
A Scheduling Algorithm and Utilization Bound

for Uniform Multiprocessors

by

Archana Meka

(Under the direction of Shelby H. Funk)

Abstract

We present a new scheduling algorithm, U-LLREF, which is the first scheduling algorithm

for that is optimal for uniform multiprocessors. It is an extension of the LLREF algorithm

for identical multiprocessors. These algorithms attempt to emulate a fluid scheduling model,

which executes all periodic tasks at a constant rate equal to their utilization. Like the LLREF

algorithm, U-LLREF generates schedules based on the fairness notion. It uses the Time and

Local execution time (TL) plane to describe fluid schedules and ensures the amount of work

completed by each task remains close to the corresponding amount of work in the fluid

schedule by monitoring task progress within TL planes. Keywords: LLREF, optimal

scheduling algorithm, uniform multiprocessors

A Scheduling Algorithm and Utilization Bound

for Uniform Multiprocessors

by

Archana Meka

B.E., Osmania University, 2006

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2008

c© 2008

Archana Meka

All Rights Reserved

A Scheduling Algorithm and Utilization Bound

for Uniform Multiprocessors

by

Archana Meka

Approved:

Major Professor: Shelby H. Funk

Committee: John A. Miller

Robert W. Robinson

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

December 2008

Dedication

To my advisor, mentor and guide Shelby H Funk, my parents and Suman

iv

Acknowledgments

First and foremost, I would like to thank my advisor, Shelby H. Funk, for all her supervision,

support and guidance from the very early stages of this research till the end. I would also

like to thank my committee members, John A. Miller and Robert W. Robinson for their

valuable time. I would also like to thank the Computer Science department at the University

of Georgia and its staff for letting me use their library and resources to accomplish this

research. Lastly, I want to thank my parents for giving me the opportunity to come to the

United States and to study at the University of Georgia. Without this, none of this research

would have even been possible. They have shown me lots of love and support during my

time here during the tough times and the good times. I thank Suman for his support and

encouragement even during tough times. I also thank my brother for giving me advice from

his own personal experiences at graduate school.

v

Table of Contents

Page

Acknowledgments . v

List of Figures . vii

Chapter

1 Introduction . 1

2 Model and Definitions . 6

3 Related work . 10

4 U-LLREF: The LLREF Algorithm for Uniform Multiprocessors 18

5 Conclusion . 26

Bibliography . 28

vi

List of Figures

2.1 Events in a TL-plane . 9

3.1 No multiprocessor online algorithm can be optimal. 11

3.2 The level algorithm . 14

3.3 Processor sharing . 14

vii

Chapter 1

Introduction

A real-time system is defined as a system which achieves logical computations within deter-

ministic time constraints. These systems may be divided into two categories – hard and

soft. In a soft real-time system, jobs may miss some deadlines. In a hard real-time system,

any missed deadline is considered a system failure. Therefore a real-time system needs to

ensure that specific deadlines are met to avert such failures. Usually a real-time system

has a limited amount of processing capability. In order to meet its requirements, the pro-

cessing capacity of the system needs to be allocated in such a way that all the time deadlines

are met properly. In the case of multiple events occurring within a short period of time, the

system must schedule carefully in order to finish processing jobs within their time boundaries.

The method the real-time system uses to determine job execution is known as a real-time

scheduling policy.

Real-time Scheduling

Real-time scheduling works with the notion of priorities. When allocating system

resources for scheduling tasks, job properties are used to determine their priorities. Jobs are

usually characterized by their release time, computation time and deadline. Many real-time

systems have jobs that repeat at regular intervals. These repeated jobs are generated by

periodic tasks.

Tasks

There are several different types of tasks performed by real-time systems, including peri-

odic and sporadic tasks. These tasks can be described by their time constraints and the times

at which consecutive jobs are released.

1

A periodic task releases jobs regularly at fixed time intervals. If the deadline of each job

is equal to the arrival time of the next job, we say that deadlines equal periods. This thesis

considers only that type of task.

Jobs generated by sporadic tasks can arrive at irregular time intervals, but will have some

known time bounds. The period of a sporadic task is the bounded rate at which jobs arrive

(i.e., the minimum inter-arrival time).

The scheduling algorithm selected to execute a task set will depend on the different

types of tasks in the set. Scheduling algorithms may be preemptive or non-preemptive. A

preemptive algorithm will interrupt the currently executing job if another job with a higher

priority becomes ready to execute. However, if a task is non-preemptive no job can be

interrupted until it is completed. This thesis introduces U-LLREF, a preemptive scheduling

algorithm.

Processors

Real-time systems may be executed on a variety of different types of processing plat-

forms, including single processor systems and multiprocessor systems. In a single processor

system (uniprocessor) there is exactly one shared processor available and all jobs executed

are run on that processor. In the case of a multiprocessor system, there are several processors

available for jobs to execute on. The number of processors in a multiprocessor system is an

important factor in determining the algorithm for real-time task scheduling and multipro-

cessor scheduling algorithms tend to be more complex than those for uniprocessors. The

focus of this thesis will be on multiprocessor systems.

Multiprocessor Scheduling

Multiprocessors have different classifications depending of the performance of the indi-

vidual processors. Common classifications include identical multiprocessors, uniform multi-

processors and unrelated multiprocessors.

In identical multiprocessor systems, a job’s execution rate is independent of the processor

that is currently executing the job. In these platforms, each processor has the same processing

power.

In uniform multiprocessors systems, a job’s execution rate depends on which processor

is currently executing the job. In these platforms, each processor has an associated speed s.

If a job executes on a speed-s processor for t time units, the processor performs s× t units

of work.

