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 The First and Second Blue Ribbon Panels on Forest Inventory and Analysis voice 
the need for improving the sampling and analysis methods used to generate  reports on 
the welfare our Nation's timberlands.  The panelists note that the use of aerial 
photography for certain measurements and stratification for field sampling is too labor-
intensive, and that satellite remote sensing can improve the inventory process.  They 
suggest that satellite remote sensing should be implemented wherever it will lead to 
improved efficiency. 
 In an attempt to demonstrate the utility of Landsat Thematic Mapper (LTM) 
satellite data in a large-scale inventory, a study was conducted in western Georgia to 
evaluate the relationship between "leaf-off" and "leaf-on" LTM data and coniferous stand 
parameters.  Linear regression models applied to an independent dataset yielded 
significant results in which basal area was estimated within +/- 19%, and volume was 
estimated within +/- 28% of the ground measurements. 
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I.  BACKGROUND 

 For more than a century, the United States Congress has recognized the 

importance of our Nation's timberlands, and the need for a structured national timberland 

inventory.  Congress initiated establishment of the forest reserves from timber-covered, 

public domain land with the Forest Reserve Act of 1891.  Soon after this bill was signed, 

several million acres of land in the West were designated as forest reserves. 

  Our National Forest System and additional criteria for new forest reserve lands 

were established with the Organic Act of 1897.  It required that new reserve lands must 

be able to (1) improve and protect the forest within the boundaries, (2) furnish a 

continuous supply of timber for the use and necessities of the citizens of the United 

States, and (3) secure favorable conditions of water flow.  The Organic Act also required 

that the millions of acres of forest reserve be managed by "on-the-ground" forest rangers.  

Those early forest rangers were the predecessors to our modern-day United States 

Department of Agriculture Forest Service (USFS), 1905 - present. 

 The USFS organized regional forest survey projects in response to the 

McSweeney-McNary Act of 1928.  A network of 12 regional experiment stations were 

established throughout the country.  Later, these stations would become the backbone of 

the USFS' research effort.  The Act also directed the Secretary of Agriculture to prepare 

and maintain an inventory and analysis of the Nation's forest resources.  This was the 

beginning of the national inventory system and the predecessor to today's Forest 

Inventory and Analysis (FIA) program. 
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 The Multiple-Use Sustained-Yield Act of 1960 established the management 

criteria on which many of today's guidelines are based.  The Multiple-Use Sustained-

Yield Act states that "the national forests are established and administered for outdoor 

recreation, range, timber, watershed, and wildlife and fish purposes" ([16 U.S.C. 528]).  

Included in their definition of multiple-use are all renewable surface resources of the 

national forests.  Further more, the Act requires those renewable surface resources be 

"utilized in the combination that will best meet the needs of the American people" 

([Section 4, paragraph a [16 U.S.C 531]).  To satisfy these criteria, the forest managers of 

our forests are charged with the goal of achieving and revising when needed a periodic 

survey of those renewable resources of the national forests. 

 Building on the notion of making and keeping a current and comprehensive 

inventory brought forth in the McSweeney-McNary Act of 1928, the Resources Planning 

Act of 1974 required the Secretary of Agriculture to develop, maintain, and revise a land 

and resource management plan for the National Forest System (Section 6 [16 U.S.C. 

1604]).  Supporting this Act, the Resources Planning Act of 1978 directed the Secretary 

of Agriculture to survey and produce periodic analyses of the present and prospective 

conditions of the forests and rangelands of the United States.  The reports were to include 

a determination of the present and potential productivity of the land and any other facts 

that may be necessary to balance the demand for and supply of the renewable resources 

in question (16 U.S.C. 1642]). 

 The guidelines by which we measure our Nation's timberland and manage it for 

multiple uses are continually being revised by legislative mandates.  The Agricultural 

Research, Extension, And Education Reform Act of 1998, also referred to as the Farm 
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Bill, addressed the need for a more timely inventory and analysis of our public and 

private forest resources.  Realizing this need, Congress mandated that, by 2003, 20% of 

all FIA sample plots in each state be measured annually.  Also acknowledged in the Farm 

Bill was the need for exploring possible uses of remote sensing and other advanced 

technologies to expedite field measurements and increase the accuracy of  forest metrics. 

A.  National Inventory 

 Including our National Forests, our Nation's timberlands encompass more than 

747 million acres.  Mandated by Congress to make and keep current an inventory and 

analysis of the current and future natural resources, the USFS implemented the FIA 

program in 1930.  In its current format, the program collects, analyzes, and reports 

information on the status and trends of America's forests.  The program includes all 

public and private forest lands including reserved areas, wilderness, National Parks, 

defense installations, and National Forests in all 50 states and territories and possessions 

of the US. 

 Per guidelines established in the Farm Bill, the USFS is required to be on a 

schedule to annually measure 20% of the permanent sample plots in each state by 2003.  

At each sample plot, a set of core ecological and physical plant and site variables are to 

be recorded.  The data will then be compiled, analyzed, and reported by the USFS each 

year.  On a five-year cycle, a complete analytical report containing the  

 (1) current status of the forest for the last 5 years;  

 (2) trends in forest status and condition over the preceding twenty-years;  

 (3) timber product and output, and  

 (4) analysis of the probable forces causing the observed conditions.   
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A projection of the likely trends in key resource attributes over the next twenty-years is 

produced as well. 

 Considering the immense task of inventorying and reporting on the many acres of 

forest, our natural resource managers need to, and many have already, realize the need for 

improving the sampling and analysis methods used to obtain the timberland metrics in an 

accurate, localized, and timely manner.  According to a report issued by the committee on 

the Environment and Natural Resources titled, "Integrating the Nation's Environmental 

Monitoring and Research Networks and Programs: A Proposed Framework", concerns 

about the state of America's timberlands have led to a "widespread perception that 

existing monitoring efforts and capabilities, characterized by a decentralized set of 

programs that rely on ground and aerial observations, are failing to meet increasingly 

complex and large-scale forest management needs."  The report reiterated several 

concerns voiced in the First and Second Blue Ribbon Panels on Forest Inventory and 

Analysis:  

 (1) the U.S. lacks a national and timely forest database, and  

 (2) the use of aerial photography for certain measurements and stratification for   

      field sampling is too labor-intensive.   

Their recommendations for improving the current FIA program include  

 (1) making the integration of environmental monitoring and research networks  

      and programs across temporal and spatial scales top priority;  

 (2) increasing the use of remotely sensed information for detecting and evaluating  

      environmental status and change;  
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 (3) evaluating alternative methods of stratification based on variables such as     

      ecoregion, known and anticipated environmental stresses, location along  

      environments gradients, and unique aspects of terrestrial and hydrological  

      ecosystems;  

 (4) using data from resources inventories and remote sensing for characterizing  

      and detecting changes at index sites;  

 (5) establishing a geo-referenced database of ongoing environmental monitoring  

      programs, and  

 (6) disseminating all framework information and data in a timely manner. 

B.   FIA Program Description 

 Realistically, by 2003, the USFS hopes to be on a schedule to sample 15% of the 

FIA phase II and 20% of the phase III points annually (Dombeck 2000, Table 1.1).  

Originally, the plots were sampled using a 2-phase systematic sample, a photo 

interpretation phase and a ground measurement phase.  Due to Congress' demand for a 

merger with the Forest Health Monitoring (FHM) program, a third phase has been added 

which includes the FHM measurements on a subset of the phase 2 plots.   

 

Table 1.1 Mandated and realistic FIA Cycles 

 East Phase II East Phase III West Phase II West Phase III 

Congress 20% 20% 20% 20% 

USFS 15% 20% 10% 20% 
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 Forest/nonforest proportions are computed in phase 1.  Points are overlain on 

analog aerial photographs, approximately one for every 240 acres, and characterized as 

either being forested or nonforest.  Forested strips must be at least 120 feet wide with a 

minimum area considered for classification of one acre.  Two subsets of the photo-

interpreted points are then taken.  One is used for phase 2 sampling, and the other is 

ground verified and used to correct the calculated forest/nonforest proportions.  Ground 

verification of the second subsample is important because the photos being used may be 

old and possibly out-dated (USDA Forest Service 2001). 

Forested plots are installed in phase 2, formerly known as the FIA field plots.  

These plots, approximately 1 for every 6000 acres, are installed and measured regardless 

of intended use or any restrictive management policy, and on all ownerships.  Tree 

information such as forest type, tree size, tree species, and overall tree condition are 

measured, as well as, plot specific information like horizontal distance to urban and 

agricultural land and the GPS coordinate of the plot center are measured (USDA Forest 

Service 2001).  Appendix A contains a list of all items recorded during the Phase II 

samples. 

Phase 3 measurements, formerly the FHM plots, are installed on a 1/16th subset of 

the phase 2 FIA grid plots.  They are surveyed for information about forest ecosystem 

function, condition, and health.  Ozone bioindicators, lichen community samples, soil 

measurements, crown condition classes, down woody debris and fuel measurements, and 

diversity and structure measurements are made in this phase (FIA Plot Layout 

Explanation).   
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 In the proposed 2002 federal budget, the president included $32,498,000 for the 

USFS research portion of the FIA program.  Including an expected $14,010,000 in 

additional funding, they have $46,508,000 earmarked for fiscal year 2002 - 2003.  This is 

about $10,200,000 below the amount requested by the USFS  (Dombeck 2000).  

 Compounding problems due to an under funded budget, the program must strive 

to meet the goals set forth in the Farm Bill.  On a national level, the FIA program 

installed a total of 28,349 phase II and III plots during 2000 (October 1, 1999 - 

September 30, 2000) at an average cost of $1,393 per plot (Gillespie 2000).  Of those 

plots sampled, 11,582 were forested phase II plots which cost an average of $3,833 per 

plot to install.  To reach the goal set by the USFS of sampling 10% of the FIA plots in the 

west and 15% in the east (Dombeck 2000), a total of 42,464 plots, an increase of 14,115, 

must be sampled.  Assuming the same ratio of sampled forested to non-forested plots, a 

total of 17,336 forested plots will have to be installed, an increase of 5,754 plots from 

year 2000.  Under the current proposed level of funding, to reach their goal, they must 

either solicit funding from other sources, or find ways to decrease the cost of installing 

the FIA sample plots. 

 There is interest by the USFS to incorporate remotely sensed data into the FIA 

inventory process to reduce inventory costs and cycle time, and increasing the 

consistency of the data collected and reported (Czaplewski 1998).  Studies by Lashbrook 

et. al.(2001), Vogelman (1990), Evans (1994), and Trotter (1997) have shown that it is 

possible to incorporate remotely sensed data into large-scale inventories at a decreased 

cost, though most of the success has been in forested area estimates and landcover type 

stratification.  The ability to estimate FIA ground-measured stand parameters using 
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remotely sensed data will enable updates of forest information during an off-cycle year 

and would provide another method of stratification. 
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II.    OBJECTIVES 
 
 Since the first known photograph was captured over Bievre, France (Lillesand 

1994), we have learned much regarding the use of remotely sensed data in natural 

resource management.  It is common practice for forestry companies to incorporate 

information culled from aerial photos of their lands.  In the last 20 years since satellite 

borne remote sensing data has been publicly available, resource managers have struggled 

to use the information to its potential.  Though they have been used as a base dataset like 

aerial photographs and to create general landcover classifications, we have yet to fully 

incorporate satellite data as a common means to measure stand parameters such as basal 

area and volume. 

 The objective of this research is to extend the FIA remote sensing functionality by 

including an ability to estimate coniferous basal area and volume using only Landsat 

Thematic Mapper (LTM) satellite data with an operationally acceptable accuracy.  

Common questions regarding the feasibility of using satellite-borne remotely sensed data 

to estimate specific stand parameters I will address are: 

 (1) Is satellite data from one season more useful than the other? 

 (2) What band or combination of bands are most useful? 

 (3) Can one obtain volume estimates using only LTM data at the same level of  

       accuracy the FIA program requires?  

 I will compare basal area and volume measurements from sample plots 

established throughout western Georgia and eastern Alabama to Landsat Thematic 
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Mapper satellite data captured in leaf-off and leaf-on conditions.  Various combinations 

of LTM data from two different seasons will be evaluated for basal area and volume 

predictive ability.  Winter, summer, and winter and summer models will be assessed for 

seasonal differences among the LTM data with respect to stand parameter estimation.  

