

MICROSATELLITE DETECTION AND CONSENSUS SEQUENCE VERIFICATION

BY VIRTUAL PCR AND MACHINE LEARNING

by

DMITRI KOLYCHEV

(Under the Direction of KHALED RASHEED)

ABSTRACT

Microsatellites, or simple sequence repeats, are genetic loci where several
nucleotide bases are repeated in tandem. Since they can be easily found by Polymerase
Chain Reaction (PCR) using unique flanking primers, they are considered excellent
genetic markers in making genetic linkage maps among other things. In this thesis we
present Microsatellite Polymorphism Finder (MSPF), a program that detects and then
verifies microsatellites by modeling PCR digitally from an Expressed Sequence Tag
(EST) or a shotgun-sequencing database without the overhead required to perform PCR
chemically with human intervention. Moreover, a machine learning enhanced version of
MSPF improves the accuracy of microsatellite verification.

INDEX WORDS: microsatellite detection, neural networks, polymerase chain

reaction, consensus sequence verification

MICROSATELLITE DETECTION AND CONSENSUS SEQUENCE VERIFICATION

BY VIRTUAL PCR AND MACHINE LEARNING

by

DMITRI KOLYCHEV

A Thesis Submitted to the Graduate Faculty of the University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2003

© 2003

Dmitri Kolychev

All Rights Reserved

MICROSATELLITE DETECTION AND CONSENSUS SEQUENCE VERIFICATION

BY VIRTUAL PCR AND MACHINE LEARNING

by

DMITRI KOLYCHEV

Major Professor: Khaled Rasheed

Committee: M.M. Cordonnier-
Pratt
Walter D. Potter

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
August 2003

iv

DEDICATION

To all I ever cared about…

v

ACKNOWLEDGEMENTS

Thanks to UGA faculty for providing me with valuable experience during the last

four years: Lee Pratt, Marie-Michele Cordonnier-Pratt, and Khaled Rasheed for giving

me insight into the biological domain, providing me with access to data and leading me

in this research area, Walter D. Potter for support and suggestions. Special thanks to

Manish Shah, Chun Liang, and Robert Sullivan for implementation suggestions.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS...v

LIST OF TABLES... viii

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION ...1

 1.1 GLOSSARY..1

1.2 BIOLOGICAL BACKGROUND ...3

1.3 COMPUTATIONAL OVERVIEW OF DNA

SEQUENCING/ASSEMBLY ...6

1.4 MICROSATELLITE DETECTION ALGORITHMS11

1.5 MACHINE LEARNING: NEURAL NETWORKS..........................13

2 MICROSATELLITE DETECTION..16

2.1 MICROSATELLITE POLYMORPHISM FINDER (MSPF)

APPLICATION...16

2.2 MACHINE LEARNING METHODS IN MICROSATELLITE

DETECTION...19

2.3 CONSENSUS SEQUENCE VERIFICATION.................................19

3 IMPLEMENTATION..21

vii

3.1 SEQUENCE-LEVEL MICROSATELLITE DETECTION AND

CONTIG-LEVEL MICROSATELLITE CLUSTERING.....................21

3.2 NEURAL NETWORK SETUP...26

3.3 MICROSATELLITE VERIFICATION..28

3.4 MSPF SCHEMA DESIGN AND FLOW OF DATA30

4 ANALYSIS..34

4.1 INPUT ...34

4.2 RESULTS..35

5 CONCLUSIONS..41

REFERENCES ..43

viii

LIST OF TABLES

Page

Table 1: Microsatellite polymorphisms ...39

ix

LIST OF FIGURES

Page

Figure 1: Slipped-strand mispairing ..3

Figure 2: Sequencing read trace ..7

Figure 3: Fragment assembly as a Hamiltonian path problem ..8

Figure 4: LLR calculation..9

Figure 5: Mosaic consensus: a maximum weight tiling path...10

Figure 6: Feed-forward neural network topology..14

Figure 7: Virtual PCR ..17

Figure 8: Polymorphic microsatellite ..18

Figure 9: MSPF interface...22

Figure 10: Microsatellite quality calculation...23

Figure 11: Contig-level grouping ..24

Figure 12: MSPF schema...25

Figure 13: Microsatellites of specific motif lengths ..35

Figure 14: Common motifs ..36

Figure 15: Single nucleotide polymorphism..37

Figure 16: Microsatellite example ...38

Figure 17: Misassembled contig ..40

 1

CHAPTER 1

INTRODUCTION

This chapter seeks to introduce biological concepts behind microsatellite

detection and verification in DNA sequences, algorithms currently used by major

sequencing laboratories, and the machine learning method that has been used to enhance

a new approach of microsatellite detection/verification in Microsatellite Polymorphism

Finder (MSPF). Currently, these important genetic markers are detected in the consensus

sequences produced by flawed fragment assembly methods and verified chemically

through human intervention. The approach described in this thesis detects microsatellites

by using redundant individual fragment information and verifies them by modeling the

chemical process of the Polymerase Chain Reaction (PCR) in-silico, producing fast and

accurate results. Section 1.1 provides a glossary of terms. Section 1.2 explains the

biological background and significance of microsatellites. Section 1.3 explains common

computational methods used in DNA sequencing. Section 1.4 describes algorithms used

for generic microsatellite detection. Finally, section 1.5 describes specific machine

learning method used.

1.1 GLOSSARY

-Chromatogram: a plot of a detector’s response versus time; in genome sequencing, the

relative emission peaks of the four fluorescently labeled nucleotides (ATGC) as a

function of time (e.g., as sequencing proceeds).

 2

-Contig: consensus sequence or a continuous region of genomic DNA that has been

cloned as a series of identifiable overlapping DNA clones.

-Microsatellites: simple sequence repeats (SSRs) or genetic loci where several nucleotide

bases or motifs are repeated in tandem (i.e., agagagagagagag).

-Oligonucleotide: short segment of DNA.

-Polyacrylamide gel electrophoresis: technique used to separate macromolecules

carried out in a polyacrylamide gel; movement of molecules is slowed according to the

dimensions relative to the size of pores in the matrix and the size of the macromolecules.