In unrelated multiprocessor systems, a job’s execution rate depends both on processor

that is currently executing the job, and on the job currently being executed. Each pro-

cessor/job pair has an associated speed s(p, j). These platforms describe systems with spe-

cialized processors, such as graphics coprocessors, or digital signal processors.

This thesis focusses on uniform multiprocessor platforms.

Scheduling Algorithms for MultiProcessors

Tasks are scheduled in real-time systems using some scheduling algorithm. Scheduling

algorithms may be divided into two categories, depending on whether there is a single sched-

uler controlling all processors and tasks, or there are multiple schedulers – each controlling

a single processor and a specific subset of the tasks.

Global Scheduling Algorithms : Algorithms with a single scheduler controlling all processors

and tasks are called global scheduling algorithms. These algorithms store the tasks that have

arrived but have not yet finished their execution in a single queue, which is shared among

all processors. If the multiprocessor contains m processors, then at every moment at most

m tasks in the queue are selected for execution. Global scheduling algorithms may allow

preempted tasks to move to a different processor and resume execution. If so, we say the

algorithm allows migration.

Partitioned Scheduling Algorithms : Algorithms in which each processor has its own local

scheduler, which schedules a specified subset of the tasks, are called partitioned scheduling

algorithms. Under partitioning, tasks are not allowed to migrate, hence the multiprocessor

may be viewed as many uniprocessor systems executing simultaneously.

We say an algorithm is optimal if it meets all deadlines whenever it is possible to do

so. There are two global optimal scheduling algorithms for periodic tasks on identical multi-

processors – namely pFair [3, 1], and LLREF [6]. To date, no optimal scheduling algorithm

exists for uniform multiprocessors. This paper introduces U-LLREF, an extension of LLREF

for uniform multiprocessors and proves the algorithm is optimal.

Both Pfair and LLREF are based on the fluid scheduling model and the fairness notion.

In the fluid scheduling model each task executes at a constant rate at all times. This model

is impractical because it requires processors to execute multiple jobs simultaneously. The

LLREF and Pfair algorithms try to mimic the fluid schedule. For both these algorithms,

decisions regarding task execution on the multiprocessor ensure that the algorithm has per-

formed the same amount of work as the fluid schedule at specific points in time t0, t1, t2,

The Pfair algorithm makes scheduling decisions with the goal of ensuring that the distance

between the fluid schedule and the actual schedule is always less than 1. The algorithm

divides tasks into subtasks, called pseudo-tasks. Each pseudo-task executes for one time

unit. Pseudo-tasks are given deadlines that guarantee the bound on the distance between

the fluid and actual schedules. The pseudo-tasks are assigned priority according to their

deadlines, with earlier deadlines having higher priority. If two pseudo-tasks have the same

deadline, there are additional rules used for breaking ties.

The LLREF algorithm makes all scheduling decisions within the time and location

remaining execution-time planes (TL planes); these planes describe the system behavior

during any interval [ti, ti+1]. The schedule is divided into TL planes of various sizes. There-

fore, the feasibility of the entire system depends on the schedule within each TL plane. This

paper presents an optimal scheduling algorithm for periodic tasks executing on uniform mul-

tiprocessors. Our new scheduling algorithm, U-LLREF, extends LLREF to apply to uniform

multiprocessors.

The remainder of this thesis is organized as follows. Chapter 2 introduces our model,

defines all terms, and discusses LLREF in more detail. Chapter 3 introduces results that

are relevant to this research. Chapter 4 introduces the U-LLREF scheduling algorithm and

proves it is correct. Finally, Chapter 5 provides concluding remarks.

Chapter 2

Model and Definitions

Real-time systems are comprised of a processing platform and a set of jobs, J = {J1, J2, . . . , Jn}.

A job is a sequential piece of code that executes on a processor. Jobs are described using the

3-tuple (ai, ci, di), where ai, ci and di are job Ji’s arrival time, execution requirement and

deadline, respectively. The execution requirement, ci, is the amount of time Ji must execute

to complete its work on a speed-1 processor. A schedule is correct if and only if Ji completes

ci units of work during the interval [ai, di). In this work, we assume all jobs are independent.

Real-time jobs are often generated by periodic tasks. A periodic task Ti = (pi, ci) generates

jobs Ti,k at times k · pi for k = 0, 1, 2, Job Ti,k’s deadline is the arrival time of task Ti’s

next job, namely (k + 1) · pi. One important task parameter is its utilization, ui = ci/pi,

which measures the proportion of time a task must execute on a unit speed processor (i.e., a

processor with speed s = 1). The utilization is the rate at which the fluid schedule executes

each task. The work presented in this thesis considers the scheduling of periodic task sets [11],

τ = {T1, T2, . . . , Tn}. The total utilization and maximum utilization of task set τ are denoted

Usum and usum, respectively.

Usum =
n∑
i=1

ui

usum = max
1≤i≤n

{ui}

We will be introducing an algorithm for executing periodic task sets on uniform multipro-

cessors, in which each processor has an associated speed. We denote an m-processor uniform

multiprocessor π = [s1, s2, . . . , sm]. In a mild abuse of notation, we let sj denote both the

processor itself and its speed. A job executing on processor si for t time units performs si · t

6

units of work. The total speed of π, denoted S(π), is the sum of all the processor speeds,

S(π) =
∑m

i=1 si. This is the maximum amount of work that can be performed on π in one

unit of time.

A task set τ is said to be feasible on a multiprocessor π if there exists some way of

scheduling all jobs to meet their deadlines. A scheduling algorithm is optimal if it can suc-

cessfully schedule every feasible task set to meet all deadlines.

