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ABSTRACT 

Microsatellites, or simple sequence repeats, are genetic loci where several 
nucleotide bases are repeated in tandem. Since they can be easily found by Polymerase 
Chain Reaction (PCR) using unique flanking primers, they are considered excellent 
genetic markers in making genetic linkage maps among other things.  In this thesis we 
present Microsatellite Polymorphism Finder (MSPF), a program that detects and then 
verifies microsatellites by modeling PCR digitally from an Expressed Sequence Tag 
(EST) or a shotgun-sequencing database without the overhead required to perform PCR 
chemically with human intervention.  Moreover, a machine learning enhanced version of 
MSPF improves the accuracy of microsatellite verification. 
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CHAPTER 1 

INTRODUCTION 

This chapter seeks to introduce biological concepts behind microsatellite 

detection and verification in DNA sequences, algorithms currently used by major 

sequencing laboratories, and the machine learning method that has been used to enhance 

a new approach of microsatellite detection/verification in Microsatellite Polymorphism 

Finder (MSPF).  Currently, these important genetic markers are detected in the consensus 

sequences produced by flawed fragment assembly methods and verified chemically 

through human intervention.  The approach described in this thesis detects microsatellites 

by using redundant individual fragment information and verifies them by modeling the 

chemical process of the Polymerase Chain Reaction (PCR) in-silico, producing fast and 

accurate results.  Section 1.1 provides a glossary of terms. Section 1.2 explains the 

biological background and significance of microsatellites.  Section 1.3 explains common 

computational methods used in DNA sequencing.  Section 1.4 describes algorithms used 

for generic microsatellite detection.  Finally, section 1.5 describes specific machine 

learning method used. 

 

1.1 GLOSSARY 

-Chromatogram: a plot of a detector’s response versus time; in genome sequencing, the  
 
relative emission peaks of the four fluorescently labeled nucleotides (ATGC) as a  
 
function of time (e.g., as sequencing proceeds). 
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-Contig: consensus sequence or a continuous region of genomic DNA that has been  
 
cloned as a series of  identifiable overlapping DNA clones. 
 
-Microsatellites: simple sequence repeats (SSRs) or genetic loci where several nucleotide 

bases or motifs are repeated in tandem (i.e., agagagagagagag). 

-Oligonucleotide: short segment of DNA. 
 
-Polyacrylamide gel electrophoresis: technique used to separate macromolecules  
 
carried out in a polyacrylamide gel; movement of molecules is slowed according to the  
 
dimensions relative to the size of pores in the matrix and the size of the macromolecules. 
 
-Polymerase Chain Reaction: in vitro method of exponential DNA amplification,  
 
involving the use of specific oligonucleotides to prime DNA synthesis from a specified  
 
target DNA sequence and nucleotides; amplifies specific lengths of DNA located  
 
between two annealed primers by repeated ‘thermal cycling’ reactions using a  
 
thermostable polymerase enzyme. This mixture is thermally cycled through three steps;  
 
denaturation, obtained by melting of the target DNA double strand, annealing of the  
 
primers to the target sequence, and extension of the primers by the DNA polymerase  
 
using the nucleotides to form a second strand. 
 
-Polymorphic: differing between distinct alleles (e.g., a microsatellite that has different  
 
lengths in different alleles; for example, agagag in one allele and agag in another).  
 
-Shotgun sequencing: sequencing method that involves assembling randomly sequenced  
 
cloned pieces of the genome into a consensus sequence, with no foreknowledge of the  
 
location from which the piece originated. 
 
-Slipped-strand mispairing: process in which the single strands of a double helix pair  
 
out of register, often at short tandem repeated sequences (Figure 1). The resulting  
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daughter DNA strands will have corresponding deletions or insertions. 
 

 
 
 
 

Figure 1: Slipped-strand mispairing 
 
 
-Thermostable DNA polymerase: enzyme that allows the synthesis at high temperature of  
 
double-stranded DNA by extension of a primer annealed to single-stranded DNA. 
 
 
 
1.2 BIOLOGICAL BACKGROUND 

A key practice in current genomic research is large scale genotyping. The 

availability of dense, highly polymorphic, and uniformly distributed genetic markers is 

crucial for mapping and subsequent genotyping, which are used to determine which 
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genes are responsible for specific inherited traits.  Microsatellites or simple sequence 

repeats are genetic loci where a few nucleotide bases are repeated in tandem.  They can 

be found anywhere in the genome, both in protein-coding and noncoding regions.  The 

occurrence of polymorphic microsatellites is mostly due to slipped-strand mispairing 

during DNA replication, repair, or recombination, which makes them exhibit relatively 

frequent length polymorphism (Figure 1).  Point mutations may also accumulate in the 

microsatellite regions, producing corresponding substitutions, insertions, or deletions, 

and the mutation rates usually increase with an increase in the length of the microsatellite 

(Katti et al. 2001). 

The discovery of diseases associated with microsatellites (e.g., Fragile-X 

retardation, Friedreich ataxia, myotonic dystrophy, Huntington’s disease) and the 

potential role of microsatellites in gene regulation sparked an interest in tandem repeats 

among the scientific community.  In addition, they have proven useful in the analysis of 

paternity and kinship (Queller et al. 1993) and in sample identitification at both the 

individual (Edwards et al. 1992) and population levels (Paetkau et al. 1995). 

Furthermore, microsatellites are more desirable than larger tandem repeat loci that have a 

motif length of six or longer because they can be analyzed more easily via the 

Polymerase Chain Reaction and the alleles can be sized more unambiguously on 

polyacrylamide gels.   

