

PROGRAMMING WITH CONCURRENCY:

BARRIERS TO LEARNING AND EXPLORATIONS IN TEACHING

by

ZHEN LI

(Under the Direction of Eileen Kraemer)

ABSTRACT

 Programming activities are not trivial tasks. Rather, to carry out such complex problem solving

tasks, programming expertise developed through long-term experience is required. In contrast, the

current landscape of computing demands more reliable and efficient implementations of concurrent

software programs. In this thesis work, we research topics in psychology of programming and computer

science education with an emphasis on programming with concurrency to inform the fields of

psychology of programming, computer science education, empirical software engineering and a broader

scope of human factors related fields.

 We identify the barriers to learning programming with concurrency through review and empirical

work. We synthesize the previous research findings with regard to programming expertise, generalize a

conceptual framework of the development and application of programming expertise and indicate the

importance of the knowledge repository component. We reveal the structure of concurrency-related

concepts, and provide insight into the acquisition procedures for such knowledge with our description of

a “misconception hierarchy” grounded from qualitative analysis of empirical data. Comprehensive

arguments generated through a case study are further provided to describe non-concurrency-related

barriers that are critical for students to learn and appreciate programming with concurrency.

 We conduct explorations on the impact of existing and innovative techniques and course designs

used in teaching programming with concurrency topics. We review the pedagogical impact of pair

programming and indicate its protective effect on retaining female and less-experienced students

through our quasi-experiments. We also reveal the engineering and cognitive effect of pair

programming in that pair programming helps students to write code using better style and promotes

more comprehensive and critical thinking in earlier phases of software development. We survey

curriculum guides on topics regarding programming with concurrency and identify two concurrency

models (shared memory versus message passing), three implementation approaches (Threads, Actors,

and Coroutines), and several classic scenarios (Bounded Buffer, Dining Philosopher, Sleeping Barber,

etc.) to teach in an upper-level undergraduate computer science course. We provide feedback on

benefits and drawbacks of this series of pedagogical innovations including flipped classroom design,

using a language-independent pseudocode system, and introducing repeated practice with different

implementation approaches on a single problem.

INDEX WORDS: Psychology of Programming, Computer Science Education, Cognition, Expertise,

 Concurrent System, Empirical Software Engineering

PROGRAMMING WITH CONCURRENCY:

BARRIERS TO LEARNING AND EXPLORATIONS IN TEACHING

by

ZHEN LI

B.E. Fudan University, Shanghai, China, 2008

B.S. University College Dublin, Dublin, Ireland, 2008

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2013

© 2013

Zhen Li

All Rights Reserved

PROGRAMMING WITH CONCURRENCY:

BARRIERS TO LEARNING AND EXPLORATIONS IN TEACHING

by

ZHEN LI

Major Professor: Eileen Kraemer

Committee: John Miller
 Tianming Liu

Electronic Version Approaved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
August 2013

iv

DEDICATION

 This work is dedicated to all programmers for their creativity in problem solving, all students for

their hard work in learning programming and all teachers for their patient guidance along the

demanding journey of developing expertise.

TABLE OF CONTENTS

LIST OF TABLES ... VII

LIST OF FIGURES .. X

ACKNOWLEDGEMENT .. XIII

CHAPTER 1. INTRODUCTION ...1

1.1 THESIS STATEMENTS .. 2

1.2 RESEARCH CONTRIBUTIONS ... 3

1.3 OUTLINE OF THESIS .. 5

CHAPTER 2. OVERVIEW OF EMPIRICAL WORK ...7

2.1 EMPIRICAL WORK 1: SPRING 2010 .. 7

2.2 EMPIRICAL WORK 2: SPRING 2012 .. 10

2.3 EMPIRICAL WORK 3: SPRING 2013 .. 13

CHAPTER 3. BARRIERS TO LEARNING .. 20

3.1 PROGRAMMING EXPERTISE ... 20

3.2 CONCURRENCY-RELATED BARRIERS .. 48

3.3 OTHER BARRIERS ... 77

3.4 SUMMARY AND FUTURE WORK ... 85

CHAPTER 4. EXPLORATIONS IN TEACHING ... 89

4.1 PAIR PROGRAMMING AS A PEDAGOGICAL TECHNIQUE ... 90

4.2 IMPACTS OF PAIR PROGRAMMING .. 93

4.3 CURRICULUM GUIDES AND ELEMENTS OF TEACHING CONCURRENCY .. 113

4.4 TEACHING PROGRAMMING WITH CONCURRENCY .. 128

4.5 SUMMARY AND FUTURE WORKS .. 140

CHAPTER 5. CONCLUSIONS AND CONTRIBUTIONS ... 142

REFERENCES .. 147

CHAPTER 6. APPENDIX ... 157

6.1 DATA AND ANALYSIS PROCESSES .. 157

6.2 PROGRAMS USED IN THESIS WORK .. 166

6.3 MATERIALS FROM SPRING 2010 WORK .. 170

6.4 MATERIALS FROM SPRING 2012 WORK .. 184

6.5 MATERIALS FROM SPRING 2013 WORK .. 250

vii

LIST OF TABLES

TABLE 1 OVERVIEW OF WORK CONTRIBUTING TO IDENTIFY BARRIERS TO LEARNING ... 20

TABLE 2 REINTERPRETATIONS OF STUDY RESULTS ABOUT STRUCTURED VERSUS OPPORTUNISTIC DESIGN BEHAVIORS 25

TABLE 3 REINTERPRETATIONS OF STUDY RESULTS ABOUT PROGRAM PLAN THEORY .. 28

TABLE 4 REINTERPRETATIONS OF EMPIRICAL STUDY RESULTS ABOUT MEMORY AND RECALL .. 32

TABLE 5 REINTERPRETATIONS OF EMPIRICAL RESULTS ABOUT OTHER MENTAL MODEL THEORY 35

TABLE 6 REINTERPRETATIONS OF EMPIRICAL STUDY RESULTS ABOUT PRODUCTION VERSUS COMPREHENSION 38

TABLE 7 REINTERPRETATIONS OF EMPIRICAL STUDY RESULTS ABOUT BUG GENERATION .. 39

TABLE 8 REINTERPRETATIONS OF EMPIRICAL RESULTS ABOUT HYPOTHESIS-DRIVEN DEBUGGING BEHAVIORS 41

TABLE 9 REINTERPRETATIONS OF EMPIRICAL STUDY RESULTS ABOUT CHARACTERS OF DEBUGGING BEHAVIORS 41

TABLE 10 REINTERPRETATIONS OF EMPIRICAL RESULTS ABOUT DATA-DRIVEN DEBUGGING BEHAVIORS............................ 43

TABLE 11 QUESTIONS WITH SIMILAR METRIC AND DIFFERENT PERFORMANCE ... 56

TABLE 12 INITIAL MISCONCEPTION PYRAMID TABLE ... 59

TABLE 13 SAMPLE PSEUDOCODE ELEMENTS NOT RELATED TO CONCURRENCY ... 62

TABLE 14 PSEUDOCODE EXTENSIONS ON CONCURRENCY .. 63

TABLE 15 PSEUDOCODE EXTENSIONS ON SHARED MEMORY MODEL OF CONCURRENCY .. 64

TABLE 16 PSEUDOCODE EXTENSIONS ON MESSAGE PASSING MODEL OF CONCURRENCY ... 65

TABLE 17 PSEUDOCODE IMPLEMENTATIONS OF BOUNDED BUFFER ... 66

TABLE 18 THE REFINED MISCONCEPTION HIERARCHY.. 71

TABLE 19 DETAILED MISCONCEPTIONS FOUND IN STUDY ... 71

TABLE 20 SUBJECT PROFILES .. 73

TABLE 21 CORRELATIONS BETWEEN TOTAL NUMBER OF MISCONCEPTION AND HANDICAP LEVEL 76

viii

TABLE 22 CORRELATIONS BETWEEN BREADTH OF MISCONCEPTIONS AND HANDICAP LEVEL ... 76

TABLE 23 LINEAR REGRESSIONS OF MISCONCEPTIONS TO HANDICAP LEVEL .. 76

TABLE 24 LINEAR REGRESSIONS OF MISCONCETPION TO HANDICAP LEVEL (SECOND STUDY ONLY) 76

TABLE 25 SAMPLE MODIFICATIONS IN CODE HISTORY ... 78

TABLE 26 FRAGILE KNOWLEDGE EXHIBITED BY INTERMEDIATE AND NOVICE SUBJECTS .. 84

TABLE 27 OVERVIEW OF WORK CONTRIBUTING TO CONDUCT EXPLORATIONS IN TEACHING ... 89

TABLE 28 WITHDRAWAL COUNTS ... 100

TABLE 29 WITHDRAWAL COUNTS: FEMALE ... 100

TABLE 30 WITHDRAWAL COUNTS: MALE .. 100

TABLE 31 WITHDRAWAL COUNTS: LESS EXPERIENCED ... 100

TABLE 32 WITHDRAWAL COUNTS: MORE EXPERIENCED .. 101

TABLE 33 LAB PERFORMANCES OF PAIR AND SOLO PROGRAMMERS .. 101

TABLE 34 TA OFFICE HOUR USAGES BY PAIR AND SOLO PROGRAMMERS... 102

TABLE 35 COURSE ORGANIZATION PREFERENCES OF PAIR AND SOLO PROGRAMMERS .. 102

TABLE 36 RAW LINT LOG FORMAT .. 107

TABLE 37 CATEGORIES OF LINT STYLE ERRORS ... 107

TABLE 38 PARSED LINT ERROR DATA ... 107

TABLE 39 NUMBER OF ERRORS PER FILE ... 107

TABLE 40 OBSERVATION DETAILS .. 111

TABLE 41 QUESTIONS ASKED BY PAIRS AND SOLOS ... 112

TABLE 42 CONCURRENCY ELEMENTS IN ACM/IEEE CURRICULUM GUIDANCE ... 114

TABLE 43 CONCURRENCY RELATED TOPICS FROM NSF/TCPP CURRICULUM GUIDE COVERED IN OUR TEACHING 116

TABLE 44 CONCURRENCY CONSTRUCTS AND DESIGN PROCEDURES OF THREE APPROACHES .. 124

TABLE 45 COVERAGE OF CURRICULUM TOPICS BY CONCURRENCY APPROACHES AND SCENARIOS 127

ix

TABLE 46 COVERAGE OF CONCURRENCY RELATED CURRICULUM TOPICS .. 129

TABLE 47 PERFORMANCE ON MIDTERM EXAM .. 131

TABLE 48 BEHAVIORS, GOALS AND KNOWLEDGE REPOSITORY OF INTERMEDIATE SUBJECT ... 157

TABLE 49 BEHAVIORS, GOALS AND KNOWLEDGE REPOSITORY OF NOVICE SUBJECT .. 160

x

LIST OF FIGURES

FIGURE 1 SAMPLE QUESTION OF COMPREHENSION TEST ... 18

FIGURE 2 FLOWCHART OF ORDER TO COMPLETE TUTORIALS IN SPRING 2010 STUDY ... 18

FIGURE 3 SAMPLE TUTORIAL SNAPSHOTS IN SPRING 2010 STUDY ... 18

FIGURE 4 A SAMPLE QUIZ SNAPSHOT IN SPRING 2010 STUDY .. 19

FIGURE 5 CONCEPTUAL FRAMEWORK OF PROGRAMMING ... 25

FIGURE 6 QUALITATIVE RESEARCH METHOD.. 55

FIGURE 7 SAMPLE QUESTION IN POSTTEST OF SPRING 2010 STUDY .. 56

FIGURE 8 MISCONCEPTION PYRAMID ... 58

FIGURE 9 A SAMPLE QUESTION IN SHARED MEMORY MODEL PART OF TEST .. 68

FIGURE 10 A SAMPLE QUESTION IN MESSAGE PASSING MODEL PART OF TEST ... 68

FIGURE 11 SAMPLE FALL BACK TO LOWER LEVEL MISCONCEPTION .. 76

FIGURE 12 PAIR PROGRAMMER SPEND LESS TIME ON COMPLETING LABS ... 104

FIGURE 13 PAIR PROGRAMMERS ARE GENERALLY MORE CONFIDENT IN THEIR PERFORMANCE 104

FIGURE 14 PAIR PROGRAMMERS FEEL LESS TEMPORAL PRESSURE FOR COMPLETION OF LAB .. 104

FIGURE 15 PAIR PROGRAMMERS FEEL LESS MENTAL DEMAND THAN SOLO PROGRAMMERS ... 105

FIGURE 16 PAIR PROGRAMMERS COMPLETE LABS WITH LESS EFFORT THAN SOLO PROGRAMMERS 105

FIGURE 17 PAIR PROGRAMMER EXPERIENCE LESS FRUSTRATIONS THAN SOLO PROGRAMMERS 105

FIGURE 18 MONITOR PATTERN OF IMPLEMENTING CONCURRENCY ... 124

FIGURE 19 REACTOR PATTERN OF IMPLEMENTING CONCURRENCY .. 124

FIGURE 20 GENERATOR PATTERN OF IMPLEMENTING CONCURRENCY .. 124

FIGURE 21 SUBJECTIVE DIFFICULTY LEVEL AND USAGE OF THREE PATTERNS .. 136

xi

FIGURE 22 PERCEIVED EXPERTISE IN JAVA AND THREAD APPROACH BEFORE AND AFTER COURSE 137

FIGURE 23 PERCEIVED EXPERTISE IN SCALA AND ACTOR APPROACH BEFORE AND AFTER COURSE 138

FIGURE 24 PERCEIVED EXPERTISE IN PYTHON AND COROUTINE APPROACH BEFORE AND AFTER COURSE 139

FIGURE 25 PYTHON HISTORY FILE ORGANIZER FOR STUDYING CODE HISTORY .. 166

FIGURE 26 PYTHON CODE HISTORY GENERATOR FOR STUDYING CODE HISTORY ... 167

FIGURE 27 PYTHON LINT OUTPUT PARSER FOR STUDYING CODE HEALTH .. 168

FIGURE 28 PYTHON LINT QUERY EXECUTOR FOR STUDYING CODE HEALTH .. 169

FIGURE 29 DEMOGRAPHIC SURVEYS FOR SPRING 2010 STUDY .. 174

FIGURE 30 MULTI-MEDIA TUTORIALS FOR SPRING 2010 STUDY ... 175

FIGURE 31 POSTTEST FOR SPRING 2010 STUDY .. 183

FIGURE 32 LECTURE NOTES FOR SPRING 2012 STUDY .. 203

FIGURE 33 LAB MATERIALS FOR SPRING 2012 STUDY ... 249

FIGURE 34 SYLLABUS OF CSCI4900 FOR SPRING 2013 STUDY ... 252

FIGURE 35 PSEUDOCODE GUIDE FOR SPRING 2013 STUDY .. 257

FIGURE 36 PSEUDOCODE IMPLEMENTATIONS OF SHARED MEMORY PROGRAMS FOR SPRING 2013 STUDY 267

FIGURE 37 PSEUDOCODE IMPLEMENTATIONS OF MESSAGE PASSING PROGRAMS FOR SPRING 2013 STUDY 280

FIGURE 38 LAB MATERIALS OF CSCI4900 FOR SPRING 2013 STUDY .. 329

FIGURE 39 MIDTERM EXAM OF CSCI4900 FOR SPRING 2013 STUDY... 345

FIGURE 40 DEBUGGING CONTEST OF CSCI4900 FOR SPRING 2013 STUDY ... 350

FIGURE 41 FINAL EXAM OF CSCI4900 FOR SPRING 2013 STUDY .. 356

FIGURE 42 JAVA THREADS SOLUTION TO FINAL EXAM OF CSCI4900 FOR SPRING 2013 STUDY 358

FIGURE 43 SCALA ACTORS SOLUTION TO FINAL EXAM OF CSCI4900 FOR SPRING 2013 STUDY 363

FIGURE 44 PYTHON COROUTINES SOLUTION TO FINAL EXAM OF CSCI4900 FOR SPRING 2013 STUDY 366

FIGURE 45 SURVEY MATERIALS OF CSCI4900 FOR SPRING 2013 STUDY .. 380

xii

FIGURE 46 COURSE PLAN FOR ONLINE CSCI4900 .. 385

xiii

ACKNOWLEDGEMENT

 I am grateful to all participants in my empirical studies and all my students who provide

valuable data towards the findings in this work.

 I would like to acknowledge the inspirational instruction of Dr. Eileen Kraemer and the

initial impetus to study human factors in computer science domain. I would also like to

acknowledge my committee members Dr. John Miller and Dr. Tianming Liu for numerous

illuminations that help shape this work. I would like to further acknowledge all collaborators in

the Computer Science department at the University of Georgia for their support and assistance.

1

CHAPTER 1.

INTRODUCTION

 Software psychology is a long standing field of study that deals with human factors issues

surrounding the use of computer systems. One area of software psychology is the psychology of

programming (POP), which focuses on human-related issues in software engineering and programming

education. The history of POP dates back to the late 1970s with the realization that cognitive effects

should be considered alongside computing power in the design and evaluation of technology

innovations. In the first Workshop on Empirical Studies of Programmers (ESP), Shneiderman described

the contributions of this area, saying that “measures of human performance in programming have

become valued not only for the guidance they provide for professional or novice programmers, but also

for the evidence they provide about complex human cognitive processing” (Schneiderman, 1986).

Although the realm of programming has expanded greatly in the past decades, the main goals of

assisting programmers and informing other human cognition related areas through the research of POP

remains unchanged.

 Considering the current landscape of evolution in computing hardware and system architectures,

which demands more and more implementations of concurrent software, we think it is interesting to

flesh out psychology of programming topics within the domain of concurrency computation. Many

technological innovations have been proposed to assist programmers engaged in this new computing

activity more effectively, including new language constructs such as the concurrency features of C++11

(Meredith, 2009), Java 7 (Oracle, 2009), and Erlang (Larson, 2009), as well as the earlier C++ concurrency

API OpenMP (Barney, 2013) and MPI (Barney, 2013), new system and hardware architectures such as

transactional memory (Herlihy & Moss, 1993) and advanced message queuing protocol for enterprise

2

middleware (OHara, 2007), new engineering tools such as MuTMuT (Gligoric, et al., 2010), Kendo

(Olszewski, et al., 2009), and Ballerina (Nistor, et al., 2012) and new engineering schemas such as

preemption sealing (Ball, et al., 2010), and communicating memory transactions (Lesani & Palsberg,

2011). Yet, less effort has been placed on researching the psychological effects of these computing

advances or pedagogical innovations to better train and prepare future software engineers for the new

era of concurrency. The curriculum guides on introducing topics of Parallel and Distributed Computing

(PDC) into core computer science education is still at an early stage. To achieve the requirements for

introducing and synthesizing parallelism and concurrency concepts into undergraduate computer

science education, action to explore effective pedagogy of these topics is urgently required. As

Shneiderman stated early in the first workshop of ESP, programming is a complex problem solving

procedure powered by creativity that “like music, blends esthetics and technology, that high-level plan,

the middle-level concepts, and the low-level details must be correct and in harmony with each other”.

Thus, we think it is valuable to discover the barriers that hamper this creation and explore effective

ways to better prepare our future creators.

1.1 THESIS STATEMENTS

 The work of this thesis addresses the development and application of programming expertise. We

focus in particular on the current landscape of pervasive and increasing emphasis on concurrent and

parallel programming. Based on a review of previous empirical research, we formulate a conceptual

framework for the development and application of programming expertise that unifies the results of this

prior work and explains apparent contradictions among the results of some of these studies. We apply

this framework to discover, in detail, barriers to learning about programming with concurrency. Finally,

we develop pedagogical techniques to address these barriers and evaluate both existing approaches and

our newly developed techniques.

3

 In support of this thesis work, we conduct the following research activities:

1. Perform a much-needed systematic review of previous empirical research and formulate a

conceptual framework for development and application of programming expertise.

2. Discover and describe the content and structure of students’ barriers to learn about programming

with concurrency through a series of empirical studies.

3. Evaluate the effectiveness of pair programming as a pedagogical technique, through a series of

quasi-experiments and provide augmented empirical evidence through empirical studies.

4. Execute innovative pedagogical designs and evaluate the corresponding benefits and caveats of

these various teaching innovations.

1.2 RESEARCH CONTRIBUTIONS

 This thesis work has the following contributions towards psychology of programming, computer

science education and software engineering fields:

1. A conceptual framework for the nature of programming expertise, how such expertise impacts the

problem-solving process, and how such expertise is developed. Specifically, we identify the inter-

relationship among three entities in the framework: a knowledge base, the mental representation of

a problem, and external data. We identify the processes by which 1) both the knowledge base and

external data are used to develop and evolve mental representation, 2) the problem-solving process

employs the evolving mental representation to guide a search of the knowledge base and for

additional data, and 3) the repeated construction and subsequent internalization of mental

representations builds the persistent, structured, and connected knowledge that is the basis of

expertise.

2. A hierarchical organization of misconceptions exhibited by students engaged in learning about

concurrency and how to program with concurrency; this hierarchical structure explains the content

of and development mechanism for expertise in programming with concurrency. Specifically, we

4

identify five levels of knowledge (description, terminology, concurrency, implementation and

uncertainty). Our work reveals 1) that a lack of lower level knowledge prevents the acquisition of

higher level knowledge, and 2) that a necessary phase exists in the knowledge acquisition process in

which an apparent mastery of concepts sacrificed to create a simpler solution space and the

resulted incorrect solution helps the reexamination and re-solidification of the correct solution and

related concepts.

3. Empirical evidence of student barriers in learning about programming with concurrency. Specifically,

we found that non-concurrency related programming knowledge and even natural language related

knowledge are critical in the problem solving process of programming concurrent systems.

4. An evaluation of pair programming as a pedagogical technique for the development of programming

expertise, and the identification of the implications of these findings. Specifically, we found that pair

programming helps retain less-experienced and female students as a pedagogical intervention,

encourages all students to write better styled code as an engineering technique, and stimulates

students to devote cognitive effort earlier in the software design phase as a problem solving

practice.

5. Innovative pedagogical techniques and an evaluation of their benefits and caveats for use in

teaching programming with concurrency. Specifically, we found the benefits of repeated

programming practice in developing expertise but proposed the use of conceptually-identical-

superficially-different problems to remedy the issue of potential discouragement caused by

repeatedly practicing with the same problem. We also developed a recommendation for integration

of teaching programming of concurrent systems into different computer science courses to better

meet the students with different level of expertise.

6. A comparison of three distinct approaches to concurrency, based on empirical studies with popular

programming languages. Specifically, we found although the Actors approach is reported easier for

5

implementation and comprehension tasks, the familiarity of the Java language drives students’

choice of using Threads approach. We also found that students exhibit a poor mastery of the

Coroutines approach, likely due to the dominance of the subroutine paradigm in their prior

experience.

7. An extended pseudocode system and evaluation of its use. Specifically, we extended a pseudocode

system to cover concurrency related concepts of both shared memory and message passing models

and used it to test students’ comprehension of concurrency concepts independently of any

programming language. We evaluated and identified caveats of imperfect syntactic design and the

lack of a compiler for this pseudocode system during its usage in implementation and

comprehension tasks.

1.3 OUTLINE OF THESIS

 The rest of the thesis is organized as follows. In CHAPTER 2, we provide a general overview of all

the empirical work we carried out that together provides rich data sets for discussions in later sections.

This serves as background for the reader to reference the studies chronologically. In the two following

sections, we discuss barriers to learning and explorations in teaching concurrency and its programming.

These sections each first provide a review of related work, followed by a discussion of work carried out

by us as either a supplement to previous work or a new discovery or innovation, and finish with a brief

summary.

 For the topics in CHAPTER 3, we first survey the previous empirical research results in programming

expertise, formulate a general framework for the development and application of programming

expertise and point out the implications of the importance of programming knowledge in section 3.1.

Then in section 3.1.6, we study and discuss the detailed content and development mechanism of

programming knowledge related to concurrency by describing a hierarchical structure of

misconceptions. In section 3.3, we present a case study to discuss and provide further empirical

6

evidence of other required knowledge for solving problems and developing expertise in programming

with concurrency. In section 3.4, we provide a brief summary to conclude our discussion of the various

barriers to learning concurrency and its programming and a list of future work regarding this topic.

 In CHAPTER 4, we first survey research in the impact of pair programming as a pedagogical

technique in section 4.1. Then in section 4.2, we discuss pair programming’s pedagogical effects for

retaining less experienced students and promoting student’s performance, engineering effects of

encouraging the writing of “healthier” programs and cognitive effects of promoting more detailed

design and problem solving strategies. We survey parallel and distributed computing (PDC) topics into

computer science core education and propose elements to teach in section 4.3. In section 4.4, we

introduce a series of pedagogical explorations, materials designs and course organizations for teaching

programming with concurrency as a separate upper-level undergraduate course, with corresponding

evaluations and implications. We provide a summary on our explorations in teaching concurrency

concepts, its programming and some future work in section 4.5.

 Finally, in CHAPTER 5, we summarize our work and findings together and reiterate our research

contributions. In appendix, section 6.1 contains two tables of qualitative analysis from the case study

discussed in section 3.3. All the auxiliary program codes we used in our research are listed in section 6.2.

A list of related materials we created for the empirical work performed from 2010 to 2013 are appended

in section 6.3 to section 6.5 as a reference for the reader.

7

CHAPTER 2.

OVERVIEW OF EMPIRICAL WORK

 In this chapter, we provide a brief chronological overview of the empirical work we have carried out

for this thesis. We present the basic elements such as time, subjects, materials, procedures and a brief

list of related discussions in subsequent sections for each empirical study. The detailed data analysis

methods and procedures as well as the actual findings and implications elicited from each work are

threaded into later chapters for a more cohesive view. The audience shall notice that each empirical

study may map to multiple discussions in sections of later chapters and one finding or result may be

derived from the data of multiple empirical studies described in this chapter. Due to the nature of

empirical studies that are qualitatively based and aimed to generate grounded theory, in contrast to

direct hypothesis-driven experiments, and the limited opportunities to study large groups of subjects,

we organize our empirical work as a combination of exploratory and analytical research activities during

which rich data sets may be collected for discovery, analysis, and validation both quantitatively and

qualitatively.

2.1 EMPIRICAL WORK 1: SPRING 2010

 We conducted an initial study in spring 2010. This work was originally designed to evaluate the

relative usability of UML 2.0 State Diagrams and UML 2.0 Sequence Diagrams that are intended to

address comprehension and implementation challenges of concurrent systems.

Subjects

 We sent an email announcement to all graduate and undergraduate students in the Computer

Science department at the University of Georgia to recruit volunteer research participants for this study.

A flyer was attached to the email message. The inclusion criteria is that all computer science graduate

8

students who are 18-50 years old are eligible to participate in this study and all computer science

undergraduate students who are 18-50 years old and have completed the CSCI 2720 Data Structures

course are eligible to participate in this study to guarantee that the recruited undergraduates have

sufficient background knowledge to proceed in the study. Finally we recruited 15 Computer Science

students drawn from upper-level undergraduate classes and from graduate level classes during the

spring semester of 2010. Students were volunteers and were paid $50 in total for their time.

Materials

 The study materials included a demographic survey, six computer-based training modules, five pre-

tests (one quiz for each of the first five training modules), and a post-test. Part I of the post-test

comprised 24 comprehension questions that involved predicting and reasoning about whether a

particular event could happen next in a given execution scenario of a concurrent program. These

questions are similar to a combination of the “sequential questions (whether X will happen)” and

“circumstantial questions (How will X happen)” as described in (Gilmore & Green, 1984). In part II of the

post-test, the questions involved identifying errors, evaluating and creating models and diagrams, and

writing code. The concurrent problem used in part I of the posttest is a single-lane bridge scenario. The

actual implementation of the problem was not given but we specified the details of the system. It

simulated a bridge system that cars from two directions use the single-lane of the bridge alternatively.

The main concern of the system was to guarantee that every car had a chance to use the bridge and no

car crashed on the bridge. To simplify this problem, we defined and stated in the posttest that the cars

moving from left to right were red cars and those moving from right to left were blue cars. To avoid a

safety violation, only one kind of car was allowed to be on the bridge at a time. Cars exited the bridge in

the order in which they entered and the leading car might exit the bridge at any time. We also

structured this system so that each color of car was implemented as a thread, and the shared bridge

object was implemented as a monitor with two associated condition variables okToEnter and okToExit.

9

The basic functions for entering and exiting the bridge are redEnter(), redExit(), blueEnter() and

blueExit(). Questions 1-6 are predicting and reasoning questions. Questions 7 and 8 are code debugging

and writing questions The concurrent problem used in part II of the posttest is a readers-writers

scenario. Specification of threads and methods used in the system is given and we provide state

diagrams of a bounded buffer scenario for reference. The actual posttest can be seen in Figure 31.

Figure 1 shows a sample question from part I of the posttest.

Procedures

 The study procedure was as follow. First, subjects were asked to provide demographic information

about themselves including gender and previous academic experience. Then, subjects finished a series

of computer-based tutorials that provide background training on concurrency and modeling and

implementation of concurrent software. In total, 6 modules were provided and the average time to

complete each module is 45-60 minutes. After each training module, subjects completed a quiz on the

materials in 10-15 minutes. We maintained records of the scores of these quizzes to assign subjects

randomly into three equivalent groups. We defined three subject groups as: 1) TO, Text-only group; 2)

TST, Text and UML2.0 State Diagram group; and 3) TSQ, Text and UML2.0 Sequence Diagram group. The

study was a 1x3 factorial design. The single factor is the representation of the concurrent system and

the three levels are {TO, TSQ, TST}. Subjects were assigned to statistically similar or equivalent groups

with very close or equal mean and standard deviation of the pretest (quizzes that accompanied the

training modules) scores across the three groups. Figure 2 to Figure 4 illustrate a flowchart of order to

complete the different tutorials, a snapshot of a sample tutorial and a snapshot of a sample quiz. After

that, subjects were given a post-test consisting of four types of tasks to complete: 1) reasoning about

and describing synchronization behaviors of a concurrent program; 2) identifying, reasoning about and

fixing errors in concurrent software; 3) generating a code implementation of a concurrent system; 4)

generating a UML model based on a textual description. The problems of the first three tasks were the

10

same for all three groups. However, the TO group only had access to the textual description of the

system/program related to the problems while the TST and TSQ groups were also assisted with a

collection of state diagrams (TST) or an equivalent set of sequence diagrams (TSQ) that models the

system/program. For the last task, the TST group members were required to generate a model using

state diagrams. The TSQ group members were required to generate a sufficient number of sequence

diagrams to model the system. The TO group members were divided into two subgroups, A and B, to

generate models using state or sequence diagrams, respectively.

Discussions of Results

 The data analysis methods of this study are discussed in section 3.2.1 and the results are discussed

in section 3.2.2.

2.2 EMPIRICAL WORK 2: SPRING 2012

 We taught a refined version of the “C++ and Unix Systems Programming” course (CSCI 1730), a

required course for CS majors, at the University of Georgia during the spring of 2012. This challenging

sophomore-level course has CS2 as a pre-req or co-req and devotes the first half of the semester to C++

for Java programmers and the second half to the application of C/C++ knowledge in the context of UNIX

systems programming. The course typically experiences withdrawal rates of 19-25% by the withdrawal

deadline (just after the course midpoint).

Subjects

 The course consisted of two sections of 30 students each, who were all undergraduate students

majoring in Computer Science at the University of Georgia. Some students also had a double major or

minor at the time of the study. One section was arbitrarily selected as the pair group and the pair (PP)

and solo (SP) groups had similar SAT math and verbal scores and also performed similarly on the

language independent pretest of computing concept knowledge.

11

Materials

 The guidelines for pair programming developed by Williams and Kessler (Williams & Kessler, 2002)

was distributed and explained to pair programmers. The guide on C++ code style (Weinberger, et al.,

2010) was introduced to both sections of students. To assess the relative differences between the two

sections, a language-independent pretest of fundamental introductory computing concept knowledge

(Tew & Guzdial, 2011) was conducted with both sections of students. Also, students were required to

complete an online demographic survey at the beginning of the course. The lab component of the

course was re-designed thoroughly. Some of the lab sessions involved ungraded, hands-on exercises.

Five graded labs in first half of the semester involved 1) a command line calculator program, 2) a

command line matrix multiplication program, 3) a pencil and paper assessment of C++ pointers

combined with a string manipulation program, 4) a drawing program involving OO design and

implementation of a shape hierarchy, and 5) an exception-handling program. In the second half of the

semester, we included two lectures covering concurrency concepts such as threads, shared objects, race

conditions, atomic operations and the lock mechanism, synchronization mechanism and conditional

waiting. Lecture slides may be found in Figure 32. We created four new labs to accompany the teaching

of concurrency in this course. These four labs include: 1) Processes and Signals (lab 12), 2) Threads in

Java and C++ (lab 13), 3) Conditional Synchronization in Java and C++ (lab 14), and 4) Sockets with C++

(lab 15). Detailed lab materials may be found in Figure 33. The NASA Task Load Index (Hart & Staveland,

1988), a series of questions related to the distribution of students’ time and effort on the task, and their

subjective satisfaction was distributed after the completion of each lab.

Procedures

 All the students attended the same two 75-minute lecture meetings per week but each section of

students attended a different 50-minute hands-on laboratory meeting. With this procedural setting, we

minimize the timetabling issue in that all students participated in same lecture sections. Labs were held

12

in a 30-person teaching lab. Over the first nine weeks of the semester, students in both sections

engaged in and completed five labs, three quizzes, and a midterm exam. In each lab session, after a brief

introduction, students worked on the assignment for the class period and then completed the

assignment outside of class. Pair-rotation was employed and new pairs were randomly assigned for each

lab session. Pair programmers were instructed to work only in pairs and to schedule times to work

together. After each lab was submitted, students completed the NASA Task Load Index survey. “In

person grading” of laboratory exercises required students to meet with a TA to go over their submission,

answer questions about their solutions, and receive feedback with a grade. Both partners of each pair

programming team were required to present and answer questions in this grading session. Two of the

three quizzes were given during the lab periods and one during the lecture period. A midterm exam was

administered at the end of eight weeks of class, just prior to spring break, and scores were posted on

the course information system within a few days of the exam. The exam was returned and the solution

reviewed on the Tuesday after spring break. After that, the remaining students still attended the same

section as in the first half of the semester. Due to this administrative restriction, the study focused

mainly on the effect of pair programming in first half of the semester before withdrawal happened since

it became hard to continuously compare the two groups after an unequal withdrawal of students from

different sections.

 The university’s withdrawal policy permits withdrawals with a grade of WP (withdraw passing) up

until the Thursday of the week after spring break. A grade of WP does not impact a student’s GPA.

Withdrawals after the deadline result in a grade of WF (withdraw failing) which counts as an ‘F’ towards

the student’s GPA. In addition, students are limited to a maximum of 4 WP grades over the course of

their college careers. The vast majority of entering students at the University of Georgia are on the

HOPE Scholarship, which covers roughly 90% of their in-state tuition for up to 120 credit hours but

requires that students maintain a GPA of 3.0. Thus, the decision to withdraw from a course is carefully

13

considered by UGA students due to the potential financial impact: they use up HOPE scholarship credits

as well as their withdrawal quota when they register for a course and then withdraw, but they can

maintain their HOPE GPA by withdrawing if they expect to receive a grade lower than B.

Discussions of Results

 The data analysis methods as well as results of this empirical work regarding the pedagogical

impact of pair programming are discussed in section 4.2.1.

2.3 EMPIRICAL WORK 3: SPRING 2013

 We proposed and taught a new course that provided a systematic introduction to knowledge and

concepts of two forms of concurrent systems (shared memory and message passing) as well as

corresponding practical programming language constructs and techniques to program these systems

with three approaches (Java Threads, Scala Actors and Python Coroutines). The course was designed to

not only emphasize concepts in concurrency and concurrent systems, but also to provide hands-on

programming practice and experience. We designed the course so that data collected from integrated

course activities provided meaningful insight into students’ development of expertise with programming

concurrent systems as well as the costs and benefits of different pedagogical meanings and

programming approaches involved in the teaching of this course.

Subjects

 The subjects of this study were 11 students enrolled in the experimental new course from both

upper-division of undergraduates and graduate students in the Computer Science and Math

departments.

Materials

 In addition to the lecture presentations, assignments and corresponding solutions (details can be

found in section 6.5) that were created to teach this course, we also extended the language-

independent pseudocode system (Tew & Guzdial, 2011) for both pedagogical and experimental

14

purposes. The extended pseudocode system included concurrency concepts in both the shared memory

and message passing models. Therefore, instead of using programs implemented in actual programming

language, we used this language-independent pseudocode system on the comprehension test (midterm

exam of the course) to eliminate effects of programming languages.

Procedures

 The following paragraphs describe the basic layout of the course. Since our study was integrated

with different course elements such as lectures, assignments, quizzes, exams and surveys, this is also the

procedure of our semester-long study.

 During the first two weeks of the course we briefly introduced students to modern computer

architectures, including multi-processor and multi-core architectures. We then provided an overview of

parallel and concurrent programming, introducing two basic types of concurrent systems, shared

memory systems and distributed memory systems. A primary learning objective of this portion of the

course is for students to know the history of parallel and distributed computing and to comprehend the

growing importance of parallel and concurrent programming given current trends in hardware

development. The lab assignment in this portion of the course involved an observation of the

architecture of the student’s personal computer, in which students ran two pre-compiled multi-

threaded Java programs (a thread pool arithmetic program and a dining philosopher program) and were

asked to report on both the nature of the dining philosophers problem and the utilization of CPU, RAM,

and other resources during the running of each of these programs.

 Next, we spent 1 to 1.5 weeks introducing UML 2.0 state and sequence diagrams and studying how

to use these diagrams to model concurrent systems. In particular, we studied the well-defined

transformation from state diagrams to threads-based implementations of monitor constructs and

condition variables, and a corresponding transformation to a message-passing model. The goal of this

module is for students to gain experience in applying abstraction and modeling to the problems of

15

reasoning about concurrent systems and in mapping from models to code. The lab assignment here was

to model a book inventory system using UML state diagrams. Later in the course students implement

both shared memory and message passing solutions for this system.

 In the next 3-4 weeks of the course we introduced concurrency issues including race conditions,

conditional synchronization, deadlock, and fairness with both shared memory and message passing

models with an extension of a pseudocode system developed and validated by Allison Elliot Tew (Tew &

Guzdial, 2011). Use of this pseudocode allows us to evaluate student comprehension of concurrency

concepts in a language-independent manner as we discussed previously. While Tew’s pseudocode has

been validated for language-independent measurement of CS1 knowledge, our extensions and their use

for purposes of evaluating understanding of concurrency concepts is exploratory. The pedagogical

objective of this portion of the course is for students to know the two types of concurrency model

(shared memory vs. message passing), to comprehend the related concurrency issues (race conditions,

conditional synchronization, deadlock and fairness), and to comprehend and apply the corresponding

solutions to these issues (lock mechanisms vs. private data, wait and notify vs. message protocol design,

and asymmetric design in concurrent systems). Another pedagogical objective is to familiarize students

with the pseudocode notation so that they can use this notation to comprehend and reason about

various concurrency problems and scenarios. Students completed several in-class quizzes to practice

using the pseudocode notation to create or enhance models of different concurrent scenarios such as a

sum & workers system (multiple workers increase a shared sum value), a bounded buffer system, a

dining philosophers system and a readers-writers system. Students also modeled the book inventory

system with pseudocode and used sequence diagrams to depict and reason about some critical

scenarios of the system with their model. In a homework assignment, students searched for and studied

different concurrent bugs (mainly through the open source MySQL bug report database). The goal of this

16

assignment is to promote students’ understanding of concurrency concepts via these practical

examples.

 The portion of implementations of concurrent system of the course takes about 8-10 weeks and

has three major phases. First, we introduced students to general knowledge about the Java, Scala and

Python programming languages. Students in this course are already familiar with Java, but Scala is new

to most of them and Python is new to many. We then focused on the threading elements of Java, the

Actors elements of Scala, and the Coroutine elements of Python. Finally, we looked at some of the

advanced concurrency programming elements in each of these languages. During this portion of the

course we employed a “flipped classroom” approach, meaning that students learned about

programming in these languages by reading and making use of online resources while at home and then

engaged in actual coding in the classroom. Students first completed labs that employed basic Java, Scala

and Python programming elements to become familiar with these three languages. Next, students

implemented the party-matching and sleeping barber problem with Java threads, Scala Actors and

Python Coroutines during in-class lab projects. Finally, students implemented the book inventory system

as both a shared memory system and a message passing system. The learning objectives of this portion

of the course are for students to know, comprehend, and apply knowledge of these programming

languages and their concurrency constructs to implement solutions to concurrent problems.

 A research and paper presentation element was conducted in parallel with the implementation of

concurrent programming part. The pedagogical objective of this element is to make students aware of

the difficulties inherent in programming concurrent software, the historical and practical concerns of

designing development environments for these programming activities and the human factors issues

involved. Paper presentations and in-class discussions are the means by which the objective is achieved.

Students chose a paper that addressed concurrent or parallel software engineering issues or human

17

factors in programming and presented it to the class. Each student read every paper and participated in

the discussion of all presented papers.

Discussions of Results

 Part of this work is designed as a repetition of the spring 2010 work and the results are presented

in section 3.2.3 and 3.2.4. A case study is also carried out within the framework of this empirical work to

discuss other barriers to learning programming with concurrency and is presented in section 3.3. This

work itself is designed to explore the benefits and caveats of different pedagogical techniques, materials

and class designs to teach concurrency. These corresponding results are reported in section 4.4. An

observational study is also carried out within the duration of this empirical work to further provide

evidence of the impact of pair programming and the results are presented in section 4.2.3.

18

4. Suppose that only three threads exist in the system: redCar1, redCar2 and blueCar1. Suppose further that redCar1
is running and has just invoked the redEnter() method and the redEnter() method has returned. A context switch
occurs and the redCar2 thread begins running and invokes the redEnter() method. redCar2’s invocation of the
redEnter() method has not returned.

Which of the following event sequences could happen next? Circle YES if the sequence is possible; otherwise, circle
NO. Then please provide a brief explanation of your reasoning.

d. A context switch occurs, and the redCar1 thread begins to run. redCar1 then invokes redExit() and this invocation
returns.
YES NO

e. A context switch occurs, the redCar1 thread begins to run. redCar1 then invokes the redExit() method and blocks
on the monitor lock.
YES NO

FIGURE 1 SAMPLE QUESTION OF COMPREHENSION TEST

FIGURE 2 FLOWCHART OF ORDER TO COMPLETE TUTORIALS IN SPRING 2010 STUDY

FIGURE 3 SAMPLE TUTORIAL SNAPSHOTS IN SPRING 2010 STUDY

19

FIGURE 4 A SAMPLE QUIZ SNAPSHOT IN SPRING 2010 STUDY

20

CHAPTER 3.

BARRIERS TO LEARNING

 Understanding the barriers to learning concurrency and to developing related expertise is the first

step in our exploration. In this chapter, we review the previous empirical studies and formulate a

conceptual framework of the development and use of programming expertise, identify the content and

structure of concurrency related misconceptions and report on a case study that explores non-

concurrency and even non-programming related knowledge that are critical barriers to learning

programming with concurrency.

TABLE 1 OVERVIEW OF WORK CONTRIBUTING TO IDENTIFY BARRIERS TO LEARNING

Work Data Results Section

2011-2013 literature
review

previous empirical study on
programming expertise

conceptual framework of acquisition and
application of programming expertise

3.1

qualitative analysis of
Spring 2010 posttest and
Spring 2013 midterm exam

answers to sequential and
circumstantial questions

misconception hierarchy of content, structure
and behaviors associated with knowledge
development

3.1.6

case study of Spring 2013
final exam

code history other barriers to learning programming with
concurrency

3.3

3.1 PROGRAMMING EXPERTISE

 Computer software is used everywhere by contemporary society. The reliability and performance

of many of these software programs are critical to daily life. Although advances in artificial intelligence

have been substantial, software is still developed and maintained throughout its life cycle primarily by

humans, which suggests that human factors are a significant element of software engineering.

 From the initial requirements elicitation to algorithm design to code generation and maintenance,

none of these tasks is trivial. Rather, they require programmers to apply complex problem-solving

strategies, similar to those seen applied to solve math, physics and chess problems, to successfully

achieve goals. Therefore, programming expertise, the human ability to effectively and efficiently

21

perform programming-related tasks across the software life cycle, becomes an important topic to study

for the sake of reliability and performance of software.

 Similar to any other expertise, programming expertise is gained through extensive training and

long-term experience. Such expertise is applicable across a wide variety of software engineering

activities, regardless of the programming language and paradigm being used. Thus, a study of the nature

of such programming expertise will provide insightful information on its acquisition. Such insights have

the potential to support better training of programmers who may then better create and maintain

software.

 Several survey papers have reviewed different aspects of the body of research that focuses on

providing comprehensive engineering environments (tools, language support, team organizations,

schemas and standard operating procedures) to remedy a lack of expertise or to enhance training to

develop expertise. These surveys inform various academic fields from different perspectives for

different audiences. For example, (Ko, et al., 2011) and (Storey, 2005) summarize studies from an

engineering perspective to inform research in the development of programming environments. (Robins,

et al., 2003) and (McCauley, et al., 2008) review the literature related to psychology and the pedagogy

of programming and provide insights for educational purposes. (Visser, 1994) and (Ball & Ormerod,

1995) focus on a particular programming activity (i.e. debugging) and provide the psychological and

cognitive insights behind this task. (Sheil, 1981) and (Moher & Schneider, 1982) critique research

methods and experimental designs in an effort to promote improved research practices in empirical

studies of programmers and programming activities.

 We take the stance that efforts to advance software engineering techniques or to improve

pedagogical approaches should be based on a solid understanding of human abilities, the abilities

required to perform computer programming tasks, and the nature of these abilities. Considering the

many research studies focusing on understanding programming expertise in the past thirty years, we

22

feel a review with the goal of formulating a general theory is strongly needed to synthesize different

research results, inform the research community and make suggestions for future work.

 Our selection of research work for this review is restricted by two criteria. First, one or more

empirical studies on professional programmers or trainees (students) must be presented in the work.

This places few restrictions on the research methods but many on research target. Programmers, who

build general purpose programs or are trained to do so, are our major focus, which inherently excludes

end-user programmers whose programming product is not for reuse by others. Second, one or more

insights into the nature or towards a theory of programming expertise must be discussed in the work.

This implies that we do not include usability studies that solely evaluate tools, language paradigms or

other support for improved software engineering means. We also eliminated from our discussions in

this survey those studies that solely focus on estimating the effectiveness of specific teaching techniques

or curricula. Studies that focus on a discussion of team organizations, project productivity and software

engineering processes are only included if they provide discussion on individual programmer’s thought

processes or behaviors. To conclude, we review here empirical studies that provide insights into human

abilities related to professional programming tasks.

 Based on the above criteria, we select a collection of over seventy papers to review. We cluster the

research based on both the context of programming activity and insights into programming expertise

provided accordingly. During this meta-analysis, two major threads emerge with regard to the

programming activity context, program production and program comprehension, respectively. These

two threads broadly cover almost all programming-related activities of the software life cycle. They are

the major foci of empirical studies. Insights on programming expertise have been developed

independently by researchers in these two threads. Yet, inter-related results impact one another at

some focal points. Therefore, we organize our survey largely according to these two major threads and

their commonalities, with clusters of research work whose results can be synthesized together into focal

23

points, to provide a systematic view on our iteratively and gradually formulated conceptual framework

of the nature of programming expertise.

3.1.1 BACKGROUND

 We notice the existence of many contradictions in the results and implications provided by the

various empirical work we reviewed. Therefore, we propose a general conceptual framework to 1)

reconcile the contradictory empirical results, 2) reveal the relatedness of different results, 3) re-validate

the different results and 4) re-interpret the different results within the framework.

 We give the following definitions to clarify the domain of programming expertise. In our context, a

program is a series of specifications that may be executed on a computational device at some future

time with various inputs (Ko, et al., 2011). Programming is defined as the process of planning, writing

and modifying programs (Ko, et al., 2011). A programmer is an individual who carries out programming

tasks. We define behaviors of a programmer as actions performed by programmers that are directly

observable by a third person during programming activities. We define strategies of a programmer as

plans of actions that are not directly observable by a third person. A mental model (mental

representation) is the form in which a program exists in a programmer’s mind and is associated with a

particular program in the context of a particular programming task. A strong mental model is suitable

for problem solving under particular conditions of program and task. Knowledge is a collection of

information that exists in long term memory for retrieval in future problem solving. Data is a collection

of information that in the world exists objectively for access during problem solving.

 We propose that expertise is the possession of superior knowledge to form strong mental models

that 1) better search other knowledge and data for purposes of current problem solving, and 2) better

internalize data as well as elements of the mental model and the process used to construct the mental

model to form knowledge for future problem solving. Our conceptual framework includes three major

parts: 1) a knowledge base, 2) an ever-evolving mental model, and 3) data. The knowledge base is

24

neither problem nor task specific and is internally possessed by a programmer. The data is a set of

external information accessible to the programmer during problem solving. Some of this information is

related to the problem and solution, but usually, most of these data are noise and irrelevant. Thus, a

search through data to find critical items is important to success. The mental model is problem or task

specific, internally possessed by a programmer, but typically exists in temporary (short-term) memories.

It includes a re-organized set of information (both from knowledge and data) that is most related to

current problem solving and guides the further search of knowledge and data. The content and

organization of the mental model change according to the complexity of problem solving task. A

frequently constructed mental model or parts of it and the process of constructing the mental model

may be internalized into long term memory and become part of knowledge.

 The relationship between knowledge, mental model and data in our conceptual framework is

illustrated in Figure 5. Knowledge and data together help to form and evolve the mental model (1:

retrieve and 2: fetch). The mental model guides the search for knowledge and for data (3: access and 4:

search) and the retrieved knowledge and selected data further shapes the mental model. Repeated

construction of a mental model causes elements of that model and the process of constructing it to be

internalized knowledge (5: internalize). This internalization step takes a long time and many stages of

fragile knowledge, in which the mental model is not yet fully internalized or integrated with the prior

knowledge, may exist. Based on this conceptual framework of the use and acquisition of expertise, we

re-interpret the results of different empirical studies in following sections.

 In the following sections, we discuss the details of each empirical result, resolve the contradictions

and explore the relatedness of these results through our conceptual framework.

3.1.2 PROGRAM PRODUCTION – FROM REQUIREMENTS TO DESIGNS AND CODES

 The program production activities considered in this survey include all activities until an integrated

piece of software code is generated. These activities include but are not limited to system or

25

requirements analysis that happen early in the software life cycle, domain level or algorithm level

system designs and also the actual implementation of program codes. Actually, nearly all of these

activities have been studied in the following research we review in this section.

FIGURE 5 CONCEPTUAL FRAMEWORK OF PROGRAMMING

3.1.2.1 STRUCTURED VERSUS OPPORTUNISTIC DESIGN BEHAVIORS

TABLE 2 REINTERPRETATIONS OF STUDY RESULTS ABOUT STRUCTURED VERSUS OPPORTUNISTIC DESIGN

BEHAVIORS

Study Empirical Result Re-interpretation

Jeffries, et al., 1981 hierarchical goal decomposition mental model guides data search(3)

Adelson & Soloway, 1985 systematic expansion

Kant, 1985 elaborating kernel structure

Guidon, et al., 1987
Guindon, 1990a, b

opportunistic behaviors fetched (4) data evolves mental model

Visser, 1987, 1994 data-driven manner

 Jeffries, et al. (Jeffries, et al., 1981) collected think-aloud protocols from experts and novices who

engaged in the design of a page-key indexing system for electronic books stored as text files. Through

the analysis of protocols, they found that regardless of novice-expert differences, all subjects adopted

the same global action control strategy, hierarchical goal decomposition. Subjects used this strategy to

repeatedly decompose a problem into sub-problems until one sub-problem is considered to be detailed

26

enough and marked as solved. Not only was this behavior structure observed to be similar across groups

of subjects with different levels of experience, the decomposed sub-problems were also found to be

similar.

 This behavioral pattern of hierarchical decomposition of a problem was also observed in studies

carried out in (Adelson & Soloway, 1985) and was termed there as systematic expansion behaviors. The

authors collected think-aloud protocols from both experts and novices working through three different

categories of design problems that cover the conditions of 1) design a familiar object in a familiar

domain, 2) design an unfamiliar object in a familiar domain and 3) design an unfamiliar object in an

unfamiliar domain (Note that design of a familiar object in an unfamiliar domain does not make sense).

Regardless of the category of design problem, both experts and novices in this study demonstrated the

common behavioral pattern of forming a general mental model of the problem and then systematically

solving the sub-problems to expand the initial model. Such expansion was also observed in the empirical

study carried out in (Kant, 1985). Subjects’ verbal protocols were collected during algorithm design tasks

and then analyzed in this study. A pattern of “planning a solution around a kernel idea and refining or

elaborating the kernel structure” was observed to recursively occur among subjects. These studies

strongly support the claim of a systematically organized behavior structure within a design episode.

 While empirical results as stated above show support for systematically organized behaviors, a

cluster of other studies report observations on more or less opportunistic behaviors in design activities.

The authors of (Guindon, et al., 1987), (Guindon, 1990), and (Guindon, 1990) studied eight professional

programmers as they worked to design a lift control system. Think-aloud protocols were collected and

analyzed together with a video recording of subjects’ actions and a collection of design artifacts.

However, in contrast to previous studies, many opportunistic behaviors were observed during the

design process. The author argued that those programmers frequently deviated from a strict top-down

decomposition design strategy and instead adopted an opportunistic approach in their work by

27

demonstrating behaviors such as sudden inferences and immediate development of new requirements,

changes of goals, immediate recognition of solutions to sub-problems that are not part of the problem

being currently worked on, etc. They suspected that such opportunistic behaviors are advantageous and

benefit the design of an ill-structured problem (Simon, 1973), a problem that is ambiguously specified

with a large problem space, without stopping rules or an explicit path to solution. Therefore, as stated

by the authors, “experts are expected to retrieve knowledge rules and the more complex design

schemas in a data-driven manner”.

 Such data-driven behavior was also observed in a field study reported in (Visser, 1987) and

reviewed by (Visser, 1994). In this study, the researcher collected observation notes on a professional

programmer working with a real industrial problem in daily settings and found similar opportunistic

patterns in the subject’s behaviors. The author argued that the general organization of a design activity

is primarily opportunistic with local hierarchical or systematic sub-structures due to the fact that

designers make design decisions based on cognitive costs that change from moment to moment.

Therefore, even though knowledge of design plans and design schema are successfully and

appropriately retrieved during a design process, designers have to make modifications to these plans

and therefore their behaviors would deviate from defined schemas.

 In an attempt to consolidate the contradictory observations of structural versus opportunistic

design behavior, the program plan theory was proposed. In the following sub-section, we discuss the

details of this theory.

3.1.2.2 THE PROGRAM PLAN THEORY

 The term program plan has many different meanings in the literature. Actually, the theory of

program plan, like many other theories, has developed and changed with accumulating empirical

evidence over a long period of time. In our narrative, we define a program plan as knowledge either

about the procedure for achieving a goal (procedural) or about characteristics of a solution to a goal

28

(declarative). The program plan regarding program production activities is therefore either knowledge

about an effective production procedure or knowledge about the content of a final product. Considering

a complex design task, knowledge of the final product is unlikely to be already possessed by a

programmer. However, knowledge of an effective production procedure and knowledge about solutions

of sub-problems may be available. Thus, the theory states that structural behaviors are observed when a

program plan is available (plan retrieval) for a sub-problem while opportunistic behaviors are observed

when a program-plan is not available (plan creation) (Rist, 1990).

TABLE 3 REINTERPRETATIONS OF STUDY RESULTS ABOUT PROGRAM PLAN THEORY

Study Empirical Result Re-interpretation

Soloway & Ehrlich 1984 program discourse is possessed and used by
programmers

program discourse is one element of
knowledge

Rist, 1986 program plan (basic, object, goal-based) is
possessed and used by programmers

content of knowledge distinguishes
expertise

Rist, 1989 possession of program plan affect behaviors content of knowledge affects behavior

Rist, 1990 availability of knowledge cause variability in
design decision

retrieved (2) knowledge evolves mental
model

 The postulation and refinement of this theory occurred over a long time span. The initial empirical

clues were provided in (Soloway & Ehrlich, 1984). The idea for this empirical study is derived from

research on language discourse in cognitive psychology. The authors created four small pieces of “plan-

like” (normal) programs (alpha version) and four corresponding “unplan-like” (valid and runnable but

non-standard appearing) programs (beta version) for the study and guaranteed that the beta versions

were almost identical to the alpha versions, with only minor syntactic changes that were claimed to

violate one or more rules of “program discourse” (established customs for writing programs) such as

that a variable name should reflect its function (e.g., a variable named MIN is unplan-like to actually hold

a maximum value). Subjects, who were then asked to fill in a blank to best complete a program of either

the alpha or beta version, were not only observed to take longer to finish the unplan-like version but

were also observed to provide plan-like responses for unplan-like programs. For example, working on a

piece of an unplan-like program that intended to find out the maximum of a series but named the

29

variable storing the final result as “MIN” caused subjects to constantly perform incorrect comparisons.

With these findings, the authors of the study claimed that a certain program plan that conforms to

programming discourse rules is possessed and used by programmers. Although Soloway and Ehrlich

proposed the concept of a program plan, an important part of the concept, programming discourse

rules, were not well defined. The authors listed five rules they thought of at the time and tested in their

empirical studies without giving any definition or descriptions towards the general characteristic of

discourse rules.

 Another empirical clue regarding plan theory comes from a study carried out by the theory

proposer, Rist. In (Rist, 1986), novices and experts were given program codes to group into “lines that

did the same thing” without any further specific criteria. Five copies of each program being grouped

either from finer to coarser levels or vice versa were collected for analysis of the nature of each group of

code lines. Novices were found to largely use syntactic groups while experts were found to use “goal-

based” groups, group of codes that achieve a common goal for the program. In this work, plans were

described as one of three categories: basic plan, as described in (Soloway & Ehrlich, 1984), object plan, a

plan that accesses or modifies an object in the program, and goal-based plan, a plan that achieves a goal

or sub-goal of the program.

 In (Rist, 1989), the author further defined the term plan by a description of a modified category of

simple and complex plans. A longitudinal study was also carried out to compare programmers’ behaviors

while writing codes when a plan was available to them versus not. Ten relatively novice subjects were

asked to finish coding one problem each week over the eight weeks of a programming course. Problems

presented each week utilized the declarative programming construct knowledge that had just been

learned by the subjects in class. In the first and last week, however, both a simple problem and a hard

problem were presented. Think-aloud protocols were collected and videos of the subjects’ generating

code on paper were recorded. These two types of data were then transcribed and combined into a

30

single protocol for analysis. Backward and bottom-up behaviors were observed when subjects were

working on problems requiring utilization of freshly learned knowledge while forward and top-down

behaviors were observed when subjects were working on simple problems during the first and last

sessions or sub-problems that they had worked out before. Therefore, the author proposed a theory of

plan creation and retrieval that comprised both structural and opportunistic behaviors reported by

different empirical studies. The author stated that if knowledge can be found to guide program design,

top-down and forward behavior would be seen, otherwise, bottom-up and backward behavior would be

seen. At the same time, the author also claimed that the process of plan generation was actually the

process of gaining expertise. Parts of the observations reported in (Jeffries, et al., 1981) and reviewed in

section 3.1 support the plan theory in that novices were observed to lack subtle design schema (detailed

design plans) or to consider the efficiency or aesthetic aspects of their plan. The novices in Jeffries, et

al.’s study were reported to be generally unable to propose alternative designs or to evaluate

alternatives. For example, experts were observed to spend much effort on designing the comparison

algorithm for the page-key indexing system while novices simply concluded the comparison to be a

“trivial” component that did not need any more specific designs.

 In (Rist, 1990), the author further extended the plan theory by claiming that the availability of

knowledge at different stages of design activity is the cause of variability in final design decisions. An

empirical study of programmers coding a relatively well-structured problem (as compared to that used

in (Guindon, et al., 1987)) of calculating elapsed seconds between two clock representation, was carried

out to empirically validate the claim. The author argued that such a relatively simple question still posed

a variety of choices at each design stage, such as: 1) planning stage, which may be conducted in a

forward manner, from input to output or backward from output to input, 2) actions in the solution are

grouped by shared features and 3) actions are merged in the implemented program, based on these

shared features. Within each of these stages, a certain piece of knowledge may be available or not,

31

which drives the programmer to seek alternatives and finally results in variability in design solutions. In

(Rist, 1991), another empirical study using protocol analysis was carried out with novice and

intermediate level subjects. The behaviors categorized as plan creation and plan retrieval respectively

were correlated with subjects’ expertise to validate and finally complete the construction of this theory.

 Design is probably one the most cognitively intensive problem solving activities in the production

phase of software development. Accordingly, much research effort has been expended to find empirical

evidence of the nature of the design process and to form a theory of programming expertise. Empirical

studies of design activities have been fruitful with the discovery of the importance of program plan, a

kind of knowledge. Yet, research on programming expertise is not complete at this point. With the plan

theory in mind, we are interested to ask about the nature of program plans or program knowledge in

general. Although the proposal of plan theory addresses the contradictory observations found on the

behavioral level, the theory itself provides neither a concise definition of a program plan nor any insight

into its content, its organization or the mechanism of creating and retrieving such program plans.

Research that explores these questions is discussed in the next section.

3.1.3 FROM PRODUCTION TO COMPREHENSION

 To answer questions about the nature and structure of program plans and their creation and

retrieval, it is worth noting that empirical studies carried out solely with production activities are not

sufficient. To understand the content and organization of programming related knowledge, cognitive

psychology experiments may be of help. To understand the mechanism of creating and retrieving such

knowledge, empirical studies of activities beyond production are also necessary.

3.1.3.1 MEMORY: MENTAL MODEL AND PROGRAMMING KNOWLEDGE

 Research on programmer’s memory regarding both long-term possession of knowledge and short-

term formation of mental representations has an even longer history than the formation of above

described plan theory. Initial studies were inspired by research carried out in the cognitive psychology

32

field on chess masters’ superior recall of real and meaningful chess board layouts (Chase & Simon,

1973). In (Shneiderman, 1976) and (Schneiderman, 1977), the author directly followed the experimental

design of studies of chess players’ memorization to ask programmers to recall meaningful pieces of

codes or scrambled lines of codes. They observed that expert programmers were better at recalling

meaningful segments of program codes than were novices. Adelson (Adelson, 1981) further discussed

the mechanism behind such superior memorization of semantically rich program codes demonstrated

by expert programmers. In her study, sixteen lines of codes were randomly shown to both expert and

novice programmers one by one. The subjects, without being told that these sixteen lines of codes could

either be organized into three meaningful programs or five syntactically similar groups, were asked to

recall these lines in multiple trials. The pauses between subjects’ responses (writing out a recalled piece

of code on paper) were recorded and items recalled with less than a ten-second pause in between were

considered to be members of the same memory chunk (groups of items recalled successively as defined

in (Chase & Simon, 1973)). The sizes and characters of the chunks were then compared and experts

were demonstrated to have both larger memory chunks than novices and to organize chunks

semantically rather than syntactically, as did the novices.

TABLE 4 REINTERPRETATIONS OF EMPIRICAL STUDY RESULTS ABOUT MEMORY AND RECALL

Study Empirical Result Re-interpretation

Shneiderman, 1976
Shneiderman, 1977

experts recalls meaningful program better retrieved (2) knowledge evolves mental
model

Adelson, 1981 experts memory are semantically organized

Adelson, 1984 experts form abstract mental model

Gilmore & Green 1984 mental representation depends on original form of
program

fetched (4) data evolves mental model

 Expert’s superior recall of meaningful program codes and the insight that experts’ chunks of

memories are organized semantically, to some extent, support the claim of the plan theory that expert

programmers possess a larger repository of program plans, organized as semantic patterns of

meaningful program elements that achieve some goal. These program plans exist in experts’ long term

33

memory as a form of knowledge the retrieval of which is precipitated by the semantic elements of the

stimuli materials used in recall experiments. Therefore, experts achieve superior recall of semantically

meaningful piece of codes and semantically organize their memory of these codes. A caveat of the plan

theory is that it can only explain the nature of expertise if program plans are abstracted knowledge

formed through experience and independent from any superficial characteristics of program notations.

Empirical evidence supporting this claim is provided in (Adelson, 1984). In this study, the subjects were

required to answer either a set of “abstract” questions (about the program’s general goal) or a set of

“concrete” questions (about the program’s detailed line-by-line functionality regardless of its general

goal) for each of the eight experimental programs. Subjects were not informed about what types of

questions they would answer for each program while comprehending the programs. Therefore, the

authors argued that subjects could either form an abstract mental representation of the given program

(an abstracted memory of the program’s goal) or a concrete mental representation (a concrete memory

of the program’s line-by-line functions). Since an abstract mental representation is only more helpful in

answering abstract questions, interestingly, the experts in this study were observed to perform worse

than novices with concrete questions. This showed that experts tend to form an abstract mental

representation of programs while novices tend to form a more concrete mental representation. The

result of this empirical study supports that a plan (knowledge about a program) formulated in experts’

memory is abstract rather than concrete.

 While empirical evidence from the above study demonstrates the abstract character of expert

programmer’s mental representations, some contradictory evidence also exists. Gilmore and Green

(Gilmore & Green, 1984) showed that mental representation of a program still depended on the original

presentation of the program. The subjects in this study were asked to answer either a set of “sequential

questions” (questions about whether X will happen next according to the program settings) or

“circumstantial questions” (questions about whether under a certain combination of conditions will X

34

occur according to the program). The authors postulated that if the mental representation of a program

were abstract and independent of its original form of presentation, subjects should have relatively equal

performance on these two sets of questions with programs written in either a procedural language (e.g.

PASCAL) or a declarative language (e.g. PROLOG). Non programmers were recruited for this study.

Programs were modified as either procedural or declarative forms of logical statements and questions

were modified as logical reasoning questions The experiment results showed significant differences on

the interaction effect between the form of program and type of questions. Subjects were observed to

perform better on sequential questions with the procedural form of the program and to perform better

on circumstantial questions with the declarative form of the program. In (Gilmore & Green, 1988), the

authors further tested the hypothesis that a plan is not an abstract piece of knowledge. They provided

“plan cues” (highlighted some part of program code that forms a plan) for both PASCAL and BASIC

programmers, but did not observe consistent performance improvements in finding bugs across these

two forms of programs. They suspected that either the provided “plan cues” were not correct or that

the program plan was not an abstract concept. Since the former possibility was refuted by observed

performance improvements while working with PASCAL, the authors postulated that a program plan

was just a visible aspect of a program rather than an abstract concept that may explain expertise.

 A follow-on theory that modifies the plan theory and extends the understanding of programmers’

mental representations was developed by Pennington in (Pennington, 1987) and (Pennington, 1987).

Pennington proposed that five types of knowledge exist in a programmers’ mental representation: 1)

operations (low level, detailed step by step function), 2) control flows, 3) data flows, 4) state of a

program, and 5) functions (organized operations achieving sub-goals of a program). The relative amount

of each type of information in the programmers’ mental representation is decided by the programming

tasks that programmers seek to perform. To validate this proposal with empirical evidence, subjects in

these studies were asked to perform different tasks before answering questions that were designed to

35

test the existence of the different types of information described above. Significant shifts in information

composition were observed with the shift of tasks. The claim that mental representations change

according to task is also confirmed by empirical evidence observed through another contemporary

experiment presented in (Holt & Boehm-Davis, 1987) and (Boehm-Davis, et al., 1992). In this study, the

subjects were required to finish a two grid free recall of the program they had just worked on (recall as

many program components without any grouping criteria first and then recall the relationships among

these components). Three forms of programs, 1) in-line procedural program, 2) functional-decomposed

procedural program, and 3) object oriented program, combined with two types of modification tasks,

simple (require modification at only one place) and complex (require modification at multiple places)

were tested with different subject groups, expert and novice. The authors observed that expert

programmers’ mental representations of a program were greatly affected by the complexity of tasks

while novices’ mental representations were affected by the form of the programs.

TABLE 5 REINTERPRETATIONS OF EMPIRICAL RESULTS ABOUT OTHER MENTAL MODEL THEORY

Study Empirical Result Re-interpretation

Pennington, 1987
Pennington, 1987

mental representation contains 5 types of
information
content of mental model depends on task

both retrieved (2) knowledge and
fetched (4) data evolves mental
model

Holt & Boehm-Davis, 1987
Holt & Boehm-Davis, 1992

complexity of tasks affects the content and
organization of experts’ mental model
form of programs affects the content and
organization of novices’ mental model

dominancy of retrieved (2)
knowledge and fetched (4) data
affects content and organization of
mental model

Ramalingam & Wiedenbeck, 1997
Corritore & Wiedenbeck, 1999

novices’ mental models contain largely superficial
OO constructs while experts’ mental model
contains mixed information

 Considering the result of (Holt & Boehm-Davis, 1987) and (Boehm-Davis, et al., 1992) and noticing

that (Gilmore & Green, 1984) recruited non-programmers in their study, we suspect that the effect of

program presentation on programmer’s mental representation is just especially obvious for novice

programmers. This was later confirmed by the study of novice and expert’s mental representation

presented in (Ramalingam & Wiedenbeck, 1997) and (Corritore & Wiedenbeck, 1999). These studies

followed the methods used in (Pennington, 1987) and (Pennington, 1987) to test the existence of

36

different types of information in novice and expert’s mental representations after working on either a

procedural or object-oriented program. The result showed that while novices’ mental representations of

procedural and object-oriented program are dominated by control-flow and function related

information respectively, experts’ mental representations of either type of program achieve a mixed

balance across all types of information after working on a challenging debugging task.

 Thus, we may conclude that both abstract and concrete knowledge and mental representation exist

in programmers’ memory and that the variability in abstraction or concreteness according to task

demands illustrates programming expertise. It is interesting to notice that the last three works we

reviewed above were carried out in the context of comprehension activities (activities that require a

solid understanding of the target program, such as debugging, modification and enhancements).

Therefore, it is also natural to inquire, how production tasks are similar to or different from

comprehension tasks and what these two types of tasks share in term of the nature of programming

expertise.

3.1.3.2 PRODUCTION VERSUS COMPREHENSION

 Several studies report observations on the relationship between success at production and

comprehension tasks. In (Ahmadzadeh, et al., 2005), the authors explored compiler logs and historical

versions of novice computer science students’ code produced during programming and debugging tasks.

The researchers found that the most common error made by novices was that they forgot to define a

field before its use. This somehow confirms the plan theory that during novices’ plan creation

procedures (e.g. programming), calculations are carried out before initialization as novices are working

backwards to the goal. The performance results gathered from both programming and debugging tasks

in (Ahmadzadeh, et al., 2005) showed that most students who were good at debugging were also good

at programming. However, only a portion of students who were good at programming were also good at

debugging and the obstacles to comprehending program implementations written by others were

37

identified as a major reason for this phenomenon. Evidence that “debugging requires more skills” is also

confirmed with a multi-institutional study in (Fitzgerald, et al., 2008). The authors reported experiments

carried out with novice Java programmers’ writing code for a programming problem and then trying to

correct a buggy program that was written by others but that solved the same problem. Objective criteria

and measurement methods were developed to grade the quality of code generated by subjects and it

was confirmed again that good programmers were not necessarily good at debugging. In (Katz &

Anderson, 1987-1988), the authors discussed programmers’ bug location strategies and observed that

authorship of program code greatly affected the behaviors programmers used to locate bugs: a forward

strategy was used when debugging one’s own codes and a backward strategy used when debugging

codes written by others. These empirical studies also demonstrated that comprehension activities are

organized in a backward manner while a production activity may combine both forward and backward

characteristics.

 Although the observed behaviors indicate that comprehension tasks are different from production

behaviors, empirical evidence also emerged to show their similarity in that they share a knowledge base.

In (Pennington, et al., 1995), the authors studied the “transfer” of knowledge gained in production to

comprehension and vice versa. The experiment design simplified the production and comprehension

tasks as evaluation (comprehension) and generation (production) of LISP expressions. The subjects

involved in this study were observed to perform better on one type of task after practicing on the other.

Based on this observation, the authors hypothesized that the same knowledge base was shared

between the superficially different production and comprehension procedures. Empirical clues

supporting the claim of shared knowledge are also shown by a study described in (Gray & Anderson,

1987). The authors observed that the goals that require the most effort to design are also most likely to

be changed during subsequent programming phases. Later on, this relation between goals and syntactic

change is extended to be inclusive of semantic level changes in (Scholtz & Wiedenbeck, 1992) and

38

(Scholtz & Wiedenbeck, 1993). This study compared expert programmers working with a familiar versus

an unfamiliar (new) language. The authors of these studies observed that plans were changed at a high

level, algorithm level and low level when knowledge from the familiar language was not sufficient for

successful code creation on the first attempt with the unfamiliar language.

TABLE 6 REINTERPRETATIONS OF EMPIRICAL STUDY RESULTS ABOUT PRODUCTION VERSUS

COMPREHENSION

Study Empirical Result Re-interpretation

Ahmadzadeh, et al., 2005 debugging requires more expertise than
programming

programming mostly as a one cycle
interaction of retrieve (2) and access (1)
knowledge requires less expertise than
debugging, a two cycle interaction of retrieve
(2) and access (1) knowledge and fetch (4)
and search (3) data

Fitzgerald, et al., 2008

Katz & Anderson, 1987-1988 authorship decides debugging strategy content of mental model guides data search
(3) and knowledge retrieval (2)

Pennington, et al., 1995 practice one of the comprehension or

production problems helps the

performance on the other

mental model is internalized (5) to knowledge

Gray & Anderson, 1987 goals that require the most effort to design

are the most likely to change

mental model formed dominantly with

fetched (4) data are weaker

Scholtz & Wiedenbeck, 1992
Scholtz & Wiedenbeck, 1993

programmer change plan when knowledge

from familiar language was not sufficient

for code creation with unfamiliar one

mental model formed dominantly by fetched

(4) data when knowledge cannot be accessed

(1)

 Other empirical studies also provide evidence to support the claim of shared knowledge, from the

perspective of exploring the nature of bug generation. In (Bonar & Soloway, 1985), the authors observed

novice programmers working on coding tasks while thinking aloud and generalized that most of the

novice bugs resulted from a natural strategy adopted to patch the use of programming knowledge with

natural language knowledge. This is also confirmed by the study of Pea (Pea, 1986) carried out to

analyze interview and think-aloud protocols from multiple institutes that teach senior high school

students to program. These novices were observed to use natural language discourse and context to

interpret a program’s functionality. For example, while a condition stated in an “if statement” in natural

language is usually not instantaneously evaluated and assumes the condition to be established within a

certain period of time, this is not the case when an “if statement” is written in a program, where the

39

condition is evaluated at the moment of execution of the statement and the statement then no longer

has any effect. Studies with clinical interviews (interviewing and providing help for problem solving) are

described in (Perkins & Martin, 1986). The authors observed the same defects in novice’s programming

knowledge, termed “fragile knowledge”, which was either missing (a piece of necessary knowledge that

does not exist in programmer’s memory), inert (a piece of knowledge that is not retrievable), misplaced

(a piece of knowledge that is misconnected to a goal) or conglomerated (a piece of knowledge that is

inappropriately combined with other pre-programming knowledge).