This research extends the LLREF [6] scheduling algorithm which currently applies only

to identical multiprocessors. As stated in Chapter 1, this algorithm tracks the fluid schedule

by ensuring that LLREF and the ideal schedule have completed the same amount of work

at certain points in time. For all times t ≥ 0, the ideal schedule has completed ui · t units

of work on task Ti at time t. By contrast, the LLREF algorithm is guaranteed to complete

ui · t units of work whenever any task has a deadline (i.e., at any time k · pi for some integer

k ≥ 0 and some i = 1, 2, . . . , n). We denote these points in time tf,0, tf,1,

At each time te such that tf,k−1 ≤ te < tf,k for some k > 0, LLREF makes all scheduling

decisions based only on the local remaining execution requirement and the local utilization

for each task Ti, denoted `i,e and ri,e, respectively. The local execution requirement is the

amount of work that must be completed on task Ti between time te and time tf,k in order

for LLREF to have performed ui · tf,k units of work by time tf,k. The local utilization is the

ratio of local execution requirement and the remaining amount of time,

ri,e =
`i,e

tf,k − te
.

The total local utilization at time te, denoted Re, is the sum of all tasks’ local utilization.

Re =
n∑
i=1

ri,e.

The Time and Local execution requirement plane (or TL-plane) is a two dimensional

plane, whose horizonal axis is time (t) and vertical axis is local remaining execution require-

ment (`). Each TL-plane illustrates task behavior between two deadlines tf,k−1 and tf,k. At

the beginning of each TL-plane, each task’s local utilization is initialized to the task’s global

utilization. Hence, the execution done by the LLREF algorithm will match the execution

done by the fluid schedule at all deadlines.

The status of each task is represented using a token. If task Ti is executing on processor

sj at time t, then Ti’s token moves down in the plane with a slope of of −sj. If Ti is not

executing, Ti’s token moves horizontally. LLREF’s scheduling decisions are designed to ensure

the following:

• No task executes more than its ideal amount within the TL-plane – i.e., `i,t ≥ 0 for all

t ≥ 0 and i = 1, 2, . . . , n.

• No remaining execution requirement gets so large that it cannot be completed before

the next deadline tf,k.

These two constraints have two corresponding events, which are illustrated in Figure 2.1.

The first event, corresponding to `j,t reaching a value of 0 is called a bottom (or B) event.

In the TL-plane, a B event occurs when a task’s token reaches the bottom of the TL-plane.

The second event, corresponding to a task (or tasks) needing to execute continually for the

remaining time in order for it (them) to meet its (their) deadline, is called a ceiling (or C)

event. If only one task has had a C-event, then that task’s token will intersect the line with

a slope of −s1 that intersects the vertical axis at tf,k — if the task does not execute on the

fastest processor for the remaining time, it will certainly not track the ideal schedule at the

next deadline, tf,k.

On identical processors, there is only a single type of C event condition, namely when a

task’s local utilization reaches 1. As we will see in the next section, the presence of different

processor speeds on uniform multiprocessors results in different types of C events — if one

task has already had a C event requiring it to only execute on s1, then the next task’s C

event will not be able to execute on s1! Instead, tasks on uniform multiprocessors have Ck

events, which occur when k tasks have 0 laxity on the k fastest processors.

l

t
tf,k‐1 tf,k

Ti

C event for Ti

B event for Tj

Figure 2.1: Events in a TL-plane

Chapter 3

Related work

This chapter presents some results on the work previously done on uniform multiprocessors.

First we look at the results of Hong and Leung, then the results of Dertouzos and Mok.

Two independent groups, Hong and Leung [9] and Dertouzos and Mok [7], proved that

there can be no optimal online algorithm for scheduling real-time instances on identical mul-

tiprocessors. On the positive side, Baruah, et al. [3] developed a job-level dynamic-priority

scheduling algorithm called Pfair, which they proved is optimal for periodic tasks on multi-

processors. Srinivasan and Anderson [13] later proved that the Pfair algorithm could also be

used for sporadic task sets with a bit of modification.

Theorem 1 ([9]) No optimal online scheduler can exist for instances with two or more

distinct deadlines for any m-processor identical multiprocessor, where m > 1.

This theorem was proved by Hong and Leung by the following counterexample.

Example 1 ([9]) Consider executing instances on a two-processor identical multiprocessor.

Let I = {J1 = J2 = (0, 2, 4), J3 = (0, 4, 8)}. Construct I ′ and I ′′ by adding jobs to I with

later arrival times as follows: I ′ = I∪{J ′4 = J ′5 = (2, 2, 4)} and I ′′ = I∪{J ′′4 = J ′′5 = (4, 4, 8)}.

There are two possibilities depending on the behavior of J3.

Case 1: J3 executes during the interval [0,2). Then one of the jobs of I ′ will miss

a deadline. Inset (a) of Figure 3.1 [8] illustrates a valid schedule of I ′ on two unit-speed

processors. Notice that the processors execute the jobs J1, J2, J
′
4 and J ′5 and never idle

during the interval [0, 4). Moreover, these four jobs all have the same deadline at t = 4.

10

-s2

-s1

0 1 2 3 4 5 6 7 8

J1

J2

J ′4

J ′5 J3

Processor view

-J ′5

-J ′4

-J3

-J2

-J1

0 1 2 3 4 5 6 7 8

s1

s2

s1

s2

s1

Job view

(a) Job J3 cannot execute in interval [0, 2)

-s2

-s1

0 1 2 3 4 5 6 7 8

J1

J3

J2

J ′′4

J ′′5

Processor view

-J ′′5

-J ′′4

-J3

-J2

-J1

0 1 2 3 4 5 6 7 8

s2

s1

s2

s1

s2

Job view

(b) Job J3 must execute in interval [0, 2)

Figure 3.1: No multiprocessor online algorithm can be optimal.