Those  seasonal variables deemed significant will be reported.  Finally, I will document 

the methods by which LTM-derived information can be incorporated into the FIA 

program and demonstrate LTM's volume estimation ability by comparing LTM-derived 

volume estimations with FIA volume estimations over a subset of Georgia counties. 
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III.  REVIEW OF REMOTE SENSING TECHNOLOGY 
 
 Aerial photography is believed by many to have its beginnings in 1858, when 

Gaspard Felix Tournachon, a Parisian photographer, used a balloon to take a photograph 

of Bievre, France (Lillesand 1994).  Two years later, the earliest existing aerial 

photograph was taken from a balloon over Boston by James Wallace Black (Lillesand 

1994).  These photographs finally allowed the public to see the world "... as the eagle and 

the wild goose see it ..." (Oliver Wendell Holmes, Atlantic Monthly, July 1863). 

 The first photograph taken from an airplane was not until 1909 when a movie 

photographer captured a motion picture while accompanying Wilbur Wright on a flight in 

Centocelli, Italy (Lillesand 1994).  As early as the 1920's, foresters used aerial 

photography interpretation to create cover type maps and land type area estimates.  In the 

1930's, the USFS used aerial photographs in its land acquisition work and to map the 

Tennessee Valley (TVA 2002).  Though airplane photography was much less 

cumbersome than balloon and kite photography, it did not gain wide use until the US 

Department of Agriculture's Agricultural Stabilization and Conservation Service began 

photographing selected counties of the United States, and in World War II when the 

military began aerial photo reconnaissance (Lillesand 1994). 

 By the 1960's, the ability to acquire information about those resources under 

management using aerial photography was an invaluable tool for a majority of forest 

industry companies in the South.  It was estimated that in 1969 and 1970 that 82% of the 

industrial holdings in the South, 33-million acres, were in some way managed using 
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aerial photography (Baker 1970).  Those management tasks included timber procurement, 

timber stand mapping, reforestation planning, and road and property line location to name 

a few.  Aerial photography also proved useful for other tasks like landcover change 

analysis (Meyer 1981), individual tree mapping, timber volume estimation (Williams 

1978), and tree pest and disease mapping (Heller 1973).  Today, though mostly in digital 

format, aerial photography is still being used for many of the same tasks (Wagner 1997, 

Wilson 1995). 

 Though aerial photography is still widely used in many natural resource 

disciplines, there are disadvantages to using aerial photographs in vegetation monitoring.  

Aerial photographs have a relatively small instantaneous field of view.  A 9-inch by 9-

inch aerial photograph at a scale of 1:40,000 covers approximately 20,600 acres.  For 

multi-county and state inventories, many photographs are required.  This leads to the next 

disadvantage - the cost.  Depending on the size of the photo mission, the cost may range 

anywhere from $0.25 per acre up to $0.50 per acre for color photos, and more for color-

infrared photos.  A third shortcoming is inconsistency in the air photo interpretation 

process itself.  It is unlikely that two people will interpret a photograph exactly the same.  

This is compounded by the fact that similar features between and within photographs 

may appear different in tone and texture usually caused different levels of illumination 

and shadowing.  Finally, the geometric properties of an aerial photograph are not 

consistent throughout the photo.  Taking elevational changes into consideration, the scale 

of the photograph is most accurate in the area that was directly below the camera.  As you 

progress outward towards the edges of the photograph, the accuracy of the scale 

decreases (Lillesand, 1994).   
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 Many of the drawbacks associated with aerial photography can be minimized by 

implementing digital images captured by satellite-borne remote sensing systems.  LTM 

scene dimensions are 115 miles by 115 miles - almost 8.5 million acres (Landsat TM 

Metadata).  Four-hundred and ten aerial photographs at a scale of 1:40,000 would be 

required to cover the same area of one LTM dataset.  LTM scenes can be purchased from 

the EROS Data Center (http://edcwww.cr.usgs.gov) for $425 a scene, or approximately 

$0.05 per 1000 acres.  While many of the digital image classification routines require 

user input, much of the processing can be automated which eliminates much of the 

subjectiveness present in aerial photo interpretation.  LTM images are snap-shots of a 

relatively large area of the Earth's surface at one point in time.  Confusion present in 

aerial photo interpretation due to illumination and shadowing differences caused by 

different times of day are minimized.  Finally, the geometric properties present in aerial 

camera systems do not apply to the LTM sensor.  Taking elevational changes into 

consideration, the images have a constant scale throughout.  

A.  The Landsat Program 

 The Landsat program, currently under the control of NASA and the Department 

of Defense, has been operating since the early 70's.  The project was originally proposed 

by scientists and administrators in the U. S. Government with the objective of evaluating 

the technology involved in space-borne remote sensing of the Earth's resources.  Today,  

the data captured by Landsat-1 through -5 and -7 provide the basis for detailed,  

repetitive, and synoptic mapping and analysis of the Earth's structures. 

 LTM-5 has onboard a 7-channel scanning radiometer calibrated to record 

reflected energy from the Earth's surface in 7 distinct portions of the electromagnetic 
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spectrum.  The electromagnetic spectrum, as we "see" it with our own eyes, consists of 

light ranging from violet to red.  These visible colors represent a small portion of the 

spectrum ranging from ~ 0.400 to ~ 0.700 micrometers.   The spectrum extends further 

above and below the visible wavelengths.  Gamma, X-, and ultraviolet rays all have 

shorter wavelengths than the visible portion of the spectrum (~10^-11 ~0.1 micrometers).  

Infrared light, microwaves, and radio waves are located in the long wavelength, lower 

energy portion ranging from approximately 1 to 10^8 micrometers (Figure 3.1).   

 

 

 

 

 

 

 

 

 

 The recorded reflectance values from each channel is converted to 8-bit data (256 

"shades of gray"), which are referred to as a "digital numbers" (DN) instead of reflected 

energy.  The resulting product is a 7-layer dataset in which each layer contains DN 

information from different portions of the spectrum.  Layers 1 - 5 and 7 have a 30-meter 

ground resolution, and layer 6 has a 120-meter resolution.   

The portion of the spectrum sensed by each band was selected to maximize the 

discrimination and monitoring of different types of resources on the Earth's surface.  

10-11 10-9 10-7 10-5 10-3 10-1 10 103 
Wavelength (micrometers) 

Gamma 
Rays 

X-Rays 
UV 

Visible 

IR 
Microwave 
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The Electromagnetic Spectrum Figure 3.1 



 15

Channel 1 (TM1), the "blue band", has been applied in coastal water mapping and 

differentiating between vegetation and soil.  Channel 2 (TM2), the "green band", is 

sensitive to green reflectance from healthy vegetation which aides the assessment of 

vegetation vigor.    Chlorophyll absorption in vegetation is recorded in channel 3 (TM3), 

the "red band".  TM3 is helpful in discriminating different types of vegetation.  In 

coniferous forests, reflectance in TM1 - TM3 has been found to be inversely related to 

basal area and biomass (Coops 1998).  The "near-infrared band", channel 4 (TM4), is a 

moisture-sensitive band.  TM4 is ideal for detecting near-infrared reflectance peaks in 

healthy green vegetation, and the detection of water bodies.  Channel 5 (TM5), the 

"shortwave near-infrared band", is suitable for detecting vegetation and soil moisture, 

differentiation of snow and clouded areas, and for discriminating between rock and 

mineral types.  It is sensitive to vegetation density and canopy shading and leaf moisture 

(Coops 1998).  The "thermal band", channel 6 (TM6), is designed to assist in thermal 

mapping, soil moisture studies, and plant stress measurements.  Channel 7 (TM7), 

referred to as the "far mid-infrared band", is ideal for vegetation and soil moisture 

studies, discriminating between rock and mineral types, and urban change studies (Table 

3.1, GeoScience Australia 2002,  Landsat TM Metadata). 
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Table 3.1 Landsat Thematic Mapper Band Description 

 
Band 

Wavelength 
(micrometers) 

 
Application(s) 

TM1  "Blue" 0.45 - 0.52 coastal and vegetation / soil 
mapping 

TM2  "Green" 0.52 - 0.60 assessing vegetation vigor 
TM3  "Red" 0.63 - 0.69 vegetation discrimination, 

chlorophyll absorption 

TM4  "NIR" 0.76 - 0.90 high moisture absorption band 
TM5  "SWIR" 1.55 - 1.75 detecting vegetation and soil 

moisture 
TM6  "TIR" 10.40 - 12.50 thermal mapping 
TM7  "FMIR" 2.08 - 2.35 detecting vegetation and soil 

moisture 
 

 

B.  Desirable Remotely Sensed Characteristics 

 Scientists working on the Coastal Change Analysis Program (C-CAP), pointed 

out several satellite sensor-related characteristics one must consider before their 

incorporation into a management regime. The first factor is the sensor's temporal 

resolution.  Temporal resolution refers to the time it takes to capture an image over the 

same area (e.g. LTM path 17, row 37) .  The LTM-5 satellite has a 16-day repeat cycle, 

which lends itself well to landcover change and vegetation monitoring studies.  The 

spatial resolution, the area that one pixel in the image represents on the ground, is the 

second factor one must consider.  While the LTM sensor does not have the lowest spatial 

resolution available on the market, 30-meters, it is suitable for vegetation monitoring and 

mapping (Evans 1994). The minimum mapping unit (MMU) must be considered as well.  

The MMU is defined as the smallest group of objects on the ground that will be 

considered in the analysis - the smallest area you want to describe.  If using only LTM-5 
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data, due to its 30-meter spatial resolution, the smallest possible mmu is 30 square-

meters.  Spectral resolution is the final consideration the C-CAP scientists pointed out.  It 

refers to the portion(s) of the electromagnetic spectrum recorded by the remote sensing 

platform.  The LTM sensor has a medium spatial resolution, recording energy in 7 

regions of the spectrum.  For a landcover classification and change study to be successful, 

the spectral resolution must be fine enough to record unique spectral attributes, 

signatures, of the objects of interest on the ground.  The ideal sensor for landcover studies 

hold all 4 of these characteristics constant throughout the images and between different 

images captured on the same date as well as from images captured on different dates. 
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IV.  REMOTE SENSING AND TIMBER BIOMASS ESTIMATION 

 One way to increase the timeliness and accuracy of our national inventory is by 

the incorporation of remotely sensed imagery (Czaplewski 1998).  Lashbrook et al. 

(2001) realized in their inventory of white pine in eastern Ohio, that a LTM-based 

inventory required less labor and time than traditional inventories while yielding 

estimates with standard errors substantially below those of existing inventories.  Others 

have acknowledged that LTM data has a resolution appropriate for vegetation mapping 

(Evans 1994) and is a data source from which acceptable estimates over large areas are 

possible (Trotter 1997).  

 The information content of a Landsat Thematic Mapper (LTM) satellite image is 

immense; recording spectral information in six visible and one thermal band of the 

electromagnetic spectrum.  Since unlike materials absorb radiation at different rates along 

different portions the electromagnetic spectrum, targets on the ground can often be 

differentiated by their spectral reflectance signature. Thus, it is necessary to determine the 

information content and reduce the dimensionality of the LTM dataset before we can 

develop application-specific models.  Statistically-based routines like principal 

components and regression, as well as computer-aided image classification have been 

used to both reduce the dimensionality and assess the information content of LTM 

imagery.    

 Horler and Ahern (Horler 1986) investigated the potential for using principal 

components analysis to discriminate general cover types (clearcuts, burns, spruce, pine, 
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hardwoods, crops, and water) and cover types within a predominantly softwood grouping 

(spruce and Jack pine) of different ages.  Using principal components analysis on a 

winter LTM image, TM4 and TM5 loaded heaviest on the first principal component.  The 

first component was considered a "brightness" index which was related to the overall 

reflectance of the pixel.  Principal component 2 contrasted the visible bands and the near-

infrared band.  This yielded a "greenness" index that was correlated with the presence and 

density of green vegetation.  The results of the analyses of the softwood grouping 

differed only in the fact that TM1 loaded heaviest on the second principal component.   

 These results suggest that TM4 and TM5 may be useful in discriminating forested 

and nonforested areas, a combination of the visible and near-infrared bands might be 

useful in discriminating between general landcover types, and TM5 may possibly lend 

insight into the differentiation of a more specific landcover classification.  These results 

verify the studies conducted by Crist & Cicone (1984) who, through studies with 

simulated data, verified that the Tasseled Cap transformation (Kauth 1976) holds true for 

LTM data.  They have shown a correlation between the first three principal components 

and biological factors on the ground.  The first principal component, the "brightness" 

index, was shown to be a weighted sum of all bands - the overall brightness - where 

vegetated areas have a low overall reflectance and unvegetated areas have a high 

reflectance.  The "greenness" portion, the second principal component, described the 

contrast between the near-infrared and the visible bands.  This is primarily due to the 

relatively low reflectance of green vegetation in the visible spectrum and high reflectance 

of green vegetation in the near-infrared wavelengths.  The third principal component, the 
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"wettness" index, contrasts the soil-moisture sensitive band TM5 with the visible and 

near-infrared band. 

