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Abstract

We study the static and dynamic properties of the compressible Ising models under

constant pressure. Our system of study is a two-dimensional triangular-net Ising model with

continuous particle positions. To investigate the effects of compressibility on the static and

dynamic characteristics of the model, we include an elastic energy part in the Hamiltonian

to adjust the rigidity. Through investigating the fourth order cumulant and the normalized

order parameter distribution by Monte Carlo simulation, we find that the elastic models

belong to the same universality class of the rigid Ising model. Besides that, we perform large

scale Monte Carlo simulations to study long-time domain growth behavior following a quench

under its critical temperature in our compressible Ising model with zero total magnetization.

For the rigid (lattice) model we find the late-time domain growth factor n in R(t) = A+Btn

has Lifshitz-Slyozov value of 1
3
. For flexible models, results clearly indicate that n is reduced

by compressibility.

Index words: phase transition, phase separation, compressible Ising model,
universality class, late-time domain growth, domain growth exponent
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Chapter 1

Introduction

1.1 Background

The Ising model is amongst the most widely known and studied models of statistical

physics, and people have known quite well about its critical behavior due to its simplicity

[1]. The original Ising model is defined on a lattice with the following Hamiltonian:

H = −J
∑
<i,j>

sisj −H
∑
i

si (1.1)

where
∑

<i,j> is a sum over nearest-neighbor pairs of particles, J is the exchange energy, si

is the spin value at site i with possible values of either +1 or −1, and H is the external mag-

netic field. J can be either positive or negative. If J > 0, the system is called ferromagnetic,

in which case the neighboring spins tend to have the same values to lower the total energy;

and if J < 0, the system is termed antiferromagnetic, and the ground state will have all the

neighboring spins with opposite values.

The Ising model serves as a good testbed for binary alloys. The two atom species of a

binary alloy can be readily represented by the up and down spin of the Ising model and the

difference between the two chemical potentials for the two atomic species is proportional

to the magnetic field. The chemical potential is the amount of energy by which the system

would change if an additional particle were introduced. However, the limitations of simu-

late binary alloys by using the rigid Ising model are quite obvious. The rigid Ising model

fails to reflect the atom movements of the binary alloys. With varying interactions by their

neighbors, atoms in alloys move randomly around their equilibrium positions at finite tem-

perature T . And more importantly, the motion of the atoms can be correlated spatially and

1
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thus contribute significantly to the thermodynamics of the system around critical points. So

compressible Ising models, which remove the rigidity constraints of traditional systems, are

appropriate for simulating realistic binary alloys. A compressible Ising model assumes an

elastic and deformable net with the interaction J depending on the bond lengths instead of

being constant. In some way it is capable of capturing the nature of physical binary alloys.

For decades there has been great interests on the part of physicists in studying the static

and dynamic properties of the compressible Ising models [2–7,11–15,18–25]. Many theoret-

ical approaches have been developed to study compressible Ising models but unfortunately

they were found unreliable in many cases. So Monte Carlo simulations become a very impor-

tant and useful tool to study the nature of the phase transitions of off-lattice Ising models.

But a good understanding of compressible Ising models is still not achieved. Theoretical and

numerical studies [11–14,22,23,25] give inconsistent descriptions of its critical behavior. So

in the first part of this dissertation, we will focus on the simulational results for the static

critical properties of ferromagnetic compressible system at constant pressure.

Besides the static critical behavior, the dynamic properties of the Ising model could also

be affected by compressibility [8–10]. So we also investigate the late-time domain growth

behavior following a quench under the critical temperature in the compressible Ising model.

The theory of phase-ordering kinetics or “domain coarsening” following a temperature quench

from a homogeneous phase into a two-phase region has a history going back more than four

decades to the pioneering work of Lifshitz, Slyozov and Wagner [2,28]. Since that time, many

studies [3–7] have been done on the phase separation phenomenon. Systems quenched from

a disordered phase into an ordered phase do not order instantaneously. Instead, domains

of equilibrium phases increase as a result of surface tension and diffusion. Lifshitz and Sly-

ozov [2] predicted the late-time domain size, in the limit of a dilute amount of one phase,

grows as a power law,

R(t) = A+Btn (1.2)
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where R is the domain size, t is the time after the quenching, A and B are constants, and

n as the domain growth exponent equals 1
3
. Their theory has been generalized to equal frac-

tions of two phases by Huse [3] and consistent results for lattice models are observed by

simulations [3,4,7]. In our study, we only focus on the dynamic behavior following a critical

quench where the system has equal fraction of phases. To find out how the compressibility

affects the domain growth exponent n, we study the late-time domain growth behavior of a

compressible Ising model using Kawasaki dynamics in our simulation to conserve the total

magnetization. This is because in conventional Monte Carlo dynamics, flipping a single spin

in the Ising model corresponds to converting one atom to the other, which is inadmissible

in binary alloys. The dynamics must conserve the number of two species separately, which

leads to the conservation of the magnetization ( or order parameter ) of the Ising model.

As suggested by [8–10], domain growth may be affected by compressibility. Also, as we

know from recent studies [11,13–15], the compressibility can affect the static critical behavior

of Ising models and hence may affect the domain growth behavior. Mitchell and Landau [7]

have studied the late-time domain growth behavior for one particular kind of compressible

2D Ising model. They found significant deviations from the theoretically expected n = 1
3

late-time growth factor for the compressible mismatch model, but for a compressible model

with no mismatch, they found only a slight deviation from n = 1
3
. The mismatch refers to

the different preferred bond lengths for different neighboring spin pairs, we will explain it in

Chapter 3.

Their results suggest that the current understanding of the classes of domain growth is

incomplete. So, in our research, we investigate the changes in dynamic behavior due to the

flexibility of the model by a large length scale (512× 512) and long time scale (106 MCS)

Monte Carlo simulation. For the study on both static and dynamic properties of compressible

Ising models, our system has no mismatch and use a triangular-net to maintain the topology

of the lattice. We include an elastic energy term into the Hamiltonian and adjust the elas-

ticity of the model through varying the elastic constant k. In this way we can directly change
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the elasticity of the model and, on the other hand, we can adjust the relative importance of

the magnetic energy and the elastic energy terms easily.

The rest of this dissertation is organized as follows. We present the theoretical and com-

putational backgrounds in Chapter 2. The details of the model and methods we use in our

simulation are included in Chapter 3. In Chapter 4, we show results of static critical behavior

for our compressible Ising model. The results of domain growth behavior for both the rigid

model and the elastic models are presented in Chapter 5. We conclude in Chapter 6.



Chapter 2

Background

2.1 Phase Transition

The study of phase transitions has long been a topic of great interest in a variety of

related scientific disciplines and plays a central role in research in many fields of physics.

Some simple theoretical approaches, such as mean field theory, tackle phase transitions in

simple and intuitive ways. But they fail to provide a general framework to explain different

phenomena occurring under different internal and external conditions [46, 47, 49]. For

example, the mean field theory doesn’t account for the effects from fluctuations, which are

the key to critical phenomena. More efforts have been taken in developing more mature

theoretical and numerical approaches to understand phase transitions in the last half century.

2.1.1 order parameter

A phase transition is closely related to the order parameter of a system. It assumes a

non-zero value in ordered phase and a zero value in disordered phase. It may have different

expressions for different systems. For instance, in a ferromagnet it is simply the spontaneous

magnetization; in a liquid-gas system it is the density difference between the liquid and gas

phases. Phase transitions are classified in the following way: if the first derivatives of the

free energy are discontinuous at the transition temperature, the transition is of first order;

if the first derivatives are continuous whereas the second derivatives are not, the transition

is termed second order. We usually term the second order transition as a critical transition

and the temperature where we observe the critical transition as the critical temperature TC .

5
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We now discuss the phase transition of Ising model. The Hamiltonian of a typical fer-

romagnetic Ising model is shown in Eq. 1.1 with J > 0. The order parameter is defined

as:

〈m〉 =
1

N

∑
i

si (2.1)

The Ising system (except for the one dimensional system) has phase transitions by varying

temperature T or magnetic field H. As shown in the Fig. 2.1, most spins point upward for

H > 0 and downward for H < 0, when T is below TC . The dashed first order line is also

plotted in the figure. It ends at TC , at which point the transition turns into second order

with HC = 0. As we see, a first order transition occurs at T < TC when H is swept through

zero. For example, it happens at B along the line A → B → C. But there is no transition

occurring along A→ D → C.

2.1.2 Universality classes

We have the following power-law singularities [44, 45]:

m = m0ε
β (2.2)

χ = χ0ε
−γ (2.3)

C = C0ε
−α (2.4)

ξ = ξ0ε
−ν (2.5)

where ε = |1 − T/TC | → 0 is the reduced distance from the critical temperature and the

powers are critical exponents that are unique for systems with the same symmetries. m is

the magnetization per spin, χ is the magnetic susceptibility per spin, C is the specific heat

per spin and ξ is correlation length. The fundamental reason that leads to these singularities

is the divergence in the correlation length ξ at the critical point.

The universality hypothesis asserts that the interatomic interactions don’t contribute to

the system’s critical behavior. Instead, it argues that relevant properties which determine
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Figure 2.1: Phase diagram of a typical Ising model. The dashed line indicates a first order
transition. The second order transition occurs at TC and HC = 0. A,B,C,D represent
different states of the system. The parallel arrows indicate the spin directions.

the universality class include spatial dimensionality, spin dimensionality, symmetry of the

ordered state, the presence of symmetry breaking fields, and the range of interaction. The

systems of the same class share the same set of critical exponents [45]. We include the elastic

interaction in our system, which is a long range interaction. And according to the universality

hypothesis, we expect the universality class of our compressible model to be affected by the

elastic interactions.
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2.1.3 Thermodynamic derivatives

Binder [27] showed that the maximum slope of the Binder cumulant U4 at KC varies

with system size as L1/ν , where L is the system size and KC(L) = 1/TC(L). We will explain

Binder cumulant in Sec. 4.1. With a correction term, the size dependence becomes [42]:

dU4

dK

∣∣∣∣
max

= aL1/ν(1 + bL−ω) (2.6)

The logarithmic derivative of any power of the magnetization

∂

∂K
ln〈mn〉 =

[
〈mnE〉
〈mn〉

− 〈E〉
]

(2.7)

has the same scaling properties as the cumulant slope. In our analysis we will consider

the logarithmic derivatives of 〈|m|〉 and 〈m2〉, as well as the derivative of the cumulant, to

determine ν.

2.2 Phase Separation

When a disordered, homogeneous binary alloy is quenched from high temperature to an

inhomogeneous phase at a temperature below its critical temperature, the system does not

order instantaneously and instead, multiple domains coexist and grow as a result of diffusion

and surface tension [5]. We only consider the most familiar system: the ferromagnetic Ising

model. As explained in the previous sections, we assume that the total magnetization of a

system is conserved. When a system undergoes a first order transition it will divide into

different regions in which one phase or the other dominates. In Fig. 2.2, the solid portions

of the curve are thermodynamically stable, while the dashed portions are metastable, and

the dotted portion is unstable. The end points of the unstable region are termed ‘spinodal

points’ and occur at magnetizations ±Msp, when the magnetic field is ±HC . As the magnetic

field is swept, the transition occurs at H = 0 and the limits of the corresponding coexistence

region are at M±.

Based on that, if we quench our system from a disordered high temperature state to

a metastable state below the critical temperature, the system may respond differently
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points occur at magnetic fields !Hc. As the magnetic field is swept, the
transition occurs at H ¼ 0 and the limits of the corresponding coexistence
region are at !Ms. If fcg is a coarse-grained free energy density, then

@2fcg=@M
2 ¼ !#1

T ! 0 ð2:96Þ

at the spinodal. However, this singular behavior at the spinodal is a mean-
field concept, and one must ask how this behavior is modified when statistical
fluctuations are considered. A Ginzburg criterion can be developed in terms
of a coarse-grained length scale L and coarse-grained volume Ld. The fluc-
tuations in the magnetization as a function of position MðxÞ from the mean
value M must satisfy the condition

h½MðxÞ #M'2iLd=½M#Msp'2 ( 1: ð2:97Þ

This leads to the condition that

1 ( RdðHc #HÞð6#dÞ=4: ð2:98Þ

Thus the behavior should be mean-field-like for large interaction range R and
far from the spinodal.

If a system is quenched from a disordered, high temperature state to a
metastable state below the critical temperature, the system may respond in
two different ways depending on where the system is immediately after the
quench (see Fig. 2.11). If the quench is to a point which is close to one of the
equilibrium values characteristic of the two-phase coexistence then the state
evolves towards equilibrium by the nucleation and subsequent growth of
‘droplets’, see Fig. 2.12. (This figure is shown for pedagogical reasons and
is not intended to provide an accurate view of the droplet formation in a
particular physical system.) There will be a free energy barrier !F)

l to the
growth of clusters where l) is the ‘critical cluster size’ and the nucleation rate
J will be given by

J / expð#!F)
l =kBTÞ: ð2:99Þ

2.3 Non-equilibrium and dynamics: some introductory comments 41

Fig. 2.10

Magnetization as a

function of magnetic

field for T < Tc. The

solid curves represent

stable, equilibrium

regions, the dashed

lines represent

‘metastable’, and the

dotted line ‘unstable’

states. The values of

the magnetization at

the ‘spinodal’ are

!Msp and the

spinodal fields are

!Hc. Mþ and M# are

the magnetizations at

the opposite sides of

the coexistence curve.
Figure 2.2: Magnetization as a function of magnetic field for T < TC . The solid curves
represent stable, equilibrium regions, the dashed lines represent ‘metastable’, and the dotted
line ‘unstable’ states. The values of the magnetization at the ‘spinodal’ are ±Msp and the
spinodal fields are ±HC . M+ and M− are the magnetizations at the opposite sides of the
coexistence curve. Graph taken from [1].

depending on where the system is immediately after the quench. We show in the Fig. 2.3

two different cases.