Therefore, if J3 were to execute for any time at all during this interval, it would cause at

least one of the jobs to miss its deadline.

Case 2: J3 does not execute during the interval [0,2). Then one of the jobs of I ′′ will

miss a deadline. Inset (b) of Figure 3.1 illustrates a valid schedule of I ′′ on two unit-speed

processors. Notice that the processors execute the jobs J1, J2, and J3 during the interval

[0, 4) and all three jobs have completed execution by time t = 4. Moreover, jobs J ′′4 and J ′′5

both require four units of processing time in the interval [4, 8). If job J3 did not execute

during the entire interval [0, 2), it would not complete execution by time t = 4. Therefore,

it would require processing time in the interval [4, 8) and at least one of the jobs J3, J
′′
4 , or

J ′′5 would miss its deadline.

Therefore, the jobs in I cannot be scheduled in a way that ensures valid schedules for all

feasible job sets without knowledge of jobs that will arrive at or after time t = 2.

Dertouzos and Mok [7] also considered online scheduling algorithms on identical multi-

processors and determined that to optimally schedule jobs, there must be three job properties

that must be known.

Theorem 2 ([7]) For two or more processors, no real-time scheduling algorithm can be

optimal without complete knowledge of 1) the deadlines, 2) the execution requirements, and

3) the start times of the jobs.

They also found conditions in which if one or more of these job properties are not known,

it is still possible to determine a valid schedule. They determined that, in general real-time

systems, it is possible to schedule jobs that don’t necessarily arrive simultaneously without

knowing their arrival times as long as it is possible to schedule jobs when they do arrive

simultaneously.

Horvath, et al. [10], studied the scheduling problem of a set of non-real-time preemptable

jobs arriving simultaneously. They showed that the minimum makespan for independent

non-real-time jobs is based on the total execution requirements of the jobs as well as the

total speeds of the processors. The makespan of a system is the amount of time required to

complete all the jobs in the system. The following theorem is integral to the development of

U-LLREF.

Theorem 3 Let J = {J1, J2, . . . , Jn} be a set of n independent non-real-time jobs, each with

arrival time equal to zero and indexed according to non-increasing execution requirements,

ci ≥ ci+1 for all i = 1, 2, . . . n − 1, and let Ci denote the cumulative execution requirement

of the i largest jobs for all i = 1, 2, . . . , n, and let Si(π) denote the cumulative speed of π’s

i fastest processors. Then for any uniform heterogeneous multiprocessor, π, the minimum

makespan for scheduling I on π is

ω = max

(
max

1≤i≤m

{
Ci
Si(π)

}
,
Cn
S(π)

)
. (3.1)

Horvath, et al. [10], introduced an algorithm called the level algorithm which always

completes job execution at time ω. This algorithm assigns jobs to processors in a recursive

manner. At time t = 0, this algorithm sets j equal to m and k equal to the number of jobs

with the largest execution requirement or in other words, the jobs with the highest initial

level. The job level, J , at time t is the amount of remaining work. If k > j, the k jobs

are jointly assigned to the j processors, otherwise the k jobs are assigned to the k fastest

processors and the remaining jobs are assigned to the slower processors respectively. This

processor assignment will remain until either some set of jobs completes executing or the

level of one group equals the level of the group below it.

Example 2 [8] Let π = [5, 3, 1] and let I be the set of jobs with execution requirements

c1 = 20, c2 = 16, c3 = 6, and c4 = 5. Figure 3.2 illustrates the level-algorithm schedule

of I on π. Notice that the diagrams only have one time line for all the processors (or jobs)

to more easily reflect when jobs execute jointly on one or more processors. Initially, all the

jobs have distinct levels so J1, J2 and J3 execute on s1, s2 and s3, respectively. At t = 1, the

levels of J3 and J4 are both equal to 5, so these two jobs jointly execute on s3. At t = 2, the

levels of J1 and J2 are both equal to 10, so these jobs jointly execute on processors s1 and

s2. At t = 34
7
, all the jobs have a level of 35

7
so they all execute jointly on all three processors

until they complete at t = 417
21

.

Jobs are scheduled and jointly assigned to processors in a round-robin fashion, where the

shared intervals are divided into smaller intervals. For instance, if there are k processors,

s1, s2, . . . , sk, and j jobs, J1, J2, . . . , Jj, scheduled for time t where k ≤ j, then the interval

is into j subintervals of length (t/j). Each job then executes on each processor for exactly

one subinterval and idles for (k − j) subintervals. At the first subinterval, Ji executes on si

where 1 ≤ i ≤ k; following this, each job Ji executes on si+1 where 1 ≤ i ≤ k− 1. Figure 3.3

illustrates a schedule of five time units where five jobs share four processors [8].

The level of each job Ji not only depends on ci if J has precedence constraints, but the

level also includes the longest chain that starts at Ji. A chain is defined as a sequence of jobs

-

s1

s2

s3

0 1 2 3 4 5 6

J1

J2

J3 J3, J4

J1, J2 J1, J2,
J3, J4

Processor view

-

J1

J2

J3

J4

0 1 2 3 4 5 6

s1

s2

s3
s3

s1, s2

s1, s2, s3

Job view

Figure 3.2: The level algorithm.

