Approximations of Theorem 4.1
β Approx 95% 97.5% 98% 99% 99.5% 99.9% 99.99%

0.10
1st -0.0013 -0.0003 -0.0002 -6.2e-5 3.7e-7 1.4e-6 -3.9e-7
2nd 7.9e-6 3.9e-6 -1.3e-5 -1.0e-5 1.3e-5 2.0e-6 -3.8e-7

0.20
1st -0.0015 -0.0004 -0.0002 -5.2e-5 5.7e-6 1.9e-6 2.6e-6
2nd -6.3e-5 -3.8e-5 2.1e-5 3.1e-6 1.9e-5 2.5e-6 2.6e-6

0.40
1st -0.0024 -0.0007 -0.0004 -7.9e-5 -2.9e-8 -1.5e-6 -1.3e-6
2nd 0.0006 5.6e-5 4.1e-5 3.3e-5 2.8e-5 -4.6e-7 -1.3e-6

0.49
1st -0.0042 -0.0012 -0.0008 -0.0003 -0.0001 -2.2e-5 -4.0e-6
2nd 0.0247 0.0055 0.0034 0.0008 0.0001 -1.2e-5 -3.9e-6

0.50
1st -0.0044 -0.0012 -0.0008 -0.0002 -8.8e-5 -2.3e-5 -5.0e-7
2nd 8.1e-5 5.0e-5 2.6e-6 4.0e-6 -2.5e-5 -1.9e-5 -4.6e-7

0.51
1st -0.0047 -0.0012 -0.0008 -0.0002 -5.0e-5 -2.4e-6 -3.6e-6
2nd 0.0292 0.0068 0.0043 0.0010 0.0003 1.1e-5 -3.4e-6

0.60
1st -0.0093 -0.0028 -0.0019 -0.0006 -0.0002 -2.9e-5 1.3e-8
2nd 0.0039 0.0009 0.0006 0.0001 4.2e-5 -1.4e-5 3.3e-7

0.80
1st -0.0861 -0.0303 -0.0219 -0.0082 -0.0031 -0.0003 -1.6e-5
2nd 0.0401 0.0106 0.0070 0.0020 0.0006 5.8e-5 2.7e-6

0.90
1st -1.5883 -0.5002 -0.3511 -0.1220 -0.0442 -0.0048 -0.0002
2nd 3.1579 0.8407 0.5604 0.1670 0.0523 0.0042 0.0001

At first, we see very similar results as those from Figure 3.1. Once again, for 0 < β <

0.40 there is virtually no difference in estimation between the approximations, although

the second-order is slightly more accurate. Also the second-order approximation is better

than the first-order for β = 0.50. In addition, we once again have a neighborhood around

β = 0.50 in which the first-order is better for lower percentiles. This time, the neighborhood

is approximately [0.47, 0.53].

However, after this neighborhood ends we start to see some differences. For β = 0.60 and

0.80, the second-order is again better than the first, although for the latter both approxi-
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Table 4.2: Relative Errors in Approximations of Theorem 4.1
β Approx 95% 97.5% 98% 99% 99.5% 99.9% 99.99%

0.10
1st -0.0260 -0.0128 -0.0110 -0.0061 0.0001 0.0014 -0.0039
2nd 0.0002 0.0002 -0.0007 -0.0010 0.0026 0.0020 -0.0038

0.20
1st -0.0296 -0.0155 -0.0101 -0.0052 0.0011 0.0019 0.0262
2nd -0.0013 -0.0015 0.0010 0.0003 0.0039 0.0025 0.0262

0.40
1st -0.0466 -0.0261 -0.0205 -0.0079 -0.0000 -0.0016 -0.0132
2nd 0.0120 0.0023 0.0020 0.0033 0.0055 -0.0005 -0.0131

0.49
1st -0.0768 -0.0468 -0.0407 -0.0261 -0.0230 -0.0217 -0.0382
2nd 0.9760 0.2847 0.2068 0.0833 0.0288 -0.0117 -0.0373

0.50
1st -0.0804 -0.0450 -0.0391 -0.0217 -0.0172 -0.0222 -0.0049
2nd 0.0016 0.0020 0.0001 0.0004 -0.0049 -0.0191 -0.0045

0.51
1st -0.0859 -0.0473 -0.0384 -0.0230 -0.0098 -0.0024 -0.0347
2nd 1.3989 0.3720 0.2727 0.1149 0.0565 0.0111 -0.0333

0.60
1st -0.1569 -0.1021 -0.0869 -0.0569 -0.0357 -0.0286 0.0001
2nd 0.0847 0.0375 0.0314 0.0148 0.0086 -0.0139 0.0033

0.80
1st -0.6327 -0.5483 -0.5231 -0.4497 -0.3855 -0.2479 -0.1346
2nd 4.0589 0.7410 0.5431 0.2523 0.1349 0.0616 0.0281

0.90
1st -0.9695 -0.9524 -0.9461 -0.9242 -0.8984 -0.8281 -0.7101
2nd -1.0161 -1.0306 -1.0370 -1.0637 -1.1056 -1.3138 -3.2141

mations begin to perform poorly for percentiles less than the 99th. And finally, for β = .90

both approximations are useless. This is not a surprising result since according to Tables

B.5 and B.6 in the appendices, the infinite products in the expansions grow large quickly.

In Chapter 3, we discovered that the two approximations were very accurate and indis-

tinguishable for −1 < β < 0, and for that reason excluded the results. However, here we

actually do have some interesting differences as β gets closer to -1. Figure 4.2 explores vari-

ous negative values of β. This time we investigate what happens in a neighborhood around

the pivot point β =
√

2
2

. We estimate the neighborhood to be [−0.73,−0.68].
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Figure 4.2: First and Second-Order Approximations for −1 < β < 0
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As before, for β not too near the pivot point we see hardly any difference in estimation.

In the neighborhood around β =
√

2
2

, the first-order approximation is better, and this time

including the pivot point itself. But for −1 < β < −0.80, both approximations are poor

except for very high percentiles. The conclusions we can draw are as follows:

1. On β ∈ [−0.73,−0.68] ∪ [0.47, 0.53)\ {0.50}, use the first-order approximation.

2. On β ∈ [−0.80,−0.73) ∪ (−0.68, 0.47) ∪ {0.50} ∪ (0.53, 0.80], use the second-order

approximation.
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3. Except for very high percentiles, both approximations are useless for β ∈ (−1,−0.80)∪

(0.80, 1).

4.8 Fitting the Model to the Peachtree Creek Data

Having established the theory behind Theorem 4.2, we now fit the model in (4.37) to the

Peachtree Creek data set used in Chapter 2. We first review the notation that was used.

Recall that xti was the maximum mean streamflow in year t and season i, t = 1, ..., 52 and

i = 1, ..., 4. The seasons were, respectively, summer, fall, winter, and spring, while t = 1

corresponded to the time period June 1, 1958 through May 31, 1959.

To update the cumulative distribution function, we have

F (xti) = exp

{
−
[
1 +

ξi(xti − µi(t)
σi(t)

]− 1
ξi

}
, ξi 6= 0, 1 +

ξi(xti − µi(t))
σi(t)

> 0, (4.37)

where µi(t) = µi + ηit+ βxt−1,i and σi(t) = σi + φit, otherwise

F (xti) = exp

{
− exp

[
−
(
xti − µi(t)
σi(t)

)]}
, ξi = 0. (4.38)

Recall that summer and winter (i = 1, 3) satisfied the Gumbel model, while fall and spring

(i = 2, 4) had a shape parameter that was significantly different from 0. Therefore we refit

the data keeping these same shapes per season, only introducing the βi. If lnLi is the log
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likelihood per season with a total of either five or six parameters, then for fall and winter

lnLi = −
52∑
t=2

{
log(σi(t)) +

(
1

ξi
+ 1

)
log

(
1 +

ξi(xti − µi(t))
σi(t)

)

+

(
1 +

ξi(xti − µi(t))
σi(t)

)− 1
ξi

}
,

provided that both of the 1 + [ξi(xti − µi(t))]/σi(t) > 0, otherwise lnLi = −∞. For summer

and winter,

lnLi = −
52∑
t=2

{
log(σi(t)) +

(
xti − µi(t)
σi(t)

)
+ exp

[
−
(
xti − µi(t)
σi(t)

)]}
.

The results for all 22 parameters are shown in Table 4.3.
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Table 4.3: Estimated Parameters per Season
Season Param. Estimate SE 90% Confidence T-Stat P-Value

Summer

ξ1 0 — — — —
µ1 763.7013 190.4298 (444.0344, 1083.3682) 4.0104 0.0002
σ1 454.0155 105.7854 (276.4378, 631.5932) 4.2919 9.0e-5
η1 7.2813 6.2497 (-3.2098, 17.7723) 1.1651 0.2500
β1 0.0023 0.1191 (-0.1977, 0.2023) 0.0196 0.9845
φ1 5.2739 3.9347 (-1.3312, 11.8790) 1.3403 0.1867

Fall

ξ2 0.2444 0.1321 (0.0225, 0.4663) 1.8500 0.0709
µ2 483.3228 165.3661 (205.6025, 761.0432) 2.9227 0.0054
σ2 254.7333 138.1127 (22.7830, 486.6835) 1.8444 0.0717
η2 18.0495 7.4977 (5.4577, 30.6413) 2.4073 0.0202
β2 0.0342 0.0888 (-0.1149, 0.1832) 0.3851 0.7020
φ2 15.5458 6.8602 (4.0245, 27.0671) 2.2661 0.0283

Winter

ξ3 0 — — — —
µ3 1718.9809 406.1681 (1037.1625, 2400.7992) 4.2322 0.0001
σ3 1097.5508 239.9702 (694.7224, 1500.3793) 4.5737 3.6e-5
η3 -11.0343 8.1862 (-24.7760, 2.7075) -1.3479 0.1843
β3 0.0329 0.1176 (-0.1646, 0.2304) 0.2798 0.7809
φ3 -11.2262 7.0487 (-23.0587, 0.6062) -1.5927 0.1181

Spring

ξ4 0.7813 0.2262 (0.4013, 1.1613) 3.4534 0.0012
µ4 1716.7448 256.6974 (1285.6402, 2147.8495) 6.6878 3.0e-8
σ4 851.9976 280.5456 (380.8416, 1323.1536) 3.0369 0.0040
η4 -14.3076 6.8744 (-25.8527, -2.7625) -2.0813 0.0431
β4 -0.0219 0.0361 (-0.0825, 0.0388) -0.6056 0.5478
φ4 -7.0763 8.4730 (-21.3061, 7.1536) -0.8352 0.4080

We should point out that in Figures 2.9 and 2.10, there was no visual evidence of a significant

effect from the most recent observation in any of the seasons. That is, in the ACF and PACF

plots, there were no spikes at lag 1. Therefore it is not a surprise that none of the βi estimates

are significantly different from 0. We might as well drop them from the model and stick with

the one we fit in Section 2.4. The rest of the estimates are fairly similar to those in Table

2.4.

Nevertheless, to illustrate how Theorem 4.2 works in practice, we shall keep working with

this model from Table 4.3. First, if Vi, i = 1, ..., 4 is the variance-covariance matrix for season

i and the 0’s are matrices with zero entries and appropriate dimensions, then the complete
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variance-covariance matrix of all 22 parameters is given by

V =



V1 0 0 0

0 V2 0 0

0 0 V3 0

0 0 0 V4


,

Furthermore, the Vi are

V1 =



36263.491 7424.394 −600.696 −11.959 −235.107

7424.394 11190.541 −160.155 −1.584 −331.015

−600.696 −160.155 39.058 −0.248 7.046

−11.959 −1.584 −0.248 0.014 0.056

−235.107 −331.015 7.046 0.056 15.482


,

V2 =



0.018 −0.030 2.047 −0.171 −0.001 −0.157

−0.030 27345.946 17984.451 −702.497 −6.601 −774.701

2.047 17984.451 19075.122 −581.837 −3.224 −806.763

−0.171 −702.497 −581.837 56.215 −0.181 33.720

−0.001 −6.601 −3.224 −0.181 0.008 0.157

−0.157 −774.701 −806.763 33.720 0.157 47.063


,
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V3 =



164972.554 25866.431 −2719.661 −34.301 −690.081

25866.431 57585.694 −773.508 0.928 −1578.765

−2719.661 −773.508 67.013 0.270 24.185

−34.301 0.928 0.270 0.014 −0.044

−690.081 −1578.765 24.185 −0.044 49.685


,

and

V4 =



0.051 −12.851 9.006 −0.0155 0.001 −0.406

−12.851 65893.547 54686.021 −1455.030 −2.991 −1350.792

9.006 54686.021 78705.844 −1528.451 0.799 −2113.446

−0.016 −1455.030 −1528.451 47.258 −0.006 49.950

0.001 −2.991 0.7993 −0.006 0.001 −0.036

−0.406 −1350.792 −2113.446 49.950 −0.036 71.793


.

We examine summer and winter since these are the only two seasons which contain a Gumbel

fit. Starting with summer, µ52 = 1144.9810, β
(0)
1 = 728.2586, and β

(1)
1 = 1.6860, so we use

the first equation in Theorem 4.2. Then it can be shown that

P (Y52 > y) ≈ 4.8238e−0.0014y − 11.6346e−0.0027y.

We can also compute the approximate high percentiles. If P = P (Y52 > y) is lower than

0.05, for instance, and y is the corresponding streamflow, then the 100(1 − P )th percentile

is

y ≈ −728.2586 log

(
0.2073−

√
23.2690− 46.5385P

23.2693

)
.
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Now we turn to winter: µ52 = 1184.5620, β
(0)
3 = 513.7875, and β

(1)
3 = 17.2798. Then by the

first equation in Theorem 4.2,

P (Y52 > y) ≈ 10.2429e−0.0019y − 52.5613e−0.0039y.

Winter’s 100(1− P )th percentile is then

y ≈ −513.7875 log

(
0.0974−

√
104.9168− 210.2453P

105.1227

)
.

Table 4.4 highlights some of the key upper percentiles. Note the missing value in the table;

setting P = .0001 in winter’s percentile equation gave a nonreal result.

Table 4.4: Estimated Percentiles per Season
Season 95% 97.5% 98% 99% 99.5% 99.9% 99.99%

Summer 3309 3824 3988 4497 5005 6187 7975
Winter 2725 3092 3210 3579 3957 4993 –

4.9 Open Questions

There are a couple of questions that are currently left unanswered. The first topic is how

to derive the expansions in Section 4.5 for the case where β < 0. In Section 4.4 we grouped

the random variables by positive and negative weights, so we conjecture that the negative

expansions to complete Section 4.6 would be grouped in a similar way. The expansion should

then be controlled by the two largest positive weights. Therefore the expansions would be

extensions of those derived in Section 4.4.

The second topic to investigate is extending the approximations in Section 4.6 to include
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infinite sums of weighted random variables, such as those summarized in Section 4.5. This

generalization would require some additional proofs and assumptions, namely some exten-

sions of the lemmas in Section 4.2. In addition, some sort of summability condition on the

β(k) would be needed. One common requirement on constants that appears in other disci-

plines is to assume that
∑

k

∣∣β(k)
∣∣λ <∞ for some λ > 0. We conjecture that this stipulation,

along with some additional lemmas, would provide the probability approximations for an

infinite series with Gumbel convolutions.
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Chapter 5 The Convolution of Gumbel Random Variables

5.1 Introduction

In the realm of environmental and nonenvironmental statistics, it is often of interest to study

the behavior of the sum of maximum observations. For example, suppose an insurance

company wants to find the distribution of the total maximum claim amounts taken over

specified blocks of time. If a Gumbel distribution fits the monthly maximum claim amounts,

then the company may want to know the distribution of the total claim amounts over a year

(or indeed, the average monthly figure). This problem involves deriving the distribution

of twelve Gumbel random variables. If the variables all have different location and scale

parameters, then we may use Theorem 4.3 to approximate the upper tail probabilities.

However, if the Gumbel random variables are independent and identically distributed,

then the weights will all be equal. In which case, the asymptotics need to be studied in a

very different manner, and the formula we eventually derive is quite different from the results

in Chapter 4. This chapter explores how the approximation changes under such a setting.

As another example relating to the Peachtree Creek data, recall that winter was shown

to be stationary in the location and scale parameters. Suppose we refit the data for that

season, removing year as a covariate, and then we find the distribution of the total winter

maximum streamflow over five years. All weights would be equal, and we would need to use

the results from this chapter to answer that question. This topic will be explored in Section

5.8.

Rootzén (1986) carried out a similar study on a more general class of independent random

variables. In that paper, he derived the first-order expansion under some assumptions on

both the variables and the weights. The Gumbel distribution is a special case of his result.
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In this chapter we employ similar techniques that Rootzén used in his proof. We start

by finding the two-term expansion for the sum of just two Gumbel random variables using a

creative Taylor series approach. Then in Section 5.3 we find the general two-term expansion

for the sum of n ≥ 2 variables which fall into a more general class, then reduce to the

Gumbel case. After examining simulation results, we derive further terms in the expansion

in Section 5.4. The final result in its entirety is summarized in Section 5.5, with examples,

more simulations, and a data analysis in the remainder of the chapter.

5.2 The Convolution of Two Gumbel Random Variables

To begin the procedure, we first derive a two-term expansion for the tail probability of the

sum of two Gumbel random variables. We do this by performing an infinite Taylor series

expansion and then working out which terms are negligible. While a somewhat lengthy

and tedious procedure, our method has the advantage that if one desires more terms in the

expansion, one can simply modify the proof to get those extra terms. In the next section,

we introduce some theory to get a general two-term expansion.

Let Z1, Z2 be independent and identically distributed standard Gumbel random variables

with distribution function FZi(x) = exp{−e−x} and therefore density function fZi(x) =

e−x exp−e−x,−∞ < x <∞. The formula for the upper tail probability of such a convolution

is

P (Z1 + Z2 > y) = 1−
∫ ∞
−∞

fZ1(x)FZ2(y − x)dx. (5.1)
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Adapting (5.1) to the Gumbel case gives

P (Z1 + Z2 > y) = 1−
∫ ∞
−∞

e−x exp
{
−[e−x + e−yex]

}
dx

= 1−
∫ ∞

0

e−[x+e−yx−1]dx =

∫ ∞
0

e−x
[
1− e−e−yx−1

]
dx.

Define t = e−y. Then it is of interest to examine the tail probability as t ↓ 0, which is

equivalent to letting y →∞. Then the tail probability formula is

P (Z1 + Z2 > y) =

∫ ∞
0

e−x
[
1− e−zx−1

]
dx. (5.2)

During the proof of the expansion, we need to compute the integral

∫ ∞
a

x−ke−xdx for k ≥ 1.

Integration by parts tells us that when k = 1 and a > 0

∫ ∞
a

x−1e−xdx = − log(a)e−a +

∫ ∞
a

log(x)e−xdx. (5.3)

Lemma 5.1 establishes the recursive answer for k ≥ 2.

Lemma 5.1. Define Πk(j) =

j∏
L=1

(
1

k − L

)
for j = 1, ..., k − 1. In particular, Πk(k − 2) =

Πk(k − 1) = 1
(k−1)!

. Then for a > 0 and k ≥ 2,

∫ ∞
a

x−ke−xdx =

[
k−1∑
j=1

(−1)j−1aj−kΠk(j)

]
e−a +

(−1)k log(a)e−a

(k − 1)!

+
(−1)k−1

(k − 1)!

∫ ∞
a

log(x)e−xdx.

(5.4)
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Proof. We proceed by induction on k. When k = 2, integration by parts provides

∫ ∞
a

x−2e−xdx = a−1e−a −
∫ ∞
a

x−1e−xdx = a−1e−a + log(a)e−a −
∫ ∞
a

log(x)e−xdx.

Then (5.4) reduces to

∫ ∞
a

x−2e−xdx = a−1e−a + log(a)e−a −
∫ ∞
a

log(x)e−xdx,

because Π2(1) = 1. Now assume that (5.4) is true; we shall do integration by parts on

∫ ∞
a

x−(k+1)e−xdx.

Setting u = e−x and dv = x−(k+1)dx, we obtain du = −e−xdx and v = − 1
k
x−k. The integral

becomes∫ ∞
a

x−(k+1)e−xdx =
1

k
a−ke−a − 1

k

∫ ∞
a

x−ke−xdx

=
1

k
a−ke−a − 1

k

[
k−1∑
j=1

(−1)j−1aj−kΠk(j)

]
e−a +

(−1)k+1

k!
log(a)e−a

+
(−1)k

k!

∫ ∞
a

log(x)e−xdx

=

(k+1)−1∑
j=1

(−1)j−1aj−(k+1)Πk+1(j)

 e−a +
(−1)k+1

((k + 1)− 1)!
log(a)e−a

+
(−1)(k+1)−1

((k + 1)− 1)!

∫ ∞
a

log(x)e−xdx,

as required.

Now recall Euler’s constant γ from (1.7), which to five decimals is γ ≈ 0.57721. We introduce
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two integrals which come from Choi and Seo (1998) and will be used in the next proof:

γ = −
∫ ∞

0

log(x)e−xdx (5.5)

and

γ =

∫ 1

0

x−1[1− e−x]dx−
∫ ∞

1

x−1e−xdx,

the latter of which can be rewritten via integration by parts as the more useful

γ =

∫ 1

0

x−1[1− e−x]dx−
∫ ∞

1

log(x)e−xdx. (5.6)

We now state and prove the following theorem.

Theorem 5.1. Let Z1, Z2 be independent and identically distributed Gumbel random vari-

ables. As y →∞, a two-term expansion for the tail probability of Z1 + Z2 is

P (Z1 + Z2 > y) = (y + 1− 2γ) e−y + o(e−y).

Proof. Set t = e−y and split (5.2) into two integrals:

P (Z1 + Z2 > y) =

∫ ∞
t

e−x
[
1− e−tx−1

]
dx+

∫ t

0

e−x
[
1− e−tx−1

]
dx = J1 + J2. (5.7)

Consider J1 first. An infinite Taylor expansion gives

J1 =

∫ ∞
t

∞∑
i=1

(−1)i−1ti

i!
x−ie−xdx.
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Observe that ∣∣∣∣(−1)i−1ti

i!
x−ie−x

∣∣∣∣ ≤ 1

i!
e−x,

because 0 < x−i ≤ t−i on x ∈ (t,∞). Therefore the integrand is integrable on the counting

and Lebesgue measures, and so by Fubini’s Theorem,

J1 =
∞∑
i=1

(−1)i−1ti

i!

∫ ∞
t

x−ie−xdx.

Split into the {i = 1} and {i ≥ 2} cases via

J1 = t

∫ ∞
t

x−1e−xdx+
∞∑
i=2

(−1)i−1ti

i!

∫ ∞
t

x−ie−xdx,

and simplifying using Lemma 5.1,

J1 = −t log(t)e−t + t

∫ ∞
t

log(x)e−xdx+
∞∑
i=2

(−1)i−1ti

i!

{
i−1∑
j=1

(−1)j−1tj−iΠi(j)e
−t

+
(−1)i

(i− 1)!
log(t)e−t +

(−1)i−1

(i− 1)!

∫ ∞
t

log(x)e−xdx

}
= −t log(t)e−t + t

∫ ∞
t

log(x)e−xdx+

[
∞∑
i=2

i−1∑
j=1

(−1)i+jtjΠi(j)

i!

]
e−t

−
∞∑
i=2

ti log(t)e−t

i!(i− 1)!
+
∞∑
i=2

ti

i!(i− 1)!

∫ ∞
t

log(x)e−xdx

= (I) + (II) + (III) + (IV ) + (V ).

(5.8)

We now examine each of the five pieces in (5.8). To start, (I) = −t log(t) + o(t) as t ↓ 0, and

by (5.5),

(II) = −γt− t
∫ t

0

log(x)e−xdx.
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Observe that

∣∣∣∣−t∫ t

0

log(x)e−xdx

∣∣∣∣ ≤ t

∫ t

0

log(x)dx = t2 log(t)− t2 = o(t),

and therefore (II) = −γt+ o(t) as t ↓ 0. Next, (III) provides terms involving ti, i = 1, 2, ....

We pick off those involving just t and show that what remains is o(t). To do this, it is

convenient to change the order of summation. Observe that

∣∣∣∣(−1)i+jtjΠi(j)

i!

∣∣∣∣ ≤ 1

i!
tj,

which is integrable on the two counting measures because t ↓ 0. Thus

∞∑
i=2

i−1∑
j=1

(−1)i+jtjΠi(j)

i!
=
∞∑
j=1

∞∑
i=j+1

(−1)i+jΠi(j)

i!
tj = Λ1t+

∞∑
j=2

∞∑
i=j+1

(−1)i+jΠi(j)

i!
tj,

where Λ1 =
∑∞

i=2
(−1)i−1

i!(i−1)
. Λ1 converges and, to five decimals, is equal to -0.42872. As for the

remainder, ∣∣∣∣∣
∞∑
j=2

∞∑
i=j+1

(−1)i+jΠi(j)

i!
tj

∣∣∣∣∣ ≤
[
∞∑
i=2

1

i!

]
t2 ≤ t2.

Thus the remainder converges and is o(t), and therefore

(III) =

[
∞∑
i=2

i−1∑
j=1

(−1)i+jtjΠi(j)

i!

]
e−t = Λ1te

−t + o(te−t) = Λ1t+ o(t). (5.9)

Next, (IV ) is ∣∣∣∣∣−
∞∑
i=2

ti log(t)e−t

i!(i− 1)!

∣∣∣∣∣ ≤
[
∞∑
i=2

1

i!

]
t2 log(t)e−t ≤ t2 log(t)e−t,
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and therefore (IV ) = o(t). Examining (V ),

∣∣∣∣∣−
∞∑
i=2

ti

i!(i− 1)!

∫ ∞
t

log(x)e−xdx

∣∣∣∣∣ ≤ γ

[
∞∑
i=2

1

i!

]
t2 ≤ γt2,

so (V ) = o(t) as well. Putting all five terms in (5.8) together, as t ↓ 0

J1 = −t log(t) + (Λ1 − γ)t+ o(t). (5.10)

The next step is to examine J2 in (5.7). We employ another Taylor series expansion:

J2 =

∫ t

0

e−x
[
1− e−tx−1

]
dx =

∫ t

0

∞∑
i=0

(−1)i

i!
xi
[
1− e−tx−1

]
dx.

Observe that 1− e−1 ≤ 1− e−tx−1 ≤ 1 on x ∈ (0, t), and therefore

∣∣∣∣(−1)i

i!
xi
[
1− e−tx−1

]∣∣∣∣ ≤ 1

i!
xi,

which is integrable on both measures. Therefore we use Fubini’s Theorem again, along with

a change of variables:

J2 =
∞∑
i=0

(−1)i

i!

∫ t

0

xi
[
1− e−tx−1

]
dx =

∞∑
i=0

(−1)i

i!

∫ ∞
1

(tx−1)i(tx−2)
[
1− e−x

]
dx

=
∞∑
i=0

(−1)i

i!
ti+1

∫ ∞
1

x−(i+2)
[
1− e−x

]
dx

=
∞∑
i=0

(−1)i

i!
ti+1

{∫ ∞
1

x−(i+2)dx−
∫ ∞

1

x−(i+2)e−xdx

}
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=
∞∑
i=0

(−1)i

i!
ti+1

{
1

i+ 1
−
∫ ∞

1

x−(i+2)e−xdx

}
=

[
1−

∫ ∞
1

x−2e−xdx

]
t+

∞∑
i=1

(−1)i

i!
ti+1

{
1

i+ 1
−
∫ ∞

1

x−(i+2)e−xdx

}
.

Now we use Lemma 5.1 with k = i+ 2 and a = 1. The last integral above becomes

∫ ∞
1

x−(i+2)e−xdx = e−1

i+1∑
j=1

(−1)j−1Πi+2(j) +
(−1)i+1

(i+ 1)!

∫ ∞
1

log(x)e−xdx.

Put an upper bound on R =
∞∑
i=1

(−1)i

i!
ti+1

{
1

i+ 1
−
∫ ∞

1

x−(i+2)e−xdx

}
:

|R| ≤ t2
∞∑
i=1

1

i!

[
1

i+ 1
+ e−1

i+1∑
j=1

Πi+2(j) +
1

(i+ 1)!

∫ ∞
1

log(x)e−xdx

]

≤ t2
∞∑
i=1

1

i!

[
1

i+ 1
+ e−1

i+1∑
j=1

1

i+ 1
+

1

(i+ 1)!

∫ ∞
1

log(x)e−xdx

]

≤ t2
∞∑
i=1

1

i!

[
1

i+ 1
+ e−1 +

1

(i+ 1)!

∫ ∞
1

log(x)e−xdx

]

= t2

{
∞∑
i=2

1

i!
+ e−1

∞∑
i=1

1

i!
+
∞∑
i=1

1

i!(i+ 1)!

∫ ∞
1

log(x)e−xdx

}

≤ 2t2
{

1 +

∫ ∞
1

log(x)e−xdx

}
≤ 2t2.

Therefore R = o(t), and so

J2 =

[
1−

∫ ∞
1

x−2e−x
]
t+ o(t) =

[
1− e−1 +

∫ ∞
1

log(x)e−xdx

]
t+ o(t). (5.11)
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Putting (5.10) and (5.11) into (5.7), as t ↓ 0

P (Z1 + Z2 > y) = −t log(t) +

[
Λ1 − γ + 1− e−1 +

∫ ∞
1

log(x)e−xdx

]
t+ o(t).

It remains to show that Λ1 − γ + 1 − e−1 +

∫ ∞
1

log(x)e−xdx = 1 − 2γ. The first step is to

expand the following integral as a Taylor series:

∫ 1

0

x−1
[
1− e−x

]
dx =

∫ 1

0

x−1

∞∑
i=1

(−1)i−1xi

i!
dx =

∞∑
i=1

(−1)i−1

i!

∫ 1

0

xi−1dx

= −
∞∑
i=1

(−1)i

i!i
.

Again, the interchanging of integration and summation is possible because

∣∣∣∣(−1)i−1

i!
xi−1

∣∣∣∣ ≤ xi−1

i!
,

which is integrable on the counting measure and on x ∈ (0, 1). Next, we write Λ1− e−1 as a

Taylor series by first expanding e−1:

Λ1 − e−1 =
∞∑
i=2

(−1)i−1

i!(i− 1)
−
∞∑
i=0

(−1)i

i!
=
∞∑
i=2

(−1)i−1

i!(i− 1)
+
∞∑
i=2

(−1)i−1

i!

=
∞∑
i=2

(−1)i−1

i!

[
1

i− 1
+ 1

]
=
∞∑
i=2

(−1)i−1

(i− 1)!(i− 1)
=
∞∑
i=1

(−1)i

i!i

= −
∫ 1

0

x−1
[
1− e−x

]
dx.

Now (5.6) provides

−γ = −
∫ 1

0

x−1
[
1− e−x

]
dx+

∫ ∞
1

log(x)e−xdx = Λ1 − e−1 +

∫ ∞
1

log(x)e−xdx,
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and finally

Λ1 − γ + 1− e−1 +

∫ ∞
1

log(x)e−xdx = 1− 2γ.

Converting t = e−y, the two-term expansion as y →∞ is

P (Z1 + Z2 > y) = (y + 1− 2γ)e−y + o
(
e−y
)
.

Corollary 5.1. Let Z1, Z2 be independent and identically distributed Gumbel random vari-

ables, and let c > 0. As y →∞, a two-term expansion for the tail probability of c(Z1 + Z2)

is

P (c(Z1 + Z2) > y) =
(y
c

+ 1− 2γ
)
e−y/c + o(e−y/c).

5.3 The Two-Term N-Fold Convolution

We were able to derive a two-term expansion for the sum of two Gumbel random variables,

albeit in a messy way. It should come as no surprise that for more than two variables,

derivations with Taylor series would be too involved and complicated. It would be much

more sensible to show the result holds for a more general class of distributions, then use

that result to specialize to the Gumbel. The purpose of including the preceding proof was

to show an interesting alternative method of checking the distribution for two Gumbels. We

now turn to the general setting.

Let F denote a distribution function with support in [0,∞). It is supposed that F (0) = 0

and that for some α > 1,

1− F (y) = e−y + o
(
e−αy

)
as y →∞. (5.12)

126



Define

θ = −
∫ ∞

0

eyd(F (y)− e−y) =

∫ ∞
0

eyd(F (y) + e−y) = lim
y→∞

[∫ y

0

exdF (x)− y
]
, (5.13)

and so we see that θ provides a measure of how much departure there is from F and the

standard exponential distribution. Now define

An(y) =

(
1

(n− 1)!
yn−1 +

1 + nθ

(n− 2)!
yn−2

)
e−y, n ≥ 2. (5.14)

The goal is to show that An(y) serves as a two-term expansion for Gn(y) = 1 − F ∗n(y)

as y → ∞. The first task is to demonstrate that An approximately satisfies the same

convolution equation as Gn.

Lemma 5.2. For n ≥ 2, as z →∞

∫ z/2

0

An(z − y)dF (y)−
∫ z/2

0

(1− F (z − y))dAn(y) + An

(z
2

)
F
(z

2

)
= An+1(z) +O

(
zn−2e−z

)
.

Proof. For n ≥ 2, define k
(n)
1 = 1

(n−1)!
and k

(n)
2 = 1+nθ

(n−2)!
and write

An(y) =
(
k

(n)
1 yn−1 + k

(n)
2 yn−2

)
e−y.

We first notice that for any k ≥ 0, an integration by parts establishes that

∫ z/2

0

(z − y)keydF (y) =

∫ z/2

0

F (y)
(
−k(z − y)k−1 + (z − y)k

)
eydy

−
(z

2

)k
F
(z

2

)
ez/2 + zk,

(5.15)
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with −k(z − y)k−1 + (z − y)k = 1 for k = 0. Now for k ≥ 0

∫ z/2

0

(z − y)k
(
eyF (y)− 1

)
dy = zk+1

∫ 1/2

0

(1− y)k
(
ezyF (zy)− 1

)
dy.