We show in Fig. 2.4 the spontaneous magnetization as a function of temperature. At

time t = 0 the system is quenched from the position either A or B at To above the critical

point TC to T below TC , as indicated by the arrow. If the initial state is A, then the system

is quenched into the nucleation regime; otherwise, if the initial state is B, the system is in
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where !ðqÞ is zero for the critical wavevector qc. The linearized theory is
invalid for systems with short range interactions but is approximately correct
for systems with large, but finite, range coupling.

2.3.3 Critical slowing down at phase transitions

As a critical point Tc is approached the large spatial correlations which
develop have long temporal correlations associated with them as well (van
Hove, 1954). At Tc the characteristic time scales diverge in a manner which is
determined in part by the nature of the conservation laws. This ‘critical
slowing down’ has been observed in multiple physical systems by light scat-
tering experiments (critical opalescence) as well as by neutron scattering. The
seminal work by Halperin and Hohenberg (Hohenberg and Halperin, 1977)
provides the framework for the description of dynamic critical phenomena in
which there are a number of different universality classes, some of which
correspond to systems which only have relaxational behavior and some of
which have ‘true dynamics’, i.e. those with equations of motion which are
derived from the Hamiltonian. One consequence of this classification is that
there may be different models which are in the same static universality class
but which are in different dynamic classes. Simple examples include the Ising
model with ‘spin-flip’ kinetics vs. the same model with ‘spin-exchange’
kinetics, and the Heisenberg model treated by Monte Carlo (stochastic)
simulations vs. the same model solved by integrating coupled equations of
motion. For relaxational models, such as the stochastic Ising model, the time-
dependent behavior is described by a master equation

@PnðtÞ=@t ¼ $
X

n6¼m

½PnðtÞWn!m $ PmðtÞWm!n&; ð2:105Þ

where PnðtÞ is the probability of the system being in state ‘n’ at time t, and
Wn!m is the transition rate for n ! m. The solution to the master equation is
a sequence of states, but the time variable is a stochastic quantity which does
not represent true time. A relaxation function !ðtÞ can be defined which
describes time correlations within equilibrium

!MMðtÞ ¼
hðMð0ÞMðtÞi$ hMi2

hM2i$ hMi2
: ð2:106Þ

2.3 Non-equilibrium and dynamics: some introductory comments 43

Fig. 2.12 Pictorial

view of different

possible modes for

phase separation: (a)

nucleation; (b)

spinodal

decomposition. The

dark regions represent

the phase with M$.

Figure 2.3: Different modes for phase separation: (a) nucleation; (b) spinodal decomposition.
The dark regions represent the phase with M−, and the white regions represent the phase
with M+. Graph taken from [1].

the spinodal decomposition regime. If the system is quenched from position A, the latter

stages of this growth are thought to be described by the Lifshitz-Slyozov theory. At short

times the system overcomes a nucleation barrier before droplets can grow, and at later

time the process leads to a power law growth of the characteristic length scale, as shown

in Eq. 1.2, where n = 1
3
. Their theory has been generalized qualitatively to the case 2 in

which the system starts from position B by Huse [3], after which consistent results for

lattice models are observed by simulations [3, 4, 7]. For a good review of phase-ordering

kinetics, see Refs. [29–31]. Right after the quench, the system is in an unstable disordered
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state corresponding to equilibrium at temperature To from Fig. 2.4. So the theory of phase

ordering kinetics is about the dynamical evolution of the system from the initial disordered

state to the final equilibrium state.

Near the spinodal the argument of the exponential will be

!F!
l =kBT / Rdð1# T=TcÞð4#dÞ=2½ðMms #MspÞ=ðMþ #M#Þ'ð6#dÞ=2;

ð2:100Þ

whereas near the coexistence curve

!F!
l =kBT / Rdð1# T=TcÞð4#dÞ=2½ðMþ #MmsÞ=ðMþ #M#Þ'#ðd#1Þ:

ð2:101Þ

In solid mixtures the latter stages of this growth are thought to be described
by the Lifshitz–Slyozov theory (Lifshitz and Slyozov, 1961). At short times a
nucleation barrier must be overcome before droplets which can grow form,
and at later times the process leads to a power law growth of the characteristic
length scale LðtÞ, i.e.

LðtÞ / t1=3 ð2:102Þ

for d ( 2. Scaling behavior is also predicted for both the droplet size dis-
tribution nlðtÞ and the structure factor Sðq; tÞ:

nlðtÞ ¼ ð"llðtÞÞ2 ~nnðl="llðtÞÞ; ðl ! 1; t ! 1Þ; ð2:103aÞ
Sðq; tÞ ¼ ðLðtÞÞd ~SSðqLðtÞÞ; ðq ! 0; t ! 1Þ; ð2:103bÞ

where "ll / tdx is the mean cluster size and x is a characteristic exponent which
is 1/3 if conserved dynamics applies.

If, however, the initial quench is close to the critical point concentration,
the state is unstable and the system evolves towards equilibrium by the
formation of long wavelength fluctuations as shown in Fig. 2.12. The explicit
shape of these structures will vary with model and with quench temperature;
Fig. 2.12 is only intended to show ‘typical’ structures. The early stage of this
process is called spinodal decomposition and the late stage behavior is termed
‘coarsening’. The linearized theory (Cahn and Hilliard, 1958; Cahn, 1961)
predicts

Sðq; tÞ ¼ Sðq; 0Þe2!ðqÞt ð2:104Þ

42 2 Some necessary background

Fig. 2.11 Schematic

phase coexistence

diagram showing the

‘spinodal’ line. Paths

(A) and (B) represent

quenches into the

nucleation regime and

the spinodal

decomposition regime,

respectively.

Figure 2.4: Magnetization of the Ising model in zero applied field as a function of temperature.
The arrow indicates a temperature quench, at time t = 0, from TI to TF . Graph taken from
[1].

The typical length scale associated with the domains that form after a quench increases

with time t. In the thermodynamic limit, the quenched system can never reach equilibrium

due to the divergence of the relaxation time with the system size in the ordered phase [5], and

this is one of the reasons that the phase ordering kinetics remains a challenge to physicists

about half a century after the first theory [2] was proposed. We illustrate the domain growth

behavior in Fig. 2.5. It shows a Monte Carlo simulation of a two-dimensional Ising model,
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quenched from To = ∞ to T = 0. The scaling phenomenon of domain growth is clear from

the figure.

kinetics is connected with the dynamical evolution of the system from the initial
disordered state to the ®nal equilibrium state.

Part of the fascination of the ®eld, and the reason why it remains a challenge
more than three decades after the ®rst theoretical papers appeared, is that, in the
thermodynamic limit, ®nal equilibrium is never achieved! This is because the longest
relaxation time diverges with the system size in the ordered phase, re¯ecting the
broken ergodicity. Instead, a network of domains of the equilibrium phases
develops, and the typical length scale associated with these domains increases with
time t. This situation is illustrated in ®gure 2, which shows a Monte Carlo simulation
of a two-dimensional Ising model, quenched from TI ˆ 1 to TF ˆ 0. Inspection of
the time sequence may persuade the reader that domain growth is a scaling
phenomenon; the domain patterns at later times look statistically similar to those
at earlier times, apart from a global change of scale. This `dynamic scaling
hypothesis’ will be formalized below.

For pedagogical reasons, we have introduced domain growth in the context of
the Ising model and shall continue to use magnetic language for simplicity. A related
phenomenon that has been studied for many decades, however, by metallurgists, is

A. J. Bray484

Figure 2. Monte Carlo simulation of domain growth in the d ˆ 2 Ising model at T ˆ 0
(taken from Kissner [8]). The system size is 256 £ 256, and the snapshots correspond
to 5, 15, 60 and 200 Monte Carlo steps per spin after a quench from T ˆ 1.Figure 2.5: Monte Carlo simulation of domain growth in the d = 2 Ising model with the

periodic condition at T = 0 (taken from Ref. [36]). The system size is 256 × 256, and the
snapshots are taken at 5, 15, 60 and 200 Monte Carlo steps per spin after a quench from
T =∞.

Phase separation is commonly observed in condensed matter systems. Examples include

magnets, alloys, fluids, and polymers. The late stages of growth are known as Ostwald

ripening in binary alloys. However, there is one common complication of all the above sys-

tems cannot be captured by the Ising ferromagnetic with spin-flip Monte Carlo dynamics. As

explained in the previous sections, we need to conserve the magnetization (or order param-

eter) of the Ising model as an analog of the binary alloy system. Actually, whether or not to
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conserve the order parameter can influence the domain growth behavior significantly. In our

study, we only focus on the conserved order parameter case.

2.3 Domain Growth Behavior and Compressibility

A model with compressibility will be a better reflection of the real world system such

as a binary alloy than a lattice model is. However, as suggested by [8–10], domain growth

may be affected by compressibility. Also, as we know from recent studies [11, 13–15], the

compressibility can affect the static critical behavior of Ising models and hence may affect

the domain growth behavior. Mitchell and Landau [7] have studied the late-time domain

growth behavior for a particular compressible 2D Ising model (to be introduced in the next

chapter). They found significant deviations from the theoretically expected n = 1
3

late-time

growth exponent for their compressible mismatch model, but for a compressible model with

no mismatch, they found only a slight deviation from n = 1
3
. The mismatch refers to the

different preferred bond lengths for different neighboring spin pairs, we will explain it in the

next chapter.

Their results suggest that the current understanding of the classes of domain growth is

incomplete. So, in our research, we investigate the changes in dynamic behavior due to the

flexibility of the model by a large scale (512× 512) and long time (106 MCS) Monte Carlo

simulation. Different from their model, our system has no mismatch and uses a triangular-net

to maintain the topology of the lattice. We use our model because we can continuously change

the elasticity of the model and on the other hand, we can adjust the relative importance of

the magnetic energy and the elastic energy terms. We will explain the details of our model

in the next chapter.



Chapter 3

Model and Methods

3.1 The Hamiltonian

Our model is a two-dimensional, compressible, triangular Ising net. The Ising model

Hamiltonian is

H = −J
∑
<i,j>

e−γrijsisj +
1

2
k
∑
<i,j>

(rij − `)2 (3.1)

where
∑

<i,j> is a sum over nearest-neighbor pairs of particles, J > 0 is the exchange energy,

rij is the distance between nearest-neighbor particles, si is the spin value of the ith particle

(+1 or -1), γ is the coupling strength between the elastic energy and the magnetic energy, k

is the elastic constant, ` = 1 (unit length) is the preferred bond length. Specifically, we use

J = 200, γ = 4.5, and k =∞ (rigid), 120000, 20000, 3000, 1000 and 500.

The system is a triangular net. For the rigid case, which is the limiting case where the

particles are forbidden to move, we assume that one side of the lattice lines up with the

x-axis of our coordinate system, and the unit length in the x-axis is 1, the unit length in the

y-axis is
√

3
2

, then the system size L×L means on each row, L particles evenly scatter on the

lattice with total length L, and on the other lattice direction, there are L particles evenly

distributed on the lattice with total height L ×
√

3
2

in the y-axis direction. As shown in the

Fig. 3.1, it represents part of the triangular Ising lattice. If there are elastic interactions

between neighboring particles and the particles are allowed to move around the lattice

sites, then the system is compressible. A typical triangular net is shown in Fig 3.2, where

the nearest neighbor bond lengths vary and we can imagine there is a spring connecting

neighboring particles.

14
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We only include the nearest neighbor magnetic and elastic interactions in our Hamilto-

nian. In our simulation, the nearest neighbors of any particle are fixed, as shown in Fig 3.1,

the spin s has six nearest neighbors. However, for the compressible systems, the particles can

move away from the lattice sites, which changes the nearest neighbor distances. In Fig 3.2 we

show a compressible triangular net. In order to make sure that the six nearest neighbors are

always the ”nearest”, we need to control the compressibility of systems. To choose appro-

priate elastic constant k, we compare the bond length distribution for the nearest and the

2nd nearest neighbors. In Fig 3.3-3.6 we show the bond length distribution for the systems

with k = 500 and k = 3000 before and after the critical quench.

s	
  

Figure 3.1: Part of a triangular Ising lattice. Spin S as shown in the graph has six nearest
neighbors.
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Figure 3.2: Part of a triangular Ising net for the compressible systems.

We observe that the nearest neighbor and the 2nd nearest neighbor clearly follow the

normal distributions centered at different points. The overlapped region of them are narrow.

For k = 500, at the high temperature, the triangular net is distorted more due to its high

compressibility, so the overlapped region is wider compared to other cases. But only very

a few 2nd nearest neighbor bond lengths are probably smaller than those nearest neighbor

bond lengths. We can still stick to our inclusion of only the nearest neighbor interactions.

At the low temperature, the nearest and 2nd nearest neighbor bond length distributions are

more separated as we expect. After the quench, the bond length distribution doesn’t change

with time.