Currently, PCR uses unique flanking primers or oligonucleotides designed from 

the flanking regions around the microsatellite in the consensus sequence. This is followed 

by electrophoresis for fragment-length sizing which forms the basis for microsatellite 

genotyping. Since PCR involves the exponential amplification of DNA from a template 
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using thermostable DNA polymerase, specific oligonucleotides are designed to direct 

amplification between two specific sites on the template around the microsatellite where 

each of those oligonucleotides bind.  Since DNA has negatively charged phosphate 

groups that make up the DNA phosphate backbone, gel electrophoresis can separate 

DNA by fragment size: larger DNA pieces will progress more slowly through the gel 

matrix toward the positive cathode and vice versa.  Thus, verification and microsatellite 

polymorphism detection is performed by looking at the size difference of the amplified 

fragments.  This size difference is viewed as a migration of respective bands formed after 

gel electrophoresis.  If the average amplified fragment size is different for some 

genotypes, that fragment is considered to be polymorphic.  Edwards et al. (1991) 

examined the frequency of five microsatellite loci (tri and tetra repeats) on the X 

chromosome, finding that for either the tri or tetra microsatellite loci, any given repeat 

was found every 300 to 500 Kb. From this, they estimated that for all the 44 possible 

unique trimeric and tetrameric repeats there are 400,000 loci or about 1 every 10 to 20 

Kb (Edwards et al. 1991).  This frequency did not change after complete sequencing of 

other genomes occurred.  Of the class of loci examined by Edwards et al. (1991), 50% 

were polymorphic.   

In this thesis, we use a large number of Expressed Sequence Tags (ESTs) from 

sorghum (see www.fungen.org) to verify our approach.  An EST database is created from 

single-pass sequences of complementary DNA (cDNAs), which in turn are derived from 

messenger RNA sequences (mRNAs).  Each mRNA segment represents the expression of 

a gene, that is composed of several joined exons, and codes for a specific protein 

produced in the tissue sample.  Hence ESTs are tags for those expressed genes.  Every 
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unique mRNA segment is transformed to a cDNA sequence and inserted into a 

bacterium’s plasmid with the help of a phage.  Then bacterium is grown overnight to 

produce a colony of bacteria containing the same cDNA insert in each member. This 

cDNA insert has an average size of 1,500 bases which may or may not cover the 

complete cDNA length.  Both ends of the insert are sequenced to produce two EST reads.   

Due to sequencing limitations (see next section) only about 600 bases can be sequenced 

during each dye terminator cycle sequencing reaction.  If the ends of two sequencing 

reads overlap, a complete sequence of the cDNA is found, but sometimes, the reaction 

still runs short and leaves the space between the ends un-sequenced.  Even though we 

used an EST database, our approach could be used in any shotgun sequencing (see next 

section) project which includes information from regions of DNA that do not code for 

proteins since the methods of sequencing remain similar.   

 

1.3 COMPUTATIONAL OVERVIEW OF DNA SEQUENCING/ASSEMBLY  

A very popular DNA sequencing strategy known as "shotgun sequencing," which 

is similar to EST sequencing, takes maximum advantage of the speed and low cost of 

automated sequencing.  This strategy relies totally on software to assemble a jumble of 

essentially random sequence reads (which can contain errors) of length 100 to 1,000 

nucleotide bases into coherent and accurate consensus sequences (contigs).  In this type 

of sequencing, one or more identical double stranded DNA sequences are put through the  

automated dye terminator cycle sequencing reaction, in which the new DNA strand is  

built along the original template.  The elongation stops with the incorporation of the  

fluorescently tagged terminating dideoxyribonucleotide (ddNTP) analogue inhibitor that  
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identifies the last base in the new fragment because each of the four different ddNTPs  

emits a unique wavelength profile following irradiation.  

Using gel electrophoresis to separate each DNA fragment that differs by a single 

nucleotide will band each ddNTP analogue inhibitor and produce a sequencing read 

describing the intensity of each nucleotide base in a certain position in the read (Figure 

2). 

 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 2: Sequencing read trace 

 
 
These trace diagrams are analyzed by base calling programs. One of the most widely 

used programs is Phred, which calls bases along with their quality values using Fourrier 

transforms to match predicted to observed base intensity peak locations (Edwing et al. 

1998).  Phred’s quality value for each called base corresponds to the probability of an 

error at that position.  Phred’s factors (distance between the peaks, peak heights, and 

areas under the peaks) have been empirically determined to predict the error probability 

fairly well, however, exact error probability is unknown.   

In theory, optimal alignment of multiple sequences is possible by extension of 

pairwise algorithms, but since the problem can be represented as a Hamiltonian path, the 
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number of calculations needed equals the sequence length raised to the power of the 

number of sequences.  Thus, fragment assembly programs are forced to use 

heuristic/approximation algorithms to construct a consensus sequence out of error-

containing reads, which inevitably creates errors in contigs.  In most fragment assembly 

programs the consensus sequence is constructed through the greedy traversal of the 

overlap graph (proven to form a sequence at most 2.75 times longer than the optimal 

sequence).  A weighted, directed graph is formed where each directed edge (u,v) is 

weighted with the length of the maximal overlap between a suffix of fragment u and a 

prefix of fragment v.  Representation of maximum overlap differs between the 

algorithms; some use distinct parameters found empirically to improve the accuracy of 

the assembly.  The highest-weight path that touches every node of the graph represents 

the consensus sequence (path abcd represents the sequence of CTGCCATATA in Figure 

3). 

 

 

 

Figure 3: Fragment assembly as a Hamiltonian path problem 
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Moreover, these programs often misassemble contigs by either joining different repeat 

copies or by including many fragments from different repeat copies (Pevzner et al. 2001).  