Next note that for any ε > 0 and z large enough

∫ 1/2

1/
√
z

(1− y)k
∣∣ezyF (zy)− 1

∣∣ dy ≤ ε

∫ 1/2

1/
√
z

e−(α−1)zydy ≤ ε

(α− 1)z
e−(α−1)

√
z,

and therefore ∫ 1/2

1/
√
z

(1− y)k
∣∣ezyF (zy)− 1

∣∣ dy = o

(
1

z
e−(α−1)

√
z

)
. (5.16)

Note that

z

∫ 1/
√
z

0

(1− y)k
(
ezyF (zy)− 1

)
dy =

∫ √z
0

(
1− y

z

)k (
eyF (y)− 1

)
dy

=

∫ √z
0

(
eyF (y)− 1

)
dy +

∫ √z
0

((
1− y

z

)k
− 1

)(
eyF (y)− 1

)
dy.

(5.17)

Thus we have as z →∞

∫ √z
0

∣∣∣∣(1− y

z

)k
− 1

∣∣∣∣ ∣∣eyF (y)− 1
∣∣ dy ≤ k

z

∫ ∞
0

y
∣∣eyF (y)− 1

∣∣ dy = O

(
1

z

)
, (5.18)

and further for any ε > 0 and z large enough

∫ ∞
√
z

∣∣eyF (y)− 1
∣∣ dy ≤ ε

∫ ∞
√
z

e−(α−1)ydy =
ε

α− 1
e−(α−1)

√
z

so that ∫ ∞
√
z

∣∣eyF (y)− 1
∣∣ dy = o

(
e−(α−1)

√
z
)
. (5.19)
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Noting that

∫ ∞
0

(
eyF (y)− 1

)
dy =

∫ ∞
0

(
F (y)− e−y

)
d(ey) = −

∫ ∞
0

eyd
(
F (y)− e−y

)
= θ,

we have from (5.17) to (5.19)

z

∫ 1/
√
z

0

(1− y)k
(
ezyF (yz)− 1

)
dy = θ +O

(
1

z

)
. (5.20)

Hence from (5.16) and (5.20) we have as z →∞

∫ z/2

0

(z − y)k
(
eyF (y)− 1

)
dy = θzk +O

(
zk−1

)
. (5.21)

Therefore from (5.15) and (5.21) we obtain

∫ z/2

0

(z − y)keydF (y) = −
(z

2

)k
F
(z

2

)
ez/2 + zk

+

∫ z/2

0

(
−k(z − y)k−1 + (z − y)k

)
dy

+

∫ z/2

0

(
eyF (y)− 1

) (
−k(z − y)k−1 + (z − y)k

)
dy

= −
(z

2

)k
F
(z

2

)
ez/2 + zk + θzk −

(
zk −

(z
2

)k)
+

1

k + 1

(
zk+1 −

(z
2

)k+1
)

+O
(
zk−1

)
=

1

k + 1

(
zk+1 −

(z
2

)k+1
)

+ θzk +O
(
zk−1

)
.

(5.22)

Now we compute

−
∫ z/2

0

F (z − y)dAn(y) = −
∫ z/2

0

(
F (z − y)− e−(z−y)

)
dAn(y)−

∫ z/2

0

e−(z−y)dAn(y).
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We obtain

−
∫ z/2

0

eydAn(y) = −ez/2An
(z

2

)
+ An(0) +

∫ z/2

0

(
k

(n)
1 yn−1 + k

(n)
2 yn−2

)
dy

= −k(n)
1

(z
2

)n−1

+
k

(n)
1

n

(z
2

)n
+

k
(n)
2

n− 1

(z
2

)n−1

+O
(
zn−2

)
.

(5.23)

Observe that for some c > 0∣∣∣∣∣
∫ z/2

0

(
F (z − y)− e−(z−y)

)
dAn(y)

∣∣∣∣∣ =

∣∣∣∣∣
∫ z/2

0

(
F (z − y)− e−(z−y)

)
×
(

(n− 1)k
(n)
1 yn−2 + (n− 2)k

(n)
2 yn−3 − k(n)

1 yn−1 − k(n)
2 yn−2

)
e−ydy

∣∣∣
≤ ce−z

∫ z/2

0

e−(α−1)z/2yn−1dy = O
(
zne−(α+1)z/2

)
.

(5.24)

Finally we have

An

(z
2

)
F
(z

2

)
=

(
k

(n)
1

(z
2

)n−1

+O
(
zn−2

))
e−z. (5.25)

Use k = n− 1 and n− 2 in (5.22) to obtain

∫ z/2

0

An(z − y)dF (y) =

{
k

(n)
1

n

(
zn −

(z
2

)n)
+ k

(n)
1 θzn−1

+
k

(n)
2

n− 1

(
zn−1 −

(z
2

)n−1
)

+O
(
zn−2

)}
e−z.

(5.26)

From (5.23) and (5.24), we obtain

−
∫ z/2

0

F (z − y)dAn(y) =

(
−k(n)

1

(z
2

)n−1

+
k

(n)
1

n

(z
2

)n
+

k
(n)
2

n− 1

(z
2

)n−1
)
e−z

+O
(
zn−2e−z

)
.

(5.27)
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Summing (5.25) to (5.27),

∫ z/2

0

An(z − y)dF (y)−
∫ z/2

0

F (z − y)dAn(y) + An

(z
2

)
F
(z

2

)
=

(
k

(n)
1

n
zn +

(
k

(n)
1 θ +

k
(n)
2

n− 1

)
zn−1 +O

(
zn−2

))
e−z.

The lemma has now been proven since, going back to our definitions k
(n)
1 = 1

(n−1)!
and

k
(n)
2 = 1+nθ

(n−2)!
, we have

k
(n)
1

n
=

1

n!
= k

(n+1)
1

and

k
(n)
1 θ +

k
(n)
2

n− 1
=

(n− 1)!k
(n)
1 θ + (n− 2)!k

(n)
2

(n− 1)!
=
θ + 1 + nθ

(n− 1)!
=

1 + (n+ 1)θ

(n− 1)!
= k

(n+1)
2 .

For the next theorem we assume that the random variables are nonnegative, but we will

remove this restriction later. The next lemma establishes the expansion for the convolution

of two random variables.

Lemma 5.3. Let F be a distribution function with support in [0,∞) satisfying condition

(5.12), and let θ and An be defined as in (5.13) and (5.14) respectively. In particular,

A2(y) = (y + 1 + 2θ) e−y. Then for n = 2, as y →∞

1− F ∗2(y) = (y + 1 + 2θ) e−y + o
(
ye−(α+1)y/2

)
.
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Proof. We have

1− F ∗2(z) = 2

∫ z/2

0

F (z − y)dF (y) +
[
F
(z

2

)]2

.

Next, write

∫ z/2

0

F (z − y)dF (y) = e−z
∫ z/2

0

(
e(z−y)F (z − y)− 1

)
eydF (y) + e−z

∫ z/2

0

eydF (y). (5.28)

We have

∫ z/2

0

eydF (y) =
z

2
−
∫ z/2

0

eyd
(
F (y)− e−y

)
=
z

2
+ θ +

∫ ∞
z/2

eyd
(
F (y)− e−y

)
. (5.29)

Next,

∫ ∞
z/2

eyd
(
F (y)− e−y

)
= 1− F

(z
2

)
ez/2 −

∫ ∞
z/2

(
F (y)− e−y

e−αy

)
e−(α−1)ydy

= o
(
e−(α−1)z/2

)
.

Thus we have ∫ z/2

0

eydF (y) =
z

2
+ θ + o

(
e−(α−1)z/2

)
. (5.30)

Moreover, for any ε > 0 and z large enough, using (5.30)

∫ z/2

0

∣∣e(z−y)F (z − y)− 1
∣∣ eydF (y) ≤ εe−(α−1)z/2

∫ z/2

0

eydF (y)

≤ εe−(α−1)z/2
(z

2
+ θ + 1

)
.

(5.31)
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Thus from (5.31) we find

e−z
∫ z/2

0

∣∣e(z−y)F (z − y)− 1
∣∣ eydF (y) = o

(
ze−(α+1)z/2

)
. (5.32)

Therefore from (5.28), (5.30), and (5.32) we obtain

∫ z/2

0

F (z − y)dF (y) =
(z

2
+ θ
)
e−z + o

(
ze−(α+1)z/2

)
.

Lastly,
[
F
(
z
2

)]2
= e−z + o

(
e−(α+1)z/2

)
, and therefore 1 − F ∗2(z) = (z + 1 + 2θ) e−z +

o
(
ze−(α+1)z/2

)
.

We now use induction to derive the expansion for the convolution of n variables.

Theorem 5.2. Let F be a distribution function with support in [0,∞) satisfying condition

(5.12), and let θ and An be defined as in (5.13) and (5.14) respectively. Then for n ≥ 2, as

y →∞

Gn(y) = 1− F ∗n(y) = An(y) +O
(
yn−3e−y

)
.

Proof. Lemma 5.3 takes care of the case n = 2. Next, suppose that as y → ∞, Gn(y) =

An(y) +O (yn−3e−y), and we shall show that the case n+ 1 holds. By Lemma 5.2,

Gn+1(z)− An+1(z) =

∫ z/2

0

Gn(z − y)dF (y) +

∫ z/2

0

F (z − y)dGn(y)

−

{∫ z/2

0

An(z − y)dF (y)−
∫ z/2

0

F (z − y)dAn(y) + An

(z
2

)
F
(z

2

)}

+Gn

(z
2

)
F
(z

2

)
+O

(
zn−2e−z

)
=

∫ z/2

0

[
Gn(z − y)− An(z − y)

]
dF (y) +

∫ z/2

0

F (z − y)d (Gn(y) + An(y))

+
(
Gn

(z
2

)
− An

(z
2

))
F
(z

2

)
+O

(
zn−2e−z

)
.

(5.33)

133



Now we use the induction hypothesis to find that for some c > 0

∣∣∣∣∣
∫ z/2

0

[
Gn(z − y)− An(z − y)

]
dF (y)

∣∣∣∣∣ ≤ c

∫ z/2

0

(z − y)n−3e−(z−y)dF (y)

≤ ce−zzn−3

∫ z/2

0

eydF (y) ≤ czn−3e−z
(z

2
+ θ + 1

)
= O

(
zn−2e−z

)
,

(5.34)

where we have used (5.30) to bound the last integral. Next, through integration by parts

∫ z/2

0

eyd (Gn(y) + An(y)) = −ez/2
(
Gn

(z
2

)
− An

(z
2

))
+ 1− An(0)

+

∫ z/2

0

(
Gn(y)− An(y)

)
eydy.

By the induction hypothesis, we find that for n ≥ 2 the above expression can be written as

∫ z/2

0

eyd (Gn(y) + An(y)) = O
(
zn−2

)
. (5.35)

Next, we write

∫ z/2

0

F (z − y)d (Gn(y) + An(y)) = e−z
∫ z/2

0

[
ez−yF (z − y)− 1

]
eyd (Gn(y) + An(y))

+ e−z
∫ z/2

0

eyd (Gn(y) + An(y)) .

Note that

e−z

∣∣∣∣∣
∫ z/2

0

(
ez−yF (z − y)− 1

)
eyd (Gn(y) + An(y))

∣∣∣∣∣
≤ e−(α+1)z/2

(∫ z/2

0

eydGn(y)−
∫ z/2

0

eydAn(y)

)
.
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Further, note that if Xi, 1 ≤ i ≤ n, denotes a sample from distribution function F , then for

sufficiently large z we have the upper bound

∫ z/2

0

eydGn(y) ≤ E

(
exp

(
n∑
i=1

Xi

)
I
{∨

Xi ≤ z/2
})

=

(∫ z/2

0

eydF (y)

)n

=

(
1− ez/2F (z/2) +

∫ z/2

0

ezF (x)dx

)n

≤ zn.

Similarly, one establishes that −
∫ z/2

0
eydAn(y) = O(zn). Therefore we obtain

∫ z/2

0

F (z − y)d (Gn(y) + An(y)) = O
(
zn−2e−z

)
. (5.36)

Finally ∣∣∣Gn

(z
2

)
− An

(z
2

)∣∣∣F (z
2

)
= O

(
zn−3e−z

)
. (5.37)

From (5.33), (5.34), (5.36), and (5.37) we have

Gn+1(z)− An+1(z) = O
(
zn−2e−z

)
.

Hence the induction step, along with Lemmas 5.2 and 5.3, establishes the theorem.

To generalize this result, we now relax the restriction that F has support in [0,∞). In order

to allow for mass on the negative half line, we define the conditional distributions F+ and

F− by

F+(y) =
F (y)

F (0)
for y > 0

and F−(y) =
F (y)

F (0)
for y ≤ 0.
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Note that if X ∼ F , then

(X|X > 0) ∼ F+ and (X|X ≤ 0) ∼ F−.

Let X1, ..., Xn be iid from F . Denote a random subset of {1, ..., n} by

I = {i : 1 ≤ i ≤ n,Xi ≤ 0}. Let (X−i , i ≥ 1) and (X+
i , i ≥ 1) be two independent sequences

of iid random variables with X−i ∼ F− and X+
i ∼ F+. Observe that

((Xi, i ∈ I), (Xi, i /∈ I)|I)
d
=
(
(X−i , 1 ≤ i ≤ |I|), (X+

i , 1 ≤ i ≤ n− |I|)
)
.

That is, conditional on the set I, the nonpositive random variables (Xi, i ∈ I) and the

positive random variables (Xi, i /∈ I) are independent groups of variables with common

distribution F− within the nonpositive group and F+ within the positive group. Therefore

conditionally on I,

P

(
n∑
i=1

Xi ≤ y
∣∣∣I) = P

 |I|∑
i=1

X−i +

n−|I|∑
i=1

X+
i ≤ y

 .

Let Hm(y) = F ∗m− (y) and Gl(y) = F ∗l+ (y). Then

P

(
n∑
i=1

Xi ≤ y
∣∣∣I) = H|I| ∗Gn−|I|(y).

Taking expectations over I, we obtain F ∗n(y) = EH|I| ∗Gn−|I|(y), and therefore

1− F ∗n(y) =
n∑
k=0

(
n

k

)
(F (0))k

(
F (0)

)n−k
Hk ∗Gn−k(y). (5.38)
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Now we will be able to use the results on distribution functions with support on the positive

half line to achieve the desired extension to distributions with support over all reals. In

addition to condition (5.12), we make the assumption that for some β > 1

F (y) = o
(
eβy
)

as y → −∞. (5.39)

Theorem 5.3. Suppose F is a distribution function such that F (y) = e−y + o (e−αy) as

y → ∞ for some α > 1 and F (y) = o
(
eβy
)

as y → −∞ for some β > 1. Then for y large

enough,

1− F ∗n(y) =

(
1

(n− 1)!
yn−1 +

1 + nθ

(n− 2)!
yn−2 +O(yn−3)

)
e−y, (5.40)

where

θ = −
∫ ∞

0

eyd
(
F (y)− e−y

)
+

∫ 0

−∞
eydF (y). (5.41)

Proof. We first need to make an observation. Let K be a distribution function with support

over the positive half line such that for some c > 0

cK(y) = e−y + o
(
e−αy

)
as y →∞,

where α > 1. Then an inspection of the proof when c = 1 shows that

cnK
∗n

(y) =

(
1

(n− 1)!
yn−1 +

1 + nθ

(n− 2)!
yn−2 +O

(
yn−3

))
e−y, (5.42)

where

θ = −
∫ ∞

0

eyd
(
cK(y)− e−y

)
= lim

z→∞

(
c

∫ z

0

eydK(y)− z
)
. (5.43)
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Now consider the contribution from the k = 0 term in the sum in (5.38) given by

(
F (0)

)n
Gn(y) =

(
1

(n− 1)!
yn−1 +

1 + nθ+

(n− 2)!
yn−2 +O

(
yn−3

))
e−y,

where

θ+ = −
∫ ∞

0

eyd
(
F (y)− e−y

)
and where we have used (5.42) and (5.43) with c = F (0) and K = F+. Similarly, we find

that the contribution from the k = 1 term in (5.38) is given by

nF (0)
(
F (0)

)n−1
∫ 0

−∞
Gn−1(y − u)dF−(u)

= n

∫ 0

−∞

1

(n− 2)!
(y − u)n−2e−(y−u)dF (u) +O

(
yn−3e−y

)
=

n

(n− 2)!
yn−2e−y

∫ 0

−∞
eudF (u) +O

(
yn−3e−y

)
.

(5.44)

Finally, if 2 ≤ k ≤ n then note that for y > 0

(F (0))k
(
F (0)

)n−k
(1−Hk ∗Gn−k(y)) ≤

(
F (0)

)n−k
Gn−k(y) = O

(
yn−k−1e−y

)
= O

(
yn−3e−y

)
.

(5.45)

Hence from (5.38) and (5.42) through (5.45) we obtain

1− F ∗n(y) =

(
1

(n− 1)!
yn−1 +

1 + nθ

(n− 2)!
yn−2 +O(yn−3)

)
e−y,

where

θ = θ+ +

∫ 0

−∞
eydF (y) = −

∫ ∞
0

eyd
(
F (y)− e−y

)
+

∫ 0

−∞
eydF (y).
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From this theorem we may finally specialize to the Gumbel distribution.

Corollary 5.2. Let F (y) = exp (−e−y) ,−∞ < y < ∞ denote the Gumbel distribution.

Then

1− F ∗n(y) =

(
1

(n− 1)!
yn−1 +

1− nγ
(n− 2)!

yn−2 +O(yn−3)

)
e−y,

where γ is Euler’s constant and equals the mean of the Gumbel distribution.

Proof. First observe that F (y) satisfies the two hypotheses of the theorem. In particular,

F (y) = 1− exp
(
−e−y

)
= e−y +O

(
e−2y

)
as y →∞,

and so F (y) = e−y + o (e−αy) for some 1 < α < 2. Next, for any β > 1

F (y)

eβy
=

exp (−e−y)
eβy

→ 0 as y → −∞,

and therefore F (y) = o
(
eβy
)
. Lastly, it can be shown that θ = −γ.

Observe that Theorem 5.1 is a special case of Corollary 5.2 with n = 2.

5.3.1 Simulation Results

We now want to check how well our second order approximation performs in simulation

studies, as well as to what extend the approximation is an improvement over the first order

result from Rootzén (1986). To run the simulation, we test Corollary 5.2 using n = 2, 5, 10.

Letting Zij ∼ Λ, i = 1, ..., N, j = 1, ..., n where N = 10 million, we compute Xi =
∑n

j=1 Zij,

139



thereby building the empirical cumulative distribution function of X, the convolution. In

the graphs we focus on the upper one percent of the distributions. The two approximations

we are testing are, for large enough y,

F 1(y) =
1

(n− 1)!
yn−1e−y and F 2(y) =

(
1

(n− 1)!
yn−1 +

1− nγ
(n− 2)!

yn−2

)
e−y.

Figures 5.1, 5.2, and 5.3 show the results for n = 2, 5, and 10, respectively.

Figure 5.1: Gumbel Convolution, n = 2
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Figure 5.2: Gumbel Convolution, n = 5
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Figure 5.3: Gumbel Convolution, n = 10
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Here are some immediate observations. First, for n > 2 the first-order approximation

overestimates the true probability, while the second-order underestimates. This should not

be surprising, since the (1 − nγ) in the approximation’s second term is always negative,

which pulls the estimated probabilities back down. Second, both approximations eventually

approach the empirical probability as y grows large. And third, for n at least 5, the second-

order approximation is actually worse than the first-order for most of the percentiles. Only

after a certain high percentile does the second-order approximation finally overtake the first-

order, but this threshold seems to grow with n.

To check how the two functions behave at specific percentiles, we examine Tables 5.1 and

5.2. Table 5.1 displays the raw errors at each percentile, defined as empirical probability mi-

nus the approximated probability. Therefore a negative difference means the approximation

overestimated the probability, while a positive difference indicates an underestimate. For

each sample size and percentile we highlight the cell that gives the more precise approxima-

tion; in other words the smaller error in absolute value.

Table 5.1: Errors in Approximations of Probabilities
n Approx 95% 97.5% 98% 99% 99.5% 99.9% 99.99%

2
1st -0.0015 -0.0007 -0.0005 -0.0003 -0.0001 -2.2e-5 2.3e-6
2nd 0.0003 7.6e-5 3.3e-5 -6.8e-6 -3.0e-5 -4.6e-6 3.6e-6

5
1st -0.0082 -0.0057 -0.0049 -0.0028 -0.0015 -0.0003 -3.3e-5
2nd 0.0469 0.0196 0.0148 0.0063 0.0027 0.0004 2.6e-5

10
1st -0.0196 -0.0159 -0.0140 -0.0086 -0.0049 -0.0011 -0.0001
2nd 0.2136 0.1062 0.0843 0.0404 0.0192 0.0033 0.0003

Table 5.2 displays the relative errors of each approximation, defined as the error from Table

5.1 divided by the approximated probability. Again, a negative relative error denotes an

overestimate, and a positive relative error an underestimate. For each sample size and

percentile we highlight the cell that gives the smaller relative error.
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Table 5.2: Relative Errors in Approximations of Probabilities
n Approx 95% 97.5% 98% 99% 99.5% 99.9% 99.99%

2
1st -0.0285 -0.0260 -0.0259 -0.0246 -0.0271 -0.0215 0.0234
2nd 0.0064 0.0030 0.0017 -0.0007 -0.0059 -0.0046 0.0371

5
1st -0.1410 -0.1864 -0.1973 -0.2164 -0.2264 -0.2366 -0.2495
2nd 15.1958 3.5963 2.8472 1.6915 1.1771 0.6524 0.3429

10
1st -0.3375 -0.5190 -0.5639 -0.6755 -0.7595 -0.8732 -0.9101
2nd 69.1836 19.5277 16.2080 10.8818 8.3623 5.5143 3.6136

With n = 2, the second-order approximation provides a reasonable improvement even for as

low as the 95th percentile. Around the 99.99th percentile the first-order overtakes the second

in precision. But for larger sample sizes, even as low as n = 5, the first-order provides a more

accurate estimate up to a certain percentile, after which the second-order finally provides

an improvement. In the case of n = 5, the second-order is better only after the 99.99th

percentile. When n = 10, we do not see any evidence of an improvement even at the 99.99th

percentile, although presumably it eventually happens.

The conclusion we draw from this simulation study is that as sample size increases, the

second-order approximation is actually worse than the first-order up to higher percentiles,

after which the improvement may finally be noticeable. Therefore these results motivate

getting more terms in the approximation. In the next section we establish theory for just

that. In fact, our upcoming general result is that for the convolution on n Gumbel random

variables, one can derive an n-term expansion.

5.4 The General N-Fold Convolution Expansion

After examining the surprising simulation results, we now turn to the task of deriving a more

general expansion for the convolution of Gumbel random variables. Whereas in the previous

section we made some assumptions about the distribution function, obtained a general result,
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and then specialized to the particular case of the Gumbel, here for simplicity we assume that

the distribution is the Gumbel. We introduce the necessary notation, and then derive the

formula with the necessary theory before conducting further simulation results. Finally, we

include in Appendices C.1 through C.4 tables of numerical values that are needed in the

formula.

Let F denote a distribution function. We ultimately want F to be the standard Gumbel

distribution, but we proceed to obtain our expansions by considering distribution functions

with support on (0,∞) and (−∞, 0] separately.

For the (0,∞) support case, suppose

F (x) = Λ(x)− Λ(0), x ≥ 0, (5.46)

where Λ(x) denotes the standard Gumbel distribution. Then the tail distribution

F (x) = F (∞)− F (x) = 1− Λ(x), x ≥ 0

has the same tail area as the Gumbel, but F is a defective distribution since F (∞) =

1−Λ(0). Since convolution is defined for functions of bounded variations, including defective

distributions, we shall proceed by first working with the defective F and adjusting later to

include the negative half line.

For k ≥ 2, let Ak(x) be an approximation to F ∗k(x) = F ∗k(∞) − F ∗k(x). We shall assume

that the error term in the approximation is exponential, namely for some α > 1

F ∗k(x) = Ak(x) + o(e−αx) as x→∞.
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Note that

F ∗k(∞) =

∫ ∞
0

F ∗(k−1)(∞)dF (x) = F ∗(k−1)(∞)F (∞) = · · · = [F (∞)]k.

Decomposing the approximation, write

Ak(x) =

(
k−1∑
i=0

ak,ix
i

)
e−x, x > 0. (5.47)

Before proving the main result, we need to introduce three more symbols that will be used

in the expansion. Define θk and ζk as

θk =

∫ ∞
0

xkexd
(
−F (x) + e−x

)
, k ≥ 0 (5.48)

and

ζk =

∫ 0

−∞
xkexdΛ(x), k ≥ 0. (5.49)

Also for 0 ≤ i ≤ m, define µi,m as

µi,m =
∑(

i!

k1! · · · ki!

)(
m!

(m− [k1 + · · ·+ ki])!

)
ζ
m−(k1+···+ki)
0

i∏
L=1

(
ζL
L!

)kL
, (5.50)

where the sum is taken over all nonnegative integers k1, · · · , ki such that k1+2k2+· · ·+iki = i.

5.4.1 The Proof on the Positive Half Line

We begin with a useful lemma that lays the groundwork for the expansion.
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Lemma 5.4. If G and K are two improper distribution functions with support on the positive

half line, then

G ∗K(x) =

∫ x/2

0

K(x− y)dG(y) +

∫ x/2

0

G(x− y)dK(y) +K
(x

2

)
G
(x

2

)
.

Proof. Observe that

G ∗K(∞) =

∫ ∞
0

K(∞)dG(x) = K(∞)G(∞)

and

G ∗K(x) = K(∞)G(∞)−
∫ ∞

0

K(x− y)dG(y) =

∫ ∞
0

[K(∞)−K(x− y)] dG(y)

=

∫ x/2

0

[K(∞)−K(x− y)] dG(y) +

∫ ∞
x/2

[K(∞)−K(x− y)] dG(y).

Next, we have

∫ ∞
x/2

[K(∞)−K(x− y)] dG(y) = K(∞)
[
G(∞)−G

(x
2

)]
−
∫ ∞
x/2

K(x− y)dG(y)

and

∫ ∞
x/2

K(x− y)dG(y) =

∫ x

x/2

K(x− y)dG(y) =

∫ x/2

0

K(y)d (G(∞)−G(x− y))

= K(y) [G(∞)−G(x− y)]
∣∣∣x/2
0
−
∫ x/2

0

[G(∞)−G(x− y)] dK(y)

= K
(x

2

) [
G(∞)−G

(x
2

)]
−
∫ x/2

0

[G(∞)−G(x− y)] dK(y).
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Substituting, we find

∫ ∞
x/2

[K(∞)−K(x− y)] dG(y) = K(∞)
[
G(∞)−G

(x
2

)]
−K

(x
2

) [
G(∞)−G

(x
2

)]
+

∫ x/2

0

[G(∞)−G(x− y)] dK(y)

= K(∞)G(∞)−K(∞)G
(x

2

)
−G(∞)K

(x
2

)
+K

(x
2

)
G
(x

2

)
+

∫ x/2

0

[G(∞)−G(x− y)] dK(y)

=
(
K(∞)−K

(x
2

))(
G(∞)−G

(x
2

))
+

∫ x/2

0

[G(∞)−G(x− y)] dK(y).

Thus we find

G ∗K(x) =

∫ x/2

0

K(x− y)dG(y) +

∫ x/2

0

G(x− y)dK(y) +K
(x

2

)
G
(x

2

)
, (5.51)

as required.

Now we have, with F given in (5.46) and with support in (0,∞) using approximation (5.47)

in (5.51), that for y large

F ∗(k+1)(y) =

∫ y/2

0

F
∗k

(y − x)dF (x) +

∫ y/2

0

F (y − x)dF ∗k(x) + F
∗k
(y

2

)
F
(y

2

)
=

∫ y/2

0

[Ak(y − x) +Rk(y − x)] dF (x) +

∫ y/2

0

F (y − x)d (−Ak(x)−Rk(y − x))

+
[
Ak

(y
2

)
+ o

(
e−αy/2

)]
F
(y

2

)
,

where for y large enough and any ε > 0, sup
0<x< y

2

|Rk(y − x)eαy| < ε and Rk(x) = F ∗k(x) −
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Ak(x). Dividing into six pieces, we have

F ∗(k+1)(y) =

∫ y/2

0

Ak(y − x)dF (x) +

∫ y/2

0

F (y − x)d (−Ak(x)) + Ak

(y
2

)
F
(y

2

)
+

∫ y/2

0

Rk(y − x)dF (x) +

∫ y/2

0

F (y − x)d(−Rk(y − x)) + o
(
e−αy/2F

(y
2

))
= (I) + (II) + (III) + (IV ) + (V ) + (V I).

(5.52)

Examining (I) first,

∫ y/2

0

Ak(y − x)dF (x) =

∫ y/2

0

[
k−1∑
i=0

ak,i(y − x)i

]
e−(y−x)dF (x)

=

∫ y/2

0

[
k−1∑
i=0

ak,i

i∑
j=0

(
i

j

)
yj(−1)i−jxi−j

]
e−yexdF (x)

=
k−1∑
i=0

i∑
j=0

ak,i

(
i

j

)
(−1)i−jyje−y

∫ y/2

0

xi−jexdF (x).

(5.53)

Now using the definition of θi−j given in (5.48),

∫ y/2

0

xi−jexdF (x) =

∫ y/2

0

xi−jexd(−F (x) + e−x)−
∫ y/2

0

xi−jexd(e−x)

= θi−j +

∫ y/2

0

xi−jdx−
∫ ∞
y/2

xi−jexd(−F (x) + e−x)

= θi−j +
1

i− j + 1

(y
2

)i−j+1

−
∫ ∞
y/2

xi−jexd(−F (x) + e−x).

(5.54)

Noting that d(−F (x) + e−x) = −e−x [1− exp(−e−x)] dx, the last integral in (5.54) can be
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rewritten as

−
∫ ∞
y/2

xi−jexd(−F (x) + e−x) =

∫ ∞
y/2

xi−j[1− exp(−e−x)]dx

=

∫ ∞
y/2

xi−j
∞∑
L=1

(−1)L−1e−Lx

L!
dx =

∞∑
L=1

(−1)L−1

L!

∫ ∞
y/2

xi−je−Lxdx.

By induction, it can be shown that for n ≥ 1 and L = 1, 2, · · · ,

∫ ∞
y/2

xne−Lxdx =
1

L

(y
2

)n
e−Ly/2 +

n∑
t=1

1

Lt+1

(y
2

)n−t t−1∏
p=0

(n− p)e−Ly/2 = O(yne−Ly/2),

and therefore as y →∞ ∫ ∞
y/2

xi−je−Lxdx = O(yi−je−Ly/2).

Even in the case where i = j, the asymptotics still hold in that the error term is O(e−Ly/2).

Thus as y →∞

∫ ∞
y/2

xi−j[1− exp(−e−x)]dx =
∞∑
L=1

(−1)L−1

L!

∫ ∞
y/2

xi−je−Lxdx = O(yi−je−y/2).

Equation (5.54) now reads

∫ y/2

0

xi−jexdF (x) = θi−j +
1

i− j + 1

(y
2

)i−j+1

+O(yi−je−y/2). (5.55)
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Substituting (5.55) into (5.53),

∫ y/2

0

Ak(y − x)dF (x)

=
k−1∑
i=0

i∑
j=0

ak,i

(
i

j

)
(−1)i−jyje−y

[
θi−j +

1

i− j + 1

(y
2

)i−j+1

+O(yi−je−y/2)

]

=
k−1∑
i=0

i∑
j=0

ak,i

(
i

j

)
(−1)i−jyje−y

[
θi−j +

1

i− j + 1

(y
2

)i−j+1
]

+O(yie−3y/2).

Note that provided α < 3
2
,

lim
y→∞

yie−3y/2

e−αy
= lim

y→∞
yie−( 3

2
−α)y = 0,

so now we require 1 < α < 3
2
. To conclude,

(I) =
k−1∑
i=0

i∑
j=0

ak,i

(
i

j

)
(−1)i−jyje−y

[
θi−j +

1

i− j + 1

(y
2

)i−j+1
]

+O(yie−3y/2). (5.56)

Moving on to (II) in (5.52),

− d

dx
Ak(x) = − d

dx

(
k−1∑
i=0

ak,ix
i

)
e−x = −

(
k−1∑
i=1

iak,ix
i−1 −

k−1∑
i=0

ak,ix
i

)
e−x

=
k−1∑
i=1

(ak,ix
i − iak,ixi−1)e−x + ak,0e

−x.

(5.57)
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Then

∫ y/2

0

F (y − x)d(−Ak(x))

=

∫ y/2

0

[
e−(y−x) +Rk(y − x)

] [k−1∑
i=1

(ak,ix
i − iak,ixi−1) + ak,0

]
e−xdx

= e−y
∫ y/2

0

[
k−1∑
i=1

(ak,ix
i − iak,ixi−1) + ak,0

]
dx

+

∫ y/2

0

[
k−1∑
i=1

(ak,ix
i − iak,ixi−1) + ak,0

]
Rk(y − x)e−xdx

= (IIA) + (IIB).

(5.58)

Examining (IIA),

(IIA) = e−y

{
k−1∑
i=1

∫ y/2

0

(ak,ix
i − iak,ixi−1)dx+

∫ y/2

0

ak,0dx

}

= e−y

{
k−1∑
i=1

ak,i

[
1

i+ 1

(y
2

)i+1

−
(y

2

)i]
+ ak,0

(y
2

)}
.