-Polymerase Chain Reaction: in vitro method of exponential DNA amplification,

involving the use of specific oligonucleotides to prime DNA synthesis from a specified

target DNA sequence and nucleotides; amplifies specific lengths of DNA located

between two annealed primers by repeated ‘thermal cycling’ reactions using a

thermostable polymerase enzyme. This mixture is thermally cycled through three steps;

denaturation, obtained by melting of the target DNA double strand, annealing of the

primers to the target sequence, and extension of the primers by the DNA polymerase

using the nucleotides to form a second strand.

-Polymorphic: differing between distinct alleles (e.g., a microsatellite that has different

lengths in different alleles; for example, agagag in one allele and agag in another).

-Shotgun sequencing: sequencing method that involves assembling randomly sequenced

cloned pieces of the genome into a consensus sequence, with no foreknowledge of the

location from which the piece originated.

-Slipped-strand mispairing: process in which the single strands of a double helix pair

out of register, often at short tandem repeated sequences (Figure 1). The resulting

 3

daughter DNA strands will have corresponding deletions or insertions.

Figure 1: Slipped-strand mispairing

-Thermostable DNA polymerase: enzyme that allows the synthesis at high temperature of

double-stranded DNA by extension of a primer annealed to single-stranded DNA.

1.2 BIOLOGICAL BACKGROUND

A key practice in current genomic research is large scale genotyping. The

availability of dense, highly polymorphic, and uniformly distributed genetic markers is

crucial for mapping and subsequent genotyping, which are used to determine which

 4

genes are responsible for specific inherited traits. Microsatellites or simple sequence

repeats are genetic loci where a few nucleotide bases are repeated in tandem. They can

be found anywhere in the genome, both in protein-coding and noncoding regions. The

occurrence of polymorphic microsatellites is mostly due to slipped-strand mispairing

during DNA replication, repair, or recombination, which makes them exhibit relatively

frequent length polymorphism (Figure 1). Point mutations may also accumulate in the

microsatellite regions, producing corresponding substitutions, insertions, or deletions,

and the mutation rates usually increase with an increase in the length of the microsatellite

(Katti et al. 2001).

The discovery of diseases associated with microsatellites (e.g., Fragile-X

retardation, Friedreich ataxia, myotonic dystrophy, Huntington’s disease) and the

potential role of microsatellites in gene regulation sparked an interest in tandem repeats

among the scientific community. In addition, they have proven useful in the analysis of

paternity and kinship (Queller et al. 1993) and in sample identitification at both the

individual (Edwards et al. 1992) and population levels (Paetkau et al. 1995).

Furthermore, microsatellites are more desirable than larger tandem repeat loci that have a

motif length of six or longer because they can be analyzed more easily via the

Polymerase Chain Reaction and the alleles can be sized more unambiguously on

polyacrylamide gels.

Currently, PCR uses unique flanking primers or oligonucleotides designed from

the flanking regions around the microsatellite in the consensus sequence. This is followed

by electrophoresis for fragment-length sizing which forms the basis for microsatellite

genotyping. Since PCR involves the exponential amplification of DNA from a template

 5

using thermostable DNA polymerase, specific oligonucleotides are designed to direct

amplification between two specific sites on the template around the microsatellite where

each of those oligonucleotides bind. Since DNA has negatively charged phosphate

groups that make up the DNA phosphate backbone, gel electrophoresis can separate

DNA by fragment size: larger DNA pieces will progress more slowly through the gel

matrix toward the positive cathode and vice versa. Thus, verification and microsatellite

polymorphism detection is performed by looking at the size difference of the amplified

fragments. This size difference is viewed as a migration of respective bands formed after

gel electrophoresis. If the average amplified fragment size is different for some

genotypes, that fragment is considered to be polymorphic. Edwards et al. (1991)

examined the frequency of five microsatellite loci (tri and tetra repeats) on the X

chromosome, finding that for either the tri or tetra microsatellite loci, any given repeat

was found every 300 to 500 Kb. From this, they estimated that for all the 44 possible

unique trimeric and tetrameric repeats there are 400,000 loci or about 1 every 10 to 20

Kb (Edwards et al. 1991). This frequency did not change after complete sequencing of

other genomes occurred. Of the class of loci examined by Edwards et al. (1991), 50%

were polymorphic.

In this thesis, we use a large number of Expressed Sequence Tags (ESTs) from

sorghum (see www.fungen.org) to verify our approach. An EST database is created from

single-pass sequences of complementary DNA (cDNAs), which in turn are derived from

messenger RNA sequences (mRNAs). Each mRNA segment represents the expression of

a gene, that is composed of several joined exons, and codes for a specific protein

produced in the tissue sample. Hence ESTs are tags for those expressed genes. Every

 6

unique mRNA segment is transformed to a cDNA sequence and inserted into a

bacterium’s plasmid with the help of a phage. Then bacterium is grown overnight to

produce a colony of bacteria containing the same cDNA insert in each member. This

cDNA insert has an average size of 1,500 bases which may or may not cover the

complete cDNA length. Both ends of the insert are sequenced to produce two EST reads.

Due to sequencing limitations (see next section) only about 600 bases can be sequenced

during each dye terminator cycle sequencing reaction. If the ends of two sequencing

reads overlap, a complete sequence of the cDNA is found, but sometimes, the reaction

still runs short and leaves the space between the ends un-sequenced. Even though we

used an EST database, our approach could be used in any shotgun sequencing (see next

section) project which includes information from regions of DNA that do not code for

proteins since the methods of sequencing remain similar.

1.3 COMPUTATIONAL OVERVIEW OF DNA SEQUENCING/ASSEMBLY

A very popular DNA sequencing strategy known as "shotgun sequencing," which

is similar to EST sequencing, takes maximum advantage of the speed and low cost of

automated sequencing. This strategy relies totally on software to assemble a jumble of

essentially random sequence reads (which can contain errors) of length 100 to 1,000

nucleotide bases into coherent and accurate consensus sequences (contigs). In this type

of sequencing, one or more identical double stranded DNA sequences are put through the

automated dye terminator cycle sequencing reaction, in which the new DNA strand is

built along the original template. The elongation stops with the incorporation of the

fluorescently tagged terminating dideoxyribonucleotide (ddNTP) analogue inhibitor that

 7

identifies the last base in the new fragment because each of the four different ddNTPs

emits a unique wavelength profile following irradiation.

Using gel electrophoresis to separate each DNA fragment that differs by a single

nucleotide will band each ddNTP analogue inhibitor and produce a sequencing read

describing the intensity of each nucleotide base in a certain position in the read (Figure

2).