Phrap, the most widely used fragment assembly program, calculates overlap 

scores using pairwise sequence alignments and error probabilities.  Individual LLR 

scores are calculated as log likelihood ratios (LLRs) for each base-pair in the overlap.  

Furthermore, base-pair score calculation if the bases are the same will be different from 

the score calculation if the bases do not match (Figure 4).   

 

 

Figure 4:  LLR calculation 

 

If the bases in the same base pair are found to be the same then the base-pair LLR is 

equal to log(1/0.95).  If the bases are different then the base-pair LLR is calculated as 

log( (e+f-ef)/ (0.05+0.95(e+f-ef)) where e and f are base error probabilities.  The LLRs of 

each base pair are summed up to form the overlap LLR score.  Moreover, this LLR 

calculation makes the assumptions that alignment positions are independent of each 
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other, base calls in the two reads disagree at the error position, and errors in reads are 

independent of each other.  The validity of these assumptions is supported by the fact that 

each read was produced by a separate sequencing reaction. 

The greedy algorithm that constructs the layout processes read pair alignment in 

decreasing LLR overlap score order and merges the read with the contig if there are no 

negative LLR scoring pairs and the positive LLR scoring pairs cover the region of the 

overlap.  This greedy algorithm usually gets the layout correct due to the ability of LLR 

scores to distinguish most repeats.  Finally, the mosaic consensus sequence is constructed 

by applying Tarjan’s maximum-weight tiling path algorithm to a weighted directed graph 

that represents the layout (hypothetical path shown in Figure 5).   The nodes or ends of 

heavy-colored arrows in this graph are the read positions in the layout.  The edges are 

either bidirectional between aligned positions in two overlapping reads (vertical arrows) 

with a weight of zero or unidirectional between positions in the same read in the layout 

direction (horizontal arrows) with a weight equaling the sum of Phred’s base quality 

values.   

 

 

Figure 5: Mosaic consensus: a maximum weight tiling path 
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Phrap produces a text file with all the contigs and the sequences belonging to them.  Our 

laboratory parses this text file into the database for easier storage and analysis.  

 

1.4        MICROSATELLITE DETECTION ALGORITHMS 

Several algorithms are used to pick the primers used during PCR microsatellite 

polymorphism detection by viewing the flanking regions around possible microsatellites 

in consensus sequences.  However, there is no guarantee of a contig being assembled 

correctly in this region due to the presence of a microsatellite or a repeat.  Thus, MSPF 

attempts to find and verify microsatellites from sequence overlaps without actual reliance 

on the consensus sequence information apart from loose clustering of sequences formed 

by fragment assembly algorithms during the construction of the contig. 

While searching for a microsatellite, definition of the minimum number of repeats 

and mismatch considerations are important.  Most of the previous studies have 

considered only perfect repeats without any mismatches.  Many long repeats, however, 

contain mutations (Katti et al. 2001).  Such microsatellites are likely to be counted as 

several separate repeats of shorter length.   Moreover, interruptions in a microsatellite 

could be only a transitional state and could be removed by DNA replication slippage or 

reverse mutations (Katti et al. 2001). Rather than searching for perfect repeats, the 

detection algorithm must use uniform fuzzy measures to select a probable microsatellite 

region in the individual fragment that can contain mutations or read errors. 

Many algorithms for tandem repeat detection exist.  One group is based on 

computation of alignment matrices with the best running time complexity of O[N^2 

polylog(n)] for a sequence of length n and is therefore not useful for long sequences.  
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Another group of algorithms finds tandem repeats indirectly using data compression 

methods (i.e. by detecting ‘simple sequence’ mixtures of fragments that occur 

elsewhere), but does not guarantee to give true microsatellites (i.e. CABIOS) (Benson 

1999).  A third group of algorithms aims more directly at tandem repeat detection but is 

either too biased toward one type of microsatellite or requires user input concerning 

microsatellite features such as motif or length.  Hence, Tandem Repeats Finder (TRF) 

was used to detect all microsatellites found in individual sequences.  This unique 

algorithm was chosen according to many factors, including its method of k-tuple 

matching in avoidance of full scale alignment matrix computations, the use of percentage 

differences between adjacent copies and separate treatment of substitutions and 

insertions/deletions, and determination of different repeat units in the same region.  TRF 

also does not require a-priori knowledge about microsatellite’s motif, its size, or number 

of motif copies present (Benson 1999).  TRF detects microsatellite regions by scanning 

the sequence with a small window, determining the distance between exact matches, and 

testing the statistical criteria calculated dynamically for each microsatellite.  These 

statistical criteria are based on four distributions that depend on microsatellite length, 

matching probability, insertion/deletion probability, and motif size.  Therefore, this 

algorithm is able to select the best microsatellites without bias toward any distinct types. 

Since the individual fragments can have sequencing errors, we can measure the quality of 

each microsatellite using Phred’s error probabilities (see implementation).         
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1.5 MACHINE LEARNING: NEURAL NETWORKS 

A computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E (Mitchell 1997).  These machine learning methods play 

essential roles in data-mining and difficult-to-program applications (Mitchell 1997).  

Since Phred’s error probabilities are not exact and an algorithm for accurate 

determination of these error probabilities does not exist, a machine learning method 

described below has been used to more accurately determine the quality of each base in 

the fragment’s microsatellite region.  Thus, in the supervised learning model used for this 

project, the machine learning method was trained on sample patterns (E)  and attempted 

to minimize (T) the sum of differences (P) between error predictions with values between 

0 and 1 and apparent error occurrences (binary values) for all samples in E.  A validation 

set of examples was created to make sure the method was not approximating the training 

patterns too closely (i.e. overfitting) and was able to handle examples outside the training 

set. 

