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ABSTRACT

Recently there has been an interest in asymptotic expansions of the tail probabilities of a
variety of processes that are ubiquitous in statistics. However, little to no work has been
done when the AR(1) process is built upon extreme value random variables. This process
appears when the distribution of the current maximum is dependent on the previous. The
goal of this dissertation is to explore asymptotic expansions of tail probabilities on this
topic, in particular using the Gumbel distribution. In each of the theoretical projects we
build second-order expansions, many of which are improvements over the already known
first-order ones. We also examine exactly when each of the expansions should and should
not be used through simulation studies. Finally, we perform a data analysis in the extreme
value theory setting on riverflow data, and as much as possible connect this same data set

to the theoretical results.
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Chapter 1 An Overview of the Dissertation

1.1 Introduction

Extreme value theory is the study of the behavior of observations that fall extremely far away
from the mean of a distribution. Typically one studies asymptotic properties of the upper
tail, or in other words the high percentiles. One could also perform analysis on the lower
tail, which would be equivalent to studying the limiting behavior of the minimum values.
For a basic, nontheoretical introduction to the ideas of extreme value theory, we recommend

Coles (2001).

The literature is rich with results. Fisher and Tippett (1928) proved that the maximum of
a sample followed one of three limiting distributions. Similar work was confirmed and studied
in Gumbel (1958), Fréchet (1927), and Weibull (1951), after whom the three extreme value
distributions were named. Balkema and de Haan (1974) and Pickands (1975) studied the
distribution of the distance above a specified level, known as Peaks over Threshold (POT).
Leadbetter et al. (1983) explored extremes of sequences of random variables which are not

necessarily stationary.

As for applications of extreme value theory, many disciplines require the asymptotic
results of high percentiles. Tail area approximations are important since they shed light
on possible behaviors of extreme events and when to expect them to occur. We list the
following references as examples relating to environmental statistics. Butler et al. (2007)
studied trends in wave heights, in particular the North Sea. For earthquake magnitudes, see
Caers et al. (1999) and Pisarenk and Sornette (2003). Examples of applications to ozone
levels may be found in Smith and Shivey (1995). Finally, Smith (1999) studied extremes in

rainfall at four different stations across the United States.



There are also applications to nonenvironmental disciplines. One example is in insurance
risk, where companies need to study the probabilities of rare events or of large claims. See
Asmussen (2001) for further discussion on this topic. For applications to queueing theory,

see Borokov (1976), Norros (2003), and Whitt (2002).

This dissertation consists largely of asymptotic expansions of upper tail probabilities
of various extreme value formulas. The distribution we focus on for the majority of the
dissertation is the Gumbel, for two reasons. Firstly, the Gumbel is a special case of the
generalized extreme value model and easier to work with than the Fréchet and Weibull
distributions. Secondly, and more importantly, often a likelihood ratio test will allow one
to reduce the generalized extreme value model to the Gumbel case, making interpretation a

little easier. It is therefore of interest to have results on tail probabilities in such an event.

We are primarily interested in building an AR(1) process where the innovations are
Gumbel random variables. This process would be a useful contribution to extreme value
theory and also time series. The motivation for considering this process is that it may arise
when the distribution of the current annual maximum is dependent on the previous year’s
maximum, and the random variables have been shown to satisfy the Gumbel distribution,
possibly with covariates in the parameters. We consider a variety of cases that mainly
revolve around the choice of weights. In certain situations, particular choices of weights
could completely change the optimal approximation, and these instances will be discussed

later.

There are several motivations for considering higher order expansions of tail probabili-
ties. First, processes like those that will appear in the dissertation are ubiquitous in many
disciplines, especially the ones mentioned above, and accurate estimations of their proba-

bilities are needed. Second, further terms would likely provide more precise probabilities



than a first-order alone by introducing correction terms. And third, while the literature
contains numerous first-order results, much fewer exist on second-order, and even fewer to
none on further terms. Therefore the results that follow in this dissertation will be valuable

contributions to extreme value theory.

As examples of known results, we recommend Resnick (1986), Bingham et al. (1989), and
Broniatowski and Fuchs (1995) for the first-order analysis. These texts cover topics ranging
from convolutions to the subexponential setting. For second-order results, see Omey (1988),
Geluk et al. (1997), and Barbe and McCormick (2005). The only paper we know of that
contains higher order expansions is Barbe and McCormick (2009). The latter two papers

cover approximations in the heavy tail distribution setting.

The dissertation takes the following path. In the next section, we review the distributions,
formulas, definitions, and inequalities needed to understand the material to be discussed in
later chapters. These statements will come into play in the proofs. Afterwards, a total of

five projects relating to extreme value theory will be investigated.

The first project, discussed in Chapter 2, is a streamflow data analysis. For reasons to
be discussed later, we shall condense the data into the seasonal maxima (and therefore four
observations) per year, and then we will fit a generalized extreme value model through all
four seasons, using time as a covariate. The results will come into play in future chapters as

we use them to illustrate the later theoretical results.

The second project is covered in Chapters 3 and 4. We shall study the upper tail behavior
of the AR(1) process with Gumbel innovations. Chapter 3 establishes the groundwork for
the convolution of just two variables, and in Chapter 4 the results are extended to the
possibly infinite series. Chapter 3 also provides an introduction to how the situation would

be handled if we were working with variables from the Types II or III families. We close the



project with some examples, a simulation study, and an application to the Peachtree Creek

data.

Chapter 5 contains the third project, which can be viewed as a special case of the second
in that it is a convolution, but where all weights are equal. One particular case would be
finding the distribution of the sum of n Gumbel random variables. This situation, while
common in practice, must be treated separately since the rules for deriving the asymptotics
are very different from what we do in the previous project. The steps are rather involved, and
so this topic deserves its own project. Again, we list several examples of the main result,
as well as conduct a simulation study. Finally, we use the approximation on the winter

observations from the streamflow data set.

In Chapter 6, the fourth project borrows ideas from the second and third, but introduces
the possibility of ties occurring in the weights used in the convolution. There are actually
several ways in which this may happen, but we derive the expansion for only one of those
cases to give an idea of how the general problem would be solved. Some examples are

provided, and we use as one of the examples an application to the Peachtree Creek again.

Lastly, the fifth project in Chapter 7 explores a different topic, the upper tail behavior
of the convolution of weighted regularly varying random variables that are Markov chain
dependent. Variables that are regularly varying fall into the Type II extreme value family,
and our results are extensions of published ones, not all of which were necessarily chain

dependent.

At the end of the dissertation, after the concluding remarks and the bibliography, a series
of appendices contain supplemental material. This chapter includes second derivatives and
Hessian matrices from Chapter 2, extra proofs from Chapter 4, and tables of numerical values

from Chapters 4 and 5.



1.2 Useful Formulas

Before beginning the dissertation, we provide this short section of the formulas used most

frequently during the data analysis and the proofs that follow.

Definition 1.1. The Generalized Extreme Value distribution is defined as

¢ (z—p)
Plz) = exp{—[l—i—%(m—u)} },1+ST>O, E£0

exp{—exp[—(m—;ﬂ)}},—oo<x<oo, £E=0.

Here £ is said to be the shape parameter, p the location parameter, and o > 0 the scale

parameter. We abbreviate the distribution as GEV(E, p, o).

Depending on the choice of £, the generalized extreme value distribution falls into one of
three families - the Gumbel, the Fréchet, or the Weibull. These three families are defined

next.

Definition 1.2. The Gumbel distribution is also the Type I Extreme Value Distribution. We

denote it as A, and it is the limiting case as & — 0. The distribution is

A(x):exp{—exp {_ (”’”;”)H,_oo<x<oo. (1.2)

Note that A = GEV(0, i, 0).

Definition 1.3. The Fréchet distribution is also the Type II Extreme Value Distribution.

We denote it as ®, and it occurs when & > 0. The distribution s

q)(x):exp{—{1+§(x—u)}_é},x>u—%. (1.3)

5



Alternatively, for a > 0 we may instead define the Fréchet distribution using the sometimes
more convenient formula

O, (r)=€e" ,z>0. (1.4)

In this case, ®, = GEV(%, 1, é)

Definition 1.4. The Weibull distribution is also the Type III Extreme Value Distribution.

We denote it as W, and it occurs when & < 0. The distribution is

\I/(x)—exp{—{1+§(£—u)}_é},x<u—%. (1.5)

Alternatively, for o > 0 we may instead define the Weibull distribution using the sometimes

more convenient formula

e~ 2 <0
U, (z) = (1.6)
1, z >0
In this case, ¥, = GEV(—%, -1, é)
Next, Euler’s constant v is defined by
1 N
v = nh_>n010 [Z T~ log(n)] = (0.5772156649.... (1.7)

Also known as the Euler-Mascheroni constant, v appears regularly in the analysis of Gumbel
random variables. In particular, if X is a standard Gumbel variable, then E(X) = ~. There
are numerous published integrals and sums that equal +; see Gradshteyn and Ryzhik (1980),
Seo et al. (1997), and Choi and Seo (1998).

Now we define the gamma, digamma, and beta functions. The gamma integral will appear

6



extensively in our two-term expansion analyses, while the beta function will arise when we
turn our attention to the Weibull cases in Section 3.5. The digamma function appears in

Chapter 6 when we discuss ties in weights of convolutions.

Definition 1.5. For a > 0, the gamma function I'(«) is represented by the integral
MNa) = / t*tetdt. (1.8)
0

In particular, if n is a positive integer, then I'(n) = (n — 1)I. We also have the recursion

['(a+1) = al'(«), which holds for all real values of a except for 0 and the negative integers.

Definition 1.6. For a > 0, the digamma function V(«) is represented by

U(a) = %log ['(z) = Ta) (1.9)

(1.10)

Next, we state the equations for the mean, median, and variance of the generalized extreme
value distribution. We need to use these formulas when conducting the data analysis in

Chapter 2.
Definition 1.8. If X ~ GEV(&, u,0), then the expected value is

(

p+o (—m‘jH) , €€ (—oo, 1)\ {0}
E(X) =4 1+ o7, £=0 (1.11)

00, £=>1.




Definition 1.9. If X ~ GEV(&, u,0), then the median is

[+ o (—(k’gi_g*l) , £#£0

Med(X) = (1.12)
p — o log(log 2), £=0.
Definition 1.10. If X ~ GEV(&, p,0), then the variance is
& [P(1—26) — (T(1=€)’], &€ (—00,0.5)\ {0}
Var(X) = %7 £=0 (1.13)
o0, £€>0.5.

Having established the basic formulas, we also need to state definitions associated with
regular variation, and how they are connected to the generalized extreme value distribution.
These statements will be used in the expansions of the Fréchet mixture in Section 3.4, as

well as the regular varying variables with Markov chains in Chapter 7.
Definition 1.11. The tail distribution F = 1 — F is said to be reqularly varying at oo with

index —a, denoted as RV_,, if for x >0

F(tx)
0 B (1)

=2 (1.14)
Definition 1.12. A function L(-) is slowly varying at oo if for any ¢ > 0,

L(%)/L(x)—ﬂ) as T — 0.

Finally, we state some theorems and inequalities that will be used in the proofs and deriva-

tions to come in the dissertation.



Definition 1.13. (Fubini’'s Theorem) Let A and B be measure spaces and f be A x B

measurable. Further suppose that

/A 1)l < o

Then

Definition 1.14. (Chapman-Kolmogorov Equation - see Resnick (1992)) If P, ;(m) denotes
the Markov chain transition probability of moving from state i to state j in m steps, or

Poy(m) = P(X,, = j|Xo = ), then P.y(m +n) = X, Pos(m)Pyy(n).

Definition 1.15. (Markov’s Inequality) Suppose X is a random variable and a > 0. Then

B(XI)

P(|X]|>a) <
a

(1.15)

Definition 1.16. (Chernoff’s Inequality) Suppose X is a random variable and y > 0. Then
for any a > 0,

P(IX|>y) < E (e"™) e, (1.16)

Definition 1.17. (Jensen’s Inequality) Suppose X is a random variable and that f : R — R

is a convex function. Further suppose that E(|X|) < oo and E(|f(X)|). Then
FE(X)) < E(f(X)). (1.17)
Definition 1.18. (Holder’s Inequality - see Resnick (1999)) Suppose p, q satisfy

1
p>1l,g>1, and —-+-=1,
p



and that X,Y are random variables satisfying

E(|X|P) <oo and E(]Y]?) < 0.

Then
|E(XY)| < E(IXY|) < (B|XP)Y?(E|Y|7)"4.

Definition 1.19. (Triangle Inequality) For any real numbers a;,

Zai < Z |ail.
i i

Definition 1.20. (Boole’s Inequality) For a countable set of events A;;i=1,2,---

P (U Ai> < ;P(Ai).

10

(1.18)



Chapter 2 An Analysis of the Peachtree Creek

2.1 Introduction

Over recent years, there has been considerable interest in fitting statistical models to riverflow
data. To give a few examples, Hollis (1975) established some trends between urbanization
and the frequency of floods. Katz et al. (2002) discussed a variety of practises for detecting
trends in hydrologic extremes, including peaks-over-threshold and block maxima. Villarini et

al. (2009) fit a nonstationary time series to data from Little Sugar Creek in North Carolina.

The United States Geological Survey (USGS) has continuously monitored the Peachtree
Creek in Atlanta, GA since 1958. Daily average measurements of variables such as discharge
(hereafter referred to as streamflow), gage height, water temperature, and pH have been
recorded. Since 1989, more frequent measurements have been taken, and the data are avail-
able for free download at http://waterdata.usgs.gov/ga/ nwis. The water statistics need to be
monitored in order to detect any changes in water quality, to establish baseline information

about the creek, and to detect problems with bacteria and sediment during storms.

Streamflow is the volume of water that flows past a predetermined point in a fixed amount
of time. Naturally, higher levels of streamflow are positively correlated with higher levels
of the creek and increased chances of a flood occurring. The Peachtree Creek floods when
the gage height peaks above 17 feet. Over the years this creek appears to be flooding more
frequently and with greater magnitude of water and destruction, such as the September 2009
flood, as explained on the USGS Georgia Water Science Center web site. The goal of this
paper is to investigate the statistical significance of this observation and study trends by

seaso1l.
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2.2 The Data

There are two data sets we use in the analysis. The first contains the daily mean streamflow
measurements recorded every day beginning June 20, 1958, and ending on June 22, 2010.
This makes 18996 total days, and only one day (June 16, 2010) has a missing value. This
data set is the one we shall use to fit the generalized extreme value model. The station that
records the measurements is located in Fulton Country at latitude 33°49’10” N and longitude
84°24'28" W (USGS). This location is in the heart of downtown Atlanta, a couple of miles

north from where the interstates I-75 and -85 merge.

The second data set consists of streamflow and gage heights measured every 15 minutes
and therefore up to 96 recordings per day. Observations were recorded at these intervals
between October 1, 1989 and September 30, 2009. Using this data set, we condense the data
into the daily maximum heights, provided all 96 observations are available. In the event of
a day having only some observations recorded, we take the maximum of what was available,

provided a reasonable number (two-thirds or more) was recorded.

Next, we compute the seasonal maximum average streamflow for the 52 years of data.
For climatology purposes, summer is defined to be the months June through August; fall is
September through November; winter is December through February, and spring is March
through May. Because the first observation in the data set is from June 20, 1958, it is
convenient to define a year as running from June 1 to the following May 31. The 52 years
therefore provide 208 seasonal maxima. Figure 2.1 illustrates year versus the 208 seasonal
maximum streamflow observations, one for every three months. We indeed observe more

severe streamflow measurements in recent years.
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Figure 2.1: Year versus Seasonal Maximum Streamflow
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For ease of word usage, from this point onward we shall refer to the maximum mean
streamflow as simply the maximum streamflow (and thereby drop the word “mean”). By

these terms we mean the maximum of a series of average recordings.

Obviously fitting a model through the maximum heights is the desirable approach, since
a flood is much easier to interpret given the height rather than the streamflow, but we choose
to work with the recorded streamflow because there are 52 years of data - there are only 20
years for the second data set. However, after fitting the generalized extreme value model we
shall use nonparametric techniques to construct estimates for trends in the maximum gage
height. Had we estimated the missing maximum heights from 1958 to 1988 first and then

fitted a model, there would have been a much greater amount of bias.

It is known that there is a positive trend between streamflow and height, and graphically

the relationship looks exponential. However, our data set shows the average streamflow per
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day rather than individual measurements, so using the graph to estimate heights will not
work. In addition, the river changes shape slightly over the years due to erosion, so in the
end our nonparametric method is a safer way of estimating heights. Figure 2.2 illustrates an

example of the exponential pattern from the second data set.

Figure 2.2: Average Streamflow versus Maximum Height, 1989 - 2009
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The first summer (1958) has nineteen missing days because the data set did not start on
June 1, so for that one season we just computed the maximum streamflow of the remaining
days. Also the data set ends on June 22, 2010, but we stopped at May 31 in order to have
an equal number of maxima per season, and also because this final partial summer season

had only just begun.
We suspect different behaviors in each of the four seasons. Had we considered only the
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yearly maxima, any significant seasonal patterns would have been lost. Because of this
motivation, we shall fit a generalized extreme value model with effects from season and time.
Figure 2.3 shows box-plots of the seasonal maximum streamflow per season, while Table 2.1

displays the summary statistics. Spring and fall clearly have the greatest variation, while

summer and winter have the lowest.

Figure 2.3: Box-Plots of Seasonal Maximum Streamflow
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Table 2.1: Seasonal Maxima Summary Statistics
Season Mean SD Min. | Q1 | Median | Q3 | Max.
Summer | 1309.5192 | 878.8647 | 105 | 813 1070 1668 | 5040
Fall 1613.3654 | 1512.2333 | 181 755 1240 1742 | 8500
Winter | 1927.1538 | 1075.7654 | 441 | 1122 1640 2575 | 4720
Spring | 2327.4615 | 1617.2457 | 618 | 1052 1760 3222 | 6060

Figure 2.4 shows the year versus the seasonal maximum streamflow for each season.
In each plot, the dotted lines represent the Ordinary Least Squares regression lines fitting

streamflow against year.
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Note that while OLS is a naive procedure since the data are maxima, it nevertheless gives
us a reasonable idea about linear trends per season.
observations exhibit a distinct upward trend in later years. In addition, some of the plots

(fall, for instance) appear to have significantly higher variances in the later years. Based on
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Figure 2.4: Year versus Seasonal Maximum Streamflow per Season
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these observations, we can specialize the model accordingly.
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2.3 Statistical Methods

Coles (2001) suggests testing for linear trend in time in the location and scale parameters.
In a study on annual maximum sea levels at Fremantle, Western Australia, he also tested for
effects from the Southern Oscillation Index in the location parameter. Graphs illustrating the
effects of this index may be seen in Coles (2008). We initially tested this index as a covariate
in our model, but it did not contribute significant effects. While it is theoretically possible
to test for time trends in the shape parameter &, for practical purposes it is unrealistic, so

we keep & stationary.

The full model is defined as follows. Let ¢ = 1,2,3,4 denote the seasons summer, fall,
winter, and spring, respectively. Denote by X;; the seasonal maximum average streamflow
in the tth year and ith season, and z;; the recorded observation, t = 1,...,52. Here t = 1
denotes the year from June 1, 1958 through May 31, 1959. Define F(zy) = P(Xy < z4),

then

1

F(xti):exp{—{1+M%;i—w1_&},gi#o,1+wt;;@;w))>o, (2.1)

where p;(t) = p; + n;it and o4(t) = 0; + ¢;t. If any of the & = 0, then use the appropriate
limiting Gumbel distribution instead. Let InL be the log likelihood to be maximized, using

a total of twenty parameters, five per season. Then

provided that each of the 1 + [§(zy — ui(t))]/oi(t) > 0, otherwise InL = —oco. Again, if

(2.2)
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any of the &; estimates are very close to 0, then we use the appropriate limiting distribution
instead. We used an evolutionary algorithm to fit the model because it was easier to control

the stipulation that 1+ [&(xy — wi(2))]/os(t) > 0.

A common practice is to set o;(t) = exp{o; + ¢;t} to ensure that the scale parameter
remains positive, but we chose not to do this for three reasons. First, our procedure yields
estimates that never put the scale parameters close to zero. Second, such a definition would
make interpretation much harder than a linear one. And third, for comparison purposes we
tried refitting the model with this alternative scale and found that the estimated values were

extremely similar, so we decided to use the more interpretable linear definition o;(t) = o;+¢;t.

The selection process worked as follows. Let My and M; be nested models such that
My C M, and InLy and InL; be the corresponding log-likelihoods. Then —2(InLg — InL;))
is asymptotically a chi-square distribution with degrees of freedom equal to the number of
parameters dropped by going to My. If the corresponding p-value is below the significance
level, then M, fits the model significantly better; otherwise M, provides just as good a fit.
This process is described extensively in the literature, with Coles (2001) and Coles (2008)

providing several examples from data sets.

Our full model contained a total of five parameters per season. We considered dropping
combinations of the n; and ¢;, and for better interpretability we examined these parameters
in groups of four rather than individually. For example, the final model will contain either
all four ¢; or none, the latter case if none of those parameters are significant. Thus, there
were a total of four possible models to consider, and each chi-square test was on degrees of
freedom 4 or 8. We used o = .10 as a selection criteria because the data were observational

rather than experimental.

Our selection procedure chose the full model itself. Having arrived at a candidate, the
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next step was to investigate whether letting the shape parameters & vary from zero was
appropriate per season. A reasonable way of checking this was to test the hypotheses Hy :

& =

results for each shape parameter.

0 against Hy : & # 0,7 = 1,...,4 and computing the p-values. Table 2.2 contains the

Table 2.2: Shape Parameter Summary
Estimate | SE | 90% Confidence
0.0898 | 0.1203 | (-0.1120, 0.2917)

T-Stat
0.7468

P-Value
0.4589

Season
Summer &

| | |

At significance level @ = .10, the shape parameters for summer and winter were not signifi-
cantly different from 0, and so for those seasons we refitted the data setting & = 0,7 =1, 3.

Fall and spring, on the other hand, had shape parameters that were significantly positive.

Table 2.3 compares the log-likelihoods for summer and winter with & # 0 and with
& = 0, and then does the nested likelihood test. In the table —2AlnL; represents the
doubled difference in log-likelihoods in season i. Also the log-likelihoods displayed are for

summer and winter alone rather than the sum of all four seasonal likelihoods.

Table 2.3: Summer and Winter Log-Likelihoods

Season & #0 & =0 —2AInL; | P-Value
Summer | -413.8720 | -414.1838 | 0.6236 0.4297
Winter | -429.8705 | -430.2704 | 0.7998 0.3712

Both the confidence intervals presented earlier and the above nested model analysis suggest
that summer and winter may indeed have the shape parameter set equal to 0. To be clear,

the final model treats summer and winter as having a Type I extreme value distribution
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(where & = & = 0), whereas fall and spring have a Type II distribution (where & and &,

are significantly positive).

The final step, as described in Section 2.4, is to make inference about the behavior of the

maximum heights, given the established behavior of the maximum streamflow.

2.4 The Selected Models

Table 2.4 summarizes the estimated parameters per season.

Table 2.4: Estimated Parameters per Season

Season | Param. | Estimate SE 90% Confidence T-Stat | P-Value
& 0 — — — —

Summer m 8.4951 56177 | (-0.9271, 17.9173) 15122 | 0.1370
b1 5.9982 3.9117 | (-0.5626, 12.5591) 15334 | 0.1317

Fall

& 4 o0/ - | | — | —

Winter s -8.8806 | 7.9343 (-22.1883, 4.4270) | -1.1193 | 0.2686
o3 -11.3350 | 6.9608 |  (-23.0098, 0.3399) | -1.6284 | 0.1100

Spring

2! (-21.0049, 7.2424)

Interpretation will be easier if we analyze the expected value of the streamflow per season, but
this involves reparametrizing the variables and recomputing standard errors and p-values.

We begin by considering the expected mean of the seasonal maximum streamflow. For our
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data, it is easily checked using (1.11) that

Wi + o5y + (T]i + @7)2&, i=1,3
B(X,) = (23)

i + OiEgl) + (mi + ¢iE§1))ta =24,
where Egl) = [['(1 = &) — 1] /&. Interpretation is easy here because we have written the
expected value as a linear function of time. In order to make inference about the slopes, we
use the delta method to approximate the standard error. Before doing that, we also wish to
investigate the effects of the median streamflow per year. The reason we want to consider
the median as well is because a generalized extreme value model is skewed, so the median

may provide a more robust result. Using (1.12),

wi — o;log(log 2) + (n; — ¢;log(log2))t, i=1,3
Med(Xyi) = (2.4)

@ _

where =, [(log 2)~% — 1] /& Finally, we also make inference about the seasonal variance
through time. For spring, the estimated shape parameter is 54 = (.7455, indicating that
spring’s variance does not exist. (We shall address this issue shortly.) Interpretation will be
easier if we instead think in terms of the seasonal standard deviations. Using (1.13), it can

be shown that

(
o+ (20, i=13
SD(Xy) = (55.3)>§ o+ (Egg)qﬁi) t, i=2 (2.5)
0, i=4,
\

where 353) = [['(1—-2&) — (T(1—&))?] /€. Again, we can easily make inference because
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the standard deviation has been written in terms of a linear function of time. The delta
method now works as follows. For seasons summer and winter, define A; = n; + v¢;, B; =

n; — ¢;log(log2), and C; = \/léqb,-,z' = 1,3. Then the gradient matrix is

0 01 y
Gi=10 0 0 —log(log2)
000 N

Meanwhile, for fall we have Ay = ny + Eél)qﬁg, By =1y + E§2)¢2, and Cy "(3)¢2. The

= :2
gradient matrix is
Dy, 0 0 1 g
Go=| Dy 0 0 1 2 |,

Dy 00 0 =9

where D,; is the derivative of EZ(-T) with respect to &; ¢« = 2; r = 1,2,3. Finally, for spring
we define A4 and B, similarly to the reparameterizations in fall, and with similar gradient

matrix but without the third row:

Dy, 00 1 =W
G4: 14 4

Dy 001 =P

The complete variance-covariance matrix is therefore A = GXG?, where

G, 0 -+ 0
- 0 Gy

Gs O

0 -+ 0 Gy
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The eleven square-rooted diagonal entries of A give the approximate standard errors, which
in turn are used to obtain the two-sided p-values. Note that the p-values are all computed

on 49 degrees of freedom, except for spring’s, which are on 50. The G; matrices are

46.2533 42.6408 21.9891
Gi1= | 42.6408 39.7076 17.8541 |,
21.9891 17.8541 25.1700

114.1901 86.3071 112.0590
Gy = 86.3071 70.9387  65.6263 |
112.0590 65.6263 174.6047

112.9623 100.8884 73.4939
Gz = | 100.8884 90.9656 60.4001 |,
73.4939  60.4001 79.7024

and
2183.2748 372.5666

o~
Il

372.5666 100.1301

To study the significance of variance in spring, we temporarily refitted the spring data with
the condition that {4 € (—00,0.47)}. The chosen upper bound of 0.47, while arbitrary,
allowed us to study the significance of the variance when forced to be finite. The resulting

adjusted model gave the following results for spring, shown in Table 2.5.
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Table 2.5: Adjusted Mean, Median, and Standard Deviation for Spring

Season | Param. | Estimate SE 90% Confidence T-Stat | P-Value
Ay -19.8839 18.3424 (-50.6360, 10.8681) | -1.0840 0.2837

Spring By -15.8563 9.8943 (-32.4447, 0.7320) -1.6026 0.1155
Cy -19.8839 | 133.7022 | (-244.0424, 204.2746) | -0.1487 0.8824

The effect from the variance on these adjusted estimators is clearly insignificant, and so we
decide to drop the restriction on & and stick with our original outcome, with infinite spring
variance. Table 2.6 shows the final results for the slopes of the means, medians, and standard

deviations per season.

Table 2.6: Means, Medians, and Variances per Season
Season | Param. | Estimate SE 90% Confidence | T-Stat | P-Value

Summer

Fall

-15.4233 | 10.6284 | (-33.2423, 2.3957) -1.4511 0.1531
Winter -13.0350 9.5376 (-29.0253, 2.9552) -1.3667 0.1780
-14.5376 8.9276 (-29.5053, 0.4300) -1.6284 0.1099
-38.3563 | 46.7255 | (-116.6638, 39.9513) | -0.8209 0.4156

Spring

The results show that for each season, the median is a more reliable measure of center
than the mean, since it is robust to unusually high observations and the standard errors
are smaller. In particular, the standard error for spring’s median is 21.4% that of the mean,
causing the median to be decreasing significantly, unlike the mean. Therefore from this point

forward, we take the median as the better measure of center.

Figure 2.5 shows the observed data with the expected median value per season. The

dotted lines represent the 90% prediction intervals, which indeed capture the majority of
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all observations. The black dots are the few observations that fall outside their prediction

intervals.
Figure 2.5: Predicted Median Streamflow per Season
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Finally, we give a practical interpretation. The following numbers are reported in cubic feet

per second, and for simplicity we just say “units.”

1. In summer, the maximum daily average streamflow is increasing on average by 10.6936

units each year, but its standard deviation is not changing significantly.

2. In fall, the maximum daily average streamflow is increasing on average by 22.4042

units each year, and its standard deviation is also increasing by 29.1767 units per year.

25



3. In winter, the maximum daily average streamflow appears stationary in both the me-

dian and the standard deviation.

4. In spring, the maximum average streamflow is decreasing on average by 17.6435 units

each year, but its standard deviation is not changing significantly.

2.4.1 Estimated Patterns in Seasonal Maximum Heights

We have successfully determined that the average streamflow is increasing significantly in
summer and fall. However, insurance companies and hydrologists would rather know what
patterns exist with the river height itself as this quantity is much easier to understand. A
flood is classified by its gage height, and so we now pursue establishing what the maximum
height each season most likely would have been. That is, given the average streamflow (in

cubic feet per second), we wish to predict the corresponding maximum height (in feet).

The second data set mentioned in Section 2.2 contains the average streamflow per day,
as well as the maximum height measured per day, spanning the period October 1, 1989
through September 20, 2009. The number of days considered is therefore 7305. Examining
Figure 2.2, there is clearly a positive nonlinear trend between the variables. We could not
find any reasonable models that accurately described this data set, so instead we proceed
nonparamatrically to estimate the heights. To utilize a more robust approach, we compute
medians rather than means as follows. Define D to be the vector of ordered unique daily mean
streamflow observations rounded to the nearest integer, and note that the values of D range
from 3 to 8500. Given a rounded streamflow, find H, the median of all maximum heights
whose corresponding streamflow is the current considered value. These median heights are

reasonable predictions given recorded average streamflow.

Recall that we have used our seasonal extreme value model to predict the median stream-
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flow, given year t and season ¢. Call these medDy;,t = 1,...,52 and ¢ = 1,...,4. We now

compute the predicted maximum height using the following nonparametric procedure:
1. Find the coordinates (f)a, f]a) and (Da+1, FIGH) such that D, < medDy; < Dgy1.
2. Compute a = [ﬁaH - Ha} / [[DGH — [?a]
3. Compute medH; = o (medDy;) + H, — aD,.

4. Repeat for all years t and seasons 1.

Figure 2.6, divided by season, shows year versus predicted maximum height.

Figure 2.6: Year versus Predicted Maximum Height
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There is a distinct upward trend in summer and fall, and a downward trend in winter and
spring. We can smooth the predictions by (a) fitting an ordinary least squares line through
the points or (b) fitting a least median-of-squares line. The latter approach is more desirable
for our purposes for two reasons. First, we have been using median analyses throughout the
chapter for robustness. Second, this approach relaxes the usual assumptions imposed on the
residuals. We shall also bootstrap the confidence intervals for the median slopes. Tables 2.7
and 2.8 summarize the results for OLS and median regression, respectively. Define 6, and
61, to be the intercept and slope parameters respectively for the OLS lines, and éo,i and 9~1,i

to be those for the median lines.

Table 2.7: OLS Estimates for Predicted Heights

Summer

Winter

Table 2.8: Median Estimates for Predicted Heights

G emes | — |
g ok — | —
W L foa | d60.0106 | — | — | — |
g oot | — | — | —
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To bootstrap, we first compute all 1326 possible slopes per season and then resample
with replacement from these slopes, recording the median in each case. The 95% confidence
interval follows from the 2.5th and 97.5th percentiles of the vector of recorded medians. Note
that Table 2.8 only displays the analysis for the slopes since the intercepts are not of interest.
Figure 2.7 summarizes the four seasons’ results. The solid lines are the OLS estimates, while

the dotted lines represent the nonparametric estimates.

Figure 2.7: Height Trends per Season
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Two observations are immediately apparent from Tables 2.7 and 2.8. First, all the confidence
intervals exclude 0, indicating that summer and fall heights are increasing significantly, while
winter and spring heights are decreasing significantly. And second, all the standard errors
for the median slopes are much smaller than those for the OLS slopes. We therefore state

the following conclusions, where the median heights have been converted into inches.
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1. In summer, the maximum height is increasing on average by 0.78 inches per year.
2. In fall, the maximum height is increasing on average by 1.55 inches per year.
3. In winter, the maximum height is decreasing on average by 0.88 inches per year.

4. In spring, the maximum height is decreasing on average by 1.17 inches per year.

2.4.2 Diagnostic Checks

We now check whether the final model fits the streamflow data adequately, and that no
further adjustments are necessary. We begin by computing the seasonal residuals, defined
by the observed streamflow minus the median predicted streamflow per season. In Figure
2.8, they all appear random but not necessarily centered around 0. This characteristic is to

be expected, however, since we are estimating extreme values.

Figure 2.8: Residuals from Final Streamflow Model
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We then examine Figure 2.9, the ACF and PACF plots of the residuals, again broken down

by season. There is no evidence of further correlation in time.
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Figure 2.9: ACF and PACF Plots by Season
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Next, we stack the residuals in order of occurrence. That is, each group of four residuals
comes from the summer, fall, winter, and spring, respectively, of the same year. Figure 2.10
shows ACF and PACF plots of the resulting vector, again suggesting no further time trends.

The only spikes are at the fourteenth and fifteenth lags, but these are not interpretable.

Figure 2.10: ACF and PACF Plots of Entire Data
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Finally, we conduct a goodness of fit test to verify that our chosen model provides a suitable
fit to the data. The presence of nonstationarity means that some modification to the data is
necessary. Coles (2001) suggests the following transformation that maps the data to standard

Gumbel random variables. Define Z,; such that

1 &i (Xpi—fri—it) C
Tlog[l—l—A—A , 1=1,3
i = & Gitoit (2.6)
Xpi—fui =it i=924
Gitoit o

That is, each of the Z;; should have probability distribution function

P(Zy < z) =exp{—exp(—2)},—00 < z < 0. (2.7)

32



Before conducting a goodness of fit test, we examine the probability and quantile plots using

the following procedure.

1. Compute the Z;; and denote their order statistics by Z), ..., Z(n) where Z;) < Z(41),
j=1,.., N—1and N = 208.

2. Draw the probability plot with the pairs

J .
{N n 7> €XP {—exp(—Z(j))} g =1, ...,N} )
3. Draw the quantile plot with the pairs

J .
{Z(j), — log [— log (N—-I—l)} g =1, ...,N}.

Both plots in Figure 2.11 suggest a reasonable fit.

Figure 2.11: Probability and QQ Plots
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Most of the goodness-of-fit tests in the literature, however, are for testing for fit to the normal

distribution. There are considerably fewer results available in the extreme value context.
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As examples of references that do address this matter, Chandra et al. (1981) discuss a
Kolmogorov-type statistic, while Hosking (1984) suggests a Wald-type test. Kinnison (1985)
introduced a table for conducting a goodness-of-fit test to the Gumbel distribution. However,
Kinnison (1989) published an improved table based on 100,000 simulations rather than 5,000

as was the case in his earlier work. His improved test proceeds as follows.

1. Compute the probability pairs

J .
{N n 7» exXp {—exp(—Z(j))} =1, ...,N} i

2. Calculate the Pearson correlation coefficient through these pairs.

3. Examine the table whose entries represent the critical points for each combination of

sample size (rows) and probability (columns).

4. Find the correct row, then scroll across to find the lower and upper critical points for

the test statistic. Then look at the column headings to put a bound on the probability.

The correlation coefficient between the quantiles and the exp {— exp(—Z(j))} is 0.9988. We

consult Kinnison’s table in the row with the nearest sample size of 200, then note that the

coefficient is beyond the last column. Thus, the probability of a good fit is above 0.95,

suggesting the model fits the data extremely well. The row is duplicated in Table 2.9.
Table 2.9: Gumbel GOF Test for Sample Size n = 200

Prob. | 0.01 | 0.025 | 0.05 0.10 0.25 0.50 0.75 0.95
Corr. | 0.9702 | 0.9785 | 0.9838 | 0.9883 | 0.9930 | 0.9957 | 0.9972 | 0.9983
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2.4.3 Forecasting The 2010 - 2011 Season

Having verified that our model has significant results and that the model fits the data well,
we now conduct a forecast. To give the most reliable results, we use the original model with
the daily mean streamflow to predict the seasonal maximum mean streamflow for the next
year. That is, we forecast the maximum mean streamflow for Summer 2010 through Spring
2011. The preceding data analysis was conducted during Spring 2011, which means that now
we have an extra year of data. Rather than incorporating this extra year into the model, we
instead use the model to forecast the next four streamflow measurements and then compare

with the actual values to see how accurate our model is. Table 2.10 summarizes the results.

Table 2.10: Forecasted Medians for the 2010 - 2011 Year

Season Predicted | 90% Prediction Interval | Actual | In Interval?
Summer 2010 | 1451.8823 (357.4878, 3398.6284) 545 Yes

Fall 2010 1863.4795 (472.8293, 5882.4474) 1350 Yes
Winter 2010 1402.3123 (661.4273, 2720.2239) 730 Yes
Spring 2011 1118.7097 (544.3879, 6277.8608) 866 Yes

In all four seasons, the prediction intervals successfully captured the observed values. Fall
2010 and Spring 2011 had predicted streamflow closest to the actual measurements. Also
in each season, the actual value was located closer to the lower endpoint of the prediction

interval.

2.5 Conclusions

The goal of the project was to establish that the Peachtree Creek’s flood rates are increas-
ing over time. Seasonality was the critical step in the analysis. The river’s streamflow is

significantly increasing in both summer and fall, and the higher the streamflow, the more
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likely a flood will occur. Thus, the probability of a flood is increasing in summer and fall,

but decreasing in winter and spring.

The Peachtree Creek is flooding with greater magnitudes today than fifty-two years ago.
The seasonal maximum height is increasing significantly in summer and fall, the latter having
the greater rate. As a result, a flood is more likely to occur in fall and summer. The reasons
for increased probability may vary from climate change to urbanization. Future studies on
the maximum gage height could incorporate additional covariates such as population density,
which most likely would be positively correlated with the gage height. The techniques
presented in this paper may also be used on other bodies of water; for instance, the Mississippi

River which flooded most recently in May 2011.
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Chapter 3 Extreme Value Mixtures of Two Variables

3.1 Introduction

In environmental statistics, it is often the case that the current annual maximum measure-
ment of temperature, sea level, river gage height, etc. is influenced in some way by the
previous year’s maximum. For example, if the temperature in a certain location is unusu-
ally high in spring 2010, it could be used as a covariate to predict the seasonal maximum

temperature for spring 2011. Such cycles often happen in environmental statistics.

Building a reasonable model for this situation would work as follows. We first fit a
generalized extreme value model through the data set, possibly choosing to introduce seasonal
and temporal effects and other covariates if so desired. We would then add the most recent
observation as an additional covariate on the location parameter and then find the maximum
likelihood estimates of all parameters. Finally, we would compute confidence intervals and

p-values.

In this dissertation we focus primarily on the Type I distribution, the Gumbel, but
similar studies may be carried out on the Types IT and III. We chose to study the Gumbel
distribution in depth because of its ease in comparison to the Fréchet and the Weibull. In
addition, the Gumbel arises very frequently in data analysis. It is often the case that the
shape parameter in the generalized extreme value distribution is not significantly different
from 0, in which case one would reduce the model to a Gumbel. We did just that for summer

and winter in Chapter 2.