Figure 2: Sequencing read trace

These trace diagrams are analyzed by base calling programs. One of the most widely

used programs is Phred, which calls bases along with their quality values using Fourrier

transforms to match predicted to observed base intensity peak locations (Edwing et al.

1998). Phred’s quality value for each called base corresponds to the probability of an

error at that position. Phred’s factors (distance between the peaks, peak heights, and

areas under the peaks) have been empirically determined to predict the error probability

fairly well, however, exact error probability is unknown.

In theory, optimal alignment of multiple sequences is possible by extension of

pairwise algorithms, but since the problem can be represented as a Hamiltonian path, the

 8

number of calculations needed equals the sequence length raised to the power of the

number of sequences. Thus, fragment assembly programs are forced to use

heuristic/approximation algorithms to construct a consensus sequence out of error-

containing reads, which inevitably creates errors in contigs. In most fragment assembly

programs the consensus sequence is constructed through the greedy traversal of the

overlap graph (proven to form a sequence at most 2.75 times longer than the optimal

sequence). A weighted, directed graph is formed where each directed edge (u,v) is

weighted with the length of the maximal overlap between a suffix of fragment u and a

prefix of fragment v. Representation of maximum overlap differs between the

algorithms; some use distinct parameters found empirically to improve the accuracy of

the assembly. The highest-weight path that touches every node of the graph represents

the consensus sequence (path abcd represents the sequence of CTGCCATATA in Figure

3).

Figure 3: Fragment assembly as a Hamiltonian path problem

 9

Moreover, these programs often misassemble contigs by either joining different repeat

copies or by including many fragments from different repeat copies (Pevzner et al. 2001).

Phrap, the most widely used fragment assembly program, calculates overlap

scores using pairwise sequence alignments and error probabilities. Individual LLR

scores are calculated as log likelihood ratios (LLRs) for each base-pair in the overlap.

Furthermore, base-pair score calculation if the bases are the same will be different from

the score calculation if the bases do not match (Figure 4).

Figure 4: LLR calculation

If the bases in the same base pair are found to be the same then the base-pair LLR is

equal to log(1/0.95). If the bases are different then the base-pair LLR is calculated as

log((e+f-ef)/ (0.05+0.95(e+f-ef)) where e and f are base error probabilities. The LLRs of

each base pair are summed up to form the overlap LLR score. Moreover, this LLR

calculation makes the assumptions that alignment positions are independent of each

 10

other, base calls in the two reads disagree at the error position, and errors in reads are

independent of each other. The validity of these assumptions is supported by the fact that

each read was produced by a separate sequencing reaction.

The greedy algorithm that constructs the layout processes read pair alignment in

decreasing LLR overlap score order and merges the read with the contig if there are no

negative LLR scoring pairs and the positive LLR scoring pairs cover the region of the

overlap. This greedy algorithm usually gets the layout correct due to the ability of LLR

scores to distinguish most repeats. Finally, the mosaic consensus sequence is constructed

by applying Tarjan’s maximum-weight tiling path algorithm to a weighted directed graph

that represents the layout (hypothetical path shown in Figure 5). The nodes or ends of

heavy-colored arrows in this graph are the read positions in the layout. The edges are

either bidirectional between aligned positions in two overlapping reads (vertical arrows)

with a weight of zero or unidirectional between positions in the same read in the layout

direction (horizontal arrows) with a weight equaling the sum of Phred’s base quality

values.

Figure 5: Mosaic consensus: a maximum weight tiling path

 11

Phrap produces a text file with all the contigs and the sequences belonging to them. Our

laboratory parses this text file into the database for easier storage and analysis.

1.4 MICROSATELLITE DETECTION ALGORITHMS

Several algorithms are used to pick the primers used during PCR microsatellite

polymorphism detection by viewing the flanking regions around possible microsatellites

in consensus sequences. However, there is no guarantee of a contig being assembled

correctly in this region due to the presence of a microsatellite or a repeat. Thus, MSPF

attempts to find and verify microsatellites from sequence overlaps without actual reliance

on the consensus sequence information apart from loose clustering of sequences formed

by fragment assembly algorithms during the construction of the contig.

While searching for a microsatellite, definition of the minimum number of repeats

and mismatch considerations are important. Most of the previous studies have

considered only perfect repeats without any mismatches. Many long repeats, however,

contain mutations (Katti et al. 2001). Such microsatellites are likely to be counted as

several separate repeats of shorter length. Moreover, interruptions in a microsatellite

could be only a transitional state and could be removed by DNA replication slippage or

reverse mutations (Katti et al. 2001). Rather than searching for perfect repeats, the

detection algorithm must use uniform fuzzy measures to select a probable microsatellite

region in the individual fragment that can contain mutations or read errors.

Many algorithms for tandem repeat detection exist. One group is based on

computation of alignment matrices with the best running time complexity of O[N^2

polylog(n)] for a sequence of length n and is therefore not useful for long sequences.

 12

Another group of algorithms finds tandem repeats indirectly using data compression

methods (i.e. by detecting ‘simple sequence’ mixtures of fragments that occur

elsewhere), but does not guarantee to give true microsatellites (i.e. CABIOS) (Benson

1999). A third group of algorithms aims more directly at tandem repeat detection but is

either too biased toward one type of microsatellite or requires user input concerning

microsatellite features such as motif or length. Hence, Tandem Repeats Finder (TRF)

was used to detect all microsatellites found in individual sequences. This unique

algorithm was chosen according to many factors, including its method of k-tuple

matching in avoidance of full scale alignment matrix computations, the use of percentage

differences between adjacent copies and separate treatment of substitutions and

insertions/deletions, and determination of different repeat units in the same region. TRF

also does not require a-priori knowledge about microsatellite’s motif, its size, or number

of motif copies present (Benson 1999). TRF detects microsatellite regions by scanning

the sequence with a small window, determining the distance between exact matches, and

testing the statistical criteria calculated dynamically for each microsatellite. These

statistical criteria are based on four distributions that depend on microsatellite length,

matching probability, insertion/deletion probability, and motif size. Therefore, this

algorithm is able to select the best microsatellites without bias toward any distinct types.

Since the individual fragments can have sequencing errors, we can measure the quality of

each microsatellite using Phred’s error probabilities (see implementation).

 13

1.5 MACHINE LEARNING: NEURAL NETWORKS

A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E (Mitchell 1997). These machine learning methods play

essential roles in data-mining and difficult-to-program applications (Mitchell 1997).