TABLE 7 REINTERPRETATIONS OF EMPIRICAL STUDY RESULTS ABOUT BUG GENERATION

Study Empirical Result Re-interpretation

Bonar & Soloway, 1985 novice use natural language knowledge to
patch programming language knowledge

mental model is formed with retrieved (2)
knowledge, either programming related or not

Pea, 1986 novice use natural language discourse to
interpret programming language

Perkins & Martin, 1986 fragile knowledge causes novices’ bugs knowledge is possessed with different levels of

accessibility

 Through the review of studies in this section, several implications arise. First, programming

knowledge seems to be transferrable between production and comprehension activities. Second,

incorrect or imperfect programs may result from the lack or misuse of certain programming knowledge.

Third, the major challenge imposed by comprehension activities is to build a balanced mental

representation of the current working problem (including program and task context), which

distinguishes experts and novice in comprehension tasks. However, we still need more detailed

empirical evidence about comprehension behaviors to arrive at a generalized theory of programming

expertise applicable to all types of tasks. This empirical evidence is provided in the next section.

3.1.4 PROGRAM COMPREHENSION – FROM CODES AND REQUIREMENTS TO DESIGNS

 Studies of comprehension activities started early as people noticed the substantial time devoted to

these activities. The earliest studies we include here are (Gould & Drongowski, 1974) and (Gould, 1975),

in which the authors report observations of “practice effect” in multiple studies in which programmers

40

performed better and faster with previously debugged programs even though different bugs were

seeded inside. Now that we have reviewed the literature about using transferrable programming

knowledge to build mental representations of a program under study, the “practice effect” is easy to

explain in that after forming a mental representation of a program for debugging, it becomes relatively

easy to locate new bugs (and/or make modifications and enhancements). As stated in (Ahmadzadeh, et

al., 2005) and (Fitzgerald, et al., 2008), the “understanding of a program written by others” is critical to

the success of comprehension activities and “once a bug is located, it is almost always fixed” (Katz &

Anderson, 1987-1988). Therefore, our next question is, accordingly, what the details of the

comprehension process are.

3.1.4.1 HYPOTHESIS-DRIVEN VERSUS DATA-DRIVEN

 In a study presented by (Gugerty & Olson, 1986), the term hypothesis refers to a proposed cause of

a bug. In their studies, they observed that expert programmers formed higher quality hypotheses about

programs. At that time, the author had not proposed that programmer’s behaviors were driven by the

hypotheses they made. Almost at the same time, through analysis of think-aloud protocols produced by

programmers during debugging tasks, Letovsky (Letovsky, 1986) formed a grounded theory that

debugging was a hypothesis-driven activity. He provided a further detailed explanation of this

hypothesis-driven theory by enumerating and explaining that subjects took the process of building

conjectures to answer the what, why, and how questions (hypotheses). The authors of (LaToza, et al.,

2006), (LaToza, et al., 2007) and (LaToza & Myers, 2010) proposed that programmers asked reachability

questions during debugging through analysis of protocols and surveys. A reachability question can be

exemplified as “through what paths does X happen”, which from the theoretical perspective,

complements the theory of hypothesis-driven comprehension behavior. Another series of studies, as

presented in (Sillito, et al., 2005), (Sillito, et al., 2006) and (Sillito, et al., 2008) provides confirmation and

refinement of the hypothesis-driven theory. The authors postulate that forty-four types of questions

41

were asked by programmers during debugging tasks and provide detailed corresponding behaviors that

seek to answer these questions.

TABLE 8 REINTERPRETATIONS OF EMPIRICAL RESULTS ABOUT HYPOTHESIS-DRIVEN DEBUGGING

BEHAVIORS

Study Empirical Result Re-interpretation

Gould & Drongowski, 1974
Gould, 1975

programmers perform better with
programs they have debugged

mental model is program and task specific

Gugerty & Olson, 1986 expert form better hypotheses
during debugging

experts have strong mental models to guide search (3)
for relevant data

Letovsky, 1986 hypothesis-driven debugging
behavior

mental models formulated pre-dominantly with
retrieved (2) knowledge guide the search (3) for
relevant data in a hypothesis-driven manner

LaToza, et al., 2006, 2007
LaToza & Myers, 2010

reachability questions mental models guide the search (3) for relevant data
and data fetched (4) in this search further evolves the
mental model Sillito, et al., 2005, 2006,

2008
44 types of questions

TABLE 9 REINTERPRETATIONS OF EMPIRICAL STUDY RESULTS ABOUT CHARACTERS OF DEBUGGING

BEHAVIORS

Study Empirical Result Re-interpretation

Nanja & Cook, 1987 experts take comprehensive approach
while novices take isolated approach

experts’ retrieved (2) knowledge forms a stronger
mental model to guide the search (3) for relevant
data Littman, et al., 1987 systematic versus as-needed behaviors

Vessey, 1985
Vessey, 1986

expert use systematic and breadth first
strategy

stronger mental models guide more systematic
search (3) for relevant data

Ye & Salvendy, 1996 experts use top-down comprehension
strategy but novices show opportunism

Corritore & Wiedenbeck,
2001

different comprehension and debugging
strategies used for OO and procedural

fetched (4) data affects the evolution of mental
model that guides the search (3) for further data

 With regard to the relationship between comprehension strategies and programming expertise, the

authors of (Nanja & Cook, 1987) observed that expert programmers took a more comprehensive

approach to understanding a program under debugging while novices adopted an isolated approach

that would just serve to understand “enough for debugging”. This evidence is further confirmed and

developed into the systematic vs. as-needed theory in (Littman, et al., 1987). Littman, et al. argued that

systematic versus as-needed behaviors, distinguished by the goal, scope and target of comprehension

(to understand the program as a whole or to understand just the parts that are possibly related to bugs)

decides whether causal knowledge can be formed in a programmers’ mental representation and were

42

related to their success at debugging. In (Vessey, 1985) and (Vessey, 1986), Vessey analyzed think-aloud

protocols and proposed that expert programmers used a systematic and breadth-first strategy to

comprehend codes.

 Evidence from a quantitative empirical study on the differences in comprehension strategies

adopted by programmers with different levels of expertise was presented in (Ye & Salvendy, 1996).

Subjects in this study were required to associate code segments with listed goals. The code segments

were organized hierarchically so that subject’s order of association reflected their direction in

comprehension. It was observed that although both novices and experts adopt a top-down

comprehension strategy in general, novices showed more opportunism within this top-down structure.

This study confirmed that experts used a more systematic strategy in comprehension. The breadth and

direction of code comprehension behavior was then quantitatively studied in (Corritore & Wiedenbeck,

2001) with respect to different programming paradigms. Based on the nature of the files being

examined (documents are considered the shallowest level, header files a middle level and

implementation codes the deepest level) and the number of files being accessed, the authors compared

the differences in object-oriented experts’ and procedural experts’ debugging behaviors in terms of the

depth and breadth of comprehension. It was observed that a mixed strategy (top-down in general

comprehension, bottom-up in debugging) was used by object-oriented programmers and a consistent

bottom-up strategy was used by procedural programmers, while experts working with both forms of

program finally achieved a broad view of programs that contain both high-level and deep-level

information by examining a considerable number of files in each level.

 A similar argument of opportunistic behaviors was proposed for comprehension activities (see

section 3.1 for a discussion of opportunistic behaviors with regard to production activities). These

studies take the stance that comprehension activities are data-driven rather than being guided by any

structure. Although the data-driven nature of comprehension activities was only recently proposed, as

43

seen in section 3.1, the concept has existed for much longer throughout the discussion of production

behaviors. The data-driven theory, termed “information foraging in debugging”, was first postulated in

(Ko, et al., 2006). Analyzing the protocol data collected for designing a better integrated development

environment from (Ko, et al., 2005), the author proposed a model of how programmers seek, relate and

collate data during enhancement tasks and claimed that this behavior corresponds to the information

foraging theory developed in (Pirolli & Card, 1999).

TABLE 10 REINTERPRETATIONS OF EMPIRICAL RESULTS ABOUT DATA-DRIVEN DEBUGGING BEHAVIORS

Study Empirical Result Re-interpretation

Ko, et al., 2006 information foraging in debugging fetched (4) data affects mental model that
supervises the search (3) for further data Lawrance, t al., 2013 validate information foraging

Eisenstadt, 1993 data chasing behavior

Mckeithen & Reitman,
1981

experts superior memorization are achieved
iteratively

mental model evolves

Wiedenbeck, 1986 experts recognize beacons retrieved (2) knowledge affects mental model
that supervises the search (3) for data Robillard, et al., 2004 novices have inattention blindness with

critical information

 Later on, Lawrance, et al. (Lawrance, et al., 2013) validated the theory of information foraging in

debugging through analysis of programmer’s think-aloud protocols and claimed that programmers were

actually following a “scent”, the perceived likelihood of a cue such as words, objects, or perceptible

runtime behaviors to find a prey (what the programmer seeks to know to fix the bug), rather than

formulating and evaluating hypotheses about the program they are debugging. The authors also claimed

that debugging behavior explained by information foraging theory was consistent with 1) Activity Theory

(Leontjev, 1978), in which plans guide behavior but exact actions or operations are determined by the

context in which the action takes place, and 2) the theory of situated cognition (Suchman, 1987), in

which plans are inherently vague and the structure of the environment has far more effect on particular

actions, as well as 3) the theory of distributed cognition (Hollan, et al., 2000), which argues that a large

part of cognition is triggered by interaction with the environment rather than happening predominantly

in head. Interestingly, the author of a much earlier work (Eisenstadt, 1993), reported a survey of global

44

debugging anecdotes and concluded that the major source of difficulty in debugging was the large

temporal or spatial chasm between the bug symptom and the bug root cause. Accordingly, the author

found that the dominant debugging technique was data gathering, in order to understand the program

and the nature of the bug. Noticing the two quantitative studies described before, (Ye & Salvendy, 1996)

and (Corritore & Wiedenbeck, 2001), which have different conclusions regarding top-down versus

bottom-up comprehension strategies, it seems that we have another clue of the existence of

opportunism in program comprehension.

 The “program plan” conceptual framework, together with an understanding of the circumstances

under which plans are created versus retrieved, helps to explain/reconcile the contradictions seen in the

literature regarding opportunistic versus structured behavior related to production activities, but does

not explain contradictions in the literature regarding hypothesis-driven versus data-driven behaviors

related to comprehension activities. On the other hand, during our review of the previously described

empirical studies, we see that (LaToza & Myers, 2010) actually exhibits a dual character. To some extent

it supports the theory of hypothesis-driven behaviors by concluding that programmers “ask” reachability

questions while on the other hand, it indicates the existence of data-driven behaviors by stating that to

answer reachability question, a “search” through feasible paths is necessary. We take the stance that

the main contradiction of hypothesis-driven versus data-driven theories hinges on one critical concern

about the role of data: whether data simply provides answers to questions or that it actually drives the

formation of questions. In reality, data likely serves both roles, as initially available data helps form

hypotheses (e.g.: documents, bug reports, enhancement requirements, etc.) that drive the gathering of

subsequent data. The successively gathered data (e.g. code, program output) are used to refine mental

representations and form new hypotheses. This is a process that starts by using initial data to form an

initial mental representation (hypotheses), and then uses the mental representation to guide further

45

information searching while evolving the mental representation with the gathered information. Some

empirical evidence is presented in next sub-section to support this speculation.

3.1.4.2 GUIDED SEARCH AND EVOLVING MENTAL REPRESENTATION

 In the previous section, we reviewed the discussion of hypothesis-driven versus data-driven

behavior based on empirical results regarding programmers’ mental representations and knowledge.

However, although many studies provide evidence on the content of such mental representations, few

discussions focus on the formation of these representations. One relevant finding is that mental

presentations transformed after performing different tasks, as seen in (Pennington, 1987) and (Holt &

Boehm-Davis, 1987). While (Adelson, 1981), as reviewed in section 3.1.3.1, stated that expert’s chunks

of memory were semantically ordered, no discussion was available on how these chunks were

formulated into a semantically ordered collection. This concern is addressed to some extent by a peer

work (Mckeithen & Reitman, 1981). The subjects in their study, either novice or expert, were required to

memorize keywords of a programming language. Subjects were told that re-organizing the keywords

would help them in the task but were not given any re-organization criteria. Besides observing that

experts’ memory chunks are semantically organized, the authors also reported that experts’ successful

recognition of similar words occurred through multiple trials of recall. Therefore, the authors proposed

that programming expertise is different from expertise in other domains (e.g. a chess master recalls a

board layout in initial trial) and postulated the reason to be that programming-related information is not

available in one generalized pictorial representation as in chess, Go, or electrical diagrams. That expert

programmers required multiple trials to create their semantically organized chunks supports the notion

that a mental representation is formed with initial data, guides the subsequent data gathering process

and also evolves with the newly gathered data.

 But then, what role does expertise play in this process? In other words, what makes an expert

programmer a better data seeker? We postulate that another factor is also involved in the formation

46

and evolution of mental representations, knowledge, which plays a similar role to data. Actually, we

view knowledge and data just as two forms of information, internal and external. The searching of both

forms of information is guided by the mental representation and the searched results of both forms of

information evolve the mental representation. Empirical evidence also exists to support this speculation.

In (Wiedenbeck, 1986), experts were observed to recall certain key parts of a program, beacons, much

better than did novices. In (Robillard, et al., 2004), novices were observed to have inattention blindness

with information that was critical to their task, information they encountered but did not explicitly

search for. We take the stance that a lack of knowledge (internal information) actually causes weaker

initial and subsequent mental representations given the same amount and quality of external

information (data) in a problem solving context, which consequently results in inferior information

searching strategies for both internal information (knowledge) and external information (data).

3.1.5 A GENERAL CONCEPTUAL FRAMEWORK OF PROGRAMMING EXPERTISE

 We accept the empirical evidence that illustrates that differences exist between programming

expertise and expertise in other domains (Mckeithen & Reitman, 1981) and further postulate that the

need for programmers to deal with large volumes of internal and external information in a variety of

forms makes the distinction. Therefore, we provide the following description of the nature of

programming expertise based on its distinction from expertise in other domains: 1) From a problem-

solving perspective, programming expertise is exhibited as a superior repository of internal information

(knowledge) that helps form stronger mental representations of the problem, which better guide

subsequent searches of both internal information (knowledge) and external information (data); 2) From

an expertise-development perspective, expertise is characterized by the iterative internalization of

external information (data) with initially available internal information (knowledge) to form new

knowledge.

47

 With the above interpretation of expertise, it is clear and straight forward to interpret existing

empirical evidence under this new framework. The structured versus opportunistic behaviors in both

production and comprehension activities can be explained by changes in the relative dominance of

internal and external information during problem solving. When internal information (knowledge)

dominates the evolution of the mental representation, more systematic, forward and top-down guided

behaviors are present. When external information (data) dominates the evolution of the mental

representation (most probably due to lack of internal information, i.e. knowledge), more opportunistic,

backward and bottom-up behaviors are present. This postulate works according to the plan retrieval and

creation theory, grounded in empirical studies of production tasks and also unifies the hypothesis-driven

and data-driven theory grounded in empirical studies of comprehension tasks. Our postulate also

explains the formation of stronger versus weaker mental representations by expert and novices

respectively, since experts possess a superior (larger and more varied) repository of internal information

(knowledge). With this larger repository of knowledge, the observation of experts’ semantically

organized memory chunks and mental representations that are less affected by external conditions

(program language syntax, availability of a certain type of data) can be explained as experts are less

dependent on external information (data) given their superior internal information (knowledge)

repository. Actually, in (Romero, et al., 2002), (Romero, et al., 2003), (Fleming, et al., 2008) and

(Fleming, et al., 2008), experts were observed to only use additional external information (data)

(visualizations provided together with code in those empirical studies) when a task was “sufficiently

challenging”. With our framework, this again may be explained as that only when internal information

(knowledge) is not sufficient (task becomes challenging) does external information (data) begin to

dominate the evolution of mental representation. In (Fleming, et al., 2008) and (Fleming, et al., 2008),

the authors stated that both static (roles of key data structures and threads, thread’s and object’s life

cycles) and causal (conditions for a certain thread behavior to happen, interactions between static

48

objects) knowledge are critical to build a strong mental representation with the realm of concurrent

programming. We postulate the lack of knowledge, which is the essential part of programming expertise

that is utilized by human to solving programming problems, causes the unsuccessful searching and

formulating of causal information in programmers’ mental representations.

 Based on our new generalized conceptual framework of the application and development of

expertise, we assert several implications for related research fields. For software engineering, with our

interpretation that external information (data) patches a lack of internal information and becomes a

dominant factor in the evolution of the mental representation, it is definitely promising and surely

necessary to develop new engineering interventions that provide information in some form, including

tools, schemas, notations, languages and so on. However, we also re-confirm that no silver bullet is

available. At the end of the day, the success of a complex problem solving task in which expertise plays a

role will require a strong mental representation with a large repository of internal information

(knowledge). For programming pedagogy, our interpretation of the importance of internal information

(knowledge), suggests that programming education should emphasize helping students to iteratively

build a superior repository of knowledge with both declarative (concepts and solutions) and procedural

(schemas) information, through challenging tasks. This asserts again the importance of practice, and

more critically, the importance of practice with challenging tasks (as the acquisition of knowledge is not

an easy journey).

3.1.6 A COMPARISON WITH OTHER COGNITIVE MODELS

 Other code cognition models have been proposed to abstract how programmers use existing

knowledge and external representations to meet the goals of code cognition tasks. Major components

of all these cognition models include: 1) a knowledge base that contains both general knowledge and

new knowledge related to the software under consideration, 2) an internal working representation of

the software under consideration (i.e. a mental model), and 3) a process by which the knowledge base is

49

used to build the mental model. In this section, we compare and contrast our conceptual framework

with previous cognition models.

 Generally, we have a slightly different definition of terms in our conceptual framework. The

knowledge in our framework only refers to general knowledge that represents expertise and may be

retrieved for further problem solving. It may include specific knowledge of a certain piece of software or

specific knowledge of the procedure to fulfill a certain task, but does not include particular knowledge of

a certain task regarding a certain piece of software. Rather, the knowledge in our framework has general

applicability to future problem solving. The particular knowledge of a program under consideration

resides in the mental representation defined in our framework. That is, we expand the content of

mental representation to include related and re-organized information regarding the current code task,

a specific task towards a certain piece of software. Our definition of data is basically equivalent to

definitions of external representations in previous cognition models.

 Compared to the Letovsky “high-level comprehension model” (Letovsky, 1986), our conceptual

framework has the following similarities and differences. First, both his model and our framework argue

that knowledge and external representation affect the formation of mental representations. However,

while the Letovsky model abstracts the formation of mental representation as the building of

annotations (links) between program goals and implementations, our conceptual model does not make

this specification. We argue the dynamic aspect of mental representation to not only contain static

information such as mapping of goals and implementation, but also procedural information such as

guidance of the data searching and knowledge accessing processes. Also, Letovsky’s model states that

external representations are “assimilated” to knowledge during problem solving procedure. With our

more rigorous definition of knowledge (retrievable expertise generally applicable for future problem

solving), our conceptual framework specifically states that only repeatedly formed mental

representation may internalize into knowledge. That is, our view of this process is that external

50

representations are incorporated into the (transitory) mental model, but only through repeated

formation of mental models would this external representation be assimilated into generally applicable

knowledge.

 Shneiderman and Mayer’s “chunking model” (Shneiderman & Mayer, 1979) argues that

programmers recode a program in short-term memory into an internal semantic representation via a

chunking process with the assistance of long-term memory of semantic and syntactic knowledge. Similar

to our conceptual framework, their model also indicates the effect of knowledge in building mental

representation. However, their model assumes a direct mapping of elements from knowledge to mental

representation instead of a “retrieval-accessing” procedure as stated in our conceptual framework. Also,

the “chunking model” addresses the difference of design and comprehension activity as two different

directions of building mental representation (from problem to program for design and from program to

problem for comprehension) while our conceptual framework views the major differences in design and

comprehension activity as the volume and availability of knowledge and data, respectively. The

“chunking model” also simplifies the external representation as only program code while our framework

considers a variety of external information.

 Brooks’ model (Brooks, 1983) regards program cognition as “bridging” two domains of knowledge,

the problem and programming domains, with some intermediate domain knowledge. All three domains

of knowledge (problem, programming and intermediate) may be used directly to generate hypotheses

based on the current mental representation. Intermediate knowledge may further be used directly to

map knowledge between the problem and programming domains. Hypotheses generated through

knowledge of each domain are verified through “beacons” against external representations in each

domain (e.g. requirements documentation are the external representation in the problem domain; code

is the external representation in the programming domain; and detailed design documents are the

external representation in the intermediate domain). Brooks’ model emphasizes a hypothesis-driven

51

comprehension process but also indicates that beacons are the main vehicles for verification. In our

framework, the hypothesis-driven comprehension process is interpreted as the guidance provided by

the formulated mental representation and the driving force of “beacons” is interpreted in the context of

retrieved knowledge and fetched data that affect the formation of the mental representation.

 The Soloway, Adelson and Ehrlich model (Soloway & Ehrlich, 1984) (Soloway, et al., 1988) describes

the program understanding process as the matching external representations to programming plans

(knowledge) using rules of discourse (expertise). In their model, knowledge is solely related to the

program under consideration, but the rules of discourse are generally applicable expertise, which is very

different from our scope and definition of knowledge. Also, their model argues for a top-down

constructed mental representation with a hierarchy of goals and plans in which any matched pair of goal

and plan becomes new knowledge of the program, which is also different from our view of the mental

representation, which contains much more than matches of goals and plans.

 The Pennington model (Pennington, 1987) (Pennington, 1987) contains an iterative process of

building the mental representation. She argues that a program model (control-flow abstractions) is the

first mental representation built bottom-up when code is completely new to programmers. Recognition

of code patterns based on knowledge (plan, data structure, etc.) drives the formation of the program

model. Then, a situation model is built, also bottom-up with real world domain knowledge. Cross-

referencing allows the two models to change according to changes in one another. The Pennington

model is most similar to ours in terms of the evolution of mental representation while most other

models assume a mental representation that functions only to maintain static information. Also, the

Pennington model explicitly indicates the impact of the program model, which is formed first, on

building the situation model later in the comprehension process. This corresponds to our description of

an evolving mental representation formulated by knowledge and an external representation that guides

further search for data and access of knowledge. However, Pennington’s model does not rigorously

52

delineate problem-specific knowledge from knowledge that is generally applicable to problem solving,

as does the internalization process described in our framework.

 As a summary, our conceptual framework reveals the evolution of the mental representation and

the dual character of this evolution: 1) the mental model evolves through knowledge retrieval and data

access, and 2) the evolving mental model guides the accessing of further knowledge and the searching

for other data. This is not described or clearly stated in previous models. Also, our framework

generalizes different behavioral procedures (opportunistic vs. structured, top-down vs. bottom-up, etc.)

through the interpretation of the relative dominance of knowledge versus data in formulating the

mental representation, which is not addressed or not clearly stated by previous models. Furthermore,

while most previous models only focus on the cognitive process within one certain programming

activity, our conceptual framework not only illustrates the cognitive process of problem-solving (for

design and comprehension activities), but also captures the expertise development process by

illustrating the internalization of generally-applicable knowledge. On the other hand, many previous

models provide a more detailed description of the content and structure of knowledge and mental

model that our framework does not supply. For example, many previous models indicate that links or

mappings or matches of goals (domain elements) and plans (programming elements) are major

components of the “knowledge of program under consideration” (defined as part of the mental

representation in our framework). To further detail and refine our framework, it is important to

understand the structure and content of general knowledge and mental representation (both

procedural information and static information) and the interactive mechanism among mental

representation, knowledge and external data.

3.2 CONCURRENCY-RELATED BARRIERS

 The conceptual framework for the development of expertise in the programming domain that we

have developed through our survey and analysis of empirical studies emphasizes the importance of

53

knowledge in problem-solving activities. We extend this work to explore the content and structure of

programming knowledge with regard to expertise for programming with concurrency.

 In this section, we describe our “misconception hierarchy” notion. In our work, misconceptions are

incorrect ideas that students hold about the state or behavior of a computer system under study. These

misconceptions were identified through analysis of student explanations in sequential and

circumstantial questions that were posed to them. Using a grounded theory approach, these

misconceptions were then grouped into categories (description, terminology, concurrency,

implementation, uncertainty). An analysis of student performance indicated that these categories are

inter-related. Specifically, misconceptions that exist at lower levels can interfere with comprehension at

higher levels.

3.2.1 QUALITATIVE ANALYSIS AND GROUNDED THEORY

 The study of human factors in the interaction between human and technology is complex and

difficult. Different from other factors, human behaviors are hard to be described and explained through

statistics or other quantitative models. Qualitative data are data represented as words and pictures, not

numbers (Gilgun, 1992). Qualitative methods are methods used to focus on the study and analysis of

qualitative data. These methods allow us to delve into the complexity of problems in studying human

factors rather than to abstract the complexity away. Thus, qualitative methods result in richer and more

informative findings. Qualitative methods also have drawbacks in that the results are usually harder to

summarize or simplify than quantitative ones, but this helps in expressing the complexity inherent in

human factors research. As stated in (Taylor & Bogdan, 1984), qualitative research methods were

designed, mostly by educational researchers and other social scientists, to study the complexities of

human behavior.

 Grounded theory is a general methodology for developing theory that is grounded in data

systematically gathered and analyzed. The theory evolves during actual research that uses grounded

54

theory methods through continuous interplay between analysis and data collection. Grounded theory

methodology shares the same data source as other qualitative research methods (a combination of

qualitative and quantitative data) to study human factors, but it is more directed at developing

substantive theories rather than general ones and mandate a verification of resulting hypotheses

through iterative collection and analysis of data according to (Strauss & Juliet, 1994). Authors of

(Thomas & James, 2006) challenge the grounded theory methods in three aspects: 1) the generated

findings are not qualified to be termed as theories; 2) it is not possible to follow the method’s

requirements of “forming grounded theory without preconceptions”; and 3) the actual process of

developing inductive knowledge is not clear.

 We address the concerns of legitimacy of grounded theory and qualitative analysis method in our

presentation of data analysis and result findings. First, we do not regard our findings as rigid as a theory,

but rather a collection of descriptions of the content and structure of knowledge possessed by students

with different levels of expertise and their behaviors and procedures of knowledge acquisition. Second,

we possess very limited prior assumptions and always formulate exploratory questions towards the

emergency of our findings such as “what” and “how” questions. We also report the process of reaching

our final results with unsuccessful steps in data analysis to illustrate the inductive course of discovery. As

shown in Figure 6, we adopted iterative qualitative analysis of our data collected from the posttest of

spring 2010 study and the midterm exam of spring 2013 study. Our major foci are subjects’ responses to

reasoning questions (whether a certain scenario will happen and why). Subjects’ explanations of their

answers are the major source of our data. We describe in the following sections our process of analyzing

student performance and the path that led to the notion of a “misconception hierarchy”.

55

FIGURE 6 QUALITATIVE RESEARCH METHOD

3.2.2 FORMULATING THE MISCONCEPTION HIERARCHY

 The formation of our misconception theory was the result of several iterations of data analysis.

First, we attempted to correlate students’ performance with the metrics designed to describe the

complexity of the scenario that students are asked to evaluate. We defined a list of metrics: 1) number

of threads, 2) number of lock/unlock operations involved, 3) number of context switches involved, 4)

number of waits involved and 5) number of member functions of shared objects involved, to

characterize the complexity of each question. However, we soon noticed that some questions with very

similar metrics had greatly different subjects’ performance. For example, questions 4.d and 4.e both

involve 3 threads, 1 lock/unlock operation, 2 context switches, 0 waits and 2 member functions, but the

ratios of number of correct answer versus the number of incorrect answer for two questions are 13/1

and 3/12 respectively. Questions 5.d and 5.f demonstrate the same phenomenon, as shown in Table 11.

 Therefore, we decided to look more closely into the explanations provided by subjects to figure out

what makes them choose correct or incorrect answers in different questions. For example, consider

question 1.b Figure 7 describing a scenario from the single-lane bridge problem in which two threads,

redCar1 and redCar2, exist in the system (see section 2.1 for a detailed description). Thread redCar1

56

invokes the redEnter() method and has already returned when a context switch occurs and the redCar2

thread begins to run. One of the sub-questions asks whether it is now possible for the redCar2 thread to

invoke the redEnter() method and block on the monitor lock. The answer to this question should be NO.

Only two threads exist in the system and redCar1 should have released the monitor lock before it

returned from the redEnter() method. Thus, it is not possible for redCar2 to block on the monitor lock. In

answering this question, 9 out of 15 subjects chose the correct answer (NO). However, in looking closely

at their explanations, we found that 7 of them thought that the monitor lock would only block blue car

threads and regarded the monitor lock in the question as an okToEnter condition variable. One of them

misunderstood the meaning of the term “block” as “own” or “has” and thought that redCar1 already

owned the monitor lock since it was on the bridge and that redCar2 could thus not own the same lock.

Another student, however, did not understand the question and thought that redCar2 should not

“block” on the monitor lock but lock the monitor lock. Thus, by reading the explanations given by the

students we found that actually none of the 9 students who gave the correct answer really understood

the monitor lock and its mechanism.

TABLE 11 QUESTIONS WITH SIMILAR METRIC AND DIFFERENT PERFORMANCE

Question #Threads #Lock/
Unlock

#Context
Switch

#Wait #Functions Correct Neutral Incorrect

4.d 3 1 2 0 2 13 1 1

4.e 3 1 2 0 2 3 0 12

5.d 3 1 2 1 2 13 0 2

5.f 3 1 2 1 2 5 0 10

1. Suppose that only two threads exist in the system: redCar1 and redCar2. Suppose further that redCar1 has invoked the
redEnter() method, and has returned. A context switch occurs and the redCar2 thread starts to run.

Could the following event sequence happen next? Circle YES if the sequence is possible; otherwise, circle NO. Then please
provide a brief explanation of your reasoning.

b. redCar2 invokes redEnter(), then blocks on the monitor lock.
YES NO

FIGURE 7 SAMPLE QUESTION IN POSTTEST OF SPRING 2010 STUDY

57

 By performing this type of detailed analysis of student reasoning, we were able to construct an

initial list of misconceptions. Based on this list of misconceptions, we looked back into subjects’ answers

to particular questions, validated and modified the list through grouping, tabulating and correlating the

misconceptions on our list to subjects’ choice of answers and their explanations. The questions were

each designed to test student’s knowledge of particular concepts. We found that the occurrence of

misconceptions for each subject was not uniformly distributed. Our analysis of the student explanations

also revealed that the questions were not always evaluating the intended concept because “lower level”

misconceptions interfered with the ability to reach the intended concept. Consider questions 4.d and 4.e

mentioned above as another example. These two questions are aimed at testing the subjects’ ability to

consider multiple possible inter-leavings in an execution. Most of the students were not able to answer

both of these questions correctly and the majority failed on question 4.e. However, by looking closely at

their explanations, we found the reason for the failure does not truly stem from students’ inability to

consider the possible interleaving, as expected. Actually, all 9 subjects failed in 4.e because of

misconceptions about the monitor lock. Some of them confused it with the okToExit or okToEnter

condition variables. Others were ignorant of the mechanism of the monitor lock so they succeeded in

question 4.d, which does not deal with the monitor lock concept but failed in 4.e.

 Finally, we converged on and became confident in the idea that student’s misconceptions about

concurrency and synchronization cannot be fully captured with a simple list of confusions or

misunderstandings in concepts, terminologies and mechanisms. Rather, they are correlated with one

another, interacting in a hierarchical architecture so that it is not possible to examine higher level

misconceptions without first teasing out the impact of lower-level misconceptions, or ensuring that

students first have a firm grasp of lower level concepts. In other words, to understand higher level

concepts, students must first rid themselves of lower level misunderstandings.

58

 We introduce a misconception pyramid (Figure 8) that captures common misunderstandings that

students exhibited when reasoning about a concurrent system. The hierarchical structure of the

misconceptions captures the difficulty and dependency relations of understanding the concepts at each

level. Understanding concepts at higher levels of the pyramid requires an understanding of the concepts

at lower levels first. Descriptions of the types of misconceptions one might find at each level are

presented in Table 12 (note the levels in table are in a reverse order to accompany top-down of

presentation), which was constructed based on misconceptions identified in the literature and also

those that we encountered in our analysis of subjects’ explanations of their reasoning in this study.

FIGURE 8 MISCONCEPTION PYRAMID

 The bottom level of the pyramid is the description level and includes misconceptions about the

requirements, constraints and other details of a concurrent system at the level of the “story” about the

red cars and blue cars. For example, some subjects wrote explanations such as “redCar2 should wait for

redCar1 to invoke the redEnter() method first” or “redCar1 should block the bridge first” demonstrate

one common misconception at this level: that the thread labels redCar1 and redCar2 were the actual

running order of the threads.

 The next level of the pyramid includes misconceptions related to terminology we used in describing

concurrent scenarios. A typical example is the misunderstanding of the meaning of “block on” a

conditional variable/monitor lock as “hold/own” a conditional variable/monitor lock. This kind of

misconception can be seen throughout the explanations given by subjects in our study. Most students

59

who held this kind of misconception did so consistently, causing them to fail on a particular group of

questions. Typical students’ explanations that illustrate this level of misconception include but are not

limited to “okToEnter is already blocked” or “monitor is already blocked by redCar2”.

 The third level of the pyramid is the concurrency level, which includes misconceptions about basic

thread behaviors such as context switching and the thread life cycle. For example, some students

seemed to think that a context switch could not happen while a thread was executing in a critical section

and many students thought that a context switch is not allowed during the execution of a method and

regarded the whole method body as uninterruptible. Some typical students’ explanations are “redCar2

should receive return call then switch out” or “because redCar2 has not done its activity (so it cannot be

context switched out)”.

TABLE 12 INITIAL MISCONCEPTION PYRAMID TABLE

Description Level

D1 Misconceptions of system and/or problem descriptions

Terminology Level

T1 Misconceptions of the meaning of “invoke/call” a method

T2 Misconceptions of the meaning of “return” from a method/invocation

T3 Misconceptions of “block” on a monitor lock as “hold/has” a monitor lock

T4 Misconceptions of “block” on a conditional variable as “hold/has” a conditional variable

Concurrency Level (thread behavior)

C1 Misconceptions about context switching

C2 Misconceptions about the thread life cycle

Implementation Level

I1 Misconceptions about conditional variables and the wait/signal mechanism

I2 Misconceptions about monitor lock

I3 Misconceptions about block and unblock mechanism

Uncertainty Level

U1 Confused about space of executions and thread interleavings

*note the levels in table are in a reverse order to accompany top-down of presentation

 The fourth level of the pyramid is the implementation level, which is related to detailed

implementation mechanisms such as the monitor lock and condition variables and their functionalities.

By investigating the subjects’ answers and explanations in our study, we found that few subjects were

clear on the basic monitor programming structure. We believe that this is greatly related to students’

misunderstandings in the three previous levels. If students do not understand the context switch, they

60

are not able to appreciate the actual purpose and corresponding mechanism of the monitor lock.

Misunderstandings of different terminologies also lead to confusion about the workings of monitor

programming structures and functions.

 The top level of the pyramid is concerned with failures in dealing with uncertainty; that is, the

inability to envision or manage all the possible threads inter-leavings and execution scenarios. While this

problem is often cited as the main source of difficulty in the comprehension of concurrent program

executions, we found that this level of difficulty was not seen in our study, as students tended to fail

much earlier in the pyramid, and thus were not even exposed to these higher-level issues.

3.2.3 EXTENDING THE STUDY

 We recognize that our initial spring 2010 study was carried out over a relatively small group of

subjects and with a particular implementation of concurrent systems (C++ PThread implementation of a

shared memory system). Therefore, the resulting initial misconception hierarchy is incomplete and not

applicable to a more abstract level that characterizes the knowledge structure of expertise in

programming with concurrency. Also, although we strictly followed the research method of forming

grounded theory with iterative paths of qualitative analysis, these analyses were performed by a limited

number of researchers, which may cause biases. Realizing these limitations, we carried out an extended

second study to re-evaluate and refine our theory. This study is different from the initial one from

several different aspects as we illustrate below.

3.2.3.1 INTRODUCING AN EXTENDED LANGUAGE INDEPENDENT PSEUDOCODE SYSTEM

 Based on Tew’s language independent test on a pseudocode system (Tew & Guzdial, 2011), we

created an extension that includes concurrency concepts in both shared memory and message passing

models. Therefore, instead of using programs implemented in an actual programming language, we use

this language-independent pseudocode system in our comprehension test to eliminate effects based on

programming language. By excluding the factor of subject’s difference in familiarity with different

61

programming languages, in the spring 2013 study, we were able to test the comprehension of

concurrent systems purely based on an extended pseudocode abstraction that covers both the shared

memory and message passing forms of concurrency.

 A selected subset of this pseudocode can be seen in tables Table 13 through Table 16. Table 13

shows the pseudocode notation associated with assignment statements and the pseudocode notation

associated with conditional statements. In Table 14 we provide an example of the pseudocode we have

devised for representing concurrent execution. Pseudocode designed to represent constructs in shared

memory model are seen in Table 15 and pseudocode designed to represent constructs in message

passing model is seen in Table 16. In Table 17, we demonstrate the use of this pseudocode to specify a

shared memory solution to the Bounded Buffer problem.

62

TABLE 13 SAMPLE PSEUDOCODE ELEMENTS NOT RELATED TO CONCURRENCY

Non-concurrency Related Pseudocode

Simple Statement

variable = expression

Simple statements are executed atomically.

Assignment is an example of a simple

statement

total = 0

name = “John Smith”

condition = True

height = 3.3

If Statement (Conditional)

IF condition THEN

 statement(s)

ELSE IF condition THEN

 statement(s)

ELSE

 statement(s)

ENDIF

The calculation of condition is not

necessarily atomic if it involves function

call statements. However, the choice of

branch based on a calculated condition

value is executed atomically.

IF testScore >= 90 THEN

 PRINTLN “A”

ELSE IF testScore >= 80 THEN

 PRINTLM “B”

ELSE IF testScore >= 70 THEN

 PRINTLN “C”

ELSE

 PRINTLN “F”

ENDIF

testScore = 88

Output

B

63

TABLE 14 PSEUDOCODE EXTENSIONS ON CONCURRENCY

Parallel Execution Statements

PARA

 statement(s)

ENDPARA

Statements within the PARA/ENDPARA block

are executed concurrently.

Atomic statements within PARA/ENDPARA are

executed in any order.

Statements defined in a function that is

called within the PARA/ENDPARA block are

executed sequentially.

Statements defined in functions that are

called within a PARA/ENDPARA block are

executed in any order of interleaving

with simple statements within the same

PARA/ENDPARA block.

Statements defined in two functions that

are called within the same PARA/ENDPARA

block are executed in any order of

interleaving while statements from any

one of the functions are executed in

their order of definition.

PARA

 PRINT “hello ”

 PRINT “world ”

ENDPARA

Output

possibility 1: hello world

possibility 2: world hello

DEFINE print()

 PRINT “hi”

 PRINT “there”

ENDDEF

PARA

 print()

ENDPARA

Output

hi there

DEFINE print()

 PRINT “hi”

 PRINT “there”

ENDDEF

PARA

 print()

 PRINT “world”

ENDPARA

Output

possibility 1: world hi there

possibility 2: hi world there

possibility 3: hi there world

64

TABLE 15 PSEUDOCODE EXTENSIONS ON SHARED MEMORY MODEL OF CONCURRENCY

Shared Memory Concurrency

Exclusively Accessed Statement

EXC_ACC

 statement(s)

END_EXC_ACC

Only appears within a function

definition.

When one function call executes

statements inside an EXC_ACC/END_EXC_ACC

block, other function calls that read or

modify the same variables that appear

inside the markers may not execute until

the first function call completes or

executes a WAIT function.

x = 10

DEFINE changeX(diff)

 EXC_ACC

 x = x + diff

 END_EXC_ACC

ENDDEF

PARA

 changeX(1)

 changeX(-2)

ENDPARA

PRINTLN x

Output

9

Wait and Notify Functions

WAIT()

NOTIFY()

Only be called inside a

EXC_ACC/END_EXC_ACC block.

Once a WAIT() function starts execution,

another function call that reads or

modifies variables inside the

EXC_ACC/END_EXC_ACC block may execute.

Once a NOTIFY() function is executed, all

WAIT() functions finish their execution.

Both WAIT() and NOTIFY() functions are

atomic.

x = 10

DEFINE changeX(diff)

 EXC_ACC

 WHILE x + diff < 0 DO

 WAIT()

 ENDWHILE

 x = x + diff

 NOTIFY()

 END_EXC_ACC

ENDDEF

PARA

 changeX(-11)

 changeX(1)

ENDPARA

PRINTLN x

Output

0

65

TABLE 16 PSEUDOCODE EXTENSIONS ON MESSAGE PASSING MODEL OF CONCURRENCY

Message Passing Concurrency

Message Variable

MESSAGE.message-name(value...)

A special message variable that carries a

collection of values. The message-name is

used to distinguish message variables

from one another.

m1 = MESSAGE.h(“hello”)

m2 = MESSAGE.w(“world”)

Send Statement

Send(message variable).To(object)

Send a message specified by message

variable to a receiver object.

A send statement is asynchronous, which

means that the order in which messages

are received may differ from the order in

which they were sent.

m1 = MESSAGE.h(“hello”)

m2 = MESSAGE.w(“world”)

Send(m1).To(r1)

Send(m2).To(r1)

Receive Statement

ON_RECEIVING

 message

 statement(s)

 message

 statement(s)

 ...

Accept the next message and execute

statement(s) according to the type of the

message.

CLASS Receiver

 DEFINE receive

 ON_RECEIVING

 MESSAGE.h(var)

 PRINT var

 MESSAGE.w(var)

 PRINTLN var

 ENDDEF

ENDCLASS

m1 = MESSAGE.h(“hello”)

m2 = MESSAGE.w(“world”)

r1 = new Receiver()

r1.receive()

Send(m1).To(r1)

Send(m2).To(r1)

Output

possibility1: hello world

possibility2: world

 hello

66

TABLE 17 PSEUDOCODE IMPLEMENTATIONS OF BOUNDED BUFFER

Shared Memory Model Message Passing Model
CLASS Buffer

 DEFINE initialize Buffer(capacityVal)

 items = []

 capacity = capacityVal

 ENDDEF

 DEFINE produce(itemVal)

 EXC_ACC

 WHILE length(items) > capacity DO

 WAIT()

 ENDWHILE

 items[length(items)] = itemVal

 NOTIFY()

 END_EXC_ACC

 ENDDEF

 DEFINE consume()

 EXC_ACC

 WHILE length(items) < 1 DO

 WAIT()

 ENDWHILE

 item = items[0]

 del items[0]

 NOTIFY()

 END_EXC_ACC

 return item

 ENDDEF

ENDCLASS

CLASS Producer

 DEFINE initialize Producer(bufferVal)

 buffer = bufferVal

 ENDDEF

 DEFINE run()

 WHILE True DO

 buffer.produce(randNum(0,10))

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Consumer

 DEFINE initialize Consumer(bufferVal)

 buffer = bufferVal

 ENDDEF

 DEFINE run()

 WHILE True DO

 PRINTLN buffer.consume()

 ENDWHILE

 ENDDEF

ENDCLASS

67

3.2.3.2 INCLUDING COMPREHENSIVE AND INTENSIVE TRAININGS

 We realize that the online multimedia tutorial and corresponding quizzes used in spring 2010 study

may not impose sufficient cognitive workload on subjects to cause them to understand the materials in

depth. Therefore, we integrate the training part of the spring 2013 study into the delivery of an upper-

level undergraduate course. Therefore, students received intensive training on the knowledge and

concepts of concurrency through lecture talks and graded assignments and quizzes. The usage of the

pseudocode system with different concurrency scenarios was illustrated in class in both shared memory

and message passing models and was covered in completing graded assignments. The quizzes also

required students to use the pseudocode system to implement dining philosopher and readers-writers

scenarios in both shared memory and message passing models. Thus, by the time of midterm exam,

students should have mastered all concurrency concepts involved in implementing shared memory and

message passing concurrent systems and been very familiar with the usage of the pseudocode.

3.2.3.3 UPDATED TEST MATERIAL AND TEST GROUPS

 We used same single-lane bridge scenario in the midterm exam of spring 2013 study as in the

spring 2010 study. However, we showed the implementation of this program using the extended

pseudocode system (see section 6.5). Before the test, we randomly assigned all students into two

equivalent groups. The first group of students finished the shared memory model portion of the test

first then took the message passing model portion. The second group took the test in reverse order. This

design is to eliminate the practice effect. The test questions in the two parts, shared memory and

message passing, are worded differently, according to the nature of two different models but were

designed to cover equivalent scenarios, as shown in Figure 9 and Figure 10.

68

PARA

 redCarA.run()

 redCarB.run()

 blueCarA.run()

END_PARA

Suppose redCarA has called the redEnter() method on line 9 but has not returned. Then redCarB invokes its run() method

and calls the redEnter() method but also has not returned.

Decide if each of the scenarios below (k-t) could happen immediately after the above. Circle YES if the sequence is

possible; otherwise, circle NO. Then please provide a brief explanation of your reasoning.

(m)redCarB returns from the redEnter() method, then calls the redExit() method on line 19 and blocks on the EXC_ACC

marker on line 20.

 YES NO

 Explanation:

FIGURE 9 A SAMPLE QUESTION IN SHARED MEMORY MODEL PART OF TEST

PARA

 bridge.start()

 redCarA.start()

 redCarB.start()

 blueCarA.start()

END_PARA

Suppose redCarA has sent the redEnter message but has not yet received any messages. Then redCarB invokes its start()

method, and sends the redEnter message but has not yet received any messages.

Decide if each of the scenarios below (k-t) could happen immediately after the above. Circle YES if the sequence is

possible; otherwise, circle NO. Then please provide a brief explanation of your reasoning.

 (m)redCarB receives a succeedEnter message, then sends a redExit message and receives MESSAGE.succeedExit(2).

 YES NO

 Explanation:

FIGURE 10 A SAMPLE QUESTION IN MESSAGE PASSING MODEL PART OF TEST

69

3.2.4 BUILDING A MISCONCEPTION HIERARCHY OF CONCURRENCY CONCEPTS

 We apply the same qualitative analysis method as in the 2010 study to the collected students’

explanation in the 2013 study to validate the content of a hierarchical misconception system. We

confirm that the content of our previous misconceptions pyramid for a shared memory model still

applies in this study. With slight modification, we are also able to extend this hierarchy to cover the

message passing model. The refined misconception types are illustrated in Table 18 and the detailed

misconceptions found in this repeated study are listed in Table 19.

 One major misconception seen with message passing is a misunderstanding of the send function. In

[C1]M3, we see that some students interpret a message send as a method call that may not happen

unless the condition is satisfied at the receiver. For example, in a scenario in which redCarA successfully

entered the bridge, a student indicated that redCarB could enter the bridge but could not exit because

“redCarB cannot send the redExit message until redCarA sends redExit”. Some students interpret a

message send as a synchronous call, writing “redCarA calls redEnter first and the bridge has to process

its message first before any other messages.”

 The next major misconception, seen in [C1]M4, is the assumption that the occurrence of an event

(entering/exiting the bridge) implies that an acknowledgement message has been received. For

example, one student wrote, “redCarA is not on the bridge since it has not received any message yet”.

 Students exhibited difficulty in fully managing the asynchronous nature of message passing

systems. Table 19 lists four scenarios that may actually happen in asynchronous systems, but due to the

nature of single-lane bridge problem, students were only tested on scenario 1 (different senders, same

receiver) and scenario 3 (same sender, different receivers). Looking closer into students’ explanations,

we see that student understanding is quite unreliable – among the six students who displayed the

misconception that messages are necessarily received in the order sent, two of the six applied this only

to messages from the same color cars but correctly reasoned about messages from different color cars.

70

 The major misconception in reasoning about shared memory was a conflation of the order of

method invocation/return with the order of obtaining/releasing the lock (e.g. “redCarA has not returned

from the redEnter method so it must still hold the lock”), likely because most students had prior

experience in Java, in which entry to a synchronized method may be thought to occur simultaneously

with obtaining the lock and release of the lock may be thought to occur simultaneously with return from

the synchronized method.

 Also, some students showed misconceptions in differentiating lock mechanisms from wait/notify

mechanisms. When the question asked whether a particular thread will be blocked on the acquisition of

the lock, the students explained that “the condition is not satisfied yet for the thread to get the lock” or

“the first red car has not exited yet, so the second red car cannot get the lock and execute redExit()

function”. This misconception is similar to that in which a message send is interpreted as a method call

that cannot happen unless the condition is satisfied at the receiver. In both cases, the student’s

incorrect reasoning is based on global knowledge not actually available to the current thread or process.

71

TABLE 18 THE REFINED MISCONCEPTION HIERARCHY

Description Level

D1 Misconceptions about the system and/or problem description

Terminology Level

T1 Misinterpretation of a term that describes thread or process behavior

Concurrency Level

C1 Misconceptions about thread or process behaviors

Implementation Level

I1 Misconceptions about synchronous mechanisms

I2 Misconceptions about asynchronous mechanisms

Uncertainty Level

U1
Confusion about the space of executions; include impossible execution sequences or fail
to consider possible execution sequences

TABLE 19 DETAILED MISCONCEPTIONS FOUND IN STUDY

Shared Memory

[D1]S1: Conflate order of cars with their thread’s name (#students: 3)
[T1]S2: Misinterpret “race condition” as “different interleaving” (#students: 1)
[T1]S3: Misinterpretation on terminology “block on” (#students: 2)
[C1]S4: Conflate order of method return with order of entering/exiting bridge (#students: 4)
[C1]S5: Conflate locking with conditional waiting (#students: 9)
[I1]S6: Misinterpretation of WAIT() function’s effect and conflate wait with continuous execution of the enclosing while loop
(#students: 1)
[I1]S7: Conflate order of method invocation/return with get/release lock (#students: 10)
[U]S8: Uncertainty (#students: 2)
 Increased size of state spaced causes illogical (self-contradictory) reasoning or occurrence of above misconceptions not
seen in simpler scenarios

Message Passing

[D1]M1: Question setting (#students: 6)
[T1]M2: Misinterpret “race condition” as “different order of messages” (#students: 1)
[C1]M3: Send semantics : assume ability to send depends on condition at receiver or interpret send as a synchronous
method call (#students: 7)
[C1]M4: Receive semantics: assume receipt of acknowledgement message is synchronous with the occurrence of the event (
(bridge entered or exited) (#students: 7)
[I2]M5: Conflate message sending order with receiving order (#students: 6)
 Four scenarios:
 1) different senders, same receiver (covered by test problem)
 2) different senders, different receivers
 3) same sender, different receivers (covered by test problem)
 4) same sender, same receiver
[U1]M6: Uncertainty (#students: 7)
 Increased size of state spaced causes illogical (self-contradictory) reasoning or occurrence of above misconceptions not
seen in simpler scenarios

72

 In the initial study, we observed that some “lower-level” misconceptions cause students’ to be

unable to understand other “higher-level” concepts. Therefore, the lack of those “higher-level”

misconceptions in students reasoning protocols doesn’t necessarily indicate their understanding of

those concepts, but just their inability to even begin to understand or misunderstand them. Therefore,

we suspect that the lower-level concepts are the basis for understanding the higher-level concepts and a

misconception that occurs at the lower-level should be regarded as a more severe misconception than

one that occurs at a higher-level.

 Using subject profiles as shown in Table 20, in which each row contains the types and frequency of

each subject’s misconceptions as well as their performance, we are able to better study and validate our

hypothesized hierarchical structure. In the subject profile, the first column of the table indicates the

subjects’ ID number. Columns 2-6 correspond to types of the misconception hierarchy. Each cell of

(subject, type) contains the number of (answer, explanation) pairs given by the subject that

demonstrated the corresponding type of misconception. The column labeled “total” is a count of the

total number of misconceptions for each subject. The column labeled “breadth” is a count of the

number of types of misconceptions for each subject. The “breadth of misconception” for any individual

students can be calculated by Equation 1. The last column is the subjects’ quantitative handicap in the

corresponding tests. This value is unified across two studies based on a scale of 0-1 (handicap = 1-

average-test-score) since the original total scores of the tests used in the two studies are different.

EQUATION 1 BREADTH OF MISCONCEPTION

73

TABLE 20 SUBJECT PROFILES

Subject
Number of Occurrences

Handicaps
Description Terminology Concurrency Implementatio

n
Uncertainty Total Breadth

Initial Study

102 2 6 2 14 0 24 0.8 0.40

108 3 3 4 13 0 23 0.8 0.20

109 3 0 9 11 0 23 0.6 0.17

110 7 13 3 17 0 40 0.8 0.50

113 2 5 7 23 0 37 0.8 0.20

119 1 6 5 19 0 31 0.8 0.37

122 0 4 1 9 0 14 0.6 0.03

126 0 7 3 18 0 28 0.6 0.30

138 1 5 9 11 0 26 0.8 0.03

139 1 14 10 16 0 41 0.8 0.63

141 2 17 5 16 0 40 0.8 0.20

142 0 3 1 13 0 17 0.6 0.10

145 0 0 2 15 0 17 0.4 0.20

Repeated Study

1 1 1 29 36 25 92 1 0.42

2 0 0 8 18 13 39 0.6 0.23

3 1 0 6 14 12 33 0.8 0.48

5 0 0 5 18 12 35 0.6 0.18

6 0 1 17 17 6 41 0.8 0.18

7 0 0 0 6 5 11 0.4 0.09

8 0 0 30 34 16 80 0.6 0.32

9 0 5 17 28 11 61 0.8 0.28

10 1 0 6 10 8 25 0.8 0.24

11 0 7 17 23 11 58 0.8 0.44

12 0 2 3 11 10 26 0.8 0.34

14 0 5 17 24 17 63 0.8 0.37

15 1 4 15 18 14 52 1 0.67

16 0 6 3 5 3 17 0.8 0.26

18 0 0 0 1 4 5 0.4 0.04

19 0 8 16 25 15 64 0.8 0.22

74

 By performing a correlation test between the total number of misconceptions and the students’

handicap levels as illustrated in Table 21, we found that the number of misconceptions does not capture

a student’s knowledge of concurrency well (a number under 0.5 indicates weak correlation). We then

performed a correlation test between the breadth of misconceptions and students’ handicap levels as

illustrated in Table 22. It is clear that this simple count of the type (since the total number of types of

misconceptions is a constant 5, the breadth is equivalent to a count in calculating correlation) of

misconceptions has a stronger correlation with handicap levels.

 However, the breadth of misconception still doesn’t capture the essential character of a student’s

knowledge structure (a correlation value around 0.5 indicates only a weak correlation). To explore the

different relations between different types of misconceptions and the handicap level of a student’s

knowledge structure, we performed linear regressions with regard to pair of handicap level and each

type of misconception. The result is shown in Table 23, through which we could clearly see that for the

first four types of misconceptions, the lower-level a misconception is, the more it causes student’s

handicap in understanding concurrency. A possible interpretation of the relatively high coefficient of

correlative between uncertainty level mistakes and handicap can be explained as the result of

generalized regression of two studies, but subjects from first study’s low occurrences of uncertainty

mistakes are not counted as handicaps. A separate test of regressions based just on the data of the

second study is illustrated in Table 24. Another explanation, which is probably more possible, is that

uncertainty is a major cause of students’ handicaps in understanding concurrency and may result in

misconceptions at other levels. This is actually also confirmed by empirical evidence that we term as a

“fall back effect”. We find that even the most advanced students had difficulty when reasoning about a

large space of possibilities. When students are not quite able to manage the execution space (usually

over 3-4 possibilities), they tend to reduce the complexity by falling back into one of the lower level

misconceptions, perhaps as a result of increased cognitive load. At this time, they either give a correct

75

explanation but choose an incorrect answer or conflate two concepts in a way that reduces the

execution space. Figure 11 illustrates one such “fall back” effect. The question under consideration

involves the phenomenon of a message send followed by an un-received acknowledgement at the

sender side. Two possibilities may explain this phenomenon. One is that the message has not been

received yet. The other is that the message has been received already but the acknowledgement

message has not been received yet. However, when a combination of such possibilities exists in a

problem statement that causes the total possible state of the system under reasoning to exceed

students’ cognitive load, they adopt the strategy of assuming some un-specified factor to reduce the

total number of possible states. Although the “fall back effect” exists, we think the general hierarchical

level of misconceptions still holds, which means that a pure novice should conquer most of the

misconceptions at lower levels before understanding a higher level concept.

 As a conclusion of this repeated study towards the theory that a misconception hierarchy exists in

students’ knowledge of concurrent programs, we propose that two equivalent misconception

hierarchies exist in the understanding of shared memory and message passing models of concurrent

systems, respectively. This misconception hierarchy is constructed with five levels of misconception,

including 1) description, 2) terminology, 3) concurrency, 4) implementation, and 5) uncertainty. For each

individual student, one or more misconceptions may be demonstrated in a continued cluster that may

span as far as covering all five types of misconceptions (as shown with shadings in Table 20). This

continuation is only broken when a misconception fall back happens due to cognitive overload from

reasoning about a large execution space (subject 109, 3, and 10 as shown in Table 20).

76

TABLE 21 CORRELATIONS BETWEEN TOTAL NUMBER OF MISCONCEPTION AND HANDICAP LEVEL

Total Unified Handicap

Total 1
 Unified Handicap 0.493637 1

TABLE 22 CORRELATIONS BETWEEN BREADTH OF MISCONCEPTIONS AND HANDICAP LEVEL

Breadth Unified Handicap

Breadth 1

Unified Handicap 0.579926 1

TABLE 23 LINEAR REGRESSIONS OF MISCONCEPTIONS TO HANDICAP LEVEL

 Coefficients Standard Error P-value

Description 0.049 0.029307 0.001253

Terminology 0.019 0.006874 5.74E-06

Concurrency 0.019 0.003414 1.35E-06

Implementation 0.011 0.001645 5.08E-10

Uncertainty 0.024 0.00466 1.73E-05

TABLE 24 LINEAR REGRESSIONS OF MISCONCETPION TO HANDICAP LEVEL (SECOND STUDY ONLY)

 Coefficients Standard Error P-value

Description 0.453 0.126792 0.002799

Terminology 0.062 0.016888 3.64661

Concurrency 0.018 0.003258 5.677726

Implementation 0.014 0.002047 6.964365

Uncertainty 0.024 0.002846 8.468347

A sender has not received

any message

The message has been sent but not yet received.

The acknowledgement message has not been received yet

FIGURE 11 SAMPLE FALL BACK TO LOWER LEVEL MISCONCEPTION

77

3.3 OTHER BARRIERS

 In providing the misconception hierarchy of concurrency-related concepts, we ask whether these

are the only barriers to learning concurrency and the answer is obviously no. Based on our conceptual

framework of the nature of programming expertise, we expect that the larger the knowledge repository

possessed by programmers, the more expertise they will show in problem solving. This knowledge

repository not only includes concurrency-related knowledge, but also a variety of other knowledge. To

examine this idea, we present a case study of two subjects in our spring 2013 study. Both of the

students implemented the same single-lane bridge problem with their preferred programming language

during the final exam. Both students used Java and Eclipse as their programming language and

development environment. The problem was modified so that students could not directly translate the

pseudocode they saw on the midterm exam. A feature of Eclipse was used to record code histories from

both subjects. These code histories were studied to reveal that concurrency-related concepts are not

the only factors in successful problem solving in this domain.

 The raw code histories recorded by Eclipse are randomly named txt files dumped in randomly

named directories under the “.history” folder in the Eclipse workspace. Therefore, we devised and

implemented a smart text reader with Python to search related code files, rename them and copy them

into organized folders. After that, we examined and sorted the code files according to their last modified

time to form a series of files recorded along the coding history. Then, the UNIX diff command with “-

wic” output was used to elicit the differences between every two subsequent files in the history. For

example, if three files exist in the coding history, two comparisons are made, between file 1 and 2 and

between file 2 and 3. We then used a script to write the sequence of modifications (the output of the

diff command) into a text file for our case study analysis.

 The analysis took several paths. First, we identified the targets of each modification made by the

subjects. Then we grouped their targets to infer their goals of making a sequence of modifications.

78

Finally, we infer the possession or lack of knowledge that causes their success or failure in accomplishing

their goals. The two subjects in this study are regarded as intermediate (subject I) and novice (subject N)

with respect to programming expertise in general.

TABLE 25 SAMPLE MODIFICATIONS IN CODE HISTORY

No Content

1

*** intermediate_con/Bridge_2013_5_2_18_22.java 2013-05-02 14:22:28.000000000 -0400
--- intermediate_con/Bridge_2013_5_2_18_23.java 2013-05-02 14:23:20.000000000 -0400

2

*** 107,117 ****

 }

 public void statusCheck() {

! if (events checkFreq)

 System.out.println("Status Check of Usage: " + redCarsFinished + " " +

blueCarsFinished);

 System.out.println("Status Check of Bridge: " + redCars.size() + " " +

blueCars.size());

 }

 public synchronized boolean isAllExit(int total) {

 if (redCarsFinished+blueCarsFinished == total)

 return true;

3

--- 107,119 ----

 }

 public void statusCheck() {

! if (events > checkFreq) {

 System.out.println("Status Check of Usage: " + redCarsFinished + " " +

blueCarsFinished);

 System.out.println("Status Check of Bridge: " + redCars.size() + " " +

blueCars.size());

 }

+ }

+

 public synchronized boolean isAllExit(int total) {

 if (redCarsFinished+blueCarsFinished == total)

 return true;

 Table 25 illustrates an example modification (one modification in the coding history; the whole

history consists of tens of such modifications). The 1st part of this modification includes the names and

last modified times of two subsequently recorded history files. For the example in Table 25, the first file

is saved at 14:22:28 and the second file is saved at 14:23:20. A series of “*” at the end of the 1st part

separates it from the later parts. The 2nd and 3rd parts of the modification have lines from both files

involved in the modification (i.e., lines that are different in two subsequently recorded files.) A line with

an exclamation mark indicates a change in that line. A line with a plus mark indicates a newly added line.

A line with a minus mark indicates a removed line. Added lines only show up in the 3rd part (later file)

79

while removed lines only show up in the 2nd part (previous file). For the modification shown in Table 25,

we conclude that the subject made a syntax correction of an if statement in the method statusCheck() in

file Bridge.java. Some part of the code history is missing because subjects were not informed

beforehand to turn off the default recording limitation of Eclipse, but we think the available slices of

code history are rich enough for this case study and permit a peek into other barriers to programming

with concurrency.

 In this implementation of the single-lane bridge problem using the monitor pattern with Java

threads and concurrency, the major files of interest under analysis are: Bridge.java, RedCar.java and

BlueCar.java. The first file implements the monitor class Bridge and the other two files implement two

thread classes, RedCar and BlueCar. These files are provided to students with a class declaration,

necessary interfaces inherited and declaration of methods that are called in other helping codes, but no

more details. Other helping codes are provided to subjects and do not require modifications if subjects

correctly follow the implementation of a monitor pattern. A detailed specification is provided to subjects

on the expected behavior and output rules of the final system, as seen in section 6.5. Generally, this

single-lane bridge system should print out records for car arriving, car entering bridge, car exiting bridge

and bridge status information. The bridge status information includes two pieces: 1) the current number

of red cars and blue cars on the bridge (one must be zero for safety); 2) the number of red cars and blue

cars in total that have entered (used) the bridge (the difference between these two numbers should not

exceed the waitDiff specified as a fairness requirement). Also, the bridge status information should only

be printed after a certain number (checkFreq) of other events are printed as specified in the document.

 We analyzed a small piece of the available modification histories of two subjects in our class to

illustrate the knowledge needed beyond the concurrency-related knowledge to successfully implement

a concurrent system. Table 48 and Table 49 in appendix section 6.1 contain the behaviors we observed

for each modification, the corresponding goals we inferred that the subject was trying to achieve with

80

the associated behaviors and the corresponding solid or fragile knowledge the subjects may have. Solid

knowledge is shown without shading in the table. Fragile knowledge related to concurrency is lightly

shaded and fragile knowledge not related to concurrency is darkly shaded. Table 48 comes from the

code history of the intermediate level subject (subject I) and Table 49 comes from the code history of

the novice level subject (subject N).

 Through the analysis, we first notice that subject I did much less skipping around among the three

files. In total, two shifts were observed. Subject I first implemented the two thread classes and then

shifted to working on the monitor class. After he implemented the monitor class, he shifted back to

refine the thread classes. We suspect that subject I has relatively solid strategy knowledge of the

implementation of such concurrent systems with the monitor pattern: naming and calling the required

monitor methods in the thread classes first and then implementing these methods in the monitor class.

In contrast to subject I, subject N had a total of 22 shifts among three files. And unlike subject I, who

made changes to multiple functions in one place before shifting to another place, subject N’s shifts are

almost all at the level of a single function. Apparently, subject N has very fragile knowledge of how to

implement concurrency with Java in the monitor pattern.

 When zooming out, we actually see subject N wander between two different implementation

strategies. One strategy is to implement the system with a monitor class of several synchronized getter

and setter methods and use different combinations of getter and setter methods together with calls to

the wait() and notify()/notifyAll() functions in the thread class. The other strategy is to implement the

system following the monitor pattern. However, knowledge of both of these strategies is fragile. They

seem to come directly from the other sample code subject N has seen during previous programming

experience (getter and setter are commonly seen in CS1 or CS2 when students are taught to use object

oriented programming language and monitor patterns are pervasively seen in sample codes given in this

81

class) without the understanding of why a certain pattern should be used or the detailed mechanism for

using it.

 For subject I, one example of non-concurrency-related fragile knowledge we observed is the

construction of a code structure that increases a counter variable and checks whether a preset interval

has passed (required in implementation of printing out status check according to preset interval of

printing out other events). Subject N is also lacking in this knowledge, but compared to subject I’s five

closely gathered attempts on this issue (see line 16-20 in Table 48), subject N has about four attempts

scattering towards this issue (see line 17, 19, 21, 22 in Table 49). Between lines 17 and 19, subject N

decides to call and probably tests the printing functions without a full implementation. This does not

quite make sense since the specification clearly stated the correct number of events printed within the

status check interval is under final testing. Then, between lines 19 and 21, subject N added the

synchronized keyword to some methods in the Bridge class, which has nothing to do with the

implementation of the statusCheck() method. However, subject N may hold some incorrect mental

representation of the system in which the incorrect functionality of statusCheck() is due to a race

condition. Another example of non-concurrency-related fragile knowledge we observed in both subjects

was the schematic knowledge of the order of implementation. Both subjects tried to add randomization

before testing that the whole system is functioning well (see line 7-9 in Table 48 and line 31, 38, 41 in

Table 49)

 Also, we infer that subject N may have much fragile knowledge, much of which is not related to

concurrency or even to programming. As we stated in our conceptual framework of the nature of

programming expertise, programming is an information-intensive activity during which the knowledge

used to form a mental model that guides searching and fetching external information (data) is critical.

Subject N’s inferiority is not only caused by fragile knowledge of the monitor pattern (which we also

observe from subject I), but is also related to much other knowledge. For example, subject N does not

82

quite understand 1) why and how getters and setters are used in object oriented design; 2) what is the

inheritance between super class/object and sub class/object; 3) why and when to wrap functions and

use the caller-callee pattern; 4) when to use global versus local variables; 5) why and how to declare and

initialize class variables, etc. Subject N even has difficulties in reading, understanding and interpreting

some simple requirement specifications written in natural language. For example, the isAllExit() method

is supposed to check whether the number of cars that finally exit the bridge equals the total number of

cars sent by thread generators. Therefore, according to subject N’s implementation, a simple

comparison of the passed-in total value and the sum of two variables he defined, redCarOff and

blueCarOff, should serve the purpose. However, subject N first misused redCarOn and blueCarOn in the

function. After fixing this error, subject N wrote code to return a true value, which indicates that all cars

exit, when the total is found not equal to the sum, which indicates that some cars are still on bridge.

 Therefore, we concluded that the current emphasis in courses that deal with concurrency on

helping programmers appreciate performance gains and tackle the uncertainty and large space of

possibilities in concurrent programming is definitely not the most pressing concern for novice and

intermediate students. A solid understanding of the programming language they are using, the

mechanisms of various constructs (mostly not concurrency related such as inheritance), the mechanisms

of concurrency patterns (including control flow, data flow and relations among functions), and even the

ability to read and understand natural language are far more important. Showing students sample code

does build some knowledge in their minds (as we saw from subject N’s wandering between using

getters, setters and using the monitor pattern), but the knowledge is fragile and does not support them

to make any solid achievements in real problem solving. As indicated by our conceptual framework, it is

the mental representation, or part of it, or the procedure for formulating such a representation, that is

internalized into knowledge for retrieval in future problem solving and seen as expertise. The processes

83

of assimilating data in the world through challenging practice rather than simply memorizing the data

finally builds programming expertise.

 We generalize the concurrency related and non-concurrency related fragile knowledge exhibited by

both the intermediate and novice subjects in Table 26. Both intermediate and novice subjects

demonstrated some fragile knowledge related to programming with concurrency. For the intermediate

subject, most concurrency-related fragile knowledge is at the implementation level regarding the

detailed control flow and data flow mechanisms of the monitor pattern. The novice subject also showed

fragile knowledge at the implementation level but this was not apparent in comparison with the large

amount of fragile knowledge seen at concurrency level regarding basic organization of threads and

shared objects in a shared memory system. This again provides evidence of our proposed hierarchical

structure of concurrency related misconceptions. However, compared to the intermediate subject, we

think the major barrier for the novice subject to implement the concurrent program was his pervasive

non-concurrency-related fragile knowledge. Through observation of the novice subject’s behaviors and

many goals he struggled to achieve during the procedure, which appeared much easier and more

manageable for the intermediate subject, we suggest that the lack of prior programming knowledge

(general knowledge, procedural knowledge, object oriented knowledge, etc.) greatly affects a novice

subject’s ability to learn and appreciate programming with concurrency.

84

TABLE 26 FRAGILE KNOWLEDGE EXHIBITED BY INTERMEDIATE AND NOVICE SUBJECTS

 Intermediate Novice

Concurrency related

concurrency
level

with shared memory, threads distinguish

themselves by both calling different methods

and passing different arguments to methods

that modify shared object’s state

with shared memory, synchronization achieves

through modification and control of shared object’s

state instead of direct coordination of threads’

behaviors

with shared memory, shared object’s class methods
changes its states

threads may be defined to iteratively execute a set of
actions

initialization of thread object

implementation
level

detailed control flow of monitor pattern (how
do threads call monitor methods to achieve
actions)

detailed mechanism of race condition and
synchronized keyword

detailed mechanism of notify() and notifyAll() functions

detailed data flow of monitor pattern (how are
values passed into and returned from monitor
methods to interact monitor and thread
objects)

detailed monitor pattern of “conditional check,
execution and notify”

Non-concurrency related

general abilities reading and understanding of specification written in
natural language

general
procedures

complex functionalities should be implemented
after basic functionalities are guaranteed

complex functionalities should be implemented after
basic functionalities are guaranteed

general
programming
constructs

 declaration of function signatures

knowledge of when to use caller-callee relations and
purpose of organizing local functions into call hierarchy

translation of natural language conditions and
corresponding returns to condition branches in high
level programming language

declaration and initialization of variables

object oriented
constructs

 purpose and usage of setters and getters methods
(to hide implementation details with usage of private
variables)

the inheritance relationship among super class and sub
class

code patterns code pattern of continuously incrementing a
counter to control the occurrence of some
function based on a preset interval

code pattern of continuously incrementing a counter
to control the occurrence of some function based on a
preset interval

code pattern of a function that checks value of some
variables

code pattern of using existed class variable to return
some other value

85

3.4 SUMMARY AND FUTURE WORK

 In this section, we focus on the discussion of barriers to learning about programming with

concurrency. We first review the empirical studies that provide discussion and insights into the nature of

expertise, synthesize the available results, claims and theories, and unify and validate them with a

proposed conceptual framework of programming expertise. Our framework reconciles the findings in

psychological studies of programmers and theories grounded in empirical studies of both production

and comprehension programming activities, which covers the whole span of the software development

cycle. We believe that the research conclusions we surveyed align well with our newly proposed

conceptual framework for the nature of programming expertise, yet with the ever-evolving software

development ecosystem, more empirical evidence is definitely needed to support, challenge and refine

our proposition.

 Our conceptual framework of programming expertise targets individual expertise. However, much

research has been done to study software development teams and organizations. With the growth of

system scale, many real world development tasks require the cooperation of multiple individuals and

even teams. Levesque et al. (Levesque, et al., 2001) studied shared mental representations of team

members on their perception of their own team and project progress and discovered that team

member’s mental representations about the group’s work and each other’s expertise surprisingly did

not become more similar over time. Crowston and Kammerer (Crowston & Kammerer, 1998) studied

two software requirements teams on their development of requirements for large and complex real-

time systems and pointed out that the construction of the team’s collective minds on knowledge of itself

and its project was critical. This is also observed in (Herbsleb & Grinter, 1999), who proposed that

distance team work was unlikely to be efficient. Therefore, we think it will be interesting to ask, in team-

work circumstances, does our concept of individual expertise apply to a group of people? If not, what is

missing? And if so, what is the relation between group and individual expertise? The answers to these

86

questions can suggest strategies for developing organizational structures, external information

structures for team members, and the training of individuals in a team.