Several studies have shown Landsat Thematic Mapper satellite data to be highly 

correlated with leaf area index (LAI) (De Jong 1994, Nemani 1993, Brown 2000).   De 

Jong, Nemani, and Brown all found strong correlations between the simple ratio (SR), 

equation [4.1] and the normalized difference vegetation index (NDVI, equation [4.2]) and 

LAI, the leaf area per unit ground area (Franklin 2001). 

 

          [4.1] 
 SR = (NIR / RED) 
          [4.2] 
 NDVI = (NIR - RED) / (NIR + RED) 
 

Rates of photosynthesis, transpiration, evapotranspiration, and nitrogen transformation 

depend heavily on LAI (Franklin 2001).  Both SR and NDVI are based on ratios of red 

and near-infrared reflected radiation.  These vegetation indices are driven by the physical 

properties of the foliage being sensed.  Due to the high red energy absorption of  

chlorophyll, green leaves reflect relatively little radiation in these wavelengths.  

Conversely, the lignin component of the plant cell walls absorb small amounts of near-

infrared radiation, yielding relatively high amounts of reflected radiation (Turner 1999, 

De Jong 1994).  Turner (1999) and De Jong (1994) both found that areas with a low LAI 

have relatively high amounts of RED reflectance and relatively low amounts of NIR 

reflectance.  In areas with a high LAI, they found high NIR reflectance and low RED 

reflectance.   
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 Though success in classifying landcover type is common, and high correlations 

between LAI and LTM-derived vegetation indices have been realized, estimation of stand 

parameters like basal area and volume has, for the most part, been limited.  Using a "leaf-

off" image, Trotter et al (1997) found a "weak but significant" relation between wood 

volume and LTM reflectance in forests in New Zealand.  Using simple linear regression, 

they found that TM3 was the single band that was most correlated with timber volume 

(R2 0.21).  The combination of TM3 and TM4 yielded significant results, as did the 

combination of all spectral bands.  Franklin et. al. (1986), on a study site in northern 

California, was able to estimate coniferous timber volume using "leaf-on" LTM data and 

digital elevation models within 6% of the values obtained by the USFS who used 

traditional methods.  The Batemans Bay, Austrailia (Coops 1998) study had limited 

success estimating Eucalypt forest basal area using "leaf-off" LTM imagery with R2 

values between 0.24 and 0.29 when the entire study area was considered.  Best results, 

though, were obtained when the study site was stratified by disturbance level.  Individual 

analysis of the sites with "minor" and "major" disturbances resulted in R2 values of 0.30 

and 0.62 respectively.  Another "weak but significant" correlation between pine 

plantation basal area and LTM was obtained in a North Carolina study conducted by 

Brockhaus et. al (1992).  Using a "leaf off" LTM image, their regression analysis resulted 

in an R2 of 0.23.  They concluded that the green, red, near-infrared, and 2 short-wave 

infrared bands (TM2, TM3, TM4, TM5, & TM7) were significantly correlated with 

conifer basal area, with TM7 having the highest correlation.  Though, they did not try to 

model the relationship because of the low basal area - Landsat TM correlations. 
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 In an effort to create continuous maps of forest attributes, researchers at the 

Northeastern Research station (King, 2000) explored the possibility of using kriging to 

map basal area and cubic-foot volume by incorporating a "leaf-on" LTM image with the 

1998 FIA inventory of Connecticut.  Of the variables they analyzed, NDVI had the 

highest individual correlation with cubic-foot volume and basal area, 0.41589 and 

0.47829, respectively.  Though, the overall highest volume and basal area classification 

accuracies from the kriging methods were observed using LTM band 4, 80.8% and 

67.92%, respectively. 

  None of these studies found a very high correlation between LTM data and stand 

parameters, though several trends were apparent.  An inverse relationship between 

reflectance and the amount of vegetation was evident in all visible bands (TM1 - TM3) 

and short-wave infrared bands (TM5 & TM7) (Horler 1986, Jakobauskas 1994, 

Vogelman 1990, Trotter 1997; Brockhaus 1992).  This trend was also apparent in low-

density versus high-density stands (Horler 1986).  Jakobauskas & Price (1994) found that 

the rate of change of this relationship decreases as the stands progress into later 

successional stages.  While studying Fir waves in New Hampshire, Vogelman et. al. 

(1990) found that the mean pixel values in TM3 and TM5 were higher in areas with high 

mortality while LTM band 4 values were lower.   
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V.  DATA 
 
 The study site boundary for this project corresponds with LTM image path 17, 

row 37 (UL: 85:56:25.5 W, 34:03:33.0 N; LR: 83:32:45.0 W, 32:18:10.0 N) (figure 5.1).   

 

   

 

 

The LTM image encompasses all or portions of thirty-seven Georgia counties and 

10 Alabama counties in the Piedmont physiographic region.  This scene is dominated to 

the north by Atlanta and surrounding urban areas, West Point lake to the southwest, and a 

mix of conifer, deciduous, and agricultural fields elsewhere.  Both the winter scene, 

captured on November 17, 1997, and the summer scene, captured on May 12, 1998, are 

virtually cloud-free. 

Field data collection occurred over two summers.  As a part of the Traditional 

Pulp and Paper Production (TIP3) project "Quantifying Future Timber Supply: 

Figure 5.1 Western Georgia and Eastern Alabama Study Area 
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Developing a Localized, Accurate, Timely and Cost Effective Forest Area Estimation 

Method, 1999 - 2001",  F&W Forestry Services collected ground data from 908 plots in 

eight counties in western Georgia and eastern Alabama in the summer of 1999 (Figure 

5.2).    

 

 

 

 

Stand types sampled include sapling and mature natural and planted pine stands, 

unthinned and thinned old field pine stands, sapling and mature upland and bottomland 

hardwood stands, and pasture and cultivated fields.   

In the summer of 2000, funded by the same TIP3 project, a field crew from the 

Daniel B. Warnell School of Forest Resources installed 284 plots throughout 4 western 

Georgia counties (figure 5.2).  Stand types sampled in this cruise focused on mature 

natural and planted pine types.  A majority of the sample sites from both data collection 

seasons were collected on TIP3-cooperator land, mainly Mead Coated Board.  Several 

Figure 5.2 Study Area Counties and Plots 
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natural pine plots were installed on land managed by Temple-Inland, and the remaining 

were installed on non-industrial private land-holdings.  

All stands were sampled using the same method.  Field crews were instructed to 

pace into the timber stand 100-meters and survey the area to ensure there were no roads 

within 100-meters, no openings in the stand, and that the stand continued in the direction 

of the cruise at least another 400-meters.  Once the general area was surveyed, a 4-plot by 

4-plot, termed the "16-plot cluster", cruise was installed with each plot 30-meters (98.4 

feet) apart.  On each plot, using a 10-factor prism for the mature stands, and a 1/50th acre 

fixed radius plot for the premerchantable stands, pine and hardwood trees were tallied, 

and aspect, slope, dominant understory species, and understory cover in quartiles were 

recorded.  On each odd-numbered plot, the diameter at breast height (DBH) and the 

height of a dominant or codominant pine tree was recorded.  On every fourth plot, the 

DBH for every tree tallied and the DBH and height of a low to mid-storey tree was 

recorded (figure 5.3).  The location of the 4 corner plots were GPS'd using Trimble's 

GeoExplorer III (Trimble).  A minimum of 150 "hits" were recorded at each GPS point.   
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Figure 5.3 The 16-Plot Cluster 
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VI.  METHODS 

A.  Remotely Sensed Variable Generation 
 
 With 6 winter (TM1w - TM5w and TM7w) and 6 summer (TM1s - TM5s and 

TM7s) spectral LTM bands, the number of possible variables (individual bands, ratios, 

products, quadratics, etc.) to enter into a regression model are numerous.  For each 

season, there are 15 possible 2-variable products ((6!/(2!*4!)), and 30 possible 2-variable 

ratios (6!/4!) - 90 possible summer and winter product or ratio variables, and infinite 

possibilities of other combinations. 

 To trim the number of possible predictor variables, I established several 

guidelines which had to be met before being considered for analysis.  First, I did not 

consider any cross-season variables.  The summer and winter LTM images were captured 

approximately 6 months apart (November 1997 and May 1998).  In that time, existing 

stands could be removed and new stands could be established resulting in a season-

induced anomaly.  The second criterion I established required that variables created by 

combining 2 different bands must be interpretable.  For instance, if the ratio of bands 1 

and 2 result in a value of 0.5, it would be interpreted that, for this pixel, band 2 is twice 

the value of band 1.  Products, on the other hand, can not be interpreted in this manner.  

A product of 3 could be created by multiplying 2 pixels with a value of 1 and 3 or 3 and 

1, each representing 2 different situations.  For this reason, I only considered exponential 

variables created from individual bands (eg. TM1 * TM1).    
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 Adhering to the above criteria, the following variables were considered in the 

analysis: 

 1)  all individual bands (excluding the thermal band, TM6) 

 2)  the quadradic form of each individual band, 

 3)  all possible within season ratios, including the SR (equation 4.1), 

 4)  the summer and winter NDVI (Equation 4.2), and 

 5)  the modified summer and winter NDVI (NDVIp, equation 6.1). 

 
          [6.1] 
 NDVIp = NDVI * [1 - ((LTM5 - LTM5min) / (LTM5max - LTM5min))] 
  where, 
  LTM5max = the maximum LTM band 5 value in pine stands, and 
  LTM5min = the minimum LTM band 5 value in pine stands. 
 

B.  Data Processing 

 Pine basal area and volume were calculated for each plot.  Pine basal area for 

mature stands was calculated using equation 6.2.   

          [6.2] 
  PBAplot:  Plot Tally pine * BAF 
 

Equation 6.3 was used to calculate pine basal area for the premerchantable pine stands. 

          [6.3] 
  PBAplot:  Plot Tally pine * (50)  
 

Mature pine basal area ranged from 0 to 290 ft2 with a mean of 97 ft2 and a standard 

deviation of 48 ft2. 
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 Individual regression analyses were used to predict tree heights for each 16-plot 

cluster.  The natural log of height was regressed on the inverse of DBH using the form 

shown in equation 6.4.   

          [6.4] 
 lnHeight = a + b(1/dbh)  
  Where: 
  lnHeight = the natural log of height 
  a and b =  regression coefficients for a 16-plot cluster 
  dbh = diameter at breast height 
        

An equation published by Borders and Harrison (1996; equation 6.5, Table 6.1) was used 

to predict the planted pine volume (ft3) on the 4 "fourth" plots in each 16-plot cluster that 

had DBH measures of all tallied trees. 

 

          [6.5] 
 Y = B0*(DBHB1)*(Height)B2-B3*(dB4/DBHB4-2)*(Height-4.5)       
 where: 

 Y = volume (ft3) of a loblolly pine to a  top diameter limit of d inches (ob) 
 DBH = diameter at breast height 
 Height = total height 

  d = merchantable top diameter limit outside bark (ob) in inches. A top  
        diameter of zero was used for this value in our analysis to include  
        total tree volume 
 
 
 

 Table 6.1 Pine volume coefficients used in equation 6.5 

Variable Coefficient 
B0 0.00401246 
B1 1.829011 
B2 0.969142 
B3 0.00249374 
B4 3.684725 
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Natural pine volume (ft3) was calculated using an equation published by Clark and 

Saucier (1990, equation 6.6, Table 6.2) for the Piedmont.   

 
          [6.6] 
           Y=B0(D2)B1*HB2*exp(B3*dB4*DBHB5)      

 where: 
 Y = volume (ft3) of trees to a top diameter limit of d inches (ob) 
 DBH = diameter at breast height 
 H = total height, and 

  d = merchantable top diameter limit outside bark (ob) in inches. Zero was  
        used for this value in our analysis to account for total tree volume 
 
 
 

 Table 6.2 Natural pine coefficients used in equation 6.6 

Variable Coefficient 
B0 0.00195 
B1 1.00449 
B2 1.02075 
B3 -3.0643 
B4 4.65458 
B5 -4.95963 

 
 
 
Using the DBH and height measures recorded or estimated for the 4 "fourth" plots in the 

16-plot cluster, an average ratio relating the total pine volume to basal area, the VBAR 

(Shiver 1996), was established.  The average VBAR was then multiplied by the basal 

area of the 12 remaining plots of the cluster to predict the total pine volume per acre 

represented by each individual plot.  Mature pine volume ranged from 0 ft3 to 6431 ft3 

with a mean of 1960 ft3 and a standard deviation of 1338 ft3. 