The Neuroshell2 neural network was used in this research.  Artificial neural 

networks (ANNs) are mathematical models of biological neural systems.  An ANN is 

formed by interconnected processing elements inspired by biological neurons.  The 

interconnections that are similar to synapses within the feed-forward network are such 

that every neuron in each layer is connected to every neuron in the adjacent layers.  Each 

interconnection has a scalar weight that is adjusted during the training phase.  The basic 

feed-forward network performs a non-linear transformation of input data to approximate 

the output data by adding up all the incoming signals multiplied by the connection 
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weights to the neuron’s bias weight in each neuron, putting the total through the transfer 

function, which is usually sigmoidal, and signaling the next layer through all of the 

outgoing connections with the transfer function output (Figure 6).  

 

 
 

out1 = f(biasO+v1*f(biasH1+w1,1*in1+w1,2*in2)+v2*f(biasH2+w2,1*in1+w2,2*in2)) 
transfer function: f(x)=1/(1+(1/εx)) 

 

Figure 6: Feed-forward neural network topology 

 

A number of papers have shown that a three-layered feed-forward network has the ability 

to approximate any non-linear continuous function to an arbitrary degree of exactness, 

given that the hidden layer contains a sufficient number of nodes (Rumelhart 1994). The 

problem of determining the network weights is essentially a non-linear optimization task.  

The gradient descent back-propagation method is the most popular training algorithm for 

the determination of these weights. Each pattern is presented to the network, propagated 

forward to the output layer, and gradient descent (see below) is used to minimize the total 

error on the patterns in the training set by changing the weights in proportion to the 

negative of an error derivative with respect to each weight (Rumelhart 1994).   
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For example, the change in the output connection weight is calculated using the 

chain rule as follows.  If error E=1/2(out1-target)2, y= biasO + 

v1*f(biasH1+w1,1*in1+w1,2*in2) + v2*f(biasH2+w2,1*in1+w2,2*in2), and zk= 

biasHk+w1,k*in1+w2,k*in2, then ∆E/∆vk=∆E/∆out1 * ∆out1/∆y * ∆y/∆vk = (out1-

target)*out1*(1-out1) * ∆y/∆vk = p * ∆y/∆vk where p=(out1-target)*out1*(1-out1).  

Therefore, ∆E/∆v=p*f(zk) and change in v is equal to –1* ( p*f(zk)).  Calculation of the 

change in wk,j is similar to the calculation of the change in vk,j where E/∆wk,j =∆E/∆f(zk) * 

∆f(zk)/∆zk * ∆zk/∆wk,j.  Moreover, the derivative of the network’s error with respect to a 

hidden node’s output is the sum of that hidden node’s contributions to the errors of all the 

output nodes (Smith 1993).  Since there is only one output node in our example, 

∆E/∆f(zk)=p * ∆y/∆f(zk)=p*vk, making the change in wk,j = -1(E/∆wk,j) = -1(p*vk*f(zk)(1-

f(zk))*(ink)) or    -1(q*ink).  For biasO the change is equal to –p, and for biasHk the 

change is equal to –q. 

After a certain number of patterns have been processed, a neural network evaluates the 

validation set and saves the weights that gave the best results for the validation set. 
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CHAPTER 2 

MICROSATELLITE DETECTION 

This chapter describes how MSPF can be used in in-silico detection and verification of 

microsatellites as well as in the overall fragment assembly verification.  Section 2.1 

explains the application of MSPF in microsatellite detection and verification.  Section 2.2 

describes the machine learning method used in enhancing the microsatellite detection 

process.   

 

2.1 MICROSATELLITE POLYMORPHISM FINDER (MSPF) APPLICATION 

Due to aforementioned contig errors, in-silico verification is rarely possible.  To 

lower the time required to search through all contig-level microsatellites using chemical 

methods, redundancy of low-level genotype-specific data in an existing database can be 

exploited in order to more accurately identify high quality, polymorphic microsatellite 

markers.  MSPF attempts to reliably detect microsatellites, measure the size of genotype-

level microsatellites, and to verify the assembly of the consensus sequence through the 

implementation of virtual PCR.  By taking all sequences present in the contig and using 

sequence-level microsatellite information produced by TRF and machine learning results 

from Phred/Phrap data, MSPF verifies genotype-level microsatellite length by modeling 

PCR.  Virtual PCR was made possible by calculating the average difference between the 

positions of best alignments of oligonucleotide primers designed from the highest quality 

micorosatellite borders to other sequences.  For example, Figure 7 shows single “ag” 
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repeat genotype difference, or the average genotype difference of –2 bases for genotype 

A003 and the average difference of 0 for genotype A002.  

 

 

Figure 7: Virtual PCR 

 

That is, by detecting probable microsatellites in sequences, organizing them into 

groups based on their positions in the consensus sequences, and analyzing the groups to 

detect the inter-genotypic length differences, it was possible to find a subset of 

microsatellite polymorphisms as a byproduct of initial sequencing without extra work for 

microsatellite genotyping done separately.  A polymorphic microsatellite identified by 

MSPF is shown in the viewing interface in Figure 8, where the stars in reads represent 

the insertion/deletion symbols used by Phrap for fragment alignment.  This interface 

accesses the database (see section 3.4) to display the microsatellite regions found in 

individual sequences on the right side.  A single sequence with a shorter microsatellite 
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length has a genotype code of A011 which is included at the end of the sequence name on 

the left side. 

 

 

 

Figure 8: Polymorphic microsatellite 

 

Moreover, misassembled contigs were identified by detecting contigs that either 

had a large variance in microsatellite lengths found in individual sequences of the same 

genotype or had sequences missing a specific microsatellite that occurred in other 

sequences. 

