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ABSTRACT
Timber inventories are designed to give a description of the forest at
e a determined spatial scale, for
e a specific area, with
e a certain level of (un)certainty in mind.

Furthermore, while their intended uses may differ, the underlying reason all inventories are made
is to collect information. How that information is used, on the other hand, is often much more
complicated. It is a statistical reality that data from different sources with differing statistical and
sampling characteristics cannot be pooled together for the purpose of deriving a new unbiased esti-
mator. This means, although there is abundant information about our environment (i.e. atmospheric
conditions, soil composition, nearly 40 years of satellite imagery, and a wealth of site specific
studies sampling for various data) one cannot assimilate these data and produce a new, unbiased
estimate for the variable and area of interest. To address this issue, I present three case studies
relating to the use of seemingly unrelated and incompatible data for the derivation and application
of a high-resolution inventory for the detailed analysis of fiber supply and policy analysis within

spatially explicit, stand level areas.



In the first study, I fill the data gaps present in the SLC-off Landsat 7 Enhanced Thematic
Mapper Plus satellite imagery using the nearest neighbor methods applied to multi-temporal
Landsat 5 Thematic Mapper data. The second is an application of modeling forest variables across
a series of Landsat imagery for the small-area assessment of streamside management zones and
road beautifying buffers. The third study describes the development of a high-resolution forest
inventory for the state of Georgia from data that is traditionally not used jointly for predictions.
The final inventory retains the statistical integrity of the large-area USDA Forest Inventory and
Analysis while maintaining the local accuracy of the small-area timber inventories from our
industry partners.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Forest-related industries are an important contributor to Georgia’s economy. In 2011, the forest
products sector contributed almost $15.1 billion dollars in revenue to the state (Georgia Forestry
Commission 2008). That represented a 4% increase over the previous year and is noteworthy con-
sidering the lingering economic slow-down. The number of jobs supported by the forest products
sector increased 6.8% over the same period. In 2011, it supported over 46,000 jobs. Additionally,
developing markets within the state are expected to have a major impact. It is anticipated that the
developing bioenergy industry will grow to a point where it contributes an approximated $27.7
billion to the economy (Georgia Forestry Commission 2008).

For a state that depends so much on its natural resources for their continued economic compet-
itiveness both locally and abroad, the ability to frequently assess the land base in a timely manner
and provide reliable and accurate information about our forests, the forested ecosystems and sur-
rounding areas is paramount. This is especially important where forests tend to be fast growing
and changing, highly fragmented in area and ownership, and there are multiple demands for their
use, such as those in Georgia. Competition for the use of our forests due to population growth and
migration, development, and climate change, to name a few, are projected to increase (RPA2010).
These issues are compounded since the stressors, their magnitude, focus, and their effect on the
current and future ecosystems will vary depending on geography. Thus, our responses to them will
require regional and local strategies to address these management issues.

Detailed information about our natural resources is needed before we can begin to address
these complex issues in a well-informed and fact-based manner. The United States Department of
Agriculture (USDA) Forest Service Forest Inventory and Analysis (FIA) program collects forest

information and produces regular reports on the condition of forests on the bases of continuous
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inventory throughout the country. The inventory provides reliable, unbiased estimates suitable for
reporting across large areas (Johnson et al. 2003; Williams and Schreuder 1995). The FIA data
is used in Georgia in various large area inventory based analysis ranging from carbon studies to
tree mortality analysis (Van Deusen 2010; Meng and Cieszewski 2006). However, since the FIA
was not designed to record local knowledge about the landscape that is required for mapping
smaller areas, there is a compelling need for a higher-resolution forest inventory for small area
predictions and mapping; although, admittedly there have been numerous efforts of using the FIA
data with satellite imagery (Blackard et al. 2008; Walker et al. 2007; Wang, Lu, and Haithcoat
2007; Sivanpillai et al. 2005; Wayman et al. 2000; Chojnacky 1998). A more suitable source for this
information are the local agencies familiar with these locales whose intimate knowledge is needed
for their management. Forest product industry and other large area forest owners typically maintain
their own private inventories that are more detail oriented and suitable for small area, stand level,
forest management. Some of this kind of information may be even available for public use or for
indirect use by research institutions for enhancing the broad large area inventories providing a
suitable methodology for an unbiased compilation of multi-source data information.

The FIA program provides annual state inventories based on a grid of approximately 10,000
sample plots in the intensity of about 6,000 acres per plot (McRoberts, Holden, Nelson, Liknes,
& Gormanson, 2005). It is responsible for establishing and maintaining a current inventory of our
Nation’s more than 747 million acres of timberland. The inventory includes all public and private
forestlands, wilderness areas, National Parks, defense installations, and National Forests in all 50
states, territories, and possessions of the U.S. Additionally, they are required to analyze and report
on the status and trends of our forests. Each year, they are required to produce reports for each
state consisting of a core set of tables addressing the status of our resources. Every five years, they

are to produce a complete analytical report for each state containing the

e current status of the forest for the last 5 years;

e trends in forest status and condition over the preceding twenty years;



e timber product and output;

e an analysis of the probable forces causing the observed conditions, and

e a projection of the likely trends in key resource attributes over the next twenty years.

The inventory process has three phases. A combination of aerial photography and remotely
sensed imagery is used to determine the proportion of forested and non-forest area and to stratify
it as such in phase 1. Forest measurement plots are installed in phase 2. The plots are comprised of
four one twenty-fourth acre subplots and are located and measured regardless of current or future
intended use, ownership, or management policy. A core set of tree-related information regarding
tree size, species, and overall condition are measured on each plot. Additional plot specific infor-
mation like forest type, the GPS location, and an assessment of previous land uses are logged too.
Phase 3 plots are installed on a subset of the phase 2 plots. They are surveyed for information about
the forest ecosystem, function, condition, and health. Ozone bio-indicators, lichen community sam-
ples, soil measurements, crown condition classes, down woody debris and fuel measurements, and
diversity and structure measurements, among others, are made in this phase.

The yearly and five-year reports created for their governmental and industrial stakeholders and
the public at large contain detailed estimates of volume, biomass, area of forested land, and volume
and area of timber removals. Summaries are tabled and graphed by species, ownership, political
boundaries like county and state. When possible and where appropriate, assessments of ecological
and environmental issues are also identified. The final two products they generate are an updated
database of the raw and summarized data and maps showing the distribution of various forest
attributes.

Though the FIA program it is chiefly designed for large area assessments (Woudenberg et al.
2010), scientists have been developing various inventory related estimates using these data. Some
examples are mapping tree species (Zhang et al. 2009), estimating the amount of forest biomass on
the national (Blackard et al. 2008) and regional (Chopping et al. 2011; Zhang et al. 2007) scales,

and assessing carbon and fire consumption (e.g., Chen et al. 2011). Research on enhancing the



uses of the FIA data with the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat
5 Thematic Mapper (TM) is even more frequent than using MODIS due to their higher spatial
resolution and ease of data acquisition. Examples of national scale studies are discussed in Chen
et al. (2011), Finley et al. (2008), and He et al. (2011), while examples of regional studies in this
area can be found in He et al. (1998), Kellndorfer et al. (2010), Lowe et al. (2009), Sivanpillai et
al. (2005), Zhang et al. (2009), and Zheng et al. (2007, 2008).

For effective forest management and planning, it is necessary to make fiber supply assessments
within areas smaller than what the FIA inventory was inherently designed. Therefore, there is
a critical need for research into technologies that facilitate reliable county, sub-county, and even
stand-level resource assessments based on multi-source data that complement the FIA information.
The use of remote sensing technology is an obvious resource that can be leveraged with the FIA
information to create a more comprehensive data resource. Other data sources that may be used to
further enhance the use of this data include water resources related and transportation data (e.g.,
Lowe et al. 2009), elevation models, land cover GAP data.

Much of the interest in satellite remote sensing as it relates to forest inventories lies with the
potential of reducing costs and increasing the consistency, precision and accuracy, and timeliness
of the data collected and reported. Lashbrook et al. (2001) realized in their inventory of white pine
in eastern Ohio, that a TM-based inventory required less labor and time than traditional inven-
tories while yielding estimates with standard errors substantially below those of existing ones.
Researchers from the USDA Forest Service’s North Central FIA region have estimated that ground-
based sample sizes would have to be increased by at least a factor of 5 to achieve the same level
of precision as obtained with their TM-based forest/nonforest post-stratification (McRoberts et al.
2002). Others have shown it has a resolution appropriate for vegetation mapping (Evans 1994)
and is a data source from which acceptable estimates over large areas are possible (M. Trotter
et al. 1997; Czaplewski 1998). The concept of combining the FIA data with satellite imagery is
becoming ever more relevant and much new research has been conducted in the recent years on

error estimation and statistically efficient processing of these combined information technologies



(Finley et al. 2008; Healey et al. 2011; Magnussen et al. 2009; McRoberts 2010b; McRoberts et
al. 2011; Wang et al. 2011).

Many studies have related remotely sensed data to biophysical variables using traditional super-
vised or unsupervised classification (Dymond, Mladenoff et al. 2002; Liu, Takamura et al. 2002;
Lu, Mausel et al. 2004), nonparametric nearest neighbor (Reese, Nilsson et al. 2002; Makela and
Pekkarinen 2004; Gu, Dai et al. 2006), and regression approaches (Hyyppa, Hyyppa et al. 2000;
Salvador 2000; Healey, Yang et al. 2006; Sivanpillai, Smith et al. 2006). Classification accura-
cies at or above 80% for general schemes such as “forested” and ’non-forested” are common
(Rack 2000, Salajanu 2001, De Colstoun 2003; Haapanen 2004; Sivanpillai 2006). However, it is
apparent that as the species component becomes more complex, their accuracies tend to decrease
quickly (Luther 2006, Salajanu 2001, Reese 2003). Estimates of forest biomass follow a similar
trend in which estimates at the pixel level tend to have a higher error rate than those at aggregate
levels (Franco-Lopez 2001, Katila 2001, Makela 2004, Reese 2002, Trotter 1997, Tomppo 2004).
Abundant research relating satellite image spectral response and forest age or seral stage has been
carried out in the Pacific Northwest and Canada (Horler and Ahern 1986; Cohen, Spies et al. 1995;
Jakubauskas 1996; Pax-Lenney, Woodcock et al. 2001; Song, Woodcock et al. 2002; Wilson and
Sader 2002; Franklin, Hall et al. 2003; Wulder, Skakun et al. 2004; Zhang, Pavlic et al. 2004; Hall,
Skakun et al. 2006; Song, Schroeder et al. 2007) and in the tropical regions of the world (Nilson
and Peterson 1994; Kimes, Nelson et al. 1998; Nelson, Kimes et al. 2000; Sader, Hayes et al. 2001;
Vieira, de Almeida et al. 2003) where forests are long-lived. Among the common findings from

the studies are:

1. adecreasing Landsat spectral response value as the forest ages,

2. the relationship between spectral response and age stronger in younger stands,

3. spectral response saturates at the time of crown closure, after which single-image age deter-

mination is unlikely,

4. TM bands 5 and 7 are critical in locating clearcuts, and
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5. spectral response in young stands is affected by the surrounding ground cover while canopy

shadowing is a factor after crown closure.

A handful of studies with similar results have been carried out in the southeastern part of the
U.S. (Coleman, Gudapati et al. 1990; Sivanpillai, Smith et al. 2006). Both single- and multi-date
image analysis techniques have been implemented to assess the changing landscape. Single-date
analyses rely on the spectral differences among various features on the landscape at one point in
time (i.e. young & old stands, or different cover types within a scene). As was pointed out by several
authors (Nilson and Peterson 1994; Olsson 1994; Song, Woodcock et al. 2002; Song, Schroeder
et al. 2007), these relationships are not necessarily linear and may vary greatly. Nelson and Kimes
(Nelson, Kimes et al. 2000), after analyzing successional stages of forests in Brazil, went as far as
stating that “information concerning clearing history (of the land) cannot reliably be deduced using
single-date TM imagery” and was seconded by others (Song, Woodcock et al. 2002). Though there
have been related reports of moderate successes (Wulder, Skakun et al. 2004), the results are often
specific to the data used in the analysis and not transferable to other sites (Coleman, Gudapati et
al. 1990).

Multi-date image analysis of the forested landscape relies on the comparison of response values
as they change throughout each individual image and across time (as seen on different images).
Wilson and Sader (Wilson and Sader 2002) in their analysis of clearcuts in British Columbia found
79% to 96% of the significant changes in land cover in their study area. They also found an inverse
relationship between their classification accuracy and the time period between imagery. Similar to
single-date analyses, sensitivity in reflectance to canopy closure across the multi-temporal dataset
has been noted (Song, Woodcock et al. 2002; Song, Schroeder et al. 2007).

Lu et.al (2004) conducted a comprehensive review of the many change detection techniques.
They listed several factors that may affect the results of a multi-date analysis. Included among
them is the calibration or normalization between multi-temporal images and the use of anniversary
or very near anniversary acquisition dates. In many operational instances though, fully addressing

these issues is not possible. Atmospheric conditions, especially during the summer months in the
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South, may preclude the acquisition of cloud free anniversary-date or even same season imagery.
There are, for instance, only 5 out of 15 available path 17, row 38 TM images classified as having
0% cloud cover between January 1, 2007 and September 10, 2007. Six of the images have 50% or
more.

Overall, there have been great many studies using the FIA data with satellite imagery for the
estimation of various natural resource characteristics both in the data analysis domain to obtain
estimates and in research into methodologies and evaluations of their outcomes. However, there
has not been much research into mixing disparate forest inventory data. Such different inventories
are typically not compatible with each other and combining those results in biased estimates. The
idea of combining inventory information from various incompatible sources without a resulting
bias (Cieszewski et al. 2003, Iles 2009) is a novel and unorthodox idea. It is a nontrivial challenge,
but it offers unprecedented potential in increasing the information detail beyond earlier capabilities,
because it explores formerly untapped resources and possibilities. The total-balancing concept is
enabling inventory compilations that are based on multi-source data with incompatible variances.

The purpose of the research presented here was to demonstrate multi-source data fusion based
on the FIA data, ETM+ and TM satellite imagery, and various other forest inventory related infor-
mation to derive an enhanced high-resolution forest inventory for Georgia. Such information would
be suitable for forest management uses in sub-county, stand-level, spatially explicit forest manage-
ment and related forest resource analysis and planning. As examples of this type of data and their
uses, I present here case studies relating to the derivation and applications of a pixel-level inven-
tory for the detailed analysis of fiber supply and policy analysis within spatially explicit stand level
areas.

I describe three examples of studies, each progressing in complexity, for improving the FIA
inventory data and the level of detail they describe for different locations in the state of Georgia.
The first study, presented in Chapter 2 of this dissertation, addresses a generic application problem
due to missing data. A faulty SLC sensor on the ETM+ spacecraft results in missing data for

approximately 20% of its area. However, due to the spatial pattern of these faulty pixels, only



a small portion of an image’s 8.5 million acres is suitable for evaluation across the continuous
landscape. The study addresses the issue using K-nearest neighbor (KNN) methods applied to
multi-temporal satellite imagery.

The second study, presented in Chapter 3, describes research on a high-resolution delineation
problem. The study demonstrates the process of modeling forest variables across multiple seg-
mented TM satellite images for small area estimates. This example describes the derivation of
high-resolution inventories throughout the state for the detailed analysis of streamside manage-
ment zones (SMZ) and road beautifying buffers (RBB) that are used in sustainability analyses.
The estimation includes an assessment of both the areas and the inventory characteristics of small
areas corresponding to two sizes of buffers. The problem was solved using an appraisal of inventory
characteristics based on the FIA inventory data, satellite imagery data, and other information nec-
essary for reliable determination of the streams and roads, such as the stream data, transportation
data, and elevation data.

Finally, the third study, presented in Chapter 4, demonstrates the fusion of satellite imagery
and Forest Service’s inventory to generate a broad area, high resolution, spatially explicit, and
balanced inventory of the state. Additionally, I demonstrate how estimates of forest volume can be
further refined with the inclusion of traditional industrial cruise information. Chapter 4 describes
the derivation of an enhanced high-resolution forest inventory using a multi-stage approach of data

fusion based on:

1. derivation of a provisional high-resolution forest inventory based on the KNN methodology
that uses the FIA data and TM images, and application of the mean-balancing methodology

to remove the KNN produced bias as compared to the FIA unbiased inventory mean;

2. derivation of improved training data through a separate application of the mean balancing
methodology to our collaborator’s industry inventory data for further propagation with the

KNN methodology;
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3. use of data derived in step 2 to re-apply the KNN methodology to the entire state (scene by

scene), and a double-weighted application of the mean-balancing methodology to the entire

state (scene by scene) to remove the KNN produced bias as compared to the FIA inventory.
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CHAPTER 2

KNN BASED REPAIR OF ENHANCED THEMATIC MAPPER PLUS IMAGES AFFECTED
BY THE SCAN LINE CORRECTOR FAILURE

2.1 INTRODUCTION

The Landsat series of satellites has been continuously recording and archiving images for nearly
four decades, compiling the most complete set of image data about the Earth’s surface. This vast
archive enables us to evaluate the landscape not only in terms of its current surroundings, but
in relation to its previous state as well. Landsat images play an important role in research and
development of natural resources and related industries. The data has been used markedly for
various productions of forest inventories and natural resource studies. Some national inventories
(Gillis 2001; Gjertsen 2007; Reese et al. 2010; Tomppo et al. 2008) and much inventory work in
the USA (McRoberts and Tomppo 2007; R. E. McRoberts et al. 2009; R. McRoberts, Tomppo,
and Naesset 2010) are based on mapping the ground inventories onto Landsat imagery. Some
have attempted to assess impacts of regulatory measures, such as streamside management zones
and road buffers, on merchantable timber (Lowe et al. 2009). Studies such as these are especially
important for a state like Georgia whose forests support a wide range of uses. The ability to address
these types of issues in a quick and efficient manner is significant.

Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+),
the satellites on which many of these studies are based, have operated well past their intended oper-
ational life spans. In May 2003, the ETM+ satellite suffered a failure of the Scan Line Corrector
(SLC) that results in rows of missing pixels near the edges of an image. The data gaps (i.e., missing
pixels) are approximately 450 meters (15 pixels) high (Fig. 2.1C) at the edges and diminish toward
the center of the scene (Fig. 2.1D). A north/south swath in the center of the scene, approximately

20% (Fig. 2.1A, Fig. 2.1B) of the image’s width, remains completely unaffected.
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Figure 2.1: Landsat 7 Enhanced Thematic Mapper Plus satellite image affected by the SLC failure.
A) Path 17, row 38 ETM+ base image; B) riparian area in the unaffected center portion of the
image; C) missing pixels near the edge of the image (15 pixels high); D) missing pixels terminating
near the center of the scene (2 pixels high).

Shortly after the malfunction, the US Geological Survey (USGS) Center for Earth Resources
Observation and Science (EROS) conducted a ’scientific usability and validity’ study of the SLC-
off imagery. They concluded that the overall radiometric and geometric quality of the recorded
pixels remain unaffected (USGS 2003), though the missing pixels do degrade the overall image
usability and without a correction only a small portion of the scene is suitable for detailed local
land mapping.

In an attempt to fill in the missing pixels in SLC-off ETM+ imagery, the USGS EROS Data
Center (EDC) developed a multi-date histogram matching process to fill the gaps based on a spa-
tially or temporally adjacent image or images. The pixel-wise iterative process matches unaffected
pixels within a 17-pixel window on the SLC-off image with spatially coincident pixels from an
adjacent image(s). The adjacent image could be an ETM+ scene captured before the failure, a TM
image, or even a SLC-off ETM+ image. The least squares solution is calculated and applied to the
affected ETM+ image to yield a new gap-filled pixel. This method reportedly works well in and

across large homogeneous areas, although artifacts may be introduced in regions with cloud and
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cloud shadows, along narrow features and boundaries, and in areas that have undergone a cover
type or phenological change (Howard, Lacasse, and Howard 2004). Caution is required when using
an adjacent SLC-off image in the process since scan line gaps from spatially or temporally adjacent
scenes do not overlap.

Maxwell et al. (2004, 2007) developed a segment-based process that utilizes landscape patch
boundaries, which restrict pixel interpolation limiting it to remain within consistent cover types.
In this approach, an adjacent TM or SLC-on ETM+ image is segmented into spectrally homoge-
neous groups. Values for the affected pixels are then interpolated using only pixels from within the
segment in which it falls. This approach yields data well suited for landscape and regional scale
studies, and crop-specific monitoring, because the crop boundaries typically do not change from
season to season. However, caution is required these images for evaluations at the pixel-level and
within areas with dynamic landscapes (Bedard et al. 2008, Maxwell et al. 2004, 2007).

The recent Neighborhood Similar Pixel Interpolator approach (J. Chen et al. 2011) and the
Geostatistical Neighborhood Similar Pixel Interpolator approach (Zhu, Liu, and Chen 2012) to
SLC-off ETM+ image repair, and by Jin et al. (2013) to recover clouded and cloud shadow areas
build on the approach reported by Meng et al. (2009) and Lowe et al. (2009). The key to these
approaches is the process used to select the nearest pixel(s), or in the case of Jin et al. (2013), the
means by which similar pixels are selected for model development. The location of an affected
image is identified on an unaffected, temporally adjacent TM or ETM+ image. The positions of
the spectrally nearest pixels are determined on that companion image and then pinpointed on the
original SLC-off image. The new value, then, is determined from spectral information from the
original scene at those location(s) determined on the companion scene. Using this approach, they
report no boundary shifts or striping in the repaired areas and explain that the spectral and spatial
integrity of linear features are maintained since the new pixel values are determined from value
combinations drawn from the ETM+ data itself. Unlike the most similar pixel approach reported

by Meng et al. (2009), Chen et al.(2011) recommends using 20 nearest neighbors.
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OBJECTIVES

The purpose of this study was to explore a gap-filling process that could be used to repair any sus-
pect pixels, due to the SLC hardware failure, atmospheric conditions, or any other environmental
disruptions, and it would allow for an arbitrary selection of reference scenes subject to availability
of viable spectral definitions concurring with the suspect pixels. The method needed to retain the
Landsat 7 Enhanced Thematic Mapper Plus spectral information across the landscape, and be con-

sistent regardless of physical or phenological changes that appear in the imagery.