(5.59)

Turning to (IIB),

|(IIB)| =

∣∣∣∣∣
∫ y/2

0

[
k−1∑
i=1

(ak,ix
i − iak,ixi−1) + ak,0

]
Rk(y − x)eα(y−x)e−xe−α(y−x)dx

∣∣∣∣∣
< εe−αy

∣∣∣∣∣
∫ y/2

0

[
k−1∑
i=1

ak,i(x
i − ixi−1) + ak,0

]
e(α−1)xdx

∣∣∣∣∣
= εe−αy

∣∣∣∣∣
{
k−1∑
i=1

ak,i

∫ y/2

0

(xi − ixi−1)e(α−1)xdx+ ak,0

∫ y/2

0

e(α−1)xdx

}∣∣∣∣∣
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= εe−αy

∣∣∣∣∣
{
k−1∑
i=1

ak,i

[∫ y/2

0

xie(α−1)xdx− i
∫ y/2

0

xi−1e(α−1)xdx

]
+ ak,0

∫ y/2

0

e(α−1)xdx

}∣∣∣∣∣ .
By induction and integration by parts, it can be shown that for α > 1 and n ≥ 1

∫ y/2

0

xne(α−1)xdx = (α− 1)−1
(y

2

)n
e(α−1)y/2 + (−1)n+1n!(α− 1)−(n+1)

+ e(α−1)y/2

n−1∑
L=0

(−1)L+1(α− 1)−(L+2)

L∏
p=0

(n− p)
(y

2

)n−1−L
,

and therefore as y →∞

e−αy
∫ y/2

0

xne(α−1)xdx = O
(
yne−(α+1)y/2

)
.

Using this result,

|(IIB)| < ε
∣∣{O (yne−(α+1)y/2

)
+ ak,0(α− 1)−1

[
e−(α+1)y/2 − e−αy

]}∣∣ .
If we choose 1 < β < α+1

2
, then

lim
y→∞

e−(α+1)y/2 − e−αy

e−βy
= lim

y→∞

{
exp

(
(2β − α− 1)y

2

)
− e−(α−β)y

}
= 0.

Note that the condition 1 < β < α is automatically satisfied since α > 1. Similarly,

lim
y→∞

yne−(α+1)y/2

e−βy
= 0,
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and therefore (IIB) = o(e−βy) as y →∞. Combining this result with (5.59) in (5.58), (II)

in (5.52) reads

(II) = e−y

{
k−1∑
i=1

ak,i

[
1

i+ 1

(y
2

)i+1

−
(y

2

)i]
+ ak,0

(y
2

)}
+ o(e−βy). (5.60)

As a side note, since we must select 1 < α < 3
2
, it follows that we should choose 1 < β <

α+1
2
< 5

4
. Now consider (III) in (5.52). Since F (x) = e−x +O(e−2x), it is certainly true that

F (x) = e−x + o(e−αx) for x large. Therefore

(III) = Ak

(y
2

)
F
(y

2

)
=

[
k−1∑
i=0

ak,i

(y
2

)i]
e−y/2

[
e−y/2 + o(e−αy/2)

]
=

[
k−1∑
i=0

ak,i

(y
2

)i] [
e−y + o(e−(α+1)y/2)

]
=

[
k−1∑
i=0

ak,i

(y
2

)i]
e−y +O

(
yk−1e−(α+1)y/2

)
,

which means that as y →∞

Ak

(y
2

)
F
(y

2

)
=

[
k−1∑
i=0

ak,i

(y
2

)i]
e−y + o

(
e−βy

)
. (5.61)

It remains to derive the overall error term in (5.52); namely expressions (IV ), (V ), and (V I).

Lemma 5.5 does just that.

Lemma 5.5. In (5.52), (IV ) + (V ) + (V I) = o(e−βy) as y →∞ for β previously defined.
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Proof. In what follows we assume that y is large. We examine (IV ) first:

∣∣∣∣∣
∫ y/2

0

Rk(y − x)dF (x)

∣∣∣∣∣ =

∣∣∣∣∣
∫ y/2

0

Rk(y − x)eα(y−x)e−α(y−x)dF (x)

∣∣∣∣∣
< εe−αy

∫ y/2

0

eαxdF (x) = εe−αy
∫ y/2

0

eαxe−x exp(−e−x)dx

= εe−αy
∫ 1

e−y/2
x−αe−xdx ≤ εe−αy

∫ 1

e−y/2
x−αdx =

ε

α− 1
e−αy

[
e(α−1)y/2 − 1

]
=

ε

α− 1

[
e−(α+1)y/2 − e−αy

]
= o(e−βy).

Next, observe that in (V )

∣∣∣∣∣
∫ y/2

0

F (y − x)d(−Rk(y − x))

∣∣∣∣∣ ≤ F
(y

2

) [
R(y)−R

(y
2

)]
,

because for y > 0, 0 < F (y) ≤ F
(
y
2

)
. Hence

|(V )| ≤
∣∣∣[e−y/2 + o(e−αy/2)

] [
Rk(y)eαye−αy −Rk

(y
2

)
eαy/2e−αy/2

]∣∣∣
< ε

[
e−y/2 + o(e−αy/2)

] [
e−αy − e−αy/2

]
= ε

[
e−(2α+1)y/2 − e−(α+1)y/2 + o

(
e−3αy/2

)
+ o

(
e−αy

)]
= ε

[
o
(
e−αy

)
− e−(α+1)y/2

]
= o(e−βy).

Finally, consider (V I) = o
(
e−αy/2F

(
y
2

))
. Observe that

e−αy/2F
(y

2

)
= e−αy/2

[
e−y/2 + o

(
e−αy/2

)]
= e−(α+1)y/2 + o(e−αy) = o(e−βy),

and therefore (V I) = o(e−βy). The result follows.

Before stating our result for the positive half line, it is worth pointing out that (II) + (III)
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has a somewhat simplified form:

e−y

{
k−1∑
i=1

ak,i

[
1

i+ 1

(y
2

)i+1

−
(y

2

)i]
+ ak,0

(y
2

)
+

k−1∑
i=0

ak,i

(y
2

)i}

= e−y

{
k−1∑
i=0

ak,i
i+ 1

(y
2

)i+1

+ ak,0

}
.

(5.62)

Using the results of (5.56), (5.62), and Lemma 5.5 in (5.52), we finally obtain that as y →∞

F ∗(k+1)(y) = e−y

{
k−1∑
i=0

i∑
j=0

ak,i

(
i

j

)
(−1)i−jyj

[
θi−j +

1

i− j + 1

(y
2

)i−j+1
]

+
k−1∑
i=0

ak,i
i+ 1

(y
2

)i+1

+ ak,0

}
+ o(e−βy).

(5.63)

In order to “peel off” the terms involving yi, i = 0, 1, · · · , k, it would be more convenient to

change the order of summation in the first term of (5.63) as in Lemma 5.6.

Lemma 5.6. The approximation in (5.63) can be restated as

F ∗(k+1)(y) = e−y

{
k−1∑
j=0

[
k−1∑
i=j

ak,i

(
i

j

)
(−1)i−jθi−j

]
yj +

k−1∑
i=0

[
ak,i

(i+ 1)2i+1

]
yi+1 + ak,0

+
k−1∑
i=0

[
i∑

j=0

(
ak,i

i− j + 1

)(
i

j

)
(−1)i−j

(
1

2

)i−j+1
]
yi+1

}
+ o

(
e−βy

)
.

We first need to find the starting constants a1,0, a2,1, and a2,0. Since An(y) ∼ F (y) ∼ e−y

for y large enough, a1,0 = 1. Then (5.14) provides A2(y) = (y + 1 + 2θ0)e−y, and therefore

a2,1 = 1 and a2,0 = 1 + 2θ0. These initial constants will lay the groundwork for recovering

the necessary remaining constants.

To utilize Lemma 5.6, we simply isolate the exponents of interest. That is, we know that
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eyF ∗(k+1)(y) ≈
∑k

i=0 ak+1,iy
i, so to solve for ak+1,i we need to find the constants associated

with yi. For instance, we first derive ak+1,0 by picking off the y0 terms. Set j = 0 in the first

summation:

ak+1,0 =
k−1∑
i=0

ak,i(−1)iθi + ak,0. (5.64)

Next, for r = 1, · · · , k − 1 we solve for ak+1,r. This requires setting j = r − 1 in the first

summation, i = r − 1 in the second, and i = r − 1 in the last:

ak+1,r =
k−1∑
i=r

(
i

r

)
(−1)i−rak,iθi−r +

r−1∑
j=0

(
r − 1

j

)
(−1)r−1−j ak,r−1

(r − j)2r−j
+
ak,r−1

r2r
.

However, this equation can be simplified. Noting that
(
r−1
j

)
= r−j

r

(
r
j

)
,

ak+1,r =
k−1∑
i=r

(
i

r

)
(−1)i−rak,iθi−r −

ak,r−1

r

[
r∑
j=0

(
r

j

)
1j
(
−1

2

)r−j
−
(
r

r

)
1r

]
+
ak,r−1

r2r

=
k−1∑
i=r

(
i

r

)
(−1)i−rak,iθi−r −

ak,r−1

r

[(
1− 1

2

)r
− 1

]
+
ak,r−1

r2r

=
k−1∑
i=r

(
i

r

)
(−1)i−rak,iθi−r +

ak,r−1

r
.

Therefore for r = 1, · · · , k − 1,

ak+1,r =
ak,r−1

r
+

k−1∑
i=r

(
i

r

)
(−1)i−rak,iθi−r. (5.65)

The recursion (5.65) is useful for the purposes of writing computer code to generate the next

constant. However, for writing out the explicit formulas for expansions we may also find the
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alternative statement handy: for r = 2, · · · , k,

ak+1,k+1−r =
ak,k−r

k + 1− r
+

k−1∑
i=k+1−r

(
i

k + 1− r

)
(−1)i−(k+1−r)ak,iθi−(k+1−r). (5.66)

Lastly, we derive ak+1,k. Choose i = k − 1 in the second and last sums:

ak+1,k =
ak,k−1

k2k
+

k−1∑
j=0

(
ak,k−1

k − j

)(
k − 1

j

)
(−1)k−1−j

(
1

2

)k−j

= ak,k−1

{
1

k2k
+

k−1∑
j=0

1

k

(
k

j

)
(−1)k−1−j

(
1

2

)k−j}

= ak,k−1

{
1

k

(
1

2

)k
− 1

k

[
k−1∑
j=0

(
k

j

)
(1)j

(
−1

2

)k−j
+

(
k

k

)(
−1

2

)k−k
−
(
k

k

)]}

= ak,k−1

{
1

k

(
1

2

)k
− 1

k

(
1− 1

2

)k
+

1

k

}
=

1

k
ak,k−1.

Therefore

ak+1,k =
1

k
ak,k−1 = · · · = 1

k!
a1,0 =

1

k!
. (5.67)

We have now successfully found recursion formulas for the ak,i, and these will be used in

computing the final approximation formula in the next section.

5.4.2 The Proof Over All Reals

Here we shall build upon (5.63) and extend it to include the negative half line. Define

H(x) =
Λ(x)

Λ(0)
and G(x) =

Λ(x)− Λ(0)

1− Λ(0)
,

which denote the conditional distribution functions P (X ≤ x|X ≤ 0) and P (X ≤ x|X > 0),
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respectively, where X ∼ Λ. Observe that for x > 0 and N = 0, · · · , n,

P (
∑n

i=1 Xi ≤ x,N = m)

P (N = m)
= [F (0)]m[F (0)]n−m

×

[(
n
m

)
P (
∑n

i=1 Xi ≤ x,X1 ≤ 0, · · · , Xm ≤ 0, Xm+1 > 0, · · · , Xn > 0)(
n
m

)
[F (0)]m[F (0)]n−m

]

= P ([U1 + · · ·+ Um] + [Vm+1 + · · ·+ Vn] ≤ x).

Here Ui = XiIXi≤0 and Vi = XiIXi>0. Thus

P

(
n∑
i=1

Xi > x

)
=

n∑
m=0

P

(
n∑
i=1

Xi > x
∣∣∣N = n

)(
n

m

)
[F (0)]m[F (0)]n−m

=
n∑

m=0

H∗m ∗G∗(n−m)(x)

(
n

m

)
[F (0)]m[F (0)]n−m, x > 0.

Therefore for our context,

P

(
n∑
i=1

Xi > x

)
=

n∑
m=0

(
n

m

)
H∗m ∗G∗(n−m)(x)[Λ(0)]m[Λ(0)]n−m, x > 0. (5.68)

Further

G∗(n−m)(x)[Λ(0)]n−m = F ∗(n−m)(x). (5.69)

Thus from (5.68), for x > 0 we have

P

(
k+1∑
i=1

Xi > x

)
=

k∑
m=1

(
k + 1

m

)
H∗m ∗G∗(k+1−m)(x)[Λ(0)]m[Λ(0)]k+1−m

+G∗(k+1)(x)[Λ(0)]k+1.

(5.70)

The summation in (5.60) does not include the m = k + 1 term. The reason is because here
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we have (k+ 1) variables all coming from H, which is defined only on the negative half line,

and therefore their sum is positive with probability 0.

We first examine the second term in (5.70) for y > 0:

G∗(k+1)(y)Λ(0)k+1 = [Λ(0)]k+1
(
1−G∗(k+1)(y)

)
= [Λ(0)]k+1 − F ∗(k+1)(y)

= F ∗(k+1)(y).

(5.71)

This term was already derived since (5.71) = (5.63). Let ρk(y − x) represent an error

term to be analyzed later, one that is analogous to Rk(y − x) from earlier, and define

(II) =
∫ 0

−∞ ρk(y − x)dH∗m(x)[Λ(0)]m. We now turn to the first piece in (5.70):

H∗m ∗G∗(k+1−m)(y)[Λ(0)]m[Λ(0)]k+1−m

=

∫ 0

−∞
G∗(k+1−m)(y − x)dH∗m(x)[Λ(0)]m[Λ(0)]k+1−m

=

∫ 0

−∞
F ∗(k+1−m)(y − x)dH∗m(x)[Λ(0)]m

=

∫ 0

−∞
[Ak+1−m(y − x) + ρk(y − x)] dH∗m(x)[Λ(0)]m

=

∫ 0

−∞

[
k−m∑
i=0

ak+1−m,i(y − x)i

]
e−(y−x)dH∗m(x)[Λ(0)]m + (II)

= e−y
k−m∑
i=0

ak+1−m,i

∫ 0

−∞

i∑
j=0

(
i

j

)
yj(−x)i−jexdH∗m(x)[Λ(0)]m + (II)

= e−y
k−m∑
i=0

ak+1−m,i

i∑
j=0

(
i

j

)
(−1)i−jyj

∫ 0

−∞
xi−jexdH∗m(x)[Λ(0)]m + (II)

= (I) + (II).

(5.72)
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We analyze in (I)

∫ 0

−∞
xi−jexdH∗m(x)[Λ(0)]m =

d(i−j)

dt(i−j)

∫ 0

−∞
etxdH∗m(x)[Λ(0)]m

∣∣∣
t=1
. (5.73)

Now if U1, · · · , Um
iid∼ H, then

∫ 0

−∞
etxdH∗m(x) = E

(
et(U1+···+Um)

)
=
(
E
(
etU1
))m

=

(∫ 0

−∞
etxdH(x)

)m
,

and therefore ∫ 0

−∞
etxdH∗m(x)[Λ(0)]m =

(∫ 0

−∞
etxdΛ(x)

)m
. (5.74)

Then

d

dt

(∫ 0

−∞
etxdΛ(x)

)m
= m

(∫ 0

−∞
etxdΛ(x)

)m−1 ∫ 0

−∞
xetxdΛ(x),

which evaluated at t = 1 yields

m

(∫ 0

−∞
exdΛ(x)

)m−1 ∫ 0

−∞
xexdΛ(x).

Before going further, we need to state a result from Roman (1980).

Theorem 5.4. Let g(t) and f(t) be two differentiable functions, and let D denote the deriva-

tive operator and DL the Lth fold derivative. Also set k = k1 + · · ·+kn. Then by the formula

of Faà di Bruno,

Dn (f ◦ g(t)) =
∑ n!

k1! · · · kn!
(Dkf)(g(t))

(
Dg(t)

1!

)k1
· · ·
(
Dng(t)

n!

)kn
,

where the sum is over all nonnegative integers k1, · · · , kn such that k1 + 2k2 + · · ·+nkn = n.
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Define f(x) = xm and g(t) =
∫ 0

−∞ e
txdΛ(x). We have that

(Dkf)(g(t)) = m(m− 1) · · · (m− k + 1)(g(t))m−k and

DLg(t) =

∫ 0

−∞
xLetxdΛ(x).

Therefore summing over k1, · · · , kn as described in Theorem 5.4,

Dn

(∫ 0

−∞
etxdΛ(x)

)m ∣∣∣
t=1

=
∑(

n!

k1! · · · kn!

)
m!

(m− k)!

(∫ 0

−∞
exdΛ(x)

)m−k
×
(

1

1!

∫ 0

−∞
xexdΛ(x)

)k1
· · ·
(

1

n!

∫ 0

−∞
xnexdΛ(x)

)kn
=
∑(

n!

k1! · · · kn!

)
m!

(m− k)!
ζm−k0

(
1

1!
ζ1

)k1 ( 1

2!
ζ2

)k2
· · ·
(

1

n!
ζn

)kn
,

(5.75)

where ζk is defined in (5.49). Thus by (5.73), (5.74), and (5.75), we find

∫ 0

−∞
xnexdH∗m(x)[Λ(0)]m = expression given in (5.75). (5.76)

Hence by (5.72) and (5.76),

H∗m ∗G∗(k+1−m)(y)[Λ(0)]m[Λ(0)]k+1−m

= e−y
k−m∑
i=0

ak+1−m,i

i∑
j=0

(
i

j

)
(−1)i−jµi−j,my

j + (II),
(5.77)

where µi−j,m is defined in (5.50). It remains to investigate the piece (II) in (5.72). Observe

that for y > 0,

sup
−∞<x<0

e−α(y−x) ≤ e−αy.
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Then ρk(y − x) = o
(
e−α(y−x)

)
and for any ε > 0,

∫ 0

−∞
ρk(y − x)dH∗m(x)[Λ(0)]m < ε

∫ 0

−∞
e−α(y−x)dH∗m(x)[Λ(0)]m

≤ ε

∫ 0

−∞
e−αydH∗m(x)[Λ(0)]m = εe−αy

(∫ 0

−∞
dΛ(x)

)m
= ε[Λ(0)]me−αy ≤ εe−αy.

Therefore for β defined earlier,

∫ 0

−∞
ρk(y − x)dH∗m(x)[Λ(0)]m = o(e−αy) = o(e−βy). (5.78)

Thus from (5.63), (5.70), (5.71), (5.77) , and (5.78) we obtain

1− Λ∗(k+1)(y) =

{
k−1∑
j=0

[
k−1∑
i=j

ak,i

(
i

j

)
(−1)i−jθi−j

]
yj +

k−1∑
i=0

[
ak,i

(i+ 1)2i+1

]
yi+1 + ak,0

+
k−1∑
i=0

[
i∑

j=0

(
ak,i

i− j + 1

)(
i

j

)
(−1)i−j

(
1

2

)i−j+1
]
yi+1

+
k∑

m=1

(
k + 1

m

) k−m∑
i=0

ak+1−m,i

i∑
j=0

(
i

j

)
(−1)i−jµi−j,my

j

}
e−y + o(e−βy).

(5.79)

The triple-sum in the last term can be rewritten as the more convenient

k−1∑
j=0

[
k−j∑
m=1

(
k + 1

m

) k−m∑
i=j

ak+1−m,i

(
i

j

)
(−1)i−jµi−j,m

]
yj,

which we shall find useful for picking off specific terms.
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5.5 The Final N-Fold Gumbel Expansion

We have finally fully derived the n-term expansion for the convolution of n Gumbel random

variables. For the sake of having an easy reference, we restate the final result in this brief

section along with all the necessary formulas needed to implement it. For k ≥ 0, define the

constants

θk =

∫ ∞
0

xkexd
(
−F (x) + e−x

)
= −

∫ ∞
0

xk
[
1− exp

(
−e−x

)]
dx

and

ζk =

∫ 0

−∞
xkexdΛ(x) =

∫ 0

−∞
xk exp

(
−e−x

)
dx.

Also for 0 ≤ i ≤ m, define

µi,m =
∑
τi

(
i!

k1! · · · ki!

)(
m!

(m− [k1 + · · ·+ ki])!

)
ζ
m−(k1+···+ki)
0

i∏
L=1

(
ζL
L!

)kL
,

where the sum is taken over all nonnegative integers k1, · · · , ki such that k1+2k2+· · ·+iki = i.

Moving to the ak+1,i constants, we have a1,0 = a2,1 = 1 and a2,0 = 1 + 2θ0. For k ≥ 2,

ak+1,r =



k−1∑
i=0

ak,i(−1)iθi + ak,0, r = 0

ak,r−1

r
+

k−1∑
i=r

(
i

r

)
(−1)i−rak,iθi−r, r = 1, · · · , k − 1

1

k!
, r = k.

Alternatively, we can say that for r = 2, · · · , k,

ak+1,k+1−r =
ak,k−r

k + 1− r
+

k−1∑
i=k+1−r

(
i

k + 1− r

)
(−1)i−(k+1−r)ak,iθi−(k+1−r).
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Theorem 5.5. For all defined constants, as y →∞

1− Λ∗(k+1)(y) =

{
k−1∑
j=0

[
k−1∑
i=j

ak,i

(
i

j

)
(−1)i−jθi−j

]
yj +

k−1∑
i=0

[
ak,i

(i+ 1)2i+1

]
yi+1 + ak,0

+
k−1∑
i=0

[
i∑

j=0

(
ak,i

i− j + 1

)(
i

j

)
(−1)i−j

(
1

2

)i−j+1
]
yi+1

+
k−1∑
j=0

[
k−j∑
m=1

(
k + 1

m

) k−m∑
i=j

ak+1−m,i

(
i

j

)
(−1)i−jµi−j,m

]
yj

}
e−y + o(e−βy).

Table C.1 provides values for θk and ζk, k = 0, · · · , 16, and note that the values of θk are

fairly close to −k!. Table C.2 shows numerical values for µi,m, 0 ≤ i ≤ m ≤ 7. Appendix

C.2 also shows explicit expressions for these µi,m written in terms of the ζk. Table C.3 gives

values for the positive half-line constants ak+1,i.

Finally, we need to distinguish between the values of ak+1,i and those belonging to the

expansion over all reals. Call the latter Ak+1,i. Then before turning to examples in the next

section, we need to have recursive formulas for the Ak+1,i like we did the ak+1,i. Using the

same technique of picking off the terms with the yj of interest, we discover the two equations

Ak+1,k+1−r =
r−1∑
m=1

(
k + 1

m

) k−m∑
i=k+1−r

ak+1−m,i

(
i

k + 1− r

)
(−1)i−(k+1−r)µi−(k+1−r),m

+ ak+1,k+1−r, r = 2, · · · , k + 1, and

Ak+1,k =
1

k!
.

(5.80)

The following alternative theorem provides the same result, but stated more succinctly.
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Theorem 5.6. For all constants defined earlier and for Ak+1,i defined in (5.80), as y →∞

1− Λ∗(k+1)(y) =

{
k∑
i=0

Ak+1,iy
i

}
e−y + o(e−βy).

Table C.4 lists numerical values of the Ak+1,i.

5.6 Examples of the N-Fold Gumbel Expansion

Now that the theory has been established, we provide several examples of how the expansion

is implemented. Some of the examples derive more explicit formulas for the Ak+1,i, which in

turn will be used in another simulation study.

Example 5.1. Corollary 5.2 is a special case of Theorem 5.6, taking k = 1 and noting that

θ0 + ζ0 = −γ.

Example 5.2. We derive Ak+1,k−1, the general secondary term in the expansion, for k ≥ 1.

Of course, we already know the answer from Corollary 5.2, but in this example we obtain it

from (5.80). First note that

ak+1,k−1 =
ak,k−2

k − 1
+ ak,k−1θ0 =

1

k − 1

[
ak−1,k−3

k − 2
+

θ0

(k − 2)!

]
+

θ0

(k − 1)!

=
ak−1,k−3

(k − 1)(k − 2)
+

2θ0

(k − 1)!
= · · · = a2,0 + (k − 1)θ0

(k − 1)!
.

Using the fact that a2,0 = 1 + 2θ0,

ak+1,k−1 =
1 + (k + 1)θ0

(k − 1)!
.

Take r = 2 in (5.80), and therefore m = 1 and i = k − 1. From Appendix C.2 we have that
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µ0,1 = ζ0. Thus

Ak+1,k−1 = ak+1,k−1 +

(
k + 1

1

)
ak,k−1µ0,1 =

1 + (k + 1)θ0 + (k + 1)ζ0

(k − 1)!

=
1 + (k + 1)(θ0 + ζ0)

(k − 1)!
=

1− (k + 1)γ

(k − 1)!
.

(5.81)

Example 5.3. We next derive the three-term expansion for the case k = 2, or the sum of 3

standard Gumbel random variables. We do this using Theorem 5.5. The formula reduces to

1− Λ∗3(y) ≈

{
1∑
j=0

[
1∑
i=j

a2,i

(
i

j

)
(−1)i−jθi−j

]
yj +

1∑
i=0

[
a2,i

(i+ 1)2i+1

]
yi+1 + a2,0

+
1∑
i=0

[
i∑

j=0

(
a2,i

i− j + 1

)(
i

j

)
(−1)i−j

(
1

2

)i−j+1
]
yi+1

+
1∑
j=0

[
2−j∑
m=1

(
3

m

) 2−m∑
i=j

a3−m,i

(
i

j

)
(−1)i−jµi−j,m

]
yj

}
e−y

=
{[a2,1

2

]
y2 + [a2,1θ0 + a2,0 + 3a2,1µ0,1]y

+ a2,0θ0 − a2,1θ1 + a2,0 + 3a2,0µ0,1 − 3a2,1µ1,1 + 3a1,0µ0,2} e−y.

Using the fact that a2,1 = a1,0 = 1, a2,0 = 1 + 2θ0, µ0,1 = ζ0, µ0,2 = ζ2
0 , and µ1,1 = ζ1,

1− Λ∗3(y) =

{
1

2
y2 + [1 + 3(θ0 + ζ0)]y

+ (1 + 2θ0)θ0 − θ1 + 1 + 2θ0 + 3(1 + 2θ0)ζ0 − 3ζ1 + 3ζ2
0

}
e−y

=

{
1

2
y2 + [1− 3γ]y + 1− 3γ + 2θ2

0 − θ1 + 6θ0ζ0 − 3ζ1 + 3ζ2
0

}
e−y

≈
{

1

2
y2 − 0.73165y + 0.81806

}
e−y.

(5.82)

This is the tertiary expansion for the particular case of 3 Gumbel variables.

Example 5.4. Now we find the general third term in the expansion, assuming that k ≥ 2.
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The benefit of doing the previous example first is that we can use it to check our third term.

Unfortunately, unlike the general second term derivation, this one is a lot more involved. To

start,

ak+1,k−2 =
ak,k−3

k − 2
+

k−1∑
i=k−2

(
i

k − 2

)
(−1)i−(k−2)ak,iθi−(k−2)

=
ak,k−3

k − 2
+ ak,k−2θ0 − (k − 1)ak,k−1θ1 =

ak,k−3

k − 2
+
θ0 + kθ2

0 − θ1

(k − 2)!
.

We need to go at least a couple of steps further into the recursion before we can spot the

pattern. Assume that k is large enough so that the following steps may be performed:

ak+1,k−2 =
ak−1,k−4

(k − 2)(k − 3)
+

2(θ0 − θ1) + (2k − 1)θ2
0

(k − 2)!

=
ak−2,k−5

(k − 2)(k − 3)(k − 4)
+

3(θ0 − θ1) + (3k − 3)θ2
0

(k − 2)!

=
ak−3,k−6

(k − 2)(k − 3)(k − 4)(k − 5)
+

4(θ0 − θ1) + (4k − 6)θ2
0

(k − 2)!
.

After some pattern recognition (in particular, the 1, 3, and 6 are triangular numbers), we

have that

ak+1,k−2 =
a3,0 + (k − 2)(θ0 − θ1) +

[
(k − 2)k − 1

2
(k − 2)(k − 3)

]
θ2

0

(k − 2)!
.

Using (5.64), it can be shown that a3,0 = 1 + 3θ0 + 2θ2
0 − θ1, and therefore

ak+1,k−2 =
1 + (k + 1)θ0 − (k − 1)θ1 + 1

2
(k − 1)(k + 2)θ2

0

(k − 2)!
. (5.83)

As a quick check, setting k = 2 in this equation returns a3,0 = 1 + 3θ0 + 2θ2
0 − θ1. Turning
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to Ak+1,k−2, set r = 3 in (5.80) to obtain

Ak+1,k−2 = ak+1,k−2 +
2∑

m=1

(
k + 1

m

) k−m∑
i=k−2

ak+1−m,i

(
i

k − 2

)
(−1)i−(k−2)µi−(k−2),m

= ak+1,k−2 + (k + 1)ak,k−2µ0,1 − (k + 1)

(
k − 1

k − 2

)
ak,k−1µ1,1 +

(
k + 1

2

)
ak−1,k−2µ0,2

= ak+1,k−2 +
(k + 1)(1 + kθ0)ζ0

(k − 2)!
− (k + 1)(k − 1)ζ1

(k − 1)!
+
k(k + 1)ζ2

0

2(k − 2)!
.

Substituting in (5.83) and simplifying, we finally have that Ak+1,k−2 is equal to

1 + (k + 1)(kθ0ζ0 − ζ1 − γ)− (k − 1)θ1 + 1
2
(k − 1)(k + 2)θ2

0 + 1
2
k(k + 1)ζ2

0

(k − 2)!
. (5.84)

As a check, setting k = 2 provides A3,0 = 1− 3γ + 6θ0ζ0− 3ζ1− θ1 + 2θ2
0 + 3ζ2

0 , which agrees

with our constant term in (5.82).

Example 5.5. We have derived the general forms for the first, second, and third-order

terms. Based on our extensive analysis for the latter, it should be no surprise that explicit

forms for higher terms, while possible to derive, are very complicated. If one needed further

terms in the expansion for k large enough, we recommend the computational values given

in Table 5.3, duplicated in Appendix C.4. In order to make the table more user-friendly, we

reindex as An,i where n is the number of variables in the convolution.
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Table 5.3: Values for An,i
HH

HHHHn
i

0 1 2 3 4 5 6

1 1.0000 — — — — — —

2 -0.1544 1.0000 — — — — —

3 0.8181 -0.7316 0.5000 — — — —

4 -1.7642 2.2294 -0.6544 0.1667 — — —

5 4.3381 -5.2887 1.9870 -0.3143 0.0417 — —

6 -12.2325 14.1488 -5.1955 1.0086 -0.1026 0.0083 —

7 34.5721 -40.0139 14.7598 -2.8773 0.3526 -0.0253 0.0014

Now we list the expansions for the convolution of 2, · · · , 7 Gumbel random variables, based

on the results of Table 5.3:

Λ∗2(y) ≈ (y − 0.1544) e−y

Λ∗3(y) ≈
(

1

2!
y2 − 0.7316y + 0.8181

)
e−y

Λ∗4(y) ≈
(

1

3!
y3 − 0.6544y2 + 2.2294y − 1.7642

)
e−y

Λ∗5(y) ≈
(

1

4!
y4 − 0.3143y3 + 1.9870y2 − 5.2887y + 4.3381

)
e−y

Λ∗6(y) ≈
(

1

5!
y5 − 0.1026y4 + 1.0086y3 − 5.1955y2 + 14.1488y − 12.2325

)
e−y

Λ∗7(y) ≈
(

1

6!
y6 − 0.0253y5 + 0.3526y4 − 2.8773y3 + 14.7598y2

−40.0139y + 34.5721) e−y

We next state a corollary that establishes the general three-term expansion.

Corollary 5.3. For n ≥ 3, a general tertiary expansion as y →∞ is given by

1− Λ∗n(y) =

(
1

(n− 1)!
yn−1 +

1− nγ
(n− 2)!

yn−2 + An.n−3y
n−3

)
e−y + o(e−βy),
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where

An,n−3 =
1 + n[(n− 1)θ0ζ0 − ζ1 − γ]− (n− 2)θ1 + 1

2
(n− 2)(n+ 1)θ2

0 + 1
2
n(n− 1)ζ2

0

(n− 3)!
.

5.7 Simulation Results

The previous example shows that we can computationally derive the complete expansion for

a given convolution. That is, we can compute as many terms in the expansion as there are

variables to add. But the question is, should we? It may be possible to get a reasonable

approximation without resorting to the full expansion. The goal of this next section is to

conduct a simulation to see whether the full expansion is needed, or if, say, three or four

terms is sufficient enough.

While including more terms may result in a more accurate approximation, there are a

couple of reasons we may wish not to do so. The formulas get complicated, and one would

need to keep careful track of not only the constants in the formula, but also constants for

all previous expansions. If we convolve n Gumbel variables, we would need to store
(
n+1

2

)
total values. And second, the θk, ζk, and µi,m are tough to compute for large k. A better

alternative would be to use Corollary 5.3, which would eliminate the necessity of having to

compute a large number of constants in advance.

In the following simulation, we focus on the convolution of n = 3, · · · , 7 Gumbel random

variables and check how the approximation behaves for L = 3, · · · , n terms in each expansion.

Note that Figures 5.4 through 5.8 are best viewed in color.
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Figure 5.4: Gumbel Convolution, n = 3
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Figure 5.5: Gumbel Convolution, n = 4
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Figure 5.6: Gumbel Convolution, n = 5
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Figure 5.7: Gumbel Convolution, n = 6
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Figure 5.8: Gumbel Convolution, n = 7
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Tables 5.4 and 5.5 contain the errors and relative errors in the probability approximations,

given n and each approximation. We highlight the smallest error and also the optimal

expansion in both tables. Examining these two tables plus the five figures, we make several

observations. First, for n = 3, · · · , 6 the third-order approximation is the most accurate, and

adding any further terms actually is detrimental to the prediction. It is tempting, therefore,

to conclude that Corollary 5.3 is the best approximation to use for n ≥ 3. Unfortunately

the n = 7 case suggests otherwise, for here a quinary expansion is best. These results show

that in practice, it may be difficult to recommend a specific number of terms to include in

the approximation.

Second, we see that the best formula to use sometimes underestimates (n = 3, 4, 5, 7) and

sometimes overestimates (n = 6). Also note that for n ≥ 4 the second-order approximation

performs poorly and gets worse as n increases. A similar observation applies for the fourth-

order formula. We therefore conjecture that whatever the ideal number of terms to include,
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choosing an odd number is optimal. Unfortunately in general, it is not clear as to when the

formula over or underestimates the true probability. What does seem apparent is that the

third-order approximation is always better than the first and second-orders.