 Besides, with the development of various programming languages and development frameworks in

recent decades, learning to program is no longer the same task as in the 1970-1980s, although the

underlying core framework of expertise is quite similar. For example, we notice that (Fleming, et al.,

2008), (Fleming, et al., 2008) and (Matthijssen, et al., 2010) all found empirical evidence that

programmers found it difficult to follow simple but branching paths to comprehend programs. With the

pervasive use of parallel and distributed systems, it will be interesting to explore what kinds of internal

and external information are helpful for program comprehension and production tasks involved in these

types of systems. Also, we discern the following questions to be interesting to answer: 1) What

obstacles do students encounter in an environment characterized by a fast learning pace due to rapid

change in languages and development frameworks? 2) Is there any influence of the choice of first

programming language and programming paradigm, since as indicated by our framework, the initial

internal knowledge is critical to subsequent problem solving processes?

 Furthermore, in reviewing the literature, we notice that some software engineering activities are

under-explored. One such activity is code inspection and review. The authors of (Letovsky, et al., 1987)

studied an inspection session and stated that information about design decisions and design details

were lost through time and needed to be reconstructed during a code inspection session. This

statement interprets our framework from another perspective: that the internalized information needs

to be externalized for others with less expertise to fulfill a programming task and for selves to permit

reconstruction of mental representations. (Parnin & Rugaber, 2011) and (Parnin & Rugaber, 2012)

further discuss what information is easily lost over time and is necessary for reconstruction of mental

representations by discussing programmer’s resumption strategies. Rigby et al. (Rigby, et al., 2008),

examined peer review practices with archival records of emails and version control repositories, but

87

from a software engineering perspective that provided few insights into programming expertise. Porter

et al. (Porter, et al., 1997), studied code review procedures of traditional software (in contrast to open

source software), but largely focused on productivity and effectiveness implications with different

techniques and organizations of code review. We suspect that code review is a procedure for

communicating and exchanging mental representations between two programmers (code author and

reviewer) who have different repositories of internal information (knowledge). The reviewer has more

knowledge regarding the “big picture” while the author knows more detail about the portion under

review. We suspect that studying this procedure could provide valuable empirical evidence on the

acquisition of programming expertise from the perspectives of both knowledge internalization and

mental representation evolution.

 With the interpretation of the nature of expertise under our proposed conceptual framework, we

posit that knowledge is an important factor in problem solving and that it is difficult to accumulate.

Some work, such as the curriculum guides we discuss in section 4.3 of the next chapter, list required

knowledge and concepts for programming with concurrency, but our misconception hierarchy identifies

the difficulties and procedures necessary for acquiring the concurrency related knowledge. We

categorize five types of misconceptions as in description, terminology, concurrency, implementation and

uncertainty levels and further imply that these five types of misconceptions are organized in a

hierarchical structure so that misconceptions at a lower level prevent one to acquire knowledge and

concepts at a higher-level. Thus, concepts at one level may only be taught and learned after concepts at

lower levels have been assimilated. The results of our two empirical studies serve both as data sources

for our grounded theory of hierarchical knowledge structure for programming with concurrency (the

reasoning protocols) but also serve as a source of validation of the hierarchical structure (the

misconception count and performance metrics). Our misconception hierarchy covers both the shared

memory and message passing models of concurrency (which is comprehensive according to

88

contemporary parallel and distributed software architectures). By shedding light on the hierarchical

structure of misconceptions related to concurrency concepts, we suggest that future work may take the

procedure and structure of knowledge acquisition into account in guiding pedagogical designs rather

than purely focus on the content of required knowledge. Certainly, we recognize that our misconception

hierarchy is still in a very primitive state, with limited misconceptions enumerated for each level and

further work on providing empirical evidence to refine and enhance the hierarchy is needed.

 For a better and more comprehensive understanding of student’s barriers to learning programming

with concurrency, we conducted a case study to explore student’s fragile knowledge displayed during an

actual production activity of implementing a concurrent system. We notice that, in addition to the

misconceptions captured by our proposed hierarchy, other non-concurrency and even non-

programming related knowledge is important for the development of programming expertise and

success at programming tasks. With the interpretation of our conceptual framework, we suspect that

since programming requires dealing with large volume and rapidly changing information, reading and

understanding abilities that seem unrelated to concurrency or even to programming are important to

the development of student’s programming expertise. Certainly, our case study is just an initial step in

the study of knowledge related to expertise in information-intensive activities. More empirical evidence

is needed to further clear up the picture of the composition and development of such knowledge.

 As indicated by the title of (Curtis, et al., 1986), “Software Psychology: The Need for an

Interdisciplinary Program”, we believe the study of programming expertise and human factors in

software engineering should be carried out with input from many fields and perspectives and we hope

our work provides a solid stepping stone for future research work in this and related fields.

89

CHAPTER 4.

EXPLORATIONS IN TEACHING

 In this chapter, we present the work we carried out to explore better and more effective

pedagogical approaches, materials and class designs for teaching programming with concurrency. We

first review the literature studying pair programming as a pedagogical technique in section 4.1. In

section 4.2, we discuss the pedagogical, engineering and cognitive impacts of pair programming

observed within our own studies. These findings complement the previous work on the pedagogical

impact of pair programming and illustrate the cognitive benefits of pair programming in complex

problem solving procedures such as implementing a concurrent program. Then we present a survey of

curriculum guides and essential elements in teaching programming with concurrency in section 4.3. We

identify two concurrency models, three implementation approaches and several classic scenarios to

cover in our teaching of an upper-level computer science course and illustrate how related curriculum

items are covered by teaching these elements. In section 4.4, we present feedback on teaching

programming with concurrency and discuss the benefits and drawbacks of various pedagogical

innovations.

TABLE 27 OVERVIEW OF WORK CONTRIBUTING TO CONDUCT EXPLORATIONS IN TEACHING

Work Data Results Section

2012 survey on the impact
of pair programming

previous empirical study on
impact of pair programming as a
pedagogical technique

a conclusion of previous empirical studies and
impact of pair programming as a pedagogical
technique

4.1

quasi-experimental study
in Spring 2012
observational study of
Spring 2013 final exam

performance data and code
submission from Spring 2012
observation notes from Spring
2013

pedagogical, engineering and cognitive impact
of pair programming

4.2

2012 survey on teaching
concurrency

various resources on teaching
programming with concurrency

concurrency related curriculum guides, models
of concurrency, details of language constructs,
and classic concurrency scenarios

4.3

case study of Spring 2013
course

performance data and course
feedback from Spring 2013

benefits and drawbacks of various approaches
to teaching programming with concurrency

4.4

90

4.1 PAIR PROGRAMMING AS A PEDAGOGICAL TECHNIQUE

 Pair programming is a practice in which two programmers work collaboratively at one computer on

the same design, algorithm, code, or test (Williams & Kessler, 2002).The effectiveness of pair

programming as a pedagogical approach has been widely researched (Preston, 2006) and (Salleh, et al.,

2011) with the following findings:

 pair programming helps improve the retention rate and course pass rates in introductory

computer science (CS) courses (Braught, et al., 2011) (Carver, et al., 2007) (Hanks, et al., 2004)

(McDowell, et al., 2003) (McDowell, et al., 2006) (Mendes, et al., 2005) (Mendes, et al., 2006)

(Nagappan, et al., 2003) (Williams, et al., 2003) and contributes to greater persistence in CS-

related majors (McDowell, et al., 2003) (Williams, et al., 2003).

 pair programming helps to improve the quality of programs, programmers’ confidence in their

work and programmers’ enjoyment (Carver, et al., 2007) (McDowell, et al., 2003) (McDowell, et

al., 2006) (Williams, et al., 2000) (Williams, et al., 2003).

 pair programming helps students with lower SAT scores to gain better individual programming

abilities than similar students who do not engage in pair programming (Braught, et al., 2008)

(Braught, et al., 2011)

 pair programming is particularly beneficial for women because it addresses factors that

potentially limit their participation in CS (Sax, n.d.).

 Pair programming is an element of eXtreme programming that has been widely recognized in

industry to improve productivity and programmer satisfaction (Williams & Kessler, 2002). Recognition of

the benefits has also generated great interest in applying pair programming to CS education. The

advantages of adopting it as a pedagogical approach have been widely researched in several empirical

studies. Five major studies carried out in recent years are identified here.

91

Studies at University of Utah: ‘99

 In 1999, L. Williams, et al. (Williams, et al., 2000) carried out a study of the benefits of pair

programming in an advanced undergraduate level course at the University of Utah. Students who

expressed interest in pair programming worked in pairs on standard assignments and also on additional

assignments to guarantee the same amount of total workload among paired and solo students.

Although pair programmers were assigned more work in this study, the result showed that they were

more willing to work in pairs in the future. In addition, other hypotheses regarding assignment quality,

exam scores, overall pass rate and programmers’ enjoyment were confirmed.

Studies at UC-Santa Cruz: ’00 – ‘01

 A study carried out by McDowell, et al. (McDowell, et al., 2006) at UCSC looked at an introductory

level CS1 course offered over four sections during the 2000-01 academic year. In three of the four

sections, students were required to complete all assignments using pair programming techniques.

Students were paired according to their preferences and worked with the same partner throughout the

course. Another study (McDowell, et al., 2003) was conducted over three advanced CS courses. Students

in those courses had the option of working in pairs. Pairs were assigned and changed twice in the first

two courses. In the third course, students had the option to work in pairs for each programming

assignment and in most cases continued to work with the same partner. The major findings of these two

studies showed that pair programming improved course completion rates, persistence in CS related

majors, the quality of students’ products and students’ programming abilities. This trend was

particularly apparent in the retention of female CS students who participated in pair programming

(Werner, et al., 2004).

Studies at North Carolina State: ’01 – ‘02

 L. Williams, et al. (Williams, et al., 2003) at NCSU carried out studies on pair programming in a CS1

course over two semesters during the 2001-02 academic years. In each semester, two nearly-identical

92

sections of the course were offered, with the main difference being that one of the sections involved a

paired closed lab session and the other section involved a solo closed lab session. The students were

paired randomly and the pairs were re-assigned every two to three weeks. Students also had the option

to work in pairs on other programming projects assigned outside the lab session. Although this

introductory course was offered to all students across the university, data analysis was carried out over

freshmen and sophomores only. In contrast to previous studies, no significant differences were found

between pair and solo sections on exam scores but the benefits of pair programming on retention rates

and the quality of students’ products remained. Students in this study were also found to have a more

positive attitude toward working in collaborative environments, which is perceived as a long-term

beneficial factor for their future professional life.

Studies at University of Auckland: ’04 – ‘05

 During 2004-2005, E. Mendes, et al. (Mendes, et al., 2005) (Mendes, et al., 2006) carried out a

study of the effects of pair programming in an intermediate-level course in which software development

and design are taught in the context of UML and Java OO. Students worked individually on all course

activities that contributed to their final score. One section of the course employed pair programming in

the closed lab session while the other section did not. In the pair group, the students were randomly

paired and the pair assignment changed about three times. This study showed that students in the pair

group not only produced higher quality code, but also used less time and experienced more enjoyment

and were more confident about their work.

Studies at Dickinson College: ’05 – ‘07

 G. Braught, et al. (Braught, et al., 2008) (Braught, et al., 2011) carried out studies on the adoption

of pair programming in an introductory CS1 course during academic years 2005-07. In each year, two

sections of the course were offered. One section adopted pair programming on open laboratory

assignments while the other did not. All other assignments and activities were completed individually.

93

Students were initially randomly assigned into pairs. Later, students with similar assignment scores were

paired. This re-assignment occurred approximately three times. This study evaluated pair versus solo

students’ acquisition of programming ability. Students with lower SAT scores were able to achieve

higher lab practica scores through the pair programming experience. Also, the benefits of pair

programming in improving enjoyment level, confidence level and course completion rate were

reinforced.

4.2 IMPACTS OF PAIR PROGRAMMING

 The wide array of findings in prior work, some of which conflict, reinforces the notion that much

remains to be explored and learned about in incorporating pair programming principles in the

classroom. Our efforts in studying the impact of pair programming were carried out in two empirical

studies during spring 2012 and spring 2013.

 In spring 2012, we sought to investigate the effects of pair programming in an under-explored

course, namely an intermediate-level programming course as in (Mendes, et al., 2005). The course in

which we performed our study is devoted to the acquisition of a second programming language (C++) in

the context of UNIX systems programming. The course takes CS1 as a prerequisite and CS2 as a co-

requisite or pre-requisite. Thus, we had the opportunity to compare the effects of pair programming on

students with varying levels of prior programming experience. This is different from most previous

studies that were carried out either in an introductory CS course (Braught, et al., 2008) (Braught, et al.,

2011) (McDowell, et al., 2003) (McDowell, et al., 2003) (Williams, et al., 2000) in which students have no

programming experience or in an advanced level CS course (McDowell, et al., 2003) (Williams, et al.,

2000) in which students have substantial programming experience.

 In our spring 2012 study of the impact of pair programming, the pair group and the solo group were

combined into one course offering. That is, the pair programmers and the solo programmers were all in

the same class for two 75-minute lectures each week and met separately only for a 50-minute lab

94

meeting per week. Students were assured that any difference in lab averages between the sections

would be addressed with an appropriate curve at the end of the semester and were satisfied with this

approach. Compared with most of the previous studies, which took place over different course offerings

or during different semesters (McDowell, et al., 2006) (McDowell, et al., 2003) (Nagappan, et al., 2003)

(Werner, et al., 2004) (Williams, et al., 2003), we studied two groups with nearly identical experience on

materials, lectures, and activities other than pair versus solo programming experience in the lab, thus

eliminating many potential confounding factors.

 We looked at a different type of lab experience in our spring 2012 study; while (Mendes, et al.,

2006) (Mendes, et al., 2005) (Williams, et al., 2003) studied closed-lab experiences and (Braught, et al.,

2008) (Braught, et al., 2011) (McDowell, et al., 2003) (McDowell, et al., 2006) (Williams, et al., 2000)

studied open-assignment experience, our study involved programming projects that started during an

initial 50-minute class period and were then open for completion after class. In addition to project

completion times and subjective satisfaction ratings, we also collected self-reported usage of TA office

hours. This data helps to characterize the benefits of pair programming in a resource-limited

department. We collected students’ preferences on course organization (lecture to lab ratio) and their

subjective feedback on the pair programming experience. This feedback reveals the logistical problems

encountered by pair programmers and suggests that a “flipped” classroom experience (Bergmann &

Sams, 2012), through which students learn necessary knowledge from reading-at-home and practice in

class, could be more helpful. We also analyze the code health level of student’s lab submissions

between pair programmers and solo programming, which reveals engineering impacts of pair

programming with student programmers.

 In spring 2013, we observed and compared the problem solving process of pair and solo

programmers during a final exam and report a case study of the cognitive impacts of pair programming

on problem solving in general.

95

96

4.2.1 PEDAGOGICAL IMPACT

 Although pair programmers withdrew from our intermediate CS course half as often as solo

programmers (13% vs. 27%), this trend was not significant. However, we found that pair programming

served as a protective factor for retention of female students (14% vs. 67%) and of students

concurrently enrolled in CS2 (20% vs. 57%). Using the NASA TLX subjective workload survey (Hart &

Staveland, 1988), we also found that pair programmers reported less mental demand, temporal

pressure, total effort and frustration than did solo programmers. Lower frequencies of withdrawal in the

pair programming group also suggest that pair programmers were more confident in their ability to

successfully complete the course.

 After adopting pair programming into the course, we note several important impacts it has,

especially towards both female students and less-experienced students in that they are less likely to

withdraw from the course if they were in the pair programming group. The following discussion

addresses the details of this and some other findings.

 Both the pair and solo groups of CSCI 1730 consisted largely of students seeking a B.S. in CS as a

sole major, with several students in each section opting to complete a double major between CS and

another major. The solo group had fewer non-CS majors (5) than the pair group (9). The students were

not told of any differences in lab sections before the start of class.

Withdrawal Rates

 CSCI 1730’s historical withdrawal rate is 21.1%. Across both conditions in our study, the combined

withdrawal rate for spring 2012 was 20.0%, generally consistent with previous semesters. In the

following discussion, we consider the impact of pair programming versus solo programming not only on

the general population (all students in the two sections under study), but also on male students versus

female students, and on less-experienced versus more experienced students.

97

 We explored various types of statistical methods to analyze the different aspects of our observed

data and to present the results in a comprehensive manner. The statistical methods we considered fall

into two categories, null hypothesis significance testing (NHST) methods and effect size methods so that

in our analysis the descriptive statistic measurements complement the inferential statistics. The sample

size of our groups was relatively small and the withdrawal variable is dichotomous (students either

withdrew or they did not). These characteristics may violate the underlying assumptions of NHST

methods such as the t-test or ANOVA. Thus, we employed Fisher’s Exact Test (Fisher, 1922) and

Barnard’s Exact Test (Barnard, 1945) (with MATLAB code (Trujillo-Ortiz, et al., 2004)) on 2×2 contingency

tables to evaluate the significance of dependence on row (Pair Programming, PP vs. Solo Programming,

SP) and column (withdrew vs. retained) variables. We present results from Barnard’s Exact Test because

it is more accurate than Fisher’s on a 2×2 contingency table (Barnard, 1947). When considering using

effect size methods to present a meaningful complement to the results of significance tests, we

considered risk estimates, which compare the relative risk for a particular outcome between two or

more groups. In our study, the relative “risk” is student withdrawal from the course and the two groups

are PP (pair programming) and SP (solo programming). We chose these risk estimate methods because

they are likely better estimates of effects for binomial data than methods of examining association

among variables through calculating Pearson’s r (Ferguson, 2009). We also present the strength of

association of a 2×2 table with the Yule’s Q measure (Edwards, 1963) to illustrate the strength of

association in the range of (-1, 1).

 As shown in Table 28, the withdrawal rate for students in the pair group was 4 of 30 (13.3%) in

contrast to 8 of 30 (26.7%) in the solo group. Fisher’s Exact Test yields a p value of 0.3334, which is not

significant. The p value of the more exact Barnard’s Exact Test is 0.1162 and also not significant. The

relative risk of the table is 2, which indicates that those in the SP group withdrew twice as often as those

in the PP group. By considering the actual base rate of around 20% (withdrawal rate of general

98

population and historical withdrawal rate), we consider this relative risk to be a practically significant

effect.

 As seen in Table 29, we found that only 1 of 7 females (14.3%) withdrew from the pair group but

that 2 of 3 (66.7%) of females withdrew from the solo group. In contrast, as seen in Table 3, we found

that while a similar ratio of males (3 of 23, 13.04%) withdrew from the pair group, a much smaller ratio

of males (6 of 27, 22.22%) withdrew from the solo group than did females. Although we do not see any

statistical significance from the Exact Tests of Table 29, both the relative risk and the strength of

association of Table 29 are high, especially compared to the same measurement of the general

population in Table 28 and male students in Table 30. This suggests that pair programming has a much

greater impact on retaining female students: female students in the solo group are more than four times

more likely to withdraw from the course than those in the pair group and pair programming is 84%

positively correlated with retaining female students. It is also worth noting that the average SAT Math

score of female students in the pair group (588, σ = 85.2) was lower than that of female students in the

solo group (650, σ = 14.1). However, more female students were retained in the pair group. This

suggests that pair programming may serve as a protective factor in retaining female students and we

speculate that this is a result of the collaborative rather than a competitive environment and more

social aspect of what may be otherwise perceived as a non-social and isolating computing activity, as

described in (Werner, et al., 2004). Our findings support the notion that pair programming may be a

useful approach to attract and retain underrepresented groups, including women, in CS education.

 We also studied the impact of pair programming on “less experienced” students (those

concurrently enrolled in CS2, the pre- or co-requisite of this intermediate course) versus the “more

experienced” students (those who completed CS2 in a prior semester). As shown in Table 31, while only

2 of the 10 (20%) of the “less experienced” students in the pair group withdrew, 8 of 14 (57.1%) of the

“less experienced” students in the solo group withdrew. Moreover, the p values of Fisher’s and

99

Barnard’s Exact Tests on Table 31 are 0.1041 and 0.0477, which indicates statistical significance of pair

programming on retention of less experienced students. Although the values of relative risk and the

strength of association between rows (PP vs. SP) and columns (withdrew vs. retained) of Table 31 are

2.857 and 0.684, these are not as strong as those seen for female students. Compared to the relative

risk and the strength of association of “more experienced” students, which are 0.625 and -0.25

(indicates a reverse association between pair programming and retention), we conclude that pair

programming is practically effective in retaining “less experienced” students in the course. This suggests

that pair programming could be useful in shortening the long pre-requisite chain typically found in CS

programs, reducing time to degree, and in promoting student productivity during undergraduate

studies.

 Since the midterm score is an important indicator for students in deciding whether to withdraw

(midterm comprises 20% of final grade), we examined overall means on the midterm exam (PP: 74.7, σ =

14.42; SP: 75.7, σ = 18.84), but found no significant difference between the groups. However, the

difference in withdrawal rates indicates a relative difference in the level of confidence in successfully

completing the course, with members of the pair group exhibiting greater confidence.

100

TABLE 28 WITHDRAWAL COUNTS

 Withdrew Retained

SP 8 22

PP 4 26

Fisher’s Exact Test two sided p = 0.3334

Barnard’s Exact Test two sided p = 0.1162

Relative Risk RR = 2

Yule’s Q Q = 0.405

TABLE 29 WITHDRAWAL COUNTS: FEMALE

 Withdrawal Retention

SP 2 1

PP 1 6

Fisher’s Exact Test two sided p = 0.1833

Barnard’s Exact Test two sided p = 0.0912

Relative Risk RR = 4.667

Yule’s Q Q = 0.846

TABLE 30 WITHDRAWAL COUNTS: MALE

 Withdrawal Retention

SP 6 21

PP 3 20

Fisher’s Exact Test two sided p = 0.4790

Barnard’s Exact Test two sided p = 0.2426

Relative Risk RR = 1.704

Yule’s Q Q = 0.311

TABLE 31 WITHDRAWAL COUNTS: LESS EXPERIENCED

 Withdrawal Retention

SP 8 6

PP 2 8

Fisher’s Exact Test two sided p = 0.1041

Barnard’s Exact Test two sided p = 0.0477

Relative Risk RR = 2.857

Yule’s Q Q = 0.684

101

TABLE 32 WITHDRAWAL COUNTS: MORE EXPERIENCED

 Withdrawal Retention

PP 2 18

SP 1 15

Fisher’s Exact Test two sided p = 1.0000

Barnard’s Exact Test two sided p = 0.6258

Relative Risk RR = 0.625

Yule’s Q Q = -0.250

Lab Performance

 We examined the scores of labs (15 labs in total comprise 40% of the final grade) and found that

students in the pair group performed significantly better on the first five labs, carried out before the

withdrawal date. We performed a one-tailed, homoscedastic t-test on lab scores of the PP and SP

groups. For each of these first five labs, students in the pair group performed significantly better (all p

values < 0.05) than students in the solo group. However, this effect did not persist in later labs nor did it

appear in a comparison of the top 10 students in the two groups. We suspect that the disappearance of

better lab performance from the pair group versus the solo group is due to relatively more of the

weaker students withdrawing from the solo group, equalizing the performance of the two groups.

TABLE 33 LAB PERFORMANCES OF PAIR AND SOLO PROGRAMMERS

 Lab 2 Lab 3 Lab 4 Lab 6 Lab 7

PP 48.92 47.96 45.73 45.27 48.04

SP 41.95 40.77 36.77 36.82 39.91

p value = 0.022 0.039 0.022 0.024 0.037

Utilization of TA Office Hours

 In an in-class survey, 21 members of the pair group reported a total of 31 visits to TA office hours

for 975 minutes of assistance (1.47 visits per student; 46.42 minutes per student). In the same survey,

16 members of the solo group reported a total of 46 visits and 1485 minutes of assistance (2.875 visits

per student; 92.8 minutes per student). This difference in utilization of TA resources likely stems from

102

the ability of pair programmers to talk though their difficulties and to have partners fill in the gaps in

one another’s knowledge. One potential impact of this phenomenon is that resource-constrained

departments might better meet student needs or handle larger groups of students with existing

resources through the use of pair programming.

TABLE 34 TA OFFICE HOUR USAGES BY PAIR AND SOLO PROGRAMMERS

 #students total visits visits/student total minutes min/student

PP 21 31 1.47 975 46.42

SP 16 46 2.875 1485 92.8

Course Preference

TABLE 35 COURSE ORGANIZATION PREFERENCES OF PAIR AND SOLO PROGRAMMERS

 150-min lecture + 50-min lab 200-min lecture 125-min lecture + 75-min lab

PP 4 1 20

SP 7 3 9

 On the day of the final exam, students completed a survey on their preference for course

organization. We provide three choices: 1) 150 minutes of lecture + 50 minutes of lab per week and

continued work on the lab after class (as described in this paper); 2) 200 minutes of lecture per week

and fully take-home project assignments; 3) 125 minutes of lecture + 75 minutes of lab per week and

continued work on the lab after class. The ratios of students’ preferences for the three different class

organizations were quite different between pair and solo groups. We performed a chi square test on this

preference data and found that significantly more pair programming students preferred more in-class

lab time (p < 0.001). Similarly, in survey feedback students in the pair group expressed that lab is where

they learned and actually practiced the knowledge they got from lectures. Pair programmers also

reported difficulty in scheduling time to work with their partners after class, which may be at least

partially responsible for pair programming students’ preference for more time in lab. Moreover, this

implies that a course using pair programming practices could make good use of a flipped classroom

103

format (i.e., provide online lecture materials for students to use at home and devote the in-class time to

collaborative lab work).

Self-reported Workload Metrics

 As expected, we found that the average time that pair programmers spent on the lab (412

min/person on labs 1-5) was less than that of solo programmers (631 min). However, the total student-

hours devoted by pair programmers were greater. Solo programmers also felt more temporal pressure

in most of the lab, though they were able to do their work at any time while the pair programmers had

to coordinate with their partners. On the other hand, the pair programmers did not require as much

actual time per person on the labs. We also found differences in perceived mental demand, effort to

complete a lab and frustration levels. In the first five labs, students from the pair group consistently

reported lower perceived mental demand, total effort and frustration while completing the labs. These

metrics are graphically illustrated in Figure 12 to Figure 17

104

FIGURE 12 PAIR PROGRAMMER SPEND LESS TIME ON COMPLETING LABS

FIGURE 13 PAIR PROGRAMMERS ARE GENERALLY MORE CONFIDENT IN THEIR PERFORMANCE

FIGURE 14 PAIR PROGRAMMERS FEEL LESS TEMPORAL PRESSURE FOR COMPLETION OF LAB

0

100

200

300

400

500

600

700

800

900

Lab 2 Lab 3 Lab 4 Lab 6 Lab 7

PP

SP

Ti
m

e
(m

in
u

te
s)

0

20

40

60

80

100

Lab 2 Lab 3 Lab 4 Lab 6 Lab 7

PP

SP

P
e

rc
ei

ve
d

 P
e

rf
o

rm
an

ce
 (

0
-1

0
0

)

Perfect

Failure

0

20

40

60

80

100

Lab 2 Lab 3 Lab 4 Lab 6 Lab 7

PP

SP

Te
m

p
o

ra
l P

re
ss

u
re

 (
0

-1
0

0
)

High

Low

105

FIGURE 15 PAIR PROGRAMMERS FEEL LESS MENTAL DEMAND THAN SOLO PROGRAMMERS

FIGURE 16 PAIR PROGRAMMERS COMPLETE LABS WITH LESS EFFORT THAN SOLO PROGRAMMERS

FIGURE 17 PAIR PROGRAMMER EXPERIENCE LESS FRUSTRATIONS THAN SOLO PROGRAMMERS

0

20

40

60

80

100

Lab 2 Lab 3 Lab 4 Lab 6 Lab 7

PP

SP

M
en

ta
l D

em
an

d
 (

0
-1

0
0

) High

Low

0

20

40

60

80

100

Lab 2 Lab 3 Lab 4 Lab 6 Lab 7

PP

SP

Ef
fo

rt
 (0

-1
0

0
)

Low

High

0

20

40

60

80

100

Lab 2 Lab 3 Lab 4 Lab 6 Lab 7

PP

SP

Fr
u

st
ra

ti
o

n
 L

ev
el

 (
0

-1
0

0
)

Low

High

106

4.2.2 ENGINEERING IMPACT

 Good coding style helps with future comprehension and modification of code. Students are

required to practice writing clear and readable codes. In this study, we also instructed students to follow

the Google C++ style guide (Weinberger, et al., 2010) while implementing their projects. However, the

code style of a project was not assessed in our programs’ grading rubrics. Therefore, we are interested

to know how much students followed the given coding style guide and especially how differently do pair

programmers and solo programmers follow the coding style guide.

 We used Google’s C++ lint checker to examine all student’s submissions. This lint program reads

through a code and outputs all possible style violations. The output of each violation from this checker

program is illustrated in Table 36. According to the inline comments of the original Google lint checker,

the filename is the name of the file containing the error. The “linenum” is the number of the line

containing the error. The category is a string description of a category of the style bug. Five first level

categories are: 1) build, 2) legal, 3) readability, 4) runtime and 5) whitespace. Each first level category

has one or more detailed sub categories of errors as illustrated in Table 37. The confidence level is a

confidence score produced by this checker regarding the error. It scales from 1 to 5 with 5 indicating the

greatest confidence that an error has occurred. And finally the message records the details of the error,

the codes involved and the suggestions. The two examples in Table 36 illustrate two style violations. The

first one occurs in file “pair_sub/id/last1_last2_lab04_Thu_Feb_16_14_48_04_2012/pointers1.cpp” at

line 0, indicating a level 5 confidence error of missing legal statement. The second one occurs at line 3 of

the same file indicating a level 5 confidence error of missing whitespace before a curly brace.

107

TABLE 36 RAW LINT LOG FORMAT

Format filename, linenum, category, confidence, message

Example1 pair_sub/id/last1_last2_lab04_Thu_Feb_16_14_48_04_2012/pointers1.cpp 0 legal/copyright 5 No
copyright message found. You should have a line: "Copyright [year] <Copyright Owner>"

Example2 pair_sub/id/last1_last2_lab04_Thu_Feb_16_14_48_04_2012/pointers1.cpp 3 whitespace/braces 5
Missing space before {

TABLE 37 CATEGORIES OF LINT STYLE ERRORS

Category Sub Category

build class, deprecated, endif_comment, explicit_make_pair, forward_decl, header_guard, include,
include_alpha, include_order, include_what_you_use, namespaces, printf_format, storage_class

legal copyright

readability alt_tokens, braces, casting, check, constructors, fn_size, function, multiline_comment,
multiline_string, namespace, nonlint, streams, todo, utf8

runtime arrays, casting, explicit, int, init, invalid_increment, member_string_references, memset, operator,
printf, printf_format, references, rtti, sizeof, string, threadsafe_fun

whitespace blank_line, braces, comma, comments, empty_loop_body, end_of_line, ending_newline, forcolon,
indent, labels, line_length, newline, operators, parens, semicolon, tab, todo

TABLE 38 PARSED LINT ERROR DATA

Format lab confide
nce

category line
number

message filename

Sample
Rows

4 4

whitespac
e/operato
rs 7

Missing spaces
around =

pair_sub/id/last1_last2_lab04_Thu_Feb_16
_14_48_04_2012/pointers5.cpp

4 1
whitespac
e/tab 8

Tab found;
better to use
spaces

pair_sub/id/last1_last2_lab04_Thu_Feb_16
_14_48_04_2012/pointers5.cpp

TABLE 39 NUMBER OF ERRORS PER FILE

All labs, Confidence level >= 3

 build readability runtime whitespace

solo 502 217 40 836

pair 391 130 32 598

total 893 347 72 1434

Concurrency-related labs, confidence >= 3

 build readability runtime whitespace

solo 258 86 27 144

pair 141 54 12 141

total 399 140 39 285

All categories, confidence >= 3, p= 0.009

 lab2 lab3 lab4 lab6 lab7 lab8 lab9 lab10 lab11 lab13 lab14 lab15

solo 108 125 45 102 71 131 42 200 96 54 62 123

pair 52 97 45 66 36 75 97 114 60 51 54 48

total 160 222 90 168 107 206 139 314 156 105 116 171

108

 The raw lint outputs across all student submissions, both from pair programmers and solo

programmers were stored in two separate log files. Then we wrote a Python parser to parse these raw

log records into two data files. The data files are organized according to labs, confidence of error,

category of error, line number, error message and filename in which it is found, as illustrated in Table

38.

 We wrote and used a Python query script to perform stats. Since each pair group is only required to

make one submission as the result of their work but each solo programmer is required to make a

submission, more solo submissions are found. Therefore, to simply compare the occurrence of style

errors across the groups is not legitimate. Our query script, instead, counts and calculates the number of

error occurrences per file (in which the errors are found) with a restriction of input parameters on

confidence levels, specific labs as well as particular types of error.

 Some interesting results are shown in Table 39. As seen in the table, across all labs, submissions of

pair programmers consistently have fewer errors per file as compared to the submissions of solo

programmers for each category of errors. This effect also occurs in the implementation of concurrency

related labs (lab 13, 14 and 15). Across all categories of errors, submissions of pair programmers always

have fewer errors per file as compared to the submissions of solo programmers for each lab (p=0.009),

except lab 9. Lab 9 is an extension of lab 8 during which students are required to implement the C++

feature of operator overloading to overload the “+=” operator as a member function and the “+”

operator as a friend non-member function that adds a shape to a complex shape.

 We also observe that the most common style errors are in the whitespace category for all labs. The

most common style error for concurrency related labs are build errors. Among all the labs, lab 10, in

which students were required to practice C file and I/O interfaces had the most style errors. This is

partially because the style checker is designed for C++ instead of C but is probably also because C is

relatively unfamiliar to students (this is the only C graded lab). Lab 8 has the second greatest number of

109

style errors. This lab required students to work with C++ FLTK (fast and light toolkit) interfaces, which

are relatively unfamiliar to students.

4.2.3 COGNITIVE IMPACT

 To further explore the impact of pair programming on students’ problem solving activity, we

conducted a field study during the spring 2013 study. During the final exam of the spring 2013 study,

students were required to implement a concurrent system, the single-lane bridge, with their preferred

programming language. Students also had the choice to either work in pairs or individually. Seven

enrolled and one auditing student voluntarily formed four pairs to work on the final. Other four students

chose to work independently. Experimenter’s notes were taken based on the observation of different

activities students were engaged in at different times during the 3-hour test period. Details of the

observation notes are in Table 40. For the convenience of discussion, we identify pair groups as P1 – P4

and solos as S1 to S4. The exam ran from 12:00 pm to 3:00 pm.

 It is obvious to see that pair programmers start coding much later than solo programmers, instead,

they invest a majority of their time understanding the specification and planning the overall structure of

their system. In contrast, solo programmers almost rushed to coding activities and delayed the

comprehension of the specification and development of a structural plan until later, together with the

testing and debugging activities. This claim is supported by looking at the time point when questions

were raised by pairs and solos as listed in Table 41. It is clear to see that all three questions that are

critical to the design and implementation of the system were asked much earlier by pair programmers

than solo programmers (12:35 vs. 2:20, 12:55 vs. 2:45 and 1:25 vs. 2:30). Although solo programmers

asked more questions than pair programmers, 2 out of the 6 questions they asked, which were not

raised by any pair, were clearly stated in specification.

 To summarize, we think pair programming promotes pair partners to spend more time considering

more on requirements rather than rushing to implementation in production activities. This is probably

110

because pair partners must convince each other of any specific detail as well as the general design.

Therefore, fewer subjective assumptions can be made and more deliberation will be carried out. This is

definitely helpful for problem solving under circumstances of intensive information searching and

processing.

111

TABLE 40 OBSERVATION DETAILS

Time Pair’s Activity Solo’s Activity

12:25 P2-P4 discuss specification
P1 have 1 partner start coding and the other skim
through specification

4 solos all start coding

12:35 P1, P3, P4 elicit specification
P2 ask for clarification of checkFreq and waitDiff

1

4 solos work back and force between codes and
specifications

12:45 P1, P2, P4 start coding
P3 discuss program architecture (this pair involves the

novice we described in section of Other Barriers)

S2 and S3 browse sample codes (available on course
web page) for other concurrent system

12:55 P1, P2, P4 keep coding
P3 start writing code on paper
P2 found a typo

3
 on specification

one partner of P4 check online API document

S2, S3 ask whether a random travel time on bridge is
expected

2

S4 ask for clarification of the method finish() in main (S4
work with Scala, a different set of code than what we

discussed in section of Other Barriers)

1:15 P1-P4 all coding
drivers perform as simply coder
navigators perform as information provider (API,
sample code), document finder, code checker (for
typo), teddy bear, activity logger and reminder as well
as designer

solos work among requirements, codes, outputs and
online resources (API and sample codes)

1:25 P1 start testing and code modification
P2 ask for clarification of “using bridge”

4

P2 - P4 still code

S2-S4 are in testing and code modification
S1 still code

1:30 P1-P2 are in testing and code modification
P3-P4 still cod

4 solos are in testing and code modification

1:35 P1-P2 are in testing and code modification
P2 ask tailing issue of status check

5
 (whether status

check should always appear at the very end regardless
of previous number of events)
P4 ask for clarification of waitDiff

1

P3 start coding but at the same time discussing other
possible system organization/pattern

1:45 P4 do simulated execution for debugging
P2 check API calls on peak, push and pull
P1 discuss and analyze bug reason

S2 stuck on a runtime issue
S3 ask clarification of information printed in status
check

6
 (which is clearly stated in specification)

S1 searching previous code files (students are allowed to
use any resource except phone and txt)

1:55 P2 reach a consistent version and check boundary
cases

2:00 P2 test on different inputs and final check specification
P4 test on different inputs and encounter a bug
P3 still coding

S1 finish and leave

2:15 P2 ask whether printed car id should be in order of the
sequence of arriving bridge
P1, P4 debug and change code
P3 is still coding

S2 ask whether waiting is counted as an event
7
 (which is

clearly stated yes in specification)
S3, S4 is still debugging

2:20 P4 check fairness policy
P1’s navigator explain “checkFreq” to driver
P3 is still coding

S3 final check specification, ask for clarification of
checkFreq

1

2:30 P3 is reasoning the function and use of checkFreq
P4 encounter stackOverFlow exception and search to
change maxPoolSize for Scala

S3 ask for clarification of “using a bridge”

2:45 P4 ask whether a random travel time on bridge is
expected

2

S3 final check specification, found the typo
3
, ask about

tailing issue of status check
5

112

TABLE 41 QUESTIONS ASKED BY PAIRS AND SOLOS

No. Question Comment Pair Solo

1 clarification of checkFreq and waitDiff critical 12:35 2:20

2 random travel time mild 2:45 12:55

3 typo in specification critical 12:55 2:45

4 clarification of “using bridge” critical 1:25 2:30

5 tailing issue of status check fair 1:35 2:45

6 information in status check stated in specification 1:45

7 whether waiting is counted as an event stated in specification 2:15

113

4.3 CURRICULUM GUIDES AND ELEMENTS OF TEACHING CONCURRENCY

 ACM and the IEEE Computer Society have sought to provide curriculum guidance on computing at

approximately ten-year intervals. Thus 1968, 1991, and 2001 were the dates of publication of previous

guidance on Computer Science. Around the time of the publication of curriculum guidance on

computing in December 2001, a commitment was formed by the ACM and the IEEE Computer Society to

provide curriculum guidance on a more regular basis in recognition of the rapid rate of change in the

discipline and the consequent need for guidance to the community. Thus, the publishing interval was

shortened to around 5 years. The two most recent publications are a revision in 2008 (Cassel, et al.,

2008) and a draft in 2013 (Sahami, et al., 2013).

 According to these two versions of the curriculum guide, we extract in Table 42 the elements that

are related to concurrent computing and programs. These elements are mostly scattered under

different categories in the version of 2008 but are gathered together in the Parallel and Distributed

Computing section in the version of 2013. The topics and learning objectives are mainly from curriculum

version 2013, except marked.

 These concurrency elements are further explored and detailed in the NSF/TCPP Curriculum

Initiative on Parallel and Distributed Computing - Core Topics for Undergraduates (Prasad, et al., 2012).

Both the ACM/IEEE curriculum guidance and the NSF/TCPP curriculum propose a span of different

concurrency elements in teaching a broad range of computer science course. We will address this later

in our research work.

 According to the more detailed guidance provided by NSF/TCPP Curriculum Initiative on Parallel and

Distributed Computing - Core Topics for Undergraduates, we discern the topics in Table 43 to be covered

in our research on pedagogical design.

114

TABLE 42 CONCURRENCY ELEMENTS IN ACM/IEEE CURRICULUM GUIDANCE

Topic Learning Objectives

<from version 2008>
Distributed Algorithms [core]

Consensus and election
Termination detection
Fault tolerance
Stabilization

AL/DistributedAlgorithm in version 2008
PD/Distributed Systems in verion 2013

<from version 2008>

 Explain the distributed paradigm.

 Explain one simple distributed algorithm.

 Determine when to use consensus or election
algorithms.

 Distinguish between logical and physical clocks.

 Describe the relative ordering of events in a distributed
algorithm.

Multiprocessing [core]
Power Law
Example SIMD and MIMD instruction sets and
architectures
Interconnection networks (hypercube, shuffle-
exchange, mesh, crossbar)
Shared multiprocessor memory systems and
memory consistency
Multiprocessor cache coherence

AR/Multiprocessing in version 2008
AR/Multiprocessing and alternative architecture in
version 2013

 Discuss the concept of parallel processing beyond the
classical von Neumann model [Familiarity]

 Describe alternative architectures such as SIMD and
MIMD [Familiarity]

 Explain the concept of interconnection networks and
characterize different approaches [Familiarity]

 Discuss the special concerns that multiprocessing
systems present with respect to memory management
and describe how these are addressed [Familiarity]

 Describe the differences between memory backplane,
processor memory interconnect, and remote memory
via networks [Familiarity]

Concurrency [core]
States and state diagrams (cross reference
SF/State-State Transition-State Machines)
Structures (ready list, process control blocks,
and so forth)
Dispatching and context switching
The role of interrupts
Managing atomic access to OS objects
Implementing synchronization primitives
Multiprocessor issues (spin-locks, reentrancy)
(cross reference SF/Parallelism)

OS/Concurrency in version 2008
OS/Concurrency in version 2013

 Describe the need for concurrency within the
framework of an operating system [Familiarity]

 Demonstrate the potential run-time problems arising
from the concurrent operation of many separate tasks
[Usage]

 Summarize the range of mechanisms that can be
employed at the operating system level to realize
concurrent systems and describe the benefits of each
[Familiarity]

 Explain the different states that a task may pass through
and the data structures needed to support the
management of many tasks [Familiarity]

 Summarize techniques for achieving synchronization in
an operating system (e.g., describe how to implement a
semaphore using OS primitives) [Familiarity]

 Describe reasons for using interrupts, dispatching, and
context switching to support concurrency in an
operating system [Familiarity]

 Create state and transition diagrams for simple problem
domains [Usage]

Parallel Algorithms
[core]

Critical paths, work and span, and the relation
to Amdahl’s law (cross-reference
SF/Performance)
Speed-up and scalability
Naturally (embarassingly) parallel algorithms
Parallel algorithmic patterns (divide-and-
conquer, map and reduce, master-workers,
others)

[core]

 Define “critical path”, “work”, and “span” [Familiarity]

 Compute the work and span, and determine the critical
path with respect to a parallel execution diagram
[Usage]

 Define “speed-up” and explain the notion of an
algorithm’s scalability in this regard [Familiarity]

 Identify independent tasks in a program that may be
parallelized [Usage]

 Characterize features of a workload that allow or

115

Specific algorithms (e.g., parallel
MergeSort)

[elective]
Parallel graph algorithms (e.g., parallel shortest
path, parallel spanning tree) (cross-reference
AL/Algorithmic Strategies/Divide-and-conquer)
Parallel matrix computations
Producer-consumer and pipelined algorithms

AL/ParallelAlgorithms in version 2008
PD/Parallel Algorithms, Analysis, and Programming in
version 2013

prevent it from being naturally parallelized [Familiarity]

 Implement a parallel divide-and-conquer (and/or graph
algorithm) and empirically measure its performance
relative to its sequential analog [Usage]

 Decompose a problem (e.g., counting the number of
occurrences of some word in a document) via map and
reduce operations [Usage]

[elective]

 Provide an example of a problem that fits the producer-
consumer paradigm [Familiarity]

 Give examples of problems where pipelining would be
an effective means of parallelization [Familiarity]

 Identify issues that arise in producer-consumer
algorithms and mechanisms that may be used for
addressing them [Familiarity]

Performance Enhancements [elective]
Superscalar architecture
Branch prediction, Speculative execution, Out-
of-order execution
Prefetching
Vector processors and GPUs
Hardware support for Multithreading
Scalability
Alternative architectures, such as VLIW/EPIC,
and Accelerators and other kinds of Special-
Purpose Processors

AR/PerformanceEnhancements in version 2008
AR/Performance enhancements in version 2013

 Describe superscalar architectures and their advantages
[Familiarity]

 Explain the concept of branch prediction and its utility
[Familiarity]

 Characterize the costs and benefits of prefetching
[Familiarity]

 Explain speculative execution and identify the
conditions that justify it [Familiarity]

 Discuss the performance advantages that
multithreading offered in an architecture along with the
factors that make it difficult to derive maximum
benefits from this approach [Familiarity]

 Describe the relevance of scalability to performance
[Familiarity]

116

TABLE 43 CONCURRENCY RELATED TOPICS FROM NSF/TCPP CURRICULUM GUIDE COVERED IN OUR

TEACHING

Category Topics Learning Outcome

8.2
Architecture
Topics

1. Taxonomy Flynn’s taxonomy, data vs. control parallelism, shared/distributed
memory

2. MIMD Identify MIMD instances in practice (multicore, cluster, e.g.), and know
the difference between execution of tasks and threads

8.3
Programming
Topics

3. Shared memory Be able to write correct thread-based programs (protecting shared data)
and understand how to obtain speed up

4. Task/thread spawning Be able to write correct programs with threads, synchronize (fork-join,
producer/consumer, etc.), use dynamic threads (in number and possibly
recursively), thread creation (e.g. Pthreads, Java threads, etc.) builds on
shared memory topic above

5. Language extensions Know about language extensions for parallel programming.
Illustration from Cilk (spawn/join) and Java (Java threads)

6. Tasks and threads Understand what it means to create and assign work to
threads/processes in a parallel program, and know of at least one way do
that (e.g. OpenMp, Intel TBB, etc.)

7. Synchronization Be able to write shared memory programs with critical regions, producer-
consumer communications, and get speedup; know the notions of
mechanisms for concurrency (monitors, semaphores, etc.)

8. Critical regions Be able to write shared memory programs that use critical regions for
synchronization

9. Producer-consumer Be able to write shared memory programs that use the producer-
consumer pattern to share data and synchronize threads

10. Monitors Understand how to use monitors for synchronization

11. Concurrency defects Understand the notions of deadlock (detection, prevention), race
conditions (definition), determinacy/non-determinacy in parallel
programs (e.g. if there is a data race, the output may depend on the
order of execution)

12. Deadlocks Understand what a deadlock is, and methods for detecting and
preventing them

13. Data Races Know what a data race is, and how to use synchronization to prevent it

14. Distributed Memory Know basic notions of messaging among processes, different ways of
message passing, collective operations

15. Message passing Know about the overall organization of an message passing program as
well as point-to-point and collective communication primitives (e.g. MPI)

16. Functional/logic
languages

Understanding advantages and disadvantages of very different
programming styles (e.g., parallel Haskell, Parlog, Erlang)

17. Work stealing Understand one way to do dynamic assignment of computation

18. Tools to detect
concurrency defects

Know the existence of tools to detect race conditions (e.g. Eraser)

8.4
Algorithm
Topics

19. Synchronization Be aware of methods for controlling race conditions

8.5
Cross Cutting
and Advanced
Topics

20. Why and what is
parallel/distributed
computing

Know the common issues and differences between parallel and
distributed computing: history and applications. Microscopic level to
macroscopic level parallelism in current architectures.

21. Concurrency The degree of inherent parallelism in an algorithm, independent of how
it is executed on a machine

22. Non-determinism Different execution sequence can lead to different results hence
algorithm design either be tolerant to such phenomena or be able to
take advantage of this

117

 Our efforts in teaching concurrency are carried out within the following dimensions and their

interactions. First are the models of concurrent systems, including shared memory model and message

passing model. Second are several concurrency approaches, such as the thread approach, actor

approach and coroutine approach. Third are some classical problems and scenarios of concurrency,

including producer-consumer, dining philosophers, etc. To better prepare for our specific purpose of

informing the computer science education community, we also add to our investigation a fourth

dimension of major concurrency concepts identified in curriculum guidance.

4.3.1 MODELS OF CONCURRENCY

 Two concurrency models are pervasively used in contemporary computing software that

differentiate two types of inter-process communication. One model is the shared memory model in

which blocks of random access memory can be accessed by several different processing units so that

different processes communicate through a single unified image of memory. A second model is the

message passing model in which each process has its own private memory and communicates through

the exchange of messages. In some large scale systems, usually distributed, both of these models are

adopted at different levels of the system architecture. However, to limit our scope of informing

undergraduate computer science education society, we eliminated the discussion of adopting a hybrid

model in a single system.

4.3.2 APPROACHES TO CONCURRENCY

 We restrict our research to three major approaches to achieving concurrency. These approaches

are widely used in systems of different levels of complexity and with different functionalities. They are

also efficiently supported by modern programming languages. This entitles them to be good candidates

for teaching. Notice that although the characteristics of some approaches enable them to implement

one type of concurrency model more naturally and easily, generally speaking, concurrency models and

concurrency approaches are not tied by any means.

118

 In this section, we discuss the origin of different concurrency approaches, our considerations in the

selection of implementation languages, a brief summary of the features of different languages, and

some simple efficiency tests and the visualizations of usage of multi-core architectures with our selected

language implementations on three simple concurrent programs.

Java and Thread-Based Approach

 First is the thread-based approach supported by programming languages such as C, C++, Java,

Python, etc. Threads usually share the same memory space, which makes it easier to implement the

shared memory model of concurrency. However, the thread-based approach may also be used to

implement message passing systems. For example, Java threads may also be used to send and receive

synchronous or asynchronous messages to achieve a message passing model of concurrent system.

 We further select Java as a realization of the thread-based approach because of its pervasive use

over a large array of devices and the fact that it is a popular introductory programming language in

many CS curricula. However, an understanding of performance issues calls for a bit deeper exploration of

the underlying implementation. A mainstream programming language, Java is implemented on top of the

Java virtual machine. According to the documentation of the most recent version of Java implementation,

the Java Development Kit (JDK) provides two kinds of Java virtual machines (VM) (Oracle, 2013):

 On platforms typically used for client applications, the JDK comes with a VM implementation

called the Java HotSpot Client VM (client VM). The client VM is claimed to be tuned for reducing

start-up time and memory footprint.

 On all platforms, the JDK comes with an implementation of the Java virtual machine called the

Java HotSpot Server VM (server VM). The server VM is designed for maximum execution speed.

 Supporting thread synchronization is claimed to be one of the Java HotSpot VM features that the

Java programming language allows for use of multiple, concurrent paths of program execution (called

"threads") and Java HotSpot technology provides a thread-handling capability that is designed to scale

119

readily for use in large, shared-memory multiprocessor servers (Lindholm, et al., 2013). However,

detailed documentation is lacking for two thread mapping and handling mechanisms. One mechanism

for which detail is lacking is the way in which the Java VM compiler maps threads defined in the program

to threads running in the Java virtual machine. The other is how the Java VM maps threads running in it

to actual tasks executed on multi-core architecture systems. For the first mapping mechanism, although

it is widely believed that each thread defined in a Java program occupies a Java virtual machine thread

dedicatedly while running, no specific and detailed documentation is available. All we know from the

previous version of the Java virtual machine specification is that thread synchronization in the Java VM is

realized through low-level machine implementation with semaphores and locks.

 The Java default language package java.lang provides two artifacts that are related to concurrency.

One is the Runnable interface and the other is the Thread class. By defining a class that implements

Runnable or extends Thread, the Java language provides a whole set of thread manipulation functions

including start(), resume(), stop(), and join(), etc. Also, a set of inter-thread communication methods are

defined in the object class under the java.lang package, including wait(), notify() and notifyAll() which

enables every object to cooperatively participate in a concurrent system. Therefore, threads may be

regarded as an embedded feature of the Java language. Besides, Java also provides a utility library,

java.util.concurrent which provides many practical artifacts such as CountDownLatch and CyclicBarrier.

After years of development and usage, the Java thread approach is pretty mature with these provided

language features and libraries. Also, due to the large amount of usage of Java threads, its

documentation is more comprehensive and detailed compared to other two concurrency approaches

that we consider. Furthermore, pervasive code examples and technical articles are available online.

These are not official parts of the Java language feature or libraries by any means but may provide great

relief to programmers.

120

Scala and Actor-Based Approach

 The second approach we consider is the actor-based approach supported by programming

languages such as Erlang and Scala. Before getting any deeper into this concurrency approach, it will be

beneficial to first review some fundamental concepts. The first concept is the “happened before”

relation (Lamport, 1978) among distinct events in universe which in turn defines the concept of time.

This partial relation may then be extended to a full relation with an algorithm that results in a non-

deterministic event sequence in a distributed system, a system in which the transmission time of

messages among different tasks cannot be neglected when compared to the time between two events

happen in the same task. In such a distributed system, tasks may be carried out on computational units

that are either spatially separated or on a single processor.These fundamental concepts actually

characterize a concurrent system with non-determinism of task executions.

 These concepts are employed by the Actors approach. We differentiate the Actors-based approach

from primitive message passing interfaces such as OpenMP and MPI in that the Actors-based approach

illustrates a different mathematical theory of computation. In this theory, “Actors” are the universal

primitives of concurrent digital computations. An Actor is a computational entity that in response to a

message it receives can concurrently: 1) send messages to other actors, 2) create new actors, and 3)

designate how to handle the next message it receives (Hewitt, 2010). The nature of the Actors-based

approach makes it easy to implement message passing. However, Actors may also be designed and

created to share common memory spaces to emulate a shared memory system.

 Scala is a recently popularized general-purpose programming language that integrates features of

object-oriented and functional languages. Scala programs also run on Java virtual machines and the

program byte code is compatible with Java. Therefore, Scala fully allows usage of any existing Java

libraries or application packages. Scala programs may be called from Java and vice versa, with seamless

integration. Accordingly, it is fully possible to implement concurrency and synchronization in Scala by

121

using Java Threads artifacts with the java.lang.Thread and java.util.concurrent libraries which provide

several thread definition mechanisms, inter-thread communication mechanisms and some high-level

synchronized object classes. The thread synchronization and monitor patterns available in Java are also

fully accessible in Scala.

 However, Scala differs from the Java programming language in that it provides another means to

implement concurrency -- the Actors approach. To support the Actors approach, Scala provides a set of

language utilities to deal with sending, receiving, and handling messages, and creating and recognizing

different actors. The Scala language provides a library package scala.actors for actor programming.

Inside this package, Scala provides both asynchronous and synchronous messaging mechanisms and

artifacts to allow concurrent programming without explicit synchronization. The most important

member of the package is the Actor trait in which basic operations (sending, receiving, reacting and

forwarding messages) that may be performed by an actor are defined. Besides this package, Scala also

provides a scala.concurrent library. In this library, several utilities for concurrency are defined.

 Scala is still a relatively young programming language. Scala documentation is lesser in both quality

and quantity, as compared to Java. Many objects defined in Scala libraries lack detailed descriptions and

deprecated or re-factored objects and functions are scattered around in the documentation. Virtually,

no sample code can be found in the Scala documents and many functions are under-specified. Further,

the language itself is still evolving rapidly and is somewhat unstable.

Python and Coroutine-Based Approach

 The third approach we consider is the Coroutine-based approach supported by programming

languages such as Haskell and Python. Coroutines support cooperative multitasking with the ability to

suspend and resume executions. Coroutines may be implemented as a way of sharing data as in a

shared memory model of concurrency or as a way of reacting to events (inputs of execution resumption)

as in a message passing model of concurrency.

122

 The concept of coroutines was introduced in the early 1960s and constitutes one of the oldest

proposals of a general control abstraction. It is attributed to Conway, who described coroutines as

“subroutines who act as the master program” (Conway, 1963). Then, the use of coroutines to express

several useful control behaviors was widely explored during the next twenty years in several different

contexts, including simulation, artificial intelligence, concurrent programming, text processing, and

various kinds of data-structure manipulation (Knuth, 1981) (Marlin, 1980) (Pauli & Soffa, 1980).

However, the power of coroutines is generally omitted from the design of general-purpose

programming languages. The rare exceptions are Simula, BCPL, Modula-2, Icon and the generator in the

Python language.

 The fundamental characteristics of a coroutine are introduced in (Marlin, 1980) as follows:

 The values of data local to a coroutine persist between successive calls (to that coroutine)

 The execution of a coroutine is suspended as control leaves it, only to carry on where it left off

when control re-enters the coroutine at some later stage.

 In addition to this fundamental description, three further issues are identified in (de Mour &

Ierusalimschy, 2004) for a coroutine:

 The control-transfer mechanism, which can provide symmetric or asymmetric coroutines

 Whether coroutines are provided in the language as first-class objects, which can be freely

manipulated by the programmer, or as constrained constructs

 Whether a coroutine is a stackful construct, i.e., whether it is able to suspend its execution from

within nested calls

 Based on these three issues, the authors of (de Mour & Ierusalimschy, 2004) classify coroutines into

different categories and claimed that a first-class stackful coroutine provides the same expressiveness as

obtained with one-shot continuation which supports concurrency, as described in (Hieb & Dybvig, 1990).

Therefore, a system that supports coroutines is totally capable of defining a concurrent system.

123

 Python is a general-purpose, interpreted, high-level programming language that supports several

programming paradigms including object-oriented, imperative and, to some extent, functional

programming. Several different implementations exist. The most commonly seen is CPython, which is a

mainstream Python implementation written in C that compiles Python programs into byte codes that

are then executed on the CPython Interpreter. Part of this interpreter is a simple stack machine known

as the Python VM (virtual machine), which actually executes the Python byte code. In terms of the

threading in Python VM, Python threads are true operating system (OS) threads.

 Coroutines are a rarely used concurrency concept due in part to the pervasiveness of

implementation and wide acceptance of thread-based approach. Few supportive resources are available

for implementing coroutines in Python. The most related resource is the PEP 342 document (van

Rossum & Eby, 2005) on the implementation of coroutines through enhanced functionality of

generators. This document contains all the essential elements for implementation of coroutines, yet it is

difficult for novices to understand without sample codes and detailed explanations.

 Some general patterns exist for the design and implementation of concurrent programs under

these three different approaches. To design and implement a simple concurrent program with the Java

Threads approach, one may first identify passive (shared) versus active (thread) objects. Then one would

apply the monitor pattern to the data manipulation methods of shared objects and implements the

Runnable interface for the active objects. To design and implement a simple concurrent program with

the Scala Actors approach, one would first design a protocol of message types and the corresponding

information carried by each type of message exchanged among actors, as well as each actor object’s

corresponding behavior on sending and receiving each type of message. Then one would apply the

reactor pattern to all actors and implement messages as final classes (the case class as defined in Scala).

To design and implement a simple concurrent program with Python Coroutines approach, one would

first identify shared objects versus functional objects (coroutines) as well as the suspension and

124

resumption conditions of these functional objects. Then, one would apply the generator pattern to

those functional objects through the use of yield. Table 44 generalizes the basic concurrency constructs

and design procedures to implement a concurrent program with three different approaches.

TABLE 44 CONCURRENCY CONSTRUCTS AND DESIGN PROCEDURES OF THREE APPROACHES

Approach Constructs General Design Procedure

Java thread java.lang.Object
java.lang.Runnable
Runnable interface
java.lang.Thread

wait(), notify(), notifyAll()

discern shared vs. thread object
apply monitor pattern (Figure 18)

Scala actor scala.actors._
Actor._

!, receive, react, mailbox related function

design protocols of message types and behaviors
apply serializer pattern (Figure 19)

Python
coroutine

PEP 342: enhanced generator function

yield, send, next, StopIteration exception

discern shared object
discern coroutine and progress conditions
apply generator pattern (Figure 20)

Data object class

 Function

 lock

 while condition is false

 wait

 execution

 unlock

 end function

end class

Active object class

 Run function

 invoking data object class’s

 functions

 end run function

end class

FIGURE 18 MONITOR PATTERN OF IMPLEMENTING CONCURRENCY

Data object class

 Receive message

 while condition is false

 delay processing

 processing

 End receive message

End class

Active object class

 Run function

 send messages

 End run function

End class

FIGURE 19 REACTOR PATTERN OF IMPLEMENTING CONCURRENCY

Data object class

 Function

 If condition is false

 return false

 Else

 processing

 return true

 End if

 End function

End class

Active object class

 Run function

 while invoking data object

class’s function returns false

 yield

 yield

 End run function

End class

FIGURE 20 GENERATOR PATTERN OF IMPLEMENTING CONCURRENCY

125

4.3.3 CONCURRENCY SCENARIOS

 We explore a list of concurrency scenarios and problems for further research and we describe their

problem settings here.

 The Ornamental garden scenario involves an ornamental garden with two turnstiles through which

tourists may enter and the problem is to correctly maintain a count of the total number of tourists in the

garden at any time.

 The Sum and worker scenario involves a group of workers trying to report the number of job they

each completed and the problem is to correctly maintain the total number of jobs done at any time.

 The Bank account scenario involves a checking account that supports both deposit and withdrawal

operations. A number of customers make deposits to and withdrawal from this account. The problem is

to correctly maintain the account balance and also guarantee that no overdraft ever occurs.

 The Bounded buffer scenario involves a buffer with limited capacity and that supports both put and

get operations. A put operation places an item into the buffer and a get operation removes an item from

the buffer. A number of producers place items into the buffer and a number of consumers remove items

from the buffer. The problem is to correctly maintain the state of the buffer and to guarantee that it is

never overflows (by placing items into a full buffer) or underflows (by removing items from an empty

buffer).

 The Dining philosopher scenario involves five silent philosophers sitting at a table around a bowl of

spaghetti. A fork is placed between each pair of adjacent philosophers. Each philosopher must

alternately think and eat. However, a philosopher can only eat spaghetti when he has both left and right

forks. Each fork can be held by only one philosopher and so a philosopher can use the fork only if it is

not being used by another philosopher. After he finishes eating, the philosopher needs to put down

both forks so they become available to others. A philosopher can grab the fork on his right or the one on

his left as they become available, but can't start eating before getting both of them. Eating is not limited

126

by the amount of spaghetti left. The problem is how to design a discipline of behavior such that each

philosopher won't starve, i.e. can forever continue to alternate between eating and thinking, assuming

that a philosopher cannot know when others may want to eat or think.

 The Readers and writers scenario involves a number of readers trying to access some shared data

without modifying it and a number of writers trying to access the same shared data and modify it.

Therefore, readers may “read” data concurrently while writers need exclusive access to data. The

problem is to design a discipline of behavior such that both readers and writers have opportunities to

progress.

 The Party matching scenario involves a number of boys and girls who arrive at a party and leave in

pairs of a boy and a girl. The problem is to correctly maintain the status of the party and guarantee that

each participant leaves with a partner.

 The Sleeping barber scenario involves a barber’s shop that has a number of barbers working in it

and customers come to it to have different kinds of barbering services. These services take different

amounts of time to finish. When no customer is in the shop, the barbers rest. If a customer comes and

barbers are available (barbers who are resting), one of the available barbers should provide the

customer the required barbering service. When all the barbers are serving customers, a newly arriving

customer should wait in the shop. However, if the waiting space is already full, that customer will leave

directly without having any service. Barbers keep a record of the total time of service they have

provided and do not serve any more customers when that time reaches/exceeds their maximum

working time. The problem is to keep barbers working when there are customers to serve and resting

when there are no customers.

 The Book inventory scenario involves a book stock management server that talks to multiple

clients. Clients request to increase or decrease the stock of a number of books by making job requests.

No negative stock is allowed and the server is responsible for holding and later applying “decrease jobs”

127

that could not be performed due to insufficient stock. Multiple jobs may be processed concurrently

within the server. The problem is to maintain a correct inventory of book stocks and guarantee that all

accepted job will eventually complete assuming limited concurrent processing power of the server and

that, over time, the increases equal or exceed the decreases for any one book.

 The Single lane bridge scenario involves a single-lane bridge that is wide enough to permit only a

single lane of traffic. That is, the bridge permits only one-way traffic at any time and cars exit the bridge

according to their order of entering the bridge. The problem is to correctly maintain the state of the

bridge while guaranteeing all cars have a chance to utilize the bridge and proceed.

 The concurrency related curriculum topics listed in Table 43 are covered from various perspectives

by implementing concurrent programs with the three concurrency approaches (Java Threads, Scala

Actors and Python Coroutines) and the ten concurrency scenarios listed above. Table 45 shows the

coverage of curriculum topics by the three concurrency approaches and ten concurrency scenarios.

TABLE 45 COVERAGE OF CURRICULUM TOPICS BY CONCURRENCY APPROACHES AND SCENARIOS

Scenarios Java Thread Scala Actor
Python
Coroutine

Ornamental Garden, Sum & Workers 3, 4, 5, 6, 7, 8, 11, 13, 22 4, 14, 15, 17 4, 16

bank account, bounded buffer 3, 4, 5, 6, 7, 8, 9, 10, 11, 22 4, 14, 15, 17 4, 16

dinning philosopher, readers and writers, party-
matching, book inventory, single-lane bridge

3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 22

4, 14, 15, 17 4, 16

 In our spring 2013 work, we designed and carried out our plan of teaching programming with

concurrency in an exploratory, upper-level undergraduate CS course. We developed appropriate

teaching materials for these concurrency programming models and implementation approaches. We

carried out the course with the innovations of introducing a pseudocode for concurrency, flipped

classroom organization and intensive problem solving practice with various implementation approaches

for different concurrency programming models. Section 4.4 discusses the findings and feedback of our

course design and pedagogical efforts.

128

4.4 TEACHING PROGRAMMING WITH CONCURRENCY

 Current trends in multi-core and multi-processor architectures demand that students in Computer

Science and Computer Engineering not only master concurrency concepts but also develop substantial

practical skills in concurrent and parallel programming. However, even with recent updates to the

undergraduate curriculum to include PDC concepts, Computer Science students are not systematically

introduced to different development approaches. Difficulties in programming such systems correctly

and efficiently are seen in both academia and industry. Improved pedagogical design on teaching

concurrency related programming and a comprehensive study of how programmers use different

programming language approaches to concurrency may help to provide guidance.

4.4.1 COURSE DESIGN AND MATERIALS

 Table 46 describes how different course materials we designed cover the curriculum topics related

to concurrency as discussed in section 4.3. Please reference Table 42 for the detailed learning outcomes

for each topic.

129

TABLE 46 COVERAGE OF CONCURRENCY RELATED CURRICULUM TOPICS

Category Topics Course Material

8.2
Architecture
Topics

1. Taxonomy Lectures on topic of multi-core architecture and overview of Parallel and
concurrent programming
Reading: Introduction to Parallel Computing, Chapter 1-4
Reading: Parallel Computer Architecture, Flynn’s Taxonomy
Reading: Parallel Computer Architecture, Memory Organizations
Reading: Parallel Computer Architecture, Caches and Memory Hierarchy
Reading: Multicore processors and Systems, General-Purpose Multi-core
Processors
Reading: Parallel Programming, Interconnection Networks
Reading: Parallel Programming, Routing and Switching

2. MIMD

8.3
Programming
Topics

3. Shared memory Reading: Parallel Programming, Thread Level Parallelism
Reading: Introduction to Parallel Computing, Chapter 5.1-5.3
Reading: Parallel Programming, Parallel Programming Patterns
Reading: Parallel Programming, Synchronization Mechanisms
Reading: Mutexes and Semaphores, Part I – III (online blog)
Reading: Livelock (online blog)
Lecture: Shared Memory Concurrent Systems

Race Condition
Sum & Worker Example in Java, C++, Pseudo Code
Ornamental Garden Videos

Pseudo Code System
Conditional Synchronization

Bank Account Example in Pseudo Code
Design Activity: Bounded-Buffer System

Deadlock & Livelock
Large Printing Job Example in Pseudo Code
Four necessary condition for deadlock
Design Activity: Dining Philosopher System

Fairness Issue
Readers and Writers Example in Pseudo Code

Homework: Practice Pseudocode with Shared Memory Systems
Project: Design Book Inventory as Shared Memory System

Reading: Java Concurrency Tutorial
Project: Party Matching with Java Threads
Project: Sleeping Barber Simulation (in Java)
Project: Debugging Contest on Book Inventory System (in Java)

4. Task/thread
spawning

5. Language extensions

6. Tasks and threads

7. Synchronization

8. Critical regions

9. Producer-consumer

10. Monitors

11. Concurrency defects

12. Deadlocks

13. Data Races

14. Distributed Memory Reading: Introduction to Parallel Computing, Chapter 5.4
Reading: Parallel Programming, Message Passing Programming
Lecture: Message Passing Concurrent Systems

Non-deterministic Order of Messages
Sum & Worker Example in Scala, Pseudo Code
Ornamental Garden White Board Illustration

Pseudo Code System
Conditional Synchronization

Bank Account Example in Pseudo Code
Group Design Activity: Bounded-Buffer System

Deadlock & Livelock
Large Printing Job Example in Pseudo Code
Group Design Activity: Dining Philosopher System

Fairness Issue
Readers and Writers Example in Pseudo Code

Homework: Practice Pseudocode with Message Passing System
Project: Design Book Inventory as Message Passing System
Reading: Programming in Scala, Chapter 32

15. Message passing

130

Project: Party Matching with Scala Actors
Project: Sleeping Barber Simulation (in Scala)
Project: Debugging Contest on Book Inventory System (in Scala)

16. Functional/logic
languages

Paper presentations
Lecture: Cooperative Multi-tasking Concurrent Systems
Homework: Practice Python with Cooperative Multi-tasking System

Reading: A Comprehensive Tutorial on Python Coroutines (online resource)
Project: Party Matching with Python Coroutines
Project: Sleeping Barber Simulation (in Python)
Project: Debugging Contest on Book Inventory System (in Python)

17. Work stealing

18. Tools to detect
concurrency defects

8.4
Algorithm
Topics

19. Synchronization See materials cover topic 3-13

8.5
Cross Cutting
and Advanced
Topics

20. Why and what is
parallel/distributed
computing

See materials cover topic 1-15

21. Concurrency

22. Non-determinism See materials cover topic 3-15

131

4.4.2 COURSE FEEDBACK

 Surveys on effort and preferences (see Figure 45 in section 6.5) were collected with each lab and

homework assignment. Students consistently reported difficulties with the shared memory model. In

homeworks 2 (shared memory) and 3 (message passing), students were asked to write pseudocode for

the bounded-buffer and dining-philosopher problems discussed in class. In a survey conducted after

homework 3, only one student indicated that the message-passing model was more difficult and 10

indicated that the shared memory model was more difficult. The remaining students either indicated

that the two approaches were equally difficult, or they did not respond to the question. In lab 2 (shared

memory) and lab 3 (message passing) students were asked to design a book inventory system. In the

post-lab survey, 8 of 11 students who responded indicated that shared memory is more difficult, 1

indicated that message passing is more difficult, and 2 students found the assignments equally difficult.

 In the cases of both the homeworks and the labs, students were asked to first solve the problem for

the shared-memory case and then for the message-passing case. Thus, ordering effects may explain the

preference for message-passing. Therefore, for Test 1, students were assigned into two groups S and D

such that the groups had equivalent performance on previous assignments and were asked to complete

the sections of the exam in opposite orders. In the 1st session group S took the shared-memory section

of the exam and group D took the message-passing section of the exam. In the 2nd session, each group

took the remaining section of the exam. The testing order is listed in Table 47.

TABLE 47 PERFORMANCE ON MIDTERM EXAM

Group Shared Memory Mean Message Passing Mean Overall Mean

S (9 students) 56.67 / 100 (1
st

) 81.72 / 100 (2
nd

) 138.39 / 200

D (7 students) 76.14 / 100 (2
nd

) 65.93 / 100 (1
st

) 142.07 / 200

All 65.19 / 100 74.81 / 100
Group S finishes shared memory first, message-passing then
Group D finishes message-passing first, shared memory later

 After test 1, we again surveyed students on their perceived difficulty of the two different systems.

In this survey, 11 of the 15 students who responded indicated that questions in the shared memory

132

section were harder to answer than those in the message passing section. In the same survey, students

were given the opportunity (without knowing their scores) to choose which of the two sections of the

exam would count as their midterm grade. (In fact, we always used the higher-scoring section to count

toward their class grade). Of the respondents, 10 of the 15 choose the message passing section. Of the 5

students who chose the shared memory section, 4 took the shared memory portion in the 2nd session.

Of these 15 students, 13 chose correctly, in that they selected the section in which they actually scored

higher. The two students who chose incorrectly chose the shared memory section but actually scored

slightly higher on the message-passing section.

 Test results are listed in Table 47. We found no significant difference in performance between the

shared-memory and message-passing sections. However, we did find that students performed better in

the 2nd session (79.20%) than in the 1st session (60.71%) (p=0.005), likely as a result of learning that

occurred during the exam and/or additional studying that may have occurred between sessions.

However, the students’ better raw scores on the message passing section than on the shared memory

section supports the survey result that students found the shared memory model more difficult to

understand. We suspect that one reason for this effect is that we introduced concurrent systems in

shared memory model with the monitor pattern. Empirically evidence shows that data and control flow

information of object oriented designs are difficult for novices to capture (Fix, et al., 1993),

(Wiedenbeck, et al., 1993). However, this type of information is critical to both implement and

understand the behaviors of a concurrent system. As we saw in the case study described in section 3.3,

novice students may establish a raw impression of the structure of a monitor pattern, but it is hard for

even intermediate students to reason about the data and control flow of a monitor implementation. On

the other hand, the rules and principles of message passing are more analogous to daily activities such

as a mail system and therefore are much easier for students to start with.