2.2 DATA

Our data consisted of ETM and TM satellite image scenes from path 17 and row 38 for the years of
2005 and 2006. Each complete ETM+ scene contains information on about 8.5 million acres with
a resolution of 900 m? with the pixels defined by six spectral and one thermal band. Figure 2.2
shows small samples from path 17 row 38 that were analyzed in for the purpose of reconstructing
complete image information from multiple ETM+ satellite passes. These images contain the black
lines where pixels are affected due to the SLC failure.

While the image in Figure 2.2 may suggest that the missing pixels can be repaired from one
adjacent image, typically it may take four to five ETM+ images to construct full-undamaged infor-
mation for the entire area. The TM satellite has the same resolution and frame as the ETM+ satel-
lite, and both TM and ETM+ produce spectrally similar scenes and encompass the same area at
the same resolution. However, the TM satellite was still delivering reliable spectral information for
all areas, with the usual exception of intermittent environmental interferences, such as those due
to clouds, shadows, and smoke (Figs. 2.3A and 2.3B). Thus, we used the TM images for repairing

the ETM+ images.
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Figure 2.2: Non-overlapping dropped lines due to the SLC failure on the Landsat 7 Enhanced
Thematic Mapper Plus satellite. A river flowing from the northwest to the southeast, a circular
non-vegetated area near the center, and a pasture on the eastern portion of the image can be seen.
Images were captured in A) November 2003, B) December 2004, C) December 2005, and D)
September 2006. In this area of the scene, the dropped regions are approximately 270 meters high
with approximately 700 meters between.
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Figure 2.3: Areas affected by A) clouds and cloud shadows and B) smoke as seen on Landsat 5
Thematic Mapper images.
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2.2.1 Study area

The study boundary for this project corresponds to the intersection of the path 17, row 38 ETM+
and TM images listed in Table 2.1 (ULx: -83.1834; ULy: 32.6456; LRx: -80.9306; LRy: 30.8399;
rows: 6,741 px; cols: 7048 px). The site, encompassing 427,595 ha, is located in the coastal plain
region of Georgia, approximately 320 kilometers southeast of Atlanta. The Altamaha River is
located approximately in the middle of the scene and flows east to the Atlantic Ocean. Elevations
range from sea level to 132 meters (Fig. 2.4). This area includes some of the most productive tim-
berland sites in the region, and it is one of the most commercially important forest areas of the state.
Seventy-two percent of it is forested, supporting 2.14 million hectares of forestland (Cieszewski
2007). Over 2.8 million of these acres are conifer species, a majority of which is loblolly pine
with clear evidence of artificial regeneration. The remaining forestland is either of the mixed hard-
wood/pine type (521,000 acres; approximately 1/3 showing some evidence of artificial regenera-
tion), or various hardwood or cypress species (1.9 million acres; 3% exhibiting some evidence of
artificial regeneration.
Table 2.1: The path 17, row 38 ETM+ and TM images used in the gapfilling process.

Days Since Capture
EDC File Name Sensor  Acq. Date Summer ETM+ Winter ETM+

LE70170382005207EDC00 ETM+ 26-Jul-05 0 0
LE70170382005335EDC0O0 ETM+ Dec. 01, 2005 0 0
LT50170382005167EDCO0  TM 16-Jun-05 -40 -168
LT50170382005327EDCO0  TM  Nov. 23, 2005 120 -8
LT50170382006122EDC00  TM 2-May-06 280 N/A
LT50170382006330EDCO0  TM  Nov. 26, 2006 N/A 360

2.2.2  Satellite image data

I selected two virtually cloud-free SLC-off Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
images to test the gap filling process and downloaded from the USGS Global Visualization Viewer

(http://glovis.usgs.gov). The summer scene was acquired on July 26, 2005 and the winter scene

on December 01, 2005 (Tab. 2.1). Approximately 23%, 2.661 million ha, of each scene is affected
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Figure 2.4: WRS2 path 17, row 38 study site located on the southeastern coast of Georgia.

by the SLC anomaly. The unaffected north to south center swath is approximately 16 km wide
encompassing 280,245 ha.
The series of Landsat 5 Thematic Mapper images used in the gap filling process (Tab. 2.1) were

paired and grouped into 3 categories:

1. near-date

2. opposite-season, and

3. near-anniversary.

The highest quality TM scene acquired as near to the date of each ETM+ scene were chosen as
the near-date scenes. The summer near-date TM scene was acquired 40 days before and the winter

near-date 8 days before their respective ETM+ counterparts. These TM scenes were also used to

26



form the summer and winter opposite-season image pairs. The summer opposite-season TM image
was captured 120 days after the summer ETM+ image, and the TM winter opposite-season image
was captured 168 days prior to its winter ETM+ counterpart. The near-anniversary TM scenes (i.e.,
the highest quality scenes acquired in the same season 1 year before or after the ETM+ capture
date) were acquired 280 and 360 days after the Summer and winter ETM+ images, respectively.
The winter scene was acquired in November of 2006, and the summer in May of 2006.

Sixteen well-distributed ground control points were located on each image for verification of
image-to-image registration. We computed the root-mean square error (RMSE) using the summer
ETM+ as the base image. No RMSE exceeded 12.5 meters. A visual comparison of the images
revealed no egregious misalignment in the USGS terrain corrected L1T imagery, and we concluded
that the co-registration was satisfactory. Enhanced Thematic Mapper Plus and TM bands 1 - 5 and
7 were layer stacked using the ERDAS Imagine software using the nearest neighbor resampling
technique and a 30-meter pixel resolution. We did not use the thermal bands.

We masked out the pixels located in any image’s collar (the non-data containing region around
an image’s edge) and those in an areas affected by the SLC failure. Additionally, the pixels within
3,000 meters of the image’s bounding box and those within 1,500 meters of the actual data’s edge
were masked to minimize any edge effect. The total unmasked area is 1,842,279 ha (20,469,772

pixels).

2.2.3  Other GIS data

We used the Georgia Land Use Trends 2005 (NARSAL, 2001) and the National Land Cover Data
2001 (NLCD)(EPA, 2000) to identify homogeneous areas for testing the accuracy of the analysis.
The GLUT dataset is a 13-class land cover classification based on satellite imagery from multiple
seasons acquired primarily in 2005. It includes homogeneous land cover classes such as urban,
crop/pasture, evergreen, deciduous, mixed, and clearcut/sparse forest, various wetlands, water, and
other non-vegetated classes. Georgia overlays portions of the nationwide NLCD 2001 land cover

dataset that was developed using ETM+ imagery from 1999 to 2003. It includes 16 cover types

27



°2 i e Lt
Miles —r e 8- T

0
Deciduous Forest +  Mixed Forest | Row Crop/Pasture
green Forest Non-forested ishWetland - Open Water

Forested Wetland -  Clearcut/Sparse

Figure 2.5: Small sample site locations, 0.81 to 1.98 ha., generated from the combination of the
GLUT and NLCD land cover classification data sets that were used in the evaluation of the repair
process.

that are similar to those of GLUT’s, but due to the differing dates of the source imagery and other
confounding factors, they are not identical. I overlaid the two land cover data sets and retained all
cells that matched and eliminated any cells that did not. Clumps of adjacent pixels between 9 and
22 pixels were vectorized, yielding a polygon dataset containing areas that were classified as the
same type by both agencies and are between 0.81 and 1.98 ha, 2 to 5 acres, in size.

The remaining 43,316 polygons represent the following land cover classes: 1) clearcut/sparse,
2) deciduous forest, 3) evergreen forest, 4) forested wetland, 5) mixed forest, 6) non-forest
salt/brackish wetland, 7) open water, and 8) row crop/pasture. We reduced the data further by
randomly selecting, when available, 1000 samples from each class to be set aside for image clas-
sification and validation. We retained all polygons in the mixed forest (112), and non-forested

salt/brackish wetland (246), classes (Fig. 2.5) (Tab. 2.2).
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Table 2.2: Combined GLUT/NLCD land cover samples used in classification and validation.

Mean Standard Total
Cover Type # Polygons Area (ha) Dev. Area (ha) Area (ha)
Clearcut/sparse 1,000 1.14 0.31 1,137
Deciduous Forest 1,000 1.08 0.27 1,080
Evergreen Forest 1,000 1.25 0.35 1,249
Forested Wetland 1,000 1.15 0.32 1,148
Mixed Forest 112 1.01 0.2 113
Non-forested, Brackish Wetland 246 1.28 0.36 314
Open Water 1,000 1.19 0.33 1,193
Row Crop/Pasture 1,000 1.27 0.35 1,269

2.3 METHODS

2.3.1 K-nearest neighbor gap-filling

I applied a K-nearest neighbor (KNN) gap-filling method developed internally within the Fiber
Supply Assessment group, WSFNR, UGA, (Cieszewski and Lowe 2008). The method was origi-
nally used to repopulate areas of an image affected by various disturbances, such the SLC failure,
or clouds and smoke, and their shadows. Lowe and Cieszewski (2009) subsequently discussed the
use of the method in SLC failure repair, while Meng et al. (2009a) discussed the use of the method
in cloud removal. In this study, I applied this method to all of the pixels on the scene, as if they
all needed repairing. I used the areas of the scene with the unaffected pixels, the areas that did not
need the repair, to estimate the accuracy of the pixel repair.

The first step of the method is the pairing of spatially concurrent pixels from two different
images — an affected pixel from the ETM+ image (pixels 1) and its unaffected counterpart from
the TM image (pixels j). The second step is to find the locations of the K nearest neighbors on the
TM image based on pixel j. The nearest neighbor is defined using the minimum Euclidean Spectral

Distance (ESD) (Eq. 2.1):
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where: ESD is the Euclidean Spectral Distance between TM pixel j and pixel k; L denotes the
satellite band; and, » is the number of bands in the image. The average of the ETM+ pixel values
at those K nearest locations, determined on the TM image, are stored as the new value for ETM+
pixel i.

I enforced three spatial constraints during the nearest neighbor selection. I masked the current
pixels, pixel i and its counterpart on the TM image, pixel j, from the searches for the nearest
neighbors. This ensured no pixel would be used in its own estimation. Second, I masked all affected
pixels from the search for the near neighbors to ensure only valid data was used in the pixel repair
process. Lastly, I limited the nearest neighbor search window to 750 meters (25 pixels) extending
in the cardinal directions centered on pixel i. This distance corresponds to the maximum distance
of spatial autocorrelation between Landsat-derived variables and pine basal area determined in

previous studies (Meng et al. 2009).

2.3.2 Derived data layers and summary preparation

To test different scenarios of TM scene selections and numbers of K-neighbors, I ran the KNN
gap-fill repair process separately for the summer and winter ETM+ images using K values 1 to
20. A "near-date” pairing refers to the matching of an ETM+ image in need of repair with a TM
image captured as close to the same time as possible. An “opposite-season” pairing refers to the
matching of an ETM+ image with a TM image that was captured one season before or season after.
An “anniversary-season” pairing refers to matching an image for repair with an image acquired
in the same season a year before or a year after.

I used only the unaffected pixels for the evaluation of the pixel repair, and summarized the
residuals for each KNN-processed image at two scales, scene-wide and for small areas (polygons).
The scene-wide summaries included all the image pixels that contain valid spectral information (do

not need repair). I used a combination of ArcMap’s Reclassify and SetNull tools to mask all the
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pixels with faulty spectral information, such as the pixels affected by the SLC failure. I assigned
null values to all the bad pixels and left all the good pixels unchanged. The null designation ensured
that only cells containing valid spectral information would be included in subsequent processes and
summaries. There are 27,007,535 pixels included in the assessment of the summer ETM+ repair
and 26,999,061 pixels in the winter ETM+ process.

To simulate a small-area assessment, I performed a supervised classification on each ETM+ and
all KNN-processed images based on a training set derived from the combined land cover described
in Section 2.3. I randomly selected approximately half of each land cover type. One-half served
for the development of spectral signatures and the image classification and the other half for the

validation of the image classification (Tab. 2.3).

Table 2.3: Training and validation sites used for supervised classification and testing.

Training Validation
Forest Type # Groups Total Acres # Groups Total Acres

Clearcut/Sparse 511 1,438 489 1,371
Deciduous Forest 508 1,354 492 1,313
Evergreen Forest 526 1,606 474 1,479
Forested Wetland 515 1,459 485 1,377

Mixed Forest 61 157 51 122

Non-forested, Brackish Wetland 134 417 112 359
Open Water 460 1,371 540 1,577
Row Crop/Pasture 484 1,519 516 1,614

I made the initial scene-wide examination of the repaired data in the 8-bit spectral radiance
(DN) domain for bands 1-5 and 7. The DNs range from O to 255 where a value of 1 is recorded by
the satellite over an area of minimum radiance. A value of O denotes NoData pixels. Conversely,
pixels with a value of 255 were captured over an area with a maximum or near maximum radiance.
Thus, the range of residuals for these data is -255 to 255. A low residual represents an area that
is dark on the unrepaired ETM+ image such as a shadow or deep water that is estimated to be a
bright feature, possibly a cloud or sand. Conversely, a positive residual will occur in a bright area

that is estimated as a dark feature. A pixel whose residual equals zero was perfectly repaired. To
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evaluate the pixel repair success in the DN domain, [ summarized the residuals by determining the

following:
o the percentage of pixels with a residual equal to 0, the
e residual representing the 95™ percentile and its corresponding K, and the
e root-mean squared error.

The normalized difference vegetation index (NDVI) (Eq. 2.2) is a widely used index that has
been related to the biophysical features on the ground like leaf area index (Curran, Dungan, and
Gholz 1992; Turner et al. 1999; M. Chen and Cihlar 2000), land cover type ((Xiao et al. 2002;
Vieira 2003), and others forest related activities ((Sader, Waide, and Lawrence 1989; Wilson and
Sader 2002; Maselli and Chiesi 2006). To examine the effects of the repair process on imagery
when used to map vegetation over large areas, I transformed both the winter and summer ETM+
and all KNN-processed images into NDVI. I assessed the differences by calculating the mean

absolute difference (AD) (Eq. 2.3) for all season pairings and across K =1, 2, , 20.

(NIR — RED)

NDVI =
(NIR+ RED)’

(2.2)

where: NDVI is the normalized difference vegetation index, NIR is the spectral response from the
near-infrared band (TM and ETM+ band 4), and RED is the spectral response from the red band
(TM and ETM+ band 3).

AD = |NDVI, — NDVI| (2.3)

where: AD is the absolute difference, NDVIu 1s the NDVI value generated from the raw ETM+
imagery, and NDVIk is the NDVI value generated from the KNN-processed imagery. Image clas-
sification is a common method resource managers use to assess the landscape. To replicate that
type of analysis, I applied a supervised Maximum Likelihood classification to the NDVI imagery

derived from the:

o raw ETM+ image from the summer (NDVIs),
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e raw ETM+ image from the winter (NDVIw),

and the K=1, 2, , 20, KNN-processed imagery from the ETM+/TM:

e summer/near pairing (NDVIsn),

summer/opposite pairing (NDVIso),

summer/anniversary pairing (NDVIsa),

winter/near pairing (NDVIwn),

winter/opposite pairing (NDVIwo), and the
e winter/anniversary pairing (NDVIwa).

I used ArcGIS’ Create Signatures tool to generate signatures for the entries in the combined land
cover training data set. Then I classified the images into discrete land cover categories using the
Maximum Likelihood Classification tool. I used an error matrix to express the classification accu-
racies described in Story and Congalton (1986). The matrix consists of a series of columns that
represent an entry’s observed truth and rows that represent its assigned class (Tab. 2.4). Each cell
contains the number of items observed as the column’s truth yet classified as the row’s class. A
summation of the cells where the observed (column) truths and assigned classes (row) match dis-
closes the number of correctly classified samples. A summation of all entries in a row reflects
the number of samples classified as that class and the column summation reveals the number of
samples observed as that class.

I assessed the differences in classifications using the overall classification accuracy (OA),

n

OA = Zm=L"mn 100, (2.4)

n
m=1 (2

where: OA is the overall accuracy, i is the number of pixels assigned to class m and observed as

class n; and Cohen’s Kappa (CK) (Cohen 1960),

i . —ef
N —ef’
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where: CK i1s Cohen’s Kappa, >i  is the total number of correctly classified pixels, and ef is the
expected frequency for the number of agreements that would have been expected by chance for
each category. for this purpose, I assume NDVIs is the observed ground truth for the NDVIsn,
NDVIso, and NDVIsa classified images. For the winter pairings, the NDVIw observations are con-
sidered to be the observed ground truths for the NDVIwn, NDVIwo, and NDVIwa classifications.

The small-area assessment measures accuracy on the entries in the combined land cover val-
idation data set (Section 2.3). I used ArcGIS’ ZonalStatisticsasTable to assign each polygon the
majority land cover class from each classification. Similar to above, I used the NDVIs and NDVIw
results as the observed truth and the results from KNN-repaired image classifications as the classi-
fied value to determine the overall classification rates (Eq. 2.4) and Cohen’s Kappa (Eq. 2.5).

In addition to scene-wide and small-area assessments, I made visual evaluations of the repaired
imagery. Though a subjective inquiry, I consider it an important aspect of any investigation of this

sort to assure the outputs appear to be suitable for use. I examined the repaired imagery for the:

e presence of speckle or “salt and pepper” effects, the
e ability to reconstruct linear and irregular features, and the

e condition of areas with recent changes in land cover.

2.4 RESULTS

2.4.1 Percentage of exactly repaired pixels (residual = 0)

Near-season pairings for both winter and summer ETM+ scenes delivered the largest number of
zero-error pixels in all bands with success rates ranging from 13% to 26% and 10% to 23%, respec-
tively (Tab. 2.5, Fig. 2.6). The winter near-date pair for all bands had 2% to 3% more zero-error
pixels than the anniversary-season pair and 3% to 5% more than the opposite-season pair. Summer
near-season pairings had 0.4% to 2% more zero-error pixels than the anniversary-season and 2% to
6% more than the opposite-season grouping for the same range of bands. Anniversary date pairings

used in the repair of both the winter and summer ETM+ yielded the next highest zero-error success
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Figure 2.6: The percentage of zero-residual pixels for the summer and winter ETM+ and for each
pairing.

rate with 10% to 24% and 9% to 23%, respectively. Opposite-season pairings that combined the
summer ETM+ with a winter TM and the winter ETM+ with a summer TM yielded the fewest

zero-errors (8% to 22% for the winter and 7% to 20% for the summer).

Table 2.5: Percentage of zero-residual pixels for each band and season pairing.
Pairing (ETM/TM) Bandl Band2 Band3 Band4 BandS Band7 Min. Max.
Summer/Summer  21% 23% 17% 15% 10% 14% 10% 23%
Summer/Winter 19% 20% 14% 10% 7% 10% 7% 20%
Summer/Anniv. 20% 23% 17% 13% 9% 13% 9% 23%
Minimum 19% 20% 14% 10% 7% 10% NA NA
Maximum 21% 23% 17% 15% 10% 14% NA NA

Winter/Winter 24% 26% 19% 13% 14% 16% 13% 26%
Winter/Summer 21% 22% 15% 8% 9% 11% 8% 22%
Winter/Anniv. 22% 24% 17% 10% 11% 14% 10% 24%
Minimum 21% 22% 15% 8% 9% 11% NA NA
Maximum 24% 26% 19% 13% 14% 16% NA NA

2.4.2  Minimum DN representing the 95 percentile residual

The near-season pairings and all bands 1-5 and 7 yielded the lowest DN threshold for the 95

percentile residual. Residuals for the winter near-season pair ranged from 4 DN to 8 DN, while the
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residuals for the summer near-season pair ranged from 5 DN to 17 DN (Tab. 2.6). Thresholds for
winter pairings were 33% to 56% lower than the thresholds for the opposite-season and 20% to
43% lower than the anniversary pair. The pixel repairs of the summer ETM+ using the near-season
pair yielded a 95" percentile residual 18% to 31% lower than the summer opposite-season 95"
percentile residuals and 0% to 18% lower than the anniversary pairing 95" percentile residuals.
Summer near-season and anniversary-season pairing had equal band 1 residuals, yet the former
required two nearest neighbors while the latter required three nearest neighbors to achieve that
level. Anniversary pairings for both winter and summer produced the next lowest thresholds.

The band 4 is the only instance when the summer opposite-season pairing produced a smaller
DN threshold than the winter opposite season pair. There were three cases where the summer pair-
ings yielded equal thresholds to the winter pairings (opposite-season band 1 and anniversary season
bands 1 and 2). The winter pairings produced lower thresholds for all the other combinations and
bands. The number of nearest neighbors required to reach the minimum DN representing 95"
percentile residual threshold for all pairings initially decreased and then leveled off and remained
relatively constant, and in a couple cases, it increased slightly ( 2.7). The optimal number of neigh-
bors varied between different bands and neither K=1 nor K=20 yielded the optimal result for any
of the bands.