Since Phred’s error probabilities are not exact and an algorithm for accurate

determination of these error probabilities does not exist, a machine learning method

described below has been used to more accurately determine the quality of each base in

the fragment’s microsatellite region. Thus, in the supervised learning model used for this

project, the machine learning method was trained on sample patterns (E) and attempted

to minimize (T) the sum of differences (P) between error predictions with values between

0 and 1 and apparent error occurrences (binary values) for all samples in E. A validation

set of examples was created to make sure the method was not approximating the training

patterns too closely (i.e. overfitting) and was able to handle examples outside the training

set.

The Neuroshell2 neural network was used in this research. Artificial neural

networks (ANNs) are mathematical models of biological neural systems. An ANN is

formed by interconnected processing elements inspired by biological neurons. The

interconnections that are similar to synapses within the feed-forward network are such

that every neuron in each layer is connected to every neuron in the adjacent layers. Each

interconnection has a scalar weight that is adjusted during the training phase. The basic

feed-forward network performs a non-linear transformation of input data to approximate

the output data by adding up all the incoming signals multiplied by the connection

 14

weights to the neuron’s bias weight in each neuron, putting the total through the transfer

function, which is usually sigmoidal, and signaling the next layer through all of the

outgoing connections with the transfer function output (Figure 6).

out1 = f(biasO+v1*f(biasH1+w1,1*in1+w1,2*in2)+v2*f(biasH2+w2,1*in1+w2,2*in2))
transfer function: f(x)=1/(1+(1/εx))

Figure 6: Feed-forward neural network topology

A number of papers have shown that a three-layered feed-forward network has the ability

to approximate any non-linear continuous function to an arbitrary degree of exactness,

given that the hidden layer contains a sufficient number of nodes (Rumelhart 1994). The

problem of determining the network weights is essentially a non-linear optimization task.

The gradient descent back-propagation method is the most popular training algorithm for

the determination of these weights. Each pattern is presented to the network, propagated

forward to the output layer, and gradient descent (see below) is used to minimize the total

error on the patterns in the training set by changing the weights in proportion to the

negative of an error derivative with respect to each weight (Rumelhart 1994).

 15

For example, the change in the output connection weight is calculated using the

chain rule as follows. If error E=1/2(out1-target)2, y= biasO +

v1*f(biasH1+w1,1*in1+w1,2*in2) + v2*f(biasH2+w2,1*in1+w2,2*in2), and zk=

biasHk+w1,k*in1+w2,k*in2, then ∆E/∆vk=∆E/∆out1 * ∆out1/∆y * ∆y/∆vk = (out1-

target)*out1*(1-out1) * ∆y/∆vk = p * ∆y/∆vk where p=(out1-target)*out1*(1-out1).

Therefore, ∆E/∆v=p*f(zk) and change in v is equal to –1* (p*f(zk)). Calculation of the

change in wk,j is similar to the calculation of the change in vk,j where E/∆wk,j =∆E/∆f(zk) *

∆f(zk)/∆zk * ∆zk/∆wk,j. Moreover, the derivative of the network’s error with respect to a

hidden node’s output is the sum of that hidden node’s contributions to the errors of all the

output nodes (Smith 1993). Since there is only one output node in our example,

∆E/∆f(zk)=p * ∆y/∆f(zk)=p*vk, making the change in wk,j = -1(E/∆wk,j) = -1(p*vk*f(zk)(1-

f(zk))*(ink)) or -1(q*ink). For biasO the change is equal to –p, and for biasHk the

change is equal to –q.

After a certain number of patterns have been processed, a neural network evaluates the

validation set and saves the weights that gave the best results for the validation set.

 16

CHAPTER 2

MICROSATELLITE DETECTION

This chapter describes how MSPF can be used in in-silico detection and verification of

microsatellites as well as in the overall fragment assembly verification. Section 2.1

explains the application of MSPF in microsatellite detection and verification. Section 2.2

describes the machine learning method used in enhancing the microsatellite detection

process.

2.1 MICROSATELLITE POLYMORPHISM FINDER (MSPF) APPLICATION

Due to aforementioned contig errors, in-silico verification is rarely possible. To

lower the time required to search through all contig-level microsatellites using chemical

methods, redundancy of low-level genotype-specific data in an existing database can be

exploited in order to more accurately identify high quality, polymorphic microsatellite

markers. MSPF attempts to reliably detect microsatellites, measure the size of genotype-

level microsatellites, and to verify the assembly of the consensus sequence through the

implementation of virtual PCR. By taking all sequences present in the contig and using

sequence-level microsatellite information produced by TRF and machine learning results

from Phred/Phrap data, MSPF verifies genotype-level microsatellite length by modeling

PCR. Virtual PCR was made possible by calculating the average difference between the

positions of best alignments of oligonucleotide primers designed from the highest quality

micorosatellite borders to other sequences. For example, Figure 7 shows single “ag”

 17

repeat genotype difference, or the average genotype difference of –2 bases for genotype

A003 and the average difference of 0 for genotype A002.

Figure 7: Virtual PCR

That is, by detecting probable microsatellites in sequences, organizing them into

groups based on their positions in the consensus sequences, and analyzing the groups to

detect the inter-genotypic length differences, it was possible to find a subset of

microsatellite polymorphisms as a byproduct of initial sequencing without extra work for

microsatellite genotyping done separately. A polymorphic microsatellite identified by

MSPF is shown in the viewing interface in Figure 8, where the stars in reads represent

the insertion/deletion symbols used by Phrap for fragment alignment. This interface

accesses the database (see section 3.4) to display the microsatellite regions found in

individual sequences on the right side. A single sequence with a shorter microsatellite

 18

length has a genotype code of A011 which is included at the end of the sequence name on

the left side.

Figure 8: Polymorphic microsatellite

Moreover, misassembled contigs were identified by detecting contigs that either

had a large variance in microsatellite lengths found in individual sequences of the same

genotype or had sequences missing a specific microsatellite that occurred in other

sequences.