 Field crews recorded GPS point data at the 4 corners of each 16-plot cluster 

(figure 6.3) by averaging a minimum of 150 "hits".  The data was then differentially 

corrected in Trimble's Pathfinder Office v. 2.5 (Trimble).  Positional precision of 
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differentially corrected GPS'd data was generally better than 40 feet (Cofffee & Whiffen, 

2001).  The data were then exported to ArcView 3.2 (ESRI) for the remainder of the 

spatial data processing.   

Using the GPS'd corners of the 16-plot cluster, I used a customized script written 

in Avenue (ESRI) to insert the internal 12 cruise points.  Plot-level data, including stand 

identification, tally, and estimated stand basal area (ft2) and volume (ft3) fields were then 

attached to their associated points using common fields recorded in both the GPS and 

cruise data.  I will refer to the cruise points with all plot information attached as the "base 

data".   

I processed the base data twice.  In the first run, the base data were buffered by 

10-meters, overlain on the LTM data, and visually inspected to see if any fell within a 

non-timber structure like a power line, road, harvested stand, or a cloud or cloud shadow.  

If the buffer did overlay an anomaly, it was eliminated form the study.  I selected the 10-

meter buffer because it is close to the limiting distance of the average 6.5 inch DBH tree.  

Of the 908 ten-meter buffers, 224 were eliminated from the study.   A majority of those 

eliminated were collected outside the LTM image area.  The rest were either in harvested 

areas or fell within a utility or road right-of-way.   

Three-hundred and fifty-nine of the remaining plots were in mature pine stands.    

The mature pine buffers were once again overlain on the LTM data and the average pixel 

value of each LTM band and LTM-derivative within the buffer, referred to as the "zonal 

attributes", were calculated (Appendix B).  Two-hundred and forty-six plots were 

randomly marked for use in the model development, and the remaining 113 plots were 

used to test the developed models.         
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 In the second run, I grouped four cruise points in each quadrant (upper-left, 

upper-right, lower-left, lower-right) to create a new average point calculated using 

equation 6.7.       

                  [6.7] 
 newX = (X1 + X2 + X3 + X4) / 4 
 newY = (Y1 + Y2 + Y3 + Y4) / 4 
 newPOINT = (newX, newY) 
  where, 
  X1, X2, X3, and X4 = the X GPS coordinates 
  Y1, Y2, Y3, and Y4 = the Y GPS coordinates 
 

This new point dataset will be referred to as the "quadrant data".  Stand metric 

information for the quadrant data points were averaged and attached to the newly 

established points.  They were then buffered by 28-meters, inspected for non-timber 

anomalies, and the zonal attributes calculated.  The 28-meter buffer was selected because 

it enclosed the most of the area covered by the buffers of the four points that were 

combined.  Sixty-three out of 227 total 28-meter buffers were eliminated, again, mostly 

due to the fact they were collected outside of the LTM image area.  Thirty-nine of the 28-

meter buffers were edited, mostly due to the effects of adjacent utility and road right-of-

ways.  Seventy-six of the 120 plots in mature pine areas were used in the model 

development phase, and the remaining 44 were used to verify the models.     
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VII.  MODEL DEVELOPMENT AND RESULTS 

 To gain an idea of which LTM-derived variables have the strongest linear 

relationship with the stand parameters of interest, I calculated the correlation coefficients 

for the "10-meter" and "28-meter" buffer datasets. At the 10-meter buffer level, winter 

LTM bands 1-3, 5 and 7 were all negatively correlated with basal area, while LTM band 

4 produced a positive correlation.  All single summer LTM bands were negatively 

correlated with basal area.  These findings correspond with results from previous research 

conducted by Brockhaus (1992) and Batemans Bay (Coops 1998).  Landsat Thematic 

Mapper band 5 from both the winter and summer yielded the highest single band 

correlation with basal area, -0.56 and -0.44, respectively.  The ratio of winter LTM bands 

4 and 5 yielded the highest two-band ratio correlation (0.60), and the NDVIp_w2 index 

resulted in the next highest correlation at 0.59.  Generally, the winter ratios had a higher 

correlation with basal area than did the summer ratios. 

 There was a negative correlation with mature coniferous timber volume (ft3) and 

all single LTM bands.  These were the same findings obtained by Brockhaus et. al. 

(1992).  As with basal area, winter LTM band 5 had the highest single band correlation,   

-0.53, with volume (ft3).  Landsat Thematic Mapper band 2 yielded the highest 

correlation (-0.53) between the summer scene and volume (ft3).  Overall, the ratio 

between winter bands 5 and 4 had the highest correlation with timber volume (ft3) at        

-0.58. 
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 The 28-meter buffer dataset yielded, on average, much higher correlations 

between the LTM-derived variables and pine basal area than did the 10-meter dataset.  

All single winter bands and summer bands 2-5 and 7 were negatively correlated with 

basal area.  Both winter and summer bands 5 yielded the highest single band correlations, 

-0.76 and -0.81, respectively.  Winter and summer bands 7 yielded high correlations as 

well.  The ratio of summer bands 5 and 3 and NDVIp_s2 yielded the highest correlation 

between basal area and LTM-derived variables with values of -0.85 and 0.84, 

respectively. 

 At the 28-meter buffer level, winter bands 1-3, 5 and 7, and all summer bands had 

a negative correlation with mature pine volume (ft3).  Winter band 4 had a negative 

correlation.  Winter and summer bands 5 both yielded the highest single band correlations 

with -0.70 and -0.78, respectively.  The NDVIp_s variable yielded the highest correlation 

(-0.75) between a ratio and volume (ft3).  

 The LTM band 5 variable from winter and summer seems to be the most 

important of all bands.  They had the highest single-band correlations, and were 

incorporated into the over all highest correlations with basal area and volume at both the 

10-meter and 28-meter buffer levels.  The LTM band 5 effect is also realized when 

comparing the NDVIs and NDVIp_s variables.  At the 28-meter buffer level, the summer 

LTM band 5 correction factor dramatically increases the correlation between NDVIp_s 

and both basal area and volume (ft3).  Basal area correlation increased from -0.08 to .77, 

and from -0.01 to 0.75 when related to volume (ft3).  This increase was realized in the 

winter NDVIp variables as well. 
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 Overall, the 28-meter buffer dataset had a stronger correlation with the forest 

stand parameters of interest than did the 10-meter buffer dataset.  The highest LTM - 

basal area correlation from the 28-meter dataset was 0.26 points higher than those of the 

10-meter dataset - the equivalent of an increase in R2 of 8%.  The 28-meter LTM - 

volume (ft3) correlation was 0.17 points higher than those of the 10-meter dataset - the 

equivalent of a 2.8% increase in R2.  The increased correlation is due to the fact that more 

LTM pixels per plot are being sampled which reduces the variation in the LTM response 

values.  Though there are significant correlations at the 10-meter buffer level, they are 

weak and do not show promise of accurately predicting the stand parameters of interest.  

For this reason, supported by the overall superior correlations at the 28-meter buffer 

level, further research will be conducted with only the 28-meter buffer dataset. 

A.  Regression Model Evaluation Criteria 

 Stepwise linear regression techniques were used to produce winter, summer, and 

combined winter and summer LTM - basal area models.  While stepwise linear regression 

methods allow the user to evaluate many combinations quickly, the analyst must be 

mindful of the caveats associated with using this method.  There are no guarantees that 

the models produced will be of any biological significance.  One should evaluate and 

select the "best" model that is consistent with the fundamental underlying principles of 

the relationship between the dependent and independent variables.  Secondly, the 

presence of many independent variables in the model tend to lead to multicollinearity 

among the variables.   

 I evaluated numerous models relating mature pine basal area and volume (ft3) 

based on their scatter plots, adjusted R2 [7.1], and root mean squared error (RMSE) [7.2]. 
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          [7.1]
 Adjusted R2 = 1 - ( ((n -1) / (n - (p + 1)) * (1 - R2) ) 
  where, 
  n = # of samples 
  p = # variables in the model 
  R2 = coefficient of determination 

          [7.2] 
 RMSE = sqrt((sum ((y - yHat)**2)) / (n - (p + 1))) 
  where, 
  y = the ground-measured variable of interest 
  yHat = the LTM-predicted variable of interest 
  n = the number of samples 
  p = the number of variables in the model 
 

Scatter plots of observed versus predicted variables were prepared to evaluate their slopes 

and intercepts where the linear relationships were straight with a 45 degree angle.  

Residual scatter plots, regression model residuals versus predicted variables, lend insight 

into how well the model fits the data and if there are any independent variable-related 

problems.  The scatter in these plots should be randomly distributed about the X-axis.  

Patterns in the residual plot may be indicative of heteroscedasticity in the model.  The 

adjusted R2 is a measure of explained variation after adjusting for the number of variables 

used in the model (SAS 1993).  RMSE is the square-root of the MSE and is considered a 

measure of the expected error of the estimator (Stark 2002).  Once a suitable model was 

produced, the regression coefficients were applied to the 46 samples in the validation 

dataset.  Those results were evaluated using the scatter plots, adjusted R2, RMSE, relative 

mean absolute error (RMAE) [7.3], and relative percent error (RPE) [7.4].   
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          [7.3] 
 RMAE = (sum(abs(residual/observed)))/n * 100 
 
          [7.4] 
 RPE =sqrt((sum(residual/observed)^2)/(n - 1)) * 100 
 

RMAE is a measure of the average, absolute error of the predictor in percent terms.  It 

was interpreted as the percent error in prediction expected when the model is applied to 

the dataset.  RPE is a measure of the relative difference between the observed and 

predicted values.  It is a measure of and was interpreted as how far off, plus or minus, one 

should expect the predicted values to be from the measured values. 

B.  Basal Area  

 The best winter (BAw, equation 7.5, Table 7.1), summer (BAs, equation 7.6, 

Table 7.2), and combined winter and summer (BAws, equation 7.7, Table 7.3) basal area 

models are listed below: 

          [7.5] 
 BAw = a + (NDVIp_w2 * b) 
 

 Table 7.1 Winter pine basal area coefficients used in equation 7.5 

Variable Coefficient 
a 56.03539 
b 511.21859 

 

          [7.6] 
 BAs = a + (NDVIp_s2 * b) + (TM4s/TM5s * c) + (TM5s/TM3s * d)  
   
 

 Table 7.2 Summer pine basal area coefficients used in equation 7.6 

Variable Coefficient 
a 323.68143 
b 379.44637 
c -58.43788 
d -85.70083 
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          [7.7] 
 BAws = a + (NDVIp_w2 * b) + (TM5s/TM3s * c). 
 
 

 Table 7.3 Combined pine basal area coefficients used in equation 7.7 

Variable Coefficient 
a 230.50426 
b 251.98906 
c -76.30904 

 

All variables in each model are significant at a 0.05 probability level. The above models 

were applied to the validation dataset and compared using the previously mentioned 

regression model evaluation criteria. 

 On average, BAs and BAws both predicted basal area within plus or minus 19% 

of the ground-measured basal area, and one should expect to predict, on average, within 

16% of the actual basal area using these equations in repeated samples (table 7.4).  

 

 Table 7.4 LTM-derived basal area model statistics 

 

 

 

 

 

 

The randomness and independence of the error terms can be evaluated from the residual 

scatter plots (figures 7.1, 7.2, 7.3).   

 

 

Model Adjusted R2 RMSE RMAE RPE 

BAw 58.23% 21.30 16.17% 22.19% 

BAs 76.70% 20.86 15.51% 18.59% 

BAws 74.62% 19.72 15.23% 18.98% 
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Figure 7.1 Model BAw Residual Plot 
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Figure 7.2 Model BAs Residual Plot 
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The residuals from the BAs and BAws models appear to be randomly located around the 

X-axis, though it appears as if the error terms from the BAw model may be correlated 

with the criteria variable.  For this reason, and its relatively low adjusted R2 value, the 

BAw model was discarded.    

 Two variables stood out as important factors in LTM - basal area estimation - 

TM5 and TM3.  These two variables are incorporated into each model in one form or 

another.  These findings are similar to others who found a high correlation between TM5 

and vegetation density (Horler 1986), TM3 and TM4 and wood volume (Trotter 1997) 

and TM5 and basal area (Brockhaus 1992).  In a study in southeastern Georgia (Landreth 

2002), TM5 and TM3 were determined important factors in estimating basal area at the 

stand level.    

 These results are comparable to those found in a similar study in southeastern 

Georgia (Phelps 2001).  Using the same methods, a strong relationship between basal 

area and LTM was modeled (R2 = 71.88, RMSE = 17.23 ft2).  In a study in North 

Carolina, Brockhaus found a significant correlation between TM5 and basal area, but did 

not model the relationship due to the relatively weak relationship (R2 = 23.00%). 