Table 2.6: Minimum DN representing the 95 percentile residual and the number of nearest neigh-

bors (K) required to reach that point.
ETM+ Season Pairing Band1 Band2 Band3 Band4 Band5 Band7

Summer Near 512) 5@) 9(2) 9(3) 17(5) 16@3)
Summer Opposite 6(2) 7(12) 113 13@) 234 20(5
Summer Anniversary 5 (3) 6 () 102) 113) 2005 184
Winter Near 4(2) 4 (3) 6Q2) 8 (3) 8(9) 7(6)
Winter Opposite 6(12) 6 (6) 103) 14(5) 184) 14(5

Winter Anniversary 5 (3) 6(2) 92 10(6) 14(6) 12(5)
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Figure 2.7: Minimum DN representing the 95" percentile residual for bands 1 - 5 and 7 across K
=1 to 20.
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243 RMSE basedonbands 1 -5 and 7

Near-season pairings produced the lowest RMSE across all values of K. The winter minimum
occurred at K=7 with an RMSE=6.9 DN and at K=8 yielding an RMSE=11.6 DN for summer
(Tab. 2.7, Figs. 2.8A and 2.8B). The winter ETM+ repair processed using the near-season pairing
produced RMSEs 75% lower than the opposite-season and 44% lower than the anniversary-season
pairings. The summer near-season pair yielded an RMSE 25% lower than the opposite-season
and 11% lower than the anniversary-season summer pairs. Anniversary-groups for both winter
and summer proved to be the next best by producing RMSEs 21% and 13% higher, respectively,
than their opposite season counterparts. The best winter ETM+ repair process, for each pairing,
resulted in a lower RMSE than their summer counterparts. The best near-season pairing was 69%
lower than the best summer near season pair. The best winter anniversary pair was 21% lower and
the opposite season, which was 29% lower than their summer equivalents.
Table 2.7: Scene-wide RMSE measures based on bands 1 - 5 and 7 for each season pairing.

Winter Summer
Near Nbrs. (K) Near Opposite Anniversary Near Opposite Anniversary

1 8.387 14.964 12.266 14.119  18.065 15.589
2 7416  13.182 10.823 12.509  15.905 13.82
3 7.103  12.582 10.346 11.984 15.176 13.252
4 6.965 12.3 10.125 11.755 14.833 13.002
5 6.901 12.147 10.01 11.643  14.654 12.887
6 6.87  12.061 9.949 11.588  14.553 12.83
7 6.861 12.013 9.918 11.567 14.498 12.811
8 6.863  11.985 9.905 11.564 14.466 12.813
9 6.874 11.973 9.903 11.574 14.457 12.827
10 6.89  11.969 9.91 11.591 14.457 12.85
11 6911 11.972 9.922 11.615 14.466 12.877
12 6.933 11.98 9.938 11.643 14.48 12.908
13 6.958 11.992 9.956 11.673  14.499 12.942
14 6.985  12.007 9.976 11.705  14.522 12.977
15 7.012  12.023 9.998 11.738  14.547 13.014
16 7.04  12.041 10.02 11772 14.574 13.05
17 7.069  12.06 10.044 11.806  14.601 13.088
18 7.099 12.079 10.068 11.842  14.63 13.125
19 7.128 12.1 10.093 11.877  14.659 13.162
20 7.158 12.12 10.118 11913  14.689 13.199
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Figure 2.8: Root-mean squared error for each season pairing plotted across k = 1 to 20. Frames A)
and B) display the RMSE based on the bands 1-5 DN and frames C) and D) the AD based on the
NDVI transformation.

2.4.4 NDVI mean absolute difference

NDVI-based mean absolute difference (AD) behaved in a similar manner as the DN-based mea-
sures with an initial decrease and then a gradual leveling off or a slight increase (Fig. 2.8C
and 2.8D). Absolute mean differences for winter near-season pairings were 20% lower than those
from the winter-anniversary pairs and 37% lower than those generated with the opposite season
group (Tab. 2.8). Summer near-season pairings resulted in ADs 8% and 24% lower than those gen-
erated from the anniversary and opposite-season groups. The summer near-season pair produced
an AD slightly lower than the winter near-season pair, which produced 1% lower than the opposite
season. Both of these minimums occurred at K=7. The summer anniversary AD was 15% lower

than the winter anniversary-season pair and was processed at K=7, while the winter was processed
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at K=9. Both opposite-season pairings produced their minimum using 9 nearest neighbors with the

summer group 21% lower than the one from winter.

Table 2.8: NDVI-based mean absolute difference for K=1 to 20.

K Sum/Near Sum./Oppo. Sum./Aniv. Win./Near Win./Oppo. Win./Aniv.
1 0.0417 0.0569 0.0456 0.0426 0.0687 0.0535
2 0.0371 0.0501 0.0405 0.0377 0.0606 0.0473
3 0.0356 0.0477 0.0388 0.036 0.0578 0.0451
4 0.0349 0.0466 0.0381 0.0353 0.0565 0.0442
5 0.0346 0.046 0.0378 0.035 0.0558 0.0437
6 0.0345 0.0457 0.0376 0.0349 0.0554 0.0435
7 0.0345 0.0455 0.0376 0.0348 0.0552 0.0433
8 0.0345 0.0455 0.0376 0.0349 0.0551 0.0433
9 0.0345 0.0454 0.0377 0.035 0.055 0.0434
10 0.0346 0.0455 0.0378 0.0351 0.055 0.0434
11 0.0347 0.0455 0.0379 0.0353 0.0551 0.0435
12 0.0348 0.0456 0.038 0.0354 0.0551 0.0437
13 0.035 0.0457 0.0381 0.0356 0.0552 0.0438
14 0.0351 0.0458 0.0382 0.0358 0.0553 0.0439
15 0.0352 0.0459 0.0384 0.036 0.0554 0.0441
16  0.0354 0.046 0.0385 0.0362 0.0555 0.0442
17 0.0355 0.0461 0.0386 0.0364 0.0556 0.0444
18  0.0356 0.0462 0.0388 0.0366 0.0558 0.0445
19  0.0358 0.0463 0.0389 0.0368 0.0559 0.0447
20 0.0359 0.0464 0.0391 0.037 0.056 0.0448

2.4.5 Scene-wide classification accuracy and Cohen’s Kappa.

Overall classification rates for all pairings increased from K=1 to around K=7 to K=9, and then
leveled off or slightly decreased (Figs. 9A and 9B). The overall classification rates of the NDVI
imagery ranged from 61% of success for the summer opposite-season pair to 73% of success for
the winter near-season pair (Tab. 2.9). The maximum near-season classification (K=9) of the winter
image was 4% higher than the best anniversary-season and 14% higher than the opposite-season
pair. The best summer near-season classification rate, occurring at K=9, was 5% higher than the
anniversary and 17% higher than the opposite season pair. The classifications based on the winter

ETM+ were 0.1% to 3% higher than for the summer season pairings.
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Table 2.9: Maximum overall classification rate based on the supervised classification of the NDVI
imagery.

Season Pairing Max K Max OA Rate (%) Max CK (%)

Summer Near 9 72.9% 66.3%
Summer  Opposite 7 61.1% 51.5%
Summer Anniversary 7 69.8% 62.5%
Winter Near 9 73.0% 66.4%
Winter Opposite 14 63.0% 53.7%
Winter  Anniversary 9 70.1% 62.4%
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Figure 2.9: Overall classification accuracy and Cohen’s Kappa for the classified NDVI images for
each pairing and across k=1 to 20. Overall classification results for the summer ETM are shown in
frame A and frame B for the winter classification. Cohen’s Kappa for each pairing and across k=1
to 20 are shown in frames C and D, respectively.Overall classification accuracy and Cohen’s Kappa
for the classified NDVI images for each pairing and across k=1 to 20. Overall classification results
for the summer ETM are shown in frame A and frame B for the winter classification. Cohen’s
Kappa for each pairing and across k=1 to 20 are shown in frames C and D, respectively.
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The more conservative Cohen’s Kappa rates for the near-season pairings were 3.9% and 3.8%
higher than the winter and summer anniversary and 13% and 15% higher than the ones from the
opposite-season pairing (Tab. 2.9). The winter near-season pairing produced a CK of 66% and the
summer near-pairing a CK of 66%. The values increased, just as the overall classification accuracy

(OA) did, from K=7 to K=9 and then leveled off or slightly decreased (Fig. 2.9C and 2.9D).

2.4.6 Assessment of combined land cover validation polygons

The winter near-season overall classification rate (81%, K=5) was higher than the winter opposite-
season and anniversary-season rates (Tab. 2.10, Fig. 2.10B), and the winter anniversary-season pair
outperformed the opposite-season results, 78% (K=4) success rate versus 74% (K=4) rate. Classi-
fication accuracy gradually increased for each winter pairing until K=4 or K=5 and then steadily
decreased. Summer pairing success rates are ordered the same as the winter pairings (Fig. 2.10A).
The summer near-date pair produced the largest OA rate (83%, K=1), then the anniversary-season
pair (81%, K=1) and the opposite-season pair had the smallest (72%, K=1) (Tab. 10). Rankings
according to Cohen’s Kappa success rates are identical to the overall classification rates (Tab. 2.10).
The near-season pairings for both winter (CK=77%, K=5) and summer (CK=79%, K=1) produce
the largest rates. The anniversary-season pairings give the next highest rates for their respective sea-
sons and the opposite-season pairings give the lowest. Depending on the season pairing, Cohen’s
Kappa increases to K=4 or K=5 (Fig. 2.5C and D) and then levels off. On the other hand, max-
imum Cohen’s Kappa rates for the summer pairs occur at K=1 for each pair (Tab. 2.10, Figs. 2.10C
and 2.10D).

Table 2.10: Maximum overall classification rate, Cohen’s Kappa and the K at which it occurred.
Season Pairing Max OA K @ Max OA Max CK K @ Max CK

Summer Near 83% 1 79% 2

Summer  Opposite 72% 1 65% 2
Summer Anniversary 81% 1 76% 1
Winter Near 81% 5 77% 5
Winter Opposite 74% 4 67% 4
Winter  Anniversary 78% 4 73% 4
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Figure 2.10: Assessment at combined GLUT/NLCD land cover polygons. Frames A) and B) show

the summer and winter overall classification rate for each pairing across k=1 to 20. Frames C) and
D) show the Cohen’s Kappa.
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2.4.77 Visual assessment

Speckle was visible in areas of homogeneous land cover and near road intersections when using
few near neighbors (Fig. 2.11B and Fig. 2.12B). However, it gradually disappeared as K increased
(Figs. 2.11C 2.11F and 2.12C - 2.12F). I observed artifacts in areas with clouds (Fig. 2.13) that
did not dissipate with K (Figs. 2.13B 2.13F). Narrow features similar to the river visible in Figure
2.11, the road in Figure 2.12, transitions among crops and clearcut areas lose detail at low values
of K. Often, though, the boundaries tended to come back as K increased.

Land cover change did affect the visual appeal of the repaired image when it occurred after
the capture of the TM image employed in the repair process. Figure 2.14 highlights such a case.
A harvest occurred on this site between November 23, 2005 and December 1, 2005 the near-date
ETM+ (Fig. 2.14B) and TM (Fig. 2.14C) capture dates. Thus, the near-date image repair was not
optimal (Figs. 2.14D, 2.14E, and 2.14F). Visual appeal degenerated further for the opposite-season
image repair (Fig. 2.14G). In contrast, the anniversary-season repair process captured most of the

detail of the site since the TM’s acquisition date was post-harvest (Fig. 2.14F).

2.5 DISCUSSION AND CONCLUSIONS

The discontinuity of spectral information in the SLC-off ETM+ satellite data renders much of
its imagery unusable for analysis across the continuous landscape. The nearest neighbor method
presented in this research and elsewhere (Cieszewski and Lowe 2008; Lowe and Cieszewski 2009;
Qingmin Meng et al. 2009; J. Chen et al. 2011; Jin et al. 2013) is a simple approach for repair of
defective images. The process relies on the availability of companion images with suitable pairs
of repair pixels. This research demonstrates the importance of selecting the companion images
used in the repair process. It is understandable that the best choice is to select a companion image
captured at a date the closest possible to the ETM+ acquisition date. In this study, the near-date
pairings yielded the highest success rates in terms of the number of zero-residual pixels (Tab. 2.5)
and with the lowest DN threshold representing the 95" percentile residual (Tab. 2.6) for all bands

1-5 and 7. Moreover, these pairings produced the lowest DN-based RMSEs (Tab. 2.7), resulted in
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Figure 2.11: Riparian area in the summer ETM+ image restored using the KNN-Gap filling pro-
cess. Frame A) shows the original unprocessed image, frame B) the scene processed using K=1,
C) using K=5, D) using K=10, E) using K=15, and F) using K=20.
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Figure 2.12: Urban area in the winter ETM+ image restored using the KNN-gap filling process.
Frame (A) shows the original unprocessed image, frame B the scene processed using K=1, (C)
using K=5, (D) using K=10, (E) using K=15, and (F) using K=20.
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0 3,000
Figure 2.13: Cloud and cloud shadow shown in the summer ETM+ image repaired using the KNN-

gapfill process. A) An EMT+ unprocessed image and the same image processed with B) K=1,C)
K=5,D) K=10, E) K=15, and F) K=20.
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Figure 2.14: The visual effect of a harvested area present on the repaired ETM+ yet not on the near-
season or the opposite-season TM. A) The NAIP 2005 aerial photograph showing eth unharvested
area; B) the ETM+ image before repair; C) the TM image used in the near-date repair which does
not show the harvest; D) the repaired ETM+ image using K=5; E) the repaired ETM+ image using
K=7; F) the repaired ETM+ image using K=9; G) the repaired ETM+ using the opposite-season
TM and K=8, and H) the repaired ETM+ using the anniversary-season TM and K=9.
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the lowest absolute mean differences (Tab 2.8), and returned the largest classification accuracies
for the entire scene (Tab. 2.9) and for a polygon-based validation dataset (Tab. 2.10). However, it
is unclear if the next best choice for a companion image is one captured closer in time yet in a
different season or further in time but in the same season as the damaged image. It is expected
that in case of some dynamically changing landscape conditions, such as fast growth of young
plantations or presence of disturbances the proximity in time might have the highest value. On the
other hand in the presence of fairly static conditions minimizing the distance of time might be less
beneficial than maximizing similarities in seasonal conditions.

In this study, anniversary-season imagery, a TM image captured in the same season yet a year
later, yielded the next highest success rates. Despite a shorter time between the dates of the repair
scene and the companion scene, the opposite-season pairs yielded the lowest success rates in all
measures. Thus, when selecting companion imagery for the gap-filling process, it seems the best to
consider the imagery captured in the same season as close in time to the repaired image as possible.
If the same season near-date image is not available, the next best choice is an image captured in
the same season in the preceding or following year. Imagery captured in a different season are the
least desirable choices.

One needs to consider carefully the dates of the companion imagery in relation to the capture
date of the repair image in areas where a disturbance may have occurred. It is clear that any changes
in land cover that occur between the acquisition time of the companion image and the repaired
image will result in erroneous repairs (Figs. 2.14D  2.14F). However, in the example shown in
Figure 2.14, there was no issue repairing the harvest site using the alternate-season ETM+/TM
pair since the TM was captured after the forest activities. In areas experiencing drastic changes
one should exercise caution in selecting companion images whose acquisition times corresponded
with the greatest differences between the companion and the repair images. For examples if a stand
was harvested around the time of the acquisition of the repair image there could be the following
scenarios. If the preceding image captured mature stands and the repair image captured a cleared

land, then it is clear that the better choice for a companion image is at the latter time. However,
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if the repair image captured a still mature stand then the clear choice is to work with the earlier
capture time of the companion image. Since the land changes captured by the satellite imagery
may be considered random in space and time, this leads to the conclusion that a single repair
image may call for both selections of the companion images from before and after its capture
time. Furthermore, since there could be various other obstacles in matching the best pixel pairs
for images repair, the process would conceptually work the best with a multi-scene and multi-date
companion image analysis whereby repair of each individual pixel could be optimized based on
different date selections of the companion imagery choices.

The optimal number of nearest neighbors that yielded the best results varied depending on
the season pairings. The DN-based RMSE (Tab. 2.7), NDVI-based AD (Tab. 2.8), and the scene-
wide classification accuracy results (Tab. 2.9) showed the best K ranging from 7 to 9 when using
the near-date and anniversary-season companion images. The range was slightly higher for the
opposite-season companion images. Notwithstanding the above, the ideal number of nearest neigh-
bors determined at other sites is likely to vary; and therefore, it seems desirable to evaluate each
individual project for a range of K before deciding what value of K is the best for that project. For
example, Chen et al. (2011) determined that 20 nearest neighbors were the best in their study while
the same value of K in this study yielded inferior results.

Overall, the visible bands 1 through 3 were repaired more accurately than the near-infrared and
mid-infrared bands 4, 5, and 7. The number of zero-residual estimates from the near-season visible
bands ranged from 17% to 23% for the summer and 19% to 26% for the winter while the infrared
bands ranged from 10% to 15% for the summer and 13% to 16% for the winter. Furthermore, the
DN representing 95th percentile residual ranged from 5 to 9 for the summer and 4 to 6 for the
winter while the ranges for the infrared bands were 9 to 17 and 7 to 8, which might be of interest
to users wishing to use the repaired data in transformed space like NDVI.

One issue in the repair process associated with areas that contain cloud or other environmental
disturbances like smoke from forest fires (Fig. 2.13) appeared to be that the repair process across

all K for all season pairing produced speckled results. This was likely due to the fact that the
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constrained nearest neighbor search area was too restrictive, which implies that the search area

should be identified and processed with a special consideration for the fact that a too restrictive

range will hinder the repair process (Qingmin Meng et al. 2009; Zhu et al. 2012).
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CHAPTER 3

ASSESSMENT OF STREAM MANAGEMENT ZONES AND ROAD BEAUTIFYING
BUFFERS IN GEORGIA BASED ON REMOTE SENSING AND VARIOUS GROUND
INVENTORY DATA!

"Lowe, R.C., C.J. Cieszewski, S. Liu, Q. Meng, J.P. Siry, M. Zasada, and J. Zawadzki. 2008. South. J.
Appl. For. SF-08-010. Reprinted here with permission of the publisher.
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ABSTRACT

Stream management zones (SMZs) and road beautifying buffers (RBBs) are voluntary in Georgia
and have an unknown extent and impact on the state’s forest production. We describe analyses of
these buffers, including an estimation of their potential areas and volumes, and their distributions
in different forest cover types under an assumption of their full implementation. We base this
analysis on Landsat 7 Enhanced Thematic Mapper Plus imagery and various sources of ancillary
data, such as those from the Georgia Gap Analysis Program, the Forest Inventory and Analysis
large-scale forest survey, and various industrial forest ground inventories. We considered stream
data classified into trout, perennial, and intermittent streams, which we combined with elevation
and slope information to assess buffer widths consistent with Georgia’s Best Management Practices
rules. Our results indicate that minimum width 12.2-m SMZ buffers would occupy about 4.01%
of the total forested area in Georgia and would cover about 4.32% of the state’s volume. The area
of the wider, 30.5-m SMZ buffers would cover about 8.65% of the total forested area in Georgia
and would cover about 9.27% of the state’s total volume. The minimum-width 12.2-m RBBs would
occupy about 3.64% of the total forested area in Georgia and would cover about 3.52% of the state’s
volume. The area of the wider, 30.5-m RBBs would occupy almost 8.68% of the total forested area

in Georgia and would cover about 8.40% of the state’s total volume.

3.1 INTRODUCTION

Our ever-growing population and urban expansion increase demand for clean water and various
forest products/uses and decrease areas of forests available for commercial production (Wear and
Greis 2002). To compensate for the shrinking land base of commercial forests and to meet the
growing demand for forest products, forest managers must improve the efficiency in their manage-
ment and planning practices. Such improvements are conditioned on the availability of effective

tools for evaluation and analysis of potential impacts of various forest management and policy
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decisions. In turn, outcomes of such analysis are critical to the knowledge of, for example, how
various regulatory constraints affect such business decisions as locations of pulp or saw mills.

One of the main natural resource-related concerns of modern societies is maintaining clean
water supplies, which may be affected by nonpoint source (NPS) pollution such as runoff from
agricultural fields and forest clearcuts. To protect water resources from NPS pollution, forest man-
agers and landowners in Georgia apply protective buffers, or stream management zones (SMZs),
which separate rivers from adjacent pollution sources while filtering sediments, absorbing nutri-
ents, and stabilizing stream banks. SMZs also provide habitat for moist-zone animals and plants
and stream organisms, and they shade and cool the streams (Welsch 1991). They consist mostly
of riparian habitat area, that is, the area directly adjacent to a waterway that includes the bank
vegetation and likely a strip of forest.

One major difference in the riparian area is the vegetation it contains. The vegetation within
these areas is strongly influenced by the surface and subsurface water associated with the stream
itself. Riparian areas contain distinctly different forest cover types, such as bottomland hardwoods.
They also may contain species similar to the surrounding uplands but with relatively higher pro-
ductivity.

Stream management zones were introduced as a result of federal water quality legislation (the
Clean Water Act) created in 1972 when the U.S. Environmental Protection Agency recommended
using Best Management Practices (BMP) as a primary method for controlling NPS pollution [1].
The Georgia Forestry Commission issued the current Georgia’s Best Management Practices for
Forestry manual in 1999 (GFC 1999). Currently the state of Georgia chooses a nonregulatory
system of voluntary compliance, which it may eventually change to a mandatory system. In the
future, the BMP may become mandatory with increased SMZ widths and with further manage-
ment restrictions (Wenger 1999). The potentially mandatory system could include road beautifying
buffers, which are protective strips established along the roads. The road buffers are similar to the

SMZs in that they have some positive ecological value by stabilizing the ground, reducing ero-
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sion from road runoff, and reducing wind erosion by providing natural windbreaks, but they are
established primarily to ensure an aesthetically pleasing landscape for road travelers.

Currently, for perennial streams, BMPs recommend leaving an evenly distributed 11.5 m? of
basal area per hectare or at least 50% of the canopy cover after a harvest. If the stream is classified
as a trout stream, it is necessary to also create an additional no-harvest zone around the stream’s
bank. For intermittent streams, requirements include leaving 5.7 m? of basal area per hectare or
at least 25% of the canopy cover after a harvest (GFC 1999). There are no stringent parameters
regarding the road buffers, which are likely to have similar widths for all roads since their main
aesthetic and wind-breaking functions are independent of road widths.