133

 The students’ preference for the message passing model with Scala Actors approach persisted

through the last survey carried out before the final exam. As seen in Figure 21, students reported slightly

more difficulties in both comprehension and implementation related tasks with Java Threads. However,

the majority of students (10 out of 12) actually used Java Threads for the implementation of their final

exam. We suspect that although threads and the monitor pattern create difficulties for students, most

students are much more familiar with Java than Scala (Java is taught in CS1 or CS2 for these students,

but Scala is freshly new). The momentum of familiarity and flexibility with a previously used language

overcomes the slight difficulties that language and approach present. Another issue we noticed is that

students constantly report Python Coroutines to be difficult to either implement or to understand.

Consequently, no student chose to use Python Coroutines as to implement the final exam question.

However, according to the lecturer’s solution of these three implementations, the Python Coroutines

approach only requires students to implement 92 out of the 182 lines of the code skeleton compared to

Java Threads 115 out of 224 lines of the code skeleton and Scala Actors 165 out of the 250 lines of code.

Yet, we suspect that students find it difficult to accept coroutines because their programming education

has focused on the subroutine approach, in which caller and callee relationships can be distinctively

identified in a function call. However, coroutines allow functions to call and suspend one another, which

impose a dramatic cognitive load for students to understand, let alone plan a system in this paradigm.

Some advanced students appreciated the introduction of coroutines, stating that the coroutine “helps

them to think about things in another way”. But for the majority of average students, this is not a simple

approach.

 As to the gaining of programming expertise with each of the three different programming

languages respectively, most students report a moderate increase in their perceived expertise levels.

The Likert scale we use is from no knowledge (0) to novice (1), intermediate (3) and expert (5). Most

students were fairly familiar with Java before the class and so had a limited increase in general expertise

134

through practicing the programming of concurrent systems with Java Threads, as seen in the top bar

chart of Figure 22. However, as seen in the bottom bar chart of Figure 22, all except two students

(number 1 and 4) reported good learning outcome regarding the Threads approach. It is apparent that

our course complements the missing part of students’ past undergraduate courses in using Java to

implement multi-thread programs. Scala is the most unfamiliar language for students in the class and

through the practice of programming concurrent system in the message passing model, most students

reported gaining expertise except one (number 5) as seen in the top bar chart of Figure 23. From the

corresponding bottom bar chart of Figure 23, we could see that student number 5 was already pretty

familiar with the Scala Actors approach and therefore the course content imposed only a limited

challenge for this student to gain expertise. Python was relatively familiar to most of the students as

they may have experience with it in previous undergraduate course. However, due to the confusion that

resulted from introducing coroutine as we described above, students report only limited increase in

expertise of programming with Python as seen in the top bar chart of Figure 24. It is worth noting that in

the bottom bar chart of Figure 24, student 4 even reports a decrease in learning coroutine approach.

But since our questions (see detailed questions in Figure 45 in section 6.5) were formulated to ask about

students’ perceived expertise, this may also imply that this student simply realized the complexity of

coroutine only after taking the course.

 Seven of the ten students who responded to the final survey reported that they have a moderate

learning of concurrency concepts. Two of those ten students reported above moderate learning

outcomes on concurrency concept and the last reported a basic learning outcome. All students reported

above basic acquisition of programming capabilities. Six of them think they have a moderate gain and

three of them indicate reaching the expert level. We understand that these surveys are subject to

student’s own perceptions, which are largely affected by their previous knowledge and capabilities.

135

However, the positive replies definitely reveal students’ increased level of programming efficacy, which

is important for their future learning and success in the computer science domain.

 When asked about different elements in the course, most student reported that the scattered

content of the course without a course textbook created many difficulties in their learning. One student

(a novice) even proposed to have a book of concurrent concepts with pseudocode only. Other novice

students reported that the use of pseudocode helped them in framing the rest of the course and

tackling larger problems. At the same time, some other students did not like the concept of using

pseudocode and expressed that it is even harder than programming languages (mostly more advanced

students) since “it is not possible to compile and test pseudocode”. Our original intention was to use the

pseudocode approach to promote students’ thinking and planning before coding. However, it turns out

again that the nature of programming activity is information intensive and advanced programmers

become well used to chasing down information. Considering this feedback, we think a textbook that

weaves different concurrent concepts, models, and approaches is in need and a pseudocode that is both

easier to understand for novices and able to be compiled for experts would be the sweet spot.

 Students have two types of feedback regarding the use of different languages to solve a single

problem. Novices’ negative feedback indicated that it creates a large overhead to warm-up and learn

each language while advanced students’ negative feedbacks indicated that it discouraged their

motivation since they’ve already have working knowledge of all languages and it is tedious to repeatedly

implement a problem with these languages. Positive feedback reported that using different languages to

solve a single problem promotes engagement and helps in understanding both concurrency concepts

and gaining programming expertise with different languages (from both novice and expert students).

Therefore, it seems a balance or synthesis of learning programming languages and concurrency related

topics may be further explored. We propose that this course could be slightly reorganized according to

the languages so that in each sub-portion of the course, students learn the basics of the language and

136

then the concurrency features to solve a concurrency problem with that language. Also, having students

work on projects with different problem statements (scenarios) but with identical concepts may help

with the issue of engagement.

 In general, students report positive feedback on programming-oriented learning in this course and

comment that this approach helps them to learn faster. But students also proposed that more

debugging and testing practice should be included earlier. In our current course, only one debugging

contest towards the end of the course was organized and most students felt not quite prepared for such

a task.

FIGURE 21 SUBJECTIVE DIFFICULTY LEVEL AND USAGE OF THREE PATTERNS

Is ifficult for
implementation Is difficulte for

comprehension Is used in final
exam

2
2

10

1

0 2

14 15

0

N
u

m
b

er
 o

f
St

u
d

en
ts

Java Threads Scala Actors Python Coroutines

137

FIGURE 22 PERCEIVED EXPERTISE IN JAVA AND THREAD APPROACH BEFORE AND AFTER COURSE

0 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

Before

After

Su
b

je
ct

 ID

How did you perceive your expertise in Java before this course?
How do you perceive your expertise in Java now?

0 0.5 1 1.5 2 2.5 3 3.5 4

1

2

3

4

5

6

7

8

9

10

Before

After

Su
b

je
ct

 ID

How did you perceive your familiarity with Java threads before this course?
How do you perceive your familiarity with Java threads now?

138

FIGURE 23 PERCEIVED EXPERTISE IN SCALA AND ACTOR APPROACH BEFORE AND AFTER COURSE

0 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

Before

After

Su
b

je
ct

 ID

How did you perceive your expertise in Scala before this course?
How do you perceive your expertise in Scala now?

0 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

Before

After

Su
b

je
ct

 ID

How did you perceive your familiarity with Scala actors before this course?
How do you perceive your familiarity with Scala actors now?

139

FIGURE 24 PERCEIVED EXPERTISE IN PYTHON AND COROUTINE APPROACH BEFORE AND AFTER COURSE

0 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

Before

After

Su
b

je
ct

 ID

How did you perceive your expertise in Python before this course?
How do you perceive your expertise in Python now?

0 0.5 1 1.5 2 2.5 3 3.5 4

1

2

3

4

5

6

7

8

9

10

Before

After

Su
b

je
ct

 ID

How did you perceive your familiarity with Python coroutines before this course?
How do you perceive your familiarity with Python coroutines now?

140

4.5 SUMMARY AND FUTURE WORKS

 In summary, in this section, we describe a quasi-experimental study of pair programming versus

solo programming, in the context of a required, four credit hour, intermediate-level course that focuses

on the acquisition of a second language (C/C++). We report several important findings especially that

both female students and less-experienced students were less likely to withdraw from the course if they

were in the pair programming group and that pair programming helps improve the code health level.

Thus, we provide evidence that builds upon prior findings and identifies pair programming as a

promising protective factor as a pedagogical technique. We also reinforce the engineering impact of pair

programming with novice students. As in any quasi-experimental study, however, we note several

factors that may impact the interpretation of findings. First, the number of females in the CSCI 1730

course was low (10 out of 60), but consistent with previous courses. However, we believe the protective

effect of pair programming that we observed provides further support for pair-programming in

retention efforts. Second, while in-lab time was exclusively pair programming or solo programming, we

did not have control over students' activities outside of the classroom. It is possible that out-of-class

interactions might have varied. Third, we had students self-report the amount of time they spent on

projects as well as the amount of time spent at TA office hours. We acknowledge that self-reporting may

not accurately capture actual behavior. Future work should use a more empirically-measured approach.

Finally, more solo programming students withdrew than did pair programming students. Specifically,

more of the weaker solo students dropped than did the weaker pair programming students. This may

have occluded a potential performance benefit of pair programming. However, there were no significant

differences in the exam scores of the top third from students from each condition. Thus, we expect

further empirical studies to reinforce these findings.

 As an exploration on the impact of pair programming with production activities, we report a case

study of a final exam with eight pair programmers working in four pairs and four solo programmers

141

working individually. Through analysis of experimenter’s notes on observed behavior of pair and solo

programmers, we conclude that pair programming pushes programmers to think in more detail about

design requirements and system structures and to clarify critical questions and issues earlier. For pair

programmers, all three questions that were critical to the design of the system were asked during their

specification reading and system planning period. Although these questions are also asked by solo

programmers, they were asked much later, during their testing and debugging phases. Therefore, we

conclude that pair programming not only has positive impacts as a pedagogical technique to retain

female and inexperienced students and promote code health, it is also powerful for design and code

planning, which are some of the most difficult and tedious tasks in programming. Certainly, our case

study was carried out in a limited manner in that only twelve programmers (four pairs, four solos) were

observed. More empirical evidence is definitely in need to further explore the impact of pair

programming across all software engineering activities.

 We also describe our offering of an upper-level undergraduate computer science course that

focuses on the concepts and programming of concurrent systems. We created a full set of materials that

cover the curriculum guides and introduce both shared memory and message passing models of

concurrent systems. The course included the usage of three distinctive programming approaches, Java

Threads, Scala Actors and Python Coroutines, for the implementation of different concurrency models.

Students practiced programming several classical concurrency scenarios such as dining philosopher,

sleeping barber, single-lane bridge, etc. and report moderate gains in knowledge both regarding

concurrency concepts and programming expertise. We also noticed and reported some caveats of our

course design and possible changes to make in the future. We have an enhanced, purely online version

of this course designed. It will be interesting to carry this course out in future over several offerings and

modify its content and structure.

142

CHAPTER 5.

CONCLUSIONS AND CONTRIBUTIONS

 In this thesis work, we carried out research of the intersection of psychology of programming and

computer science education, focusing programming with concurrency. We first identified the barriers to

learning programming with concurrency through three pieces of work: 1) a review of the literature and

proposal of a general conceptual framework for the development and application of programming

expertise, 2) two empirical studies using a combination of qualitative and quantitative methods that

formulate and validate a “misconception hierarchy” that reveals the structure of concurrency-related

knowledge and provides insight into the procedures for acquiring such knowledge, and 3) a case study of

novice versus intermediate knowledge repository demonstrated during the task of implementing a

concurrent program, which provides comprehensive arguments on other non-concurrency-related

knowledge required for learning programming with concurrency. We then conducted explorations in

teaching programming with concurrency through several pieces of work: 1) pair programming: a survey

of previous work, a quasi-experimental study of students performing pair versus solo programming, a

case study on the problem solving procedures of pair and solo programmers provides a comprehensive

discussion of the impact of pair programming from pedagogical, engineering and cognitive perspectives,

which provides insights into pedagogical design and course implementation especially for challenging

topics such as programming with concurrency, and 2) course design: a realization of an upper-level

computer science course that provides feedback about the benefits and drawbacks of various course

materials, organizations, and teaching approaches. Through our discussion of barriers to learning and

explorations in teaching programming with concurrency, this thesis work unifies previous research

143

efforts in teaching and learning programming with a focus on concurrency that meets current trends in

computing and the increasingly prevalent use of concurrency.

 The first contribution of this thesis work is a conceptual framework for the nature of programming

expertise, how such expertise impacts the problem-solving process, and how such expertise is

developed. Specifically, we identify the inter-relationship among three entities in the framework: a

knowledge base, the mental representation of a problem, and external data. We identify the processes

by which 1) both the knowledge base and external data are used to develop and evolve the mental

representation, 2) the problem-solving process employs the evolving mental representation to guide a

search of the knowledge base and for additional data, and 3) the repeated construction and subsequent

internalization of mental representations builds the persistent, structured, and connected knowledge

that is the basis of expertise.

 This thesis work also describes a hierarchical organization of misconceptions exhibited by students

engaged in learning about concurrency and how to program with concurrency; this hierarchical

structure explains the content of and development mechanism for expertise in programming with

concurrency. Specifically, we identify five levels of knowledge (description, terminology, concurrency,

implementation and uncertainty). Our work reveals 1) that a lack of lower level knowledge prevents the

acquisition of higher level knowledge, and 2) that a necessary phase exists in the knowledge acquisition

process in which an apparent mastery of concepts is sacrificed to create a simpler solution space and the

resulting incorrect solution helps the learner to reexamine and reconfirm the correct solution and the

better internalize the related concepts.

 Empirical evidence of student barriers to learning about programming with concurrency is

identified and discussed in this thesis. Specifically, we found that non-concurrency related programming

knowledge and even natural language related knowledge are critical in the problem solving process of

programming concurrent systems.

144

 A comprehensive evaluation of pair programming from pedagogical, engineering and cognitive

perspectives for the development of programming expertise is presented in this thesis work. Specifically,

we found that pair programming helps retain less-experienced and female students as a pedagogical

intervention, encourages all students to write better styled code as an engineering technique, and

stimulates students to devote cognitive effort earlier in the software design phase as a problem solving

practice.

 Several innovative pedagogical techniques are introduced and an evaluation of the benefits and

caveats for using these techniques in teaching programming with concurrency are discussed in this

thesis work. Specifically, we found the benefits of repeated programming practice in developing

expertise but proposed the use of conceptually-identical-superficially-different problems to remedy the

issue of potential discouragement caused by repeatedly practicing with the same problem. We also

developed a recommendation for integration of teaching programming of concurrent systems into

different computer science courses to better meet the needs of students with different levels of

expertise.

 A comparison of three distinct approaches to concurrency, based on empirical studies with popular

programming languages is produced in this thesis work. Specifically, we found that although the Actors

approach is reported to be easier for implementation and comprehension tasks, the familiarity of the

Java language drives the students’ choice to use Threads approach. We also found that students exhibit

a poor mastery of the Coroutines approach, likely due to the dominance of the subroutine paradigm in

their prior experience.

 An extended pseudocode system is suggested and an evaluation of its use is also carried out in this

thesis work. Specifically, we extended a pseudocode system to cover concurrency related concepts of

both shared memory and message passing models and used it to test students’ comprehension of

concurrency concepts independently of any programming language. We evaluated and identified

145

caveats of imperfect syntactic design and the lack of a compiler for this pseudocode system during its

usage in implementation and comprehension tasks.

 Based on our thesis work, we propose following tracks of future work:

1. Further exploration of the validity and refinement of the conceptual framework. Through our

literature review, much research effort has been devoted to studying the observable behaviors (how

programmers search and fetch data), but less has been devoted to studying the invisible “behaviors”

(how programmers access and retrieve knowledge) and the knowledge internalization procedures.

Interdisciplinary work with cognitive scientists and psychologists would be appropriate.

2. A further understanding of knowledge acquisition procedures in programming and other domains

and a more general understanding of knowledge accumulation and expertise development is

needed. Specifically, we suspect that initial knowledge interferes with and or promotes the future

knowledge building procedures as the knowledge base shapes the mental model which is in turn

internalized into further knowledge. Therefore, towards the development of general programming

expertise, it would be interesting to study the impact of choice of first programming language,

programming paradigms and programming problems. Also, it is valuable to propose a knowledge

acquisition hierarchy for learning of general programming knowledge.

3. A further study and empirical evidence on the cognitive impact of pair programming are needed.

Specifically, it would be interesting to compare the evolution of the mental representations on a

given problem but with two different knowledge bases, from the cognition and psychology

perspectives. It would also be interesting to investigate the applications of such cognitive impact in

the management, organization and education fields.

4. Innovations and refinements of pedagogical techniques and course designs on teaching

programming with concurrency, moving forward. These research efforts will provide valuable

146

feedbacks not only from the educational perspective, but may also provide insights into human

cognition and learning procedures.

147

REFERENCES

Adelson, B., 1981. Problem Solving and the development of abstract categories in programming

languages. Memory & Cognition, 9(4), pp. 422-433.

Adelson, B., 1984. When Novices Surpass Experts: The Difficulty of a Task May Increase With Expertise.

Journal of Experimental Psychology, 10(3), pp. 483-495.

Adelson, B. & Soloway, E., 1985. The Role of Domain Expenence in Software Design. Software

Engineering, IEEE Transactions on, Volume SE-11, pp. 1351-1360.

Ahmadzadeh, M., Elliman, D. & Higgins, C., 2005. An Analysis of Patterns of Debugging Among Novice

Computer Science Students. Monte de Caparica, Portugal, ACM, pp. 84-88.

Ball, L. J. & Ormerod, T. C., 1995. Structured and opportunistic processing in design: a critical discussion.

Int. J. Human-Computer Studies, July, 43(1), pp. 131-151.

Ball, T. et al., 2010. Preemption Sealing for Efficient Concurrency Testing. Volume 6015, pp. 420-434.

Barnard, G. A., 1945. A New Test for 2 × 2 Tables. Nature, 12, 156(3974), pp. 783-784.

Barnard, G. A., 1947. SIGNIFICANCE TESTS FOR 2 × 2 TABLES. Biometrika, Volume 34, pp. 123-138.

Barney, B., 2013. Message Passing Interface (MPI). [Online]

Available at: https://computing.llnl.gov/tutorials/mpi/

Barney, B., 2013. OpenMP. [Online]

Available at: https://computing.llnl.gov/tutorials/openMP/

Bergmann, J. & Sams, A., 2012. Flip Your Classroom: Reach Every Student in Every Class Every Day.

s.l.:International Society for Technology in Education.

Boehm-Davis, D. A., Holt, R. W. & Schultz, A. C., 1992. The Role of Program Structure in Software

Maintenance. Int. J. Man-Mach. Stud., January, 36(1), pp. 21-63.

Bonar, J. & Soloway, E., 1985. Preprogramming knowledge: a major source of misconceptions in novice

programmers. Hum.-Comput. Interact., June, 1(2), pp. 133-161.

Braught, G., Eby, L. M. & Wahls, T., 2008. The effects of pair-programming on individual programming

skill. SIGCSE Bull., mar, Volume 40, pp. 200--204.

Braught, G., Wahls, T. & Eby, L. M., 2011. The Case for Pair Programming in the Computer Science

Classroom. Trans. Comput. Educ., feb, Volume 11, pp. 2:1--2:21.

148

Brooks, R., 1983. Towards a Theory of the Comprehension of Computer Programs. Int'l J. Man-Machine

Studies, Volume 18, pp. 543-554.

Carver, J. C. et al., 2007. Increased Retention of Early Computer Science and Software Engineering

Students Using Pair Programming. Software Engineering Education and Training, Conference on, Volume

0, pp. 115-122.

Cassel, L. et al., 2008. Current Curricula -- Association for Computing Machinery. [Online]

Available at: http://www.acm.org/education/curricula/ComputerScience2008.pdf

Chase, W. C. & Simon, H. A., 1973. Perception in Chess. Cognitive Psychology, Volume 4, pp. 55-81.

Conway, M. E., 1963. Design of a separable transition-diagram compiler. Commun. ACM, jul, Volume 6,

pp. 396--408.

Corritore, C. L. & Wiedenbeck, S., 1999. Mental representations of expert procedural and object-

oriented programmers in a software maintenance task. Int. J. Hum.-Comput. Stud., January, 50(1), pp.

61-83.

Corritore, C. L. & Wiedenbeck, S., 2001. An exploratory study of program comprehension strategies of

procedural and object-oriented programmers. Int. J. Hum.-Comput. Stud., January, 54(1), pp. 1--23.

Crowston, K. & Kammerer, E. E., 1998. Coordination and collective mind in software requirements

development. IBM Systems Journal, 37(2), pp. 227-245.

Curtis, B. et al., 1986. Software psychology: The need for an interdisciplinary program. Proceedings of

the IEEE, Volume 74, pp. 1092-1106.

de Mour, A. L. & Ierusalimschy, R., 2004. Revisiting Coroutines, s.l.: s.n.

Edwards, A. W. F., 1963. The Measure of Association in a 2 × 2 Table. Journal of the Royal Statistical

Society. Series A (General), 126(1), pp. 109-114.

Eisenstadt, M., 1993. Tales of Debugging from The Front Lines. s.l., s.n., pp. 86-112.

Ferguson, C. J., 2009. An effect size primer: A guide for clinicians and researchers.. Professional

Psychology: Research and Practice, Volume 40, pp. 532--538.

Fisher, R. A., 1922. On the Interpretation of χ2 from Contingency Tables, and the Calculation of P.

Journal of the Royal Statistical Society, jan, Volume 85, pp. 87--94.

Fitzgerald, S. et al., 2008. Debugging: finding, fixing and flailing, a multi-institutional study of novice

debuggers. Computer Science Education, 18(24), pp. 93-116.

Fix, V., Wiedenbeck, S. & Scholtz, J., 1993. Mental representations of programs by novices and experts.

New York, NY, ACM, pp. 74-79.

149

Fleming, S. D. et al., 2008. Refining Existing Theories of Program Comprehension During Maintenance for

Concurrent Software. Amsterdam, Netherlands, IEEE Computer Society, pp. 23--32.

Fleming, S. D. et al., 2008. A study of student strategies for the corrective maintenance of concurrent

software. Leipzig, Germany, ACM, pp. 759-768.

Gilgun, J. F., 1992. Definitions, methodologies, and methods in qualitative family research. In: J. F.

Gilgun, K. Daly & G. Handel, eds. Qualitative methods in family research. Thousand Oaks, CA, US: Sage

Publications, Inc., pp. 22-39.

Gilmore, D. J. & Green, T. R. G., 1984. Comprehension and recall of miniature programs. Int. J. Man-

Machine Studies, Volume 21, pp. 31-48.

Gilmore, D. J. & Green, T. R. G., 1988. Programming Plans and Programming Expertise. THE QUARTERLY

JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 40A(3), pp. 423-442.

Gligoric, M., Jagannath, V. & Marinov, D., 2010. MuTMuT: Efficient Exploration for Mutation Testing of

Multithreaded Code. s.l., s.n., pp. 55-64.

Gould, J. D., 1975. Some psychological evidence on how people debug computer programs. International

Journal of Man-Machine Studies, March, 7(2), pp. 151-182.

Gould, J. D. & Drongowski, P., 1974. An Exploratory Study of Computer Program Debugging. Human

Factors: The Journal of the Human Factors and Ergonomics Society, June, 16(3), pp. 258-277.

Gray, W. D. & Anderson, J. R., 1987. Change-Episodes in Coding: When and How Do Programmers

Change Their Codes?. In: G. M. Olson, S. Sheppard & E. Soloway, eds. Empirical Studies of Programmers:

Second Workshop. Norwood, NJ: Ablex Publishing Corp., pp. 185--197.

Gugerty, L. & Olson, G. M., 1986. Comprehension differences in debugging by skilled and novice

programmers. In: E. Soloway & S. Iyengar, eds. Empirical Studies of Programmers. Norwood, NJ: Ablex

Publishing Corp., pp. 13--27.

Guindon, R., 1990. Designing the design process: exploiting opportunistic thoughts. Hum.-Comput.

Interact., jun, Volume 5, pp. 305--344.

Guindon, R., 1990. Knowledge exploited by experts during software system design. Int. J. Man-Manchine

Studies, September, 33(3), pp. 279-304.

Guindon, R., Krasner, H. & Curtis, B., 1987. Breakdowns and Processes During the Early Activities of

Software Design by Professional. In: G. M. Olson, S. Sheppard & E. Soloway, eds. Empirical Studies of

Programmers: Second Workshop. Norwood, NJ: Ablex Publishing Corp., pp. 65-82.

Hanks, B., McDowell, C., Draper, D. & Krnjajic, M., 2004. Program quality with pair programming in CS1.

SIGCSE Bull., jun, Volume 36, pp. 176--180.

150

Hart, S. & Staveland, L. E., 1988. Development of NASA-TLX (Task Load Index): results of empirical and

theoretical research. In: P. A. N. Hancock, ed. Human Mental Workload. s.l.:Amsterdam, North-Holland,

pp. 139-183.

Herbsleb, J. D. & Grinter, R. E., 1999. Architectures, Coordination, and Distance: Conway's Law and

Beyond. IEEE Software, September, 16(5), pp. 663-70.

Herlihy, M. & Moss, J. E., 1993. Transactional memory: architectural support for lock-free data

structures. SIGARCH Comput. Archit. News, may, Volume 21, pp. 289--300.

Hewitt, C., 2010. Actor Model of Computation. Arxiv preprint arXiv10081459, pp. 1-29.

Hieb, R. & Dybvig, R. K., 1990. Continuations and concurrency. SIGPLAN Not., feb, Volume 25, pp. 128--

136.

Hollan, J., Hutchins, E. & Kirsh, D., 2000. Distributed Cognition: Toward a New Foundation for Human-

Computer Interaction Research. ACM Transaction on Computer-Human Interaction, Jun, 7(2), pp. 174-

196.

Holt, R. W. & Boehm-Davis, D. A., 1987. Mental Representations of Programs for Student and

Professional Programmers. Empirical studies of programmers: second workshop, pp. 33--46.

Jeffries, R., Turner, A., Polson, P. & Atwood, M., 1981. The process involved in designing software. In:

s.l.:Lawrence Erlbaum, pp. 255--283.

Kant, E., 1985. Understanding and Automating Algorithm Design. IEEE Trans. Softw. Eng., nov, Volume

11, pp. 1361--1374.

Katz, I. R. & Anderson, J. R., 1987-1988. Debugging: An Analysis of Bug-Location Strategies. Human

Computer Interaction, Volume 3, pp. 351-399.

Knuth, D. E., 1981. Seminumerical Algorithms. s.l.:Addison-Wesley.

Ko, A., Aung, H. & Myers, B., 2005. Eliciting Design Requirements for Maintenance-Oriented IDEs: A

Detailed Study of Corrective and Perfective Maintenance Tasks. s.l., s.n., pp. 126-135.

Ko, A. J. et al., 2011. The state of the art in end-user software engineering. ACM Comput. Surv., April,

Volume 43, pp. 21:1--21:44.

Ko, A. J., Myers, B. A., Coblenz, M. J. & Aung, H. H., 2006. An Exploratory Study of How Developers Seek,

Relate, and Collect Relevant Information during Software Maintenance Tasks. IEEE Trans. Softw. Eng.,

December, 32(12), pp. 971-987.

Lamport, L., 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, jul,

Volume 21, pp. 558--565.

Larson, J., 2009. Erlang for concurrent programming. Commun. ACM, mar, Volume 52, pp. 48--56.

151

LaToza, T. D., Garlan, D., Herbsleb, J. D. & Myers, B. A., 2007. Program comprehension as fact finding.

Dubrovnik, Croatia, ACM, pp. 361-370.

LaToza, T. D. & Myers, B. A., 2010. Developers ask reachability questions. Cape Town, South Africa, ACM,

pp. 185-194.

LaToza, T. D., Venolia, G. & DeLine, R., 2006. Maintaining mental models: a study of developer work

habits. Shanghai, China, ACM.

Lawrance, J. et al., 2013. How Programmers Debug, Revisited: An Information Foraging Theory

Perspective. IEEE Transactions on Software Engineering., Feb, 39(2), pp. 197-215.

Leontjev, A., 1978. Activity, Consciousness, and Personality. s.l.:Prentice-Hall.

Lesani, M. & Palsberg, J., 2011. Communicating memory transactions. SIGPLAN Not., feb, Volume 46, pp.

157--168.

Letovsky, S., 1986. Cognitive processes in program comprehension. In: E. Soloway & S. Iyengar, eds.

Empirical Studies of Programmers. Norwood, NJ: Ablex Publishing Corp., pp. 58--79.

Letovsky, S., Pinto, J., Lampert, R. & Soloway, E., 1987. A Cognitive Analysis of a Code Inspection. In: G.

M. Olson, S. Sheppard & E. Soloway, eds. Empirical Studies of Programmers: Second Workshop.

Norwood, NJ: Ablex Publishing Corp..

Levesque, L. L., Wilson, J. M. & Wholey, D. R., 2001. Cognitive divergence and shared mental models in

software development project teams. Journal of Organizational Behavior, March, 22(SI), pp. 135-144.

Lindholm, T., Yellin, F., Bracha, G. & Buckley, A., 2013. The Java® Virtual Machine Specification. [Online]

Available at: The Java® Virtual Machine Specification

Littman, D. C., Pinto, J., Letovsky, S. & Soloway, E., 1987. Mental models and software maintenance. J.

Syst. Softw., December, 7(4), pp. 341--355.

Marlin, C. D., 1980. Coroutines: A Programming Methodology, a Language Design and an

Implementation. s.l.:Springer.

Matthijssen, N. et al., 2010. Connecting Traces: Understanding Client-Server Interactions in Ajax

Applications. s.l., s.n., pp. 216-225.

McCauley, R. et al., 2008. Debugging: a review of the literature from an educational perspective.

Computer Science Education, 18(2), pp. 67-92.

McDowell, C., Hanks, B. & Werner, L., 2003. Experimenting with pair programming in the classroom.

SIGCSE Bull., jun, Volume 35, pp. 60--64.

McDowell, C., Werner, L., Bullock, H. .. & Fernald, J., 2006. Pair programming improves student

retention, confidence, and program quality. Commun. ACM, aug, Volume 49, pp. 90--95.

152

McDowell, C., Werner, L., Bullock, H. E. & Fernald, J., 2003. The impact of pair programming on student

performance, perception and persistence. Washington, DC, USA, IEEE Computer Society, pp. 602--607.

Mckeithen, K. B. & Reitman, J. S., 1981. Knowledge Organization and Skill Differences in Computer

Programs. Cognitive Psychology, Volume 13, pp. 307-325.

Mendes, E., Al-Fakhri, L. B. & Luxton-Reilly, A., 2005. Investigating pair-programming in a 2nd-year

software development and design computer science course. SIGCSE Bull., jun, Volume 37, pp. 296--300.

Mendes, E., Al-Fakhri, L. & Luxton-Reilly, A., 2006. A replicated experiment of pair-programming in a

2nd-year software development and design computer science course. SIGCSE Bull., jun, Volume 38, pp.

108--112.

Meredith, A., 2009. N2869 State of C++ Evolution (Post San Francisco 2008). [Online]

Available at: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2869.html

Moher, T. & Schneider, G. M., 1982. Methodology and experimental research in software engineering.

International Journal of Man-Machine Studies, January, 16(1), pp. 65-87.

Nagappan, N. et al., 2003. Improving the CS1 experience with pair programming. SIGCSE Bull., jan,

Volume 35, pp. 359--362.

Nanja, M. & Cook, C. R., 1987. An Analysis of the On-Line Debugging Process. In: G. M. Olson, S.

Sheppard & E. Soloway, eds. Empirical Studies of Programmers: Second Workshop. Norwood, NJ: Ablex

Publishing Corp., pp. 172-184.

Nistor, A. et al., 2012. Ballerina: Automatic generation and clustering of efficient random unit tests for

multithreaded code. s.l., s.n., pp. 727-737.

OHara, J., 2007. Toward a Commodity Enterprise Middleware. Queue, may, Volume 5, pp. 48--55.

Olszewski, M., Ansel, J. & Amarasinghe, S., 2009. Kendo: efficient deterministic multithreading in

software. SIGPLAN Not., mar, Volume 44, pp. 97--108.

Oracle, 2009. Lesson: Concurrency (The Java Tutorials > Essential Classes). [Online]

Available at: http://docs.oracle.com/javase/tutorial/essential/concurrency/

Oracle, 2013. The Java® Virtual Machine Specification. [Online]

Available at: http://docs.oracle.com/javase/specs/jvms/se7/html/index.html

Parnin, C. & Rugaber, S., 2011. Resumption strategies for interrupted programming tasks. Software

Quality Control, March, 19(1), pp. 5-34.

Parnin, C. & Rugaber, S., 2012. Programmer Information Needs After Memory Failure. Passan, Germany,

IEEE Computer Society, pp. 123-132.

153

Pauli, W. & Soffa, M. L., 1980. Coroutine behaviour and implementation. Software: Practice and

Experience, Volume 10, pp. 189--204.

Pea, R. D., 1986. Language-independent conceptual "bugs" in novice programming. Journal of

Educational Computing Research, 2(1), pp. 25-36.

Pennington, N., 1987. Comprehension Strategies in Programming. In: G. M. Olson, S. Sheppard & E.

Soloway, eds. Empirical Studies of Programmers: Second Workshop. Norwood, NJ: Ablex Publishing

Corp., pp. 100-113.

Pennington, N., 1987. Stimulus structures and mental representations in expert comprehension of

computer programs. Cognitive Psychology, Volume 19, pp. 295 - 341.

Pennington, N., Lee, A. Y. & Rehder, B., 1995. Cognitive Activities and Levels of Abstraction in Procedural

and Object-Oriented Design. Human-Computer Interaction, 10(2-3), pp. 171-226.

Perkins, D. N. & Martin, F., 1986. Fragile knowledge and neglected strategies in novice programmers. In:

E. Soloway & I. Sitharama, eds. Empirical Studies of Programmers. Norwood, NJ: Ablex Publishing Corp.,

pp. 213--229.

Pirolli, P. & Card, S., 1999. Information Foraging. Psychology Review, 106(4), pp. 643-675.

Porter, A. A., Siy, H. P. & Votta, L. G., 1997. Understanding the effects of developer activities on

inspection interval. Boston, MA, USA, ACM, pp. 128-138.

Prasad, S. K. et al., 2012. NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed Computing –

Core Topics for Undergraduates. [Online]

Available at: http://www.cs.gsu.edu/~tcpp/curriculum/sites/default/files/NSF-TCPP-curriculum-

version1.pdf

Preston, D., 2006. Using collaborative learning research to enhance pair programming pedagogy. SIGITE

Newsl., jan, Volume 3, pp. 16--21.

Ramalingam, V. & Wiedenbeck, S., 1997. An empirical study of novice program comprehension in the

imperative and object-oriented styles. s.l., ACM, pp. 124--139.

Rigby, P. C., German, D. M. & Storey, M.-A. D., 2008. Open Source Software Peer Review Practices: A

Case Study of the Apache Server. Leipzig, Germany, ACM, pp. 541-550.

Rist, R. S., 1986. Plans in programming: definition, demonstration, and development. In: E. Soloway & S.

Iyengar, eds. Empirical Studies of Programmers. Norwood, NJ: Ablex Publishing Corp., pp. 28--47.

Rist, R. S., 1989. Schema Creation in Programming. Cognitive Science, September, 13(3), pp. 389-414.

Rist, R. S., 1990. Variability in program design: the interaction of process with knowledge. Int. J. Man-

Machine Studies, Volume 33, pp. 305-322.

154

Rist, R. S., 1991. Knowledge Creation and Retrieval in Program Design: A Comparison of Novice and

Intermediate Student Programmers. Human Computer Interaction, Volume 6, pp. 1-46.

Robillard, M. P., Coelho, W. & Murphy, G. C., 2004. How Effective Developers Investigate Source Code:

An Exploratory Study. IEEE Trans. Softw. Eng., December, 30(12), pp. 889-903.

Robins, A., Rountree, J. & Rountree, N., 2003. Learning and teaching programming: A review and

discussion. Computer Science Education, 13(2), pp. 137-172.

Romero, P., du Boulay, B., Cox, R. & Lutz, R., 2003. Java debugging strategies in multi-representational

environments. s.l., s.n., pp. 421-435.

Romero, P., Lutz, R., Cox, R. & du Boulay, B., 2002. Co-ordination of multiple external representations

during Java program debugging. s.l., s.n., pp. 207-214.

Sahami, M. et al., 2013. Computer Science Curricula 2013. [Online]

Available at: http://ai.stanford.edu/users/sahami/CS2013/ironman-draft/cs2013-ironman-v1.0.pdf

Salleh, N., Mendes, E. & Grundy, J., 2011. Empirical Studies of Pair Programming for CS/SE Teaching in

Higher Education: A Systematic Literature Review. IEEE Transactions on Software Engineering, July-Aug,

37(4), pp. 509 -- 525.

Sax, L. J., n.d. Examining the Underrepresentation of Women in STEM Fields: Early Findings from the Field

of Computer Science. s.l.:s.n.

Schneiderman, B., 1977. Measuring computer program quality and comprehension. Int. J. Man-Machine

Studies, Volume 9, pp. 465-478.

Schneiderman, B., 1986. Empirical studies of programmers: The territory, paths, and destinations,

Keynote address for workshop. In: E. Soloway & R. Iyengar, eds. Empirical Studies of Programmers.

Norwood, NJ: Ablex Publishers, pp. 1-12.

Scholtz, J. & Wiedenbeck, S., 1992. The role of planning in learning a new programming language. Int. J.

Man-Machine Studies, August, 37(2), pp. 191-214.

Scholtz, J. & Wiedenbeck, S., 1993. Using unfamiliar programming languages: the effects on expertise.

Interacting with Computers, March, 5(1), pp. 13-30.

Sheil, B. A., 1981. The Psychological Study of Programming. ACM Comput. Surv., March, 13(1), pp. 101--

120.

Shneiderman, B., 1976. Exploratory experiments in programmer behavior. International Journal of

Parallel Programming, 5(2), pp. 123-143.

Shneiderman, B. & Mayer, R., 1979. Syntactic/Semantic Interactions in Programmer Behaviror: A Model

and Experimental Results. Int'l J. Computer and Information Sciences, 8(3), pp. 219-238.

155

Sillito, J., Murphy, G. C. & De Volder, K., 2006. Questions programmers ask during software evolution

tasks. Portland, OR, ACM, pp. 23-34.

Sillito, J., Murphy, G. C. & De Volder, K., 2008. Asking and Answering Questions during a Programming

Change Task. IEEE Trans. Softw. Eng., July, 34(4), pp. 434--451.

Sillito, J., Volder, K. D., Fisher, B. & Murphy, G. C., 2005. Managing software change tasks: An

exploratory study. Noosa Heads, Australia, IEEE Computer Society, pp. 23-32.

Simon, H. A., 1973. The Structure of Ill Structured Problems. Artif. Intell., pp. 181-201.

Soloway, E., Adelson, B. & Ehrlich, K., 1988. Knowledge and Processes in the Comprehension of

Computer Programs. In: M. Chi, R. Glaser & M. Farr, eds. The Nature of Expertise. Hillsdale, NJ: A.

Lawrence Erlbaum Associates, pp. 129-152.

Soloway, E. & Ehrlich, K., 1984. Empirical Studies of Programming Knowledge. Software Engineering,

IEEE Transactions on, Volume SE-10, pp. 595-609.

Storey, M.-A. D., 2005. Theories, Methods and Tools in Program Comprehension: Past, Present and

Future. St. Louis, MI, IEEE Computer Society, pp. 181-191.

Strauss, A. & Juliet, C., 1994. Handbook of qualitative research. s.l.:Sage Publications.

Suchman, L., 1987. Plans and Situated Actions: The Problem of Human-Machine Communication.

s.l.:Cambridge University Press.

Taylor, S. J. & Bogdan, R., 1984. Introduction to Qualitative Research Methods: The Search for Meaning.

s.l.:John Wiley & Sons Inc..

Tew, A. E. & Guzdial, M., 2011. The FCS1: a language independent assessment of CS1 knowledge. s.l.,

ACM, pp. 111--116.

Thomas, G. & James, D., 2006. Reinventing grounded theory: some questions about theory, ground and

discovery. British Educational Research Journal, 32(6), pp. 767-795.

Trujillo-Ortiz, A., Hernandez-Walls, R., Castro-Perez, A. & Rodriguez-Cardozo, L., 2004. [Online]

Available at: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=6198

van Rossum, G. & Eby, P. J., 2005. [Online]

Available at: http://www.python.org/dev/peps/pep-0342/

Vessey, I., 1985. Expertise in debugging computer programs: A process analysis. Int. J. Man-Machine

Studies, Volume 23, pp. 459-494.

Vessey, I., 1986. Expertise in debugging computer programs: an analysis of the content of verbal

protocols. IEEE Trans. Syst. Man Cybern., September, 16(5), pp. 621--637.

156

Visser, W., 1987. Strategies in Programming Programmable Controllers: A Field Study on a Professional

Programmer. In: G. M. Olson, S. Sheppard & E. Soloway, eds. Empirical Studies of Programmers: Second

Workshop. Norwood, NJ: Ablex Publishing Corp., pp. 217-230.

Visser, W., 1994. Organisation of design activities: opportunistic, with hierarchical episodes. Interacting

with Computers, 6(3), pp. 235-238.

Weinberger, B. et al., 2010. Google C++ Style Guide. [Online]

Available at: http://smacked.org/docs/cpp_style_google.pdf

Werner, L. L., Hanks, B. & McDowell, C., 2004. Pair-programming helps female computer science

students. J. Educ. Resour. Comput., mar.Volume 4.

Wiedenbeck, S., 1986. Processes in computer program comprehension. In: E. Soloway & S. Iyengar, eds.

Empirical Studies of Programmers. Norwood, NJ: Ablex Publishing Corp., pp. 48-57.

Wiedenbeck, S., Fix, V. & Scholtz, J., 1993. Characteristics of the Mental Representations of Novice and

Expert Programmers: An Empirical Study. Int. J. Man-Mach. Stud., November, 39(5), pp. 793-812.

Williams, L. & Kessler, R. R., 2002. Pair Programming Illuminated. s.l.:Addison-Wesley Longman

Publishing Co., Inc..

Williams, L., Kessler, R. R., Cunningham, W. & Jeffries, R., 2000. Strengthening the Case for Pair

Programming. IEEE Softw., jul, Volume 17, pp. 19--25.

Williams, L. et al., 2003. Building Pair Programming Knowledge through a Family of Experiments.

Washington, DC, USA, IEEE Computer Society, pp. 143--152.

Ye, N. & Salvendy, G., 1996. An objective approach to exploring skill differences in strategies of

computer program comprehension. Behaviour & Information Technology, May, 15(3), pp. 139-147.

157

CHAPTER 6.

APPENDIX

6.1 DATA AND ANALYSIS PROCESSES

 Data analysis processes of case study described in section 3.3.

TABLE 48 BEHAVIORS, GOALS AND KNOWLEDGE REPOSITORY OF INTERMEDIATE SUBJECT

Behavior Goal Knowledge Solid or Fragile

RedCar.java (BlueCar.java)

declare run() method implement necessary interface method
run() method is required for a class
implements Runnable interface

implement constructor method by
assignment of passed in bridge
object

implement constructor of a thread class
according to monitor pattern

with monitor pattern, threads are
constructed with corresponding
monitor objects

add comment “red car is 1”
figure out whether distinction needs to be
made between different thread types

with monitor pattern, threads
distinguish themselves by calling
different monitor methods

modify comment to “red car is 0”

remove comment “red car is 0”

call bridge.redEnter() and
bridge.redExit() in run() method

implement run() method according to monitor
model

add Thread.sleep(500) between
bridge.redEnter() and
bridge.redExit() calls

add randomization to run() method
complex functionalities should be
implemented after basic
functionalities are guaranteed

modify Thread.sleep() with a
random number generated

correct syntax of random number
generation

re-organize line break

clean up code
good code style is easier for future
comprehension

remove blank line

remove unused class variable

add class variable id ? ?

Bridge.java

implement bridge class <detail
history lost>

implement bridge class according to monitor
pattern

monitor class should implement
methods called correspondingly by
different threads

correct syntax of if statement in
statusCheck() method

Syntax modification <most probably due to
compilation errors>

Java compilation errors and their
corresponding meanings

add event value reset and
corresponding comment in if
statement in statusCheck() method

increase event count after every event and
print out statusCheck messages according to
number of event since last print of
statusCheck messages

code pattern of continuously
incrementing a counter to control
the occurrence of some function
based on a preset interval

add call of statusCheck() to
redEnter(), blueEnter(), redExit(),
blueExit() methods

add else branch in statusCheck()
method and increase event value
inside it

move event value increment to
beginning of statusCheck() method

158

and remove else branch

change the name of variables
redCarsEntered, blueCarsEntered
to redCarsFinished,
blueCarsFinished

rename variable to a more reasonable name
<these two variables record cars that have
used the bridge according to code comments>

a well chosen variable name helps
future code comprehension

move call of statusCheck() method
to the end of each caller methods

increase event count after event actually
happens instead of before it’s going to happen

codes are executed in sequential
order

add a class variable name redCheck
to hold integers

check whether cars on the bridge are as
expected
<the subject could have used the redCars and
blueCars variables, two queue structure that
also records all red and blue cars on the
bridge, furthermore, only one type of car
should be on bridge at anytime and there’s no
need to keep 4 separate variables to monitor
the usage of bridge>

usage of generic list structure
usage of a global flag to easily turn
on/off code features

add import java.util.LinkedList
statement
remove import java.util.Random
statement
add a class variable name
blueCheck to hold integers

add comment “red cars currently
on the bridge” to redCheck variable
add comment “blue cars currently
on the bridge” to blueCheck
variable

add red cars that polled from red
waiting queue to redCheck list

detailed monitor pattern for each
method being called by threads
the conditional check, execution
and notify pattern

add blue cars that polled from blue
waiting queue to redCheck list
add statement in isAllExit() method
to print content of redCheck and
blueCheck lists

correct the use of redCheck to hold
blue cars polled from blue waiting
queue

add a boolean class variable
“DEBUG” and set it to false

set DEBUG to true

modify redCars.add(id) to
redCars.add(redWaiting.peek())
<redCars also records red cars on
bridge according to comments in
code>
modify blueCars.add(id) to
blueCars.add(blueWaiting.peek())
<blueCars also records blue cars on
bridge according to comments in
code>
remove blank lines

insert if (DEBUG) before all print
statements
add a colon to the start of all
debugging related print statement
<prints not required for the
program output>

modify
redCars.add(redWaiting.peek())) to
redCars.add(id)
<redCars also records red cars on
bridge according to comments in
code>
modify
blueCars.add(blueWaiting.peek())

159

to blueCars.add(id)
<blueCars also records blue cars on
bridge according to comments in
code>
remove blank lines

remove import java.util.ArrayList
statement
remove redCheck and blueCheck
variables
remove redCheck and blueCheck
related print statements
add if (DEBUG) to print statements
of redCar and blueCar variables

RedCar.java (BlueCar.java)

add pass of id argument to
bridge.redEnter() and
bridge.redExit() calls use id to identify car threads calling monitor

methods in bridge
<this is unnecessary, since when monitor
methods are called, an id may be assigned and
returned to each thread through the return
value of monitor methods>

monitor methods may also return
values
data flow of monitor pattern

Bridge.java

Modify println of “Red car “ +
redWaiting.poll() + “enters bridge”
to “Red car “ + id + “enters bridge”
Modify println of “Blue car “ +
blueWaiting.poll() + “enters bridge”
to “Blue car “ + id + “enters bridge”

add while loop and thread waiting
statements to blueEnter() method

implement detailed monitor pattern
<this should be implemented much earlier
without the struggles of monitoring cars with
complex list structures

detailed monitor pattern for each
method being called by threads
the conditional check, execution
and notify pattern

add while loop and thread wait
statements to redEnter() method
add call of notifyAll() to redEnter()
and blueEnter() methods

modify the condition of while loop
surrounded wait statements in
blueEnter() and redEnter() method

exam time up

*lighter gray cells are concurrency-related knowledge which IS captured by misconception hierarchy
*darker gray cells are other programming or non-programming knowledge

160

TABLE 49 BEHAVIORS, GOALS AND KNOWLEDGE REPOSITORY OF NOVICE SUBJECT

Behavior Goal Knowledge Solid or Fragile

BlueCar.java

add blueEnter(), blueExit(), blueWaiting() method
stubs

implement enter, exit and waiting in
thread class

with monitor pattern, actions
happen with monitor object
instead of thread object

Bridge.java

add class variables numBlueOn, numBlueUsed,
numRedOn, numRedUsed, blueQueue, redQueue

implement setters and getters
method for class variables
<this is not quite necessary with
relatively simple design structure of
the single lane bridge problem and
actually the subject declare these
class variables without private
keyword which implicitly make them
protected and therefore, all other
classes within the same package
bridge could access the variables
directly>

in object oriented design,
setters and getters methods
are for private variables to
hide implementation details

add synchronized setters for numBlueUsed,
numRedUsed variables: numBlueUsedPlus(),
numBlueU

add synchronized setters for numBlueOn,
numRedOn, variables: numBlueOnPlus(),
numBlueOnMinus(), numRedOnPlus(),
numRedOnMinus()

add synchronized getters for, numBlueUsed,
numRedUsed variables which simply return values
numBlueOn and numRedOn variables
implement non-synchronized enterBridge(),
exitBridge() methods with boolean variable color,
integer variable id passed into them and a print
statement print out “color + ‘ car ‘ + id + ‘ exits
bridge’”

add synchronized method addBlueCar(),
addRedCar(), removeBlueCar(), removeRedCar()
methods for variable blueQueue, redQueue

BlueCar.java (RedCar.java)

implement blueEnter() with calls of
bridge.blueOnPlus() and bridge.enterBridge(color,
id)
implement blueExit() with calls of
bridge.blueOnMinus(), bridge.blueUsed() and
bridge.exitBridge()

implement enter/exit functions in
thread class so that they change the
state variables of bridge object

with monitor pattern, status
of monitor object should be
changed with monitor class
methods

Bridge.java

pass argument Thread t to addBlueCar() and
addRedCar() methods
return redQueue, blueQueue’s size from
addBlueCar() and addRedCar() methods

record “threads” on bridge
the inheritance relationship
among super class and sub
class in object oriented design

BlueCar.java (RedCar.java)

add call of bridge.popBlueCar() after
bridge.blueUsed() to blueExit() method
add call of bridge.waitBridge(color, id, position) to
blueWaiting()

implement exit/waiting functions in
thread class so that they change the
state variables of bridge object

with monitor pattern, status
of monitor object should be
changed with monitor class
methods

pass the return value of
bridge.addBlueCar(Thread.currentThread()) as
position to call of bridge.waitBridge(color, id,
position)

add package bridge

add package information <probably
due to a failed compilation with other
helping codes defined in bridge
package>

Java compilation errors and
their corresponding meanings

Bridge.java

add package bridge
add package information <probably
due to a failed compilation with other
helping codes defined in bridge

Java compilation errors and
their corresponding meanings

161

package>

add method waitDiff(), calculate totalBlue as the
sum of numBlueOn and numBlueUsed, totalRed
as the sum of numRedOn and numRedUsed, write
if statement to check whether the absolute
difference of totalBlue and totalRed is greater
than class variable waitDiff, if so, call wait() in
waitBridge() method

implement thread waiting condition
<subject mis-understands the
specification of waitDiff, it should be
only compared with the absolute
difference between numRedOn and
numBlueOn according to current code
setting>
<subject mis-implements waiting in a
separate monitor class method>

natural language meaning of
specification

with the monitor pattern,
blocking conditions and
blocking statements should
be implemented in the
synchronized class methods
that modify monitor states

add implementation of previous if statement to
call wait()

add notifyAll() to the end of exitBridge() method

implement notifyAll()
<subject again mis-implement
notifying in a separate monitor class
method>

with the monitor pattern,
notifying should happen after
the variables recording
monitor object state have
been changed

implement constructor by setting passed in values
as initial values of waitDiff and checkFreq
variables

implement constructor
initialize class variables
according to values passed
into constructor

implement statusCheck() method with just two
required print outs

initial implementation of
statusCheck() method
<subject probably do not quite
understand how event intervals
decides the print outs of status as
defined in specification>
<subject may also lack of the
knowledge about how to check
intervals>

natural language meaning of
specification
code pattern of continuously
incrementing a counter to
control the occurrence of
some function based on a
preset interval

BlueCar.java (RedCar.java)

make call of statusCheck() method in blueEnter(),
blueExit() and blueWait() methods

call status check in corresponding
functions
<subjects mis-placed action functions
as mentioned before>
<subject probably decide to delay the
detail implementation of status check
but first just confirm it prints out
something when called>

general strategy of
implementing functions
general knowledge of
function related information
(caller-callee relations, etc.)

Bridge.java

declare an integer class variable statusChecker

<subject probably realizes the
detailed implementation of
statusCheck() method needs some
counter variable>

code pattern of continuously
incrementing a counter to
control the occurrence of
some function based on a
preset interval

add synchronized keyword to enterBridge(),
exitBridge() and waitBridge() methods

<subject probably realizes that these
methods also access class variables
and should be synchronized>

mechanism of race condition
mechanism of synchronized
keyword

add if statement to statusCheck() method so that
only when statusChecker%checkFreq==0, print
outs

implement some detail of
statusCheck() method
<this implementation is wrong since
statusChecker is never increased and
the if statement is always true with
statusChecker’s initial value of 0>

code pattern of continuously
incrementing a counter to
control the occurrence of
some function based on a
preset interval

add else return directly to statusCheck()

162

implement isAllExit method, return true when
sum of numRedUsed and numBlueUsed does not
equal to the passed in total value and false
otherwise

implement isAllExit() method
<subject either mis-understands the
functionality of this method, which is
to check whether all cars sent by
thread generator finish using the
bridge or mis-implements the if
condition>

natural language meaning
programming language
translation of natural
language conditions and
corresponding returns

BlueCar.java (RedCar.java)

implement run() method with calls of
blueWaiting(), blueEnter(), blueExit() methods

implement run() method
<subject’s local implementation of
waiting, enter, exit methods are not
quite necessary considering that most
of them have just one-two lines of
codes>

purpose of organizing local
functions and call hierarchy

Bridge.java

modify generic data structure blueQueue,
redQueue to take BlueCar, RedCar instead of
Thread

<probably due to a compilation error>
the inheritance relationship
among super class and sub
class in object oriented design

BlueCar.java (RedCar.java)

modify to pass this instead of
Thread.currentThread to call of
briedg.addBlueCar()

<tag-along to previous change>

remove the initialization to 0 from the declaration
of id and position class variables

?
variable declaration,
initialization

Bridge.java

modify setter methods blueOnPlus() and
redOnPlus() to increase both numBlueOn,
numBlueUsed variables and numRedOn,
numRedUsed variables

modify setter, getter methods
<subject mistakenly update two
different variables in one setter
method>

in object oriented design,
setters and getters methods
are for private variables to
hide implementation details

BlueCar.java (RedCar.java)

wrap all method calls in run() method with a
while(true) loop

add iteration to run() method
<this is not necessary since the
helping code generates car threads to
simulate multiple cars, each thread
object in this system emulates just
one car that never comes back>

thread may be defined to
have recurring actions or not
initialization of thread object

Bridge.java

change notifyAll() to notify() in exitBridge()
method

?
functionality of and
differences between notify
and notifyAll statements

BlueCar.java (RedCar.java)

import java.util.Random
initialize a random generator in run() method
use random generator to generate a random
waitTime, bridgeTime
call Thread.currentThread() and
Thread.sleep(waitTime) between redWaiting and
redEnter()
call Thread.currentThread() and
Thread.sleep(bridgeTime) between redEnter() and
redExit()
change bridgeTime to a fixed number

add randomization to implementation
of run() method

complex functionalities
should be implemented after
basic functionalities are
guaranteed

change comment “true=red – false=red” to
“true=red – false=blue” in RedCar.java only

correct comment contradiction
modify variable value according to
comment
<subject makes incorrect assignment

programming language
translation of natural
language conditions and
corresponding returns

set variable color to false in RedCar.java

163

to color variable>

modify range of random number waitTime ? ?

Bridge.java

add boolean class variable carOn and comment
“True=red – False=blue”
change notify() to notifyAll() in exitBridge()
method
declare and implement an onBridge() method to
set carOn variable according to numBlueOn and
numRedOn’s values

implement onBridge() method to
check the type of car on bridge
change notify to notifyAll
<subject does not need to declare a
class variable for the purpose of
implement an onBridge() method>

functionality of and
differences between notify
and notifyAll statements

code pattern of a function
that checks value of some
variables
code pattern of using existed
class variable to return some
other value

modify onBridge() method to directly return a
boolean value instead of setting value of carOn
variable

modify onBridge() method
remove class variable carOn
add a local boolean variable carOn to onBriedg()
method
modify onBridge() method to set the value of local
carOn variable and then return its value

BlueCar.java

comment out the use of random sleep in run()
methods

<subject probably realizes that
randomization causes difficulty to
test>

complex functionalities
should be implemented after
basic functionalities are
guaranteed

RedCar.java

modify run() method to call redEnter() first, then
check whether return value of bridge.onBridge()
equals false, if so, call bridge.waitDiff(), then
redEnter() again

coordinate thread waiting through
the use of onBridge() method in
thread class

with monitor pattern,
thread’s activity are
coordinated by methods
defined in monitor class change previous check condition to whether

return value of bridge.onBridge() equals true

comment out and then remove the use of random
sleep in run() methods

<subject probably realizes that
randomization causes difficulty to
test>

complex functionalities
should be implemented after
basic functionalities are
guaranteed

Bridge.java

remove all methods except constructor and
isAllExit()
remove implementation of isAllExit() method
remove all class variables except waitDiff,
checkFreq, numBlueOn, numBlueUsed,
numRedOn, numRedUsed, which are all integers

give up previous design monitor pattern

rename numRedUsed to numRedOff,
numBlueUsed to numBlueOff

rename variable
variables name should reflect
their functionality

add method declaration of synchronized
blueEnter(), blueExit(), redEnter(), redExit()
implement redEnter() method with first a while
loop check whether numBlueOn is greater 0 and
call of wait() inside loop, then an increase of
numRedOn and finally a return of numRedOn
value

implement monitor class methods
according to monitor pattern
<subject recall to follow monitor
pattern but still have some difficulties
such as figuring out the condition of
waiting block>

monitor pattern

programming language
translation of natural
language conditions

implement redExit() method with a while loop
check whether numRedOff not equals to
positionVal passed into the method and call of
wait() inside loop

modify the while loop condition in redEnter() to
check whether numBlueOn is greater than 0 or
absolute difference between numRedOn and

164

numBlueOn is greater than waitDiff

modify the while loop condition in redExit to
check whether numRedOff no equals to
positionVal-1

implement blueEnter(), blueExit() methods
according to corresponding red methods
add notify() to the end of all enter exit methods

pass BlueCar object to blueEnter() and blueExit()
methods
implement isAllExit() method, return true if the
passed in total does not equal to the sum of
numRedOn and numBlueOn

modify argument passing data flow in monitor pattern

implement isAllExit() method
<subject takes time to figure out
comparison should be between total
and the sum of numRedOff and
numBlueOff>

natural language meaning of
specification
programming language
translation of natural
language conditions

modify the condition in isAllExit to the sum of
numRedOff and numBlueOff

BlueCar.java (RedCar.java)

restore to the given skeleton version

implement thread class according to
monitor pattern

monitor pattern

implement run() method by first call
bridge.blueEnter(this), record return value of this
call in a variable order and then call
bridge.blueExit(order, this)

add package bridge to RedCar.java

Bridge.java

add package bridge fix compilation errors

Java compilation error and its
meaning add try/catch block to all wait() statements

add print statement about “enter bridge” before
wait() statement in while loop of redEnter()
method

add print statement
<subject is actually try to figure out
the thread behavior with monitor
class methods on whether a car
(thread) entered the bridge before
the call of wait()>

control flow mechanism of
monitor pattern

modify previous print statement to be about
“arrives at waiting position”

remove passing a RedCar object to redEnter()
method

modify passing arguments to monitor
class methods

data flow mechanism of
monitor pattern

add a print statement about “enter bridge” after
increasing numRedOn in redEnter() method

add print statement
control flow mechanism of
monitor pattern

BlueCar.java (RedCar.java)

wrap all method calls in run() method with a
while(true) loop

add iteration to run() method
<this is not necessary as mentioned
before>

thread may be defined to
have recurring actions or not
initialization of thread object

remove passing a BlueCar object to the call of
bridge.blueEnter() in run() method

modify passing arguments to monitor
class methods

data flow mechanism of
monitor pattern

Bridge.java

remove passing a BlueCar object to blueEnter(),
blueExit() methods modify passing arguments to monitor

class methods

data flow mechanism of
monitor pattern

remove passing a RedCar object to redExit()
method

add print statement “Red car enter bridge” in
blueEnter() method

add print statement
<subject add some wrong
statements>

programming language
translation of natural
language conditions

add print statement “red car exits bridge” in
redExit() method
add print statement “blue car exits bridge” in
blueExit() method

restore the previous version with synchronized
getters, setters

give up monitor model and restore
the version with synchronized getters,
setters

general implementation
procedure

monitor pattern

165

BlueCar.java (RedCar.java)

restore the previous version that work with
synchronized getters, setters in Bridge.java

give up monitor model and restore
the version with synchronized getters,
setters

general implementation
procedure

monitor pattern

remove the first call of redEnter()in run() method
in RedCar.java

? ?
remove statements on random sleep
remove call of bridge.waitDiff() in run() method in
RedCar.java

remove call of bridge.onBridge() in run() method
in RedCar.java

Bridge.java

remove declaration and implementation of
onBridge() method

? ?

exam time up

*lighter gray cells are concurrency-related knowledge which IS captured by misconception hierarchy
*darker gray cells are other programming or non-programming knowledge

166

6.2 PROGRAMS USED IN THESIS WORK

import os, shutil, sys, getopt, time, re

def sema_copy(src_dir, dst_dir):

 for top, dirs, files in os.walk(src_dir):

 for nm in files:

 filename = os.path.join(top, nm)

 filetime = time.gmtime(os.path.getmtime(filename))

 if filetime[0] > 2012:

 f = open(filename, 'rU')

 content = f.read()

 # Java concurrency-related files

 if 'Runnable' in content or 'Thread' in content or 'synchronized' in

content:

 cn_match = re.search(r'class\s(?P<classname>[0-9a-zA-Z./_]+)', content)

 if cn_match:

 javaname = cn_match.group('classname') + '.java' + ('_').join(map(str,

filetime[0:5]))

 shutil.copy2(filename, os.path.join(dst_dir, javaname))

 # Scala concurrency-related files

 elif 'Actor' in content:

 cn_match = re.search(r'object\s(?P<objectname>[0-9a-zA-Z./_]+', content)

 if cn_match:

 scalaname = cn_match.group('objectname') + '.scala' +

('_').join(map(str, filetime[0:5]))

 shutil.copy2(filename, os.path.join(dst_dir, scalaname))

 # Python concurrency-related files

 elif 'yield' in content or 'def' in content:

 cn_match = re.search(r'usage=\"\"\"(?P<name>[0-9a-zA-z./]+)', content)

 if cn_match:

 pythonname = cn_match.group('name') + '.py' + ('_').join(map(str,

filetime[0:5]))

 shutil.copy2(filename, os.path.join(dst_dir, pythonname))

 else:

 newname = ('_').join(map(str, filetime[0:5]))

 shutil.copy2(filename, os.path.join(dst_dir, newname))

def parse_arguments(args):

 try:

 (opts, others) = getopt.getopt(args, '', ["src=", "dst="])

 except getopt.GetoptError:

 print 'Invalid arguments.'

 for opt, val in opts:

 if opt in ('--src'):

 src = val

 elif opt in ('--dst'):

 dst = val

 else:

 print 'Invalid option: %s=%s' %(opt, val)

 return (src, dst)

def main():

 (src, dst) = parse_arguments(sys.argv[1:])

 sema_copy(src, dst)

FIGURE 25 PYTHON HISTORY FILE ORGANIZER FOR STUDYING CODE HISTORY

167

import time, os, getopt, sys

def diff_com(src_dir, file_name, start_date, end_date):

 filelist = []

 for top, dirs, files in os.walk(src_dir):

 for nm in files:

 filename = os.path.join(top, nm)

 filetime = time.gmtime(os.path.getmtime(filename))

 name_match = file_name+'_' in filename

 year_match = filetime[0] >= int(start_date[0]) and filetime[0] <=

int(end_date[0])

 month_match = filetime[1] >= int(start_date[1]) and filetime[1] <=

int(end_date[1])

 day_match = filetime[2] >= int(start_date[2]) and filetime[2] <=

int(end_date[2])

 if name_match and year_match and month_match and day_match:

 filelist.append((filetime, filename))

 filelist.sort()

 prev = filelist.pop(0)

 for file in filelist:

 print 'diff -wic %s %s' %(prev[1], file[1])

 prev = filelist.pop(0)

def parse_arguments(args):

 try:

 (opts, others) = getopt.getopt(args, '', ["src=", "name=", "start=", "end="])

 except getopt.GetoptError:

 print 'Invalid arguments.'

 for opt, val in opts:

 if opt in ('--src'):

 src = val

 elif opt in ('--name'):

 name = val

 elif opt in ('--start'):

 start = val.split('-')

 elif opt in ('--end'):

 end = val.split('-')

 else:

 print 'Invalid option: %s=%s' %(opt, val)

 return (src, name, start, end)

def main():

 (src, name, start, end) = parse_arguments(sys.argv[1:])

 diff_com(src, name, start, end)

FIGURE 26 PYTHON CODE HISTORY GENERATOR FOR STUDYING CODE HISTORY

168

import sys, re

def parse_line(line):

 l = line.strip().split()

 name_num_info = l[0]

 conf_info = l[-1]

 cate_info = l[-2]

 msg_info = l[1:-2]

 m = re.search(r'(?P<filename>[0-9a-z./_]+):(?P<linenum>[\d]+):', name_num_info,

re.I)

 if m:

 filename = m.group('filename')

 linenum = m.group('linenum')

 m_lab = re.search(r'(.*)lab(?P<lab>[\d]+)(.*)', filename, re.I)

 if m_lab:

 lab = int(m_lab.group('lab'))

 message = (' ').join(msg_info)

 m_cate = re.search(r'\[(?P<category>.+)\]', cate_info, re.I)

 category = m_cate.group('category')

 m_conf = re.search(r'\[(?P<confidence>[0-5])\]', conf_info, re.I)

 confidence = m_conf.group('confidence')

 print '%s %s %s %s %s %s' %(lab, confidence, category, linenum, message,

filename)

m = re.search(r'(?P<filename>[0-9a-

z./_]+):(?P<linenum>[\d]+):\s:(?P<message>.+)\s\[(?P<category>.+)\]\s\[(?P<confidenc

e>[0-5])\]', line.strip(), re.I)

def parse_file(filename):

 f = open(filename, 'rU')

 for line in f:

 parse_line(line)

def main():

 print 'lab confidence category linenum message filename'

 args = sys.argv[1:]

 parse_file(args[0])

FIGURE 27 PYTHON LINT OUTPUT PARSER FOR STUDYING CODE HEALTH

169

import sys, getopt

def execute_query(filenames, count, labs, confs, cates):

 print 'Query: labs = %s, confidences = %s, categories = %s' %(labs, confs, cates)

 if count:

 count_list = []

 file_list = []

 for filename in filenames:

 occurrence = 0

 f = open(filename, 'rU')

 for line in f:

 l = line.split('\t')

 if l[0] in labs and l[1] in confs:

 for cate in cates:

 if cate in l[2]:

 if l[4] not in file_list:

 file_list.append(l[4])

 occurrence += 1

 if len(file_list) == 0:

 count_list.append((filename, 0))

 else:

 count_list.append((filename, occurrence/len(file_list)))

 file_list = []

 print count_list

 else:

 for filename in filenames:

 f = open(filename, 'rU')

 summary = filename + ':\n'

 for line in f:

 l = line.split()

 if l[0] in labs and l[1] in confs:

 for cate in cates:

 if cate in l[2]:

 summary += line + '\n'

 print summary

def parse_arguments(args):

 try:

 (opts, filename) = getopt.getopt(args, '', ["count", "lab=", "confidence=",

"category="])

 except getopt.GetoptError:

 print 'Invalid arguments.'

 for opt, val in opts:

 if opt in ('--count'):

 count = True

 elif opt in ('--lab'):

 labs = val.split(',')

 elif opt in ('--confidence'):

 confs = val.split(',')

 elif opt in ('--category'):

 cates = val.split(',')

 else:

 print 'Invalid option: %s=%s' %(opt, val)

 return (filename, count, labs, confs, cates)

def main():

 (filenames, count, labs, confs, cates) = parse_arguments(sys.argv[1:])

 execute_query(filenames, count, labs, confs, cates)

FIGURE 28 PYTHON LINT QUERY EXECUTOR FOR STUDYING CODE HEALTH

170

6.3 MATERIALS FROM SPRING 2010 WORK

Demographic Survey
1. Choose your gender

a) male
b) female

2. Choose your current grade
a) Freshman
b) Sophomore
c) Junior
d) Senior
e) Graduate

3. Check courses you have taken or been enrolled in to date from the following list.
 CSCI 1100-1100L Introduction to Personal Computing
 CSCI 1130 Hands-On Programming for Beginners
 CSCI 1210 Computer Modeling and Science
 CSCI 1301-1301L Introduction to Computing and Programming
 CSCI 1302 Software Development
 CSCI 1303H Programming and Software Development (Honors)
 CSCI 1710-1710L Introduction to Computer Science and Computer Systems
 CSCI 1730 Systems Programming
 CSCI 1900 Computer Science Special Topic
 CSCI 2150-2150L Introduction to Computational Science
 CSCI(MATH) 2610 Discrete Mathematics for Computer Science
 CSCI 2670 Introduction to Theory of Computing
 CSCI 2720 Data Structures
 CSCI 3030 Computing, Ethics, and Society
 CSCI 4050/6050 Software Engineering
 CSCI 4070/6070 Introduction to Game Programming
 CSCI 4140/6140 Numerical Methods and Computing
 CSCI 4150/6150 Numerical Simulations in Science and Engineering
 CSCI 4210/6210 Simulation and Modeling
 CSCI 4250/6250 Computer Security
 CSCI 4300 Web Programming
 CSCI 4330/6330 Artificial Intelligence and the Web
 CSCI 4350/6350 Global Information Systems
 CSCI 4370/6370 Database Management
 CSCI 4470/6470 Algorithms
 CSCI 4490/6490 Algorithms for Computational Biology
 CSCI 4500/6500 Programming Languages
 CSCI 4520/6520 Functional Programming
 CSCI(ARTI) 4530/6530 Introduction to Robotics
 CSCI(ARTI) 4540/6540 Symbolic Programming
 CSCI(PHIL) 4550/6550 Artificial Intelligence
 CSCI 4560/6560 Evolutionary Computation and Its Applications
 CSCI 4570/6570 Compilers
 CSCI(MATH)(PHYS) 4612/6612 Introduction to Quantum Computation

171

 (CSCI)MATH 4630/6630 Mathematical Analysis of Computer Algorithms
 (CSCI)MATH 4670/6670 Combinatorics
 (CSCI)MATH 4690/6690 Graph Theory
 CSCI 4720 Computer Architecture and Organization
 CSCI 4730/6730 Operating Systems
 CSCI 4740/6740 Real-Time Systems
 CSCI 4750/6750 VLSI System Design
 CSCI 4760/6760 Computer Networks
 CSCI 4770/6770 Ubiquitous Computing
 CSCI 4780/6780 Distributed Computing Systems
 CSCI 4800/6800 Human-Computer Interaction
 CSCI 4810/6810 Computer Graphics
 CSCI 4830/6830 Virtual Reality
 CSCI 4850/6850 Biomedical Image Analysis
 CSCI 4900/6900 Special Topics in Computer Science
 (CSCI)ENGR 4922 Computer Systems Engineering Design Project
 CSCI 4950/6950 Directed Study in Computer Science
 CSCI 5007/7007 Internship in Computer Science Business/Industry
 CSCI 5080/7080-5080L/7080L Personal Computer System Administration
 CSCI 5310/7310 Web Composing and Scripting
 CSCI 6610 Automata and Formal Languages
 CSCI 6720 Computer Systems Architecture
 (CSCI)ENGR 6922 Computer Systems Engineering Design Project
 CSCI 7000 Master's Research
 CSCI 7005 Graduate Student Seminar
 CSCI 7010 Computer Programming
 CSCI 7100 Technical Report
 CSCI 7300 Master's Thesis
 CSCI 8050 Knowledge-Based Systems
 CSCI 8060 Advanced Software Engineering
 CSCI 8140 Parallel Processing and Computational Science
 CSCI 8150 Advanced Numerical Methods and Scientific Computing
 CSCI 8220 Parallel and Distributed Simulation Systems
 CSCI 8250 Advanced Network and Security Systems
 CSCI 8350 Enterprise Integration
 CSCI 8351 Enterprise Integration Issues
 CSCI 8370 Advanced Database Systems
 CSCI 8380 Advanced Topics in Information Systems
 CSCI 8470 Advanced Algorithms
 CSCI(LING) 8570 Natural Language Processing Techniques
 CSCI 8610 Topics in Theoretical Computer Science
 CSCI(MATH)(PHYS) 8612 Topics in Quantum Computation
 CSCI(PHIL) 8650 Logic and Logic Programming
 CSCI 8710 Computer System Performance Evaluation
 CSCI 8720 Advanced Computer Architecture
 CSCI 8730 Software Systems for Parallel and Distributed Computing
 CSCI 8740 Advanced Topics in Real-Time Systems
 CSCI 8750 Advanced VLSI Systems Design

172

 CSCI 8770 Computer-Aided Design
 CSCI 8780 Advanced Topics in Distributed Systems
 CSCI 8810 Image Processing and Computer Graphics
 CSCI 8820 Computer Vision and Pattern Recognition
 CSCI 8850 Advanced Biomedical Image Analysis
 CSCI(ENGR) 8940 Computational Intelligence
 CSCI(ARTI) 8950 Machine Learning
 CSCI 8990 Research Seminar
 CSCI 9000 Doctoral Research
 CSCI 9005 Doctoral Graduate Student Seminar
 CSCI 9300 Doctoral Dissertation
 Others, please specify

4. Please list up to 3 programming languages that you are most familiar with. For each language,

please say whether you are a novice, intermediate or expert.
-
__
__

5. One estimation of programming experience is based on the total number of lines of code ever
written by a programmer. The DSI LOC (Delivered Source Instructions – Lines of Code)
specification uses the following guidelines:

 Only source lines that are delivered as part of the product are included -- test drivers
and other support software is excluded

 Source lines are created by the project staff -- code created by applications generators
is excluded

 One instruction is one line of code or card image
 Declarations are counted as instructions
 Comments are not counted as instructions

Based on these guidelines how would you classify your programming experience?
a) less than 1,000 LOC
b) more than 1,000 LOC, less than 10,000 LOC
c) more than 10,000 LOC, less than 100,000 LOC
d) more than 100,000 LOC

6. How long have you been programming?
a) less than 1 year
b) 1 – 3 years
c) 4 – 5 years
d) 6 – 10 years
e) more than 10 years

7. Do you have any working experience in industry (internships are not counted)?
a) Yes
b) No, go to question 10

8. How long did you work in industry?
a) less than 3 years
b) 3 – 5 years

173

c) 6 – 10 years
d) more than 10 years

9. What field have you worked in?
a) Research and Development
b) Sales and Marketing
c) Consultant
d) System Maintenance and Customer Services
e) Others, please specify__________________________________

10. Do you have any experience in developing multi-threaded programs (Have you dealt with thread
synchronization, shared objects, deadlock, etc. in developing that software/program)?
a) Yes
b) No, go to question 17

11. How many multi-thread program have you developed or helped to develop?
a) less than 3
b) 3 – 5
c) 6 – 10
d) more than 10

12. How would you describe the total size of the multi-threaded programs you participated in
developing according to DSI LOC specification described in question 6?
a) less than 500 LOC
b) more than 500 LOC, less than 5,000 LOC
c) more than 5,000 LOC, less than 10,000 LOC
d) more than 10,000 LOC

13. What kind of concurrency scenarios have you dealt with in developing multi-threaded programs?
Check all applicable ones.
a) Shared objects
b) Conditional thread synchronization
c) Deadlock
d) Fairness and thread scheduling

14. List the programming packages you’ve used in developing multi-threaded programs.
__
__

15. Do you have experience in developing Object-Oriented multi-thread software/program?
a) Yes
b) No, go to question 17

16. Do you have experience in monitor programming?
a) Yes
b) No

17. Do you have any experience in using modeling languages?
a) Yes
b) No, go to question 23

18. List the modeling languages you’ve used.
__
__

19. Do you have any experience in modeling concurrent software?
a) Yes

174

b) No, go to question 23
20. What modeling languages or notations have you used in modeling concurrent software?