C.  Volume  

 Similar to the basal area modeling routine, I assessed many LTM - volume 

models for predictive ability.  Volume was modeled as a function of the variables 

contained in the LTM -  basal area models in addition to other LTM-derived variables 

that demonstrated high correlation with volume.  Three models are presented to 

demonstrate the relationship between LTM data and coniferous volume.  Building on the 

BAs model (equation 7.6), volume was evaluated as a function of those variables 
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(NDVIp_s2, TM4s/TM5s, and TM5s/TM3s), minus the TM4s/TM5s ratio which was 

insignificant in the model at an alpha level of 0.05.  VOLbas (equation 7.8) has the 

following form: 

          [7.8] 

 VOLbas (ft3) = a + (TM5s/TM3s * b) + (NDVIp_s2 * c). 

 

 Table 7.5 Model 1 coefficients used in equation 7.8 

 

 

 

The second model (VOLoth, equation 7.9, Table 7.6) included variables contained in 

each basal area model and other highly correlated LTM-derived variables. 

   
          [7.9] 
 VOLoth (ft3) = a + (TM5s/TM3s * b) + (NDVIp_w2 * c) + (TM2s * d) +  
         (TM5w/TM4w * e) + (TM2s/TM4s * f) 
  

 Table 7.6 Model 2 coefficients used in equation 7.9 

Variable Coefficient 
a 7847.76795 
b - 2260.22266 
c 14038 
d - 217.75879 
e 2800.27925 
f 6026.92246 

 
 
The third model (VOLsub, equation 7.10, Table 7.7) was a subset of model 2, initially to 

test the significance of the TM2s/TM4s ratio.   

          [7.10] 
 VOLsub (ft3) = a + (TM5s/TM3s * b) + (NDVIp_w2 * c) + (TM5w/TM4w * d)  

Variable Coefficient 
a 5648.0387 
b -1905.87374 
c 7868.34854 
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 Table 7.7 Model 3 coefficients used in equation 7.10 

 

 

 

 

Applying the VOLoth model (equation 7.9), minus the TM2s/TM4s ratio, yielded a 

model in which the TM2s variable was not significant.  In this case, the interaction 

between the two variables were accounting for variation in the criteria variable, though 

the variables independent of the other did not.  With the goal of a parsimonious model, 

VOLsub does not include the TM2s/TM4s and TM2 variables.  All variables in each 

model were significant at a 0.05 probability level. 

 The measured versus predicted scatter plots (figures 7.4, 7.5, 7.6) reveal linear 

relationships with each model and volume.  The poor performance of the VOLbas model,  

as seen in Table 7.8, suggests that variables other than the basal area indicators are 

needed to estimate volume.   

 

 Table 7.8 LTM-derived volume (ft3) model statistics 

 

 

 

 

 

 

 

Variable Coefficient 
a 3005.95526 
b -1986.11482 
c 16123 
d 2211.04598 

Model Adjusted R2 RMSE RMAE RPE 

VOLbas 59.84% 700.93 22.01% 30.54% 

VOLoth 73.14% 671.98 20.11% 26.43% 

VOLsub 70.14% 671.12 20.59% 27.23% 
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LTM-Derived Volume (ft3) - Summer Model 
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Figure 7.4 VOLbas Model:  Measured Volume vs. Predicted Volume 
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Figure 7.5 VOLoth Model:  Measured Volume vs. Predicted Volume 
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LTM-Derived Volume (ft3) - Model VOLsub 
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Figure 8.6 VOLsub Model:  Measured Volume vs. Predicted Volume 
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The VOLoth and VOLsub models performed the best overall.  Both estimated volume 

within plus or minus 28% and had similar RMSE and RMAE values (Table 7.8). 

 The residual plots for VOLbas and VOLsub (figures 7.7, 7.8) reveal that LTM's 

volume predictive ability decreases as volume increases - possible heteroscedasticity.  

Correlation among explanatory variables was expected.  The TM5w and TM4w variables 

are incorporated in both models as a ratio and as NDVIp_w2.   The TM2s variable was 

incorporated individually and as a ratio in VOLoth.   

 Again, TM5 and TM3 stood out as important factors in LTM - volume estimation.  

These findings are supported by conclusions drawn by Horler (1986), Brockhaus (1992), 

and Trotter (1997).  A significant relationship (R2 = 62.51%) between combinations of 

these variables and volume in research in southeastern Georgia  (Landreth 2002) suggests 

that TM5 and TM3 are vital in volume estimation at the stand level.   

D.  Volume - Basal Area Relationship 

 Recognizing the method by which volume was calculated, volume as a function 

of basal area (VBAR, Shiver 1996), it is easy to understand why the ground-measured 

volume and ground-measured basal area are highly correlated (R2 = 87.20%, RMSE = 

408.37) (figure 7.9).  A similar relationship exists between the ground-measured volume 

and LTM-derived basal area (R2 = 70.00%, RMSE = 545.60) (figure 7.10).  Figure 7.10 

suggests that it may be possible to model ground-measured volume as a function of 

LTM-estimated basal area.   
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Figure 7.7 VOLoth Model Residual Plot 
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Figure 7.8 VOLsub Residual Plot 
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Ground-Measured Basal Area (ft2) 
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Figure 7.9 Ground-Measured Volume vs. Ground-Measured Basal Area 
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Figure 7.10 Ground-Measured Volume vs. LTM-Derived Basal Area 
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 A seemingly unrelated regression (SUR) model may be appropriate in this case.  

SUR models can be implemented when a number of linear equations are used to estimate 

related variables (Borders 1989).  A possible scenario in which this situation may arise is 

when one wants to estimate timber volume as a function of LTM data and basal area, 

where basal area is estimated as a function of LTM data as well.  Hypothetical equations 

are listed below: 

 estBA = f(TM1, TM2, TM3) 

 estVOL = f(estBA, TM4, TM5, TM6).   

 If basal area is evaluated separately and then used in the volume equation, the 

ordinary least squares (OLS) assumption that the independent variables are known 

without error is violated since estBA appears as both an independent and dependent 

variable.  It would be unrealisitc to expect that the errors of the estBA model are not 

correlated with the errors of the estVOL model.  This scenario may lead to "least squares 

bias" in which parameter estimates will be biased and inconsistent.  A biased estimator 

suggests that, in repeated samples, the expected value of that estimator will not equal the 

population parameter.  An inconsistent estimator will not converge to the true population 

parameter as the sample size nears the total population, as does a consistent estimator.  

Thus, least squares bias can lead to poor parameter estimates (Borders 2001).   

 To explore the use of a system of equations to estimate volume as a function of 

LTM data and a LTM-estimated basal area, I developed the following model (equation 

7.11, Table 7.9). 
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          [7.11] 
 BAsur = a + (NDVIp_w2 *b) + (TM5s/TM3s * c) 
 VOLsur = d + (BAsur *e) + ( TM5w/TM4w * f). 
 
 

 Table 7.9 SUR Model coefficients used in equation 7.8 

 

 

 

 

 

The BAsur model estimated basal within plus or minus 19% of the ground-measured 

basal area, and when compared to the previous basal area models, had similar RMSE and 

RMAE values and a slightly lower R2 value (Table 7.10).   

 

 Table 7.10 LTM-Derived SUR volume model statistics 

 

 

 

 

 

The VOLsur model performed equally well.  The ground-measured volume was 

estimated within plus or minus 27%, and had similar RMSE and RMAE values as the 

previous volume models while having a slightly lower adjusted R2 value (Table 7.3).  

Residual scatter plots from both models suggest that as basal area and volume increase, 

LTM's predictive ability decreases (figures 7.11, 7.12).   

Variable Coefficient 
a 191.3068 
b 321.5357 
c -59.7595 
d -2559.2 
e 37.35821 
f 1372.503 

Model Adjusted R2 RMSE RMAE RPE 

BAsur  71.01% 19.99 14.92% 18.73% 

VOLsur 65.15% 669.79 20.31% 26.82% 
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Figure 7.11 Estimated Basal Area - Model BAsur 
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VIII.  DISCUSSION AND IMPLEMENTATION 

A.  Basal Area 

 Three basal area-LTM models, one based on winter data (BAw), one based on 

summer data (BAs), and one based on a combination of both seasons (BAws) were 

assessed.   

 BAw = f (NDVIp_w2) 
 BAs = f (NDVIp_s2, TM4s/TM5s, TM5s/TM3s)  
 BAws = f (NDVIp_w2, TM5s/TM3s) 

The BAw model, utilizing only the NDVIp_w2 variable, yielded a significant but 

relatively weak relationship (table 7.1 ).  Both the BAs and BAws models performed 

equally well, predicting basal area within 19% of the ground-measured basal area.  Due 

to the fact that only one (summer) LTM dataset is required to apply the model, reducing 

implementation cost, I selected the BAs model as the best overall basal area model.  The 

BAs model predicted basal area within plus or minus 19% (RPE = 18.59%), and one 

should expect to predict, on average, within 16% (RMAE = 15.51%) of the ground-

measured basal area in repeated samples.   

 Three LTM bands, in one form or another, were identified as significant variables 

in the LTM - basal area estimation process.  The ratio of leaf moisture and density 

sensitive TM5s and chlorophyll-sensitive TM3s reveals an inverse relationship with basal 

area.  Both variables reflect relatively small amounts of energy in high basal area stands 

due to the abundance of green leaves (that contain both water and chlorophyll).  As the 
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stand decreases in volume, and assumingly decreases in leaf mass, the amount of 

reflected energy increases. 

 The ratio of water-absorbing TM4s and TM5s produces another positive 

relationship with basal area.  This relationship is driven by TM5s and its sensitivity to 

leaf moisture and density.  In high basal area stands, where leaf moisture and density is 

high, reflectance is relatively low.  As the relationship trends downward to the low basal 

area region, the TM5s reflectance increases due to the absence of leaves and leaf 

moisture.  The TM4s response follows the same trend, only not as pronounced, yielding 

low ratio values at the low basal area regions and high values at the higher regions. 

 The third significant ratio was the squared-NDVIp for both winter and summer.  

NDVI is commonly used to monitor the presence and/or absence of green vegetation in 

landcover and landcover change studies (Ustin 1998).  NDVI produces relatively higher 

values in green vegetated areas compared to those in nonvegetated areas.  The range of 

TM5 values from coniferous-only regions are taken into consideration in the correction 

factor.  The "TM5-pine corrected" NDVI produces positive values for coniferous regions, 

and (near) negative values for all others. 

B.  Volume 

 Four models were developed to evaluate LTM's volume (ft3) predicitive ability: 

  VOLbas: volume (ft3) = f (TM5s/TM3s, NDVIp_s2) 
 VOLoth: volume (ft3) = f (TM5s/TM3s, NDVIp_w2, TM2s,  
          TM5w/TM4w, TM2s/TM4s) 
 VOLsub: volume (ft3) = f (TM5s/TM3s, NDVIp_w2, TM5w/TM4w) 
 VOLsur: volume (ft3) = f (BAsur, TM5w/TM4w), 
   where 
   BAsur: basal area (ft2) = f (NDVIp_w2, TM5s/TM3s). 
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VOLbas, volume as a function of the variables in the BAs model, yielded a significant 

but weak relationship (table 8.1). 

 Table 8.1 Volume Model Comparison  

 

 

 

 

 

 

 

This suggests the model was under fit and additional information, other than the basal 

area indicators, is required to accurately estimate pine volume.  VOLoth, VOLsub, and 

VOLsur performed equally well, producing estimates within plus or minus 28% of the 

ground-measured volumes, and similar RMSEs, RMAEs (table 8.1).  Since the basal area 

and volume models are intended for individual use, I determined that implementing the 

system of equations method was not required, and selected the VOLsub as the best 

model.  By eliminating 2 variables from the VOLoth model (TM2s and TM2s/TM4s), 

I've removed possible sources of heteroscedasticity and produced a parsimonious model.   

 It is evident in the VOLsub scatter plot (figure 7.8) that as volume reaches the 

3,000 to 3,500 cubic-foot mark, LTM's predictive ability decreases.  Over time, most 

coniferous stands will increase in volume, up to, and after the point of crown closure.  

After crown closure, the LTM sensor is not sensitive as to the increase and then the 

leveling off of volume since it is most affected crown reflectance (Oladi 2001) after it 

reaches 100% canopy closure.  The forementioned 3,000 to 3,500 cubic-feet mark most 

Model Adjusted R2 RMSE RMAE RPE 

VOLbas 59.84% 700.93 22.01% 30.54% 

VOLoth 73.14% 671.98 20.11% 26.43% 

VOLsub 70.14% 671.12 20.59% 27.23% 

VOLsur 65.15% 669.79 20.31% 26.82% 
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likely defines the upper most level at which volume can be accurately estimated in this 

dataset. 