-

-

-

-
s1

s2

s3

s4

0 1 2 3 4 5

J1

J2

J3

J4

J5

J1

J2

J3

J4

J5

J1

J2

J3

J4

J5

J1

J2

J3

J4

J5

Processor view

-

-

-

-

-J1

J2

J3

J4

J5

0 1 2 3 4 5

s1

s2

s3

s4

s1

s2

s3

s4

s1

s2

s3

s4

s1

s2

s3

s4

s1

s2

s3

s4

Job view

Figure 3.3: Processor Sharing.

Ji1 , Ji2 , . . . , Jin′ such that Jik < Jik+1
for each k = 1, 2, . . . n′ − 1. The length of the chain is

sum of its component jobs’ execution requirements: ci1 + ci2 + . . .+ cin′ . Horvath, et al. [10],

discovered that while this level algorithm may minimize the makespan for independent jobs,

it does not minimize the makespan when J has precedence constraints.

3.0.1 Real-time scheduling on uniform heterogeneous multiprocessors

Baruah and Goossens developed an RM-schedulability test for uniform heterogeneous multi-

processors. The following section will describe the results from their test. Rate monotonic

scheduling. Rate monotonic (RM) scheduling is a fixed-priority scheduling algorithm which

assigns higher priority to tasks with smaller periods. Therefore, all jobs generated by a certain

task have the same priority. The schedulability test developed by Baruah and Goossens [4, 5]

tests the rate monotonic (RM) scheduling algorithm with full migration on uniform hetero-

geneous multiprocessors, as shown below.

Theorem 4 ([4, 5]) Let τ be any task set and let π be any uniform heterogeneous multi-

processor. If

Usum(τ) ≤ 1

2

(
S(π)− (1 + λ(π)) · umax(τ)

)
,

where S(π) is the total speed of π and λ(π) is π’s identicalness parameter, then τ can be

successfully scheduled on π using RM with full migration.

The difference between EDF and RM is that for EDF the active jobs gain higher priority

as their deadline approaches. On the other hand, for RM, the jobs always have the same

priority regardless of their deadlines. Because of this the utilization bound is smaller for

RM than for EDF. This decreased bound compensates for the difficulties inherent in fixed-

priority scheduling. In the remainder of this section we will discuss the results developed

by Baruah concerning the dynamic scheduling algorithm EDF-F on uniform heterogeneous

multiprocessors.

The robustness of EDF-F. Remember that π dominates π′ if (1) m(π) ≥ m(π′), and

(2)si(π) ≥ si(π
′) for all i with 1 ≤ i ≤ m(π′). Whenever I is A–schedulable on some

multiprocessor, if a scheduling algorithm A is guaranteed to successfully schedule any real-

time instance I on π, then A is said to be robust with respect to domination. Baruah [2]

showed that EDF-F is robust with respect to domination. This robustness is preferred because

it allows processors to be upgraded without complete re-analysis of the entire system.

3.0.2 Comparison between Pfair, LLREF and Heterogeneous Partitioning

In this section we will discuss three different scheduling algorithms for multiprocessors and

their strengths and drawbacks. The algorithms included in our discussion are Pfair, LLREF

and Heterogeneous partitioning. Each of these algorithms is used for different applications

in multiprocessor systems. Pfair and LLREF apply only to identical multiprocessors. Het-

erogeneours partitioning applies to unrelated multiprocessors. We begin with Pfair

One of Pfair’s strengths is that it tries to reduce the amount of memory to L2 traffic

which increases the latency in the normal processor operation. The Pfair algorithm can be

used to schedule periodic and sporadic tasks, it is a quantum based scheduler, i.e., tasks

are allocated fairly in proportion to their weights. This algorithm assigns processor time in

discrete quanta. One limitation of this algorithm is that it has no support for multi-threads.

The LLREF algorithm is slightly different and is more effective than the Pfair-based

scheduler. The LLREF algorithm proposes a real-time scheduler for multi-processor envi-

ronments and works only for periodic and independent tasks i.e., tasks that do not share

resources. In this algorithm processors may be idle even when tasks are present in the ready

queue. Tasks also execute at a constant rate at all times. This algorithm constantly tracks

the allocated task execution rate through task utilization. Task execution behavior on mul-

tiprocessors is given by the time and local remaining execution time plane (TL plane) which

was introduced in Chapter 2.

Both of these algorithms have a high overhead cost. In general, multiprocessor scheduling

algorithms with low overhead also have low processor utilization. It is not uncommon for hard

real-time systems to have 50% processor utilization. Pfair and LLREF both have very high

utilization. The theoretical utilization of both these algorithms is 100%. However, accounting

for the high overhead for the scheduling algorithms will reduce the processor utilization to

some degree.

The Heterogeneous Partitioning algorithm analyzes the mapping of n tasks to a set of m

different types of processors. The Task partitioning algorithm tries to solve the partitioning

problem in heterogeneous multiprocessors – i.e., it states the possible ways to map the set

of n tasks onto a set of m processing units, where each processing unit is of a different kind.

Jobs must be independent to use this algorithm – e.g., they may not share any exclusive

resources. An Integer Linear Program (ILP) formulation is used to make the complex and

intractable partitioning simple. The ILP is optimized using a routine LPRelax, which finds

feasible mappings for feasible systems. The main drawback of this algorithm is that, instead

of discussing the scheduling problem it focuses mainly on mapping sets of tasks to sets of

processors.