The extent of potential harvesting limitations on all of Georgia’s protective buffers is unknown
in terms of both the absolute and relative values of involved areas and volumes in the state.
Although a large number of studies on riparian/stream management zones in the southern Unites
States have been conducted (see e.g., Wenger 1999), the literature on their extent, assessment, and
statistics in the region is rather scarce.

According to rough estimates by the US Forest Service, which to date has not conducted spe-
cific inventories of these areas, wetlands and riparian zones occupy less than 10% of total national
forest area in the United States (Sedell et al. 2000). Furthermore, because practically nobody has
performed such inventories on private lands, it is not known how much of the area is occupied by
protective buffers in private forest.

The Southern Appalachian Riparian Team (Van Sickle 2001), working on uniform standards
for large-scale riparian areas and watershed assessments for the southern U.S. national forests,
calculates the area of riparian zones as the product of stream length and the riparian zone/buffer
widths. They identify the lengths of perennial and intermittent stream channels on topographic
maps in the form of graphic information systems (GIS) stream layers while assuming minimum,
30.5-m riparian area widths on either side of all perennial and intermittent streams, wetlands,

lakes, and ponds. They also propose to estimate ephemeral streams from a sample of topographic
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quadrangle maps or from GIS stream simulation, and to address any riparian areas wider than 30.5
m using stream survey data.

Cubbage and Woodman (1993) present an approach to estimating effective harvest area losses
and costs by management classes in hypothetical forest management units based on the Georgia
Forest Inventory and Analysis (FIA) inventory data. Their estimates of the forested areas in stream
management zones varied. They were 4.8% when the calculations were based on the minimum
10.7-m recommendations from BMPs of 1989, 5.3% for 10.7-30.5-m buffers (depending on slope),
and 7.09% for when the primary buffer width was assumed 91.5 m.

Limited information regarding riparian zones has been provided by different small-scale
studies, such as ecological, biochemical, physiological, socioeconomic, and hydrologic assess-
ments and experiments (e.g., Coweeta Long Term Ecological Research). Rough estimates of
riparian areas are also included in Land and Resources Management Plans (LRMPs) prepared for
national forests on the basis of the National Forest Management Act of 1976 [2]. However, this
information is quite limited and does not provide any detailed statistics, although some preliminary
estimates of the areas and volumes contained in the riparian buffers in Georgia have been reported

by Zasada et al. (2003).

OBJECTIVES

In this study we set out to make a detailed and complete assessment of all the potential stream and
road buffers in Georgia using FIA and other available ground inventory, GIS, and remote sensing
data. Our goal was to estimate the areas and volumes of possible stream and road buffers and to
assess their potential impact on the wood supply in Georgia using refined methods from the study
initiated by Zasada et al. (2003). This article describes our assessment methodology and forest-

type-dependent statewide estimates of those buffers.
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3.2 DATA

3.2.1 Ground inventory data

We used two types of ground-measurement forest inventory data. To stratify Landsat Enhanced
Thematic Mapper Plus (ETM+) images, we used models calibrated on our industrial partners’
ground inventory data. These data contained GIS polygons with stand-level inventory statistics
based on ground measurements from 1998. The second type of ground inventory data came from
the US Forest Service FIA program. The FIA program provides the data for all states through
the North Central Research Station website (FIA 2006). This hierarchically organized database
comprises files for various inventory levels, such as state survey, county, plot, and within-plot con-
dition, allowing for analysis at various levels of resolution. The plot-level data includes forest type,
stand age, size class, stand origin, productivity class, site index, land use class, slope, aspect, eleva-
tion, physiographic class or soil group, treatment opportunity class, percentage of unstocked area,
stocking, remeasurement period, area expansion factors, volume, growth, mortality, and removals.
Condition classes further stratify the plots according to specific combinations of plot attributes.
FIA records more than 120 variables on the tree level, some of which are measured (e.g., species,
DBH, height, quality, crown ratio and class, damage and its cause) and others of which are com-
puted (e.g., volume, removals, growth and biomass, mortality expansion factors) from formulas

(Miles et al. 2001).

3.2.2 Landsat ETM+ imagery data

We used summer and winter Landsat 7 ETM+ images for evaluation of land cover throughout the
state. The imagery encompasses the entire state except the extreme northwest and southern parts
of Georgia (Fig. 3.1). The following ETM+ scenes were used: (path/row; summer capture date;

winter capture date):
e 17/37; July 26, 1999; Nov. 15, 1999

e 17/38; July 26, 1999; Nov. 15, 1999
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Figure 3.1: Landsat Enhanced Thematic Mapper Plus scene boundaries. TM, Landsat Thematic
Mapper.

e 18/36; Apr. 30, 2000; Dec. 8, 1999

e 18/37; Apr. 30, 2000; Dec. 24, 1999

e 18/38; Apr. 30, 2000; Dec. 24, 1999

e 19/36; Sept. 10, 1999; Nov. 29, 1999

e 19/37; Sept. 10, 1999; Nov. 29, 1999

e 19/38; Sept. 10, 1999; Nov. 29, 1999

In this analysis we used only the three visible, one infrared, and two mid-infrared bands cap-

tured by the ETM+ sensor. We did not use the thermal band because of its 60-m ground resolution,
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which is inconsistent with the other information and gives information with too low of a resolution

for analysis of the buffer widths.

3.2.3 Georgia GAP land cover data

For classification of natural land cover types, we used the raster land cover data of the Georgia
Gap Analysis Program (GAP) obtained from the Natural Resources Spatial Analysis Laboratory
(NARSAL) located at the Institute of Ecology, University of Georgia (Natural Resource Spa-
tial Analysis Laboratory 1998). Using these data we evaluated areas classified as clearcut/sparse,
deciduous forest, evergreen forest, mixed forest, and forested wetland, masking out all other cover
type classes.

The GAP data encapsulate assessments of the conservation status of native vertebrate species
and natural land cover types throughout the United States. Their land cover classification, which
was derived from Landsat Thematic Mapper imagery from 1997 and 1998, contains descriptions of
18 general land cover types, including three forest cover types (deciduous, evergreen, and mixed),

clearcut/sparse areas, and forested wetlands.

3.2.4 Other GIS data

We used various GIS data obtained from the Georgia GIS Clearinghouse (2009), which serves
vector data, including administrative boundaries, roads, and rivers, and also provides raster ele-
vation data (Digital Elevation Model [DEM]/National Elevation Data Sets) for Georgia. The
hydrology data set includes rivers, streams, and other linear water bodies captured from United
States Geological Survey 7.5-minute topographic maps. It classifies the streams into perennial and
intermittent types. Perennial streams flow in a well-defined channel throughout most of the year
under normal climatic conditions. Intermittent streams flow in a well-defined channel only during
wet seasons. We complemented the vector stream data set with additional water bodies extracted
from the GAP data. We also identified trout streams using a Trout Streams of Georgia vector data

set from NARSAL.
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3.3 METHODS

Following the methodology initially described in Lowe et al. (2003), Zasada et al. (2003),

Cieszewski et al. (2005), and Iles (2009), we conducted the analyses in the following six phases:

1. The Image Segmentation phase converted the images to homogeneous polygons and classi-

fied them into coniferous, deciduous, and mixed timber stands.

2. The Image Classification phase classified the Landsat ETM+ images relative to pine basal

area using industrial ground data.

3. The FIA Information Distribution phase distributed the FIA information to the created poly-

gons using two alternative methods.

4. The Buffer Creation phase defined the buffers using two different buffer widths and three

slope classes.

5. The Data Intersection phase intersected the riparian and transportation buffers with the

ETM+ -generated polygon data sets.

6. The Buffer Area and Volume Calculation phase summarized the buffer areas and volumes

by cover type classes and summarized the results obtained.

3.3.1 Image segmentation

We used the GAP land cover data set to locate the timbered and nontimbered areas. The tim-
bered areas were further stratified into clearcut/sparse, deciduous, evergreen, and mixed forests
and forested wetlands. Then, we generated separate evergreen, deciduous, and mixed forest data

sets by masking out all areas in the ETM+ scenes that did not match the following criteria:

1. GAP-classified as evergreen forest for the evergreen ETM+ data to derive ETM+ signatures

for average, low, and high basal area set,
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2. stands based on the ground inventory data. The industry data contained a limited number of

large stands with low basal areas, so we

3. GAP-classified as deciduous forest or forested wetland for the deciduous ETM+ data set, or

4. GAP-classified as mixed forest or clearcut/sparse for the mixed ETM+ data set in the absence

of any other information about the subsequent regeneration on these areas.

Next, we converted the evergreen, deciduous, and mixed ETM+ data sets to homogeneous
polygons using an image segmentation module for ERDAS Imagine (ERDAS 2002) that was devel-
oped by the US Forest Service Remote Sensing Applications Center (Ruefenacht et al. 2002). This
module iteratively calculates the Euclidean spectral distance between the first pixel in the image (a

seed pixel) and other cells in the considered vicinity, that is,

7

Jgﬁj (S; — A7, (3.1)

where § the seed pixel’s ETM+ value; A the compared pixel’s ETM+ value; and i the ETM+
band (excluding the thermal band).

If the Euclidean spectral distance between two cells is less than or equal to a threshold value
specified by the user, the pixel is assigned as a member of the same group as the seed. The assign-
ment of pixels to this region is finished when there are no more pixels adjacent to this region that
satisfy the threshold criteria. When the region is closed, the next seed pixel is selected and the
process is repeated.

When vectorized, each image-segmented scene produced a data set with more than one mil-
lion polygons. Since there were too many polygons for our hardware and software to process,
we clipped the image-segmented ETM+ scenes to the county boundaries. In-GIS processing,
buffering, slope calculation, intersection, and so forth, described from this point on were applied on
the county-level data subsets (image classification was carried out and applied at the scene level).

We vectorized the image-segmented ETM+ data subsets and combined the evergreen, deciduous,
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and mixed ETM+ -generated polygon data. At the end of this phase we refined the final segmenta-

tion by merging all polygons smaller than 4.05 ha with larger, adjacent polygons.

3.3.2 Image classification

As a first-stage sample land cover type, we used a GAP data subset containing all coniferous lands.
We then sub classified these lands with respect to their basal areas using the ETM+ images and the
ground-measurement forest inventory data from our industrial partners. To accomplish the basal
area sub classification, we first needed to derive ETM+ signatures for average, low, and high basal
area to derive ETM+ signatures for average, low, and high basal area stands based on the ground
inventory data. The industry data contained a limited number of large stands with low basal areas,
so we needed to first derive the high basal area signature, which could be subsequently used in
generating the low basal area signature. To obtain the high basal area signature, we sampled ETM+
pixels within the high basal area stands and averaged their pixel values for bands 1-5 and 7. Next,
to define a measure of difference between different basal areas in terms of their associated spectral
signatures, we used the Euclidean distances defined by Equation 1.

We calculated the Euclidean spectral distances from the high basal area signature to all the
other considered cells. Assuming that the pixels spectrally furthest (as measured by Equation 1)
from the high basal area represent the low basal areas, we calculated the low basal area signature
as the average signature of the cells with the largest spectral distances from the high basal area
signature. To rank all the stands according to their various basal areas (not just low or high), we
fitted separate regression models of basal areas as functions of the Euclidean distances from the
high basal areas and as functions of Euclidean distances from low basal areas. We used these
models to of the Euclidean distances from the high basal areas and as functions of Euclidean
distances from low basal areas. We used these models to assign the classified basal areas to both
ETM+ scenes for which we had the industrial ground inventory data.

To apply a similar approach to a different unclassified ETM+ scene for which we did not

have the ground inventory data, we used the scene overlap areas, treating the classified basal area
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values as the ground truth data; we used the previously classified basal areas as if they were based
on ground measurements to calibrate new models for the entire unclassified scene. We repeated
these steps for all the unprocessed scenes adjacent to those ETM+ scenes that had been previously

processed/classified.

3.3.3 FIA information distribution

We distributed the FIA information throughout the ETM+ generated polygon data sets using two
separate approaches. In the first approach we iteratively assigned FIA information to the ETM+
-generated polygons using the actual FIA plot forest type, ETM+ -generated polygon forest type,
and proximity (distance) to each of the approximate FIA plot locations (the US Forest Service
truncated the plot location coordinates before making them available to the public). The FIA data
were distributed to the polygons until the sum of all the polygon area was within 99% of the FIA
plot’s per area unit expansion factor or until there were no more polygons to fill. We applied the

following data distribution criteria to each FIA point in sequence.

1. Assign FIA information to polygons that are within 1,000 m of the plot location and of the

same general type: evergreen, deciduous, or mixed.

2. Assign FIA information to polygons that are within 12,800 m of the plot location and of the

same general type: evergreen, deciduous, or mixed.

3. Assign information from evergreen FIA plots to evergreen or mixed polygons within 6,040

m.

4. Assign information from deciduous FIA plots to deciduous or mixed polygons within 6,040

m.

5. Assign information from mixed FIA plots to mixed or deciduous polygons within 6,040 m.

6. Assign information from any FIA plot to polygons of any type within 6,040 m.
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7. Assign information from any FIA plot that has not been fully distributed to polygons of any

type that have not been fully filled.

Our second method iteratively assigned FIA information to the ETM+ -generated polygons
using ETM+ -estimated pine basal area, polygon size, FIA volume per area unit, and the FIA per
area unit expansion factor. First we assigned the average ETM+ -estimated basal area (for the
areas that fell within the stand) to the evergreen polygons and ranked them according to basal area
from the highest to the lowest. We then ranked deciduous and mixed polygons, and then the FIA
plots. We distributed the FIA forest inventory information to the polygons in proportions relative

to polygon area and the FIA plot per area unit expansion factor according to the following criteria.

1. Assign information from evergreen FIA plots to evergreen

2. ETM+ -generated polygons and then to mixed and hardwood polygons if more area is

needed.

3. Assign information from deciduous FIA plots to deciduous ETM+ -generated polygons and

then to any unassigned mixed and hardwood polygons if more area is needed.

4. Assign information from mixed FIA plots to mixed ETM+ -generated polygons and then to

any unassigned deciduous or evergreen polygons.

3.3.4 Buffer creation

We converted DEM elevation values to slopes using the ArcInfo slope(grid) command and reclas-
sified them according to BMP recommendations into slight (0 -20%), moderate (2140%), and steep
(40%) (GFC 1999). We generated a mask for all water by first buffering the hydrology data set. We
buffered streams and rivers classified as perennial stream types and those streams classified as trout
streams in NARSAL’s trout data set by 4.6 m on each side. The process created a 9.2-m primary
stream/river mask. Then we buffered the intermittent streams by 2.3 m on each side, creating a 4.6-

m secondary stream mask. We vectorized the bodies of water contained in the GAP data set (all
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cells classified as “open water” or “coastal marsh”) and merged them with the stream/river water
masks to create the total water-mask polygon dataset. We considered all areas within this mask to
be water.

We vectorized the slope data and incorporated it into the water masks by intersection. Then we
buffered the intersected water mask data set, excluding the area existing in the mask, following the
criteria in Table 3.1. Buffers were stored in the GIS software (ArcView and ArcInfo) as a separate

information layer (Fig. 3.2A-C).

Table 3.1: Water buffer widths according to Georgia’s current Best Management Practices.

Stream type Slope Prim. Buffer (m) Sec. Buffer (m)
Trout All 30.5 30.5
Perennial Slight (<=20%) 12.2 30.5
Moderate (21%-40% 21.3 30.5
Steep (>40%) 30.5 30.5
Intermittent Slight (<=20%) 6.1 15.2
Moderate (21%-40% 10.7 15.2
Steep (>40%) 15.2 15.2

In the beginning, we wanted to use the GA transportation development data available from
the Georgia GIS Clearinghouse and assume a certain width of each road according to road clas-
sification. However, to maintain consistency with the land cover stratifications, we used GAP as
the main (basic) source of information about roads. We extracted a transportation class from the
GAP data set and stored it as a separate information layer. To make sure that all major roads were
included in our analyses, we compared the resulting road class with the road development data
for the state. This revealed that the transportation class in the GAP data closely corresponded with
the publicly available data, so we chose to use the GAP transportation class as our sole source
of road information. We defined primary and secondary road buffer widths of 12.2 and 30.5 m,

respectively.

3.3.5 Data intersection

The GAP land cover classes and ETM+ -generated polygon attributes were incorporated into the

hydrology and transportation buffers by intersection (Fig. 3.2D-F). This process produced data
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Figure 3.2: Buffer creation and intersection: (A) merged vector hydrology and raster GAP data sets;
(B) buffered with respect to water body class and elevation data; (C) water masked out. Resulting
buffers were intersected with the polygon data set containing distributed FIA information (D,E),
giving final buffer data set with incorporated forest inventory data (F).
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sets similar to those created when the hydrology masks were intersected with the reclassified slope
data. During the intersection process, all attributes contained in both data sets were maintained.

Table 3.2 contains the complete list of the 12 analyzed intersections.

3.3.6 Buffer area and volume calculation

We calculated the total sum of forested area inside the buffers for all regimes. We also calculated
the area of various forest classes for each scenario. Division into classes depends on the regime.
In the scenario based on the GAP data, we were able to calculate detailed area distribution by
GAP classes; we have area of deciduous, evergreen, and mixed forests; forested wetlands; and
clearcut/sparse. Because in the ETM+ -based approach we used the forest inventory data, we were
able to calculate detailed area statistics by forest types, which were defined based on the FIA data.
Using this approach, we can also calculate detailed statistics for any combination of attributes
included in standard FIA inventory reports (e.g., Thompson 1998).

We combined the area summaries with the volume data. For each broad forest cover type in
the GAP-based scenarios, we calculated average volume per area unit at the state level using the
FIA database (Hansen et al. 1992, Miles et al. 2001) and multiplied it by the number of hectares
in a given class. Areas and volumes were compared with the latest results of the FIA program
(Thompson 1998). For the Landsat-based regimes, we calculated average volume per hectare of
distinguished forest types at the county level. The total volume within buffers was calculated as a

sum of volumes of various forest types in all counties.

3.4 RESULTS AND DISCUSSION

The derived results showed consistently higher estimates of the areas and volumes in the considered
buffers than the estimates reported by Zasada et al. (2003). The models based on the Euclidean
spectral distances from the high and low basal area signatures to all the other considered cells
had a high R2, varying between the scenes from 80% to 82% for the ETM+ scenes, rows 37 and

38 in path 19 (Tab. 3.3; Fig. 3.3). The R2 values associated with the fittings of the models for
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basal areas on the other adjacent scenes varied from 80% to 93%. Table 3.4 summarizes the results
of the regression models applied to all the adjacent scenes. The high R2 values initially seemed
surprisingly high, but it soon became apparent that they were mainly a result of pixel averaging,
which in turn made the final models much less accurate for estimating basal area for the remaining
pixels. The results obtained from all three described methods of water and road assessment are very
similar (Tabs. 5 and 6). This was not a surprise since we used the GAP data set to stratify Landsat
images and eliminate nonforest areas. However, the territories occupied by stream and road buffers
determined by different scenarios were not identical because the GAP forested area was larger
than the FIA forested area, and therefore, the different scenarios associated different areas with
unassigned forest cover types. Volumes of the forests in the buffers also show very close values,
even though they were calculated using completely different approaches. The differences in the
results from different methods may likely be attributed to additional or more detailed information.
The scenario based on the exclusive use of GAP data resulted in the maximum SMZ areas and their
volumes by broad GAP cover types. In this scenario the stream buffers established according to
Georgia’s BMPs occupy almost 396,460 ha, which makes up 4.01% of the total forested area of the
state. Assuming all buffer widths of 15.2 m for intermittent and 30.5 m for perennial streams, we
estimated that 8.65% of forested land would be occupied by the buffers. Forests in the determined
buffers maintain 4.32% and 9.27% of Georgia’s total inventoried volume (Tabs. 3.5 and 3.6).
Table 3.3: Basal area-spectral distance regression results, model parameters (a, b, c), standard
errors of regression (SE) and adjusted R2, for the fitted Hossfeld-based (Y a/ 1 b/(X d)c ) and
Richards-based (Y a 1 exp( bX) c¢) models.
ETM+ scene ~ Base Model a b c d N SE R2

Path 19, Row 37  Hossfeld  378.327 10.394 0.722 13.516 14 19.2 0.82
Path 19, Row 38 Richards  162.808 0.273 71.849 N/A 15 21.11 0.8

Area estimates differ for the various methods used in this study because the forested area
defined by GAP is greater than the forested area estimated by FIA. In addition, buffer area dif-
fers due to the method by which the FIA information was distributed. In many instances at the

county level, GAP area estimates for evergreen, deciduous, and mixed cover types exceed those
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Figure 3.3: Predicted basal area as a function of euclidean spectral distance from a ’low basal area”
signature for Enhanced Thematic Mapper Plus scene. (A): Hossfeld model (Basal_Area = a/(1 +
b/(E_Distance —c)?) fitted to data from scene in path 18, row 37; (B): Richards model (Basal_Area
= a(1 — exp(-b[E_Distance®])?) fitted to data from scene of path 19, row 38. BA, basal area.
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Table 3.4: Adjacent bsal area spectral distance regresion results.

ETM+ scene Parent scene Adjusted R?  Standard error
Path 19, Row 36 Path 19, Row 37 0.82 19.2
Path 18, Row 36 Path 19, Row 36 0.8 21.11
Path 18, Row 37 Path 19, Row 37 0.88 22.49
Path 18, Row 38 Path 19, Row 38 0.89 16.23
Path 17, Row 37 Path 18, Row 37 0.93 10.67
Path 17, Row 38 Path 18, Row 38 0.86 13.01

from FIA. In these cases, not all GAP-stratified ETM+ -generated polygons were populated with
FIA information. Those polygons not populated with FIA information are not represented in the
buffer summary data sets (Fig. 3.4).