Table 5.4: Errors in Approximations of Probabilities
n Approx 95% 97.5% 98% 99% 99.5% 99.9% 99.99%

2
1st -0.0015 -0.0007 -0.0005 -0.0003 -0.0001 -2.2e-5 2.3e-6
2nd 0.0003 7.6e-5 3.3e-5 -6.8e-6 -3.0e-5 -4.6e-6 3.6e-6

3
1st -0.0034 -0.0021 -0.0017 -0.0009 -0.0005 -8.8e-5 -2.4e-6
2nd 0.0103 0.0038 0.0028 0.0011 0.0004 5.8e-5 8.5e-6
3rd 0.0076 0.0028 0.0021 0.0008 0.0003 4.3e-5 7.6e-6

4

1st -0.0056 -0.0038 -0.0032 -0.0018 -0.0009 -0.0002 -1.7e-5
2nd 0.0261 0.0104 0.0077 0.0032 0.0013 0.0002 1.2e-5
3rd 0.0104 0.0043 0.0033 0.0013 0.0006 7.8e-5 6.2e-6
4th 0.0122 0.0049 0.0037 0.0015 0.0006 8.4e-5 6.6e-6

5

1st -0.0081 -0.0057 -0.0049 -0.0027 -0.0014 -0.0003 -3.4e-5
2nd 0.0469 0.0196 0.0148 0.0063 0.0027 0.0004 2.5e-5
3rd 0.0033 0.0022 0.0018 0.0009 0.0005 7.9e-5 3.5e-6
4th 0.0178 0.0072 0.0054 0.0023 0.0010 0.0001 6.9e-6
5th 0.0163 0.0068 0.0051 0.0022 0.0009 0.0001 6.8e-6

6

1st -0.0107 -0.0077 -0.0066 -0.0038 -0.0021 -0.0004 -4.7e-5
2nd 0.0724 0.0315 0.0241 0.0105 0.0046 0.0007 5.0e-5
3rd -0.0183 -0.0060 -0.0042 -0.0014 -0.0005 -2.0e-5 -8.9e-7
4th 0.0328 0.0125 0.0093 0.0037 0.0015 0.0002 1.3e-5
5th 0.0171 0.0075 0.0058 0.0025 0.0011 0.0002 1.1e-5
6th 0.0186 0.0080 0.0061 0.0026 0.0011 0.0002 1.1e-5

7

1st -0.0131 -0.0010 -0.0084 -0.0050 -0.0027 -0.0006 -6.2e-5
2nd 0.1021 0.0461 0.0356 0.0160 0.0072 0.0011 8.4e-5
3rd -0.0583 -0.0223 -0.0164 -0.0065 -0.0025 -0.0003 -1.7e-5
4th 0.0726 0.0268 0.0196 0.0076 0.0031 0.0004 2.4e-5
5th 0.0054 0.0046 0.0039 0.0021 0.0010 0.0002 1.4e-5
6th 0.0237 0.0099 0.0075 0.0032 0.0014 0.0002 1.5e-5
7th 0.0221 0.0095 0.0073 0.0032 0.0014 0.0002 1.5e-5
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Table 5.5: Relative Errors in Approximations of Probabilities
n Approx 95% 97.5% 98% 99% 99.5% 99.9% 99.99%

2
1st -0.0285 -0.0260 -0.0259 -0.0246 -0.0271 -0.0215 0.0234
2nd 0.0064 0.0030 0.0017 -0.0007 -0.0059 -0.0046 0.0371

3
1st -0.0632 -0.0785 -0.0796 -0.0834 -0.0856 -0.0807 -0.0234
2nd 0.2583 0.1777 0.1619 0.1224 0.0947 0.0617 0.0931
3rd 0.1793 0.1257 0.1154 0.0882 0.0682 0.0451 0.0826

4

1st -0.1012 -0.1317 -0.1375 -0.1527 -0.1570 -0.1633 -0.1446
2nd 1.0915 0.7071 0.6311 0.4601 0.3587 0.2191 0.1461
3rd 0.2626 0.2091 0.1955 0.1557 0.1309 0.0843 0.0663
4th 0.3229 0.2451 0.2266 0.1765 0.1456 0.0919 0.0701

5

1st -0.1398 -0.1847 -0.1954 -0.2150 -0.2231 -0.2354 -0.2517
2nd 15.1175 3.5973 2.8501 1.6946 1.1842 0.6547 0.3392
3rd 0.0697 0.0953 0.0974 0.1024 0.1043 0.0853 0.0366
4th 0.5543 0.4062 0.3709 0.2935 0.2442 0.1611 0.0744
5th 0.4851 0.3714 0.3421 0.2764 0.2332 0.1564 0.0725

6

1st -0.1763 -0.2357 -0.2490 -0.2770 -0.2970 -0.3039 -0.3185
2nd -3.2363 -4.8745 -5.9013 -19.7230 12.8988 2.4372 1.0015
3rd -0.2682 -0.1924 -0.1728 -0.1205 -0.0868 -0.0195 -0.0088
4th 1.9096 1.0003 0.8608 0.5937 0.4395 0.2815 0.1488
5th 0.5204 0.4321 0.4062 0.3401 0.2821 0.2148 0.1224
6th 0.5935 0.4671 0.4345 0.3558 0.2915 0.2183 0.1236

7

1st -0.2080 -0.2810 -0.2968 -0.3335 -0.3538 -0.3711 -0.3841
2nd -1.9603 -2.1868 -2.2811 -2.6607 -3.2717 -8.2609 5.4399
3rd -0.5383 -0.4718 -0.4511 -0.3922 -0.3366 -0.2275 -0.1440
4th -3.2119 -14.9082 52.1054 3.2271 1.5744 0.6712 0.3184
5th 0.1222 0.2263 0.2436 0.2631 0.2617 0.2329 0.1592
6th 0.8979 0.6564 0.6042 0.4791 0.3977 0.2874 0.1783
7th 0.7909 0.6134 0.5708 0.4625 0.3886 0.2845 0.1775

5.8 Application to the Peachtree Creek Data

We close this chapter with an application of the Gumbel expansion to the Peachtree Creek

data set from Chapter 2, followed by some open questions. Recall that a Gumbel distribu-

tion was the most appropriate fit for the seasons summer and winter, and furthermore we

concluded that winter was stationary in the location and scale. For that reason, we focus on
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winter. We want to study the distribution of the sum of the maximum observed streamflow

(in cubic feet per second) over, say, n = 5 years. This question would be of interest to

hydrologists since it may help track trends in the river. First note how Theorem 5.6 will be

used. If Xi = σZi + µ where Zi ∼ Λ, then for large enough y

P

(
n∑
t=1

Xi > y

)
= P

(
n∑
t=1

(σZi + µ) > y

)
= P

(
n∑
t=1

Zi >
y − nµ
σ

)

≈

{
n−1∑
i=0

An,n−1−i

(
y − nµ
σ

)n−1−i
}

exp

[
−
(
y − nµ
σ

)]
.

For the purposes of this example, we first refit the Gumbel distribution to the 52 winter

observations without time trend in the location and scale parameters. That is, assuming

that X1, · · · , X52
iid∼ GEV(0, µ, σ), we find the new maximum likelihood estimates for µ

and σ. The original values with time trend were 1687.4669 and 1106.9248, respectively,

from Table 2.4, so we choose these estimates as starting values. The log likelihood to be

maximized is

lnL = −52(x− µ)

σ
−

52∑
t=1

exp

[
−
(
xt − µ
σ

)]
.

Table 5.6 summarizes the maximum likelihood estimates, both of which are not too far away

from their nonstationary counterparts in Table 2.4.

Table 5.6: Estimated Stationary Parameters for Winter
Param. Estimate SE 90% Confidence

µ 1438.8241 118.2219 (1240.6955,1636.9527)
σ 810.8379 91.4888 (657.5114, 964.1644)

176



Using the fact that a tertiary expansion is optimal for n = 5 variables,

Λ∗5
(
y − 5µ̂

σ̂

)
≈

{
A5,4

(
y − 5µ̂

σ̂

)4

+ A5,3

(
y − 5µ̂

σ̂

)3

+ A5,2

(
y − 5µ̂

σ̂

)2
}
e5µ̂/σ̂e−y/σ̂

=

{
297.1979

(
y − 5µ̂

σ̂

)4

− 2242.121

(
y − 5µ̂

σ̂

)3

+ 14172.78

(
y − 5µ̂

σ̂

)2
}
e−y/σ̂,

and when carefully foiled out and simplified the approximation is

Λ∗5
(
y − 5µ̂

σ̂

)
≈
[
6.9× 10−10y4 − 2.4× 10−5y3 + 0.3258y2

−1987.2030y + 4523387] e−y/σ̂.

In Figure 5.9, we compare our approximation to the empirical distribution of the sum of 5

random variables from the GEV(0, µ̂, σ̂). Although it underestimates, we can see that our

approximation is quite accurate even for the 95th percentile, and certainly for the 99th and

above. As an example, consider the 99th percentile of 15826.38. The correct probability is

0.01, and our formula predicts it to be 0.0091.
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Figure 5.9: Gumbel Approximation to the Peachtree Creek Data
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5.9 Open Questions

Theorem 5.6 is a significant contribution to extreme value theory. There are already es-

tablished results on the convolution of random variables of common distributions, such as

normal, exponential, gamma, Poisson, etc. Rootzén (1986) derived the first-order expansion

of a more general class of distributions, from which one could specialize to the Gumbel. Our

result establishes the n-term expansion for n Gumbel random variables. We also have a

second term for a general class of distributions from Theorem 5.3.

There are, however, three questions that would be useful to investigate for future research,

one theoretical and two computational topics. The first is to find the n-term expansion for a

broader class of variables, of which the Gumbel would be a special case. That approximation

would ideally have similar conditions as to those in Section 5.2 and in Rootzén (1986), plus

additional assumptions as needed. As an example, we conjecture that the nth moment must
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be finite, among other stipulations.

The second is to find the optimal number of terms to include in the expansion, which

would be useful for application purposes. We have developed a conjecture for the answer

based on the simulation results, and it is easier to explain using an example. Consider the

full expansion for 7 variables:

Λ∗7(y) ≈
(

1

6!
y6 − 0.0253y5 + 0.3526y4 − 2.8773y3 + 14.7598y2

−40.0139y + 34.5721) e−y.

It has been shown that choosing the quinary expansion provides the best approximation.

Observe that the coefficients, in absolute value, are increasing up to the sixth term, after

which they begin to get smaller. Next, we look at the full 6-variable expansion:

Λ∗6(y) ≈
(

1

5!
y5 − 0.1026y4 + 1.0086y3 − 5.1955y2 + 14.1488y − 12.2325

)
e−y

Here we should choose the tertiary expansion. In absolute value, the coefficients are

increasing up to the fifth term. We therefore suspect a connection between the optimal

number of terms and the turning point of the |An,n−r|. Plus recall that the optimal number

was always odd. The conjecture therefore takes the following form for the convolution of

n ≥ 5 Gumbel random variables. (It does not work when n < 5, but those cases are easier

to derive and inspect.)

1. The optimal choice of approximation should include an odd number of terms, starting

with yn−1.

2. Locate the r that provides sup
1≤r≤n

|An,n−r|.
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3. If r is even, then the optimal approximation contains the first (r − 1) terms.

4. If r is odd, then the optimal approximation contains the first (r − 2) terms.

The third open topic concerns ways of computing the An,i for higher values of n, namely

n ≥ 8. One motivation for this exploration is that a greater number of random variables

may need to be added together for application purposes. We have covered cases such as

n = 4 (weekly for a month, or quarterly) and n = 7 (daily for a week). However, it would

be useful to have the expansions for, say, n = 12 (monthly for a year) or n = 52 (weekly for

a year).

The main challenge is deriving the necessary θk and ζk constants, and then later the µi,m.

While we have the formulas, when k grows large these quantities become computationally

intense to find. In fact, it was this handicap that motivated truncating the full expansion

to just three or five terms. However, we now have an easier way of computing θk, and it

involves a Taylor series expansion:

θk = −
∫ ∞

0

xk
[
1− exp

(
−e−x

)]
dx = −

∫ ∞
0

xk
∞∑
j=1

(−1)j−1e−jx

j!

=
∞∑
j=1

(−1)j

j!

∫ ∞
0

xke−jxdx = k!
∞∑
j=1

(−1)j

j!jk+1
.

This alternative representation of θk is much easier to implement, which also explains

why the values of θk in Table C.1 are fairly close to −k!. A similar series expansion could

be performed on ζk. Thus, the third open question is to seek computational shortcuts like

these to make implementation easier for higher k.
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Chapter 6 Dealing With Ties In The AR(1) Process

In Chapters 3 and 4 we established the groundwork to build a two-term expansion for the

AR(1) process with Gumbel innovations. The formula was constructed under the assumption

that there were no ties in the coefficients, and especially in the highest and second highest.

Chapter 5 discussed the approximation if all variables had exactly the same weights. The

goal of this chapter is to investigate the interesting twist of having ties in the top two largest

weights. There are multiple possible combinations in which this may occur, but we give the

proof of only one of these. The techniques we employ may be used to carry out expansions

under the other possibilities. This chapter constitutes the fourth project in the dissertation.

For ease of reference, we restate Theorem 4.3 here:

Theorem 6.1. Let dk, k = 1, · · · , n, n ≥ 3 be positive constants, and define ck = d(k), the

order statistics arranged from largest to smallest. That is, c1 > c2 > c3 ≥ c4 ≥ · · · ≥ cn, and

in particular c1 = max(dk). Assume that c1 and c2 have multiplicities of 1. If 0 < 2c2 < c1,

then as y →∞ a two-term expansion is given by

P

(
n∑
k=1

dkZk > y

)
=

n∏
k=2

Γ

(
1− ck

c1

)
e−y/c1 − 1

2

n∏
k=2

Γ

(
1− 2ck

c1

)
e−2y/c1 +O

(
e−y/c2

)
.

In the particular case where 0 < 2c2 = c1, the expansion is

P

(
n∑
k=1

dkZk > y

)
=

n∏
k=2

Γ

(
1− ck

c1

)
e−y/c1 −

n∏
k=3

Γ

(
1− 2ck

c1

)
y

c1

e−2y/c1 +O
(
e−y/c2

)
.
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Lastly, when 0 < c1 < 2c2, the expansion is

P

(
n∑
k=1

dkZk > y

)
= − c2

c1 − c2

Γ

(
2− c1

c2

) n∏
k=3

Γ

(
1− ck

c2

)
e−y/c2

+
n∏
k=2

Γ

(
1− ck

c1

)
e−y/c1 + o

(
e−y/c2

)
.

In this chapter, for simplicity we assume all the weights are nonnegative. Suppose the two

highest constants c1 and c2 have multiplicities m1 and m2, respectively. Then for n >

m1 +m2, define the series

Yn
d
= c1

m1∑
k=1

Zk + c2

m2∑
k=1

Zm1+k +

n−m1−m2∑
k=3

ckZm1+m2+k. (6.1)

6.1 Necessary Lemmas for the Case where m1 ≥ 2 and m2 = 1

There are no less than five possible scenarios we may consider for multiplicites among the

two highest weights:

1. The case where m1 ≥ 2 and m2 = 1.

2. The case where m1 = 1 and m2 ≥ 2.

3. The case where m1 = m2 ≥ 2.

4. The case where m1 > m2 ≥ 2.

5. The case where m2 > m1 ≥ 2.

For the purposes of illustrating how such a proof would be implemented, we choose only the

first scenario as an example setting. This setting assumes that the largest weight c1 occurs
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multiple times, but the second largest c2 occurs only once. We conjecture that the remaining

four cases may be worked out using similar techniques, and these are left as open questions.

Therefore for the remainder of this chapter, unless otherwise noted we take m1 ≥ 2 and

m2 = 1, and (6.1) reduces to

Yn
d
= c1

m1∑
k=1

Zk + c2Zm1+1 +

n−m1+1∑
k=3

ckZm1−1+k. (6.2)

Consider the probability

P

(
m1∑
k=1

Zk +
c2

c1

Z0 >
y

c1

)
= P (S + T > y∗), (6.3)

where S =
∑m1

k=1 Zk, T = c2
c1
Z0, and y∗ = y

c1
. Notice that the distribution of S is approxi-

mated from Theorem 5.6. We now examine some preliminary lemmas.

Lemma 6.1. Recall from (5.80) that

Am1,m1−r =
r−1∑
h=1

(
m1

h

)m1−h−1∑
i=m1−r

am1−h,i

(
i

m1 − r

)
(−1)i−(m1−r)µi−(m1−r),h

+ am1,m1−r, r = 2, · · · ,m1, and

Am1,m1−1 =
1

(m1 − 1)!
.

(6.4)

For all constants defined in Section 5.4, as y →∞

F S(y) = P (S > y) =

{
m1−1∑
i=0

Am1,iy
i

}
e−y + o(e−y).

Proof. This is the main result from Chapter 5. Although the original had error term o(e−βy)

for some β > 1, for simplicity in this chapter we shall take o(e−y) instead.
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Lemma 6.2. For any c2
c1
< a < 1, we have that 1− exp

(
−e−ay/c2

)
= o

(
e−y/c1

)
as y →∞.

Proof. Observe that for y large enough,

1− exp
(
−e−ay/c2

)
=
∞∑
j=1

(−1)j−1e−jay/c2

j!
≤ 2e−ay/c2 .

Then we see that

1− exp
(
−e−ay/c2

)
e−y/c1

≤ 2e−ay/c2

e−y/c1
= 2 exp

[
−y
(
a

c2

− 1

c1

)]
→ 0,

because a
c2
− 1

c1
> 0.

Lemma 6.3. For L = 0, 1, ...,m1 − 1,
∣∣E (TLeT )∣∣ <∞. In particular, it can be shown that

E(eT ) = Γ

(
1− c2

c1

)
and E(TeT ) = ψ

(
1− c2

c1

)
.

Proof. First note that

E
(
TLeT

)
=

∫ ∞
−∞

tLet × c1

c2

e−c1t/c2 exp
(
−e−c1t/c2

)
dt

=

(
−c2

c1

)L ∫ ∞
0

(log t)Lt−c2/c1e−tdt.

(6.5)

Now write

|E
(
TLeT

)
| ≤

(
c2

c1

)L [∣∣∣ ∫ ∞
1

(log t)Lt−c2/c1e−tdt
∣∣∣+
∣∣∣ ∫ 1

0

(log t)Lt−c2/c1e−tdt
∣∣∣] . (6.6)
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Consider the series
∑∞

k=1(log k)Lk−c2/c1e−k. By the ratio test,

(log(k + 1))L(k + 1)−c2/c1e−(k+1)

(log k)Lk−c2/c1e−k
=

(
log(k + 1)

log k

)L(
k

k + 1

)c2/c1
e−1 → e−1 < 1,

and therefore ∣∣∣ ∫ ∞
1

(log t)Lt−c2/c1e−tdt
∣∣∣ = K <∞. (6.7)

Next, ∣∣∣ ∫ 1

0

(log t)Lt−c2/c1e−tdt
∣∣∣ ≤ ∣∣∣ ∫ 1

0

(log t)Lt−c2/c1dt
∣∣∣.

A change of variables results in

∣∣∣(−1)L
∫ ∞

0

tLe
−
(

1− c2
c1

)
t
dt
∣∣∣ ≤ ∫ ∞

0

tLe
−
(

1− c2
c1

)
t
dt = L!

(
1− c2

c1

)−(L+1)

. (6.8)

Therefore putting (6.7) and (6.8) into (6.6),

|E
(
TLeT

)
| ≤

(
c2

c1

)L [
K + L!

(
1− c2

c1

)−(L+1)
]
<∞.

Lastly, E(eT ) follows from the moment generating function of T , while E
(
TeT

)
can be

derived from the log-gamma density.

Now we turn to the problem of solving P
(∑m1

i=1 Zi + c2
c1
Z0 > y∗

)
. Split into two integrals as

P (S + T > y∗) =

∫ ∞
ay∗

P (S > y∗ − t)dFT (t) +

∫ ay∗

−∞
P (S > y∗ − t)dFT (t), (6.9)
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where a is chosen to satisfy c2
c1
< a < 1. Observe that

∫ ∞
ay∗

P (S > y∗ − y)dFT (t) ≤ P (T > ay∗) = P

(
Z0 >

ay

c2

)
= 1− exp

(
−e−ay/c2

)
.

Therefore by Lemma 6.2,

∫ ∞
ay∗

P (S > y∗ − t)dFT (t) = o
(
e−y/c1

)
. (6.10)

Now consider the second integral in (6.9). By Lemma 6.1, for y large enough

P (S > y∗ − t) =

[
m1−1∑
q=0

Am1,q(y∗−t)q

]
e−(y∗−t) +R(y∗ − t),

where for any ε > 0

sup
t<ay∗

∣∣R(y∗ − t)ey∗−t
∣∣ < ε.

Write the integral as

∫ ay∗

−∞
P (S > y∗ − t)dFT (t) =

m1−1∑
q=1

Am1,q

∫ ay∗

−∞
(y∗ − t)qe−(y∗−t)dFT (t)

+

∫ ay∗

−∞

[
F S(y∗ − t)−

∑m1−1
q=1 Am1,q(y

∗ − t)qe−(y∗−t)

Am1,0e
−(y∗−t)

]
Am1,0e

−(y∗−t)dFT (t).

(6.11)

We examine the first piece in (6.11). Observe that

m1−1∑
q=1

Am1,q

∫ ∞
−∞

(y∗ − t)qe−(y∗−t)dFT (t)

=

m1−1∑
q=1

Am1,q

∫ ∞
∞

q∑
j=0

(
q

j

)
(y∗)j(−t)q−je−(y∗−t)dFT (t)
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=

m1−1∑
q=1

Am1,q

q∑
j=0

(
q

j

)
(−1)q−j(y∗)je−y

∗
∫ ∞
∞

tq−jetdFT (t)

=

m1−1∑
q=1

Am1,q

q∑
j=0

(
q

j

)
(−1)q−jE

(
T q−jeT

)
(y∗)je−y

∗

=

m1−1∑
q=1

Am1,q

q∑
j=1

(
q

j

)
(−1)q−jE

(
T q−jeT

)
(y∗)je−y

∗
+

m1−1∑
q=1

Am1,q(−1)qE
(
T qeT

)
e−y

∗

=

m1−1∑
j=1

[
m1−1∑
q=j

Am1,q

(
q

j

)
(−1)q−jE

(
T q−jeT

)]
(y∗)je−y

∗

+

[
m1−1∑
q=1

Am1,q(−1)qE
(
T qeT

)]
e−y

∗
.

(6.12)

By Lemma 6.3, all the expected values in (6.12) are finite. Now

m1−1∑
q=1

Am1,q

∫ ay∗

−∞
(y∗ − t)qe−(y∗−t)dFT (t)

=

m1−1∑
j=1

[
m1−1∑
q=j

Am1,q

(
q

j

)
(−1)q−jE

(
T q−jeT

)]
(y∗)je−y

∗

+

[
m1−1∑
q=1

Am1,q(−1)qE
(
T qeT

)]
e−y

∗ −
m1−1∑
q=1

Am1,q

∫ ∞
ay∗

(y∗ − t)qe−(y∗−t)dFT (t).

(6.13)

We now analyze the final integrals in (6.13). First note that

∫ ∞
ay∗

(y∗ − t)qe−(y∗−t)dFT (t) ≤
q∑
j=0

(
q

j

)
(y∗)je−y

∗
∫ ∞
ay∗

tq−jetdFT (t). (6.14)
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By integration by parts,

∫ ∞
ay∗

tq−jetdFT (t) = (ay∗)q−jeay
∗
F T (ay∗) +

∫ ∞
ay∗

tq−1−j(t+ q − j)etF T (t)dt. (6.15)

Note that for y∗ large enough,

F T (ay∗) = P

(
Z0 >

c1ay
∗

c2

)
= e−c1ay

∗/c2 + o
(
e−c1ay

∗/c2
)
,

and therefore

(ay∗)q−jeay
∗
F T (ay∗) = (ay∗)q−je

−ay∗
(
c1
c2
−1

)
+ o

(
(y∗)q−je

−ay∗
(
c1
c2
−1

))
= o

(
e−y

∗)
= o

(
e−y/c1

)
,

(6.16)

because a
(
c1
c2
− 1
)
> 0. Next, setting P = c1

c2
− 1,

∫ ∞
ay∗

tq−1−j(t+ q − j)etF T (t)dt ≤ 2

∫ ∞
ay∗

tq−1−j(t+ q − j)ete−c1t/c2dt

= 2

∫ ∞
ay∗

tq−je−Ptdt+ 2(q − j)
∫ ∞
ay∗

tq−1−je−Ptdt.

(6.17)

Now
∫∞
ay∗

e−Ptdt = 1
P
e−Pay

∗
= o

(
e−y

∗)
, and by integration by parts, it can be shown that for

L = 1, 2, ...,

∫ ∞
ay∗

tLe−Ptdt =
1

P
e−Pay

∗

[
(ay∗)L +

L∑
i=1

(ay∗)L−i

P i

i−1∏
k=0

(L− k)

]
= o

(
e−y

∗)
. (6.18)
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Combining (6.16) and (6.18), (6.14) = o
(
e−y

∗)
= o

(
e−y/c1

)
. Now we turn to the second

piece in (6.11). Write

F S(y∗ − t)−
∑m1−1

q=1 Am1,q(y
∗ − t)qe−(y∗−t)

Am1,0e
−(y∗−t) = 1 +

R(y∗ − t)e(y∗−t)

Am1,0

= 1 + ε(y∗ − t),

and observe that supt<ay∗ |ε(y∗ − t)| < ε
|Am1,0|

. Now write

∫ ay∗

−∞
[1 + ε(y∗ − t)]Am1,0e

−(y∗−t)dFT (t) =

∫ ay∗

−∞
Am1,0e

−(y∗−t)dFT (t)

+

∫ ay∗

−∞
ε(y∗ − t)Am1,0e

−(y∗−t)dFT (t)

= (I) + (II).

(6.19)

By dominated convergence, (I) = Am1,0E(eT )e−y
∗
. As for (II),

|(II)| =
∣∣∣∣Am1,0

∫ ay∗

−∞
ε(y∗ − t)Am1,0e

−(y∗−t)dFT (t)

∣∣∣∣
=

∣∣∣∣∫ ay∗

−∞
R(y∗ − t)ey∗−te−(y∗−t)dFT (t)

∣∣∣∣ < εE(eT )e−y
∗
,

and therefore (II) = o
(
e−y

∗)
= o

(
e−y/c1

)
. Putting all the pieces together and simplifying,

we arrive at Lemma 6.4.

Lemma 6.4. If Zk, k = 0, 1, · · · ,m1,m1 ≥ 2 are i.i.d. Gumbel random variables and c1 >

c2 > 0 and y∗ = y
c1

, then as y →∞

P

(
m1∑
k=1

Zk +
c2

c1

Z0 > y∗

)
=

m1−1∑
j=0

[
m1−1∑
q=j

Am1,q

(
q

j

)
(−1)q−jE

(
T q−jeT

)]
(y∗)je−y

∗

+ o
(
e−y/c1

)
.
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6.2 The Expansion for when m1 ≥ 2 and m2 = 1

Now we want to consider the random variable

X =

m1∑
k=1

Zk +
c2

c1

Zm1+1 +

n−m1+1∑
k=3

ck
c1

Zm1−1+k,

or namely the probability P (V +W > y∗), where

V =

m1∑
k=1

Zk +
c2

c1

Zm1+1, W =

n−m1+1∑
k=3

ck
c1

Zm1−1+k, and y∗ =
y

c1

.

Luckily in this multiplicity scenario, because the Gumbel tail probability is negligible in

comparison to the Gumbel convolution expansion, there is just one expansion to focus on

rather than three. That is, there is no pivot point to worry about. The steps follow similar

steps taken in Chapter 4. Take c3
c2
< a < 1 and 1

a
< λ < c2

c3
, then split the probability into

two integrals as

P (V +W > y∗) =

∫ ∞
ay∗

P (V > y∗ − w)dFW (w) +

∫ ay∗

−∞
P (V > y∗ − w)dFW (w). (6.20)

Regarding the first integral,

FW (ay∗) ≤ E

[
exp

(
c1λW

c2

)]
exp

(
−c1λay

∗

c2

)
= o

(
e−y/c2

)
,

because λa > 1, and therefore

∫ ∞
ay∗

P (V > y∗ − w)dFW (w) = o
(
e−y/c2

)
. (6.21)
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Now for T = c2
c1
Z0, define the constants

Km1,j =

m1−1∑
q=j

Am1,q

(
q

j

)
(−1)q−jE

(
T q−jeT

)
, 0 ≤ j ≤ m1 − 1. (6.22)

If FV represents the distribution of V , then observe that

F V (y∗ − w) =

m1−1∑
j=0

Km1,j(y
∗ − w)je−(y∗−w) +R(y∗ − w),

where for any ε > 0

sup
w<ay∗

∣∣R(y∗ − w)ey
∗−w∣∣ < ε.

We now rewrite the integral as

∫ ay∗

−∞
F V (y∗ − w)dFW (w) =

m1−1∑
j=1

Km1,j

∫ ay∗

−∞
(y∗ − w)je−(y∗−w)dFW (w)

+

∫ ay∗

−∞

[
F V (y∗ − w)−

∑m1−1
j=1 Km1,j(y

∗ − w)je−(y∗−w)

Km1,0e
−(y∗−w)

]
Km1,0e

−(y∗−w)dFW (w).

(6.23)

We examine the first piece in (6.23). Note that

m1−1∑
j=1

Km1,j

∫ ∞
−∞

j∑
b=0

(
j

b

)
(−1)j−b(y∗)be−y

∗
wj−bewdFW (w)

=

m1−1∑
j=1

j∑
b=0

Km1,j

(
j

b

)
(−1)j−bE

(
W j−beW

)
(y∗)be−y

∗

=

m1−1∑
j=1

Km1,j(−1)jE
(
W jeW

)
e−y

∗
+

m1−1∑
b=1

m1−1∑
j=b

Km1,j

(
j

b

)
(−1)j−bE

(
W j−beW

)
(y∗)be−y

∗
.
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Therefore

m1−1∑
j=1

Km1,j

∫ ay∗

−∞
(y∗ − w)je−(y∗−w)dFW (w)

= −
m1−1∑
j=1

Km1,j

∫ ∞
ay∗

(y∗ − w)je−(y∗−w)dFW (w) +

m1−1∑
j=1

Km1,j(−1)jE
(
W jeW

)
e−y

∗

+

m1−1∑
b=1

m1−1∑
j=b

Km1,j

(
j

b

)
(−1)j−bE

(
W j−beW

)
(y∗)be−y

∗
.

(6.24)

Using similar steps as taken in (6.14) through (6.18), the first piece in (6.24) is o
(
e−y

∗)
.

Now we turn to the second integral in (6.23). Observe that for y∗ large enough,

F V (y∗ − w)−
∑m1−1

j=1 Km1,j(y
∗ − w)je−(y∗−w)

Km1,0e
−(y∗−w)

= 1 +
1

Km1,0

R(y∗ − w)ey
∗−w

= 1 + ε(y∗ − w),

with supw<ay∗ |ε(y∗ − w)| < ε
Km1,0

. Thus the second integral in (6.23) can be written as

Km1,0

∫ ay∗

−∞
[1 + ε(y∗ − w)]e−(y∗−w)dFW (w)

= Km1,0e
−y∗
∫ ay∗

−∞
ewdFW (w) +Km1,0

∫ ay∗

−∞
ε(y∗ − w)e−(y∗−w)dFW (w)

= (I) + (II).

(6.25)

By dominated convergence, for y∗ large (I) = Km1,0E(eW )e−y
∗
. As for (II),

|(II)| =
∣∣∣∣∫ ay∗

∞
R(y∗ − w)ey

∗−we−(y∗−w)dFW (w)

∣∣∣∣ < εE(eW )e−y
∗
,

and therefore (II) = o
(
e−y

∗)
. Collecting all the pieces and simplifying, we finally summarize
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our findings.

Theorem 6.2. Suppose Km1,j and Am1,q are as defined in (6.22) and (6.4), respectively, and

that θk, ζk, and µi,j are as defined in (5.48), (5.49), and (5.50), respectively. Consider the

series

X = c1

m1∑
k=1

Zk + c2Zm1+1 +

n−m1+1∑
k=3

ckZm1−1+k.

Then as y →∞

P (X > y) =

m1−1∑
b=0

[
m1−1∑
j=b

Km1,j

(
j

b

)
(−1)j−bE

(
W j−beW

)]( y
c1

)b
e−y/c1 + o

(
e−y/c1

)
.

We make a couple of remarks about Theorem 6.2. First, if c1 and c2 are the only occurring

weights (i.e. there is no c3, c4, etc.), then the result reduces to the conclusion of Lemma

6.4. And second, whereas Theorem 5.6 had as many terms as there were Gumbel random

variables, Theorem 6.2 has only m1 terms. The sample size n appears only through the

expressions E
(
W j−beW

)
.

6.3 Examples

We now provide a few examples of Theorem 6.2, along with a simulation study.

Example 6.1. Take m1 = 2 in this first example, so the largest weight occurs twice. Then
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Theorem 6.2 reduces to

P (X > y) =
1∑
b=0

[
1∑
j=b

Km1,j(−1)j−bE
(
W j−beW

)]( y
c1

)b
e−y/c1 + o

(
e−y/c1

)
=

1∑
j=0

Km1,j(−1)jE
(
W jeW

)
e−y/c1 +Km1,1E

(
eW
)( y

c1

)
e−y/c1 + o

(
e−y/c1

)
=
[
Km1,0E

(
eW
)
−Km1,1E

(
WeW

)]
e−y/c1 +Km1,1E

(
eW
)( y

c1

)
e−y/c1

+ o
(
e−y/c1

)
.