Let us now define the generalized extreme value model. For simplicity we assume that
the only covariate is the most recent observation. The cumulative distribution function of

the Gumbel distribution is defined in (1.2), and recall that it is denoted as GEV(0, i, o).
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Now introduce the previous observation as a covariate on the location with parameter [.
Throughout the dissertation, unless stated otherwise we take —1 < 5 < 1. Thus X;|Xy ~
GEV(0, iy + 5Xo,01) and Xy ~ GEV(0, o, 09) with 0,01 > 0. Evidence for the necessity
of inclusion of the previous observation as a covariate can best be detected by examining

ACF and PACF plots and checking for spikes at the first lag.

The question of interest in this chapter is that X;|X, is a Gumbel random variable, but
we want to know the unconditional distribution of X;. Once answered, we will have taken
the first step to building probability approximations for the AR(1) process with Gumbel
innovations. This is a distribution that appears regularly in environmental statistics, so our

result will be a valuable contribution to extreme value theory.

We should point out that for the Peachtree Creek data, there was no visible evidence
from Figures 2.9 and 2.10 that the previous year’s observation would contribute significantly
to the model. Omne can guess this by noting that in none of the plots does the first lag
stretch outside the 95% confidence bounds. However, in other data sets we may very well
observe such a lag, in which case it is worth investigating this interesting new research
question. Nevertheless, at the end of Chapter 4 we will refit the Peachtree Creek data with

the previous year’s observations to illustrate an example of how such a model would work.

Chapters 3 and 4 together take up the second project in the dissertation. In this chapter
we first consider the standard Gumbel case where p; = 0 and o; = 1,7 = 0,1. We derive
two-term expansions for the tail probability along with precise error terms for various values
of . We later check the effectiveness of our results in a simulation study. Finally, in Chapter
4 we extend the results to a full AR(1) process. Also, at the end of Chapter 3 we give a brief

introduction to the studied two variable mixture but for the Fréchet and Weibull cases.
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3.2 Mixture of Gumbel Random Variables

In this section we derive some theoretical results about upper tail probabilities for the uncon-
ditional distribution, as well as some results on the error term involved. We shall see that,
depending on the choice of 3, there are four different approximations for the probability.

Recall that for the standard Gumbel,

A(y) = exp (—e’y) ) —o0 <y < o0. (3.1)

We have Z,|Zy ~ GEV(0,8Zy,1) and Zy ~ A. Notice that

P(Zy = B2y < ylZo = 2) = P(Z) Sy + P22y = 2) = My).

As a consequence, Z; — 372y and Z; are independent and Z; — 57y ~ A. In other words, the
probability we are estimating is P(5Z1 + $Zy > y). This observation is important because
now the model may take any weights. In particular, let ¢; > ¢y be any positive constants.
Then

P(chl + C[)Zo > y) =P (Zl + C—OZ[) > g) R (32)

C1 C1

and by choosing f = z—(l) we get the same situation. As a side note, if ¢; = ¢y then the
probability must be approximated using a different technique. We delay this discussion until

Chapter 5.
To be clear, we explain all the possible cases in the following list and at what point we
answer them.

1. When ¢y < ¢; < 0, the probability is negligible as y — oo. This is because most

of the Gumbel’s mass is on the positive half line, and therefore {coZy + 121 > y} =
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{ZO + %Zl < %} is extremely unlikely to occur. Lemma 3.2 establishes that the

answer 1S o (ey/ CO).

2. When ¢y < 0 < ¢1, —1 < < 0 and the approximation is (3.5). Lemma 3.3 provides

the remainder term.

3. When 8 = 0, the problem reduces to the probability of just one Gumbel. The approx-

imation is the same as the previous item.

4. When 0 < 2¢5 < ¢1, 0 < B < % and the approximation is (3.5). Lemma 3.4 provides

the remainder term.

5. When 0 < 2¢g = ¢q, f = % and the approximation is (3.12), given at the end of Lemma

3.5.
6. When 0 < ¢; < 2c¢, % < f < 1 and the approximation is derived in Lemma 3.7.

7. When 0 < ¢y = ¢1, f = 1 and the asymptotics need to be treated very differently.
This discussion is rather involved and, for that reason, takes up its own project. We

postpone that analysis until Chapter 5.

The exact integral is

P(Zy>y) = /OO {1 —exp(—e )} e exp (—e ™) da. (3.3)

A change of variables rewrites (3.3) as

P(Z, >y) = /000 {1—exp(—ta™")} e *du, (3.4)
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where t = e7¥. For large y, 1 — exp (—tmfﬂ) is small and can be approximated using a

two-term Taylor series by

1—exp(—tz ") mta P — %t%w.

Therefore for a suitable choice of # and ¢ small enough,
S IS SPSr Y-l R
P(Zy >y) = te _§t$ e "dr + R,
0

where R is a remainder term to be analyzed shortly. Consequently for y large enough and

certain choices of j3,
1
P(Z>y)=T(1-pB)e Y~ 5r(1 —2B)e™* + R. (3.5)

Definition 3.1. Let p(x) be a probability function on (x;,x,) and A;(x),i = 1,2,3 be three
approximation formulas to the probability. Also let R;(x) be the error terms associated with

each A;(x). Then [ is said to be a pivot point if

(

Ai(z) + Ri(z), mp<ax<p
p(@) = { Ay(z) + Ro(z), z =2 (3.6)

Asz(z) + R3(x), B <z <y

\
We now establish some lemmas that explain the possible cases.

Lemma 3.1. Forw >0,0<1—¢e™* —w+ %wQ < min (—w

—
()
—
S
w
~—
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Proof. The inequality is easily established using multiple integrals:

1
Ogl—e_“’—w+§w2—/[ —1—|—udu-//1—e |dvdu
/// sdsdvdu</ / / 1dsdvdu—

Alsosincel—wge*“’,og1—e*w—w+%w2§%wz. O
We begin with the negligible case, where ¢y < ¢; < 0, item 1 in the beginning of the section.

Lemma 3.2. For —co < ¢; <0, P(cyZo+c1Z1 >y) =0 (ey/CO) as y — 0o.

Proof. Let Fe1, denote the distribution of Z_(I)ZL Choose ¢ < 0 to be large in the negative
€0

direction. Then

PleoZo+ 12, > y) = P (ZO + 97 < 2)
Co Co

00 ¢

:/ P(ZO+C_121 <2) dFClzl(Z)Jr/ P(ZO+ —7 < —) qu (2)
¢ Co Co €0 —0 Co Co

=(I)+ (II).

Note that

y=ci¢
sup P (Zo + 221 < 2) = exp {—e< <0 )] 7

(<z<0 Co Co

and therefore as y — oo

(I) < exp [—e<yc§1<)} 50

because for ( fixed, y_c—‘;lg — —00. Now observe that as y — oo

exp [_ewq

@?J/CO

—ep|-L e [ -5 0,

Co
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and so (I) = o (e¥/*). Next,

(I1) < Feg, (C) = exp [—em¢/] -0 as () —o0,

and therefore P(coZy+ 121 > y) =0 (ey/CO) as y — 00. ]

We turn to the case where —1 < 8 < 0. The expansion is the same as (3.5), and Lemma 3.3

establishes the error term.

Lemma 3.3. If —1 < 8 <0, then R = o(e™?) as y — o0.

Proof. Set w = tz?. By Lemma 3.1,

o 1 1 o 1

R = / [1 —e " —w+ —wQ] e "dr < —t3/ 3 %dx = —T'(1 — 3p)t3.
0 2 6 Jo 6

Therefore R = O(t3) = o(t?) = o(e™%). O

From this point forward, we assume that ¢y, c; > 0, which makes 0 < g < 1.

Lemma 3.4. I[f0 < 8 < %, then R = O(e™¥/%) as y — oo.

Proof. Write w = tz? with t = e7¥, and observe that

> 1
R = / [1 —e Y —w+ —wz] e “dx
0 2

& 1 _ 1
0 2 B

because x = (%)Uﬁ and therefore |j—i| = %tl/ﬁw_%_l. We have that 3 — % —1=2- % <0
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since 0 < 8 < % The goal is to show that

o) 1 _
/ [1 —e Y —w+ 521)1 et P < Q.
0

By Lemma 3.1, 0 < |1 — ™ — w + sw?| < Jw?, and also 2 — % —1=1- % < —1. Hence

> —w 1 2 /By 1 >~ —-1-1
l—e¥—w+-w|e w B dw < w B dw < oo.
1 1

2
Next,
! Lol _psy-1/8 —14 Yoo ausgis
/ l—e—w+-w*|e"" Y Tw's dwﬁ/w Be Y T dw
0 2 0
= / w2t Py =2 gy (by putting w™" in for w)
1
— / w_‘?(%_‘l)e’tl/ﬁwﬁw’ﬁ’ldw (by putting w”? in for w)
1
= Bw*‘o’ﬁe*tlwwdw < Q.
1
Therefore for some C' > 0, R < Ct*/# and thus R = O (¢'/7) = O (e7v/?). O

When g = %, the second term in (3.5) needs to be treated differently. Split the probability

into two integrals with a two-term and a one-term expansion, respectively:

o0 1 t2
P(Zy >y) = / [txﬁ — §t2x2/3] e “dx +/ trPe ®dxr + R
2 0
~© 2 [
= t/ x 2 dr — — z e ®dr + R
0 2 t2

t2 o]
=/t — 3 / z e dx + R.
t

2
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Observe that for some constant C,

o) 1 1 fe'e)
/ x e ®dr = / x tdx + / x ! [e‘x - 1} dx +/ x e ™ %dx
t2 t2 t2 1

= —2log(t) + C.

Therefore the approximation is

P(Z, > y) = /wt + t*log(t) + Ct* + R. (3.7)

The extra term Ct?, as we shall see in Lemma 3.5, can be absorbed into the remainder.

Lemma 3.5. When =1, asy — 00 R=0(e7%) in (3.7).

Proof. Let w = ta™",t = e7¥, and C;,i = 1,2,3 be positive constants. Split R into three

integrals via

> 1 ! 1
R:/ 1—e ™™ —w+ —w? e_xdx+/ l—e ¥ —w+ —w?| e %dx
1 2 t2 2

+ /t2 [1—e™ —w]e*dx (3.8)

— R1 + RQ + R3.
Examining the first integral in (3.8),

R < / —wie ™ dr = —t3/ zPe v dr = C1t3. (3.9)
1 6 6 /i
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Next,

|Ry| < = 2t*

! 1
/ [1—e_w—w—|——w2] dx
t2 2

1, [* 1
< —t2/ ldw = —t*(1 — t) < Cyt?,
3/, 3

1 1
/ {1 —e Y —w+ 511)2} w_3dw‘
K (3.10)

because the term involving #3 is negligible. Finally, noting that |1 — e™ — w| < w for w > 0,

t2
/ [l—e_w—w} dz
0

- Cth.

|Rs| <

= 2t2/ 1 —e™ —wlw 3dw < 2252/ w™2dw
1 1 (3.11)

Putting (3.9) through (3.11) in (3.8), R = O(t*) = O(e~?). Consequently, as y — oo the
expansion (3.8) is

P(Zy, >15y) = Vre ™V —ye  + O(e™ ). (3.12)

]

When % < B < 1, we cannot approximate the integral using the ordinary two-term expansion
because the choice of § puts 1 — 28 < 0. While I'(«) is defined for negative nonintegers via
['(a+ 1) = al'(«), the corresponding integral that would represent the gamma function in
this case is improper. Instead, we employ an alternative usage of the one-term expansion
to get a second term. Before presenting the answer, we begin with a lemma that will help

simplify an integral that appears in the expansion.

Lemma 3.6. Suppose % < pB < 1. Then
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Proof. We first compute the integral over the interval (9, 00) where § > 0. Integration by
parts gives

6] (6_6 -1+ 5) 575+ 5/ (1 — e_’”) v A dz.
5
Integrating by parts a second time results in

1 2 1 2 o 1
I6] (e"s -1+ (5) 0 7 + 15 ﬁ(l — e"s)él_E + 16 3 / e dx
- —bJs
-5

B 6+ (=B —pse — (1-P) AN AR 3.13
_1—ﬂ( 5% >+1_6/5x56 dx ( )

= (I) + (IT).

Now we send § | 0. (I]) gives the gamma function:

lim(I7) ey = i
5¢0 1—5 1-p

re-g"). (3.14)

Using L'Hopital’s Rule twice on (1),

lim(I) = lim s (1 —(L=f)e”’ —fe + 556—6)

540 0 1—p 551
=i p? 1—e*+ poe? 1 33 e 0 + Be® — Boed
T3 ( 557" ) sl (1= B)? ( e ) (3.15)
o ((+B-p8)T
_131510—@2( o )—0

The fact that 0 < 2 — % < 1 was used in the final calculation. Putting (3.14) and (3.15) into

(3.13),

/oo(e_r—l—l—x)x_é_ldx—) i r2-p" as dl0.
5 1-p
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Next, we examine f(f (e*—1+ux) 2”5 'dz. Observe that

e t—-14=x .o —eT4+1 .oer
lim——— =lim——— =lim =
/0 x2 0 2x zl0 2

and so e — 14z ~ 2% as x | 0. Then
J 14 1 0 1—1
/(e’”—l—i—x)x s dxw—/x fdx — 0,
0 2 Jo

because 1 — % > —1. The result follows. O

We are now ready to derive the expansion.

Lemma 3.7. Suppose % < B < 1. Then asy — o0

P(Z > y) =T(1— B)e - %p (2 1) WP 1 o (eV19).

Proof. Write t = e™¥ and observe that

e "dz. (3.16)

P(Zy>y)—T(A—-p)t  [*1—exp(—taP) —ta™"
t1/8 Jo t1/8

Use the change of variables w = t~'/%x to get the integral
/ [1—exp(—w™?) —w™?] exp(—tYPw)dw.
0

Now use another change of variables x = w™ to turn the integral into

1 o

3 (e —1+x) exp(—tl/ﬁx_l/ﬁ)x_%_ldm.
0
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Next, observe that by Lemma 3.6

o0 o0
/ (e_“” -1+ x) exp(—tl/ﬂx_l/ﬁ)m_%_ldx < / (e_x -1+ m) 5
0 0

_p _
_1_6r(2—5 ') < o0,

so by dominated convergence

lim —— /OO (e —1+ux) exp(—tl/ﬁx_l/ﬁ)xféfldx = —LﬁF (2-571).

Hence as t | 0

AR O o (-7 o) 317
Rearranging terms, as ¢ | 0
P(Zy > y) =T(1 - B)t — %p (2= 51 18 4+ o(t!/?),
and finally, as y — 00
P(Zy>y) =T(1— B - %p (2= B) VP 4o (eV/7)
as required. 0

We have completed the proof for each value of —1 < § < 1. Theorem 3.1 summarizes the

results from this section.
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Theorem 3.1. Let Z1|Zy ~ GEV(0,8Zy,1) and Zy ~ A. Then as y — oo

(1 — e — 301 —28)e 2 + o(e™), -1<p<0
I(1—B)e ™ —iT(1—28)e ™ + O(e¥/?), 0<p<1i
P(Zy >y) =
VreV —ye  + Oe” ), B=1
kF(l—ﬁ)e‘y—%F@—ﬁ_l)e_y/ﬁ—|—0(e‘3”/5), T<f<l

Having an alternative statement when two weights are involved would be useful as well, as

in the probability in (3.2).

Corollary 3.1. Let Zy,Zqg~ A and ¢y > ¢y > 0. Set V =121 + cogZy. Then as y — oo

(

o (ev/®) Lcp < <y
N 2—?)6*?//01 —ir(1— %)e’2y/cl +o(e™%), co<0<c
PV >y) = {T(1 - 2)ev/e — IT(1 — Z0)e-2v/cr 4 Qe v/), 0<2c < e
VmeTvien — Lemvler 4 O(e), 0<2c=c
D1 = 2)ev/e - caor (2= 2 ) e /oo (/%) 0<a < 2.

We have now laid the groundwork for when the random variables are standard Gumbels.
Now we begin generalizing our results. First, we assume that the scale and original location
parameters are fixed. Let X; ~ GEV(0,u,0), or put another way X; = u + 0Z; where

Z; ~N,i=0,1and o0 > 0. The easiest way to address the probability is to rewrite

P(X)+BXo>y) = Plu+0Z + B(u+0Z) > y) = P (21 TR (1U+ B)u) |
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We have successfully rewritten the probability in a familiar format. The updated theorem
and corollary are stated below, and their proofs are similar to those of Lemmas 3.3 through

3.7.

Theorem 3.2. Let X;| Xy ~ GEV(0,u + Xo,0) and Xy ~ GEV(0,u,0). Define y* =

w. Then as y — 00
(
[(1—pB)e ¥ —il(1—2B)e % + o(e~2/7), ~-1<B<0
[(1—pB)e™v —il(1—2B)e % + O(e v/P), 0<pB<4i
P(X; >y) =
VRV — B L O o), =1
LF(l — Ble ¥ — %F 2-BNHev/Pqo(e¥b), L<p<i.

Corollary 3.2. Let X; = p+o0Z;,Z; ~ Nji = 0,1, and ¢; > ¢g > 0. Define f = Z_(l)’

Y= —y—(ljﬁ),u7 and V = 1 X1 + ¢ Xo. Then as y — oo

(0 (ey/CO") , co<c1 <0
NG E—T)e_y*/cl — 31— 20%)6_23/*/01 + o(e=2/7), <0<
PV >y)=qD(1- Qyemv/en — AT (1 — 2 /er 4 Oemv/o7), 2¢o < ¢
VRV — eI 1 (), 2=
\F(l — i—f)e‘y*/cl e ¥ <2 — ) e v/ 4o (e” y/CO") . 2cy > c.

Now suppose X1| Xy ~ GEV(0, u1 + X, 01) and Xy ~ GEV(0, i, 09) with 09,07 > 0. To
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work with the probability,

P(X1+ 68X >y) = P+ 0121 + B(po + 00Zp) > y)

= P (012, + BooZy >y — 1 — Blio) -

One could then proceed to derive an extension of Theorem 3.1 and Corollary 3.1 by dividing

the Z; by the larger of o1 and Soy.

3.3 Simulation Results for Gumbel Mixture

Before building the complete AR(1) process in Chapter 4, we check how our three approxi-
mations behave for various values of 8. We simulate N = 10 million values of Z; and graph
the empirical tail probability, as well as our second-order approximation in Theorem 3.1.
For comparison purposes we also graph the first-order approximation. We investigate what
happens at 5 = {0.10,0.20, 0.40, 0.49, 0.50, 0.51, 0.60, 0.80,0.90}. The reason for considering
£ = 0.49 and 0.51 is to see what is happening near the g = % pivot point. Figure 3.1 displays
the empirical probability (solid black line), the first-order approximation (dashed red line),

and the second-order approximation (dotted blue line) for the 95th percentile and higher.
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Figure 3.1: Approximations for Various Values of 3
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Here are some observations. First, for 0 < g < 0.40 the two approximations are virtually
indistinguishable and estimate extremely accurately. Second, when [ = 0.49 the first-order
approximation estimates the empirical probability very well, while the second-order approx-
imation underestimates. Only around the 99th percentile does the latter finally catch up.
The same observation applies to when 8 = 0.51, suggesting that the second-order does not
behave very well when ( is very close to 0.50 on either side. This is not a surprise, since
0.50 is the pivot point at which the approximation changes terms. Next, when g = 0.50
both formulas estimate the probability reasonably well. Finally, as 8 moves upward to 1 the

second-order approximation estimates extremely well, but the first-order overestimates. The
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discrepancy becomes worse as 3 gets closer to 1.

In Table 3.1 we look at the errors in both approximations. We define an error to be the
empirical probability minus the estimated probability. Therefore a positive error indicates

an underestimate, and a negative error an overestimate.

Table 3.1: Errors in Approximations of Theorem 3.1

8 Approx | 95% 97.5% 98% 99% 99.5% | 99.9% | 99.99%

0.10 1st -0.0013 | -0.0003 | -0.0002 | -8.0e-5 | -3.9e-5

2nd -1.1e-5 -1.9e-6
0.20 1st -0.0013 | -0.0003 | -0.0002 | -4.0e-5 | -1.5e-5 | -3.4e-5

2nd -9.4e-6

1st -0.0024 | -0.0006 | -0.0004 | -0.0001 | -4.7e-5 | -8.5e-6 6.1e-6
0.40

2nd
0.49 st

2nd 0.0199 | 0.0045 | 0.0028 | 0.0006 | 0.0002 | 9.6e-6 7.1e-7
0.50 1st -0.0039 | -0.0011 | -0.0007 | -0.0002 | -4.4e-5 | -4.5e-6

2nd -2.4e-6
0.51 1st -2.1e-6

2nd 0.0226 | 0.0053 | 0.0033 | 0.0008 | 0.0002 | 1.1e-5
0.60 1st -0.0070 | -0.0021 | -0.0015 | -0.0004 | -0.0001 | -6.4e-6

2nd 4.7¢-6

1st -0.0309 | -0.0114 | -0.0084 | -0.0032 | -0.0013 | -0.0001 | -4.3e-6
0.80 ond

1st -0.0865 | -0.0344 | -0.0258 | -0.0107 | -0.0045 | -0.0006 | -3.3e-5
0.90 ond

The results support the observations we have already made from the graphs. We now take
a closer look by examining the relative errors in Table 3.2. Define a relative error to be the

error from Table 3.1 divided by the corresponding approximated probability.
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Table 3.2: Relative Errors in Approximations of Theorem 3.1

163 Approx 95% 97.5% 98% 99% 99.5% | 99.9% | 99.99%
1st -0.0259 | -0.0116 | -0.0103 | -0.0079 | -0.0078 | -0.0112 | -0.0184
0.10 ond
1st -0.0251 | -0.0118 | -0.0098 | -0.0040 | -0.0030 | -0.0138 | -0.0863
0.20 ond
0.40 1st -0.0462 | -0.0253 | -0.0204 | -0.0121 | -0.0094 | -0.0085
' 2nd 0.0654
0.49 Ist
: 2nd 0.6608 0.2190 0.1615 0.0670 0.0317 | 0.0097 0.0072
1st -0.0718 | -0.0418 | -0.0331 | -0.0190 | -0.0087 | -0.0045 | -0.0239
0.50
2nd
0.51 1st -0.0205
2nd
1st
0.60 2nd 0.0499
0.80 2123 -0.3821 | -0.3137 | -0.2953 | -0.2451 | -0.2023 | -0.1093 | -0.0409
0.90 21:(51 -0.6337 | -0.5791 | -0.5629 | -0.5169 | -0.4740 | -0.3850 | -0.2495

Comparing the relative error sizes for both formulas, Table 3.2 shows that the second-order
approximation gives more accurate estimation than the first-order for all 0 < § < 1, except
for a small neighborhood around but not including § = 0.50. That is, for some d;,d5 > 0
the first-order approximation is more accurate for § € (0.50 — d1,0.50 + d2)\ {0.50}. The
following graphs in Figure 3.2 suggest that such a neighborhood may be [0.47,0.54]. As a side
note, we also examined the results for —1 < # < 0, and again the second-order approximates

more accurately. Therefore, we exclude those results from the dissertation.
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Figure 3.2: Approximations in a Neighborhood of 5 = 0.50
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To conclude, when working with just two Gumbel random variables, we recommend the

following procedure:

1. Use the first-order approximation for 8 € [0.47,0.50) U (0.50, 0.54].

2. Use the second order approximation for all other values, namely § € (—1,0.47) U

{0.50} U (0.54, 1).
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3.4 Mixture of Fréchet Random Variables

The idea of two-term expansions for Gumbel mixtures can be extended to the Fréchet and
Weibull families. Such an extension is useful because all three extreme value families would

be complete. However, Chapters 4 through 6 return to the Gumbel case.

Let ®,(z) = e ",z > 0, > 0 denote the Fréchet model, as in (1.4). In terms of the
L1,1).

a’ T«

generalized extreme value family, this definition is given by GEV (

Suppose X; ~ &, and
(Xo| Xy =) ~ @o(- — Bz), - > Pz

That is, X3|X; ~ GEV (é,ﬁx +1, i) on {z :z — pX; > 0}. Next, notice that for z > 0

P(XQ — ﬁXl S Z|X1 = l’) = P(XQ S z —|—BCC|X1 = ZIZ') = (I)a<Z).

Thus X5 — X, and X; are independent and Xy — X; ~ ®,. In other words, the model is
Xy = X1 + Z where Z and X; are independent and Z ~ ®,. Also by definition, 1 — ®,, is
RV_,,.

We shall use a result from Barbe and McCormick (2005) to obtain a two-term expansion for

P(X5 > y). First we look at a couple of definitions.

Definition 3.2. A distribution function F' is said to be asymptotically smooth with index
—« if

—al =0.

Fly(l— - F
lim lim sup sup (w( 7)) W)
020 yoo 0<|a|<s rF(y)

Definition 3.3. A distribution function F' is right-tail dominant if for any é > 0,
F(=yd)

11m
y=oo  F(y)
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The theorem is stated below.

Theorem 3.3. Let F and G be two distribution functions such that F,G € RV_, with
a > 1. It is supposed that F' and G are asymptotically smooth and right-tail dominant with
f ydF(y) and f ydG(y) both finite. Denote by F x G(y) the convolution of F and G.

Then as y — o0

— o —

1—F*GW)=7@%+G@%+§UW@MMD+5@NW@HU+ﬁﬂD» (3.18)

where pp(y) = fi’y xdF(z),y > 0 denotes the truncated mean of F', and similarly for pug(y).
In particular, if the two means are finite and equal g and g respectively, then the conclusion
18

1-FxG(y) = F(y) [_ e + Gy)pr] (14 0(1)). (3.19)

Provided the assumptions are met, this result will take care of the case where @ > 1.
Luckily we need not check asymptotic smoothness on F' with the definition above, thanks

to the following additional result from Barbe and McCormick (2005).

Lemma 3.8. If ' has an ultimately monotone density, then F is asymptotically smooth.

The density of F is ultimately decreasing since it can be shown that F”(y) ~ —a(a+1)y > 2
as y — oo. Thus, F' is asymptotically smooth, and further is right-tail dominant because
F(—yd) = 0 for any y > 0. As for the last assumption in the theorem, fi)oo ydF(y) =0
because F(y) = 0 on the negative reals. One more lemma is needed before we derive the

expansion.

Lemma 3.9. If Z ~ @, then P(Z >y) =y * — sy 2>+ o(y™ ") as y — oc.
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Proof. Write

00 Y o 1_ R
1-— (I)a(y) - y‘a — / [e—ﬂﬂ — 1] Oé{[‘_o‘_ldl‘ = —/ e—a> OéIL‘_Qa_ld:L‘,
Y Yy xXr

Note that ¢(z) = == — 1 as z — 0. Consider

OO —a —2a-—1
/y oz ax dx I

L p—2a—1 B 1, —2a
fy ax dx 5Y

A change of variables brings
204y2a/ p(z~ )z~ My = 2a/ o((yx)~*) o2 1da.
y 1

Thus by dominated convergence

1—O(y) —y

1,2
2y

=—14o0(l) as y— o0,

and the result follows.

We may therefore use Theorem 3.3 and Lemma 3.9 on the Fréchet mixture as follows.
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a > 1, then E(Z) = pr is finite and is equal to T' (1 — a~!). The probability as y — oo is

P(Xy>y) = P(X1+ Z > y)

— % [P(8X1 > y)E(Z) + P(Z > y)E(BX1)] (1 + o(1)) + P(BX1 > y) + P(Z > y)

= ﬁayfa o %ﬁ2ay2a 4 yfa o %y2a 4 O(nya) 4 ay’lE(Z) ﬁay,a _ %ﬁ%‘y%‘
+By~ — %ﬁyQa + O(y72a> (14 o(1))
= (1+ 4%y +aB1+ 60 (1—a )y foy ).

Next, if &« = 1 then E(Z) is infinite and we must use Theorem 3.3 with the truncated mean.

The two-term expansion is then

PXy>y)=0+B)y '+ (/y x_le_xldx) y 2 4 o(y?).
0

y y
It is easily checked that / e ™ 'dx < oo and that (/ x_le_m_ldx) y=2 — 0asy — oo.
0 0
We now turn to the case where 0 < a < 1 using another result from Barbe and McCormick

(2005).

Theorem 3.4. Let F' and G be asymptotically smooth distribution functions with support

on the positive reals such that F,G € RV_,,0 < a < 1. Define the quantity

I(a) = /1/2 (1=t *—=1)at ™ dt. (3.20)
Then
. 1=FxG(y) - _(y) - @(y) _ 20 atl
Jim O = 21 () + 2% — 20F1, (3.21)
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Setting © = 21 () + 2%* — 2%t as y — oo the statement can be restated as

1—FxG(y) =F(y) +G(y) + OF (y)G(y) + o(F (y)G(y))- (3.22)

We now use Theorem 3.4 and Lemma 3.9 to compute a two-term expansion for P(X; > y):

P(X; >Y) =P(fX, >y)+ P(Z>y)+OP(BX1 > y)P(Z > y)
+o(P(BX1 >y)P(Z >y))

= (145 — 50+ )y 4+ ofy ™) + (IT) + (IT1).

Examining the second piece,

1—0{ — 2z
—y T+ o(y~**)

([]) — @ Bay—a . %ﬁ2ay—2a 4 O(y—Qa):| |:y—a . 5

— @ﬂay72a 4 0<y72a)'
Then (I11) = o(y~2*) and the expansion becomes

P(Xy>y) = (1+ 6%y~ - %(1 + 3% = 208%)y ™ + o(y™*).

We have finally provided a two-term expansion for the Fréchet mixture for all o > 0, sum-

marizing the results in the next theorem.
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Theorem 3.5. Let (X3| X, =) ~ @,(- — Bz) and X; ~ &, with o, 5 > 0. Then as y — oo

(

1+ B8y + aB(l+ )T (1 — at)y—ot

+o(y™™), a>1
P(Xy > y) = (3.23)

Y 1
1+B)y'+3 (/ x e da:) Y2+ o(y2), a=1
0

|1+ 8%y~ = 5(1+ 8% —208%)y~** +o(y™*), 0<a<l

3.5 Mixture of Weibull Random Variables

Finally, we extend the mixture analysis to the Type III, or Weibull, case. Such an answer
would be a useful contribution to extreme value theory since the Weibull distribution is very
common in practice. First introduced in Fréchet (1927), it arises in applications relating to
decay or failure times. Weibull (1951) provides many examples of data sets in which the
Weibull was modeled, including a study on Indian cotton fiber strength and another study
concerning the stature of adult males in the British Isles. Pinder et al. (1978) fits Weibull

models to survivorship curves of various birds.

As stated in (1.5), for @ > 0, denote the Weibull family by

e~ 2% 2 <0
U, (z) = (3.24)

In terms of the generalized extreme value family, ¥, = GEV (—é, -1, é) Suppose X1 ~ ¥,
and {Xs|X; =z} ~ U, (- — fx),- > fa where § > 0. That is,

1 1
XQ‘Xl ~ GEV (——,BXl—l,—) on x—ﬁXl < 0.
(67 (07
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Now observe that for y < 0

P(Xa>9) = [ P(Ye>ylXi = 0) - (Wala)

[P 5%y el =) (w0
y/

/: L= 1) (Ta(2)) + /y; [1— Wo(y — B2)] % (0, (2))
I

0

d
[ =y = ) g (o).

The last step follows because U, (z) = 1 for z € (—o00, 4], and since 0 < - (¥, (z)) < a the

7[5}7

first integral is 0 by dominated convergence. We proof the following lemma before deriving

the expansion.

Lemma 3.10. Fory < 0,
1—Wa(y) = (=) — =(=9)** +o((—=y)**)  as y 10 (3.25)

Proof. Write

@

L — W (y) — (—y)” = /yo (" Z 1) a(—a)*de = — /yo {%} a(—2)2 1 d.

Note that ¢(z) = :=¢—= — 1 as z 1 0. Consider the following quantity:
2a—1
/ =) al=a) e 104 ppya(—a)lde
y ( r)20-1dy %(_y)2a

=2a(-y) " [ ¢((—2)")(—2)* 'da.

Yy
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A change of variables brings
1 1
2a/ o((—yz)*)r** tdr = 2a/ r** tdr +o(1) = 1+ o(1).
0 0

Thus by dominated convergence

1= Valy) = (=9)° _ o(1) as y10
3 (—y)> |

and the result follows. O

The next theorem establishes the two-term expansion for the Weibull mixture. We shall

make use of the beta function defined in (1.7).

Theorem 3.6. Let (Xo|X) =) ~ VU, (- — pzx) and Xy ~ ¥V, with o, > 0. Then asy 10

P(Xs > y) = Co(—y)* + Cs(—y)** + o((—y)™), (3.26)
where Cy = aB(;erl and Cy = — £ [B(a 22a+1) I B(2c;5+1)

Proof. We perform a second-order expansion on the first exponential term in the integral,
and a first-order expansion on e~ (=", No further advanced expansions are needed since the

resulting terms would be negligible. As y 1 0, the integral becomes

-/ [[—@—ﬁa:)]a - %[—(y—ﬁfc)]mﬂ((—y)m) ()" [1 - (~a)°] .

y/B
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_ e

Use the change of variables w , and therefore ‘g—fb‘ = —%. The Jacobian has the negative

sign because y < 0. The integral becomes

PG>0 = [wra - - denma - oo

() e e (5)
1 J—

= e [t = G = e ol
(_y>2a 20—1 o (_y)Sa 20—1 20
_ Fa T (1 x) ~|»—25a x (1 $)
(—y)*> 3a—1 o (_y)4a 3a—1 2a
+ 552 (1—x) 15 x (1—2) }dm

The last three terms are negligible, and the integral becomes

«

2p«

P(X2>9) = 5ol [ am 1= arde = o [ a0 o)

Ba

— g [ a0 e+ o))
_ aB(a,a+1) ] B(a,2a+1)  B(2a,a+1) LV 4 o)
I (SRR

= Co(—y)** + C3(—y)* + o((—)™).
O

The particular case where o« = 1 can be worked out exactly and is easily derived through

direct integration:
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Corollary 3.3. Fora =1 and any 5 > 0,

- () () 4
1—(1-y)e, B=

P(Xs>y) = (3.27)

It is interesting to note that in the above corollary, as 8 1 1 the first case limits to 1 — 2¢¥
but this does not match the second case. One can easily see that the limiting 1 — 2e? is
incorrect by noting that for y € (—log(2),0) the claimed probability is negative. Curiously,

the term (—y)® vanishes from the expansion, which necessitates getting the (—y)3* term.

Finally, by using the same process one can derive an expansion for the Weibull mixture using
as many terms as desired. We shall illustrate this process and then discuss how to extract

the nth order term.

Theorem 3.7. Let X, Xo,, 5 be defined as above. Then an infinite order expansion for

the tail probability of Xy as y 10 is

A == (D) HB (5 + Da,ia + 1) "
_ E § ’ —q\(iHit e
P(X2 > y 506 D3 15 ( y) J . (3.28)
Z: J:

Proof. We proceed as before, but this time using the complete Taylor expansions:

0
P<X2 > y) == / {1 — 67[7(9*51)}(1} 05(_37>a7167(7x)adx

y/B
" (=)= (y = p)] ot S (—x)®
—af 3 ; I e
y/B =1 Jj=
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Put an upper bound on the inner integrand:

—1)iti+l . , —(y — Bx)]* (—g)+Da-1
( 1) [-(y—/8$)]za(—$)(]+1)a_1 [ (y Z'B )] ( )j|

i+1)a—1 a—
< —1 (=y) AN G D
ilj! 8 - pethilgl

<

il

Thus, the integrand is integrable on both counting measures and the Lebesgue measure, so

we may bring both summations to the front:

P(X2 > y) = az (_1“)24- Z (_.1)]' / (_x)(jJrl)ozfl[_(y . ﬁl’)]mdl'

j=0 j! y/B

A change of variables produces

H-J—i-l y U+Da ' '
PG> =ad S [(S2) vt e g
0

ll
2130 vJ:

z+]+1 y (J+1)e A
- O‘Z Z Zl ] (_E) (—y)"*B((j + Da,ia+ 1)
i=1 j=0 J:
_ g i o9 <_1)1+J+1B ((] + 1)0(, 1o+ 1) (_y)(i+j+1)a
B == iljlpie >

as required.

It remains to show that the infinite sum converges. First observe that

ERee e
<a(y iooB (j+ Da,ia+1)
=1 =0 Z'j'ﬂ]a )

We shall use the fact that for ¢;,co > 1,0 < B(c¢y,¢9) < 1. This is true for ¢ > 1 and j > 1,
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but when j = 0 the expression B(a,ia+ 1) is only guaranteed to satisfy this inequality when

a > 1. We adjust the beta function accordingly:

B((j +Dajia+1) — D(G+Da)lGa+l) (G +1Da
il pie D((i+j+ Da+ 1)ljlgie  (j+ 1)
- D7+ Da+DHl(ia+ 1) F((i+7+Da+2)
all(j+ DIgel((i+5+Da+1)  T((i+j+1Da+2)
_ B((j+1Da+1lia+1) T((i+j+1)a+2)
N ail(j + 1)1 N(GE+7+1Da+1)
(i+j+La+1 a+1 1 j

Gl F D)F (L ) | G- DI+ )EE G+ D

Hence

n<?

)2 & a+1 1 g |
ﬁ ZZ Lw' GO G- DIG T e G+ e

j=0
M TR J+1'BJ“+Z G B

L 7=0 7=0 j=

CBa(—y) [2041 S >
- Ba i a ]Z ]+1 |ﬁ]a+; 'ﬁ]a
_ 3a<5—3)2a _<2O‘; Yo+ (H)} .

Compute the two sums:

—Ot‘

1—eXp (5 ))

[e.e] BO‘ oo
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and

< G+1-1)p -1 [& 1 ©
(D=2 (o ~ 7 2 e =7 [Z@—l)!ﬁﬂ“ 2 jig

j= j=1
I | S S B U R (e &
= @;(j—1>!ﬁ(j_l)a _;j!ﬁja] _JX:; 4! -8 ]Z:; 7!

= (L+ 8% exp (87%) — B

Finally
20+ 1

0 < a(-p |28 (L oxpla ) + (L4 5 exp(a )~ 1.

and so 2 — 0 as y 1 0. Therefore the infinite series converges. m

Now suppose we want C,,, the mth component in the n-term expansion, m = 2,....,.n + 1.
The result of Theorem 3.7 can be used to accomplish this. To “peel oft” the mth term, find

all 7,7 such that : > 1,7 > 0,724+ 7+ 1 =m. Then
= Ua( —j—Da+1)
m — j — 1)!pie

_ o FE (DB + Doy (m— (G + D)o+ 1)
B 2 (1) — Dlm — (G + )G

_g_ (=1)"B (jo, (m — jla+1)
pe = (j =Dl m — j)IBu-1e

%|@
<.
<”D

3
N

O

3 u

Q
<.
Il

As for the remaining pieces where i + j + 1 > m,

S (=)™ B (( + Do, (m+k—j—1)a+1)

Ra ]'(m +k _] _ 1)!63‘& (_y)(m+L)a = O<<_y)ma)7

o
i+i+1>m

because the series was shown to converge. We therefore have the following result.
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Theorem 3.8. Let (X3| Xy = 2) ~ U, (- — fx) and Xy ~ U, with a, 5 > 0. Then an n-term

expansion for the tail probability of Xo as y 10 is

n+1

P(X;>y) =Y Cul=y)™ + o((=y)"™),

m=2

m—1

(~1)"B (jor, (m — j)a+ 1)
D i

where C,, = /%

Jj=1
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Chapter 4 The AR(1) Process with Gumbel Innovations

In the previous chapter we derived a two-term expansion for the mixture of two Gumbel
random variables. That is, if A(z) = exp(—e~™) denotes the standard Gumbel distribution,
we considered the distribution of 57, + Zy where Z;, Zy ~ A. In this chapter we generalize

the results for the AR(1) process given by X, = Z, and

Xy = ﬁXn—l + Zna n =1, (41)

with the {Z,} i.i.d. with distribution A. Consequently
Xo=> B"Zns (4.2)
k=0

The first step is to ensure that X,, converges for |3| < 1. Note that

0 00
E|\Z)| = / (—z)e “exp(—e *)dr + / xe Pexp(—e ¥)dx
0

—0o0

o) 1
= / log(z)e *dx +/ (—log(x))e *dr < 2,
1 0

because

Now observe that

E

—1-g]

Zﬁkzl—k|< Ll E|Z{|—0 as m — oc.
k=m
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Thus we have

o o 1
S8 2] < 18 Zik] B 0,
k=m k=m

and therefore 20 B Z x| & 0. Set U, = .02 |B|*|Z1_+| and note that U, is a
monotonically decreasing sequence of nonnegative random variables. Hence U,, — U as

m — oo where the limit U exists almost surely. Since the limit must agree with the limit in

probability, U 2" 0. Thus

[o.¢]
ZﬂkZl_kaj)'O as  m — 00.
k=m

Hence X; = ZZO:() Bk Z,_} exists as an a.s. limit, and X,, = ZZOZO Bk Z, i is the stationary

solution of the AR(1) process.