 



  19 

 

2.2 MACHINE LEARNING METHODS IN MICROSATELLITE DETECTION 

Phred error probabilities have been confirmed experimentally.  The accuracy of 

each base call, however, remains questionable.  In an effort to improve the accuracy of 

base quality values and, subsequently, the accuracy of microsatellite quality values, 

machine learning has been used to modify base quality values in sequences where a 

microsatellite has been detected. By compiling Phred errors, a neural network was used 

to predict the probability of error around a given base based on Phred statistics as well as 

a short stretch of chromatogram data around the base (see section 3.2).  Since Phred uses 

the function (quality value)= -10*log(error probability), Phred error probability and the 

machine learning method probability were weight-averaged in an effort to more precisely 

identify the accuracy of microsatellite region base-calls and produce a better overall 

quality value for improved virtual PCR verification.  If a machine learning error 

probability was strong (within 0.2 of 1 or 0), Phred’s error probability for the same base 

was extracted from the quality value, pulled one third of the way toward neural network 

error probability (1/3rd gave the best results), and a new quality value was calculated 

from the resulting error probability.  Once all base quality values were dynamically 

generated for each detected microsatellite in the fragment, the overall microsatellite 

quality value was recalculated. 

 

2.3 CONSENSUS SEQUENCE VERIFICATION 

Since sequence assembly programs often generate misassembled contigs, some 

misassembled contigs can be identified by finding sequences that overlap the contig-level 

microsatellite but do not contain a copy of that microsatellite.  This usually occurs when 
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a different sequence overlaps with the contig outside a short microsatellite region and 

causes the greedy algorithm to form a wrong layout.  Since the consensus sequence ends 

up being misassembled, it is unlikely that it represents a valid coding region for a protein 

sequence.    
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CHAPTER 3 

IMPLEMENTATION 

This chapter describes the implementation of MSPF.  MSPF has been modeled 

and implemented through an Oracle relational database management system (RDBMS), 

but it could have been written to use Phrap text files just as easily.  Techniques used to 

ensure the reliability of the results included the use of Phred error probabilities (averaged 

with machine learning error probabilities) for the bases in the sequences’ microsatellite 

regions and Phrap consensus sequence alignment information.  Section 3.1 deals with 

sequence-level microsatellite detection and explains contig-level microsatellite 

clustering.  Section 3.2 explains machine learning methods used in microsatellite 

detection.  Section 3.3 explains inter-genotypic polymorphism detection.  Finally, section 

3.4 describes the design of the MSPF schema and flow of data. 

 

3.1        SEQUENCE-LEVEL MICROSATELLITE DETECTION AND CONTIG-

LEVEL MICROSATELLITE CLUSTERING 

Contig-level microsatellites were detected from sequence and contig data 

produced by Phred/Phrap.  A graphical user interface for MSPF (Figure 9) was written 

for passing parameters and the structure of the database to the program in order to 

analyze data internally, and insert it back into the database in the new schema. 
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Figure 9: MSPF interface 

 

The first step involved looking for the microsatellites, both high and low quality 

ones, and computing their attributes (length, quality, etc.).  TRF was used to locate the 

microsatellites in Phred-produced sequences.  Since sequencing errors and mutations are 

usually found in the individual fragments, TRF identifies the parts of the sequence that 

are most likely to be microsatellites.  Moreover, because TRF identifies variable number 

tandem repeats (VNTRs) with long motifs, only probable microsatellites with motif 

length from two to six were used. 
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An average quality value of each microsatellite was computed by reading TRF’s 

alignment of the found microsatellite to the perfect copy of that microsatellite.  Reading 

the alignment sequentially, if the actual base was the same as the base in the perfect 

theoretical microsatellite, the quality value of the base in the actual copy was multiplied 

by two.  If an error occurred, the quality value (or previous quality value in the case of 

deletion) was multiplied by negative seven.  The parameters of two and seven are the 

strictest among the most common ones used for local Smith-Waterman alignment 

algorithm and have been widely used in sequence comparison search algorithms with 

good results.  To calculate the average quality value, the sum of all quality values was 

divided by the number of bases in the perfect microsatellite (Figure 10). 

 

 

 

Figure 10: Microsatellite quality calculation 

 

Then, the microsatellites were analyzed and sorted based on their positions in the 

contigs.  Since consensus sequence microsatellite detection is error-prone, only low-

granularity alignment information was used.  That was accomplished by creating 
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groups/clusters of same-motif microsatellites for each contig where each microsatellite in 

a group either started or ended within a user-provided threshold (a parameter of 7 was 

found to give good groups), or was completely “inside” a bigger microsatellite (Figure 

11).   

 

 

Figure 11: Contig-level grouping 

 

All other properties were determined by correlating results of TRF to the database 

information.   This sequence-level microsatellite information was inserted into the 

schema in the ms_in_seq table (Figure 12, see section 3.4).   
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Figure 12: MSPF schema 
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3.2 NEURAL NETWORK SETUP 

To provide the problem/solution training set for the neural network, apparent 

Phred sequence errors were extracted from the database.  Information included from 

Phred results contained a stretch of five bases around the error, their quality values, and 

their distance from the apparent error based on the chromatogram.  Information from the 

sequence chromatogram (Phred source code was modified to output the trace values) 

included the trace position of the error and four stretches of fifty trace values around the 

error, creating a total of 216 inputs.  The inputs were chosen to correspond with the 

information Phred uses to calculate the error probability.  To extract examples where 

Phred made an error, well-aligned contigs and sequences belonging to them were 

scanned.  Locations in sequence overlaps that had different bases, including the 

padding symbol used to align the sequences, from the majority of corresponding bases 

in different sequences and the contig were tagged.  Tagging occurred after verifying 

the sequence in which an error was found had no more than two insertions/deletions in 

the window of length ten that was centered on the error location and had overlaps formed 

with at least three sequences of the same genotype and the contig with more than 95% of 

bases matching.  The parameter of 95% was used since Phrap uses that value during LLR 

calculation.  The window length of ten was chosen because it was long enough to 

produce a high Phred error probability, yet short enough to match locations close to the 

ends of the sequences which were given preference during the insertion into the training 

set since traces are more prone to distortion near the termini of a polymer-filled capillary.  