Results obtained for the scenario based on current BMP are smaller than the numbers coming
from studies by Cubbage and Woodman (1993) (4.8% and 5.3%), which might be a result of the
authors of the cited study using different assumptions about buffer widths and a different (a spatial)
approach. The area of the buffers in primary SMZ zones (7.09%) seems to correspond with our
results from the scenario assuming all buffers having 15.2/30.5-m width.

The area of potential road beautifying strips is very similar to the area of stream buffers. The
average volume of stands inside the road buffers is lower than those in the stream buffers, which
makes sense considering that the riparian forests grow on better sites and contain, in general, older
stands.

This study demonstrates that the potential stream management zones and the road beautifying
buffers could occupy a significant portion of Georgia forests. The area in the case of the enhanced
widths of these buffers may exceed 15% of total forested area in the state, which is a larger impact
than generally expected. Average volume per hectare in these areas is higher for water buffers
than for road buffers, which is expected since site quality typically increases with proximity to

water and reduced elevation. The dominating presence of deciduous forests in water buffers is also
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Figure 3.4: Differences in the buffer area estimates by the two methods applied in this study, which
use different models for distributing the FIA data on the GAP-based area that is greater than the
FIA defined area. Scenario 1 (top image), all four polygons were distributed FIA information.

Scenario 2 (bottom image), the upper-right polygon was not assigned any FIA information, and
therefore, its area was not incorporated into the final acreage tally.
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expected due to the high productivity of the bottomland hardwoods and forested wetlands. On the

other hand, it is not clear why evergreen forests dominate in road buffers.

3.4.1 Policy and economic implications

SMZs and road beautifying buffers (RBBs) will likely have some impacts on timber production
returns. Their magnitude will depend on the scale at which SMZs and RBBs are implemented
and on local site conditions. Setting aside protection zones will at least delay harvest, which may
involve some immediate costs such as lost income from timber sales. However, as long as partial
timber harvest is permitted, delaying harvest may also provide some market benefits as landowners
diversify their wood production and let portions of their trees grow to larger sizes and more valuable
product classes. Furthermore, at least in principle, setting aside protection zones will increase
management costs. However, areas containing ?owing streams in gullies and ravines are often of
marginal value for timber production, and timber management there would make little sense under
any conditions. In those cases, increases in management costs would be small, especially after
the protection zones are initially laid out. In cases where protection is extended to wider areas,
including intermediate streams, management costs could increase quite substantially.

A recent survey of the implementation of forestry BMP in the southern region (Southern Group
of State Foresters 2008) indicates relatively high implementation levels. For all southern states,
SMZ implementation rates ranged from 76% to 99% over the period from 1997 through 2007.
The most recent round of surveys indicates an average implementation rate of 88%. In cases where
multiple surveys were available, positive trends were noted in SMZ and stream crossing implemen-
tation rates. The relatively high rates of voluntary compliance indicate that current SMZ require-
ments are reasonable and offer a cost-effective way to protect our water resources. The case is
much less established for RBBs, in terms of both management costs and purported environmental

benefits.
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3.4.2 Using incompatible data to improve high-resolution inventory information

It is a known statistical fact that data from different sources with differing statistical and sampling
characteristics cannot be pooled together for the purpose of deriving a new, unbiased estimator.
This fact is the primary factor contributing to the scarcity and high cost of natural resource infor-
mation. Although there is abundant information from various sources, such as atmospheric, soil,
geographic, remote sensing, and a multitude of various independent special studies sampling data
for different variables, the costs of forest inventories remain nearly as high as they would be in the
complete absence of any auxiliary information. Most of the research on improving natural resource
assessment concentrates on finding new measurement methods and technologies. A typical tactic
for increasing inventory accuracy is to increase sample and plot size. The study described repre-
sents an unorthodox approach in this context in that it concentrates its efforts on increasing the use
of various available data and addressing the problems caused by their incompatibilities according
to the methodology described in Cieszewski et al. (2005) and Iles (2009).

Using the proposed methodology of combining information from various sources of satellite-
based images with FIA data, we are able to provide more detailed high-resolution inventory statis-
tics, which the large-area FIA inventory is not designed or intended to provide. In this study we
demonstrated that the use of a variety of data sources with differing statistical and sampling char-
acteristics can be combined to derive improved and more extensive results as compared with the
alternative of using only similarly designed but much more limited data sources. The approach
presented is not an alternative to the FIA inventory but rather an extension or supplement, which
can offer much added value to the large area survey. The approach presented uses information
pooled from various incompatible data sources, which is then conditioned to have a mean equal
to another, unbiased mean. This approach to forest inventory was proposed by Kim Iles and first
implemented in Iles’ design of the British Columbia forest inventory (Iles 2009). Subsequently, this
idea was implemented by a number of forest industry members and by the Fiber Supply Assess-

ment program (Cieszewski et al. 2004a) at the Warnell School of Forestry and Natural Resources,
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University of Georgia and used in this and various other research projects (Cieszewski et al. 2005,

Meng and Cieszewski 2006, Meng et al. 2009) in the Fiber Supply Assessment program.

3.4.3 Applicability and potential use of the results

The results presented here provide a reasonable measure of the area and timber volume contained
within Georgia’s riparian zones. Such information will be helpful to forest managers in improving
the effectiveness of their management planning. The fact that all the three approaches applied in
this study produced similar results, which were also quite similar to the results reported by Zasada
et al. (2003), even though the latter seemed to have a slight negative bias, suggests that the problem
is robust and results should be dependable. This does not mean that there is no difference between
using different methodologies. The methods used in this study were the most detailed and produced
slightly but consistently higher estimates than the cruder methods used by Zasada et al. (2003),
which suggests that the latter methods may have a consistent bias. Ultimately, a recommendation
for follow-up research is that when suitable data or funding becomes available, efforts should be

directed toward assessing the accuracy of the described methods and their potential biases.
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CHAPTER 4

MEAN BALANCED, HIGH RESOLUTION FOREST INVENTORY OF GEORGIA

4.1 INTRODUCTION

Under a multi-use sustainable management regime, the provision of timely, reliable, and accurate
information about forests, their forested ecosystems, and adjacent areas is essential for maintaining
their ecological balance and sustained productivity. This is especially important where forests tend
to be fast growing and changing, highly fragmented in area and ownership, and the demand for
their wood products is high, such as those in Georgia and other southeastern states. However great
the need though, there is a lack of detailed stand-level information for large portions of this region.

The United States Forest Service Forest Inventory and Analysis (FIA) program collects forest
information and produces regular reports on the condition of forests throughout the country. In
Georgia, the FIA data is used in various large area inventory based analysis ranging from carbon
studies to tree mortality analysis ((Van Deusen 2010; Meng and Cieszewski 2006). The inventory
provides reliable, unbiased estimates suitable for reporting across large areas (Blackard et al. 2008;
Walker et al. 2007; Wang, Lu, and Haithcoat 2007; Sivanpillai et al. 2005; Wayman et al. 2000;
Chojnacky 1998). However, since the large-area FIA inventories are not suitable for applications
to smaller areas, there is still a compelling need for higher-resolution forest information. A more
suitable source for this information is compiled by the local agencies familiar with those areas
whose intimate knowledge is needed for their management. Forest product industry and other large
area forest owners typically maintain their own private inventories that are more detail oriented and
suitable for small area, stand level, forest management.

Nearest neighbor methods are an established means to generate estimates of forest volume
(Trotter, Dymond, and Goulding 1997; Kajisa et al. 2008; Franco-Lopez, Ek, and Bauer 2001;

McRoberts 2012), basal area (McRoberts et al. 2007; Holmgren et al. 2000; McRoberts 2008;
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Meng, Cieszewski, and Madden 2009; Sivanpillai et al. 2006), biomass (Gjertsen 2007; Tomppo et
al. 2008; Reese et al. 2010), and carbon (R. McRoberts, Tomppo, and Nsset 2010; Labrecque et al.
2006; Blackard et al. 2008; Fournier et al. 2003), to only name a few. This method’s popularity, for
some part, stems from its intuitive implementation, the ability to simultaneously generate estimates
for multiple variables using the same parameters usually the number of nearest neighbors K, and
the ability to make use of noisy data for prediction. However, as Iles (2010) demonstrates and
others have reported in their results (R. E. McRoberts 2008; Trotter, Dymond, and Goulding 1997;
McRoberts and Tomppo 2007; Hilker et al. 2009; Magnussen, Tomppo, and McRoberts 2010), the
nearest neighbor methods are inherently biased, thus the risk cannot be ignored.

The total-balancing concept proposed by Iles (2009) is the foundation of our approach to
addressing the issue of bias in our forest inventory for the state of Georgia. In this approach,
the large-area FIA information and local forest inventories are used in tandem to develop a spa-
tially explicit inventory that maintains the large-area unbiased properties of the FIA and the local
precision of the forest industry inventories, even though they are traditionally viewed as having

incompatible variances.

Objectives

The purpose of this research is twofold. First, I generate a broad area, high resolution, spatially
explicit inventory for Georgia that is balanced to an unbiased mean volume per acre derived from
the FIA. Second, I demonstrate the potential gains in local precision we can obtain by fusing local

inventory information with the explicit inventory while maintaining overall balancing.

4.2 DATA

4.2.1 Study area

The study area for this research is the state of Georgia (Fig. 4.1). As a whole, the state of Georgia is
a typical southern state with vast natural resources. It has more than 24 million acres of forestland,

of which approximately 45% are conifer, 42% are deciduous, 12% are a mixed forest type and the
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Figure 4.1: The 12 Landsat WRS2 scenes covering the state of Georgia.

remaining classified as non-stocked. Adding to the complexity of the landscape, an approximate
650,000 non-industrial landowners hold seventy-five percent of these acres whose average parcel
size is decreasing (Georgia Forestry Commission 2008).

There are distinct differences in the forest composition moving from north to south in the state.
The northern parts are dominated by hardwood species (Fig. 4.2A) (Tab. 4.1) . The forests tran-
sitions to a conifer-dominated ecosystem to as you proceed southward and to the east (Fig. 4.2B)

(Tab. 4.1).

&9



Deciduous Volume / Forestland Acre Conifer Volume / Forestland Acre

[ ILowest
-M_edium
A -Hithest B

Figure 4.2: Total volume summarized by FIA regions for the A) coniferous forestland, and B)
deciduous forestland for the state of Georgia.

Table 4.1: Forestland area and total volume summarized by FIA regions reported by the FIA.
Conifer Forest Mixed Forest Deciduous Forest
Forestland Volume Forestland Volume Forestland
FIA Region (1000 Ac) (Mil. ft}) (1000 Ac) (Mil. ft}) (1000 Ac) (Mil. ft?)

Northern 564 1,202 467 1,075 1,933 4,401
North Central 1,118 2,252 435 778 1,679 3,717
Central 3,675 5,877 842 1,144 3,067 5,092
Southeastern 4,361 6,327 770 970 2,742 4,147
Southwestern 1,404 2,068 360 452 1,103 1,719
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4.2.2 Satellite imagery

The initial cubic-foot per acre estimates are based on Landsat 5 Thematic Mapper satellite imagery.
I attempted to attain imagery from the leaf-off season early in the year, leaf-on from the summer
months, and another leaf-off image from late in the year, however, due to cloudy conditions, it was
not possible for all scenes (Tab. 4.2). I acquired two to four cloud-free images for each of the 12
scenes that wholly or partially cover the state. Two UTM zones, zone 16 and zone 17, overlap the
state. To facilitate processing, I created a custom coordinate system definition that shifted UTM
zone 17 west 500,000 meters and projected each image to that custom UTM zone.

Table 4.2: Acquisition dates of the Landsat 5 satellite imagery used in the volume estimation pro-
cesses.

™ ™ 1 ™ 2 T™ 3 ™ 4
Path 17, Row 37  4/11/2010  9/2/2010 12/7/2010 NA
Path 17, Row 38  3/13/2010  6/14/2010  12/7/2010 NA
Path 17, Row 39  6/14/2010  10/4/2010 11/21/2010 NA
Path 18, Row 36  4/18/2010  6/21/2010  11/12/2010 NA
Path 18, Row 37  4/2/2010  10/11/2010 12/14/2010 NA
Path 18, Row 38  1/12/2010  5/20/2010 10/11/2010 12/14/2010
Path 18, Row 39  2/13/2010 10/11/2010 12/14/2010 NA
Path 19, Row 36  11/16/2009  3/24/2010  10/2/2010  11/19/2010
Path 19, Row 37  2/20/2010  7/30/2010  11/19/2010 NA
Path 19, Row 38  2/20/2010  7/30/2010  11/19/2010 NA
Path 19, Row 39  2/20/2010  10/18/2010 11/19/2010 NA
Path 20, Row 36  1/29/2010  10/9/2010 NA NA

4.2.3 Inventory data

The Forest Service, in an attempt to maintain the integrity of each plot, does not release cruise plot
coordinates to the public. However, they do allow their use at one of their secure data centers. I
processed the satellite imagery using their field measured GPS locations at the Southern Research
Station in Knoxville, TN in December of 2010 I used a series of arcpy (ESRI 2010) scripts to
extract the TM band 1 — 5 and 7 pixel values for each FIA cruise locations for all images used in

this study (Tab. 4.2).
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A fundamental aspect of the FIA’s measurement protocol is the fact that measured plots shall
not be given preferential treatment by the inventory crew or the public. The landowner is permitted
to manage the forest as they see fit. Thus, there is the possibility that the database may contain
outdated information about a plot since any changes to the land that occurs after the inventory are
not recorded until the next measurement cycle.

Absent of the plot locations outside the FIA’s data center, I was unable to perform a visual
inspection of the TM data at each plot center. However, 1 did evaluate the spectral information
stored in the training sample list using a series of pseudo-image composites. I used the following

steps to generate the pseudo-images for each scene:

1. sort the training samples according to their NDVI (Eq. 4.1) values,

2. reorganize the data into a square grid that stores the information from one TM band,

3. repeat step 2 for each spectral band in the training sample list,

4. import each band into ArcGIS, and generate the pseudo-image using the Composite Bands

command, and then

5. repeat steps 2 and 4 for the NDVI values.

NIR - RED
NDVI] = —————— 4.1
v NIR+ RED’ @D

where: NIR is the near-infrared layer (TM band 4), and RED is the red layer (TM band 3) The
pseudo-image shown in figure 4.3 displays representative pixels from the actual TM data, yet they
are sorted (left to right) by their NDVI values. By visual inspection of the actual TM and NDVI
images, and with the aid of the 2010 NAIP aerial photography, I was able to loosely define the cover
types represented in sections A — G as seen in figure 4.4 . The pixels in sections A) and B) were
captured in areas void of green vegetation such as a cultivated field (Fig. 4.4) or a place inundated
with water. Near the other end of the NDVI spectrum, the samples in frame F) (Fig. 4.3) are sites

captured in mature forested areas with full canopy closure (Fig. 4.4). The sites in frames C through
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Figure 4.3: Pseudo-Landsat image generated from FIA sample sites representing A) bare ground
sites, B-C) the transition to forest, D-F) the transition to a closed canopy forest, and G) cropland.

E contain sample sites that include old fields, young pine plantations, and thinned forests. Frame G
contained the samples with the highest NDVI values. These are cropland sites with abundant, low-
lying, fast green vegetation. I used the forested/non-forested thresholds determined by this process
for each scene to assess which, if any, FIA plots had been harvested between the time a plot was
measured and the capture of the late-winter TM image. I assigned those plots a volume per acre
(ft®) of zero.

I used the Forest Vegetation Simulator (Wykoff et al 1992, Dixon 2002) to project the FIA field
measurements to a common end-of-year 2010. I implemented the SN variant and accepted the data
processing defaults. The projected dataset contains 6,367 total plots that I have classified as either
deciduous, mixed, or evergreen according to their predominant species (Tab. 4.3). There were 150

non-stocked and 2,122 non-forested plots within the state that were not used in the analysis.

93



Figure 4.4: Visually assessed A-C) non-forest, D-F) sparse forest, and G-I) closed canopy sites as
they relate to samples in the J) pseudo-Landsat image (Fig. 4.3 and how they appear in the 2010
color-infrared NAIP (A, D, G), the winter TM (B, E, H), and the NDVI (C, F, I) images.

Table 4.3: Summary of age, bsal area, and cubic-foot volume per acre for all FIA ground measure-
ments

Hardwood Mix Pine Non-stocked No Forest

# of Stands 1,628 634 1,833 150 2,122
Age Mean 48 38 27 3 0
St. Dev. 30 24 17 2 0
Min. 0 1 0 0 0
Max. 149 162 115 5 0
Basal Area Mean 98 95 95 0 0
St. Dev. 53 45 46 0 0
Min. 0 0 0 0 0
Max. 412 263 430 0 0
Vol / Acre (cu.ft.) Mean 2,060 1,789 1,668 0 0
St. Dev. 1,569 1,284 1,189 0 0
Min. 0 0 0 0 0
Max. 11,585 6,232 8,882 0 0

94



I stratified the plots further according to which WRS2 scene it was located. Since there is
overlap among the scenes in both a north-south and east-west direction some plots were used
multiple times in different scene-level mean calculations (Tab. 4.4). These are the mean cubic feet
volume per acre values that I used in the scene-level scaling process to generate the estimates.

These compiled data are the fraining samples used in the volume estimation process. The data
files, one for each TM scene, includes FIA plot age, basal area per acre (BA), cubic-foot volume
per acre (CF), county FIPS code, the TM scene identifier, and the TM spectral summaries that were
recorded at each plot center.

We obtained 918 conifer forest polygons and associated stand summary information from our
various industrial partners with holdings in WRS2 path 18, row 37. I visually inspected each area
on the early and late in the year leaf-off TM and on the 2010 USDA Farm Service Agency National
Agriculture Imagery Program aerial photography to ensure the data did not include any partially
harvested stands. I manually recoded the stand summaries to zero for any stand that reflected a
total harvest. Individual stand age, volume and basal area measures were projected forward to a
common 2010 end-of-year timeline. The final industrial data set contained 47,469 acres.. Their

ages ranged from zero to 61 and average volume per acre was 2,261 ft3.

4.2.4 Land cover

I used a composited 2008 Land Use Trends Land Cover of Georgia (GLUT) (NARSAL 2006) and
NLCD 2006 Land Cover (NLCD) (USDOI 2006) to initially stratify the land base into generic
conifer, mixed forest, and deciduous forest types. The composite was created using a raster inter-

section where

GLUT/NLCD = GLUT %1000 + NLCD. 4.2)

This procedure outputs a single raster layer raster whose values represent the input from both
data sets. For example, a cell whose output is “31042” represents an area classified by GLUT as

clearcut, class 31, and classified by NLCD as evergreen, class 42. The overlay resulted in almost
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Table 4.4: Summary of FIA plot grond measurements for the 12 TM scenes encompassing the state
of Georgia.

Volume / Acre (ft?)
Path /Row Cover Type # Plots Mean St.Dev. Min. Max.
17737 Pine 358 1,794 115 0 8,134
Mix 88 1,937 245 48 5,022
Hwd 217 1916 174 0 11,118
17738 Pine 682 1,590 77 0 8,134
Mix 138 1,486 168 0 6,232
Hwd 366 1,853 132 0 9,345
17739 Pine 264 1,390 109 0 4,978
Mix 49 1,385 265 0 4,333
Hwd 117 1,746 240 0 11,585
18736 Pine 107 2,153 252 0 8,882
Mix 79 2,427 319 48 5,976
Hwd 267 2,488 176 0 9,737
18 /37 Pine 613 1,777 86 0 8,134
Mix 230 1,798 146 0 6,225
Hwd 481 1,955 115 0 11,118
18/38 Pine 689 1,508 71 0 8,134
Mix 170 1,449 144 0 6,225
Hwd 478 1,812 114 0 11,053
18/39 Pine 183 1,453 129 0 4,214
Mix 50 1,436 258 0 3,953
Hwd 106 1,605 202 0 5,003
19/36 Pine 143 1,982 210 0 8,882
Mix 143 2,334 224 37 5976
Hwd 461 2,452 130 0 9,737
19/37 Pine 345 1,791 116 0 7,324
Mix 166 1,808 170 0 5,946
Hwd 358 2,070 132 0 7,826
19/38 Pine 253 1,503 113 0 5,373
Mix 75 1,294 188 0 4,836
Hwd 218 1,811 164 0 9,203
19/39 Pine 37 1,546 310 0 3,939
Mix 7 1,634 769 590 2,692
Hwd 25 1,795 447 0 3,946
20/ 36 Pine 84 1,641 225 0 7,324
Mix 49 1,993 330 37 3,839
Hwd 148 2,172 207 0 5,754
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200 unique combinations. I reduced the number of classes by reclassifying the cells using the
cross-matrix shown in Table 4.5. I assumed the cells classified by GLUT as a clearcut would
ultimately result in an evergreen forest. I assigned all cells classified as evergreen by one agency
and deciduous by the other to the mixed forest type. The classes not listed in the table (i.e. urban,

GLUT cropland/pasture, and water) were used as a non-forest mask.

Table 4.5: Reclassification matrix used to combine the GLUT and NLCD land cover products.

2008 GLUT

Clear-  Decid- Ever- Forested Nonforest

NLCD 2006 | cut(31) uous(41) green(42) Mixed(43) Wetland(91) Wet.(93)
Deciduous(41) | Ever. Decid. Mixed Mixed Decid. NA
Evergreen (42) | Ever. Mixed Ever. Mixed Ever. NA
Mixed (43) Ever. Mixed Mixed Mixed Mixed NA
Evergreen (52) | Ever. Mixed Ever. Mixed Ever. NA
Clearcut (71) Ever. Decid. Ever. Mixed Ever. NA
Crop (81, 82) Ever. Decid. Ever. Mixed NA NA

Wetland (90) Ever. Decid. Ever. Mixed Decid. Decid.