(6.26)

Using Lemma 6.3 in (6.26), it can be shown that

Km1,0 = (1− 2γ)Γ

(
1− c2

c1

)
−Ψ

(
1− c2

c1

)
and Km1,1 = Γ

(
1− c2

c1

)
, (6.27)

and further we have that

E(eW ) =
n−1∏
k=3

Γ

(
1− ck

c1

)
(6.28)

and

E(WeW ) = −
n−1∑
j=3

cj
c1

Ψ

(
1− ck

c1

) n−1∏
k=3

Γ

(
1− ck

c1

)
. (6.29)

Putting (6.27) through (6.29) into (6.26), as y →∞

P (X > y) =

{[
(1− 2γ)Γ

(
1− c2

c1

)
−Ψ

(
1− c2

c1

)]
E(eW )

−Γ

(
1− c2

c1

)
E(WeW ) + Γ

(
1− c2

c1

)
E(eW )

(
y

c1

)}
e−y/c1

+ o
(
e−y/c1

)
.

194



Example 6.2. We next state the general two-term expansion. First note the following:

Km1,m1−2 =
1

(m1 − 2)!

[
(1−m1γ)Γ

(
1− c2

c1

)
−Ψ

(
1− c2

c1

)]
Km1,m1−1 =

1

(m1 − 1)!
Γ

(
1− c2

c1

)
E(eW ) =

n−m1+1∏
k=3

Γ

(
1− ck

c1

)

E(WeW ) = −
n−m1+1∑
j=3

cj
c1

Ψ

(
1− ck

c1

) n−m1+1∏
k=3

Γ

(
1− ck

c1

)
.

Then the two-term expansion for m1 ≥ 2 as y →∞ is

P (X > y) =
[
Km1,m1−2E

(
eW
)
−Km1,m1−1E

(
WeW

)]( y
c1

)m1−2

e−y/c1

+Km1,m1−1E
(
eW
)( y

c1

)m1−1

e−y/c1 + o
(
e−y/c1

)
.

When m1 = 2, this two-term expansion reduces to the one in the previous example.

Example 6.3. Now take m1 = 3, where the largest weight occurs three times. Then using

Table C.4, the K3,j are

K3,2 =
1

2
Γ

(
1− c2

c1

)
, K3,1 = (1− 3γ)Γ

(
1− c2

c1

)
−Ψ

(
1− c2

c1

)
, and

K3,0 = 0.8181Γ

(
1− c2

c1

)
− (1− 3γ)Ψ

(
1− c2

c1

)
+

1

2
E
(
T 2eT

)
.

As y →∞, the three-term expansion is

P (X > y) =

[
K3,2E

(
eW
)

c2
1

]
y2e−y/c1 +

[
K1E

(
eW
)
− 2E

(
WeW

)
c1

]
ye−y/c1

+
[
K3,0E

(
eW
)
−K3,1E

(
WeW

)
+K3,2E

(
W 2eW

)]
e−y/c1 + o

(
e−y/c1

)
.
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This example also illustrates that, unlike the constants in Table C.4, the Km1,j cannot easily

be summarized in a table because they are a function of c1 and c2.

Example 6.4. We now present a data analysis example, using the Peachtree Creek data

results from Tables 2.4 and 5.6. Suppose it is of interest to find the distribution of the

total seasonal maximum streamflow over two years for summer and winter. In other words,

we want the distribution of the sum of the maximum streamflow for summer and winter

over two consecutive years (so 4 observations). We choose these two seasons because recall

that they both fit the Gumbel distribution appropriately, whereas fall and spring did not.

Further we had Xsummer, t ∼ GEV(0, 727.6026 + 8.4951t, 429.7833 + 5.9982t) and Xwinter ∼

GEV(0, 1438.8241, 810.8379) where t = 1 represents 1958. In this example we use the years

2008 and 2009, and therefore t = 51, 52.

Table 6.1 shows the location and scale parameters for the season and year, from which we

can read off the ck values.

Table 6.1: Estimated Parameters for 2008 and 2009
Param. Summer 2008 Winter 2008 Summer 2009 Winter 2009

µ 1160.8526 1438.8241 1169.3477 1438.8241
σ 735.6915 810.8379 741.6897 810.8379

Here c1 = 810.8379, c2 = 741.6897, c3 = 735.6915, and m1 = 2. If Xk represents the Gumbel

observation where k = 1 is Summer 2008 and k = 4 is Winter 2009, then Xk = σkZk + µk

where Zk ∼ Λ. In which case, the probability is then

P

(
4∑

k=1

(σkZk + µk) > y

)
d
= P

(
Z1 + Z2 +

c2

c1

Z3 +
c3

c1

Zk >
y − 5207.8485

810.8379

)
.
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After simplifying, Theorem 6.2 then provides the approximation

P

(
4∑

k=1

(σkZk + µk) > y

)
≈ (87.8023y − 1115987) e−y/810.8379, (6.30)

provided y > 12710.23, a necessary condition to ensure that the approximation is positive.

Example 6.5. Understandably, conducting a general simulation on this topic is not as

straightforward as it was in Chapters 3 through 5, since we have not only choices of m1 but

also various combinations of the weights ck. We therefore perform a sample simulation on

the previous example only. The study works by defining X =
∑4

k=1(σkZk + µk) for µk, σk

defined in Table 6.1, and simulating 10 million values of X.

Tables 6.2 and 6.3 show the errors and relative errors in estimation, respectively. Figure 6.1

shows the empirical probability for the 99th percentiles and higher. As in earlier chapters,

we study the first and second-order approximations in each table. The second-order is the

equation in (6.30), while the first-order is just 87.8023ye−y/810.8379.

Table 6.2: Errors in Approximations of Probabilities
Approx 95% 97.5% 98% 99% 99.5% 99.9% 99.99%

1st -2.0306 -0.7565 -0.5547 -0.2195 -0.0895 -0.0124 -0.0008
2nd 0.4771 0.1146 0.0712 0.0144 0.0012 -0.0010 -0.0001

Table 6.3: Relative Errors in Approximations of Probabilities
Approx 95% 97.5% 98% 99% 99.5% 99.9% 99.99%

1st -0.9760 -0.9680 -0.9652 -0.9564 -0.9471 -0.9252 -0.8941
2nd -1.1171 -1.2791 -1.3909 -3.2537 0.3300 -0.4950 -0.5930

Unfortunately the approximations are much worse than from earlier chapters. The first-order

approximation is terrible, but the second-order at least gets close to the empirical probability
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Figure 6.1: Gumbel Convolution, m1 = 2
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for the higher percentiles. However, this does not happen until around the 99.99th percentile.

Also notice that the approximation cannot be used except for above the 99.2nd percentile,

since below this mark the equation gives a negative probability. Note the smaller relative

errors up to the 99th percentile, but these are clearly meaningless. We conclude that for this

particular scenario, the second-order estimation is useful only for very high percentiles.

6.4 Open Questions

This fourth project begins to delve into the complicated topic of dealing with ties in the

highest weights of Gumbel convolutions. We have answered the question for the first case,

where m1 ≥ 2 and m2 = 1. Several potential followup questions remain unanswered, and

these would all be useful future topics to study.

198



First, we can obtain expansions for the other four cases listed at the beginning of the chapter.

Each approach is conjectured to have similar steps as those taken in the preceding proofs,

although we also expect subcases to emerge. For instance, pivot points may come into play,

forcing us to divide into three further cases where 0 < c2
c1
< 1

2
, c2
c1

= 1
2
, and 1

2
< c2

c1
< 1.

Second, more involved simulation studies need to be investigated to see how accurate the

approximation is, given choices of m1 and m2. Recall that in Chapter 5 we discovered that

the full expansion should not always be used, and we derived a conjecture for the optimal

number of terms to include in the expansion. A similar study could be conducted on this

material, although it would have many cases to consider. Another difficulty would be the

multitude of possible choices of weights ck.

Third, we currently have expressions for E
(
eT
)

and E
(
TeT

)
as stated in Lemma 6.3. It

would be of interest to derive closed-form expressions for higher moments, namely E
(
TLeT

)
,

L = 2, 3, · · · . This procedure would most likely involve characteristics of the gamma,

digamma, and possibly polygamma functions. An integral representation is given in (6.5);

however, expressions for each moment would be desirable for programming purposes. One

temporary solution would be to note that E
(
TLeT

)
=
(
− c2
c1

)L
E
[
(logG)L

]
where G ∼

Gamma
(

1− c2
c1
, 1
)

. Then one could simulate the value of E
(
TLeT

)
through this alterna-

tive formula.
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Chapter 7 Chain Dependent Linear Processes

7.1 Introduction

To close the dissertation, we now shift to studying an interesting topic on regularly varying

variables, namely the Type II extreme value distribution. In the analysis of extremes for

stochastic systems, it is often of interest to model the behavior of a chain dependent pro-

cess. Such possible applications include the analysis of earthquake magnitudes, flood levels,

insurance risk, and queueing theory. These topics, respectively, are discussed in the follow-

ing references: Caers et al. (1999), Bruun and Tawn (1998), Asmussen (2001), and Borokov

(1976). In a monograph series, McCormick and Seymour (2001) study the distribution of the

maximum of a shot-noise process based on chain-dependent amplitudes. Finally, in another

paper McCormick and Seymour (2001) analyze the maximum of a chain-dependent sequence

as well as its rate of convergence.

We mention a few more sources that investigated similar work. Rootzén (1988) studied

maxima of Markov chains and distributions of exceedances. Results from Barbe and Mc-

Cormick (2005) that appeared in Section 3.3 will be used again in this chapter. The theorems

in that paper helped extract the second term in the convolution of two regularly varying in-

dependent variables, and we will use them to derive the second term in the approximations

in Section 7.2. Finally, Barbe and McCormick (2009) discuss how to derive three or higher

terms in the independent and identically distributed case, and under what conditions further

terms exist.

In this final chapter of the dissertation, and the fifth project, we consider the distribu-

tion of a linear process formed by taking a linear combination of Markov chain-dependent

regularly varying random variables. We derive a first-order tail area approximation before
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turning our attention to the interesting problem of deriving a second term.

Suppose Fj, j = 1, ...,M are distribution functions. A chain dependent process Xn is

such that

P{Xn+1 ≤ x|Xi, Ji = ji, i ≤ n} = FJn(x). (7.1)

In the heavy tail setting, let F be a distribution and set F∗(x) = F (x) + F (−x) where

F = 1 − F and x > 0. Assuming that F is continuous, F∗ represents the tail distribution

for |X| where X ∼ F . It is supposed that F∗ is regularly varying at infinity with index

of regular variation −α, α > 0, denoted as F∗ ∈ RV−α. Furthermore F satisfies the tail

balancing condition that F (x) ∼ pF∗(x) and F (−x) ∼ qF∗(x) as x→∞ for some 0 ≤ p ≤ 1

and p+ q = 1.

For distributions Fj, the two-sided tail, denoted Fj∗, is defined by Fj∗(x) = Fj(x) +

Fj(−x). In order to have nonnegligible components in the asymptotic analysis, it is assumed,

for some 0 ≤ pj ≤ 1, pj + qj = 1, and positive constants kj, 1 ≤ j ≤ M , that F j ∼ pjFj∗,

Fj(−x) ∼ qjFj∗(x), and Fj∗ ∼ kjF∗.

Consider the linear process

Yn =
∞∑

i=−∞

ciXn−i, n ≥ 1. (7.2)

For the purposes of having a quick reference, here is the most common notation we shall use

in this chapter. Set c+
i = max(ci, 0), c−i = max(−ci, 0), d1 = Eπ (K1(J1)), d2 = Eπ (K2(J1)),

K1(a) = paka, and K2(a) = qaka for 1 ≤ a ≤ M . For certain steps in the proof, we also

rewrite d1 =
∑M

a=1 pakaπa and d2 =
∑M

a=1 qakaπa for pa + qa = 1. Further it is assumed that

~π, the stationary distribution for the Markov chain, exists, and so the sequence Yn is also

stationary.
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Finally, unless otherwise noted we shall use Zi to denote a sequence of independent

regularly varying random variables, and Xi if they are chain dependent.

7.2 The First-Order Tail Area Approximation

The first step is to derive a one-term expansion for the tail probability of Yn. We shall

ultimately prove that as x→∞

P (Y1 > x) =

(
d1

∞∑
i=−∞

[c+
i ]α + d2

∞∑
i=−∞

[c−i ]α

)
F∗(x) + o (F∗(x)) . (7.3)

The proof takes the following path. We first prove by induction that we can add up the

finite sum with nonnegative constants. Then we prove that the same property holds when

the constants are all negative. We then use these results to argue that the finite sum with

any real choice of constants holds. Finally, we impose a suitable summability condition on

the {ci} that allows us to move to the infinite sum.

Feller (1971) provides the following result.

Theorem 7.1. (Feller’s Theorem) Let Z1 and Z2 be independent random variables from F1

and F2, respectively, with the property that F i(x) = x−αLi(x) with Li(x) slowly varying,

i = 1, 2. Then as x→∞

P (Z1 + Z2 > x) = x−α [L1(x) + L2(x)] [1 + o(1)].

Recall the definition of slowly varying in Chapter 1. Let c1, c2 > 0, then it is easily seen that
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P (ciZi > x) = P
(
Zi >

x
ci

)
= cαi x

−αLi

(
x
ci

)
, i = 1, 2. Applying Theorem 7.1,

P (c1Z1 + c2Z2 > x) = x−α
[
cα1L1

(
x

c1

)
+ cα2L2

(
x

c2

)]
[1 + o(1)].

By induction,

P

(
n∑
i=1

ciZi > x

)
= x−α

[
n∑
i=1

cαi Li

(
x

ci

)]
[1 + o(1)]. (7.4)

Now we introduce the Markov chain described above. We first have that P (|Xi| > x|Ji−1 =

ji−1) ∼ kji−1
x−αL(x). Because of the right tail balancing condition,

P (ciXi > x|Ji−1 = ji−1) ∼ pji−1
P (ci|Xi| > x|Ji−1 = ji−1)

= pji−1
kji−1

cαi x
−αLi

(
x

ci

)
+ o

(
x−αLi

(
x

ci

))
.

From this point forward, we avoid the Ji−1 = ji−1 notation and simply say Ji−1 in the

probabilities for notational convenience. Thus, conditioning on states J0 and J1, the random

variables X1 and X2 become independent. We obtain

P (c1X1 + c2X2 > x|J0, J1) = x−α
[
pj0kj0c

α
1L

(
x

c1

)
+ pj1kj1c

α
2L

(
x

c2

)]
[1 + o(1)].

Because L(·) is slowly varying, L

(
x

ci

)/
L(x) → 1 as x → ∞ for any ci > 0. Using this
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fact, we see that

P (c1X1 + c2X2 > x|J0, J1)

= x−αL(x)

pj0kj0cα1
L

(
x
c1

)
L(x)

+ pj1kj1c
α
2

L
(
x
c2

)
L(x)

 [1 + o(1)]

= (pj0kj0c
α
1 + pj1kj1c

α
2 )F∗(x) + o (F∗(x)) .

We now present the proof with positive constants.

Lemma 7.1. Let {ci} , i = 1, ..., n be positive constants. Then as x→∞

P

(
n∑
i=1

ciXi > x

)
=

(
d1

n∑
i=1

cαi

)
F∗(x) + o (F∗(x)) . (7.5)

Proof. Our first goal is to establish that

P (c1X1 + c2X2 > x) = d1(cα1 + cα2 )F∗(x) + o(F∗(x)).

Let Pj,j′ denote the probability of going from state j to state j′ on the next move. Then

P (c1X1 + c2X2 > x) =
∑
j0

∑
j1

P (c1X1 + c2X2 > x|J0, J1)P (J0)P (J1|J0)

=

(∑
j0

∑
j1

(pj0kj0c
α
1 + pj1kj1c

α
2 )πj0Pj0,j1

)
F∗(x) + o(F∗(x))

=

(∑
j0

∑
j1

(pj0kj0c
α
1 )πj0Pj0,j1 +

∑
j0

∑
j1

(pj1kj1c
α
2 )πj0Pj0,j1

)
F∗(x) + o(F∗(x))

=

(
cα1
∑
j0

pj0kj0πj0
∑
j1

Pj0,j1 + cα2
∑
j1

pj1kj1
∑
j0

πj0Pj0,j1

)
F∗(x) + o(F∗(x)).
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The first double sum is simple, since the sum over any row of a Markov chain is 1:

cα1
∑
j0

pj0kj0πj0
∑
j1

Pj0,j1 = cα1
∑
j0

pj0kj0πj0 = cα1d1. (7.6)

To compute the second double sum, recall that ~π is the solution to ~πT = ~πTP where P

denotes the probability matrix of the Markov chain. In other words, for any 1 ≤ j, a ≤ M ,

πj =
∑M

a=1 πaPa,j. Thus

cα2
∑
j1

pj1kj1
∑
j0

πj0Pj0,j1 = cα2
∑
j1

pj1kj1πj1 = cα2d1. (7.7)

Putting (7.6) and (7.7) together,

P (c1X1 + c2X2 > x) = d1(cα1 + cα2 )F∗(x) + o(F∗(x)).

Next, assuming (7.5) is true, we show that the statement holds for n + 1 and cn+1 > 0. By

assumption, ∑
j0

. . .
∑
jn−1

(
n∑
i=1

cαi pji−1
kji−1

)
πj0

n−2∏
h=0

Pjh,jh+1
= d1

n∑
i=1

cαi .

To begin,

P

(
n+1∑
i=1

ciXi > x

)
=
∑
j0

. . .
∑
jn

P

(
n+1∑
i=1

ciXi > x|J0, . . . , Jn

)
P (J0)

n−1∏
h=0

P (Jh+1|Jh)

=

(∑
j0

. . .
∑
jn

(
n+1∑
i=1

cαi pji−1
kji−1

)
πj0

n−1∏
h=0

Pjh,jh+1

)
F∗(x) + o(F∗(x))
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=

(∑
j0

. . .
∑
jn

(
n∑
i=1

cαi pji−1
kji−1

)
πj0

n−1∏
h=0

Pjh,jh+1

)
F∗(x)

+

(∑
j0

. . .
∑
jn

(
n∑
i=1

cαn+1pjnkjn

)
πj0

n−1∏
h=0

Pjh,jh+1

)
F∗(x) + o(F∗(x))

= (I) + (II) + o(F∗(x)).

Computing (I) first,

(I) =

∑
j0

. . .
∑
jn−1

(
n∑
i=1

cαi pji−1
kji−1

)
πj0

n−2∏
h=0

Pjh,jh+1

∑
jn

Pjn−1,jn

F∗(x),

and therefore

(I) =

∑
j0

. . .
∑
jn−1

(
n∑
i=1

cαi pji−1
kji−1

)
πj0

n−2∏
h=0

Pjh,jh+1

F∗(x) =

(
d1

n∑
i=1

cαi

)
F∗(x).

Next,

(II) = cαn+1

∑
j0

. . .
∑
jn−1

∑
jn

pjnkjnπj0

n−1∏
h=0

Pjh,jh+1

F∗(x)

= cαn+1

(∑
j0

∑
jn

pjnkjnπj0Pj0,jn(n)

)
F∗(x).

Here Pj,j′(n) represents the probability of moving from state j to state j′ in n steps. We have
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therefore applied the Chapman-Kolmogorov equation in (1.14) n− 1 times. Continuing,

(II) = cαn+1

(∑
jn

pjnkjn
∑
j0

πj0Pj0,jn(n)

)
F∗(x) = cαn+1

(∑
jn

pjnkjnπjn

)
F∗(x)

= d1c
α
n+1F∗(x).

The induction step follows.

The next question to address is what happens when a constant ci is zero. Clearly the

corresponding Xi contributes nothing to the probability, so the model reduces to the case

where all the remaining constants are positive. We can therefore include the case where

constants are equal to zero.

Now we use the left tail-balancing condition to address the case when the constants take

on negative values. In Lemma 7.2, all the constants are considered negative. Recall that

Fj(−x) ∼ qjFj∗(x), and let c1, c2 < 0. The left tail-balancing condition gives us

P (ciXi > x|Ji−1) = P (−ciXi < −x|Ji−1) = P

(
Xi < −

(
x

−ci

) ∣∣∣Ji−1

)
∼ qi−1P

(
|Xi| >

(
x

−ci

) ∣∣∣Ji−1

)
= qi−1[−ci]αx−αLi

(
x

ci

)
+ o

(
x−αLi

(
x

ci

))
.

Conditioning on states J0 and J1, the random variables X1 and X2 become independent:

P (c1X1 + c2X2 > x|J0, J1) = P (−(c1X1 + c2X2) < −x|J0, J1)

= x−α
[
qj0kj0 [−c1]αL

(
x

c1

)
+ qj1kj1 [−c2]αL

(
x

c2

)]
[1 + o(1)]

= (qj0kj0 [−c1]α + qj1kj1 [−c2]α)F∗(x) + o(F∗(x)).
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We now present the result with negative constants.

Lemma 7.2. Let {ci} , i = 1, ..., n be negative constants. Then as x→∞

P

(
n∑
i=1

ciXi > x

)
=

(
d2

n∑
i=1

[−ci]α
)
F∗(x) + o (F∗(x)) .

Proof. The proof follows the same steps of Lemma 7.1, only replacing the ci with [−ci] and

the pi with qi, i = 1, ..., n in the conclusion.

We have proven that for a finite sum, the first-order approximation holds provided all the

constants are chosen to be nonnegative, or if they are all negative. The next step establishes

that we can mix these results and choose a combination of any constants on the real line.

Without loss of generality, we may rewrite the order of
∑n

i=1 ciXi so that the nonnegative

constants come first, followed by all negative constants at the end. Define Un =
∑n

i=1 c
+
i Xi

and Vn = −
∑n

i=1 c
−
i Xi. Then we have reduced the sum to just two variables, and we have

already proven that

P (Un > x) =

(
d1

n∑
i=1

[c+
i ]α

)
F∗(x) + o(F∗(x)) and

P (Vn > x) =

(
d2

n∑
i=1

[c−i ]α

)
F∗(x) + o(F∗(x)).

Lemma 7.3. Let {ci} , i = 1, ..., n be any real constants. Then as x→∞

P

(
n∑
i=1

ciXi > x

)
=

(
d1

n∑
i=1

[c+
i ]α + d2

n∑
i=1

[c−i ]α

)
F∗(x) + o(F∗(x)).
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Proof. Computing the probability,

P

(
n∑
i=1

ciXi > x

)
=
∑
j0

. . .
∑
jn−1

P

(
n∑
i=1

ciXi > x
∣∣∣J0, . . . , Jn−1

)
P (J0)

n−2∏
h=0

P (Jh+1|Jh)

=
∑
j0

. . .
∑
jn−1

((
d1

n∑
i=1

[c+
i ]α + d2

n∑
i=1

[c−i ]α

)
πj0

n−2∏
h=0

Pjh,jh+1

)
F∗(x) + o(F∗(x))

=

(
d1

n∑
i=1

[c+
i ]α + d2

n∑
i=1

[c−i ]α

)∑
j0

. . .
∑
jn−1

πj0

n−2∏
h=0

Pjh,jh+1

F∗(x) + o(F∗(x))

=

(
d1

n∑
i=1

[c+
i ]α + d2

n∑
i=1

[c−i ]α

)∑
j0

πj0
∑
j1

Pj0,j1 . . .
∑
jn−1

Pjn−2,jn−1

F∗(x)

+ o(F∗(x))

=

(
d1

n∑
i=1

[c+
i ]α + d2

n∑
i=1

[c−i ]α

)
F∗(x) + o(F∗(x)).

The last step follows because all the sums, evaluated from right to left, are 1.

Up to this point we assumed that the sum is finite. This was necessary to establish the

induction part of the proof. We are now going to leap from a finite sum to an infinite one,

which will require establishing a suitable summability condition on the {ci}. Following the

technique used by Resnick (1987), we now derive that condition. The goal is to establish

under what conditions the series
∑∞

i=−∞ ciXn−i converges.

Given state Ji−1 and the asymptotic tail distribution kji−1
F , let Xi|Ji−1 be a random variable

from this distribution. Also let X∗ be a random variable from the distribution whose tail is

F . Because X∗ ∈ RV−α, there exists 0 < λ < α such that E|X∗|λ <∞. Choose λ such that

0 < λ < min(α, 1) and E|X∗|λ <∞.

We first need to establish an upper bound for E(|X1|λ|J0). We may use this particular X

since the distribution of Y1 is stationary. Choose 0 < x0 <∞ such that F j0 ≤ 2kj0F (x) for
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all x > x0. Then

E(|X1|λ|J0 = j0) =

∫ ∞
0

λxλ−1F j0(x)dx <

∫ x0

0

λxλ−1dx+

∫ ∞
x0

λxλ−1 (2kj0)F (x)dx

< (x0)λ +

∫ ∞
0

λxλ−1 (2kj0)F (x)dx

= (x0)λ + 2kj0E|X∗|λ <∞.

Therefore

E
(
E(|X1|λ|J0 = j0)

)
< (x0)λ + 2E|X∗|λEπ(kj0) = (x0)λ + 2E|X∗|λ

M∑
j0=1

kj0πj0 <∞.

By the triangle inequality and the stationarity of the series,

E

∣∣∣∣∣
∞∑

i=−∞

ciXn−i

∣∣∣∣∣
λ

≤
∞∑

i=−∞

|ci|λE
(
E(|Xn−i|λ

)
=

∞∑
i=−∞

M∑
j=1

|ci|λE
(
E(|X1|λ|J0 = j0)

)
<

∞∑
i=−∞

|ci|λ
(

(x0)λ + 2E|X∗|λ
M∑
j0=1

kj0πj0

)
.

This expectation will be finite provided
∑∞

i=−∞ |ci|λ <∞, so
∑∞

i=−∞ ciXn−i converges almost

surely. Before continuing, we state two theorems from Resnick (1987).

Theorem 7.2. (Karamata’s Theorem, page 17)

If ρ ≥ −1, then F ∈ RVρ implies

∫ x

0

F (t)dt ∈ RVρ+1 and lim
x→∞

xF (x)∫ x
0
F (t)dt

= ρ+ 1.
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Theorem 7.3. (Potter’s Theorem, page 23)

Suppose F ∈ RVρ, ρ ∈ R. Take ε > 0. Then there exists t0 such that for x ≥ 1 and t ≥ t0

(1− ε)xρ−ε < F (tx)

F (t)
< (1 + ε)xρ+ε.

Following the technique in Resnick (1987), we use Boole’s Inequality and Markov’s Inequality.

First assume that all the constants are nonnegative:

P

(∑
i

c+
i |Xi| > x

)
= P

(∑
i

c+
i |Xi| > x,

∨
i

c+
i |Xi| > x

)

+ P

(∑
i

c+
i |Xi| > x,

∨
i

c+
i |Xi| ≤ x

)

≤ P

(⋃
i

[
c+
i |Xi| > x

])
+ P

(∑
i

c+
i |Xi|I[c+i |Xi|≤x] > x,

∨
i

c+
i |Xi| ≤ x

)

≤
∑
i

P
(
c+
i |Xi| > x

)
+ P

(∑
i

c+
i |Xi|I[c+i |Xi|≤x] > x

)

≤
∑
i

P
(
c+
i |Xi| > x

)
+ x−1E

(∑
i

c+
i |Xi|I[|Xi|≤x[c+i ]−1]

)
.

Therefore

P
(∑

i c
+
i |Xi| > x

)
F∗(x)

≤
∑

i P
(
c+
i |Xi| > x

)
F∗(x)

+
x−1E

(∑
i c

+
i |Xi|I[|Xi|≤x[c+i ]−1]

)
F∗(x)

= (I) + (II).

We can rewrite (I) as

(I) =
∑
i

P (|Xi| > [c+
i ]−1x)

P (|Xi| > x)
× P (|Xi| > x)

F∗(x)
.
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Next, we have

P (|Xi| > [c+
i ]−1x)

P (|Xi| > x)
=

∑
j P (|Xi| > [c+

i ]−1x|Ji−1 = j)P (Ji−1 = j)∑
j P (|Xi| > x|Ji−1 = j)P (Ji−1 = j)

∼
∑

j pjkjπjF∗([c
+
i ]−1x)∑

j pjkjπjF∗(x)
=
F∗([c

+
i ]−1x)

F∗(x)

and

P (|Xi| > x)

F∗(x)
=

∑
j P (|Xi| > x|Ji−1 = j)P (Ji−1 = j)

F∗(x)
∼
∑
j

pjkjπj = d1.

By Theorem 7.3, for all i such that c+
i < 1 (all but a finite number of i), there exists x0 large

enough such that for x > x0,

d1(1− ε)[c+
i ]α+ε < (I) < d1(1 + ε)[c+

i ]α−ε.

Both the lower and upper bounds are summable, and so by dominated convergence

lim
x→∞

(I) = d1

∑
i

[c+
i ]α.

Next, we consider (II), first assuming that 0 < α < 1. From integration by parts,

E
(∑

i |Xi|I[|Xi|≤x]

)
xF∗(x)

=

∫ x
0
P (|Xi| > u)du

xP (|Xi| > x)
− 1,
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and manipulating this, we get

{∑
j

∫ x
0
P (|Xi| > u|Ji−1 = j)P (Ji−1 = j)du∑

j xP (|Xi| > x|Ji−1 = j)P (Ji−1 = j)

×
∑

j xP (|Xi| > x|Ji−1 = j)P (Ji−1 = j)

F∗(x)

}
− 1

=

{∑
j

∫ x
0
pjkjπjF∗(u)du∑

j pjkjπjxF∗(x)
·
∑

j pjkjπjF∗(x)

F∗(x)

}
− 1

=
d1

∫ x
0
F∗(u)du

xF∗(x)
− 1.

(7.8)

Applying Theorem 7.2, as x→∞ (7.8) converges to

d1

1− α
− 1 =

d1 + α− 1

1− α
.

Therefore E|Xi|I[|Xi|≤x] ∈ RV1−α. Once again using Theorem 7.3, we have, for all but a finite

number of i and x0 large enough, that for x > x0 and some k > 0

c+
i E(|Xi|I[|Xi|≤x[c+i ]−1])

xF∗(x)
= c+

i

(
E(|Xi|I[|Xi|≤x[c+i ]−1])

E(|Xi|I[|Xi|≤x])

)(
E(|Xi|I[|Xi|≤x])

xF∗(x)

)
≤ kc+

i ([c+
i ]−1)1−α+α−δ = k[c+

i ]δ.

This upper bound is summable, so therefore

lim sup
x→∞

(II) ≤ k
∑
i

c+
i [c+

i ]α−1 = k
∑
i

[c+
i ]α.

To conclude, for 0 < α < 1 and some constant k′ > 0

lim sup
x→∞

P
(∑

i c
+
i |Xi| > x

)
F∗(x)

≤ d1

∑
i

[c+
i ]α + k

∑
i

[c+
i ]α = k′

∑
i

[c+
i ]α. (7.9)
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We now derive a similar inequality when α ≥ 1 by reducing to the previous case 0 < α < 1.

Choose λ ∈ (α, αδ−1), and define c =
∑

i c
+
i and r+

i = c+
i /c. Then by Jensen’s inequality,

(∑
i

c+
i |Xi|

)λ

= cλ

(∑
i

r+
i |Xi|

)λ

≤ cλ
∑
i

r+
i |Xi|λ = cλ−1

∑
i

c+
i |Xi|λ.

Let |X∗| ∈ RV−α represent a random variable from the underlying tail distribution F∗(x).

Then

P
(∑

i c
+
i |Xi| > x

)
F∗(x)

≤
P
(∑

i c
+
i |Xi|λ > c1−λxλ

)
P (|X∗|λ > xλ)

. (7.10)

Using the fact that P (|X∗|λ > x) ∈ RV−αλ−1 , δ < αλ−1 < 1,

P
(∑

i c
+
i |Xi|λ > c1−λxλ

)
P (|X∗|λ > xλ)

=

∑
j P
(∑

i c
+
i |Xi|λ > c1−λxλ|Ji−1 = j

)
P (Ji−1 = j)

P (|X∗|λ > xλ)

∼
∑

j pjkjπj
∑

i[c
+
i ]αλ

−1
c−(1−λ)αλ−1

x−α

x−(αλ−1)λ
= d1c

α(1−λ−1)
∑
i

[c+
i ]αλ

−1

<∞,

which when combined with (7.10) gives

lim sup
x→∞

P
(∑

i c
+
i |Xi| > x

)
F∗(x)

≤ d1c
α(1−λ−1)

∑
i

[c+
i ]αλ

−1

. (7.11)

We may finally establish the infinite limit. Choose any integer m > 0, then

P
(∑

i c
+
i |Xi| > x

)
F∗(x)

≥
P
(∑

|i|≤m c
+
i |Xi| > x

)
F∗(x)

→ d1

∑
|i|≤m

[c+
i ]α,

using the already proven result for a finite sum. The constant m is arbitrary, so

lim inf
x→∞

P
(∑

i c
+
i |Xi| > x

)
F∗(x)

≥ d1

∑
j

[c+
i ]α. (7.12)
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Next, for any ε > 0

P
(∑

i c
+
i |Xi| > x

)
F∗(x)

≤
P
(∑

|i|≤m c
+
i |Xi| > (1− ε)x

)
F∗(x)

+
P
(∑

|i|>m c
+
i |Xi| > εx

)
F∗(x)

. (7.13)

If 0 < α < 1, combine (7.9) and (7.13) to obtain

lim sup
x→∞

P
(∑

i c
+
i |Xi| > x

)
F∗(x)

≤ d1(1− ε)−α
∑
|i|≤m

[c+
i ]α + k′ε−α

∑
|i|>m

[c+
i ]α. (7.14)

On the other hand, if α ≥ 1 then (7.11) and (7.13) give

lim sup
x→∞

P
(∑

i c
+
i |Xi| > x

)
F∗(x)

≤ d1(1− ε)−α
∑
|i|≤m

[c+
i ]α + d1c

α(1−λ−1)ε−α
∑
|i|>m

[c+
i ]αλ

−1

. (7.15)

In both cases, first let m→∞, then

lim sup
x→∞

P
(∑

i c
+
i |Xi| > x

)
F∗(x)

≤ d1(1− ε)−α
∑
i

[c+
i ]α.

Now send ε→ 0 to obtain

lim sup
x→∞

P
(∑

i c
+
i |Xi| > x

)
F∗(x)

≤ d1

∑
i

[c+
i ]α.