Then, the error position in the sequence was aligned to the trace location and the trace 

values around the error location were extracted.  Around eight hundred positive (different 
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base) and three thousand negative (error-free, random location) samples were located.  

Approximately, 500 positive and 2000 negative samples were extracted into the training 

set with the rest of the samples placed in the validation set.     

On a sidenote, an attempt was made to use the XCS classifier system instead of 

a neural network.  XCS maintains a population of classifiers where each has a fitness 

based on a measure of the prediction accuracy (Wilson 1995).  XCS executes a 

genetic algorithm (where each classifier represents a single rule a.k.a. Michigan 

approach) to find the optimal classifiers in different accuracy niches defined by 

training samples (Kovaks 1996).  In the result evaluation stage, each classifier is 

matched to the validation set.  If the classifier matched a sample, the prediction with a 

value 0 or 1 was multiplied by classifier’s accuracy/fitness to produce the error 

probability estimate and compared to the correct sample output.  XCS classification 

resulted in eleven classifiers after five runs with a population size of five hundred and 

two million fitness determinations.  Unfortunately, XCS was unable to generalize well, 

correctly matching only one resulting classifier with the validation set sample in the 

fourth run and one in the fifth run and incorrectly matching one classifier in the fifth run.  

Furthermore, it required several days for each run to produce the classifiers.  Better 

results were not found after changing the scaling criteria and using a smaller number of 

fitness evaluations. 

Thus, the NeuroShell2 feed-forward, three-layer, gradient descent back-

propagation network with 990 hidden nodes, which achieved seventy five percent 

accuracy on the validation set after about 150 epochs or twenty-four hours, was used.  

The number of approximately 700 hidden nodes was suggested by Neuroshell2 after 
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defining the inputs and selecting the “complex” granularity function estimate.  Samples 

were selected randomly from the training set.  The number of training samples processed 

between each validation set evaluation was set to 7600, or about three epochs.  Since the 

training took approximately 24 hours, the small number of epochs between validation set 

evaluations was used to visually track the improvements during the neural network 

training process.  Overfitting was prevented by saving the configuration that gave the 

best results for the validation set.  No scaling was done, and the comparison of the runs 

with varying number of hidden nodes showed that the most accurate validation set 

classification was provided by the network with 990 hidden nodes. 

 

3.3 MICROSATELLITE VERIFICATION 

Polymorphisms were identified based on the analysis of the microsatellites in the 

unique contig/group combination to see if some of them had different numbers of repeats 

that could be correlated to the genotype from which they originated.  While a 

straightforward approach of seeing whether different genotypes have a different number 

of repeats in the same place is fairly sensitive, it also produces a large number of false-

positives because of errors in the original sequences or misassembled contigs.  To get 

around the problem of having to review a large number of possible polymorphisms 

manually, the average genotype fragment length between two primers produced by 

virtual PCR was used instead of the numbers of repeats.  Since TRF often does not 

identify the exact starting and ending position of the microsatellite in the contig, the 

primers were recorded from the best sequence’s flanking regions outside the longest, 

highest-quality microsatellite in a group ( [(quality value*length)+(Σ(border quality 
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values))] parameter was maximized).  Thus, the highest-quality microsatellite was picked 

based on quality values produced by Phred error probabilities or, in the neural network 

version, on a weighted average of Phred and machine learning error probabilities.  A 

certain number of bases (parameter set to two) were skipped before the start and after the 

end of the microsatellite to make sure the recorded adjacent borders of length twenty-one 

(oligonucleotides primers) were outside the microsatellite region.  These oligonucleotide 

lengths are commonly used during chemical PCR since the probability that they will 

match in more than one place in the genetic sequence is fairly low.  Then, every other 

microsatellite in the same group was analyzed to see whether the length between the 

recorded parts (borders) was different for some genotypes on average.  This was done by 

sequentially comparing the recorded border with a same-length part (even a low quality 

part not used in the contig) of the sequence in which the other microsatellite was found 

and recording the location of the best match.  Comparison was done by calculating the 

Levenshtein’s edit distance or the number of insertions/deletions between two strings.  

Clearly, the accuracy of this approach will increase with the number of sequences in the 

contig.  While this approach is unable to find microsatellites that are located close to the 

ends of the sequence, it proved to be very accurate.  Results were parsed into ms_in_ctg, 

ms_in_genotype, and ms_gt_difference tables. 

Fail-safe conditions: To make sure that results were accurate, a certain number of 

parameters that were briefly mentioned above were included, and most of the values were 

borrowed from specific parameters used for sequence assembly and similarity search 

programs and adjusted slightly to maximize the quality of results.  An option was set to 

pass the parameters from user input, or the defaults (see below) were used if the 
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parameters remained undefined.  If a microsatellite had an average quality below a user-

supplied threshold, started extremely close to the beginning of the sequence, or ended 

close to the end of the sequence, it was not used. The default value of 32 for the threshold 

was chosen since it would correspond to a perfect microsatelite with all Phred quality 

values of 16, which is a threshold quality value used in the lab to truncate low quality 

sequences.  To make sure that the borders had no chance to be identified in other parts of 

the sequence, sequence-level microsatellites were not considered if the border difference 

on each side of the microsatellite was higher than a certain threshold (20) of the 

calculated average or if the border match was lower than 0.81.  Polymorphisms were 

identified if the average border-gap difference was higher than two, or the least value of 

difference for the polymorphic microsatellite with the motif length of two. 