4.1 Lemmas Needed for the Expansions

Before moving to the two-term expansion for X,,, we state and prove several lemmas that
come up in the subsequent proofs. Also in the upcoming sections, we shall use the notation

X =V +W where V =Zy+ 2y and W = >_}7, 8*Z, and further V ~ Fy, and W ~ Fyy.

Lemma 4.1. For any \3 < 1,
o ()]
Elexp| =W || < .
5
Proof. 1t suffices to show the alternative statement holds:

FE < 00.

exp (Aﬁ > 5%)
k=0
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Set £ = A\ < 1. Observe that

E

exp (g > 5%)
k=0

= HE [exp ({BkZl)} :
k=0
Choose any 0 < a < 1, then

E (eaZl) —_ / eazefz exp(—efz)dz — / Zfaefzdz — F(l — CL).
_ 0

[e.9]

Now notice that

1 ) 0o —alog(z) __ 1
- (/ z % Fdy — 1) = / (e—) e *dz.
a \ Jo 0 a

Also

1 alog(z)
—/ e 'dt| < log(z) for z2>1, and
aJo

1 alog(1/z)
- / e 'dt
aJo

1
§10g<—) for 0<z<I.
z

It follows that

1
(27— 1)e %
(= Je

< [log(z)le™,

which is integrable over the positive reals, and so by dominated convergence

1 o oo o
lim — (/ 2 % Fdz — 1> = / (—log(z))e *dz = / ze “exp(—e ?)dz
a0 a \Jo 0 —o0

= B(Z)).
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Thus, as a | 0
E(e*) =D(1 —a) =14 aE(Z)(1+ o(1)).

Of course,

BE(Z) = g L3 —a)—1

i - (1) =~

where 7y is the Euler constant defined in (1.7). Hence for k > kq large enough,

E [exp (£6°71)] < 1+ 2B E|Z4].

Therefore

I1 E [exp (¢8"2:)] < [] (1 + 268" E| Z1]) < exp <2§ > ﬂ’“E|Zl|>

k=ko k=ko k=ko

— exp Gg_ﬁk;mzl\) < o0

Finally, since 0 < £ < 1 we have the usual moment generating function

E () =T(1-¢) < oo,

and for k=0,1,.... k) — 1

E [exp (£6"Z1)] = T(1 — £8%) < oo

Putting it all together,

FE < 0.

exp (5 > B’%)
k=0
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]

One important consequence of Lemma 4.1 is that for any 0 < 3,£ < 1, the infinite product

of gamma functions converges. That is,

[[r(-¢8%) <o, (4.3)

k=0
and this product will show up in the expansions in the next three sections.

Lemma 4.2. Let 0 < 8 < 1, and choose a such that § < a < 1. Then as y — 0o

P(X >y)= /ay P(V >y —w)dFy(w) +o (e ¥?).

Proof. Observe that

o) ay

P(X >y)=PV+W >y) = / PV > y—w)dFW(w)—I—/ P(V > y—w)dFw(w). (4.4)

ay —o0

Now for 1 < A < 1

5, We have by Chernoff’s Inequality

/ P(V >y —w)dFy(w) < P(W > ay) < E (MW7) e /7,

Y

Additionally choose A so that A > %, which is possible because % < % Then by Lemma 4.1,

PW >ay)=0 (e_’\ay/ﬂ) =0 (e_y/ﬁ) . (4.5)
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Lemma 4.3. Let W be as defined in Lemma 4.1. Choose a and A such that 1 < X\ <

B <a<l,anda)>1. Then asy — oo

/ e dFy (w) = o (e’y/ﬁ) :

Y

Proof. By integration by parts,

e}

/aoo e“dFy (w) = — /OO edFy(w) = e Fy(ay) -|—/ Fy (w)e®dw.

Y ay ay

By Lemma 4.1 and Chernoft’s Inequality,

Fw(ay) < E (eAW/ﬁ) e Aaw/B,

Similarly, we find

| Futorerdw < g @) [

Y ay

Therefore for some ¢ > 0 we obtain

/: e~ dFy (w) < cexp (— [% +(1— a)} y) .

Finally, since f < a < 1 and aX > 1 we have that 1 —a + % > % and therefore

/ e~ dFy (w) = o (e’y/ﬁ) :

Y
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Lemma 4.4. For W defined in Lemma 4.1 and 0 < <1, E <‘W€%WD < 00.

Proof. Choose any 1 < A < 1. Then by Lemma 4.1, £ <€%W> < o0. Let v be such that

B
% + % = 1. Then by Holder’s Inequality in (1.18),

B (jwes|) < (g [ (eéwﬂl//\ < .

Lemmas 4.5 through 4.7 assume that —1 < § < 0. In this situation, write the sum as

k=0 k=0 k=0

Lemma 4.5. For —1 < <0, a >0, and T defined above,

P(T >ay)=o0 <€_y/52> as Yy — oo.

Proof. We first show that the lemma holds for 5Z+ 2Z;. Let Fj2z, denote the distribution

of 32Z;. Choose ¢ < 0 to be large in the negative direction. Then

P(BZy + 332, > ay) = P (Zo 327, < %)

oo ¢
:/; P<Z0<%—B2Z) dFﬂ2zl(Z)+/ P(Zg<%—622) dFle(Z)

—00

= (I)+ ({1).

Note that

sup P (Z() < % — ﬁ2z) = exp [_6_(%_520} ,
(<z<0 B
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and therefore as y — 0o (I) < exp [—6_(%_524)] — 0 because % — B%¢ — —oo for ¢ fixed.

Now observe that as y — oo

exp [—6_(%_6%)}

@_y/BQ

= exp {% — e_(aﬁy_ﬂ%)} — 0,

and so (I) =o (e*y/ﬁ). Next,

(I1) < Fyz () = exp |~/ 50 s (4 —oc,

and therefore P(8Zy+ 327 > ay) = o (e‘y/BQ) as y — 00. The next step is to assume that

for n > 2,

n—1
P (BZB%Zk > ay) =P (BU,—1 > ay) =0 <e_y/f82> as Yy — o0.

k=0

Consider the probability

P(BU, 1 + 877 Z, > ay) = P (Unl + 57, < %y)

00 ¢
= \/; P (Un—l < % — 52712) dFB2nzl (Z) —f-/ P (ZO < % — 52712) dFBanl (Z)

—00

— (1) + (I1).

We have by assumption that P (Un_l < %) =0 (e*y/ﬁﬂ), so for y large enough

ay om - ay 2n _ —y/B2
sup P(U,.1 < — — z| =P |U,.1 < —= — =ole™ )
i P (U< = me) = (v < - ) <o ()
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Therefore for any € > 0,

(I) < ee_y/’gz/ dFgeny, (2) < e Y/P°,
¢

and so (I) =o (e‘y/62> as y — oo. As for (I1),

(I1) < Fpeng, () = exp [—G_C/ﬁ%} -0 as () —o0.

Therefore as y — oo,
P (BZB%Zk > ay) =P(PU, >ay) =0 (e’y/m) )
k=0

Finally, we leap to the infinite sum 7= 3> "/7,. For any § > 0, there exists n, large enough
such that ’ZZ’;%H 3% Zi| < 8, because we know that !Z;’;WH B Zi| ©3 0 as ng — .

Consider

P(iﬁszkJr Z 52’“Zk<%> :P(Un0+(~]n0+1<%>.

k=0 k=ngp+1

We have that —§ < ﬁn0+1 < 0 almost surely, and so for any € > 0

P(Uno<%—5) gP(Un0+ﬁno+1<%‘y> gP(UnO<%y+5)

=0<P <Un0 + Upgi1 < %) < ee VP,

Thus P (Uno + 0n0+1 < %y) =P(T>ay)=o0 (e_y/ﬂz) as y — 00. O

Lemma 4.6. For —1 < <0 and T defined above, E <eT/52> < 00.
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Proof. First observe that

E <6T/62> = Eexp (% iﬁ%zk> - B (620/6) ﬁ B (652k+1zl> .

k=0 k=0

In Lemma 4.1, set £ = B!, This choice works since either —1 < B! < 0or 0 < ¥ < 1,

but in either case £ < 1. Then for k, large enough,

T 26 30
T/B2 -1 k7
E(e/’8><F(1—ﬁ )kl;[OE<e§’B )exp(l_ﬁE|Z1\)<oo.

Lemma 4.7. For —1 < <0,0<a <1, and T defined above,

/ e WDAEN(t) < 0.

Y

Proof. 1f Fr(t) denotes the distribution of T, then first note that by integration by parts,

eV /OO e'dFrp(t) = e Ye“Fr(ay) +e ¥ /OO e Fr(t)dt = (I) + (I1).

Y Y

By Lemma 4.5, for y large enough

(I) = e—(l—a)yp(T > ay) = e~ (1=a)y, <e—y/52> ’

and therefore (I) = o (e_y/ﬁz> as y — oo. Next, we have that for any € > 0 and y large,
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ey/52FT(ay) < € and thus e¥/*F(t) < e. Therefore

(I]) < ee™™ /C: L /a:o exp [— (% — 1) t} dt
= 1€_ai;2eyexp {_ (1 _Bgﬂz) y} =0 (exp [— (% + (1 —a))}) .

Thus (I1) =o (e*ymz) as y — 0o, which completes the proof. O

4.2 The AR(1) Process when 0 < § < 1

In the next three lemmas, assuming that 0 < 8 < 1, we perform calculations that all build
upon various pieces of Theorem 3.1. While the steps are similar to one another, due to the
subtle differences among Theorem 3.1 we need to examine each lemma separately. There are

three cases, treating 8 = = as the pivot point.

Lemma 4.8. I[f0 < 3 < % and Zy are i.i.d. standard Gumbel random variables, then as

Yy — 00

P(Zﬁka>y> Hr (1-5%e —-Hr (1—28" e 40 (e¥/?).
k=0

Proof. Let a and A be positive reals such that f <a <1, 1 < A < %, and A > i Then by

Lemma 4.2,
ay

P(X >y) = / PV >y —w)dFy(w) +o (e 7). (4.6)

—0o0

By Theorem 3.1, we have for y large enough and any w < ay that
1
PV >y —w) = T(1 = §)e ) = 21(1 = 28)e 20 4 R(y — w),
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where for some ¢ > 0

sup |R(y — w)e(y’“’)/ﬁ‘ < ec.

w<ay

Set K1 =T'(1— ) and K, = —3T'(1 — 23). Then

/ay Fy(y — w)dFy (w)
- (4.7)

Y Fyly —w) = Ke Cayw w o
:/ { Kye—2—w) Koe 20 d By (w) + K, / ey (w).

—00 —00

Now

Fyly—w) = Ke v 1 2y-w) _
Koo 2w =1+ ER(y —w)e =14¢€(y —w).

We examine the €(y — w):

1
sup |e(y — w)| = — sup ‘R(y — w)e(y—W)/ﬁe—(y—w)/BQQ(y—w)|

w<ay 2 w<ay
< gz fewo (= (5-2) =)
oy (070020,

Because (17“);# > 0, we have that e(y —w) — 0 as y — oo uniformly in w < ay. Consider

the piece

/ay[l + e(y — w)| Kae 2V dFyy (w)
oo (4.8)

ay

ay
= KQe_Qy/ e*d Fyy (w) + Kg/ e(y — w)e 2V dFy (w).

—00 —00
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Examining the first integral in (4.8),

ay

lim Ko dFy (w) = —%F(l —28) /OO e dFy (w) = —%F(l —2B)E (e*V)
1 " "
= —§F(1 —20) H E (626 Z’“) (4.9)

exp (Z 26k2k>
k=2
= —% []ra-2s.
k=1

= —%F(l —28)E

Turning to the second integral in (4.8),

‘KQ e(y — w)e 2V dFy (w ‘ ’/ (y — w)dFw (w ))

'/ (y — )W)/ /Bg . (4 >‘ <C/ ~=)/8 Fyy ()

< cevl? / B dFy (w) = cE (/%) e/?.

By Lemma 4.1, E (¢"/?) < oo and therefore

K, /ay e(y — w)e 20" dFy (w) = O (e_y/ﬁ) . (4.10)
Next, note that
/_OO P(1 = B)e"dFyw(w) =T(1—B)E (") = [[T(1 - 8. (4.11)

We now consider the integral

Kie™? / v e“dFy (w :H (1—p"e ¥ =T —pB)e? / h e“dFy (w). (4.12)

— 0 Y
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By Lemma 4.3, the last integral in (4.12) is o(e™%/#). O

Lemma 4.9. If § = %, then as y — oo

P(i(OE) Zk>y) Hr(1— (0.5) )( V_ye ) 40 (e ).

k=0

In particular, to five decimal places [[r—, T’ <1 — (0.5)k> = 2.55501.

Proof. Let a and X be positive reals such that 8 <a < 1,1 <A< 1 and \ > é Then by

Lemma 4.2,
ay

P(X >y) = / P(V >y —w)dFy(w) +o(e7). (4.13)

—00

By Theorem 3.1, for y large enough and any w < ay
PV >y—w)=re U™ — (y —w)e 20" 4 R(y — w),

where for some ¢ > 0

sup |R(y — w)eQ(y’“’)‘ <ec.
w<ay

Observe that

/_ZFV@ w)dFy (w) = V' / ARy (w)
N /_: [Fv< (— w) — \/me” W~ w)} g — e 5y ()

—(y — w)@—Q(y—w)

(4.14)

Now

Fyly—w) —vme @™ . Ry —w)e™
—(y — w)e2-w) N y—w

=1l+ely—w).
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For y large enough,

Ry — w)ev—w) c
sup |e(y — w)| = sup < ,
w<ay w<ay y—w (1 - (I)y

and therefore ¢(y — w) — 0 as y — oo uniformly in w < ay. Now consider

/ay 1+ €e(y —w)] [—(y — w)e‘z(y_w)] dFy (w)

ay ay
:e‘2y/ we* dFy (w) —ye_2y/ e d Fyy (w)

s —oo (4.15)
- [ ey = w)y - w)e o dF ()

=)+ (II)+ (II1).

We examine the three integrals in (4.15). By Lemma 4.4,

(I)=E(We") - / h we dFy (w) = E (We*™) + o(1). (4.16)
As for (II),
yli)ngo _ay e*dFy (w) = /_oO e dFy (w) = E (?V) = HF (1 — (O.S)k) . (4.17)

Examining (I1T),

- [ we e ar)| =| [ R - warie)
) R

—0o0

< ce” y/ e dFy (w) = cE (V) e,
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By Lemma 4.1, E (¢2") < 0o and so

(I)+ (I1I)=e [E(We™) +0o(1)] +0(e¥) =0 (e7). (4.18)
Next, note that

/_Z Ve dFy (w) =T (1-05)E (V) = [T (1 - (0.5)’“) . (4.19)
Collecting (4.15) through (4.19),

/_ava(y w)d Fyy (w HP<1— (0.5) )( ye ) + 0 (e7?)

[ee]

—/me™? /ay edFy (w).

By Lemma 4.3, the last integral above is o (e7?¥), and the result follows. O

Finally, we allow % < B < 1 and see that the formula is similar to the earlier two.

Lemma 4.10. ]f% < pB <1, then as y = o0

P (i Bka > y) = ﬁF (1 — ﬁk) [e—y _ %F (2 _ 5—1) e Y/B +o (e—y/ﬁ) '
k=0 k=1

Proof. Let a and X be positive reals such that # <a < 1,1 <A< and X > % Once again

consider the partition

P(X >y)= /ay P(V >y —w)dFy(w) + o (e7#?). (4.20)

—0o0

86



By Theorem 3.1, for y large enough and any w < ay

P(V>y—w)=T(1- e W™ — LF (2-571 e~ W8 L Ry —w),

1—-p

where for any € > 0 and y large enough

sup |R(y — w)e(y’w)/5| < €.

w<ay

Set K1 =1'(1 —f) and Ky = —%F (2 — 871). Then observe that

ay _ w 'R —w) = K e~ y—w)
/ Fv(y—w)de(W:/ { T Eoe™ 0P d By (w)

. . Ko - w)/P
oy (4.21)
+ / Kle_(y_“’)dFW(w).
Now
Fyly—w) - Kietv™) 1 (v—w)/B _
==Y =1+ ER(y —w)e =1+ ¢€(y —w).
Note that sup |e(y —w)| < . Consider the piece
w<ay K2
ay
/ (14 e(y — w)]|Koe™ @B Fy (w)
- ay ay (4.22)
= ng_y/ﬁ/ e“’/BdFW(w) + Kg/ e(y — w)e_(y_w)/BdFW(w).
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Examining the first integral in (4.22),

ay

lim [ Kee"PdFy(w) = KoF (e"P) = Ko F

Yy—00

exp (Z 5ka:+1)

o N (4.23)
:KQHE<65’“Z1>:_L Hrl_ﬂk
1-p
k=1 k=1
Turning to the second integral,
ay
‘Kg/ e(y —w)e”W/BdEy, (w ’ ‘/ (y — w)dFw(w )’
'/ (y —w)e (y—w)/Bo=(y— w/Bde< )‘ e/ e~ w/ﬁdFW(w)
< ee_y/ﬁ/ e PdFy (w) = eE (eW/B) e /B,
By Lemma 4.1, E (eW/B) < oo and therefore
ay
KQ/ e(y —w)e WPAEy (w) = o (e7V/F). (4.24)
Next, note that
/ T(1 - B)e"dFy(w) =T(1—B)E (V) = [[T(1 - 8Y). (4.25)
- k=1
We now consider the integral
ay o0
K™ / eVdFy (w H (1 —T(1—B)e? / e“dFy (w). (4.26)
—00 ay
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Collecting (4.23) through (4.26),

/_ay Fy(y —w)dFy(w) = [[T(1 - 8% {ey — %F (2-p81 e P +o(e¥P)

_ (1= B)e /OO eV d Py ().

Y

By Lemma 4.3, the last integral above is o (e’y/ p ), and the result follows. ]

4.3 The AR(1) Process when —1 < <0

Up to now we have assumed that 0 < § < 1 when performing the two-term expansions on
the AR(1) process with Gumbel innovations. We now turn to the other possibility, when
—1 < B8 < 0. With a few necessary changes and extensions, the derivation is similar to what

we saw in the previous sections. To get started, write

STz LY BR2 4 B2 =S+ T (4.27)
k=0 k=0 k=0

Notice that all the weights in T" are negative since all the #’s have odd exponents. Further
note that in S, 0 < 4% < 1 and so we may utilize the same techniques as earlier, but basing
our results on 32 rather than just 3. We shall split into three cases, but this time 5 = —‘/75

emerges as the necessary pivot point. Lemma 4.11 examines the first case, and the remaining

two are mentioned in Theorem 4.1 and proven in Appendices B.1 and B.2.

Lemma 4.11. If —g < B <0 and Z are i.i.d. standard Gumbel random variables, then

as y — oo

o

P<i5k2k>y> Hr (1" e — H (1 —28%) —2y+o(e—y/52>.
k=0
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Proof. First notice that by Lemma 4.8,

BQlPA

P(S > y) Hr 1 5%)e ﬁ e 0 (7). (4.28)

Let X =S+ T, and for some 0 < a < 1 write

00 ay

P(X >y) = / P(S >y — t)dFr(t) + /_ P(S >y — t)dFn(t). (4.29)

First,
| P> y—0ar) < P > a)

Y

which by Lemma 4.5 is o <e‘y/52> as y — 0o. Now by (4.28) we have that for y large enough

and any t < ay
100
2k 2k\ —2(y—
P(S>y—t)= Hr 1— %) —§HF(1_25 ) e=2070 4 R(y — 1),

where for some ¢ > 0

sup
t<ay

R(y — t)e(y’t)/ﬁz‘ <c.

Set K1 =[], I'(1 — %) and Ky = —1T[;2, ['(1 — 26%), and let Fg be the distribution of

S. Then observe that

W= W Fg(y —t) — Kie=W
| Fstw-nar - [ [ sly —t) — Ko }Kze_2(y_t)dFT(t)

o }(26 2

u (4.30)
+ K, / e~ WDAFL(1).

—00
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Now

We examine the e(y — t):

sup |e(y — t)| = sup |R(y — t)e(y—t)/ﬁze—(y—t)/ﬁQ62(y—t)
t<ay |K2| t<ay
c 1
sup |exp — =2 y—t)‘
|K2| t<ay ( (52 ) ( )

< e (~0=00-2),

(1-a)(1-25%)

Because 7 > 0, we have that e(y —t) — 0 as y — oo uniformly in ¢ < ay. Consider

the piece

/ay 14 e(y — t)]ng_Q(y_t)dFT(t)
o (4.31)

ay ay
= Kpe™% / e dFr(t) + K, / e(y — t)e 2D dFp(t).

—00 —0o0

Examining the first integral in (4.31),

JHEO = ngQtdFT =—= H [(1 - 25%) /_ . e*dFp(t)
15 1
=5 [[TA -2 () = - H 1 - 25%)E |exp (Z 2%+ 7, )
=1 k=1

(4.32)

|
|
| —
’:18?’”

INOE 25% H E (ew%HZl)
k=0

26216 HF 252k+1 HF 1_2/8]{7
k=0

—_

N —
o [\
&.’:1%
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Turning to the second integral in (4.31),

ay
‘KQ ey — t)e *VdEr(t) ‘ ‘/ y —t)dFr(t )‘
‘ / Y1)/ o~ (4—1) /5 dFT(t)' <. / Y 0I5 ()

< ce v/ / ot/ B? dFr(t) = cE <€T/,32> o v/B%
By Lemma 4.6, E (eT/ 52) < oo and therefore

K / Y ey = e 2D gEN (1) = O (6—9/52) . (4.33)

— 00

Next, note that

Ky /OO e'dFr(t) = KiE (") = [[T( - ) [T - ) = [T - 8%).  (4.34)

—00

We now consider the integral

g [ arn HFl— Bt e [ caFp() (1.35)
ay

—0o0

Collecting (4.32) through (4.35),

/ayﬁs( — B)dFr(t) Hr1—5k Hr —28")e 4 0 (/7

—00

— Kle_y/ €tdFT(t).
ay
By Lemma 4.7, the last integral above is o(e"%/#*), and the result follows. [
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4.4 The Complete AR(1) Expansion Result

In this short section, we state the main result of the chapter. Thereom 4.1 combines Lemmas
4.8 through 4.11, plus it includes the cases § = —‘/75 and —1 < 3 < —\/757 the proofs of which
are in Appendices B.1 and B.2. In addition, Appendices B.5 and B.6 contain tables of values

for the infinite products [T;~, ' (1 — 8*) and [];=, I' (1 — 28%), respectively.

Theorem 4.1. Let Z;, be i.i.d. standard Gumbel random variables. If 0 < [ < %, then as

Yy — 00

P <kZﬁka > y) = kl_[F (1 —ﬁk) e Y — %IHF (1 _ Qﬁk) e~ +0 (e_y/g) .
=0 -1 -1

When § < B < 1,
P (i 87z, > y) = ﬁr (1— 5% (e—y _ %F (2-87Y) e—y/ﬁ) +o(ev/P).
k=0 k=1

When —*/75 < B <0, and Zy are i.i.d. standard Gumbel random variables, then

o0

P(Ooﬁka>y> HF (1—p¥) e — H (1-28e 2y+0(e—y/52).

k=0
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If 6 = V2 , then

P<i5k2k>y> Hr (1- %) Hr( +V2(0.5) 1) e
_Hp(l_gk’)Hr<1+¢§(o.5)’“> ye ™ +0 (e7)

and to five decimal places the approximation is

P <Z B*Zy > y) = 1.19005¢ Y — 1.49210ye™% + O (e7%) .

k=0

Finally, if =1 < g < —‘/75, then

S ¥ T(1—-pr(2-p572 2
P(%Bka>y)zkl_[ll“(l—ﬁk){e_y—ﬁ( f_)@( B7) g-urs

+o0 (e_y/BQ) )

As a side note, if we have n < oo Gumbel random variables, then the products are taken

from k=0 or1l up ton—1.

4.5 The AR(1) Process in the Non-IID Setting

Finally, we shall derive a two-term expansion for the situation in which the Gumbel random

variables take different location and scale parameters. That is, X, = ocZ; + p with Z ~

A, 0 > 0. Such a situation would be ideal when a time trend exists in the location and/or

scale parameters. For instance, in the Peachtree Creek data set we considered a linear time

trend in the scale parameter via o, = 0 + ¢k. Often one may wish to define o;, = ge®* to

ensure that the scale remains positive. It may also be desirable to test for quadratic trends
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in the location or scale, or even using covariate terms. Such possibilities are discussed in

Coles (2001) and Coles (2008).

Because of the nonstationarity of the Gumbel time series, careful assumptions need to be
imposed if one were to build an infinite series. Instead, we focus on the finite weighted sum.
Define X;, = 0 for k < 1 and Y, = Y, 1 + Xj for 1 <k < n. Then Y, = 3720 65X, 4
where 2 < n < co. This situation is preferable because in data analysis, a time series model

would be fit to a finite series anyway. Observe that

n—1 n—1 n—1
d
Yn = Z ﬁk (Un—an—k + ,un—k) = Z ﬁkO‘n_ka + Z 6kﬂ'n—k
k=0 k=0 k=0

Some new notation is needed before discussing this generalization. First, since the series is
finite we only require 5 > 0. (The case where § < 0 will be left as an open question.) Put

= ZZ;; B*ty_i. Define 0 = max (ﬂkan_k) and M) = max (ﬂkan_k cBFo, ik < 5(0)).
That is, 5 and ) are the highest and second highest amongst the f*o,_j, and it is
assumed that there are no multiplicites of these two quantities. Finally, let 3™ 2 < m <
n — 1 denote the (m + 1)th highest of the 3*c,_x. To be clear, (0 > 1) > p2 > gB) >

. > A= In which case, we may rewrite the series as

n—1 1
Y, £3589 2+, = 5O [Z g— e+ T
k=0 k=

In what follows in Theorem 4.2, define V = Zy+ 628 Zy, W= 1 ﬁ Zk, and Y, = V+ V.

Then we shall derive the probability P(Y,, > y), or equivalently P (Yn > y*) where y =

1

This time the pivot point is % = 3.

Theorem 4.2. Let 3> 0 and Y, %), 7., and i be defined as earlier with no multiplicities
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of BO nor M. If 0 < gEO; < 2, then as y — oo a two-term expansion is given by

(k) (k) . )
PYn > y,) = HF( g(o)) —yn__H ( 255(0) )Q_Qy"-l-O(e_y/fB()) ,

In the particular case where 5 = %, the expansion is

5(0)

Pl¥a > 4n) = HF<1__)6% hr( 5(0)) _Zy”+0<_y/ﬁ<l)>'

Lastly, when < g(oi < 1, the expansion is

n—1
Y _ s s BENgorys 50
P(Y,>y)) = ~go 50! \2~ 50 Anzr L= Gm )€
EAs ~v —y/BM
+ H r ( 30 e " +o (e > )

Proof. We present the proof of the first equation only; the other two follow similar extensions
of Theorem 4.1 and may be found in Appendices B.3 and B.4. Let a be a positive real such

that gu; < a < 1. Then observe that

*

P(V >y —w)dFy(w) + /ayn P(V >y —w)dFy (w).

*
Yn —00

o0

P(V+W>y;;):/

Forl<\)<?28 )Wehave

B

[P s - widFw) < POV > ay)
ayy,
5(0) AW @(0) ay’
S FE |:6Xp <W exp —W .
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Further choose A so that A\ > %, which is possible because % < % Then

o (0) * )
/ P(V > y; - w)dFW(w) =0 (exp (—%)) =0 (6—3//5( )> _
ay;,

By Theorem 3.1, we have for 3’ large enough and any w < ay;; that

) . 1 93(1) )
PV >y, —w)=T (1 - %) e~ Wnmw) _ QF (1 — _56(0) ) e 2n—w) | R(y: — w),

where for some ¢ > 0

R(y: — w>6ﬂ<0>(y:—w)/6<1>

sup <c.

w<ayy

Set K; =T (1 — @> and Ky = —%F (1 — 2;—;?) Then observe that

ayn i} ayy, T ;;_w - K e—(y;j—w) i
| Fotin - vt = [ [P Z B e iy (w)

[e.e] —00

ay;,
+ K, / e~ W) d By (w).

—00

Now
Fy(yp —w) — Kje W) 1

_ . x 2(yk —w) _ *
Koo 200 =1+ KQR(y” w)e 1+ €(y; —w).

We examine the €(y; — w):

sup |e(yf —w)| = — sup |R(y; — w)eﬁ(o)(y:—w)/ﬂ(”6—5(0)(yié—w)/ﬁ“)eﬂyﬁ—w)

w<ayy, |K2| w<ay

oo (55 -)-)

— Su
(K] oy
— (0)_ (1) *
< exp (T WBT =250y
| K5 £
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Because 0 — 281 > 0, e(y* —w) — 0 as y — oo uniformly in w < ay?. Consider the

piece

ayy,
/ [+ ey — )] Kae= 20" dFyy (w)

o9
*
ayn

ayy,
= Kye 2 / e dFy (w) + Kg/ e(y — w)e 2 d Fy (w).

—00 —0o0

Examining the first integral,

ayy, 1 250 o0
lim Ky dFy(w) = —=T (1 - —) / e*d Fyy (w)

yn—oo J_ o 2 BO)
1 230 - 1 250

1 28 n—1 25092, /50 1t 23®)
__§P(1_W HE<6 )__§HF L=Zw )

=2 k=1

bl

The last calculation was possible because 1 — 2,6’ﬁ<_(:)) > (0 forall 1 <k <n—1. Turning to the

second integral,

ay;; ay;,
K / (y — w)e W dFy (w) = / R(y: — w)dFyy (w)

—00 —00

- / B R(y: — w)el " wimw)/pD =8O W) /6D g 1 ()

—00

ay;, 0o
< c/ 6—6(0)(yn—w)/5“’dpw(w) < Ce—ﬁ(o)yn/ﬁ(”/ GB(O)U)/B(I)CZFw(w)

— 00 —00

— ¢E (eﬂ(O)W/ﬁ“)) e BOy/BY
Therefore

K2 /ayn E(y:; B w)efz(y;;—w)dFW(w) —0 <e,5(0)y;/5<1)> —0 <e,y/5(1)) .

—00
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Next, note that

0 (1) (1) n—1
/Oor (1—%) edFy (w) =T (1—%) E()=]]r (1— .

k=1

We now consider the integral

e [ BEN BON e [
K1€ yn/_oo e dFW(w)IHF(l_W)e yn—F(l-m)@ yn/a' e dFW(U})

Collecting all the terms,

n—1 -1

Y

—0o0

k=1

+0 (e—y/6<1>> —T(1—p)e ¥ /OO edFy (w).

*
ayn

For the last integral above, note that by integration by parts

Yr Yn ayy,

Observe that

ay;, (k) n ®
/ Fy(y; —w)dFy(w) =[] T (1 - %) eV % IIr (1 23 > 2

0
e BO)

/ e’dFy (w) = —/ e dFy(w) = e Fy (ay) —I—/ Fy(w)e”dw.

.— O AW ©)\
e Fy(ayr) < E {exp <55T>} exp (— <6ﬁ(1) — 1) ayZ) :

Similarly, we find

o __ (0) 00 (0)
/ Fy(w)edw < E {exp (Bﬁ()l\)W)} / exp <_ﬁﬂ# + w) dw
ayy, a

BONW 3O\ -1 BO)
-5lew (5)] (57 1) oo (- (5w -

1) o).



Therefore for some ¢ > 0 we obtain

O O Xa
/ e~ W= dFy (w) < cexp (— (%T +1- a) yZ) .
ayn

50
EOk

5(0))@
O

/oo e*(y;‘l*w)dFW(w) — 0 (675(0)y2/5(1)> —0 <€fy/6(1)> _

Yn

Finally, since 8 and therefore

50 +1—a>

><a<1and)\>1wehavethat

The result follows since o (e‘y/ﬁ(1)> + 0 <6_y/5(1)) =0 (e_y/ﬁm>. O]

As mentioned earlier, Theorem 4.2 assumes that 3 and 8" each have multiplicity of one.
For application purposes, thanks to the choice of 3*) this will almost always be the case.
However, it may be possible to have ties when arbitrary constants are chosen. For instance, if
we were convolving a sequence of random variables from two different Gumbel distributions,

there may indeed be multiplicities to consider. Chapter 6 discusses how such a situation

would be handled.

In order to ease the notation with ), we restate Theorem 4.2 using new constants, which

are assumed to be positive.

Theorem 4.3. Let d,k = 1,--- ,n,n > 3 be positive constants, and define ¢, = dy), the
order statistics arranged from largest to smallest. That is, ¢; > ¢y > ¢c3 > ¢4 > -+ > ¢y, and
in particular ¢; = max(dy). Assume that c; and co have multiplicities of 1. If 0 < 2¢y < ¢4,

then as y — oo a two-term expansion is given by

P (é .2y, > y> Hr (1 —~ —) e v/ — Hr ( ) “wlen 4 O (e7vie).
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In the particular case where 0 < 2co = ¢y, the expansion is

P (Z dk;Zk > y> HF (1 — —) —y/er _ HF <1 — %) C_ _29/01 +0 (6—?;/02) )
k=1 1

Lastly, when 0 < c; < 2c¢q, the expansion is

PN diZi>y)=——2-T(2-2)[[r(1- %) evle
k=1 1= €2/ 123 €2

4.6 Examples of AR(1) Processes

We now present several examples of how the process may appear in data analysis problems.
In all of the following examples it is assumed that S > 0 and that there are n < oo units of
time. We denote the Gumbel realizations as Xy, ..., X,,. It can be shown that the mean and

variance of the process Y,, are given by

n—1 2 n—1
E(Y,)=7Y Bonr+m, and Var(Y,)= % B*a? . (4.36)
k=0 k=0

Example 4.1. First, when all the p; = 0 and o, = 1, Y,, reduces to the original process

described in Theorem 4.1, taken over a finite time period. In addition,

(1 - 67)

v(1 - B")
6(1—p52)

E(Y,) = 1-3

and Var(Y,) =
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If 0 < 8 < 1, then we may extend the process to an AR(1), in which case as n — oo

2
ﬁ and  Var(Y,) — S

E(Y,) — 61— )

Example 4.2. Now let pp = p and o = 0,0 > 0, the general i.i.d. case. Then 1, =
w(l—p™) /(1 — ) and observe that

n—1 _ n—1
P(Y, >y) =P (Z B Zny > 2 U“") =P (Z B2y, > y:i) ,
k=0 k=0

allowing Theorem 4.1 to be used. Observe that in this situation, O (e’y;/ B ) =0 (e’y/ op ) and
O (e7) = O (e7%/7). Further note that for Lemma 4.9, yre 2 = Le=2n 4 O (e72/7).

Finally,

Vo +p)(1 - 6") m?o*(1 - p*")

EY,) = ( and Var(Y,) =

1-p 6(1 —5?)
If 0 < B <1, then as n — oo
EY,) —» 28 ad Va (Y)—>—7r202
n 11 I n .
1-p 6(1 —5?)

Example 4.3. Focusing just on the location parameters, let u, = p + 0k. Notice that this
definition is how we defined the location parameter given season in the Peachtree Creek

project, and # = 0 corresponds to no significant linear time effect. Then

(p+0n)A—p5") 0[6—nf"+ (n- 1"

fin 18 (1—5)2

Example 4.4. Now suppose graphical evidence suggests the location parameter may have

a significant quadratic effect. Then define jy = u + 61k + 6-k%. By carefully computing the
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formula for Zz;é k?B*, it can be shown that

_ (p+ 01n + 6n?)(1 — B") B (61 + 2n6:)(B — nB™ + (n — 1)B™+1)
" 1-f (- 3P
N 6> [B(1 + B) — n28" + (2n% — 20 — 1)8™ — (n — 1)257+2]

(1-p)°

Example 4.5. We now turn to the scale parameters. In data analysis it is often of interest
to define o, = 0e?*, ¢ > 0, which ensures that the scales remain positive. In this example,
we assume that 0 < fe™® < 1. Since f¥o,_p = oe™®(Be %) is strictly decreasing in k, it
follows that s = B*g, 4,k =0,1,...,n — 1. Then y* = (y — f,,)/c and the pivot point in

Theorem 4.2 is 31V /3 = Be=?. As y — oo, the first result in Theorem 4.2 reads

n—1 n—1
P(Y,>y)=]]T (1~ (Be™?)) e — % [Ir (1 =28 9)) 2 40 (/A7)
k=1 k=1

provided that 0 < Be ™ < % Lastly, given appropriately computed f,,, the mean and

variance of Y,, are

wo (1= (B et (1= (Be=?)
e e N e (e8]

Example 4.6. Now suppose graphical evidence suggests defining the scale parameters in
a linear fashion, namely oy, = 0 + ¢k, 0 > 0. The advantage of such a definition is that
linearity makes interpretation of the parameters much easier than an exponential definition.
Of course, one has to be careful defining the parameter space of ¢, for if ¢ < 0 then at some
point the scale parameters may become negative. Nevertheless, for application purposes we
will have a finite time period, so in some cases it is possible to fit a model and allow ¢ to

take on any real values. This definition is what we used in the Peachtree Creek data set.
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The first task is to obtain £ and M. If the *o,_; are strictly decreasing in k, then
BO) =g +ng and Y = B(o + (n — 1)¢). However, this may not happen, depending on the
choice of values for the parameters. In which case, observe that the ratio of two consecutive

terms of f*o,_ is

ﬁ’““(o+¢m—¢(k+1))_ﬁ(l_ ¢ )
Bi(o+én—ok) o+ on—ok/)

The maximum value ﬁ(o) occurs at k = L, where L > 1 satisfies

¢ ¢
(- smmma) <t (i)

We need not investigate the equality possibility since it is assumed that multiplicities in the

B0 and BM do not happen. Combining the two conditions, locate the L that satisfies

g
—l—n<L<i—|———|—n+1.

B e
1—ﬁ+¢ 1-58 ¢

Then Y = max [8L" (o 4+ ¢(n+1— L)), (6 +¢(n —1—L))]. Lastly, given f,,, the

mean and variance of Y,, are

EOM=7®+¢M(1_W>—7¢C%JMHHn_”mﬂ)+ﬁn

1-p (1-p5)?
and
R0t on)? (1= (o +on) (B —nf + (n— 1)FHD
Var(Y,,) = 6 ( 1— B2 ) N 3 ( (1—p2)? )
7T2¢2 ﬁ2(1 4 52) _ n2ﬂ2n + (2?”&2 — 9 = 1)62(n+1) _ (n _ 1)252(71-1-2)
* 6 ( (1—f2)3 ) .
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4.7 Simulation Results

Using a similar setup as in Chapter 3, we now check how our six approximations behave for

various values of —1 < < 1. Let Y represent the AR(1) process. We simulate N = 10

million values of Y and graph the empirical tail probability, as well as the appropriate

second-order approximation from Theorem 4.1, in Figure 4.1. For comparison purposes we

also graph the first-order approximation.