Chapter 4

U-LLREF: The LLREF Algorithm for Uniform Multiprocessors

Cho, et al. [6], proved that LLREF is optimal on identical multiprocessors. If it is possible to

schedule a periodic task set to meet all its deadlines on am processor identical multiprocessor,

then the LLREF schedule will meet all deadlines, i.e., a task set satisfies Usum ≤ m and

usum ≤ 1. Clearly, if usum > 1, then the task with the highest utilization will require more

processor time than is available on a single processor even if the task executes 100% of the

time. As a task can only execute on one processor at a time, having utilization greater than

1 would have to cause the task’s deadline to be missed. Similarly, if Usum > m, then the task

set will require a larger proportion of processing than is available on m processors. Thus, the

feasibility condition for LLREF proves that it is optimal on identical multiprocessors.

Because uniform multiprocessors have processors executing at different speeds, the test for

feasibility on uniform multiprocessors is more complicated. Given a uniform multiprocessor

π = [s1,, sm] where s1 ≥ s2... ≥ sm, and a task set τ = {T1, ..., Tn} where u1 ≥ u2 ≥ ... ≥

un, τ is feasible on π whenever the following conditions hold (we assume n ≥ m) [10].

u1 ≤ s1,

u1 + u2 ≤ s1 + s2, . . .
k∑
i=1

ui ≤
k∑
i=1

si for k = 1, 2, . . . ,m− 1, and (4.1)

Usum ≤ S(π). (4.2)

As described in Chapter 2, LLREF has critical and bottom scheduling events. For sim-

plicity, at each event, the tasks are re-indexed in decreasing order by local utilization require-

ment – i.e., ri,e ≥ ri+1,e for i = 1, 2, . . . , n−1. On identical multiprocessors, the m tasks with

18

highest local utilization are scheduled to execute at each event. On uniform multiprocessors,

we have the additional requirement that task T1 (which has the maximum local utilization

after re-indexing) executes on processor s1, task T2 executes on processor s2, etc. In general,

task Ti executes on processor si for 1 ≤ i ≤ m, and tasks Tm+1, Tm+2, . . . , Tn do not execute

during the interval [te, te+1].

4.0.3 Conditions for B and C Events

Recall that in LLREF, the scheduler is invoked in the midst of a TL-plane under two condi-

tions. Either some task(s) complete executing, in which case we have a bottom (or B) event,

or some task(s) laxity becomes zero, in which case we have a critical (or C) event. Below,

we present conditions that must hold when these two types of events occur, starting with C

events. Once these conditions have been found, we will show that if we reschedule whenever

one of these events occurs, then the utilization condition given in 4.2 will always hold – i.e.,

the U-LLREF schedule will schedule the tasks without any deadline misses.

By Constraint 4.2 shown above, there are m different utilization bounds for scheduling on

uniform processors. The first m−1 bounds require that the total local utilization of tasks T1

through Tk is no more than the total speed of the k fastest processors. Each of these bounds

has a corresponding laxity constraint, Ck in which k tasks have 0 laxity on the k fastest

processors. If these k tasks do not execute on the k fastest processors for the remaining time

in the TL-plane, at least one of them will not complete its local execution requirement by

time tf .

Whenever Ck holds at time tc, the following condition holds for the k tasks with maximum

local utilization.
k∑
i=1

ri,e =
k∑
i=1

Si.

At a given scheduling event te−1, the next scheduling event will occur either when one of

the m− 1 critical conditions occurs or a bottom condition occurs. Below we discuss how to

determine which of these conditions will cause the next event.

Lemma 1 Let Tii , ..., Tik be tasks that cause a Ck event at time tc. Thus Tij is assigned to

processor sij at time te−1, the previous scheduling event1. Then tc = te−1 + ∆t, where

∆t =

k∑
j=1

(rij ,e−1 − sj)

k∑
j=1

(sij − sj)
.(tf − te−1).

Proof If these tasks cause a Ck event at time tc = te−1 + ∆t then it must be the case that

k∑
j=1

rj,c =
k∑
j=1

sj.

Also, by definition of rj,c, we know that

k∑
j=1

rj,c =
k∑
j=1

`j,c
tf − tc

.

Hence,
k∑
j=1

sj =
k∑
j=1

lj,c
tf − tc

. (4.3)

During the interval [te−1, tc], task Tij completes ∆t ·sij units of work (for ease of notation,

assume sij = 0 if ij > m). Therefore, lj,c = lj,e−1−∆t ·sij . Substituting this into Equation 4.3

gives

k∑
j=1

sj =
k∑
j=1

(
`ij ,e−1 −∆t · sij

tf − tc

)

⇒
k∑
j=1

sj =
k∑
j=1

(
`ij ,e−1 −∆t · sij
tf − (tc−1 + ∆t)

)

⇒ (tf − (tc−1 + ∆t)) ·
k∑
j=1

sj =
k∑
j=1

(
`ij ,e−1 −∆t · sij

)
.

1Note that task Tij becomes task Tj after re-indexing at time tc

Calculating for ∆t gives

∆t =

k∑
j=1

(`ij ,e−1 − (tf − te−1) · sj)

k∑
j=1

(sij − sj)

= (tf − te−1)

k∑
j=1

(rij ,e−1 − ·sj)

k∑
j=1

(sij − sj)
.

The last step follows from the definition of rij ,e−1.

To date, we have not found an efficient method for determining the k tasks that will

cause the earliest Ck event. For each k = 1, 2, . . . ,m − 1, we have a conjecture that the k

tasks that cause an earliest Ck event are a subset of the (k+ 1) tasks that causes an earliest

Ck+1 event. If we are able to prove that this conjecture is true, then we can efficiently find

all the Ck events by repeatedly finding the next task to add to the set causing each of the C

events.

Of course, a C event will only occur if a B event does not occur first. Next we determine

the condition that leads to a B event.