 

3.4 MSPF SCHEMA DESIGN AND FLOW OF DATA  

Microsatellites were grouped on three levels shown in separate tables in Figure 8. 

Sequence-level information was recorded in ms_in_seq table, contig-level information in 

ms_in_ctg table, and genotype-level information in ms_in_genotype table.  Moreover, the 

genotype difference or polymorphic genotype-level microsatellite information was 

recorded in the ms_gt_difference table.  Primary/foreign keys were used to keep the 

relationships valid.  Every table contained a RUN_ID attribute to separate different 

executions of MSPF.   

Table ms_in_seq had a primary key with three fields: SEQ_NAME, a sequence in 

which a microsatellite has been found, MS_GRIC, microsatellite’s general record insert 

count which is unique in the same SEQ_NAME, and RUN_ID.  REPEAT_MOTIF 
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attribute contained the microsatellite motif that repeats throughout the microsatellite 

region REPEAT_LENGTH attribute described the number of bases in the motif.  

MS_START contained position where the microsatellite starts in the fragment, 

MS_STOP enclosed the position where the microsatellite ends in the fragment, and 

MS_LENGTH contained the difference of the two previous values.  

MS_CONTIG_START recorded the position where the microsatellite starts in the contig 

and MS_CONTIG_STOP enclosed the position where the microsatellite ends in the 

contig.  REPEAT_NUMBER contained TRF’s best guess at the number of repeats 

present in the fragment’s microsatellite.  After extracting Phred base values for each base 

in the fragment’s microsatellite region, QUAL_VALS contained the extracted sequence, 

QUAL_MIN enclosed the lowest quality value in the extracted sequence, and 

QUAL_VAL described the overall value of the microsatellite computed with the 

procedure described in section 3.1. 

Since microsatellites were clustered into groups based on fragments’ alignments 

in a contig table ms_in_ctg had a primary keys with four attributes: UNIQ_CTG_ID 

which contained the unique identification string for a contig, MS_GROUP_NUM that 

enclosed unique group id of all microsatellites that overlapped within a specific 

RUN_ID, UNIQ_CTG_ID combination, and RUN_ID.  MS_ANCHOR_SEQ and 

MS_ANCHOR_ID specified the best-quality microsatellite that provided the 

oligonucleotide borders used for virtual PCR verification.  TAG_ANCHOR_MS_SEQ 

was used if the microsatellite was found to be the best one in the contig-level group, and 

TAG_ALIGN_ANCHOR_MS was used if it was verified by virtual PCR. 
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Moreover, these contig groups were broken up into genotype-level groups in the 

ms_in_genotype table.  It had a primary key of length four where the first three fields 

were also used as a foreign key from the ms_in_ctg table: UNIQ_CTG_ID, 

MS_GROUP_NUM, RUN_ID, and the GT_COMBINE_CODE which described a 

specific genotype.  Also, GT_POLYMORPHIC tag was used if a genotype-level 

microsatellite was different from another one and GT_AVERAGE_SHIFT was updated 

with the average length difference of a genotype-level microsatellite from the best 

sequence-level microsatellite in a unique RUN_ID, UNIQ_CTG_ID, MS_GROUP_NUM 

combination . 

If two distinct genotypes from the same primary key in ms_in_ctg table had 

different GT_AVERAGE_SHIFT values in the ms_in_genotype table, the difference was 

recorded in the ms_gt_difference table.  It had a GT_COMP_SET_ID primary key, 

which provided a unique identification number of each difference in genotype-level 

microsatellites.  Foreign key combinations of 

UNIQ_CTG_ID/MS_GROUP_NUM/RUN_ID/ GT_COMBINE_CODE_COMP1 and 

UNIQ_CTG_ID/MS_GROUP_NUM/RUN_ID/ GT_COMBINE_CODE_COMP2 

referenced specific primary keys in the ms_in_genotype table. 

Because the ms_in_seq and ms_gt_difference tables contained the primary keys 

from ms_in_genotype table which, in turn, referenced ms_in_ctg primary keys, those 

primary keys were inserted first, in the ms_in_ctg table, and then in ms_in_genotype 

tables as the contig-level groups were found.  Relevant ms_in_seq attributes were 

inserted after the contig-level clustering .  After virtual PCR verified each genotype-level 

microsatellite in the contig group using the primers from the best-microsatellite in the 



  33 

 

group, non-primary attributes in ms_in_ctg, ms_in_genotype and 

ms_genotype_difference tables were updated.  The MS_ANCHOR_SEQ, 

MS_ANCHOR_ID, TAG_ANCHOR_MS_SEQ, and TAG_ALIGN_ANCHOR_MS 

attributes were also updated in the ms_in_seq table at that time. 
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CHAPTER 4 

ANALYSIS 

This chapter provides the details of the execution of MSPF on highly inbred 

sorghum sequences (low amount of genotype variability).  Moreover, since the total 

number of genotypes was fairly low, not many polymorphisms have been detected.  

Section 4.1 describes the input.  Section 4.2 describes the output from MSPF.   