Combine this with (7.12) to conclude that

lim
x→∞

P
(∑

i c
+
i |Xi| > x

)
F∗(x)

= d1

∑
i

[c+
i ]α. (7.16)

Next, using similar steps with appropriate changes, it can be shown that when all the
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constants are negative,

lim
x→∞

P
(∑

i c
−
i |Xi| > x

)
F∗(x)

= d2

∑
i

[c−i ]α. (7.17)

Lastly, to leap to the general statement using any real constants, use the definitions Un =∑
i c

+
i |Xi|, Vn = −

∑
i c
−
i |Xi|, Theorem 7.1, (7.16), and (7.17) to obtain

lim
x→∞

P (
∑

i ci|Xi| > x)

F∗(x)
= d1

∑
i

[c+
i ]α + d2

∑
i

[c−i ]α.

We have now proven the result for the infinite sum case and summarize our results from

above and Lemmas 7.1 through 7.3.

Theorem 7.4. Let Y1 be as defined earlier, and choose 0 < λ < min(α, 1) such that∫∞
0
λxλ−1F (x)dx <∞ and

∑
i |ci|λ <∞. Then as x→∞

P (Y1 > x) =

(
d1

∞∑
i=−∞

[c+
i ]α + d2

∞∑
i=−∞

[c−i ]α

)
F∗(x) + o(F∗(x)).

7.3 The Second-Order Tail Area Approximation

In this section we derive a second-order approximation formula. This result will hold for

finite n; the infinite case remains an open question. In what follows, we first assume that

the {ci}, i = 1, ..., n are positive and that n <∞. Further suppose that α ≥ 1 and that the

mean of F∗ is finite, and consequently so are the means µj of the underlying distributions

Fj, j = 1, ...,M . This situation will be dealt with in Section 7.3.1. The cases where α = 1

and 0 < α < 1 will be handled later in Sections 7.3.2 and 7.3.3. We shall make the following

additional assumptions:
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1. F is asymptotically smooth and right-tail dominant as defined in Section 3.4.

2. For each i = 1, ..., n, as x→∞

F i

(
x

ci

)
= cαi F i(x) + o

(
F i(x)

x

)
↔ x

(
F i(x/ci)

F i(x)
− cαi

)
→ 0. (7.18)

We begin by extending the formula for two independent variables to the sum of an n-variable

process as described earlier. Recall that for Z1, Z2 independent and Zi ∼ Fi, i = 1, 2, we had

from Theorem 3.3

P (Z1 + Z2 > x) = F 1(x) + F 2(x) +
α

x
[F 1(x)µF2 + F 2(x)µF1 ][1 + o(1)].

Introducing constants ci > 0, i = 1, 2,

P (c1Z1 +c2Z2 > x) = cα1F 1(x)+cα2F 2(x)+
α

x
[cα1 c2µF2F 1(x)+cα2 c1µF1F 2(x)][1+o(1)]. (7.19)

The first goal is to use induction to establish the same formula for the sum of n independent

variables Zi ∼ F i ∈ RV−α.

Lemma 7.4. Let Zi ∼ Fi be independent regularly varying random variables and ci > 0,

i = 1, ..., n. Assuming that the Fi are asymptotically smooth and right-tail dominant, and

further that condition (7.18) is satisfied, a two-term expansion for the weighted convolution

is

P

(
n∑
i=1

ciZi > x

)
=

n∑
i=1

cαi F i(x) +
α

x

{
n∑
i=1

∑
g 6=i

cαi cgµFgF i(x)

}
[1 + o(1)].

Proof. (7.19) provides the n = 2 case. Now define H(x) = P (
∑n

i=1 ciZi > x), and let

cn+1 > 0 and Zn+1 ∼ Fn+1 with F n+1 ∈ RV−α, independent of the previous random variables.
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Notice that the mean of the process up to the nth variable is
∑n

i=1 ciµFi . Then (7.19) provides

P

(
n∑
i=1

ciZi + cn+1Zn+1 > x

)
= H(x) + cαn+1F n+1(x)

+
α

x

{
H(x)cn+1µFn+1 + cαn+1F n+1(x)

n∑
g=1

cgµFg

}
[1 + o(1)]

=
n+1∑
i=1

cαi F i(x) +
α

x

{
n∑
i=1

n∑
g=1

cαi cgµFgF i(x) + cαn+1F n+1(x)
∑
g 6=n+1

cgµFg

+cn+1µFn+1

n∑
i=1

cαi F i(x) +
αµFn+1

x

n∑
i=1

∑
g 6=i

cαi cgµFgF i(x)

}
[1 + o(1)]

=
n+1∑
i=1

cαi F i(x) +
α

x

{
n∑
i=1

∑
g 6=i

cαi cgµFgF i(x) + cαn+1F n+1(x)
∑
g 6=n+1

cgµFg

+cn+1µFn+1

n∑
i=1

cαi F i(x)

}
[1 + o(1)].

The last line above results from the fact that one of the terms involves α2

x2
, so it is negligible.

Continuing,

P

(
n+1∑
i=1

ciZi > x

)
=

n+1∑
i=1

cαi F i(x) +
α

x

{
n∑
i=1

cαi F i(x)

[∑
g 6=i

cgµFg + cn+1µFn+1

]

+cαn+1F n+1(x)
∑
g 6=n+1

cgµFg

}
[1 + o(1)].

The term
∑n

i=1

∑
g 6=i cgµFg + cn+1µFn+1 collapses into

∑n
i=1

∑
g 6=i cgµFg because the index in

the first sum is from 1 to n. Therefore g never equals n+1 in the finite sum anyway. Finally,
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the probability is

n+1∑
i=1

cαi F i(x) +
α

x

{
n∑
i=1

∑
g 6=i

cαi cgµFgF i(x) + cαn+1F n+1(x)
∑
g 6=n+1

cgµFg

}
[1 + o(1)]

=
n+1∑
i=1

cαi F i(x) +
α

x

{
n+1∑
i=1

∑
g 6=i

cαi cgµFgF i(x)

}
[1 + o(1)].

This completes the induction step.

7.3.1 The Case With α ≥ 1 and Finite Means

Let X1, ..., Xn be Markov chain dependent random variables where the M-state chain has

stationary distribution ~π. For now, take α ≥ 1 and the underlying distributions to have

finite means, and assume that ci > 0, i = 1, ..., n.

Before going further, we need to establish some stronger tail balance properties. In the

previous section we assumed that F j = pjkjF ∗+ o(F∗), but that order term was appropriate

since we were only concerned with a first-order term. In this section we need a stronger

assumption, namely that for j = 1, ...,M ,

x

{(
F j(x)

F∗j(x)
− pj

)(
F∗j
F∗

)
+ pj

(
F∗j
F∗
− kj

)}
→ 0 as x→∞. (7.20)

As a consequence, as x→∞

P (ciXi > x|Ji−1) = pji−1
kji−1

cαi F∗(x) + o

(
F∗(x)

x

)
.

In addition, we also have that E[ciXi|Ji−1 = ji−1] = ciµFJi−1
= ciµji−1

. Now we can find the
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conditional probability given all the previous states of the chain. Lemma 7.4 provides

P

(
n∑
i=1

ciXi > x
∣∣∣Jl, 0 ≤ l ≤ n− 1

)
=

n∑
i=1

pji−1
kji−1

cαi F∗(x)

+
αF∗(x)

x

{
n∑
i=1

∑
g 6=i

pji−1
kji−1

cαi E [cgXg|Jg−1 = jg−1]

}
+ o

(
F∗(x)

x

)

=

(
n∑
i=1

pji−1
kji−1

cαi

)
F∗(x) +

αF∗(x)

x

{
n∑
i=1

∑
g 6=i

pji−1
kji−1

cαi cgµjg−1

}
+ o

(
F∗(x)

x

)
.

(7.21)

We now uncondition (7.21):

P

(
n∑
i=1

ciXi > x

)
=
∑
j0

· · ·
∑
jn−1

P

(
n∑
i=1

ciXi > x
∣∣∣Jl, 0 ≤ l ≤ n− 1

)
πj0

n−2∏
h=0

Pjhjh+1

=
∑
j0

· · ·
∑
jn−1

(
n∑
i=1

pji−1
kji−1

cαi

)
F∗(x)πj0

n−2∏
h=0

Pjhjh+1

+
αF∗(x)

x

∑
j0

· · ·
∑
jn−1

{
n∑
i=1

∑
g 6=i

pji−1
kji−1

cαi cgµjg−1

}
πj0

n−2∏
h=0

Pjhjh+1
+ o

(
F∗(x)

x

)
= (I) + (II) + o

(
F∗(x)

x

)
.

(I) is equal to (d1

∑n
i=1 c

α
i )F∗(x). To simplify (II), define h+

g (x, y) = cgp(x)k(x)µ(y) where

p(x)k(x) = pjxkjx and µ(y) = µjy . Then (II) can be expressed as the sum of expected values

of the h+
g (·, ·):

(II) =
αF∗(x)

x

{
n∑
i=1

∑
g 6=i

cαi E
[
h+
g (Ji−1, Jg−1)

]}
.

We therefore have
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Lemma 7.5. Suppose α ≥ 1, and choose ci ≥ 0, i = 1, · · · , n. Then as x→∞

P

(
n∑
i=1

ciXi > x

)
=

{
d1

n∑
i=1

cαi +
α

x

n∑
i=1

∑
g 6=i

cαi E
[
h+
g (Ji−1, Jg−1)

]}
F∗(x)

+ o

(
F∗(x)

x

)
.

Unlike before, this approximation formula requires the transition matrix probabilities of the

Markov chain, which in practice will be unknown. Therefore in order to use this formula,

the transition matrix must first be estimated from the data set.

We now redo the proof of a finite sum, this time assuming the {ci} are all negative. First

consider the random variable ciXi conditional on Ji−1:

P (ciXi > x|Ji−1) = P (−ciXi < −x|Ji−1) = P

(
Xi <

x

[−ci]

∣∣∣Ji−1

)
= qji−1

kji−1
P

(
|Xi| >

x

[−ci]

∣∣∣Ji−1

)
+ o

(
F∗ji−1

(x)

x

)
= qji−1

kji−1
[ci]

αF∗ji−1
(x) + o

(
F∗ji−1

(x)

x

)
.

As before, we condition on all previous states of the chain, making the variables independent,

and therefore by Lemma 7.4

P

(
n∑
i=1

ciXi > x
∣∣∣Jl, 0 ≤ l ≤ n− 1

)
=

n∑
i=1

qji−1
kji−1

[−ci]αF∗(x)

+
αF∗(x)

x

{
n∑
i=1

∑
g 6=i

qji−1
kji−1

[−ci]αE[cgXg|Jg = jg]

}
+ o

(
F∗(x)

x

)

=

{
n∑
i=1

qji−1
kji−1

[−ci]α +
α

x

n∑
i=1

∑
g 6=i

qji−1
kji−1

[−ci]αcgµjg−1

}
F∗(x) + o

(
F∗(x)

x

)
.

(7.22)
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Unconditioning (7.22), for 0 ≤ l ≤ n− 1

P

(
n∑
i=1

ciXi > x

)
=
∑
j0

· · ·
∑
jn−1

P

(
n∑
i=1

ciXi > x
∣∣∣Jl = jl

)
πj0

n−2∏
h=0

Pjhjh+1

= F∗(x)

∑
j0

· · ·
∑
jn−1

(
n∑
i=1

qji−1
kji−1

[−ci]α
)
πj0

n−2∏
h=0

Pjhjh+1

+
α

x

∑
j0

· · ·
∑
jn−1

[
n∑
i=1

∑
g 6=i

qji−1
kji−1

[−ci]αcgµjg−1

]
πj0

n−2∏
h=0

Pjhjh+1

+ o

(
F∗(x)

x

)

= (I) + (II) + o

(
F∗(x)

x

)
.

The first piece (I) is equal to (d2

∑n
i=1[−ci]α)F∗(x). Define h−g (x, y) = cgq(x)k(x)µ(y) where

q(x)k(x) = qjxkjx and µ(y) = µjy , then (II) can be written as

(II) =
αF∗(x)

x

{
n∑
i=1

∑
g 6=i

[−ci]αE
[
h−g (Ji−1

]
, Jg−1)

}
.

We therefore have

Lemma 7.6. Suppose α ≥ 1, and choose negative constants {ci}. Then as x→∞

P

(
n∑
i=1

ciXi > x

)
=

{
d2

n∑
i=1

[−ci]α +
α

x

n∑
i=1

∑
g 6=i

[−ci]αE
[
h−g (Ji−1, Jg−1)

]}
F∗(x)

+ o

(
F∗(x)

x

)
.

Now that we have proven the cases where the constants are either all nonnegative or negative,

we can mix the two results. Define Un =
∑n

i=1[c+
i ]Xi and Vn = −

∑n
i=1[c−i ]Xi. Observe that

conditional on the {Ji}, Un and Vn are independent, so (7.19) can be used. To recap, we
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have

P (Un > x) =

{
d1

n∑
i=1

[c+
i ]α +

α

x

n∑
i=1

∑
g 6=i

[c+
i ]αE

[
h+
g (Ji−1, Jg−1)

]}
F∗(x) + o

(
F∗(x)

x

)

P (Vn > x) =

{
d2

n∑
i=1

[c−i ]α +
α

x

n∑
i=1

∑
g 6=i

[c−i ]αE
[
h−g (Ji−1, Jg−1)

]}
F∗(x) + o

(
F∗(x)

x

)
.

Theorem 7.5. Let {ci}, i = 1, · · · , n be a sequence of real constants. Suppose α ≥ 1 so that

each of the underlying distributions has finite mean µj. Define µ =
∑M

j=1 µjπj. Then as

x→∞

P (Y1 > x) =

(
d1

n∑
i=1

[c+
i ]α + d2

n∑
i=1

[c−i ]α

)
F∗(x)

+
αF∗(x)

x

{
n∑
i=1

∑
g 6=i

[c+
i ]αE

[
h+
g (Ji−1, Jg−1)

]
+

n∑
i=1

∑
g 6=i

[c−i ]αE
[
h−g (Ji−1, Jg−1)

]
− d1µ

n∑
i=1

n∑
g=1

[c+
i ]α[c−g ] + d2µ

n∑
i=1

n∑
g=1

[c−i ]α[c+
g ]

}
+ o

(
F∗(x)

x

)
.

Proof. Observe that P (Un + Vn > x) is equal to

P (Un > x) + P (Vn > x) +
αF∗(x)

x
[P (Un > x)E(Vn) + P (Vn > x)E(Un)][1 + o(1)].

Further

E(Un) = E

[
E

(
n∑
i=1

[c+
i ]Xi|Ji−1

)]
=

n∑
i=1

[c+
i ]E(µJi−1

) =
n∑
i=1

[c+
i ]

M∑
g=1

µjπj = µ
n∑
i=1

[c+
i ].

223



Similarly, E(Vn) = −µ
∑n

i=1[c−i ]. Finally,

P

(
n∑
i=1

ciXi > x

)
=

(
d1

n∑
i=1

[c+
i ]α + d2

n∑
i=1

[c−i ]α

)
F∗(x)

+
αF∗(x)

x

{
n∑
i=1

∑
g 6=i

[c+
i ]αE

[
h+
g (Ji−1, Jg−1)

]
+

n∑
i=1

∑
g 6=i

[c−i ]αE
[
h−g (Ji−1, Jg−1)

]}

+
αF∗(x)

x

{
d1

n∑
i=1

[c+
i ]αE(Vn) + d2

n∑
i=1

[c−i ]αE(Un)

}
+ o

(
F∗(x)

x

)

=

(
d1

n∑
i=1

[c+
i ]α + d2

n∑
i=1

[c−i ]α

)
F∗(x)

+
αF∗(x)

x

{
n∑
i=1

∑
g 6=i

[c+
i ]αE

[
h+
g (Ji−1, Jg−1)

]
+

n∑
i=1

∑
g 6=i

[c−i ]αE
[
h−g (Ji−1, Jg−1)

]
− d1µ

n∑
i=1

n∑
g=1

[c+
i ]α[c−g ] + d2µ

n∑
i=1

n∑
g=1

[c−i ]α[c+
g ]

}
+ o

(
F∗(x)

x

)
.

The major issue with this result is that we need another, simpler form for computational

purposes. We shall derive computational results for the two sums in Theorem 7.5 that

contain the expected values. Ultimately we will write the transition probabilities in terms

of the number of steps m needed to get from state j to state j′. Recall that this is denoted

as Pj,j′(m). The first goal is to simplify

n∑
i=1

∑
g 6=i

[c+
i ]αE

[
h+
g (Ji−1, Jg−1)

]
=

n∑
i=1

∑
g 6=i

[c+
i ]αcg

∑
j0

· · ·
∑
jn−1

pji−1
kji−1

µjg−1

× πj0
n−2∏
h=0

Pjh,jh+1
.

(7.23)

We proceed by first fixing i = 1, then letting i = t, 1 < t < n, and then finally ending with
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i = n. The contribution from the i = 1 term provides

[c+
1 ]α
∑
g 6=1

E
[
h+
g (J0, Jg−1)

]
= [c+

1 ]α
n∑
g=2

cg
∑
j0

· · ·
∑
jn−1

pj0kj0µjg−1πj0

n−2∏
h=0

Pjh,jh+1
.

Simplifying,

[c+
1 ]α

n∑
g=2

cg
∑
j0

· · ·
∑
jn−1

pj0kj0µjg−1πj0Pj0,j1 · · ·Pjn−2,jn−1

= [c+
1 ]α

n∑
g=2

cg
∑
j0

· · ·
∑
jg−1

pj0kj0µjg−1πj0Pj0,j1 · · ·Pjg−2,jg−1

= [c+
1 ]α

n∑
g=2

cg
∑
j0

∑
jg−1

pj0kj0µjg−1πj0Pj0,jg−1(g − 1).

Rewriting this sum using the new indices a and b for notational convenience, we have that

the i = 1 term contributes

[c+
1 ]α
∑
g 6=1

E
[
h+
g (J0, Jg−1)

]
= [c+

1 ]α
n∑
g=2

cg

M∑
a=1

M∑
b=1

pakaµbπaPa,b(g − 1). (7.24)

Now we examine the i = t term, 1 < t < n. Notice we have two cases to check here: when

1 ≤ g < t and when t < g ≤ n. First let 1 ≤ g < t:

[c+
t ]α

t−1∑
g=1

cg
∑
j0

· · ·
∑
jn−1

pjt−1kjt−1µjg−1πj0Pj0,j1 · · ·Pjn−2,jn−1

= [c+
t ]α

t−1∑
g=1

cg
∑
j0

· · ·
∑
jg−1

· · ·
∑
jt−1

pjt−1kjt−1µjg−1πj0Pj0,j1 · · ·Pjg−1,jg · · ·Pjt−2,jt−1

= [c+
t ]α

t−1∑
g=1

cg
∑
jg−1

· · ·
∑
jt−1

pjt−1kjt−1µjg−1πjg−1Pjg−1,jg · · ·Pjt−2,jt−1
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= [c+
t ]α

t−1∑
g=1

cg
∑
jg−1

∑
jt−1

pjt−1kjt−1µjg−1πjg−1Pjg−1,jt−1(t− g).

Therefore when 1 ≤ g < t, we obtain

[c+
t ]α

t−1∑
g=1

cg

M∑
a=1

M∑
b=1

pbkbµaπaPa,b(t− g). (7.25)

Now let t < g ≤ n and repeat:

[c+
t ]α

n∑
g=t+1

cg
∑
j0

· · ·
∑
jn−1

pjt−1kjt−1µjg−1πj0Pj0,j1 · · ·Pjn−2,jn−1

= [c+
t ]α

n∑
g=t+1

cg
∑
j0

· · ·
∑
jt−1

· · ·
∑
jg−1

pjt−1kjt−1µjg−1πj0Pj0,j1 · · ·Pjt−1,jt · · ·Pjg−2,jg−1

= [c+
t ]α

n∑
g=t+1

cg
∑
jt−1

· · ·
∑
jg−1

pjt−1kjt−1µjg−1πjt−1Pjt−1,jt · · ·Pjg−2,jg−1

= [c+
t ]α

n∑
g=t+1

cg
∑
jt−1

∑
jg−1

pjt−1kjt−1µjg−1πjt−1Pjt−1,jg−1(g − t).

Therefore when t < g ≤ n, we get

[c+
t ]α

n∑
g=t+1

cg

M∑
a=1

M∑
b=1

pakaµbπaPa,b(g − t). (7.26)
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We combine (7.25) and (7.26) to get the i = t contribution

[c+
t ]α
∑
g 6=t

Eh+
g (Jt−1, Jg−1) = [c+

t ]α
t−1∑
g=1

cg

M∑
a=1

M∑
b=1

pbkbµaπaPa,b(t− g)

+ [c+
t ]α

n∑
g=t+1

cg

M∑
a=1

M∑
b=1

pakaµbπaPa,b(g − t).

(7.27)

Finally, we compute the i = n case:

[c+
n ]α
∑
g 6=n

E
[
h+
g (Jn−1, Jg−1)

]
= [c+

n ]α
n−1∑
g=1

cg
∑
j0

· · ·
∑
jn−1

pjn−1kjn−1µjg−1πj0Pj0,j1 · · ·Pjn−2,jn−1

= [c+
n ]α

n−1∑
g=1

cg
∑
jg−1

· · ·
∑
jn−1

pjn−1kjn−1µjg−1πjg−1Pjg−1,jg · · ·Pjn−2,jn−1

= [c+
n ]α

n−1∑
g=1

cg
∑
jg−1

∑
jn−1

pjn−1kjn−1µjg−1πjg−1Pjg−1,jn−1(n− g).

The contribution from i = n is therefore

[c+
n ]α
∑
g 6=n

E
[
h+
g (Jn−1, Jg−1)

]
= [c+

n ]α
n−1∑
g=1

cg

M∑
a=1

M∑
b=1

pbkbµaπaPa,b(n− g). (7.28)

Put (7.24), (7.27), and (7.28) together to get

n∑
i=1

∑
g 6=i

[c+
i ]αEh+

g (Ji−1, Jg−1) =
n−1∑
i=1

n∑
g=i+1

[c+
i ]αcg

M∑
a=1

M∑
b=1

pakaµbπaPa,b(|i− g|)

+
n∑
i=2

i−1∑
g=1

[c+
i ]αcg

M∑
a=1

M∑
b=1

pbkbµaπaPa,b(|i− g|).

(7.29)
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Using similar derivations,

n∑
i=1

∑
g 6=i

[c−i ]αE
[
h−g (Ji−1, Jg−1)

]
=

n−1∑
i=1

n∑
g=i+1

[c−i ]αcg

M∑
a=1

M∑
b=1

qakaµbπaPa,b(|i− g|)

+
n∑
i=2

i−1∑
g=1

[c−i ]αcg

M∑
a=1

M∑
b=1

qbkbµaπaPa,b(|i− g|).

(7.30)

The computational version of Theorem 7.5 follows, using (7.29) and (7.30).

Theorem 7.6. Suppose α ≥ 1 so that each of the underlying distributions has finite mean

µj. Then as x→∞

P

(
n∑
i=1

ciXi > x

)
=

{
d1

n∑
i=1

[c+
i ]α + d2

n∑
i=1

[c−i ]α

}
F∗(x)

+
αF∗(x)

x

{
n−1∑
i=1

n∑
g=i+1

M∑
a=1

M∑
b=1

cg
[
[c+
i ]αpa + [c−i ]αqa

]
kaµbπaPa,b(|i− g|)

+
n∑
i=2

i−1∑
g=1

M∑
a=1

M∑
b=1

cg
[
[c+
i ]αpb + [c−i ]αqb

]
kbµaπaPa,b(|i− g|)

−µd1

n∑
i=1

n∑
g=1

[c+
i ]αc−g + µd2

n∑
i=1

n∑
g=1

[c−i ]αc+
g

}
+ o

(
F∗(x)

x

)
.

7.3.2 The Case With α = 1 and Infinite Means

In this section, we state the proven results from the previous section under the assumptions

that α = 1 and the means µj are infinite. This happens when the underlying distribution

F∗(x) has an infinite mean. As stated in Theorem 3.3, the means µj are replaced by truncated

means µj(x) =
∫ x
−x tFj∗(t)dt. Using this same idea, define the truncated average mean µ(x) =∑M

j=1 µj(x)πj. Since our results are generalizations of results from Barbe and McCormick

(2005), it suffices to replace the µj with µj(x) and µ with µ(x).
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Let the expected values be defined as h+
g (x, y, t) = cgp(x)k(x)µ(y, t) where p(x)k(x) = pjxkjx

and µ(y) = µjy(t). Similarly, h−g (x, y, t) = cgq(x)k(x)µ(y, t) where q(x)k(x) = qjxkjx .

Theorem 7.7. For α = 1 and x large enough, the theoretical two-term expansion is

P

(
n∑
i=1

ciXi > x

)
=

(
d1

n∑
i=1

c+
i + d2

n∑
i=1

c−i

)
F∗(x)

+
F∗(x)

x

{
n∑
i=1

∑
g 6=i

c+
i E
[
h+
g (Ji−1, Jg−1)

]
+

n∑
i=1

∑
g 6=i

c−i E
[
h−g (Ji−1, Jg−1)

]
− d1µ(x)

n∑
i=1

n∑
g=1

c+
i c
−
g + d2µ(x)

n∑
i=1

n∑
g=1

c−i c
+
g

}
+ o

(
F∗(x)

x

)
.

The computational result is

P

(
n∑
i=1

ciXi > x

)
=

(
d1

n∑
i=1

c+
i + d2

n∑
i=1

c−i

)
F∗(x)

+
F∗(x)

x

{
n−1∑
i=1

n∑
g=i+1

M∑
a=1

M∑
b=1

cg
[
c+
i pa + c−i qa

]
kaµb(x)πaPa,b(|i− g|)

+
n−1∑
i=2

i−1∑
g=1

M∑
a=1

M∑
b=1

cg
[
c+
i pb + c−i qb

]
kbµa(x)πaPa,b(|i− g|)

− d1µ(x)
n∑
i=1

n∑
g=1

c+
i c
−
g + d2µ(x)

n∑
i=1

n∑
g=1

c−i c
+
g

}
+ o

(
F∗(x)

x

)
.

7.3.3 The Case With 0 < α < 1

Up until now we have assumed that α ≥ 1, adjusting to the particular case when α = 1

but the means are infinite. It is now time to consider the case when 0 < α < 1. First, we

reference Theorem 3.4, restated here.

229



Theorem 7.8. Define the quantity

I(α) =

∫ 1/2

0

(
(1− y)−α − 1

)
αy−α−1dy. (7.31)

Now let F1 and F2 be regularly varying, asymptotically smooth distribution functions sup-

ported on the nonnegative real line. Then

lim
x→∞

1− F1 ∗ F2(x)− F 1(x)− F 2(x)

F 1(x)F 2(x)
= 2I(α) + 22α − 2α+1.

For our work, all the underlying distributions have the same index −α. Define

Θ = 2I(α) + 22α − 2α+1. (7.32)

If Zi ∼ Fi, i = 1, 2 are independent, the result of Theorem 7.8 can be rearranged to

P (Z1 + Z2 > x) = F 1(x) + F 2(x) + ΘF 1(x)F 2(x)[1 + o(1)].

For ci > 0, i = 1, 2,

P (c1Z1 + c2Z2 > x) = cα1F 1(x) + cα2F 2(x) + Θcα1 c
α
2F 1(x)F 2(x)[1 + o(1)]. (7.33)

We now leap to n variables.

Lemma 7.7. For ci ≥ 0 and independent random variables Zi ∼ Fi, i = 1, ..., n, all regularly
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varying of index −α where 0 < α < 1 and satisfying the assumptions in Theorem 7.8,

P

(
n∑
i=1

ciZi > x

)
=

n∑
i=1

cαi F i(x) + Θ
n−1∑
i=1

n∑
g=i+1

cαi c
α
gF i(x)F g(x)[1 + o(1)].

Proof. The case where n = 2 is (7.33). To establish the induction step, consider cn+1 ≥ 0

and random variable Zn+1 ∼ Fn+1, independent of the previous variables. Then, neglecting

the terms where more than two distribution tails are multiplied together,

P

(
n+1∑
i=1

ciZi > x

)
= P

(
n∑
i=1

ciZi > x

)
+ P (cn+1Zn+1 > x)

+ ΘP

(
n∑
i=1

ciZi > x

)
P (cn+1Zn+1 > x) [1 + o(1)]

=
n+1∑
i=1

cαi F i(x) + Θ

{
n−1∑
i=1

n∑
g=i+1

cαi c
α
gF i(x)F g(x) +

n∑
i=1

cαi c
α
n+1F i(x)F n+1(x)

+ cαn+1F n+1(x)
n−1∑
i=1

n∑
g=i+1

cαi c
α
gF i(x)F g(x)

}
[1 + o(1)]

=
n+1∑
i=1

cαi F i(x) + Θ

{
n−1∑
i=1

n∑
g=i+1

cαi c
α
gF i(x)F g(x)

+
n∑
i=1

cαi c
α
n+1F i(x)F n+1(x)

}
[1 + o(1)]

=
n+1∑
i=1

cαi F i(x) + Θ
n∑
i=1

n+1∑
g=i+1

cαi c
α
gF i(x)F g(x)[1 + o(1)].

231



Adapting to our work, and under the assumptions (7.18) and (7.20), Lemma 7.7 provides

P

(
n∑
i=1

ciXi > x
∣∣∣Jl, 0 ≤ l ≤ i− 1

)
=

n∑
i=1

pji−1
kji−1

[c+
i ]αF∗(x)

+ Θ
n−1∑
i=1

n∑
g=i+1

[c+
i c

+
g ]αpji−1

pjg−1kji−1
kjg−1 [F∗(x)]2 + o

(
[F∗(x)]2

)
.

(7.34)

To uncondition (7.34) define h+(x, y) = pxpykxky, then

P

(
n∑
i=1

ciXi > x

)
=

(
d1

n∑
i=1

[c+
i ]α

)
F∗(x)

+ Θ[F∗(x)]2
n−1∑
i=1

n∑
g=i+1

[c+
i c

+
g ]αE[h+(Ji−1, Jg−1)] + o

(
[F∗(x)]2

)
.

(7.35)

Similarly, letting the constants {ci} be all negative, it can be shown that

P

(
n∑
i=1

ciXi > x
∣∣∣Jl = jl, 0 ≤ l ≤ i− 1

)
=

n∑
i=1

qji−1
kji−1

[c−i ]αF∗(x)

+ Θ
n−1∑
i=1

n∑
g=i+1

[c−i c
−
g ]αqji−1

qjg−1kji−1
kjg−1 [F∗(x)]2 + o

(
[F∗(x)]2

)
,

and consequently, letting h−(x, y) = qxqykxky,

P

(
n∑
i=1

ciXi > x

)
=

(
d2

n∑
i=1

[c−i ]α

)
F∗(x)

+ Θ[F∗(x)]2
n−1∑
i=1

n∑
g=i+1

[c−i c
−
g ]αE[h−(Ji−1, Jg−1)] + o

(
[F∗(x)]2

)
.

(7.36)

Moving to any real constants, define Un =
∑n

i=1[c+
i ]Xi and Vn = −

∑n
i=1[c−i ]Xi. Then (7.35)
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and (7.36) provide

P (Un + Vn > x) = P (Un > x) + P (Vn > x) + ΘP (Un > x)P (Vn > x)[1 + o(1)]

=

(
d1

n∑
i=1

[c+
i ]α + d2

n∑
i=1

[c−i ]α

)
F∗(x)

+ Θ[F∗(x)]2

{
n−1∑
i=1

n∑
g=i+1

(
[c+
i c

+
g ]αE[h+(Ji−1, Jg−1)]] + [c−i c

−
g ]αE[h−(Ji−1, Jg−1)]

)
+ d1d2

n∑
i=1

n∑
g=1

[c+
i c
−
g ]α

}
+ o

(
[F∗(x)]2

)
.

(7.37)

Lastly, if one desires a computational version of (7.37), one can use simplifying techniques

as in the proof of Theorem 7.6 to obtain

P (Un + Vn > x) =

(
d1

n∑
i=1

[c+
i ]α + d2

n∑
i=1

[c−i ]α

)
F∗(x)

+ Θ[F∗(x)]2

{
n−1∑
i=1

n∑
g=i+1

M∑
a=1

M∑
b=1

(
[c+
i c

+
g ]αpapb + [c−i c

−
g ]αqaqb

)
kakbπaPa,b(g − i)

+ d1d2

n∑
i=1

n∑
g=1

[c+
i c
−
g ]α

}
+ o

(
[F∗(x)]2

)
.

(7.38)

We have now established the following result.

Theorem 7.9. For 0 < α < 1 and x large enough, the theoretical two-term expansion and

computational result are as given in (7.36) and (7.37), respectively.

7.4 Open Questions

There are a couple of additional conjectures we have about the chain dependent regularly

varying random variables, both of which currently remain unproven. Recall that the first-
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order approximation was completely derived, even for an infinite sum. The second-order

formula, however, has only been worked out for the sum of n variables. It is strongly

suspected that the infinite sum holds, but at this time it is not clear specifically what

additional assumptions need to be made. As an example, taking α ≥ 1 and the underlying

means to be finite, it is conjectured that under suitable conditions, as x→∞

P (Y1 > x) =

(
d1

∞∑
i=−∞

[c+
i ]α + d2

∞∑
i=−∞

[c−i ]α

)
F∗(x)

+
αF∗(x)

x

{
∞∑

i=−∞

∞∑
g=i+1

M∑
a=1

M∑
b=1

cg
[
[c+
i ]αpa + [c−i ]αqa

]
kaµbπaPa,b(|i− g|)

+
∞∑

i=−∞

i−1∑
g=−∞

M∑
a=1

M∑
b=1

cg
[
[c+
i ]αpb + [c−i ]αqb

]
kbµaπaPa,b(|i− g|)

−µd1

∞∑
i=−∞

n∑
g=1

[c+
i ]αc−g + µd2

∞∑
i=−∞

n∑
g=1

[c−i ]αc+
g

}
+ o

(
F∗(x)

x

)
.