Also the system size of the compressible systems are allowed to increase or shrink. We

use Λx and Λy to represent the system size in the x and y-direction. By using this model we

can continuously change the elasticity of the model and on the other hand, we can adjust
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Figure 3.3: Nearest neighbor and 2nd nearest neighbor bond length distribution for the
system with k = 500 when it is in the equilibrium at t = 5000 MCS under a high temperature
T > TC .

the relative importance of the magnetic energy and the elastic energy terms. This is different

from the model used in Mitchell and Landau’s paper [7]. They use a two-dimensional square-

net Ising model in which L2 Ising spins have continuous positions within a periodic box of

size L× L. The Hamiltonian of their model is:

H =
∑
<i,j>

f(rij, si, sj) + Jθ
∑

<i,j,k>

cos2(θijk) (3.2)

where Jθ is the bond angle stiffness in dimensionless units and
∑

<i,j,k> is the sum over bond

angles θijk (four per particle), where i and k are nearest neighbors of j. The second term
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Figure 3.4: Nearest neighbor and 2nd nearest neighbor bond length distribution for the
system with k = 500 when it is at t = 100, 000 MCS after the critical quench.

is needed to stabilize an ordered square lattice structure. f(r, a, b) is the nearest neighbor

interaction potential which is Lennard-Jones-like:

f(r, a, b) = Jab[(
`ab
r

)12 − 2(
`ab
r

)6] (3.3)

where r is the displacement between two nearest neighbors with spin values a and b, `ab is

the preferred bond length. For instance, `++ is the preferred bond length for two neighboring

positive spins and `+− is the preferred bond length for a neighboring spin pair with different

signs. J++ is the exchange energy between two positive neighboring spins and J+− is the

exchange energy between one positive spin and its negative neighboring spin. J++ = J−− =
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Figure 3.5: Nearest neighbor and 2nd nearest neighbor bond length distribution for the
system with k = 3000 when it is in the equilibrium at t = 5000 MCS under a high tempera-
ture T > TC .

30, J+− = J−+ = J++ − 2, and `+− = `−+ = 1. With these interactions, when `ab = 1

and J++ and Jθ → ∞, the Hamiltonian reduces to that of the common ferromagnetic rigid

Ising model. They consider three specific cases of the model: the rigid two-dimensional Ising

model; a symmetric model, where `ab = 1 is referred to as the 0% mismatch model; and a

4% lattice mismatch model, where `++ = 1.02 and `−− = 0.98. The 4% mismatch value was

chosen to give insight into phase separation in Si-Ge alloys [11, 13,14].

There are many differences between these two models. We use a triangular net in our

model to maintain the structure of the system due to the stability of the triangles, and
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Figure 3.6: Nearest neighbor and 2nd nearest neighbor bond length distribution for the
system with k = 3000 when it is at t = 100, 000 MCS after the critical quench.

Mitchell and Landau’s model use the angle bond interactions to stabilize the square net

structure. Our model explicitly includes the elastic energy and this enables us to directly

observe how the domain growth exponent n changes with different elastic constants k, which

helps us find functional relationship between them if there exists one. However, in our study,

we only focus on the rigid system and the simple compressible systems, although our model

can be easily generalized to include the lattice mismatch by assigning different ` value to

different neighboring spins pairs.
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3.2 Monte Carlo Simulation

Monte Carlo methods are often used in computer simulations of physical and mathe-

matical systems. The most obvious feature of a Monte Carlo algorithm is to take random

samplings to compute the interesting results. It was invented in the 1940s by John von Neu-

mann, Stanislaw Ulam and Nicholas Metropolis [34], while they were working on nuclear

weapon projects (Manhattan Project) in the Los Alamos National Laboratory. In physics,

the concept of chance comes into play when the model evolves in a stochastic manner, and in

such cases, a sequence of random numbers is needed in the simulation. Monte Carlo methods

usually follow the pattern below:

1. Define possible inputs for the system to be studied.

2. Generate inputs randomly from the probability distribution over the range of inputs.

3. Perform a deterministic computation on the inputs.

4. Aggregate and analyze the results.

In physical simulations, the Metropolis importance sampling method is one of the most

important and extensively used algorithms, and this will be described in the next section.

3.3 The Metropolis Algorithm

The Metropolis method [33] generates a new state from a previous state using a transi-

tion probability which depends on the energy difference between the previous and the new

state. In such a way a sequence of states can be produced following the master equation below:

∂Pn(t)

∂t
= −

∑
n6=m

Pn(t)Wn→m − Pm(t)Wm→n (3.4)

where Pn(t) is the probability of the system being in the state n at time t, and Wn→m is the

transition rate for n → m, where m represents another system state. A sufficient condition
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for equilibrium is to make the following so called ”detailed balance” happen:

PnWn→m = PmWm→n (3.5)

This is because in equilibrium we have the left hand side of Eq. 3.4 as 0, and the Eq. 3.5 is

a sufficient condition to make the right hand side of Eq 3.4 as 0. For a fixed temperature T ,

a classical system following Boltzmann distribution in its equilibrium states must have:

Pn = exp [−Hn/kBT ]/Z (3.6)

where Z is the partition function and kB is the Boltzmann constant. So we get

Wn→m

Wm→n
=
Pm(t)

Pn(t)
= exp (−∆H/kBT ) (3.7)

∆H is the energy change (Hm −Hn). Any transition rate which satisfies detailed balance is

acceptable. One of the most popular methods used in statistical physics is the Metropolis

form described as the following (Again, we take the Ising model as an example):

1. Choose an initial state

2. Choose a site l

3. Calculate the energy change ∆H which results if the spin update/change proposed at

site l is accepted

4. Generate a random number r such that 0 < r < 1 and r is uniform in the interval.

5. If r < exp (−∆H
kBT

), update the spin state in the proposed way

6. Go the next site and go to (3)

After a set number of spins have been considered, the properties of the system are

determined and added to the statistical average which is being kept. Note that the random
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number r is chosen uniformly in the interval [0,1], and successive random numbers should

be uncorrelated. In our simulation, spins are randomly chosen L× L times before we call it

a ”Monte Carlo Sweep” or ”Monte Carlo Step”, which is a measure of Monte Carlo time.

Note that in one Monte Carlo Step, there could be some spins that have been chosen for

multiple times, and there could also be some spins that have never been chosen. After a

long enough Monte Carlo Sweeps, the system is in its equilibrium state following the

Boltzmannn distribution. Then we can take samples of the physical quantities we are

interested in and analyze them. Specifically, the statistical mechanical average of any

physical quantity A, which we write it as

< A >=
N∑
n=1

PnAn (3.8)

will be calculated simply as the arithmetic average of all samples generated through the

above Metropolis procedure, as shown below.

< A >=
1

N

N∑
n=1

An (3.9)

This is because the states we generated through Metropolis method follows the

Boltzmannn distribution, which assigns different weights to different An such that the

arithmetic average Eq. 3.9 approximates Eq. 3.8 very well.

It is worth mentioning that although the above recipe applies to the traditional Ising

model only, we will apply the algorithm to our model with spin-exchanges and spin lateral

displacement instead of spin-flips only. We will explain this in more detail in Sec. 5.1.

3.4 Spin-Exchange Sampling

The spin-exchange or Kawasaki method [32] conserves the system’s magnetization.

Instead of considering a single spin which may change its orientation, one chooses a pair of

spins and allows them to attempt to exchange positions. One examines the interacting

nearest neighbors of both spins in the pair and determines the change in energy if the spins
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are interchanged. This energy difference is then used in the acceptance procedure described

above.

3.5 Method for Constant Pressure

B. Dünweg and D. Landau [11] have proposed a method to maintain constant pressure

in a Monte Carlo simulation. For a two dimensional system as an example, one randomly

chooses new system sizes Λ
′
x and Λ

′
y. In order to keep this trial configuration homogeneous,

correspondingly, the new spin coordinates must be x
′
i = (Λ

′
x/Λx)xi, etc. The spin values

remain unchanged. Then the energy change associated with this global distortion of the

system is, however, not the only quantity entering the Metropolis acceptance criterion.

Instead, we have to use

∆Heff = ∆H−NkBT ln
Λ

′
xΛ

′
y

ΛxΛy

(3.10)

The first term includes the energy change before the global rescale, and the latter term

denotes the change in translational entropy when the volume changes.

3.6 Histogram Reweighting

Monte Carlo study may require huge computational resources sometime, especially

when the system is at a temperature close to TC . The divergence of correlation times at

around TC necessitates an extraordinarily long time to obtain enough independent samples

for reducing the standard error. So the efficiency of the simulation are of major

importance. Various methods appear as tools to increase the efficiency. Histogram

reweighting is one of them. It was proposed by Ferrenberg et al [42] to increase the

amount of information obtained from a simulation. The technique uses restricted-energy

MC simulations to generate the partition function for a range of parameter values.

Consider the Ising model in a magnetic field. The Hamiltonian for this system is:
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−βH = K
∑
<i,j>

sisj + h
∑
i

si = KS + hM (3.11)

where K is the dimensionless coupling constant (J/kBT ) and h is an applied magnetic field

(H/kBT ). The probability distribution of S and M at a point in the parameter space(K,h)

is given by:

PK,h(S,M) =
1

Z(K,h)
N(S,M) exp(KS + hM) (3.12)

where N(S,M) is the number of configurations at the point (S,M) in the phase space, and

Z(K,h) is the canonical partition function given by:

Z(K,h) =
∑
S,M

N(S,M) exp(KS + hM). (3.13)

The normalized probability distribution with new parameters (K ′, h′) can be described in

terms of (K,h) in the following way:

PK′,h′(S,M) =
PK,h(S,M) exp[(K ′ −K)S + (h′ − h)M ]∑

S,M P(K,h)(S,M) exp[(K ′ −K)S + (h′ − h)M ]
(3.14)

Using this reweighted probability distribution P (S ′,M ′), we can calculate new

thermodynamic quantities based on the data given from (S,M).

3.7 Simulation

3.7.1 The Monte Carlo Moves

In the Monte Carlo simulation of the system’s kinetic behavior, we use the same types

of Monte Carlo moves as in [7]: a spin-exchange (Kawasaki dynamics), lateral displacement

of the particle’s position, and a global volume rescale to maintain a constant pressure. In

the spin-exchange attempt a nearest-neighbor pair of spins is randomly chosen and spin

values are exchanged and in the spin-move attempt a particle is randomly selected and

displaced by a small random amount from its current position. In particular, the particle is
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allowed to move within the circle of the radius 0.3
√
x2 + y2 centered at the particle’s

current position, where x and y are the average neighboring distance in the x and y

directions. The radius of the circle is chosen as such to be not too large to lower the

acceptance rates and not too small to be inefficient to move the particles. The energy

change due to global rescale is used to reproduce a constant pressure ensemble [11]. And in

our simulation the system size is allowed to increase or shrink by up to 0.25% of its current

size in both directions. The energy term to maintain constant pressure is not shown in Eq.

3.1. One Monte Carlo Sweep (MCS) consists of one attempted volume change followed by

L2 exchange or lateral displacement attempts, where the probability to choose exchange or

displacement was 50%. The 50% chance to do displacement or spin-exchange is chosen to

be consistent with previous research [7] and for the convenience in comparison of the

results. For the rigid model, we only include the spin-exchange moves.

As a critical quench simulation, we initialize each simulation with randomly chosen 50%

spin ups and 50% spin downs, and the Kawasaki dynamics used in our algorithm conserves

the total magnetization.Then the system is equilibrated at a high temperature at ∼ 1.76TC

and then quenched down to ∼ 0.59TC . These temperatures are taken to be consistent with

previous studies [3, 7] and then for the convenience of comparing the results. Actually

0.59TC at which the domains grow is appropriate because it is high enough to allow the

domains grow fast and low enough to avoid big thermal fluctuations. The system is under

constant, zero pressure. We use L = 512 as system size with the periodic boundary

condition and run 106 MCS after quench, the reason why we do a large scale (512× 512)

simulation to such a late time (106) is to be explained in the following subsection. Every

103 MCS we record the configuration for analysis. The sample interval 103 is taken to be

the same as the previous study [7] for comparison concern. For each simulation of 106

MCS after quench, about 25 days are needed for compressible models on quad-core Intel

Xeon with 2GB RAM/CORE. Due to limited computation resources, we also take samples

only up to 3× 105 MCS after quench and combine them with those 106 MCS samples for
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analysis. The total CPU time is about 8× 105 CPU hours. We use the R1279 generator,

one variant of generalized feedback shift-register generator, for random number generation

in our simulation. We also test other random number generators (e.g. the R250 generator,

another variant of generalized feedback shift-register generator.) and smaller systems

(L = 256), and get consistent results to within error bars.

On the other hand, to study the static critical behavior of the systems, instead of using

Kawasaki dynamics, we use the spin-flip and lateral displacement with the global volume

rescale in Metropolis algorithm.

3.7.2 Critical Quench

As illustrated in Fig. 2.4, the system follows the path directed by the arrow starting

from B. In other words, each simulation begins with a random spin state, where the value

of the spin is randomly chosen to be +1 or −1 with 50% probability, and our Monte Carlo

algorithm conserves the total magnetization at this initial value. The system is then

equilibrated at a temperature much higher than the critical temperature (TC). After

equilibration, the temperature is quenched down to about 0.59TC , and the configurations

are recorded and analyzed every 103 MCS.