 19

2.2 MACHINE LEARNING METHODS IN MICROSATELLITE DETECTION

Phred error probabilities have been confirmed experimentally. The accuracy of

each base call, however, remains questionable. In an effort to improve the accuracy of

base quality values and, subsequently, the accuracy of microsatellite quality values,

machine learning has been used to modify base quality values in sequences where a

microsatellite has been detected. By compiling Phred errors, a neural network was used

to predict the probability of error around a given base based on Phred statistics as well as

a short stretch of chromatogram data around the base (see section 3.2). Since Phred uses

the function (quality value)= -10*log(error probability), Phred error probability and the

machine learning method probability were weight-averaged in an effort to more precisely

identify the accuracy of microsatellite region base-calls and produce a better overall

quality value for improved virtual PCR verification. If a machine learning error

probability was strong (within 0.2 of 1 or 0), Phred’s error probability for the same base

was extracted from the quality value, pulled one third of the way toward neural network

error probability (1/3rd gave the best results), and a new quality value was calculated

from the resulting error probability. Once all base quality values were dynamically

generated for each detected microsatellite in the fragment, the overall microsatellite

quality value was recalculated.

2.3 CONSENSUS SEQUENCE VERIFICATION

Since sequence assembly programs often generate misassembled contigs, some

misassembled contigs can be identified by finding sequences that overlap the contig-level

microsatellite but do not contain a copy of that microsatellite. This usually occurs when

 20

a different sequence overlaps with the contig outside a short microsatellite region and

causes the greedy algorithm to form a wrong layout. Since the consensus sequence ends

up being misassembled, it is unlikely that it represents a valid coding region for a protein

sequence.

 21

CHAPTER 3

IMPLEMENTATION

This chapter describes the implementation of MSPF. MSPF has been modeled

and implemented through an Oracle relational database management system (RDBMS),

but it could have been written to use Phrap text files just as easily. Techniques used to

ensure the reliability of the results included the use of Phred error probabilities (averaged

with machine learning error probabilities) for the bases in the sequences’ microsatellite

regions and Phrap consensus sequence alignment information. Section 3.1 deals with

sequence-level microsatellite detection and explains contig-level microsatellite

clustering. Section 3.2 explains machine learning methods used in microsatellite

detection. Section 3.3 explains inter-genotypic polymorphism detection. Finally, section

3.4 describes the design of the MSPF schema and flow of data.

3.1 SEQUENCE-LEVEL MICROSATELLITE DETECTION AND CONTIG-

LEVEL MICROSATELLITE CLUSTERING

Contig-level microsatellites were detected from sequence and contig data

produced by Phred/Phrap. A graphical user interface for MSPF (Figure 9) was written

for passing parameters and the structure of the database to the program in order to

analyze data internally, and insert it back into the database in the new schema.

 22

Figure 9: MSPF interface

The first step involved looking for the microsatellites, both high and low quality

ones, and computing their attributes (length, quality, etc.). TRF was used to locate the

microsatellites in Phred-produced sequences. Since sequencing errors and mutations are

usually found in the individual fragments, TRF identifies the parts of the sequence that

are most likely to be microsatellites. Moreover, because TRF identifies variable number

tandem repeats (VNTRs) with long motifs, only probable microsatellites with motif

length from two to six were used.

 23

An average quality value of each microsatellite was computed by reading TRF’s

alignment of the found microsatellite to the perfect copy of that microsatellite. Reading

the alignment sequentially, if the actual base was the same as the base in the perfect

theoretical microsatellite, the quality value of the base in the actual copy was multiplied

by two. If an error occurred, the quality value (or previous quality value in the case of

deletion) was multiplied by negative seven. The parameters of two and seven are the

strictest among the most common ones used for local Smith-Waterman alignment

algorithm and have been widely used in sequence comparison search algorithms with

good results. To calculate the average quality value, the sum of all quality values was

divided by the number of bases in the perfect microsatellite (Figure 10).

Figure 10: Microsatellite quality calculation

Then, the microsatellites were analyzed and sorted based on their positions in the

contigs. Since consensus sequence microsatellite detection is error-prone, only low-

granularity alignment information was used. That was accomplished by creating

 24

groups/clusters of same-motif microsatellites for each contig where each microsatellite in

a group either started or ended within a user-provided threshold (a parameter of 7 was

found to give good groups), or was completely “inside” a bigger microsatellite (Figure

11).

Figure 11: Contig-level grouping

All other properties were determined by correlating results of TRF to the database

information. This sequence-level microsatellite information was inserted into the

schema in the ms_in_seq table (Figure 12, see section 3.4).

 25

Figure 12: MSPF schema

 26

3.2 NEURAL NETWORK SETUP

To provide the problem/solution training set for the neural network, apparent

Phred sequence errors were extracted from the database. Information included from

Phred results contained a stretch of five bases around the error, their quality values, and

their distance from the apparent error based on the chromatogram. Information from the

sequence chromatogram (Phred source code was modified to output the trace values)

included the trace position of the error and four stretches of fifty trace values around the

error, creating a total of 216 inputs. The inputs were chosen to correspond with the

information Phred uses to calculate the error probability. To extract examples where

Phred made an error, well-aligned contigs and sequences belonging to them were

scanned. Locations in sequence overlaps that had different bases, including the

padding symbol used to align the sequences, from the majority of corresponding bases

in different sequences and the contig were tagged. Tagging occurred after verifying

the sequence in which an error was found had no more than two insertions/deletions in

the window of length ten that was centered on the error location and had overlaps formed

with at least three sequences of the same genotype and the contig with more than 95% of

bases matching. The parameter of 95% was used since Phrap uses that value during LLR

calculation. The window length of ten was chosen because it was long enough to

produce a high Phred error probability, yet short enough to match locations close to the

ends of the sequences which were given preference during the insertion into the training

set since traces are more prone to distortion near the termini of a polymer-filled capillary.

Then, the error position in the sequence was aligned to the trace location and the trace

values around the error location were extracted. Around eight hundred positive (different

 27

base) and three thousand negative (error-free, random location) samples were located.

Approximately, 500 positive and 2000 negative samples were extracted into the training

set with the rest of the samples placed in the validation set.

On a sidenote, an attempt was made to use the XCS classifier system instead of

a neural network. XCS maintains a population of classifiers where each has a fitness

based on a measure of the prediction accuracy (Wilson 1995). XCS executes a

genetic algorithm (where each classifier represents a single rule a.k.a. Michigan

approach) to find the optimal classifiers in different accuracy niches defined by

training samples (Kovaks 1996). In the result evaluation stage, each classifier is

matched to the validation set. If the classifier matched a sample, the prediction with a

value 0 or 1 was multiplied by classifier’s accuracy/fitness to produce the error

probability estimate and compared to the correct sample output. XCS classification

resulted in eleven classifiers after five runs with a population size of five hundred and

two million fitness determinations. Unfortunately, XCS was unable to generalize well,

correctly matching only one resulting classifier with the validation set sample in the

fourth run and one in the fifth run and incorrectly matching one classifier in the fifth run.