Tail Probability

Tail Probability

Tail Probability

0.03

0.00

0.03

0.00

0.03

0.00

Figure 4.1: First and Second-Order Approximations for 0 < § < 1
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We first investigate what happens for various positive values of 3, especially near the g = %

pivot point. Figure 4.1 displays the empirical probability (solid black line), the first-order
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approximation (dashed red line), and the second-order approximation (dotted blue line)

for the 95th percentile and higher. Table 4.1 displays the raw errors at specified percentiles,

defined as empirical minus estimated probabilities. Table 4.2 contains the relative errors, the

raw error divided by the estimated probability. In both tables, for a given S and percentile

the better approximation is highlighted.

Table 4.1: Errors in Approximations of Theorem 4.1

16 Approx 95% 97.5% 98% 99% 99.5% | 99.9%
0.10 1st -0.0013 | -0.0003 | -0.0002 | -6.2e-5
2nd 1.3e-5 2.0e-6
0.20 1st -0.0015 | -0.0004 | -0.0002 | -5.2e-5
2nd 1.9¢-5 2.5e-6
0.40 1st -0.0024 | -0.0007 | -0.0004 | -7.9e-5 -1.5e-6
2nd 2.8e-5
0.49 1st -2.2e-5
2nd 0.0247 0.0055 0.0034 0.0008 0.0001
1st -0.0044 | -0.0012 | -0.0008 | -0.0002 | -8.8e-5 | -2.3e-5
0.50
2nd
0.51 st
2nd 0.0292 0.0068 0.0043 0.0010 0.0003 1.1e-5
1st -0.0093 | -0.0028 | -0.0019 | -0.0006 | -0.0002 | -2.9e-5
0.60 ond
1st -0.0861 | -0.0303 | -0.0219 | -0.0082 | -0.0031 | -0.0003
0.80
2nd
0.90 1st -0.0048
2nd 3.1579 0.8407 0.5604 0.1670 0.0523

99.99%
-3.9e-7

2.6e-6

-1.3e-6

-4.0e-6

-5.0e-7

-3.6e-6

3.3e-7

-1.6e-5

-0.0002

At first, we see very similar results as those from Figure 3.1. Once again, for 0 < § <

0.40 there is virtually no difference in estimation between the approximations, although

the second-order is slightly more accurate. Also the second-order approximation is better

than the first-order for § = 0.50. In addition, we once again have a neighborhood around

£ = 0.50 in which the first-order is better for lower percentiles. This time, the neighborhood

is approximately [0.47,0.53].

However, after this neighborhood ends we start to see some differences. For § = 0.60 and

0.80, the second-order is again better than the first, although for the latter both approxi-
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Table 4.2: Relative Errors in Approximations of Theorem 4.1

3 [ Approx | 95% | 97.5% | 98% 99% | 99.5% | 99.9% | 99.99%
0.10 Ist -0.0260 | -0.0128 | -0.0110 | -0.0061 -0.0039
ond 0.0026 | 0.0020
0.20 Tst -0.0296 | -0.0155 | -0.0101 | -0.0052 0.0262
ond 0.0039 | 0.0025
0.40 Tst -0.0466 | -0.0261 | -0.0205 | -0.0079 20.0016 | -0.0132

ond 0.0055
0.49 Tst -0.0217 | -0.0382
ond 0.9760 | 0.2847 | 0.2068 | 0.0833 | 0.0288
Tst Z0.0304 | -0.0450 | -0.0391 | -0.0217 | -0.0172 | -0.0222 | -0.0049
0.50
2nd
0.51 Tst -0.0347
ond 1.3989 | 0.3720 | 0.2727 | 0.1149 | 0.0565 | 0.0111
0.60 Ist 20.1569 | -0.1021 | -0.0869 | -0.0569 | -0.0357 | -0.0286
ond 0.0033
0.80 Tst -0.4497 | -0.3855 | -0.2479 | -0.1346
ond 4.0589 | 0.7410 | 0.5431
0.90 st
ond -1.0161 | -1.0306 | -1.0370 | -1.0637 | -1.1056 | -1.3138 | -3.2141

mations begin to perform poorly for percentiles less than the 99th. And finally, for g = .90
both approximations are useless. This is not a surprising result since according to Tables

B.5 and B.6 in the appendices, the infinite products in the expansions grow large quickly.

In Chapter 3, we discovered that the two approximations were very accurate and indis-
tinguishable for —1 < g < 0, and for that reason excluded the results. However, here we
actually do have some interesting differences as  gets closer to -1. Figure 4.2 explores vari-
ous negative values of . This time we investigate what happens in a neighborhood around

the pivot point = \/75 We estimate the neighborhood to be [—0.73, —0.68].
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Figure 4.2: First and Second-Order Approximations for —1 < 5 < 0
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As before, for 5 not too near the pivot point we see hardly any difference in estimation.
In the neighborhood around £ = ‘/75, the first-order approximation is better, and this time
including the pivot point itself. But for —1 < 8 < —0.80, both approximations are poor

except for very high percentiles. The conclusions we can draw are as follows:

1. On g € [-0.73,—0.68] U [0.47,0.53)\ {0.50}, use the first-order approximation.

2. On g € [-0.80,—0.73) U (—0.68,0.47) U {0.50} U (0.53,0.80], use the second-order

approximation.
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3. Except for very high percentiles, both approximations are useless for 5 € (—1, —0.80)U
(0.80,1).

4.8 Fitting the Model to the Peachtree Creek Data

Having established the theory behind Theorem 4.2, we now fit the model in (4.37) to the
Peachtree Creek data set used in Chapter 2. We first review the notation that was used.
Recall that z;; was the maximum mean streamflow in year ¢ and season i, t = 1,...,52 and
1 = 1,...,4. The seasons were, respectively, summer, fall, winter, and spring, while ¢ = 1

corresponded to the time period June 1, 1958 through May 31, 1959.
To update the cumulative distribution function, we have
1

&y — Mz’(t)} &

iz — pu(?))

O 0, (4.37)

F(ﬁti):exp{— {1—1— },{i%o,l—l—

where p;(t) = pu; + nit + pre_y1,; and o0;(t) = 0; + ¢it, otherwise

Flzs) = exp {— exp {— (f“_—"’(t)ﬂ } & = 0. (4.38)

oi(t)

Recall that summer and winter (i = 1, 3) satisfied the Gumbel model, while fall and spring
(1 = 2,4) had a shape parameter that was significantly different from 0. Therefore we refit

the data keeping these same shapes per season, only introducing the ;. If Inl; is the log
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likelihood per season with a total of either five or six parameters, then for fall and winter

52

it = =3~ Jogton() + (£ +1) o (14 SO0

t=2

provided that both of the 1 + [§;(zy — pi(t))]/oi(t) > 0, otherwise InL; = —oco. For summer

and winter,

L, = — i {log(o—xt)) + (xtg_—ﬁ)(t}) exp [‘ (xt«;—g)(t))} } |

t=2

The results for all 22 parameters are shown in Table 4.3.
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Table 4.3: Estimated Parameters per Season

Season | Param. | Estimate SE 90% Confidence T-Stat | P-Value
& 0 — — — —

Summer m 7.2813 6.2497 (-3.2098, 17.7723) 1.1651 | 0.2500
By 0.0023 0.1191 (-0.1977, 0.2023) 0.0196 | 0.9845
b1 5.2739 3.9347 (-1.3312, 11.8790) 1.3403 | 0.1867

Fall
Winter
-11.0343 8.1862 (-24.7760, 2.7075) -1.3479 0.1843
0.0329 0.1176 (-0.1646, 0.2304) 0.2798 0.7809
-11.2262 7.0487 (-23.0587, 0.6062) -1.5927 0.1181
Spring

(-0.0825, 0.0388)
(-21.3061, 7.1536)

-0.6056

0.5478

-0.8352 0.4080

We should point out that in Figures 2.9 and 2.10, there was no visual evidence of a significant
effect from the most recent observation in any of the seasons. That is, in the ACF and PACF
plots, there were no spikes at lag 1. Therefore it is not a surprise that none of the §; estimates
are significantly different from 0. We might as well drop them from the model and stick with
the one we fit in Section 2.4. The rest of the estimates are fairly similar to those in Table

24.

Nevertheless, to illustrate how Theorem 4.2 works in practice, we shall keep working with
this model from Table 4.3. First, if V;,7 = 1, ..., 4 is the variance-covariance matrix for season

1 and the 0’s are matrices with zero entries and appropriate dimensions, then the complete
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variance-covariance matrix of all 22 parameters is given by

Furthermore, the V; are

Vi

Vi 0 0 0
V= 0 Vo 0 O |
0 0 Vs O
0O 0 0 V4
36263.491  7424.394 —600.696 —11.959 —235.107
7424.394 11190.541 —-160.155 —1.584 —331.015
—600.696 —160.155 39.058  —0.248 7.046
—11.959 —1.584 —0.248 0.014 0.056
—235.107 —331.015 7.046 0.056 15.482
0.018 —0.030 2.047 —0.171 —0.001 —0.157
—0.030 27345.946 17984.451 —702.497 —6.601 —774.701
2.047 17984.451 19075.122 —581.837 —3.224 —806.763
—0.171 —702.497 —581.837 56.215 —0.181 33.720
—0.001 —6.601 —3.224 —0.181  0.008 0.157
—0.157 —774.701 —806.763 33.720  0.157 47.063
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164972.554  25866.431 —2719.661 —34.301 —690.081

25866.431 57585.694  —T773.508 0.928 —1578.765

Vz= —2719.661  —773.508 67.013 0.270 24.185

—34.301 0.928 0.270 0.014 —0.044

—690.081 —1578.765 24.185 —0.044 49.685

and

0.051 —12.851 9.006 —0.0155  0.001 —0.406
—12.851 65893.547 54686.021 —1455.030 —2.991 —1350.792
Vi — 9.006 54686.021 78705.844 —1528.451  0.799 —2113.446
—0.016 —1455.030 —1528.451 47.258 —0.006 49.950
0.001 —2.991 0.7993 —0.006  0.001 —0.036
—0.406 —1350.792 —2113.446 49.950 —0.036 71.793

We examine summer and winter since these are the only two seasons which contain a Gumbel

fit. Starting with summer, is, = 1144.9810, A\” = 728.2586, and A" = 1.6860, so we use

the first equation in Theorem 4.2. Then it can be shown that

P(Ysy > y) ~ 4.8238¢ 0014 _ 11.6346¢ 00027,

We can also compute the approximate high percentiles. If P = P(Ysy > y) is lower than

0.05, for instance, and y is the corresponding streamflow, then the 100(1 — P)th percentile

18

y ~ —728.2586 log (0.2073 —
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Now we turn to winter: i, = 1184.5620, 8" = 513.7875, and B = 17.2798. Then by the

first equation in Theorem 4.2,

P(Ysy > y) &~ 10.2429¢70091% — 52 5613¢70003%,

Winter’s 100(1 — P)th percentile is then

104.9168 — 210.2453 P
y ~ —513.7875log (0.0974 — v ) .

105.1227

Table 4.4 highlights some of the key upper percentiles. Note the missing value in the table;

setting P = .0001 in winter’s percentile equation gave a nonreal result.

Table 4.4: Estimated Percentiles per Season
Season 95% | 97.5% | 98% | 99% | 99.5% | 99.9% | 99.99%
Summer | 3309 | 3824 | 3988 | 4497 | 5005 6187 7975
Winter | 2725 3092 3210 | 3579 3957 4993 -

4.9 Open Questions

There are a couple of questions that are currently left unanswered. The first topic is how
to derive the expansions in Section 4.5 for the case where 8 < 0. In Section 4.4 we grouped
the random variables by positive and negative weights, so we conjecture that the negative
expansions to complete Section 4.6 would be grouped in a similar way. The expansion should
then be controlled by the two largest positive weights. Therefore the expansions would be

extensions of those derived in Section 4.4.

The second topic to investigate is extending the approximations in Section 4.6 to include
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infinite sums of weighted random variables, such as those summarized in Section 4.5. This
generalization would require some additional proofs and assumptions, namely some exten-
sions of the lemmas in Section 4.2. In addition, some sort of summability condition on the
%) would be needed. One common requirement on constants that appears in other disci-
plines is to assume that ), ‘ Bk ‘/\ < oo for some A > 0. We conjecture that this stipulation,
along with some additional lemmas, would provide the probability approximations for an

infinite series with Gumbel convolutions.
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Chapter 5 The Convolution of Gumbel Random Variables

5.1 Introduction

In the realm of environmental and nonenvironmental statistics, it is often of interest to study
the behavior of the sum of maximum observations. For example, suppose an insurance
company wants to find the distribution of the total maximum claim amounts taken over
specified blocks of time. If a Gumbel distribution fits the monthly maximum claim amounts,
then the company may want to know the distribution of the total claim amounts over a year
(or indeed, the average monthly figure). This problem involves deriving the distribution
of twelve Gumbel random variables. If the variables all have different location and scale

parameters, then we may use Theorem 4.3 to approximate the upper tail probabilities.

However, if the Gumbel random variables are independent and identically distributed,
then the weights will all be equal. In which case, the asymptotics need to be studied in a
very different manner, and the formula we eventually derive is quite different from the results

in Chapter 4. This chapter explores how the approximation changes under such a setting.

As another example relating to the Peachtree Creek data, recall that winter was shown
to be stationary in the location and scale parameters. Suppose we refit the data for that
season, removing year as a covariate, and then we find the distribution of the total winter
maximum streamflow over five years. All weights would be equal, and we would need to use
the results from this chapter to answer that question. This topic will be explored in Section

5.8.

Rootzén (1986) carried out a similar study on a more general class of independent random
variables. In that paper, he derived the first-order expansion under some assumptions on

both the variables and the weights. The Gumbel distribution is a special case of his result.

116



In this chapter we employ similar techniques that Rootzén used in his proof. We start
by finding the two-term expansion for the sum of just two Gumbel random variables using a
creative Taylor series approach. Then in Section 5.3 we find the general two-term expansion
for the sum of n > 2 variables which fall into a more general class, then reduce to the
Gumbel case. After examining simulation results, we derive further terms in the expansion
in Section 5.4. The final result in its entirety is summarized in Section 5.5, with examples,

more simulations, and a data analysis in the remainder of the chapter.

5.2 The Convolution of Two Gumbel Random Variables

To begin the procedure, we first derive a two-term expansion for the tail probability of the
sum of two Gumbel random variables. We do this by performing an infinite Taylor series
expansion and then working out which terms are negligible. While a somewhat lengthy
and tedious procedure, our method has the advantage that if one desires more terms in the
expansion, one can simply modify the proof to get those extra terms. In the next section,

we introduce some theory to get a general two-term expansion.

Let Z1, Z5 be independent and identically distributed standard Gumbel random variables
with distribution function Fyz (x) = exp{—e "} and therefore density function fz (z) =

¥ —00 < x < 00. The formula for the upper tail probability of such a convolution

e Yexp—e~
is

P(Zy+Zy>y)=1— /_OO fz,(x)Fz,(y — x)dx. (5.1)
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Adapting (5.1) to the Gumbel case gives

(e}

P(Zy+Zy>y)=1- / e "exp{—[eT" +eYe"]} du

—0o0

=1 —/ e_[”e*yfl]d:c = / e ® [1 — efe_y‘r—l} dzx.
0 0

Define t = e7¥%. Then it is of interest to examine the tail probability as ¢ | 0, which is

equivalent to letting y — oo. Then the tail probability formula is

P(Zy+ Zy > y) = / e ” [1 — e_zxil} dx.
0

(5.2)

During the proof of the expansion, we need to compute the integral / x % %dx for k > 1.

Integration by parts tells us that when £ =1 and a > 0
/ v e dr = —log(a)e™® —I—/ log(z)e *dx.

Lemma 5.1 establishes the recursive answer for £ > 2.

J
1
Lemma 5.1. Define i (j) = H (—> forj=1,.. k—1. In particular, TIj(k —

- \k—1L
Thenfora>0andk>2

Mk — 1) = gl

k—1

/aoo e tdy = [Z 1) e F Ik (5)

Jj=1

(—1)*log(a)e”

e 4+

(-1t

+ =1 /aoO log(z)e *dx.
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Proof. We proceed by induction on k. When k = 2, integration by parts provides

/ v e "dr = a e — / v e dr = a"te ™ + log(a)e™® — / log(x)e *dz.

Then (5.4) reduces to

/ v % dr = a" e + log(a)e™® — / log(x)e *dx,

because I13(1) = 1. Now assume that (5.4) is true; we shall do integration by parts on

/ e~ ez dy.
L=k The integral

Setting u = e~® and dv = z~*+*Ydx, we obtain du = —e *dz and v = -7

becomes

1 k—1 ) (_1)k+1
= —a Pe T — (=17 e FI,(5) | e + o log(a)e™
i=1 '
—1)k [
+ ( k') / log(xz)e *dx
(k+1)-1 (< 1)+
_ i,y | ee 4 EDTT “a
jz:; ( ) a k‘+1<]) € ((k“" 1) — 1)| Og(a)e
(_1>(k+1)—1 /oo .
+ CEEn log(z)e “dx,

as required. O

Now recall Euler’s constant 7 from (1.7), which to five decimals is v ~ 0.57721. We introduce
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two integrals which come from Choi and Seo (1998) and will be used in the next proof:
v = —/ log(z)e *dx (5.5)
0

and
1 ]
0% :/ M1 — e"”]d:z:—/ e dx,
0 1

the latter of which can be rewritten via integration by parts as the more useful
1 00
vy :/ vl — e "dx —/ log(z)e “d. (5.6)
0 1

We now state and prove the following theorem.

Theorem 5.1. Let Zy, Zy be independent and identically distributed Gumbel random vari-

ables. As y — 00, a two-term expansion for the tail probability of Z1 + Zs is
P(Zi+Z>y)=(y+1-2v) e’ +ole™).
Proof. Set t = e7¥ and split (5.2) into two integrals:

o0 t
P(Zy+ Zy>y) = / e " [1 — e_tfl] dx +/ e " [1 — e_tfl] de=Ji+Jo.  (5.7)
t 0

Consider J; first. An infinite Taylor expansion gives

00 O qyi-lg
Jy = / Z—( )., wTle " dx.
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Observe that

because 0 < 27" < t7* on z € (t,00). Therefore the integrand is integrable on the counting

and Lebesgue measures, and so by Fubini’s Theorem,

oo

z 1tz [e%¢} )
Z / e dx.
! t

=1

Split into the {i = 1} and {i > 2} cases via
z 1tz o] )
J, = t/ x e fdr + Z / x e dx,
t

and simplifying using Lemma 5.1,
i1

z 1tz ) o
Jy = —tlog(t)e " + t/ log(z)e *dx + Z { (=)7L (f)e ™
t

+(§__li;! log(t)e™ + ,__ ) I /00 log(x)e_xdx}
= “”tJH

= —tlog(t)e " + t/ log(z)e “dx +
t =2 j=1

_Ztlog 0010
il —1)! z‘z—l' gl

=)+ )+ ({III)+ (IV)+ (V).

We now examine each of the five pieces in (5.8). To start, (/) = —tlog(t)+o(t) as t | 0, and
by (5.5),

t
(I1) = —~t — t/ log(z)e *d.
0
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Observe that

t/o log(z)dx = t*log(t) — t* = o(t),

t
’—t/ log(x)e ™ *dz| <
0

and therefore (I1) = —yt+o(t) as t | 0. Next, (I11) provides terms involving ¢*,7 = 1,2, ....

We pick off those involving just ¢ and show that what remains is o(t). To do this, it is

convenient to change the order of summation. Observe that

_tj
Al

‘<—1>Z'+jtjni<j>’ 1

1!

which is integrable on the two counting measures because ¢ | 0. Thus

— Z+]H )t]

f: HJt]H():ii(l) 1L () tJ_AH_ZZ

i=2 j=1 j=1 i=j+1 J=2i=j+1

where Ay = > 7, (Jé—)_; A1 converges and, to five decimals, is equal to -0.42872. As for the

remainder,

© —1)"IL(5) -
ZZ( )@'! (])t]

j=2 i=j+1

Thus the remainder converges and is o(t), and therefore

TP = Aite " +o(te™) = Ayt + o(t). (5.9)

(I liz (CO™LG)

=2 j=1

Next, (IV) is
% —t

B Z t.lo'g(t)e <
— il(i—1)!
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and therefore (IV') = o(t). Examining (V),

- tz = —x . 1 2 2

so (V) = o(t) as well. Putting all five terms in (5.8) together, as ¢ | 0

J1 = —tlog(t) + (A1 — )t + o(t). (5.10)

The next step is to examine J5 in (5.7). We employ another Taylor series expansion:
t B t ©© (_1)1 ) .
Jo = / e ” [1 —e 1} dr = / —q [1 — et } dx.
0 0 ; 7!

Observe that 1 —e ! <1—e¢® " <lonzc (0,%), and therefore

1 )
<'—x7
gl

7!

]ﬂ 1]

which is integrable on both measures. Therefore we use Fubini’s Theorem again, along with

a change of variables:

Jo = i <_z'1) /Ot 7’ [1 - e’tfl] dx = i <_Z'1)Z /loo(txl)i(th) [1—e ] da

i=0 ) i=0
> (—1) . ©
= Z< ,') t’“/ z~(+2) [1 e ﬂ dx
1=0 ¢ 1
= Z (_'1)th+1 {/OO 2~ gy — /00 x_(i+2)6_$dm}
? 1 1
=0

123



= Z (_.1)275’*1 L - /OO o~ ey
: 7! 1+ 1 1

[e'e) o (_1)1 ) 1 /oo i B
— 1= 2 Tdr |t tz—i—l i (i+2) z ] ]
{ /1 T e x} + Z i 1 : x e “azr

Now we use Lemma 5.1 with £ =7+ 2 and a = 1. The last integral above becomes

i+1 ;
_1)z+1 00
2=y = 12 YL —l—( / log(z)e *dz.
/1 Tr=e +2 7) (i+1)! ) og( )

7 1 oo
Put an upper bound on R = Z ) it {? - / 22, $da:}
¢ 1

0o B i+1
1] 1 1 00
Rl <2y = INT () ——— ] g
0o B i+1
1] 1 1 1 o0
<2y = -1 / 1 *d
= le' vl e ;z’+1+(i+1)! | los(@)e m]
=17 1 1 o
<2¥ "2 DL B | —rq
= z;u SR (i+1)!/1 og(x)e I}

=1 1l & 1 o
42 - —1 - - —x
< 2t {1 +/ log(x)e_:”dx} < 212
1

Therefore R = o(t), and so

Jy = {1 _ /1 2 ] t+ oft) = {1 _ely /1 N log(:c)ezdx] £+ o(t).

124

(5.11)



Putting (5.10) and (5.11) into (5.7), as t [ 0

P(Zy+ Zy > y) = —tlog(t) + {Al —y+1-et+ / log(x)e_xdx] t+ o(t).
1

It remains to show that A; — v+ 1 — et +/ log(xz)e *dx = 1 — 27. The first step is to
1

expand the following integral as a Taylor series:

which is integrable on the counting measure and on z € (0,1). Next, we write A; —e™! as a

Taylor series by first expanding e~

~

B Y N
A —e :Z'!(i—l)_, il :Zi!(i—1)+z il

S SN L
; i L—ﬁl]—;m—;w

Now (5.6) provides

1 [e's) [e's)
—y = _/ x ! [1 — e‘x] dx +/ log(z)e “dx = Ay — e +/ log(z)e *dz,
0 1

125



and finally

A —y+1—et+ / log(z)e ®de =1 — 2.
1

Converting t = e, the two-term expansion as y — oo is
P(Zi+Zy>y)=(y+1—2y)e Y +o(e?).

[]

Corollary 5.1. Let Z1, Zy be independent and identically distributed Gumbel random vari-
ables, and let ¢ > 0. As y — 00, a two-term expansion for the tail probability of c(Zy + Zs)
18

P(c(Zy + Z3) > y) = (% +1-— 27) e~V 4 o(e7V/°).

5.3 The Two-Term N-Fold Convolution

We were able to derive a two-term expansion for the sum of two Gumbel random variables,
albeit in a messy way. It should come as no surprise that for more than two variables,
derivations with Taylor series would be too involved and complicated. It would be much
more sensible to show the result holds for a more general class of distributions, then use
that result to specialize to the Gumbel. The purpose of including the preceding proof was
to show an interesting alternative method of checking the distribution for two Gumbels. We

now turn to the general setting.

Let F' denote a distribution function with support in [0, 00). It is supposed that F'(0) = 0

and that for some o > 1,

1-F(y)y=e¢?+o(e™) as y— oo (5.12)
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Define

= — /0 T ATy — oY) /0 T V(P () + eY) = lim { /0 " erdp () —y}, (5.13)

Yy—00

and so we see that 6 provides a measure of how much departure there is from F' and the

standard exponential distribution. Now define

1 1+ n6
A _ n—1 n—2 Y > 2. .
n(y) (—(n—l)!y ML )e , n>2 (5.14)

The goal is to show that A,(y) serves as a two-term expansion for G,(y) = 1 — F*(y)
as y — oo. The first task is to demonstrate that A, approximately satisfies the same

convolution equation as G,.

Lemma 5.2. Forn > 2, as z — o0

/0 " A = par(y) - / = P = ) (y) + A, )7 ()

= Au1(2) + 0 (2" %e7).

Proof. For n > 2, define k§n) = (n—ll)! and k:én) = % and write

Anly) = (KPy 4 k2 ) e,

We first notice that for any £ > 0, an integration by parts establishes that

z/2 z/2
/0 (z —y)ke¥dF(y) = /0 F(y) (—k(z — ) (2 — y)k) eVdy

o (5.15)
-(5) F(G) e+



with —k(z —y)* 1 + (2 —y)* =1 for k = 0. Now for k >0
2/2 o 1/2 o
[Pt @ = [t e -
0 0

Next note that for any € > 0 and z large enough

v k| F Y ¢ (a=1)v=
/ (1—y)"|e?F(zy) — 1| dy < e/ el gy < — e (embvE
1/vz 1/vz (a—1)z
and therefore
1/2 o 1
/ (1—1y)k eV F(zy) — 1| dy =o (—6_((1_1)\&) . (5.16)
1/vz Z

Note that

v v " (5.17)
= / (eVF(y) — 1) dy +/ ((1 - —) — 1) (eVF(y) — 1) dy
0 0 z
Thus we have as z — 00
Vz y\F _ Lk [ _ 1
/ (1 - —) — 1| [e"F(y) — 1] dy < —/ y|e"Fy) —1|dy = O (—) , (5.18)
0 z z Jo z
and further for any € > 0 and z large enough
/ ‘eyf(y) _ 1‘ dy < e/ e—(a—l)ydy - Le—(a—l)\/g
vz > a—1
so that
/ |eYF(y) — 1| dy = o (e_(“_l)ﬁ> : (5.19)
vz

128



Noting that
/OOO (e"Fy) — 1) dy = /OOO (Fly) —e™)d(e’) = - /OOO e’d (F(y) —e™) =0,
we have from (5.17) to (5.19)
P /sz(l —y)f (eVF(yz) —1)dy =0+ 0O (%) : (5.20)
Hence from (5.16) and (5.20) we have as z — oo
/02/2(2 —y)F (e"F(y) — 1) dy = 62"+ O (z"71). (5.21)

Therefore from (5.15) and (5.21) we obtain

[t = (3) F (5)
z/2
+/0 (k="' +(z—y)") dy
+ /02/2 ("F(y) = 1) (=h(z =)™ " + (2 —)") dy

=) F) e+t ror— (- <§>’“>

2

1 k+1 z\k+l k—1
+—k+1(z ~()") vo
(=71).

(5.22)

o —

Now we compute

22 22 2/2
- / F(z — y)dAu(y) = — / (Flz—y) — e ) dA,(y) - / VA, (y).



We obtain

z/2 z/2
- / dA(y) = = A, (5) + An(0) + / (Kt + K57y 2) dy
0 2 :

IO (n) _
(n) (Z\" 1 k 2N\ T k Z\n—1 e
= k) (§> + (5) + 2 (§> +0(2"7?).

n n—1

Observe that for some ¢ > 0

z/2
JARGEERE

X ((n _ 1)k§”)yn72 T (TL _ Q)kén)ynf?s _ k;”)ynfl _ kgn)yn72> e*ydy‘

z/2
/0 (Flz—y) — e ) dA,(y)

z/2
< Ce—z/ e—(a—l)z/Qyn—ldy -0 (Zne—(a—l—l)z/Q) )
0

Finally we have
W)= ( () o)

Use k =n —1and n — 2 in (5.22) to obtain
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Summing (5.25) to (5.27),

[ e —varw) ~ [T a4 ()T ()

0

K wy . K\ ) -
:TZ+ k19—|—mz +O(Z )6.

The lemma has now been proven since, going back to our definitions k%n) = ﬁ and
kS = (1::’;(;!, we have

k(”) 1 1
1 __:ngr)

n n!

and

k" (= DW6+ (=Y 6 14nf 14 (DO ey
1 (n—1)! (n —1)! (n—1)! 9 -

O

For the next theorem we assume that the random variables are nonnegative, but we will
remove this restriction later. The next lemma establishes the expansion for the convolution

of two random variables.

Lemma 5.3. Let F be a distribution function with support in [0,00) satisfying condition
(5.12), and let 6 and A, be defined as in (5.13) and (5.14) respectively. In particular,

As(y) = (y+1+4+20)e Y. Then forn =2, asy — o©

1— F2(y) = (y+ 1+ 20) eV + o (ye (*+Dv/?).

131



Proof. We have

Next, write
z/2 z/2 . z/2
/ F(z —y)dF(y) = ez/ (e(z’y)F(z —y) — 1) e’dF(y) + ez/ e?dF (y). (5.28)
0 0 0
We have
z/2 P z/2 o P o] o
/ eVdF (y) = 5 / e'd(Fy) —e¥)==+46 +/ e’d (F(y) —e™). (5.29)
0 0 z

Next,

Thus we have

z/2
/ edF(y) = g + 040 (e D=/2). (5.30)
0

Moreover, for any € > 0 and z large enough, using (5.30)

z/2 . z/2
/ }e(z’y)F(z —y) — 1| eVdF(y) < ee(al)z/2/ e’dF (y)
0 0 (5.31)

< e (@ D)z/2 (g + 60+ 1) )
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Thus from (5.31) we find

z/2
e_z/ |e(z_y)F(z —y) — 1| edF(y) = o (ze” (O‘H)Z/Q). (5.32)
0

Therefore from (5.28), (5.30), and (5.32) we obtain
z/2_ 5
/ F(z —y)dF(y) = (5 + 9) e“+o (ze_(o‘“)z/Q) ,
0

Lastly, [F (%)}2 = e 7 + o (e (@/2) and therefore 1 — F**(2) = (2+1+20)e”

0 (26_(a+1)z/2). 0
We now use induction to derive the expansion for the convolution of n variables.

Theorem 5.2. Let F' be a distribution function with support in [0,00) satisfying condition
(5.12), and let 0 and A,, be defined as in (5.13) and (5.14) respectively. Then for n > 2, as
Yy — 00

Guly) =1—F"(y) = Au(y) + O (y" %) .

Proof. Lemma 5.3 takes care of the case n = 2. Next, suppose that as y — oo, G, (y) =

A, (y) + O (y"3e7Y), and we shall show that the case n + 1 holds. By Lemma 5.2,

. z/2 z/2
Goa(2) — &m>a/cu )MU+A F(z — y)dG(y)

{/ Ay (s — y)dF(y) — /ZF(z—y)dAn(y)+An<g>F<§>}
G (5)F () o o

z/2 z/2
=£ mm—w—muﬂmM@+£ F(z — )d (Caly) + An(w))

(@ (G) Q) FR) o).
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Now we use the induction hypothesis to find that for some ¢ > 0

z/2 z/2
/0 Gz —y) = Au(z —y)] dF(y)| < ¢ /0 (z —y)" e EVAF (y)

(5.34)
z/2 P
< ce_zz“_g/ eVdF(y) < c2" e " <§ + 6+ 1> =0 (2" %7),
0

where we have used (5.30) to bound the last integral. Next, through integration by parts

Z

/Oz/z B (Coly) + A(y)) = —cP <@n (5) A, (g)) +1— A,(0)

z/2
T / (o) — Auly)) evdy.

By the induction hypothesis, we find that for n > 2 the above expression can be written as
z/2
/ e (Crly) + Anly)) = O (="2). (5.35)
0

Next, we write

z/2 z/2 .
/0 F(z — 9)d (Guly) + Auly)) = ¢ / [ VF(z — y) — 1] ¥ (Culy) + Au(y))

z/2
b / ed (G (y) + An(y)) -

Note that

—Zz

z/2 o
‘ / (VF(z —y) — 1) ¥d (Caly) + Aulw))

z/2 z/2
< e(@tD)z/2 / eden(y)—/ eYdA,(y) | .
0 0
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Further, note that if X;, 1 <i < n, denotes a sample from distribution function F', then for

sufficiently large z we have the upper bound

Similarly, one establishes that — foz/ >evdA,(y) = O(z"). Therefore we obtain
z/2
| TG0 (Gat) + A5) = 0 (%), (5.36)
0

Finally
@ ()4 (IF() -0t oan

From (5.33), (5.34), (5.36), and (5.37) we have

Gri1(2) — Appa(2) = 0 (2" %) .

Hence the induction step, along with Lemmas 5.2 and 5.3, establishes the theorem. O]

To generalize this result, we now relax the restriction that F' has support in [0, 00). In order

to allow for mass on the negative half line, we define the conditional distributions F'; and

F_ by

Fo(y) = % for y>0
and F_(y) = % for y<o0



Note that if X ~ F, then

(X|X >0)~F, and (X|X<0)~F..

Let X, ..., X, beiid from F. Denote a random subset of {1,...,n} by

I={i:1<i<n,X; <0} Let (X;,i>1)and (X;",i > 1) be two independent sequences

7

of iid random variables with X;” ~ F_ and X;" ~ F,. Observe that

(Xiiel),(Xui¢ DI L (X7, 1<i < |I]), (X 1<i<n—|I])).

That is, conditional on the set I, the nonpositive random variables (X;,7 € I) and the
positive random variables (X;,i ¢ I) are independent groups of variables with common
distribution F_ within the nonpositive group and F, within the positive group. Therefore

conditionally on I,

1] n—|I]

P(Z&Szﬁ) =P X7+ > X <y
i=1 i=1 i=1
Let H,,(y) = F*™(y) and G,(y) = F;'(y). Then

P (ZX’ < y‘[) = Hm * Gn—\[\(?/)-

Taking expectations over I, we obtain F*"(y) = EH; * G,,—1/(y), and therefore

1= P = X (1) ) (FO) ™ Hx Gt (5.39)

k=0
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Now we will be able to use the results on distribution functions with support on the positive
half line to achieve the desired extension to distributions with support over all reals. In

addition to condition (5.12), we make the assumption that for some g > 1
Fly)=o0(e") as y— —o0. (5.39)

Theorem 5.3. Suppose F is a distribution function such that F(y) = e + o(e™®) as
y — oo for some a > 1 and F(y) = o (eﬁy) as y — —oo for some 8 > 1. Then for y large

enough,

'y”_z + O(y"_3)) e Y, (5.40)

where

0=— /000 e’d (F(y) —e™) +/ e!dF(y). (5.41)

—00
Proof. We first need to make an observation. Let K be a distribution function with support

over the positive half line such that for some ¢ > 0

cK(y)=eV+o(e™) as y— o0,

where o > 1. Then an inspection of the proof when ¢ = 1 shows that

nFN . 1 n—1 1+n9
K (y)_((n—l)!y =)

y" 2+ 0 (y”_3)) e Y, (5.42)

where

0=— /OOO e’d (cK(y) —e™?) = lim (c /0 eVdK (y) — z) : (5.43)

Z—00
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Now consider the contribution from the k£ = 0 term in the sum in (5.38) given by

(F(0))" Guly) = (ﬁyn_l + gn+_n29)+! Yy 4+ 0 (yn_3)> e’

where

0, = /0 " vd (Fly) — e )

and where we have used (5.42) and (5.43) with ¢ = F(0) and K = F,. Similarly, we find

that the contribution from the k& = 1 term in (5.38) is given by

/ Golily — wdF_(u)

—u)" 2 WA (u) + O (y"Pev) (5.44)

)"
/

0
)'y 2e_y/ e"dF(u) + O (y""e7?) .
Finally, if 2 < k < n then note that for y > 0

(F(0))* (F(0))"" (1 = Hyx Gui() < (F(0)" " Crily) = O (y*1e) (5.45)

=0 (y”_3e_y) )

Hence from (5.38) and (5.42) through (5.45) we obtain

*n _ 1 n—1 1+n9 n—2 n—3 —y
b=F (y)_((n—l)!y Ty TOU ))6’

where

0=0,+ / : eVdF (y) = — /0 " evd (Fly)—e™¥) + / D eVdF (y).

—0o0



From this theorem we may finally specialize to the Gumbel distribution.

Corollary 5.2. Let F(y) = exp(—e™¥),—00 < y < oo denote the Gumbel distribution.

Then

1= () = (™ g 00 ) e,

where v is Euler’s constant and equals the mean of the Gumbel distribution.

Proof. First observe that F'(y) satisfies the two hypotheses of the theorem. In particular,

Flyy=1l-exp(—e?)=e?4+0(e?) as y— oo,

and so F(y) = e ¥ + o (e™) for some 1 < a < 2. Next, for any 3 > 1

Fy) _ exp(=e™)
eﬁy o eBy

—-0 as y— —oo,

and therefore F(y) = o (eﬁy). Lastly, it can be shown that 6 = —~. O

Observe that Theorem 5.1 is a special case of Corollary 5.2 with n = 2.

5.3.1 Simulation Results

We now want to check how well our second order approximation performs in simulation
studies, as well as to what extend the approximation is an improvement over the first order
result from Rootzén (1986). To run the simulation, we test Corollary 5.2 using n = 2,5, 10.

Letting Z;; ~ A,i=1,...,N,j =1,...,n where N = 10 million, we compute X; = Z?zl Zij,
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thereby building the empirical cumulative distribution function of X, the convolution. In
the graphs we focus on the upper one percent of the distributions. The two approximations

we are testing are, for large enough v,

_ 1 L — 1 _ 1l—ny _ _
F — n—1_-y F — n—1 n—2 Y
W =Gy ¢’ ad ) ((n—l)!y T )e

Figures 5.1, 5.2, and 5.3 show the results for n = 2,5, and 10, respectively.

Figure 5.1: Gumbel Convolution, n = 2
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Figure 5.2: Gumbel Convolution, n = 5
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Figure 5.3: Gumbel Convolution, n = 10
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Here are some immediate observations. First, for n > 2 the first-order approximation
overestimates the true probability, while the second-order underestimates. This should not
be surprising, since the (1 — n+y) in the approximation’s second term is always negative,
which pulls the estimated probabilities back down. Second, both approximations eventually
approach the empirical probability as y grows large. And third, for n at least 5, the second-
order approximation is actually worse than the first-order for most of the percentiles. Only
after a certain high percentile does the second-order approximation finally overtake the first-

order, but this threshold seems to grow with n.

To check how the two functions behave at specific percentiles, we examine Tables 5.1 and
5.2. Table 5.1 displays the raw errors at each percentile, defined as empirical probability mi-
nus the approximated probability. Therefore a negative difference means the approximation
overestimated the probability, while a positive difference indicates an underestimate. For
each sample size and percentile we highlight the cell that gives the more precise approxima-
tion; in other words the smaller error in absolute value.