3.8 Correlation Function

To quantify the phase separation behavior, we calculate and analyze the spatial

correlation function; however, because the compressible models have continuous particle

positions, methods developed for regularly spaced particles could not be used. Therefore,

the correlation function was calculated by direct summation over the lattice in only three

directions,

C(r) = C(p,q)(r) = 〈sisj〉 (3.15)

where (p, q) denote one of the three displacement directions: the lattice directions: (1, 0)

and (0, 1), and the another side direction of the triangles in the net: (1, 1). We show these
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directions in the Fig 3.7. 〈sisj〉 are the average over all pairs of particles with a distance of

(1,0)	
  

(0,1)	
  (1,1)	
  

Figure 3.7: Lattice directions of the triangular net.

r between each other. Since the system’s configuration evolves with time, at different time

points, we have different C(r) curves. The scale that we use to describe the domain size, ξ,

is defined as the first-zero crossing of C(r) and is found by fitting a second order

polynomial to the three points closest to the crossing. The first-zero crossing is the r value

at where C(r) drops to 0 the first time ever. Since we have different C(r) curves at

different times, the first-zero crossing ξ also varies with time. So the domain size R(t) in

Eq. 1.2, in our simulation, is represented by ξ(t).

For the rigid system, r is simply a multiple of 1. Because the lattice spacing between

any two neighboring pairs in the three directions are always a fixed number, which is 1. For

the compressible systems, the distance between particles changes. We cannot fix the
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distance r and calculate C(r) directly. So we do the following to calculate the correlation

function. For the (p, q) direction, to calculate C(p,q)(r), we first define the scale in (p, q)

direction. It is the average neighboring distance in the (p, q) direction, let us call it d(p,q).

Then we scan through the net, only consider those particles whose lattice sites are lined up

in the (p, q) direction. For any two of them, assuming they have a distance r0, we assign an

index i = b(r0 + 0.5)/d(p,q)c. The bxc operation is to take the largest integer that is not

greater than x. The added term 0.5 is intendedly given to round up the value. Finally, for

each fixed index number i, we have different r0’s corresponding to it, and we take the

average ravg of them and output ravg and C(ravg) as the correlation function values in the

(p, q) direction.

C(r) is not self-averaging. That means, we cannot reduce its standard error by

increasing the size of the system. So meaningful results are only obtained if one averages

the simulated “quenching experiment” over a large number of independent runs. In our

study, it is necessary to study the late-time behavior where R(t) is much larger than the

lattice spacing, but R(t) must also be much smaller than the lattice size L, because

otherwise one runs into finite size effects. In a word, we need to do a large-scale simulation

with a good number of samples to study the late-time domain growth behavior. In

particular, we use the system size of 512× 512 and do simulation up to 106 MCS.

3.9 Smoothing Splines

In our local exponent analysis of the domain growth exponents in Sec. 5.4, we observe

large fluctuations. In order to better observe the overall trend of the domain growth

exponents, we use smoothing splines to fit the data.

The word “spline” has been originated from the ship building industry. It was a thin

strip of wood used by draftsmen as a flexible French curve. Metal weights were placed on

the drawing surface and the spline was threaded between the ducks. As a natural extension

of this concept of spline, a spline curve in industry is referred to as a sequence of curve
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segments connected to each other to form a single continuous curve. And the Basic-Spline,

abbreviated as B-Spline, is spline functions that has minimal support with respect to a give

degree, smoothness, and domain partition. A curve s(u) is called a spline of degree n with

the knots a0, ...am, where ai 6 ai+1 and ai < ai+n+1 for all possible i. And s(u) is n− r

times differentiable at any r − fold knot. (We call a knot ai+1 the r-fold knot if

ai < ai+1 = · · · = ai+r < ai+r+1). It is also common to refer to a spline of degree n as a

spline of order n+ 1.

3.9.1 B-Spline

In order to define B-splines, let (aj)
N
j=−1 be a series of knots on interval [a, b], which

satisfies

a < a1 < ... < aj < aj+1... < aN < b.

Suppose we have N interior knots and the B-spline is of order d (or degree d− 1), we can

set the following boundary knots

a−(d−1) = ... = a−1 = a0 = a < a1 < ... < aN < b = aN+1 = ... = aN+d,

thus we have N + 2d knots in total. With the above knots, we define B-spline of order d (or

degree d− 1), Bj,d, using the following recursion formula:

Bj,1(x) =

 1 if x ∈ [aj, aj+1);

0 o.w..

and

Bj,d(x) =
(x− aj)Bj,d−1(x)

aj+d−1 − aj
+

(aj+d − x)Bj+1,d−1(x)

aj+d − aj+1

.
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Now suppose we have 5 equally spaced interior knots on the interval [0, 6], then we have

the following constant spline basis functions:

B0,1(x) =

 1 if 0 ≤ x < 1;

0 o.w..

B1,1(x) =

 1 if 1 ≤ x < 2;

0 o.w..

...

B5,1(x) =

 1 if 5 ≤ x < 6;

0 o.w..

Based on those first-order basis functions, we deduce the linear basis functions Bj,2(x) of

order 2 as:

B0,2(x) = (1− x)B1,1(x)

B1,2(x) = xB1,1(x) + (2− x)B2,1(x)

B2,2(x) = (x− 1)B2,1(x) + (3− x)B3,1(x)

B3,2(x) = (x− 2)B3,1(x) + (4− x)B4,1(x)

B4,2(x) = (x− 3)B4,1(x) + (5− x)B5,1(x)

B5,2(x) = (x− 4)B5,1(x)

We repeat the pattern up to any desired degree. The degree of 3 (cubic spline) is used in

most cases, since low degree may cause unsmooth curve while too high degree may result in

over-fitting. Degree of 3 is a good compromise between them.

Next we introduce the definition of B-spline space. Let S
(d)
n be the space of B-splines on

[a, b] of order d ≥ 1. The space S
(d)
n consists of all the functions s satisfying

• s is a polynomial of degree d− 1 which we fix on each of the subintervals [aj, aj+1),

where k = 0, ..., N − 1.

• s is d− 2 continuously differentiable on the interval [a, b], for d ≥ 1.
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Fig. 3.6 is a sequence of B-splines up to order four with ten knots evenly spaced from 0 to 1.

Bj,d(x) =
(x− aj)Bj,d−1(x)

aj+d−1 − aj
+

(aj+d − x)Bj+1,d−1(x)

aj+d − aj+1

.
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FIGURE 5.20. The sequence of B-splines up to order four with ten knots evenly
spaced from 0 to 1. The B-splines have local support; they are nonzero on an
interval spanned by M + 1 knots.

Figure 3.8: The sequence of B-splines up to order four with ten knots evenly spaced from 0
to 1. Graph taken from [37].

3.9.2 Smoothing Splines

Let’s consider the following problem: among all functions f(x) with two continuous

derivatives, find one that minimizes the penalized residual sum of squares:

RSS(f, λ) =
N∑
i=1

(yi − f(xi))
2 + λ

∫
f

′′
(t)

2
dt (3.16)

where λ is a fixed smoothing parameter. The first term is a measure of how close the fitted

data to the original data, and the second term controls the complexity of the model by
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penalizing curvature in the function. The parameter λ assigns weight to the second term so

as to establish a trade-off between them. As it clearly indicates, we have two special cases:

1. λ = 0: f can be any function that interpolates the data.

2. λ =∞: the least squares linear fit because no second derivative can be tolerated.

So by varying λ ∈ (0,∞), we end up with fitting functions of different smoothness. Then if

we let the solution to be a natural spline, we can write it as:

f(x) =
N∑
j=1

Nj(x)θj (3.17)

where the Nj(x) are an N -dimensional set of basis functions for representing this family of

natural splines. So the above criterion reduces to:

RSS(θ, λ) = (y −Nθ)T (y −Nθ) + λθTΩNθ (3.18)

where Nij = Nj(xi) and ΩNij =
∫
N

′′
j (t)N

′′

k (t)dt. The solution is:

θ̂ = (NTN + λΩN)−1NTy (3.19)

and the fitted smoothing spline is given by

f(x) =
N∑
j=1

Nj(x)θ̂j (3.20)

In our analysis, we use cubic B-spline basis functions for Nj(x) and so we call it cubic

smoothing splines fitting.
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Results: Static Critical Behavior

4.1 Binder Cumulant Crossing

Binder cumulant, the fourth order cumulant of the order parameter introduced by

Binder [27], provides important information on a system’s critical behavior. In zero field,

for an Ising model, the fourth order cumulant reduces to the following equation.

U4 = 1− 〈m4〉
3〈m2〉2

(4.1)

where 〈m2〉 is the average of the 2nd order moment of magnetization of one single particle,

and 〈m4〉 is the average of its 4th order moment. For Ising models, in the thermodynamic

limit, the cumulant U4 approaches 2
3

at T < TC , and when T > TC , U4 = 0. Curves of

difference system sizes for U4 cross at the critical point with a fixed point value U∗4 , which

assumes different values for different universality classes. For example, for the

two-dimensional rigid Ising model, according to [38–40], the U∗4 is found to be ∼ 0.61. For

the mean-field universality class, U4 ∼ 0.27 [41], and for the three-dimensional Ising

model, U4 ∼ 0.47 [42].

We investigate systems with different elasticities; in particular, we study the rigid

model and the compressible models with k = 120000, k = 20000, k = 3000, k = 1000 and

k = 500 (See Eq. 3.1 for the description of k.). Fig. 4.1-4.6 show U4 as a function of T for

different size systems for these models. Temperatures are normalized by the ground state

interaction Je−γ`/kB. For the rigid model, the TC estimated from our simulation is ∼ 8.09,

which is consistent with the critical temperature (∼ 3.64) for the 2D rigid triangular-lattice

Ising model in Ref. [48] with a conversion of dimension. All of these figures show that the

34
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crossing points U∗4 vary very slightly with L and ∼ 0.61. These results are consistent with

the U∗4 of two-dimensional rigid Ising models. The magnetic field HC = 0 because the

hysteresis loop forms equivalent area around HC = 0 at T < TC . So we conclude that even

with elasticities, the systems used in our simulation belong to the same universality class of

the two-dimensional rigid Ising model. We plot in Fig. 4.7 the critical temperatures as a

function of 1/k.
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Figure 4.1: Binder cumulant for the rigid model. The magnetic field H = 0. Crossing point
indicates that it belongs to the same universality class of the two-dimensional rigid Ising
model.
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Figure 4.2: Binder cumulant for the model with k = 120000. The magnetic field H = 0.
Crossing point indicates that it belongs to the same universality class of the two-dimensional
rigid Ising model.
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Figure 4.3: Binder cumulant for the model with k = 20000. The magnetic field H = 0.
Crossing point indicates that it belongs to the same universality class of the two-dimensional
rigid Ising model.
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Figure 4.4: Binder cumulant for the model with k = 3000. The magnetic fieldH = 0. Crossing
point indicates that it belongs to the same universality class of the two-dimensional rigid
Ising model.
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Figure 4.5: Binder cumulant for the model with k = 1000. The magnetic fieldH = 0. Crossing
point indicates that it belongs to the same universality class of the two-dimensional rigid
Ising model.
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Figure 4.6: Binder cumulant for the model with k = 500. The magnetic field H = 0. Crossing
point indicates that it belongs to the same universality class of the two-dimensional rigid
Ising model.
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Figure 4.7: Critical temperatures vs. 1/k.

4.2 Normalized Magnetization Distribution

Binder cumulant plots not only help us identify the system’s universality class but also

estimate the critical point TC from the locations of the crossing points. By using the

estimate of TC and the zero magnetic field (the estimate of HC), we can also examine the

probability distribution of order parameter m (magnetization per spin) under ((T ′, H ′) by

the histogram reweighting method as shown in Eq. 3.14, where (T ′, H ′) is very close to our

estimate of (TC , HC). We adjust (T ′, H ′) until the curves of normalized unit-variance

probability distribution of the order parameter of different system sizes collapse. We do

this to make sure that our estimate of (TC , HC) is accurate enough and also to understand

the nature of the transition. In particular, we calculate the standard variance σ of the
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magnetization per spin m and then plot P (m)σ vs. m/σ, where P (m) is the probability

distribution of the magnetization. This is because for a large finite system of liner

dimension L at the critical point, P (m) takes the form

P (m) = bP ∗(m̃) (4.2)

where b = b0L
β/ν , β and ν are critical exponents, m̃ = bm, b0 is a constant, and P ∗(m̃) is a

universal scaling function, normalized to unit norm and unit variance. Scaling functions

P ∗(m̃) is characteristic of the corresponding universality class. So we can identify

universality class by using P ∗(m̃). Here b = 1
σ
, and then P ∗(m̃) = P (m)σ. This is why we

plot P (m)σ vs. m/σ.

Fig. 4.8-4.13 show the collapse of the scaling functions of different system sizes for each

system, and the scaling functions agree with that of the rigid 2D Ising model. This

indicates that the phase transition belongs to the rigid 2D Ising universality class.
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Figure 4.8: The scaled probability distribution of magnetization for the rigid model.
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Figure 4.9: The scaled probability distribution of magnetization for the model with k =
120000.
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Figure 4.10: The scaled probability distribution of magnetization for the model with k =
20000.