Furthermore, it required several days for each run to produce the classifiers. Better

results were not found after changing the scaling criteria and using a smaller number of

fitness evaluations.

Thus, the NeuroShell2 feed-forward, three-layer, gradient descent back-

propagation network with 990 hidden nodes, which achieved seventy five percent

accuracy on the validation set after about 150 epochs or twenty-four hours, was used.

The number of approximately 700 hidden nodes was suggested by Neuroshell2 after

 28

defining the inputs and selecting the “complex” granularity function estimate. Samples

were selected randomly from the training set. The number of training samples processed

between each validation set evaluation was set to 7600, or about three epochs. Since the

training took approximately 24 hours, the small number of epochs between validation set

evaluations was used to visually track the improvements during the neural network

training process. Overfitting was prevented by saving the configuration that gave the

best results for the validation set. No scaling was done, and the comparison of the runs

with varying number of hidden nodes showed that the most accurate validation set

classification was provided by the network with 990 hidden nodes.

3.3 MICROSATELLITE VERIFICATION

Polymorphisms were identified based on the analysis of the microsatellites in the

unique contig/group combination to see if some of them had different numbers of repeats

that could be correlated to the genotype from which they originated. While a

straightforward approach of seeing whether different genotypes have a different number

of repeats in the same place is fairly sensitive, it also produces a large number of false-

positives because of errors in the original sequences or misassembled contigs. To get

around the problem of having to review a large number of possible polymorphisms

manually, the average genotype fragment length between two primers produced by

virtual PCR was used instead of the numbers of repeats. Since TRF often does not

identify the exact starting and ending position of the microsatellite in the contig, the

primers were recorded from the best sequence’s flanking regions outside the longest,

highest-quality microsatellite in a group ([(quality value*length)+(Σ(border quality

 29

values))] parameter was maximized). Thus, the highest-quality microsatellite was picked

based on quality values produced by Phred error probabilities or, in the neural network

version, on a weighted average of Phred and machine learning error probabilities. A

certain number of bases (parameter set to two) were skipped before the start and after the

end of the microsatellite to make sure the recorded adjacent borders of length twenty-one

(oligonucleotides primers) were outside the microsatellite region. These oligonucleotide

lengths are commonly used during chemical PCR since the probability that they will

match in more than one place in the genetic sequence is fairly low. Then, every other

microsatellite in the same group was analyzed to see whether the length between the

recorded parts (borders) was different for some genotypes on average. This was done by

sequentially comparing the recorded border with a same-length part (even a low quality

part not used in the contig) of the sequence in which the other microsatellite was found

and recording the location of the best match. Comparison was done by calculating the

Levenshtein’s edit distance or the number of insertions/deletions between two strings.

Clearly, the accuracy of this approach will increase with the number of sequences in the

contig. While this approach is unable to find microsatellites that are located close to the

ends of the sequence, it proved to be very accurate. Results were parsed into ms_in_ctg,

ms_in_genotype, and ms_gt_difference tables.

Fail-safe conditions: To make sure that results were accurate, a certain number of

parameters that were briefly mentioned above were included, and most of the values were

borrowed from specific parameters used for sequence assembly and similarity search

programs and adjusted slightly to maximize the quality of results. An option was set to

pass the parameters from user input, or the defaults (see below) were used if the

 30

parameters remained undefined. If a microsatellite had an average quality below a user-

supplied threshold, started extremely close to the beginning of the sequence, or ended

close to the end of the sequence, it was not used. The default value of 32 for the threshold

was chosen since it would correspond to a perfect microsatelite with all Phred quality

values of 16, which is a threshold quality value used in the lab to truncate low quality

sequences. To make sure that the borders had no chance to be identified in other parts of

the sequence, sequence-level microsatellites were not considered if the border difference

on each side of the microsatellite was higher than a certain threshold (20) of the

calculated average or if the border match was lower than 0.81. Polymorphisms were

identified if the average border-gap difference was higher than two, or the least value of

difference for the polymorphic microsatellite with the motif length of two.

3.4 MSPF SCHEMA DESIGN AND FLOW OF DATA

Microsatellites were grouped on three levels shown in separate tables in Figure 8.

Sequence-level information was recorded in ms_in_seq table, contig-level information in

ms_in_ctg table, and genotype-level information in ms_in_genotype table. Moreover, the

genotype difference or polymorphic genotype-level microsatellite information was

recorded in the ms_gt_difference table. Primary/foreign keys were used to keep the

relationships valid. Every table contained a RUN_ID attribute to separate different

executions of MSPF.

Table ms_in_seq had a primary key with three fields: SEQ_NAME, a sequence in

which a microsatellite has been found, MS_GRIC, microsatellite’s general record insert

count which is unique in the same SEQ_NAME, and RUN_ID. REPEAT_MOTIF

 31

attribute contained the microsatellite motif that repeats throughout the microsatellite

region REPEAT_LENGTH attribute described the number of bases in the motif.

MS_START contained position where the microsatellite starts in the fragment,

MS_STOP enclosed the position where the microsatellite ends in the fragment, and

MS_LENGTH contained the difference of the two previous values.

MS_CONTIG_START recorded the position where the microsatellite starts in the contig

and MS_CONTIG_STOP enclosed the position where the microsatellite ends in the

contig. REPEAT_NUMBER contained TRF’s best guess at the number of repeats

present in the fragment’s microsatellite. After extracting Phred base values for each base

in the fragment’s microsatellite region, QUAL_VALS contained the extracted sequence,

QUAL_MIN enclosed the lowest quality value in the extracted sequence, and

QUAL_VAL described the overall value of the microsatellite computed with the

procedure described in section 3.1.