Table 5.1: Errors in Approximations of Probabilities
n | Approx | 95% 97.5% 98% 99% 99.5% | 99.9% | 99.99%

Ist | -0.0015 | -0.0007 | -0.0005 | -0.0003 | -0.0001 | -2.2e-5
2nd

| o dﬁdﬁl@ﬂ
2nd 0.0469 | 0.0196 | 0.0148 | 0.0063

10 1st

2nd 0.2136 | 0.1062 | 0.0843 | 0.0404 | 0.0192 | 0.0033 | 0.0003

Table 5.2 displays the relative errors of each approximation, defined as the error from Table
5.1 divided by the approximated probability. Again, a negative relative error denotes an
overestimate, and a positive relative error an underestimate. For each sample size and

percentile we highlight the cell that gives the smaller relative error.
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Table 5.2: Relative Errors in Approximations of Probabilities

n | Approx 95% 97.5% 98% 99% 99.5% | 99.9% | 99.99%
1st
2nd

5 1st
ond_ 151955 | 55903 | 2542 L0915 | LITTL | 00521 | 05820
1st

10 2nd 69.1836 | 19.5277 | 16.2080 | 10.8818 | 8.3623 | 5.5143 3.6136

With n = 2, the second-order approximation provides a reasonable improvement even for as
low as the 95th percentile. Around the 99.99th percentile the first-order overtakes the second
in precision. But for larger sample sizes, even as low as n = 5, the first-order provides a more
accurate estimate up to a certain percentile, after which the second-order finally provides
an improvement. In the case of n = 5, the second-order is better only after the 99.99th
percentile. When n = 10, we do not see any evidence of an improvement even at the 99.99th

percentile, although presumably it eventually happens.

The conclusion we draw from this simulation study is that as sample size increases, the
second-order approximation is actually worse than the first-order up to higher percentiles,
after which the improvement may finally be noticeable. Therefore these results motivate
getting more terms in the approximation. In the next section we establish theory for just
that. In fact, our upcoming general result is that for the convolution on n Gumbel random

variables, one can derive an n-term expansion.

5.4 The General N-Fold Convolution Expansion

After examining the surprising simulation results, we now turn to the task of deriving a more
general expansion for the convolution of Gumbel random variables. Whereas in the previous

section we made some assumptions about the distribution function, obtained a general result,
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and then specialized to the particular case of the Gumbel, here for simplicity we assume that
the distribution is the Gumbel. We introduce the necessary notation, and then derive the
formula with the necessary theory before conducting further simulation results. Finally, we
include in Appendices C.1 through C.4 tables of numerical values that are needed in the

formula.

Let F' denote a distribution function. We ultimately want F to be the standard Gumbel
distribution, but we proceed to obtain our expansions by considering distribution functions

with support on (0, 00) and (—o0, 0] separately.

For the (0, 00) support case, suppose

F(z) = A(xz) — A(0), x>0, (5.46)

has the same tail area as the Gumbel, but F' is a defective distribution since F(oc0) =
1—A(0). Since convolution is defined for functions of bounded variations, including defective
distributions, we shall proceed by first working with the defective F' and adjusting later to

include the negative half line.

For k > 2, let Ai(z) be an approximation to F**(z) = F**(co) — F**(z). We shall assume

that the error term in the approximation is exponential, namely for some o > 1

Feo(z) = Ap(z) + 0(e™®%)  as  x — oo.
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Note that

F**(00) = /000 F*(k_l)(oo)dF(:p) = F*(k_l)(oo)F(oo) = ... = [F(c0)]*.

Decomposing the approximation, write

Ag(x) = (Z akvixi> e, x>0. (5.47)

1=0

Before proving the main result, we need to introduce three more symbols that will be used

in the expansion. Define 6, and (; as

s :/ zFetd (—
0

=
_l’_
)

=
x5
V
S

(5.48)

and

Ck = / wFetdA(x), k>0. (5.49)

Also for 0 < i < m, define p;,, as

- 'l' m' m—(k1+-+k;) i CL 22
“i’m_Z(kly...ki!) ((m—[kr1+---+ki])!><0 H(ﬁ) , (5.50)

L=1

where the sum is taken over all nonnegative integers k1, - - - , k; such that k;+2ky+- - -+1k; = 1.

5.4.1 The Proof on the Positive Half Line

We begin with a useful lemma that lays the groundwork for the expansion.
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Lemma 5.4. If G and K are two improper distribution functions with support on the positive

half line, then

Proof. Observe that

G K (oo /K JdG(x) = K (50)G(0)

and

T R W) / Ko — y)dG(y / (K (00) ~ K (x — y)] dG(y)

Next, we have
/x : [K (00) — K (2 — y)] dG(y) = K (o) [G(oo) e, (_)} -/ K(z — y)dG(y)

and
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Substituting, we find

X

[ ) = Ko - placty) = K [6(e0) - 0 (3)

T T

-k (35) [ -c(5)] + // (G (00) = Glw = y)] dK(y)
= K(e)Gloo) = K(o0)G (5) = G0l (5) + X (5) € (3)
+ /OI/2 [G(00) — G(z — y)] dK(y)

= (Ko =K (3)) (Gl =6 (3)) + // (Glc0) — Gz — )] dK (y).

Thus we find
z/2 /2 N\ — /1
Gx K(x)= K(z —y)dG(y) + / G(xr —y)dK(y) + K (5) G <§> (5.51)
0 0
as required. N

Now we have, with F' given in (5.46) and with support in (0, 00) using approximation (5.47)

in (5.51), that for y large

PO (y) — /0 " F 'y — 2)dF(z) + /0 " Fly—a)dr () +F" () T (3)
- // [Acly — @) + Buly — 2)] dF (2) + /OWF(y — 2)d (~ Ax(z) — Rely — )

w [ (G) rotem ] P (G).

where for y large enough and any € > 0, sup |Rp(y — 2)e®| < € and Ry(z) = F**(z) —

O<z<¥
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Ai(x). Dividing into six pieces, we have

P = [ - ware) + [* Ty - nacae) 4 ()T (2)
+ 0y/2 Ri(y — 2)dF(z) + /Oy/zﬁ(?/ —2)d(—Ry(y —z)) + 0 (e“"y/QF (g)) (5.52)

— (I)+ (I1) + (IIT) + (IV) + (V) + (V).

Examining (I) first,

k-1

v/2 /2 [ ,
Ap(y — z)dF(z) = /0 Z api(y — x)Z] eI dF (z)

=0

= /0 o klakz (;) yf(—l)i—fx"—j] e Ve dF () (5.53)

0

Il
e
L
IS
>
~
N——
—
|
—_
SN—
<.
d
<
<.
Ql
<
N
<
~
o
&@»
|
.
aQ
8
QU
o
—~
S—

Now using the definition of §;_; given in (5.48),

y/2 y/2 _ y/2
/ ' e"dF (x) = / ' ed(—F(x)+e ) — / ' etd(e™")
0 0 0

vz o —
=0;_; + / ' dx — / ' etd(—F(x) + e ") (5.54)
0 y/2
1 g\l [ _ B
o (O [T T e
j+i_j+1 5 y/Q:c e“d(—F(x) +e™®)

Noting that d(—F(z) + e™®) = —e [l — exp(—e~?)] dz, the last integral in (5.54) can be
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rewritten as

— / ot d(—F(x) + e ") = / 7771 — exp(—e )]dx
y/2 y/2
oo - o (_1)L7167La: e (_1)L71 /OO o
= x' —dx = —_— x' e " dx.
L 2,
By induction, it can be shown that forn >1and L =1,2,---,
0o 1 N n 1 y —t t—1
n_ —Lx _ (7 —Ly/2 J . —Ly/2 __ n_ —Ly/2
/y/zxe dx—L<2> e Y +;Lt+1 (2) }:Io(n ple V== Oy e 7),

and therefore as y — oo

/ g ey = Oy e v/?),
y/2

Even in the case where i = j, the asymptotics still hold in that the error term is O(e=1¥/2).

Thus as y — o0

o N (—1)Et e i
/ 71 — exp(—e ")]dx = Z —( L)‘ / s ey = Oy e v/?).
y : y

/2 I—1 /2

Equation (5.54) now reads

" iR () = 0 L (Y7 oiev 5.55
/0 v e"dF (x) = i—j+m<§) +O(y"e 7). (5.55)
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Substituting (5.55) into (5.53),

y/2
/0 Ay — 2)dF(z)

Il
=
X
/—:
~__
—
-
N—r
<
<
<
o
<
_ 1
IS
<
+
—_
/N
NSRS
N———
<
<
Jr
—
—_
+
Q
/’\
@
\
w
<
~
no
\_/

Note that provided a < %

i ,—3y/2
. ye . i (3_

lim = lim yle” G =0,
y—oo e~ Y Y—00

S0 now we require 1 < a0 < % To conclude,

k-1 ¢

=33 a (;) (—1)iyie {el L <12/>ij+1} L OWe?).  (5.56)

P 1—7+1

Moving on to (I1) in (5.52),

d R i k=1 k-1
_%Ak(x) = T dr (Z_; ak,ixi) e’ =— (Z iaimmi_l — Z ak,iﬂ) e "

i=1 i=0

. (5.57)
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Then

y/2
/0 Fy — 2)d(~Ax(x))

y/2 k! , ,
= / [6_(3’_“”) + Ri(y — m)} Z:(a,mwZ — iammz_l) +ao| e “dx
0 i=1
y/2 [k-1 , ,
= ey/ Z(ak,ixl —dap ") 4+ apo | dx (5.58)
0 i=1
y/2 k—1 ‘ ‘
+ / z:(a;mxZ —dag; Y + apo | Re(y — z)e “dx
0 i=1
— (IIA) + (IIB).
Examining (/1A),
k=1 wy/2 , , y/2
(ITA) =€ Z/ (apx" —iayx" ) dx +/ apodx
i=1 70 0
= 1 5 | (5.59)
- Y\ % y
RO RN ORI OIRAON
Turning to (/IB),
y/2 [k-1 ‘ ‘
’([[B)| = / Z(ak,imz _ iakﬂ'mﬂil) + ago Rk(y _ x)ea(y*z)efxefa(y*x)dx
0 i=1

< ee” W el Dy

v/2 [ F1 ) ,
/ Z api(z" — i) + ago
0 i=1
k-1 y/2 , y/2
Z ar.; / (" — iml_l)e(o‘_l)rdx + aho/ el g
i=1 0 0

=ece”
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=ce MY

k—1 y/2 y/2
Z Qi / el DTy — z/ el gy
0 0

i=1

y/2
+ axo / el g
0

By induction and integration by parts, it can be shown that for a > 1 and n > 1

y/2 y n
/ ge Vo dy = (o —1)7! (—) el /2 1 (1) Hp) (o — 1) (v
0

2
n—1 L y n—1-L

+ TN () (@ = 1)TE T (n - (—) ,
L_O( )" a—=1) g( P35

and therefore as y — oo
y/2
6—ay/ .In@(a_l)xd.T -0 (yne—(a-i-l)y/Q) )
0
Using this result,
(IIB)| < € |[{O (y"e~@H0/?) 4 ay (o — 1)7F [em@FDW/2 _ emav] L

If we choose 1 < § < O‘T“, then

—(a+1)y/2 _ —ay 283 — -1
lim € ¢ = lim {exp (M) _ e(aﬁ)y} —0.

y—00 e—By y—>00 2

Note that the condition 1 < f < « is automatically satisfied since o > 1. Similarly,

yne—(a+1)y/2

lim ¥— =0,
Y—»00 e_ﬁy
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and therefore (I1B) = o(e™?¥) as y — oo. Combining this result with (5.59) in (5.58), (I1)
in (5.52) reads

(1) = {Z O ()] e (g)} Fole ™). Go0)

As a side note, since we must select 1 < a < %, it follows that we should choose 1 < 8 <
o+l < 3. Now consider (I1]) in (5.52). Since F(z) = e+ O(e~2*), it is certainly true that

F(x) = e 4+ o(e™®) for x large. Therefore

(II1) = Ay (%) F <g> _ rzi s <g>l] o Y/2 [e—y/2 + O(e—ay/2):|

[k—1
- Z Api (g) [e7V + o(e(*TDw/2)]
L =0 i
o1 ;
= g ; %) eV +0 (yk—le—(a+l)y/2) 7
L =0 i

eV +o(e ). (5.61)

w(BFE) - [Su ()

It remains to derive the overall error term in (5.52); namely expressions (IV), (V'), and (V).

Lemma 5.5 does just that.

Lemma 5.5. In (5.52), (IV)+ (V) + (VI) = o(e™™) as y — oo for 3 previously defined.
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Proof. In what follows we assume that y is large. We examine (IV) first:

y/2
/0 Ry(y — x)dF(z)

y/2 y/2
< eeay/ e dF(x) = eeo‘y/ e*e T exp(—e )dx
0 0

1 1

_ o — _ _ € _ _

=ce O‘y/ r % dx < ee O‘y/ z %dr = e Y [e(a 1)y/2—1}
e—Y/2 e—y/2 o — 1

__ € [e=(@+Du/2 _ gmav] — (=),

a—1

Next, observe that in (V)

y/2 _
/O Fly — 2)d(~Ruly — 7))

[e*y/2 + o(e*ay/2)} [Rk(y)eayefay — R, <g> eay/2€7ay/2}

<€ [e—y/2 + 0(€—ay/2)] [e—ay . e_ay/g}
=€ [e_(2a+1)y/2 — (o2 4 (6_3ay/2) ‘o (e_ay)}

€ [0 (e—ay) _ 6—(a+1)y/2} — 0(6—,3y)_

Finally, consider (VI) = o (e *¥/?F (£)). Observe that

e~ W2 (%) — o~ W/2 [e—y/2 +o (e—ay/2)} — o (atl)y/2 o(e™) = o(e‘ﬂy),

and therefore (VI) = o(e=?¥). The result follows. O

Before stating our result for the positive half line, it is worth pointing out that (11) + (I11)
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has a somewhat simplified form:

Using the results of (5.56), (5.62), and Lemma 5.5 in (5.52), we finally obtain that as y — oo

1 A
F*(k+1 {;Za/kz( ) Z ]yj |:9ZJ + m (%) " :|

0

(5.63)
= ag g y i+l By
+ — (—) +a +o(e™"Y).
—i+1\2 w0 ()
In order to “peel off” the terms involving y%,i = 0,1, --- , k, it would be more convenient to

change the order of summation in the first term of (5.63) as in Lemma 5.6.

Lemma 5.6. The approximation in (5.63) can be restated as

Sl Sy

Qi i+1
y+2|: +121+1:|y +ak70

j=0 Li=j
k—1 i . i—j+1

Ak 1 (1 ) B

s —1) I = i+1 By .
T () (e @) e

We first need to find the starting constants a; g, as1, and asg. Since A,(y) ~ F(y) ~ e™Y
for y large enough, a9 = 1. Then (5.14) provides As(y) = (y + 1 + 26p)e™ Y, and therefore
az; = 1 and asp = 1 + 26p. These initial constants will lay the groundwork for recovering

the necessary remaining constants.

To utilize Lemma 5.6, we simply isolate the exponents of interest. That is, we know that
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eV (k1) (y) ~ Zf:o ak+1,iy", so to solve for a1, we need to find the constants associated
with y*. For instance, we first derive ay, 0 by picking off the y° terms. Set j = 0 in the first

summation:

B

—1
p+1,0 = ak,i(_l)zpi + ag0- (5.64)

I
o

Next, for r = 1,--- ,k — 1 we solve for ay;;,. This requires setting j = » — 1 in the first

summation, ¢ = r — 1 in the second, and ¢ = r — 1 in the last:

k—1 . r—1
— E L i r—1 r—1—j__ Qkor—1 Ak,r—1
e <r><_1) eibior 2 0( j )(_1) gz e
‘]:

i=r

However, this equation can be simplified. Noting that (’";1) = ’";j(r.),

k—1 . [ r r—j
1 . A r—1 T\ .. 1 r
= E —1)"""ay0,_, — —— E 1V {—= — 1"

i a I 1\" a
— D) Tap O, — (1= 2 ) -1 Rt
S (1) ot - 2t [(1- 1) -] 4 2
- Z (Z> (_1)1.77"6%,1914 + ak’r_l.
: r r

Therefore forr=1,--- ,k—1,

r

k=1 .
U410 = Prd 4 Z (;) (=1)" " aribi—r- (5.65)

The recursion (5.65) is useful for the purposes of writing computer code to generate the next

constant. However, for writing out the explicit formulas for expansions we may also find the
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alternative statement handy: for r =2,---  k,

k—1 )
7 .

L=ty B P S 5.66
Aet1,k+1 R —— + <k L1 r)< ) kiU~ (k4+1-r) ( )

i=k+1—r

Lastly, we derive ajy1. Choose ¢ = k — 1 in the second and last sums:

a L /a kE—1 1\ "

kk—1 kk—1 - 1

e () (Y ()
=0

k—1 k—q
1 1(k e (1
—&kk—l{?‘l’;g(j)(_l) ](2) }
1N TSR, Nk Nk
— D St el R 1V [ -2 - —
i (1) 1 2 O () (O () - 0)
B 1/1\" 1 ! ’“+1 1
= Ak k-1 L\ 2 L 5 2 = kak7k_1.
Therefore
1 1 1
ULk = FOkK—1 = " = 55010 = 7 (5.67)

We have now successfully found recursion formulas for the aj;, and these will be used in

computing the final approximation formula in the next section.

5.4.2 The Proof Over All Reals

Here we shall build upon (5.63) and extend it to include the negative half line. Define

which denote the conditional distribution functions P(X < z|X < 0) and P(X < z|X > 0),
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respectively, where X ~ A. Observe that for x >0 and N =0,--- ,n,

P(Z?:lXi <z,N=m) gnl
P(N =m)
)P X <2, X1 <0, , X €0, X040 > 0,0+, X,, >0)

=P([Ui+ -+ Upnpl+ Vi1 + -+ Vo] < x).
Here U; = X;Ix,<o and V; = X;Ix,~o. Thus

P (i Xi > x) = Xn: P <§: X; > x‘N = n) (Z) [F(0)]™[F(0)]"™

=ZH*m*G*<n—m><x>(”)[F<O>]m[ O, 20

m=0

Therefore for our context,

m

P (Z X; > x) _y <n)Hm « G=m) (2)[A ()" [A(0)]"™, @ > 0.

m=

Further
G (@) [[(O)) = P (),

Thus from (5.68), for z > 0 we have

m
m=1

+ G () [R(0).

(5.68)

(5.69)

(5.70)

The summation in (5.60) does not include the m = k + 1 term. The reason is because here

158



we have (k + 1) variables all coming from H, which is defined only on the negative half line,

and therefore their sum is positive with probability 0.

We first examine the second term in (5.70) for y > 0:

GI () RO = KO (1 - G () = KO — Fr(y)
(5.71)

= FrUD)(y)).

This term was already derived since (5.71) = (5.63). Let px(y — x) represent an error
term to be analyzed later, one that is analogous to Ry(y — z) from earlier, and define

f pe(y — x)dH*™(x)[A(0)]™. We now turn to the first piece in (5.70):

o« GO () [A(0)" [K(0)1
= [ G = i @ ) RO
- [ T gar o)

_ / Avstom(y — 2) + puly — 2)] A (@)[A(O)]"

—0o0

/.

e ylfakﬂ m/ Z( ) (—2) e dH™ () [A(O)]™ + (IT)

(5.72)

Zak-I—l mi(y — )i] "W dH ™ (@) [A(0)]™ + (1)

=Y ki, j) A @A) + (1)
= (1) + (I1).
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We analyze in (1)
O e A
/ e dH ™ (x)[A0)|" = m/ e dH™™ (z)[A0)]™] . (5.73)
o o t=1

Now if Uy, -+, U, %4 H, then

0

[ ) = B ey = (5 (o)) = (/

—0o0 —00

e“dH(x))m ,

and therefore

/ 0 e d ™ (2)[A(0)]™ = ( / 0 etwd/\(x))m. (5.74)

—0o0 —0o0

([ o) ([ ) [

which evaluated at t = 1 yields

m ( / io eIdA(x))m_l / OOO ve"dA(z).

Before going further, we need to state a result from Roman (1980).

Then

Theorem 5.4. Let g(t) and f(t) be two differentiable functions, and let D denote the deriva-
tive operator and D™ the Lth fold derivative. Also set k = ky+---+k,. Then by the formula

of Faa div Bruno,

D" (fo9(0) = Y e (D 6(0) (Dg—(“) . (M) ,

1! n!

where the sum is over all nonnegative integers ky, - - - | ky, such that ky + 2ko + - - - +nk,, = n.
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Define f(x) = 2™ and g(t) = fi)oo edA(x). We have that

(D) (g(t)) = m(m — 1)+ (m — k+1)(g(t))"*  and

DLg(t):/ whedA(x).

—00

Therefore summing over ky,--- , k, as described in Theorem 5.4,

D ( / (; etf”dA(x))m
DI e (/oo ewdA(‘”ka

g " L . (5.75)
X <ﬂ/mme dA(x)) (E/oox e dA(m))
() e (Ra) (Re) T (L)
B kel oky! ) (m =k 1! 212 n™)
where (j is defined in (5.49). Thus by (5.73), (5.74), and (5.75), we find
0
/ z"e*dH™"(x)[A(0)]™ = expression given in (5.75). (5.76)
Hence by (5.72) and (5.76),
H*m *G*(k—l—l—m( )[A(O K )]k—l—l m
(5.77)

=€ yzak+1 m,i () l j,uz jmy +(II)

where jt;_;, is defined in (5.50). It remains to investigate the piece (/1) in (5.72). Observe

that for y > 0,

sup e WP < T,
—oo<z<0
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Then pi(y — z) = o (e *¥~*)) and for any € > 0,

0

/ puly — ) AH™ (@) [AO)]" < ¢ / e~ AT () A(0)]"

—0o0 —0o0

<e /_(; e WdH™ (2)[A(0)]" = e (/_: dA(x))m

= €[A(0)]"e™ ™ < ee” M.

Therefore for § defined earlier,

/ prly — 2)dH™ ()[A(0)]" = o(e™) = o(e™™). (5.78)

—0o0

Thus from (5.63), (5.70), (5.71), (5.77) , and (5.78) we obtain

1— A (y) = {S [§ akl(J')( )"0,

j=0

ki i+1
y+2{2+121+1} Gk

k—1 7 . z—]—|—1
ag 1 (1 1
+ (—) (,)(—1)’ J (—) ] Yt (5.79)
=0 Lj=0 \' 7 J +1/\ 2
k k—m i .
k+1 [ i 2 . .
+ ( " ) Z Gk+1fm,iz <j>(_1> Juijymyj} e ¥V +o(e 5y).

The triple-sum in the last term can be rewritten as the more convenient

35 () S (0]

m=1 =7

which we shall find useful for picking off specific terms.
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5.5 The Final N-Fold Gumbel Expansion

We have finally fully derived the n-term expansion for the convolution of n Gumbel random
variables. For the sake of having an easy reference, we restate the final result in this brief
section along with all the necessary formulas needed to implement it. For & > 0, define the

constants

b, — /O " tetd (“F(a) £ e ") = — /0 T exp (e )] de

and

Gk = /0 are”d\(z) = /0 z¥ exp (—e‘“’) dz.

Also for 0 < i < m, define

o ! m! m—(ky+-+ks) LG\
M’m_z<k1!“'kz‘!> <(m—[’€1+"'+kz‘])!)go H<E> 7

- L=1

where the sum is taken over all nonnegative integers kq, - - - , k; such that k;+2ko+- - -+ik; = 1.

Moving to the ay41,; constants, we have a1 = asy =1 and agp = 1 + 26,y. For k > 2,

(k-1
Z ak’i(—l)zei + (lk70, T = O
i=0
Qfr—1 — [

1, = T 1) a0, =1 k=1
- ; (7") ( ) Ay, , T P )

1

\ H’ r = k’

Alternatively, we can say that for r =2,--- |k,

k—1 .
Ak k—r ¢ i _
= —1)¢ (k4+1—r) iei— )
T e s g > (k+1—r)( ) il (k4 1-7)

163



Theorem 5.5. For all defined constants, as y — oo
k=1 [k— k—1 a
* k+1) 1, ki i+1
i) = {3 S () 0] v+ X [t
j=0 i=0

(o ()

J

k—j k +1 k—m i o .
< m ) Z t1—myi (]) <_1)Zjﬂij,m] y]} e +o(e™?).
i=j

m=1

+

]:

Table C.1 provides values for 8, and (i, £k = 0,---,16, and note that the values of 6, are
fairly close to —k!. Table C.2 shows numerical values for p;,,,0 < i < m < 7. Appendix
C.2 also shows explicit expressions for these ji; ., written in terms of the (. Table C.3 gives

values for the positive half-line constants aj1 .

Finally, we need to distinguish between the values of aj;1; and those belonging to the
expansion over all reals. Call the latter Ajyq,;. Then before turning to examples in the next
section, we need to have recursive formulas for the Ay, ; like we did the ajy;,;. Using the

same technique of picking off the terms with the 1/ of interest, we discover the two equations

r—1 k—m .
k+1 i i (o] —r
Ap1 g1 = E < m > E Akt 1—m,i <k L1 r) (—1)i= (1 ),ui—(k—l—l—r),m

m=1 i=k+1—7r
5.80
+ak+1,k+l—7“7 r= 2a 7k+ 17 and ( )
1
Ak—i—l,kz = y

The following alternative theorem provides the same result, but stated more succinctly.
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Theorem 5.6. For all constants defined earlier and for A1, defined in (5.80), as y — oo

k
1— A () = {Z Ak+1ﬂ-yi} eV 4 o(e”Y).

1=0

Table C.4 lists numerical values of the Ay ;.

5.6 Examples of the N-Fold Gumbel Expansion

Now that the theory has been established, we provide several examples of how the expansion
is implemented. Some of the examples derive more explicit formulas for the Ay ,, which in

turn will be used in another simulation study.

Example 5.1. Corollary 5.2 is a special case of Theorem 5.6, taking £ = 1 and noting that

0o + Co = —.

Example 5.2. We derive Ay ;_1, the general secondary term in the expansion, for k > 1.
Of course, we already know the answer from Corollary 5.2, but in this example we obtain it

from (5.80). First note that

Ak k—2 I |ak—1k-3 to to
-1 = : _ 0 = 2
etthot = 7 ekabo = g T Y | T e
_ %k 20, _ . _ @t (k—1)6
G- )(k—2) " E-1) (i — 1)1
Using the fact that asg = 1 + 26y,
. L+ (k+1)b
kel k-1 = S

Take r = 2 in (5.80), and therefore m = 1 and i = k — 1. From Appendix C.2 we have that

165



o, = Co. Thus

k
App1p-1 = Qg1 p—1 + <k’ —i— 1) Wk 1flo1 = + (k +<1k)9_o —1|—)'( +1)¢o
I+ (k+ D)0+ G)  1—(k+1)y (5.81)
B (k—1)! T T k-1

Example 5.3. We next derive the three-term expansion for the case k = 2, or the sum of 3

standard Gumbel random variables. We do this using Theorem 5.5. The formula reduces to

1
ag i
] i+1
+Z{2+12”1}y 20

=0

- AS(y) ~ {Z [Z ons (1) (101

i=0 Li=

EE ) e ()
" j10 > ( )Zag mz() o j“i—ﬂ‘,m] yj}e_y

a
= {[ ;1] Y=+ [a2160 + azo + 3az1 0.1y

+ ag by — ag 101 + asg + 3asopos — 3azapi 1 + 3a1 oot e Y.

Using the fact that a271 = al,O = 1, CL270 =1 + 290, ,uo71 = €0, ,u()72 = Cg, and Ml,l = Cla

1
1—A%(y) = {§y2 + [1+3(60 + Co)]y
+ (14 2600)00 — 01 + 1+ 200 + 3(1 + 26p)Co — 3¢ + 3¢5 f e
1 (5.82)
— {§y2 +[1 =37y +1 =3y + 205 — 0 + 665¢ — 3G +3Cg} e’

1
= {§y2 — 0.73165y + 0.81806} eV

This is the tertiary expansion for the particular case of 3 Gumbel variables.

Example 5.4. Now we find the general third term in the expansion, assuming that £ > 2.
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The benefit of doing the previous example first is that we can use it to check our third term.
Unfortunately, unlike the general second term derivation, this one is a lot more involved. To

start,

g j—3 { i (e
Af11,k—2 = o + E (k B 2) (—1) ® 2)ak7i9i—(k—2)
i=k—2
A k-3 akp—3 o+ k65— 6,
= oy — (k—1 160, = =
k_2+ak,k20 ( )akk—161 9 =2

We need to go at least a couple of steps further into the recursion before we can spot the

pattern. Assume that k is large enough so that the following steps may be performed:

- 2(00 — 01) + (2k — 1)62
R s T R (i —2)!
B T 3(00 — 01) + (3k — 3)62
(k= 2)(k—3)(k—4) (k —2)!
B U3 k6 40y — 61) + (4k — 6)62
(k= 2)(k—3)(k—4)(k —5) (k —2)! ‘

After some pattern recognition (in particular, the 1, 3, and 6 are triangular numbers), we

have that

azo + (k—2)(6p — 61) + [(k — 2)k — 3(k — 2)(k — 3)] 63
(k —2)! '

Ak+1,k—2 =

Using (5.64), it can be shown that azg = 1+ 36y + 262 — 6;, and therefore

1+ (k+1)8 — (k — 1)61 + 2(k — 1)(k +2)63

= (5.83)

Af+1,k—2 =

As a quick check, setting k = 2 in this equation returns azg = 1 + 36y + 202 — ;. Turning
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to Ajt1k—2, set 7 =3 in (5.80) to obtain

k—m

; .
i—(k—2)
E ak—i—l—m,i( > (1) Hi—(k—2),m
i=k—2 k—2

2
k+1
Api1 k-2 = Q1 p—2 + Z ( m )
m=1

kE—1 k+1
= a1 -2+ (K + 1)agg—ap01 — (E+1) (k _ 2> Qg p—1f1,1 + ( 5 )Gk—1,k—2uo,2

(k+1)(1+k0)Co (k+1)(k—=1)C | k(k+1)(F

= Ok41,k—2 T (k —2)! (k—1)! 2(k —2)!

Substituting in (5.83) and simplifying, we finally have that A1 z_2 is equal to

1+ (k + 1) (koo — G — ) — (k = 1) + 5(k — 1)(k + 2)05 + 3k(k + 1)
(i —2)! '

(5.84)

As a check, setting k = 2 provides Az = 1 — 3y + 66Co — 31 — 01 + 2602 + 3¢2, which agrees

with our constant term in (5.82).

Example 5.5. We have derived the general forms for the first, second, and third-order
terms. Based on our extensive analysis for the latter, it should be no surprise that explicit
forms for higher terms, while possible to derive, are very complicated. If one needed further
terms in the expansion for k£ large enough, we recommend the computational values given
in Table 5.3, duplicated in Appendix C.4. In order to make the table more user-friendly, we

reindex as A, ; where n is the number of variables in the convolution.
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Table 5.3: Values for A, ;

) I o 1 2 3 4 5 6
1 1.0000 — — — — — —
2 -0.1544 1.0000 — — — — —
3 0.8181 -0.7316 0.5000 — — — —
4 -1.7642 2.2294 | -0.6544 | 0.1667 — — —
5 4.3381 -5.2887 1.9870 | -0.3143 | 0.0417 — —
6 -12.2325 | 14.1488 | -5.1955 | 1.0086 | -0.1026 | 0.0083 —
7 34.5721 | -40.0139 | 14.7598 | -2.8773 | 0.3526 | -0.0253 | 0.0014

Now we list the expansions for the convolution of 2,--- 7 Gumbel random variables, based

on the results of Table 5.3:

A2(y) ~ (y — 0.1544) eV

1
A3(y) ~ [ =y* —0.7316y + 0.8181) eV

2!

y® — 0.6544y> + 2.2294y — 1.7642) eV

yt — 0.3143y> 4+ 1.9870y% — 5.2887y + 4.3381) eV

y® — 0.10269* + 1.0086y> — 5.1955y> + 14.1488y — 12.2325) e Y

—% —0.0253y° + 0.3526y* — 2.8773y> + 14.7598y>

=
*
ot
—~
s
X
S~ N7 N7 N7 NN

=2}

—40.0139y + 34.5721) ¢V

We next state a corollary that establishes the general three-term expansion.

Corollary 5.3. Forn > 3, a general tertiary expansion as y — oo is given by

1 1—ny
Lo A (y) = [yt n2 A3 e By
(v) <<n_1)!y oY Ay e +o(e™),
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where

L+nf(n— 1D — G — 9] = (n = 2)01 + 5(n — 2)(n + 1)65 + sn(n — 1)¢
(n—3)! '

An,n—?) -

5.7 Simulation Results

The previous example shows that we can computationally derive the complete expansion for
a given convolution. That is, we can compute as many terms in the expansion as there are
variables to add. But the question is, should we? It may be possible to get a reasonable
approximation without resorting to the full expansion. The goal of this next section is to
conduct a simulation to see whether the full expansion is needed, or if, say, three or four

terms is sufficient enough.

While including more terms may result in a more accurate approximation, there are a
couple of reasons we may wish not to do so. The formulas get complicated, and one would
need to keep careful track of not only the constants in the formula, but also constants for
all previous expansions. If we convolve n Gumbel variables, we would need to store (”;1)
total values. And second, the 0, (i, and p;,, are tough to compute for large k. A better
alternative would be to use Corollary 5.3, which would eliminate the necessity of having to

compute a large number of constants in advance.

In the following simulation, we focus on the convolution of n = 3,--- ;7 Gumbel random
variables and check how the approximation behaves for L = 3, - - - , n terms in each expansion.

Note that Figures 5.4 through 5.8 are best viewed in color.
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Figure 5.4: Gumbel Convolution, n = 3
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Figure 5.5: Gumbel Convolution, n = 4
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Figure 5.6: Gumbel Convolution, n = 5
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Figure 5.7: Gumbel Convolution, n = 6
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Figure 5.8: Gumbel Convolution, n =7
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Tables 5.4 and 5.5 contain the errors and relative errors in the probability approximations,
given n and each approximation. We highlight the smallest error and also the optimal
expansion in both tables. Examining these two tables plus the five figures, we make several
observations. First, for n = 3,--- |6 the third-order approximation is the most accurate, and
adding any further terms actually is detrimental to the prediction. It is tempting, therefore,
to conclude that Corollary 5.3 is the best approximation to use for n > 3. Unfortunately
the n = 7 case suggests otherwise, for here a quinary expansion is best. These results show

that in practice, it may be difficult to recommend a specific number of terms to include in
the approximation.

Second, we see that the best formula to use sometimes underestimates (n = 3,4,5,7) and
sometimes overestimates (n = 6). Also note that for n > 4 the second-order approximation
performs poorly and gets worse as n increases. A similar observation applies for the fourth-

order formula. We therefore conjecture that whatever the ideal number of terms to include,
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choosing an odd number is optimal. Unfortunately in general, it is not clear as to when the
formula over or underestimates the true probability. What does seem apparent is that the

third-order approximation is always better than the first and second-orders.

Table 5.4: Errors in Approximations of Probabilities

n | Approx | 95% | 97.5% | 98% 99% 99.5% | 99.9% | 99.99%
1st -0.0015 | -0.0007 | -0.0005 | -0.0003 | -0.0001 | -2.2e-5
3.6e-6
1st -0.0009 | -0.0005 | -8.8e-5
3 2nd 0.0103 | 0.0038 | 0.0028 | 0.0011 | 0.0004 | 5.8e-5 8.5e-6
0.0076 | 0.0028 | 0.0021 7.6e-6
1st -0.0018 | -0.0009 | -0.0002 | -1.7e-5
4 2nd 0.0261 | 0.0104 | 0.0077 | 0.0032 | 0.0013 | 0.0002 1.2e-5
0.0104 | 0.0043 | 0.0033
4th 0.0122 | 0.0049 | 0.0037 | 0.0015 | 0.0006 8.4e-5 6.6e-6
1st -0.0081 | -0.0057 | -0.0049 | -0.0027 | -0.0014 | -0.0003 | -3.4e-5
2nd 0.0469 | 0.0196 | 0.0148 | 0.0063 | 0.0027 | 0.0004 2.5e-5
5
4th 0.0178 | 0.0072 | 0.0054 | 0.0023 | 0.0010 | 0.0001 6.9e-6
5th 0.0163 | 0.0068 | 0.0051 | 0.0022 | 0.0009 | 0.0001 6.8e-6
1st -0.0077 | -0.0066 | -0.0038 | -0.0021 | -0.0004 | -4.7e-5
2nd 0.0724 | 0.0315 | 0.0241 | 0.0105 | 0.0046 | 0.0007 9.0e-5
6 4th 0.0328 | 0.0125 | 0.0093 | 0.0037 | 0.0015 | 0.0002 1.3e-5
5th 0.0171 | 0.0075 | 0.0058 | 0.0025 | 0.0011 | 0.0002 1.1e-5
6th 0.0186 | 0.0080 | 0.0061 | 0.0026 | 0.0011 | 0.0002 1.1e-5
1st -0.0131 | -0.0010 | -0.0084 | -0.0050 | -0.0027 | -0.0006 | -6.2e-5
2nd 0.1021 | 0.0461 | 0.0356 | 0.0160 | 0.0072 | 0.0011 8.4e-5
3rd -0.0583 | -0.0223 | -0.0164 | -0.0065 | -0.0025 | -0.0003 | -1.7e-5
7 4th 0.0726 | 0.0268 | 0.0196 | 0.0076 | 0.0031 | 0.0004 2.4e-5
6th 0.0237 | 0.0099 | 0.0075 | 0.0032 | 0.0014 | 0.0002 1.5e-5
7th 0.0221 | 0.0095 | 0.0073 | 0.0032 | 0.0014 | 0.0002 1.5e-5
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Table 5.5: Relative Errors in Approximations of Probabilities

Approx 95% 97.5% 98% 99% 99.5% | 99.9% | 99.99%
1st -0.0285 | -0.0260 | -0.0259 | -0.0246 | -0.0271 | -0.0215
0.0371
1st -0.0856 | -0.0807
2nd 0.2583 0.1777 0.1619 0.1224 0.0947 | 0.0617 | 0.0931
0.1793 0.1257 0.1154 0.0882 0.0826
1st -0.1570 | -0.1633 | -0.1446
2nd 1.0915 0.7071 0.6311 0.4601 0.3587 | 0.2191 | 0.1461
0.2626 0.2091 0.1955 0.1557
4th 0.3229 0.2451 0.2266 0.1765 0.1456 | 0.0919 | 0.0701
1st -0.1398 | -0.1847 | -0.1954 | -0.2150 | -0.2231 | -0.2354 | -0.2517
2nd 15.1175 3.5973 2.8501 1.6946 1.1842 | 0.6547 | 0.3392
4th 0.5543 0.4062 0.3709 0.2935 0.2442 | 0.1611 | 0.0744
5th 0.4851 0.3714 0.3421 0.2764 0.2332 | 0.1564 | 0.0725
1st -0.2357 | -0.2490 | -0.2770 | -0.2970 | -0.3039 | -0.3185
2nd -3.2363 | -4.8745 | -5.9013 | -19.7230 | 12.8988 | 2.4372 | 1.0015
4th 1.9096 1.0003 0.8608 0.5937 0.4395 | 0.2815 | 0.1488
5th 0.5204 0.4321 0.4062 0.3401 0.2821 | 0.2148 | 0.1224
6th 0.5935 0.4671 0.4345 0.3558 0.2915 | 0.2183 | 0.1236
1st -0.2080 | -0.2810 | -0.2968 | -0.3335 | -0.3538 | -0.3711 | -0.3841
2nd -1.9603 | -2.1868 | -2.2811 | -2.6607 | -3.2717 | -8.2609 | 5.4399
3rd -0.5383 | -0.4718 | -0.4511 | -0.3922 | -0.3366
-14.9082 | 52.1054
0.2329 | 0.1592
0.2874 | 0.1783
0.2845 | 0.1775

5.8 Application to the Peachtree Creek Data

We close this chapter with an application of the Gumbel expansion to the Peachtree Creek
data set from Chapter 2, followed by some open questions. Recall that a Gumbel distribu-
tion was the most appropriate fit for the seasons summer and winter, and furthermore we

concluded that winter was stationary in the location and scale. For that reason, we focus on
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winter. We want to study the distribution of the sum of the maximum observed streamflow
(in cubic feet per second) over, say, n = 5 years. This question would be of interest to
hydrologists since it may help track trends in the river. First note how Theorem 5.6 will be

used. If X; = 0Z; + u where Z; ~ A, then for large enough y

P(tilXi>y>:P<i(aZ+u >y> (ZZ> —nu)

t=1

n—1 _n n—1—i _n
S (52 Yo (5]

=0 g o

For the purposes of this example, we first refit the Gumbel distribution to the 52 winter

observations without time trend in the location and scale parameters. That is, assuming
that Xy, -+, X590 £ GEV(0, u,0), we find the new maximum likelihood estimates for
and o. The original values with time trend were 1687.4669 and 1106.9248, respectively,

from Table 2.4, so we choose these estimates as starting values. The log likelihood to be

maximized is

o P ()]

t=1
Table 5.6 summarizes the maximum likelihood estimates, both of which are not too far away

from their nonstationary counterparts in Table 2.4.