__
__

21. Which modeling language or notation do you find most helpful for understanding the behavior of
concurrent software?
__
__

22. Which modeling language or notation do you find most helpful for implementing and maintaining
concurrent software?
__
__

23. How much do you know about modeling concurrent software?
a) no idea
b) very little
c) some
d) quite a lot

Thanks!

FIGURE 29 DEMOGRAPHIC SURVEYS FOR SPRING 2010 STUDY

175

Concurrency:

http://www.cs.uga.edu/~eileen/Concurrency_tutorials/Concurrency/Concurrency_Quiz/Concurrency
_quiz.html

UML:

http://www.cs.uga.edu/~eileen/Concurrency_tutorials/Modeling/UML_Modeling_quiz/UML_Modelin
g_quiz.html

Implementation:

http://www.cs.uga.edu/~eileen/Concurrency_tutorials/Implementation/Implementation_quiz/Imple
mentation_quiz.html

State Diagram:

http://www.cs.uga.edu/~eileen/Concurrency_tutorials/StateDiagrams/StateDiagram_quiz/StateDiagr
am_quiz.html

Sequence Diagram:

http://www.cs.uga.edu/~eileen/Concurrency_tutorials/SequenceDiagrams/Sequence_quiz/Sequence
_quiz.html

Modeling Concurrency:

http://www.cs.uga.edu/~eileen/Concurrency_tutorials/ModelingConcurrency/ModelingConcurrncy/
Model_Concurrency.html

FIGURE 30 MULTI-MEDIA TUTORIALS FOR SPRING 2010 STUDY

http://www.cs.uga.edu/~eileen/Concurrency_tutorials/Concurrency/Concurrency_Quiz/Concurrency_quiz.html
http://www.cs.uga.edu/~eileen/Concurrency_tutorials/Concurrency/Concurrency_Quiz/Concurrency_quiz.html
http://www.cs.uga.edu/~eileen/Concurrency_tutorials/Modeling/UML_Modeling_quiz/UML_Modeling_quiz.html
http://www.cs.uga.edu/~eileen/Concurrency_tutorials/Modeling/UML_Modeling_quiz/UML_Modeling_quiz.html
http://www.cs.uga.edu/~eileen/Concurrency_tutorials/Implementation/Implementation_quiz/Implementation_quiz.html
http://www.cs.uga.edu/~eileen/Concurrency_tutorials/Implementation/Implementation_quiz/Implementation_quiz.html
http://www.cs.uga.edu/~eileen/Concurrency_tutorials/StateDiagrams/StateDiagram_quiz/StateDiagram_quiz.html
http://www.cs.uga.edu/~eileen/Concurrency_tutorials/StateDiagrams/StateDiagram_quiz/StateDiagram_quiz.html
http://www.cs.uga.edu/~eileen/Concurrency_tutorials/SequenceDiagrams/Sequence_quiz/Sequence_quiz.html
http://www.cs.uga.edu/~eileen/Concurrency_tutorials/SequenceDiagrams/Sequence_quiz/Sequence_quiz.html
http://www.cs.uga.edu/~eileen/Concurrency_tutorials/ModelingConcurrency/ModelingConcurrncy/Model_Concurrency.html
http://www.cs.uga.edu/~eileen/Concurrency_tutorials/ModelingConcurrency/ModelingConcurrncy/Model_Concurrency.html

176

Please answer the questions in order. You may refer to the answers of previous questions, but are not allowed to

modify the previous answers.

I. Single-Lane bridge problem

The Single-Lane Bridge is a typical problem in the study of concurrent system. A bridge over a river is wide

enough to permit only a single lane of traffic. That is, the bridge permits only one-way traffic at any one time. To

simplify this problem, we will define the cars that move from left to right as red cars and those that move from

right to left as blue cars. To avoid a safety violation, only one kind of car is allowed to be on the bridge at a time.

The bridge may be empty or occupied. If occupied, it may contain red cars or may contain blue cars. The bridge

will never contain both red and blue cars at the same time. The bridge is initially empty.

When a car arrives, the bridge may be empty or occupied. If the bridge is empty, the car will enter the bridge. If

the bridge is occupied, it might be occupied by cars of the same color or by cars of the different color. If the

bridge is occupied by a car or cars of the same color as the arriving car, the arriving car may enter the bridge. If

the bridge is occupied by a car or cars of a different color from the arriving car, the arriving car must wait.

Cars exit the bridge in the order in which they entered. The leading car may exit the bridge at any time.

In the implementation of the Single-Lane Bridge, each color of car is implemented as a thread, and the shared

bridge object is implemented as a monitor. Two condition variables okToEnter and okToExit are associated

with this monitor. The basic function for entering and exiting the bridge are redEnter(), redExit(), blueEnter() and

blueExit(). The cars invoke redEnter() or blueEnter() to occupy the bridge and invoke redExit() or blueExit() to

leave it.

Based on the above information, please answer the following questions.

1. Suppose that only two threads exist in the system: redCar1 and redCar2. Suppose further that redCar1 has

invoked the redEnter() method, and has returned. A context switch occurs and the redCar2 thread starts to run.

Which of the following event sequences could happen next?

Circle YES if the sequence is possible; otherwise, circle NO.

Then please provide a brief explanation of your reasoning.

(a) redCar2 invokes redEnter(), then returns.

 YES NO

 Explanation:

(b) redCar2 invokes redEnter(), then blocks on the monitor lock.

 YES NO

 Explanation:

(c) redCar2 invokes redEnter(), returns, and then invokes redExit(), then returns.

 YES NO

 Explanation:

(d) redCar2 invokes redEnter() and is context-switched out before the call returns.

 YES NO

 Explanation:

177

2. Suppose the only two threads exist in the system: redCar1 and redCar2. Suppose further that redCar1 has

invoked the redEnter() method, but has not returned. A context switch occurs and the redCar2 thread starts to

run.

Which of the following event sequences could happen next?

Circle YES if the sequence is possible; otherwise, circle NO.

Then please provide a brief explanation of your reasoning.

(a) redCar2 invokes redEnter(), then returns.

 YES NO

 Explanation:

(b) redCar2 invokes redEnter(), then blocks on the monitor lock.

 YES NO

 Explanation:

(c) redCar2 invokes redEnter(), returns, and then invokes redExit(), then returns.

 YES NO

 Explanation:

(d) redCar2 invokes redEnter() and is context-switched out before the call returns.

 YES NO

 Explanation:

3. Suppose that only three threads exist in the system: redCar1, redCar2, and blueCar1. Suppose further that

redCar1 is running, that it has invoked the redEnter() method, and that the redEnter() method has returned. A

context switch occurs and blueCar1 thread begins to run and invokes the blueEnter() method. The blueEnter()

method has not returned.

Which of the following event sequences could happen next?

Circle YES if the sequence is possible; otherwise, circle NO.

Then please provide a brief explanation of your reasoning.

(a) The blueEnter() returns, followed by blueExit().

 YES NO

 Explanation:

(b) Another context switch happens, redCar1 is in the ready state.

 YES NO

 Explanation:

(c) Another context switch occurs and the redCar2 thread begins to run. The redCar2 invokes redEnter(), and

returns, and then invokes redExit(), and returns.

 YES NO

178

 Explanation:

(d) Another context switch occurs and the redCar2 thread begins to run. The redCar2 invokes redEnter() and

then blocks on the monitor lock.

 YES NO

 Explanation:

4. Suppose that only three threads exist in the system: redCar1, redCar2, and blueCar1. Suppose further that

redCar1 is running and has just invoked the redEnter() method and the redEnter() method has returned. A

context switch occurs and the redCar2 thread begins running and invokes the redEnter() method. redCar2’s

invocation of the redEnter() method has not returned.

Which of the following event sequences could happen next?

Circle YES if the sequence is possible; otherwise, circle NO.

Then please provide a brief explanation of your reasoning.

(a) redCar2’s invocation of redEnter() returns. redCar2 then invokes redExit() and this invocation returns.

 YES NO

 Explanation:

(b) redCar2’s invocation of redEnter() returns. redCar2 then invokes redExit() and blocks on the okToExit

condition variable.

 YES NO

 Explanation:

(c) redCar2’s invocation of redEnter() returns. redCar2 then invokes redExit() and blocks on the monitor

lock.

 YES NO

 Explanation:

(d) A context switch occurs, and the redCar1 thread begins to run. redCar1 then invokes redExit() and this

invocation returns.

 YES NO

 Explanation:

(e) A context switch occurs, the redCar1 thread begins to run. redCar1 then invokes the redExit() method and

blocks on the monitor lock.

 YES NO

 Explanation:

(f) A context switch occurs, the redCar1 thread begins to run. redCar1 then invokes redExit() and blocks on

the okToExit condition variable.

 YES NO

 Explanation:

(g) A context switch occurs, the blueCar1 thread begins to run, invokes the blueEnter() method and returns.

 YES NO

179

 Explanation:

(h) A context switch occurs, the blueCar1 thread begins to run, invokes the blueEnter() method and blocks on

the monitor lock.

 YES NO

 Explanation:

(i) A context switch occurs, and the blueCar1 thread begins to run, and invokes the blueEnter() method and

then blocks on the okToEnter condition variable.

 YES NO

 Explanation:

5. Suppose that only three threads exist in the system: redCar1, redCar2, and blueCar1. Suppose further that

redCar1 is running and has just invoked the redEnter() method and the redEnter() method has not returned. A

context switch occurs and redCar2 thread begins running and invokes the redEnter() method. redCar2’s

invocation of the redEnter() method has not yet returned.

Which of the following event sequences could happen next?

Circle YES if the sequence is possible; otherwise, circle NO.

Then please provide a brief explanation of your reasoning.

(a) redCar2’s invocation of redEnter() returns. redCar2 then invokes redExit() and this invocation returns.

 YES NO

 Explanation:

(b) redCar2’s invocation of redEnter() returns. redCar2 then invokes redExit() and blocks on the okToExit

condition variable.

 YES NO

 Explanation:

(c) redCar2’s invocation of redEnter() returns. redCar2 then invokes redExit() and blocks on the monitor

lock.

 YES NO

 Explanation:

(d) A context switch occurs, the redCar1 thread begins to run, and its invocation of the redEnter() method

returns. redCar1 then invokes redExit() and this invocation returns.

 YES NO

 Explanation:

(e) A context switch occurs, the redCar1 thread begins to run, and its invocation of the redEnter() method

returns. redCar1 then invokes redExit() and blocks on the monitor lock.

 YES NO

 Explanation:

(f) A context switch occurs, the redCar1 thread begins to run, and its invocation of the redEnter() method

returns. redCar1 then invokes redExit() and blocks on the okToExit condition variable.

180

 YES NO

 Explanation:

(g) A context switch occurs, the blueCar1 thread begins to run, invokes the blueEnter() method and returns.

 YES NO

 Explanation:

(h) A context switch occurs, the blueCar1 thread begins to run, invokes the blueEnter() method and blocks on

the monitor lock.

 YES NO

 Explanation:

(i) A context switch occurs, and the blueCar1 thread begins to run, and invokes the blueEnter() method and

then blocks on the okToEnter condition variable.

 YES NO

 Explanation:

6. Suppose that only three threads exist in the system: redCar1, redCar2, and blueCar1. Suppose that the

following sequence of invocations have occurred with the listed results:

a. redCar1 invokes redEnter() and returns

b. redCar2 invokes redEnter() and returns

c. blueCar1 invokes blueEnter() and blocks on okToEnter

Which of the following event sequences could happen next?

Circle YES if the sequence is possible; otherwise, circle NO.

Then please provide a brief explanation of your reasoning.

(a) redCar2 invokes redExit() and this invocation returns.

 YES NO

 Explanation:

(b) redCar2 invokes redExit() and blocks on the monitor lock.

 YES NO

 Explanation:

(c) redCar2 invokes redExit() and blocks on okToExit.

 YES NO

 Explanation:

(d) redCar1 invokes redExit() and returns, redCar2 invokes redExit() and returns, blueCar1 remains blocked

on the monitor lock.

 YES NO

 Explanation:

(e) redCar1 invokes redExit() and returns, redCar2 invokes redExit() and returns, blueCar1 remains blocked

181

on the okToEnter condition variable.

 YES NO

 Explanation:

(f) redCar1 invokes redExit() and returns, redCar2 invokes redExit() and returns, blueCar1 is signaled and

eventually returns from blueEnter().

 YES NO

 Explanation:

(g) redCar1 invokes redExit() and returns, redCar2 invokes redExit() and returns, blueCar1 invokes

blueExit() and returns.

 YES NO

 Explanation:

7. Figure 1 contains a partial implementation of the Single-Lane Bridge problem. Identify any elements of the

implementation of the redEnter() method that are missing or incorrect, or write that the implementation is

correct. If any errors exist, write down the line number where the errors occur, explain their effects and show

how to correct them.

-- -------------
// global declaration

1 typedef struct {

2 pthread_mutex_t mut;

3 int redEntered, blueEntered, redExited, blueExited;

4 pthread_cond_t okToEnter, okToExit;

5 } SLB_LOCK_S;

6

7 int redEnter(SLB_LOCK_S *sLock) {

8

9 int redNum = 0;

10 if (NULL == sLock)

11 return -1

12

13 pthread_mutex_lock(sLock->mut);

14 while (((sLock->blueEntered) – (sLock->blueExited)) != 0)

15 pthread_cond_wait(sLock->okToEnter, sLock->mut);

16 redNum = sLock->redEnter++;

17

18 return redNum;

19 }

20 main() {

21 SLB_LOCK_S sLock;

22 sLock->redEntered = 0; sLock->blueEntered = 0;

23 sLock->redExited = 0; sLock->blueExited = 0;

24

25 // create redCar thread and blueCar thread

26

27 }

Figure 1: Implementation of the redEnter() method for the Red Car

182

8. In the space below, write the POSIX Thread code to implement the redExit() method.

II. Readers-Writers problem

The readers-writers problem is a classic synchronization problem in which two distinct classes of threads, readers

and writers, share access to a database. Multiple reader threads can be present in the database simultaneously.

However, the writer threads must have exclusive access. That is, no other writer thread, nor any reader thread,

may be present in the database while a given writer thread is present. Note: the reader thread must call startRead()

to enter the database and it must call endRead() to exit the database. Similarly, the writer thread must call

startWrite() to enter the database and it must call endWrite() to exit the database. Assume that state variables

numReaders and numWriters are used to keep track of the number of client processes currently in the database.

9. In the space below, write the POSIX Thread code to implement the startRead() and endRead() methods for the

Readers and Writers problem.

10. Please use UML 2.0 notation to draw state diagrams of the shared database for the Readers-Writers problem.

For your references, we have included sample state diagrams for the Bounded Buffer example from the tutorial,

figures 2-4 on the following pages.

Figure 2

183

Figure 3

Figure 4

FIGURE 31 POSTTEST FOR SPRING 2010 STUDY

184

6.4 MATERIALS FROM SPRING 2012 WORK

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

FIGURE 32 LECTURE NOTES FOR SPRING 2012 STUDY

204

CSCI 1730 Lab/Project Specification (Week 2)

Programming Project #1
C++ Hands On with UNIX (Nike) Environment

Goals
 In this project, you will use C++ to implement a command line based calculator program that runs
in the UNIX environment. The goal of this lab is to allow you to practice basic C++ programming
knowledge and to become familiar with the process of compiling and running a C++ program in UNIX.

Due Date
 Jan 24, 2012 (Tuesday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
 As pair programmers, you may only collaborate with your assigned pair programming partner for
this project, and according to pair programming policies.

Project Description
Step 1:
 You are given a skeleton source code file calculator.cpp. To complete the command-line
calculator you are to implement the following functions, stubs for which are found in the file:

 myAdd (operand1, operand2), which adds two operands;

 mySubtract(operand1, operand2), which subtracts operand2 from operand1;

 myMultiply (operand1, operand2), which multiplies two operands;

 myDivide (operand1, operand2), which divides operand1 by operand2;

 mySin (operand), which returns the sine of the operand (in degrees);

 myCos (operand), which returns the cosine of the operand (in degrees);

 myFib (operand), which returns the value of Fibonacci function with an input value of
operand; e.g. myFib(1) = 1, myFib(2)=1, myFib(3)=2, myFib(4)=3, myFib(5)=5, etc.

 main, which continually displays a menu, accepts an integer to indicate the operation, requests
the operand or operands needed to perform the operation, and displays a result until the user
selects the integer corresponding to the “quit” operation

Use g++ to compile the program into the default output binary.

Here is a sample run of the program:

-bash-3.2$./a

Welcome to command calculator!
1: add
2: subtract
3: multiply
4: divide
5: sin

205

6: cos
7: Fibonacci
9: quit

1
Please enter operand1: 12
Please enter operand2: 34
The result is: 46

1: add
2: subtract
3: multiply
4: divide
5: sin
6: cos
7: Fibonacci
9: quit

7
Please enter operand: 20
The result is: 6765

1: add
2: subtract
3: multiply
4: divide
5: sin
6: cos
7: Fibonacci
9: quit

3
Please enter operand1: 25
Please enter operand2: 4.8
The result is: 120

1: add
2: subtract
3: multiply
4: divide
5: sin
6: cos
7: Fibonacci
9: quit

9
-bash-3.2$

Step 2:
 Create a makefile with three targets: compile, run and clean. The command “make compile”
should compile the calculator.cpp program to create a calc executable. The command “make run”
should execute the calc program. The “make clean” command should remove the calc file.

Step 3:
 Break the calculator.cpp program into two files: calculator.cpp and operations.cpp. The
calculator.cpp file should contain the main method and other utility methods that you define. The
operations.cpp file should contain the methods for add, subtract, multiply, divide, sin, cos, and fib
operations.

Complete the given header file operations.h and include it in calculator.cpp. Now modify your

206

makefile to compile the project (calculator.cpp, operations.cpp) and run the calc program.

Step 4:
 Modify the readOperand() and readOperation()functions in your program to deal with
possible input exceptions.
Step 5:
 Write a readme file with brief instructions on how to compile and run your program as well as
anything you would like TAs to note.

Use the mkdir command to create a new folder (named “lastname1_lastname2_lab02”) in
your local Nike account. Use the cp command to copy the calculator.cpp, operations.cpp,
operations.h, makefile files and the readme to the newly created folder and submit the folder to
cs1730. (submit cs1730 lastname1_lastname2_lab02)

Grading Rubric

Deliverables Total Points Comments

Subjective Survey 5

Source Code 45

 function add() 3

 function subtract() 3

 function multiply() 3

 function divide() 3

 function sin() 3

 function cos() 3

 function fib() 3

 function main() 5

 readme file 4

 makefile that successfully
compiles linked header file

5

 exception handling 10

CSCI 1730 Lab/Project Specification (Week 3)

Programming Project #2
C++ Arrays, Vectors & Control Structures Revision

Goal
 In this project, you will use C++ to implement a command line matrix multiplication program to
gain familiarity with basic C++ control structures, the array and vector data structures, as well as basic
file reading /writing with C++.

Due Date
 Jan 31, 2012 (Tuesday) 11:59 pm.

207

Late Penalty
 As described in the course policies.

Collaboration Policy
As pair programmers, you may only collaborate with your assigned pair programming partner

for this project according to pair programming policies.

Project Description
Step 1: Implement and test matrix read and write methods

You are given io.h and io.cpp, which contains functions for reading a matrix from a file and for
writing a matrix to a file. The io.h contains the function prototypes and should not be modified. The
io.cpp file contains stubs for these functions. You are to replace these stubs with implementations.

 vector<vector<double>> readMatrix(const char *filename), which reads and
parses a text file into a two dimensional matrix

 void writeMatrix(vector<vector<double>> const & matrix, const char

*filename), which writes a two dimensional matrix into a file

Copy the makefile makefile and test files matrix1, matrix2, matrix3, matrix_empty,
matrix_single, matrix_normal and matrix_abnormal to your working folder. Do NOT make any
modifications to these files; do NOT rename them. Use the command “make testio” to compile the

program testio.cpp (do NOT modify testio.cpp). Use the command “./testio” to run the program
that tests the functions you will write in io.cpp. Make sure your program passes all four test cases
specified there. The expected output is as follow:

-bash-3.2$./testio
testcase1: empty matrix passed
testcase2: single element matrix passed
testcase3: normal matrix passed
testcase4: abnormal matrix passed
all testcases passed
-bash-3.2$

Step 2: Implement and test matrix multiplication operation

You are given op.cpp which deals with the multiplication of two matrices. Implement the
following methods, stubs for which are found in op.cpp. File op.h contains the prototypes for these
methods, and should not be modified.

 vector<vector<double> > multiplyMatrix(vector<vector<double> >

const &matrix1, vector<vector<double> > const &matrix2), which
multiplies two matrices

 vector<vector<double> > transpose(vector<vector<double> > const

&matrix), which transposes a matrix

 double multiplyVector(vector<double> const &vector1, vector<double>

const &vector2), a helper method that calculates the dot product of two one-dimensional
vectors

208

To multiply two matrices, the matrices must be compatible. This means that the number of columns in
the first matrix must be the same as the number of rows in the second matrix. In general, the result of
attempting to multiply incompatible matrices is undefined. For purposes of this lab, please follow the
rules below in your implementation of the multiplyMatrix method:

o multiplication that involves an empty matrix should result in an empty matrix;
o multiplication that involves two incompatible matrices (such as the first matrix with

dimension 3*2 and the second matrix with dimension 4*3) should result a matrix with a
single element 0;

o multiplication that involves two compatible matrices, such as the first matrix with
dimension 3*2 and the second matrix with dimension 2*4, should result a matrix with
dimension 3*4;

Here is a simple review of how to multiply two compatible matrices:

However, since matrices are stored as a vector of vectors (vector<vector<double> >) in our
program, it is much easier to retrieve a line of the matrix than retrieve a column of the matrix. So, we
could implement the above matrix multiplication using the transpose of the second matrix as
illustrated below:

Use command “make testop” to compile the program testop.cpp. Do NOT modify

testop.cpp or op.h. Use command “./testop” to run the program that tests the functions you write
in op.cpp. Make sure your program passes all six test cases specified there. The expected output is as
follow:

-bash-3.2$./testop
testcase1: empty*empty passed
testcase2: empty*single passed
testcase3: empty*normal passed
testcase4: abnormal*normal (uncompatible) passed
testcase5: normal*normal (uncompatible) passed
testcase6: normal*normal (compatible) passed
all testcases passed

Step 3: Create driver program
 Complete the main function in main.cpp so that the main program will take three arguments:

 filename of the first matrix to be read

 filename of the second matrix to be read

 filename of the result matrix to be written
The main function should deal with the problem of insufficient arguments and print out corresponding

209

hint messages for users. Use command “make matrix” to compile the main program and test it with
your own test files.

Step 4: Documentation and Submission
 Write a readme file with very brief instructions on how to compile and run your program as well
as anything you would like the TAs to note.

Create a new folder (named “lastname1_lastname2_lab03”) in your local Nike account. Copy
main.cpp, io.h, io.cpp, op.h, op.cpp, makefile and the readme to the newly created folder and submit
the folder to cs1730. Do not include any *.o or executable files. (submit
lastname1_lastname2_lab03 cs1730)

Step 5: (bonus)
 Write new files iosparse.h, iosparse.cpp, opsparse.h. opsparse.cpp and use them in main.cpp to
deal with multiplication of sparse matrices (matrices populated primarily with zeros) to boost the
performance of your program when dealing with very big but sparse matrices. You could get the

running time of a program with the “time” command in UNIX. Here is an example:

-bash-3.2$ time ls
lab01 lab02

real 0m0.003s
user 0m0.001s
sys 0m0.002s
-bash-3.2$

Feel free to use new data structures other than vectors if necessary. Test your program

performance on matrices with dimensions more than 103 and report your program’s performances on
different dimensions of sparse matrices in the readme file with a table.

Grading Rubric:

Deliverables Total Points Comments

Subjective Survey 5

Source Code 45

 function read_matrix() 10

 function write_matrix() 10

 function multiply_matrix 15

 function transpose() 5

 function multiply_vector 5

 function main() 5

Bonus 10

CSCI 1730 Lab/Project Specification (Week 4)
Programming Homework #1
Pointers and Its Related Messy Stuff in C++

210

Goal
 In this homework, you will use C++ to implement several pieces of code that involve using
pointers. This lab will help you to strengthen concepts of memory models you have learned/will learn
in lectures and also familiarize you with using explicit pointers in C++. After this lab, you should be able
to:

 Understand and use pointers and pointer operators

 Understand and use array and pointers, and understand the relationships between arrays and
pointers

 Understand and use function pointers

 Understand and use the const modifier with pointers

 Understand and use pointers to manipulate strings

Due Date
 Feb 14, 2012 (Tuesday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
As pair programmers, you may only collaborate with your assigned pair programming partner

for this project according to pair programming policies.

Project Description
Step 1: Warm Up with Pointers of Basic Types and Operators

In this first step, you will become familiar with pointers to basic C++ data types and some basic
pointer operations (referencing, dereferencing, arithmetic operations):

1. Compile and run the following program:

 Suppose after the declaration of variables in line 5, we have the following symbol table and
memory chunk:

211

Name Type Address

integer1 int 0x7fff8c1ff994

p1 int * 0x7fff8c1ff988

p2 int ** 0x7fff8c1ff980

0x7fff8c1ff994

0x7fff8c1ff988

0x7fff8c1ff980

a) Draw three diagrams that reflect how memory changes after the execution of each line of code in
lines 7, 8 and 9.
b) If we substitute line 11-13 with following two statements:

(*p1)++;

std::cout << “integer1=” << *p1 << std::endl;

 Then what will be the output of the program?
c) Will the output of the program be same if we substitute above two lines with following two
statements?

integer1++;

std::cout << “integer1=” << *p1 << std::endl;

d) Will the output of the program be same if we substitute above two lines with following two
statements?

*p1++;

std::cout << “integer1=” << integer1 << std::endl;

e) Explain why above outputs are same or different from each other.

2. Consider the following program and answer the questions below.

 What does variable p2 represent? Will this program successfully compile? Why or why not? (Try
it.)

212

Step 2: Arrays and Pointers
 In this second step, you are going to relate pointer representations with array representations.

3. Compile and run following program and answer the corresponding questions.

a) What does array_of_integer evaluate to? If you dereference it, what value do you get?
What is the output of the program?
b) Suppose we change lines 10-12 to following statements:

for (int i=0; i<10; i++){

 *(pointer_of_array+i) = i;

}

 Will the output change? Why or why not?
c) Suppose we change lines 14-16 of the original program to the following statements:

for (int i=0; i<10; i++){

 std::cout << *(pointer_of_array+i) << std::endl;

}

 Will the output change? Why or why not?
d) Suppose we change lines 10-12 of the original program to the following statements:

for (int i=0; i<10; i++){

 *(pointer_of_array++) = i;

}

 Will the output change? Why or why not? Now, does the variable pointer_of_array have

the same value as the variable pointer_of_first_element? Why or why not?

4. Consider the following code:

213

 Fill out this memory model table:

Label of
variable

Address of
variable

Content of
variable

Meaning of variable

x addr_x 10 an integer

px addr_px addr_x a pointer to an integer

a addr_a

a[0] addr_a[0]

a[1] addr_a[1]

a[2] addr_a[2]

a[3] addr_a[3]

a[4] addr_a[4]

a[5] addr_a[5]

a[6] addr_a[6]

a[7] addr_a[7]

a[8] addr_a[8]

a[9] addr_a[9]

b addr_b

b[0] addr_b[0]

b[1] addr_b[1]

b[2] addr_b[2]

b[3] addr_b[3]

b[4] addr_b[4]

214

p1 addr_p1

p2 addr_p2

parray addr_parray

ap1 addr_ap1

ap1[0] addr_ap1[0]

ap1[1] addr_ap1[1]

ap1[2] addr_ap1[2]

ap2 addr_ap2

ap2[0] addr_ap2[0]

ap2[1] addr_ap2[1]

a) Will the program successfully compile if we substitute line 16 of the program with following
statement? Explain why or why not.

int (*parray)[10] = &b;

b) What if we substitute line 16 of the program with following statement? Explain.

int (*parray)[] = &b;

c) Will the program successfully compile if we substitute line 24 of the program with following
statement? Explain why.

ap2[0] = &(*parray);

Step3: Functions and Pointers
 In this part, you will get to play with pointers as function parameters and practice pass-by-
reference. Also, you will become familiar with complicated mixed representation of pointers, arrays
and functions.

5. What is the output of the following code? Why? Which variable in the code is “pass-by-
reference”?

215

6. Here is a golden Right-Left rule of how to read C++ declarations involving pointers, arrays and
functions. Use this rule to interpret the meaning of the following variables in the table by saying x is
something.

Start at the variable name (or innermost construct if no identifier is present). Look right without
jumping over a right parenthesis; say what you see. Look left again without jumping over a
parenthesis; say what you see. Jump out a level of parentheses if any. Look right; say what you
see. Look left; say what you see. Continue in this manner until you say the variable type or
return type.

Declaration Meaning
int x; x is an integer
int *x;
char **x;
int *x[5];
int (*x)[5];
int (*x[5])[5];
int *(*x[5])[5];
int x();
int x(int);
int *x();
int *x(int *);
int (*x)();
int *(*x)(int *);
int **(*x)(int **);
int (*x[5])();
int *((*x)[5])();
int (*(*x()))[5];
int *(*(*x()))[5];

216

int *(*(*x[5])())()

int (*(*x[10])(int &))[5];

Step 4: The Const Modifier and Pointers
 In this part, you will play with codes involving the const modifier with pointers.

7. Write and try to compile the following code:

a) What lines of the code cannot be successfully compiled? What are the error messages given by
compiler? Explain why.

8. Explain how the following lines of code differ:

void function(data_type ¶meter);

void function(data_type const ¶meter);

 When will the second expression become useful? Explain why.

Step5: Strings and Pointers
 In this part, you will implement some functions from the <cstring> library to practice
manipulating strings as pointers. Please read Section 21.8 in your textbook carefully before writing any
code.

9. Implement your own versions of the following library functions defined in <cstring>:
 a) char *strcpy(char *s1, const char *s2);

217

 b) char *strncat(char *s1, const char *s2, size_t n);

 c) int strncmp(const char *s1, const char *s2, size_t n);

 d) size_t strlen(const char *s);

 Bonus:
 e) char *strtok(char *s1, const char *s2);

 Write a header file named mycstring.h and finish your implementation in mycstring.cpp. Notice
that you should implement the functions instead of using <cstring> library directly. Compile and
test your implementations with makefile and main.cpp (do not modify them).

Step 6: Documentation and Submission
 Write a readme file with anything you would like the TAs to note.

Create a new folder (named “lastname1_lastname2_lab04”) in your local Odin account. Copy
all mycstring.h, mystring.cpp, makefile and the readme to the newly created folder and submit the
folder to cs1730. Do not include any *.o or executable files. (submit
lastname1_lastname2_lab04 cs1730)

Submit a *.pdf file with all answers to homework questions for step 1-4.
You are not required to submit any code appeared in step 1-4.

Grading Rubric:

Deliverables Total Points Comments

Subjective Survey 5

Questions and Answers (Step 1-4) 32

 4 points per question
 Any severe mistake cause -1
 Any minor mistake cause -.5

Code Implementation (Step 5) 13

 a) strcpy function 2

 b) strncat function 4

 c) strncmp function 4

 d) strlen function 3

Bonus (Step 5) 10

 e) strtok function 10

Lab 05 Practice on GDB – A Command Line Debugger
Debugging crash1.cpp

 Use the given makefile and command “make crash1” to compile program. What is the
command used by the system to compile the program? What does each argument in the
command mean?

 Run the program, what is the error message?
 Use command “gdb” to start the debugger. Try “list”, what is the message given by the

debugger? Type command “file crash1” and then “list”, now what you see?
 Use command “quit” to quit the debugger and then restart the debugger with command

“gdb crash1”. Try “list”, now what you get? Try “list” again, what you see? Try “list 10”,

218

what you see? Try to change the number with the list command, what you know now?
 Type command “run”, from the message given by debugger, what information do you get?

Do you know which line of code fails now? If you do a little bit inference, could you know
which call of the divint function fails? (The first or the second call?)

 Let’s kill the program with command “kill”. When prompted, please type “y”. Now we set a
breakpoint at line 8 (which is the first line of main function) with command “break 8”. Now
run the program again, notice that it stops before executing line 8? Try command “info
breakpoints”, what information do you get?

 Use command “print x” and “print y” to print the value of variable x and y, what value do
you get? Try command “next” to execute one line of code, now what are the values of x and
y? Type “next” command again, notice that the debugger ignores all the lines in divint
function and directly execute whole line 9 in main function?

 Now print value of x and y, then use “step” command and print value of x and y again. What
are the values of these two variables? Use the “step” command again and notice that the
debugger actually forward into the divint function? Notice the parameters of divint
function (i and j) are having the values copied from x and y.

 Use command “set j = 1” to set the value of j. Now print the value of j again, notice that its
value has been changed. Use the “step” command and see that the return statement where
previously raises SIGFPE now could be executed normally. So could you guess why the
program fails before?

 Use command “continue” to finish executing the program and notice that this time
program exited normally. Search online a little bit about SIGFPE and make sure you know
what this signal means.

Now, let’s draw some conclusion from our experience of debugging this crash1.cpp program:
1. To enable gdb debugging of a program, we have to use the –g flag during compilation.
2. To start gdb, we simply use “gdb”. We could load file with “file filename” command. We

could also start gdb with a specific file with command “gdb filename”
3. To set a breakpoint, we use “break line_number”.
4. To retrieve the information of breakpoints, we use “info breakpoints”.
5. To list the source code of a program, we use “list” or “list line_number”.
6. To run a program, we use “run” and program will stop before the line with breakpoint or

until it encounters some errors.
7. To execute the line and ignoring any function calls, we use “next”.
8. To execute the next step without ignoring function calls, we use “step”.
9. To set the value of a variable, we use “set variable_name = some_value”.
10. To kill a program running in debugger, we use “kill” and we could restart it by using “run”

again.

Debugging crash2.cpp
 Compile and run the program outside of debugger, what kind of error you get? Now run

the program inside the debugger, any more information you get?
 Use the strategies and commands we learned from debugging crash1.cpp, could you

predict which call of setint function actually fails (the first or the second)?
 Let’s set a breakpoint at line 10. Now restart the program, when it stops at line 10, try to

find out the following: 1) What is the value of integer1? 2) What is the address of integer1
(use “print &integer1”)? 3) What is the address of pointer1? 4) What is the value of
pointer1? If you feel confused, draw a sketch of the memory down on a scratch paper as
you getting values of above items.

 Now, let’s set the pointer to point to integer1 (use “set pointer1 = &integer1” or “set

219

pointer1 = 0x7fffffffexxx”/use the actual address you get from debugger) and then step
into the setint function. Notice that the value passed into the function now is actually the
address of integer1. Step out of the setint function and before executing line 12 in main
function, print out the value of what pointer1 points to (use “print *pointer1”). What is that
value now?

 Let’s put our hand even deeper into manipulating memories here. Say the address of
integer1 is 0x7fffffffe494, use command “set *(int *)0x7fffffffe494 = 20”. Now try to print
the value of integer1, what is it? Use “next” and what is printed out?

 Continue and you should see program exited normally this time. So could you infer what
the bug of the program is? (We actually talked about this during yesterday’s lecture.)

Another conclusion time:
1. Besides basic commands, gdb actually allows you directly modify and examine the

memories during execution of a program.
2. When a piece of memory is associated with a symbol, we could use “set symbol=value” to

change the content of the memory. But even when no symbol is assigned to a chunk of
memory, we could still specify the type of that memory and set the value it by using “set
*(type *)address = value”.

3. As to examine the content of a chunk of memory, we could use “print symbol” when a
symbol is assigned to it or “x address” when no symbol is assigned to it. Try with the
crash2.cpp program and examine the content of the memory where integer1 is with
following different flags passing to the “x” command: 1) “x 0x7fffffffe494”; 2) “x /d
0x7fffffffe494”; 3) “x /c 0x7fffffffe494”; 4) “x /f 0x7fffffffe494”. Substitute 0x7fffffffe494
with the actual address of integer1 when you execute the program in debugger.

4. Another tip, gdb is just like bash where you could use the up/down arrow keys to find
previous executed commands. This could save you a lot time on repeatedly typing “step” or
“next”.

Debugging crash3.cpp
 This program involves more than one file. Except the crash3.cpp which is the driver

program, it also utilize sort.cpp and sort.h file to finish selection sort on an array. If you are
not familiar with selection sort, please refer to chapter 8 in your textbook.

 Take a look at three different files of this program first. Make sure you understand what
the program is doing by reading codes and comments.

 Now, compile the program with “make crash3” command and run it by command “./crash3
a 20 50”. Run this command several times, and you should see that each time the program
generates a random length array with random values (but the length is bounded by 20 and
values are bounded by 50), prints the original array, sorts it ascending, and prints the
sorted array.

 Now, comment out the code section that are labeled as correct ways of doing things,
instead, use the code section that is syntactically correct but semantically wrong (both
code sections are in generateArray function in crash3.cpp). Compile (the program should
still be free of compilation error) and run the program again, what did you get?

 Now, using the debugger to run through the correct and incorrect versions of the program.
Try to figure out why the syntactically correct code doesn’t work.

Some Tips:
1. To run a program with command line arguments with gdb, a simple way of doing that is to

use command “gdb --args ./crash3 a 20 50”
2. To examine the source code of other files, for example sort.cpp, you use command “list

sort.cpp:line_number”.

220

3. To set breakpoint in other files, for example sort.cpp, you use command “break
sort.cpp:line_number”.

Take home practice: debugging the matrix multiplication program
The crash4.cpp program is a simplified matrix multiplication program where it randomly
initializes two compatible matrices and try to multiply them. The seeded bugs in this program are
all coming from Q&As. Use gdb debugger to fix the segmentation fault of this program.

CSCI 1730 Lab/Project Specification (Week 6)
Programming Project #3
Object-Oriented Programming in C++
--Building Object Hierarchy for a Drawing System

Goal
 In this project, you will use C++ to implement part of a drawing system. In this part, you have to
implement an object hierarchy of shapes. This part will be used to build further parts of the system. By
implementing this shape hierarchy, you are expected to learn basic C++ object-oriented programming
design and implementation of object-oriented programming concepts such as inheritance,
polymorphism, composition, etc.

Due Date
 Feb 28, 2012 (Tuesday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
As pair programmers, you may only collaborate with your assigned pair programming partner

for this project according to pair programming policies.

Project Description
Step 1: Design the shape objects hierarchy

In this first step, you are going to design the shape objects hierarchy according to following
requirements:

 Any object in this hierarchy is a shape object. A shape object calls its draw() method to draw itself.
An addShape(Shape* s) method will add another shape s to the current shape to make it more
complicated. (e.g., s1.addShape(s2) added shape s2 to shape s1) An explodeShape() method
will return all shape components (all shapes added to current shape) in a list format.

 A finalized shape is a shape to which no more shapes may be added. Thus, calling
addShape(Shape* s) on a finalized shape should throw an exception. Calling the explodeShape()
methods on a finalized shape will return a list of length 1, containing the shape itself.

 A non-finalized shape is a shape that other shapes (either finalized or not) may be added to it to
make it more complicated (e.g., nonfinal.addShape(s) is permitted)

221

 All basic shapes, including point, line, rectangle, round, and triangle, are finalized shape. They
should be protected so that users cannot change them to non-finalized shapes.

 A point shape is a shape of a single pixel. It has a specified color and integer coordinate x and y
define its position.
// pseudo code

Shape* point = new Point(color, x, y);

 A line shape is a shape of an undirected line. A startpoint and an endpoint which are both points
define its position and the color of startpoint also specifies the color of the line.
// pseudo code

Shape* line = new Line(point1, point2);

 A rectangle shape is a shape of a rectangle. A Boolean property filled will decide whether the
shaped is drawn filled or non-filled. A basepoint (point of its left-top corner) specifies its position
and color, and two integers, width and a height, define its shape.
// pseudo code

Shape* rectangle = new Rectangle(basepoint, width, height, filled);

 A round shape is a shape that is part of a filled or non-filled ellipse. A boundedbox which is a
rectangle, specifies the shape, color, and fill property of the ellipse. Doubles startdegree and
enddegree define the drawing part of the shape. An ellipse is drawn counterclockwise from start to
end.
// pseudo code

Shape* round = new Round(boundedbox, 30.5, 100.8);

 A triangle shape is a shape of a filled triangle. Three points defines its position and shape, in which
the first point specifies its color.
// pseudo code

Shape* triangle = new Triangle(point1, point2, point3);

 A complex shape, complexshape should also be defined. It is not finalized and is left for the user to
add other shapes (either basic or complex) to compose it.
// pseudo code

Shape* myshape = new ComplexShape();

myshape.addShape(new Triangle(point1, point2, point3));

List<Shape*> components = myshape.explodeShape();

...

Leave flexibility on the implementation of color since we will port this code to work with a

drawing toolkit when implementing the later part of this system. In this part, since we don’t actually
“draw” anything but just build the shape hierarchy, you may just set and retrieve the name of a color.

Simplify the implementation of “throw exception”. You could simply print out a line of message
saying that an exception happens. We will perfect this part in the exception handling lab.

Think about these requirements and design an object hierarchy of the shapes according to
principles of object oriented design. You could find a brief introduction to SOLID design principles on
Wikipedia: http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29.

Draw a class diagram of the shape hierarchy that reflects your design choices. Save your class

diagram with common image format (jpeg, png) and name it “diagram.*”.

Step 2: Implement and test shape objects

You are given shape.h as shown below, which has the class prototypes defined in it.

http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29

222

...

class Shape {

 public:

 Shape(bool isFinal);

 void addShape(Shape* s);

 std::vector<Shape*> explodeShape();

 virtual void draw();

 virtual ~Shape();

 private:

 bool finalized;

 std::vector<Shape*> components;

};

...

Implement the following methods, stubs for which are found in shape.cpp.

 Shape::Shape(bool isFinal), the constructor of a shape

 Shape::~Shape(), the abstract destructor of a shape

 void Shape::addShape(Shape* s), the addShape(Shape* s) method

 std::vector<Shape*> Shape::explodeShape(), the explodeShape() method

 void Shape::draw(), the abstract drawing method of a shape

Implement point.h, point.cpp, line.h, line.cpp, rectangle.h, rectangle.cpp, round.h, round.cpp,
triangle.h, triangle.cpp, complexshape.h, complexshape.cpp according to your class design.

Leave the draw() methods for all shape classes as simple as printing a line that says a

corresponding draw method is called to draw a specific shape with its position and other properties

such as width, height, etc through a standard output: std::cout. For example:

// pseudo code

void Point::draw(){

 std::cout

<< “Point::draw() is called to draw point: ”

<< getX() << “,” << getY()

<< “ with color “ << getColor()

 << std::endl;

}

We will implement this method with actual drawing toolkit library methods in later parts of the system.

To compile this shape hierarchy, you will write a makefile with following format.

First we define some parameters of compiler, flags and linker. This part will be useful when later
we start using toolkit library since it simplifies the compiling commands defined in later part of
the makefile.
CXX = $(shell fltk-config --cxx)

DEBUG = -g

CXXFLAGS = $(shell fltk-config --use-gl --use-images --cxxflags)

-Wall -I

LDFLAGS = $(shell fltk-config --use-gl --use-images --ldflags)

223

LDSTATIC = $(shell fltk-config --use-gl --use-images --

ldstaticflags)

LINK = $(CXX)

Then we define parameters of target (executable file), objects (.o files) and source files (.cpp
files)
TARGET = test

OBJS = // list all object .o files you are going to compiled here

SRCS = // list all your source .cpp files here

Then we define rule of compilation and linking of different files.
.SUFFIXES: .o .cpp

%.o: %.cpp

 $(CXX) $(CXXFLAGS) $(DEBUG) -c $<

$(TARGET): $(OBJS)

test.o: test.cpp //add other header files here

shape.o: shape.cpp shape.h

// add rules for other objects (point, rectangle, line, etc) here

Finally, we define makefile targets and their corresponding commands.
all: $(TARGET)

 $(LINK) -o $(TARGET) $(OBJS) $(LDSTATIC)

clean: $(TARGET) $(OBJS)

 rm -f *.o 2> /dev/null

 rm -f $(TARGET) 2> /dev/null

You are given an unfinished makefile in the above style. Complete it according to the hints in
comments and use it to compile your shape hierarchy. Notice that the test.cpp is the driver program
you will create in step 3. For the purpose of compiling your shape hierarchy, you could simply used the
given empty test.cpp file which includes all shapes’ header files as seen below.

#include "shape.h"

#include "point.h"

#include "line.h"

#include "rectangle.h"

#include "round.h"

#include "triangle.h"

#include "complexshape.h"

int main(int argc, char** argv) {

 return 0;

}

Step 3: Create driver program
 Complete the main function in test.cpp so that the driver program will perform following actions:

 create new points p1, p2, p3, p4, draw all of them

 create a new line l1 with points p1 and p2, draw it

 create a new line l2 with points p3 and p4

 create a new filled rectangle r1 with basepoint p1, draw it

 create a new non filled rectangle r2 with basepoint p2, draw it

224

 create a new filled rectangle r3 with basepoint p3

 create a round rd1 with boundedbox r2, draw it

 create a round rd2 with boundedbox r3

 create a triangle with p1, p2 and p3, draw it

 create a complexshape myshape

 add r3, l2, and rd2 to myshape

 draw myshape

 explode myshape and draw each of its components

 delete all shapes
For unmentioned parameters of a shape such as width and height for a rectangle, use any value.
Compile and run your program.

Step 4: Documentation and Submission
 Write a readme file with very brief instructions on how to compile and run your program as well
as anything you would like the TAs to note.

Create a new folder (named “lastname1_lastname2_lab06”) in your local Nike account. Copy
all *.h, *.cpp, the image file of your class diagram design and the readme to the newly created folder

and submit the folder to cs1730. Do not include any *.o or executable files. (submit
lastname1_lastname2_lab06 cs1730)

Grading Rubric:

Deliverables Total Points Comments

Subjective Survey 5

Source Code 45

 Shape class 10

 Point class 5

 Line class 5

 Rectangle class 5

 Round class 5

 Triangle class 5

 ComplexShape class 10

Lab 07 Practice on Basic C++ Exception Handling
Goal
 In this lab, you will use C++ to modify a piece of code so that it appropriately handles all possible
exceptions. Then you will add exception handling in the shape.cxx and test.cxx files of your previous
lab, to handle possible exceptions in the drawing system.

Due Date
 Feb 24, 2012 (Friday) 11:59 pm on part 1.
 Feb 28, 2012 (Tuesday) 11:59 pm on part 2.

Late Penalty

225

 As described in the course policies.

Collaboration Policy
As pair programmers, you may only collaborate with your assigned pair programming partner

for this project according to pair programming policies.

Part 1: Handling basic C++ exceptions

Look at handle.cpp file and read the comments. Inside the main function, each comment
indicates a possible exception that you will need to handle.

bad_alloc exception
Comment out code blocks 2, 3, 4 and leave only code block 1 in the main() function. Compile
and run the program. What is the output you get?
Search a little bit online with key words “c++ exception bad_alloc” to find code examples and
explanations.
Add a try/catch block around code block 1 to appropriately handle the exception. Then compile
and re-run the program. Make sure your program prints a line saying “All code executed”
before you proceed.

bad_cast exception
Uncomment code block 2 in the main() function. Compile and run the program. What is the
output you get now?
Figure out what key words to search online and look up that exception.
Add a try/catch block around code block 2 that appropriately handles the exception. Then
compile and re-run the program. Make sure your program prints a line saying “All code
executed” before you proceed.

bad_typeid exception
Uncomment the code block 3 in the main() function. Compile and run the program. What is the
output you get now?
Figure out the cause of that exception by searching online.
Add a try/catch block around code block 3 that appropriately handles the exception. Then
compile and re-run the program. Make sure your program prints a line saying “All code
executed” before you proceed.

other exception
Uncomment the code block 4 in the main() function. Compile and run the program. What is the
output you get now?
Figure out the cause of that exception by searching online.
Modify myfunction() so that it throws the correct type of exception (say an integer 20).
Compile and run the program again. What did you get now?
Add a try/catch block around code block 4 that appropriately handles the integer exception.
Then compile and re-run the program. Make sure your program prints a line saying “All code
executed” before you proceed.

bad_exception exception
Modify myfunction() again so that it still throws an exception with the incorrect type (say a
character ‘x’). Compile and run the program. What did you get now?
Now search online with the keywords “c++ exception bad_exception”.
Register the bad exception handler, the unexp_hd() function, at the very beginning of code
block 4 by writing: set_unexpected(unexp_hd);
Compile and re-run the program. What did you get now?
Add another catch block after the one that catches the integer exception in code block 4, to

226

catch the bad_exception exception. Appropriately handle this exception. Now your program
should be able to reach the final statement in the main() function and print a line saying “All
code executed”.

Part 2: Implement Exception Handling for Drawing System
 In this step, you should revisit the addShape() function in your shape.cxx file and actually throw a
string exception that saying “no shape may be added to a finalized shape”. Also modify your test.cxx
file to use try/catch blocks to catch and handle possible exceptions.

Part 3: Documentation and Submission
 For part 1: (Due on Feb 24, Friday, 11:59pm)

Create a new folder (named “lastname1_lastname2_lab07”) in your local nike account. Copy
the handle.cpp file you modified in step 1 to the newly created folder and submit it to cs1730. Do not

include any *.o or executable files. (submit lastname1_lastname2_lab07 cs1730)
For part 2: (Due on Feb 28, Tuesday, 11:59pm)
Please refer to lab06 specification for submission. You just submit your lab06 source code.

Grading Rubric:

Deliverables Total Points Comments

Subjective Survey 5

Exception Handling (Step 1) 45

 bad_alloc
 bad_cast
 bad_typeid
 bad_exception

10
10
10
15

CSCI 1730 Lab/Project Specification (Week 8)
Programming Project #4
Object-Oriented Programming in C++
--Working with FLTK for a Drawing System

Goal
 In this project, you will learn to use external library functions in C++ to implement part II of the
drawing system. In this part, you will implement the drawing methods of shape objects with functions
provided by FLTK library. You are expected to learn how to work with external library functions in C++.
This project also furthers your understanding of object-oriented programming concepts such as
inheritance, function overloading, polymorphism, composition, etc. This part will be used to build
further parts of the drawing system.

Due Date
 Mar 20, 2012 (Tuesday) 11:59 pm.

Late Penalty
 As described in the course policies.

227

Collaboration Policy
As pair programmers, you may only collaborate with your assigned pair programming partner

for this project according to pair programming policies.

Project Description
Step 1: Working with Graphic Interfaces through nike System

In this first step, you are going to setup some basic environments which enable you to work
with graphical interfaces through the nike system.

 If you are working on Mac:

You do not need to install any third party software to work with a graphical interface through the
nike system. All you need to do is to connect to nike with the ‘-x’ option. Use the following
command to connect to nike:
 ssh -l [your username] nike.cs.uga.edu -x
After you see the command prompt, type command:
 firefox &
If everything is set up correctly, a firefox browser window will start from the nike server.

 If you are working on Windows:

You need to install third party software (x windows) to work with a graphical interface through the
nike system with ssh.
1. Go to http://x.cygwin.com/ and scroll down to the “downloading and installing” section. Click
on the setup.exe link, download and save the file.
2. Double click the setup.exe stored on your local machine and start installation. Use the default
settings to finish the installation of the cygwin-x system. This may take quite some time depending
on your network connection. So please be patient.
3. After installation, you may have to reboot your system. Then you will see the Cygwin X folder
from your start menu. Go to that folder and run the XWin Server program.
4. After XWin Server is running, you should see an X icon in your windows notification area
(lower right corner of the screen). The Cygwin X window system works with both windows XP and
windows 7 systems.
5. Now start your ssh-client program. (For downloading and installing of ssh-client program,
please refer to AccessNikeGuide file on ELC home page.)
6. Click on “Profiles->Edit Profiles”. Select the Tunneling panel on the right side and make sure
to choose “Tunnel X11 connections” option. Then select the Authentication panel and make sure to
choose “Enable to SSH2 connections” option. Save your settings.
7. Connect to nike normally. After you see the command prompt, type command:
 firefox &
 If everything is set up correctly, the firefox window should start from the nike server.

Step 2: Implement Color Property

In previous lab, we kept the property of a shape object’s color as a string. In this lab, we are
going to work with FLTK colors and you will use the Fl_Color type. First, modify the point.h file as
follows:

http://x.cygwin.com/

228

#include <FL/Fl.H>

#include <FL/fl_draw.H>

...

class Point : public Shape {

 public:

 Point(int, int, Fl_Color);

 // some other methods

 private:

 int x;

 int y;

 Fl_Color color;

};

...

Then, modify the actual implementation of the constructor and the accessors of color property:
#include <FL/Fl.H>

#include <FL/fl_draw.H>

...

Point::Point(int newx, int newy, Fl_Color newcolor):Shape

(true) {

 x = newx;

 y = new y;

 color = newcolor;

}

Fl_Color Point::getColor(){return color;}

void Point::setColor(Fl_Color newcolor){color = newcolor;}

...

Finally, if necessary, make modifications to files of other shapes.

Step 3: Implement the Draw() Method
 In this part of the lab, we are going to actually draw out shapes. Here is an example of how to use
FLTK methods to draw a point (a single pixel):

// point draw method

void Point::draw(){

 // set the color of pen to the point’s color

 fl_color(getColor());

 // draw the point

 fl_point(getX(), getY());

}

To draw other shapes, you need to use following functions. Look up the FLTK documents
(http://www.fltk.org/documentation.php) and use these functions appropriately in different shape
object’s draw method.

fl_line(int x1, int y1, int x2, int y2);

fl_rect(int x, int y, int width, int height);

fl_rectf(int x, int y, int width, int height);

fl_pie(int x, int y, int width, int height, double start, double

end);

fl_arc(int x, int y, int width, int height, double start, double

end);

fl_polygon(int x1, int y1, int x2, int y2, int x3, int y3);

To draw a complex shape, you just call the corresponding draw method of each of its
components.

http://www.fltk.org/documentation.php

229

Step 4: Create a Canvas Object
 To draw shapes, we need a canvas object. It will extend the Fl_Widget class and maintain a list of
shapes (finalized or non-finalized) to draw. A prototype of it (canvas.h) looks like this:

#ifndef CANVAS_H

#define CANVAS_H

#include "shape.h"

#include <FL/Fl.H>

#include <FL/Fl_Double_Window.H>

#include <FL/fl_draw.H>

#include <vector>

class Canvas : public Fl_Widget {

 public:

 Canvas(int X, int Y, int W, int H, Fl_Color

B);

 void draw();

 void enqueueShape(Shape* s);

 private:

 Fl_Color background;

 std::vector<Shape*> shapes;

};

#endif

 The constructor of the canvas specifies the position and size of the canvas in a window as well as
its background color. The canvas object maintains a list of shapes to draw. To implement the draw
method of the canvas, we draw the canvas itself as well as all the objects it holds in the shapes vector:

// draw method

void Canvas::draw(){

 fl_push_clip(x(), y(), w(), h());

 fl_color(background);

 fl_rectf(x(), y(), w(), h());

 //Actually draw shapes here

 for (unsigned int i=0; i<shapes.size(); i++){

 shapes[i]->draw();

 }

 fl_pop_clip();

}

Step 5: Modify Driver Program

Now in our driver program, we create shapes and add them to the drawing list of the canvas.
Then we call the redraw method which is defined for all Fl_Widget objects and calls the draw method
of that widget. To initialize and start the FLTK window, we need to create, initialize, show and run it in
our main function.

//testdraw.cxx

int main(int argc, char** argv) {

 Fl_Double_Window window(600, 600);

230

 Canvas* canvas = new Canvas(0, 0, 600, 600,

FL_WHITE);

 Point* bp = new Point(10,10,FL_BLACK);

 Shape* rectangle = new Rectangle(bp, 100, 100,

true);

 canvas->enqueueShape(rectangle);

 canvas->redraw();

 window.end();

 window.show(argc,argv);

 return Fl::run();

}

 With these settings, when you run the driver program, a GUI window should start and you may be
creative what you would like to draw in your program. Our test program will use each shape at least
once.

Step 6: Documentation and Submission
 Write a readme file with very brief instructions on how to compile and run your program as well
as anything you would like the TAs to note.

Create a new folder (named “lastname1_lastname2_lab08”) in your local Nike account. Copy
all *.h, *.cxx and the readme to the newly created folder and submit the folder to cs1730. Do not
include any *.o or executable files. (submit lastname1_lastname2_lab08 cs1730)

Grading Rubric:

Deliverables Total Points Comments

Subjective Survey 5

Source Code 45

 Point draw & color 10

 Line draw 5

 Rectangle draw 5

 Round draw 5

 Triangle draw 5

 ComplexShape draw 5

 Driver program 10

Lab 09 Practice on C++ Operator Overloading
Goal
 In this lab, you will use C++ operator overloading feature to modify part of the drawing system --
the complex shape class. You are going to implement the “+=” and “+” operator so that user may add
shapes to a complex shape using these operators rather than calling the addShape method.

Due Date

231

 Mar 20, 2012 (Tuesday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
As pair programmers, you may only collaborate with your assigned pair programming partner

for this project according to pair programming policies.

Step 1: Reviewing Operator Overloading

Review the corresponding material of operator overloading in textbook and lecture slides.

Here are some simple rules of thumb for you to remember:
1) While designing operator overloading, you are making the user’s life easier but not

yours.
2) If an operator’s semantic meaning is not clear or straight forward in application

domain, use a function with well-chosen name instead.
3) Provide all out of a set of related operators such as “=, +=, +”.
4) A unary operator is usually implemented as a member function.
5) A binary operator that treats both operands equally (such as +, -) is usually

implemented as a non-member function.
6) A binary operator that does not treat both operands equally (such as =, +=, -=), may be

implemented as a member function of its left hand side operand.

The operator “=” is already declared and implemented in the given complexshape.h and
complexshape.cxx files. Please take a look at it and make sure you understand the general
syntax of overloading an operator.

Step 2: Implement Operator “+=” as a Member Function
 The header files and object files of all basic shape types (point, line, triangle, rectangle and round)
and the canvas are given for your use. You are also given a slightly modified makefile which will only
build the complexshape object and testdraw programs. In testdraw.cxx the program main function
utilizes the += operator to add basic shapes to a complex shape.

Leave code block 2 uncommented and comment out code blocks 3 and 4. Declare and
implement the += operator overloading in the complexshape.h and complexshape.cxx files. Compile
and run the program. You should see a red Minnie drawn under the black Mickey.

Then leave code block 3 uncommented and comment out code blocks 2 and 4. Compile and
run the program, it should achieve the same effect. If not, you should modify your += operator
overloading.

Step 3: Implement Operator “+” as a Friend Non-Member Function
 Leave code block 4 uncommented and comment out code blocks 2 and 3. Declare and implement
the + operator overloading in the given complexshape.h and complexshape.cxx files. Compile and run
the program. You should see the same effect as described in the previous step.

Part 3: Documentation and Submission

Please submit this work together with your lab 08. No separate submission is required. This lab
will be graded together with lab 08.

232

Grading Rubric:

Deliverables Total Points Comments

Subjective Survey 5

Operator Overloading 45

 +=
 +

25
20

CSCI 1730 Lab/Project Specification (Week 7)
Programming Project #5
Shell, I/O, Directory, File and Memory

Goal
 In this project, you will write three pieces of programs. The first program should list files and
directories in current working directory. The second program will encode plain text from standard I/O
or text file. The third program will decode encrypted text from standard I/O by using UNIX pipes. The
goal of the project is:

1) Practice using C DIR interfaces to extract file and directory information
2) Practice using C I/O functions and FILE interfaces to read/write standard I/O and files
3) Practice using UNIX pipe (popen(), pclose()) in C
3) Practice using basic memory management functions (memset(), malloc(), free())
4) Get familiar with basic shell redirection and shell level piping

Due Date
 Feb 28 (Tuesday) at 11:59 pm

Late Penalty
 As described in the course policies.

Collaboration Policy
As pair programmers, you may only collaborate with your assigned pair programming partner

for this project according to pair programming policies.

Project Description
Step 1: Create Listdir Program with C DIR interface
 In this first step, you will create a program to extracting file and directory info under current
directory. Your program should explore the current directory where it is executed, print out the name,
size and file number of each file/directory, each as a line and using tab to separate name, size and file
number information. Use opendir(), readdir(), closedir(), rewinddir() and stat() functions appropriately
to achieve this.
 Name your program as listdir.c. Here is a sample run of the program.

-bash-4.1$./ls

decipher 11314 89524144

233

ls 8025 89525269

test.cpp 227 89525085

makefile 271 89525439

note.c 183 89525267

. 4096 89522255

cipher.c 1432 89525087

.. 4096 89525054

encode 214920 89524162

cipher 9560 89524140

origin 18 89525230

comp 214920 89525092

listdir.c 567 89525220

alien 214920 89524163

decipher.c 3176 89525245

note 7245 89525056

-bash-4.1$

Step 2: Create Encryption Program with Standard I/O
In this first step, you will create a program for encryption. The encryption is a simple cipher,

replacing each alphanumeric symbol with a shifted value. Here are two examples:
Dog3 => shifted 1 => Eph4

Cat…9 => shifted 2 => Ecv…1

 Only letter (upper- and lowercase) and numeric (0-9) symbols should be affected. All other
symbols should pass through encryption unaffected. The shifting of a symbol should wrap around its
set. For example, the symbol “z” shifted 1 should become “a”. The symbol “Z” shifted 2 should become
“B”. They symbol “9” shifted 3 should become “2”;
 The program should encode text. It should prompt for the user to enter a string, encode it, and
print out the encoded version to screen. An EOF char (which could be input by hitting Ctrl-D) should
terminate the program. The program should also accept a single command line argument defining the
shift delta. The value of delta must be an integer between 0 and 9, inclusive.
 Name your program as cipher.c. Here is a sample run of the program.

-bash-4.1$./cipher 4

this is an apple. // user input

xlmw mw er ettpi. // print by program

-bash-4.1$ // user input Ctrl-D

Step 3: Run Encryption Program with Shell Stream Redirection
 In this step, you should run your program with following different shell commands:
 UNIX> ./cipher 4

=> read from standard input, encrypt the text and print out the

encrypted text to screen

 UNIX> ./cipher 4 < origin

=> redirect standard input to file origin, encrypt the text in

it and print out the encrypted text to screen

UNIX> ./cipher 4 > encode

=> read from standard input, redirect standard output to start

of file encode and write out the encrypted text to it

234

UNIX> ./cipher 4 >> encode_all

=> read from standard input, redirect standard output to end of

file encode_all and append encrypted text to it

UNIX> ./cipher 4 < origin > encode

=> redirect both standard input and output to file origin and

encode

Step 4: Modify Encryption Program to Work with Files and Chomd
 In this step, you should modify the cipher.c program you created in step 1 so that besides working
with standard input/output, a user could also pass filenames as command line arguments to the
program. The program should check the argc value. When it is 2, the program will use standard
input/output. When it is 4, the program will take last two arguments as input and output filenames.
Otherwise, the program should exit with printing out a corresponding error message. Here are
examples:

 UNIX> ./cipher 4

=> read from standard input, encrypt the text and print out the

encrypted text to screen

 UNIX> ./cipher 4 original encoded

=> read file original, encrypt the text in it and save the

encrypted text in file encoded

 Use the “chmod 000 original” command to change the umask of file original and try to re-
execute the above commands. See what will happen. Use the “chmod –rw-r--r—original”
command to change the umask of file original back to what it was.

Step 5: Create Decryption Program with Standard I/O, using UNIX Pipe and Memory Management
Functions
 In this step, you will create a second program for decrypt encoded text. The program should be
unaware of the value of delta used to encode the text. Instead, it must figure out the value of delta by
trying to decrypt using all possible values for delta and examining the resulting text. To examine the

result, the program must use the dictionary stored in the linux.words file (in /usr/share/dict/
directory on Nike). It should compare every potential decrypted word with the dictionary, looking for a
match. Whichever value for delta produces the most matches with words in the dictionary should be
assumed to be the correct value of delta. The program should print out the decrypted text using that
value of delta (and it should not print out anything else). An EOF char (which could be input by hitting
Ctrl-D) should terminate the program. Use popen(), fscanf() and pclose() functions appropriately to
achieve these.
 Name your program as decipher.c. Here is a sample run of the program.

-bash-4.1$./decipher

xlmw mw er ettpi. // user input

this is an apple. // user input Ctrl-D

-bash-4.1$

Step 6: Test Programs with Shell Pipelining

235

 In this step, run both of your program with shell pipelining techniques to pipe standard output
from the cipher to standard input on the decipher.
 You don’t need to write any more code and you should be able to achieve following commands:
 UNIX> ./cipher 4 < origin | ./decipher > decoded

 => read file origin and pipe output of cipher program to the

input of decipher program and the decipher program write output

to file decoded

 UNIX> ./ls | ./cipher 4 | ./decipher > list

 => list all files and directories, pipe the output to cipher

program, pipe the encrypted list to decipher program and write

output to file list

Step 7: Documentation and Submission
 Write a readme file with anything you would like the TAs to note.

Create a new folder (named “lastname1_lastname2_lab07”) in your local Nike account. Copy
listdir.c, cipher.c, decipher.c and readme files to the newly created folder and submit the folder to

cs1730. Do not include any *.o or executable files. (submit lastname1_lastname2_lab07
cs1730)

Grading Rubric:

Deliverables Total Points Comments

Subjective Survey 5

List program 10

Encode program with Standard I/O 5

Encode program with File 5

Memory Allocations in Decode Program 10

Unix Pipe in Decode Program 10

I/O Redirection and Piping 5

CSCI 1730 Lab Specification (Week 11)
Files and Streams in C and C++
--Adding Files and Streams Features for the Drawing System

Goal
 In this lab, you will finish two parts of work. First part is a hands-on practice specified at:
http://www.cs.uga.edu/~eileen/1730/Notes/Mar28/Lab11.html.

In second part, you will use C++ file and streaming features (which are built upon C basic file
and streaming functions) to enhance the drawing system – adding shape parsing and file read/write
features. You are going to review the usage of file input/output streams while learning other advanced
stream features of C++.

Due Date
 Part 1: Apr 3, 2012 (Tuesday) 11:59 pm.

http://www.cs.uga.edu/~eileen/1730/Notes/Mar28/Lab11.html

236

Part 2: Apr 10, 2012 (Tuesday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
As pair programmers, you may only collaborate with your assigned pair programming partner

for this project according to pair programming policies.
As solo programmers, you should work on your own.

Step 1: Serialization of Shape Objects

Serialization is a whole complicated topic in object oriented programming. Thought of in a
simplest way, it is the technique of transforming objects to bits and bytes that could be
transmitted through files, networks or other stream transmission methods.

In this lab, we will NOT implement a full serialization feature for the drawing system. However, we are
going to add features to the project so that the drawing system may draw shapes by reading files and
write files according to the shapes it has drawn.

We define following records for all concrete shapes in our hierarchy:
1. Point
 point [color] [coordinate]
2. Rectangle
 rectangle [color] [coordinate_of_basepoint] [width] [height] [fill]
3. Line
 line [color] [coordinate_of_startpoint] [coordinate_of_endpoint]
4. Round
 round [rectangle] [start_degree] [end_degree]
5. Triangle
 triangle [color] [coordinate_of_p1] [coordinate_of_p2][coordinate_of_p3]

For a color, we use three integer numbers (corresponds to red, green and blue values of a
color) to represent it. For example, the color black will be represented as “0 0 0” (without the
quotes) and color white will be represented as “255 255 255”.

For a coordinate, we use two integer numbers (corresponds to x and y values of a coordinate)
to represent it. So “20 30” (without the quotes) represent the coordinate (20, 30).

Here are a bunch of example records that represents different shapes:
point 255 0 0 20 30

 a red point at coordinate (20, 30)
rectangle 0 255 0 20 30 100 200 1

 a filled green rectangle start at (20, 30) which is 100 wide and 200 tall
round 0 255 255 20 30 50 50 1 30 360

 a filled yellow round shape bounded by a rectangle which start at (20, 30) and is
50*50; while the round shape is a portion of the round from degree 30 to degree 360

triangle 0 0 255 0 0 20 20 100 100
 a blue triangle whose three points are (0, 0), (20, 20) and (100, 100)

237

You are not expected to write out any code in this step. Your major concern is to understand the
corresponding format of a record for each shape.

Step 2: Implement an Abstract toString() Method for Shape Hierarchy
 Modify the shape.h file and add a virtual toString() method to the shape class. Then implement
the actual toString() methods in each concrete class: point, line, rectangle, round, and triangle.

 Here is an example of using the stringstream library functions to deal with string concatenations
and conversions:

// toString method of Point class

std::string Point::toString(){

 // create a new stringstream object ss

 std::stringstream ss;

 // attach the string "point " to stream

 ss << "point ";

 // get the red, green, blue components of color

 uchar r, g, b;

 Fl::get_color(color, r, g, b);

 // attach the color components value as unsigned int

 ss << (unsigned int)r << " " << (unsigned int)g << " " <<

(unsigned int)b << " ";

 // attach the x, y coordinate values to stream

 ss << x << " " << y << std::endl;

 // convert stringstream object to standard string

 return ss.str();

}

Step 3: Implement Static parseShape() Method for Shape Hierarchy
 In your shape.h file, add the following function prototype to shape class:
 static Shape * parseShape(std::string message);

 This method will parse the message that describe a shape and return the pointer to that shape.
Here is a simple example of how you could use stringstream object to tokenize a string and parse
different types of values:

#include <cstdlib>

#include <string.h>

#include <iostream>

#include <sstream>

int main(){

 std::string s("hello 20 23.5");

 std::string token;

 std::stringstream ss(s);

 std::string str;

 int i;

 double d;

238

 int count = 0;

 while (getline(ss, token, ' ')){

 std::stringstream stm;

 stm.str(token);

 switch (count){

 case 0:

 stm >> str;

 break;

 case 1:

 stm >> i;

 break;

 case 2:

 stm >> d;

 break;

 }

 ++count;

 }

 std::cout << str << std::endl;

 std::cout << i << std::endl;

 std::cout << d << std::endl;

}

Step 4: Implement the Driver Program

Modify the driver program testdraw.cxx in your lab 09. Your program should now be able to
deal with command line arguments. When there’s no arguments, the program draw the shapes you
defined in the driver program and after drawing all the shapes onto canvas, it writes messages of all
shapes to a file named data. When there is one argument supplied to the program, the program should
take it as a data file and draw shapes defined in that file.

Test your program by exchanging the data files with your classmates.

Step 5: Submission
 For Part 1: Create a new folder lab11_lastnames_part1. Copy files basic.c, basic2.c,
basic3.c and basic4.c to this folder and submit the folder to nike (Due date: Apr. 3th).

For Part 2: Create a new folder lab11_lastnames_part2. Copy all source files of drawing system
(*.h and *.cxx files) to this folder and submit the folder to nike (Due Date: Apr. 10th).

Do not include any *.o or executable files.

Grading Rubric:

Deliverables Total Points Comments

Subjective Survey 5

Files and System Calls 45

 basic.c 10

 basic2.c 15

 basic3.c 15

239

 basic4.c 5

Drawing System 50

 toString() methods
 parseShape() method
 driver program

15
20
15

CSCI 1730 Lab Specification (Week 12)
Processes and Signals

Goal
 In this lab, you will finish a series of hands-on practice about manipulating processes and inter-
process communication with C system calls and signals. After the lab, you should be familiar with the
UNIX process mechanism.

Due Date
Apr 17, 2012 (Tuesday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
As pair programmers, you may only collaborate with your assigned pair programming partner

for this project according to pair programming policies.
As solo programmers, you should work on your own.