Since microsatellites were clustered into groups based on fragments’ alignments

in a contig table ms_in_ctg had a primary keys with four attributes: UNIQ_CTG_ID

which contained the unique identification string for a contig, MS_GROUP_NUM that

enclosed unique group id of all microsatellites that overlapped within a specific

RUN_ID, UNIQ_CTG_ID combination, and RUN_ID. MS_ANCHOR_SEQ and

MS_ANCHOR_ID specified the best-quality microsatellite that provided the

oligonucleotide borders used for virtual PCR verification. TAG_ANCHOR_MS_SEQ

was used if the microsatellite was found to be the best one in the contig-level group, and

TAG_ALIGN_ANCHOR_MS was used if it was verified by virtual PCR.

 32

Moreover, these contig groups were broken up into genotype-level groups in the

ms_in_genotype table. It had a primary key of length four where the first three fields

were also used as a foreign key from the ms_in_ctg table: UNIQ_CTG_ID,

MS_GROUP_NUM, RUN_ID, and the GT_COMBINE_CODE which described a

specific genotype. Also, GT_POLYMORPHIC tag was used if a genotype-level

microsatellite was different from another one and GT_AVERAGE_SHIFT was updated

with the average length difference of a genotype-level microsatellite from the best

sequence-level microsatellite in a unique RUN_ID, UNIQ_CTG_ID, MS_GROUP_NUM

combination .

If two distinct genotypes from the same primary key in ms_in_ctg table had

different GT_AVERAGE_SHIFT values in the ms_in_genotype table, the difference was

recorded in the ms_gt_difference table. It had a GT_COMP_SET_ID primary key,

which provided a unique identification number of each difference in genotype-level

microsatellites. Foreign key combinations of

UNIQ_CTG_ID/MS_GROUP_NUM/RUN_ID/ GT_COMBINE_CODE_COMP1 and

UNIQ_CTG_ID/MS_GROUP_NUM/RUN_ID/ GT_COMBINE_CODE_COMP2

referenced specific primary keys in the ms_in_genotype table.

Because the ms_in_seq and ms_gt_difference tables contained the primary keys

from ms_in_genotype table which, in turn, referenced ms_in_ctg primary keys, those

primary keys were inserted first, in the ms_in_ctg table, and then in ms_in_genotype

tables as the contig-level groups were found. Relevant ms_in_seq attributes were

inserted after the contig-level clustering . After virtual PCR verified each genotype-level

microsatellite in the contig group using the primers from the best-microsatellite in the

 33

group, non-primary attributes in ms_in_ctg, ms_in_genotype and

ms_genotype_difference tables were updated. The MS_ANCHOR_SEQ,

MS_ANCHOR_ID, TAG_ANCHOR_MS_SEQ, and TAG_ALIGN_ANCHOR_MS

attributes were also updated in the ms_in_seq table at that time.

 34

CHAPTER 4

ANALYSIS

This chapter provides the details of the execution of MSPF on highly inbred

sorghum sequences (low amount of genotype variability). Moreover, since the total

number of genotypes was fairly low, not many polymorphisms have been detected.

Section 4.1 describes the input. Section 4.2 describes the output from MSPF.

4.1 INPUT

TRF was executed on a total of 158,901 sorghum sequences. Genotypic counts

were:

Genotype code Number of sequences

A001 1,210

A002 115,914

A003 28,318

A010 4,608

A011 8,448

Approximately 58,000 of these sequences were assembled by Phrap into a total of about

9000 contigs with average length of 651 nucleotides, each consisting of two or more

sequences. Approximately half of the contigs contained sequences of different

genotypes.

 35

4.2 RESULTS

A total of 719 microsatellite regions (with motif lengths from two to six) were

found with an average length of 26. Approximately two days were needed to produce all

sequence- level microsatellite information using TRF and Phred results on a 2Ghz Intel

P4 machine with 512 MB of RAM. PCR verification took less than an hour on a 4,400

member subset of all sequence-level microsatellites which were organized into contig-

level groups. Since, neural network evaluations were preprocessed, enhanced PCR

verification did not need more processing power. A large majority of microsatellite

regions found contained a motif length as a multiple of three, the size of a codon (Figure

13). The most common motifs and their frequencies are illustrated in Figure 14.

0

50

100

150

200

250

300

2 3 4 5 6

motif length

nu
m

be
r

o
f

m
ic

ro
sa

te
lli

te
s

Figure 13: Microsatellites of specific motif lengths

 36

Figure 14: Common motifs

Among all microsatellites, slippage-mediated expansions/deletions of only repeats

with a motif length as a multiple of three can be tolerated in coding regions because they

do not disturb the reading frame. If an insertion/deletion of length other than a multiple

of three occurs, the resulting protein sequence will be different in all amino acids inserted

after the mutation point since mRNA is translated in sets of three bases. This change is

likely to destroy any chance that the protein will fold into a functional enzyme and make

the organism unfit for future selection.

On average, one microsatellite was found for less than every 8.5 kb of contigs

surveyed, performing better than other estimates that were done conventionally (Edwards

et al. 1991). MSPF, because of its use of virtual PCR, determines SSR length accurately

0

5

10

15

20

25

30

35

40

GCC CA CTT AGC GCG TCC TA TCA

common motifs

 37

irrespective of accumulated mutations. For example, a sequencing error at the end of a

microsatellite (Figure 15) did not result in erroneous detection of a polymorphism (Figure

16).

Figure 15: Single nucleotide polymorphism

 38

Figure 16: Microsatellite example

The neural network enhanced version was able to detect several contig-level

microsatellite regions more accurately by picking better sequence-level microsatellites

(best microsatellite changed in forty cases or in 5.5% of the dataset) for the basis of

digital PCR, thus producing lower average genotype shifts (average difference of 0.005

for the entire dataset) and, in several cases, including more sequences in the contig-level

microsatellite. Since the locations close to the ends of the reads were given preference

for extraction into the training set, the neural network improved results in the lower

quality regions close to the end of the sequences, the regions that are usually not

completely included in the contig but still used in microsatellite verification.

 39

Presumably due to the fact that 73% of the ESTs came from a single, highly

inbred sorghum genotype, polymorphic SSRs were identified in only 1.5% of all contigs,

for a total of 10 (Table 1).