Table 5.6: Estimated Stationary Parameters for Winter

Param. | Estimate SE 90% Confidence
1 1438.8241 | 118.2219 | (1240.6955,1636.9527)
o 810.8379 91.4888 | (657.5114, 964.1644)
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Using the fact that a tertiary expansion is optimal for n = 5 variables,

= (Y — Ok y—5i\* y =50\’ y—5i\° 5i1/6 ,—y/&
A T ~ A5’4 5 + A573 5 -+ A5’2 5 (& e
y—50\" y—50\° y— 51\ —y/é
= ¢ 297.1979 - — 2242121 - + 14172.78 - e v
g o o

and when carefully foiled out and simplified the approximation is

— [y — 5
A (u) ~ 6.9 x 107%* — 2.4 x 107°y® + 0.3258y°
ag

—1987.2030y + 4523387] e ¥/

In Figure 5.9, we compare our approximation to the empirical distribution of the sum of 5
random variables from the GEV(0, f1,5). Although it underestimates, we can see that our
approximation is quite accurate even for the 95th percentile, and certainly for the 99th and
above. As an example, consider the 99th percentile of 15826.38. The correct probability is

0.01, and our formula predicts it to be 0.0091.
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Figure 5.9: Gumbel Approximation to the Peachtree Creek Data
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5.9 Open Questions

Theorem 5.6 is a significant contribution to extreme value theory. There are already es-
tablished results on the convolution of random variables of common distributions, such as
normal, exponential, gamma, Poisson, etc. Rootzén (1986) derived the first-order expansion
of a more general class of distributions, from which one could specialize to the Gumbel. Our
result establishes the n-term expansion for n Gumbel random variables. We also have a

second term for a general class of distributions from Theorem 5.3.

There are, however, three questions that would be useful to investigate for future research,
one theoretical and two computational topics. The first is to find the n-term expansion for a
broader class of variables, of which the Gumbel would be a special case. That approximation
would ideally have similar conditions as to those in Section 5.2 and in Rootzén (1986), plus

additional assumptions as needed. As an example, we conjecture that the nth moment must
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be finite, among other stipulations.

The second is to find the optimal number of terms to include in the expansion, which
would be useful for application purposes. We have developed a conjecture for the answer
based on the simulation results, and it is easier to explain using an example. Consider the

full expansion for 7 variables:

— 1
AT (y) ~ (gf —0.0253y° + 0.3526y* — 2.8773y> + 14.7598y>

—40.0139y + 34.5721) e V.

It has been shown that choosing the quinary expansion provides the best approximation.
Observe that the coefficients, in absolute value, are increasing up to the sixth term, after

which they begin to get smaller. Next, we look at the full 6-variable expansion:

— 1
A*S(y) ~ <§y5 — 0.1026y" + 1.00861°> — 5.1955y2 + 14.1488y — 12.2325) ey

Here we should choose the tertiary expansion. In absolute value, the coefficients are
increasing up to the fifth term. We therefore suspect a connection between the optimal
number of terms and the turning point of the |A,, ,_,|. Plus recall that the optimal number
was always odd. The conjecture therefore takes the following form for the convolution of
n > 5 Gumbel random variables. (It does not work when n < 5, but those cases are easier

to derive and inspect.)

1. The optimal choice of approximation should include an odd number of terms, starting

with 31

2. Locate the r that provides sup |4, ,—|.

1<r<n
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3. If r is even, then the optimal approximation contains the first (r — 1) terms.

4. If r is odd, then the optimal approximation contains the first (r — 2) terms.

The third open topic concerns ways of computing the A, ; for higher values of n, namely
n > 8. One motivation for this exploration is that a greater number of random variables
may need to be added together for application purposes. We have covered cases such as
n = 4 (weekly for a month, or quarterly) and n = 7 (daily for a week). However, it would
be useful to have the expansions for, say, n = 12 (monthly for a year) or n = 52 (weekly for

a year).

The main challenge is deriving the necessary 6 and (; constants, and then later the pi; ,,.
While we have the formulas, when k grows large these quantities become computationally
intense to find. In fact, it was this handicap that motivated truncating the full expansion
to just three or five terms. However, we now have an easier way of computing 0, and it

involves a Taylor series expansion:

J=leg—jz

O = —/ 2" [1—exp (—e )] do = —/ 2" Z e S ‘
0 0 = J:
—Z—j! /0 xke]dx—k!;

Jj=1

(=1)
j! jk+1 ’

This alternative representation of 6, is much easier to implement, which also explains
why the values of 6, in Table C.1 are fairly close to —k!. A similar series expansion could
be performed on (. Thus, the third open question is to seek computational shortcuts like

these to make implementation easier for higher k.
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Chapter 6 Dealing With Ties In The AR(1) Process

In Chapters 3 and 4 we established the groundwork to build a two-term expansion for the
AR(1) process with Gumbel innovations. The formula was constructed under the assumption
that there were no ties in the coefficients, and especially in the highest and second highest.
Chapter 5 discussed the approximation if all variables had exactly the same weights. The
goal of this chapter is to investigate the interesting twist of having ties in the top two largest
weights. There are multiple possible combinations in which this may occur, but we give the
proof of only one of these. The techniques we employ may be used to carry out expansions

under the other possibilities. This chapter constitutes the fourth project in the dissertation.

For ease of reference, we restate Theorem 4.3 here:

Theorem 6.1. Let dp,k = 1,--- ,n,n > 3 be positive constants, and define ¢, = dy), the
order statistics arranged from largest to smallest. That is, ¢c; > ¢y > c3 > ¢4 > -+ > ¢y, and
in particular ¢y = max(dy). Assume that ¢y and co have multiplicities of 1. If 0 < 2¢y < ¢y,

then as y — 0o a two-term expansion is given by
g 11 2¢
_ k) oyl _ 2 _ 20k -2y/e —y/c
P(deZk>y> HF(l )e : 2Hr(1 C1>€ L+ O (e7v2).
k=1 k=2
In the particular case where 0 < 2co = ¢1, the expansion is

P (Z dxZi > y) HF (1 - —) e~/ Hr <1 _ %) 6216—2y/c1 +0 (V).
k=1
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Lastly, when 0 < ¢; < 2¢4, the expansion is

(Z Az > y) —T (2 - —> Hr (1 _ _) e

-8

In this chapter, for simplicity we assume all the weights are nonnegative. Suppose the two
highest constants ¢; and ¢, have multiplicities m; and ms, respectively. Then for n >

my + mo, define the series

n—mi—ma

- Cl Z Zk + co Z Zm1+k + Z CkZm1+m2+k (61)

6.1 Necessary Lemmas for the Case where m; > 2 and my =1

There are no less than five possible scenarios we may consider for multiplicites among the

two highest weights:

1. The case where m; > 2 and ms = 1.
2. The case where m; = 1 and msy > 2.
3. The case where m; = mq > 2.
4. The case where my > mqg > 2.

5. The case where mq > m; > 2.

For the purposes of illustrating how such a proof would be implemented, we choose only the

first scenario as an example setting. This setting assumes that the largest weight ¢; occurs
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multiple times, but the second largest c occurs only once. We conjecture that the remaining
four cases may be worked out using similar techniques, and these are left as open questions.
Therefore for the remainder of this chapter, unless otherwise noted we take m; > 2 and

mg =1, and (6.1) reduces to

n—mi+1

Z CkZm1—1+k- (62)
k=3

my
Yn g C1 Z Zk + CQZm1+1 +
k=1

Consider the probability

1

my
C2 )
P Zy+—Zyg>= | =PS+T>y" 6.3
(Soa 2> 2] - rissro0), 63)
where S = > Z;,, T = 2Zp, and y* = % Notice that the distribution of S is approxi-

mated from Theorem 5.6. We now examine some preliminary lemmas.

Lemma 6.1. Recall from (5.80) that

r—1 m1—h—1 .
mq ) i —
Amymi—r = E ( h ) E Amy—h,i (ml . 7“) (1) (s )/vbi—(rm—r),h

h=1 i=mi—r

+am1,m177“7 7”:2,"' , My, and
1

Amymi-1= ——.
Pl iy — 1)
For all constants defined in Section 5.4, as y — 0o
mi1—1
Fs(y) = P(S >y) = { > Aml,z-y’} eV +o(e™).

=0

Proof. This is the main result from Chapter 5. Although the original had error term o(e=?¥)

for some [ > 1, for simplicity in this chapter we shall take o(e™¥) instead. O
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Lemma 6.2. For any g—j < a <1, we have that 1 — exp (—e*“y/”) =0 (e*y/cl) as y — oo.

Proof. Observe that for y large enough,

1 —exp (—e*ay/cQ) _ Z (=1)?

Then we see that

1 —exp (—e_ay/”) 2eaw/e2 a 1
e—v/a = e—y/a - 2€Xp -y g o C_l — 0,

because & — L > 0. O
c2 c1

Lemma 6.3. For L=0,1,....,my; — 1,

E (TLeT)| < 00. In particular, it can be shown that

E(eT) =T <1 - 0—2) and  E(TeT) = (1 - 0—2) .

C1 C1

Proof. First note that

E (TLeT) = / thet x %e_clt/” exp (—e_clt/”) dt
—00 2

L 9
= (—2) / (log t)Lt_CQ/Cle_tdt.
C1 0

Now write

L 00 1
|E(T"e")| < (@> [)/ (logt)Lt_”/Cle_tdt‘ +‘/ (logt)Lt_CQ/cle_tdt”. (6.6)
1 0

C1
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Consider the series Y r, (log k) k=¢2/1e*. By the ratio test,

Qog(k+ 1)k + D=2/ (og(k+ D" (b NP L
(log k)Lk—c2/cre—k log k k+1

and therefore

‘ / (log t)Lt_”/Cle_tdt‘ — K < 0. (6.7)
1

Next,

1 1
‘ / (1ogt)Lt*02/Cle*tdt‘ < ‘ / (1ogt)Lt*02/Cldt’.
0 0

A change of variables results in

. . . ) ~(L+1)
’(—1)L/ tLe‘(l‘CT)tdt‘ < / e (-2)1q — (1 - 6—2) . (6.8)
0 0

C1

Therefore putting (6.7) and (6.8) into (6.6),

c —(L+1)
K+ L (1 _ —2)
&1

B (T ") | < (Cﬁ)L < oo.

C1

Lastly, E(e?) follows from the moment generating function of T', while F (TeT) can be

derived from the log-gamma density. ]

Now we turn to the problem of solving P (Z;’;ll Zi+ 322y > y*> Split into two integrals as

[e'e) ay*

P(S4T > ") = / P(S > y* — 1)dFr(t) +/ P(S > y* — DdFr(t),  (6.9)

ay* —00
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where a is chosen to satisfy g—j < a < 1. Observe that

/ P(S>y" —y)dFp(t) < P(T > ay”) = P (Zo > %) =1—exp (—e_“y/c2) :

y* Co

Therefore by Lemma 6.2,

/oo P(S > y" —t)dFp(t) = o (e7¥/). (6.10)

y*

Now consider the second integral in (6.9). By Lemma 6.1, for y large enough

mi1—1

P(S > y* — t) == Z Am1,q(y*—t)‘1] 6_(y*_t) + R(y* J— t),
q=0

where for any € > 0
sup ’R(y —t)e t‘ < €.

t<ay*

Write the integral as

ay* mi1—1 y*
/ P(S > y* — t)dFr(t) Z A / (" — 1)1~ D dFp (1)

—o0 oo
ay*

-/
—o0

We examine the first piece in (6.11). Observe that

_ I X (6.11)
Fs(y—1t) — Zq:ll Ay (Y™ — t)qei(y K

A oo D gy o€V D dF (1)
m1,0

mi1—1

Z A / (v — t)%e @ DdFp (1)

_ mz A | Z () oo v

oo
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- mZ sy () vrtryer [etears

q=1 j=0 o0
— Z Amia Z (q) (-1)77E (Tq—jeT) (y*)e?
p= (R

— i Ay g Z (q) (1)1 E(T77eT) (y*) e + i Ay o(—1)7E (T9%€") e (6.12)

q=1 Jj=1
mi—1 [mi1—1
B> Amq(q.)<—1>q-ﬂE<Tq-JeT>] (e
=1 L= J
m1—1
+ Apy o(—1)IE (quT) e Y
q=1

By Lemma 6.3, all the expected values in (6.12) are finite. Now

m1,1 ay*
> A [ 7 07 R
q=1 -
mi1—1 [mi1—1
=SS (3) v (i [y 19
=1 | o= J
mi1—1 mi1—1

_|_

D Amg(-1)'E (T7")

=Y Ay [ e i )
g=1 ay*
We now analyze the final integrals in (6.13). First note that

/aoo(y*_t)qe(y*t)dFT(t>§ " (q)(y*)jey* /:thjetdFT(t)' .

y* j= ..7 y*
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By integration by parts,

/ ﬁﬂaﬂ%aw=meﬂaWF}mw%+/ (79t 4 q - )eFr(dr. (6.15)

y* y*

Note that for y* large enough,

FT(ay*) — P (ZO > Clay > — efclay*/CQ + 0 (efclay*/CZ) ,
Ca

and therefore

(ay*) e Fr(ay*) = (ay*)q_jefay%%’l) +o0 ((y*)q_jeay%zél))

(6.16)
=0 (efy*) =0 (67?’/61) ,
because a (i—; — 1) > (. Next, setting P = i—; -1,
[ g = e Frnde <2 [ g e o
ay® . w o (6.17)
= 2/ t97e Pdt 4 2(q — j)/ 11 Te Mt
ay* ay*

Now faO;* e Pldt = Le=Pw” = o (e*y*), and by integration by parts, it can be shown that for

1
P

L=1,2,..,

/:o the Ptat = %e_P"y* [(ay*)L + Z % I:I(L — k)| =o(e?). (6.18)

y* i=1 k=0
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Combining (6.16) and (6.18), (6.14) = o(e™¥") = o(e7¥/**). Now we turn to the second

piece in (6.11). Write

Fs(y" —t) = 20 Ay o(y" — )70 L Ry — el
Amhoe—(y*—t) =1+ Ao

=1+ely" —1),

e(y* —t)| < ——. Now write

and observe that sup;_, -
my,

*

ay

ay*
[ el = 0 aE ) = [ A e 0aER )

o0 —00

ay*
+ / e(y" —t)Amyoe” Y A (2) (6.19)

=(I)+ (I1).

By dominated convergence, (I) = A, oE(eT)e™¥". As for (II),

*

ay

(11| = \Aml,o /

—0o0

e(y* — t)Athe_(y*_t)dFT(t)’

*

ay™
= ‘/ R(y* —t)eV e W DdEN(t)| < eE(eT)e™,

and therefore (I1) =o(e™¥") = o (e‘y/ ¢). Putting all the pieces together and simplifying,

we arrive at Lemma 6.4.

Lemma 6.4. If Z;,,k =0,1,--- ,my,my > 2 are i.i.d. Gumbel random variables and c; >

c2 >0 and y* = 2, then asy — 0o

m1 mi1—1 [mi1—1
P (Z Z + QZO > y*) _ Z Z Aml,q (q) (_1)q—jE (Tq—jeT)] (y*)je_y*
k=1 @ =0 L g=j J
+ 0 (e’y/cl) .
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6.2 The Expansion for when m; > 2 and my =1

Now we want to consider the random variable

mi c n—mi+1 c
2 k
X = E Zi+ —Zmi41 + E — Ly —14k>
C1 C1
k=1 k=3

or namely the probability P(V + W > y*), where

mi c n—mi+1 c y
V= E I+ —Zmi 41, W = E — Ly —1+k; and y*="—.
k=1 ! —s C1 1

Luckily in this multiplicity scenario, because the Gumbel tail probability is negligible in
comparison to the Gumbel convolution expansion, there is just one expansion to focus on
rather than three. That is, there is no pivot point to worry about. The steps follow similar
steps taken in Chapter 4. Take 2—2 < a <1 and % <A< %7 then split the probability into

two integrals as

*

PV +W>y") = / PV >y —w)dFy(w) + /ay PV >y —w)dFy(w). (6.20)

ay* —00

o0

Regarding the first integral,

FW(ay*) S E |:€Xp (Cl)\W)j| exp (_01)\ay ) — 0 (6—y/82) ’

C2

because \a > 1, and therefore

/oo PV >y —w)dFy(w) =0 (e’y/”) : (6.21)

y*
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Now for T' = i—jZo, define the constants

mi—1

m”_ZAmlq(> DIIE (T, 0<j<m —L (6.22)

If Fy represents the distribution of V', then observe that

mi1—1

vy —w) Zl%y—w) W Ry — w),

where for any € > 0

sup |R(y* - w)ey*_w’ < €.
w<ay*

We now rewrite the integral as

ay m1—1 . "
/ Fy(y* — w)dFy(w Z Kml]/ (y* —w)e W~ dFy (w)

—00

*

vy —w) Z”” Ky i (4 — w)ie= ") (6.23)
a vy —w)— j=1 mi,j Yy —w)e ()
" /oo Kmhoe*(y**w) ] Km1,0€ dFW(w)
We examine the first piece in (6.23). Note that
mi—1
Z Kmlj/ ( ) )‘] b(y )be_y*w]_bewdFW<w)
=0
mi1—1 J
Z ZKmIJ( > )J ) (W] —b W) (y*)be—y*
Jj=1 b=0
m1 1 mi—1mi—1
ZKmlg ]E(WJ ey _|_Z ZKmlj(> )J bE(WJ bW)(y )befy*.

b=1 j=b
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Therefore

[
=—§jK@;/ (4 = )T V() + 3 K s(—1PE (WeV) e (6.22)

mi—1mi—1

+y > Kmlj( > 1B (WimteW) (y)be .

b=1 j=b

Using similar steps as taken in (6.14) through (6.18), the first piece in (6.24) is o (¢7¥").

Now we turn to the second integral in (6.23). Observe that for y* large enough,

Fu(y* —w) = YT Ko, (g — w)ie @)

g 1 R * _ y*_w
Koy g6 @) T, B - we
=1 + E(y* - ’lU),
- eyt —w) (6.23) can be written as
ay*
Koo [ (14 ely” = w)le” ¥ VaFv(w
* ay” oy *
= Ky, 0e? / e’dFy (w) +Km1,o/ e(y* —w)e—(y _“’)dFW(w) (6.25)
=)+ (II).

By dominated convergence, for y* large (1) = K, oE(e")e™¥". As for (II),

*

ay
|(I1)] = ‘/ R(y* —w)e? e W =y (w)| < eB(e")e ™,

[e.9]

and therefore (I1) = o (e*y*). Collecting all the pieces and simplifying, we finally summarize
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our findings.

Theorem 6.2. Suppose K,,, ; and A,,, , are as defined in (6.22) and (6.4), respectively, and
that Oy, Ck, and p;; are as defined in (5.48), (5.49), and (5.50), respectively. Consider the

series
m1 n—mi+1
X =0 E Zi+ o1 + E CkZmy—1+k-
k=1 k=3

Then as y — o0

1

P(X >vy) = 3 lmlz_l Ko, (2) (-1)'°FE (Wj—beW)] (ﬂ)be—ym +o(e7v/e).

We make a couple of remarks about Theorem 6.2. First, if ¢; and ¢y are the only occurring
weights (i.e. there is no cs, ¢4, etc.), then the result reduces to the conclusion of Lemma
6.4. And second, whereas Theorem 5.6 had as many terms as there were Gumbel random

variables, Theorem 6.2 has only m; terms. The sample size n appears only through the

expressions F (Wj *beW) .

6.3 Examples

We now provide a few examples of Theorem 6.2, along with a simulation study.

Example 6.1. Take m; = 2 in this first example, so the largest weight occurs twice. Then
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Theorem 6.2 reduces to

1

P(X >y) = ZZKmU )~

b=0

_ [KmLOE (%) = Koy B (WeW)] e/ + Koy E (e¥) (2> ev/e

+o (e vy,

Using Lemma 6.3 in (6.26), it can be shown that

Koo =(1—29)T (1 - @> — <1 - 0—2) and Ky, =T <

&1

and further we have that

and

Putting (6.27) through (6.29) into (6.

P(X >y) = { {(1 — 290 (1

T <1_C_2
C1

&1

26), as y — 00

_9)_q,<1_
&1

) EWe")+T (

+o0 (e‘y/cl) )
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Example 6.2. We next state the general two-term expansion. First note the following:

1 C2 Co

Koo = —————|(1=ml (1=2)—w(1-2

YT (my - 2)] {< mw)( Cl) ( Cl)]
1 Co
Kpmo1=——-I(1—-—
et (ml—l)!( 01)

E() = nﬁHP (1 - z—’j)

k=3
preny == (1= 2) i e (1-2)
- &1 &1 C1 .
7=3 k=3

Then the two-term expansion for m; > 2 as y — 0o is

mi1—2
P(X >y) = [Knymi—2E (€") = Ky E (We')] (ﬁ> ev/e

1

mi—1
o (2)

When m; = 2, this two-term expansion reduces to the one in the previous example.

Example 6.3. Now take m; = 3, where the largest weight occurs three times. Then using

Table C.4, the K3 ; are

1
K32:—r(1—9>, K31:(1—37)r<1—c—2)—n1/(1—@), and
’ 2 C1 ' C1 C1
1
2

Kz = 0.8181T (1 — 6—2) — (1 —3y)V (1 — 6—2) +-E (T%").

(&1

As y — oo, the three-term expansion is

KE_<W>] -
cf

K\E (eV) —2E (WeW)

1

P(X >vy) =

] yefy/ﬂ
+ [KsoE () = Ko 1 B (WeW) + Ky o E (W2eW)] ¥/t 40 (e7v/1).
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This example also illustrates that, unlike the constants in Table C.4, the K,,, ; cannot easily

be summarized in a table because they are a function of ¢; and cs.

Example 6.4. We now present a data analysis example, using the Peachtree Creek data
results from Tables 2.4 and 5.6. Suppose it is of interest to find the distribution of the
total seasonal maximum streamflow over two years for summer and winter. In other words,
we want the distribution of the sum of the maximum streamflow for summer and winter
over two consecutive years (so 4 observations). We choose these two seasons because recall
that they both fit the Gumbel distribution appropriately, whereas fall and spring did not.
Further we had Xgummer, t ~ GEV(0,727.6026 + 8.4951¢,429.7833 + 5.9982¢) and Xyinter ~
GEV(0, 1438.8241,810.8379) where t = 1 represents 1958. In this example we use the years
2008 and 2009, and therefore t = 51, 52.

Table 6.1 shows the location and scale parameters for the season and year, from which we

can read off the ¢, values.

Table 6.1: Estimated Parameters for 2008 and 2009
Param. | Summer 2008 | Winter 2008 | Summer 2009 | Winter 2009

1 1160.8526 1438.8241 1169.3477 1438.8241
o 735.6915 810.8379 741.6897 810.8379

Here ¢, = 810.8379, ¢, = 741.6897, c3 = 735.6915, and m; = 2. If X}, represents the Gumbel
observation where k = 1 is Summer 2008 and k£ = 4 is Winter 2009, then X, = 0.2, + g

where Z; ~ A. In which case, the probability is then

4
d G e, Y- 5207.8485>
P 0kl + > =P+ Ts+ —=Ts+ = >"—— ———
(;( A y) <1 P T T TRI0.83T9
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After simplifying, Theorem 6.2 then provides the approximation

4
P (Z(Jka + ) > y) ~ (87.8023y — 1115987) e~ v/810-8379 (6.30)
k=1

provided y > 12710.23, a necessary condition to ensure that the approximation is positive.

Example 6.5. Understandably, conducting a general simulation on this topic is not as
straightforward as it was in Chapters 3 through 5, since we have not only choices of m; but
also various combinations of the weights c,. We therefore perform a sample simulation on
the previous example only. The study works by defining X = Zizl(aka + ug) for pg, oy

defined in Table 6.1, and simulating 10 million values of X.

Tables 6.2 and 6.3 show the errors and relative errors in estimation, respectively. Figure 6.1
shows the empirical probability for the 99th percentiles and higher. As in earlier chapters,
we study the first and second-order approximations in each table. The second-order is the

equation in (6.30), while the first-order is just 87.8023ye¥/810-8379,

Table 6.2: Errors in Approximations of Probabilities
Approx | 95% | 97.5% @ 98% 99% | 99.5% | 99.9% | 99.99%

Ist -2.0306 | -0.7565 | -0.5547 | -0.2195 | -0.0895 | -0.0124 | -0.0008

Table 6.3: Relative Errors in Approximations of Probabilities
99.5% | 99.9% | 99.99%

-0.8941

Unfortunately the approximations are much worse than from earlier chapters. The first-order

approximation is terrible, but the second-order at least gets close to the empirical probability
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Figure 6.1: Gumbel Convolution, m; = 2
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for the higher percentiles. However, this does not happen until around the 99.99th percentile.
Also notice that the approximation cannot be used except for above the 99.2nd percentile,
since below this mark the equation gives a negative probability. Note the smaller relative
errors up to the 99th percentile, but these are clearly meaningless. We conclude that for this

particular scenario, the second-order estimation is useful only for very high percentiles.

6.4 Open Questions

This fourth project begins to delve into the complicated topic of dealing with ties in the
highest weights of Gumbel convolutions. We have answered the question for the first case,
where m; > 2 and my = 1. Several potential followup questions remain unanswered, and

these would all be useful future topics to study.

198



First, we can obtain expansions for the other four cases listed at the beginning of the chapter.
Each approach is conjectured to have similar steps as those taken in the preceding proofs,
although we also expect subcases to emerge. For instance, pivot points may come into play,

forcing us to divide into three further cases where 0 < 2 <1 2 =1 apnd 1l <2 <1,
c1 27 ¢ 27 2 (&1

Second, more involved simulation studies need to be investigated to see how accurate the
approximation is, given choices of m; and ms. Recall that in Chapter 5 we discovered that
the full expansion should not always be used, and we derived a conjecture for the optimal
number of terms to include in the expansion. A similar study could be conducted on this
material, although it would have many cases to consider. Another difficulty would be the

multitude of possible choices of weights c¢y.

Third, we currently have expressions for F (eT) and F (T eT) as stated in Lemma 6.3. It
would be of interest to derive closed-form expressions for higher moments, namely E (TLeT),
L = 2,3,---. This procedure would most likely involve characteristics of the gamma,
digamma, and possibly polygamma functions. An integral representation is given in (6.5);
however, expressions for each moment would be desirable for programming purposes. One
temporary solution would be to note that F (TLeT) = (—i—f)LE [(log G)L] where G ~

Gamma (1 -2, 1). Then one could simulate the value of E (T%e”) through this alterna-

tive formula.
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Chapter 7 Chain Dependent Linear Processes

7.1 Introduction

To close the dissertation, we now shift to studying an interesting topic on regularly varying
variables, namely the Type II extreme value distribution. In the analysis of extremes for
stochastic systems, it is often of interest to model the behavior of a chain dependent pro-
cess. Such possible applications include the analysis of earthquake magnitudes, flood levels,
insurance risk, and queueing theory. These topics, respectively, are discussed in the follow-
ing references: Caers et al. (1999), Bruun and Tawn (1998), Asmussen (2001), and Borokov
(1976). In a monograph series, McCormick and Seymour (2001) study the distribution of the
maximum of a shot-noise process based on chain-dependent amplitudes. Finally, in another
paper McCormick and Seymour (2001) analyze the maximum of a chain-dependent sequence

as well as its rate of convergence.

We mention a few more sources that investigated similar work. Rootzén (1988) studied
maxima of Markov chains and distributions of exceedances. Results from Barbe and Mc-
Cormick (2005) that appeared in Section 3.3 will be used again in this chapter. The theorems
in that paper helped extract the second term in the convolution of two regularly varying in-
dependent variables, and we will use them to derive the second term in the approximations
in Section 7.2. Finally, Barbe and McCormick (2009) discuss how to derive three or higher
terms in the independent and identically distributed case, and under what conditions further

terms exist.

In this final chapter of the dissertation, and the fifth project, we consider the distribu-
tion of a linear process formed by taking a linear combination of Markov chain-dependent

regularly varying random variables. We derive a first-order tail area approximation before
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turning our attention to the interesting problem of deriving a second term.

Suppose Fj,j7 = 1,..., M are distribution functions. A chain dependent process X, is
such that

In the heavy tail setting, let F' be a distribution and set F.(z) = F(x) + F(—z) where
F =1-F and z > 0. Assuming that F is continuous, F, represents the tail distribution
for | X| where X ~ F. It is supposed that F, is regularly varying at infinity with index
of regular variation —a, o > 0, denoted as F, € RV_,. Furthermore F' satisfies the tail
balancing condition that F(x) ~ pF,(z) and F(—x) ~ qF.(z) as x — oo for some 0 < p < 1

and p+q=1.

For distributions F}, the two-sided tail, denoted Fj,, is defined by Fj.(z) = Fj(z) +
F;(—x). In order to have nonnegligible components in the asymptotic analysis, it is assumed,
for some 0 < p; <1, p; + ¢; = 1, and positive constants k;,1 < j < M, that Fj ~ piFj.,

Fi(—z) ~ ¢;Fji(x), and Fj. ~ k;jF,.

Consider the linear process

o0

Yo=Y ¢Xoin>1 (7.2)
1=—00
For the purposes of having a quick reference, here is the most common notation we shall use

in this chapter. Set ¢;” = max(c;,0), ¢;

= max(—ci, O), dl = Eﬂ— (Kl(J1)>, d2 = Eﬂ- (KQ(Jl)),
Ki(a) = pykq, and Ky(a) = gk, for 1 < a < M. For certain steps in the proof, we also
rewrite d; = 224:1 Pakam, and dy = 224:1 Gakama for p, + g, = 1. Further it is assumed that

7, the stationary distribution for the Markov chain, exists, and so the sequence Y, is also

stationary.
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Finally, unless otherwise noted we shall use Z; to denote a sequence of independent

regularly varying random variables, and X if they are chain dependent.

7.2 The First-Order Tail Area Approximation

The first step is to derive a one-term expansion for the tail probability of Y,. We shall

ultimately prove that as z — oo

[e o] [e o]

P(Y, > x) = (dl Dol Y [CZ]‘“) Fi(x) + o (Fi(x)). (7.3)

1=—00 1=—00

The proof takes the following path. We first prove by induction that we can add up the
finite sum with nonnegative constants. Then we prove that the same property holds when
the constants are all negative. We then use these results to argue that the finite sum with
any real choice of constants holds. Finally, we impose a suitable summability condition on

the {¢;} that allows us to move to the infinite sum.

Feller (1971) provides the following result.

Theorem 7.1. (Feller’s Theorem) Let Z; and Zy be independent random variables from F}
and Fy, respectively, with the property that Fi(x) = x~%Li(x) with Li(x) slowly varying,

1 =1,2. Then as x — o0

P(Zy+ Zy > ) = 2~ [Li(z) + La(x)] [1 + o(1)].

Recall the definition of slowly varying in Chapter 1. Let ¢1, ¢y > 0, then it is easily seen that
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Cq

P(c;Z; >x)=P (Zi > f) = oL, <£> ,i =1,2. Applying Theorem 7.1,

P(61Z1 + CQZQ > I) =g ¢ |:C?L1 (Cﬁ) + CgLQ (Cﬁ):| [1 + 0(1)]
1 2
By induction,
. —Q = (0 x
P (Zl ¢ Z; > x) =z [21 L (C) [1+0(1)]. (7.4)

Now we introduce the Markov chain described above. We first have that P(|X;| > z|J;_; =

Ji—1) ~ kj, ,x~*L(z). Because of the right tail balancing condition,

P(eiXs > x| Jioy = jJica) ~ pji_, Pci| Xa| > 2| Jio1 = jioa)
= pji_lkji_lcf‘xfal)i <£) 4+ o0 <IaLi (£>) .
C; C;

From this point forward, we avoid the J; 1 = j;_; notation and simply say J;_; in the
probabilities for notational convenience. Thus, conditioning on states Jy and J;, the random

variables X; and X5 become independent. We obtain

T X
P(Cle + CQXQ > J]|J0, Jl) = {[‘—CY |:pjok;joc?L <C—> +pj1]€j1€gL (—):| [1 + 0(1)]
1

Ca

Because L(-) is slowly varying, L (£> /L(:c) — 1 as x — oo for any ¢; > 0. Using this
Ci
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fact, we see that

P(Cle + o Xg > ZL‘|J0, Jl)

=x “L(x) | pjokjoct
= (Djokjoct + pji ks 5 ) Fu(w) + 0 (Fi(x)) .

We now present the proof with positive constants.

Lemma 7.1. Let {¢;},i =1,...,n be positive constants. Then as x — o0
P (Z X > x) = <d1 ch> F.(z)+o(F.(x)). (7.5)
i=1 i=1

Proof. Our first goal is to establish that

P(e1 Xy + 2 Xo > x) = di (e + &5) Fu() + o(Fi(x)).

Let P;; denote the probability of going from state j to state j* on the next move. Then
P(Cle + 9 X9 > ZE) = ZZP(Cle + o X9 > l’|<]0, Jl)P<J0)P(J1’J0)
Jjo g1

= (Z > (iokjoct + Pm/fmC?)Wjonom) F(z) + o(Fi(z))

Jjo g1

= (Z > @iokinc) T P + > (P kjlcg)ﬁjopjo,ﬁ) Fi(z) + o(Fi(z))

Jjo g1 Jjo g1

= <C(f > PickioTio D Piois + 5> piski, Zﬂ-jOPjO,jl) E(z) + o(Fi(z)).
Jjo Ji J1 Jo
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The first double sum is simple, since the sum over any row of a Markov chain is 1:

Cl ijokjoﬂ-]o Z Jo.jr — C(lx ijokjoﬂ—jo = Ctlldl' (7'6)
Jo
To compute the second double sum, recall that 7 is the solution to @ = 7P where P
denotes the probability matrix of the Markov chain. In other words, for any 1 < j,a < M,
T = Z(Zz\il ﬂaPa,j- Thus

5 ijlkjl Z TjoPjoj1 = €3 ijl kjmj, = c3dy. (7.7)
J

Jo

Putting (7.6) and (7.7) together,

P(e1 X1 + o Xo > x) = di (¢ + ) Fu(z) + o( Fi(x)).

Next, assuming (7.5) is true, we show that the statement holds for n + 1 and ¢,;; > 0. By

assumption,

Z Z (ZC Dji_1 kg, ) o H in g dlch‘.
i=1

Jn—1 =1

To begin,

n+1 n+1 n—1
P <Z ¢ X; > x) = Z...ZP (Zc,»xi > x|y, ... Jn> P(Jo) [T P(Jsrl )
Jo j j=

i=1 h=0
n+1

(Z Z (ZC Pji_1 ki 1) Tjo H Jn Jh+1> (z) + o(Fu(x))

In
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(2 (S ) T ) i

In

(Z Z (Z Cn+1pjn Jn) Tjo H Jh Jh+1> ) + O(F ( ))

In

=(I)+ (II) + o( F.(x)).

Computing (/) first,

Z Z (ZC Pji—i Fji- 1> 7TJol_[ Jh]h+1z Jn—1.Jn (z),

Jn—1 =1 h=0

and therefore

Z Z (ZC Djs—1 R > Tjo 1:‘[Pjh7jh+1 F*(I) = (dlzc?> F*(ZL')

Jn—1 \i=1 h=0 i=1

Next,

Cot Z Z ijn Ko H Py juir | Fil@)

Jn—1 Jn

= Cpy1 (Z > Piukiamio P (n)> F(z).

Jo Jn

Here P; j(n) represents the probability of moving from state j to state j" in n steps. We have
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therefore applied the Chapman-Kolmogorov equation in (1.14) n — 1 times. Continuing,

(L) = ¢y (ijnkjn > 7o Lo (n)> F(z) =i <ijn/fjn7fjn> F(z)

= dicy i Fi(x).
The induction step follows. O

The next question to address is what happens when a constant ¢; is zero. Clearly the
corresponding X; contributes nothing to the probability, so the model reduces to the case
where all the remaining constants are positive. We can therefore include the case where

constants are equal to zero.

Now we use the left tail-balancing condition to address the case when the constants take
on negative values. In Lemma 7.2, all the constants are considered negative. Recall that

F;(—x) ~ q;Fj.(x), and let ¢1,co < 0. The left tail-balancing condition gives us

Jil)

P(e;X; > x|J;im1) = P(—¢; X < —zlJia) = P (Xi <7 (—xc)

~ g1 P <\X1] > (_xc.> Jil)
= qi1[—ci]" v L <£) 40 <x_aL¢ (£>) .
& C;

Conditioning on states Jy and J;, the random variables X; and X5 become independent:

P(Cle -+ CQXQ > JI|J07 Jl) = P(—(Cle + CQXQ) < —IL”J(), Jl)

T

abil=el"L (£) & gkl (2] 1 ot

C1 Co

= xia

= (Gokjo[—cr]” + gk [=ca] ") Fil@) + o(Fi(2)).
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We now present the result with negative constants.

Lemma 7.2. Let {¢;},i=1,...,n be negative constants. Then as x — oo

=1

P (Z i X; > x) = (d2 Z[—Ci]a> Fi(z)+o(Fi(x)).

Proof. The proof follows the same steps of Lemma 7.1, only replacing the ¢; with [—¢;] and

the p; with ¢;, © = 1,...,n in the conclusion. O

We have proven that for a finite sum, the first-order approximation holds provided all the
constants are chosen to be nonnegative, or if they are all negative. The next step establishes

that we can mix these results and choose a combination of any constants on the real line.

Without loss of generality, we may rewrite the order of » ., ¢;X; so that the nonnegative

constants come first, followed by all negative constants at the end. Define U,, = >_"" | ¢ X;

and V,, = — > | ¢; X;. Then we have reduced the sum to just two variables, and we have

already proven that

n

P(U, > ) = <d1 Z[cﬂ“) F.(x)+o(F.(z)) and

=1
n

PV, >x) = <d2 Z[c;]“) F.(z) + o(F,(x)).
i=1
Lemma 7.3. Let {¢;},i=1,...,n be any real constants. Then as x — oo

P (Z X > ac) = <d1 > e+ de Z[q]ﬂ) F.(z) + o( F.(x)).

i=1 =1
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Proof. Computing the probability,

P (zn: X > x) Z Z P (Z X > x(JO, o Jn_l) P(Jy) ﬁP(Jh+1|Jh)
_Z Z (( Z j]a+d22[c;]a> 71—Jol_[ thh+1> (2) + o(Fi(z))
- (czlz[ LIRS E 1 PoR ety | G BN

= (dlZ[C?_]a‘f‘dzz > Zﬂ_]oz Goug1 - - Z i 2in1 (IE)

i=1 i=1 Jn-1
+o(F.(z))

= <d1 Z[c;r]a + dsy Z[Ci]a> F*(m) + O(F*<£L‘)>

i=1 i=1
The last step follows because all the sums, evaluated from right to left, are 1. O

Up to this point we assumed that the sum is finite. This was necessary to establish the
induction part of the proof. We are now going to leap from a finite sum to an infinite one,
which will require establishing a suitable summability condition on the {¢;}. Following the
technique used by Resnick (1987), we now derive that condition. The goal is to establish

under what conditions the series > > ¢; X,,_; converges.