46

-2 -1 0 1 2
m/σ

0

0.5

1

1.5

2
P(

m
)σ

L=32
L=64
L=96
L=128
L=400 rigid Ising Model

Figure 4.11: The scaled probability distribution of magnetization for the model with k =
3000.
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Figure 4.12: The scaled probability distribution of magnetization for the model with k =
1000.
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Figure 4.13: The scaled probability distribution of magnetization for the model with k = 500.

4.3 Thermodynamic derivatives

We extract ν by considering the scaling behavior of certain thermodynamic derivatives,

including the derivative of the logarithmic derivatives of 〈m2〉 and 〈|m|〉, as in [42]. We

plot these properties as a function of lattice size on a log-log scale in Fig. 4.14-4.19.
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Figure 4.14: For the rigid model: log-log plot of the maximum slopes of various thermody-
namic quantities used to determine ν. The black one is for the derivative of lnm2, and the
red one is for the derivative of ln |m|.
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Figure 4.15: For the model with k = 120000: log-log plot of the maximum slopes of various
thermodynamic quantities used to determine ν. The black one is for the derivative of lnm2,
and the red one is for the derivative of ln |m|.
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Figure 4.16: For the model with k = 20000: log-log plot of the maximum slopes of various
thermodynamic quantities used to determine ν. The black one is for the derivative of lnm2,
and the red one is for the derivative of ln |m|.
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Figure 4.17: For the model with k = 3000: log-log plot of the maximum slopes of various
thermodynamic quantities used to determine ν. The black one is for the derivative of lnm2,
and the red one is for the derivative of ln |m|.
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Figure 4.18: For the model with k = 1000: log-log plot of the maximum slopes of various
thermodynamic quantities used to determine ν. The black one is for the derivative of lnm2,
and the red one is for the derivative of ln |m|.
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Figure 4.19: For the model with k = 500: log-log plot of the maximum slopes of various
thermodynamic quantities used to determine ν. The black one is for the derivative of lnm2,
and the red one is for the derivative of ln |m|.

The estimates for 1/ν from nonlinear least square fits to Eq. 2.6 are given in the Table

4.1-4.5. Combing these two results we get the estimates of ν as shown in Table 4.6. For the

2D rigid Ising model, ν = 1. Our results are close to it but not good enough. This is

because the critical temperature TC we estimate from the Binder cumulant crossing is not

accurate enough. To have an accurate estimate of TC , we still need to do a finite size

scaling analysis of U4. In our study of the static behavior, our goal is only to have an

estimate of TC to be used in the simulation of the dynamic behavior (phase separation) of

these systems. So we go with these estimates of Tc’s.
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Table 4.1: For the rigid model: estimates for 1/ν obtained by finite size scaling of the max-
imum slopes of the cumulant and the logarithmic derivatives of m2 and |m|.

1/ν
log〈m2〉 1.062± 0.008
log〈|m|〉 1.060± 0.009

Table 4.2: For the model with k = 120000: estimates for 1/ν obtained by finite size scaling
of the maximum slopes of the cumulant and the logarithmic derivatives of m2 and |m|.

1/ν
log〈m2〉 1.036± 0.013
log〈|m|〉 1.046± 0.027

Table 4.3: For the model with k = 20000: estimates for 1/ν obtained by finite size scaling of
the maximum slopes of the cumulant and the logarithmic derivatives of m2 and |m|.

1/ν
log〈m2〉 1.016± 0.031
log〈|m|〉 0.984± 0.050

Table 4.4: For the model with k = 3000: estimates for 1/ν obtained by finite size scaling of
the maximum slopes of the cumulant and the logarithmic derivatives of m2 and |m|.

1/ν
log〈m2〉 0.935± 0.018
log〈|m|〉 0.892± 0.035

Table 4.5: For the model with k = 1000: estimates for 1/ν obtained by finite size scaling of
the maximum slopes of the cumulant and the logarithmic derivatives of m2 and |m|.

1/ν
log〈m2〉 1.043± 0.066
log〈|m|〉 1.055± 0.047
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Table 4.6: For the model with k = 500: estimates for 1/ν obtained by finite size scaling of
the maximum slopes of the cumulant and the logarithmic derivatives of m2 and |m|.

1/ν
log〈m2〉 1.103± 0.042
log〈|m|〉 1.091± 0.042

Table 4.7: Estimates for ν obtained by combining the results from Table 4.1-4.5.

k ν
rigid 0.943± 0.010

120000 0.961± 0.020

20000 1.000± 0.040

3000 1.090± 0.0031

1000 0.953± 0.032

1000 0.953± 0.032

500 0.911± 0.051



Chapter 5

Results: Domain Growth

5.1 Correlation Function

We show in Fig. 5.1 - Fig. 5.3 configurations at different times for models with different

elasticities (rigid model, k = 20000 and k = 500). Down-spins(-1) are blue, and

up-spins(+1) are yellow.

All simulations were performed in the spinodal decomposition regime, as the above

figures indicate, and all three models clearly show phase separation behavior. Few

qualitative differences in the overall structure can be seen between the rigid and the

compressible models. And for each system, the late-time domain patterns look statistically

similar to the ones formed at early times, which indicates that phase separation is a

dynamical scaling phenomenon.

Figure 5.1: The sequence of 512× 512 system’s configurations at t = 10000, t = 100000, t =
1000000MCS after quench down to 0.59TC . For the rigid model with the periodic boundary
condition.

57
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Figure 5.2: The sequence of 512× 512 system’s configurations at t = 10000, t = 100000, t =
1000000MCS after quench down to 0.59TC . For the model with k = 20000 with the periodic
boundary condition.

Figure 5.3: The sequence of 512× 512 system’s configurations at t = 10000, t = 100000, t =
1000000MCS after quench down to 0.59TC . For the model with k = 500 with the periodic
boundary condition.

In Fig. 5.4-5.7 we show the correlation function for the rigid model and the one with

k = 500. The correlation functions for both the rigid model and the elastic models are

isotropic, and in these graphs each sample of C(r) is averaged over the three equivalent

directions of the triangular net and the curves are obtained from averaging over 100

samples.
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Figure 5.4: C(r) vs. r for the rigid model. The curves are for t = 103, t = 104, t = 105, t = 106

MCS. L = 512, averaged over the three triangle directions for 100 samples. Error bars are
less than the line thickness.
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Figure 5.5: The scaled form of C(r) for the rigid model. Curves of different t collapse for
large enough t.
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Figure 5.6: C(r) vs. r for the model with k = 500. The curves are for t = 103, t = 104, t =
105, t = 106 MCS. L = 512, averaged over the three triangle directions for 100 samples. Error
bars are less than the line thickness.
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Figure 5.7: The scaled form of C(r) for the model with k = 500. Curves of different t have
a tendency to collapse with t increasing.

Both the rigid and elastic models have well-defined first-zero crossings at every time points.

And from the scaled form of the correlation function we observe the collapse of curves of

different time. It clearly indicates that phase separation is a dynamic scaling phenomenon.

In the Table 5.1-5.2 we show part of the data plotted in Fig. 5.1-5.2.

ξ is defined as the first zero crossing of the correlation function curves, as illustrated in

Sec. 3.8. So from each sample of C(r) vs. r, we calculate ξ as a function of t. Then we can

have an average of them as the expected ξ. For example, in the Table 5.3 we show one

sample of C(r) vs. r.

We expect the first-zero crossing ξ in between of 4.99 and 5.99 for t = 103 MCS. Let’s

just take it as an example to show how to get ξ at t = 103 MCS. First of all we pick 3

points whose C(r) are closest to 0, which are (4.99993, 0.00638202), (5.99991,−0.0786152),

(6.9999,−0.11656) from Table 5.3. These numbers are represented as (r, C(r)). And then

we do a second order polynomial fit of these three points and end up with the equation
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Table 5.1: C(r) vs. r for the rigid model averaged over 100 samples at t = 103 MCS.

r C(r) error
0 1 0

0.99999 0.7242 1.01476E-4
1.99997 0.50565 1.67422E-4
2.99995 0.30892 2.22388E-4
3.99994 0.13873 2.50851E-4
4.99993 0.00706 2.51303E-4
5.99991 -0.07779 2.22846E-4
6.9999 -0.11617 1.99524E-4

7.99988 -0.11646 2.144E-4
8.99987 -0.09195 2.50396E-4

which fits these three points : y = 0.02353x2 − 0.34379x+ 1.13717, where x takes the r

value and y takes the corresponding C(r) value. Finally, we solve this equation and get two

solutions: x1 = 5.06043, x2 = 9.55316. Obviously we only need to keep the lower one, so

ξ = 5.06043 at t = 103 MCS. In the Table 5.4 we show ξ(t) vs. t for the rigid model for this

specific sample. We observe that ξ increases with t.

5.2 Least Square fitting

According to Eq. 1.2, we have:

ξ′(t) = Btn (5.1)

where ξ′(t) = ξ(t)− A. Here we use ξ(t) in place of R(t) because the domain size R(t) at

time t is represented as the first zero crossing ξ(t) in our simulation. So we have the

following equation:

ln ξ′(t) = n ln t+ lnB (5.2)

If we can get a good estimation of A first, then we can do a linear fitting of ln ξ′ vs. ln t as

shown in Eq. 5.2. So n naturally appears as the slope of this linear fitting. We can actually
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Table 5.2: C(r) vs. r for the rigid model averaged over 100 samples at t = 104 MCS

r C(r) error
0 1 0

0.99999 0.82143 1.02506E-4
1.99997 0.68238 1.77396E-4
2.99995 0.55144 2.45757E-4
3.99994 0.42519 3.08406E-4
4.99993 0.30463 3.62116E-4
5.99991 0.19242 3.97314E-4
6.9999 0.09209 4.15161E-4

7.99988 0.00726 4.09974E-4
8.99987 -0.05939 3.77499E-4

get a good estimation of A and n simultaneously by varying A and comparing <2 values for

the above fitting. <2, the coefficient of determination, is as an index reflecting how much

volatility is explained by the linear model [16]. As a result, the one with the best <2 score

gives both good estimations of A and n. We plot ln ξ′ vs. ln t in Fig 5.5-5.10 for different

systems and include <2 vs. A as the inset graphs. We use the A value which gives the best

<2 score as the one used in the fitting, which we call it as A0.
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Table 5.3: C(r) vs. r for the rigid model for one sample at t = 103 MCS

r C(r)
0 1

0.999985 0.723536
1.99997 0.505073
2.99995 0.308135
3.99994 0.137947
4.99993 0.00638202
5.99991 -0.0786152
6.9999 -0.11656

7.99988 -0.116454
8.99987 -0.0927422
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Figure 5.8: For the rigid model. ln ξ′(t) vs. ln t. The inset shows <2 for different A values.
The start fitting point is t = 50000 MCS. Different start fitting points ranged from 30000 to
80000 MCS are tested and A0 differs only by 4% at most.
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Table 5.4: ξ(t) vs. t for the rigid model for one sample

t ξ(t)
1000 5.06043
2000 5.76313
3000 6.22384
4000 6.57068
5000 6.92243
6000 7.18181
7000 7.43524
8000 7.69064
9000 7.87531

10000 8.06324
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Figure 5.9: For the model with k = 120000. ln ξ′(t) vs. ln t. The inset shows <2 for different
A values. The start fitting point is t = 50000 MCS. Different start fitting points ranged from
30000 to 80000 MCS are tested and A0 differs only by 4% at most.
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Figure 5.10: For the model with k = 20000. ln ξ′(t) vs. ln t. The inset shows <2 for different
A values. The start fitting point is t = 50000 MCS. Different start fitting points ranged from
30000 to 80000 MCS are tested and A0 differs only by 4% at most.
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Figure 5.11: For the model with k = 3000. ln ξ′(t) vs. ln t. The inset shows <2 for different A
values. The start fitting point is t = 50000 MCS. Different start fitting points ranged from
30000 to 80000 MCS are tested and A0 differs only by 4% at most.
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Figure 5.12: For the model with k = 1000. ln ξ′(t) vs. ln t. The inset shows <2 for different A
values. The start fitting point is t = 50000 MCS. Different start fitting points ranged from
30000 to 80000 MCS are tested and A0 differs only by 4% at most.
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Figure 5.13: For the model with k = 500. ln ξ′(t) vs. ln t. The inset shows <2 for different A
values. The start fitting point is t = 50000 MCS. Different start fitting points ranged from
30000 to 80000 MCS are tested and A0 differs only by 4% at most.
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All the insets are obtained from fitting Eq. 5.2 with the starting point t = 50000 MCS.

Different start fitting points ranged from 30000 to 80000 MCS are tested and there is no

much difference in the results. Specifically, the change of A0 with different start fitting

points is only by 4% at most. The <2 scores are rather good for each curve and it drops

down slowly and smoothly in both directions away from its peak. We take the A value at

the peak as the one to be used in our fitting. And the second nearest neighbors of A in

both directions, which are also the points starting from where the curve begins to drop, are

manually taken as error bar of A. We show A’s for our models in Table 5.5. The error bar

Table 5.5: A in Eq. 1.2 for systems with different elasticities

k A
rigid 3.2

120000 2.8
20000 2.3
3000 2.3
1000 2.4
500 2.4

of A0 is taken as ±0.1. And correspondingly, we shown n’s in Table 5.6.

Table 5.6: n and the standard error for systems with different elasticities

k n error
rigid 0.329 0.003

120000 0.320 0.004
20000 0.306 0.004
3000 0.304 0.004
1000 0.303 0.004
500 0.298 0.003

We can tell that the overall trend of n decreases with more elastic models. However, our

technique of analysis is not good enough to give a high-resolution estimation of n to make

clear distinctions among models with varying elasticity constants. A more accurate way of
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analyzing the data is needed to get a better estimation of n values, considering the current

difficulty of late-time simulation of large scale systems with adequate samples.