 

4.1 INPUT 

TRF was executed on a total of 158,901 sorghum sequences.  Genotypic counts 

were: 

Genotype code             Number of sequences 

A001   1,210 

A002   115,914 

A003   28,318 

A010   4,608 

A011   8,448 

Approximately 58,000 of these sequences were assembled by Phrap into a total of about 

9000 contigs with average length of 651 nucleotides, each consisting of two or more 

sequences.  Approximately half of the contigs contained sequences of different 

genotypes.  
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4.2 RESULTS 

A total of 719 microsatellite regions (with motif lengths from two to six) were 

found with an average length of 26.  Approximately two days were needed to produce all 

sequence- level microsatellite information using TRF and Phred results on a 2Ghz Intel 

P4 machine with 512 MB of RAM.  PCR verification took less than an hour on a 4,400 

member subset of all sequence-level microsatellites which were organized into contig-

level groups.  Since, neural network evaluations were preprocessed, enhanced PCR 

verification did not need more processing power. A large majority of microsatellite 

regions found contained a motif length as a multiple of three, the size of a codon (Figure 

13).   The most common motifs and their frequencies are illustrated in Figure 14. 
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Figure 13: Microsatellites of specific motif lengths 
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Figure 14: Common motifs 

 

Among all microsatellites, slippage-mediated expansions/deletions of only repeats 

with a motif length as a multiple of three can be tolerated in coding regions because they 

do not disturb the reading frame.  If an insertion/deletion of length other than a multiple 

of three occurs, the resulting protein sequence will be different in all amino acids inserted 

after the mutation point since mRNA is translated in sets of three bases.  This change is 

likely to destroy any chance that the protein will fold into a functional enzyme and make 

the organism unfit for future selection. 

On average, one microsatellite was found for less than every 8.5 kb of contigs 

surveyed, performing better than other estimates that were done conventionally (Edwards 

et al. 1991).   MSPF, because of its use of virtual PCR, determines SSR length accurately 
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irrespective of accumulated mutations.  For example, a sequencing error at the end of a 

microsatellite (Figure 15) did not result in erroneous detection of a polymorphism (Figure 

16). 

 

 

 

Figure 15: Single nucleotide polymorphism 
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Figure 16: Microsatellite example 

 

The neural network enhanced version was able to detect several contig-level 

microsatellite regions more accurately by picking better sequence-level microsatellites 

(best microsatellite changed in forty cases or in 5.5% of the dataset) for the basis of 

digital PCR, thus producing lower average genotype shifts (average difference of 0.005 

for the entire dataset) and, in several cases, including more sequences in the contig-level 

microsatellite.  Since the locations close to the ends of the reads were given preference 

for extraction into the training set, the neural network improved results in the lower 

quality regions close to the end of the sequences, the regions that are usually not 

completely included in the contig but still used in microsatellite verification. 
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Presumably due to the fact that 73% of the ESTs came from a single, highly 

inbred sorghum genotype, polymorphic SSRs were identified in only 1.5% of all contigs, 

for a total of 10 (Table 1).  

 

Table 1: Microsatellite polymorphisms 

 

Contig number Genotype code Number of sequences SSR motif SSR length 

2_3653 A010 1 CTACA 22 

  A002 2 CTACA 27 

2_5460 A010 1 GA 48 

  A011 1 GA 56 

2_7830 A002 3 GGCGCT 28 

  A010 1 GGCGCT 22 

2_840 A003 1 CACTG 25 

  A001 1 CACTG 20 

2_8380 A002 5 ACCCA 30 

  A010 1 ACCCA 20 

2_3241 A010 1 AC 53 

  A002 1 AC 63 

2_8299 A003 1 CTG 36 

  A002 4 CTG 51 

2_7121 A011 1 TAA 24 
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  A003 1 TAA 30 

  A002 2 TAA 24 

2_7788 A002 5 AG 38 

  A011 1 AG 34 

2_6757 A002 3 AG 25 

  A003 1 AG 23 

 

All of the polymorphic microsatellites differed by a whole number of repeat units since 

they were produced by slipped-strand mispairing. 

Twenty two contigs out of 719 that contained verified microsatellites have also 

been found to be misassembled by Phrap where a sequence missing a specific 

microsatellite was included in the consensus sequence (Figure 17). 

 

 

 

Figure 17: Misassembled contig
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CHAPTER 5 

CONCLUSIONS 

Since MSPF finds reliable microsatellites and microsatellite polymorphisms using 

redundant low-level data with minimal reliance on contig assembly information, it can be 

used as a reference for faster, cheaper PCR verification.  Moreover, this is the first in-

silico approach that accurately detects microsatellite polymorphisms.  It was able to 

correctly identify 1.5% of all microsatellites as being polymorphic even with the low 

coverage provided by the dataset.  On average, it detected a microsatellite for 

approximately every 7 kb of the coding regions surveyed.  As the sizes of shotgun-

sequencing/EST databases continue to increase exponentially worldwide it can provide 

an automated, low-cost method of genotyping that is run completely in-silico and without 

the requirement for expensive materials or human intervention used in chemical 

verification.  Furthermore, we have shown that sequencing accuracy can be improved 

using machine learning methods.  All of the reviewed methods classified training samples 

found in old data and bootstrapped the existing algorithm to a higher degree of accuracy.  

An artificial feed-forward, three-layer, gradient-descent back-propagation neural network 

has been found to be more useful than the XCS classifier system in this domain.  The 

neural network was able to classify more training samples into general groups in less than 

24 hours as opposed to several days needed to evolve the XCS classifiers.  It achieved 

75% accuracy on the validation set, and produced accurate predictions that were weight-

averaged with the existing values.  These new solutions improved the quality of virtual 
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PCR verification by more accurately predicting base error probabilities in individual 

sequencing reads.  Genotype shift attributes produced by virtual PCR improved by 

approximately 0.4% on average after using forty new solutions produced by the neural 

network.  More experimentation with machine learning methods could be performed to 

achieve higher quality solutions not only for virtual PCR microsatellite verification but 

for fragment assembly problems as well by using higher-accuracy base quality values. 
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