Given state J;_; and the asymptotic tail distribution k’jiilf, let X;|J;_1 be a random variable
from this distribution. Also let X* be a random variable from the distribution whose tail is
F. Because X* € RV_,, there exists 0 < A < «a such that E|X*|* < co. Choose \ such that
0 < X\ < min(e, 1) and E|X*|* < cc.

We first need to establish an upper bound for E(|X;|*|Jy). We may use this particular X

since the distribution of Y; is stationary. Choose 0 < xy < oo such that Fj, < 2k, F(x) for
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all x > xy. Then

oo 9 ) .
E(X0 o = jo) = / NI, (2)de < / A dz + / N (2k;,) Fla)da
0 0 o
A > A—1 Al
< (z0) +/ A (2K, ) F(x)dx

0

= (z0)* + 2k;, B| X*]* < oo.

Therefore

M
E(E(XiMo = o)) < (z0)* 4+ 2B|X* M By (kjy) = (o)™ + 2B X Z kjomi, < 00.

jo=1

By the triangle inequality and the stationarity of the series,

E Z Cz n—i < Z |Cz|>\E |Xn 7 Z Z|Cz|)\E |X1| |J0 _.]0))
i=—00 i=—00 i=—o00 j=1
< Z |ci|* (xo + 2B X* A kaﬂ]o) :
1=—00 Jo=1

This expectation will be finite provided >>° _ [¢;|* < 00,80 > 50 ¢;X,,—; converges almost

surely. Before continuing, we state two theorems from Resnick (1987).

Theorem 7.2. (Karamata’s Theorem, page 17)
If p > —1, then Fe RV, implies

0
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Theorem 7.3. (Potter’s Theorem, page 23)

Suppose F € RV,,p € R. Take € > 0. Then there exists ty such that for x > 1 and t >t

F(tx)

(1—e)a’ < == < (1+ea""

F(1)

Following the technique in Resnick (1987), we use Boole’s Inequality and Markov’s Inequality.

First assume that all the constants are nonnegative:

P (ZcﬂXJ > :v) =P (ZCT|XZ| > x,\/cﬂXi] > ZB)
+ P (Z X > x,\/cﬂXﬂ < :c)
<P (U e 13| > ﬂ) + P (Z Xl xai<a) > \ e 1xi| < x)

D P(cf1Xi| > )+ P (Z R e 9”)
P (

f1Xi| > z) +27'E (Z Cz‘+|Xi|f[|xi|Sx[cm1}> :

IN

<

)

Therefore

= (I)+ ({1).

We can rewrite (1) as
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Next, we have

P(Xi| > [¢f]'e) X, PUXil > [¢f] 2l Jima = §)P(Jima = j)
P(IXi|>x) X, P(UXi| > 2[Jisy = j)P(Jimy = j)
_Xypikm P ) R )
> pikmiF(x)  Fl(x)

and

P(lX; PO X;| > x|Jii1 =) P(Jic1 =7
(16 > ) 2y POXA > 2l = HPUia =) > pikymy = dy
By Theorem 7.3, for all i such that ¢ < 1 (all but a finite number of 7), there exists x, large
enough such that for x > xg,

di(1=e)[cf " < (I) <di(1 + )[¢] ]

)

Both the lower and upper bounds are summable, and so by dominated convergence

Jim (1) = di Y[,

Next, we consider (1), first assuming that 0 < o < 1. From integration by parts,

E (3 1 Xilix <) Jy PUX:] > w)du

rF, ()  zP(|X,] > ) ’
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and manipulating this, we get

> Jo PUXil > ulJis = §)P(Jiex = j)du
> v P(1Xi| >l iy = §)P(Jiea = )

ij eP(|X;| > |Jio1 = j)P(Jisa = J)} 1

Fu(z) (7.8)
_ {Zj Jo pikimiFu(u)du ijj’fﬂjF*(x)} .
> pikjmiaFi(z) ()
_dy [y Fu(u)du
=

Applying Theorem 7.2, as x — oo (7.8) converges to

d1 1_d1+04—]_

l—« l—«

Therefore E|X;|] (1x:<a] € RVi_o. Once again using Theorem 7.3, we have, for all but a finite

number of ¢ and xy large enough, that for x > xy and some k& > 0

a E(Xilljx<areri) o ( EUXilx <oy 1) (E(IXi!fnmgz]))
o (x) ' E(1Xil I x,<a)) aF.(x)

< ke ([ef 7)o = K]

This upper bound is summable, so therefore

limsup (/1) < chﬂcﬂa*l = kZ[Cﬂa

T—00

To conclude, for 0 < o < 1 and some constant & > 0

lim sup (Efr('f)‘ 1) <4, ;[cj]a +k ;[cﬂ"‘ S (7.9)

T—00

)
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We now derive a similar inequality when o > 1 by reducing to the previous case 0 < a < 1.

Choose A € (a,d™1), and define ¢ = Y. ¢ and r;” = ¢ /c. Then by Jensen’s inequality,

A A
(Z cl+|XZ|> =c (Z TZ+|X1|> < C)\Z’/‘;_|Xi|>\ =M1 ZcﬂXiP‘.

]

1

(2

Let | X.| € RV_, represent a random variable from the underlying tail distribution F(z).
Then
P (3 el|Xil > x) < P (3¢ |Xi]* > ' a)
F.(x) = PX* > > o)

(7.10)

Using the fact that P(|X.|* > z) € RV_oy-1,0 < aX™! < 1,

P(Cich|Xi* > ) 3 P (ST 1X > et i = ) P(Jia = )
P(X > a?) P(XA > 2%)

kT ' C—-’— a)\_lcf(lf)\)a)\_l$fa ~ B
N ZJ Djk;T; Zz[ i(] = — dlca(lf,\ 1) Z[C;r]a)\ 1 < 00,
r—(a

which when combined with (7.10) gives

P (S > )
1111 su

< dye?t Z[c;’]a”\fl. (7.11)

We may finally establish the infinite limit. Choose any integer m > 0, then

X > P Zigm0j|Xi|>x
P(Zze*(!;b ) > ( lF*(@ >—>d12[cﬂ“,

lij<m

using the already proven result for a finite sum. The constant m is arbitrary, so

P> | Xi| >
limn inf (% F*(L)' ) >d; Y [ef]e. (7.12)

J
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Next, for any € > 0

P(Sici Xl > 2) _ P(Suen 16> 1= 92) P (Spon Xl > e0)

7.13
EE @) R e T
If 0 < a < 1, combine (7.9) and (7.13) to obtain
. P (ZZ C;’—|XZ| > LL') —« +1a —a +1a
lllrvrl}solip F() < di(1—¢) Z [cF]* + K'e Z [e ]~ (7.14)

|i|<m li|>m
On the other hand, if &« > 1 then (7.11) and (7.13) give

L P (S > )
11m su

<di(l—e) " > [+ dic®@ e Y e (7.15)

[i|<m [i|>m

In both cases, first let m — oo, then

: P (X o 1Xi| > )
lim sup

T—00 F*(I) = dl(l B 6)_a Z[C;_]a'

i
Now send € — 0 to obtain

P (¥, cf1Xi| > )
lim su = <d crle.
mewp —=rey S 2 L]

Combine this with (7.12) to conclude that

s PG S (7.10

i

Next, using similar steps with appropriate changes, it can be shown that when all the
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constants are negative,

tin S =0 e wm

7

Lastly, to leap to the general statement using any real constants, use the definitions U, =

S |1Xil, Vi = =37, ¢ |Xi|, Theorem 7.1, (7.16), and (7.17) to obtain

i <zi;il(i<;| ) g, S+ d Yl

% )

We have now proven the result for the infinite sum case and summarize our results from

above and Lemmas 7.1 through 7.3.

Theorem 7.4. Let Yy be as defined earlier, and choose 0 < X\ < min(a,1) such that
Joo A F (z)de < 0o and Y-, |¢;|* < oo. Then as x — oo

o0 o0

Py > ) = (dl Dol d Y [CZ]O‘> Fu() + o(Fi(x)).

1=—00 1=—00

7.3 The Second-Order Tail Area Approximation

In this section we derive a second-order approximation formula. This result will hold for
finite n; the infinite case remains an open question. In what follows, we first assume that
the {¢;},7 =1,...,n are positive and that n < oco. Further suppose that « > 1 and that the
mean of F is finite, and consequently so are the means p; of the underlying distributions
F;, 3 =1,...,M. This situation will be dealt with in Section 7.3.1. The cases where av = 1

and 0 < a < 1 will be handled later in Sections 7.3.2 and 7.3.3. We shall make the following

additional assumptions:
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1. F'is asymptotically smooth and right-tail dominant as defined in Section 3.4.

2. Foreachi=1,...,n, as x — o0

7 <Cf) = @F,(z) + 0 (F’f)) o (% - cf‘) 0. (7.18)

We begin by extending the formula for two independent variables to the sum of an n-variable
process as described earlier. Recall that for Z;, Z5 independent and Z; ~ F;,i = 1,2, we had

from Theorem 3.3

P(Zl + 2y > ZL‘) :Fl(ﬂf) —|—F2(ZU) +

[F1(x)pr, + Fa(z)pm][1 4 o(1)].

81Q

Introducing constants ¢; > 0,7 =1, 2,

_ _ o _ _
P(c1Z1+c3Zy > ) = c‘fFl(x)+C§F2(x)+;[c?c2uF2F1(x)+c§‘cluF1F2(x)][1+o(1)]. (7.19)

The first goal is to use induction to establish the same formula for the sum of n independent

variables Z; ~ F'; € RV_,,.

Lemma 7.4. Let Z; ~ F; be independent regularly varying random wvariables and c; > 0,
1 =1,....,n. Assuming that the F; are asymptotically smooth and right-tail dominant, and
further that condition (7.18) is satisfied, a two-term expansion for the weighted convolution
18

n

P (Z ¢ Z; > x) = Fi(x) + % {Z > c?cgupgfi(x)} [1+o(1)].
i=1 i=1 i=1 g#i

Proof. (7.19) provides the n = 2 case. Now define H(z) = P (3.1, ¢;Z; > z), and let

Cny1 > 0and Z,1q ~ F, 1 with Fnﬂ € RV_,, independent of the previous random variables.
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Notice that the mean of the process up to the nth variableis Y | ¢;fip,. Then (7.19) provides

P (Z CiZi + Cny1Zpy1 > x) = H(z) + CZ‘HFnH(a:)

i=1
n

(8% — —
+2 {H<x>cn+1m“ F e Fan(@) Y u} 1+ o(1)

x
g=1

n+1 n
_S T, i{ZZc o, Fiw) + i Faa(a) 3 o,
- i—1 g—1 g#n+1

n

+Cn 1y Z Lz /~LFn+1 Z Z egir, F } [1+o0(1)]

i=1 i=1 g#i

n+1
S @)+ {ch o, Foo) + ¢ Foa(@) Y e,
i=1 i=1 g#i g7ntl

n

+Crnt 1 hF, Z cffz(x)} 14 o(1)].

i=1

The last line above results from the fact that one of the terms involves ‘;‘—3, so it is negligible.

Continuing,

g#i

P (Z ciZ; > x) = Zcfﬁz(x) + % {Z & Fi(z)

i=1 =1

e Frn(o) Y u} 1+ o(1)]

g#n+1

The term ', > g CglF, + Cut1fir, ,, collapses into > > gi CgltF, because the index in

the first sum is from 1 to n. Therefore g never equals n+1 in the finite sum anyway. Finally,
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the probability is

n+1 n
> @Fi(w) + = {Z S o, Filw) + i Faa(a) Y %m} [1+o(1)]

i=1 i=1 g#i g#n+1
n+1 o n+1
= Z i Fi(x) + - {Z Zc?cgquFi(w)} 1+ o(1)].
i=1 i=1 g7#i
This completes the induction step. ]

7.3.1 The Case With o > 1 and Finite Means

Let Xi,...,X,, be Markov chain dependent random variables where the M-state chain has
stationary distribution 7. For now, take o > 1 and the underlying distributions to have

finite means, and assume that ¢; > 0,7 =1,...,n.

Before going further, we need to establish some stronger tail balance properties. In the
previous section we assumed that Fj = pjk:jf* + o(F,), but that order term was appropriate
since we were only concerned with a first-order term. In this section we need a stronger

assumption, namely that for j =1,..., M,

x{(%—pj)<];‘j)+pj(%—kj>}—>o as & — oo, (7.20)

As a consequence, as T — 00

F
P(¢;X; > x|Jiz1) = pj, kj, ¢ Fu(x) + o0 ( (:E)> .

i—11

In addition, we also have that E[c;X;|Ji—1 = ji_1] = Cifbr, | = Ciftj;, - Now we can find the
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conditional probability given all the previous states of the chain. Lemma 7.4 provides

P (Z X > x‘Jl, 0<I<n— 1> = ijiflkjiflc?F*(x)
i=1 -
F.(x
{Zzph 5 G B g Xgl g1 = Jg- 1]} "’0( :i )) (7.21)

i=1 g#1
= (iji_1kji—1cia> F*(I) + %(x) {Z iji—lkji—lciacglujgl} +o (F*:iw)> :
=1 =1 g#i
We now uncondition (7.21):
n n—2
P<201X1>$> Z ZP<ZC7,X >$‘Jl70<l<n_1) TrJOH JhJn+1
=1 In—1 h=0
= Z Z (ijl - a) )T, H Jrin+1
In—1 =1
F.(x)
Z Z {Z ijz Gio1 G5 Calj, 1} Tjo H Gnin1 T ( T )
gn—1 Ui=1 g#i
— (1) + (1) +0 (@) .

(1) is equal to (di Y7, ') Fu(x). To simplify (IT), define b (x,y) = cyp(x)k(z)u(y) where
p(z)k(x) = pj,kj, and p(y) = p;,- Then (II) can be expressed as the sum of expected values
of the hf(-,):

(I1) =

{ZZ SE[h ,_1,J_)}}.

1=1 g#i

We therefore have
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Lemma 7.5. Suppose a > 1, and choose ¢; > 0,1 =1,--- ., n. Then as x — o0

P(iciX¢>x) = {dlzc T ZZCQE Ji-1, Jg-1 )]}F*<x)

i=1 g
+o0 (Ff)>

Unlike before, this approximation formula requires the transition matrix probabilities of the

Markov chain, which in practice will be unknown. Therefore in order to use this formula,

the transition matrix must first be estimated from the data set.

We now redo the proof of a finite sum, this time assuming the {c¢;} are all negative. First

x
T 1 Ji—
[—ci] 1)
F.;
- qji—lkji—lp |XZ| > L Ji—1] +o M
[_Ci] T

@ F. ji—1 (l‘)
- qji*lkjifl[ci] F*jiﬂ(x) To (JT) .

consider the random variable ¢; X; conditional on J;_i:

P(CZXZ > IlJi—l) = .P(—CZAXVZ < —l‘|<]i_1) =P (Xz <

As before, we condition on all previous states of the chain, making the variables independent,

and therefore by Lemma 7.4

P(iciXi>:c}Jl,O§l§n—1> Zqﬁ i —a]“ Fi(x)
{Z ZCM Jie [CgX |J ]} +o0 (F*I($)) (7.22)
F

i=1 g#i

_ {izn;jS_lkji ] ZZ% el e, 1} F.(z) +o( x(:v)) .

i=1 g#i
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Unconditioning (7.22), for 0 <[ <n—1

n n—2
P (z (X > ) o (z (X > x)Jl - ﬁ) wo T P
h=0

e Z ZZ b el ]%n o Lo ()
=<f>+<n>+o(¥).

The first piece (1) is equal to (dy > [—ci]*) Fu(x). Define h, (z,y) = cyq(x)k(z)p(y) where

q(z)k(r) = q;,kj, and p(y) = p;,, then (II) can be written as

We therefore have

Lemma 7.6. Suppose a > 1, and choose negative constants {c;}. Then as r — o0

P(En:cipr) {dZEn: ZZ —ci]”E [h Zl,J_)}}F*(:c)

i=1 1=1 i=1 g#i
F.(z
+0 (—( )) .
x
Now that we have proven the cases where the constants are either all nonnegative or negative,

we can mix the two results. Define U,, = >""" | [¢;F]X; and V,, = — > [¢;]X;. Observe that

conditional on the {J;}, U, and V,, are independent, so (7.19) can be used. To recap, we
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have

n

P(U, >z) = {d1 > e+ % SN TIGE [ (e, Jya)] } Fi(z)+o (Ff)>

i=1 i=1 g#i

- O — F.(x
P(V,>a) = {d2 Sl + SN IE [y (i Jy)] } F.(z) +o0 < :i )) .
i=1 i=1 g#i
Theorem 7.5. Let {¢;},i =1,--- ,n be a sequence of real constants. Suppose o > 1 so that

each of the underlying distributions has finite mean pj. Define [t = Z;\il pim;. Then as

T — OO

4 2B {Z DB [y (ies, Jy-)] + 3 D 61 E [y (i, Jy-1)]

i=1 g#i
B n n o B n o n o F* T
AT el + o 30 S ey ] [c;]} +o (#) .
Proof. Observe that P(U, +V,, > z) is equal to

L0 (1, > 1) (V) + PV, > 2B+ o(1)]

PU, >x)+ PV, > )+

Further

E(U,) =E

E (Z[CT]XAJZ-—l)] =Y [ 1E(s,_) =Y 61> pmy = ﬁZ[Cﬂ-

i=1 =1

=1
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Similarly, E(V,,) = = > [¢; ]. Finally,

P <Z i Xi > a;> = (dl > ¢ + da Z[C;]a) F.(x)

1= i=1

{ Z Jic1; Jg-1) "‘ZZ Ji— 1,Jg_1)]}
i=1 g#i g o
+ ozF;(w) {d1 Z[c,-*]“E(vn) + d Z[Ci]‘“E(Un)} Y (Ff))

<dz Yl )
{ZZ i) 4 3 ST [ G )

iy i=1 g#i
— D Sl + dgﬁZZ[Ci]a[cﬁ} e (Ff)> |

]

The major issue with this result is that we need another, simpler form for computational
purposes. We shall derive computational results for the two sums in Theorem 7.5 that
contain the expected values. Ultimately we will write the transition probabilities in terms
of the number of steps m needed to get from state j to state j'. Recall that this is denoted

as P; jy(m). The first goal is to simplify

ZZ Jic1, *1)} :iZ[c CQZ ijz Jim1Mjg—1

i=1 g#i =1 g#1 Jn—1
n—2

X T H Pjh7jh+1'
h=0

(7.23)

We proceed by first fixing ¢+ = 1, then letting ¢ = ¢,1 < ¢t < n, and then finally ending with
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i = n. The contribution from the i = 1 term provides

01 g E J07 g— 1 Cl § Cg§ § Pjo JoMJg 177301_[ Thodht1°

g#1 Jn—1

Simplifying,

Cl E :CQE : E :pjo joHig— 17TJ0PJOJ1"'Pjn—27jn—1

In—1
= Cl E :Cg§ : E :pjo jolg— 170 Lo *** Pig_2.dg 1
]g 1
Cl E :CQE E :pJO Joldg—1Tj0 Pjoj— (g —1).
Jjo ]g 1

Rewriting this sum using the new indices a and b for notational convenience, we have that

the 7 = 1 term contributes
n

M M
Cl ZE Jo, g— 1)} = a ngzpa albTa ab(g_ 1) (724>

g#1 g=2 a=1 b=1

Now we examine the ¢ =t term, 1 < t < n. Notice we have two cases to check here: when

1<g<tand whent <g<mn. Firstlet 1 <g <t

Ct E :CQ§ : § :pjt 1R Mg lﬂ-JOPJOv]l.”Pjn—Qv]‘nfl

Jn—1
- [Ct ] Cg p]tflk:]tfllu’]gflﬂ-]O‘P]Ovjl ‘PJgflv]g ‘PJt727]t71
g=1 ] Jg—1 Jt—1
ct E :CQ § : : E :pjt—lkjt—llujg—lﬂ-jg—lPjg—lng e Pjt—27jt—1
Jg—1 Jt—1
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t—1
=1 e Y > ik Ty Piy e (= 9).
g=1

jg—l jt—l

Therefore when 1 < g < t, we obtain
M M
[02-]01 Cqg Z Zpbkb,ua’frapa,b(t - 9) (725)

Now let t < g < n and repeat:

n
+1a
[Ct ] E : Cq E : o E :pjt—lkjt—llujg—lﬂjOPjOvjl T Pjn—27jn—1

g=t+1 Jo Jn—1
n
_ [+
- [Ct ] E : Cyq E : e E : o E :pjt—lkjt—llujg—lﬂ—jopjmjl Tt Pjt—hjt T Pjg—?ng—l
g=t+1 Jo Jt—1 Jg—1

n
_ [t
- [Ct ] E : Cqg E U E :pjt—lkjt—l:ujg—lﬂ-jt—lpjt—hjt U Pjg—2,jg—1

g=t+1  ji—1 Jg—1

- [Czj_]a Z Cq Z Zpjt71kjt—uujg—lﬂ-thF)jthjgfl(g —1).

g=t+1  jt—1 jg—1

Therefore when t < g < n, we get

1 e >0 pakapmaPas(g — 1). (7.26)

g=t+1 a=1 b=1
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We combine (7.25) and (7.26) to get the ¢ =t contribution

t—1

M M
[Cg_]aZEh;(‘Jt—h Jg—l) = t a Cqy Zzpbkbﬂaﬂ-a ab t_ g)

g#t g=1 a=1 b=1
. v M (7.27)
a Cqg Z Zpa a,U/bT‘-a a,b - t)
g=t+1 a=1 b=1
Finally, we compute the ¢+ = n case:
ZE n 17 - )]
g#n
Z Cg Z Zp]n 1Vjn— llng 17T]0PJO Ji1 oo Pjn—2:jn71
.]n 1
ch Z Zp]n 1 ]n IILL]g 17T]q lqu 1 ]g o Pjn—2,jn—1
Jg 1 In—1
chzzp]n 1 Vin— 1/’1/.79 17T]g I‘P]g 1,Jn— 1(” g)
]g 1Jn—1
The contribution from ¢ = n is therefore
n—1 M M
P B b Gnr d )] = (6176 DY mhtamaPasn = g). (728)
g#n g=1 a=1 b=1
Put (7.24), (7.27), and (7.28) together to get
n—1 n M M
S S B sy = 3 D 1% S 3 pekapiomPasli - g)
i=1 gi i=1 g=i+1 a=1 b=1
n i—1 M M (7'29)
+ Z[Cz—‘i_]acg Z pbkb:uaﬂ-apa,b(w - g’)
=2 g=1 a=1 b=1
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Using similar derivations,

n—1 n M M
ZZ z 17 — CQZZQCL a,ub’n—a a,b |2_g|)
i=1 g#i i=1 g= z+1 a=1 b=1 (730)
n  i—1 M M
+ ngqukbﬂaﬂ-a ab g|)
=2 g:l a=1 b=1

The computational version of Theorem 7.5 follows, using (7.29) and (7.30).

Theorem 7.6. Suppose o > 1 so that each of the underlying distributions has finite mean

w;. Then as x — 00

+2_2 > > e[l + (610 kuptamaPas(li - g])

—7id, i i[cﬂo‘cg— + Tids i i[c;]ac;} +o0 (@) .

7.3.2 The Case With o =1 and Infinite Means

In this section, we state the proven results from the previous section under the assumptions
that @ = 1 and the means p; are infinite. This happens when the underlying distribution
F,(z) has an infinite mean. As stated in Theorem 3.3, the means y; are replaced by truncated
means ji;( f tF;.(t)dt. Using this same idea, define the truncated average mean fi(x) =

ijl 1 ([E)?Tj. Since our results are generalizations of results from Barbe and McCormick

(2005), it suffices to replace the p; with p;(x) and @ with (z).
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Let the expected values be defined as b (z,y,t) = c,p(@)k(x)u(y, t) where p(z)k(z) = p;, kj,

and p(y) = p;, (t). Similarly, hy (z,y,t) = cgq(x)k(z)p(y,t) where q(x)k(z) = g;,k;, -
Theorem 7.7. For o« = 1 and x large enough, the theoretical two-term expansion is
P (ZCiXi > :17) = (dlch +d220;) F.(z)
i=1 ' ;
{sz s Jy )] 4 D0 S B [ U, )

i=1 g#i i=1 g#i
) S e e qucg} (Fx())
=1 g=1 =1 g=1

The computational result is

=1 =1 =1

w)

F* (ZE) n—1 M M -

LYY DD ey [ pa+ 65 da) Kapu(@)ma Pas(li — gl)
v i=1 g=i+1 a=1 b=1

-1 i-1

n—1 M M
+ Z Z Z Cqg [Cj_pb + C;qb} k‘b,ua(gj)ﬁapa’b(“ _ g|)
=2 b=1

dﬂzz - ZZ } (B,

7.3.3 The Case With 0 <a <1

Up until now we have assumed that a« > 1, adjusting to the particular case when a@ = 1
but the means are infinite. It is now time to consider the case when 0 < a < 1. First, we

reference Theorem 3.4, restated here.
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Theorem 7.8. Define the quantity

1/2
I(a) = /0 (=y)™*=1)ay™'dy. (7.31)

Now let Fy and Fy be regularly varying, asymptotically smooth distribution functions sup-

ported on the nonnegative real line. Then

lim e = 2I(a) + 22> — 201,

For our work, all the underlying distributions have the same index —a. Define

O = 2[(a) + 2% — 20, (7.32)

If Z; ~ F;,1 = 1,2 are independent, the result of Theorem 7.8 can be rearranged to

For ¢; > 0,1 =1,2,

P(c1Zy + ey Zy > x) = & F(2) + 5§ Fa(x) + O ey Fi(z) Fo(x)[1 + o(1)]. (7.33)

We now leap to n variables.

Lemma 7.7. For c¢; > 0 and independent random variables Z; ~ F;,i = 1,...,n, all reqularly
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varying of index —a where 0 < a < 1 and satisfying the assumptions in Theorem 7.8,

P (Z CiZi > m) = Z & Fi(z)+ 0 2_: Z e Fi(x)Fy(z)[1 + o(1)].

i=1 i=1 1=1 g=i+1

Proof. The case where n = 2 is (7.33). To establish the induction step, consider ¢, 1 > 0
and random variable Z,, 1 ~ F, .1, independent of the previous variables. Then, neglecting

the terms where more than two distribution tails are multiplied together,

n+1 n
P <Z ;L > Qf) =P (Z C; L > IE> + P (Cn+1Zn+1 > ZE)
=1

i=1

+OP <i ;L > I‘) P (CnJrlZnJrl > .T) [1 + 0(1)]

=1

=1 i=1 g=i+1 =1
n—1 n
+ G Fnga(2) C?c;“Fz(w)Fg(fr)} [1+o(1)]
=1 g=i+1
n+1 n—1 n
= ch Fi(x)+0© {Z Z iy Fi(x)Fy(x)
i=1 i=1 g=i+1
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Adapting to our work, and under the assumptions (7.18) and (7.20), Lemma 7.7 provides

P (Z e X > x)Jl,O <Il<i-— 1) = ijiflkjifl[cﬂo‘F*(x)
: i=1

(7.34)
+ @ Z Z p]z lp]g lk]z kjgfl [F*(m)]Q + o ([F*(x)]2> .
=1 g=1+1
To uncondition (7.34) define h*(z,y) = p.pyk.ky, then
P (Z i X; > x) = <d1 Z[cﬂo‘> F.(x)
= I (7.35)
2 a + 2
Z SB[ (Jimt, Jy-1)] + o ([Fu(@)]?) -
i=1 g:z+1
Similarly, letting the constants {c¢;} be all negative, it can be shown that
P (Z ¢ X; > x’Jl =, 0<1<i-— 1) = g ki1 ()
i i=1
+ @Z Z G @Gy K gy [Fe (@) + 0 ([Ful@)])
i=1 g=i+1
and consequently, letting h™(z, y) = ¢uqyk.ky,
P (Z ;i X; > a:) = <d2 Z[cz]o‘> F.(x)
i=1 =1
n—1 n (736)
+O[F@)] Y Y e ¢ 1B (Jimy, Jy-1)] + o ([Fu()])
i=1 g=i+1

Moving to any real constants, define U, = > | [¢/]X; and V,, = — > ,[¢; ] X;. Then (7.35)
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and (7.36) provide

P(U, +V, > z) = P(U, > 2) + P(V, > z) + OP(U, > )P(V, > z)[1 + o(1)]

= <d1 Z[cﬂa +dy Z[Cz]a) F(z)

. (7.37)
+O[F.(2)] {Z > (e 1B (Jima, Jo-0)]] + (e ¢ 1*EIh (Jioy, Jg-1)])

i=1 g=i+1

+ didy Z Z[cjc;]a} + o ([Fu(x))?) .

i=1 g=1

Lastly, if one desires a computational version of (7.37), one can use simplifying techniques

as in the proof of Theorem 7.6 to obtain

PU,+V, >z)= (dl Z[cﬂa + dy Z[c;]a> F.(z)

n—1 n

+O[F(a))? {Z SN (lefef1pape + [ei ¢y 1% 0ath) kakvmaPap(g — 1) (7.38)

n n

We have now established the following result.

Theorem 7.9. For 0 < a < 1 and x large enough, the theoretical two-term expansion and

computational result are as given in (7.36) and (7.37), respectively.

7.4 Open Questions

There are a couple of additional conjectures we have about the chain dependent regularly

varying random variables, both of which currently remain unproven. Recall that the first-
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order approximation was completely derived, even for an infinite sum. The second-order
formula, however, has only been worked out for the sum of n variables. It is strongly
suspected that the infinite sum holds, but at this time it is not clear specifically what
additional assumptions need to be made. As an example, taking o > 1 and the underlying

means to be finite, it is conjectured that under suitable conditions, as x — oo

P(Y; > x) <d1 “ 4 dy i [c;]a> F.(x)

i=—00

{ Z ch [[Cj]apa + [C;]QQCL] ka,ubﬂ-apa,bqi - g’)

—id, Z Z[cj]“c; + Tids i i[ci]%;} +o <¥) .

The outcome of Theorem 7.4 required >_>° _|c;|* < oo for some 0 < A < min(a,1). It is

1=—00

believed that a similar summability condition is needed in the three possible cases. Further

assumptions on asymptotic smoothness and right-tail dominance may come into play as well.

The second conjecture concerns an interesting application of the three-case second order
approximations. We derived computational results, but they all depend on the individual
entries of the underlying Markov chain. Even if these probabilities are known, we still have
to store possibly massive amounts of matrices to get the specific Markov chain for moving in
k steps. That is, we would need to store in computer memory P* k =1,2,---. We propose
that all three approximations can be further approximated by simply replacing the transition
probability P, (k) with m,. Of course, some amount of error is to be expected from such an

operation, but we believe that the amount is negligible for large enough .
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To illustrate how the conjecture works, let Q,(z) denote P (3", ¢;X; > ) but with the
transition probabilities replaced with the stationary probabilities. When a > 1 and the

means are finite, we have

On(z) = <d1 3l + ds Z[ci]a> F.(z)

i=1 =1

+af {ch (Z Dol =) lefle (7.39)
i=1 g#i =1 g=1
+d (Z Sl e, + Z[c;]%;) } B, (B,
i=1 g#i i=1 g=1

When o = 1 and the means are infinite,

Qn(z) = (dl Zc;r + dy Zc[) F.(z) + {dl (Z Zc?cg — Z Zczrc;)

i=1 gi i=1 g=1

) o " (7.40)
v (S e ) D (£)
i=1 g#i i=1 g=1
When 0 < a < 1,
Qu(z) = <d1 D )+ da Z[c;]“) F.(z)+© { : (dilef el + d3e; ¢;17)
=1 =1 i=1 g=i+1 (741)

n n

+didy Y Z[cjcg—]a} [F.(2)]? + o ([Fu(2)]?) .
i=1 g=1

One obvious question that arises from using an approximation to the approximation, as it

were, is what kind of error results in doing so. Clearly using the @, (x) should result in some

sort of error, but at this time it is not clear as to that discrepancy’s exact behavior. The

error appears through |P; ;(n) — m;|. There are numerous published results on this topic,
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and we suspect that the answer lies in at least one of these. For instance, Roberts and
Tweedie (1999) discussed the problem in the geometrically ergodic case. They proved that
for some function M (z) and some p < 1, |P; ;(n) — ;| < M(x)p™. For further discussion of

this matter, see Meyn and Tweedie (1994) and Lund and Tweedie (1996).

Lastly, there are instances where one may want to pursue further terms in the expansion.
First, a third term may provide a more accurate approximation if both the first and second-
orders are a little inaccurate. And second, there are instances where the second term may
vanish, necessitating the need for an extra term. One example is when the underlying
distributions are T with degrees of freedom at least 2, in which case the means are all 0.

Barbe and McCormick (2009) discuss this problem and provide several examples.

7.5 Examples of Chain-Dependent Processes

We now present some examples of distributions that satisfy the requirements of the regularly
varying setting.

Example 7.1. Suppose Z1, -+, Z, w F, with F, ~ kxz™. Then the Markov chain has only

one state, and the first-order approximation is
P (Z ciZi > a:) =k (p Z[cﬂo‘ + QZ[CZ-]&> %+ o).
i=1 i=1 i=1
If F' is defined only on the positive half line, then the approximation reduces to

P (i ciZi > x) = (k Zn:[c;’]o‘> % 4 o(x™?),

i=1
which is the result from Resnick (1987). Because of the independence, the second-order
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approximations reduce to the results given in Barbe and McCormick (2009) provided v > 1.

If n = 2, then for any o > 0 we recover the results in Barbe and McCormick (2005).

Example 7.2. The standard Pareto distribution is F(z) = 27, a > 0,z > 1. Clearly

F € RV_, with L(z) = 1, and the mean is =% for @ > 1. If @ = 1, then the truncated mean

is log(z).

Example 7.3. Define the Cauchy distribution as

— 1 1 —

F(:v):———arctan(x M),a>0,—oo<x<oo.
2 7 o

It can be shown that F/(z) € RV_;, and further that F(z) ~ 227!, The truncated mean is

Llog(1 + 2?).
Example 7.4. The T distribution on 2 degrees of freedom is defined by

T

— 1
F<x):§ {1_——2+x2

] ,—00 < T < 00.

It can be shown that F(z) € RV_y and F(x) ~ %x*Q. This example illustrates a potential
problem with using the second-order expansion, which depends on the means of the under-
lying distributions. Because the mean of the T distribution is 0, the second term in the
expansion is also 0. This is an instance of where further terms in the expansion might be

appropriate, as mentioned in the previous section.

Example 7.5. Now we introduce the AR(1) process to the Markov chain scenario. If a > 1,
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then set ¢; = 0! for 0 < # < 1. Then Theorem 7.6 reduces to

(Z c; X > :U) =d (11__690:) Fu(z)
aF; r {Z 3 ZZeaaq)wilpakaubﬂa Pus(li — g)) (7.42)

i=1 g=i+1 a=1 b=1

n i—1 M M ‘ F(ﬂf)
TS o i o |+ o (EL2).
1=2

=2 g=1 a=1 b=1

Assuming that (7.39) holds, a more succinct way of writing (7.42) is

@n@)—dl(ll‘_@;")m@) adif(a) (ZZQa@Hg ) (F())

i=1 g7#i

Simplifying the double sum,

Lo g e 1y R
T

Qnl) = adiib" ( (1—6)(1—6°) 1o
ra (A0 by o (P51,

Finally, if the infinity conjecture holds, then as n — oo

(7.43)

Ou() diF.(z) (adlﬁeo‘@ — 0ot — 9 4 gt )— 9"‘)) F.(7) o (F*(x)

1— 0~ (1—0)(1—62)(1 — gott T T ) - (T44)

Example 7.6. Next, we consider the AR (1) process where —1 < @ < 0, and thus ¢; = §°~1.
This time we illustrate Theorem 7.9 and take 0 < a < 1. We also assume that the Q,(z)
conjecture holds and, for simplicity, take infinite sums. One has to be careful defining the

constants as the {¢;} alternate signs. Observe that ¢; = 0" 'Jjj oaq) and ¢; = 0" I even)
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where [ is the indicator function. Then as n — oo

Qute) » (D58 ) Py + o0 (BERTEDE ) (1 ok o (R 0) . (149

Example 7.7. This final example illustrates a specific Markov chain with state space 3, and
also provides motivation for obtaining a future proof of the @, (x). Because of the multitude
of variables needed for the approximation, we do not use the Peachtree Creek data set like we
did in earlier chapters, but instead we perform a simulation study on this specific example.

Define the transition probability matrix and corresponding stationary distribution by

0.2 0.5 0.3
P=105 0 05 and 7?=<0.35928 0.31138 0.32934).
0.4 04 0.2

Take F.(x) = x~% x > 1, the Pareto distribution. Now define the underlying distributions

to be

_ 2j +1\°
Fj(x):<‘7; ) >24+1,5=1,2,3, (7.46)

Thus, the Markov chain distributions are related to the parent Pareto distribution via
Fj(x) ~ kjF(z) where k; = (2j + 1)® for = large enough. Next, define the 20-dependent

19 7

1

moving average process Y, = Z <§> Xpn—i . Finally, take a = 1.5. Then p; = 1, ¢; = 0,
i=0

e = (1Y [er]e = 0, dy = 11.44767, and dy = 0. Further u; = 3(2j + 1). The

trickiest part of the formula is computing the P,;(|i — g|), for this requires utilizing the
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spectral decomposition on P*~9. It can be shown that

Pp1 = 0.35928 + 0.43680(—0.15858)/"79! 4- 0.20392(—0.44142)"~9
Py = 0.35928 — 0.06320(—0.15858)!"~91 — 0.29608(—0.44142)"9
P31 = 0.35928 — 0.41675(—0.15858)/"79! 4- 0.05747(—0.44142)/"9
Py = 0.31138 + 0.18093(—0.15858)/"79/ — 0.49231(—0.44142)/"~!
Pyy = 0.31138 — 0.02618(—0.15858)" 79 + 0.71480(—0.44142)/"~!
P35 = 0.31138 — 0.17263(—0.15858)/"791 — 0.13875(—0.44142)!"~9!
Pi 3 = 0.32934 — 0.61773(—0.15858)" 9 + 0.28839(—0.44142)/"~!
Py3 = 0.32934 + 0.08938(—0.15858)/" 79/ — 0.41872(—0.44142)/"~/

P35 = 0.32934 + 0.58938(—0.15858)/"79! 4 0.08128(—0.44142)/"9.

The two-term expansion is

i=1

P (Z X > g;) ~ 14.1758271° 4+ 454.3261272°. (7.47)

In this case, we have a three-state Markov chain, so storing the P*~9 is not unreasonable.
However, the calculations quickly grow out of control for larger states, and using the spectral
theorem would be computationally intense. For this reason, we also compute the probability

using the @, (z) conjecture:

Qn(7) =~ 1417587 1° + 465.24461>°. (7.48)

While the second coefficients in (7.47) and (7.48) are slightly different, for x large enough

the difference is going to be negligible. This example illustrates that using the @, (z) ap-
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proximation may be beneficial in practice provided the percentiles are high enough. Now we

examine the three approximations in Figure 7.1.