There are several other methods that are used in previous studies. Here we include some of

them to show the results.

5.3 Extrapolation

A method of obtaining the domain growth exponent is by calculating neff [3]. The

Lifshitz-Slyozov theory has been generalized qualitatively to apply to the case of equal

fractions of the two phases by Huse [3]. Huse’s theory assumes the following:

∂R

∂t
= C2/R

2(t) + C3/R
3(t) +O(R−4) (5.3)

where C2 corresponds to the contribution to growth from diffusion between domains

through the bulk and C3 corresponds to the first-order correction, due to the transport of

spins along the interface between domains. Huse found the growth law from solving it:

neff (t) =
1

3
− C/R(t) (5.4)

where neff (t) is defined as:

neff (t) = ∂ln[R(t)]/∂(ln t) (5.5)

and C = 1
3
A. By taking the domain growth exponent as an variable, this can be simply

generalized to:

neff (t) = n− nA/R(t) (5.6)

To quantify the domain growth exponent n, we calculate neff and then extrapolate the

value for n. So as a numerical approximation of neff in Eq. 5.5, we use tf = 2t and ti = 1
2
t

and neff is calculated as:

neff (t) = ln[R(tf )/R(ti)]/ ln(tf/ti) (5.7)
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Eq. 5.7 is the numerical way of computing the first order derivative of ln[R(t)] with respect

to ln t. tf and ti are chosen in this way to avoid fluctuations and reflect the overall trend of

the time series curve shown below.

In Fig 5.14 we show neff as a function of 1/R for the rigid model and the model with

elastic constant k = 500. We also plot neff vs. t−1/3 for both models in Fig 5.15. By least

square fitting of the linear functions in Fig 5.14 we can get the y intercepts or extrapolated

late-time exponents. It is quite clear that we have different domain growth exponents for

these two different models. And from the graph we can tell that the domain grows with

different behavior at early and late time.

In order to closely observe the overall trend of domain growth at different time points,

we draw a time series plot of n as a function of tstart by varying the start fitting time tstart.

The time series plot of n vs. tstart is obtained as follows: for any fixed time point t0, in

order to obtain each n(t0), we first calculate neff (t) for each t > t0, and then extrapolate n

from it. Then we let n(t0) = n. Repeat this procedure for all 0 < t0 < 3× 105 MCS, and

then we end up with the time series curve.

In Fig. 5.16 we plot curves for systems with different elasticities. In particular, we have

the rigid model and the elastic models with k = 120000, k = 20000, k = 3000, k = 1000

and k = 500. For each of them we have simulations up to 3× 105 MCS and 106 MCS. If we

represent the number of short runs as the first figure and the number of long runs as the

second figure, we have 0/246 samples for the rigid model, 250/220 for the one with

k = 120000, 255/125 for k = 20000, 150/170 for k = 3000, 0/278 for k = 1000 and 220/140

for k = 500 model. Each curve starts off a low point and then levels off for a certain period,

and finally end up with larger error bars at around 3× 105 MCS. Curves after that are not

shown here because very large error bars become dominant and they are not as

informative. The reason we have large error bars at late times is because we don’t have as

many samples of late times as early times. Besides that, for each independent sample, the

statistics for late time domain growth is not as good as the early times. This is because for
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Figure 5.14: neff as a function of 1/R. Only part of the error bars are included for a better
view. The dashed lines are linear fits to them with the start fitting points at the late stage.
Clearly the k = 500 model has the y intercept lower than the rigid model. That indicates the
domain growth exponent n is smaller for the compressible model. The intercepts we show
in the plot are 0.329 and 0.301. For both systems, the line end up on different y intercept
points if we start the fitting procedure from different time.

each system, we don’t have that many domains of large size compared with those of smaller

size. For the rigid model n = 1
3

is achieved within error bar in the middle leveled-off period.

Clearly the elastic models have different, smaller n values from the rigid model. In

addition, n decreases with increasing elasticity. The only exception is for the system with

k = 1000 we cannot judge when it begins to level off, and it looks like the k = 1000 model

violates the overall decreasing trend of n among these models with increasing elasticity. It
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Figure 5.15: neff as a function of t−1/3. Clearly the k = 500 model has the y intercept
lower than the rigid model. That indicates the domain growth exponent n is smaller for the
compressible model.

maybe because our sample numbers are still not big enough to adequately reflect the

system’s domain growth behavior.

5.4 Local Exponent Analysis

We also perform a ratio analysis [1], which is more sensitive to the local behavior of

domain growth. The “local exponent” is defined as:

nloc(t) =
log[ ξ′(t+∆)

ξ′(t−∆)
]

log[ t+∆
t−∆

]
(5.8)
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Figure 5.16: n as extrapolated from Eq. 5.6. Time series plot for n vs. tstart. n = 1
3

is achieved
in the steady period of the rigid model curve. The models with more elasticity have smaller
n values. The error bars on each curve become larger at late times and so we only show the
results up to 3× 105 MCS.

where ξ′(t) = ξ(t)− A. It is a numerical approximation of the first order derivative of

log[ξ′(t)] with respect to log[t]. ∆ is the step width used in the numerical analysis. We use

the same A as the ones that we use above in Sec. 5.2.

Because the ratio method is very sensitive to small statistical errors in ξ(t), we

calculate the bin average of the final sequence. So nloc(t) is the average of nloc(ti)’s where ti

scattered symmetrically around t. Bin size means how many ti’s are used in calculating

nloc(t). Here we use bin size of 16 points (every point is separated 103 MCS from each
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Figure 5.17: The ratio method. ∆ = 4×103 MCS, bin averaged over 16 points (original point
separation 103 MCS).

other.) and ∆ = 4× 103 MCS. Fig. 5.17 demonstrates that nloc for elastic models gradually

deviates from 1
3

with increasing elasticity. ∆ is chosen to be 4× 103 in order to avoid large

fluctuations for small ∆ and a log ratio plot with a different ∆, e.g. 1× 103 MCS is shown

in Fig. 5.18, too. The plots for different choices of ∆ look quite similar except that large ∆

gives us small fluctuations.

To better observe the overall trend shown in each time series plot by the ratio method,

we use cubic spline smoothing [17] to fit the time series curves.
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Figure 5.18: The ratio method. ∆ = 1×103 MCS, bin averaged over 16 points (original point
separation 103 MCS).

Again Fig. 5.19 clearly indicates that nloc(t) decreases with increasing elasticity, and on

the other hand, for rigid model, nloc = 1
3

is within its error bar. In this way we are able to

get a longer steady period compared with the previous figures. The late time behavior of

each system is close to the estimated n value in Sec. 5.2.

5.5 n as a function of 1/k

The results from the previous two sections don’t suggest any inconsistency with our

estimate of n in Sec. 5.2. We can tell that the overall trend of n decreases with more elastic
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Figure 5.19: The smoothing cubic spline fitting of log ratio plot.

models. However, our technique of analysis is not good enough to give a high-resolution

estimation of n to make clear distinctions among models with close elasticity constants. A

more accurate way of analyzing the data is needed to get a better estimation of n values,

considering the current difficulty of late-time simulation of large scale systems with

adequate samples. We plot n vs. 1/k in the Fig. 5.20.

From the results that we have so far, there could be two possibilities for the relationship

between the domain growth exponent n and the elasticity k. The first is that although

n = 1
3

for the rigid system, n is approximately 0.30 for the compressible models. The

system with k = 120000 may, in the long run, drop down and meet up with the other
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Figure 5.20: n for different 1/k

elastic systems at around n = 0.3. The other possibility is that n drops down continuously

as a function of 1/k, so it could decrease exponentially or as a large power of 1/k, or in

some other function forms.



Chapter 6

Conclusion

We investigate the static and dynamic properties of a two-dimensional, compressible

triangular Ising net.

The static behavior of the compressible model is not affected by the elastic force

between the nearest neighbors. The Binder cumulant crossing and the collapsing of the

scaled probability distribution of order parameter clearly indicate that all the compressible

models belong to the two-dimensional rigid Ising model universality class. On the other

hand, through our simulation of the phase separation, we find that the compressibility

obviously affects the dynamic behavior of the systems. We observe the late-time domain

growth exponent n = 1
3

by Lifshitz-Slyozov growth law for the rigid model. For

compressible models, we observe clear deviations from n = 1
3
, and n decreases with greater

elasticity of the model. Because of the nature of the problem, and also because of the

computational facilities with limited power that we have, we can’t guarantee that we have

good enough statistics to reflect the asymptotic domain growth behavior of the model.

From what we currently have, we believe there could be two different possible relationships

between n and 1/k. The first is that n ∼ 0.3 for every compressible models and when 1/k

approaches 0, n suddenly jumps up to 1
3

for the rigid model. The second is that n drops

exponentially or as a power of 1/k, or in some other function forms.

Besides that, our model can be easily generalized to include lattice mismatch by using

different preferred bond length l for different spin pairs. How the combination of

compressibility and lattice mismatch can alter the domain growth exponent is of great

interest and both further theoretical and computational efforts are needed.
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doc.h

//// t h i s i s f o r a f e r romagnet i c t r i a n g u l a r model ;

const i n t L=512;

const i n t N=L∗L ;

const double J0=−200.0; //100−120

//#d e f i n e J0 −1.0 //100−120

const double Jaa=J0 ;

const double Jbb=J0 ;

const double Jab=J0 ;

const double Jba=J0 ; // Jba = Jab ;

#d e f i n e gamma 4 .5

const double k=500.0 ;

const double l 0 =1.0 ;

const double l aa=l 0 ;

const double lbb=l 0 ;

const double lab=l 0 ;

const double lba=l 0 ; // lab = lba ;

extern i n t im [ L+1] ;

extern i n t ip [ L+1] ;

coupledata.cc

// coupledata . cc i n c lude the main func t i on ;

i n t sp inaccpt = 0 ;

i n t sp in t ry = 0 ;

i n t moveaccpt = 0 ;

i n t movetry = 0 ;

i n t r e s c a l e t r y = 0 ;



88

i n t r e s c a l e a c c p t = 0 ;

#inc lude ” s t d i o . h”

#inc lude ” s t d l i b . h”

#inc lude ”math . h”

#inc lude <time . h>

#inc lude <iostream>

#inc lude <f stream>

#inc lude ” r1279 . cc ”

us ing namespace std ;

#inc lude ”doc . h”

i n t im [ L+1] , ip [ L+1] ;

double xaver = 1 . 0 ;

double yaver = 0.866∗ xaver ;

double T=16.378;

i n t to ;

double x [ L + 1 ] [ L + 1 ] , y [ L + 1 ] [ L + 1 ] ;

i n t l a t t i c e [ L + 1 ] [ L + 1 ] ;

i n t type [ L + 1 ] [ L + 1 ] [ 4 ] ;

double d i s [ L + 1 ] [ L + 1 ] [ 4 ] ;

double mag energy [ L + 1 ] [ L + 1 ] [ 4 ] ,

e l a s e n e r g y [ L + 1 ] [ L + 1 ] [ 4 ] ;

double temp magen [ L + 1 ] [ L + 1 ] [ 4 ] ;

double temp elasen [ L + 1 ] [ L + 1 ] [ 4 ] ;

double temp dis [ L + 1 ] [ L + 1 ] [ 4 ] ;

double temp x [ L + 1 ] [ L + 1 ] , temp y [ L + 1 ] [ L + 1 ] ;

i n t temptype [ L+1] [L + 1 ] [ 4 ] ;

double r10 [ L/ 2 ] , C10 [ L / 2 ] ;
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double r01 [ L/ 2 ] , C01 [ L / 2 ] ;

double r11 [ L/ 2 ] , C11 [ L / 2 ] ;

double rn11 [ L/ 2 ] , Cn11 [ L / 2 ] ;

double ther [ L/ 2 ] , theC [ L / 2 ] ;

double samps [ L / 2 ] ;

#inc lude ” i n i t i a l i z e . cc ”

#inc lude ” sp in exchange . cc ”

#inc lude ” spin move . cc ”

#inc lude ” g l o b a l r e s c a l e . cc ”

#inc lude ” updatedata . cc ”

i n t main ( char∗ argc , char∗ argv [ ] ){

i n t seed=a t o i ( argv [ 1 ] ) ;

r i n i t i a l i z e ( seed ) ;

cout<<”L=”<<L<<” T=”<<T<<” k=”<<k<<” J0=”<<J0<<” gamma=”<<gamma<<” with\

random number ”<<seed<<endl ;

const i n t equ i s t ep =5000;

const i n t t o t a l s t e p =1005000;

i n t round=0;

i n i t i a l i z e ( ) ;

update ( equ i s tep , t o t a l s t e p ) ;

}

updatedata.cc

// t h i s ” data ” ve r s i on w i l l p roce s s the data automat i ca l l y

// without s t o r i n g i t in d i sk space ;

i n t kmax=30;

void w r i t e 4 c o r r ( i n t mcs )
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{

i n t i , j ;

char s [ 5 1 2 ] ;