Statewide, there were a total of 24,079,775 acres of forested land represented in this dataset.
Adhering to the above re-classification scheme, 44% were labeled as conifer, 18% as mixed, and

37% assigned to deciduous class (Tab. 4.6).

Table 4.6: Area comparison with the FIA and summary of the various types contained in the com-

bined GLUT/NLCD.
FIA GLUT/NLCD Pct. GLUT/NLCD Area(ac)

NAME Area (ac) Area (ac) Diff. (%)  Conifer Mixed Decid.
Central 7,583,550 7,307,525 3.6% 3,083,015 1,708,000 2,516,510
North Central 3,231,760 3,428,687 -6.1% 1,230,685 588,812 1,609,190
Northern 2,964,410 3,079,595 -3.9% 435,484 753,301 1,890,810
Southeastern 7,873,220 7,485,480 4.9% 4,553,737 597,463 2,334,280
Southwestern 2,867,720 2,777,584 3.1% 1,357,839 597,729 822,016

4.2.5 Software

I used a variety of commercial software and in-house programs to process the data. Image co-

registration, data projection, land cover re-classification, and data cataloging tasks were performed
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in ESRI’s ArcGIS (ESRI 2010) and ERDAS’ Imagine (ERDAS Inc., Norcross, GA). I converted
the data layers among common GIS image formats and generic binary formats using the GDAL
interfaced with Python (Van Rossum 2008) and Perl (The Perl Foundation). I developed custom
programs written with Lahey/Fujitsu LF95 v. 8.1b Fortran compiler to implement the nearest-

neighbor processing, data summarization, and image generation.

4.3 METHODS

4.3.1 Initial KNN estimation based on the FIA data

In this study, the volume prediction for a pixel was determined using:
1,
Bi= 13Ul 4.3)
j=1

where y; is the predicted value for pixel i and {y;'-, j=1 2, ... k} are the kspectrally nearest
response values stored in the training list. This process can be modified using a weighting factor
which is commonly based on the distance between pixel i and the location of the K neighbor(s). In
this study, however, I did not implement a weighting factor since I did not have access to the plot
locations outside of the FIA data center.

I determined the number of near neighbors for each scene using leave-one-out cross-validation
analyses. Using the FIA training list data as input, I generated volume estimates for K=1 to 20. In
this process, I limited the nearest neighbor selection to entries with the same GLUT/NLCD cover
type. Following the recommendation of McRoberts (2002), the optimal K was selected as the value
of k that produces an RMSE (Eq. 4.4) no larger than 2.5% of the minimum (RMSE value across

the same range of K).

b P A,
RMSE = \/ iz (0 9" (4.4)

n

where: y; is the ground-observed, assumed to be true, measurement for sample i, y; is the predicted

value for sample i, and 7 is the total number of samples.
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The process of generating volume per acre (ft®) estimates for pixel i initiated with the selection
of the K-nearest entries in the training list. Nearness in this study refers to the Euclidean spectral

distance and is calculated using equation 4.3. The process was executed with the following steps:

1. calculate ESD from each forested pixel i to each entry in the training list having the same

GLUT/NLCD cover type,
2. use Fortran’s intrinsic minval and minloc to find the first closest neighbor in the list,

3. store the volume per acre value associated with the spectrally nearest entry in the training

list and mask it from the list of spectral distances,
4. repeat 2 & 3 K times, and

5. generate the KNN-based volume per acre (ft*) using equation 4.3.

An advantage of the KNN method is the ability make many estimates for a single location as
long as the information is available in the training list. The additional information I stored for each
pixel included the mean age, mean basal area, mean spectral distance and a blended land cover.
The land cover was created by storing the majority GLUT/NLCD forest type. A mixed type was
assigned in cases where there was no majority.

In step 1 of the initial estimation process, I use GLUTNLCD land cover data is used to influ-
ence the nearest neighbor selection by limiting the available entries in the training list to only those
with similar cover types (conifer, mixed, or deciduous). While the GLUT and NLCD were the
most current state and/or national scale data sets publically available, they were not current to the
dates of the TM used in this study and required fine-tuning to bring them up to the current time-
line. I transformed the late-season TM to NDVI (Eq. 4.1) and generated two derivatives. The first
(NDVIF) contained the NDVI information for all forested pixels represented in the GLUTNLCD.
The remaining non-forested pixels were masked out. The second derivative (NDVIy ) had only
NDVI information for the non-forested pixels represented in the GLUTNLCD and the forested

pixels were masked out.
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I used a series of thresholding and visual inspections of both NDVI derivatives to create a
current timeline 1) forested mask, and 2) land cover layer (LCOV). I removed the areas from the
forested mask that were originally classified as a forest, yet through visual inspection of the NDVIg
data, were determined to be non-forested. On the other hand, I added to the forested mask the areas
I determined to be wrongly classified as non-forest in the NDVIy data. I assigned the forested

pixels the blended land cover label to create the LCOV layer.

4.3.2 Balancing to the FIA mean volume per-acre

The objective of the mean balancing process was to adjust individual pixel estimates up or down
so the TM-based mean equals the mean derived from the FIA plot measurements. Throughout
the iterative process, pixels with the largest Euclidean spectral distance are adjusted first. In each
subsequent pass, the ESD threshold for pixel selection and adjustment is lowered to include a larger
number of pixels. Some pixels, especially those with a large ESD, may be adjusted multiple times
while it is possible others won’t be adjusted at all. Conifer, mixed, and deciduous cover types as

denoted in LCOV were processed separately using the following procedures:

1. calculate the TM-based mean volume per acre (VAC.) , include only cells attributed with

the current LCOV type (conifer, deciduous, or mixed);

2. calculate the mean volume per acre of the FIA plots (VACp) attributed with the current

LCOV type (conifer, deciduous, or mixed);

3. select the pixels equal to or larger than the ESD threshold, and either

(a) adjust the selected pixels by the ratio of the maximum FIA plot volume per acre to the
maximum estimated volume per acre represented in this set of pixels if VAC, is less

than VACp, or

(b) decrease the selected pixel values by 2.5% if VACy, is greater than VACp;

4. recalculate VAC,,
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5. repeat steps 3 and 4 until VAC, is within 2% of VACp, and a

6. final rescale all pixels by the ratio of VACr to VAC/, to ensure the mean volume per acre

pixel estimates for the scene equals the FIA’s estimate for the scene.

I scaled the secondary age and basal area estimates to maintain their original slope relationships
with volume per acre (ft®). I used equation 4.5 to determine the slopes based on the observed
measurements in the FIA data.

yi = B+ B1X1i (4.5)

where y is the scaled estimate for age or basal area, b is the slope parameter, bl is the slope parm
for hardwood
The slope parameters B1 and B2, were then applied based on the amount each volume per acre

estimate changed (Eq. 4.6)
y — hat = (deltacuft) * B + B2, (4.6)

where: y-hat is the estimated age or basal area measure, delta cuft is the amount a pixel’s estimate

changed from the initial KNN and mean balancing process, and B1 and B2 are slope parameters.

4.3.3 Fusion of industry and initial KNN estimates

I demonstrate the fusion of industry and the FIA data on the central Georgia, path 18, row 37 scene.
The goal of this process was to equalize the local estimates from the initial KNN process with the
industry cruise reports. Equalization was carried out on a stand-by-stand basis, where only the
pixels within one of the industry stand boundaries were processed. All other areas received their

initial KNN estimate and ESD measure. For each industrial stand individually, I:

1. determined the mean of the initial KNN estimate, then

2. raised or lowered the individual KNN estimates within that boundary by the ratio of the

industry mean to the mean from step 1, and
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3. reset the ESD measure for each of the pixels and then I

4. re-ran the mean balancing routine.

By resetting the ESD measures within each stand to zero, I reduce the chance, but do not

eliminate the possibility, an individual estimate will be adjusted during the mean balancing process.

434 Assessment

All records in the training list were used in the volume estimation processes, thus no samples were
withheld for accuracy assessment. I used Leave-one-out cross-validation to determine the optimal
K for each scene. I present the RMSE associated with each optimal K as a measure of accuracy
of the initial KNN estimation process. Since I only had access to the FIA plot locations inside the
Forest Service’s data warehouse, I was unable to assess the predictions in the GIS software. I devel-
oped secondary routines to track the would-be changes to the training list entries assuming they
were actual pixels which enabled me to calculate the root-mean squared error (RMSE) (Eq. 4.4).
Additionally, I calculated mean absolute errors (MAE) (Eq. 4.7)for the mean balancing results.
Also, I present summaries of the mean balancing output for each scene stratified by the conifer,
deciduous, and mixed types contained in LCOV for the initial KNN estimates and the mean bal-

anced estimates.

n

, 4.7)

where y; is the ground-observed, assumed to be true, measurement for sample i, ¢; is the predicted
value for sample i, and 7 is the total number of samples.

I also present an assessment of the estimates generated by the 1) initial KNN, 2) the mean
balancing, and the 3) industry-infused and mean balanced processes for the central-Georgia scene,
path 18, row 37. The field measurements and GIS data obtained from our industrial partners were
not used in the first two estimations. Therefore, I present the RMSE and MAE calculated across

each industrial stand as an assessment of their accuracy based on an independent data source.
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However, that data is an integral part of the industry-infused and mean balanced routines, so I do
not consider them suitable samples for independent validation. However, I present their summaries
to confirm the improvement in prediction accuracy achieved through this process.

Finally, to demonstrate the varying results one would attain by querying the 1) unprojected
FIA database, the 2) initial KNN, the 3) mean balanced, and the 4) industry-infused data, I present
the results of a series of queries at varying scales. I first present sumamries for Hancock County,
Georgia for the conifer, deciduous, and mixed types. There are 97 industrial forest stands, approx-
imately 5,000 acres, located in the county. The final two are centered at 33.3141 degrees north
and -82.9368 west with a radius of miles (502.7 acres) and 3 miles (24,630.1 acres). There are 5,
205 acres, forested stands within the 3.5-mile radius and one stand, less than 20 acres, within the

0.5-mile radius.

4.4 RESULTS

The path 19, row 39 scene is located in the extreme southwestern part of the state. The image
covers approximately 185,000 acres of forested land and contains 69 FIA plots. The scene with the
next smallest coverage of the state, path 18, row 39, encompasses 1.2 million acres of forested land
and 339 forested FIA plots. Due to the small number of plots and a relatively large percentage of
overlap by adjacent scenes, nearly 88%, I processed the path 19, row 39 data using K=1. While I
scaled the volume per acre estimates to its FIA scene mean using the same approach as the others,
where possible, I substituted the scaled estimates from scenes path 19, row 38 and path 18, row 39.

Unless specified, the following sections focus on the remaining 11 scenes used in this study.

4.4.1 Selection of the optimal K

The leave-one-out KNN assessment of cubic-foot volume per acre based on the training data
revealed an initial decrease in RMSE as the number of neighbors was increased. The gain in preci-

sion continued to K=3 to K=10 and then the leveled (Fig?. 4.5(Tab. 4.7). Root-mean squared error
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Figure 4.5: Root-mean squared error measures for K=1 to K=20 for the 12 TM scenes that were
generated during the determination of the optimal K.

values for the optimal K ranged from 790 ft®, 55% of the FIA mean for path 19, row 39, to 1.246,
or 71% of the FIA mean for path 18, row 38 (Tab. 4.7)

Table 4.7: Optimum K and resulting combined-type RMSE for each TM scene used in the study.
Path /Row Optimal K RMSE Relative RMSE

17737 4 1169 67%
17738 5 1055 60%
171739 6 1056 60%
18 /36 8 1271 73%
18737 10 1019 58%
18738 8 1246 71%
18739 3 802 46%
19/36 6 1071 61%
19737 6 976 56%
19738 5 1027 59%
19/39 1 790 45%
20/ 36 6 969 55%

The compression of the range of initial volume per acre estimates is apparent in this study.
Initial volume per acre estimates assessed on the entries of the training list data ranged from O to

5,553 ft3, less than half of the range of the FIA measurements (Fig. 4.6). The KNN-derived mean

104



1200

1000

800

600
M Initial KNN Estimates
400 BEI 111 —
FIA Measurements
200 | 111 i——
N Iy

125 1125 2125 3125 4125 5125 6125 7125 8375 9875

Figure 4.6: Histogram comparing the distributions of the FIA and the remotely sensed estimates
made during the initial KNN process.

for the training list entries was 21% below the mean calculated from the FIA data, 1,454 ft3 and
1,851, respectively.

The northern Georgia path 18, row 36 scene yielded the largest RMSE (1,271 ft®) and the
southern Georgia scene, path 18, row 39, produced the smallest (802 ft*). The range of the simulta-
neous estimates, basal area and age, were also compressed. The range of basal area was 41% of the
FIA’s and the range of age was 22%. Both their means were approximately 22% below the means
derived from the FIA data.

There were approximately 9% more forested acres, a total of 26.2 million acres, in LCOV
than reported by the initial GLUTNLCD land cover data. There are 13 million acres of conifer

represented in LCOV, 11.3 million acres of deciduous, and 7.2 million acres of mixed forest type.

4.4.2 Assessment of results on training samples

The summaries shown below are products of an assessment made on the training list samples
compiled during both estimation processes where the training list entries were treated as a separate
list of pixels in need of an estimate. The cover type designations used in these summaries are the

same ones assigned in the LCOV data layer.
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The initial KNN estimates of conifer volume per acre (ft*) were on average 26% below the
estimates derived from the FIA data (Tab. 4.7) and the mean balanced estimates 15% below. Root-
mean squared error ranged from 974 ft® in the northern 19/36 scene to 1,541 ft3 in the central 18/37
scene. Mean absolute errors ranged from 734 ft* in scene 18/39 which is located on the southern
border of the state to 1,123 ft® (Tab. 4.7) in scene 18/38 which is located immediately to the north.
As a percentage of the predicted mean, RMSE ranged from 81% in 18/37 to 148% in the northern
Georgia 19/36 scene, and MAE from 64% in 17/37 to 99% in the north Georgia 20/36 scene.

There were two instances, scenes 17/37 in northeast Georgia and 18/39, where the scene-wide
mean from the initial KNN process was larger than those from the mean balanced routine. In each
case, the difference between the KNN estimates was closer to the FIA mean than the mean balanced
results. Additionally, in every case, the initial KNN process yielded a lower RMSE and MAE. The
largest difference between the KNN and mean balancing efforts occurred in scene 19/36 where the
KNN process produced a scene-wide mean estimate of 974 ft*> and the mean balanced process an
estimate of 1,814 ft® (Tab. 4.7).

Table 4.8: Comparison of conifer FIA, KNN, and Mean balanced cubic-foot volume per acre esti-
mates for entries in the training list.

Path/ FIA KNN Mean Balance

Row Mean Mean (ft®) RMSE (ft®) MAE (ft®) Mean (ft®) RMSE (ft®) MAE (ft%)
17/37 1,794 1,460 1,301 934 1,431 1,555 1,136
17/38 1,590 1,239 1,176 852 1,348 1,271 939
17/39 1,390 1,032 1,065 817 1,162 1,254 977
18 /38 2,153 1,520 1,448 1,123 1,789 1,857 1,529
18/37 1,777 1,541 1,253 924 1,557 1,367 1,002
18/38 1,508 1,094 1,269 918 1,295 1,560 1,191
18/39 1,453 1,177 999 734 1,010 1,029 779
19/36 1,982 974 1,438 1,059 1,814 1,838 1,479
19/37 1,791 1,358 1,297 942 1,602 1,412 1,058
19/38 1,503 1,156 1,083 834 1,193 1,164 926
19/39 1,546 1,893 256 73 1,732 505 425
20/36 1,641 1,092 1,194 931 1,568 1,879 1,548

Mean estimates from both the initial KNN and mean balancing routines were below the FIA’s

estimates, 16% and 20%, respectively. The range of RMS errors for the KNN estimation process
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ranged from a RMSE of 1,231 ft® in scene 18/39 to a RMSE of 1,980 ft? in the southeastern Georgia
17/39 scene, and MAE from 1,181 ft3 in 18/39 to 2,155 ft® in 19/36 (Tab. 4.9). As a percentage
of the mean, estimates on the the north Georgia 19/36 scene were the most accurate, yielding a
RMSE relative to the mean of 68% and a MAE of 74%. On the other hand, scene 17/39 yielded
the least accurate with a relative RMSE of 149% and relative MAE of 154%.

The initial KNN process produced deciduous means nearer to the FIA’s than mean balancing
in eight scenes. In all but one case, the southeastern 17/38 scene, the initial KNN process yielded
lower RMSE and MAE measure. The differences in the two estimates were on average 4% with
the largest occurring in 17/37, 1,548 ft and 1,393 ft3, respectively, and 18/38, 1,418 ft* and 1,253
ft3, respectively (Tab. 4.9).

Table 4.9: Comparison of deciduous FIA, KNN, and Mean balanced cubic-foot volume per acre
estimates for entries in the training list.

Path/ FIA KNN Mean Balance

Row Mean Mean (ft®) RMSE (ft) MAE (ft}) Mean (ft*) RMSE (ft’) MAE (ft?)
17/37 1,916 1,584 1,500 1,053 1,393 1,538 1,082
17/38 1,853 1,701 1,634 1,163 1,606 1,633 1,188
17/39 1,746 1,325 1,980 1,303 1,349 2,081 1,316
18/38 2,488 1,869 1,666 1,224 1,817 1,817 1,352
18/37 1,955 1,577 1,519 1,067 1,473 1,633 1,151
18/38 1,812 1,418 1,717 1,269 1,253 1,826 1,317
18/39 1,605 1,284 1,231 913 1,181 1,276 915
19/36 2,452 2,109 1,439 1,040 2,155 1,590 1,162
19/37 2,070 1,653 1,462 1,076 1,599 1,580 1,172
19/38 1,811 1,675 1,429 968 1,538 1,511 997
19/39 1,795 1,697 382 135 1,539 705 461
20/36 2,172 1,624 1,540 1,119 1,657 1,543 1,130

Mixed type means estimated by the initial KNN and mean balancing approaches underesti-
mated the FIA mean by 31% and 24%, respectively. The largest RMSE, 46% of the mean, and
MAE, 73% of the mean, were in the south Georgia scene 17/38 (Tab. —reftab:tab49). The smallest
RMSE was found in 19/38, south Georgia, and the smallest MAE in 18/38. There were three

instances, 17/38, 18/39, and 19/38, where the KNN estimation process produced a larger mean and
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a smaller FIA residual than the mean balancing process. Each of these scenes are located in the

southern part of the state.

Table 4.10: Comparison of mixed type FIA, KNN, and Mean balanced cubic-foot volume per acre
estimates for entries in the training list.

Path/  FIA KNN Mean Balance

Row Mean Mean (ft®) RMSE (ft®) MAE (ft®) Mean (ft®) RMSE (ft®) MAE (ft°)
17737 1,937 1,310 1,284 870 1,626 1,538 1,216
17/38 1,486 796 1,253 902 397 1,462 1,134
17/39 1,385 1,035 814 615 1,282 771 600
18/38 2,427 1,569 2,236 1,398 1,948 2,173 1,287
18/37 1,798 1,371 1,425 1,016 1,396 1,465 1,083
18/38 1,449 1,077 1,120 835 1,352 1,189 861
18/39 1,436 963 1,372 938 668 1,496 1,091
19/36 2,334 1,366 1,512 1,104 1,929 1,743 1,318
19/37 1,808 1,402 1,162 861 1,778 1,372 1,070
19/38 1,294 1,094 1,020 785 928 1,013 783
19/39 1,634 3,010 26 19 2,109 883 883
20/36 1,993 990 1,490 1,243 1,306 1,511 1,266

scene-wide mean estimates of conifer basal area ranged from 60 ft? in 18/38 and 18/39 to 87
ft? in 18/37 for the initial KNN process and 49 ft? in 18/39 to 84 ft* in 18/37 for mean balancing
(Tab.. 4.11). The KNN estimates differed from the FIA measures by 23% and the mean balanced
by 24%. The largest RMSE relative to the mean is the northern 19/36 scene (76%) and the smallest
in the central Georgia 18/37 scene (45%) The western Georgia scene 19/37 produced the smallest
MAE in conifer basal area (51%) and south-central scene 18/38 the largest (84%). There were 5
instances where the initial KNN process produced a larger mean. In all cases, the KNN process
resulted in a smaller RMSE and MAE (Tab. 4.11).

Both methods produced deciduous basal area means for the scene lower than the the means
derived from the FIA. Means differed from the FIA on average by 21% for the initial KNN method
and 28% for mean balancing. The southeastern Georgia scene 17/39 yielded means most different
from their FIA measures for both methods. In terms of relative error, 17/39 generated the largest
relative RMSE for the KNN (114%) and mean balancing (116%). The same scene, 17/39, yielded

the largest relative MAE (82%) for the KNN process, however scene 18/38 yielded the largest for
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Table 4.11: Comparison of conifer basal area estimates from the FIA, KNN, and Mean balanced
for all entries in the training list.

Path/  FIA KNN Mean Balance

Row Mean Mean (ft®) RMSE (ft®) MAE (ft®) Mean (ft®) RMSE (ft®) MAE (ft°)
17/37 100 78 55 38 72 67 47
17738 89 71 52 38 72 56 41
17739 83 64 51 39 65 60 46
18/38 113 83 62 50 80 80 62
18/37 104 87 54 39 84 60 44
18/38 84 60 59 43 63 67 53
18 /39 74 60 43 31 49 49 36
19736 98 63 63 48 80 74 60
19/37 105 81 55 42 83 58 43
19/38 85 68 48 38 64 52 42
19 /39 77 76 8 3 74 20 14
20/ 36 96 77 60 46 79 79 65

the mean balancing process. Scene 17/39 was the only scene where the mean balancing process
produced lower errors (Tab. 4.12)

Estimates for mixed forest type basal area for the scenes were on average 28% to 30% below
the FIA estimates. The south Georgia scene 18/39 produced the least accurate initial KNN estimate
when compared to the FIA, yielding a relative RMSE of 144% and relative MAE of 102%. The
least accurate results for the mean balancing process, on the other hand, were realized in scene
17/38 where the RMSE was 353% of the mean and the MAE was 280%. There were two instances,
17/39 and 18/38, where the mean balancing process produced lower RMSE and MAE results
(Tab. 4.13).