Step 1: Parent and Child Processes

1. Copy the following codes into test_fork.c file. Create a makefile to compile and run the
program.

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

int main(){

 pid_t child_pid;

 switch (child_pid = fork()){

 case (pid_t) -1:

 break;

 case (pid_t) 0:

 // child

 exit(0);

 default:

 // parent

 exit(0);

 }

240

 return 0;

}

2. Use “perror” to add error-handling for the case in which fork fails.

3. Add to the “parent” case so that the parent process reports its own process id (use getpid()

function) and its child’s process id.

4. Add to the “child” case so that the child reports its own process id (use getpid() function) and
its parent’s process id (use getppid() function).

5. Why does the child report that its parent’s process id is 1? Add a line of code in “parent” case

to solve that (use waitpid() function).

6. The “_exit(int status)” system call terminates a process, but keeps the process table entry for
that process. It is now a "zombie" process. The parent process can retrieve info about it. Write
a test program test_exit.C. The program should print out "Test program for _exit", and then
call _exit(0). Compile and run the program. Then type “echo $?” at the command line. Now
change _exit(0) to _exit(23). Compile and run the program again. Then type “echo $?” at the
command line.

7. Copy your test_fork.c program to one named test_waitpid.c In this new program, have the

parent process wait for the child process (use waitpid()). Check if the child has exited with an
error code (WIFEXITED, WEXITSTATUS), was stopped by a signal (WIFSTOPPED, WSTOPSIG), or
was killed by a signal (WIFSIGNALED, WTERMSIG). Use _exit(0) to exit the child process.
Compile and run the program. What is the output? Now change _exit(0) to _exit(23), what is
the output now?

8. Comment out the _exit() call in the child process. Use a while(1) loop to let the child run

infinitely. Now compile and run your program in the background with the & sign. Send a
termination signal with the kill command to the child process. Now what is the output of the
program?

9. Copy the following code to test_exec.c file. Now modify this program to implement the

"System" method. The program should be a simple shell that takes in a command, executes it,
and then waits for another command (in a loop).

#include <stdlib.h>

#include <stdio.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>

int System(const char *cmd){

 // execute command

}

int main(){

241

 int rc = 0;

 char buf[256];

 do {

 printf("sh> ");

 fflush(stdout);

 if (!fgets(buf, 256, stdin)) break;

 rc = System(buf);

 }while (!rc);

 exit(rc);

}

Step 2: Signals

1. Write a small program test_sig.c that installs a signal handler for SIGUSR1 and SIGUSR2. The
signal handler should 1) reinstall itself and 2) print out the identity of the signal received. The
main method should install the signal handler for SIGUSR1 and SIGUSR2 (checking that they
were properly installed) and then loop, invoking "pause()" within the loop. Compile and run the
program in the background.

2. From the command line, send the process above the SIGUSR1 signal. (Use the kill command.)
3. Restart the process if necessary. From the command line, send the process above the SIGUSR2

signal. (Use the kill command.)
4. Restart the process if necessary. From the command line, send the process above the SIGINT

signal. (type Ctrl-C or use the kill command).
5. Restart the process if necessary. From the command line, send the process above the SIGQUIT

signal. (type Ctrl-\ or use the kill command).

6. Write a small program test_alarm.c that reports the elapsed time in 5 second intervals. Use the
alarm() call and a handler for SIGALRM to accomplish this.

7. Write a small program called test_cleanup.c. The main program should fork off three child
processes. Each child should report out (display a message "child process $pid reporting in"
and then enter a while (1) loop in which it reports a loop count and its pid, and then "sleeps"
for a few seconds. (See "man -s3c sleep"). The parent process should "pause()" (waiting for a
signal). Install a signal handler for the parent (you can choose the signal that you want to use)
that sends a kill signal to the children, "wait()" for them to terminate, and then prints out a
"parent terminating" message. Install a signal handler for the children that causes them to
print out a message "child $pid exiting" and then exit normally. Compile and run the program
in the background. Then send the selected signal to the parent process.

Step 3: Submission

Create a new folder lab12_lastnames. Copy all source files (*.c) and your makefile to this folder
and submit the folder to nike (Due Date: Apr. 11th).

Do not include any *.o or executable files.

Grading Rubric:

Deliverables Total Points Comments

Subjective Survey 5

242

Processes 20

 test_fork.c 5

 test_exit.c 3

 test_waitpid.c 10

 test_exec.c 2

Signals 25

 test_sig.c
 test_alarm.c
 test_cleanup.c

10
5
10

CSCI 1730 Lab Specification (Week 13)
Threads and Shared Objects in Java and C++

Goal
 In this lab, you will finish a series of hands-on practice with threads and monitor models. After the
lab, you should be familiar with Java thread mechanism and PThread library in C++.

Due Date
Apr 19, 2012 (Thursday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
As pair programmers, you may only collaborate with your assigned pair programming partner

for this project according to pair programming policies.
As solo programmers, you should work on your own.

Step 1: Java Threads

10. Copy the following codes into file Worker.java. Create a driver program Factory.java that
initialize two workers with different ids and let each of them check in 10 times.

public class Worker {

 private int id;

 public Worker(int id){

 this.id = id;

 }

 public void checkIn(){

 System.out.println("Worker: " + id);

 }

}

243

11. Read http://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html and
modify Worker.java into a thread object so that its run method calls the checkIn method 10
times.

12. Now modify the Factory.java file and start two worker threads in the main method. Run the

program several times, what kind of results do you have?

13. Now, read http://docs.oracle.com/javase/tutorial/essential/concurrency/sleep.html and
modify your Worker.java file so that after each check in, the worker will sleep for a random
number of milliseconds (0-20). Compile and re-run the program. What kind of effect do you

see? Create a folder java1 and copy all your current *.java files to it.

14. Copy the following code to Sum.java file.

public class Sum {

 private int sum;

 public Sum(){

 sum = 0;

 }

 public void increase(){

 sum++;

 }

 public void printSum(){

 System.out.println("Sum is: " + sum);

 }

}

15. Copy your Worker.java file and modify it to the following:

public class Worker implements Runnable {

 private int id;

 private Sum sum;

 public Worker(int id, Sum sum){

 this.id = id;

 this.sum = sum;

 }

 public void checkIn(){

 sum.increase();

 }

 public void run(){

 for (int i=0; i<10; ++i){

 checkIn();

 }

http://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/sleep.html

244

 }

}

 Now what does a worker do when it starts?

16. Copy the Factory.java file and modify it to the following:

public class Factory {

 public static void main(String[] args){

 Sum sum = new Sum();

 Thread[] t = new Thread[100];

 for (int i=0; i<t.length; ++i){

 t[i]=new Thread(new Worker(i, sum));

 }

 for (int i=0; i<t.length; ++i){

 t[i].start();

 }

 for (int i=0; i<t.length; ++i){

 try{

 t[i].join();

 }

 catch(InterruptedException ie){}

 }

 sum.printSum();

 }

}

Explain what happens in each for loop in the above code. What is the expected output of the
program?

17. Create a makefile with three targets: all, run and clean. Compile the above program and run it
several times. What outputs do you get? How can you explain the outputs? Now read
http://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html and add one
keyword to the increase() method of the Sum class to correct the program so that it gives the
expected output. What is that keyword?

18. Copy all your *.java files to a new folder java2.
It will be good for you to finish reading the Java Concurrency Tutorial online:
http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

Step 2: PThreads

8. Copy the following code into a sum.h file:
#include <cstdlib>

#include <pthread.h>

#ifndef SUM_H

#define SUM_H

class Sum {

 public:

 Sum();

 ~Sum();

http://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

245

 void increase();

 void printSum();

 private:

 pthread_mutex_t mutex;

 int sum;

};

#endif

9. Read https://computing.llnl.gov/tutorials/pthreads/#Mutexes to understand how to create,

destroy, lock and unlock a mutex. Then create a sum.cpp file to implement the Sum object. It
should perform in the same way as the object you defined in Sum.java.

10. Copy the following code into worker.h file:
#include <cstdlib>

#include <pthread.h>

#include "sum.h"

#ifndef WORKER_H

#define WORKER_H

class Worker {

 public:

 Worker(int, Sum *);

 void checkIn();

 static void *run(void *);

 private:

 int id;

 Sum *sum;

};

#endif

11. Copy the following code into a worker.cpp file and complete its implementation so that a

worker object functions in the same way as the one defined in java2/Worker.java.
#include <cstdlib>

#include <iostream>

#include <time.h>

#include <unistd.h>

#include "sum.h"

#include "worker.h"

Worker::Worker(int identity, Sum *psum){

 // TODO: constructor

}

void Worker::checkIn(){

 //TODO: increase sum

}

https://computing.llnl.gov/tutorials/pthreads/#Mutexes

246

void *Worker::run(void *arg){

 // initialize a singleton instance

 Worker *obj = (Worker *)arg;

 for (int i=0; i<10; ++i){

 obj->checkIn();

 // sleep up to 20 miliseconds

sleep(rand()%20/1000);

 }

}

12. Read “Thread Management” section at https://computing.llnl.gov/tutorials/pthreads/. Pay

attention to the pthread_create() and pthread_join() methods. Write a driver program
factory.cpp that spawns 100 workers.

13. Copy all *.cpp and *.h files to a folder cpp. Create a makefile to compile and run your
program. Your program should not have race conditions. Use the following flag to compile the

program with PThread library calls: -pthread

Step 3: Submission

Write down brief answers to the above questions in an answer.txt file. Create a new folder
lab13_lastnames. Copy all files in the java1, java2 and cpp folders to this folder. Move answer.txt
to this folder and submit it to nike (Due Date: Apr. 19th).

Do not include any *.o, *.class or other executable files.

Grading Rubric:

Deliverables Total Points Comments

Subjective Survey 5

Step 1 Java 25

 Q1 2

 Q2 5

 Q3 5

 Q4 3

 Q6 1

 Q7 4

 Q8 5

Step 2 C++ 20

 Q2 8

 Q4 2

 Q5 8

 Q6 2

CSCI 1730 Lab Specification (Week 14)
Threads and Conditional Synchronization in Java and C++

https://computing.llnl.gov/tutorials/pthreads/

247

Goal
 In this lab, you will implement a bounded buffer program in both Java and C++ that performs the
same functionality. You will practice more with threads and monitor models. You will also practice
using the wait() call and conditional variables to enable conditional synchronization. After the lab, you
should be more familiar with the Java thread mechanism and the PThread library in C++.

Due Date
Apr 26, 2012 (Thursday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
As pair programmers, you may only collaborate with your assigned pair programming partner

for this project according to pair programming policies.
As solo programmers, you should work on your own.

Step 1: Review
 Read all previous lecture slides on concurrency topics. Make sure you understand following
concepts:
 1. Threads
 2. Shared Objects
 3. Race Conditions
 4. Atomic Operations
 5. Locks and Synchronizations
 6. Conditional Waiting
 Read sample codes in slides and codes you wrote for previous lab. Make sure that you are able to
recall the code implementation regarding each of the above concepts.

Step 2: Implement Bounded-Buffer Programs in Java and C++

1. You are given code skeletons in both Java and C++ for implementing the bounded-buffer
program. You may make your own decisions on the implementation order (Java first, C++ first
or implement both at the same time).

2. Your bounded-buffer should have the capacity of holding up to 10 characters. A producer
should produce a random character into the buffer when empty slots are available. A
consumer should consume a character from the buffer. Characters should be consumed in the
order in which they were placed into the buffer.

3. A driver program should spawn 20 producers (totally 20 characters will be produced) and 20
consumers (each consume one character and finally all characters will be consumed).

4. Your program should be free of race conditions. Producer and consumer threads should be
synchronized according to the condition of buffer (full or empty).

5. (Bonus) Implementing a generic buffer will be counted as a bonus (a buffer that could be
initialized to take different types of objects). You could use Java Generic or C++ Templates to
achieve this.

Step 3: Submission

Create a new folder lab14_lastnames. Copy all your source files into this folder and submit it to

248

nike (Due Date: Apr. 26th).
Do not include any *.o, *.class or other executable files.

Grading Rubric:

Deliverables Total Points Comments

Subjective Survey 5

Java Implementation 35

 Bounded Buffer 15

 Producer & Consumer 10

 Driver Program 10

C++ Implementation 60

 Bounded Buffer 20

 Producer 15

 Consumer 15

 Driver Program 10

Bonus 30

 Java Generic 15

 C++ Template Class 15

CSCI 1730 Lab Specification (Week 15)
Sockets

Goal
 In this lab, you will practice basic function calls used to set up a socket communication between
processes. After this lab, you should be familiar with basic C system calls used to set up sockets and be
able to build a client/server system.

Due Date
Apr 30, 2012 (Monday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
As pair programmers, you may only collaborate with your assigned pair programming partner

for this project according to pair programming policies.
As solo programmers, you should work on your own.

Step 1: Review
 Read the sample code of a client/server system at

http://www.cs.uga.edu/~eileen/1730/Notes/Apr19/Apr19.html .

Step 2:

http://www.cs.uga.edu/~eileen/1730/Notes/Apr19/Apr19.html

249

14. Download the code skeleton for this lab.
15. In part 1, the code skeleton is to set up a server/client system. The server accepts connections

from clients and prints out messages send by clients. The client sets up a connection to the
server and sends user input messages to the server. When the user types “close”, the client
program closes the connection to the server and quits. Where you find comments with a
“TODO” note, add the appropriate function calls that you find in the sample code.

16. In part 2, a client/server drawing system is already implemented. Read the code, especially the
socket related files, client.cxx and server.cxx, then compile and run it to answer the following
questions.

1) Which lines in which file make use of the system calls to create a socket, bind a socket,
listen on a socket and accept connections of a socket?

2) What is the behavior of the client drawing program? Write a brief user manual.
3) How many threads are running in the server? What responsibilities do they have?

Step 3: Submission

Create a new folder lab15_lastnames. Copy all your source files in part1 and your answer to
part2 into this folder and submit it to nike (Due Date: Apr. 30th).

Do not include any *.o, *.class or other executable files.

Grading Rubric:

Deliverables Total Points Comments

Subjective Survey 5

Part 1 25

 server.c 15

 client.c 10

Part 2 20

 Question 1) 8

 Question 2) 8

 Question 3) 4

FIGURE 33 LAB MATERIALS FOR SPRING 2012 STUDY

250

6.5 MATERIALS FROM SPRING 2013 WORK

CSCI 4900 Programming in Concurrency
(Spring 2013, T/Th 11:00 Boyd 307A, W 11:15 Poultry Science 136)

Description
This four-hour course covers knowledge of programs and programming techniques used
in building concurrent systems, including multi-core architectures, concurrency and
synchronization issues, programming tactics with Java threads and Scala Actor and
Python Coroutine models for shared memory and message passing systems.
This will be a programming-based course with intensive lab sessions. Students are
expected to finish reading related background materials and complete quizzes and
warm-up programming exercises before class. Students are encouraged to bring a laptop
for participating in in-class lab sessions.
This course will also focus on promoting research work. Students are required to present
a research paper on the topic of “human factors/software engineering issues on
concurrency/parallel programming” during the course. Students will choose papers in
consultation with the instructor.
For a frequently updated course calendar and information, please refer to:
http://www.cs.uga.edu/~zhen/TA/4900/index.html
For enrollment in our Piazza course, please follow this link:
https://piazza.com/class#spring2013/csci4900
For the Piazza course homepage, please go to:
https://piazza.com/uga/spring2013/csci4900/home
Textbooks
1. Programming in Scala, Second Edition

Martin Odersky, Lex Spoon, Bill Venners
ISBN: 0981531644, ISBN-13: 978-0981531649

2. Learning Python, Fourth Edition
Mark Lutz
ISBN: 0596158068, ISBN-13: 978-0596158064

People
Instructor: Eileen Kraemer, eileen@cs.uga.edu .
Assistant Instructor: Zhen (Jane) Li , janeli@uga.edu
Teaching Assistants: Jordan Marchetto, jmarc937@uga.edu
 Mayur Chandrakant Jadhav, mayur27@uga.edu
Times and Places
Tuesday/ Thursday 11:00 - 12:15 in Boyd 307A
Wednesday 11:15 – 12:05 in Poultry Science 136
Office hours with Dr. Kraemer: TBA
Office hours with Zhen Li : Boyd 536, Tues 2:00 – 3:30, Thurs 3:30 – 5:00
Office hours with Jordan : Boyd 536, Wednesday 1:30 – 2:45
Office hours with Mayur : Boyd 536, Monday 2:00 – 3:15
Course Policies
1. Policy on Attendance:
Students are expected to attend class. Online materials are designed to supplement, rather than
replace, classroom experience. Essential information about assignments, extensions of due dates,

http://www.cs.uga.edu/~zhen/TA/4900/index.html
https://piazza.com/class#spring2013/csci4900
https://piazza.com/uga/spring2013/csci4900/home
mailto:janeli@uga.edu
mailto:jmarc937@uga.edu
mailto:mayur27@uga.edu

251

format of exam questions, etc. may be announced or discussed in class with no accompanying
posting on eLC or the web. Attendance will be taken periodically in lectures and in labs, and will
comprise an element of the course grade.
Without prior arrangement, any missed exam will result in a grade of zero. Absences from exams
are excused only in the case of serious illness, as documented by a doctor's diagnostic note. A
makeup exam, if offered, will occur at the time of the final exam.
2. Policy on Collaboration:
The purpose of course projects is to familiarize the student with concepts and details of
programming shared memory and message passing concurrent systems. These may be pair-
programming projects or individual projects, as assigned. Individual projects should be worked
on only by that individual. Pair projects should be worked on only by members of the pair.
We recognize that students’ interaction can facilitate learning. Accordingly, students are both
permitted and encouraged to ask certain types of questions of one another but should be aware
that direct exchange of code is prohibited, as is line-by-line assistance.
Examples of allowable questions:

 What does this compiler error mean?
 Why am I not getting any output?
 How do I submit my project?
 Would you help me with my makefile?

Examples of prohibited questions:
 Can I see your code?
 Would you send me your code (or code snippet)?
 How should I design this class?
 How did you implement function X?

If in doubt, please contact Dr. Kraemer or Jane Li for assistance in deciding what is or is not an
allowable interaction.
Exams are closed-book. No outside assistance is permitted. No additional materials may be used.
3. Late Policy:
Late submissions of projects will be accepted with a penalty computed as follows:

A day is a 24 hour period, rounded up to the nearest day.
For example:
You turn your project in 3 days late, and received a 95% score based on the work done. Your
recorded score will be:

Exception: In the case that a solution is distributed, no project submissions will be accepted after
distribution of the solution.
4. Grading Policy:
Your grade in this course will be calculated as follows:

 Exams: 30% (midterm I = 15%, midterm II = 15%)
 Homework and Quizzes: 10%
 Projects: 50%
 Paper Presentation: 10%

Letter Grades assigned as follows:
 93 <= Grade A
 89 <= Grade < 93 A-
 86 <= Grade < 89 B+

252

 83 <= Grade < 86 B
 79 <= Grade < 83 B-
 76 <= Grade < 79 C+
 73 <= Grade < 76 C
 69 <= Grade < 73 C-
 65 <= Grade < 69 D
 Grade < 65 F

FIGURE 34 SYLLABUS OF CSCI4900 FOR SPRING 2013 STUDY

Syntax Example

Values

value

The simplest component in our pseudo code

system.

0

3.3

“number”

True, False

NULL

Operators

Math Operators: +, -, *, /, %

Relational Operators: ==, <, <=, >, >=, !=

Conditional Operators: AND, OR, NOT

Expression: a well-formed combination of

operators and values

5 + 3 8

5 – 3 2

5 * 3 15

5 / 3 1

5 % 3 2

3 == 5 False

3 < 5 True

3 <= 5 True

3 > 5 False

3 >= 5 False

3 != 5 True

True AND True True

True AND False False

False AND False False

True OR True True

True OR False True

False OR False False

NOT True False

NOT False True

3 <= 5 OR False True

Simple Statement

variable = expression

Simple statements are executed atomically.

Assignment is an example of a simple

statement

total = 0

name = “John Smith”

condition = True

height = 3.3

Print Statement

PRINTLN value, value, ...

PRINT value, value, ...

Prints out values with or without new lines.

Print statements are executed atomically.

PRINT “hello”

PRINTLN “world”

PRINTLN “hello”, “world”

Output

hello world

hello world

Comments

// comment(s)

Comments are not part of the executable

// print “hey there”

PRINT “hello world”

253

code. They exist to illustrate the code. Output

hello world

Function Definitions

DEFINE function-name(parameter, parameter,

...)

 statement(s)

RETURN value

ENDDEF

DEFINE myFun(num1)

 PRINT num1

RETURN num1 + 1

ENDDEF

Function Call Statement

function-name(value, value, ...)

A function call statement triggers the

execution of the function specified by

function-name.

The number of values passed into a function

call statement must be the same as the

number of parameters defined for that

function.

A function call statement is not necessarily

executed atomically. However, the assignment

of the value returned from a function call

is a simple statement, and thus is executed

atomically.

DEFINE myFun(num1)

 PRINT num1

RETURN num1 + 1

ENDDEF

num = myFun(3)

PRINTLN num

Output

3

4

Random Generating Function

randNum(start, end)

Generates a random number value that is

greater than or equal to start and smaller

than or equal to end.

This function call is executed atomically.

num = randNum(0, 2)

PRINTLN num

Output (all possibilities)

possibility 1: 0

possibility 2: 1

possibility 3: 2

If Statement (Conditional)

IF condition THEN

 statement(s)

ELSE IF condition THEN

 statement(s)

ELSE

 statement(s)

ENDIF

The calculation of condition is not

necessarily atomic if it involves function

call statements. However, the choice of

branch based on a calculated condition value

is executed atomically.

IF testScore >= 90 THEN

 PRINTLN “A”

ELSE IF testScore >= 80 THEN

 PRINTLM “B”

ELSE IF testScore >= 70 THEN

 PRINTLN “C”

ELSE

 PRINTLN “F”

ENDIF

testScore = 88

Output

B

While Loop (Indefinite)

WHILE condition DO

 statement(s)

ENDWHILE

The calculation of condition is not

necessarily atomic if it involves function

call statements. However, the decision to

enter or remain in the loop body based on

the calculated condition value is executed

atomically.

count = 5

WHILE count < 9 DO

 PRINT count, “ ”

 count = count + 1

ENDWHILE

Output

5 6 7 8

254

Exit Statement

EXIT

A statement that terminates the current

execution of a loop.

DEFINE myPrint()

 WHILE True DO

 PRINTLN “hello”

 EXIT

 ENDWHILE

ENDDEF

myPrint()

Output

hello

Classes and Objects

CLASS class-name

 DEFINE initialize class-name()

 variable = initial value

 ENDDEF

 DEFINE function-name(parameter, ...)

 statement(s)

 ENDDEF

ENDCLASS

object-name = new class-name()

object-name.function-name()

Object creation is atomic. Member function

calls are not atomic.

CLASS Car

 DEFINE initialize Car()

 wheels = 4

 speed = 100

 ENDDEF

 DEFINE speedUp(newSpeed)

 speed = newSpeed

 ENDDEF

ENDCLASS

car1 = new Car()

car1.speedUp(200)

Lists

list-variable = [item1, item2, ...]

length(list-variable)

list-variable[index]

add(list-variable[index], value)

del(list-variable[index])

sports = [“soccer”, “football”,

“hockey”

length(sports) 3

sports[0] “soccer”

sports[1] “football”

sports[2] “hockey”

sports[3] NULL

add(sports[3], “baseball”) sports

now contains [“soccer”, “football”,

“hockey”, “baseball”]

del(sports[2]) sports now contains

[“soccer”, “football”, “baseball”]

Parallel Execution Statements

PARA

 statement(s)

ENDPARA

Statements within the PARA/ENDPARA block are

executed concurrently.

Atomic statements within PARA/ENDPARA are

executed in any order.

PARA

 PRINT “hello ”

 PRINT “world ”

ENDPARA

Output

possibility 1: hello world

possibility 2: world hello

255

Statements defined in a function that is

called within the PARA/ENDPARA block are

executed sequentially.

Statements defined in functions that are

called within a PARA/ENDPARA block are

executed in any order of interleaving with

simple statements within the same

PARA/ENDPARA block.

Statements defined in two functions that are

called within the same PARA/ENDPARA block

are executed in any order of interleaving

while statements from any one of the

functions are executed in their order of

definition.

DEFINE print()

 PRINT “hi”

 PRINT “there”

ENDDEF

PARA

 print()

ENDPARA

Output

hi there

DEFINE print()

 PRINT “hi”

 PRINT “there”

ENDDEF

PARA

 print()

 PRINT “world”

ENDPARA

Output

possibility 1: world hi there

possibility 2: hi world there

possibility 3: hi there world

DEFINE print1()

 PRINT “hello”

 PRINTLN “world”

ENDDEF

DEFINE print2()

 PRINT “hi”

 PRINTLN “there”

ENDDEF

PARA

 print1()

 print2()

ENDPARA

Output

possibility 1: hi there

 hello world

possibility 2: hi hello there

 world

possibility 3: hi hello world

 there

possibility 4: hello hi there

 world

possibility 5: hello hi world

 there

possibility 6: hello world

 hi there

Shared Memory Concurrency

Exclusively Accessed Statement

EXC_ACC

 statement(s)

END_EXC_ACC

x = 10

DEFINE changeX(diff)

 EXC_ACC

 x = x + diff

 END_EXC_ACC

256

Only appears within a function definition.

When one function call modifies a variable

within an EXC_ACC/END_EXC_ACC block,

statements in other function calls that read

or modify the same variable may not be

executed until the first function call

completes its statement or executes a WAIT

function.

ENDDEF

PARA

 changeX(1)

 changeX(-2)

ENDPARA

PRINTLN x

Output

9

Wait and Notify Functions

WAIT()

NOTIFY()

Only be called inside a EXC_ACC/END_EXC_ACC

block.

Once a WAIT() function starts execution,

another function call that reads or modifies

variables inside the EXC_ACC/END_EXC_ACC

block may execute.

Once a NOTIFY() function is executed, all

WAIT() functions finish their execution.

Both WAIT() and NOTIFY() functions are

atomic.

x = 10

DEFINE changeX(diff)

 EXC_ACC

 WHILE x + diff < 0 DO

 WAIT()

 ENDWHILE

 x = x + diff

 NOTIFY()

 END_EXC_ACC

ENDDEF

PARA

 changeX(-11)

 changeX(1)

ENDPARA

PRINTLN x

Output

0

Message Passing Concurrency

Message Variable

MESSAGE.message-name(value...)

A special message variable that carries a

collection of values. The message-name is

used to distinguish message variables from

one another.

m1 = MESSAGE.h(“hello”)

m2 = MESSAGE.w(“world”)

Send Statement

Send(message variable).To(object)

Send a message specified by message variable

to a receiver object.

A send statement is asynchronous, which means

that the order in which messages are received

may differ from the order in which they were

sent.

m1 = MESSAGE.h(“hello”)

m2 = MESSAGE.w(“world”)

Send(m1).To(r1)

Send(m2).To(r1)

Receive Statement

ON_RECEIVING

 message

 statement(s)

 message

 statement(s)

 ...

Accept the next message and execute

statement(s) according to the type of the

CLASS Receiver

 DEFINE receive

 ON_RECEIVING

 MESSAGE.h(var)

 PRINT var

 MESSAGE.w(var)

 PRINTLN var

 ENDDEF

ENDCLASS

257

message. m1 = MESSAGE.h(“hello”)

m2 = MESSAGE.w(“world”)

r1 = new Receiver()

r1.receive()

Send(m1).To(r1)

Send(m2).To(r1)

Output

possibility1: hello world

possibility2: world

 hello

Self Value

self

This value can be carried by a message or be

used in the To portion of a Send statement to

indicate the creator of a message or the

executor of a send statement.

CLASS Receiver

 DEFINE receive

 ON_RECEIVING

 MESSAGE.h(var)

 PRINTLN var

 Send(MESSAGE.h(var))

 .To(self)

 ENDDEF

ENDCLASS

m1 = MESSAGE.h(“hello”)

r1 = new Receiver()

r1.receive()

Send(m1).To(r1)

Output

hello

hello

...

FIGURE 35 PSEUDOCODE GUIDE FOR SPRING 2013 STUDY

// Ornamental Garden

CLASS Garden

 DEFINE initialize Garden

 population = 0

 ENDDEF

 DEFINE enter()

 EXC_ACC

 population = population + 1

 END_EXC_ACC

 ENDDEF

ENDCLASS

CLASS Turnstile

 DEFINE initialize Turnstile(gardenVal)

 garden = gardenVal

 ENDDEF

 DEFINE run()

 count = 20

 WHILE count > 0 DO

 garden.enter()

 count = count - 1

 ENDWHILE

 ENDDEF

ENDCLASS

258

garden = new Garden()

east = new Turnstile(garden)

west = new Turnstile(garden)

PARA

 east.run()

 west.run()

ENDPARA

// Bank Account

CLASS Account

 DEFINE initialize Account()

 balance = 0

 ENDDEF

 DEFINE deposit(amount)

 EXC_ACC

 balance = balance + amount

 NOTIFY()

 END_EXC_ACC

 ENDDEF

 DEFINE withdraw(amount)

 EXC_ACC

 WHILE balance < amount DO

 WAIT()

 ENDWHILE

 balance = balance – amount

 NOTIFY()

 END_EXC_ACC

 ENDDEF

ENDCLASS

CLASS Customer

 DEFINE initialize Customer(accountVal)

 account = accountVal

 ENDDEF

 DEFINE run()

 WHILE True DO

 IF (randNum(0,1) == 0) THEN

 account.deposit(randNum(1,1000))

 ELSE

 account.withdraw(randNum(1,1000))

 ENDIF

 ENDWHILE

 ENDDEF

ENDCLASS

account = new Account()

customer1 = new Customer(account)

customer2 = new Customer(account)

PARA

 customer1.run()

 customer2.run()

END_PARA

// Large Printing Job

CLASS Printer

 DEFINE initialize Printer()

 working = False

259

 ENDDEF

 DEFINE require()

 EXC_ACC

 WHILE working DO

 WAIT()

 ENDWHILE

 working = True

 END_EXC_ACC

 ENDDEF

 DEFINE release()

 EXC_ACC

 working = False

 NOTIFY()

 END_EXC_ACC

 ENDDEF

ENDCLASS

CLASS Terminal

 DEFINE initialize Terminal(printer1Val, printer2Val)

 printer1 = printer1Val

 printer2 = printer2Val

 ENDDEF

 DEFINE run()

 WHILE True DO

 printer1.require()

 printer2.require()

 // printing

 printer1.release()

 printer2.release()

 ENDWHILE

 ENDDEF

ENDCLASS

printer1 = new Printer()

printer2 = new Printer()

terminal1 = new Terminal(printer1, printer2)

terminal2 = new Terminal(printer1, printer2)

PARA

 terminal1.run()

 terminal2.run()

END_PARA

// Bounded Buffer

CLASS Buffer

DEFINE initialize Buffer(capacityVal)

 items = []

 capacity = capacityVal

 ENDDEF

 DEFINE produce(itemVal)

 EXC_ACC

 WHILE length(items) > capacity DO

 WAIT()

 ENDWHILE

 items[length(items)] = itemVal

 NOTIFY()

 END_EXC_ACC

 ENDDEF

260

 DEFINE consume()

 EXC_ACC

 WHILE length(items) < 1 DO

 WAIT()

 ENDWHILE

 item = items[0]

 del items[0]

 NOTIFY()

 END_EXC_ACC

 return item

 ENDDEF

ENDCLASS

CLASS Producer

 DEFINE initialize Producer(bufferVal)

 buffer = bufferVal

 ENDDEF

 DEFINE run()

 WHILE True DO

 buffer.produce(randNum(0,10))

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Consumer

 DEFINE initialize Consumer(bufferVal)

 buffer = bufferVal

 ENDDEF

 DEFINE run()

 WHILE True DO

 PRINTLN buffer.consume()

 ENDWHILE

 ENDDEF

ENDCLASS

// Dining Philosopher

CLASS Forks

 DEFINE initialize Forks(numVal)

 num = numVal

 forks = []

 WHILE num > 0 DO

 add(forks[forks.size], True)

 num = num – 1

 ENDWHILE

 ENDDEF

 DEFINE getLeftFork(id)

 EXC_ACC

 WHILE !forks[id] DO

 WAIT()

 ENDWHILE

 forks[id] = False

 END_EXC_ACC

 ENDDEF

 DEFINE getRightFork(id)

 EXC_ACC

 WHILE !forks[(id+1)%forks.size] DO

 WAIT()

 ENDWHILE

 forks[(id+1)%forks.size] = False

261

 END_EXC_ACC

 ENDDEF

 DEFINE putLeftFork(id)

 EXC_ACC

 forks[id] = True

 NOTIFY()

 END_EXC_ACC

 ENDDEF

 DEFINE putRightFork(id)

 EXC_ACC

 forks[(id+1)%forks.size] = True

 NOTIFY()

 END_EXC_ACC

 ENDDEF

ENDCLASS

CLASS Philosopher

 DEFINE initialize Philosopher(idVal, forksVal)

 id = idVal

 forks = forksVal

 ENDDEF

 DEFINE eat()

 IF id % 2 == 0 THEN

 forks.getLeftFork(id)

 forks.getRightFork(id)

 ELSE

 forks.getRightFork(id)

 forks.getLeftFork(id)

 ENDIF

 ENDDEF

 DEFINE think()

 forks.putLeftFork(id)

 forks.putRightFork(id)

 ENDDEF

 DEFINE run()

 WHILE True DO

 eat()

 think()

 ENDWHILE

 ENDDEF

ENDCLASS

// Readers Writers

CLASS Database

 DEFINE initialize Database

 numReader = 0

 writing = False

 writerWait = 0

 readerWait = 0

 readTurn = False

 ENDDEF

 DEFINE acquireRead()

 EXC_ACC

 readerWait = readerWait + 1

 WHILE writing OR (writerWait > 0 AND (NOT readTurn)) DO

 WAIT()

 ENDWHILE

262

 readerWait = readerWait - 1

 numReader = numReader + 1

 END_EXC_ACC

 ENDDEF

 DEFINE releaseRead()

 EXC_ACC

 numReader = numReader – 1

 readTurn = false

 IF numReader == 0 THEN

 NOTIFY()

 ENDIF

 END_EXC_ACC

 ENDDEF

 DEFINE acquireWrite()

 EXC_ACC

 writerWait = writerWait + 1

WHILE (writing OR numReader > 0) OR (readerWait > 0 AND readTurn) DO

 WAIT()

 ENDWHILE

 writerWait = writerWait - 1

 writing = True

 END_EXC_ACC

 ENDDEF

 DEFINE releaseWrite()

 EXC_ACC

 writing = False

 readTurn = True

 NOTIFY()

 END_EXC_ACC

 ENDDEF

ENDCLASS

CLASS Reader

 DEFINE initialize Reader(databaseVal)

 database = databaseVal

 ENDDEF

 DEFINE run()

 WHILE True DO

 database.acquireRead()

 database.releaseRead()

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Writer

 DEFINE initialize Writer(databaseVal)

 database = databaseVal

 ENDDEF

 DEFINE run()

 WHILE True DO

 database.acquireWrite()

 database.releaseWrite()

 ENDWHILE

 ENDDEF

ENDCLASS

// Book Inventory

CLASS Inventory

263

 DEFINE initialize Inventory()

 stock = [0, 0, 0, 0] // suppose only 4 kinds of books exist

 ENDDEF

 DEFINE restock(idx, quantity)

 EXC_ACC

 stock[idx] = stock[idx] + quantity

 NOTIFY()

 END_EXC_ACC

 ENDDEFINE

 DEFINE ship(idx, quantity)

 EXC_ACC

 IF stock[idx] < quantity THEN

 RETURN False

 ELES

 stock[idx] = stock[idx] – quantity

 RETURN True

 ENDIF

 END_EXC_ACC

 ENDDEF

ENDCLASS

CLASS Job {

 DEFINE initialize Job(idxesVal, quantitiesVal, typeVal)

 indexes = idxesVal

 quantities = quantitiesVal

 type = typeVal

 ENDDEF

 DEFINE getIdxes()

 RETURN indexes

 ENDDEF

 DEFINE getQuantities()

 RETURN quantities

 ENDDEF

 DEFINE getType()

 RETURN type

 ENDDEF

}

CLASS JobQueue

 DEFINE initialize Jobs()

 jobs = []

 MAX_NUM_JOBS = 100

 ENDDEF

 DEFINE addJob(job)

 EXC_ACC

 WHILE length(jobs) >= MAX_NUM_JOBS DO

 WAIT()

 ENDWHILE

 jobs[length(jobs)] = job

 NOTIFY()

 END_EXC_ACC

 ENDDEF

 DEFINE getJob()

 EXC_ACC

 WHILE length(jobs) <= 0 DO

 WAIT()

264

 ENDWHILE

 job = jobs[0]

 del(jobs[0])

 NOTIFY()

 END_EXC_ACC

 RETURN job

 ENDDEF

ENDCLASS

CLASS Worker

 DEFINE initialize Worker(inventoryVal, jobQueueVal)

 inventory = inventoryVal

 jobQueue = jobQueueVal

 ENDDEF

 DEFINE run()

 WHILE True DO

 job = jobQueue.getJob()

 IF job.getType() THEN

 i = 0

 WHILE i < length(job.getIndex()) DO

 inventory.restock(

job.getIdxes()[i], job.getQuantities()[i])

 i = i + 1

 ENDWHILE

 ELSE

 i = 0

 WHILE i < length(job.getIdxes()) AND

 inventory.ship(

job.getIdxes()[i], job.getQuantities()[i])

 DO

i = i + 1

 ENDWHILE

 IF i != length(job.getIdxes()) THEN

 WHILE i > 0 DO

 inventory.restock(

 job.getIndxes()[i-1], job.getQuantities()[i-1])

 i = i - 1

 ENDWHILE

 jobQueue.addJob(job)

 ENDIF

 ENDIF

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Requester

 DEFINE initialize(jobQueueVal)

 jobQueue = jobQueueVal

 ENDDEF

 DEFINE run()

 WHILE True DO

 joblength = randNum(1, 5)

 indexes = []

 quantities = []

 WHILE joblength > 0 DO

 add(indexes[length(indexes)-1], randNum(0, 3))

 add(quantities[length(quantities)-1], randNum(10, 50))

 joblength = joblength – 1

 ENDWHILE

 jobQueue.addJob(new Job(indexes, quantities, False))

 ENDWHILE

265

 ENDDEF

ENDCLASS

CLASS Restocker

 DEFINE initialize(jobQueueVal)

 jobQueue = jobQueueVal

 ENDDEF

 DEFINE run()

 WHILE True DO

 joblength = randNum(1, 5)

 indexes = []

 quantities = []

 WHILE joblength > 0 DO

 add(indexes[length(indexes)-1], randNum(0, 3))

 add(quantities[length(quantities)-1], randNum(10, 50))

 joblength = joblength – 1

 ENDWHILE

 jobQueue.addJob(new Job(indexes, quantities, True))

 ENDWHILE

 ENDDEF

ENDCLASS

// Single-Lane Bridge

CLASS Bridge

 DEFINE initialize Bridge()

 redEntered = 0

 redExited = 0

 blueEntered = 0

 blueExited = 0

 ENDDEF

 DEFINE redEnter()

 EXC_ACC

 WHILE (blueEntered – blueExited) > 0 DO

 WAIT()

 ENDWHILE

 redEntered = redEntered + 1

 END_EXC_ACC

 RETURN redEntered

 ENDDEF

 DEFINE redExit(orderVal)

 EXC_ACC

 WHILE redExited != (orderVal – 1) DO

 WAIT()

 ENDWHILE

 PRINTLN “red “, orderVal

 redExited = redExited + 1

 NOTIFY()

 END_EXC_ACC

 ENDDEF

 DEFINE blueEnter()

 EXC_ACC

 WHILE (redEntered – redExited) > 0 DO

 WAIT()

 ENDWHILE

 blueEntered = blueEntered + 1

 END_EXC_ACC

 RETURN blueEntered

 ENDDEF

266

 DEFINE blueExit(orderVal)

 EXC_ACC

 WHILE blueExited != (orderVal – 1) DO

 WAIT()

 ENDWHILE

 PRINTLN “blue “, orderVal

 blueExited = blueExited + 1

 NOTIFY()

 END_EXC_ACC

 ENDDEF

ENDCLASS

CLASS RedCar

 DEFINE initialize RedCar(bridgeVal)

 bridge = bridgeVal

 ENDDEF

 DEFINE run()

 WHILE True DO

 order = bridge.redEnter()

 bridge.redExit(order)

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS blueCar

 DEFINE initialize BlueCar(bridgeVal)

 bridge = bridgeVal

 ENDDEF

 DEFINE run()

 WHILE True DO

 order = bridge.blueEnter()

 bridge.blueExit(order)

 ENDWHILE

 ENDDEF

ENDCLASS

// Sleeping Barber

CLASS Barber

 DEFINE initialize Barber

 work = False

 customerWait = 0

 ENDDEF

 DEFINE inquire()

 EXC_ACC

 IF (customerWait >= 3) THEN

 RETURN False

 ELSE

 customerWait = customerWait + 1

 RETURN True

 ENDIF

 END_EXC_ACC

 ENDDEF

 DEFINE barber()

 EXC_ACC

 WHILE work DO

 WAIT()

 ENDWHILE

 work = True

 customerWait = customerWait – 1

267

 END_EXC_ACC

 ENDDEF

 DEFINE finish()

 EXC_ACC

 work = False

 NOTIFY()

 END_EXC_ACC

 ENDDEF

ENDCLASS

CLASS Customer

 DEFINE initialize Customer(barberVal)

 barber = barberVal

 ENDDEF

 DEFINE run() {

 WHILE True DO

 IF barber.inquire() THEN

 barber.barber()

 barber.finish()

 ENDIF

 ENDWHILE

 ENDDEF

ENDCLASS

FIGURE 36 PSEUDOCODE IMPLEMENTATIONS OF SHARED MEMORY PROGRAMS FOR SPRING 2013

STUDY

268

// Ornamental Garden

CLASS Garden

 DEFINE initialize Garden

 population = 0

 ENDDEF

 DEFINE start()

 WHILE True DO

 ON_RECEIVING

 Message.enter()

 population = population + 1

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Turnstile

 DEFINE initialize Turnstile(gardenVal)

 garden = gardenVal

 ENDDEF

 DEFINE start()

 count = 20

 WHILE count > 0 DO

 Send(MESSAGE.enter()).TO(garden)

 count = count – 1

 ENDWHILE

 ENDDEF

ENDCLASS

garden = new Garden()

east = new Turnstile(garden)

west = new Turnstile(garden)

PARA

 east.start()

 west.start()

ENDPARA

// Bank Account

CLASS Accountant

 DEFINE initialize Accountant()

 balance = 0

 ENDDEF

 DEFINE start()

 WHILE True DO

 ON_RECEIVING

 MESSAGE.deposit(customer, amount)

 balance = balance + amount

 Send(MESSAGE.succeed()).To(customer)

 MESSAGE.withdraw(customer, amount)

 IF balance > amount THEN

 balance = balance – amount

 Send(MESSAGE.succeed()).To(customer)

 ELSE

 Send(MESSAGE.fail()).To(customer)

 ENDIF

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Customer

269

 DEFINE initialize Customer(accountantVal)

 accountant = accountantVal

 ENDDEF

 DEFINE nextRequest()

 IF randNum(0,1) == 0 THEN

 RETURN MESSAGE.deposit(self, randNum(0,1000))

 ELSE

 RETURN MESSAGE.withdraw(self, randNum(0,1000))

 ENDIF

 ENDDEF

 DEFINE start()

 message = nextRequest()

 Send(message).To(accountant)

 WHILE True DO

 ON_RECEIVING

 MESSAGE.succeed()

 message = nextRequest()

 Send(message).To(accountant)

 MESSAGE.fail()

 Send(message).To(accountant)

 ENDWHILE

 ENDDEF

ENDCLASS

accountant = new Accountant()

customer1 = new Customer(accountant)

customer2 = new Customer(accountant)

PARA

 accountant.start()

 customer1.start()

 customer2.start()

END_PARA

// Large Printing Job

CLASS Printer

 DEFINE initialize Printer()

 working = False

 ENDDEF

 DEFINE start()

 WHILE True DO

 ON_RECEIVING

 MESSAGE.require(terminal)

 IF working THEN

 Send(MESSAGE.fail()).To(terminal)

 ELSE

 working = True

 Send(MESSAGE.succeed()).To(terminal)

 ENDIF

 MESSAGE.release()

 working = False

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Terminal

 DEFINE initialize Terminal(printer1Val, printer2Val)

 printer1 = printer1Val

270

 printer2 = printer2Val

 status = 0

 ENDDEF

 DEFINE start()

 Send(MESSAGE.require(self)).To(printer1)

 WHILE True DO

 ON_RECEIVING

 MESSAGE.succeed()

 IF status = 0 THEN

 Send(MESSAGE.require(self)).To(printer2)

 status = 1

 ELSE

 // printing

 Send(MESSAGE.release()).To(printer1)

 Send(MESSAGE.release()).To(printer2)

 status = 0

 ENDIF

 MESSAGE.fail()

 Send(MESSAGE.require(self)).To(printer1)

 ENDWHILE

 ENDDEF

ENDCLASS

printer1 = new Printer()

printer2 = new Printer()

terminal1 = new Terminal(printer1, printer2)

terminal2 = new Terminal(printer1, printer2)

PARA

 printer1.start()

 printer2.start()

 terminal1.start()

 terminal2.start()

END_PARA

// Bounded Buffer

CLASS Buffer

 DEFINE initialize Buffer(capacityVal)

 items = []

 capacity = capacityVal

 ENDDEF

 DEFINE start()

 WHILE True DO

 ON_RECEIVING

 MESSAGE.produce(item, producer)

 IF items.size <= cpacity THEN

 items[size] = item

 Send(MESSAGE.suceed()).To(producer)

 ELSE

 Send(MESSAGE.fail()).To(producer)

 ENDIF

 MESSAGE.consume(consumer)

 IF items.size > 0 THEN

 Send(MESSAGE.cargo(items[0])).To(consumer)

 del items[0]

 ELSE

 Send(MESSAGE.fail()).To(consumer)

 ENDIF

 ENDWHILE

 ENDDEF

271

ENDCLASS

CLASS Producer

 DEFINE initialize Producer(bufferVal)

 buffer = bufferVal

 ENDDEF

 DEFINE start()

 item = randNum(0, 10)

 Send(MESSAGE.produce(item, self)).To(buffer)

 WHILE True DO

 ON_RECEIVING

 MESSAGE.suceed()

 item = randNum(0, 10)

 Send(MESSAGE.produce(item, self)).To(buffer)

 MESSAGE.fail()

 Send(MESSAGE.produce(item, self)).To(buffer)

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Consumer

 DEFINE initialize Consumer(bufferVal)

 buffer = bufferVal

 ENDDEF

 DEFINE start()

 Send(MESSAGE.consume(self))

 WHILE True DO

 ON_RECEIVING

 MESSAGE.cargo(item)

 PRINTLN item

 Send(MESSAGE.consume(self))

 MESSAGE.fail()

 Send(MESSAGE.consume(self))

 ENDWHILE

 ENDDEF

ENDCLASS

// Dining Philosopher

CLASS Forks

 DEFINE initialize Forks(numVal)

 num = numVal

 forks = []

 WHILE num > 0 DO

 add(forks[forks.size], True)

 num = num – 1

 ENDWHILE

 ENDDEF

 DEFINE start()

 WHILE True DO

 ON_RECEIVING

 MESSAGE.requireLeft(phil, id)

 IF forks[id] THEN

 Send(MESSAGE.succeedLeft()).TO(phil)

 ELSE

 Send(MESSAGE.failLeft()).TO(phil)

 ENDIF

 MESSAGE.requireRight(phil, id)

272

 IF forks[(id+1)%forks.size] THEN

 Send(MESSAGE.succeedRight()).TO(phil)

 ELSE

 Send(MESSAGE.failRight()).TO(phil)

 ENDIF

 MESSAGE.relinquishLeft(id)

 forks[id] = True

 MESSAGE.relinquishRight(id)

 forks[(id+1)%forks.size] = True

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Philosopher

 DEFINE initialize Philosopher(idVal, forksVal)

 id = idVal

 forks = forksVal

 ENDDEF

 DEFINE getFirst()

 IF id % 2 == 0 THEN

 Send(MESSAGE.requireLeft(self, id)).TO(forks)

 ELSE

 Send(MESSAGE.requireRight(self, id)).TO(forks)

 ENDIF

 ENDDEF

 DEFINE getSecond()

 IF id % 2 == 0 THEN

 Send(MESSAGE.requireRight(self, id)).TO(forks)

 ELSE

 Send(MESSAGE.requireLeft(self, id)).TO(forks)

 ENDIF

 ENDDEF

 DEFINE think()

 Send(MESSAGE.relinquishLeft(id)).TO(forks)

 Send(MESSAGE.relinquishRight(id)).TO(forks)

 ENDDEF

 DEFINE start()

 getFirst()

 WHILE True DO

 ON_RECEIVING

 MESSAGE.succeedLeft()

 IF id % 2 == 0 THEN

 getSecond()

 ELSE

 think()

 getFirst()

 ENDIF

 MESSAGE.failLeft()

 IF id % 2 == 0 THEN

 getFirst()

 ELSE

 getSecond()

 ENDIF

 MESSAGE.succeedRight()

 IF id % 2 == 0 THEN

273

 think()

 getFirst()

 ELSE

 getSecond()

 ENDIF

 MESSAGE.failRight()

 IF id % 2 == 0 THEN

 getSecond()

 ELSE

 getFirst()

 ENDIF

 ENDWHILE

 ENDDEF

ENDCLASS

// Readers Writers

CLASS Database

 DEFINE initialize Database

 numReader = 0

 writing = False

 writerWait = 0

 readerWait = 0

 readTurn = False

 ENDDEF

 DEFINE start()

 WHILE

 ON_RECEIVING

 MESSAGE.acquireRead(reader)

IF (NOT writing) AND (writerWait == 0 OR readTurn) THEN

 numReader = numReader + 1

 Send(MESSAGE.succeedRead()).TO(reader)

 ELSE

 readerWait = readerWait + 1

 Send(MESSAGE.failRead()).TO(reader)

 ENDIF

 MESSAGE.releaseRead(reader)

 numReader = numReader – 1

 readTurn = False

 Send(MESSAGE.relase()).TO(reader)

 MESSAGE.acquireWrite(writer)

IF (NOT writing) AND (numReader == 0) AND (readerWait == 0 OR (NOT

readTurn)) THEN

 writing = True

 Send(MESSAGE.succeedWrite()).TO(writer)

 ELSE

 writerWait = writerWait + 1

 Send(MESSAGE.failWrite()).TO(writer)

 ENDIF

 MESSAGE.releaseWrite(writer)

 writing = False

 readTurn = True

 Send(MESSAGE.release()).TO(writer)

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Reader

 DEFINE initialize Reader(databaseVal)

274

 database = databaseVal

 ENDDEF

 DEFINE start()

 Send(MESSAGE.acquireRead(self)).TO(database)

 WHILE True DO

 ON_RECEIVING

 MESSAGE.succeedRead()

 Send(MESSAGE. releaseRead(self)).TO(database)

 MESSAGE.failRead()

 Send(MESSAGE.acquireRead(self)).TO(database)

 MESSAGE.release()

 Send(MESSAGE.acquireRead(self)).TO(database)

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Writer

 DEFINE initialize Writer(databaseVal)

 database = databaseVal

 ENDDEF

 DEFINE start()

 Send(MESSAGE.acquireWrite(self)).TO(database)

 WHILE True DO

 ON_RECEIVING

 MESSAGE.succeedWrite()

 Send(MESSAGE.releaseWrite(self)).TO(database)

 MESSAGE.failWrite()

 Send(MESSAGE.acquireWrite(self)).TO(database)

 MESSAGE.release()

 Send(MESSAGE.acquireWrite(self)).TO(database)

 ENDWHILE

 ENDDEF

ENDCLASS

// Sleeping Barber

CLASS Barber

 DEFINE initialize Barber

 work = False

 customerWait = 0

 ENDDEF

 DEFINE start()

 WHILE True DO

 ON_RECEIVING

 MESSAGE.inquire(customer)

 IF customerWait >= 3 THEN

 customer ! MESSAGE.noSpace()

 ELSE

 customer ! MESSAGE.seat()

 customerWait = customerWait + 1

 ENDIF

 MESSAGE.barber(customer)

 IF work THEN

 customer ! MESSAGE.seat()

 ELSE

 work = True

275

 customer ! MESSAGE.barbering()

 ENDIF

 MESSAGE.finish(customer)

 work = False

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Customer

 DEFINE initialize Customer(barberVal)

 barber = barberVal

 ENDDEF

 DEFINE start()

 barber ! MESSAGE.inquire(self)

 WHILE True DO

 ON_RECEIVING

 MESSAGE.onSpace()

 barber ! MESSAGE.inquire(self)

 MESSAGE.seat()

 barber ! barber(self)

 MESSAGE.barbering()

 barber ! MESSAGE.finsih()

 barber ! MESSAGE.inquire(self)

 ENDWHILE

 ENDDEF

ENDCLASS

// Book Inventory

CLASS Inventory

 DEFINE initialize Inventory()

 stock = [0, 0, 0]

 ENDDEF

 DEFINE start

 WHILE True DO

 ON_RECEIVE

 MESSAGE.increase(idx, quantity)

 stock[idx] = stock[idx] + quantity

 MESSAGE.decrease(idx, quantity, worker)

 IF stock[idx] >= quantity THEN

 stock[idx] = stock[idx] – quantity

 Send(MESSAGE.invSucceed(idx, quantity)).To(worker)

 ELSE

 Send(MESSAGE.invFail()).To(worker)

 ENDIF

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Job {

 DEFINE initialize Job(idxesVal, quantitiesVal, typeVal)

 indexes = idxesVal

 quantities = quantitiesVal

 type = typeVal

 ENDDEF

 DEFINE getIdxes()

 RETURN index

276

 ENDDEF

 DEFINE getQuantities()

 RETURN quantity

 ENDDEF

 DEFINE getType()

 RETURN type

 ENDDEF

}

CLASS JobQueue

 DEFINE initialize JobQueue()

 jobs = []

 MAX_NUM_JOBS = 100

 ENDDEF

 DEFINE start()

 WHILE True DO

 ON_RECEIVE

 MESSAGE.request(job, sender)

 IF length(jobs) >= MAX_NUM_JOBS THEN

 Send(MESSAGE.queFail()).To(sender)

 ELSE

 jobs[length(jobs)] = job

 Send(MESSAGE.queSucceed()).To(sender)

 ENDIF

 MESSAGE.retrieve(worker)

 IF length(jobs) > 0 THEN

 Send(MESSAGE.job(jobs[0]).To(worker)

del(jobs[0])

 ELSE

 Send(MESSAGE.nojob()).To(worker)

 ENDIF

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Worker

 DEFINE initialize Worker(inventoryVal, jobQueueVal)

 inventory = inventoryVal

 jobQueue = jobQueueVal

 succeedPool = []

 failCount = 0

 currentJob = NULL

 status = False // waiting for retrieve (not request) feedback

 ENDDEF

 DEFINE start()

 Send(MESSAGE.retrieve(self)).To(jobQueue)

 WHILE True DO

 ON_RECEIVE

 MESSAGE.job(jobVal)

 currentJob = jobVal

 IF job.getType() THEN

 i = 0

 WHILE i < length(jobVal.getIdxes()) DO

 Send(

MESSAGE.increase(jobVal.getIdxes()[i],

jobVal.getQuantities()[i]))

.To(inventory)

i = i + 1

277

 ENDWHILE

 ELSE

currentJobLength = length(jobVal)

 i = 0

 WHILE i < length(jobVal.getIdxes()) DO

 Send(

MESSAGE.decrease(jobVal.getIdxes()[i],

jobVal.getQuantities()[i], self)

 .To(inventory)

 i = i + 1

 ENDWHILE

 MESSAGE.invSuceed(idx, quantity)

 add(succeedPool[length(succeedPool)], [idx, quantity])

 IF length(succeedPool) + failCount

 == length(currentJob)

THEN

 IF fialCount != 0 THEN

 i = 0

 WHILE i < length(succeedPool) DO

 Send(

MESSAGE.increase(succeedPool[i][0], succeedPool[i][1])

 .To(inventory)

 i = i + 1

 ENDWHILE

succeedPool = []

 failCount = 0

 Send(MESSAGE.request(currentJob, self))

.To(jobQueue)

status = True

 ELSE

Send(MESSAGE.retrieve(self)).To(jobQueue)

 ENDIF

 ENDIF

 MESSAGE.invFail()

failCount = failCount + 1

IF length(succeedPool) + fialCount

 == length(currentJob)

THEN

 i = 0

 WHILE i < length(succeedPool) DO

 Send(

MESSAGE.increase(succeedPool[i][0], succeedPool[i][1])

 .To(inventory)

 i = i + 1

 ENDWHILE

 succeedPool = []

 failCount = 0

 Send(MESSAGE.request(currentJob, self)).To(jobQueue)

 status = True

ENDIF

 MESSAGE.nojob()

 Send(MESSAGE.retrieve(self)).To(jobQueue)

 MESSAGE.queSucceed()

 status = False

 Send(MESSAGE.retrieve(self)).To(jobQueue)

 MESSAGE.queFail()

 Send(MESSAGE.request(currentJob, self)).To(jobQueue)

 ENDWHILE

278

 ENDDEF

ENDCLASS

CLASS Requester

 DEFINE initialize Requester(jobQueueVal)

 jobQueue = jobQueueVal

 ENDDEF

 DEFINE nextJob()

 joblength = randNum(1, 5)

 indexes = []

 quantities = []

 WHILE joblength > 0 DO

 add(indexes[length(indexes)-1], randNum(0, 3))

 add(quantities[length(quantities)-1], randNum(10, 50))

 joblength = joblength – 1

 ENDWHILE

 RETURN (new Job(indexes, quantities, False))

 ENDDEF

 DEFINE start()

 job = nextJob()

 Send(MESSAGE.request(job, self).To(jobQueue)

 WHILE True DO

 ON_RECEIVING

 MESSAGE.queSucceed()

 job = nextJob()

 Send(MESSAGE.request(job, self).To(jobQueue)

 MESSAGE.queFail()

 Send(MESSAGE.request(job, self).To(jobQueue)

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS Restocker

 DEFINE initialize Restocker(inventoryVal)

 inventory = inventoryVal

 ENDDEF

 DEFINE nextJob()

 joblength = randNum(1, 5)

 indexes = []

 quantities = []

 WHILE joblength > 0 DO

 add(indexes[length(indexes)-1], randNum(0, 3))

 add(quantities[length(quantities)-1], randNum(10, 50))

 joblength = joblength – 1

 ENDWHILE

 RETURN (new Job(indexes, quantities, True))

 ENDDEF

 DEFINE start()

 job = nextJob()

 Send(MESSAGE.request(job, self).To(jobQueue)

 WHILE True DO

 ON_RECEIVING

 MESSAGE.queSucceed()

 job = nextJob()

 Send(MESSAGE.request(job, self).To(jobQueue)

 MESSAGE.queFail()

 Send(MESSAGE.request(job, self).To(jobQueue)

279

 ENDWHILE

 ENDDEF

ENDCLASS

// Single-Lane Bridge

CLASS Bridge

 DEFINE initialize Bridge()

 redEntered = 0

 redExited = 0

 blueEntered = 0

 blueExited = 0

 ENDDEF

 DEFINE start()

 WHILE True DO

 ON_RECEIVING

 MESSAGE.redEnter(red)

 IF (blueEntered – blueExited) == 0 THEN

 redEntered = redEntered + 1

 Send(MESSAGE.succeedEnter(redEntered)).To(red)

 ELSE

 Send(MESSAGE.failEnter()).To(red)

 ENDIF

 MESSAGE.redExit(red, order)

 IF order == (redExited + 1) THEN

 redExited = redExited + 1

 Send(MESSAGE.succeedExit(order)).To(red)

 ELSE

 Send(MESSAGE.failExit(order)).To(red)

 ENDIF

 MESSAGE.blueEnter(blue)

 IF (redEntered – redExited) == 0 THEN

 blueEntered = blueEntered + 1

 Send(MESSAGE.succeedEnter(blueEntered)).To(blue)

 ELSE

 Send(MESSAGE.failEnter()).To(blue)

 ENDIF

 MESSAGE.blueExit(blue, order)

 IF order == (blueExited + 1) THEN

 blueExited = blueExited + 1

 Send(MESSAGE.succeedExit(order)).To(blue)

 ELSE

 Send(MESSAGE.failExit(order)).To(blue)

 ENDIF

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS RedCar

 DEFINE initialize RedCar(bridgeVal)

 bridge = bridgeVal

 ENDDEF

 DEFINE start()

 Send(MESSAGE.redEnter(self)).To(bridge)

 WHILE True DO

 ON_RECEIVING

 MESSAGE.succeedEnter(order)

 Send(MESSAGE.redExit(self, order)).To(bridge)

280

 MESSAGE.failEnter()

 Send(MESSAGE.redEnter(self)).To(bridge)

 MESSAGE.succeedExit(order)

 PRINTLN “red ”, order

 Send(MESSAGE.redEnter(self)).To(bridge)

 MESSAGE.failExit(order)

 Send(MESSAGE.redExit(self, order)).To(bridge)

 ENDWHILE

 ENDDEF

ENDCLASS

CLASS BlueCar

 DEFINE initialize BlueCar(bridgeVal)

 bridge = bridgeVal

 ENDDEF

 DEFINE start()

 Send(MESSAGE.blueEnter(self)).To(bridge)

 WHILE True DO

 ON_RECEIVING

 MESSAGE.succeedEnter(order)

 Send(MESSAGE.blueExit(self, order)).to(bridge)

 MESSAGE.failEnter()

 Send(MESSAGE.blueEnter(self)).to(bridge)

 MESSAGE.succeedExit(order)

 PRINTLN “blue ”, order

 Send(MESSAGE.blueEnter(self)).To(bridge)

 MESSAGE.failExit(order)

 Send(MESSAGE.blueExit(self, order)).to(bridge)

 ENDWHILE

 ENDDEF

ENDCLASS

FIGURE 37 PSEUDOCODE IMPLEMENTATIONS OF MESSAGE PASSING PROGRAMS FOR SPRING 2013

STUDY

281

CSCI 4900 Lab/Project Specification (Week 2)

Lab #1
Observing Multi-core Architecture

Goals
 In this project, you will use your laptop to run two concurrent programs, the dining philosopher
and thread pool. You are given the runnable jar files of these two programs and required to monitor
the system performance while running these two programs. The goal of this lab is to allow you
experience the multi-core computer systems accessible on common laptops and explore basic
performance monitoring tools available with different operating systems.

Due Date
 Jan 22, 2013 (Tuesday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
 This is an individual lab. You have to finish this lab on your own.

Lab Description
Step 1:
 Dining Philosopher is a famous concurrent problem. Search online or use other resources to
understand the problem. Write a short description (within 200 words) of the problem in your own
word.

Step 2:
 Read following resources according to the type of your laptop’s system and familiarize yourself
with corresponding performance monitoring tools.
 Mac
 Mac Performance Guide:

http://macperformanceguide.com/Mac-MonitoringTips.html
 Apple Support:
 http://support.apple.com/kb/HT1342
 Windows
 Windows Support:

http://windows.microsoft.com/en-US/windows-vista/See-details-about-your-
computers-performance-using-Task-Manager

 Linux/Unix
 Top Command:
 “man top”
 Report your system’s property, including processor, memory and operating system.
 Run dining.jar (explore online if you don’t know how to execute a runnable jar file) and observe
the change of CPU and memory usage while running the program. The program takes two arguments,
the number of philosophers (i.e. the number of forks) and the number of meals each of them will dine.

http://macperformanceguide.com/Mac-MonitoringTips.html
http://support.apple.com/kb/HT1342
http://windows.microsoft.com/en-US/windows-vista/See-details-about-your-computers-performance-using-Task-Manager
http://windows.microsoft.com/en-US/windows-vista/See-details-about-your-computers-performance-using-Task-Manager

282

Snapshot a CPU and memory usage picture when running the program with 5 philosophers that each
dining for 1,000,000 times.

Step 3:
 You are given a thread pool program that simply spawns a specified number of threads and each
count down from a given number. Run pool.jar, change the arguments of the program (number of
threads and the number to count down from) and record the CPU usage and execution time (reported
by the program itself after finishing in milliseconds). Generate two graphs that correlate two
arguments passed into the program with CPU usage and execution time respectively (figure 1 is an
example of a graph that correlates two arguments with CPU usage with faked data).

Write a short conclusion (within 200 words) on how the two different arguments affect the CPU usage
and execution time of the program.

Step 4:
 Put all your work, including reports, graphs and answers to the questions together into one file
answer.pdf.

Use the mkdir command to create a new folder (named “lastname_lab01”) in your local Nike
account. Use the cp command to copy answer.pdf to the newly created folder and submit the folder

to cs4900. (submit cs4900a lastname_lab01)

Grading Rubric

Deliverables Total Points Comments

Subjective Survey 5

Answers 45

 step 1 15

 step 2 10

 step 3 20

CSCI 4900 Lab/Project Specification (Week 3)

283

Lab #2
Modeling Book Inventory System Part I
Modeling Shared Memory Form with UML and Pseudocode

Goals
During this course, you will work to design and implement a book inventory system using

both shared memory and message passing approaches. In this lab project, you will finish the
first part of understanding the criteria of the system and model it as a shared memory system
with the pseudocode introduced in class.

Due Date
 Feb. 1, 2013 (Friday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
 This is an individual lab. You must complete this lab on your own.

Lab Description
Step 1:
 Read and understand the following description of a book inventory system:

 A book inventory system is a warehouse management system for the shipment and restocking of a
book depository. The system processes two kinds of jobs, shipping and restocking. Multiple client
programs are connected concurrently to this system and send these two jobs to the system for
processing. The clients keep sending jobs to the system without knowledge of how previous jobs are
fulfilled or the current status of the warehouse. The client only gets notification if the system is
overloaded with too many jobs waiting to be processed and cannot take a specific job. In this case, the
client should pause for a while and then re-send the previous job.

Both shipping and restocking jobs should be viewed as transactions, which means that a job is
fulfilled either completely or not at all, i.e. a job should not be partially fulfilled. A shipping job may
only involve decreasing the amount of one or more kinds of books (a shipping job ships books out of
the warehouse). When the stock of any one type of book in the order is insufficient, the job should be
automatically retried later by the system (the server). A restocking job may only involve increasing the
amount of one or more kinds of books (a restocking job ships books into the warehouse) and this
should always be fulfilled on the first attempt.
 To increase the throughput (number of jobs processed in a certain amount of time) of this book
inventory system, we would like the jobs to be processed concurrently in the system.

 For those who enrolled in 4900 level, you could assume that each shipping or restocking job only
involve one kind of book.

Step 2:
 Model the book inventory system described above as a shared memory system with UML
diagrams. You are free to choose and decide what data should be shared. But remember, the system is

284

closed in its whole. Client programs may only send job requirements and receive job rejection
notifications, but never get to see or modify the system status.
 Create a UML class diagram for each class as you designed, and provide information on
"important" attributes. You need not list parameters of methods or utility methods.

Create a UML sequence diagram for each of the following important interactions:

 Sending a job with no other jobs waiting to be processed

 Sending a job when some jobs are waiting to be processed

 Sending a job when the system is overloaded by the number of waiting jobs

 Processing the only shipping job inside the system

 Processing a shipping job with another job concurrently inside the system

 Processing a restocking job with another job concurrently inside the system

Step 3:
 Model the book inventory system with the pseudocode system. According to your UML modeling
(especially class diagrams) in step 2, write pseudo code for each of the classes you designed. Write
some statements to initialize and start the system with the following client program defined by
pseudocode.

CLASS Client

 DEFINE initialize Client(inventoryVal)

 inventory = inventoryVal

 ENDDEF

 DEFINE run()

 job = // some job, data structure depends on design

 WHILE True DO

 IF inventory.issue(job) THEN

 job = // some other job

 ELSE

 // pause for a while

 // Thread.sleep(100)

 ENDIF

 ENDWHILE

 ENDDEF

ENDCLASS

Step 4:
 Put all your work, including diagrams and pseudocode into one file answer.pdf.

Use the mkdir command to create a new folder (named “lastname_lab02”) in your local Nike
account. Use the cp command to copy answer.pdf to the newly created folder and submit the folder to
cs4900. (submit cs4900a lastname_lab02)

Grading Rubric

Deliverables Total Points Comments

285

Subjective Survey 5

Answers 95

 step 2 40

 UML class diagram 25

 UML sequence diagram 15

 step 3 45

 Pseudocode for classes 35

 Pseudocode for system
initialization and start

 10

CSCI 4900 Homework Specification (Week 3)

Homework #2
Practice Using Pseudo Codes

Goals
 In this homework, you will write pseudocode for several concurrency scenarios as discussed in
class. You will also do some background research on the Therac-25 accident on your own and write a
brief summary of the accident and its relation to race conditions.

The goal of this homework is to practice using the pseudocode system described in class to model
several concurrency scenarios. Later in the course you will read and use this pseudocode to
comprehend and represent more complicated programs.

Due Date
 Jan 25, 2013 (Friday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
 This is an individual homework. You have to finish this homework on your own.

Homework Description
Task 1: Survey Therac-25 Accident
 Therac-25 is a well-known medical radiation accident related to race conditions in the control
software. Search online or use other resources to understand how the accident happened and how it
was related to race conditions. Write a short description (within one page) of what you find in your
own words.

Task 2: Write Pseudo Code for Sum & Worker System
 Assume 100 workers exist in a sum & worker system. They each increment the sum value by 1 for
10 times. Use the pseudocode system we introduced in class (you may also refer to the pseudocode
guide posted on ELC) to model this system. In your modeling, you should write out the definition of a

286

class Sum and a class Worker. You should also write some statements to initialize the sum and worker
objects and start running thread objects.

Task 3: Write Pseudo Code for Bounded-Buffer System
 A bounded buffer system is a system with a buffer object that only contains limited capacity to
hold items. Producer and consumer threads produce and consume items to and from the buffer.
Assume the buffer in the system has capacity of 10, i.e. it could hold a maximum of 10 items and the
producers and consumers keep producing and consuming infinitely. Write out the pseudocode of this
system. The definition of a class Buffer, a class Producer and a class Consumer should be included. You
should also write some statements to initialize the buffer, two producers and two consumers and start
running thread objects.

Hint:

 Use a list data structure to model the buffer object and use True/False values to denote the
usage of a buffer slot.

 Use WAIT() and NOTIFY() functions appropriately for conditional synchronization.

Task 4: Write Pseudo Code for Dining Philosopher System
 Write out the pseudo code for the dining philosopher problem that you surveyed in Lab 01.
Assume five philosophers exist in the system (i.e. five forks exist and one between each pair of
philosophers) and they shift between eating and thinking infinitely. The following pseudocode skeleton
uses the asymmetry technique to solve the potential deadlock issue. Fill out the missing parts
(comments) to finish the definition of fork and philosopher class.

Hint:

 A List data structure is used to denote the usage of the fork. A True value indicates that the
fork with a particular index is available.

 Asymmetry is introduced in that philosophers with an even number ID pick up the fork on their
left hand side first while those with an odd number ID pick up the fork on their right hand side
first.

CLASS Forks

 DEFINE initialize Forks(numVal)

 num = numVal

 forks = []

 WHILE num > 0 DO

 // initialize value of forks here

 ENDWHILE

 ENDDEF

 DEFINE getLeftFork(id)

 EXC_ACC

 // get the left fork for particular philosopher

 END_EXC_ACC

 ENDDEF

 DEFINE getRightFork(id)

 EXC_ACC

 // get the right fork for particular philosopher

 END_EXC_ACC

 ENDDEF

287

 DEFINE putLeftFork(id)

 EXC_ACC

 // put particular philosopher’s left fork back

 END_EXC_ACC

 ENDDEF

 DEFINE putRightFork(id)

 EXC_ACC

 // put particular philosopher’s right fork back

 END_EXC_ACC

 ENDDEF

ENDCLASS

CLASS Philosopher

 DEFINE initialize Philosopher(idVal, forksVal)

 id = idVal

 forks = forksVal

 ENDDEF

 DEFINE eat()

 IF id % 2 == 0 THEN

 // pick up left fork first and then right one

 ELSE

 // pick up right fork first and then left one

 ENDIF

 ENDDEF

 DEFINE think()

 // return both forks

 ENDDEF

 DEFINE run()

 WHILE True DO

 eat()

 think()

 ENDWHILE

 ENDDEF

ENDCLASS

Submission:
 Put all your work, including summary and pseudo codes into one file answer.pdf. Use the mkdir
command to create a new folder (named “lastname_hw01”) in your local Nike account. Use the cp

command to copy answer.pdf to the newly created folder and submit the folder to cs4900. (submit
cs4900a lastname_hw01)

Grading Rubric

Deliverables Total Points Comments

Subjective Survey 5

Answers 45

 task 1 10

 task 2 10

 task 3 15

288

 task 4 10

CSCI 4900 Homework Specification (Week 4)

Homework #3
Practice Using Pseudo Codes for Message Passing Systems

Goals
 In this homework, you will write pseudocode for several concurrency scenarios as discussed in
class. The goal of this homework is to practice using the pseudocode system described in class to
model several concurrency scenarios as message passing systems.

Due Date
 Feb 4, 2013 (Monday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
 This is an individual homework. You have to finish this homework on your own.

No exchange or copy of pseudocode is allowed!

Homework Description
Task 1: Modeling Bounded Buffer as Message Passing System
 If you have participated in class design discussion activity, write out the pseudocode that reflects
the design of your team. Use comments to list all members in your design team at the first line of your
pseudocode.
 If you haven’t participated in class design discussion activity, please refer to page #34-36 in
Jan30’s slides and write up answers to the discussion questions on your own. Then write out the
pseudocode that reflects your design.

Task 2: Modeling Dining Philosophers as Message Passing System
 If you have participated in class design discussion activity, write out the pseudocode that reflects
the design of your team. Use comments to list all members in your design team at the first line of your
pseudocode.
 If you haven’t participated in class design discussion activity, please refer to page #48-50 in
Jan31’s slides and write up answers to the discussion questions on your own. Then write out the
pseudocode that reflects your design.