// cout<<mcs<<endl ;

f o r ( i =0; i<kmax;++ i ){

/∗ f p r i n t f ( ofp ,”% f %f %f %f %f %f \n” ,

r01 [ i ] , C01 [ i ] ,

r10 [ i ] , C10 [ i ] ,

rn11 [ i ] , Cn11 [ i ] ) ;

∗/

cout<<r01 [ i ]<<” ”<<C01 [ i ]<<” ”<<r10 [ i ]<<” ”<<C10 [ i ]<<

” ”<<rn11 [ i ]<<” ”<<Cn11 [ i ]<<endl ;

}

}

void ca l cCd i r ( i n t di , i n t dj )

{

i n t i , j , k ;

i n t t i , t j ;

double r , rx , ry ;

i n t tmpi , tmpj ;

i n t r index ;

double f a c t ;

double diag ;

double X=xaver∗L ;

double Y=yaver∗L ;

double Xhalf=X/ 2 . 0 ;
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double Yhalf=Y/ 2 . 0 ;

i f ( d i==1&&dj==0)

f a c t = 0.866/ yaver ;

e l s e i f ( d i==0&&dj==1)

f a c t = 1 .0/ xaver ;

e l s e i f ( d i==−1&&dj==1){

diag = s q r t ( ( yaver∗yaver)+

( xaver −0.5∗ yaver /0 . 866 )∗ ( xaver −0.5∗ yaver / 0 . 8 6 6 ) ) ;

f a c t = 1 .0/ diag ;

}

f o r ( k=0;k<L/2;++k )

{

ther [ k ] = 0 . 0 ;

theC [ k ] = 0 . 0 ;

samps [ k ] = 0 . 0 ;

} ;

// index over a l l atomic p o s i t i o n s

f o r ( i =1; i<=L ; i++)

f o r ( j =1; j<=L ; j++)

{

// index over a l l r e l a t i v e p o s i t i o n s along the di , d j d i r e c t i o n

f o r ( k=0;k<kmax ; k++)

{

t i = i ;

t j = j ;

i f ( d i==1&&dj==0){

t i += k ;
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i f ( t i>L)

t i −= L ;

}

e l s e i f ( d i==0&&dj==1){

t j += k ;

i f ( t j>L)

t j −= L ;

}

e l s e i f ( d i==−1&&dj==1){

t i −= k ;

t j += k ;

i f ( t i <1)

t i += L ;

i f ( t j>L)

t j −= L ;

}

rx=fabs ( x [ i ] [ j ]−x [ t i ] [ t j ] ) ;

ry=fabs ( y [ i ] [ j ]−y [ t i ] [ t j ] ) ;

i f ( rx>=Xhalf )

rx−=X;

i f ( ry>=Yhalf )

ry−=Y;

r=s q r t ( rx∗ rx+ry∗ ry ) ;

// index in the s to rage ar rays

r index=( i n t ) ( ( r +0.5)∗ f a c t ) ;

i f ( r index <0)

{
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e x i t ( 1 ) ;

} ;

i f ( r index<L/2)

{

samps [ r index ]+=1.0;

ther [ r index]+=r ;

theC [ r index ]+=1.0∗ l a t t i c e [ i ] [ j ]∗ l a t t i c e [ t i ] [ t j ] ;

}

e l s e

{

} ;

} ;

} ;

f o r ( k=0;k<kmax;++k )

{

ther [ k ]/=1.0∗ samps [ k ] ;

theC [ k ]/=1.0∗ samps [ k ] ;

} ;

}

void ca lcCs ( void )

{

i n t k ;

ca l cCd i r ( 1 , 0 ) ;

f o r ( k=0;k<=kmax ; k++)

{

r10 [ k]= ther [ k ] ;

C10 [ k]=theC [ k ] ;
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} ;

c a l cCd i r ( 0 , 1 ) ;

f o r ( k=0;k<=kmax ; k++)

{

r01 [ k]= ther [ k ] ;

C01 [ k]=theC [ k ] ;

} ;

c a l cCd i r (−1 ,1) ;

f o r ( k=0;k<=kmax ; k++)

{

rn11 [ k]= ther [ k ] ;

Cn11 [ k]=theC [ k ] ;

} ;

}

void update ( i n t equ i s tep , i n t t o t a l s t e p ){

i n t i , j ,w;

i n t i1 , j1 , k1 ;

double r , r1 , r2 ;

i n t mcs ;

i n t t ;

// p ick up a random sp in ;

f o r ( mcs = 1 ; mcs <= t o t a l s t e p ; mcs ++ ){ //1500

i f (mcs==equ i s t ep +1)

T=5.422;

f o r ( t = 1 ; t <= N; t ++ ){

r1 = ran f ( ) ∗ N;

f o r ( w = 1 ; w <= L ; w ++ ){
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i f ( r1 /L > ( w − 1 ) ∗ 1 .0 && r1 /L <= w ∗ 1 .0 )

i = w; // i i s the x index ;

}

r2 = r1 − 1 .0 ∗ ( i − 1 ) ∗ L ;

f o r ( w = 1 ; w <= L ; w ++ ){

i f ( r2 > ( w − 1 ) ∗ 1 .0 && r2 <= w ∗ 1 .0 )

j = w; // j i s the y index ;

}

r = ran f ( ) ;

i f ( r <= 0.5 ){

sp in exchange ( i , j ) ;

}

e l s e {

spin move ( i , j ) ;

}

}

g l o b a l r e s c a l e ( ) ;

i f ( mcs − equ i s tep >=1000 && (mcs−equ i s t ep )%1000 == 0 )

{

cout<<mcs<<endl ;

cout<<xaver<<” ”<<yaver<<endl ;

// f o r ( r e g i s t e r i n t i 1 =1; i1<=L;++i 1 )

// f o r ( r e g i s t e r i n t j 1 =1; j1<=L;++j1 )

// cout<<x [ i 1 ] [ j 1 ]<<” ”<<y [ i 1 ] [ j 1 ]<<” ”<< l a t t i c e [ i 1 ] [ j 1 ]<<endl ;

////now I want to proce s s the data ;

ca lcCs ( ) ;

w r i t e 4 c o r r (mcs ) ;
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}

}

}

spin move.cc

// propose a sp in move ;

void spin move ( i n t i , i n t j ){

double r ;

double disx , disy , newdis [ 7 ] ;

double temp magen [ 7 ] ;

double temp elasen [ 7 ] ;

i n t index0 , index1 , index2 , index3 ;

i n t i n i , i n j ;

i n t order ;

double de l tah = 0 . 0 ;

double d i f f x , d i f f y ;

double range = s q r t ( xaver∗xaver+yaver∗yaver ) ∗ 0 . 3 ;

double r1 = range ∗ ( 1 . 0 − 2 .0 ∗ ran f ( ) ) ;

double r2 = range ∗ ( 1 . 0 − 2 .0 ∗ ran f ( ) ) ;

double x1 = x [ i ] [ j ] + r1 ;

double y1 = y [ i ] [ j ] + r2 ;

double xmove = x1 − xaver ∗( i −3)/2.0− j ∗xaver ;

double ymove = y1 − yaver ∗(L−i ) ;

f o r ( i n t t = 1 ; t <= 6 ; t ++ ){

i f ( t == 1 ){

index0 = i ;

index1 = j ;
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index2 = im [ i ] ;

index3 = ip [ j ] ;

o rder = 1 ;

i n i = i ;

i n j = j ;

d i f f x = xaver / 2 . 0 ;

d i f f y = yaver ;

}

i f ( t == 2 ){

index0 = i ;

index1 = j ;

index2 = i ;

index3 = ip [ j ] ;

o rder = 2 ;

i n i = i ;

i n j = j ;

d i f f x=xaver ;

d i f f y =0.0 ;

}

i f ( t == 3 ){

index0 = i ;

index1 = j ;

index2 = ip [ i ] ;

index3 = j ;

order = 3 ;

i n i = i ;

i n j = j ;



98

d i f f x=xaver / 2 . 0 ;

d i f f y =−1.0∗yaver ;

}

i f ( t == 4 ){

index2 = ip [ i ] ;

index3 = im [ j ] ;

index0 = i ;

index1 = j ;

order = 1 ;

i n i = ip [ i ] ;

i n j = im [ j ] ;

d i f f x =−1.0∗xaver / 2 . 0 ;

d i f f y =−1.0∗yaver ;

}

i f ( t == 5 ){

index2 = i ;

index3 = im [ j ] ;

index0 = i ;

index1 = j ;

order = 2 ;

i n i = i ;

i n j = im [ j ] ;

d i f f x =−1.0∗xaver ;

d i f f y =0.0 ;

}

i f ( t == 6 ){

index2 = im [ i ] ;
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index3 = j ;

index0 = i ;

index1 = j ;

order = 3 ;

i n i = im [ i ] ;

i n j = j ;

d i f f x =−1.0∗xaver / 2 . 0 ;

d i f f y=yaver ;

}

// new d i s t anc e ;

double xmove1 = x [ index2 ] [ index3 ] − xaver ∗( index2 −3)/2.0

−index3∗xaver ;

double ymove1 = y [ index2 ] [ index3 ] − yaver ∗(L−index2 ) ;

d i sx = xmove1 + d i f f x − xmove ;

d i sy = ymove1 + d i f f y − ymove ;

newdis [ t ] = s q r t ( d i sx ∗ d i sx + di sy ∗ d i sy ) ;

temp magen [ t ] = mag energy [ i n i ] [ i n j ] [ o rder ] ∗

exp ( −1 ∗ gamma ∗ ( newdis [ t ] − d i s [ i n i ] [ i n j ] [ o rder ] ) ) ;

temp elasen [ t ] = k /2 .0 ∗ ( newdis [ t ] − l 0 ) ∗

( newdis [ t ] − l 0 ) ;

de l tah = de l tah + temp magen [ t ] −

mag energy [ i n i ] [ i n j ] [ o rder ] +

temp elasen [ t ] − e l a s e n e r g y [ i n i ] [ i n j ] [ o rder ] ;

}

r = ran f ( ) ;

i f ( r <= exp ( −1.0 ∗ de l tah / T ) ){

moveaccpt++;
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f o r ( i n t t = 1 ; t <= 6 ; t ++ ){

i f ( t == 1 ){

index0 = i ;

index1 = j ;

order = 1 ;

}

i f ( t == 2 ){

index0 = i ;

index1 = j ;

order = 2 ;

}

i f ( t == 3 ){

index0 = i ;

index1 = j ;

order = 3 ;

}

i f ( t == 4 ){

index0 = ip [ i ] ;

index1 = im [ j ] ;

o rder = 1 ;

}

i f ( t == 5 ){

index0 = i ;

index1 = im [ j ] ;

o rder = 2 ;

}

i f ( t == 6 ){
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index0 = im [ i ] ;

index1 = j ;

order = 3 ;

}

x [ i ] [ j ] = x1 ;

y [ i ] [ j ] = y1 ;

mag energy [ index0 ] [ index1 ] [ order ] = temp magen [ t ] ;

e l a s e n e r g y [ index0 ] [ index1 ] [ order ] = temp elasen [ t ] ;

d i s [ index0 ] [ index1 ] [ order ] = newdis [ t ] ;

}

}

e l s e {

}

}

spin exchangee.cc

// propose a sp in exchange ;

void sp in exchange ( i n t i , i n t j ){

double r = ran f ( ) ;

i n t temp ;

double de l tah1 =0.0;

double de l tah2 =0.0;

double de l tah = 0 . 0 ;

double pa i r = ran f ( ) ;

i f ( pa ir >0.333333&& pair <0.666666){

i f ( l a t t i c e [ i ] [ j ] == l a t t i c e [ i ] [ ip [ j ] ] ){

de l tah = 0 . 0 ;
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sp inaccpt ++;

}

e l s e {

de l tah1 = −2.0∗( mag energy [ i ] [ j ] [ 1 ] + mag energy [ i ] [ j ] [ 3 ]

+ mag energy [ im [ i ] ] [ j ] [ 3 ] + mag energy [ i ] [ im [ j ] ] [ 2 ] +

mag energy [ ip [ i ] ] [ im [ j ] ] [ 1 ] + mag energy [ i ] [ ip [ j ] ] [ 1 ] +

mag energy [ i ] [ ip [ j ] ] [ 2 ] + mag energy [ i ] [ ip [ j ] ] [ 3 ] +

mag energy [ im [ i ] ] [ ip [ j ] ] [ 3 ] + mag energy [ ip [ i ] ] [ j ] [ 1 ] ) ;

de l tah = de l tah1 ;

i f ( r <= exp ( −1.0 ∗ de l tah / T ) ){

temp = l a t t i c e [ i ] [ ip [ j ] ] ;

l a t t i c e [ i ] [ ip [ j ] ] = l a t t i c e [ i ] [ j ] ;

l a t t i c e [ i ] [ j ] = temp ;

mag energy [ i ] [ j ] [ 1 ] = −1.0∗mag energy [ i ] [ j ] [ 1 ] ;

mag energy [ i ] [ j ] [ 3 ] = −1.0∗mag energy [ i ] [ j ] [ 3 ] ;

mag energy [ i ] [ ip [ j ] ] [ 1 ] =

−1.0∗mag energy [ i ] [ ip [ j ] ] [ 1 ] ;

mag energy [ i ] [ ip [ j ] ] [ 2 ] =

−1.0∗mag energy [ i ] [ ip [ j ] ] [ 2 ] ;

mag energy [ i ] [ ip [ j ] ] [ 3 ] =

−1.0∗mag energy [ i ] [ ip [ j ] ] [ 3 ] ;

mag energy [ im [ i ] ] [ j ] [ 3 ] =

−1.0∗mag energy [ im [ i ] ] [ j ] [ 3 ] ;

mag energy [ i ] [ im [ j ] ] [ 2 ] =

−1.0∗mag energy [ i ] [ im [ j ] ] [ 2 ] ;

mag energy [ ip [ i ] ] [ im [ j ] ] [ 1 ] =

−1.0∗mag energy [ ip [ i ] ] [ im [ j ] ] [ 1 ] ;
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mag energy [ im [ i ] ] [ ip [ j ] ] [ 3 ] =