The outcome of Theorem 7.4 required
∑∞

i=−∞ |ci|λ < ∞ for some 0 < λ < min(α, 1). It is

believed that a similar summability condition is needed in the three possible cases. Further

assumptions on asymptotic smoothness and right-tail dominance may come into play as well.

The second conjecture concerns an interesting application of the three-case second order

approximations. We derived computational results, but they all depend on the individual

entries of the underlying Markov chain. Even if these probabilities are known, we still have

to store possibly massive amounts of matrices to get the specific Markov chain for moving in

k steps. That is, we would need to store in computer memory P k, k = 1, 2, · · · . We propose

that all three approximations can be further approximated by simply replacing the transition

probability Pa,b(k) with πb. Of course, some amount of error is to be expected from such an

operation, but we believe that the amount is negligible for large enough x.
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To illustrate how the conjecture works, let Qn(x) denote P (
∑n

i=1 ciXi > x) but with the

transition probabilities replaced with the stationary probabilities. When α ≥ 1 and the

means are finite, we have

Qn(x) =

(
d1

n∑
i=1

[c+
i ]α + d2

n∑
i=1

[c−i ]α

)
F∗(x)

+ αµ

{
d1

(
n∑
i=1

∑
g 6=i

[c+
i ]αcg −

n∑
i=1

n∑
g=1

[c+
i ]αc−g

)

+ d2

(
n∑
i=1

∑
g 6=i

[c−i ]αcg +
n∑
i=1

n∑
g=1

[c−i ]αc+
g

)}
F∗(x)

x
+ o

(
F∗(x)

x

)
.

(7.39)

When α = 1 and the means are infinite,

Qn(x) =

(
d1

n∑
i=1

c+
i + d2

n∑
i=1

c−i

)
F∗(x) +

{
d1

(
n∑
i=1

∑
g 6=i

c+
i cg −

n∑
i=1

n∑
g=1

c+
i c
−
g

)

+ d2

(
n∑
i=1

∑
g 6=i

c−i cg +
n∑
i=1

n∑
g=1

c−i c
+
g

)}
µ(x)F∗(x)

x
+ o

(
F∗(x)

x

)
.

(7.40)

When 0 < α < 1,

Qn(x) =

(
d1

n∑
i=1

[c+
i ]α + d2

n∑
i=1

[c−i ]α

)
F∗(x) + Θ

{
n−1∑
i=1

n∑
g=i+1

(
d2

1[c+
i c

+
g ]α + d2

2[c−i c
−
g ]α
)

+ d1d2

n∑
i=1

n∑
g=1

[c+
i c
−
g ]α

}
[F∗(x)]2 + o

(
[F∗(x)]2

)
.

(7.41)

One obvious question that arises from using an approximation to the approximation, as it

were, is what kind of error results in doing so. Clearly using the Qn(x) should result in some

sort of error, but at this time it is not clear as to that discrepancy’s exact behavior. The

error appears through |Pi,j(n)− πj|. There are numerous published results on this topic,
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and we suspect that the answer lies in at least one of these. For instance, Roberts and

Tweedie (1999) discussed the problem in the geometrically ergodic case. They proved that

for some function M(x) and some ρ < 1, |Pi,j(n)− πj| ≤ M(x)ρn. For further discussion of

this matter, see Meyn and Tweedie (1994) and Lund and Tweedie (1996).

Lastly, there are instances where one may want to pursue further terms in the expansion.

First, a third term may provide a more accurate approximation if both the first and second-

orders are a little inaccurate. And second, there are instances where the second term may

vanish, necessitating the need for an extra term. One example is when the underlying

distributions are T with degrees of freedom at least 2, in which case the means are all 0.

Barbe and McCormick (2009) discuss this problem and provide several examples.

7.5 Examples of Chain-Dependent Processes

We now present some examples of distributions that satisfy the requirements of the regularly

varying setting.

Example 7.1. Suppose Z1, · · · , Zn
iid∼ F∗ with F∗ ∼ kx−α. Then the Markov chain has only

one state, and the first-order approximation is

P

(
n∑
i=1

ciZi > x

)
= k

(
p

n∑
i=1

[c+
i ]α + q

n∑
i=1

[c−i ]α

)
x−α + o(x−α).

If F is defined only on the positive half line, then the approximation reduces to

P

(
n∑
i=1

ciZi > x

)
=

(
k

n∑
i=1

[c+
i ]α

)
x−α + o(x−α),

which is the result from Resnick (1987). Because of the independence, the second-order
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approximations reduce to the results given in Barbe and McCormick (2009) provided α > 1.

If n = 2, then for any α > 0 we recover the results in Barbe and McCormick (2005).

Example 7.2. The standard Pareto distribution is F (x) = x−α, α > 0, x ≥ 1. Clearly

F ∈ RV−α with L(x) = 1, and the mean is α
α−1

for α > 1. If α = 1, then the truncated mean

is log(x).

Example 7.3. Define the Cauchy distribution as

F (x) =
1

2
− 1

π
arctan

(
x− µ
σ

)
, σ > 0,−∞ < x <∞.

It can be shown that F (x) ∈ RV−1, and further that F (x) ∼ σ
π
x−1. The truncated mean is

1
π

log(1 + x2).

Example 7.4. The T distribution on 2 degrees of freedom is defined by

F (x) =
1

2

[
1− x√

2 + x2

]
,−∞ < x <∞.

It can be shown that F (x) ∈ RV−2 and F (x) ∼ 1
2
x−2. This example illustrates a potential

problem with using the second-order expansion, which depends on the means of the under-

lying distributions. Because the mean of the T distribution is 0, the second term in the

expansion is also 0. This is an instance of where further terms in the expansion might be

appropriate, as mentioned in the previous section.

Example 7.5. Now we introduce the AR(1) process to the Markov chain scenario. If α > 1,
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then set ci = θi−1 for 0 < θ < 1. Then Theorem 7.6 reduces to

P

(
n∑
i=1

ciXi > x

)
= d1

(
1− θαn

1− θα

)
F∗(x)

+
αF∗(x)

x

{
n−1∑
i=1

n∑
g=i+1

M∑
a=1

M∑
b=1

θα(i−1)+g−1pakaµbπaPa,b(|i− g|)

+
n∑
i=2

i−1∑
g=1

M∑
a=1

M∑
b=1

θα(i−1)+g−1pbkbµaπaPa,b(|i− g|)

}
+ o

(
F∗(x)

x

)
.

(7.42)

Assuming that (7.39) holds, a more succinct way of writing (7.42) is

Qn(x) = d1

(
1− θαn

1− θα

)
F∗(x) +

αd1µF∗(x)

x

(
n∑
i=1

∑
g 6=i

θα(i−1)+g−1

)
+ o

(
F∗(x)

x

)
.

Simplifying the double sum,

Qn(x) = αd1µθ
α

(
1− θα(n−1) − θn−1 + θ(α−1)n−α−1

(1− θ)(1− θα)
+

1

1− θα+1

)
F∗(x)

x

+ d1

(
1− θαn

1− θα

)
F∗(x) + o

(
F∗(x)

x

)
.

(7.43)

Finally, if the infinity conjecture holds, then as n→∞

Qn(x)→ d1F∗(x)

1− θα
+

(
αd1µθ

α(2− θα+1 − θ + θα+1 − θα)

(1− θ)(1− θα)(1− θα+1)

)
F∗(x)

x
+ o

(
F∗(x)

x

)
. (7.44)

Example 7.6. Next, we consider the AR(1) process where −1 < θ < 0, and thus ci = θi−1.

This time we illustrate Theorem 7.9 and take 0 < α < 1. We also assume that the Qn(x)

conjecture holds and, for simplicity, take infinite sums. One has to be careful defining the

constants as the {ci} alternate signs. Observe that c+
i = θi−1I[i odd] and c−i = θi−1I[i even]
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where I is the indicator function. Then as n→∞

Qn(x)→
(
d1 + θαd2

1− θ2α

)
F∗(x) + Θθα

(
(d2

1 + d2
2)θα + d1d2

1− θ2α

)
[F∗(x)]2 + o

(
[F∗(x)]2

)
. (7.45)

Example 7.7. This final example illustrates a specific Markov chain with state space 3, and

also provides motivation for obtaining a future proof of the Qn(x). Because of the multitude

of variables needed for the approximation, we do not use the Peachtree Creek data set like we

did in earlier chapters, but instead we perform a simulation study on this specific example.

Define the transition probability matrix and corresponding stationary distribution by

P =


0.2 0.5 0.3

0.5 0 0.5

0.4 0.4 0.2

 and ~π =

(
0.35928 0.31138 0.32934

)
.

Take F∗(x) = x−α, x ≥ 1, the Pareto distribution. Now define the underlying distributions

to be

F j(x) =

(
2j + 1

x

)α
, x ≥ 2j + 1, j = 1, 2, 3. (7.46)

Thus, the Markov chain distributions are related to the parent Pareto distribution via

F j(x) ∼ kjF (x) where kj = (2j + 1)α for x large enough. Next, define the 20-dependent

moving average process Yn =
19∑
i=0

(
1

3

)i
Xn−i . Finally, take α = 1.5. Then pj = 1, qj = 0,

[c+
i ]α =

(
1
3

)1.5(i−1)
, [c−i ]α = 0, d1 = 11.44767, and d2 = 0. Further µj = 3(2j + 1). The

trickiest part of the formula is computing the Pa,b(|i − g|), for this requires utilizing the
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spectral decomposition on P |i−g|. It can be shown that

P1,1 = 0.35928 + 0.43680(−0.15858)|i−g| + 0.20392(−0.44142)|i−g|

P2,1 = 0.35928− 0.06320(−0.15858)|i−g| − 0.29608(−0.44142)|i−g|

P3,1 = 0.35928− 0.41675(−0.15858)|i−g| + 0.05747(−0.44142)|i−g|

P1,2 = 0.31138 + 0.18093(−0.15858)|i−g| − 0.49231(−0.44142)|i−g|

P2,2 = 0.31138− 0.02618(−0.15858)|i−g| + 0.71480(−0.44142)|i−g|

P3,2 = 0.31138− 0.17263(−0.15858)|i−g| − 0.13875(−0.44142)|i−g|

P1,3 = 0.32934− 0.61773(−0.15858)|i−g| + 0.28839(−0.44142)|i−g|

P2,3 = 0.32934 + 0.08938(−0.15858)|i−g| − 0.41872(−0.44142)|i−g|

P3,3 = 0.32934 + 0.58938(−0.15858)|i−g| + 0.08128(−0.44142)|i−g|.

The two-term expansion is

P

(
n∑
i=1

ciXi > x

)
≈ 14.1758x−1.5 + 454.3261x−2.5. (7.47)

In this case, we have a three-state Markov chain, so storing the P |i−g| is not unreasonable.

However, the calculations quickly grow out of control for larger states, and using the spectral

theorem would be computationally intense. For this reason, we also compute the probability

using the Qn(x) conjecture:

Qn(x) ≈ 14.1758x−1.5 + 465.2446x−2.5. (7.48)

While the second coefficients in (7.47) and (7.48) are slightly different, for x large enough

the difference is going to be negligible. This example illustrates that using the Qn(x) ap-
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proximation may be beneficial in practice provided the percentiles are high enough. Now we

examine the three approximations in Figure 7.1.

Figure 7.1: Chain Dependent Convolution, β = 1
3
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Curiously, the first-order approximation is the closest to the truth, and even then the esti-

mated probabilities are not very good. In this particular example the second-order is worse.

The good news is that, as we conjectured, the Qn(x) formula is very close to the actual

second-order approximation at the high percentiles. This observation provides hope that in

general, we may be able to use the Qn(x) instead in order to make computation much easier.

Tables 7.1 and 7.2, as usual, show the errors and relative errors in estimation. Note the very

similar numbers for the second-order and the Qn(x) approximations.
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Table 7.1: Errors in Approximations of Chain Dependent Convolution
Approx 95% 97.5% 98% 99% 99.5% 99.9% 99.99%

1st -0.0122 -0.0061 -0.0049 -0.0023 -0.0012 -0.0002 -1.6e-5
2nd -0.0657 -0.0229 -0.0165 -0.0059 -0.0023 -0.0003 -1.7e-5
Qn(x) -0.0670 -0.0233 -0.0167 -0.0060 -0.0023 -0.0003 -1.8E-5

Table 7.2: Relative Errors in Approximations of Chain Dependent Convolution
Approx 95% 97.5% 98% 99% 99.5% 99.9% 99.99%

1st -0.1967 -0.1955 -0.1957 -0.1890 -0.1878 -0.1936 -0.1412
2nd -0.5679 -0.4779 -0.4515 -0.3723 -0.3139 -0.2415 -0.1523
Qn(x) -0.5727 -0.4823 -0.4556 -0.3757 -0.3164 -0.2426 -0.1525

We should question why the approximations in this example are a little off. There are

unfortunately a number of possible reasons - the Markov chain, the choice of {ci}, the choice

of kj, the α, even the underlying distribution. The multitude of possibilities explains why

doing a general simulation on this matter is difficult. However, we are hopeful that in

other situations the approximations will be better behaved. One reason why they did not

work as well here is because all the constants happened to be positive, and the first-order

approximation was already an overestimate. In an instance where the {ci} alternate signs,

or where the underlying distribution has mass on both halves of the real line, we may see

the desired results. For instance, this may happen when ci = ρi−1, i ≥ 1,−1 < ρ < 0. This

topic of exactly when the formulas are reliable will be left as an open question.
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Chapter 8 Conclusions

The five projects in the dissertation together have established some very significant results

in extreme value theory, both theoretical and computational. As much as possible, the

theory has been well balanced with illustrative examples and computational results. We

started with a thorough data analysis of the Peachtree Creek, establishing that the creek’s

median height is increasing significantly in summer and fall. In doing so, we have arrived

at a significant result that will be of interest to insurance companies and hydrologists. This

project also enabled us to tie extreme value theory with maximum likelihood estimation.

The second project derived theoretical expansions of the AR(1) process where the random

variables satisfied the Gumbel distribution. This type of process is ubiquitous in a variety

of disciplines, and now we have results for its upper tail probabilities. Furthermore, we also

established a realistic range of β values over which each approximation should or should not

be used.

The third project established a general two-term expansion for the convolution of a

particular class of random variables, of which the Gumbel is a special case. This theoretical

result is analogous to the one in Rootzén (1986), only with a second term. However, we

discovered by simulation that further terms were needed, so at this point we focused on

getting n terms for the Gumbel situation. We concluded that at least some more terms were

beneficial, but an interesting open question is precisely how many.

The fourth project gave an example of how to handle ties in the largest weights of the

AR(1) process. There are plenty of open questions from this topic, not the least of which

are working out more cases and carrying out a series of simulation studies to test for overall

effectiveness.
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Finally, the fifth project provided a fully worked-out first-order expansion for a process

of Markov chain dependent regularly varying random variables. The second term in the ex-

pansion has also been derived, taking one of three different forms. We established theoretical

and computational results, and we suspect that under certain additional assumptions the

second term will hold for the infinite process. That extra proof would make the second-order

analysis complete for theoretical purposes. In addition, that chapter provided some poten-

tially useful alternative computational formulas, but the error expended in using these has

yet to be studied.

All five projects contribute significantly to extreme value theory in one way or another,

especially with results on the Gumbel distribution. However, plenty of open questions have

arisen from these studies, and these would all be useful ideas for future study. We recap the

most interesting questions below.

1. A followup study could be conducted with the Peachtree Creek, or any other creek

or river, with more covariates. We suspect that variables like population density,

along with some measure of the amount of concrete in the surrounding city, should be

included.

2. One could study the AR(1) processes in Chapter 4, but with negative weights. We

proved the result for standard Gumbels, but the nonstandard case remains open.

3. Precisely how many terms are needed in the expansion for the convolution of n Gum-

bel random variables should be investigated. The conjecture provided at the end of

Chapter 5 should get this future study started.

4. The remaining four cases outlined at the beginning of Chapter 6 would give a more

complete analysis of the AR(1) process with various combinations of ties in the weights.
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5. The Qn(x) formulas should be further studied, with emphasis on the error resulting in

going from the second-order approximation to the conjectured equivalents. We suspect

that various results from papers by Tweedie will help start this project.

On top of all these suggested future studies, there is the opportunity to do more in-

volved simulational results. The fourth and fifth projects in particular could benefit from

more simulations, although as mentioned the combinations of parameters to keep track of

are plentiful. Results from such future work would help us work out how and when each

approximation should be used in practice.
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44. Roman, S. (1980). The Formula of Faà di Bruno. American Mathematical Monthly

87, 805-809.

45. Rootzén, H. (1986). Extreme value theory for moving average processes. The Annals

of Probability 14, 612-652.

46. Rootzén, H. (1988). Maxima and exceedances of stationary Markov chains. Advances

in Probability Theory 20, 371-390.

47. Seo, T. Y., Kang, J. S. and Choi, J. (1997). On the Euler’s constant. Pusan Kyongnam

Math. J. 13, 33-41.

48. Smith, R. (1999). Trends in Rainfall Extremes. Preprint, University of North Carolina,

Chapel Hill.

49. Smith, R. and Shivey, T. S. (1995). Point process approach to modeling trends in tro-

pospheric ozone based on exceedances of a high threshold. Atmospheric Environment

29, 3489-3499.

50. USGS. ”USGS 02336300 Peachtree Creek at Atlanta, GA.”

http://waterdata.usgs.gov/ga/nwis.

250



51. Villarini G et al.. 2009. Flood frequency analysis for nonstationary annual peak records

in an urban drainage basin. Advances in Water Resources 32: 1255-1266.

52. Weibull, W. (1951). A statistical distribution function of wide applicability. ASME

Journal of Applied Mechanics 18, 293-297.

53. Whitt, W. (2002). Stochastic-Process Limits: An Introduction to Stochastic-Process

Limits and their Application to Queues. Springer, Berlin.

251



Appendix A The Hessian Matrices for the Peachtree Creek Data

After numerically solving for the maximum likelihood estimators via an evolutionary algo-

rithm, we next need to compute the standard errors, T-statistics, and p-values. None of

these are possible without first computing the Hessian matrix. We chose to compute the

exact second derivatives and evaluate each of them at the estimators. This appendix shows

the equations we used.

If Hi denotes the individual Hessian matrix for season i, i = 1, · · · , 4, and H is the overall

18× 18 Hessian matrix, then

H =



H1 0 · · · 0

0 H2
. . .

...

...
. . . H3 0

0 · · · 0 H4


.

Since H1 and H3 are Gumbel fits and therefore ξ1 = ξ3 = 0, we derive their Hessian matrix

forms separately from H2 and H4. The results are in Appendices A.1 and A.2, respectively.

A.1 The Hessian Matrices for Summer and Winter

For i = 1, 3, Hi has the form

Hi =



∂2lnLi
∂µ2i

∂2lnLi
∂µi∂σi

∂2lnLi
∂µi∂ηi

∂2lnLi
∂µi∂φi

∂2lnLi
∂σi∂µi

∂2lnLi
∂σ2
i

∂2lnLi
∂σi∂ηi

∂2lnLi
∂σi∂φi

∂2lnLi
∂ηi∂µi

∂2lnLi
∂ηi∂σi

∂2lnLi
∂η2i

∂2lnLi
∂ηi∂φi

∂2lnLi
∂φi∂µi

∂2lnLi
∂φi∂σi

∂2lnLi
∂φi∂ηi

∂2lnLi
∂φ2i


.
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We now state all ten unique second derivatives. Define f(xti) = exp
[
−
(
xti−µi−ηit
σi+φit

)]
.

∂2lnLi
∂µ2

i

= −
52∑
t=1

(
1

σi + φit

)2

f(xt,i)

∂2lnLi
∂µi∂σi

= −
52∑
t=1

(
1

σi + φit

)2{
1− f(xti) +

(
xti − µi − ait
σi + φit

)
f(xt,i)

}
∂2lnLi
∂µi∂ηi

= −
52∑
t=1

t

(
1

σi + φit

)2

f(xt,i)

∂2lnLi
∂µi∂φi

= −
52∑
t=1

t

(
1

σi + φit

)2{
1− f(xti) +

(
xti − µi − ait
σi + φit

)
f(xt,i)

}

∂2lnLi
∂σ2

i

=
52∑
t=1

(
1

σi + φit

)2{
1− 2

(
xti − µi − ηit
σi + φit

)
+ 2

(
xti − µi − ηit
σi + φit

)
f(xti)

−
(
xti − µi − ηit
σi + φit

)2

f(xti)

}
∂2lnLi
∂σi∂ηi

= −
52∑
t=1

t

(
1

σi + φit

)2{
1− f(xti) +

(
xti − µi − ηit
σi + φit

)
f(xti)

}

∂2lnLi
∂σi∂φi

=
52∑
t=1

t

(
1

σi + φit

)2{
1− 2

(
xti − µi − ηit
σi + φit

)
+ 2

(
xti − µi − ηit
σi + φit

)
f(xti)

−
(
xti − µi − ηit
σi + φit

)2

f(xti)

}

∂2lnLi
∂η2

i

= −
52∑
t=1

(
t

σi + φit

)2

f(xti)
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∂2lnLi
∂ηi∂φi

= −
52∑
t=1

(
t

σi + φit

)2{
1− f(xti) +

(
xti − µi − ηit
σi + φit

)
f(xti)

}

∂2lnLi
∂φ2

i

=
52∑
t=1

(
t

σi + φit

)2{
1− 2

(
xti − µi − ηit
σi + φit

)
+ 2

(
xti − µi − ηit
σi + φit

)
f(xti)

−
(
xti − µi − ηit
σi + φit

)2

f(xti)

}

The Hessian matrices for summer and winter, respectively, are

H1 =



−0.00016 0.00007 −0.00351 0.00132

0.00007 −0.00029 0.00132 −0.00574

−0.00351 0.00132 −0.11317 0.04575

0.00132 −0.00574 0.04575 −0.19106



and

H3 =



−0.00009 0.00004 −0.00311 0.00130

0.00004 −0.00015 0.00130 −0.00479

−0.00311 0.00130 −0.12646 0.05841

0.00130 −0.00479 0.05841 −0.18238


.
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If H−1
i is the inverse Hessian matrix for season i, then

H−1
1 =



22112.67287 5700.84739 −693.87291 −185.32091

5700.84739 10184.84795 −184.01871 −311.05733

−693.87291 −184.01871 31.55885 8.31256

−185.32091 −311.05733 8.31256 15.30152



and

H−1
3 =



79631.30101 31388.20592 −2063.35865 −918.57453

31388.20592 55656.84538 −908.37433 −1528.30638

−2063.35865 −908.37433 62.95349 29.33502

−918.57453 −1528.30638 29.33502 48.45324


.

The standard errors are found by taking the square roots of the diagonal entries.
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A.2 The Hessian Matrices for Fall and Spring

For i = 2, 4, Hi has the form

Hi =



∂2lnLi
∂ξ2i

∂2lnLi
∂ξi∂µi

∂2lnLi
∂ξi∂σi

∂2lnLi
∂ξi∂ηi

∂2lnLi
∂ξi∂φi

∂2lnLi
∂µi∂ξi

∂2lnLi
∂µ2i

∂2lnLi
∂µi∂σi

∂2lnLi
∂µi∂ηi

∂2lnLi
∂µi∂φi

∂2lnLi
∂σi∂ξi

∂2lnLi
∂σi∂µi

∂2lnLi
∂σ2
i

∂2lnLi
∂σi∂ηi

∂2lnLi
∂σi∂φi

∂2lnLi
∂ηi∂ξi

∂2lnLi
∂ηi∂µi

∂2lnLi
∂ηi∂σi

∂2lnLi
∂η2i

∂2lnLi
∂ηi∂φi

∂2lnLi
∂φi∂ξi

∂2lnLi
∂φi∂µi

∂2lnLi
∂φi∂σi

∂2lnLi
∂φi∂ηi

∂2lnLi
∂φ2i


.

We now state all fifteen unique second derivatives. Define f(xti) = 1 + ξi(xti−µi−ηit)
σi+φit

.

∂2lnLi
∂ξ2

i

= − 2

ξ3
i

52∑
t=1

log f(xti) +
2

ξ2
i

52∑
t=1

(
xti − µi − ηit
σi + φit

)
[f(xti)]

−1

+
1

ξ3
i

52∑
t=1

[f(xti)]
−1/ξi log f(xti)

{
2− 1

ξi
log f(xti)

}

− 2

ξ2
i

52∑
t=1

(
xti − µi − ηit
σi + φit

)
[f(xti)]

−1/ξi−1

{
1− 1

ξi
log f(xti)

}

+
ξi + 1

ξi

52∑
t=1

(
xti − µi − ηit
σi + φit

)2

[f(xti)]
−2

{
1− 1

ξi
[f(xti)]

−1/ξi

}
∂2lnLi
∂ξi∂µi

=
1

σi

52∑
t=1

[f(xti)]
−1

{
1− 1

ξ2
i

[f(xti)]
−1/ξi log f(xti)

}

−
(
ξi + 1

σ2
i

) 52∑
t=1

(xti − µi − ηit)[f(xti)]
−2

{
1− 1

ξi
[f(xti)]

−1/ξi

}
∂2lnLi
∂ξi∂σi

=
1

σ2
i

52∑
t=1

(xti − µi − ηit)[f(xti)]
−1

{
1− 1

ξ2
i

[f(xti)]
−1/ξi log f(xti)

}

−
(
ξi + 1

σ3
i

) 52∑
t=1

(xti − µi − ηit)2[f(xti)]
−2

{
1− 1

ξi
[f(xti)]

−1/ξi

}

256



∂2lnLi
∂ξi∂ηi

=
52∑
t=1

(
t

σi + φit

)
[f(xti)]

−1

{
1− 1

ξ2
i

[f(xti)]
−1/ξi log f(xti)

}

− (ξi + 1)
52∑
t=1

t

(
1

σi + φit

)2

(xti − µi − ηit)[f(xti)]
−2

{
1− 1

ξi
[f(xti)]

−1/ξi

}
∂2lnLi
∂ξi∂φi

=
52∑
t=1

t

(
1

σi + φit

)2

(xti − µi − ηit)[f(xti)]
−1

{
1− 1

ξ2
i

[f(xti)]
−1/ξi log f(xti)

}

− (ξi + 1)
52∑
t=1

t

(
1

σi + φit

)3

(xti − µi − ηit)2[f(xti)]
−2

{
1− 1

ξi
[f(xti)]

−1/ξi

}

∂2lnLi
∂µ2

i

= (ξi + 1)
52∑
t=1

(
1

σi + φit

)2

[f(xti)]
−2
{
ξi − [f(xti)]

−1/ξi
}

∂2lnLi
∂µi∂σi

= −
52∑
t=1

(
1

σi + φit

)2

[f(xti)]
−1
{

(ξi + 1)− [f(xti)]
−1/ξi

}
+ (ξi + 1)

52∑
t=1

(
1

σi + φit

)3

(xti − µi − ηit)[f(xti)]
−2
{
ξi − [f(xti)]

−1/ξi
}

∂2lnLi
∂µi∂ηi

= (ξi + 1)
52∑
t=1

t

(
1

σi + φit

)2

[f(xti)]
−2
{
ξi − [f(xti)]

−1/ξi
}

∂2lnLi
∂µi∂φi

= −
52∑
t=1

t

(
1

σi + φit

)2

[f(xti)]
−1
{

(ξi + 1)− [f(xti)]
−1/ξi

}
+ (ξi + 1)

52∑
t=1

t

(
1

σi + φit

)3

(xti − µi − ηit)[f(xti)]
−2
{
ξi − [f(xti)]

−1/ξi
}

∂2lnLi
∂σ2

i

= −2
52∑
t=1

(
1

σi + φit

)3

(xti − µi − ηit)[f(xti)]
−1
{
ξi + 1− [f(xti)]

−1/ξi
}

+ (ξi + 1)
52∑
t=1

(
1

σi + φit

)4

(xti − µi − ηit)2[f(xti)]
−2
{
ξi − [f(xti)]

−1/ξi
}

+
52∑
t=1

(
1

σi + φit

)2
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∂2lnLi
∂σi∂ηi

= −
52∑
t=1

t

(
1

σi + φit

)2

[f(xti)]
−1
{
ξi + 1− [f(xti)]

−1/ξi
}

+ (ξi + 1)
52∑
t=1

t

(
1

σi + φit

)3

(xti − µi − ηit)[f(xti)]
−2
{
ξi − [f(xti)]

−1/ξi
}

∂2lnLi
∂σi∂φi

= −2
52∑
t=1

t

(
1

σi + φit

)3

(xti − µi − ηit)[f(xti)]
−1
{
ξi + 1− [f(xti)]

−1/ξi
}

+ (ξi + 1)
52∑
t=1

t

(
1

σi + φit

)4

(xti − µi − ηit)2[f(xti)]
−2
{
ξi − [f(xti)]

−1/ξi
}

+
52∑
t=1

t

(
1

σi + φit

)2

∂2lnLi
∂η2

i

= (ξi + 1)
52∑
t=1

t2
(

1

σi + φit

)2

[f(xti)]
−2
{
ξi − [f(xti)]

−1/ξi
}

∂2lnLi
∂ηi∂φi

= −
52∑
t=1

t2
(

1

σi + φit

)2

[f(xti)]
−1
{
ξi + 1− [f(xti)]

−1/ξi
}

+ (ξi + 1)
52∑
t=1

t2
(

1

σi + φit

)3

(xti − µi − ηit)[f(xti)]
−2
{
ξi − [f(xti)]

−1/ξi
}

∂2lnLi
∂φ2

i

= −2
52∑
t=1

t2
(

1

σi + φit

)3

(xti − µi − ηit)[f(xti)]
−1
{
ξi + 1− [f(xti)]

−1/ξi
}

+ (ξi + 1)
52∑
t=1

t2
(

1

σi + φit

)4

(xti − µi − ηit)2[f(xti)]
−2
{
ξi − [f(xti)]

−1/ξi
}

+
52∑
t=1

t2
(

1

σi + φit

)2
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The Hessian matrices for fall and spring, respectively, are

H2 =



−70.05764 −0.04483 0.02668 −0.77989 0.10155

−0.04483 −0.00023 0.00017 −0.00355 0.00238

0.02668 0.00017 −0.00033 0.00238 −0.00477

−0.77989 −0.00355 0.00238 −0.10428 0.07342

0.10155 0.00238 −0.00477 0.07342 −0.13407



and

H4 =



−39.83390 −0.07984 0.05635 −1.84513 1.06889

−0.07984 −0.00044 0.00032 −0.01302 0.00931

0.05635 0.00032 −0.00030 0.00931 −0.00847

−1.84513 −0.01302 0.00931 −0.47611 0.33372

1.06889 0.00931 −0.00847 0.33372 −0.30177


.

If H−1
i is the inverse Hessian matrix for season i, then

H−1
2 =



0.01734 −0.72415 2.29779 −0.17886 −0.17937

−0.72415 19478.62600 11627.35253 −716.92017 −460.62141

2.29779 11627.35253 13515.25007 −482.34530 −536.43491

−0.17886 −716.92017 −482.34530 44.51125 28.65698

−0.17937 −460.62141 −536.43491 28.65698 33.90823


.
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and

H−1
4 =



0.05057 −9.25956 12.63677 −0.08487 −0.55511

−9.25956 56281.33366 52124.69912 −1404.46811 −1313.39844

12.63677 52124.69912 73634.87371 −1446.63307 −2014.58926

−0.08487 −1404.46811 −1446.63307 46.42803 48.33709

−0.55511 −1313.39844 −2014.58926 48.33709 70.85107


.

The standard errors are found by taking the square roots of the diagonal entries.
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Appendix B Supplemental Proofs for the AR(1) Process

This collection of appendices gives supplemental proofs that were excluded from Chapter 4.

They concern two parts from Theorem 4.1 and two more parts from Theorem 4.2. We also

include two tables of numerical values for the infinite products.

B.1 Proof of Theorem 4.1 for β = −
√
2
2

If β = −
√

2
2

and Zk are i.i.d. standard Gumbel random variables, then as y →∞

P

(
∞∑
k=0

(0.5)kZk > y

)
=
∞∏
k=1

Γ
(
1− (0.5)k

) ∞∏
k=0

Γ
(

1 +
√

2(0.5)k+1
)
e−y

−
∞∏
k=1

Γ
(
1− (0.5)k

) ∞∏
k=0

Γ
(

1 +
√

2(0.5)k
)
ye−2y +O

(
e−2y

)
.

Proof. First notice that by Lemma 4.9,

P (S > y) =
∞∏
k=1

Γ
(
1− (0.5)k

) [
e−y − ye−2y

]
+O

(
e−2y

)
. (2.1)

Let X = S + T , and for some 0 < a < 1 write

P (X > y) =

∫ ∞
ay

P (S > y − t)dFT (t) +

∫ ay

−∞
P (S > y − t)dFT (t). (2.2)

First, ∫ ∞
ay

P (S > y − t)dFT (t) ≤ P (T > ay),

which by Lemma 4.5 is o
(
e−y/β

2
)

as y →∞. Now by (2.1) we have that for y large enough

261



and any t < ay

P (S > y − t) =
∞∏
k=1

Γ
(
1− (0.5)k

) [
e−(y−t) − (y − t)e−2(y−t)]+R(y − t),

where for some c > 0

sup
t<ay

∣∣R(y − t)e2(y−t)∣∣ < c.

Set K1 =
∏∞

k=1 Γ(1− (0.5)k). Then observe that

∫ ay

−∞
F S(y − t)dFT (t) =

∫ ay

−∞

[
F S(y − t)−K1e

−(y−t)

−K1(y − t)e−2(y−t)

]
×−K1(y − t)e−2(y−t)dFT (t)

+K1

∫ ay

−∞
e−(y−t)dFT (t).

(2.3)

Now

F S(y − t)−K1e
−(y−t)

−K1(y − t)e−2(y−t) = 1− R(y − t)e2(y−t)

K1(y − t)
= 1 + ε(y − t).

We examine the ε(y − t):

sup
t<ay
|ε(y − t)| = 1

K1

sup
t<ay

∣∣∣∣R(y − t)e2(y−t)

y − t

∣∣∣∣ < c

K1

sup
t<ay

∣∣(y − t)−1
∣∣ =

c

K1(1− a)y
.