Submission:
 Put all your work, including answers (if any) and pseudo codes into one file answer.pdf. Use the
mkdir command to create a new folder (named “lastname_hw01”) in your local Nike account. Use the

cp command to copy answer.pdf to the newly created folder and submit the folder to cs4900.
(submit cs4900a lastname_hw03)

289

Grading Rubric

Deliverables Total Points Comments

Subjective Survey 5

Answers 45

 task 1 20

 task 2 25

CSCI 4900 Lab/Project Specification (Week 4)

Lab #3
Modeling a Book Inventory System, Part II
Modeling a Message Passing Solution with UML and Pseudocode

Goals
Last week, you designed and modeled a book inventory system using a shared memory

approach. In this lab project, you will model the same book inventory system, but using a
message passing approach. You will again use UML and the pseudocode introduced in class.

Due Date
 Feb. 7, 2013 (Thursday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
 This is an individual lab. You must complete this lab on your own.
 No exchange or copying of pseudocode is allowed!

Lab Description
Step 1:
 Review the description of a book inventory system:

 A book inventory system is a warehouse management system for recording shipments from and
the restocking of a book depository. The system processes two kinds of jobs, shipping and restocking.
Multiple client programs may be connected concurrently to this system and sending these two types
jobs to the system for processing. The clients keep sending jobs to the system without knowledge of
how previous jobs are fulfilled or the current status of the warehouse. The client only gets notification
if the system is overloaded with too many jobs waiting to be processed and cannot take a specific job.
In this case, the client should pause for a while and then re-send the previous job.

Both shipping and restocking jobs should be viewed as transactions, which means that a job is
fulfilled either completely or not at all, i.e. a job should not be partially fulfilled. A shipping job may
only involve decreasing the amount of one or more kinds of books (a shipping job ships books out of
the warehouse). When the stock of any one type of book in the order is insufficient, the job should be

290

automatically retried later by the system (the server). A restocking job may only involve increasing the
amount of one or more kinds of books (a restocking job ships books into the warehouse) and this
should always be fulfilled on the first attempt.
 To increase the throughput (number of jobs processed in a certain amount of time) of this book
inventory system, we would like the jobs to be processed concurrently in the system.

 Based on last week’s project, you are likely now confident about how to realize this system as a
shared memory system. Now, you must think about how to realize it as a message passing system. In
another word, you are required to consider using only exchanged messages and corresponding
behaviors of different entities to achieve the requirements of the system. Only private data but no
shared date will be present in this message passing form of the system.

Step 2:
 Model the book inventory system as a message passing system with UML diagrams. You are free
to choose and decide what kind of messages should be exchanged. You are also free to design and
decide what entities are involved in this system and their corresponding behaviors based on the
messages being exchanged. But remember, the functionality and requirements of the system should
not be different from its shared memory form.

 Create a UML class diagram for each class you design (they may be actor entities or complex data
structures), and provide information on "important" attributes. You need not list parameters of
methods or utility methods.

Create a UML sequence diagram for each of the following important interactions:

 Sending a job with no other jobs waiting to be processed

 Sending a job when some jobs are waiting to be processed

 Sending a job when the system is overloaded by the number of waiting jobs

 Processing the only shipping job inside the system

 Processing a shipping job with another job concurrently inside the system

 Processing a restocking job with another job concurrently inside the system

Step 3:
 Model the book inventory system with the pseudocode system. According to your UML modeling
(especially class diagrams) in step 2, write pseudocode for each of the classes you designed. Write
some statements to initialize and start the system with the following client program defined by
pseudocode.

CLASS Client

 DEFINE initialize Client(inventoryVal)

 inventory = inventoryVal

 ENDDEF

 DEFINE start()

 message = // some job message, details depends on design

 Send(message).To(inventory)

 WHILE True DO

 ON_RECEIVING

 MESSAGE.accept()

 message = // some other job message

291

 Send(message).To(inventory)

 MESSAGE.reject()

 // pause for a while

 Send(message).To(inventory)

 ENDWHILE

 ENDDEF

ENDCLASS

Step 4:
 Put all your work, including diagrams and pseudocode into one file answer.pdf.

Use the mkdir command to create a new folder (named “lastname_lab03”) in your local Nike
account. Use the cp command to copy answer.pdf to the newly created folder and submit the folder to
cs4900a. (submit cs4900a lastname_lab03)

Grading Rubric

Deliverables Total Points Comments

Subjective Survey 5

Answers 95

 step 2 50

 UML class diagram 25

 UML sequence diagram 25

 step 3 45

 Pseudocode for classes 35

 Pseudocode for system
initialization and start

 10

CSCI 4900/6900 Lab/Project Specification (Week 5)

Lab #5
Practice Java Basics

Goals
Before start our exploration in Java Thread model for concurrent programming, this lab is

designed for you to warm-up with Java programming language by implementing some classic
algorithms and reviewing data structures defined and used in Java. Students enrolled in CSCI
4900 should finish basic function definition, a backtracking algorithm and a class definition of
remote keypad. Students enrolled in CSCI 6900 should finish an extra practice on defining a
new data structure. This task is counted as a bonus for CSCI 4900 students.

Due Date
 Feb. 12, 2013 (Tuesday) 11:59 pm.

292

Late Penalty
 As described in the course policies.

Collaboration Policy
 This is an individual lab. You must complete this lab on your own. No copy of or detailed line by
line cooperation on code is allowed.

Lab Description
Step 1: Project Set Up
 Please create a Java project, name “lab05”, with Eclipse. Create a class “Main” in default package
with a main method (copy and paste following codes).

class Main {

 public void static main(String args[]) {

 System.out.println(“step2: print function”);

 myPrint();

 System.out.println(“step3: backtracking”);

 EightQueenSolver solver = new EightQueenSolver();

 solver.solve();

 solver.printBoard();

 System.out.println(“step4: remote keypad”);

 RemoteKeypad keypad

= new RemoteKeypad(Integer.parseInt(args[0]));

 for (int i = 1; i < args.length; i++) {

 keypad.getMoves(args[i]);

 }

 }

}

This step sets up the input and output for functions and classes defined in step 2 to step 4.

Step 2: A Simple Print Function

In the Main class defined in step 1, define another method myPrint() which prints out
the following output:

*

Step 3: A Backtracking Algorithm
 An eight queen problem is to place eight queens on a chess board so that any two of them won’t
attack each other.

In the same default package, define a class, name “EightQueenSolver”. This class should have

a two-dimensional array board[][] which records the placement of queens. A value of 0 indicates
an empty cell in the board and a value 1 indicates a cell with a queen placed on it. Define following
member functions:

293

 solve() – use backtracking algorithm to solve the eight queen problem
 printBoard() – print out the current layout of the board

Hint:
 To solve the eight queen problem with backtracking, following helping functions might be
necessary:
 solve(int row) – solve a particular row on the board
 clearRow() – clear the placement of a row
 boolean checkRow(int row) – check whether a particular row is valid or not

 boolean checkCol(int col) – check whether a particular column is valid or not
 boolean checkDiag(int row, int col) – check whether a particular cell is
diagonally valid or not

Step 4: Define a Remote Keypad Class
 A remote keypad has 26 English characters arranged on it according to different width (1 to 26) of
the keypad. The following examples show how different widths affect the arrangement of characters:

 A cursor on the remote keypad indicates which of the character is selected. In above three
examples of different remote keypads, character “g”, “t” and “l” are currently selected characters.
Move the cursor left, right, up or down could re-select a new character. For first keypad (width = 5),
move up the cursor, character “b” will be selected. Move down the cursor, character “l” will be
selected. Move left the cursor, character “f” will be selected and move right the cursor, character “h”
will be selected. For cursor in the second keypad (width = 8), it can be moved up, left, right but not
down. For cursor in the third keypad (width = 6), it can be moved up, left, down but not right. When
press enter, the character being selected by the cursor will actually being typed out by the remote
keypad.
 Now please write a remote keypad class, name “RemoteKeypad”. It should have width,

cursorRow, cursorCol defined as private data to indicate its property and current state. A
remote keypad object should be initialized with following constructor:

 RemoteKeypad(int width) {
 this.width = width;

 cursorRow = 0;

 cursorCol = 0;

 }

Now define a member function of the remote keypad class, getMoves(String str). This
function prints out all necessary moves and enter pressed to type the given string.

Take a width 5 remote keypad as an example:

294

RemoteKeypad keypad = new RemoteKeypad(5);

keypad.getMoves(“abc”);

keypad.getMoves(“xyzrts”);

// Output

enter // cursor at

(0,0)

right enter // cursor at (0,1)

right enter // cursor at (0,2)

down down down down right enter // cursor at (4,3)

right enter // cursor at (4,4)

left left left left down enter // cursor at (5,0)

up up right right enter // cursor at (3,2)

right right enter // cursor at (3,4)

left enter // cursor at

(3,3)

Hint:
 You could use following statements to get the position of a character on a remote keypad with
particular width.

int getRow(char c) {

 return (c - ‘a’) / width

}

int getCol(char c) {

 return (c - ‘a’) % width

}

Step 5: Define a Data Structure
 Define a data structure that supports constant time for inserting an item, remove a particular item
and randomly pick an item in the data structure. Define the class with Java Templates.

class MyDataStructure<T> {

 // essential data parts

 // constructor

 public MyDataStructure() {

 // initialization

 }

 ...

}

The class should have following three public member functions defined and all of them should have

O(1) time to complete.
 void insert(T item) – insert an item into the data structure
 void remove(T item) – remove the particular item from the data structure
 T getRandom() – randomly pick an item from those in the data structure

295

Hint:
 You are free to use any pre-defined data structures in Java language package such as lists, hashes,
arrays, etc.

Step 6:
 Create a readme file which includes your name and the course number (CSCI 4900 or CSCI 6900)
you enrolled in. You could also put any necessary notice for grading in this file too.

Put Readme, Main.java, EightQueenSolver.java, RemoteKeyPad.java and MyDataStructure.java
(optional for CSCI 4900 and required for CSCI 6900) into one folder lastname_lab05 and submit the
folder to cs4900a through Nike(submit cs4900a lastname_lab05).

Grading Rubric (CSCI 4900)

Deliverables Total Points Comments

Subjective Survey 5

Programs 95

 step 1 10

 step 2 20

 step 3 25

 step 4 40

 step 5 (bonus) 20

Grading Rubric (CSCI 6900)

Deliverables Total Points Comments

Subjective Survey 5

Programs 95

 step 1 5

 step 2 10

 step 3 20

 step 4 25

 step 5 35

CSCI 4900/6900 Lab/Project Specification (Week 6)

Lab #6
Programming in Scala

Goals
In this course, we will explore using the Scala Actor model to program concurrency.

However, the Scala programming language is not a major teaching topic in the course

296

schedule. Instead, you are expected to learn Scala by reading the textbook, discussing with
your classmates and finishing this lab. After completing this lab, you should gain knowledge of
Scala programming, its syntax and basic programming conventions as preparation for using
the Actor model and its corresponding language features to program concurrency. For
students enrolled in CSCI 6900, you should finish all the exercises. For students enrolled in
CSCI 4900, you should finish only those exercises that are not marked with “CSCI 6900 Only”.

Due Date
 Feb. 20, 2013 (Wednesday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
 This is an individual lab, but you are welcome to post any questions or start a discussion on piazza.
Please refer to the course policy for questions that are allowed. You may also discuss general strategies
with your classmates. However, you must complete coding on your own. No copy of or detailed line by
line cooperation on code is allowed.

You are encouraged to look at the Scala API documentation while solving this exercise, which can be
found here: http://www.scala-lang.org/api/current/index.html.

Note that Scala uses the String from Java, therefore the documentation for strings is found in the
Javadoc API: http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

Lab Description

Step 1: Project Set Up
 Please create a Scala project, name “lab06”, with Eclipse. Create an object “Main” in the default
package, then copy and paste the codes given in Main.scala, which sets up the input and output for

functions and classes defined in step 2 to step 4.
The main function defined in Main.scala takes a series of parameters separated by white space:

args(0) – the number of lines of the Pascal triangle to print
args(1) – the amount of money for which to calculate the number of combinations for change
args(2), args(3) – parenthesized expressions to be validated
args(4), args(5) – strings of alphabetic characters
A sample series of parameters is:
10 50 (x+(y+4)) :-)(hello world

which will make the program to print 10 lines of Pascal triangle, count number of ways to change
50¢, verify whether parenthesis are balanced in “(x+(y-5))” and “:-)” expressions, and print moves for
“hello” and “world”.

To configure different input parameters for the Main object, please left click the down arrow of run
button, select “Run Configurations” and then select Arguments tab as shown below. You could input
any number of arguments into the textbox provided. The arguments are separated by white space.

http://www.scala-lang.org/api/current/index.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

297

 Following is a sample run output with the above input arguments:

step 2: print function

 *

step 3: recursive algorithm

Pascal's Triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

Number of change for 50 cents is: 36

expression: (x-(y+4)) is balanced

expression: :-)(is not balanced

step 4: remote keypad

down right right enter

298

up right right enter

left left left down down enter

enter

right right right enter

left left down down enter

up up right right enter

left left down enter

left up enter

up up right right enter

Step 2: A Simple Print Function

In the Main object defined in step 1, define another method myPrint() which prints out
the following output:

*

Step 3: Recursive Algorithms
 Create a new object Recursion in the same default package as Main. Copy the codes in
Recursion.scala.

3.1. Pascal’s Triangle
 The following pattern of numbers is called Pascal’s Triangle. The numbers at the edge of the
triangle are all 1 and each number inside the triangle is the sum of the two numbers above it. Write a
function that computes elements of Pascal’s Triangle by means of a recursive process.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

Finish this exercise by implementing the pascal(c: Int, r:Int): Int function, which

takes a column c and a row r, counting from 0, and returns the number at that spot in the triangle. For
example, pascal(0,2)=1, pascal(1,2)=2, pascal(1,3)=3.

NOTE: the actual display of a Pascal Triangle won’t be nicely centered. Rather, it will be left

justified:

1

299

1 1
1 2 1
 … and so on.

3.2. Counting Change
 Write a recursive function that counts how many different ways you can make change for an
amount, given a list of coin denominations. For example, there are 3 ways to give change for 10¢ if you
have coins with denomination 1¢, 5¢, and 10¢:

 1 of 10¢

 10 of 1¢

 1 of 5¢ and 5 of 1¢

 2 of 5¢

 Finish this exercise by implementing the countChange(money: Int, coins:

List[Int]): Int function. This function takes an amount to change, and a list of denominations
for the coins.
Hint: Three functions of List type in Scala might be helpful:

 coins.isEmpty(): Boolean – returns whether the list is empty
 coins.head(): Int – returns the first element of the list
 coins.tail(): List[[Int] – returns the list without the first element

3.3. Parenthesis Balancing (CSCI 6900 Only)
 Design a recursive algorithm to verify the balancing of parenthesis in a statement. For example,
the following two statements have balanced parenthesis:

 (if(zero?x)max(/1x))

 ((x+3)/(y-4)+33)%2
The following statements do NOT have balanced parenthesis:

 :-)

 ())(
Notice that the last example above showed that only counting the number of left and right

parenthesis is not enough for verification.
Finish this exercise by completing the implementation of balance(chars: List[Char]):

Boolean function.
Hint: The isEmpty, head, tail functions may still be useful. You could define an inner function if

you want to pass extra parameters to the balance function.

Step 4: Define a Remote Keypad Class
 Implement a Remote Keypad Class that has the same properties and functionality as described in
Step4 of Lab05 by completing the code skeleton in RemoteKeypad.scala. You are not supposed to
modify any function signatures, i.e. the names, parameters and return value of functions.
Hint: You could use the toList and map function in getMoves(s:String):Unit function.
This function could be as simple as two lines.

Step 5: For-comprehension and Anagram (CSCI 6900 Only)
 In this step you will solve combinatorial problem of finding all the anagrams of a sentence using
the Scala Collections API and for-comprehensions.

300

5.0. Project Setup
 Download forcomp.zip and extract it. In Eclipse, you can import an existing Scala project by
specifying the root directory, which is the directory to which you extract the zip file. Work with
src/main/scala and src/test/scala (unit tests). The only file you should make changes to is
Anagrams.scala and your goal is to pass all 13 unit tests defined in AnagramsSuite.scala.

5.1. The Problem

An anagram of a word is a rearrangement of its letters such that a word with a different meaning is

formed. For example, if we rearrange the letters of the word Elvis we can obtain the word lives, which

is one of its anagrams.
In a similar way, an anagram of a sentence is a rearrangement of all the characters in the sentence

301

such that a new sentence is formed. The new sentence consists of meaningful words, the number of
which may or may not correspond to the number of words in the original sentence.

For example, the sentence:

I love you
is an anagram of the sentence:

You olive.
In this exercise, we will consider permutations of words anagrams of the sentence. In the above

example:

 You I love
is considered a separate anagram. When producing anagrams we will ignore the character casing and
the punctuation characters.

Your ultimate goal is to implement a method sentenceAnagrams, which, given a list of words
representing a sentence, finds all the anagrams of that sentence. Note that we used the term
meaningful in defining what anagrams are. You will be given a dictionary, i.e. a list of words indicating
words that have a meaning.

Here is the general idea. We will transform the characters of the sentence into a list saying how
often each character appears. We will call this list the occurrence list. To find anagrams of a word we
will find all the words from the dictionary which have the same occurrence list. Finding an anagram of a
sentence is slightly more difficult. We will transform the sentence into its occurrence list, and then try
to extract any subset of characters from it to see if we can form any meaningful words. From the
remaining characters we will solve the problem recursively and then combine all the meaningful words
we have found with the recursive solution.

Let’s apply this idea to our example, the sentence You olive. Let’s represent this sentence as an

occurrence list of characters eiloouvy. We start by subtracting some subset of the characters, say i. We

are left with the characters eloouvy.

Looking into the dictionary we see that i corresponds to word I in the English language, so we found

one meaningful word. We now solve the problem recursively for the rest of the characters eloouvy and

obtain a list of solutions List(List(love, you), List(you, love)). We can combine I with that list to obtain

sentences I love you and I you love, which are both valid anagrams.

5.2. Representation

We represent the words of a sentence with the String data type:
type Word = String

Words contain lowercase and uppercase characters, and no whitespace, punctuation or other
special characters. Since we are ignoring the punctuation characters of the sentence as well as the
whitespace characters, we will represent sentences as lists of words:

type Sentence = List[Word]

We mentioned previously that we will transform words and sentences into occurrence lists. We
represent the occurrence lists as sorted lists of character and integers pairs:

type Occurrences = List[(Char, Int)]

The list should be sorted by the characters in an ascending order. Since we ignore the character
casing, all the characters in the occurrence list have to be lowercase. The integer in each pair denotes
how often the character appears in a particular word or a sentence. This integer must be positive. Note
that positive also means non-zero – characters that do not appear in the sentence do not appear in the
occurrence list either.

Finally, the dictionary of all the meaningful English words is represented as a List of words:
val dictionary: List[Word] = loadDictionary

The dictionary already exists for this exercise and is loaded for you using the loadDictionary utility

302

method.

5.3. Computing Occurrence Lists

The groupBy method takes a function mapping an element of a collection to a key of some other
type, and produces a Map of keys and collections of elements which mapped to the same key. This
method groups the elements, hence its name.

Here is one example:
List("Every", "student", "likes", "Scala").groupBy((element: String)

=> element.length)

produces:
Map(

 5 -> List("Every", "likes", "Scala"),

 7 -> List("student")

)

Above, the key is the length of the string and the type of the key is Int. Every String with the same
length is grouped under the same key – its length.

Here is another example:
List(0, 1, 2, 1, 0).groupBy((element: Int) => element)

produces:
Map(

 0 -> List(0, 0),

 1 -> List(1, 1),

 2 -> List(2)

)

Maps provide efficient lookup of all the values mapped to a certain key. Any collection of pairs can
be transformed into a Map using the toMap method. Similarly, any Map can be transformed into a List

of pairs using the toList method.
In our case the collection will be a Word (i.e. a String) and its elements are characters, so the

groupBy method takes a function mapping characters into a desired key type.

In the first part of this exercise, we will use the groupBy method from the Collections API (you
may additionally use other methods, such as map and toList) to implement the following method,
which given a word produces its occurrence list.

def wordOccurrences(w: Word): Occurrences

Next, we implement another version of the method for entire sentences. We can concatenate the
words of the sentence into a single word and then reuse the method wordOccurrences that we already
have.

def sentenceOccurrences(s: Sentence): Occurrences

5.4. Computing Anagrams of a Word

To compute the anagrams of a word we use the simple observation that all the anagrams of a word
have the same occurrence list. To allow efficient lookup of all the words with the same occurrence list,
we will have to group the words of the dictionary according to their occurrence lists.

lazy val dictionaryByOccurrences: Map[Occurrences, List[Word]]

We then implement the method wordAnagrams which returns the list of anagrams of a single
word:

def wordAnagrams(word: Word): List[Word]

5.5. Computing Subsets of a Set

To compute all the anagrams of a sentence, we will need a helper method which, given an

303

occurrence list, produces all the subsets of that occurrence list.
def combinations(occurrences: Occurrences): List[Occurrences]

The combinations method should return all possible ways in which we can pick a subset of
characters from occurrences. For example, given the occurrence list:

List(('a', 2), ('b', 2))

the list of all subsets is:
List(

 List(),

 List(('a', 1)),

 List(('a', 2)),

 List(('b', 1)),

 List(('a', 1), ('b', 1)),

 List(('a', 2), ('b', 1)),

 List(('b', 2)),

 List(('a', 1), ('b', 2)),

 List(('a', 2), ('b', 2))

)

The order in which you return the subsets does not matter as long as they are all included. Note
that there is only one subset of an empty occurrence list, and that is the empty occurrence list itself.
Hint: investigate how you can use for-comprehensions to implement parts of this method.

5.6. Computing Anagrams of a Sentence

We now implement another helper method called subtract which, given two occurrence lists x and
y, subtracts the frequencies of the occurrence list y from the frequencies of the occurrence list x:

def subtract(x: Occurrences, y: Occurrences): Occurrences

For example, given two occurrence lists for words lard and r:
val x = List(('a', 1), ('d', 1), ('l', 1), ('r', 1))

val y = List(('r', 1))

the subtract(x, y) is List(('a', 1), ('d', 1), ('l', 1)).

The precondition for the subtract method is that the occurrence list y is a subset of the
occurrence list x – if the list y has some character then the frequency of that character in x must be

greater or equal than the frequency of that character in y. When implementing subtract you can
assume that y is a subset of x.

Hint: you can use foldLeft, and -, apply and updated operations on Map.
Now we can finally implement our sentenceAnagrams method for sequences.

def sentenceAnagrams(sentence: Sentence): List[Sentence]

Note that the anagram of the empty sentence is the empty sentence itself.
Hint: First of all, think about the recursive structure of the problem: what is the base case, and how
should the result of a recursive invocation be integrated in each iteration? Also, using for-
comprehensions helps in finding an elegant implementation for this method.

Test the sentenceAnagrams method on short sentences, no more than 10 characters. The
combinations space gets huge very quickly as your sentence gets longer, so the program may run for a

very long time. However for sentences such as Linux rulez, I love you or Mickey Mouse the program

should end fairly quickly.

Step 6:
 Create a readme file which includes your name and the course number (CSCI 4900 or CSCI 6900)
you enrolled in. You could also put any necessary information for grading in this file too.

Put Readme, Main.scala, Recursion.scala, RemoteKeypad.scala and Anagrams.scala into one

304

folder lastname_lab06 and submit the folder to cs4900a through Nike(submit cs4900a
lastname_lab06).

Grading Rubric (CSCI 4900)

Deliverables Total Points Comments

Subjective Survey 5

Programs 95

 step 1 10

 step 2 10

 step 3-1 25

 step 3-2 30

 step 4 20

Bonus 50

 step 3-3 10

 step 5 40

Grading Rubric (CSCI 6900)

Deliverables Total Points Comments

Subjective Survey 5

Programs 95

 step 1 5

 step 2 5

 step 3-1 5

 step 3-2 10

 step 3-3 20

 step 4 10

 step 5 (unit test 1-11) 40

Bonus 20

 step 5 (unit test 12-13) 20

CSCI 4900/6900 Lab/Project Specification (Week 7)

Lab #7
Programming in Python

Goals
In this course, we will explore using the Python Coroutine model to program concurrency.

However, the Python programming language is not a major teaching topic in the course
schedule. Instead, you are expected to learn Python by reading the textbook, discussing with
your classmates and finishing this lab. After completing this lab, you should gain knowledge of
Python programming, its syntax and basic programming conventions as preparation for using

305

the Coroutine model and its corresponding language features to program concurrency. For
students enrolled in CSCI 6900, you should finish all the exercises. For students enrolled in
CSCI 4900, you should finish only those exercises that are not marked with “CSCI 6900 Only”.

Due Date
 Feb. 27, 2013 (Wednesday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
 This is an individual lab, but you are welcome to post any questions or start a discussion on piazza.
Please refer to the course policy for questions that are allowed. You may also discuss general strategies
with your classmates. However, you must complete coding on your own. No copy of or detailed line by
line cooperation on code is allowed.

You are encouraged to look at the Python library documentation while solving this exercise, which
can be found here:
http://docs.python.org/2/library/ (python 2.x) http://docs.python.org/3/library/ (python 3.x)
 Comprehensive tutorial is also available from Python official site:
http://docs.python.org/2/tutorial/ (python 2.x) http://docs.python.org/3/tutorial/ (python 3.x)

Lab Description

Step 1: Project Set Up
 Please create a Python project, name “lab07”, with Eclipse. Create a Python Module “Main” and
“Configurator” in the default package, then copy and paste the codes given in main.py and
configurator.py, which sets up the input and output for functions and classes defined in step 2

and step 4.
The main function defined in main.py uses a Python ConfigParser to write and read configuration

data (test inputs) to and from a configure file and then evaluate with literal_eval() function in ast
package. The actual write_conf() and read_conf()methods are defined in module
configurator.py. You are not encouraged to modify main.py or configurator.py.
However, if you are confident in manipulating ConfigParser and configure files, you could modify it to
test on different inputs.

Information about ConfigParser could be found at following documentation:
 http://docs.python.org/2/library/configparser.html .

Information about ast package could be found at following documentation:
 http://docs.python.org/2/library/ast.html .

A sample output with the given configurations is:

myPrint

 *

http://docs.python.org/2/library/
http://docs.python.org/3/library/
http://docs.python.org/2/tutorial/
http://docs.python.org/3/tutorial/
http://docs.python.org/2/library/configparser.html
http://docs.python.org/2/library/ast.html

306

String: both_ends

spring -> spng

hello -> helo

google -> gole

a ->

 ->

String: fix_start

babble -> ba**le

aardvark -> a*rdv*rk

google -> goo*le

donut -> donut

String: mix_up

('mix', 'pod') -> pox mid

('dog', 'dinner') -> dig donner

('gnash', 'sport') -> spash gnort

('pezzy', 'firm') -> fizzy perm

String: not_bad

This movie is not so bad -> This movie is good

This dinner is not that bad! -> This dinner is good!

This tea is not hot -> This tea is not hot

It is bad yet not -> It is bad yet not

String: font_back

('abcd', 'xy') -> abxcdy

('abcde', 'xyz') -> abcxydez

('Kitten', 'Donut') -> KitDontenut

List: match_ends

['aba', 'xyz', 'aa', 'x', 'bbb'] -> 3

['', 'x', 'xy', 'xyx', 'xx'] -> 2

['aaa', 'be', 'abc', 'hello'] -> 1

List: front_x

['bbb', 'ccc', 'axx', 'xzz', 'xaa'] -> ['xaa', 'xzz', 'axx', 'bbb', 'ccc']

['ccc', 'bbb', 'aaa', 'xcc', 'xaa'] -> ['xaa', 'xcc', 'aaa', 'bbb', 'ccc']

['mix', 'xyz', 'apple', 'xanadu', 'aardvark'] -> ['xanadu', 'xyz',

'aardvark', 'apple', 'mix']

List: sort_last

[(1, 3), (3, 2), (2, 1)] -> [(2, 1), (3, 2), (1, 3)]

[(2, 3), (1, 2), (3, 1)] -> [(3, 1), (1, 2), (2, 3)]

[(1, 7), (1, 3), (3, 4, 5), (2, 2)] -> [(2, 2), (1, 3), (3, 4, 5), (1, 7)]

List: remove_adjacent

[1, 2, 2, 3] -> [1, 2, 3]

[2, 2, 3, 3, 3] -> [2, 3]

[] -> []

List: linear_merge

(['aa', 'xx', 'zz'], ['bb', 'cc']) -> ['aa', 'bb', 'cc', 'xx', 'zz']

(['aa', 'xx'], ['bb', 'cc', 'zz']) -> ['aa', 'bb', 'cc', 'xx', 'zz']

(['aa', 'aa'], ['aa', 'bb', 'bb']) -> ['aa', 'aa', 'aa', 'bb', 'bb']

Remote:

307

right down enter

up right right right enter

right down enter

enter

left left left down enter

right right down enter

left left up enter

right right right enter

up enter

left left up enter

left left down down down down enter

enter

enter

Step 2: A Simple Print Function

In the Main module defined in step 1, define another method myPrint() which prints
out the following output:

*

Step 3: Strings, Lists, Dictionary and Files
 In this step, you will program to manipulate Python strings, lists, dictionary data structure and
files. You should complete the code skeleton in mystring.py, mylist.py, mimic.py and
wordcount.py (CSCI 6900 only)

3.1 Strings in Python (mystring.py)
 Create a new module mystring.py in the same default package as the Main module. Finish the
definition of following functions in mystring.py.

 1. both_ends(s)
 Given a string s, return a string made of the first 2 and the last 2 chars of the original string, so
'spring' yields 'spng'. However, if the string length is less than 2, return the empty string instead.

 2. fix_start(s)
Given a string s, return a string where all occurences of its first char have been changed to '*',

except do not change the first char itself. e.g. 'babble' yields 'ba**le'. Assume that the string is length 1
or more.

Hint: s.replace(stra, strb) returns a version of string s where all instances of stra have
been replaced by strb.

3. mix_up(a, b)

Given strings a and b, return a single string with a and b separated by a space '<a> ', except swap
the first 2 chars of each string.

e.g.

308

'mix', pod' -> 'pox mid'

'dog', 'dinner' -> 'dig donner'

 Assume a and b are strings of length 2 or more.

4. not_bad(s)

Given a string, find the first appearance of the substring 'not' and 'bad'. If the 'bad' follows the 'not',
replace the whole 'not'...'bad' substring with 'good'. Return the resulting string. So 'This dinner is not
that bad!' yields ‘This dinner is good!’

5. front_back(a, b)

Consider dividing a string into two halves. If the length is even, the front and back halves are the
same length. If the length is odd, we'll say that the extra char goes in the front half. e.g. 'abcde', the
front half is 'abc', the back half 'de'.

Given 2 strings, a and b, return a string of the form: a-front + b-front + a-back + b-back
e.g.

front_back('abcd', 'xy') -> 'abxcdy'

 front_back('abcde', 'xyz') -> 'abcxydez'

 front_back('Kitten', 'Donut') -> 'KitDontenut'

3.2 Lists in Python (mylist.py)
 Create a new module mylist.py in the same default package as the Main module. Finish the
definition of following functions in mylist.py.

1. match_ends(words)

 Given a list of strings, return the count of the number of strings where the string length is 2 or more
and the first and last chars of the string are the same.

Note: python does not have a ++ operator, but += works.

2. front_x(words)

Given a list of strings, return a list with the strings in sorted order, except group all the strings that
begin with 'x' first.

e.g.
['mix', 'xyz', 'apple', 'xanadu', 'aardvark']

->

['xanadu', 'xyz', 'aardvark', 'apple', 'mix']

Hint: this can be done by making 2 lists and sorting each of them before combining them.

3. sort_last(tuples)

Given a list of non-empty tuples, return a list sorted in increasing order by the last element in each
tuple.

e.g.
[(1, 7), (1, 3), (3, 4, 5), (2, 2)]

->

[(2, 2), (1, 3), (3, 4, 5), (1, 7)]

Hint: define an extra function and then use a custom key= function to extract the last
element form each tuple. For tuple data structure, please refer to following documentation:
 http://docs.python.org/2/tutorial/datastructures.html#tuples-and-sequences

http://docs.python.org/2/tutorial/datastructures.html#tuples-and-sequences

309

4. remove_adjacent(nums)

Given a list of numbers, return a list where all adjacent equal elements have been reduced to a
single element.

e.g.
[1, 2, 2, 3] -> [1, 2, 3].

You may create a new list or modify the passed in list.

5. linear_merge(list1, list2)

Given two lists sorted in increasing order, create and return a merged list of all the elements in
sorted order. You may modify the passed in lists. Ideally, the solution should work in "linear" time,
making a single pass of both lists.

3.3 Dictionary and Files in Python
 In this section, you will practice using python dictionary and file utilities. The given file small.txt is
a small test case you could use to feed your program while debugging while alice.txt is a relative large
test case.

3.3.1 Mimic Exercise
 Create a new module mimic.py in the same default package as the Main module. Finish the
definition of following functions in mimic.py.

 1. mimic_dict(filename)

Returns mimic dict mapping each word to a list of words which follow it.
Read in the file specified on the command line. Do a simple split() on whitespace to obtain all the

words in the file. Rather than read the file line by line, it's easier to read it into one giant string and split
it once.

Build a "mimic" dict that maps each word that appears in the file to a list of all the words that
immediately follow that word in the file. The list of words can be in any order and should include
duplicates. So for example the key "and" might have the list ["then", "best", "then", "after", ...] listing
all the words which came after "and" in the text. We'll say that the empty string is what comes before
the first word in the file.
 Hint: after getting the file object, use f.read() method to get the file as a whole big string.

 2. print_mimic(mimic_dict, word, n)

Given mimic dict and start word, prints n random words.
With the mimic dict, it's fairly easy to emit random text that mimics the original. Print a word, then

look up what words might come next and pick one at random as the next word. Use the empty string
as the first word to prime things. If we ever get stuck with a word that is not in the dict, go back to the
empty string to keep things moving.

For fun, feed your program to itself as input.

Hint: the standard python module 'random' includes a random.choice(list) method which picks
a random element from a non-empty list.
Note: mimic.py has its own main function and could run directly without the “Main” module defined
in step 1.

3.3.2 Word Count Exercise (CSCI 6900 only)

310

 Create a new module wordcount.py in the same default package as the Main module. Finish
the definition of following functions in wordcount.py.

The main() function is already defined and complete. It calls print_words and print_top
functions which you will write to complete.

1. print_words(filename)

For the --count flag, implement a print_words(filename) function that counts how often
each word appears in the text and prints:

word1 count1

word2 count2

...

Print the above list in order sorted by word (python will sort punctuation to come before letters and
that's fine). Store all the words as lowercase, so 'The' and 'the' count as the same word.

2. print_top(filename, n)

For the --topcount flag, implement a print_top(filename, n) which is similar to
print_words but which prints just the top n most common words sorted. So the most common
word is first, then the next most common, and so on.

Hint: Use str.split() (no arguments) to split on all whitespace. Define a helper function to avoid

code duplication inside print_words and print_top.
Note: wordcount.py has its own main function and could run directly without the “Main” module
defined in step 1.

Step 4: Define a Remote Keypad Class
 Implement a Remote Keypad Class that has the same properties and functionality as described in
Step4 of Lab05 by completing the code skeleton in remotekeypad.py. You are not supposed to
modify any function signatures, i.e. the names, parameters and return value of functions.

Hint: print ‘some string’, (with a comma at the end of print statement) will only print
“some string“ without a newline.

Step 5: Regular Expressions & Utilities (CSCI 6900 Only)
 For the Log Puzzle exercise, you'll use Python code to solve two puzzles. This exercise uses the
urllib (url library) module and re (regular expression) module. The files for this exercise are in the
"logpuzzle" zip. Add your code to the logpuzzle.py file.
 An image of an animal has been broken into many narrow vertical stripe images. The stripe images
are on the internet somewhere, each with its own url. The urls are hidden in a web server log file. Your
mission is to find the urls and download all image stripes to re-create the original image.
 The slice urls are hidden inside apache log file: animal_code.google. The log file encodes
what server it comes from like this: the log file animal_code.google.com is from the code.google.com
server (formally, we'll say that the server name is whatever follows the first underbar). The
animial_code.google.com log file contains the data for the "animal" puzzle image. Although the data in
the log files has the syntax of a real apache web server, the data beyond what's needed for the puzzle
is randomized data from a real log file.
 Here is what a single line from the log file looks like (this really is what apache log files look like):

10.254.254.28 - - [06/Aug/2007:00:14:08 -0700] "GET /foo/talks/ HTTP/1.1"

200 5910 "-" "Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.4) Gecko/20070515 Firefox/2.0.0.4"

311

 The first few numbers are the address of the requesting browser. The most interesting part is the
"GET path HTTP" showing the path of a web request received by the server. The path itself never
contains spaces, and is separated from the GET and HTTP by spaces (regex suggestion: \S (upper case S)
matches any non-space char). Find the lines in the log where the string "puzzle" appears inside the
path, ignoring the many other lines in the log.

5.1 Log File to Urls

Complete the read_urls(filename) function that extracts the puzzle urls from inside a
logfile. Find all the "puzzle" path urls in the logfile. Combine the path from each url with the server
name from the filename to form a full url.

e.g. "http://www.example.com/path/puzzle/from/inside/file".
Screen out urls that appear more than once. The read_urls() function should return the list of

full urls, sorted into alphabetical order and without duplicates. Taking the urls in alphabetical order
will yield the image slices in the correct left-to-right order to re-create the original animal image. In the
simplest case, main() should just print the urls, one per line.
$./logpuzzle.py animal_code.google.com

http://code.google.com/something/puzzle-animal-baaa.jpg

http://code.google.com/something/puzzle-animal-baab.jpg

...

5.2 Download Images Puzzle

Complete the download_images() function which takes a sorted list of urls and a directory.
Download the image from each url into the given directory, creating the directory first if necessary (see
the "os" module to create a directory, and "urllib.urlretrieve()" for downloading a url).

Name the local image files with a simple scheme like "img0", "img1", "img2", and so on. You may
wish to print a little "Retrieving..." status output line while downloading each image since it can be
slow and is nice to have some indication that the program is working.

Here's what it should look like when you can download the animal puzzle:
$./logpuzzle.py --todir animaldir animal_code.google.com

$ ls animaldir

img0 img1 img2 img3 img4 img5 img6 img7 img8 img9

index.html

Each image is a little vertical slice from the original. To put the slices together to re-create the
original, you could create a little html file: index.html by download_images() function in the
directory with an *img* tag to show each local image file. The img tags should all be on one line
together without separation. In this way, the browser displays all the slices together seamlessly. You do
not need knowledge of HTML to do this; just create an index.html file that looks like this:
<verbatim>

<html>

<body>

...

</body>

</html>

 5.3 Find out the Animal

312

 After creating the index.html file, you could open it in any browser and then report the animal
you find in your readme file.

Step 6:
 Create a readme file which includes your name and the course number (CSCI 4900 or CSCI 6900)
you enrolled in. For CSCI 6900 students, you should also report the animal you find in step 5. You could
also put any necessary information for grading in this file too.

Put Readme, main.py, mystring.py, mylist.py, remotekeypad.py, mimic.py, wordcount.py (CSCI
6900) and logpuzzle.py (CSCI 6900) into one folder lastname_lab07 and submit the folder to cs4900a
through Nike(submit cs4900a lastname_lab07).

Grading Rubric (CSCI 4900)

Deliverables Total Points Comments

Subjective Survey 5

Programs 95

 step 1 5

 step 2 5

 step 3-1 25

 step 3-2 25

 step 3-3 20

 step 4 20

Bonus 20

 step 5 20

Grading Rubric (CSCI 6900)

Deliverables Total Points Comments

Subjective Survey 5

Programs 95

 step 1 5

 step 2 5

 step 3-1 15

 step 3-2 15

 step 3-3 25

 step 4 15

 step 5 15

CSCI 4900/6900 Lab/Project Specification (Week 8)

Lab #8
Party Matching as Shared Memory System

Goals

313

In lab 08, we will practice programming concurrency problems with Java threads for shared
memory systems, with Scala actors for message passing systems and with Python coroutines
for cooperative multi-tasking systems. In this lab, you are going to program the party matching
problem as a shared memory system with Java threads. The goal of the lab is to gain hands-on
experience in programming Java threads and using thread models.

Due Date
 Mar 6, 2013 (Wednesday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
 This is an individual lab, but you are welcome to post any questions or start a discussion on piazza.
Please refer to the course policy for questions that are allowed. You may also discuss general strategies
with your classmates. However, you must complete coding on your own. No copying of or detailed line
by line cooperation on code is allowed.

You are encouraged to look at the documentation and tutorials related to Java Threads while
solving this exercise, which can be found in the course reading materials. Of particular interest:

http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/

Lab Description

Step 1: The Party Matching Problem
 The problem is to simulate a party where boys and girls come arrive but leave in pairs consisting of
one boy and one girl.
 A simple version of this simulation is to let any boy or girl leave the party when there’s a partner
available. One design alternative for this version is to have threads represent boys and girls and a class
of shared data that records the number of boy and girl threads. The threads consult the shared data
and decide whether they can exit (leave the party).
 A more sophisticated and realistic version of this simulation is to allow boys and girls have the
choice of whom they would like to leave with. The design of this version requires more complicated
classes that represent boys, girls and the party.

Step 2: Implement the Simple Version of Design
 Define three Java classes, ParticipatorGenerator.java, Party.java and
Main.java.

ParticipatorGenerator.java should implement the run() method in Java. It represents

a thread that generates either boys or girls. The gender should be decided randomly when it is
initialized. Two member functions should be called in the run() method repeatedly. One is to check
into the party and the other is to leave the party.

Party.java should record all shared data required for this simulation. The member functions
defined in ParticipatorGenerator.java should access and modify data defined inside this
class.

Main.java is the starting place of the simulation. The party object and 10 participator generator

objects should be initialized and start here.

http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/

314

No specific output (print out) is required. Please keep your code as concise as possible.

Step 3: Design of the Realistic Version of Simulation
 Suppose boys and girls still come to the party individually. But in this design, pairs of boys and
girls may only exit when a boy invites an available girl (girl who’s already at the party) to leave. If the
girl agrees, then they both leave the party. If not, the boy may invite any other available girl.

3.1 Draft a UML Class Diagram
 Use a UML class diagram to express one design you envision as feasible for this realistic version of
simulation.
Hint:

1. a more complicated data structure may be necessary for the party class
2. you might want to separate the functionality of boy/girl threads from the ParticipatorGenerator
3. synchronized methods might be necessary for boy and/or girl threads

3.2 Write Pseudocode (for CSCI 6900 only)
 Write out the pseudocode with your design.
Note: You may use only the shared memory pseudocode syntax since the design is to simulate the
problem as a shared memory system.

Step 4: Implement the Realistic Version of Simulation (optional)
 Implement your design on the realistic version of the simulation with Java threads.

Step 5:
 Create a readme file that includes your name and the course number (CSCI 4900 or CSCI 6900) you
enrolled in.

Put Readme, Main.java, ParticipatorGenerator.java, and Party.java, for the simple version of the
simulation into one folder lastname_lab08.

Put your UML class diagram design and pseudocode (for CSCI 6900 only) into one file design.pdf
and put it also into the folder lastname_lab08.

If you implement the realistic version of simulation, please put all files related to that into a folder
lab08_real, and then copy the whole folder into lastname_lab08.

Submit the folder to cs4900a through nike(submit cs4900a lastname_lab08).

Grading Rubric (CSCI 4900)

Deliverables Total Points Comments

Subjective Survey 5

Programs 35

 step 2 35

Designs 10

 step 3-1 10

Bonus 20

 step 3-2 5

 step 4 15

Grading Rubric (CSCI 6900)

315

Deliverables Total Points Comments

Subjective Survey 5

Programs 25

 step 2 25

Designs 20

 step 3-1 5

 step 3-2 15

Bonus 20

 step 4 20

CSCI 4900/6900 Lab/Project Specification (Week 9)

Lab #9
Party Matching as Message Passing System

Goals
In previous lab, we practiced programming party matching simulation with Java threads

model as a shared memory system. In this lab, we will program the same problem but as a
message passing system with Scala actors. The goal of this lab is to gain hands-on experience
in programming Scala and using Actor models.

Due Date
 Mar 19, 2013 (Tuesday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
 This is an individual lab, but you are welcome to post any questions or start a discussion on piazza.
Please refer to the course policy for questions that are allowed. You may also discuss general strategies
with your classmates. However, you must complete coding on your own. No copying of or detailed line
by line cooperation on code is allowed.

You are encouraged to look at the documentation and tutorials related to Scala Actor while solving
this exercise, which can be found in the course reading materials. Of particular interest:

http://www.scala-lang.org/node/242
http://www.scala-lang.org/api/current/index.html#scala.actors.Actor

Lab Description

Step 1: Implement a Simplest Version
 Follow the design below and implement a simplest version of the party matching simulation:

 Messages:

http://www.scala-lang.org/node/242
http://www.scala-lang.org/api/current/index.html#scala.actors.Actor

316

 Enter(gender)

 Exit(gender, participantGenerator)

 SucceedExit()

 FailExit()

 Behaviors:
 Party

 When receives an Enter(gender) message:
 Update the correspondent status variable
 When receives an Exit(gender, participantGenerator) message:
 If condition is satisfying, send SucceedExit() to the
participantGenerator Otherwise, send FailExit() to the
participantGenerator
 ParticipantGenerator

 Send out an Enter(gender) message to the party

 Send out an Exit(gender, self)message to the party

 When receives a SucceedExit() message:
 Send out another Enter(gender) message to the party
 Send out another Exit(gender, self) message to the party

 When receives a FailExit() message:
 Send out another Exit(gender, self) message to the party

Note: All codes should be put into file match1.scala
Step 2: Implement another Version of Design
 The design of a message passing system has a lot of alternatives. In step 1, the party participants
keep trying to exit the party. In this alternative below, the party notifies the participants to exit.
Implement this design with Scala Actors.

Messages:
 Arrive(gender, participantGenerator)

 Leave()

Behaviors:
 Party

 When receives an Arrive(gender, participantGenerator) message:
If a counter-gender participant exists, send Leave() message to both of them
Otherwise, record the participantGenerator

 ParticipantGenerator

 Send Arrive(gender, self) message to the party

 When receives a Leave() message
 Send out another Arrive(gender, self) message to the party

Note: All codes should be put into file match2.scala
Hint: To record all participants arrived, two lists variables might be necessary. You could conform to a
first-come-first-leave rule when selecting counter-gender participant to leave.

Step 3: Design of the Realistic Version of Simulation

317

 Suppose boys and girls still come to the party individually. But in this design, pairs of boys and girls
may only exit when a boy invites an available girl (girl who’s already at the party) to leave. If the girl
agrees, then they both leave the party. If not, the boy may invite any other available girl.

3.1 Write out the Protocol of Design
 Specify out what messages will be used for communication and the corresponding behaviors of
each entity in the system. Accompany any diagrams as needed for clarification or illustration purpose.
Hint:

1. a more complicated message and behavior set is necessary
2. you might want to separate the functionality of boy/girl with different class definitions

3.2 Write Pseudocode
 Write out the pseudocode with your design.
Note: You may use only the message passing pseudocode syntax since the design is to simulate the
problem as a message passing system.

Step 4: Implement the Realistic Version of Simulation (optional)
 Implement your design on the realistic version of the simulation with Scala Actors.

Step 5:
 Create a readme file that includes your name and the course number (CSCI 4900 or CSCI 6900) you
enrolled in.

Put Readme, match1.scala, and match2.scala, for the two simple versions of simulation into one
folder lastname_lab09.

Put your design and pseudocode into one file design.pdf and put it also into the folder
lastname_lab09.

If you implement the realistic version of simulation, please put all files related to that into a folder
lab09_real, and then copy the whole folder into lastname_lab09.

Submit the folder to cs4900a through nike(submit cs4900a lastname_lab09).

Grading Rubric (Total: 100 + 20)

Deliverables Total Points Comments

Subjective Survey 5

Programs 55

 step 1 20

 step 2 35

Designs 40

 step 3-1 15

 step 3-2 25

Bonus 20

 step 4 20

CSCI 4900 Homework Specification (Week 10)

318

Homework #4
Completing Python Codes for Cooperative Dining Philosophers

Goals
 In this homework, you need to finish the given code skeleton with Python for two different
designs of a dining philosopher problem. The goal of this homework is to practice using the Python
generators for multitasking concurrent system.

Due Date
 Mar 22, 2013 (Friday) 11:59 pm.

Late Penalty
 As described in the course policies.

Collaboration Policy
 This is an individual homework. You have to finish this homework on your own.

No exchange or copy of code is allowed!

Homework Description
Task 1: Completing code skeleton in dining.py
 dining.py is shown below. The portions you are going to complete are marked with green
comments. Other comments are for your understanding. By completing the code, you achieve
following design:

◦ asymmetric fork acquisition

◦ Philosophers with even id acquire left fork first

◦ Philosophers with odd id acquire right fork first
#dining.py

import random

import time

class forks:

 def __init__(self, num):

 self.num = num #number of forks

 self.usage = [False] * self.num

 def acquire_left(self, name):

 #finish this method

 def acquire_right(self, name):

 #finish this method

 def release_left(self, name):

 #finish this method

 def release_right(self, name):

 #finish this method

def philosopher(name, forks):

 while True:

 if name % 2 == 0:

 #finish the if branch

 #acquire left fork first, then right fork

 else:

319

 #finish the else branch

 #acquire right fork first, then left fork

 yield #give others a chance to proceed while eating

 forks.release_left(name)

 forks.release_right(name)

 yield #give others a chance to proceed while thinking

def main():

 f = forks(5)

 phils = []

 for i in xrange(5):

 phil = philosopher(i, f)

 phils.append(phil)

 while True:

 random.choice(phils).next()

 time.sleep(0.1)

Standard boilerplate to call the main() function.

if __name__ == '__main__':

 main()

dining.py

Task 2: Completing code skeleton in dining2.py
 dining2.py is shown below. The portions you are going to complete are marked with
green comments. Other comments are for your understanding. By completing the code, you achieve
the design of a smarter fork acquisition mechanism:

◦ When more than 1 fork is available, grant the requested fork if it is available

◦ When only 1 fork is available, grant it to a philosopher with one fork in hand already
#dinning2.py

import random, time

class forks:

 def __init__(self,num):

 self.num = num #total number of forks

 self.hasFork = [] #philosophers with at least a fork

 self.usage = [False] * self.num

 self.availabe = num #number of forks not in use

 def acquire_left(self, name):

 #finish this method

 def acquire_right(self, name):

 #finish this method

 def release_left(self, name):

 #finish this method

 def release_right(self, name):

 #finish this method

def philosopher(name, forks):

 while True:

 #finish code here to acquire left fork then right fork

 print 'Philosopher %s is eating...' %(name)

 yield #give others a chance to proceed while eating

 forks.release_left(name)

 forks.release_right(name)

320

 yield #give others a chance to proceed while thinking

def main():

 f = forks(5)

 phils = []

 for i in xrange(5):

 phil = philosopher(i, f)

 phils.append(phil)

 while True:

 random.choice(phils).next()

 time.sleep(0.1)

Standard boilerplate to call the main() function.

if __name__ == '__main__':

 main()

dining2.py

Submission:

 Use the mkdir command to create a new folder (named “lastname_hw04”) in your local Nike
account. Use the cp command to copy dining.py and dining2.py to the newly created folder and
submit the folder to cs4900. (submit cs4900a lastname_hw04)

Grading Rubric

Deliverables Total Points Comments

Subjective Survey 5

Answers 45

 task 1 20

 task 2 25

CSCI 4900/6900 Lab/Project Specification (Week 10)

Lab #10
Party Matching as Cooperative System

Goals
With knowledge of cooperative multi-tasking as well as the coroutine model in Python, we

will practice to program the same party matching problem as a cooperative system. Please
read slides and corresponding supplementary materials on Python coroutine before working
on codes. The goal of this lab is to gain hands-on experience in programming concurrency with
generators and coroutines in Python.

Due Date
 Mar 27, 2013 (Wednesday) 11:59 pm.

Late Penalty

321

 As described in the course policies.

Collaboration Policy
 This is an individual lab, but you are welcome to post any questions or start a discussion on piazza.
Please refer to the course policy for questions that are allowed. You may also discuss general strategies
with your classmates. However, you must complete coding on your own. No copying of or detailed line
by line cooperation on code is allowed.

You are encouraged to look at the documentation and tutorials related to Python Coroutine while
solving this exercise, which can be found in the course reading materials. Of particular interest:

http://www.python.org/dev/peps/pep-0342/

Lab Description

Step 1: Implement a Simplest Version
 Define a Python classes, party and a generator function participant_generator(name, gender,
party).
 The function participant_generator should generate 10 party participants in total (randomly all
girls or all boys). Whenever a participant is generated, it should be sent to party and try to find a
partner to leave. If it is not able for it to leave, the generator object should yield for others to proceed.
After all generated participants leave the party, this generator object should stop.
 The class party should record the number of boys and girls and the number of pairs. It should
support at least 4 methods:
 boy_check_in -- check in a boy
 girl_check_in -- check in a girl
 boy_check_out -- check out a boy
 girl_check_out -- check out a girl

 Use the main() function defined in figure 1 to test your program. This function terminates all
generator objects after 1 seconds (therefore, your program should not run forever). It also checks
whether the total number of pairs equals the minimum of number of boys or girls. If your program is
incorrectly implemented, you will read error output message as shown in figure 2. Otherwise, your
program should just exist with the print outs of number of boys, girls and pairs.
def main():
 p = party()

 num_boys = 0;
 num_girls = 0;

 participants = []
 for i in xrange(10):
 if random.randint(0,1) == 0:
 pg = participant_generator(i, True, p)
 num_boys += 10
 else:
 pg = participant_generator(i, False, p)
 num_girls += 10
 participants.append(pg)

 t0 = time.time()
 while len(participants) > 0 and time.time() - t0 < 1:
 task = random.choice(participants)
 try:
 task.next()

http://www.python.org/dev/peps/pep-0342/

322

 except StopIteration:
 participants.remove(task)

 print 'boy enter: %s' %num_boys
 print 'girl enter: %s' %num_girls
 print 'pair: %s' %int(p.pair)

 assert min(num_boys, num_girls) == int(p.pair)

if __name__ == '__main__':
 main()

figure 1: main() function

boy enter: 70
girl enter: 30
pair: 40
Traceback (most recent call last):
 File "C:\Users\Jane\workspace\Concurrency_Python\concurrency\match.py", line 77, in <module>
 main()
 File "C:\Users\Jane\workspace\Concurrency_Python\concurrency\match.py", line 74, in main
 assert min(num_boys, num_girls) == 0#int(p.pair)
AssertionError

figure 2: Error Message

Note: All codes should be put into file match1.py
Step 2: Implement the Realistic Version
 Add necessary data structures in party class and modify the boy_check_out and girl_check_out
methods to implement the realistic version of party matching.

 Use the same main() function as defined in figure 1 to test your program. The same testing

logic and error message in figure 2 applies.

Hint: The added data structure should be able to record all girls in the party.
Note: All codes should be put into file match2.py

Step 3: Make Use of send() Function (optional)
 In this step, you are still working with the basic party matching problem setting (not the realistic
one).

 Instead of define a party class, this time you will define party also as a function generator. The
different function generators (participant_generator functions and a party function) coordinate their
execution through yield, send and next so that the problem is simulated with all coroutines.

 You could use the main() function defined in figure 3 to test your program or write your own. If
you write your own main() function, please make sure the final output of the program is the total
number of boys, the total number of girls and the total number of pairs in a row (e.g. 50 50 50 or 30 70
30).
def main():
 p = party()
 p.next() #start the party generator
 p.send(10)

 tasks = [p]
 num_boys = 0
 num_girls = 0
 for i in range(10):
 if random.randint(0,1) == 0:

323

 pg = participant_generator(i, True, p, num_boys)
 num_boys += 10
 else:
 pg = participant_generator(i, False, p, num_girls)
 num_girls += 10
 p.send((i, pg)) #make party aware of other coroutines
 tasks.append(pg)

 t = time.time()
 while len(tasks) > 1 and time.time() - t < 5:
 task = random.choice(tasks)
 try:
 task.next()
 except StopIteration:
 tasks.remove(task)
 time.sleep(0.01)

 print num_boys , num_girls , pair
 assert min(num_boys, num_girls) == pair

if __name__ == '__main__':
 main()

figure 3: main() function

Hint: Since send function could only carry one argument, you could define a class type to carry
multiple pieces of information in one send.
Note: All codes should be put into file match3.py

Step 4:
 Create a readme file that includes your name and the course number (CSCI 4900 or CSCI 6900) you
enrolled in.

Put match1.py, match2.py and match3.py (if available) into one folder lastname_lab10.
Submit the folder to cs4900a through nike(submit cs4900a lastname_lab010).

Grading Rubric (Total: 70 + 30)

Deliverables Total Points Comments

Subjective Survey 5

Programs 65

 step 1 30

 step 2 35

Bonus 30

 step 3 30

CSCI 4900/6900 Lab/Project Specification (Week 11-13)

Lab #11
Sleeping Barber Simulation

Goals
In this lab you will use your prior knowledge of Java Threads, Scala Actors and Python Coroutines

and your prior hands-on experience implementing the party matching simulation with these three

324

models to program a sleeping barber simulation using concurrency constructs from the three different
models. You are required to understand the simulation setting, synthesize pieces of knowledge with
different programming models and realize the system in Java, Scala and Python.

Due Date

 On each of the following date, you should submit one deliverable part of the lab (details described
in submission portion of this document at the end).

1. Apr 9th, 2013 (Tuesday) 11:59 pm.
2. Apr 16th, 2013 (Tuesday) 11:59 pm.
3. Apr 19th, 2013 (Friday) 11:59 pm.

Late Penalty

 For each deliverable part, the late penalty described in the course policies applied.

Collaboration Policy
 This is an individual lab, but you are welcome to post any questions or start a discussion on piazza.
Please refer to the course policy for questions that are allowed. You may also discuss general strategies
with your classmates. However, you must complete coding on your own. No copying of or detailed line
by line cooperation on code is allowed.

Lab Description

1. The Simulation Problem – Sleeping Barbers
 A barbers shop has a particular number of barbers working in it. Different customers come to the
shop to have different kinds of barbering services that take different amounts of time to finish. When
there’s no customer in the shop, the barbers just rest. If a customer comes and there are available
barbers (barbers are resting), one of the barbers should provide the customer the barbering service he
wants. When all the barbers are serving customers, a newly arriving customer should wait in the shop.
However, if the waiting space is already full, that customer will leave directly without having any
service. Barbers keep a record of the total time of service they provide and do not serve anymore
customers when that time reaches/exceeds their maximum working time.

Here is a list of key points in the simulation:

 Barbers have a limited amount of total work time to provide service

 Barbers rest when there’s no customer to serve

 Barbers cannot rest when there are waiting customers

 Customers go to the barber’s shop to get a certain service that takes a particular amount of
time to finish

 Customers in the waiting area should be served on a first-come-first-served base.

 Customers should stay in the waiting area if it is not full. Otherwise, customers should leave
the shop immediately.

 Customers do not pick barbers. They will be served by the first available barber.

2. The Simulation Settings
 To set up a simulation, the following arguments should be specified:

325

 the capacity of the waiting area in the barber’s shop

 the number of barbers working in the barber’s shop

 the maximum total service time a barber can provide over all their customers (in milliseconds,
same for all barbers,)

 the number of customer generators that send customers to the barber’s shop

 the number of customers each generator will send (same for all generators)
 the total number of customers sent to the barber’s shop is decided by above two

arguments

 the minimum amount of time a barbering service may take (in milliseconds, same for all
generators)

 the maximum amount of time a barbering service may take (in milliseconds, same for all
generators)
 for any particular customer, pick a random number between the minimum and maximum as

the time of the service that the customer requires to have

 the minimum interval between generation of customers (in milliseconds, same for all
generators)

 the maximum interval between generation of customers (in milliseconds, same for all
generators)
 after sending a customer to the barber’s shop, the generator should pause for a random

time between this minimum and maximum before sending the next customer

3. Output Requirements
 The simulation should print out the events that happen in the barber’s shop according to their
order of occurrence. To be specific, the following and only the following events should be reported:

1. A customer starts waiting
2. A customer leaves the barber’s shop immediately
3. A barber starts to serve a customer
4. A barber finishes serving a customer
5. A barber completes his total working time

 Here is a table of the corresponding output format of the above events:

*contents in square brackets are program variables

Event No. Output Format

1 Customer [customer_id] starts waiting at position [position]

2 Customer [customer_id] leaves without service

3 Barber [barber_id] starts serving [customer_id]

4 Barber [barber_id] finishes serving [customer_id]

5 Barber [barber_id] quits

 Also, at the end of simulation (no more eligible events as described above could happen), the
program should print out the following pieces of information:

1. total number of customers sent to the barber’s shop
2. total number of customers that left without having service

326

3. total number of customers that are still waiting in the barber’s shop
4. total number of customers that are served

 Here is a table of corresponding output format of above information:

*contents in square brackets are program variables

Info No. Output Format

1 Total number of customers: [total]

2 Number of customers that left: [left]

3 Number of customers waiting: [wait]

4 Number of customers served: [served]

Here is one sample simulation output from a demo program that describes the events that happened
in the barber’s shop and gathers the final records:

*10 waiting seats, 5 barbers and 30 customers
Customer 29 starts waiting at position 1

Barber 3 starts serving 29

Customer 26 starts waiting at position 1

Barber 4 starts serving 26

Customer 24 starts waiting at position 1

Barber 1 starts serving 24

Customer 20 starts waiting at position 1

Barber 0 starts serving 20

Customer 27 starts waiting at position 1

Barber 2 starts serving 27

Customer 23 starts waiting at position 1

Customer 28 starts waiting at position 2

Customer 25 starts waiting at position 3

Customer 22 starts waiting at position 4

Customer 21 starts waiting at position 5

Customer 14 starts waiting at position 6

Customer 10 starts waiting at position 7

Customer 17 starts waiting at position 8

Customer 13 starts waiting at position 9

Customer 15 starts waiting at position 10

Customer 18 leaves without service

Customer 19 leaves without service

Customer 11 leaves without service

Customer 12 leaves without service

Customer 16 leaves without service

Customer 5 leaves without service

Customer 7 leaves without service

Customer 4 leaves without service

Customer 3 leaves without service

Customer 1 leaves without service

Customer 8 leaves without service

Customer 2 leaves without service

Customer 6 leaves without service

Customer 9 leaves without service

Customer 0 leaves without service

Barber 0 finishes serving 20

Barber 0 starts serving 23

Barber 3 finishes serving 29

Barber 3 starts serving 28

Barber 1 finishes serving 24

Barber 1 starts serving 25

Barber 2 finishes serving 27

Barber 2 starts serving 22

Barber 4 finishes serving 26

Barber 4 starts serving 21

Barber 0 finishes serving 23

Barber 0 starts serving 14

Barber 2 finishes serving 22

Barber 2 starts serving 10

Barber 3 finishes serving 28

327

Barber 3 starts serving 17

Barber 1 finishes serving 25

Barber 1 starts serving 13

Barber 4 finishes serving 21

Barber 4 starts serving 15

Barber 0 finishes serving 14

Barber 2 finishes serving 10

Barber 1 finishes serving 13

Barber 4 finishes serving 15

Barber 3 finishes serving 17

Total number of customer: 30

Number of customer that left: 15

Number of customer waiting: 0

Number of customer served: 15

4. Deliverable Portions
 This lab has three different deliverable portions. You could choose any order to work on these
portions. But you should submit one deliverable portion on each of the three dates specified out in
beginning of this document titled Due Dates.

Portion in Java Threads Model
 One deliverable portion of this lab is to implement the simulation with Java Threads. You may use
the given code skeleton in skeleton/java folder or create your own. If you decide to create your own
program, it should accept setting arguments in the order as described in The Simulation Settings and
produce output as described in Output Requirements.
 The given code skeleton has a full implementation of a Main class and a CustomerGenerator class.
The CustomerGenerator class send customers to the barber shop and the Main class sets up the
simulation with setting arguments described in The Simulation Settings above and finishes with a
simple assertion. The assertion checks whether the total number of customers sent to the barber shop
is equal to the sum of the different customers (served, left without service and those still waiting in the
shop) as recorded by the shop.
 The given code skeleton has a partial implementation of Barber, Customer and Shop classes. To
work with the Main and CustomerGenerator classes, you should not change the number, type or order
of parameters taken by the constructors of these classes. However, you may rename them according to
your preferences. The Barber and Customer classes implement the Runnable interface and you have to
define the corresponding run() methods for them. The shop class records the shared data of the barber
shop and it is a good practice to utilize synchronization mechanisms there. The method isInService() is
used by the Main class to determine the timing of the assertion. It takes no arguments and returns a
Boolean value. Only after the shop is not in service, i.e. all waiting customers are served or all barbers
have quit, will the main function in the Main class evaluate the assertion.
 Note that all source code should be put into a barber package.

Portion in Scala Actors Model
 One deliverable portion of this lab is to implement the simulation with Scala Actors. You may use
the given code skeleton in the skeleton/scala folder or create your own. If you decide to create your
own program, it should accept setting arguments in the order as described in The Simulation Settings
and produce output as described in Output Requirements.
 The given code skeleton has a full implementation of a SleepingBarbers object and
CustomerGenerator class. The SleepingBarbers object sets up the simulation with setting arguments
described in The Simulation Settings above and finishes with a simple assertion. The assertion checks
whether the total number of customers sent to the barber shop is equal to the sum of different

328

customers (served, left without service and those still waiting in shop) as recorded by the shop.
Messages used for assertion (assertReq, requesting assertion data and assertMsg, carry assertion data)
as well as notification (nomore, sends by a generator to indicate that all customers it is supposed to
generate have been all sent to the shop) are also provided.
 The given code skeleton has partial implementations of the Barber, Customer and Shop classes.
To work with the SleepingBarbers object and the CustomerGenerator class, you should not change the
number, type or order of parameters taken by these classes’ declarations. However, you may rename
them according to your preferences. All these class are inherited from the Actor class and you have to
define the corresponding act() methods for them. The shop class implements an isInService() methods
to determine the timing of the assertion. It takes no arguments and returns a Boolean value. Only after
the shop is not in service, i.e. all waiting customers are served or all barbers have quit, will the shop
reply to the SleepingBarbers object with arguments for assertion in the assertMsg message.
 Note that all source code should be put into a barber package.

Portion in Python Coroutine Model
 One deliverable portion of this lab is to implement the simulation with Python Coroutines. You
may use the given code skeleton in the skeleton/python folder or create your own. If you decide to
create your own program, it should accept setting arguments in the order as described in The
Simulation Settings and provide output as described in Output Requirements.
 The given code skeleton has full implementation of a main() function and a customer_generator()
function. The main() function sets up the simulation with setting arguments described in The
Simulation Settings above and finishes with a simple assertion. The assertion checks whether the total
number of customers sent to the barbers shop is equal to the sum of different customers (served, left
without service and those still wait in shop) as recorded by the shop. A global variable
(num_active_generator) used for recording the progress of the customer_generator() function is also
provided (an active customer generator still has customers that have not been sent to the barber shop
yet).
 The given code skeleton has a partial implementation of the shop class and the barber() and
customer() functions. To work with the main() and customer_generator() functions, you should not
change the number or order of parameters taken by barber() and customer() functions. However, you
may rename them according to your preferences. Function barber() and customer() are generator
functions in which you should utilize yield. The shop class records the shared data of the barber shop.
The method is_in_service() defined in the shop class is used by the main() function to determine the
timing of the assertion. It takes no arguments and returns a Boolean value. Only after the shop is not in
service, i.e. all waiting customers have been served or all barbers have quit, will the main() function
evaluate the assertion.

5. Submissions
 This lab contains three deliverable portions (as described in Deliverable Portions above). You
should submit exactly one complete portion on each of the following due date with the order of your
own choice:

Due Date 1: Apr 9th, 2013 (Tuesday) 11:59 pm.
Due Date 2: Apr 16th, 2013 (Tuesday) 11:59 pm.
Due Date 3: Apr 19th, 2013 (Friday) 11:59 pm.

To submit a portion, put all your source code for that portion (do not include compiled binaries

since they are large) into a folder lastname_lab11_X (X should be either java, scala or python that
describes the source code you are submitting) and submit the folder to cs4900a through nike (submit

329

cs4900a lastname_lab11_X)

6. Grading Rubrics
 Each delivery portion will be tested against 10 different combinations of simulation settings
(details of setting arguments are described in 2.) For each of these 10 settings, the outputs will be
checked against the following rubrics:

1. Total number of customers is equal to the specification of setting parameters
2. Total number of customers is equal to the sum of different types of customers (left, wait,

served)
3. Number of different types of customers is equal to the corresponding event outputs (e.g.

number of served customers equals the number of lines printed as “Barber ... finishes serving
...”; number of customers that left equals number of lines printed as “Customer ... leaves
without service”)

4. Event output sequence is reasonable (e.g. start serving happened before finish serving, waiting
happened before start serving)

Any one violation of above rubrics in an output causes deduction of 2 points until the deductions
accumulates to 10, which is the total points for that output.

 So, the total of this lab is:

10 points per running output * 10 running settings per deliverable portion * 3 deliverable portions =
300 points

FIGURE 38 LAB MATERIALS OF CSCI4900 FOR SPRING 2013 STUDY

330

CSCI 4900/6900 Midterm Exam I

Single-Lane Bridge Problem as Shared Memory System

A single-lane bridge is wide enough to permit only a single lane of traffic. That is, the bridge permits

only one-way traffic at any time and cars exit the bridge according to their order of entering the bridge.

To simplify the problem, we will define the cars that move from left to right as red cars and those that

move from right to left as blue cars.

Figure 1 contains the pseudocode implementation of a single-lane bridge simulation as a shared

memory concurrent system. Read the code and answer the following questions based on the above

problem description.

Make use of the sequence diagram templates to help you think about the questions.

1. Consider the following code:

bridge = new Bridge()

redCarA = new RedCar(bridge)

redCarB = new RedCar(bridge)

PARA

 redCarA.run()

 redCarB.run()

END_PARA

Suppose that redCarA has just returned from the redEnter() method on line 9 and redCarB starts its

run() method.

Decide if each of the scenarios below (a-c) could happen immediately after the above. Circle

YES if the sequence is possible; otherwise, circle NO. Then please provide a brief explanation of

your reasoning.

Example:

(a) redCarB calls the redEnter() method, then returns..

 YES NO

 Explanation:

 Since redCarA has already returned from the redEnter() method, it no longer holds the

lock. When redCarB executes the redEnter() method, it could get the lock, pass the conditional

check since redCarA is on the bridge and then returns from redEnter() method.

 (a) redCarB calls the redEnter() method, then blocks on the EXC_ACC marker on line 10.

 YES NO

331

 Explanation:

(b) redCarB calls the redEnter() method, returns, then calls redExit() on line 19, then returns also.

 YES NO

 Explanation:

(c) redCarB calls redEnter() but a context switch occurs before the call returns, and redCarA calls

redExit() and blocks on EXC_ACC marker on line 20.

 YES NO

 Explanation:

2. Consider the following code.

bridge = new Bridge()

redCarA = new RedCar(bridge)

redCarB = new RedCar(bridge)

PARA

 redCarA.run()

 redCarB.run()

END_PARA

Now, suppose redCarA has called the redEnter() method on line 9 but has not returned and redCarB

starts its run() method.

Decide if each of the scenarios below (d-g) could happen immediately after the above. Circle

YES if the sequence is possible; otherwise, circle NO. Then please provide a brief explanation of

your reasoning.

(d) redCarB calls redEnter(), then returns.

 YES NO

 Explanation:

(e) redCarB calls redEnter(), then blocks on the EXC_ACC marker on line 10.

 YES NO

 Explanation:

(f) redCarB calls redEnter(), returns, and then calls redExit() on line 19, and also returns.

 YES NO

332

 Explanation:

(g) redCarB calls redEnter() and a context switch occurs. Then redCarA blocks on EXC_ACC marker

on line 10.

 YES NO

 Explanation:

3. Consider the following code:

bridge = new Bridge()

redCarA = new RedCar(bridge)

redCarB = new RedCar(bridge)

blueCarA = new BlueCar(bridge)

PARA

 redCarA.run()

 redCarB.run()

 blueCarA.run()

END_PARA

Suppose redCarA has just returned from the redEnter() method on line 9. blueCarA starts its run()

method, calls blueEnter() on line 29 and has not yet returned.

Decide if each of the scenarios below (a-c) could happen immediately after the above. Circle

YES if the sequence is possible; otherwise, circle NO. Then please provide a brief explanation of

your reasoning.

(a) The blueEnter() method returns, and blueCarA calls the blueExit() method on line 39.

 YES NO

 Explanation:

(b) redCarB starts its run() method, calls the redEnter() method on line 9 and then returns, then calls

the redExit() method on line 19, and blocks on the EXC_ACC marker on line 20.

 YES NO

 Explanation:

(c) redCarB starts its run() method, calls the redEnter() method on line 9 and then blocks on

EXC_ACC marker on line 10.

 YES NO

 Explanation:

4. Consider the following code:

333

bridge = new Bridge()

redCarA = new RedCar(bridge)

redCarB = new RedCar(bridge)

blueCarA = new BlueCar(bridge)

PARA

 redCarA.run()

 redCarB.run()

 blueCarA.run()

END_PARA

Suppose redCarA and redCarB have both returned from the redEnter() method on line 9. Then

blueCarA starts its run() method, calls the blueEnter() method on line 29 and starts execution of the

WAIT statement on line 33.

Decide if each of the scenarios below (e-j) could happen immediately after the above. Circle YES

if the sequence is possible; otherwise, circle NO. Then please provide a brief explanation of your

reasoning.

(e) redCarB calls the redExit() method on line 19 and then returns.

 YES NO

 Explanation:

(f) redCarB calls the redExit() method on line 19 and then blocks on the EXC_ACC marker on line 20.

 YES NO

 Explanation:

(g) redCarA calls the redExit() method on line 19 and starts execution of the WAIT statement on line

22.

 YES NO

 Explanation:

(h) redCarA calls the redExit() method on line 19 and returns. blueCarA returns from the WAIT

statement on line 33, and returns from the blueEnter() method on line 29.