A B event occurs when some task completes its local remaining execution. When this

occurs, the scheduler should allow some other task to execute rather then allowing the

processor to stay idle. Therefore, we need to identify when a B event will occur so we can

invoke the scheduler to reschedule the tasks at the appropriate time.

Event B occurs when there exists some i ≤ m such that token Ti has no local remaining

execution time. While on identical multiprocessors, Tm is the only task that can invoke a B

event, on uniform multiprocessors any of the executing tasks can invoke a scheduling event.

This is because all processors execute at the same speed on identical multiprocessors, whereas

on uniform multiprocessors it is possible for some processor sk with k < m to execute so

much more quickly than sm that Tk,e finishes before Tm,e even though `k,e > `m,e. The lemma

below shows how to determine when a B event occurs.

Lemma 2 Assume a B event occurs at time tb and that te−1 is the scheduling event that

precedes the B event. Let Tb,e−1 be the task that is scheduled to execute at time te−1. Then

`b,e−1/sb ≤ `j,e−1/sjforallj = i, . . . ,m.

Proof Let tb be the time when a B even occurs. For k = 1, . . . ,m, each task Tk,e−1 executes

at speed sk during the interval [te−1, tb]. Because Tb causes a B event, it performs `b,e−1 units

of execution during the interval [te−1, tb] – i.e., tb = `i,e−1/Si.

Assume that for some task Ta, the lemma does not hold. Then, Ta does not cause a B

event before Tb and `b,e−1/sb ≤ `a,e−1/sa. If Ta executes on processor sa, it will complete its

execution at time ta = `a,e−1/sa < tb, which contradicts our assumption.

This completes the proof.

4.0.4 Feasibility test

We have seen the conditions under which B and C events occur. We will now show that if a

task set τ adheres to the utilization conditions above (conditions 4.2), then U-LLREF will

successfully schedule τ on π. We begin by demonstrating necessary and sufficient conditions

(similar to conditions 4.2) for a task to miss one of its local deadlines, tf . We then show

that if the tasks are rescheduled whenever a B or C event occurs then all tasks will meet

their local deadlines within each TL-plane. Hence, U-LLREF will successfully schedule any

feasible task τ set on the uniform multiprocessor τ .

Theorem 5 Assume τ is any task set scheduled on some uniform multiprocessor π using the

U-LLREF scheduling algorithm. Then a task of τ will miss the kth local deadline, tf,k, if and

only if one of the following conditions is violated at some time te, where tf,k−1 ≤ te < tf,k.

r1,e ≤ s1,

r1,e + r1,e ≤ s1 + s2, . . .
k∑
i=1

r1,e ≤
k∑
i=1

si for k = 1, 2, . . . ,m− 1, and (4.4)

Re ≤ S(π). (4.5)

Proof Assume a task Ti misses the local deadline tf,k. Then `i,fk
> 0. Therefore, there

exists some ε > 0 such that at time tε = tf,k − ε, we have `i,ε > s1 · epsilon. Hence, the first

condition above is violated.

Now assume that one of the above conditions is violated at some time te. Then either

Re > S(π) or there exists some k such that
∑k

i=1 ri,e >
∑k

i=1 si. In the first cases, the total

local execution requirements of all tasks is greater than (tf,k − te)S(π). By definition, the

maximum amount of work that can be done on π during the interval [te, tf,k] is (tf,k−te)S(π).

Therefore, π will not be able to perform the required amount of work before the local deadline

tf,k. In the second case, we have k tasks whose total local execution requirement exceeds

(tf,k − te)
∑k

i=1 si. Therefore, if these tasks are to meet their local deadlines they will need

to execute on more than k processors. This can only happen if some task executes on two

processors simultaneously, which is not permitted. Hence, once again π will not be able to

perform the required amount of work before the local deadline tf,k.

We now show that if τ satisfies conditions 4.2 on π and the tasks are rescheduled whenever

a B or Ck event occurs, then condition 4.5 will always be satisfied.

Theorem 6 Let τ be a set of n tasks and let π be an m-processor uniform multiprocessor.

Assume condition 4.5 holds at some time te−1 and let te = min tck , tb be the next B or Ck

event that occurs. Then condition 4.5 will hold at time te.

Proof By definition of a Ck event, we know that the first (m− 1) conditions will continue

to hold – namely,
∑k

i=1 ri,e ≤
∑k

i=1 si. Hence, it suffices to prove that Re ≤ S(π).

By assumption, we know that

Re−1 ≤ S(π). (4.6)

Define α as follows.

α =
tf − te−1

tf − te
= (1 +

te − te−1

tf − te
).

Multiplying both sides of equation 4.6 by α gives

αRe−1 ≤ αS(π)

⇒ αRe−1 ≤ (1 +
te − te−1

tf − te
)S(π)

⇒ αRe−1 − (
te − te−1

tf − te
)S(π) ≤ S(π) (4.7)

For i = 1, 2, . . . , n, assume that when the tasks are re-indexed at time te, task Ti becomes

task Tie . Let ∆t = te−te−1. By definition, task Ti executes on processor si during the interval

[te−1, te]. Hence, for all i = 1, 2, . . . , n,

`ie,e = `i,e−1 −∆tsi. (4.8)

(As in Lemma 1, assume si = 0 if i > m.)

By definition of α, we have

α =
tf − te−1

tf − te

⇒ tf − te =
tf − te−1

α
(4.9)

Combining this with the definition of rie,e, we know that

rie,e =
`ie,e
tf − te

⇒ rie,e =
`ie,e

tf−te−1

α

= α
`ie,e

tf − te−1

(4.10)

Substituting Equation 4.8 into Equation 4.10 gives

rie,e = α
`i,e−1 −∆tsi
tf − te−1

= α

(
ri,e−1 −

∆tsi
tf − te−1

)
⇒ rie,e = α

(
ri,e−1 − (

te − te−1

tf − te−1

)si

)
.