Table 1: Microsatellite polymorphisms

Contig number Genotype code Number of sequences SSR motif SSR length

2_3653 A010 1 CTACA 22

 A002 2 CTACA 27

2_5460 A010 1 GA 48

 A011 1 GA 56

2_7830 A002 3 GGCGCT 28

 A010 1 GGCGCT 22

2_840 A003 1 CACTG 25

 A001 1 CACTG 20

2_8380 A002 5 ACCCA 30

 A010 1 ACCCA 20

2_3241 A010 1 AC 53

 A002 1 AC 63

2_8299 A003 1 CTG 36

 A002 4 CTG 51

2_7121 A011 1 TAA 24

 40

 A003 1 TAA 30

 A002 2 TAA 24

2_7788 A002 5 AG 38

 A011 1 AG 34

2_6757 A002 3 AG 25

 A003 1 AG 23

All of the polymorphic microsatellites differed by a whole number of repeat units since

they were produced by slipped-strand mispairing.

Twenty two contigs out of 719 that contained verified microsatellites have also

been found to be misassembled by Phrap where a sequence missing a specific

microsatellite was included in the consensus sequence (Figure 17).

Figure 17: Misassembled contig

 41

CHAPTER 5

CONCLUSIONS

Since MSPF finds reliable microsatellites and microsatellite polymorphisms using

redundant low-level data with minimal reliance on contig assembly information, it can be

used as a reference for faster, cheaper PCR verification. Moreover, this is the first in-

silico approach that accurately detects microsatellite polymorphisms. It was able to

correctly identify 1.5% of all microsatellites as being polymorphic even with the low

coverage provided by the dataset. On average, it detected a microsatellite for

approximately every 7 kb of the coding regions surveyed. As the sizes of shotgun-

sequencing/EST databases continue to increase exponentially worldwide it can provide

an automated, low-cost method of genotyping that is run completely in-silico and without

the requirement for expensive materials or human intervention used in chemical

verification. Furthermore, we have shown that sequencing accuracy can be improved

using machine learning methods. All of the reviewed methods classified training samples

found in old data and bootstrapped the existing algorithm to a higher degree of accuracy.

An artificial feed-forward, three-layer, gradient-descent back-propagation neural network

has been found to be more useful than the XCS classifier system in this domain. The

neural network was able to classify more training samples into general groups in less than

24 hours as opposed to several days needed to evolve the XCS classifiers. It achieved

75% accuracy on the validation set, and produced accurate predictions that were weight-

averaged with the existing values. These new solutions improved the quality of virtual

 42

PCR verification by more accurately predicting base error probabilities in individual

sequencing reads. Genotype shift attributes produced by virtual PCR improved by

approximately 0.4% on average after using forty new solutions produced by the neural

network. More experimentation with machine learning methods could be performed to

achieve higher quality solutions not only for virtual PCR microsatellite verification but

for fragment assembly problems as well by using higher-accuracy base quality values.

 43

REFERENCES

Benson, G., "Tandem repeats finder: a program to analyze DNA sequences", Nucleic

Acids Research, Vol. 27, No. 2, pp. 573-580, 1999.

Chan, S. C., Wong, A. K. C., and Chiu, D. K. Y., “A survey of multiple sequence

comparison methods”, Bull. Math. Biol. 54:563-598, 1992.

Edwards A,. Civitello A, Hammod H and Caskey C, “DNA typing and genetic mapping

with trimeric and tetrameric repeats”, Arn. J. Hurn. Genet. 49: 746-756, 1991.

Ewing, B., Hillier, L., Wendl, M., Green, P., "Base-Calling of

Automated Sequencer Traces Using Phred. I. Accuracy Assessment", Genome

Res. 8: 175-185, 1998.

Ewing, B., Green, P., "Base-Calling of Automated Sequencer Traces Using

Phred. II. Error Probabilities", Genome Res. 8: 186-194, 1998.

Goldberg, D., “Genetic Algorithms in Search, Optimization & Machine Learning”,

Addison-Wesley, 1989.

Katti, M., Ranjekar, P., Gupta, V., “Differential Distribution of Simple Sequence

Repeats in Eukaryotic Genome Sequences”, Mol. Biol. Evol. 18(7): 1161-1167,

2001.

Kovacs, T., "Evolving Optimal Populations with XCS Classifier Systems", MSc.

Dissertation, Univ. of Birmingham, UK, 1996.

Mitchell, T., "Machine Learning", McGraw Hill, 1997.

Paetkau D., Cavert W, Sterling I., Strobeck C., “Microsatellite analysis of population

structure in Canadian polar bears”, Mol. Ecol. 4: 347-354, 1995.

 44

Parsons, R., Forrest, S., Burks, C., “Genetic Algorithms for DNA

Sequence Assembly”, ISMB 1993: 310-318

Pevzner P., Tang H., Waterman M., “An Eulerian path approach to DNA fragment

assembly”, Proc. Natl. Acad. Sci., 2001 Aug 14; 98(17):9748-53.

Pevzner P., Tang H., Waterman M., “A New Approach to Fragment Assembly in DNA

Sequencing”, Proceedings of The 5th Annual International Conference on

Computational Molecular Biology, pp.256-267, Canada. ACM Press, 2001.

Pevzner P., Tang H., “Fragment assembly with double-barreled data”, Bioinformatics,

2001 Jun;17 Suppl. 1:S225-33, (Special ISMB 2001 issue).

Queller, D., Straussman, Joan, E., Hughes, C., “Microsatellites and kinship”, Trends in

Ecology and Evolution 8: 285-288, 1993.

Rumelhart, D., Widrow, B., Lehr, M., “The basic ideas in neural

networks”, Communications of the ACM, v.37, n.3, pp.87-92, March 1994.

Sun Kim, Liao, L., Perry, M., Zhang, S., Tomb, J., "A Computational Approach

to Sequence Assembly Validation", Poster in The 8th International Conference on

Intelligent System for Molecular Biology, San Diego, California, August, 2000.

Smith, M., “Neural Networks for Statistical Modeling”, Van Nostrand Reinhold, 1993.

Sun Kim, Liao, L., Tomb, J., “A probabilistic approach to sequence assembly

 validation”, 1st Workshop on Data Mining in Bioinformatics, San

Francisco, CA, pp. 38 – 43, August 26, 2001

J. Weissenbach et al, “A second generation linkage map of the human genome”, Nature

359: 794-801, 1992.

Wilson, S.W., Goldberg, D.E., "A Critical Review of Classifier Systems", in

 45

Proceedings of the Third International Conference on Genetic Algorithms, pp.

244-255, Los Altos, California, 1989.

Wilson, S.W., "Classifier Fitness Based on Accuracy", Evolutionary Computation, 3 (2),

MIT Press, 1995.