Figure 7.1: Chain Dependent Convolution, 5 = %
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Curiously, the first-order approximation is the closest to the truth, and even then the esti-
mated probabilities are not very good. In this particular example the second-order is worse.
The good news is that, as we conjectured, the @, (z) formula is very close to the actual
second-order approximation at the high percentiles. This observation provides hope that in
general, we may be able to use the Q,(z) instead in order to make computation much easier.
Tables 7.1 and 7.2, as usual, show the errors and relative errors in estimation. Note the very

similar numbers for the second-order and the @, (x) approximations.
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Table 7.1: Errors in Approximations of Chain Dependent Convolution

Approx | 95% | 97.5% | 98% 99% | 99.5% | 99.9% | 99.99%

2nd -0.0657 | -0.0229 | -0.0165 | -0.0059 | -0.0023 | -0.0003 | -1.7e-5
Qn(z) |-0.0670 | -0.0233 | -0.0167 | -0.0060 | -0.0023 | -0.0003 | -1.8E-5

Table 7.2: Relative Errors in Approximations of Chain Dependent Convolution

Approx | 95% | 97.5% | 98% 99% | 99.5% | 99.9% | 99.99%

Qn(x) | -0.5727 | -0.4823 | -0.4556 | -0.3757 | -0.3164 | -0.2426 | -0.1525

We should question why the approximations in this example are a little off. There are
unfortunately a number of possible reasons - the Markov chain, the choice of {¢;}, the choice
of kj, the «, even the underlying distribution. The multitude of possibilities explains why
doing a general simulation on this matter is difficult. However, we are hopeful that in
other situations the approximations will be better behaved. One reason why they did not
work as well here is because all the constants happened to be positive, and the first-order
approximation was already an overestimate. In an instance where the {¢;} alternate signs,
or where the underlying distribution has mass on both halves of the real line, we may see
the desired results. For instance, this may happen when ¢; = p*~1,i > 1,—1 < p < 0. This

topic of exactly when the formulas are reliable will be left as an open question.
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Chapter 8 Conclusions

The five projects in the dissertation together have established some very significant results
in extreme value theory, both theoretical and computational. As much as possible, the
theory has been well balanced with illustrative examples and computational results. We
started with a thorough data analysis of the Peachtree Creek, establishing that the creek’s
median height is increasing significantly in summer and fall. In doing so, we have arrived
at a significant result that will be of interest to insurance companies and hydrologists. This

project also enabled us to tie extreme value theory with maximum likelihood estimation.

The second project derived theoretical expansions of the AR (1) process where the random
variables satisfied the Gumbel distribution. This type of process is ubiquitous in a variety
of disciplines, and now we have results for its upper tail probabilities. Furthermore, we also
established a realistic range of [ values over which each approximation should or should not

be used.

The third project established a general two-term expansion for the convolution of a
particular class of random variables, of which the Gumbel is a special case. This theoretical
result is analogous to the one in Rootzén (1986), only with a second term. However, we
discovered by simulation that further terms were needed, so at this point we focused on
getting n terms for the Gumbel situation. We concluded that at least some more terms were

beneficial, but an interesting open question is precisely how many.

The fourth project gave an example of how to handle ties in the largest weights of the
AR(1) process. There are plenty of open questions from this topic, not the least of which
are working out more cases and carrying out a series of simulation studies to test for overall

effectiveness.
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Finally, the fifth project provided a fully worked-out first-order expansion for a process
of Markov chain dependent regularly varying random variables. The second term in the ex-
pansion has also been derived, taking one of three different forms. We established theoretical
and computational results, and we suspect that under certain additional assumptions the
second term will hold for the infinite process. That extra proof would make the second-order
analysis complete for theoretical purposes. In addition, that chapter provided some poten-
tially useful alternative computational formulas, but the error expended in using these has

yet to be studied.

All five projects contribute significantly to extreme value theory in one way or another,
especially with results on the Gumbel distribution. However, plenty of open questions have
arisen from these studies, and these would all be useful ideas for future study. We recap the

most interesting questions below.

1. A followup study could be conducted with the Peachtree Creek, or any other creek
or river, with more covariates. We suspect that variables like population density,
along with some measure of the amount of concrete in the surrounding city, should be

included.

2. One could study the AR(1) processes in Chapter 4, but with negative weights. We

proved the result for standard Gumbels, but the nonstandard case remains open.

3. Precisely how many terms are needed in the expansion for the convolution of n Gum-
bel random variables should be investigated. The conjecture provided at the end of

Chapter 5 should get this future study started.

4. The remaining four cases outlined at the beginning of Chapter 6 would give a more

complete analysis of the AR(1) process with various combinations of ties in the weights.
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5. The @, (z) formulas should be further studied, with emphasis on the error resulting in
going from the second-order approximation to the conjectured equivalents. We suspect

that various results from papers by Tweedie will help start this project.

On top of all these suggested future studies, there is the opportunity to do more in-
volved simulational results. The fourth and fifth projects in particular could benefit from
more simulations, although as mentioned the combinations of parameters to keep track of
are plentiful. Results from such future work would help us work out how and when each

approximation should be used in practice.
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Appendix A The Hessian Matrices for the Peachtree Creek Data

After numerically solving for the maximum likelihood estimators via an evolutionary algo-
rithm, we next need to compute the standard errors, T-statistics, and p-values. None of
these are possible without first computing the Hessian matrix. We chose to compute the
exact second derivatives and evaluate each of them at the estimators. This appendix shows

the equations we used.

If H; denotes the individual Hessian matrix for season 7,72 = 1,--- ,4, and H is the overall

18 x 18 Hessian matrix, then

H, 0 0

e 0 H,
Hs; O
0 0 H,

Since H; and Hj3 are Gumbel fits and therefore & = &5 = 0, we derive their Hessian matrix

forms separately from Hy and Hy. The results are in Appendices A.1 and A.2, respectively.

A.1 The Hessian Matrices for Summer and Winter

For i = 1,3, H; has the form

92InL; 92InL; 92InL; 92InL;
ou? Ouido;  Owidn;  Ou;0¢;

K
92InL; d2InL; d2InL; 92InL;
Do O Oo2 do;0n; 000
H;

82111141' 8211’1Li 82111]-_41' 821111_41'
oniOp;  On;0o; on? O 0;

9%InL;  9%InL; 9%lnL;  H%InL;
0¢i0u;  0¢;00;  0¢;0n; o3
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We now state all ten unique second derivatives. Define f(z;) = exp [— (—u“;_#(;t lt)}

0”InL; & ( 1 )2
= Z f(@ei)
Opi \ i+ it

821HLi > 1 2 Ty — i — ait
;0o T Z_: (Ui + 925115) {1 = flau) + (W) f(xtﬂ)}

t=1
92InL; o2 1 2

OpiOn; ; (ai - gbit) I (2es)

FluL; - ! ’ T — [ — ait

Pl _~( 1Y i — i — Mt i — i — it
= 1 -2 — oz .
do? ; (Ui + ¢it) { ( o; + it ) + ( o + ot ) I (i)
T A
B o; + @it f (@)

9%InL; 52 1 2 T — o — it

9%InL; o2 1 2 Ty — i — M5t T — [ — 1Mt
= t 1-2(— 2| —— i
00,09, 1 (Ui + ¢z’t) { < o; + @it > i ( o; + @it ) fla)

Ty — Mg — 7’/Z‘t 2
o ( Ui+¢it_> f(24)

82111L,L‘ o2 t 2
or T (o—i + @t) fla)

t=1
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52

821nLi - t 2 Tyi — i — nlt

t=1

0%InL; > t 2 Ty — by — Mt Ty — i — Ml
- = 1-2 ———— 2| ————— ‘
07 ; (Ui + ¢it) { ( o + @it ) " ( o + @it ) fle)

T A A
- ( U;‘i‘@bzt > f(xtz)

The Hessian matrices for summer and winter, respectively, are

—0.00016  0.00007 —0.00351  0.00132
0.00007 —0.00029  0.00132 —0.00574

H, =
—0.00351 0.00132 —0.11317  0.04575
0.00132 —0.00574  0.04575 —0.19106
and
—0.00009 0.00004 —-0.00311 0.00130
i 0.00004 —0.00015 0.00130 —0.00479
3 =

—0.00311  0.00130 —0.12646  0.05841

0.00130 —0.00479  0.05841 —0.18238
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If H*

22112.67287
5700.84739
—693.87291

—185.32091

and
79631.30101

31388.20592
—2063.35865

The standard errors are found by taking the square roots of the diagonal entries.

—918.57453

5700.84739
10184.84795
—184.01871
—311.05733

31388.20592
55656.84538
—908.37433
—1528.30638
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is the inverse Hessian matrix for season ¢, then

—693.87291
—184.01871
31.55885
8.31256

—2063.35865
—908.37433
62.95349
29.33502

—185.32091
—311.05733
8.31256
15.30152

—918.57453
—1528.30638
29.33502
48.45324




A.2 The Hessian Matrices for Fall and Spring

For ¢ = 2,4, H; has the form

9%InL;  8%lnL; 92%lnL;  9%lnL;  9%InL,
o¢2 0&;0p;  0&0o;  0&0m; D& 0,

821nLi 82111]:47; 82IHLZ’ 8211’1Li 62 lnLZ
Op; 08; ou? Opi0o;  Opidn;  Opidd;

H. = 9’InL;  9%InL; 9%nL;  9%nL;  9%lnL,
’ 90;0¢;  DoiOu o2 9o;0n; 0o 0;

i
821nL,~ 821nLi 821nLi 821nLi 82 lnLi
om0  OniOu;  On;0o; on? Oni0g;
8211’1Li 821nLi 8211’1Li 621nLi 82 lnLZ
0¢;0¢;  0¢;0u; 0¢;00;  O¢;0n; op?

We now state all fifteen unique second derivatives. Define f(zy) =1+ Si@ei—piznit)

oi+it
62lnLi o2 Tyg — i — nzt 1
1 ’L t=1 ’L t=1 7 1
& Z (z4)] V% log f(x4;) {2 g log f(xtz)}
Z t=1 1
2 A [y — i — nit 16— 1
e (+—¢t) ) e {1 g o
fi + 1 o2 Ti — My — nzt 2 _ 1 —1/¢;
L, 1 & 1 |
Sens = > S {1 Gl o (o) |

gégﬁi - iz Z Lt — )[f(xtz)]_l {1 - %[f(ﬂiti)]_l/& log f(:vtl)}

) (& ! 1) Z(az — i — 21 f () {1 - £lf @tf”_l/&}
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0*InL; B 1 _1e,
PEon 2 () ™ {1 = U™t o

0?InL; 2
T Z (oz T o ) )

alnL i(

257

Itz {fl Q?m —l/& }
1/§i}
[f(xti)]il/&}

3
> Itz Mi — 771 xtz {fz +1-— ( —1/& }

+ ¢
' /
1/&
( +¢@> 2 — pi =0t [f ()] {8 = [f (@) 5



52

9%InL; 1 2
- = 1— N-1/&
i =~ 2 (sraa) Ve et = G )

t=

52 1 3
T <§l + 1) Zt (O" + (bt) (Iti — i — T]Zt xtl {& )] 1/&}
t=1 i i
9?InL; 52 1 3 e
00:001 = —2;75 (—Ui n @t) (2t — pi — mit) [f (24)] {@ +1—[f(oy }
52 1 4
+ (& +1) Zt (0, + Cbt) (T4 — pi — mt) (24i)] {&, flxs) ]—1/&}

t=1

()

H%n i ) 2 B o
0177.2L - Zt ( T it ) f(mtz)] {gz - [f(17tl)] /El}
&nl 3 2 i -1 —1/¢;

821DL‘ 52 ( 1 )3
22—2 tz T — by — zt g;z z+1_ —-1/&;
097 ; o; + dit (i = i =11 W)l € f)] 75}

52 ) 4

T (51 + 1) ZtQ (0-4 + ¢t) (a:ti — i — nit .I'tz {61 _1/§i}
t=1 ¢ v

52 1 9
t2
" ; (Uz‘ + Cbz't)
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The Hessian matrices for fall and spring, respectively, are

and

—70.05764 —0.04483  0.02668
—0.04483 —0.00023  0.00017
0.02668  0.00017 —0.00033
—0.77989 —0.00355  0.00238
0.10155  0.00238 —0.00477
—39.83390 —0.07984  0.05635
—0.07984 —0.00044  0.00032
0.05635  0.00032 —0.00030
—1.84513 —0.01302  0.00931
1.06889  0.00931 —0.00847

If H; ' is the inverse Hessian matrix for season i, then

Hy?

0.01734
—0.72415
2.29779
—0.17886
—0.17937

—0.72415
19478.62600
11627.35253

—716.92017
—460.62141

2.29779
11627.35253
13515.25007
—482.34530
—536.43491
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—0.77989
—0.00355
0.00238
—0.10428
0.07342

—1.84513
—0.01302
0.00931
—0.47611
0.33372

—0.17886
—716.92017
—482.34530

44.51125
28.65698

—0.00477

—0.13407

—0.00847

—0.30177

0.10155
0.00238

0.07342

1.06889
0.00931

0.33372

—0.17937
—460.62141
—536.43491

28.65698
33.90823




and

0.05057
—9.25956
12.63677
—0.08487

—0.55511

—9.25956
56281.33366
52124.69912

—1404.46811
—1313.39844

12.63677
52124.69912
73634.87371

—1446.63307
—2014.58926

—0.08487
—1404.46811
—1446.63307

46.42803
48.33709

—0.55511
—1313.39844
—2014.58926

48.33709
70.85107

The standard errors are found by taking the square roots of the diagonal entries.
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Appendix B Supplemental Proofs for the AR(1) Process

This collection of appendices gives supplemental proofs that were excluded from Chapter 4.

They concern two parts from Theorem 4.1 and two more parts from Theorem 4.2. We also

include two tables of numerical values for the infinite products.

I%

B.1 Proof of Theorem 4.1 for § =

If p=— ¥2 and Zj are i.i.d. standard Gumbel random variables, then as y — oo

P<§:(O.5)k2k>y> HF (1-(0.5)F ﬁr( +\fo5)k+1>

—Hr (1—( 05’“)HF<1+\/_05) )ye*2y+o(e*2

Proof. First notice that by Lemma 4.9,
P(S>y) = HF (1= (05)%) [e¥ —ye ] + 0 (7).

Let X =S + T, and for some 0 < a < 1 write

o] ay

P(S >y — t)dFy(t) + / P(S >y — t)dFr(t).

oo

P(X>y)=/ay

First,

/ T P(S >y — )dFr(t) < P(T > ay),

Y

y).

(2.1)

(2.2)

which by Lemma 4.5 is o (e*y/ﬁ) as y — 0o. Now by (2.1) we have that for y large enough
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and any t < ay

P(S>y—t)= ﬁ ['(1—(0.5)%) [e@ ™ — (y —t)e @] + R(y — 1),

k=1

where for some ¢ > 0

sup |R(y — t)eQ(y_t)‘ <ec.

t<ay

Set K7 = [],2, I'(1 — (0.5)%). Then observe that

¥ W I Fg(y—t) — KiemW™ o
| Fety - v = [ [P DBty - e ar)

> - a (2.3)
+ K / e~ WAF(t).
Now
Foly—1) — Ke= 0 Ry — t)e2v=1)
S(y ) _16 - 1 _ (y )6 — 14+ €(y . t)
—Ky(y — t)e2-1 Ki(y—1t)
We examine the e(y — t):
1 R(y —t)e2v=1 c . c
sup |e(y — )| = —su < —su -1 =0
t<£;‘ (y )| K, t<£/ y—t K, t<a€;‘<y ) | Kl(l—a)y
Therefore e(y —t) — 0 as y — oo uniformly in ¢ < ay. Consider the piece
ay ay
_K / 1+ ey — 8)](y — )e 2V DdFp(t) = —Kyye™ / AP (1)
ay ay
+ Kie % / te?dFp(t) — K, / ety —t)(y — t)e 2VdFp(t) (2.4)

=)+ {I)+ (I1I).
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Examining (I) in (2.4), as y — o0

[e.9]

Therefore by dominated convergence,
:—Klﬂr( 1+ /2(0.5) )

Turning to (II), as y — oo

ay
K, / (P dFr (1) — K\E (T,

—00

and by an extension of Lemma 4.4, (IT) = O (e=%¥). Next,

ay
|(I11)| = ‘/ R(y — t)eQ(yt)eQ(yt)dFT(t)' < cE (e’T) e,

and therefore (I77) = O(e”?). Now note that

K /OO eldFp(t) = K\E (7)) = K, Hr (1 +V/2(0. 5)’““)

oo

We now consider the integral

[e.e]

ay
Ky / et dFp(t) KIHF (1+f 05)’““) _ K / dFp(1).

— 00

Y

By Lemma 4.7, the last integral in (2.7) is o <e*y/52>, and the result follows.
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/_ay dFp(t) — B (27 = ﬁ E <e252k+121> — ﬁ r (1 + \/§(0.5)k) .

(2.5)

(2.7)



Iﬂ

B.2 Proof of Theorem 4.1 for —1 < g < —

If-1<pg< —‘/75 and Zj, are i.i.d. standard Gumbel random variables, then we shall show

that as y — oo

P (i B*Z), > y> = ﬁf (1-8"e?+o (e—WZ)
k=0 k=1

i 1 e
_1_621“(1_5 gr

Proof. First notice that by Lemma 4.10,
2k 52 2 2 2
P(S>y) = HF - %) [ _y—l_—F(2—ﬁ_ )e /8 } +0<e_y/6 > : (2.8)

Let X = S+ T, and choose some 0 < a < 1. By earlier work,

ay

P(X >y) = / P(S >y~ dEr(t) + 0 (7). (2.9)

—0o0

Now by (2.8) we have that for y large enough and any t < ay

2
P(S>y—1t)= HF (1-p5%) {e—@—t)—lfﬁg(z—ﬁ—)—<yt/ﬁ}+R( t),

where for any € > 0

sup |R(y — t)eW /7| < ¢,

t<ay

Set K1 =[[;=, (1 — %) and K, = — 1= ﬂ2F(2 — B7?)K;. Then observe that
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/ Y Py — 0dFo(0)

—00

a inl —(y—t ¢
_ / Y [Fg(y — 1) (— Kie= W= Koe W D/B g (t) + K1/ ’ e~ WDAE(t).
oo ng

—(y—1)/B* Cw
Now

Fs(y - Zf) - Kle_(y_t) _4 /B2
Ko Gom 17 ER( 1) =1 4 e(y — ).

Note that sup |e(y — )| <

Consider the piece
t<ay |K |

ay
/ [+ ey — )] Koe™ " dFp(t)

ay

ay
= Kye ¥/7’ / P AP (t) + Koy / e(y — t)e V=T qRp(t).

—0o0

Examining the first integral in (2.11),
i 2 2
lim AR (t) = E (eT/ﬂ ) =F

y—00
exp (Z ﬁ2klzk>

k=0

exp (% f: ﬁQkHZk)
H F ﬁ2k+1

—00

=F

Thus, by dominated convergence the first integral in (2.11) is

g 1 -
_1——62F (1-p71 HF v

Turning to the second integral in (2.11),
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(2.11)

(2.12)



ay 2 oy
’K2/ ely — t)e —(y—t)/8 dFT(t)‘ = / R(y — t)dFT(t)’
‘/ W=0/8 o~ w=0/8 g ()| < e/ay e W=/5 g ()

< ee VP / et!/? dFr(t) = eFE <€T/62> e V7,

By Lemma 4.6, F (eT/ 52) < oo and therefore

w 2 2
Kg/ ety —t)e W aF(t) = o (e_y/ﬁ ) : (2.13)
Next, note that
Kl/ e'dFr(t) = KiE (") = Ky [T (1= ) =[] (1 - 8%). (2.14)
e k=0 k=1

We now consider the integral

Kie™V / e'dFp(t) Hr (1—B*e” / e~ WDAELN(t). (2.15)

— 00 y

Collecting (2.11) through (2.15),

ay ) 00
/ Fs( —t dFT HP Bk 6 v +o (6 v/B ) - Kley/ etdFT(t)

[e¢) ay
62

- Zore- e firo-me

k=1

By Lemma 4.7, the integral in the above expression is o (e_y/ BQ) , and the result follows. [
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B.3 Proof of Theorem 4.2 for B—) = 5

30
B0

W = Y1) 25 Z, and Y = V + . Then we shall derive the probability P(Y;, > y;) where

Here we present the proofs of the second part of Theorem 4.2. Recall that V = Z, + 27,

(T yﬁf(—g)” When % = %, then as y — oo the end result will be

P =TT (1= o =TT (- 20 ) s w0 (),

Proof. Let a be a positive real such that 2 (1> < a < 1, and choose 1 < A < (2) such that

A > E' Then observe that

00 ay;

PV+W >y = / PV >y —w)dFw(w) +/ PV >y —w)dFw(w).

*
ayp, —00

Earlier in the proof of Theorem 4.2, we established that the first integral above is

) (e‘y/ 5(1)>. Now by Theorem 3.1 we have for y large enough and any w < ay;, that
P(V > y: —w) = re ™) — (yr —w)e @) 4 R(y: — w),

where for some ¢ > 0

(yr — w)eQ(y’t*w)’ <ec.

w<ayy

Observe that

aYn _ .
/ Fy(y: —w)dFy(w) = 7 / e~ d Fy (w)

ayn [ —w) — (y5—w) .
_'_/ { v(y, —w) — /me” :| x —(yr —w)ei2(y”7“’)de<w).

~(y — wye )

—00
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Now

Fylyn —w) = vme ™ R(y, —w)e?n™)

— —1 * _
—(y;; — w)e—2(y:—w) yE—w + €(yn w)
We examine the €(y) — w):
R(y* — w)eQ(y:z_w) 1 C
sup le(y" —w)| = su ” < ¢ su —w <
m&\ (v — w)] S i —w Sup (g, —w) '] < 0o

Therefore e(y! —w) — 0 as y — oo uniformly in w < ay;. Consider the piece

ay,
[t = w) % = (0 - w)e 5w

—00

ayy, ayn
e [ - ey (w) - [ el - w); - w)e 0 aFe(w)

—00 —0o0

ayy, ayy,
= —ylfe % / e*dFyy (w) + e / we*”d Fyy (w)

—00 —0o0

ay;;
- / (y7 — w) (g — w)e 2B dFy (w)

—00

=)+ (II)+ (II1).

Examining (I),

aYn, n—l (k)
— lim e dFy (w) = —E (’V) = — HF (1 - £> :

Y20 ) —o k=2
Next, (II) = E(We*) e 2 = O (e7) = O (e‘y/6(1)>. Turning to (/11),

\(I11)| = ‘ / R(y: — w)dFy (w ‘ ‘ / R(y: — 2<yﬁw>e2<yfzw>dFW(w)‘

ay},
/ e2(y5w)dFW(w)‘ < cE (e2) e,

—0o0

<c
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Therefore (I11) = O (e72) = O (e_y/ﬂ(l)) Next, note that

[ veeance- e (- 5) - e (- 5)

k=1

We now consider the integral

-1

ayy, n (k) oo
ﬁeyﬁ/ ’ ewdFW(w):HF(l—ﬁ)e n— \/me” y”/ e“dFy(w).

(0)
o k=1 p yn

Collecting all the terms, we arrive at

2 (k * 1 *
_ H I ( B ) y;€_2y" +0 <€_y/6( )> — ﬁe_y" / e“’dFW(w)

The last integral above was shown to be o (e*y/ 5(1)> earlier in the proof of Theorem 4.2.
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B.4 Proof of Theorem 4.2 for % < Eikel <1

30)
Here we present the proof of the third part of Theorem 4.2. When % < % < 1 and
K, = —%F (2 gili) then as y — oo the end result will be

n—1
o BEN o), 50 /80
P(Y, >y) = HT( (0)> y”+K2HF(1—m e~ P un/B +o<e v/8 )

Proof. Let a be a positive real such that g;—?; < a < 1. Then by earlier work

*
ayn

P(V+W >y = / P(V >y — w)dFy (w) + o (e—y/ﬂ“)> .

By Theorem 3.1, we have for 3 large enough and any w < ay;, that

5(1)

P(V>y;§—w):1“(1 50

) i) | e POWR0BY L Rt )

where for any € > 0

Rly: — w)eb’(o)(y;*w)/ﬁ“) <

sup
w<ayy

Further set K1 =T (1 gEO;> Then observe that

ayy, ayy, .
/ Fo(y, — w)dFy (w) = K, / WG Fy (w)

—00 —0o0

ay;, FV(y:L - ’[U) — Klei(y;’kliw) _6(0)(y* —w)/ﬂ(U
" /_oo [ KyeB9(yn—w) /WM Kae dFw (w).
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Now

Fy(y; —w) — Kie~ ) T, O (i) 5D )
(K 65(3)(!4* o~ L g Rl - w)e? TR =1+ ey — w).
2 n

We examine the €(y) — w):

BOwn—w)/BV| o _©

1
sup le(yf —w)| = — sup |R(y' —w P
w<a1;;\ (yn — w)| K] S0P (4, —w) )

Consider the piece

ay;; L
/ [+ ey — w)] Koe @ Wmw)/5Y g Ry (w)

—00
*

ayYn
:K2€_5(0)yn/,3(1)/ PO/ R ()

—00

Wn _BO) (y —w) /8D
+K2/ e(y —w)e P Wn—/B gy (w).

—0o0

Examining the first integral,

[y

ayy, L )
lim Foe? w8 qFy (w) = KoE (eﬁ“”W/ﬁ( >) — K,E

yp—oo J_

2t 9gk) >
exp 1 Zk
<M B

o0

B BO)N 221 3k
-5 (2w LT (- 5w).

k=2

Turning to the second integral,

ay;; . ay;,
‘KQ / e@:—w)e—“”(yi—wﬂﬁ()de<w>\:‘/ R(y; — w)dFyy (w)

ay; o)
e / B0/ g () < eePOV/BY / FOWEY G B ()

—0o0 —00

— ¢E (eﬁ(O)W/B“)) e BOY/BY
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Therefore

ay;,
K2/ E(y; _ w)6—5(0>(y;§—w)/5(1>dFW<w) — 0 (6_5(0)%/5(1)) — Y (e_y/’3<1)> ‘

[e.e]

Next, note that

n—1
~ ﬁ(k)
Kl/ooe dFy (w) :gr(1—m).

We now consider the integral

. [ nol B . . [
Kle_yn/ e’dFy(w) = H r (1 — BT) e ¥ — K1€_y"/ e’dFy (w).
ay

-0 k=1

Gathering all the terms,

ay;;_ * 1
/ Fo(y: — w)dFw(w Hr< )eywo(y/ﬁ”)
1 0)\ ! k
- %T (2 - %) [Ir (1 - %) e P/
0) __ 1 1 1
B B gy B

—Kley:/ e’dFy (w),

n

and by previous work the latter integral is o (e*y/ 'B(l)>. Collecting the pieces, the result

follows.

272

]



B.5 Infinite Products 1

Table B.1 displays values of [],~, I'(1 — 8*) for values of 8 between -0.89 and 0.69, given to
three decimal places. For f < —0.89 and 8 > 0.69, the products quickly grow large and are

not worth reproducing in a table.

Table B.1: Infinite Products 1
I} 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-0.8 | 3.536 | 4.005 | 4.607 | 5.397 | 6.463 | 7.947 | 10.091 | 13.334 | 18.522 | 27.427
-0.7 | 1.687 | 1.769 | 1.862 | 1.970 | 2.095 | 2.240 | 2.412 | 2.617 | 2.863 | 3.164
-0.6 | 1.229 | 1.257 | 1.287 | 1.320 | 1.357 | 1.398 | 1.443 1.494 1.551 1.615
-0.5 | 1.052 | 1.064 | 1.077 | 1.091 | 1.106 | 1.122 | 1.140 1.160 1.181 1.204
-0.4 | 0974 | 0979 | 0.985 | 0.991 | 0.998 | 1.005 | 1.013 1.022 1.031 1.041
-0.3 | 0941 | 0943 | 0.945 | 0.947 | 0.950 | 0.953 | 0.956 | 0.960 | 0.964 | 0.969
-0.2 | 0937 | 0937 | 0.936 | 0.936 | 0.936 | 0.936 | 0.937 | 0.937 | 0.938 | 0.940
-0.1 | 0.956 | 0.953 | 0.951 | 0.948 | 0.946 | 0.944 | 0.942 | 0.941 0.939 | 0.938
-0.0 | 1.000 | 0.994 | 0.989 | 0.984 | 0.979 | 0975 | 0.971 0.967 | 0.963 | 0.960
0.0 | 1.000 | 1.006 | 1.012 | 1.019 | 1.026 | 1.033 | 1.041 1.049 1.057 | 1.066
0.1 | 1.0v6 | 1.085 | 1.096 | 1.107 | 1.118 | 1.130 | 1.143 1.156 1.170 1.185
0.2 | 1.200 | 1.216 | 1.233 | 1.251 | 1.270 | 1.290 | 1.312 1.334 1.357 | 1.382
0.3 | 1.409 | 1.437 | 1.467 | 1.498 | 1.532 | 1.567 | 1.605 1.646 1.689 1.735
0.4 | 1.785 | 1.838 | 1.895 | 1.956 | 2.022 | 2.094 | 2.171 2.255 2.347 | 2.446
0.5 | 2.555 | 2.674 | 2.805 | 2.949 | 3.109 | 3.286 | 3.483 | 3.703 | 3.950 | 4.228
0.6 | 4544 | 4903 | 5314 | 5.787 | 6.336 | 6.976 | 7.729 | 8.622 | 9.689 | 10.977
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B.6 Infinite Products 2

Table B.2 shows values of [],~, ['(1 — 26%) for values of 3 between -.70 and 0.49, given to

three decimal places. Notice that since this product is only defined on _\/Li < B <3
explained in Section 4.4, the table only goes down to -0.69.
Table B.2: Infinite Products 2

15} 0.00 0.01 | 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-0.6 3.787 | 4.303 | 4.962 5.827 6.998 8.648 | 11.099 | 15.032 | 22.145 38.138
-0.5 1.716 | 1.810 | 1.916 2.038 2.180 2.344 2.538 2.767 3.042 3.376
-04 1.194 | 1.225 | 1.260 1.298 1.340 1.386 1.438 1.496 1.561 1.634
-0.3 0.999 | 1.012 | 1.025 1.040 1.057 1.075 1.094 1.116 1.140 1.166
-0.2 0.927 | 0.931 | 0.935 0.940 0.946 0.953 0.960 0.968 0.978 0.988
-0.1 0.928 | 0.925 | 0.923 0.921 0.920 0.920 0.920 0.921 0.922 0.924
-0.0 1.000 | 0.989 | 0.979 | 0.970 0.961 0.954 0.947 0.941 0.936 0.932
0.0 1.000 | 1.012 | 1.025 1.040 1.055 1.072 1.090 1.110 1.131 1.155
0.1 1.180 | 1.207 | 1.236 1.268 1.303 1.341 1.382 1.426 1.475 1.528
0.2 1.587 | 1.651 | 1.721 1.799 1.885 1.980 2.086 2.205 2.338 2.487
0.3 2.657 | 2.850 | 3.070 | 3.324 3.619 3.963 4.369 4.853 5.435 6.147
0.4 7.029 | 8.144 | 9.585 | 11.499 | 14.135 | 17.944 | 23.831 | 33.916 | 54.577 | 117.738

274

as



Appendix C Constants for Gumbel Convolution

This collection of appendices establishes numerical values for 0y, (i, ftim, @k, and Ag; in

Chapter 5.

C.1 Values for 6; and (;

Recall that 0, = — [[° 2% [1 — exp (—e™")] dz and ¢, = f?oo z¥ exp (—e™®) dx. Table C.1 lists
the numerical values for kK = 0,--- ,16. Observe that in each case, the value of 6 is fairly

close to —k!, and for k > 13 there is little to no difference.

Table C.1: Values for 6, and (,

k Ok Gk

0 -0.7966 0.2194
1 -0.8912 -0.0978
2 -1.8862 0.0712
3 -5.8239 -0.0664
4 -23.6405 0.0727
) -119.0888 | -0.0891
6 -717.2406 0.1193
7 -5030.2812 -0.1715
8 -40280.9602 0.2614
9 -362703.8226 -0.4187
10 -3627917.4412 0.7001
11 -39911939.7644 | -1.2161
12 -478972413.8420 2.1846
13 -6226830982.4340 | -4.0452
14 -87176961974.0852 7.6989
15 | -1307664396286.7170 | -15.0244
16 | -20922710100842.7969 | 30.0029
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C.2 Values for p;,,

Recall that for 0 < i < m,

R ! m! m—(k1+-+k;) i C_L kL
um_Z(’ﬁ!“'kﬂ) ((m—[k1+"'+ki])!)go H(L!> ’

L=1

where the sum is taken over all nonnegative integers kq, - - - , k; such that k;+2ko+- - -+ik; = 1.

Table C.2 lists values for 0 <i<m < 7.

Table C.2: Values for ji; ,
0 1 2 3 4 5 6 7

1.0000 | 0.2194 | 0.0481 | 0.0106 | 0.0023 | 0.0005 | 0.0001 | 2.4e-5
— -0.0978 | -0.0429 | -0.0141 | -0.0041 | -0.0011 | -0.0003 | -7.6e-5
— 0.0504 | 0.0229 | 0.0085 | 0.0029 | 0.0009 | 0.0003
— — — -0.0427 | -0.0198 | -0.0079 | -0.0028 | -0.0010
0.0506 | 0.0238 | 0.0099 | 0.0037
— -0.0770 | -0.0365 | -0.0156
— — 0.1432 | 0.0683
— -0.3148

N OOk W N =IO
|
|
|

It may also be handy to have explicit formulas for p;,, in terms of the (;. They quickly
get messy, so we only give them for the values listed in Table C.2. First observe that
tom = ¢ot,m = 0,1,---, and py1,,, = m¢™ ' m = 1,2,---. We now list formulas for the

remaining constants.

Ho2 = 2(12 + 2¢0C2 H25 = 20C§C12 + 5%1(2
fia3 = 66oC] + 3G fi2,6 = 30GC + 65 ¢
po.4 = 12¢5¢7 + 465 ¢ fiar = 4200 + T¢0 G
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pizs = 6CF +18¢0C1Ca + 3¢2Gs ps6 = 12065¢7 + 9065 ¢ + 6¢5¢s
pa3a = 24CC + 3631 ¢a + 4¢5¢s sz = 21065 ¢ + 126¢5¢1C + T¢5¢G

pi35 = 60CGCT + 6045CiCa + 5o Cs

fag = 24C) + 1440 G + 48C3C1¢s + 3605 + 4¢5 ¢y
fas = 12060¢ + 360(5¢T¢ + 80C5 GG + 605G + 5C§C4
pae = 36065¢; + 72057 + 1205 C1¢s + 90¢0 (3 + 65

fa7 = 840C§G + 1260<§C12C2 + 168Co5(1C3 + 126C05C22 + 7C§C4

pss = 120¢2 4+ 120060 Ca + 600¢5¢ECs + 900¢5¢1¢3 + 1005 ¢ + 20065 ¢aCs + 5¢,Cs

p56 = T20GoG7 + 360067¢7 G + 1200¢5¢FCs + 180065 1G5 + 150¢5¢iCs + 3005¢aCs
+6¢5¢s

ps7 = 2520G5C7 + 8400G5¢T ¢ + 21005¢7 s + 3150¢5¢165 + 210651 ¢ + 42067 Gl

+7¢5¢s
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f6.6 = T720CY + 10800(0Ci¢a + T200¢2 ¢ ¢ + 16200¢7¢ECh + 1800(3¢E¢,
+ 72005 ¢1¢2Cs + 180()¢i G5 + 4500 (s + 3004y G5 + 1800¢5¢S + 6(5¢s
pie.7 = 5040¢CY + 37800(3¢) Co + 16800 * (5 ¢E¢s + 37800 * (3CICE + 3150(5¢CE¢u

+ 12600C4¢C1CaCs + 252C0C1Cs + 630C3 CaCa + 420¢3¢2 + 3150¢2¢3 + 7¢5¢
pr.7 = 5040¢T + 105840(C7 Ca + 88200¢3¢ (s + 264600(3¢CE (3 + 2940065 ¢3¢,

+ 17640045 CoCs + 44105 (RCs + 8820065 ¢, 5 + 1470065 ¢ ¢3

+ 2205085 ¢1 oy + 294¢5¢1C6 + 22050¢0 3¢5 + 882¢0 Cols + 1470¢5 (3¢ + T¢5¢H
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C.3 Values for a,;

Recall the formula for a,; and n > 3:

(n—2
Z an,j(_1>j9j + anfl,(]; L= 0
j=0
Ap—1,i—1 — j i—i
i = i Z (z) (=1 a1, 1=1,---,n—2
J=1
1 . 1
- 1 =n— 1.
[ (n = 1)V

Table C.3 displays the a,; constants up to n = 7. For example, if we needed a4, then we

obtain -1.0932.

Table C.3: Values for a,,;
0 1 2 3 4 5 6

1.0000 —
-0.5932 1.0000
0.7706 | -1.3898 0.5000 — — — —
-2.0250 2.7689 -1.0932 | 0.1667 — — —
5.0884 | -7.1223 2.7009 | -0.4972 | 0.0417 — —

-14.2873 | 19.3600 | -7.5134 | 1.4449 | -0.1575 | 0.0083 —
41.6497 | -55.9312 | 21.7958 | -4.3741 | 0.5238 | -0.0381 | 0.0014

N OOk W N

It may also be handy to have explicit formulas for a,, ;. They quickly get complicated, so we

only give them for the values listed in Table C.3.
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Q10 = 1 azo = 14 390 + 293 — 91

Q20 = 1+ 200 az1 = 1+ 3(90
1
Q21 = 1 azos = 5

1
Q40 = 1 + 490 + 503 + 208 - 4‘90&1 - 201 + 502
Q41 = 1+ 490 + 50(2) — 291
1
a4,2 = 5[1 + 490]

1
a43 = =

6

) 1
aso = 1+ 50 + 9605 + 705 + 205 — 10000, — 9636, + 50002 = 301 + 207 + 0y — 603
Q51 = 1+ 590 + 998 + 793 — 109091 — 391 + 92
1
Q59 = 5[1 + 590 + 99(2) - 391]

1
as;3 = ¢[1 + 5] 54 =

a0 = 1+ 60 + 14603 + 1607 + 905 + 205 — 1806, — 28036, — 16030, + 120,67

5 3 1 1
-+ 7(9302 + 69092 — 9063 — 491 —+ 56% — 591(92 + 562 — 563 + ﬁeél
ag1 = 1+ 60 + 14605 + 1607 + 905 — 18050, — 28050, + 60005 — 46, + 503
3 1
"0y — -0
+ 502 — 305
1 3
Gop = 5 |14 660 + 1465 + 1605 — 18600, — 46, + 50
1
ag3 = 6 [1 + 66y + 140(2) — 491}
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1

_ 1! [1+ 66,] -
a4 = o1 0 ag5 = 120

aro = 1+ 705 + 2007 + 3005 + 2505 + 1107 + 205 — 28046, — 60036, — 60030,

35 21
— 250,01 + 400307 + 350007 — 5 000102 + 00> + 200305 + 15030,

1
— 59003 - 309303 —|— 2146094 - 5(91 —|— 96% - 56? - 69192 —|— 6103 —|— 292 —|— 293

1 1
— —034+ —0
PRI DRL
azy = 1+ 700 + 2007 + 3003 + 2503 + 1165 — 2866, — 60036, — 60030, + 350467
7

21 1 1
+ 2003602 + 79092 - 59093 — 501 + 907 — 66,05 + 205 — 593 - 504

1 21
arp =3 {1 + 70y + 2002 + 3003 + 2505 — 28000, — 60020, + 76002 — 50, + 96?
1
+292 - 593:|
1
ars = 6[1 + 70y + 2002 + 30603 — 286000, — 50, + 265

1
CL774 = —[]. + 700 + 209(2] — 591]

24
1 1
= -— 1 = —_——
a7 5 120[ + 7(90] are = 750
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C.4 Values for A,

Recall the formula for A, ; and n > 3:

Table C.4 displays the A, ; constants up to n = 7. For example, if we needed A, 2, then we
obtain -0.6544.

Table C.4: Values for A, ;
0 1 2 3 4 5 6

1.0000
-0.1544 1.0000 — — — — —
0.8181 | -0.7316 0.5000 — — — —
-1.7642 2.2294 | -0.6544 | 0.1667 — — —
4.3381 | -5.2887 1.9870 | -0.3143 | 0.0417 — —
-12.2325 | 14.1488 | -5.1955 | 1.0086 | -0.1026 | 0.0083 —

34.5721 | -40.0139 | 14.7598 | -2.8773 | 0.3526 | -0.0253 | 0.0014

N O OUR W N
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