Taking the total of the local execution over all tasks and noting that m ≤ n implies that

all the processors are executing tasks during the interval [te−1, te] gives

Re ≤ α

(
Re−1 − (

te − te−1

tf − te−1

)S(π)

)
= αRe−1 − (

te − te−1

tf − te
)S(π).

In the first step, we have an inequality rather than an equality because if m > n then some

processors may be idling and the total speed of all active processors may be less than S(π).

However, if m ≥ n, then all processors will be busy for the entire interval [te−1, te] – if a

processor idles, then a B event will occur. The second step above follows by the definition

of α.

Substituting this into Equation 4.7 gives Re ≤ S(π).

Corollary 1 The U-LLREF algorithm is optimal on uniform multiprocessors.

Proof This follows directly from Theorem 6.

Chapter 5

Conclusion

This paper introduces U-LLREF, the extension of the LLREF algorithm for uniform mul-

tiprocessors, an optimal scheduling algorithm for uniform multiprocessors. This is the first

optimal algorithm for executing periodic tasks on uniform multiprocessors.

U-LLREF is designed to closely emulate a fluid schedule, in which all tasks execute at a

constant rate. The algorithm makes all scheduling decisions locally within the TL-planes, and

the amount of work performed by each task within TL-plane exactly matches the amount

of work performed by the fluid schedule over the same period of time. U-LLREF operates

by identifying events when tasks should be rescheduled – namely, B events, when a task

completes its local execution requirement, and Ck events, when a set of k tasks must execute

on the k fastest processors in order to perform their full workload within the TL-plane.

Currently, we have a conjecture that would allow us to efficiently identify these k tasks. In

the future, we hope to prove this conjecture is true, thereby making U-LLREF a polynomial

time algorithm.

We would also like to extend U-LLREF to be defined for more general models such as

sporadic tasks [12, 7], in which the period is indicated by the minimum amount of time

between consecutive jobs (as opposed to the exact amount of time assumed in the periodic

task model). We would also like to extend U-LLREF to handle non-independent tasks, such

as tasks with resource constraints or precedence constraints.

Finally, we would like to extend the algorithm to reduce some of the overhead due to

preemptions and migrations. Currently, we are exploring the possibility of swapping the

execution requirements of jobs between TL-planes. For example, if tasks Ti and Tj swap

26

some execution requirement, then at the end of the TL-plane, Ti would be ahead of its

fluid schedule and Tj would be behind its fluid schedule. In subsequent TL-planes, the tasks

could swap back again so they both match their fluid schedules before their deadlines. This

would reduce the number of tasks active in a TL-plane, which in turn would reduce the

overhead due to B and C events. Of course, any such swap would have to be done carefully

in order to insure that no deadlines are missed. Other methods of reducing overheads that

we are considering include allowing tasks with higher local utilization to execute on slower

processors in order to avoid migration costs.

Bibliography

[1] Sanjoy K. Baruah. Strong P-fairness: A scheduling strategy for real-time applications.

In Proceedings of the IEEE Workshop on Real-Time Applications, 1994.

[2] Sanjoy K. Baruah. Robustness results concerning EDF scheduling upon uniform multi-

processors. In Proceedings of the EuroMicro Conference on Real-Time Systems, pages

95–102, Vienna, Austria, June 2002. IEEE Computer Society Press.

[3] Sanjoy K. Baruah, Neil Cohen, C. Greg Plaxton, and Don Varvel. Proportionate

progress: A notion of fairness in resource allocation. Algorithmica, 15(6):600–625, June

1996.

[4] Sanjoy K. Baruah and Joël Goossens. Rate-monotonic scheduling on uniform multipro-

cessors. IEEE Transactions on Computers, 52(7):966–970, 2003.

[5] Sanjoy K. Baruah and Joël Goossens. Rate-monotonic scheduling on uniform multipro-

cessors. In Proceeding of the 23rd International Conference on Distributed Computing

Systems, Providence, RI, April 2003. IEEE Computer Society Press.

[6] Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. An optimal real-time

scheduling algorithm for multiprocessors.

[7] Michael Dertouzos and Aloysius K. Mok. Multiprocessor scheduling in a hard real-time

environment. IEEE Transactions on Software Engineering, 15(12):1497–1506, 1989.

[8] Shelby Funk. EDF Scheduling on Heterogeneous Multiprocessors. PhD thesis, CS

Department, UNC Chapel Hill, 2004.

28

[9] Kwang Soo Hong and Joseph Y.-T. Leung. On-line scheduling of real-time tasks. In

Proceedings of the Real-Time Systems Symposium, pages 244–250, Huntsville, Alabama,

December 1988. IEEE.

[10] Edward C. Horvath, Shui Lam, and Ravi Sethi. A level algorithm for preemptive

scheduling. Journal of the ACM, 24(1):32–43, 1977.

[11] Chung Laung Liu and James W. Layland. Scheduling algorithms for multiprogramming

in a hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[12] Aloysius K. Mok. Fundamental Design Problems of Distributed Systems for The Hard-

Real-Time Environment. PhD thesis, Laboratory for Computer Science, Massachusetts

Institute of Technology, 1983. Available as Technical Report No. MIT/LCS/TR-297.

[13] Anand Srinivasan and James Anderson. Fair scheduling of dynamic task systems on

multiprocessors. Journal of Systems and Software. Scheduled for publication.