Estimates for conifer age were on average 23% for the mean balancing process and 25%, for the
initial KNN method, below the FIA’s. Scene 18/39 in southern Georgia yielded the most accurate
estimates the initial KNN method according to the relative RMSE, 71%, and relative MAE, 57%,
where the FIA estimate is 31 years and the KNN estimate is 27 years (Tab. 4.14). The most accurate

mean balancing estimates come from scene 17/38 whose RMSE is 87% of the mean (18 years) and
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Table 4.12: Comparison of deciduous basal area estimates from the FIA, KNN, and Mean balanced
for all entries in the training list.

Path/ FIA KNN Mean Balance
Row Mean Mean (ft®) RMSE (ft}) MAE (ft®) Mean (ft®) RMSE (ft®) MAE (ft?)
17/37 98 80 56 40 71 60 44
17/38 105 89 63 46 86 67 49
17/39 121 77 87 63 79 91 65
18/38 111 84 59 42 73 67 49
18/37 97 78 53 38 68 61 44
18 /38 96 71 66 50 63 74 55
18/39 81 63 62 45 62 64 44
19/36 114 94 50 36 87 57 42
19/37 101 81 54 40 72 60 45
19/38 92 81 51 38 74 55 40
19/39 70 76 15 6 74 33 20
20/36 105 75 62 45 67 65 48

Table 4.13: Comparison of mixed type basal area estimates from the FIA, KNN, and Mean bal-
anced for all entries in the training list.

Path/ FIA KNN Mean Balance
Row Mean Mean (ft’) RMSE (ft’) MAE (ft’) Mean (ft®) RMSE (ft’) MAE (ft%)
17737 78 66 45 34 72 56 43
17 /38 77 47 58 43 21 74 59
17/ 39 80 68 50 38 74 46 34
18/38 118 79 67 46 79 71 46
18 /37 94 71 59 45 67 64 49
18 /38 77 60 49 40 69 48 38
18739 91 50 72 51 35 84 60
19/36 105 63 62 47 73 68 49
19/37 93 78 50 38 86 55 42
19/38 77 61 41 34 49 46 40
19/39 110 98 17 12 83 27 27
20/36 113 56 78 62 57 83 64
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relative MAE is 65% of the mean (16 years) (Tab. 4.14). Scene 19/36, on the other hand, yields
the largest RMSE and MAE relative to the mean for the initial KNN process, 138% and 98%,
respectively. However, the largest relative RMSE result for the mean balancing process was found
in scene 17/37 and the largest relative MAE in 18/38 (101%). The initial KNN process in all scenes
yielded the lower RMSE and MAE (Tab. 4.14).

Table 4.14: Comparison of conifer age estimates from the FIA, KNN, and Mean balanced for all
entries in the training list.

Path/  FIA KNN Mean Balance

Row Mean Mean (ft)) RMSE (ft®) MAE (ft®) Mean (ft®) RMSE (ft®) MAE (ft°)
17 /37 28 21 20 13 19 24 17
17738 25 21 18 13 21 18 14
177739 24 19 17 12 19 19 14
18 /38 33 22 26 20 25 30 25
18 /37 28 23 19 14 22 20 15
18/38 26 19 20 15 19 22 18
18 /39 31 27 19 15 22 22 17
197/ 36 30 18 25 18 26 26 22
19/ 37 31 21 22 15 23 23 16
19/38 29 22 21 16 20 23 18
19/39 39 42 13 3 37 12 9
20/ 36 25 18 20 15 21 24 21

Deciduous scene mean age estimates were 15% below the FIA for the initial KNN and 7%
below for the mean balanced process. Scene 19/36 in extreme north Georgia produced the most
accurate estimates using both methods. Root-mean squared error for19/36 was 61% of the mean
(31 years) for the initial KNN process and 56% (33 years) for mean balancing (Tab. 4.15). Mean
absolute error relative to the mean was 47% for KNN and 43% for mean balancing. The largest
relative errors were found in the southeastern scenes 17/39 and 18/38. In all cases, the initial KNN
process yielded the lowest RMSE and MAE measures.

Mean mixed type age estimates for each scene using the initial KNN method were on average
26% below the FIA’s measure and 28% below using the mean balancing method. The 17/39 scene
in southeastern Georgia yielded the most accurate results for both methods and each measure of

error. The scene just to the north, 17/38, produced the least initial KNN estimates according to
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Table 4.15: Comparison of deciduous age estimates from the FIA, KNN, and Mean balanced for
all entries in the training list.

Path/  FIA KNN Mean Balance

Row Mean Mean (ft®) RMSE (ft®) MAE (ft®) Mean (ft®) RMSE (ft®) MAE (ft°)
17737 39 31 28 20 32 30 22
17738 39 32 26 20 35 27 22
17739 41 25 30 23 30 31 23
18 /38 59 42 38 29 49 40 30
18/37 43 33 28 23 36 31 25
18/38 42 29 33 25 31 35 27
18 /39 45 33 30 22 34 30 23
19736 62 51 31 24 60 33 25
19/37 46 37 27 20 39 31 23
19/38 42 39 24 18 40 27 20
19 /39 44 45 3 1 40 19 15
20/ 36 56 42 33 25 48 34 25

RMSE (145%, 27 years) and for mean balancing (455%, 8 years) (Tab. 4.16). The north Georgia
scene 20/46produced the largest MAE for the initial KNN estimation process (120% of the mean)
and scene 17/38 for the mean balancing process. There were five instances where the mean differ-
ence between the initial KNN estimates and the FIA were larger than the differences between the
mean balancing estimates and the FIA.

A comparison of the FIA scene means and the initial conifer cubic-foot volume per acre esti-
mates for each scene summarized for the LCOV types are shown in table 4.17. On average, scene-
wide estimates of conifer volume were 28% below the mean calculated from the FIA measure-
ments. The path 19, row 37 scene located in west-central part of the state yielded the lowest mean
conifer volume per acre (ft*) (Fig. 4.7). The path 19, row 36 scene immediately to the north yielded
the second smallest mean conifer volume per acre, 862 ft*. These two scenes were 57% and 56%
the FIA’s mean estimates for the same area. Pixel estimates ranged from zero to 4,897ft> and had

a mean of 785 ft> and a standard deviation of 956. The scene with the maximum conifer volume

112



Table 4.16: Comparison of mixed type age estimates from the FIA, KNN, and Mean balanced for
all entries in the training list.

Path/  FIA KNN Mean Balance

Row Mean Mean (ft®) RMSE (ft®) MAE (ft®) Mean (ft®) RMSE (ft®) MAE (ft°)
17737 34 27 26 20 26 30 23
17738 34 19 27 21 8 35 28
17739 32 26 21 15 28 20 15
18 /38 44 31 32 24 32 33 24
18/37 35 27 25 19 26 27 21
18/38 29 22 25 19 25 25 20
18 /39 38 21 26 20 20 27 23
19/ 36 41 28 24 18 32 29 23
19/37 30 26 21 15 29 22 16
19/38 24 24 25 20 17 22 17
19 /39 86 62 35 25 63 23 23
20/ 36 32 17 24 20 18 29 25

per acre was located in the central part of the state (path 17, row 37) (mean: 1,577, sd 853) with
individual pixel estimates ranging from zero to 4,442 ft3,

scene-wide estimates of deciduous volume per acre were on average 6% below their respective
FIA estimates. The satellite-derived estimates for four scenes were above the FIA’s by approx-
imately 3% while the remaining were below by an average of 11%. Path 19, row 37 yielded the
smallest mean deciduous volume per acre (Tab. 4.18) and the largest underestimate (Fig. 4.7). Pixel
estimates within the scene ranged from 0 to 4,892 ft* and had a mean and standard deviation of
1,256 ft* and 1,043 ft®, respectively. The northern scene, path 19, row 36, produced the largest
mean deciduous volume per acre (mean: 2,274 ft3, sd: 759 ft?) for a scene. Pixel estimates of
hardwood volume per acre in this area ranged from 0 to 5,654 ft>.

Estimates of the mixed cover type volume per acre were on average 28% below the FIA’s
estimate. Path 18, row 39 was the only scene to yield a mean above the FIA’s. South Georgia
scenes path 18, row 39 and path 17, row 39 yielded produced the extreme mean estimates of mixed

type volume per acre (Fig. 4.7). Pixel estimates within path 18, row 39 ranged from zero to 4,286
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Table 4.17: scene-wide summaries of conifer volume per acre generated during the initial KNN
estimation process.

FIA Initial TM
Path/Row Mean SD #Plots Rank Mean SD Max
17737 1,794 115 358 2 1,544 880 5,323

17/38 1,590 77 682 5 1,244 765 5,168
17/39 1,390 109 264 8 1,023 564 4,900
18/36 2,153 252 107 3 1,470 1,011 3,876
18/37 1,777 86 613 1 1,577 853 4,442
18/38 1,508 71 689 7 1,119 743 4,434
18/39 1,453 129 183 4 1,370 717 4,130
19/36 1,982 210 143 10 862 757 5,654
19/37 1,791 116 345 11 785 956 4,897

19/38 1,503 113 253 6 1,203 710 4,139
19/39 1,546 310 37 NA 1,582 1,198 3,939
20/36 1,641 225 84 9 937 695 4,017

Table 4.18: scene-wide summaries of deciduous volume per acre generated during the initial KNN
estimation process.

FIA Initial TM
Path/Row Mean SD #Plots Rank Mean SD Max
17737 1,916 174 217 3 1,989 1,065 7,335

17/38 1,853 132 366 5 1,918 994 7,002
17/39 1,746 240 117 9 1,686 1,025 6,226
18/36 2,488 176 267 2 2,160 614 4,200
18/37 1,955 115 481 6 1,898 741 4910
18/38 1,812 114 478 8 1,799 849 5,865
18/39 1,605 202 106 10 1,670 718 4,300

19/36 2,452 130 461 1 2,274 759 5,654
19/37 2,070 132 358 11 1,256 1,043 4,892
19/38 1,811 164 218 7 1,807 817 5,250
19/39 1,795 447 25 NA 1,825 1,008 3,939
20/36 2,172 207 148 4 1,925 618 4,182
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Figure 4.7: Volume per acre (ft>) ranks for each Landsat scene for the conifer, deciduous, and
mixed cover types represented in LCOV.
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ft> and the scene’s mean was 1,517 ft® (sd 685 ft®) (Tab. 4.19). On the low side, pixel estimates in

the path 17, row 39 scene ranged from 0 to 4,806 ft* and had a mean of 958 ft* (sd 580).

Table 4.19: scene-wide summaries of mixed volume per acre generated during the initial KNN
estimation process.

FIA Initial TM
Path/Row Mean SD #Plots Rank Mean SD Max
177137 1,937 245 88 6 1,261 861 5,348
17 /38 1,486 168 138 7 1,236 804 6,149
17739 1,385 265 49 11 958 580 4,806
18/36 2,427 319 79 2 1,497 781 4,071
18 /37 1,798 146 230 3 1,492 782 4,644
18/38 1,449 144 170 10 1,150 736 4,662
18739 1,436 258 50 1,517 685 4,286
19/36 2,334 224 143 1,437 812 5,654
19/37 1,808 170 166 1,157 831 4,641
19/38 1,294 188 75 1,195 636 4919
19/ 39 1,634 769 7 NA 1,858 1,112 3,939
20/ 36 1,993 330 49 5 1,308 608 4,182

o0 O K~ =

The simultaneous estimates of conifer basal area ranged from 0 ft*> in all scenes to 207 ft?
(Tab. 4.20) in the eastern Georgia path 17, row 37 scene which also yielded the lowest mean basal
area (53 ft?) (Tab. 4.20). Path 18, row 37 located in the center of the state returned the largest
mean, 89 ft>. Deciduous estimates ranged from 0 in all scenes to 269 ft? in path 17, row 38 in
southeastern Georgia. Path 19, row 36 scene in the north gave the largest scene-wide mean (102
ft?) and the south Georgia path 18, row 39 scene yielded the smallest (81 ft?). scene-wide means
for the mixed type ranged from 64 ft* in path 18, row 38 in the south central part of Georgia to 80
ft? in path 18, row 37.

Maximum estimates of conifer age ranged from 0 in all scenes to 112 (Tab. 4.21) in path 18,
row 39. Maximum estimates of deciduous age ranged from O to 119 in path 19, row 36 and from
0 to 112 for the mixed type in path 18, row 39. scene-wide mean estimates for conifer age ranged
from 17 years in path 19, row 36 to 31 years in path 18, row 39 (Tab. 4.21).; maximum scene-wide
estimates of deciduous age ranged from 31 years (path 17, row 39) to 55 years (path 19, row 36)

and from 64 (path 17, row 39) to 112 (path 18, row 39) for the mixed type.
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Table 4.20: scene-wide summaries of basal area for each scene and type.
Conifer Deciduous Mixed
Path/Row Max Ave Sd Max Ave Sd Max Ave Sd
17/37 190 82 42 222 96 38 198 68 41
17/38 207 71 36 269 100 39 246 70 35
17/39 179 64 29 258 93 38 202 65 28
18/36 165 78 51 162 99 22 162 76 37
18/37 180 89 41 178 93 26 178 80 32
18/38 186 62 39 221 90 32 193 64 36
18/39 178 66 31 198 81 29 182 73 28
19/36 196 53 44 195 102 26 196 69 32
19/37 193 71 49 185 88 32 178 74 34
19/38 175 71 40 201 91 31 191 66 30
19/39 154 65 41 154 81 36 154 72 39
20/36 197 65 49 191 89 23 191 69 30

Table 4.21: scene-wide summaries of age for each scene and type.
Conifer Deciduous Mixed
Path/Row Max Ave Sd Max Ave Sd Max Ave Sd
17/37 98 23 12 100 39 17 98 27 15
17/38 8 22 12 94 37 15 8 27 13
17/39 67 20 11 70 31 11 64 23 11
18/36 83 24 15 104 49 16 91 29 14
18/37 75 24 12 81 40 13 77 30 13
18/38 7221 11 9 37 13 77 25 11
18/39 112 31 16 115 44 17 112 38 16
19/36 96 17 13 119 55 19 108 31 14
19/37 74 19 13 88 39 16 8 27 12
19/38 81 22 12 95 42 14 92 31 13
19/39 125 32 26 125 51 34 125 50 27
20/36 75 17 12 87 48 15 83 28 11
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4.4.3 Scene-wide summaries

Summaries of the entire initial KNN and mean balanced estimated surfaces follow. All forested
pixels are included in these results. The cover type specifications were assigned by the LCOV data
layer.

Mean conifer volume per acre estimates before mean balancing were on average 26% lower
than the mean derived from the FIA. Thirty-nine percent of all the conifer-classified pixels in
the state required adjustment to attain equalization. Four scenes needed adjustments to 100%
(Tab. 4.22) of their conifer-classified areas, while the other eight scenes required adjustments to
20% or fewer. In total, 5,693,316 conifer acres across the 12 scenes (Tab. 4.22) were scaled. After
mean balancing, conifer volume per acre estimates ranged 0 ft* to 11,366 ft® and a mean of 1,657
ft3, compared to 0-5,654 and a mean of 1,226 before processing

The initial conifer mean in the northern scene, path 19, row 36, was 57% below the FIA’s
(Tab. 4.22). In order to raise that scene’s conifer mean to the appropriate level, 100% of the conifer
pixels (927,580 acres) were adjusted. The range of the adjusted data in this scene increased from
0-5,654 ft3 to 0-11,366 ft> with a mean of 1,983 ft?, which is equal to the FIA’s. The conifer mean
for the scene immediately to the south, path 19, row 37 was 56% below its associated FIA mean.
However, only 20% of the pixels (327,212 acres) required adjustment.

Table 4.22: Amount of coniferous area adjusted during the mean balancing process.

Initial Mean Adjusted  Adjusted Adjusted
Path/Row (% of FIA Mean) Area(ac) Area(%) Mean(sd) Mim Max

1717137 -14% 18,487 2% 1,794 (980) 1 9,098
17738 -22% 194,449 6% 1,590 (944) 1 8,934
17739 -26% 153,955 12% 1,390 (716) 1.5 5,441
18736 -32% 401,973 100% 2,154 (943) 0 6,746
18 /37 -11% 104,270 4% 1,776 (967) 1 8,657
18 /38 -26% 2,922,854  100% 1,506 (2639) 0O 3,483
18/39 -6% 82,201 12% 1,454 (717) 1.2 4,291
19/ 36 -57% 927,580 100% 1,983 (718) 0 11,366
19737 -56% 327,212 20% 1,792 (1184) 1 8,146
19/38 -20% 133,814 12% 1,503 (866) 1 5,915
19739 2% 16 <1% 1,546 (856) 1 3,985
20/36 -43% 426,505 100% 1,641 (2875) O 3,895
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Before mean balancing, deciduous volume per acre estimates were on average 5% below the
FIA-derived mean volume per acre (Tab. 4.23), and required adjustments to approximately 10% of
the pixels to equalize the scene-wide deciduous volume per acre means . Approximately 1,052,000
acres of this type were scaled across the 12 scenes (Tab. 4.23). After adjustment, the range of
volumes increased from 0 -7,335ft? to 0-12,024 ft> and the mean increased from 1,851 to 2,053
ft>.

Path 19, row 37 was the scene with the largest overall deciduous underestimate (39%)
(Tab. 4.23). During the mean balancing process, adjustments were made to 15,187 acres, approx-
imately 1% of the deciduous-typed pixels in the scene, before its mean was equalized with the
FIA’s. The range of the processed data was raised from 0-4,982 ft®> to 2 8,590 ft> (mean:2,069,
sd: 808 ft®) (Tab. 4.23). The eastern Georgia, path 17, row 37 scene required an adjustment of
100% of the deciduous-classified pixels, approximately 822,000 acres, to achieve mean balancing,.
The remaining scenes required adjustments to 5% or fewer of their deciduous-classified pixels to
achieve equilibrium.

Table 4.23: Amount of deciduous area adjusted during the mean balancing process.

Initial Mean Adjusted Adjusted Adjusted
Path/Row (% of FIA Mean) Area (ac) Area(%) Mean(sd) Mim Max

17737 4% 822,320 100% 1,917 (936) 0 6,941
17738 4% 81,203 5% 1,853 (931) 1 6,643
17739 -3% 17 <1% 1,747 (929) 1 11,724
18/36 -13% 23,232 2% 2,487 (1043) 1 10,226
18737 -3% 607 <1% 1,953 (791) 2.1 12,024
18 /38 -2% 54 <1% 1,812 (781) 385 11,200
18739 4% 49,769 11% 1,605 (664) 1 4,218
19736 -7% 40,344 2% 2,450 (1002) 1 9,852
19/37 -39% 15,187 1% 2,069 (808) 1.8 8,590
19738 <-1% 21 <1% 1,811 (786) 750 9,346
19/39 2% 11 <1% 1,795 (811) 1 3,998
20/ 36 -11% 19,383 3% 2,172 (760) 1.5 5,975

On average, the mixed cover type scene-wide estimates were 21% below the FIA estimates
before the mean balancing process was initiated (Tab. 4.24). Thirty-seven percent, 670,812, of the

mixed type area was adjusted. Seven scenes required the scaling of 13% or fewer of the mixed type

119



pixels in their respective scenes (Tab. 4.24). Three scenes required an adjustment to 100% of the
pixels in this classification. Two of them, path 19, row 36 and path 20, row 26 are located in the
northern extreme of the state. The third northern scene, path 18, row 36, required an adjustment
of 60% of the mixed-type pixels. Estimates in the southern Georgia path 18, row 39 scene, on the
other hand, were reduced by 6%. Before processing, the range of volume per acre (ft®) estimates
was 0-6,149 with a mean of 1,339 ft3, and afterwards the range was 0-8,718 with a statewide mean
of 1,774.
Table 4.24: Amount of mixed type area adjusted during the mean balancing process.

Initial Mean Adjusted  Adjusted Adjusted
Path/Row (% of FIA Mean) Area(ac) Area(%) Mean(sd) Mim Max

17737 -35% 102,791 43% 1,936 (1219) 1.2 5,558
17738 -17% 1,314 1% 1,486 (752) 1.5 6,778
17739 -31% 30,498 13% 1,385(808) 1.4 4719
18 /36 -38% 72,452 60% 2,427 (1070) 1.5 6,659
18 /37 -17% 24,890 6% 1,798 (899) 1.6 6,978
18738 -21% 5,275 1% 1,449 (810) 1.7 6,615
18739 6% 3 <1% 1,436 (601) 363 2,193
19/36 -38% 288,599 100% 2,334 (736) 0 8718
19/37 -36% 49,520 11% 1,808 (895) 1.6 6,410
19/38 -8% 2,954 3% 1,294 (650) 1.4 5,147
19739 14% 16,603 100% 1,634 (711) 0 3,746
20/ 36 -34% 75,912 100% 1,993 (448) 0 6,011

4.4.4 Fusion of industrial data in path 18, row 37

The path 18, row 37 mean of the initial KNN-based estimates for conifer volume per acre were
more than 11% below the FIA’s estimate (Tab. 4.25). The deciduous mean was almost 3% below
and the mixed forest type was 17%below the FIA. By design, after scaling the scene-wide means
for each type were all near equal to the mean derived from the 18/38 FIA measures (+/- 0.2%).
The maximum pixel estimate for both the conifer (8,604 ft*) and deciduous types (8,280 ft*) from
the industry-infused data were almost twice their FIA and initial KNN counterparts. However, the
pixel maximum mixed type estimate was slightly lower, 4,130 ft3, than the FIA measurements and

the Initial KNN processed data and 40% below the mean balanced data.
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Table 4.25: Comparison of mean conifer, deciduous and mixed volume per acre estimates reported
by the FIA and generated from the three remote sensing methods for the path 18, row 37 scene.