 Many of the same relationships observed in the basal models are evident in the 

volume models.  The ratio of TM5s and TM3s and both winter and summer NDVIp2 

variables contribute heavily to the LTM - volume models.  Figure 8.1 shows a linear 

relationship between LTM-derived volume and LTM-derived basal area.   

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be assumed that the LTM-derived variables contribute to the volume equations for 

the same reason they did in the basal area models.  The TM5w - TM4w ratio contributes 

information relevant to leaf density, displaying an inverse relationship with coniferous 

volume.  The TM2s variable is an indicator of vegetation vigor, again, revealing an 
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inverse relationship with volume.  The ratio of TM2s and TM4s lends insight about the 

rate of growth and leaf density and moisture. 

C.  Biological Effects On LTM - Biomass Estimation 

 Both TM5 and TM3 played an important role in basal area and volume 

estimation.  This is supported by the work of Horler (1986), Brockhaus (1992), and 

Trotter (1997).  Reflectance in the visible red band, TM3, is driven by the physical 

properties of the foliage being sensed.  Chlorophyll absorption is high in these 

wavelengths, returning relatively little reflected energy back to the sensor over areas 

covered in green vegetation.  Conversely, areas with  relatively small amounts of green 

vegetation return more reflected energy (Turner 1999).  Solar energy is strongly absorbed 

over vegetated areas in the shortwave near-infrared band, TM5, returning relatively small 

amounts of reflected energy.  Driven by leaf moisture, vegetation density, and 

shadowing, areas with an abundance of green leaves will absorb relatively more solar 

energy in these wavelengths than sparsely vegetated areas (Coops 1998).   

 Assuming the above relationships hold true, low TM5 - TM3 ratio values can be 

assumed to represent the lower density stands, absent of an abundance of green 

vegetation.  High ratio values are assumed to represent areas with a high density and a 

plethora of green vegetation.  Figure 8.2, demonstrates the relationship between the 

ground-measured volume and the TM5s - TM3s ratio.  The linear relationship holds true 

up to about 3500 to 4000 ft3.  After which, it appears as if the linear relationship weakens.  

At this point, several factors could be affecting the relationship.  As the stand volume 

increases, the canopy closes, shadowing both by and within the canopy increases, 

resulting in decreased reflectance in TM 5 (Figure 8.3) and TM 3 (figure 8.4).            
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Figure 8.2 Ground-Measured Volume vs. TM5s - TM3s Ratio 

TM5s 
(DN) 

908070605040

G
ro

un
d-

M
ea

su
re

d 
V

ol
um

e 
(f

t3 ) 

5000

4000

3000

2000

1000

0

Figure 8.3 Ground-Measured Volume vs. TM5s 
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Figure 8.4 Ground-Measured Volume vs. TM3s 
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The LTM sensor is not as sensitive to this increase in volume since it is most affected by 

crown reflectance (Oladi 2001) after it reaches 100% crown closure at an earlier age.             

This reinforces the notion that there is an upper-most level at which volume can be 

accurately estimated in this dataset.  This explains the appearance of decreased accuracy 

in estimation at higher levels of volume (figures 7.7 and 7.8). 

 NDVIp_w (equation 6.1) was another significant variable in the basal area and 

volume models.  NDVI has been related to LAI (Turner 1999, De Jong 1994, Nimani 

1993) which is correlated with present net primary productivity of the stand (Chen 1998).  

Turner (1997) and De Jong (1994) both found that areas with a low LAI have relatively 

high amounts of reflected energy in the RED wavelengths (TM3).  As stated previously, 

reflectance in the RED wavelengths over green vegetated area is low due to high 

absorption by chlorophyll.  They also found that areas with a relatively high LAI have 

high amounts of reflected energy in the NIR band due to the reflectance properties of 

lignin in plant cell walls in this portion of the spectrum.  Figure 8.5 reveals the positive 

relationship between NDVIw and volume.  This relationship is driven by the fact that 

high TM4 values (high reflectance over vegetated areas due to the lignin component in 

leaves) yield a high NDVIw, and conversely, high TM3 values (high reflectance due to 

the lack of green vegetation and limited chlorophyll absorption) yield a low NDVIw 

(figure 8.6). This relationship is pronounced when the TM5 correction factor is applied 

(figure 8.7). 
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Figure 8.5 Ground-Measured Volume vs. NDVIw 

Figure 8.6 TM4w and TM3w vs. NDVIw 

NDVIw 
(DN) 

.6.5.4.3.2

T
M

4w
  (

D
N

)  
   

   
   

  T
M

3 
(D

N
) 

50

40

30

20

10

TM4
w TM3
w 



 61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7 Ground-Measured Volume vs. NDVIp_w 
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 The ratio of TM5w and TM4w is driven mainly by leaf moisture content sensed in 

TM4 and tree canopy density from TM5. This ratio has been used to locate areas of 

coniferous forest damage where high ratios characterize high damage sites, and low ratios 

characterize low damage sites (Zuuring 2001).  This relationship occurs due to the fact 

that as the leaf dries out, its TM5 reflectance increases while TM4 remains relatively 

unaffected.  This reasoning holds true in the context of the TM5w - TM4w ratio in this 

model as well.  Areas of low volume and relatively few leaves have a lower moisture 

content, yielding a high ratio value (figure 8.8).   
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Figure 8.8 Ground-Measured Volume vs. TM5w - TM4w Ratio 
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 The ratio of TM2s and TM4s is driven by TM2s' sensitivity to green reflectance 

from healthy vegetation which is used to assess vegetation vigor (figure 8.9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

As volume increases over time, and assumedly, the stands vigorous growth decreases, so 

does reflected energy in the TM2 wavelengths.   

The TM4s band is negatively correlated with volume (figure 8.10) which suggests the 

effects of decreasing leaf moisture and area absorption in the NIR wavelengths.  A fast 

growing stand (high TM2s), with many leaves (high TM4s) produces  a relatively low 

ratio value.  The older, slower growing stands (low TM2s and low TM4s) produce a 

higher ratio (figure 8.11).  

 

Figure 8.9 Ground-Measured Volume vs. TM2s 
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Figure 8.11 Ground-Measured Volume vs. TM2s - TM4s 
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Figure 8.10 Ground-Measured Volume vs. TM4s 
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D.  Implementation Of LTM - Volume Estimation 

 The following demonstrates the processes used to apply the VOLsub model to 15 

counties in the LTM scene (figure 8.12).   

 

 

 

 

Before applying the model, all non-coniferous pixels were masked.  I used the NDVIp_w 

variable to filter the image, assuming all pixels with a value of less than 0.2 were non-

coniferous.  These cells were reclassified as 0.  Applying the VOLsub equation to the 

appropriate LTM ratios in ArcView 3.2 produced an estimate of volume per acre 

represented by each pixel.  Volume per acre was scaled down to volume per pixel using 

the following equation: 

Figure 8.12 Fifteen Eastern Georgia County Application Area 
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 volume/pixel = (PixelValue vol/acre * 30m * 30m * 3.28 ft/m * 3.28 ft/m) 
     (43560 ft2/acre). 

 

Total volume per pixel was calculated by multiplying the volume per pixel estimate by 

the number of pixels in each volume class.  The Grid was resampled up to a 90-meter 

pixel using the Avenue command RESAMPLE, and the zonal attributes (Appendix B) for 

those counties were calculated.  The results are displayed in table 8.2. 

 

 Table 8.2 LTM-Derived Volume vs. FIA Volume for 15 Ga. Counties 

*  Partial LTM coverage, values not incorporated into totals 
 
 

 Portions of six counties were located outside the LTM scene.  Those counties 

represent only partial county-level volume estimates and were not used in the total 

County 

FIA 
Area 
(1000 
acres) 

LTM 
Area 
(1000 
acres) 

FIA Volume 
(cu. ft.) 

LTM Volume 
(cu. ft.) 

Difference 
in Volume 

(%) 

Chattahoocee* 110.8 13.9 157,084,259 23,704,917 -84.91% 
Crawford* 120.4 56.7 108,213,096 159,462,498 47.36% 
Harris 176.1 82.1 212,735,949 167,214,803 -21.40% 
Lamar 44.6 23.8 56,120,770 65,580,164 16.86% 
Macon* 72.2 37.0 165,585,632 106,701,129 -35.56% 
Marion* 109.5 41.2 95,835,477 88,771,471 -7.37% 
Meriwether 127.1 91.4 169,644,841 236,597,646 39.47% 
Monroe* 120.3 78.1 175,816,298 210,320,237 19.62% 
Muscogee* 56.7 26.1 123,264,309 46,867,862 -61.98% 
Pike 40.0 24.9 61,200,094 62,638,397 2.35% 
Schley* 62.1 10.2 81,167,935 22,829,350 -71.87% 
Talbot 181.6 74.6 154,786,381 176,157,080 13.81% 
Taylor 121.4 62.4 96,153,723 167,431,377 74.13% 
Troup 91.5 71.5 175,128,164 144,934,290 -17.24% 
Upson 74.4 58.8 138,907,394 154,730,361 11.39% 
 
Totals: 

 
856.7 

 
489.5 

 
1,064,677,316 

 
1,175,284,118  

 
10.39% 
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estimates.  As a point of reference, the FIA coniferous and mixed cubic-foot volume and 

area estimates are also listed.  

 Though the LTM-derived and FIA volumes appear to be similar, several things 

must be noted.  As previously mentioned, coniferous areas were delineated using 

NDVIp_w.  This index yields negative or slightly positive values for all non-coniferous 

landcover types (figure 8.13).   

 

 

 

 

 

 

 

 

 

 

 

 

All NDVIp_w pixels with a value less than 0.2 were considered non-coniferous, and 

masked from the analysis.  This assumption may exclude mixed pine-hardwood areas that 

were included in the FIA sample as coniferous.  Second of all, the county level sampling 

errors associated with the FIA county-level estimates are often unacceptably high,  

Figure 8.13 NDVIp_w Over Four Landcover Types 
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yielding statistically unsound estimates at that level.  Before an appropriate FIA estimate 

can be made, one may have to combine statistics from several counties (Thompson 

1997). 
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IX.  CONCLUSIONS 

 The objective of this research was to extend the FIA remote sensing functionality 

by including the ability to estimate coniferous basal area and volume using only Landsat 

Thematic Mapper satellite data.  While doing so, several common questions regarding the 

use of space-borne, remotely sensed data were addressed:  

 (1)   "Is satellite data from one season more useful than the other?", 

 (2)  "What band or combination of bands are most useful?", and 

 (3)  "Can one obtain volume estimates using only LTM data at the same level of  

         accuracy the FIA program requires?"   

To address these questions, simple correlations, 3 basal area, and 4 volume models were 

evaluated. 

A. Optimal Season And LTM Band Combinations 

   All winter bands and summer bands 2-5, and 7 were negatively correlated with 

basal area, and winter bands 1-3, 5, and 7 and all summer bands were negatively 

correlated with volume.  These results confirm the findings of Brockhaus (1992) and the 

Batemans Bay (Coops 1998) study.  The negative relationship between the LTM data and 

basal area and volume can be attributed to several LTM band-dependent factors.  LTM 

band 2, the "green" band, is sensitive to green reflectance from healthy vegetation.  As 

the amount of healthy vegetation increases, the amount of absorbed energy increases, 

resulting in smaller amounts of emitted radiation captured by the satellite sensor.  Due to 

high chlorophyll absorption in the "red" wavelengths, band 3, absorbed radiation 
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increases as the mass of green leaves increase, emitting smaller amounts of radiation 

captured by the sensor.  The negative relationship with the mid-infrared bands, bands 5 

and 7, are driven by vegetation density, canopy shading, and leaf moisture.   

 LTM band 5 from both winter and summer, TM5w and TM5s, proved to be a key 

variable in this study.  TM5w and TM5s yielded the highest single-band correlations with 

basal area (-0.76 and -0.81) and volume (-0.70 and -0.78).  The ratio of TM5s and TM3s 

yielded the overall highest correlation with basal area (-0.85).  The TM5 corrected 

summer NDVI variable, NDVIp_s, yielded the highest correlation with a ratio and 

volume (-0.75). 

 Evaluation of the basal area and volume models lend insight into the optimal 

season for LTM - biomass estimation.  In this study, the summer LTM data yielded the 

model with the highest correlation with basal area.  The BAs model produced an adjusted 

R2 of 76.70% and predicted basal area within plus or minus 18.59% of the ground-

measurements.  The winter and summer combined basal area model, BAws, yielded 

slightly weaker results (adjusted R2 = 74.62%, RPE = 18.98%), and the winter model, 

BAw, yielded much weaker results (adjusted R2 = 58.23%, RPE = 22.19%).   