 YES NO

 Explanation:

(i) redCarA calls the redExit() method on line 19 and returns. redCarB calls the redExit() method on

line 19 and returns. blueCarA returns from the WAIT statement on line 33 and then returns from

the blueEnter() method on line 29.

334

 YES NO

 Explanation:

(j) redCarB calls the redExit() method on line 19 but has not yet returned. blueCarA finishes

execution of the WAIT statement on line 33, but blocks on EXC_ACC marker on line 31.

 YES NO

 Explanation:

5. Consider the following code:

bridge = new Bridge()

redCarA = new RedCar(bridge)

redCarB = new RedCar(bridge)

blueCarA = new BlueCar(bridge)

PARA

 redCarA.run()

 redCarB.run()

 blueCarA.run()

END_PARA

Suppose redCarA has called the redEnter() method on line 9 but has not returned. Then redCarB

starts its run() method and called the redEnter() method but also has not returned.

Decide if each of the scenarios below (k-t) could happen immediately after the above. Circle

YES if the sequence is possible; otherwise, circle NO. Then please provide a brief explanation of

your reasoning.

(k) redCarB returns from the redEnter() method, then calls the redExit() method on line 19 and

returns.

 YES NO

 Explanation:

(l) redCarB returns from the redEnter() method, then calls the redExit() method on line 19 and

starts execution of WAIT statement on line 22.

 YES NO

 Explanation:

(m)redCarB returns from the redEnter() method, then calls redExit() method on line 19 and blocks on

the EXC_ACC marker on line 20.

 YES NO

335

 Explanation:

(n) redCarA returns from the redEnter() method, then calls the redExit() method on line 19 and blocks

on the EXC_ACC marker on line 20.

 YES NO

 Explanation:

(o) redCarA returns from the redEnter() method, then calls the redExit() method on line 19 and starts

execution of WAIT statement on line 22.

 YES NO

 Explanation:

(p) blueCarA starts its run() method, calls the blueEnter() method and returns.

 YES NO

 Explanation:

(q) blueCarA starts its run() method, calls the blueEnter() method and blocks on the EXC_ACC

marker on line 30.

 YES NO

 Explanation:

(r) blueCarA starts its run() method, calls the blueEnter() method on line 29, and then starts

execution of WAIT statement on line 33.

 YES NO

 Explanation:

(s) blueCarA starts its run() method, calls the blueEnter() method on line 29, returns, and then calls

the blueExit() method on line 39, and blocks on the EXC_ACC marker on line 40.

 YES NO

 Explanation:

(t) blueCarA starts its run() method, calls the blueEnter() method on line 29, returns, and then calls

blueExit() method on line 39, and start execution of WAIT statement on line 43.

 YES NO

 Explanation:

336

6. Consider following code:

bridge = new Bridge()

redCarA = new RedCar(bridge)

redCarB = new RedCar(bridge)

blueCarA = new BlueCar(bridge)

PARA

 redCarA.run()

 redCarB.run()

 blueCarA.run()

END_PARA

Which of the following outputs are possible? Circle YES if the output is possible; otherwise,

circle NO and indicate the impossible output line with an arrow on its right.

Example:

 (a) YES NO

 red 2

 red 1

(a) YES NO

 red 1

 red 2

 red 3

(b) YES NO

 red 1

 blue 1

 red 2

(c) YES NO

 red 1

 blue 2

 red 2

(d) YES NO

 blue 1

 blue 2

 red 1

337

(e) YES NO

 red 1

 blue 1

 blue 2

 red 2

(f) YES NO

 blue 1

 blue 2

 red 1

 red 2

 blue 3

7. Use pseudocode to modify the definition of the Bridge class such that red and blue cars may use the

bridge in turns. Therefore, only the following two output sequences are possible.

Output possibility 1:

red 1

blue 1

red 2

blue 2

red 3

blue 3

red 4

...

Output possibility 2:

blue 1

red 1

blue 2

red 2

blue 3

red 3

blue 4

...

Please write down your new definition of Bridge class in pseudocode. (Hint: the minimum

modification only needs one more class variable and the modification of redEnter() and blueEnter()

methods.) You can make the modification directly on Figure 1.

CSCI 4900/6900 Midterm Exam II

Single-Lane Bridge Problem as Message Passing System

A single-lane bridge is wide enough to permit only a single lane of traffic. That is, the bridge permits

only one-way traffic at any time and cars exit the bridge according to their order of entering the bridge.

To simplify the problem, we will define the cars that move from left to right as red cars and those that

move from right to left as blue cars.

338

Figure 1 contains the pseudocode implementation of a single-lane bridge simulation as a message

passing concurrent system. Read the code and answer the following questions based on the above

problem description.

Make use of the sequence diagram templates to help you think about the questions.

1. Consider the following code:

bridge = new Bridge()

redCarA = new RedCar(bridge)

redCarB = new RedCar(bridge)

PARA

bridge.start()

redCarA.start()

redCarB.start()

END_PARA

Suppose that redCarA has just finished execution of line 56 and redCarB starts its start() method.

Decide if each of the scenarios below (a-c) could happen immediately after the above. Circle

YES if the sequence is possible; otherwise, circle NO. Then please provide a brief explanation of

your reasoning.

Example:

(a) redCarB sends a redEnter message and receives a succeedEnter message.

 YES NO

 Explanation:

 Since redCarA has already received the succeedEnter message but not yet sent the redExit

message, when the redEnter message sent by redCarB is received by bridge, the bridge will pass

the conditional check without any blue cars and redCarB may receive a succeedExit message to

enter the bridge.

 (a) redCarB sends a redEnter message and then waits to receive a message of any type.

 YES NO

 Explanation:

(b) redCarB sends a redEnter message, receives a succeedEnter message, sends a redExit message,

and receives a succeedExit message.

 YES NO

 Explanation:

339

(c) redCarB sends a redEnter message, but before it receives a succeedEnter message, redCarA sends

a redExit message which is received by the bridge.

 YES NO

 Explanation:

2. Consider the following code:

bridge = new Bridge()

redCarA = new RedCar(bridge)

redCarB = new RedCar(bridge)

PARA

bridge.start()

redCarA.start()

redCarB.start()

END_PARA

Suppose redCarA has sent a redEnter message but has not received any messages yet. redCarB calls

its start() method at this time.

Decide if each of the scenarios below (d-g) could happen immediately after the above. Circle

YES if the sequence is possible; otherwise, circle NO. Then please provide a brief explanation of

your reasoning.

(d) redCarB sends redEnter message and receives succeedEnter message.

 YES NO

 Explanation:

(e) The bridge receives the redEnter message sent by redCarA. redCarB sends a redEnter message.,

then waits to receive a message of any type.

 YES NO

 Explanation:

(f) redCarB sends redEnter message, receives succeedEnter message, sends redExit message and also

receives succeedExit message.

 YES NO

 Explanation:

(g) redCarB sends redEnter message, but before it receives succeedEnter message, redCarA receives

MESSAGE.succeedEnter(2).

 YES NO

340

 Explanation:

3. Consider the following code:

bridge = new Bridge()

redCarA = new RedCar(bridge)

redCarB = new RedCar(bridge)

blueCarA = new BlueCar(bridge)

PARA

 bridge.start()

 redCarA.start()

 redCarB.start()

 blueCarA.start()

END_PARA

Suppose redCarA has sent a redEnter message and received MESSAGE.succeedEnter(1).

blueCarA starts its start() method, and sends a blueEnter message but has not received any messages.

Decide if each of the scenarios below (a-c) could happen immediately after the above. Circle

YES if the sequence is possible; otherwise, circle NO. Then please provide a brief explanation of

your reasoning.

(a) blueCarA receives a succeedEnter message and then sends blueExit message.

 YES NO

 Explanation:

(b) redCarB starts its start() method, sends redEnter message, receives succeedEnter message, then

sends redExit message and then blueCarA receives a failEnter message.

 YES NO

 Explanation:

(c) redCarB calls its start() method, sends redEnter message. The bridge receives the redEnter

message sent by redCarB and then the blueEnter message.

 YES NO

 Explanation:

4. Consider following code:

bridge = new Bridge()

redCarA = new RedCar(bridge)

redCarB = new RedCar(bridge)

blueCarA = new BlueCar(bridge)

341

PARA

 bridge.start()

 redCarA.start()

 redCarB.start()

 blueCarA.start()

END_PARA

Suppose redCarA and redCarB have both sent redEnter messages and received succeedEnter

messages. Then blueCarA calls its start() method, sends blueEnter message.

Decide if each of the scenarios below (e-j) could happen immediately after the above. Circle YES

if the sequence is possible; otherwise, circle NO. Then please provide a brief explanation of your

reasoning.

(e) redCarB sends redExit message and receives succeedExit message.

 YES NO

 Explanation:

(f) redCarB sends redExit message. The bridge sends a failEnter message to blueCarA and then

receives the redExit message from redCarB.

 YES NO

 Explanation:

(g) redCarB sends redExit message and receives failExit message.

 YES NO

 Explanation:

(h) redCarA sends redExit message and receives succeedExit message. blueCarA receives failEnter

message, sends blueEnter message again, and receives succeedEnter message.

 YES NO

 Explanation:

(i) redCarA sends redExit message and receives succeedExit message. redCarB sends redExit

message and receives succeedExit message. blueCarA receives failEnter messages, sends blueEnter

message again, and receives successEnter message.

 YES NO

 Explanations:

(j) redCarB sends redExit message. The bridge receives the redExit message and then receives the

blueEnter message.

342

 YES NO

 Explanations:

5. Consider following code:

bridge = new Bridge()

redCarA = new RedCar(bridge)

redCarB = new RedCar(bridge)

blueCarA = new BlueCar(bridge)

PARA

 bridge.start()

 redCarA.start()

 redCarB.start()

 blueCarA.start()

END_PARA

Suppose redCarA has sent redEnter message but has not received any message yet. Then redCarB

starts its start() method, sends redEnter message but does not receive any message yet.

Decide if each of the scenarios below (k-t) could happen immediately after the above. Circle

YES if the sequence is possible; otherwise, circle NO. Then please provide a brief explanation of

your reasoning.

(k) redCarB receives succeedEnter message, then sends redExit message and receives succeedExit

message.

 YES NO

 Explanation:

(l) redCarB receives succeedEnter message, then sends redExit message and receives failExit

message.

 YES NO

 Explanation:

(m)redCarB receives succeedEnter message, then sends redExit message and receives

MESSAGE.succeedExit(2).

 YES NO

 Explanation:

(n) redCarA receives succeedEnter message, then sends redExit message and receives

MESSAGE.succeedExit(2).

 YES NO

343

 Explanation:

(o) redCarA receives succeedEnter message, then sends redExit message and receives failExit

message.

 YES NO

 Explanation:

(p) blueCarA calls its start() method, sends blueEnter message and receives succeedEnter message.

 YES NO

 Explanation:

(q) blueCarA calls its start() method, sends blueEnter message. The bridge receives blueEnter message

first and then the redEnter message sent by redCarA.

 YES NO

 Explanation:

(r) blueCarA starts its start() method, sends blueEnter message and receives failEnter message.

 YES NO

 Explanation:

(s) blueCarA starts its start() method, sends blueEnter message, receives succeedEnter message, and

then sends blueExit message. The bridge send failEnter to both redCarA and redCarB and then

receives the blueExit message.

 YES NO

 Explanation:

(t) blueCarA starts its start() method, sends blueEnter message, receives succeedEnter message, and

then sends blueExit message, and receives failExit message.

 YES NO

 Explanation:

6. Consider following code:

bridge = new Bridge()

redCarA = new RedCar(bridge)

redCarB = new RedCar(bridge)

blueCarA = new BlueCar(bridge)

PARA

344

 bridge.start()

 redCarA.start()

 redCarB.start()

 blueCarA.start()

END_PARA

Which of the following outputs are possible? Circle YES if the output is possible; otherwise,

circle NO and indicate the impossible output line with an arrow on its right.

Example:

 (a) YES NO

 red 2

 red 1

(a) YES NO

 red 1

 red 2

 red 3

(b) YES NO

 red 1

 blue 1

 red 2

(c) YES NO

 red 1

 blue 2

 red 2

(d) YES NO

 blue 1

 blue 2

 red 1

(e) YES NO

 red 1

 blue 1

 blue 2

 red 2

(f) YES NO

345

 blue 1

 blue 2

 red 1

 red 2

 blue 3

7. Modify the definition of Bridge class with pseudocode such that red and blue cars could use the

bridge in turns. Therefore, only the following two output sequences are possible.

Output possibility 1:

red 1

blue 1

red 2

blue 2

red 3

blue 3

red 4

...

Output possibility 2:

blue 1

red 1

blue 2

red 2

blue 3

red 3

blue 4

...

Please write down your new definition of Bridge class in pseudocode. (Hint: the minimum

modification only needs one more class variable and the modification of actions taken on receiving

redEnter and blueEnter messages.) You can make the modifications directly on Figure 1.

FIGURE 39 MIDTERM EXAM OF CSCI4900 FOR SPRING 2013 STUDY

346

Scenario
FBD (fictional book dealer) is the largest book vendor company in the (fictional) world. The company
works with two kinds of clients. One is book publisher, who provides book to the company. The other
is book retailer, who requests book from the company. To better meet their increasing number of
clients (both book publisher and book retailer) and business, the company is eager to have a new
generation of warehouse system for the automated management of their world wide book inventory.
After a long term discussion and consultant with different departments in the company, the following
(fictionally simplified) system requirements are discerned:
1. The system should process two types of jobs, shipping and restocking. It has a limitation on the

number of jobs of each type being processed at any moment so that it will not use up the
resource of the computing facility it resides on. The system should contain at least one book
inventory to manage storage.

2. Each job contains multiple works and a work is one increment or decrement of a certain book. A
shipping job contains only work of decreasing a book’s stock amount and a restocking job
contains only work of increasing a book’s stock amount. Both shipping and restocking jobs should
be viewed as transactions, which means that a job is fulfilled either completely or not at all. When
the stock of any one kind of book in the job is insufficient, a shipping job should automatically
retry that decreasing work. All increasing work in restocking job, however, should always be
fulfilled on the first attempt.

3. To maximize the throughput (number of jobs being processed in a certain amount of time), we
would like the jobs to be processed concurrently in the system.

4. Client programs are not part of the system development goal. But to test the system, mock client
programs are created to guarantee that:

 Multiple clients (publishers and retailers) will be able to connect concurrently to the system
and request their jobs to be processed.

 The clients could keep making job requirements without waiting for the previous job to
complete.

 If the system reaches its limitation on the number of jobs of a certain type, the request of
processing that type of job by a client at the moment will fail (and the client will be
responsible to re-request that job to be processed later.)

Models
Above system requirements are finally being analyzed by IT stuff members of the company and they
came up with the following designs in three different models (shared memory, message passing, and
coroutines). The behavior of the system is illustrated with UML sequence diagram below. All designs
use the same concept of runnable jobs and support automatic retries of failed job.
Shared Memory:

347

Message Passing:

Coroutines:

348

Mockups
To further evaluate and decide which model to use, the IT stuff members in the company want to
develop mockups first. These mockup systems eliminate all tedious utilities and settings of the real
problem, but focus on the core functionalities. The mockups have these further simplified
assumptions:
1. A book in the mockup system is only differentiated from other book by its name. Further, only 5

books are defined in the mockup system. They are:

 Gone with the wind

 How to kill a mock bird

 Programming Concurrency

 Operating Systems

 Introductory Robotics
2. A client in the mockup system makes requests of both shipping and restocking jobs randomly and

alternatively.
3. The mockup system only contains one simplest book inventory that records the amount of

different books. This inventory supports both shipping and restocking of a certain kind of book as
defined in the mockup systems.

The input of mockup systems are four program arguments:
1. num_of_clients: the number of clients that concurrently making requests to the system
2. client_life_time: the milliseconds for a client to live and make requests to the system (so that the

simulation ends when all clients quit)
3. max_num_of_job_for_each_type: the maximum number of jobs of each type running in the

system at any time
4. max_job_length: the maximum number of works contained in a job
The output of mockup systems are print outs of critical events. Two events are identified by IT stuff
members in the company:
1. A work is added to a job in client program

 Output Format:
o A [job type] work([book name], [amount to change]) will be performed

by job id = [job id]

 Example Output:

349

o A shipping work(Introductory Robotics , 11) will be performed by job

id = 4378

2. A work is performed by a job that modifies inventory records

 Output Format:
o A [job type] work([book name], [old quantity] -> [new quantity]) is

performed by job id = [job id] and seqNum = [sequence number]

 Example Output
o A restocking work(Operating Systems , 1103 -> 1112) is performed by

job id = 4356 and seqNum = 1

A sequence number (seqNum) is the number assigned to a job before it starts in the system. This
number indicates how many other jobs (of same type) are running when it starts. Since the system
has a limitation on the total number of jobs running simultaneously, this sequence number should
never reaches or exceeds the limitation.

Testing
A simple testing script is written before developing the mockups. This script checks against mockup
outputs for following violations:
1. Work execution violation

A job execution violation is discerned as the appearance of a work performed before it is added as
shown in following example:
no output reading: A restocking work(Gone with the wind, 17) will be performed

by job id = 246

A restocking work(Gone with the wind , 838 -> 855) is performed by job id = 246

and seqNum = 1

=>

unscheduled restocking work with job id = 2466 (Gone with the wind, 838 -> 855)

2. Job sequence number violation
A job sequence number violation is discerned as the appearance of a sequence number that is
equal to or greater than the maximum number of jobs allowed as shown in following example:
(mockup setting specifies maximum number of job as 3)

A restocking work(Gone with the wind , 838 -> 855) is performed by job id = 246

and seqNum = 3

=>

invalid job sequence number 3 that equals or exceeds maximum 3

3. Negative book quantity violation
A negative book quantity violation is discerned as a negative quantity of a book in a work
performed on it as shown in following example:
A shipping work(Operating Systems , -2 -> 7) is performed by job id = 121 and

seqNum = 1

=>

negative stock quantity -2 -> 7

4. Quantity update discrepancy violation
A quantity update discrepancy violation is discerned as an inconsistency of quantity of a book
between two continuous works performed on it as shown in following example:
A restocking work(Operating Systems , 1103 -> 1112) is performed by job id =

4356 and seqNum = 1

...works on other books...

A shipping work(Operating Systems , 231 -> 220) is performed by job id = 4378

and seqNum = 3

=>
quantity update discrepancy: original amount of "Operating System" is 1112 not

231
5. Concurrency warning violation

A concurrency warning violation is discerned as low throughput of the system as shown in
following example:

350

(only three jobs are performed according to print outs)

=>

concurrency warning: total number of jobs (3) gets run in server is small.

This could probably due to that the mock client programs not generating many jobs or that
potential deadlocks exist in the system.

The Contest
The IT stuff members in the company programmed out three mockup systems in Java, Scala and
Python respectively. However, after testing, they see various violations reported for all three models
and it becomes a headache for them.
So the fictional company decided to give some real dollars to programmers for the debugging work.
The first who successfully debug one mockup (either in Java, Scala or Python) will get $20 and a total
of $60 is there for you to win.
The buggy codes are available online through course calendar and ELC of UGA’s 4900 Programming
with Concurrency class. Two utility files are also available. A makefile can be used to compile and run
three mockup systems towards different combination of input settings. A script (book_checker.pyc)
can be used to check program outputs.
Following rules of the contest must be followed:
1. For each model, put all codes in a folder lastname_contest_model and submit it to cs4900a

through nike. (model should be either java, scala or python)
2. Only last submitted version will be reviewed in the contest. So do not take chance and spam the

nike server. Only submit a version when you are confident.
3. The decision of speed is based on timestamp of a submitted folder:

 lastname_contest_java_Wed_Apr_24_23_34_26_2013 => 04/24/2013, 23:34:26 Mr.
lastname submit code in java

 If two submissions have exactly the same timestamp and both of them successfully find and
correct all bugs, the two participants will share the money award.

You could refer to any resources (internet, book, etc) during the contest.

FIGURE 40 DEBUGGING CONTEST OF CSCI4900 FOR SPRING 2013 STUDY

351

CSCI 4900 Final Specification

Final Exam
Single Lane Bridge Simulation

Exam Policy
 This is an open-book, open-resource exam. You may access the Internet (with the exception of
solutions to the single lane bridge problem), your textbooks or any other resources you would like to
use. No requests for outside assistance are permitted (i.e., no phone calls, no emails, no message
board posts, etc.). The total exam time is 3 hours. Submit by the end of the 3 hour period; o late
submissions will be graded. You may have multiple submissions to the department server and
assignment dropbox, but only the last submission will be graded. Make sure you save your work
frequently.

Exam Description
1. The Simulation Problem – Single Lane Bridge

A single-lane bridge is wide enough to permit only a single lane of traffic. That is, the bridge
permits only one-way traffic at any time and cars exit the bridge according to the order in which they
enter the bridge. To simplify the problem, we will define the cars that move from left to right as red
cars and those that move from right to left as blue cars. The bridge should guarantee safety and
fairness, i.e. no crashes on the bridge and cars of both colors have a roughly equal chance to use the
bridge.

Here is a graphical illustration of the single lane bridge problem (click to view the applet online):

Here is a list of key points in the simulation:

 Cars of different colors cannot exist on the bridge at same time

 A car that enters the bridge later cannot exit before cars that entered the bridge earlier

 Cars from both directions should have a roughly equal chance to use the bridge

2. Simulation Settings
 To set up a simulation, the following arguments should be specified:

http://www.cs.uga.edu/~zhen/applets/test.html

352

 the maximum usage difference of the bridge, i.e. the maximum allowed difference in the
number of cars that have entered bridge from each side, at any time.
 For example, if this number is 3, at any time, the total number of red cars that have

entered bridge should not be more than 3 more than the total number of blue cars that
have entered bridge and vice versa

 the number of car generators for each direction that send (red/blue) cars to the single-lane
bridge

 the number of cars each generator will send (same for all generators)
 the total number of each type of cars sent to the single-lane bridge is the same and is

decided by the above two arguments

 the minimum interval between generation of cars (in milliseconds, same for all generators)

 the maximum interval between generation of cars (in milliseconds, same for all generators)
 after sending a car to the single-lane bridge, the generator should pause for a random

time between this minimum and maximum before sending the next car

 status check frequency, i.e. the number of reported events in between each status check
 For example, if this number is 10, after reporting 10 events, a status check should be

executed (event reporting and fairness check are addressed in detail in Output
Requirements)

3. Output Requirements
 The simulation should print out the events that happen at the bridge according to their order of
occurrence. To be specific, the following and only the following events should be reported: (no
graphical interfaces, simply command-line outputs)

6. A car arrives at the bridge
7. A car enters the bridge
8. A car exits the bridge

 Here is a table of the corresponding output format of the above events:
*contents in square brackets are program variables
*a car’s id is its order among same color cars that arrive at bridge

Event No. Output Format

1 [car_color] car [car_id] arrives at waiting position

[position]

2 [car_color] car [car_id] enters bridge

3 [car_color] car [car_id] exits bridge

 Also, the program should do a status check (printing out the following information) at the
specified frequency (details in Simulation Settings):

5. number of cars of each color that have used the bridge
6. number of cars of each color that are on the bridge

 Here is a table with the corresponding output format of the above information:
*contents in square brackets are program variables

353

Info No. Output Format

1 Status Check of Usage: [num_red_cars] [num_blue_cars]

2 Status Check of Bridge: [num_red_cars] [num_blue_cars]

Here is one sample simulation output from a demo program that describes the events that happened
at the bridge and with status checks:
*maximum usage difference = 3, 10 cars of each color, status check frequency = 10
Red car 1 arrives at waiting position 1

Red car 2 arrives at waiting position 2

Red car 3 arrives at waiting position 3

Blue car 1 arrives at waiting position 1

Blue car 1 enters bridge

Blue car 2 arrives at waiting position 1

Blue car 2 enters bridge

Red car 4 arrives at waiting position 4

Blue car 3 arrives at waiting position 1

Blue car 3 enters bridge

Status Check of Usage: 0 3

Status Check of Bridge: 0 3

Red car 5 arrives at waiting position 5

Blue car 4 arrives at waiting position 1

Red car 6 arrives at waiting position 6

Red car 7 arrives at waiting position 7

Red car 8 arrives at waiting position 8

Blue car 5 arrives at waiting position 2

Blue car 6 arrives at waiting position 3

Red car 9 arrives at waiting position 9

Red car 10 arrives at waiting position 10

Blue car 7 arrives at waiting position 4

Status Check of Usage: 0 3

Status Check of Bridge: 0 3

End Status Check

Blue car 8 arrives at waiting position 5

Blue car 1 exits bridge

Blue car 2 exits bridge

Blue car 3 exits bridge

Red car 1 enters bridge

Red car 2 enters bridge

Red car 3 enters bridge

Red car 4 enters bridge

Red car 5 enters bridge

Red car 6 enters bridge

Status Check of Usage: 6 3

Status Check of Bridge: 6 0

Red car 1 exits bridge

Red car 2 exits bridge

Red car 3 exits bridge

Red car 4 exits bridge

Red car 5 exits bridge

Red car 6 exits bridge

Blue car 4 enters bridge

Blue car 5 enters bridge

Blue car 6 enters bridge

Blue car 7 enters bridge

Status Check of Usage: 6 7

Status Check of Bridge: 0 4

Blue car 8 enters bridge

Blue car 4 exits bridge

Blue car 5 exits bridge

Blue car 6 exits bridge

Blue car 7 exits bridge

Blue car 8 exits bridge

Blue car 9 arrives at waiting position 1

Blue car 9 enters bridge

Blue car 9 exits bridge

Red car 7 enters bridge

Status Check of Usage: 7 9

354

Status Check of Bridge: 1 0

Red car 8 enters bridge

Red car 9 enters bridge

Red car 10 enters bridge

Red car 7 exits bridge

Red car 8 exits bridge

Red car 9 exits bridge

Red car 10 exits bridge

Blue car 10 arrives at waiting position 1

Blue car 10 enters bridge

Blue car 10 exits bridge

Status Check of Usage: 10 10

Status Check of Bridge: 0 0

4. Deliverables You should choose one of the three models described below to implement and
submit by the en d of the exam period. If you have time, you may implement and submit a second
model (or even a third). In this case we’ll grade both (or all three) and use the higher (highest) grade.

Java Threads Model
 One choice is to implement the simulation with Java Threads. You may use the given code
skeleton in the skeleton/java folder or create your own. If you decide to create your own program, it
should accept setting arguments in the order described in Simulation Settings and produce output as
described in Output Requirements.
 The given code skeleton has a full implementation of a Main class, a RedCarGenerator and a
BlueCarGenerator class. The RedCarGenerator class and the BlueCarGenerator class send red cars
and blue cars to the single-lane bridge and the Main class sets up the simulation with setting
arguments described in Simulation Settings above and terminates the whole program when all work is
done.
 The given code skeleton has a partial implementation of the Bridge, RedCar and BlueCar classes.
To work with the Main, RedCarGenerator and BlueCarGenerator classes, you should not change the
number, type or order of parameters taken by the constructors of these classes. However, you may
rename them according to your preference. The RedCar and BlueCar classes implement the Runnable
interface and you have to define the corresponding run() methods for them. The Bridge class records
the shared data of the single-lane bridge and it is a good practice to utilize synchronization
mechanisms there. The synchronized method finish() is used by the main thread to notify the bridge
that all cars have been sent. The synchronized method allExit(int total) is used by the main thread to
predict whether all car threads have finished their executions so that the program only exits after all
work has been done. The parameter total it is passed is of int type which indicates the total number of
cars from each side (i.e. the product of program setting parameter number of generators of each color
car and number of cars each generator send to bridge). The private method checkStatus() may be
used by the Bridge class to determine the timing of printing status information.
 Note that all source code should be put into a bridge package.

Scala Actors Model
 Another choice is to implement the simulation with Scala Actors. You may use the given code
skeleton in the skeleton/scala folder or create your own. If you decide to create your own program, it
should accept setting arguments in the order described in Simulation Settings and produce output as
described in Output Requirements.
 The given code skeleton has a full implementation of a SingleLaneBridge object, a
RedCarGenerator and a BlueCarGenerator class. The RedCarGenerator class and BlueCarGenerator

355

class send red cars and blue cars to the single-lane bridge and the SingleLaneBridge object sets up the
simulation with setting arguments described in Simulation Settings above and terminates the whole
program when all work is done. Messages used to determine the status of actors (finish, message
sends by main() to notify all generators have finished; done, message sends by bridge actor to
indicate all work is done) as well as notification (nomore, message sends by a generator to indicate
that all cars it is supposed to generate have been sent to the bridge) are also provided.
 The given code skeleton has a partial implementation of the Bridge, RedCar and BlueCar classes.
To work with the SingleLaneBridge object, RedCarGenerator and BlueCarGenerator classes, you
should not change the number, type or order of parameters taken by the constructors of these
classes. However, you may rename them according to your preference. All these class are inherited
from the Actor class and you have to define the corresponding act() methods for them. The Bridge
class implements an allExit(total:Int) method to determine the timing of notifying program exit. The
parameter total it is passed is of type Int, which indicates the total number of cars from each side (i.e.
the product of program setting parameter number of generators of each color car and number of cars
each generator send to bridge). It takes no arguments and returns a Boolean value. Only after the
bridge has all work done, i.e. all cars have used the bridge and exited, will the bridge reply to the
SingleLaneBridge object with a done message. The private method checkStatus() may be used by the
Bridge class to determine the timing of printing status information.
 Note that all source code should be put into a bridge package.

Python Coroutine Model
 A third choice is to implement the simulation with Python Coroutines. You may use the given
code skeleton in the skeleton/python folder or create your own. If you decide to create your own
program, it should accept setting arguments in the order described in The Simulation Settings and
provide output as described in Output Requirements.
 The given code skeleton has full implementations of a main() function and red_car_generator()
and blue_car_generator() functions. The main() function sets up the simulation with setting
arguments described in The Simulation Settings above and terminates the whole program when all
work is done. A global variable (num_active_generator) used for recording the progress of the
red_car_generator() and blue_car_generator() functions is also provided (an active car generator still
has cars that have not been sent to the bridge yet).
 The given code skeleton has a partial implementation of the bridge class and the red_car() and
blue_car() functions. To work with the main(), red_car_generator() and blue_car_generator()
functions, you should not change the number or order of parameters taken by red_car() and
blue_car() functions. However, you may rename them according to your preference. Functions
red_car() and blue_car() are generator functions in which you should utilize yield. The bridge class
records the shared data of the single-lane bridge. The method finish() is used by the main() function
to notify the bridge that all cars have been sent. The method allExit(total) is used by the main()
function to predict whether all cars have finished their executions so that the program only exits after
all work is done. The parameter total it passed in indicates the total number of cars from each side
(i.e. the product of program setting parameter number of generators of each color car and number of
cars each generator send to bridge). The method checkStatus() may be used by the Bridge class to
determine the timing of printing status information.

5. Submissions
 This test contains three potential deliverables, as described above. You must submit one; you

may submit solutions for additional models. For each model solution, put all your source code for that
portion (do not include compiled binaries since they are large) into a folder lastname_final_X (X

356

should be either java, scala or python that describes the source code you are submitting) and submit
the folder on nike (submit cs4900a lastname_final_X).

6. Grading
 Each submission will be tested against 20 different combinations of simulation settings (details of
setting arguments are described in The Simulation Settings). For each of these 20 settings, the outputs
will be checked against the following rubrics:

5. In all status checks, the difference between the number of red cars and number of blue cars
that have entered bridge does not exceed the set maximum

6. In all status checks, no more than one type of car is occupying the bridge
7. The status check output frequency is correct
8. Event output sequence is reasonable (e.g. entering happened before exiting, car that enters

first exits first)
9. The total number of cars exited is equal to the specification of setting parameters

Any one violation of the above rubrics in an output causes the deduction of 1 point until the
deductions accumulates to 5, which is the total points for that output. The total of this test is:

FIGURE 41 FINAL EXAM OF CSCI4900 FOR SPRING 2013 STUDY

357

package bridge;

public class Bridge {

 private boolean blueTurn, fin;

 private int redEntered, redExited, blueEntered, blueExited, redWaited,

blueWaited;

 private int useDiff, checkFreq, eventNumSinceLastCheck;

 public Bridge(int useDiff, int checkFreq) {

 blueTurn = true;

 fin = false;

 redEntered = redExited = blueEntered = blueExited = redWaited = blueWaited =

0;

 this.useDiff = useDiff;

 this.checkFreq = checkFreq;

 eventNumSinceLastCheck = 0;

 }

 public synchronized boolean isAllExit(int total) {

 fin = true;

 notifyAll();

 return redWaited == 0 && blueWaited == 0 &&

 (redEntered == total) && (redExited == total) &&

 (blueEntered == total) && (blueExited == total);

 }

 private synchronized void checkStatus() {

 if ((++eventNumSinceLastCheck) >= checkFreq) {

 System.out.println("Status Check of Usage: " + redEntered + " " +

blueEntered);

 System.out.println("Status Check of Bridge: " + (redEntered-redExited) +

" " + (blueEntered-blueExited));

 eventNumSinceLastCheck = 0;

 }

 }

 private synchronized void shiftTurn() {

 if (blueEntered - redEntered >= useDiff) blueTurn = false;

 if (redEntered - blueEntered >= useDiff) blueTurn = true;

 }

 public synchronized int redEnter() throws InterruptedException {

 ++redWaited;

 System.out.println("Red car " + (redEntered+redWaited) + " arrives at

waiting position " + redWaited);

 checkStatus();

 while (blueEntered != blueExited || ((!fin || blueWaited != 0) && blueTurn))

wait();

 --redWaited;

 ++redEntered;

 shiftTurn();

 System.out.println("Red car " + redEntered + " enters bridge");

 checkStatus();

 return redEntered;

 }

 public synchronized void redExit(int order) throws InterruptedException {

 while (order != redExited + 1) wait();

 ++redExited;

 System.out.println("Red car " + order + " exits bridge");

 checkStatus();

358

 notifyAll();

 }

 public synchronized int blueEnter() throws InterruptedException {

 ++blueWaited;

 System.out.println("Blue car " + (blueEntered+blueWaited) + " arrives at

waiting position " + blueWaited);

 checkStatus();

 while (redEntered != redExited || ((!fin || redWaited != 0) && !blueTurn))

wait();

 --blueWaited;

 ++blueEntered;

 shiftTurn();

 System.out.println("Blue car " + blueEntered + " enters bridge");

 checkStatus();

 return blueEntered;

 }

 public synchronized void blueExit(int order) throws InterruptedException {

 while (order != blueExited + 1) wait();

 ++blueExited;

 System.out.println("Blue car " + order + " exits bridge");

 checkStatus();

 notifyAll();

 }

}

package bridge;

public class RedCar implements Runnable {

final Bridge bridge;

 public RedCar(Bridge bridge) {

 this.bridge = bridge;

 }

 public void run() {

 try {

 int order = bridge.redEnter();

 bridge.redExit(order);

 } catch (InterruptedException e) {}

 }

}

package bridge;

public class BlueCar implements Runnable {

 final Bridge bridge;

 public BlueCar(Bridge bridge) {

 this.bridge = bridge;

 }

 public void run() {

 try {

 int order = bridge.blueEnter();

 bridge.blueExit(order);

 } catch (InterruptedException e) {}

 }

}

FIGURE 42 JAVA THREADS SOLUTION TO FINAL EXAM OF CSCI4900 FOR SPRING 2013 STUDY

359

package bridge

import scala.actors._

import Actor._

import scala.util.Random

import scala.collection.mutable.Queue

case class redCarEnter(red:Actor, initial:Boolean)

case class redCarExit(red:Actor, order:Int)

case class blueCarEnter(blue:Actor, initial:Boolean)

case class blueCarExit(blue:Actor, order:Int)

case class succeedEnter(order:Int)

case class succeedExit()

case class nomore()

case class allExit(main:Actor, total:Int)

case class done()

class Bridge(useDiff:Int, checkFreq:Int) extends Actor {

 var redEntered, redExited, blueEntered, blueExited, redWaited, blueWaited,

eventNumSinceLastCheck = 0;

 var blueTurn = true;

 var fin = false;

 val reds:Queue[Actor] = Queue()

 val blues:Queue[Actor] = Queue()

 def isAllExit(total:Int) : Boolean = {

 fin = true

 return redWaited == 0 && blueWaited == 0 &&

 (redEntered == total) && (redExited == total) &&

 (blueEntered == total) && (blueExited == total)

 }

 def checkStatus() {

 eventNumSinceLastCheck += 1

 if (eventNumSinceLastCheck >= checkFreq) {

 println("Status Check of Usage: " + redEntered + " " + blueEntered)

 println("Status Check of Bridge: " + (redEntered-redExited) + " " +

(blueEntered-blueExited))

 eventNumSinceLastCheck = 0

 }

 }

 def shiftTurn() {

 if (blueEntered - redEntered >= useDiff) blueTurn = false

 if (redEntered - blueEntered >= useDiff) blueTurn = true

 }

 def redEnter(red:Actor, initial:Boolean) {

 if (initial) {

 redWaited += 1

 println("Red car " + (redEntered+redWaited) + " arrives at waiting position "

+ redWaited)

 checkStatus()

 }

 if (blueEntered == blueExited && ((fin && blueWaited == 0) || (!blueTurn))) {

 redWaited -= 1

 redEntered += 1

 shiftTurn()

 println("Red car " + redEntered + " enters bridge")

 checkStatus()

 red ! succeedEnter(redEntered)

 } else {

 self ! redCarEnter(red, false)

360

 }

 }

 def redExit(red:Actor, order:Int) {

 if (order != redExited + 1) self ! redCarExit(red, order)

 else {

 redExited += 1

 println("Red car " + order + " exits bridge")

 checkStatus()

 red ! succeedExit()

 }

 }

 def blueEnter(blue:Actor, initial:Boolean) {

 if (initial) {

 blueWaited += 1

 println("Blue car " + (blueEntered+blueWaited) + " arrives at waiting position

" + blueWaited)

 checkStatus()

 }

 if (redEntered == redExited && ((fin && redWaited == 0) || blueTurn)) {

 blueWaited -= 1

 blueEntered += 1

 shiftTurn()

 println("Blue car " + blueEntered + " enters bridge")

 checkStatus()

 blue ! succeedEnter(blueEntered)

 } else {

 self ! blueCarEnter(blue, false)

 }

 }

 def blueExit(blue:Actor, order:Int) {

 if (order != blueExited + 1) self ! blueCarExit(blue, order)

 else {

 blueExited += 1

 println("Blue car " + order + " exits bridge")

 checkStatus()

 blue ! succeedExit()

 }

 }

 def act() {

 loop {

 react {

 case redCarEnter(red:Actor, initial:Boolean) =>

 redEnter(red, initial)

 case redCarExit(red:Actor, order:Int) =>

 redExit(red, order)

 case blueCarEnter(blue:Actor, initial:Boolean) =>

 blueEnter(blue, initial)

 case blueCarExit(blue:Actor, order:Int) =>

 blueExit(blue, order)

 case allExit(main:Actor, total:Int) =>

 if (mailboxSize != 0 || !isAllExit(total)) {

 self ! allExit(main, total)

 fin = true

 }

 else {

361

 main ! done()

 }

 }

 }

 }

}

class RedCar(bridge:Actor) extends Actor {

 def enter() {

 bridge ! redCarEnter(self, true)

 }

 def leave(order:Int) {

 bridge ! redCarExit(self, order)

 }

 def act() {

 enter()

 loop {

 react {

 case succeedEnter(order:Int) =>

 leave(order)

 case succeedExit() =>

 exit()

 }

 }

 }

}

class BlueCar(bridge:Actor) extends Actor {

 def enter() {

 bridge ! blueCarEnter(self, true)

 }

 def leave(order:Int) {

 bridge ! blueCarExit(self, order)

 }

 def act() {

 enter()

 loop {

 react {

 case succeedEnter(order:Int) =>

 leave(order)

 case succeedExit() =>

 exit()

 }

 }

 }

}

class RedCarGenerator(numToGenerate:Int, minInterval:Int, maxInterval:Int,

bridge:Bridge, main:Actor) extends Actor {

 def act() {

 for (i <- 1 to numToGenerate toList) {

 val car:RedCar = new RedCar(bridge)

 car.start()

 Thread.sleep((new Random()).nextInt(maxInterval-minInterval)+minInterval)

 }

 main ! nomore()

362

 exit()

 }

}

class BlueCarGenerator(numToGenerate:Int, minInterval:Int, maxInterval:Int,

bridge:Bridge, main:Actor) extends Actor {

 def act() {

 for (i <- 1 to numToGenerate toList) {

 val car:BlueCar = new BlueCar(bridge)

 car.start()

 Thread.sleep((new Random()).nextInt(maxInterval-minInterval)+minInterval)

 }

 main ! nomore()

 exit()

 }

}

object SingleLaneBridge {

 val usage = """Usage: [maximum waiting line difference]

 [number of car generators for each color]

 [number of cars generated by each generator]

 [minimal time of interval between two generations of cars]

 [maximal time of interval between two generations of cars]

 [status check frequency]"""

 def main(args:Array[String]) {

 val mainActor:Actor = actor {

 if (args.length < 6) {

 println(usage)

 System.exit(1)

 }

 val waitDiff:Int = args(0).toInt

 val numGen:Int = args(1).toInt

 val numCarPerGenerator:Int = args(2).toInt

 val minInterval:Int = args(3).toInt

 val maxInterval:Int = args(4).toInt

 val checkFreq:Int = args(5).toInt

 val bridge:Bridge = new Bridge(waitDiff, checkFreq)

 bridge.start()

 for (i <- 1 to numGen toList) {

 val generator:RedCarGenerator = new RedCarGenerator(numCarPerGenerator,

minInterval, maxInterval, bridge, self)

 generator.start()

 }

 for (i <- 1 to numGen toList) {

 val generator:BlueCarGenerator = new BlueCarGenerator(numCarPerGenerator,

minInterval, maxInterval, bridge, self)

 generator.start()

 }

 loop {

 react {

 case nomore() =>

 if ((mailboxSize + 1) == (numGen*2)) {

 bridge ! allExit(self, numGen*numCarPerGenerator)

 } else {

 self ! nomore()

 }

 case done() =>

363

 System.exit(0)

 }

 }

 }

 }

}

FIGURE 43 SCALA ACTORS SOLUTION TO FINAL EXAM OF CSCI4900 FOR SPRING 2013 STUDY

364

import random, sys, time

num_active_generator = 0

class bridge:

 def __init__(self, useDiff, checkFreq):

 self.redEntered = self.redExited = self.redWaited = self.blueEntered =

self.blueExited = self.blueWaited = 0

 self.fin = False

 self.blueTurn = True

 self.useDiff = useDiff

 self.checkFreq = checkFreq

 self.evenSinceLastStatusCheck = 0

 def is_all_exit(self, total):

 self.fin = True

 return self.redWaited == 0 and self.blueWaited == 0 and (self.redEntered ==

self.redExited == total == self.blueEntered == self.blueExited)

 def shift_turn(self):

 if self.redEntered - self.blueEntered >= self.useDiff:

 self.blueTurn = True

 if self.blueEntered - self.redEntered >= self.useDiff:

 self.blueTurn = False

 def check_status(self):

 self.evenSinceLastStatusCheck += 1

 if self.evenSinceLastStatusCheck >= self.checkFreq:

 print "Status Check of Usage: %s %s" %(self.redEntered, self.blueEntered)

 print "Status Check of Bridge: %s %s" %(self.redEntered - self.redExited,

self.blueEntered - self.blueExited)

 self.evenSinceLastStatusCheck = 0

 def red_arrive(self):

 self.redWaited += 1

 print "Red Car %s arrives at waiting position %s"

%(self.redEntered+self.redWaited, self.redWaited)

 self.check_status()

 def red_enter(self):

 if self.blueEntered == self.blueExited and ((self.fin and self.blueWaited == 0)

or not self.blueTurn):

 self.redWaited -= 1

 self.redEntered += 1

 self.shift_turn()

 print "Red Car %s enters bridge" %(self.redEntered)

 self.check_status()

 return self.redEntered

 else:

 return -1

 def red_exit(self, order):

 if self.redExited + 1 == order:

 self.redExited += 1

 print "Red Car %s exits bridge" %(order)

 self.check_status()

 return True

 else:

 return False

 def blue_arrive(self):

 self.blueWaited += 1

 print "Blue Car %s arrives at waiting position %s"

365

%(self.blueEntered+self.blueWaited, self.blueWaited)

 self.check_status()

 def blue_enter(self):

 if self.redEntered == self.redExited and ((self.fin and self.redWaited == 0) or

self.blueTurn):

 self.blueWaited -= 1

 self.blueEntered += 1

 self.shift_turn()

 print "Blue Car %s enters bridge" %(self.blueEntered)

 self.check_status()

 return self.blueEntered

 else:

 return -1

 def blue_exit(self, order):

 if self.blueExited + 1 == order:

 self.blueExited += 1

 print "Blue Car %s exits bridge" %(order)

 self.check_status()

 return True

 else:

 return False

def red_car(bridge):

 bridge.red_arrive()

 order = bridge.red_enter()

 while order == -1:

 yield

 order = bridge.red_enter()

 while not bridge.red_exit(order):

 yield

def blue_car(bridge):

 bridge.blue_arrive()

 order = bridge.blue_enter()

 while order == -1:

 yield

 order = bridge.blue_enter()

 while not bridge.blue_exit(order):

 yield

def red_generator(name, num_car, interval_min, interval_max, bridge):

 global num_active_generator

 cars = []

 for i in xrange(num_car):

 cars.append(red_car(bridge))

 t0 = time.time()

 interval = random.randint(interval_min, interval_max)

 while (time.time() - t0) * 1000 < interval: #trasfer sec to msec

 yield

 num_active_generator -= 1

 while len(cars) > 0:

 try:

 task = random.choice(cars)

 task.next()

 yield

 except StopIteration:

 cars.remove(task)

def blue_generator(name, num_car, interval_min, interval_max, bridge):

 global num_active_generator

 cars = []

366

 for i in xrange(num_car):

 cars.append(blue_car(bridge))

 t0 = time.time()

 interval = random.randint(interval_min, interval_max)

 while (time.time() - t0) * 1000 < interval: #trasfer sec to msec

 yield

 num_active_generator -= 1

 while len(cars) > 0:

 try:

 task = random.choice(cars)

 task.next()

 yield

 except StopIteration:

 cars.remove(task)

def main():

 usage = """SingleLaneBridge: [maximum usage difference]

 [number of car generators for each color]

 [number of cars generated by each generator

 [minimal time of interval between two generations of cars]

 [maximal time of interval between two generations of cars]

 [status check frequency]"""

 if len(sys.argv) < 6:

 print '%s' %usage

 exit()

 max_diff = int(sys.argv[1])

 num_gen = int(sys.argv[2])

 num_car_per_gen = int(sys.argv[3])

 min_interval = int(sys.argv[4])

 max_interval = int(sys.argv[5])

 check_freq = int(sys.argv[6])

 global num_active_generator

 num_active_generator = num_gen*2

 b = bridge(max_diff, check_freq)

 tasks = []

 for i in range(num_gen):

 rg = red_generator(i, num_car_per_gen, min_interval, max_interval, b)

 bg = blue_generator(i, num_car_per_gen, min_interval, max_interval, b)

 tasks.append(rg)

 tasks.append(bg)

 while len(tasks) > 0:

 if num_active_generator == 0:

 b.is_all_exit(int(sys.argv[2])*int(sys.argv[3]))

 try:

 task = random.choice(tasks)

 task.next()

 except StopIteration:

 tasks.remove(task)

 #time.sleep(0.1)

if __name__ == '__main__':

 main()

FIGURE 44 PYTHON COROUTINES SOLUTION TO FINAL EXAM OF CSCI4900 FOR SPRING 2013 STUDY

367

Jan 23, 2013 Lab 01 Survey Name_________________________
1. How much time did you spend to complete lab 01?

_____ hour (s) _____minutes (s)

Do you feel any time pressure to finish it?
_____Yes _____No

2. Which part of the lab do you think is most helpful?

3. Which part of the lab do you think is most difficult?

4. From 0 to 10 (0 as most dissatisfied and 10 as most satisfied), how would you grade the lab?

Grade _____

5. From 0 to 10 (0 as least successful and 10 as most successful), how would you grade your
performance?

Grade_____

6. Please write down any other thoughts, ideas, comments you have regarding this lab if any.

Thanks!

Jan 29, 2013 Hwk 02 Survey Name_________________________
7. How much time did you spend to complete homework 02?

_____ hour (s) _____minutes (s)

Do you feel any time pressure to finish it?
_____Yes _____No

8. What do you refer to when writing pseudo codes?

_____slides
_____pseudo code guide
_____other, please specify___

368

9. From 0 to 10 (0 as easiest and 10 as most difficult), how hard do you feel to write the pseudo
codes?

Grade _____

10. From 0 to 10 (0 as most dissatisfied and 10 as most satisfied), how would you grade the
homework?

Grade _____

11. From 0 to 10 (0 as least successful and 10 as most successful), how would you grade your
performance?

Grade_____

12. Please write down any other thoughts, ideas, comments you have regarding this homework if any.

Thanks!

Feb 5, 2013 Lab 02 Survey Name_________________________
13. How much time did you spend to complete lab 02?

_____ hour (s) _____minutes (s)

Do you feel any time pressure to finish it?
_____Yes _____No

14. Which part of the lab do you think is most difficult?

_____ Understand the system requirements
_____ Design the appropriate architecture to meet system requirements
_____ Draw UML diagrams to reflect my design
_____ Write pseudo codes to reflect my design
_____ Other, please specify:

15. Did you see the following relations between the lab project and in-class examples?

_____ Clients/Job Lists and executor/book stock are analogical to worker/sum.
_____ Restock and shipping is analogical to deposit and withdraw in bank account system.
_____ Unprogressive shipping job use up all executor resource causes deadlock.

16. From 0 to 10 (0 as most dissatisfied and 10 as most satisfied), how would you grade the lab?

Grade _______________

369

17. From 0 to 10 (0 as least successful and 10 as most successful), how would you grade your
performance?

Grade________________

18. Please write down any other thoughts, ideas, comments you have regarding this lab if any.

Thanks!

Feb 5, 2013 Hwk 03 Survey Name_________________________
19. How much time did you spend to complete homework 03?

_____ hour (s) _____minutes (s)

Do you feel any time pressure to finish it?
_____Yes _____No

20. What do you refer to when writing pseudo codes?
_____slides _____pseudo code guide
_____ homework 2 (shared memory) _____ group designs
_____other, please specify:

21. From 0 to 10 (0 as easiest and 10 as most difficult), how hard do you feel to write the pseudo
codes?

Grade _____

22. From 0 to 10 (0 as most dissatisfied and 10 as most satisfied), how would you grade the
homework?

Grade _____

23. From 0 to 10 (0 as least successful and 10 as most successful), how would you grade your
performance?

Grade_____

24. Which one do you think is harder to write?
_____ Pseudocode for shared memory
_____ Pseudocode for message passing
_____Both are very easy
_____Both are very hard

25. Please write down any other thoughts, ideas, comments you have regarding this homework if any.

370

Thanks!

Feb 13, 2013 Lab 05 Survey Name_________________________
26. How much time did you spend to complete lab 05 (Basic Practice in Java)?

_____ hour (s) _____minutes (s)

Do you feel any time pressure to finish it?
_____Yes _____No

27. Which part of the lab do you think is more helpful for you to practice Java programming?

_____ Implement backtracking algorithm for eight queens problem
_____ Implement the remote keypad class and its methods
_____ Design the data structure (for CSCI6900 students only)
_____ Other, please specify:

28. Which part of the lab do you think is most difficult?

_____ Implement a backtracking algorithm for eight queens problem
_____ Implement the remote keypad class and its methods
_____ Design the data structure (for CSCI6900 students only)
_____ Other, please specify:

29. From 0 to 10 (0 as most dissatisfied and 10 as most satisfied), how would you grade the lab?

Grade _______________

30. From 0 to 10 (0 as least successful and 10 as most successful), how would you grade your
performance?

Grade________________

31. Please write down any other thoughts, ideas, comments you have regarding this lab if any.

Thanks!

Feb 13, 2013 Lab 03 Survey Name_________________________
32. How much time did you spend to complete lab 03 (Message Passing Book Inventory System)?

_____ hour (s) _____minutes (s)

371

Do you feel any time pressure to finish it?
_____Yes _____No

33. Which part of the lab do you think is most difficult?

_____ Understand the system requirements
_____ Design the message passing protocols and behaviors
_____ Draw UML diagrams to reflect my design
_____ Write pseudo codes to reflect my design
_____ Other, please specify:

34. Compared to design the same system in shared memory form, which do you think is harder?

_____ Shared Memory
_____ Message Passing
_____ Both are hard
_____ Both are easy
_____ Design message passing becomes easy by knowing the design of shared memory

35. From 0 to 10 (0 as most dissatisfied and 10 as most satisfied), how would you grade the lab?

Grade _______________

36. From 0 to 10 (0 as least successful and 10 as most successful), how would you grade your
performance?

Grade________________

37. Please write down any other thoughts, ideas, comments you have regarding this lab if any.

Thanks!

Feb 19, 2013 Test 1 Survey Name_________________________
38. Which part do you think is more difficult?

_____ Shared Memory _____ Message Passing

39. We will just count one part of the exam towards 15% of your final score. Which part would you

like to be counted?

_____ Shared Memory
_____ Message Passing

372

40. From 0 to 10 (0 as least successful and 10 as most successful), how would you grade your
performance?

Shared Memory Grade________________
Message Passing Grade ________________

Thanks!

Feb 21, 2013 Lab 06 Survey Name_________________________
41. How much time did you spend to complete lab 06 (Basic Practice in Scala)?

_____ hour (s) _____minutes (s)

Do you feel any time pressure to finish it?
_____Yes _____No

42. Which part(s) of the lab do you think is helpful for you to practice Scala programming?

_____ Implement recursive algorithms for Pascal Triangle, etc.
_____ Implement the remote keypad class and its methods
_____ Implement anagram solver (for CSCI6900 students only)
_____ Other, please specify:

43. Which part of the lab do you think is most difficult?

_____ Implement recursive algorithm for Pascal Triangle
_____ Implement recursive algorithm for Counting Changes
_____ Implement recursive algorithm for Parenthesis Balancing (for CSCI 6900 students only)
_____ Implement the remote keypad class and its methods
_____ Implement anagram solver (for CSCI6900 students only)
_____ Other, please specify:

44. From 0 to 10 (0 as most dissatisfied and 10 as most satisfied), how would you grade the lab?

Grade _______________

45. From 0 to 10 (0 as least successful and 10 as most successful), how would you grade your
performance?

Grade________________

46. Please write down any other thoughts, ideas, comments you have regarding this lab if any.

Thanks!

373

Mar 5, 2013 Lab 07 Survey Name_________________________
47. How much time did you spend to complete lab 07 (Basic Practice in Python)?

_____ hour (s) _____minutes (s)

Do you feel any time pressure to finish it?
_____Yes _____No

48. Which part(s) of the lab do you think is helpful for you to practice Python programming?

_____ Implement string manipulations in Python (mystrings.py)
_____ Implement list manipulations in Python (mylists.py)
_____ Implement dictionary and files manipulations in Python (mimic.py, wordcount.py)
_____ Implement the remote keypad class and its methods (remotekeypad.py)
_____ Implement with url library and regular expression packages (logpuzzle.py, 6900 only)
_____ Other, please specify:

49. Which part of the lab do you think is most difficult?

_____ Implement string manipulations in Python (mystrings.py)
_____ Implement list manipulations in Python (mylists.py)
_____ Implement dictionary and files manipulations in Python (mimic.py, wordcount.py)
_____ Implement the remote keypad class and its methods (remotekeypad.py)
_____ Implement with url library and regular expression packages (logpuzzle.py, 6900 only)
_____ Other, please specify:

50. From 0 to 10 (0 as most dissatisfied and 10 as most satisfied), how would you grade the lab?

Grade _______________

51. From 0 to 10 (0 as least successful and 10 as most successful), how would you grade your
performance?

Grade________________

52. Please write down any other thoughts, ideas, comments you have regarding this lab if any.

Thanks!

Mar 19, 2013 Lab 08 Survey Name_________________________
53. How much time did you spend in total to complete lab 08 (Party Matching with Java Threads)?

_____ hour (s) _____minute (s)

Do you feel any time pressure to finish it?
_____Yes _____No

374

54. How much time did you spend to read online tutorials and supplementary readings?

_____ hour(s)_____minute(s)

From 0 to 10 (0 as most unhelpful and 10 as most helpful), how do you think these materials help
you finish the lab?
Grade _____

55. Which part(s) of the lab do you think are difficult?

_____ Understanding the problem setting
_____ Implement a simple version of design
_____ Design a more realistic simulation
_____ Implement your design of a more realistic simulation (optional)
_____ Other, please specify:

56. From 0 to 10 (0 as most dissatisfied and 10 as most satisfied), how would you grade the lab?

Grade _______________

57. From 0 to 10 (0 as least successful and 10 as most successful), how would you grade your
performance?

Grade________________

58. Please write down any other thoughts, ideas, comments you have regarding this lab if any.

Thanks!

Mar 21, 2013 Lab 09 Survey Name_________________________
59. How much time did you spend in total to complete lab 09 (Party Matching with Scala Actors)?

_____ hour (s) _____minute (s)

Do you feel any time pressure to finish it?
_____Yes _____No

60. How much time did you spend to read online tutorials and supplementary readings?
_____ hour(s)_____minute(s)

From 0 to 10 (0 as most unhelpful and 10 as most helpful), how do you think the following
materials help you finish the lab? (use a -1 if you did not refer to a specific material)
Grade _____ Textbook
Grade _____ Scala Actor tutorial and API on official Scala websites
Grade _____ Online videos

61. Which part(s) of the lab do you think are difficult?

375

_____ Implement first design (match1.scala)
_____ Implement second design (match2.scala)
_____ Write out protocol (design) of a more realistic version
_____ Write out pseudocode of a more realistic version
_____ Implement the realistic version (optional)
_____ Other, please specify:

62. From 0 to 10 (0 as most dissatisfied and 10 as most satisfied), how would you grade the lab?
Grade _______________

63. From 0 to 10 (0 as least successful and 10 as most successful), how would you grade your
performance?
Grade________________

64. Which do you think is more complicated and difficult for you to handle?
_____ Implement Party Matching with Java Threads
_____ Implement Party Matching with Scala Actors

65. Please write down any other thoughts, ideas, comments you have regarding this lab if any.

Thanks!

Mar 26, 2013 Hwk 04 Survey Name_________________________
66. How much time did you spend to complete homework 04 (complete dining.py and dining2.py)?

_____ hour (s) _____minutes (s)
Do you feel any time pressure to finish it?

_____Yes _____No

67. What do you refer to when writing pseudo codes?
_____other python codes covered in slides _____python api documents
_____ codes found online _____ group design picture/document
_____other, please specify:

68. Which of the following implementation alternatives did you see when completing dining2.py?
_____ All conditional predictions go into Fork class with the usage of hasFork list
_____ All conditional predictions go into Fork class without the usage of hasFork list
_____ Only predictions about fork usage go into Fork class and prediction of available fork go in
philosopher generator
_____ All conditional predictions go into philosopher generator
_____ Other implementation alternative, please specify:

69. From 0 to 10 (0 as most dissatisfied and 10 as most satisfied), how would you grade the

376

homework?

Grade _____

70. From 0 to 10 (0 as least successful and 10 as most successful), how would you grade your
performance?

Grade_____

71. Please write down any other thoughts, ideas, comments you have regarding this homework if any.

Thanks!

Mar 28, 2013 Lab 10 Survey Name_________________________
72. How much time did you spend in total to complete lab 10 (Party Matching with Python)?

_____ hour (s) _____minute (s)

Do you feel any time pressure to finish it?
_____Yes _____No

73. How much time did you spend to read online tutorials and supplementary readings?
_____ hour(s)_____minute(s)

From 0 to 10 (0 as most unhelpful and 10 as most helpful), how do you think the following
materials help you finish the lab? (use a -1 if you did not refer to a specific material)
Grade _____ Online PDF tutorial
Grade _____ Python Coroutine document on official Scala websites
Grade _____ Online videos

74. Which part(s) of the lab do you think are difficult?

_____ Implement the simple version (match1.py)
_____ Implement the realistic version (match2.py)
_____ Implement the simple version with send() function (optional)
_____ Other, please specify:

75. From 0 to 10 (0 as most dissatisfied and 10 as most satisfied), how would you grade the lab?
Grade _______________

76. From 0 to 10 (0 as least successful and 10 as most successful), how would you grade your
performance?
Grade________________

377

77. Please write down any other thoughts, ideas, comments you have regarding this lab if any.

Thanks!

Lab 11 Survey Name____________________________
Deliverable Portion I
78. How much time did you spend in total to complete the 1st portion of Lab 11 (sleeping barber)

_____ hour (s) _____minute (s)

79. What is the language that you used to finish the 1st portion? _____________

80. What do you like most and dislike most about this language and/or its concurrency constructs?
How do you think these language features decrease or increase difficulties to implementation?

Lab 11 Survey Name____________________________
Deliverable Portion II
81. How much time did you spend in total to complete the 2nd portion of Lab 11 (sleeping barber)

_____ hour (s) _____minute (s)

82. What is the language that you used to finish the 2nd portion? _____________

83. What do you like most and dislike most about this language and/or its concurrency constructs?
How do you think these language features decrease or increase difficulties to implementation?

Lab 11 Survey Name____________________________
Deliverable Portion II
84. How much time did you spend in total to complete the 3rd portion of Lab 11 (sleeping barber)

_____ hour (s) _____minute (s)

85. What is the language that you used to finish the 3rd portion? _____________

86. What do you like most and dislike most about this language and/or its concurrency constructs?
How do you think these language features decrease or increase difficulties to implementation?

Final Survey Name____________________________
87. Assume that you are given a program listing for a complete concurrent program.

For which concurrency model do you think it will be easiest for you to understand the program
listing?
_____ Shared memory _____ Message Passing _____ Coroutine

For which concurrency model do you think it will be the most difficult for you to understand this
program listing?
_____ Shared memory _____ Message Passing _____ Coroutine

378

88. Assume that you are given a specification and are asked to write a complete concurrent program.

Which concurrency construct do you think is the easiest to use?
_____ Java threads ______ Scala actors _____ Python coroutines

Which concurrency construct do you think is the most difficult to use?
_____ Java threads ______ Scala actors _____ Python coroutines

89. How did you perceive your familiarity with these concurrency constructs before this course?

 No Knowledge Novice Intermediate Expert

Java threads o o o o o o
Scala actors o o o o o o

Python coroutines o o o o o o

How do you perceive your familiarity with these concurrency constructs now?

 No Knowledge Novice Intermediate Expert

Java threads o o o o o o
Scala actors o o o o o o

Python coroutines o o o o o o

90. How did you perceive your general programming expertise before this course?

No Knowledge Novice Intermediate Expert

o o o o o o

How do you perceive your general programming expertise now?

No Knowledge Novice Intermediate Expert

o o o o o o

91. How would you describe your learning outcome on concurrency concepts in this course?

I learned
nothing at

all

I learned the
basics of

concurrency
concepts

I gained a moderate
knowledge of
concurrency

concepts

I became an
expert on

concurrency
concepts

o o o o o o

How would you describe your learning outcome on gaining programming capabilities in this
course?

I learned
nothing at

all

I learned the
basics of

programming
techniques

I gained a moderate
knowledge of
programming

techniques

I became an
expert on

programming
techniques

o o o o o o

92. How did you perceive your expertise in different languages before this course?

 No Knowledge Novice Intermediate Expert

379

Java o o o o o o
Scala o o o o o o

Python o o o o o o
Other___________ o o o o o o
Other___________ o o o o o o

How do you perceive your expertise in different languages now?

 No Knowledge Novice Intermediate Expert

Java o o o o o o
Scala o o o o o o

Python o o o o o o

93. Which of the following statements best describes your procedure for debugging a particular

model of the book inventory system in the contest?
_____I run the checker repeatedly and try to fix each violation/exception reported one by one.
_____I read the program codes to understand it first, and then run checker repeatedly and try to
fix each violation/exception reported one by one.
_____I read the program codes and make some changes directly first, and then run the checker to
find out other violations/exceptions. Each time after running the checker, I make changes to fix
multiple violations/exceptions before running the checker again.
_____I repeat the following process until all violations/exceptions are solved: running the checker
to find violations, making guess on possible bugs that might cause these violations, making
changes in codes to fix one or more potential bugs and running checker again to validate my
guess.
_____Other, please specify:

94. Do you think any previous course or any content you learned from a previous course or courses

helped you perform better in this course? Explain?

95. Which elements of the course were most useful and should be included in future versions of this
course? Explain.

96. Which elements of the course should be changed or eliminated in future versions of this course?

Explain.

97. Some content of this course was presented in class and other elements were presented online

(readings, etc.)
Of the topics presented in-class, should any be moved to on-line? Which ones? Explain.

Of the topics presented online, should any be moved to in-class? Which ones? Explain.

380

98. Is there anything you would like to tell us about how to make this class better in the future?

Thanks!

FIGURE 45 SURVEY MATERIALS OF CSCI4900 FOR SPRING 2013 STUDY

381

Online Course Plan

CSCI 4900E Programming in Concurrency

PART I: KNOWLEDGE AND CONCEPTS

*Discussion, homework and project assignments have corresponding grading rubrics

*Wiki is graded according to discussion’s rubric and students are required to contribute to wiki

*Help is not graded, but students are encouraged to ask questions and provide answers

*Peer critique is to critique at least 3 and at most 5 of other student’s work that have no more than 3

critiques yet.

*One week for each topic and the two exams takes 1 week time together.

Topic 0: Syllabus and Course Introduction

 Reading1: Course Syllabus

 Reading2: Instructions on Textbook Reading

 Reading3: Library resource with GALILEO password

 Discussion: Getting to Know You

 A semi-formal self-introduction and chance to socialize

Preparation: Run live classroom setup wizard and Install Skype

Topic 1: Introduction to Parallelism and Concurrency

Reading1: Introduction to Parallel Computing, Chapter 1-4

Reading2: Parallel Computer Architecture, Flynn’s Taxonomy

Reading3: Parallel Computer Architecture, Memory Organizations

Reading4: Parallel Computer Architecture, Caches and Memory Hierarchy

Live Class: Parallel and Distributed Processing

Quiz 01: Parallel and Distributed Processing

Discussion: Super Computers

Topic 2: Concurrency

 Reading1: Parallel Programming, Thread Level Parallelism

 Reading2: Multicore processors and Systems, General-Purpose Multi-core Processors

 Reading3: Parallel Programming, Interconnection Networks

 Reading4: Parallel Programming, Routing and Switching

 Live Class: Concurrency

 Quiz 02: Concurrency

 Homework1: Observing Multicore Architecture

Topic 3: UML and Concurrent System Design

 Reading1: UML Tutorial

382

 Live Class: Use UML Diagrams for Concurrent System Design on Wimba through D2L

Discussion: Inferring the behavior of a readers-writers system through UML notations

(Question Driven)

Topic 4: Shared Memory Systems

 Reading1: Introduction to Parallel Computing, Chapter 5.1-5.3

 Reading2: Parallel Programming, Parallel Programming Patterns

 Reading3: Parallel Programming, Synchronization Mechnisms

 Reading4: Mutexes and Semophores, Part I – III (online blog)

 Livelock (online blog)

 Live Class: Shared Memory Concurrent Systems

o Race Condition

 Sum & Worker Example in Java, C++, Pseudo Code

 Ornamental Garden Videos

o Pseudo Code System

o Conditional Synchronization

 Bank Account Example in Pseudo Code

 Group Design Activity: Bounded-Buffer System (Activity 1)

o Deadlock & Livelock

 Large Printing Job Example in Pseudo Code

 Four necessary condition for deadlock

 Group Design Activity: Dining Philosopher System (Activity 2)

o Fairness Issue

 Readers/Writers Example in Pseudo Code

Homework 02: Practice Psuedocode with Shared Memory Systems

Project 01: Design Book Inventory as Shared Memory System

Topic 5: Message Passing Systems

 Reading1: Introduction to Parallel Computing, Chapter 5.4

Reading2: Parallel Programming, Message Passing Programming

 Live Class: Message Passing Concurrent Systems

o Non-deterministic Order of Messages

 Sum & Worker Example in Scala, Pseudo Code

 Ornamental Garden White Board Illustration

o Pseudo Code System

o Conditional Synchronization

 Bank Account Example in Pseudo Code

 Group Design Activity: Bounded-Buffer System (Activity 3)

o Deadlock & Livelock

 Large Printing Job Example in Pseudo Code

 Group Design Activity: Dining Philosopher System (Activity 4)

o Fairness Issue

 Readers/Writers Example in Pseudo Code

383

Homework 03: Practice Pseudocode with Message Passing System

Project 02: Design Book Inventory as Message Passing System

Topic 6: Cooperative Multi-tasking Systems

 Live Class: Cooperative Multi-tasking Concurrent Systems

 Quiz 03: Cooperative Bounded Buffer on ELC

 Homework 04: Practice Python with Cooperative Multi-tasking System

Midterm Exam I: Comprehensive Test on Topics 2-5

PART II: PROGRAMMING PROJECTS

Topic 7: IDE Installation and Basic Programming Skills in Java

Project 03: Installing IDE

Discussion: Post any questions/difficulties encountered during IDE installation

Project 04: Practice Java Basics

 Basic Function Definition

 Backtracking Algorithm in Java (Eight Queen Problem)

 Basic Class Definition (Remote Keypad)

 Data Structure Definition and Java Templates [bonus]

Wiki: Project 04, Practice Java Basics

Help: Project 04, Practice Java Basics

Live Office: Live office-hour times to tackle technical barriers for students installing IDE.

Live office-hour times to tackle coding barriers for students programming Java.

Topic 8: Basic Programming Skills in Scala

 Reading1: Programming in Scala, Chapter 1-5, 7, 13-17

 Project 05: Practice Scala Basics

 Basic Application and Function Definition

 Recursion in Scala (Parenthesis Balancing)

 Class and Objects (Remote Keypad)

 Collections in Scala (Anagram) [bonus]

Wiki: Project 05, Practice Scala Basics

Help: Project 05, Practice Scala Basics

Reading2: Scala Cheat Sheet

Live Office: Live office-hour times to tackle coding barriers for students programming Scala.

Topic 9: Basic Programming Skills in Python

 Reading1: Learning Python, Chapter 1-13, 16-18, 25-27

 Video: Google Python Class Part 1- 7

 Project 06: Python Basics (Project 5)

 Basic Module and Function Definition

 Python Strings (String Manipulation)

384

 Python Lists and Sorting (List Manipulation)

 Python Dictionary and Files (Word Count)

 Class and Objects (Remote Keypad)

 Python Regular Expressions (Log Puzzle) [bonus]

Wiki: Project 06, Practice Python Basics

Help: Project 06, Practice Python Basics

Live Office: Live office-hour times to tackle coding barriers for students programming Python

Reading2: Python Quick Guide

Topic 10: Design and Program Party Matching Problem in Java

 Reading1: Java Concurrency Tutorial

 Quiz 04: Java Concurrency

Discussion: Java Concurrency Tutorial (Question Driven)

Coding Salon: Java Threads and Shared Memory Systems

Project 07: Party Matching with Java Threads

Wiki: Project 07, Party Matching with Java Threads

Help: Project 07, Party Matching with Java Threads

Live Office: Live office-hour times to tackle coding barriers for students programming Java

Threads.

Discussion: Project 07 Design (Products Driven, Build Further Upon Project 07)

Topic 11: Design and Program Party Matching Problem in Scala

 Reading1: Programming in Scala, Chapter 32

 Video: Scala Actors (on Parley’s)

 Quiz 05: Scala Concurrency

 Discussion: Scala Concurrency (Question Driven)

 Coding Salon: Scala Actors and Message Passing Systems

 Project 08: Party Matching with Scala Actors

Live Office: Live office-hour times to tackle coding barriers for students programming Scala

Actors.

 Discussion: Project 08 Design (Products Driven, Build Further Upon Project 08)

Topic 12: Design and Program Party Matching Problem in Python

 Reading1: A Comprehensive Tutorial on Python Coroutines (online resource)

Video: An Outsider’s Look at Coroutine

Video: Using Coroutines to Create Efficient, High-concurrency Web Application

Video: Coroutines, Event Loops and the History of Python Generator

Quiz 06: Python Concurrency

Discussion: Python Concurrency (Question Driven)

385

Coding Salon: Python Coroutines and Cooperative Systems

Project 09: Party Matching with Python Coroutines

Wiki: Project 09, Party Matching with Python Coroutines

Help: Project 09, Party Matching with Python Coroutines

Live Office: Live office-hour times to tackle coding barriers for students programming Python

Coroutine

Discussion: Project 09 Design (Products Driven, Build Further Upon Project 09)

Topic 13: Getting Everything Together: Sleeping Barber Simulation

Project 10: Sleeping Barber Simulation (in Java, Scala and Python)

Wiki: Project 10, Sleeping Barber Simulation

Help: Project 10, Sleeping Barber Simulation

Live Office: Live office-hour times to tackle coding barriers for students

Topic 14: Debugging Contest

 Project 11: Debugging Contest on Book Inventory System (in Java, Scala and Python)

Final Exam: Programming Test on Topic 7-14.

PART III: COURSE WORK ON RESEARCH AND PRESENTATION

This part runs in parallel with PART II from week 6 (after the first midterm exam) to week 15.

Task 1: Paper Selection (Week 6)

Students read a paper list (with paper title and its planed presentation time) provided by instructor and

post the number id of the paper they would like to present (first come first serve).

Task 2: Paper Presentation (Week 7 – Week 15)

During these weeks, students are required to participate in a 50-minute live class each week to listen to

3 student’s paper presentation. After that, students are required to write three summaries of the three

presentations in live class. Each summary should be less than 300 words that briefly cover the topic of

the paper, the organization of the presentation and a critique on the presenter’s performance.

PART IV: LOGISTICS AND RETROSPECT

Logistics issues are included as a separate module in the course content. It provides Questions & Help,

some quick links and useful information to manage online environments. A final Prezi presentation

provide a retrospect and conclusion for the course.

FIGURE 46 COURSE PLAN FOR ONLINE CSCI4900