−1.0∗mag energy [ im [ i ] ] [ ip [ j ] ] [ 3 ] ;

mag energy [ ip [ i ] ] [ j ] [ 1 ] =

−1.0∗mag energy [ ip [ i ] ] [ j ] [ 1 ] ;

sp inaccpt ++;

}

e l s e {

// r e j e c t ;

}

}

}

i f ( pa ir <0.333333){

i f ( l a t t i c e [ i ] [ j ] == l a t t i c e [ ip [ i ] ] [ j ] ){

de l tah = 0 . 0 ;

sp inaccpt ++;

}

e l s e {

de l tah1 = −2.0∗( mag energy [ i ] [ j ] [ 1 ] + mag energy [ i ] [ j ] [ 2 ] +

mag energy [ im [ i ] ] [ j ] [ 3 ] + mag energy [ i ] [ im [ j ] ] [ 2 ] +

mag energy [ ip [ i ] ] [ im [ j ] ] [ 1 ] + mag energy [ ip [ i ] ] [ im [ j ] ] [ 2 ] +

mag energy [ ip [ i ] ] [ j ] [ 1 ] + mag energy [ ip [ i ] ] [ j ] [ 2 ] +

mag energy [ ip [ i ] ] [ j ] [ 3 ] + mag energy [ ip [ ip [ i ] ] ] [ im [ j ] ] [ 1 ] ) ;

de l tah = de l tah1 ;

i f ( r <= exp ( −1.0 ∗ de l tah / T ) ){

temp = l a t t i c e [ ip [ i ] ] [ j ] ;

l a t t i c e [ ip [ i ] ] [ j ] = l a t t i c e [ i ] [ j ] ;

l a t t i c e [ i ] [ j ] = temp ;
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mag energy [ i ] [ j ] [ 1 ] = −1.0∗mag energy [ i ] [ j ] [ 1 ] ;

mag energy [ i ] [ j ] [ 2 ] = −1.0∗mag energy [ i ] [ j ] [ 2 ] ;

mag energy [ im [ i ] ] [ j ] [ 3 ] =

−1.0∗mag energy [ im [ i ] ] [ j ] [ 3 ] ;

mag energy [ i ] [ im [ j ] ] [ 2 ] =

−1.0∗mag energy [ i ] [ im [ j ] ] [ 2 ] ;

mag energy [ ip [ i ] ] [ im [ j ] ] [ 1 ] =

−1.0∗mag energy [ ip [ i ] ] [ im [ j ] ] [ 1 ] ;

mag energy [ ip [ i ] ] [ im [ j ] ] [ 2 ] =

−1.0∗mag energy [ ip [ i ] ] [ im [ j ] ] [ 2 ] ;

mag energy [ ip [ i ] ] [ j ] [ 1 ] =

−1.0∗mag energy [ ip [ i ] ] [ j ] [ 1 ] ;

mag energy [ ip [ i ] ] [ j ] [ 2 ] =

−1.0∗mag energy [ ip [ i ] ] [ j ] [ 2 ] ;

mag energy [ ip [ i ] ] [ j ] [ 3 ] =

−1.0∗mag energy [ ip [ i ] ] [ j ] [ 3 ] ;

mag energy [ ip [ ip [ i ] ] ] [ im [ j ] ] [ 1 ] =

−1.0∗mag energy [ ip [ ip [ i ] ] ] [ im [ j ] ] [ 1 ] ;

sp inaccpt ++;

}

e l s e {

// r e j e c t ;

}

}

}

i f ( pa ir >0.666666){

i f ( l a t t i c e [ i ] [ j ] == l a t t i c e [ im [ i ] ] [ ip [ j ] ] ){
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de l tah = 0 . 0 ;

sp inaccpt ++;

}

e l s e {

de l tah1 = −2.0∗( mag energy [ i ] [ j ] [ 2 ] + mag energy [ i ] [ j ] [ 3 ] +

mag energy [ im [ i ] ] [ j ] [ 3 ] + mag energy [ im [ i ] ] [ j ] [ 2 ] +

mag energy [ ip [ i ] ] [ im [ j ] ] [ 1 ] + mag energy [ i ] [ im [ j ] ] [ 2 ] +

mag energy [ im [ i ] ] [ ip [ j ] ] [ 1 ] + mag energy [ im [ i ] ] [ ip [ j ] ] [ 2 ] +

mag energy [ im [ i ] ] [ ip [ j ] ] [ 3 ] + mag energy [ im [ im [ i ] ] ] [ ip [ j ] ] [ 3 ] ) ;

de l tah = de l tah1 ;

i f ( r <= exp ( −1.0 ∗ de l tah / T ) ){

temp = l a t t i c e [ im [ i ] ] [ ip [ j ] ] ;

l a t t i c e [ im [ i ] ] [ ip [ j ] ] = l a t t i c e [ i ] [ j ] ;

l a t t i c e [ i ] [ j ] = temp ;

mag energy [ i ] [ j ] [ 3 ] = −1.0∗mag energy [ i ] [ j ] [ 3 ] ;

mag energy [ i ] [ j ] [ 2 ] = −1.0∗mag energy [ i ] [ j ] [ 2 ] ;

mag energy [ im [ i ] ] [ j ] [ 3 ] =

−1.0∗mag energy [ im [ i ] ] [ j ] [ 3 ] ;

mag energy [ im [ i ] ] [ j ] [ 2 ] =

−1.0∗mag energy [ im [ i ] ] [ j ] [ 2 ] ;

mag energy [ ip [ i ] ] [ im [ j ] ] [ 1 ] =

−1.0∗mag energy [ ip [ i ] ] [ im [ j ] ] [ 1 ] ;

mag energy [ i ] [ im [ j ] ] [ 2 ] =

−1.0∗mag energy [ i ] [ im [ j ] ] [ 2 ] ;

mag energy [ im [ i ] ] [ ip [ j ] ] [ 1 ] =

−1.0∗mag energy [ im [ i ] ] [ ip [ j ] ] [ 1 ] ;

mag energy [ im [ i ] ] [ ip [ j ] ] [ 2 ] =
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−1.0∗mag energy [ im [ i ] ] [ ip [ j ] ] [ 2 ] ;

mag energy [ im [ i ] ] [ ip [ j ] ] [ 3 ] =

−1.0∗mag energy [ im [ i ] ] [ ip [ j ] ] [ 3 ] ;

mag energy [ im [ im [ i ] ] ] [ ip [ j ] ] [ 3 ] =

−1.0∗mag energy [ im [ im [ i ] ] ] [ ip [ j ] ] [ 3 ] ;

sp inaccpt ++;

}

e l s e {

// r e j e c t ;

}

}

}

}

global rescale.cc

// propose a volume change ;

void g l o b a l r e s c a l e ( ){

double l ;

double de l tah = 0 . 0 , de l tah1 =0.0 , de l tah2 =0.0;

double disx , d i sy ;

i n t index2 , index3 ;

double d i f f x , d i f f y ;

double xmove , ymove , xmove1 , ymove1 ;

double r1 = 1 .0 + ( 1 .0 − 2 ∗ ran f ( ) ) ∗ 0 . 0 2 5 ;

double r2 = 1 .0 + ( 1 .0 − 2 ∗ ran f ( ) ) ∗ 0 . 0 2 5 ;

double xaver1 = xaver∗ r1 ;

double yaver1 = yaver∗ r2 ;
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f o r ( i n t i = 1 ; i <= L ; ++i ){

f o r ( i n t j = 1 ; j <= L ; ++j ){

temp x [ i ] [ j ] = r1 ∗ x [ i ] [ j ] ;

temp y [ i ] [ j ] = r2 ∗ y [ i ] [ j ] ;

}

}

f o r ( i n t i = 1 ; i <= L ; ++i ){

f o r ( i n t j = 1 ; j <= L ; ++j ){

f o r ( i n t w = 1 ; w <= 3 ; ++w ){

i f ( w == 1 ){

index2 = im [ i ] ;

index3 = ip [ j ] ;

d i f f x = xaver1 / 2 . 0 ;

d i f f y = yaver1 ;

}

e l s e i f ( w == 2 ){

index2 = i ;

index3 = ip [ j ] ;

d i f f x = xaver1 ;

d i f f y = 0 . 0 ;

}

e l s e i f ( w == 3 ){

index2 = ip [ i ] ;

index3 = j ;

d i f f x = xaver1 / 2 . 0 ;

d i f f y = −1.0∗ yaver1 ;



108

}

xmove1 = temp x [ index2 ] [ index3 ]−xaver1 ∗( index2 −3)/2.0

−index3∗xaver1 ;

ymove1 = temp y [ index2 ] [ index3 ]−yaver1 ∗(L−index2 ) ;

xmove = temp x [ i ] [ j ]−xaver1 ∗( i −3)/2.0− j ∗xaver1 ;

ymove = temp y [ i ] [ j ]−yaver1 ∗(L−i ) ;

d i sx = xmove1 + d i f f x − xmove ;

d i sy = ymove1 + d i f f y − ymove ;

temp dis [ i ] [ j ] [ w ] = s q r t ( d i sx ∗ d i sx + di sy ∗ d i sy ) ;

temp magen [ i ] [ j ] [ w ] = exp ( −1.0 ∗ gamma ∗

( temp dis [ i ] [ j ] [ w ]

− d i s [ i ] [ j ] [ w ] ) ) ∗ mag energy [ i ] [ j ] [ w ] ;

l = l 0 ;

temp elasen [ i ] [ j ] [ w ] = k /2 .0 ∗

( temp dis [ i ] [ j ] [ w ] − l )

∗ ( temp dis [ i ] [ j ] [ w ] − l ) ;

de l tah1 = de l tah1 + temp magen [ i ] [ j ] [ w]−mag energy [ i ] [ j ] [ w ] ;

de l tah2 = de l tah2 + temp elasen [ i ] [ j ] [ w]− e l a s e n e r g y [ i ] [ j ] [ w ] ;

}

}

}

de l tah = de l tah1 + de l tah2 ;

de l tah = de l tah − N ∗ T ∗ l og ( r1∗ r2 ) ;

double r = ran f ( ) ;

i f ( r <= exp ( −1.0 ∗ de l tah / T) ){

// accept ;

f o r ( i n t i = 1 ; i <= L ; i ++ ){
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f o r ( i n t j = 1 ; j <= L ; j ++ ){

f o r ( i n t w = 1 ; w <= 3 ; w ++ ){

d i s [ i ] [ j ] [ w ] = temp dis [ i ] [ j ] [ w ] ;

mag energy [ i ] [ j ] [ w ] = temp magen [ i ] [ j ] [ w ] ;

e l a s e n e r g y [ i ] [ j ] [ w ] = temp elasen [ i ] [ j ] [ w ] ;

}

x [ i ] [ j ] = temp x [ i ] [ j ] ;

y [ i ] [ j ] = temp y [ i ] [ j ] ;

}

}

xaver = xaver1 ;

yaver = yaver1 ;

r e s c a l e a c c p t ++;

}

e l s e {

}

}

spin flip.cc

void s p i n f l i p ( i n t i , i n t j ){

double r = ran f ( ) ;

i n t temp ;

double de l tah = 0 . 0 ;

double oldenergy , newenergy ;

o ldenergy = mag energy [ i ] [ j ] [ 1 ] + mag energy [ i ] [ j ] [ 2 ]

+ mag energy [ i ] [ j ] [ 3 ] + mag energy [ im [ i ] ] [ j ] [ 3 ] +
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mag energy [ i ] [ im [ j ] ] [ 2 ] + mag energy [ ip [ i ] ] [ im [ j ] ] [ 1 ] ;

de l tah = −2.0∗ o ldenergy ;

i f ( r <= exp ( −1.0 ∗ de l tah / T ) ){

l a t t i c e [ i ] [ j ] = −1 ∗ l a t t i c e [ i ] [ j ] ;

mag energy [ i ] [ j ] [ 1 ] = −1.0∗mag energy [ i ] [ j ] [ 1 ] ;

mag energy [ i ] [ j ] [ 3 ] = −1.0∗mag energy [ i ] [ j ] [ 3 ] ;

mag energy [ i ] [ j ] [ 2 ] = −1.0∗mag energy [ i ] [ j ] [ 2 ] ;

mag energy [ im [ i ] ] [ j ] [ 3 ] =

−1.0∗mag energy [ im [ i ] ] [ j ] [ 3 ] ;

mag energy [ i ] [ im [ j ] ] [ 2 ] =

−1.0∗mag energy [ i ] [ im [ j ] ] [ 2 ] ;

mag energy [ ip [ i ] ] [ im [ j ] ] [ 1 ] =

−1.0∗mag energy [ ip [ i ] ] [ im [ j ] ] [ 1 ] ;

sp inaccpt ++;

}

e l s e {

// r e j e c t ;

}

}