 Results from the LTM - volume models are not as straight forward.  Volume was 

not successfully modeled as a function of LTM variables from a single season.  While the 

VOLbas model, volume modeled as a function of the variables in the BAs model,  

yielded significant results, the relationship was considered weak (adjusted R2 = 59.84%, 

RPE = 30.54%) when compared to the other multi-season models.  Both the VOLoth and 

VOLsub models yielded strong, significant results.  Each estimated volume within plus or 

minus 28% and had similar adjusted R2 values, 73.14% and 70.14%, respectively.   
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 Though basal area was effectively modeled using LTM data from a single season, 

multi-season models were more suited for modeling cubic-foot volume.  Therefore, I 

recommend utilizing both "leaf-off" and "leaf-on" imagery in further research.  As the 

prices drop, purchasing multi-season LTM data is becoming a feasible option for many.  

Landsat 5 Thematic Mapper satellite data can be purchased from the EROS data center 

for $425.00 per scene.  When utilizing multi-season imagery, examining all possible 

combinations may not be a viable option due to time or equipment constraints.  I suggest 

to those interested in applying these methods that they explore the short-wave mid-

infrared, TM5 (1.55 - 1.75 micrometers), the near-infrared, TM4 (0.63 - 0.69 

micrometers), and the red bands, TM3 (0.63 - 0.69 micrometers), as well as the possible 

ratios of those three variables. 

B.  LTM And FIA Volume Estimation 

 The FIA program uses sampling methods designed to achieve reliable statistics 

for the cluster of counties within a survey unit and at the state level (Thompson 1997).  

As the area or volume considered decreases in magnitude, the sampling error increases, 

often yielding unacceptably wide confidence intervals.  FIA program leaders caution 

users that the accuracy of individual county data is "highly variable".  Often, information 

from several counties must be combined before acceptable statistics are obtained.   

 FIA estimates for the 8 counties to which I applied the LTM-estimation procedure 

yielded 1.065 billion cubic feet of coniferous volume.  The LTM-estimation procedures 

for the same 8 counties yielded 1.175 billion cubic feet, an over estimation of 110.6 

million cubic feet (10.39%).  At the individual county level, estimates ranged from an 
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under prediction of 21.40% in Harris county to an over prediction of 74.13% in Taylor 

county (table 8.2).   

 The differences in volume estimation can be attributed to several factors.  As 

stated above, FIA estimates may be unreliable at the county level due to high sampling 

errors.  These errors ranged from 10.15% in Meriwether county to 46.92% in Troup 

county (Thompson 1997).  The criteria by which the landscape was stratified into 

coniferous and nonconiferous stands, ultimately determining total conifer acreage, is 

another confounding factor.  I utilized the NDVIp_w variable as an indicator of conifer 

areas.  While I have found that this method was suitable for filtering pure pine stands 

(figure 8.13), its utility for extracting mixed pine and hardwood areas is untested.  

Compounding these inaccuracies is the error associated with the LTM - volume model 

itself.  VOLsub, the model I applied to the LTM dataset in this comparison, had a relative 

percent error of 27.23%.  This suggests that, on average, the estimates are 27.23% "off", 

plus or minus, from the actual measures. 

  The incorporation of remotely sensed data into the FIA inventory procedures 

would enhance the program.  The USFS could address the calls for "more timely and up-

to-date" data by developing remotely sensed stand parameter estimates.  Currently, the 

landscape is stratified relative to the presence or absence of timber, and then into several 

specific timber type categories.  The ability to stratify the landscape by volume will 

decrease the variability within each strata, yielding more accurate estimates while 

installing the same number of plots.  LTM - volume estimations could also be used to 

update plot information not scheduled for sampling that year.  In addition to increasing 

the timeliness of the data, the FIA program would also benefit by having a visual 
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representation of their estimates.  Currently, their map-making options are limited to 

interpolation-like procedures due to the non-continuous nature of the data.  The LTM-

estimation procedures outlined in this Thesis produce a continuous representation of the 

of the variable of interest. 

 In addition to all of the advantages of incorporating remotely sensed data into the 

FIA procedures, there are disadvantages that must be also considered.  The one that will 

affect the statistics the most is the method by which coniferous and deciduous areas are 

delineated.  Over estimation of conifer areas will result in an over estimation of the 

coniferous stand parameters.  The method by which the model is developed must be 

considered, as well.  The model can either be developed for each individual LTM scene, 

or all scenes for a state can be merged and considered as one.  If  the LTM scenes are 

processed separately, samples within each scene must be collected and a model for each 

must be generated.  Conversely, if all scenes are processed as one, they must first be 

normalized to account for radiometric variations between scenes due to locational 

differences before they are merged and the model generated 

 As with all new projects, further research is needed before LTM-estimation can 

be considered a statistically viable option for the FIA program.  Research should focus on 

several areas, including: 

 (1)  the stratification of coniferous and deciduous stands into species groups,  

 (2)  the interaction between the LTM data and those species groups, and 

 (3)  the incorporation of other high resolution imagery and new remote sensing  

       technologies like SAR and LIDAR. 
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The hierarchical relationship between the high resolution imagery and LTM lends itself 

to a multi-stage sampling scheme in which the landscape is stratified into general classes 

using LTM and then refined using the high resolution imagery.  If models associating the 

remotely sensed variables to the new species-level classification could be developed, the 

accuracy of the data generated could be increased. 
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APPENDIX A.  FIA PHASE II ITEMS 

Core optional variables are in italics.  n/a is not applicable. 
 

Variable Name Tolerance MQO Values Units 
 
Plot Level Data 
 

STATE No errors at least 99% of 
the time Appendix 1 n/a 

COUNTY No errors at least 99% of 
the time Appendix 1 n/a 

PLOT NUMBER No errors at least 99% of 
the time 0001 to 9999 n/a 

SAMPLE KIND No errors at least 99% of 
the time 1 to 3 n/a 

MANUAL 
VERSION No errors at least 99% of 

the time 1.1 and higher n/a 

YEAR No errors at least 99% of 
the time 

Beginning 
with 1998, 
constant for a 
given year 

year 

MONTH No errors at least 99% of 
the time Jan – Dec month 

DAY No errors at least 99% of 
the time 01 to 31 day 

DECLINATION No errors at least 99% of 
the time 

-359.0 to 
359.0 degrees 

TRAILS OR 
ROADS No errors at least 90% of 

the time 0 to 5 n/a 

HORIZONTAL 
DISTANCE TO 
IMPROVED 
ROAD 

No errors at least 90% of 
the time 1 to 9 n/a 

ROAD ACCESS No errors at least 90% of 
the time 0 to 4, 9 n/a 

PUBLIC USE 
RESTRICTIONS No errors at least 90% of 

the time 0 to 3, 9 n/a 

RECREATION 
USE 1 No errors at least 90% of 

the time 0 to 7, 9 n/a 

RECREATION 
USE 2 No errors at least 90% of 

the time 0 to 7, 9 n/a 
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Variable Name Tolerance MQO Values Units 
RECREATION 
USE 3 No errors at least 90% of 

the time 0 to 7, 9 n/a 

WATER ON 
PLOT No errors at least 90% of 

the time 0 to 5, 9 n/a 

QA STATUS No errors at least 99% of 
the time 1 to 7 n/a 

CREW TYPE No errors at least 99% of 
the time 1, 2 n/a 

GPS UNIT No errors at least 99% of 
the time 0 to 4 n/a 

GPS SERIAL 
NUMBER No errors at least 99% of 

the time 
000001 to 
999999 n/a 

COORDINATE 
SYSTEM No errors at least 99% of 

the time 1,2 n/a 

LATITUDE +/- 140 ft at least 99% of 
the time  degrees, 

seconds 

LONGITUDE +/- 140 ft at least 99% of 
the time  degrees, 

seconds 

UTM ZONE No errors at least 99% of 
the time 

03-19Q and  
03-19W  

EASTING (X) 
UTM +/- 140 ft at least 99% of 

the time   

NORTHING (Y) 
UTM +/- 140 ft at least 99% of 

the time   

AZIMUTH TO 
PLOT CENTER 

+/- 3 
degrees 

at least 99% of 
the time 

000 at plot 
center 
001 to 360 not 
at plot center 

degrees 

DISTANCE TO 
PLOT CENTER +/- 6 ft at least 99% of 

the time 

000 at plot 
center 
001 to 200 if a 
Laser range 
finder not 
used 
001 to 999 if a 
Laser range 
finder is used 

feet 

GPS 
ELEVATION  at least 99% of 

the time 
-00100 to 
20000 feet 

GPS ERROR No errors at least 99% of 
the time 

0 to 70 if 
possible 
71 to 999 if an 
error < 70 
cannot be 
obtained 

feet 
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Variable Name Tolerance MQO Values Units 
NUMBER OF 
READINGS No errors at least 99% of 

the time 1 to 999 n/a 

GPS FILENAME No errors at least 99% of 
the time 

English, 
alpha-
numeric 

n/a 

PLOT-LEVEL 
NOTES n/a n/a English, 

alpha-numeric n/a 

P3 HEXAGON 
NUMBER No errors at least 99% of 

the time  n/a 

P3 PLOT 
NUMBER No errors at least 99% of 

the time 1 to 9 n/a 

 
Condition Class Information 
 
CONDITION 
CLASS 
NUMBER 

No errors at least 99% of the 
time 1 to 9 n/a 

CONDITION 
CLASS STATUS No errors at least 99% of the 

time 1 to 7 n/a 

RESERVED 
STATUS No errors at least 99% of the 

time 0, 1 n/a 

OWNER GROUP No errors at least 99% of the 
time 

10, 20, 30, 
40 n/a 

FOREST TYPE No errors 

at least 99% of the 
time in group 
at least 95% of the 
time in type 

Appendix 
2 n/a 

STAND SIZE 
CLASS No errors at least 99% of the 

time 0 to 6 class 

REGENERATIO
N STATUS No errors at least 99% of the 

time 0, 1 n/a 

TREE DENSITY No errors at least 99% of the 
time 1 to 3 n/a 

OWNER CLASS No errors at least 99% of the 
time 

11-13; 21-
25; 31-33; 
41-45 

class 

PRIVATE 
OWNER 
INDUSTRIAL 
STATUS 

No errors at least 99% of the 
time 0, 1 n/a 

ARTIFICIAL 
REGENERATIO
N SPECIES 

No errors at least 99% of the 
time 

Appendix 
4 n/a 
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Variable Name Tolerance MQO Values Units 

STAND AGE +/- 10% at least 95% of the 
time 

000 to 
997, 998, 
999 

year 

DISTURBANCE 
1 No errors at least 99% of the 

time 

00; 10; 
20; 30-
32;40-46; 
50-54; 60; 
70; 80 

n/a 

DISTURBANCE 
YEAR 1 

+/- 1 year 
for 5-year 
measure. 
cycles 
+/ 2years for 
> 5-year 
measure. 
cycles 

at least 99% of the 
time 

Since the 
previous 
plot visit, 
or the past 
5 years for 
plots 
visited for 
the first 
time; 9999 
if 
disturbanc
e occurs 
continuou
sly over 
time 

year 

DISTURBANCE 
2 No errors at least 99% of the 

time 

00; 10;20; 
30-32;40-
46; 50-54; 
60; 70; 80 

n/a 

DISTURBANCE 
YEAR 2 

+/- 1 year 
for 5-year 
measure. 
cycles 
+/ 2years for 
> 5-year 
measure. 
cycles 

at least 99% of the 
time 

Since the 
previous 
plot visit, 
or the past 
5 years for 
plots 
visited for 
the first 
time; 9999 
if 
disturbanc
e occurs 
continuou
sly over 
time 

year 
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Variable Name Tolerance MQO Values Units 

DISTURBANCE 
3 No errors at least 99% of the 

time 

00; 10;20; 
30-32;40-
46; 50-54; 
60; 70; 80 

n/a 

DISTURBANCE 
YEAR 3 

+/- 1 year 
for 5-year 
measure. 
cycles 
+/ 2years for 
> 5-year 
measure. 
cycles 

at least 99% of the 
time 

Since the 
previous 
plot visit, 
or the past 
5 years for 
plots 
visited for 
the first 
time; 9999 
if 
disturbanc
e occurs 
continuou
sly over 
time 

year 

TREATMENT 1 No errors at least 99% of the 
time 

00, 10, 20, 
30, 40, 50 n/a 

TREATMENT 
YEAR 1 

+/- 1 year 
for 5-year 
measure. 
cycles  
+/- 2 years 
for >5-year 
measure. 
cycles 

at least 99% of the 
time 

Since the 
previous 
plot visit, 
or the past 
5 years for 
plots 
visited for 
the first 
time 

year 

TREATMENT 2 No errors at least 99% of the 
time 

00, 10, 20, 
30, 40, 50 n/a 

TREATMENT 
YEAR 2 

+/- 1 year 
for 5-year 
measure. 
cycles  
+/- 2 years 
for >5-year 
measure. 
cycles 

at least 99% of the 
time 

Since the 
previous 
plot visit, 
or the past 
5 years for 
plots 
visited for 
the first 
time 

year 

TREATMENT 3 No errors at least 99% of the 
time 

00, 10, 20, 
30, 40, 50 n/a 
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Variable Name Tolerance MQO Values Units 