Conifer Deciduous Mixed
Method MEAN STD Max MEAN STD Max MEAN STD Max
FIA 1,777 86 4,442 1,955 115 4910 1,798 146 4644

Initial KNN 1,577 853 4,442 1,898 741 4910 1,492 782 4644
Mean balanced 1,776 967 8,657 1,953 791 12024 1,798 917 6978
Industry Fused 1,780 995 8,604 1,962 140 8280 1,797 912 4130

The mean stand volume per acre produced by the initial KNN estimation routine was 27%
below the mean calculated from the industry ground measurements (Tab. 4.26) and the range of
predicted stand means was half. The average from the mean balancing process was 18% below the
industry’s measure with a compressed range of estimates of almost 17%. By design, the average
stand cubic foot volume per acre and the industry measures are nearly equal. There is a 2% differ-
ence in means and a compression of stand mean estimates of 10%. The initial KNN and the mean
balancing process yielded similar RMSE measures of 1,322 ft® and 1,382 ft3, and MAE measures
of 1,052 ft3 and 1,126 ft?, respectively (Tab. 4.26). The RMSE and MAE from the industry-fused

process was nearly 60% lower, 541 ft> and 406 ft3, respectively.

Table 4.26: Stand-level comparison of mean conifer volume per acre generated from the three
estimates based on remote sensing.
Measure Mean SD Min Max RMSE MAE
Industry 2,261 1,544 0 6,093
Initial KNN 1,652 657 29 3,024 1,322 1,052
Mean-balanced 1,850 770 23 5,102 1,382 1,126
Industry Fused 2,218 1,149 15 5495 541 406

The scatter plots in Figure 4.8 show the weak positive relationship between the industry
observed stand’s cubic foot volume and its remotely sensed estimates using the initial KNN proce-
dure (Fig. 4.8A) and the mean balancing routine (Fig. 4.8B). By design, there is a strong positive
relationship with the industry measures and the industry-fused estimates (Fig. 4.8C). The effects

of the scaling that occurred during the mean balancing process (Fig. 4.8B) are apparent throughout
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Figure 4.8: Scatter plots reflecting the volume per acre (ft*) estimates for each industry stand from
the A) initial KNN, the B) mean balancing, and the C) industry-fused processes.

the extent of the industry measurements. The range of estimates for the zero-volume samples (i.e.
Harvested sites) expanded from O to just above 2,000 ft> (Fig. 4.8A) to 0 to approximately 4,000
ft3 (Fig. 4.8B). Additional effects of the mean balancing are visible for the industry stands whose
estimates range from approximately 2,000 ft* to 5,000 ft®.

Mean stand basal area produced during the initial KNN and mean balancing processes were
within 5% and 8% of the industry mean (Tab. 4.27), however the industry-fused mean was over
estimated by 19%. The RMSE measures ranged from 40 ft for the initial KNN process and 43 ft
for the other two measures and their MAEs ranged from 34 for the initial KNN to 36 for the mean
balanced process (Tab. 4.27). The expansion of the estimates that occur in the mean balancing
and industry-fused processes is apparent in the scatter plots below (Fig. 4.9). The largest estimates
for the zero-basal area industry stands, those stands that were harvested, from the initial KNN

process was approximately 140 ft?, which increased to above 150 for the industry-fused routine.
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Figure 4.9: Scatter plots reflecting the basal per acre (ft*) estimates for each industry stand from
the A) initial KNN, the B) mean balancing, and the C) industry-fused processes.

Similar scatter is apparent in the mid and far ranges of the industrial basal area measurements, too

(Fig. 4.9).

Table 4.27: Stand-level comparison of mean basal area per acre generated from the three estimates
based on remote sensing.

Measure Mean SD Min Max RMSE MAE

Industry 88 58 0 207 NA NA
Initial KNN 92 33 1 151 40 34
Mean-balanced 95 34 1 197 43 36
100% Industry Fused 105 45 1 193 43 35

Estimates of stand age differed between 44% for the initial KNN process and 72% for the
mean balanced routine. The initial KNN routine generated the most accurate predictions of stand

age yielding a RMSE of 11 years and a MAE of 8 years. The industry-fused process yielded the
largest RMSE, 16 years, and MAE, 14 years (Tab. 4.28).
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Table 4.28: Stand-level comparison of mean stand age generated from the three estimates based on
remote sensing.

Measure Mean SD Min Max RMSE MAE

Industry 18 12 0 61 NA NA
Initial KNN 26 8 1 48 11 9
Mean-balanced 28 9 1 59 14 11
100% Industry Fused 31 11 1 60 16 14

The range of errors for the industrial stands with zero value increased in the mean balancing
process to a maximum of approximately 55 years (Fig. 4.10) and then decreased to near 40 years
during the industry-fused process. Ages in the mid-range of the industry data were compressed

during both the mean balancing and the industrial-fused estimations (Fig. 4.10).

4.4.5 Multi-scale queries

Total conifer area reported by the FIA and the area of conifer represented in LCOV for Hancock
County, Georgia are nearly identical. The FIA reports 138,886 acres of coniferous forestland while
LCOV represents 138,862 total conifer acres. Each of the remotely sensed processes yielded a
mean conifer volume per acre larger than what the FIA reported. The initial KNN process yields a
mean volume per acre of 1,798 ft3 (Tab. 4.29), 17% more than the FIA; mean balancing estimates
1,908 ft3,25% more, and the industry-fused process yields an estimate of 1,933 ft3 (Tab. 4.29),
26% more than the FIA. The difference between the FIA’s estimate, 213 million ft? (Tab. 4.29) and
the remote sensing estimates for total conifer volume ranged from 16% to 25%. The initial KNN
process yields 247 million ft®, mean balancing 262 million ft®, and the industry-fused process 266
million ft3.

The total area of deciduous forestland reported by the FIA was 71,927 (Tab. 4.30) acres, nearly
40% below the 114,466 acres of deciduous forest represented in LCOV. The FIA reported that
there was an average volume in the county of 1,533 ft® per acre while the initial KNN process

produced 1,945 ft® per acre, mean balancing 2,002 ft® per acre, and the industry infused 2,029 ft?
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Figure 4.10: Scatter plots reflecting the age (years) estimates for each industry stand from the A)
initial KNN, the B) mean balancing, and the C) industry-fused processes.

Table 4.29: Conifer volume per acre estimates generated from the FIA, the initial KNN, mean
balancing, and the industry-fused methods for Hancock County, Georgia.

Measure Type Area(ac) Min Max Mean SD Volume (Mil. ft?)
FIA Db (Hancock) Conifer 138,886 NA NA 1533 NA 213
Initial KNN Conifer 138,862 0 4,133 1,798 768 247
Mean balanced Conifer 138,862 1 8,490 1,908 860 262
Industry-fused Conifer 138,862 1 8,439 1,933 911 266
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per acre (Tab. 4.30), 44% to 51% more. Due primarily to the discrepancy in total area represented,
the initial KNN process yields a total volume estimate, 220 million ft3 (Tab. 4.30), 2.2 times more
than what is reported by the FIA. The mean balancing process yields a total of 227 million ft3, 2.3
times the FIA, and the industry-fused process gives 230 million ft3, 2.4 times the FIA.

Table 4.30: Deciduous volume per acre estimates generated from the FIA, the initial KNN, mean
balancing, and the industry-fused methods for Hancock County, Georgia.

Measure Type Area(ac) Min Max Mean SD Volume (Mil. ft*)
FIA Db (Hancock) Decid. 71,927 NA NA 1,346 NA 97
Initial KNN Decid. 114466 43 4,577 1945 751 220
Mean balanced Decid. 114,466 43 10,654 2,002 808 227
Industry-fused Decid. 114,466 0 3,930 2,029 786 230

The FIA reports 67% more mixed type area than what is represented in LCOV. Mean
volume per acre (ft*) estimates for the initial KNN, 1,582, the mean balancing process, 1,833
ft3 (Tab. 4.31), and the industry-fused process, 1,950 ft> were 71% to 111 % above the FIA’s
reported 926 ft® per acre. Differences in estimates of total volume, again due to the discrepancy
in total area reported, ranged from 55% to 68% below what was reported by the FIA. Remotely
sensed total volume estimates ranged from 29 million ft3 to 35 million ft3, while the FIA reported
52 million ft3.

Table 4.31: Mixed type volume per acre estimates generated from the FIA, the initial KNN, mean
balancing, and the industry-fused methods for Hancock County, Georgia.

Measure Area(ac) Min Max Mean SD Volume (Million ft3)
FIA Db (Hancock) 56,450 NA NA 926 NA 52
Initial KNN 18,350 13 3,953 1,582 791 29
Mean balanced 18,350 20 6,312 1,833 922 33
Industry-fused 18,350 15 8,965 1,950 997 35

The FIA reported 5,607 (Tab. 4.32) acres of conifer, 5,891 acres of deciduous and no existing
mixed cover type area in the 3.5-mile radius query area. However, the LCOV layer contains 11,041
acres of conifer, 7,950 acres of deciduous, and 1,275 acres of mixed woods. Remotely sensed
conifer volume estimates were below the FIA’s reported value by 50% from the initial KNN and

industry-fused data to 54% in the mean balanced data. FIA reports a volume per acre of 3,706 ft?
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while the TM-derived data reports a volume per acre of 1,719 to 1,861 ft3 (Tab. 4.32). Deciduous

estimates of volume per acre differed by 751% to 782% from the FIA’s reported 263 ft3.

Table 4.32: Query results from the 3.5-mile radius query to the FIA database, the initial KNN,
mean balancing, and the industry-fused methods for the conifer, deciduous, and mixed types.

Volume
Measure Type Area(ac) Min Max Mean SD  (million cu.ft)

FIA Db Query Conifer 5,607 NA NA 3,706 NA 21

Initial KNN Conifer 11,041 1 7,432 1,849 940 20
Mean balanced  Conifer 11,041 0 3,809 1,719 811 18
Industry-fused Conifer 11,041 1 7,694 1,861 1,021 20
FIA Db Query Deciduous 5,891 NA NA 263 NA 2

Initial KNN  Deciduous 7,950 73 10,654 2,041 844 16
Mean balanced Deciduous 7,950 55 4450 1,974 752 15
Industry-fused Deciduous 7,950 56 3915 2,057 786 16
FIA Db Query Mixed 0 NA NA 0 NA 0

Initial KNN Mixed 1,275 20 5,656 1,905 980 2
Mean balanced Mixed 1,275 13 3,881 1,632 808 2
Industry-fused Mixed 1,275 0 6,009 2,012 1,021 3

FIA reports no forestland area or volume in the half-mile query (Tab. 4.33). The remotely
sensed estimates in this query area ranged from a mean conifer volume per acre of 2.036 ft® from
the initial KNN estimate to 2,251 ft® from the industry-fused data. Deciduous estimates ranged

from 2,168 ft® to 2,253 ft3 (Tab. 4.33) and mixed type from 1,734 to 2,117 ft3.

4.5 DISCUSSION

I based the approach used in this research on the rationalization for balancing an inventory to
an unbiased total presented by Iles (2009). In essence, he states that any process resulting in the
same total as an unbiased estimate is itself unbiased. Though Dr. Iles balanced on the total volume
reported from a large-area timber inventory, we, however, balanced on the means reported by the
FIA. In this approach, I allowed individual pixel estimates to adjust upward or downward until the
remote sensing-based mean volume per acre (ft3) equalized with the mean derived from the FIA

plOt measurements.
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Table 4.33: Query results from the 0.5-mile radius query to the FIA database, the initial KNN,
mean balancing, and the industry-fused methods for the conifer, deciduous, and mixed types.

Volume
Measure Type Area(ac) Min Max Mean SD  (million cu.ft)

FIA Db Query  Conifer 0 NA NA 0 NA 0

Initial KNN Conifer 299 64 3,621 2,036 747 607
Mean balanced  Conifer 299 91 6,608 2,103 795 627
Industry-fused Conifer 299 91 7,695 2,252 1,093 672
FIA Db Query Deciduous 0 NA NA 0 NA 0

Initial KNN  Deciduous 132 249 3,771 2,168 716 286
Mean balanced Deciduous 132 253 5939 2215 746 292
Industry-fused Deciduous 132 257 3,906 2,245 742 296
FIA Db Query Mixed 0 NA NA 0 NA 0

Initial KNN Mixed 31 179 3,704 1,734 784 53
Mean balanced Mixed 31 285 4,816 1,952 945 60
Industry-fused Mixed 31 0 3,950 2,024 959 62

This inventory of Georgia differentiates itself from other large-area, remote sensing-based
inventories in the northeastern United States and abroad (R. McRoberts, Tomppo, and Naesset
2010; Tomppo et al. 2008; R. E. McRoberts et al. 2009) in the manner is addressed. Recommen-
dations for minimizing bias are the incorporation of a weighting factor during the nearest neighbor
process (Katila, 2006; McRoberts, 2009), generalization or segmentation (Hyvonen, Pekkarinen,
& Tuominen, 2005; Woodcock, Macomber, Pax-lenney, & Cohen, 2001) and the careful selection
of the optimal K (McRoberts et al., 2002) and method of estimation (Labrecque, Fournier, Luther,
& Piercey, 2006). I on the other hand, accept the statistical integrity of the FIA’s large-area reports
and conform our measurements.

Scaling estimates based solely on the ESD to attain equalization decreased the local accuracy
of our stand-level volume per acre (ft?) estimates (Fig.4.8A and 4.8B). Root-mean squared error
decreased by 4% and MAE by 7% (Tab. 4.26) when compared to the initial KNN estimates. How-
ever, after incorporating the small area forest inventory, our local accuracy increased by nearly 2.5

times, all the while, maintaining large area conformity with the FIA (Tab. 4.25).
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Neither mean balancing (Fig. 4.9)(Tab. 4.27) nor the industry-fusion process (Fig. 4.10) (Tab.
4.28) increased the accuracies of stand basal area or age. Stand-level basal area and age were most
accurately estimated using the initial KNN estimation process.

Several issues requiring further assessment were identified throughout this research. I did not
explore balancing to the total volume. My rationalization for balancing to the mean is the fact that
volume per acre is invariant to total area. On the other hand, total volume is a product of forestland
area and, unlike volume per acre, fluctuates as that area changes. However, total volume is the
measure the FIA reports, so the issue should be addressed

Second, there is room for more complete utilization of the small-area measurements. This study
only leveraged the information from our industry partners within their stand boundaries. The high
resolution ground information, however, can be used for estimates across the entire scene. For
instance, Sivianpillai (2006) used similar high resolution forest measurements in conjunction with
remote sensing and multivariate regression to estimate age and density for a site in eastern Texas
and Meng (2009) used high resolution forest information and satellite imagery with geostatistical
techniques for a forest Several issues requiring further assessment were identified throughout this
research. I did not explore balancing to the total volume. My rationalization for balancing to the
mean is the fact that volume per acre is invariant to total area. On the other hand, total volume is
a product of forestland area and, unlike volume per acre, fluctuates as that area changes. However,

total volume is the measure the FIA reports, so the topic should be explored.

4.6 CONCLUSIONS

Natural resource managers have a growing amount of data available for incorporation into their
decision-making and management processes. Regardless of the source, whether it is the product of
a small forest inventory designed for a locally accurate estimate, a report based on sparsely located
plots adequate for large area approximations, or even if it is a bit of information your foreman
"’knows’ is true and, for that reason alone, must be included in the analysis, they all contain useful

bits of information. We used the total balancing concept to assimilate those seemingly unrelated,
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yet useful bits of information into our high resolution, spatially explicit inventory for the state of
Georgia. The inventory retains the FIA’s unbiased nature across large areas for volume per acre
(ft*), however, unlike the FIA, our inventory also maintains the local accuracies provided by our

forest industry partners.
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CHAPTER 5

CONCLUSIONS

Under a multi-use sustainable management regime, the provision of timely, reliable, and accurate
information about forests, their forested ecosystems and adjacent areas is essential for maintaining
their sustained productivity and ecological balance. This is especially important where forests tend
to be fast growing and changing, highly fragmented in area and ownership, and where there are
multiple demands for their use, such as those in the southeastern United States. Competition for
the use of the forests throughout the southeast due to population growth and migration, urban
and rural development, and climate change, to name a few, are likely to increase. These issues are
compounded since these stressors, their magnitude, focus, and their effect on the current and future
ecosystems will vary depending on geography, thus, our responses to them will require regional
and local strategies to address these management issues.

In this Dissertation, I have presented three research projects in an attempt to demonstrate
various methods of multi-source data fusion based on the Forest Inventory and Analysis (FIA),
remotely sensed imagery, and various other sources for improving the FIA inventory data and the
level of detail they describe for different locations in the state of Georgia. In the first study, I
addressed an issue with the usability of the satellite imagery from the Landsat 7 Enhanced The-
matic Mapper Plus (ETM+) sensor. Since the scan line corrector failure in 2003, information in
approximately 20% of the total pixels were absent and a majority of the remaining data were not
suitable for assessment across a continuous landscape. I used a nearest neighbor approach based
on multi-temporal and multi-sensor data for their repair. Understandably, the best data pairs are
ones captured close together in time. However, possibly not as apparent, results suggest matching
seasons is more important than nearness in acquisition date. The next best choice in image pairs

are ones captured in the same season a year before or after.
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The second study demonstrates an approach to small area assessments throughout the state
using satellite imagery. In an attempt to reduce variability in the data, I used various methods
to distribute FIA plot data segmented ETM+ imagery in a manner that accurately distributed the
field measures throughout the landscape. I demonstrated an application of the segmented inventory
by intersecting it with a series of road beautifying buffers and stream side management zones
corresponding to Georgia’s Best Management Practices. After long-term analysis, we concluded
the magnitude of mandatory stream side protection and visually pleasing roadside buffers will
delay harvest of mature forests.

The third study is an implementation of the framework for a higher resolution forest inventory
described in Cieszewski et al. (2005) and Iles (2009) in which data from various sources with
incompatible variances were combined to create a pixel-level forest inventory of Georgia. The K-
nearest neighbor methodology was once again employed to distribute the FIA field measurements
across multiple Landsat 5 Thematic Mapper satellite images. This study differentiates itself from
other large-area, remote sensing-based inventories in the northeastern United States and abroad (R.
McRoberts, Tomppo, and Naesset 2010; R. McRoberts and Tomppo 2007; Tomppo et al. 2008; R.
E. McRoberts et al. 2009) in the manner in which these incompatibilities are addressed. We simply
accept the statistical integrity of the FIA’s large-area reports and conform our measurements for
the same area to theirs. There is, however, minimal gain when the large-area means are simply
equalized proportionally. However, by incorporating locally-accurate cruise information from our
industrial sponsors, precision rose by 2.5 times

In these three studies, we were able to provide more detailed information with a higher reso-
lution than we could achieve otherwise by leveraging the FIA inventory in a manner for which it
was not designed. Using the approaches described herein, we provide the natural resource man-
agers spatially explicit, high resolution and statistically valid information across large areas to
address the critical issues of the day. Nevertheless, there are areas that should be explored fur-
ther. The Landsat 5 satellite was decommissioned in January, 2013, so alternative companion data

sources for the Landsat 7 gapfilling described in Chapter 2, and natural resource modeling pro-

137



cesses described in Chapters 3 and 4 need to be explored. The next generation Landsat satellite, the
Landsat Data Continuity Mission spacecraft (LCDM), was launched in February of 2013. Reports
from the USGS suggest the testing and calibration phases should be completed near the beginning
of the summer (2013) and images delivered soon thereafter. The LCDM has similar spatial and

spectral characteristics to Landsat 5 and 7, so expectations are it will be a suitable replacement.

5.1 REFERENCES

[6] Cieszewski, C.J., K. Iles, R.C. Lowe, and M. Zasada. 2005. Proof of concept for an approach
to a finer resolution inventory. In 2003 Proc. of the Fifth Annual Forest Inventory and Analysis
Symposium, McRoberts, R.E., Reams, G.A., Van Deusen, P.C., and McWilliams, W.H. (eds.).
November 18 20, 2003, New Orleans, LA. Gen. Tech. Rep. WO-69. US For. Serv., Washington,
DC. 222 p.

[14] Ies, K. 2009. Total-Balancing an inventory: A method for unbiased inventories using highly
biased non-sample data at variable scales. Math. Comput. For. Nat. Resour. Sci. 1(1):10 13.
Available online at mcfns.com/index.php/Journal/ article/view/MCFNS-1:10/18; last accessed

April 13, 2009.

[17] McRoberts, R., and E. Tomppo. 2007. Remote Sensing Support for National Forest
Inventories. Remote Sensing of Environment 110 (4) (October): 412419.

doi:10.1016/j.rse.2006.09.034.

[26] Tomppo, E, H Olsson, G Stahl, M Nilsson, O Hagner, and M Katila. 2008. Combining
National Forest Inventory Field Plots and Remote Sensing Data for Forest Databases. Remote

Sensing of Environment 112 (5) (May): 19821999. doi:10.1016/j.rse.2007.03.032.

[18] McRoberts, Ronald E., Erkki Tomppo, Klemens Schadauer, Claude Vidal, Goran Stahl, Gher-
ardo Chirici, Adrian Lanz, Emil Cienciala, Susanne Winter, and W. Brad Smith. 2009. Har-

monizing National Forest Inventories. Journal of Forestry (June): 179187.

138



[45] McRoberts, R.E., E.O. Tomppo, and E. Naesset. 2010. Advances and emerging issues in

national forest inventories. Scandinavian Journal of Forest Research 25(4):368-381.

139