Therefore ε(y − t)→ 0 as y →∞ uniformly in t < ay. Consider the piece

−K1

∫ ay

−∞
[1 + ε(y − t)](y − t)e−2(y−t)dFT (t) = −K1ye

−2y

∫ ay

−∞
e2tdFT (t)

+K1e
−2y

∫ ay

−∞
te2tdFT (t)−K1

∫ ay

−∞
ε(y − t)(y − t)e−2(y−t)dFT (t)

= (I) + (II) + (III).

(2.4)
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Examining (I) in (2.4), as y →∞

∫ ay

−∞
e2tdFT (t)→ E

(
e2T
)

=
∞∏
k=0

E
(
e2β2k+1Z1

)
=
∞∏
k=0

Γ
(

1 +
√

2(0.5)k
)
.

Therefore by dominated convergence,

(I) = −K1

∞∏
k=0

Γ
(

1 +
√

2(0.5)k
)
ye−2y. (2.5)

Turning to (II), as y →∞

K1

∫ ay

−∞
te2tdFT (t)→ K1E

(
Te2T

)
,

and by an extension of Lemma 4.4, (II) = O (e−2y). Next,

|(III)| =
∣∣∣∣∫ ay

−∞
R(y − t)e2(y−t)e−2(y−t)dFT (t)

∣∣∣∣ < cE
(
e2T
)
e−2y,

and therefore (III) = O(e−2y). Now note that

K1

∫ ∞
−∞

etdFT (t) = K1E
(
eT
)

= K1

∞∏
k=0

Γ
(

1 +
√

2(0.5)k+1
)
. (2.6)

We now consider the integral

K1e
−y
∫ ay

−∞
etdFT (t) = K1

∞∏
k=0

Γ
(

1 +
√

2(0.5)k+1
)
e−y −K1e

−y
∫ ∞
ay

etdFT (t). (2.7)

By Lemma 4.7, the last integral in (2.7) is o
(
e−y/β

2
)

, and the result follows.
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B.2 Proof of Theorem 4.1 for −1 < β < −
√
2
2

If −1 < β < −
√

2
2

and Zk are i.i.d. standard Gumbel random variables, then we shall show

that as y →∞

P

(
∞∑
k=0

βkZk > y

)
=
∞∏
k=1

Γ
(
1− βk

)
e−y + o

(
e−y/β

2
)

− β2

1− β2
Γ(1− β−1)Γ(2− β−2)

∞∏
k=1

Γ
(
1− βk

)
e−y/β

2

.

Proof. First notice that by Lemma 4.10,

P (S > y) =
∞∏
k=1

Γ
(
1− β2k

) [
e−y − β2

1− β2
Γ(2− β−2)e−y/β

2

]
+ o

(
e−y/β

2
)
. (2.8)

Let X = S + T , and choose some 0 < a < 1. By earlier work,

P (X > y) =

∫ ay

−∞
P (S > y − t)dFT (t) + o

(
e−y/β

2
)
. (2.9)

Now by (2.8) we have that for y large enough and any t < ay

P (S > y − t) =
∞∏
k=1

Γ
(
1− β2k

) [
e−(y−t) − β2

1− β2
Γ(2− β−2)e−(y−t)/β2

]
+R(y − t),

where for any ε > 0

sup
t<ay

∣∣∣R(y − t)e(y−t)/β2
∣∣∣ < ε.

Set K1 =
∏∞

k=1 Γ(1− β2k) and K2 = − β2

1−β2 Γ(2− β−2)K1. Then observe that
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∫ ay

−∞
F S(y − t)dFT (t)

=

∫ ay

−∞

[
F S(y − t)−K1e

−(y−t)

K2e−(y−t)/β2

]
K2e

−(y−t)/β2

dFT (t) +K1

∫ ay

−∞
e−(y−t)dFT (t).

(2.10)

Now

F S(y − t)−K1e
−(y−t)

K2e−(y−t)/β2 = 1 +
1

K2

R(y − t)e(y−t)/β2

= 1 + ε(y − t).

Note that sup
t<ay
|ε(y − t)| < ε

|K2|
. Consider the piece

∫ ay

−∞
[1 + ε(y − t)]K2e

−(y−t)/β2

dFT (t)

= K2e
−y/β2

∫ ay

−∞
et/β

2

dFT (t) +K2

∫ ay

−∞
ε(y − t)e−(y−t)/β2

dFT (t).

(2.11)

Examining the first integral in (2.11),

lim
y→∞

∫ ay

−∞
et/β

2

dFT (t) = E
(
eT/β

2
)

= E

[
exp

(
1

β2

∞∑
k=0

β2k+1Zk

)]

= E

[
exp

(
∞∑
k=0

β2k−1Zk

)]
= Γ

(
1− β−1

) ∞∏
k=0

Γ
(
1− β2k+1

)
.

Thus, by dominated convergence the first integral in (2.11) is

− β2

1− β2
Γ
(
1− β−1

)
Γ
(
2− β−2

) ∞∏
k=1

Γ
(
1− βk

)
e−y/β

2

. (2.12)

Turning to the second integral in (2.11),

265



∣∣∣∣K2

∫ ay

−∞
ε(y − t)e−(y−t)/β2

dFT (t)

∣∣∣∣ =

∣∣∣∣∫ ay

−∞
R(y − t)dFT (t)

∣∣∣∣
=

∣∣∣∣∫ ay

−∞
R(y − t)e(y−t)/β2

e−(y−t)/β2

dFT (t)

∣∣∣∣ < ε

∫ ay

−∞
e−(y−t)/β2

dFT (t)

≤ εe−y/β
2

∫ ∞
−∞

et/β
2

dFT (t) = εE
(
eT/β

2
)
e−y/β

2

.

By Lemma 4.6, E
(
eT/β

2
)
<∞ and therefore

K2

∫ ay

−∞
ε(y − t)e−(y−t)/β2

dFT (t) = o
(
e−y/β

2
)
. (2.13)

Next, note that

K1

∫ ∞
−∞

etdFT (t) = K1E
(
eT
)

= K1

∞∏
k=0

Γ
(
1− β2k+1

)
=
∞∏
k=1

Γ
(
1− βk

)
. (2.14)

We now consider the integral

K1e
−y
∫ ay

−∞
etdFT (t) =

∞∏
k=1

Γ(1− βk)e−y −K1

∫ ∞
ay

e−(y−t)dFT (t). (2.15)

Collecting (2.11) through (2.15),

∫ ay

−∞
F S(y − t)dFT (t) =

∞∏
k=1

Γ(1− βk)e−y + o
(
e−y/β

2
)
−K1e

−y
∫ ∞
ay

etdFT (t)

− β2

1− β2
Γ
(
1− β−1

)
Γ
(
2− β−2

) ∞∏
k=1

Γ
(
1− βk

)
e−y/β

2

.

By Lemma 4.7, the integral in the above expression is o
(
e−y/β

2
)

, and the result follows.
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B.3 Proof of Theorem 4.2 for β(1)

β(0) = 1
2

Here we present the proofs of the second part of Theorem 4.2. Recall that V = Z0 + β(1)

β(0)Z1,

W =
∑n−1

k=2
β(k)

β(0)Zk, and Y = V +W . Then we shall derive the probability P (Yn > y∗n) where

y∗n = y−µn
β(0) . When β(1)

β(0) = 1
2
, then as y →∞ the end result will be

P (Yn > y∗n) =
n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
e−y

∗
n −

n−1∏
k=2

Γ

(
1− 2β(k)

β(0)

)
y∗ne
−2y∗n +O

(
e−y/β

(1)
)
.

Proof. Let a be a positive real such that β(2)

β(1) < a < 1, and choose 1 < λ < β(1)

β(2) such that

λ > 1
a
. Then observe that

P (V +W > y∗n) =

∫ ∞
ay∗n

P (V > y∗n − w)dFW (w) +

∫ ay∗n

−∞
P (V > y∗n − w)dFW (w).

Earlier in the proof of Theorem 4.2, we established that the first integral above is

o
(
e−y/β

(1)
)

. Now by Theorem 3.1 we have for y∗n large enough and any w < ay∗n that

P (V > y∗n − w) =
√
πe−(y∗n−w) − (y∗n − w)e−2(y∗n−w) +R(y∗n − w),

where for some c > 0

sup
w<ay∗n

∣∣R(y∗n − w)e2(y∗n−w)
∣∣ < c.

Observe that

∫ ay∗n

−∞
F V (y∗n − w)dFW (w) =

√
π

∫ ay∗n

−∞
e−(y∗n−w)dFW (w)

+

∫ ay∗n

−∞

[
F V (y∗n − w)−

√
πe−(y∗n−w)

−(y∗n − w)e−2(y∗n−w)

]
×−(y∗n − w)e−2(y∗n−w)dFW (w).
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Now

F V (y∗n − w)−
√
πe−(y∗n−w)

−(y∗n − w)e−2(y∗n−w)
= 1− R(y∗n − w)e2(y∗n−w)

y∗n − w
= 1 + ε(y∗n − w).

We examine the ε(y∗n − w):

sup
w<ay∗n

|ε(y∗n − w)| = sup
w<ay∗n

∣∣∣∣R(y∗n − w)e2(y∗n−w)

y∗n − w

∣∣∣∣ < c sup
w<ay∗n

∣∣(y∗n − w)−1
∣∣ ≤ c

(1− a)y∗n
.

Therefore ε(y∗n − w)→ 0 as y∗n →∞ uniformly in w < ay∗n. Consider the piece

∫ ay∗n

−∞
[1 + ε(y∗n − w)]×−(y∗n − w)e−2(y∗n−w)dFW (w)

= −e−2y∗n

∫ ay∗n

−∞
(y∗n − w)e2wdFW (w)−

∫ ay∗n

−∞
ε(y∗n − w)(y∗n − w)e−2(y∗n−w)dFW (w)

= −y∗ne−2y∗n

∫ ay∗n

−∞
e2wdFW (w) + e−2y∗n

∫ ay∗n

−∞
we2wdFW (w)

−
∫ ay∗n

−∞
ε(y∗n − w)(y∗n − w)e−2(y∗n−w)dFW (w)

= (I) + (II) + (III).

Examining (I),

− lim
y∗n→∞

∫ ay∗n

−∞
e2wdFW (w) = −E

(
e2W

)
= −

n−1∏
k=2

Γ

(
1− 2β(k)

β(0)

)
.

Next, (II) = E
(
We2W

)
e−2y∗n = O

(
e−2y∗n

)
= O

(
e−y/β

(1)
)

. Turning to (III),

|(III)| =
∣∣∣∣∫ ay∗n

−∞
R(y∗n − w)dFW (w)

∣∣∣∣ =

∣∣∣∣∫ ay∗n

−∞
R(y∗n − w)e2(y∗n−w)e−2(y∗n−w)dFW (w)

∣∣∣∣
< c

∣∣∣∣∫ ay∗n

−∞
e−2(y∗n−w)dFW (w)

∣∣∣∣ ≤ cE
(
e2W

)
e−2y∗n .
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Therefore (III) = O
(
e−2y∗n

)
= O

(
e−y/β

(1)
)

. Next, note that

∫ ∞
−∞

√
πewdFW (w) =

√
π
n−1∏
k=2

Γ

(
1− β(k)

β(0)

)
=

n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
.

We now consider the integral

√
πe−y

∗
n

∫ ay∗n

−∞
ewdFW (w) =

n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
e−y

∗
n −
√
πe−y

∗
n

∫ ∞
ay∗n

ewdFW (w).

Collecting all the terms, we arrive at

∫ ay∗n

−∞
F V (y∗n − w)dFW (w) =

n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
e−y

∗
n

−
n−1∏
k=2

Γ

(
1− 2β(k)

β(0)

)
y∗ne
−2y∗n +O

(
e−y/β

(1)
)
−
√
πe−y

∗
n

∫ ∞
ay∗n

ewdFW (w).

The last integral above was shown to be o
(
e−y/β

(1)
)

earlier in the proof of Theorem 4.2.
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B.4 Proof of Theorem 4.2 for 1
2 <

β(1)

β(0) < 1

Here we present the proof of the third part of Theorem 4.2. When 1
2
< β(1)

β(0) < 1 and

K2 = − β(1)

β(0)−β(1) Γ
(

2− β(0)

β(1)

)
, then as y →∞ the end result will be

P (Yn > y∗n) =
n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
e−y

∗
n +K2

n−1∏
k=2

Γ

(
1− β(k)

β(1)

)
e−β

(0)y∗n/β
(1)

+ o
(
e−y/β

(1)
)
.

Proof. Let a be a positive real such that β(2)

β(1) < a < 1. Then by earlier work

P (V +W > y∗n) =

∫ ay∗n

−∞
P (V > y∗n − w)dFW (w) + o

(
e−y/β

(1)
)
.

By Theorem 3.1, we have for y∗n large enough and any w < ay∗n that

P (V > y∗n − w) = Γ

(
1− β(1)

β(0)

)
e−(y∗n−w) +K2e

−β(0)(y∗n−w)/β(1)

+R(y∗n − w),

where for any ε > 0

sup
w<ay∗n

∣∣∣R(y∗n − w)eβ
(0)(y∗n−w)/β(1)

∣∣∣ < ε.

Further set K1 = Γ
(

1− β(1)

β(0)

)
. Then observe that

∫ ay∗n

−∞
F V (y∗n − w)dFW (w) = K1

∫ ay∗n

−∞
e−(y∗n−w)dFW (w)

+

∫ ay∗n

−∞

[
F V (y∗n − w)−K1e

−(y∗n−w)

K2e−β
(0)(y∗n−w)/β(1)

]
K2e

−β(0)(y∗n−w)/β(1)

dFW (w).
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Now

F V (y∗n − w)−K1e
−(y∗n−w)

K2e−β
(0)(y∗n−w)/β(1)

= 1 +
1

K2

R(y∗n − w)eβ
(0)(y∗n−w)/β(1)

= 1 + ε(y∗n − w).

We examine the ε(y∗n − w):

sup
w<ay∗n

|ε(y∗n − w)| = 1

|K2|
sup
w<ay∗n

∣∣∣R(y∗n − w)eβ
(0)(y∗n−w)/β(1)

∣∣∣ < ε

|K2|
.

Consider the piece

∫ ay∗n

−∞
[1 + ε(y∗n − w)]K2e

−β(0)(y∗n−w)/β(1)

dFW (w)

= K2e
−β(0)y∗n/β

(1)

∫ ay∗n

−∞
eβ

(0)w/β(1)

dFW (w)

+K2

∫ ay∗n

−∞
ε(y∗n − w)e−β

(0)(y∗n−w)/β(1)

dFW (w).

Examining the first integral,

lim
y∗n→∞

∫ ay∗n

−∞
K2e

β(0)w/β(1)

dFW (w) = K2E
(
eβ

(0)W/β(1)
)

= K2E

[
exp

(
n−1∑
k=2

2β(k)

β(1)
Zk

)]

= − β(1)

β(0) − β(1)
Γ

(
2− β(0)

β(1)

) n−1∏
k=2

Γ

(
1− β(k)

β(1)

)
.

Turning to the second integral,

∣∣∣∣K2

∫ ay∗n

−∞
ε(y∗n − w)e−β

(0)(y∗n−w)/β(1)

dFW (w)

∣∣∣∣ =

∣∣∣∣∫ ay∗n

−∞
R(y∗n − w)dFW (w)

∣∣∣∣
< ε

∫ ay∗n

−∞
e−β

(0)(y∗n−w)/β(1)

dFW (w) ≤ εe−β
(0)y∗n/β

(1)

∫ ∞
−∞

eβ
(0)w/β(1)

dFW (w)

= εE
(
eβ

(0)W/β(1)
)
e−β

(0)y∗n/β
(1)

.
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Therefore

K2

∫ ay∗n

−∞
ε(y∗n − w)e−β

(0)(y∗n−w)/β(1)

dFW (w) = o
(
e−β

(0)y∗n/β
(1)
)

= o
(
e−y/β

(1)
)
.

Next, note that

K1

∫ ∞
−∞

ewdFW (w) =
n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
.

We now consider the integral

K1e
−y∗n
∫ ay∗n

−∞
ewdFW (w) =

n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
e−y

∗
n −K1e

−y∗n
∫ ∞
ay∗n

ewdFW (w).

Gathering all the terms,

∫ ay∗n

−∞
F V (y∗n − w)dFW (w) =

n−1∏
k=1

Γ

(
1− β(k)

β(0)

)
e−y

∗
n + o

(
e−y/β

(1)
)

− β(1)

β(0) − β(1)
Γ

(
2− β(0)

β(1)

) n−1∏
k=2

Γ

(
1− β(k)

β(1)

)
e−β

(0)y∗n/β
(1)

−K1e
−y∗n
∫ ∞
ay∗n

ewdFW (w),

and by previous work the latter integral is o
(
e−y/β

(1)
)

. Collecting the pieces, the result

follows.
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B.5 Infinite Products 1

Table B.1 displays values of
∏∞

k=1 Γ(1− βk) for values of β between -0.89 and 0.69, given to

three decimal places. For β < −0.89 and β > 0.69, the products quickly grow large and are

not worth reproducing in a table.

Table B.1: Infinite Products 1
β 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-0.8 3.536 4.005 4.607 5.397 6.463 7.947 10.091 13.334 18.522 27.427
-0.7 1.687 1.769 1.862 1.970 2.095 2.240 2.412 2.617 2.863 3.164
-0.6 1.229 1.257 1.287 1.320 1.357 1.398 1.443 1.494 1.551 1.615
-0.5 1.052 1.064 1.077 1.091 1.106 1.122 1.140 1.160 1.181 1.204
-0.4 0.974 0.979 0.985 0.991 0.998 1.005 1.013 1.022 1.031 1.041
-0.3 0.941 0.943 0.945 0.947 0.950 0.953 0.956 0.960 0.964 0.969
-0.2 0.937 0.937 0.936 0.936 0.936 0.936 0.937 0.937 0.938 0.940
-0.1 0.956 0.953 0.951 0.948 0.946 0.944 0.942 0.941 0.939 0.938
-0.0 1.000 0.994 0.989 0.984 0.979 0.975 0.971 0.967 0.963 0.960
0.0 1.000 1.006 1.012 1.019 1.026 1.033 1.041 1.049 1.057 1.066
0.1 1.076 1.085 1.096 1.107 1.118 1.130 1.143 1.156 1.170 1.185
0.2 1.200 1.216 1.233 1.251 1.270 1.290 1.312 1.334 1.357 1.382
0.3 1.409 1.437 1.467 1.498 1.532 1.567 1.605 1.646 1.689 1.735
0.4 1.785 1.838 1.895 1.956 2.022 2.094 2.171 2.255 2.347 2.446
0.5 2.555 2.674 2.805 2.949 3.109 3.286 3.483 3.703 3.950 4.228
0.6 4.544 4.903 5.314 5.787 6.336 6.976 7.729 8.622 9.689 10.977
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B.6 Infinite Products 2

Table B.2 shows values of
∏∞

k=1 Γ(1 − 2βk) for values of β between -.70 and 0.49, given to

three decimal places. Notice that since this product is only defined on − 1√
2
< β < 1

2
as

explained in Section 4.4, the table only goes down to -0.69.

Table B.2: Infinite Products 2
β 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-0.6 3.787 4.303 4.962 5.827 6.998 8.648 11.099 15.032 22.145 38.138
-0.5 1.716 1.810 1.916 2.038 2.180 2.344 2.538 2.767 3.042 3.376
-0.4 1.194 1.225 1.260 1.298 1.340 1.386 1.438 1.496 1.561 1.634
-0.3 0.999 1.012 1.025 1.040 1.057 1.075 1.094 1.116 1.140 1.166
-0.2 0.927 0.931 0.935 0.940 0.946 0.953 0.960 0.968 0.978 0.988
-0.1 0.928 0.925 0.923 0.921 0.920 0.920 0.920 0.921 0.922 0.924
-0.0 1.000 0.989 0.979 0.970 0.961 0.954 0.947 0.941 0.936 0.932
0.0 1.000 1.012 1.025 1.040 1.055 1.072 1.090 1.110 1.131 1.155
0.1 1.180 1.207 1.236 1.268 1.303 1.341 1.382 1.426 1.475 1.528
0.2 1.587 1.651 1.721 1.799 1.885 1.980 2.086 2.205 2.338 2.487
0.3 2.657 2.850 3.070 3.324 3.619 3.963 4.369 4.853 5.435 6.147
0.4 7.029 8.144 9.585 11.499 14.135 17.944 23.831 33.916 54.577 117.738
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Appendix C Constants for Gumbel Convolution

This collection of appendices establishes numerical values for θk, ζk, µi,m, ak,i, and Ak,i in

Chapter 5.

C.1 Values for θk and ζk

Recall that θk = −
∫∞

0
xk [1− exp (−e−x)] dx and ζk =

∫ 0

−∞ x
k exp (−e−x) dx. Table C.1 lists

the numerical values for k = 0, · · · , 16. Observe that in each case, the value of θk is fairly

close to −k!, and for k ≥ 13 there is little to no difference.

Table C.1: Values for θk and ζk
k θk ζk
0 -0.7966 0.2194
1 -0.8912 -0.0978
2 -1.8862 0.0712
3 -5.8239 -0.0664
4 -23.6405 0.0727
5 -119.0888 -0.0891
6 -717.2406 0.1193
7 -5030.2812 -0.1715
8 -40280.9602 0.2614
9 -362703.8226 -0.4187
10 -3627917.4412 0.7001
11 -39911939.7644 -1.2161
12 -478972413.8420 2.1846
13 -6226830982.4340 -4.0452
14 -87176961974.0852 7.6989
15 -1307664396286.7170 -15.0244
16 -20922710100842.7969 30.0029
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C.2 Values for µi,m

Recall that for 0 ≤ i ≤ m,

µi,m =
∑(

i!

k1! · · · ki!

)(
m!

(m− [k1 + · · ·+ ki])!

)
ζ
m−(k1+···+ki)
0

i∏
L=1

(
ζL
L!

)kL
,

where the sum is taken over all nonnegative integers k1, · · · , ki such that k1+2k2+· · ·+iki = i.

Table C.2 lists values for 0 ≤ i ≤ m ≤ 7.

Table C.2: Values for µi,m
HH

HHHHi
m

0 1 2 3 4 5 6 7

0 1.0000 0.2194 0.0481 0.0106 0.0023 0.0005 0.0001 2.4e-5

1 — -0.0978 -0.0429 -0.0141 -0.0041 -0.0011 -0.0003 -7.6e-5

2 — — 0.0504 0.0229 0.0085 0.0029 0.0009 0.0003

3 — — — -0.0427 -0.0198 -0.0079 -0.0028 -0.0010

4 — — — — 0.0506 0.0238 0.0099 0.0037

5 — — — — — -0.0770 -0.0365 -0.0156

6 — — — — — — 0.1432 0.0683

7 — — — — — — — -0.3148

It may also be handy to have explicit formulas for µi,m in terms of the ζk. They quickly

get messy, so we only give them for the values listed in Table C.2. First observe that

µ0,m = ζm0 ,m = 0, 1, · · · , and µ1,m = mζm−1
1 ,m = 1, 2, · · · . We now list formulas for the

remaining constants.

µ2,2 = 2ζ2
1 + 2ζ0ζ2 µ2,5 = 20ζ3

0ζ
2
1 + 5ζ4

0ζ2

µ2,3 = 6ζ0ζ
2
1 + 3ζ2

0ζ2 µ2,6 = 30ζ4
0ζ

2
1 + 6ζ5

0ζ2

µ2,4 = 12ζ2
0ζ

2
1 + 4ζ3

0ζ2 µ2,7 = 42ζ5
0ζ

2
1 + 7ζ6

0ζ2
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µ3,3 = 6ζ3
1 + 18ζ0ζ1ζ2 + 3ζ2

0ζ3 µ3,6 = 120ζ3
0ζ

3
1 + 90ζ4

0ζ1ζ2 + 6ζ5
0ζ3

µ3,4 = 24ζ0ζ
3
1 + 36ζ2

0ζ1ζ2 + 4ζ3
0ζ3 µ3,7 = 210ζ4

0ζ
3
1 + 126ζ5

0ζ1ζ2 + 7ζ6
0ζ3

µ3,5 = 60ζ2
0ζ

3
1 + 60ζ3

0ζ1ζ2 + 5ζ4
0ζ3

µ4,4 = 24ζ4
1 + 144ζ0ζ

2
1ζ2 + 48ζ2

0ζ1ζ3 + 36ζ2
0ζ

2
2 + 4ζ3

0ζ4

µ4,5 = 120ζ0ζ
4
1 + 360ζ2

0ζ
2
1ζ2 + 80ζ3

0ζ1ζ3 + 60ζ3
0ζ

2
2 + 5ζ4

0ζ4

µ4,6 = 360ζ2
0ζ

4
1 + 720ζ3

0ζ
2
1ζ2 + 120ζ4

0ζ1ζ3 + 90ζ4
0ζ

2
2 + 6ζ5

0ζ4

µ4,7 = 840ζ3
0ζ

4
1 + 1260ζ4

0ζ
2
1ζ2 + 168ζ5

0ζ1ζ3 + 126ζ5
0ζ

2
2 + 7ζ6

0ζ4

µ5,5 = 120ζ5
1 + 1200ζ0ζ

3
1ζ2 + 600ζ2

0ζ
2
1ζ3 + 900ζ2

0ζ1ζ
2
2 + 100ζ3

0ζ1ζ4 + 200ζ3
0ζ2ζ3 + 5ζ4

0ζ5

µ5,6 = 720ζ0ζ
5
1 + 3600ζ2

0ζ
3
1ζ2 + 1200ζ3

0ζ
2
1ζ3 + 1800ζ3

0ζ1ζ
2
2 + 150ζ4

0ζ1ζ4 + 300ζ4
0ζ2ζ3

+ 6ζ5
0ζ5

µ5,7 = 2520ζ2
0ζ

5
1 + 8400ζ3

0ζ
3
1ζ2 + 2100ζ4

0ζ
2
1ζ3 + 3150ζ4

0ζ1ζ
2
2 + 210ζ5

0ζ1ζ4 + 420ζ5
0ζ2ζ3

+ 7ζ6
0ζ5
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µ6,6 = 720ζ6
1 + 10800ζ0ζ

4
1ζ2 + 7200ζ2

0ζ
3
1ζ3 + 16200ζ2

0ζ
2
1ζ

2
2 + 1800ζ3

0ζ
2
1ζ4

+ 7200ζ3
0ζ1ζ2ζ3 + 180ζ4

0ζ1ζ5 + 450ζ4
0ζ2ζ4 + 300ζ4

0ζ
2
3 + 1800ζ3

0ζ
3
2 + 6ζ5

0ζ6

µ6,7 = 5040ζ0ζ
6
1 + 37800ζ2

0ζ
4
1ζ2 + 16800 ∗ ζ3

0ζ
3
1ζ3 + 37800 ∗ ζ3

0ζ
2
1ζ

2
2 + 3150ζ4

0ζ
2
1ζ4

+ 12600ζ4
0ζ1ζ2ζ3 + 252ζ5

0ζ1ζ5 + 630ζ5
0ζ2ζ4 + 420ζ5

0ζ
2
3 + 3150ζ4

0ζ
3
2 + 7ζ6

0ζ6

µ7,7 = 5040ζ7
1 + 105840ζ0ζ

5
1ζ2 + 88200ζ2

0ζ
4
1ζ3 + 264600ζ2

0ζ
3
1ζ

2
2 + 29400ζ3

0ζ
3
1ζ4

+ 176400ζ3
0ζ

2
1ζ2ζ3 + 4410ζ4

0ζ
2
1ζ5 + 88200ζ3

0ζ1ζ
3
2 + 14700ζ4

0ζ1ζ
2
3

+ 22050ζ4
0ζ1ζ2ζ4 + 294ζ5

0ζ1ζ6 + 22050ζ4
0ζ

2
2ζ3 + 882ζ5

0ζ2ζ5 + 1470ζ5
0ζ3ζ4 + 7ζ6

0ζ7
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C.3 Values for an,i

Recall the formula for an,i and n ≥ 3:

an,i =



n−2∑
j=0

an,j(−1)jθj + an−1,0, i = 0

an−1,i−1

i
+

n−2∑
j=i

(
j

i

)
(−1)j−ian−1,jθj−i, i = 1, · · · , n− 2

1

(n− 1)!
, i = n− 1.

Table C.3 displays the an,i constants up to n = 7. For example, if we needed a4,2, then we

obtain -1.0932.

Table C.3: Values for an,i
HH

HHHHn
i

0 1 2 3 4 5 6

1 1.0000 — — — — — —

2 -0.5932 1.0000 — — — — —

3 0.7706 -1.3898 0.5000 — — — —

4 -2.0250 2.7689 -1.0932 0.1667 — — —

5 5.0884 -7.1223 2.7009 -0.4972 0.0417 — —

6 -14.2873 19.3600 -7.5134 1.4449 -0.1575 0.0083 —

7 41.6497 -55.9312 21.7958 -4.3741 0.5238 -0.0381 0.0014

It may also be handy to have explicit formulas for an,i. They quickly get complicated, so we

only give them for the values listed in Table C.3.
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a1,0 = 1 a3,0 = 1 + 3θ0 + 2θ2
0 − θ1

a2,0 = 1 + 2θ0 a3,1 = 1 + 3θ0

a2,1 = 1 a3,2 =
1

2

a4,0 = 1 + 4θ0 + 5θ2
0 + 2θ3

0 − 4θ0θ1 − 2θ1 +
1

2
θ2

a4,1 = 1 + 4θ0 + 5θ2
0 − 2θ1

a4,2 =
1

2
[1 + 4θ0]

a4,3 =
1

6

a5,0 = 1 + 5θ0 + 9θ2
0 + 7θ3

0 + 2θ4
0 − 10θ0θ1 − 9θ2

0θ1 +
5

2
θ0θ2 − 3θ1 + 2θ2

1 + θ2 −
1

6
θ3

a5,1 = 1 + 5θ0 + 9θ2
0 + 7θ3

0 − 10θ0θ1 − 3θ1 + θ2

a5,2 =
1

2
[1 + 5θ0 + 9θ2

0 − 3θ1]

a5,3 =
1

6
[1 + 5θ0] a5,4 =

1

24

a6,0 = 1 + 6θ0 + 14θ2
0 + 16θ3

0 + 9θ4
0 + 2θ5

0 − 18θ0θ1 − 28θ2
0θ1 − 16θ3

0θ1 + 12θ0θ
2
1

+ 7θ2
0θ2 + 6θ0θ2 − θ0θ3 − 4θ1 + 5θ2

1 −
5

2
θ1θ2 +

3

2
θ2 −

1

3
θ3 +

1

24
θ4

a6,1 = 1 + 6θ0 + 14θ2
0 + 16θ3

0 + 9θ4
0 − 18θ0θ1 − 28θ2

0θ1 + 6θ0θ2 − 4θ1 + 5θ2
1

+
3

2
θ2 −

1

3
θ3

a6,2 =
1

2

[
1 + 6θ0 + 14θ2

0 + 16θ3
0 − 18θ0θ1 − 4θ1 +

3

2
θ2

]
a6,3 =

1

6

[
1 + 6θ0 + 14θ2

0 − 4θ1

]
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a6,4 =
1

24
[1 + 6θ0] a6,5 =

1

120

a7,0 = 1 + 7θ0 + 20θ2
0 + 30θ3

0 + 25θ4
0 + 11θ5

0 + 2θ6
0 − 28θ0θ1 − 60θ2

0θ1 − 60θ3
0θ1

− 25θ4
0θ1 + 40θ2

0θ
2
1 + 35θ0θ

2
1 −

35

2
θ0θ1θ2 +

21

2
θ0θ2 + 20θ2

0θ2 + 15θ3
0θ2

− 7

3
θ0θ3 −

10

3
θ2

0θ3 +
7

24
θ0θ4 − 5θ1 + 9θ2

1 − 5θ3
1 − 6θ1θ2 + θ1θ3 + 2θ2 +

3

4
θ2

2

− 1

2
θ3 +

1

12
θ4

a7,1 = 1 + 7θ0 + 20θ2
0 + 30θ3

0 + 25θ4
0 + 11θ5

0 − 28θ0θ1 − 60θ2
0θ1 − 60θ3

0θ1 + 35θ0θ
2
1

+ 20θ2
0θ2 +

21

2
θ0θ2 −

7

3
θ0θ3 − 5θ1 + 9θ2

1 − 6θ1θ2 + 2θ2 −
1

2
θ3 +

1

12
θ4

a7,2 =
1

2

[
1 + 7θ0 + 20θ2

0 + 30θ3
0 + 25θ4

0 − 28θ0θ1 − 60θ2
0θ1 +

21

2
θ0θ2 − 5θ1 + 9θ2

1

+2θ2 −
1

2
θ3

]
a7,3 =

1

6
[1 + 7θ0 + 20θ2

0 + 30θ3
0 − 28θ0θ1 − 5θ1 + 2θ2]

a7,4 =
1

24
[1 + 7θ0 + 20θ2

0 − 5θ1]

a7,5 =
1

120
[1 + 7θ0] a7,6 =

1

720
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C.4 Values for An,i

Recall the formula for An,i and n ≥ 3:

An,i =
n−i−1∑
m=1

(
n

m

) n−m−1∑
j=i

an−m,j

(
j

i

)
(−1)j−iµj−i,m

+ an,i, i = 0, · · · , n− 2, and

An,n−1 =
1

(n− 1)!
.

(3.1)

Table C.4 displays the An,i constants up to n = 7. For example, if we needed A4,2, then we

obtain -0.6544.

Table C.4: Values for An,i
HHH

HHHn
i

0 1 2 3 4 5 6

1 1.0000 — — — — — —

2 -0.1544 1.0000 — — — — —

3 0.8181 -0.7316 0.5000 — — — —

4 -1.7642 2.2294 -0.6544 0.1667 — — —

5 4.3381 -5.2887 1.9870 -0.3143 0.0417 — —

6 -12.2325 14.1488 -5.1955 1.0086 -0.1026 0.0083 —

7 34.5721 -40.0139 14.7598 -2.8773 0.3526 -0.0253 0.0014
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