TREATMENT 
YEAR 3 

+/- 1 year 
for 5-year 
measure. 
cycles  
+/- 2 years 
for >5-year 
measure. 
cycles 

at least 99% of the 
time 

Since the 
previous 
plot visit, 
or the past 
5 years for 
plots 
visited for 
the first 
time 

year 

PHYSIOGRAPH
IC CLASS No errors at least 80% of the 

time 

xeric: 11, 
12, 13, 19 
mesic: 21, 
22, 23, 24, 
25, 29 
hydric: 
31, 32, 33, 
34, 35, 39 

n/a 

PAST 
NONFOREST / 
INACCESSIBLE 
LAND USE 

No errors at least 99% of the 
time 

10-15; 20; 
30-33; 40; 
90-94 

n/a 

PRESENT 
NONFOREST 
LAND USE 

No errors at least 99% of the 
time 

10-15; 20; 
30-33; 40; 
90-94 

n/a 

NONFOREST 
YEAR 

+/- 1 year 
for 5-year 
measure. 
cycles 
+/- 2 years 
for > 5-year 
measure. 
cycles 

at least 70% of the 
time 

1999 or 
higher year 

 
Boundary Data 
 
SUBPLOT 
NUMBER No errors at least 99% of the 

time 1 to 4 n/a 

PLOT TYPE No errors at least 99% of the 
time 1 to 3 n/a 

BOUNDARY 
CHANGE No errors  at least 99% of the 

time 0 to 3 n/a 

CONTRASTING 
CONDITION No errors at least 99% of the 

time 1 to 9 n/a 

LEFT AZIMUTH +/- 10 
degrees 

at least 90% of the 
time 001 to 360 degrees 



 86

Variable Name Tolerance MQO Values Units 
CORNER 
AZIMUTH 

+/- 10 
degrees 

at least 90% of the 
time 000 to 360 degrees 

CORNER 
DISTANCE +/- 1 ft at least 90% of the 

time 

microplot: 
1 to 7  
subplot: 1 
to 24 
annular 
plot: 1 to 
59 

feet 

RIGHT 
AZIMUTH 

+/- 10 
degrees 

at least 90% of the 
time 001 to 360 degrees 

 
Subplot Information 
 
SUBPLOT 
NUMBER No errors at least 99% of the 

time 1 to 4 n/a 

SUBPLOT 
CENTER 
CONDITION 

No errors at least 99% of the 
time 1 to 9 n/a 

MICROPLOT 
CENTER 
CONDITION 

No errors at least 99% of the 
time 1 to 9 n/a 

SUBPLOT 
SLOPE +/- 10 % at least 90% of the 

time 000 to 155 percent 

SUBPLOT 
ASPECT 

+/- 10 
degrees 

at least 90% of the 
time 000 to 360 degrees 

SNOW/WATER 
DEPTH +/- 0.5 ft At the time of 

measurement 0.0 to 9.9 feet 

SUBPLOT/ANN
ULAR PLOT 
STATUS 

No errors at least 99% of the 
time 0, 1 n/a 

SUBPLOT/ANNU
LAR PLOT 
CONDITION 
LIST 

No errors at least 99% of the 
time 

1000 to 
9876 n/a 

 
Tree and Sapling Data 
 
SUBPLOT 
NUMBER No errors at least 99% of the 

time 1 to 4 n/a 

TREE RECORD 
NUMBER No errors at least 99% of the 

time 
000, 001 
to 999 n/a 

CONDITION 
CLASS 
NUMBER 

No errors at least 99% of the 
time 1 to 9 n/a 
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Variable Name Tolerance MQO Values Units 

AZIMUTH +/- 10 
degrees 

at least 90% of the 
time 001 to 360 degrees 

HORIZONTAL 
DISTANCE 

microplot:+/
- 0.2ft 
subplot: +/- 
1.0 ft 
annular plot: 
+/- 3.0 ft 

at least 90% of the 
time 

microplot: 
00.1 to 6.8 
subplot: 
00.1 to 
24.0 
annular 
plot: 00.1 
to 58.9 

feet 

TREE STATUS No errors at least 95% of the 
time 0 to 4 n/a 

NEW TREE 
RECONCILE No errors at least 95% of the 

time 1 to 4 n/a 

MORTALITY No errors at least 85% of the 
time 0, 1 n/a 

LEAN ANGLE No errors at least 99% of the 
time 0, 1 n/a 

SPECIES No errors 

at least 99% of the 
time for genus 
at least 95% of the 
time for species 

Appendix 
4 n/a 

DIAMETER 

+/- 0.1 inch 
per 20 
inches of 
diameter on 
trees with a 
measured 
diameter 

at least 95% of the 
time 

0001 to 
9999 inches 

DIAMETER 
CHECK No errors at least 99% of the 

time 0 to 2 n/a 

ROTTEN / 
MISSING CULL +/- 10% at least 90% of the 

time 0 to 99 percent 

TOTAL 
LENGTH 

+/- 10% of 
true length 

at least 90% of the 
time 005 to 400 feet 

ACTUAL 
LENGTH 

+/- 10% of 
true length 

at least 90% of the 
time 005 to 400 feet 

LENGTH 
METHOD No errors at least 99% of the 

time 1 to 3 n/a 

CROWN CLASS No errors at least 85% of the 
time 1 to 5 n/a 

UNCOMPACTE
D LIVE CROWN 
RATIO 

+/- 10% at lest 90% of the 
time 00 to 99  percent 
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Variable Name Tolerance MQO Values Units 
COMPACTED 
CROWN RATIO +/- 10% at least 80% of the 

time 00 to 99 percent 

DAMAGE 
LOCATION 1 

+/- 1 
location 
class 

at least 80% of the 
time 0 to 9 class 

DAMAGE TYPE 
1 No errors at least 80% of the 

time 

1-5; 11-
13; 20-25; 
31 

n/a 

DAMAGE 
SEVERITY 1 No errors at least 80% of the 

time 

Defined 
for each 
DAMAG
E TYPE 

class 

DAMAGE 
LOCATION 2 

+/- 1 
location 
class 

at least 80% of the 
time 0 to 9 class 

DAMAGE TYPE 
2 No errors at least 80% of the 

time 

1-5; 11-
13; 20-25; 
31 

n/a 

DAMAGE 
SEVERITY 2 No errors at least 80% of the 

time 

Defined 
for each 
DAMAG
E TYPE 

class 

CAUSE OF 
DEATH No errors at least 80% of the 

time 10 to 90 n/a 

MORTALITY 
YEAR 

+/- 1year for 
5-year 
measure. 
cycles 
+/- 2years 
for > 5-year 
measure. 
cycles 

at least 70% of the 
time 

1995 or 
higher year 

DECAY CLASS +/- 1 class at least 90% of the 
time 1 to 5 class 

UTILIZATION 
CLASS No errors at least 99% of the 

time 0, 1 n/a 

LENGTH TO 
DIAMETER 
MEASUREMENT 
POINT 

+/- 0.2 ft at least 90% of the 
time 0.1 to 15.0 inches 

PERCENT 
ROUGH CULL +/- 10 % at least 90% of the 

time 00 to 99 percent 

MISTLETOE 
CLASS +/- 1 class at least 90% of the 

time 0 to 6 class 
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Variable Name Tolerance MQO Values Units 

TREE NOTES n/a n/a 
English, 
alpha-
numeric 

n/a 

 
Seedling Data 
 
SUBPLOT 
NUMBER No errors at least 99% of the 

time 1 to 4 n/a 

SPECIES No errors 

at least 99% of the 
time for genus 
at least 95% of the 
time for species 

Appendix 
4 n/a 

CONDITION 
CLASS     

SEEDLING 
COUNT No errors at least 95% of the 

time 

1 to 5 
exact 
count 
6  more 
than 5 
individual
s by 
species by 
condition 
class 

number 

 
Site Tree Information 
 

CONDITION 
CLASS LIST No errors at least 99% of the 

time 

1 to 9 or 
10000 to 
98765 

n/a 

SPECIES No errors 

at least 99% of the 
time for genus 
at least 95% of the 
time for species 

Appendix 
5 n/a 

DIAMETER 

+/- 0.1 inch 
per 20 
inches of 
diameter on 
trees with a 
measured 
diameter 

at least 95% of the 
time 

0001 to 
9999 inches 

SITE TREE 
LENGTH 

+/- 10% of 
true length  

at least 90% of the 
time 001 to 999 feet 

TREE AGE AT 
DIAMETER +/- 5 years at least 95% of the 

time 001 to 999 year 
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Variable Name Tolerance MQO Values Units 

SITE TREE 
NOTES n/a n/a 

English, 
alpha-
numeric 

n/a 

SUBPLOT 
NUMBER No errors at least 99% of the 

time 1 to 4 n/a 

AZIMUTH +/- 10 
degrees 

at least 90% of the 
time 001 to 360 degrees 

HORIZONTAL 
DISTANCE +/-5 ft at least 90% of the 

time 
000.1 to 
200.0 feet 
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APPENDIX B.  ZONAL ATTRIBUTES AVENUE SCRIPT 

theView = av.GetActiveDoc 
theThemeList = theView.getThemes 
polyList = list.make 
gridList = list.make 
'***** Find all poly Themes and put them in "polyList" 
for each t in theThemeList 
  if (t.Is(FTheme)) then 
    if (t.getFTab.GetShapeClass.GetClassName = "polygon") then 
      polyList.add(t) 
      polyList(t).setActive(false) 
    end 
  end 
'***** Find all grid Themes and put them in "gridList"   
  if (t.Is(GTheme)) then 
    gridList.add(t) 
    gridList(t).setActive(false) 
  end 
end 
'***** Select the zone Theme, the Poly, and grid Themes 
zoneTheme = msgBox.listAsString(polyList,"Select the Polygon Theme","") 
'valueTheme = msgBox.listAsString(gridList,"Select the Grid Theme","") 
hinfo = msgBox.Info("Analysis Cell Size set to 0.5.","FYI") 
for each g in gridList 
  valueTheme = g 
  art = Nil 
  'Grid.SetAnalysisExtent(#GRID_ENVTYPE_MAXOF,art) 
  Grid.SetAnalysisCellSize(#GRID_ENVTYPE_VALUE, 0.5) 
'***** the zoneObj is the vector polygon theme 
  zoneObj = zoneTheme.GetFTab 
'***** get zone Field from zoneObj 
  zoneField = zoneObj.FindField("uid") 
'***** obtain grid from value theme and create VTab 
  theGrid = valueTheme.GetGrid 
  aPrj = theView.GetProjection 
'***** create a text file name corresponding to the grid theme name 
  baseName = valueTheme.GetName.AsString 
  fileExt = ".dbf".AsString 
'***** concatenate baseName and fileExt 
  vname = (baseName + fileExt).AsString 
  aFN =  (baseName + fileExt).asFileName 
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'***** calculate the zonal stats table 
  vname = theGrid.ZonalStatsTable(zoneObj,aPrj,zoneField,FALSE,aFN) 
'***** check for error during operation 
  if (vname.HasError) then  
    return NIL  
  end 
  ZoneAttTable = Table.Make(vname) 
  ZoneAttTable.GetWin.Activate 
'***** create an alias for the field name 
  aliasMean = (baseName + ("_Mean").AsString).AsString 
'***** make all fields in the table invisible 
  theTable = av.GetActiveDoc.GetVTab 
  for each f in theTable.GetFields 
    f.SetVisible(false) 
  end 
'***** make the index and mean visible in the table 
  theTable.FindField("uid").SetVisible(true) 
  theTable.FindField("Mean").SetVisible(true) 
  theTable.FindField("Mean").SetAlias(aliasMean) 
'***** this is the table that will be joined to the Attribute table 
  vtab1 = ZoneAttTable.GetVTab 
  field1 = vtab1.FindField("uid") 
'***** this is the Attribute Table of... that will have data joined to  
'***** zoneObj = zoneTheme.GetFTab 
  aToField = zoneObj.FindField("uid") 
'***** Join the vtab1, using field1 to aToField 
  zoneObj.Join(aToField,vtab1,field1) 
end 
 
 


